WorldWideScience

Sample records for hybrid wave lhw

  1. Modelling of helical current filaments induced by LHW on EAST

    Energy Technology Data Exchange (ETDEWEB)

    Rack, Michael; Denner, Peter; Liang, Yunfeng [Institute of Energy and Climate Research - Plasma Physics, Forschungszentrum Juelich GmbH, Association EURATOM-FZJ, Partner in the Trilateral Euregio Cluster, D-52425 Juelich (Germany); Zeng, Long [Institute of Energy and Climate Research - Plasma Physics, Forschungszentrum Juelich GmbH, Association EURATOM-FZJ, Partner in the Trilateral Euregio Cluster, D-52425 Juelich (Germany); Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China); Gong, Xianzu; Gan, Kaifu; Wang, Liang; Liu, Fukun; Qian, Jinping; Shen, Biao; Li, Jiangang [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China); Gauthier, Eric [Association EURATOM-CEA, IRFM, F-13108 Saint-Paul-lez-Durance (France); Collaboration: the EAST Team

    2013-07-01

    Helical radiation belts have been observed in the scrape-off layer (SOL) of the plasma during the application of lower hybrid wave (LHW) heating at the superconducting tokamak EAST. Modelled SOL field lines, starting in-front of the LHW antennas, show agreement in position and pitch angle to the experimental observed radiation belts. A splitting of the strike-line can be observed on the outer divertor plates during the application of LHW heating. Agreement in the comparison of the Mirnov coil signals and a modelled electric current flow along these SOL field lines was found. A lower hybrid current drive can induce such an electric current flow near the plasma edge. This electric current flow causes a change of the plasma topology which could result in the splitting of the strike-line as known from the application of resonant magnetic perturbation fields. Comparisons of modelled footprint structures and experimental observed heat load patterns in the divertor region are discussed.

  2. Characteristics of edge pedestals in LHW and NBI heated H-mode plasmas on EAST

    Science.gov (United States)

    Zang, Q.; Wang, T.; Liang, Y.; Sun, Y.; Chen, H.; Xiao, S.; Han, X.; Hu, A.; Hsieh, C.; Zhou, H.; Zhao, J.; Zhang, T.; Gong, X.; Hu, L.; Liu, F.; Hu, C.; Gao, X.; Wan, B.; the EAST Team

    2016-10-01

    By using the recently developed Thomson scattering diagnostic, the pedestal structure of the H-mode with neutral beam injection (NBI) or/and lower hybrid wave (LHW) heating on EAST (Experimental Advanced Superconducting Tokamak) is analyzed in detail. We find that a higher ratio of the power of the NBI to the total power of the NBI and the lower hybrid wave (LHW) will produce a large and regular different edge-localized mode (ELM), and a lower ratio will produce a small and irregular ELM. The experiments show that the mean pedestal width has good correlation with β \\text{p,\\text{ped}}0.5 , The pedestal width appears to be wider than that on other similar machines, which could be due to lithium coating. However, it is difficult to draw any conclusion of correlation between ρ * and the pedestal width for limited ρ * variation and scattered distribution. It is also found that T e/\

  3. Poloidal rotation induced by injecting lower hybrid waves in tokamak plasma edge

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The poloidal rotation of the magnetized edge plasma in tokamak driven by theponderomotive force which is generated by injecting lower hybrid wave(LHW) electric field hasbeen studied. The LHW is launched from a waveguide in the plasma edge, and by Brambilla’sgrill theory, analytic expressions for the wave electric field in the slab model of an inhomogeneouscold plasma have been derived. It is shown that a strong wave electric field will be generated inthe plasma edge by injecting LH wave of the power in MW magnitude, and this electric field willinduce a poloidal rotation with a sheared poloidal velocity.PACS: 52.55.Fa

  4. Plasma current start-up using the lower hybrid wave on the TST-2 spherical tokamak

    Science.gov (United States)

    Takase, Y.; Ejiri, A.; Inada, T.; Moeller, C. P.; Shinya, T.; Tsujii, N.; Yajima, S.; Furui, H.; Homma, H.; Imamura, K.; Nakamura, K.; Nakamura, K.; Sonehara, M.; Takeuchi, T.; Togashi, H.; Tsuda, S.; Yoshida, Y.

    2015-12-01

    Non-inductive plasma current start-up, ramp-up and sustainment by waves in the lower hybrid wave (LHW) frequency range at 200 MHz were investigated on the TST-2 spherical tokamak (R0 ≤ 0.38 m, a ≤ 0.25 m, Bt0 ≤ 0.3T, Ip ≤ 0.14 MA). Experimental results obtained using three types of antenna were compared. Both the highest plasma current (Ip = 18 kA) and the highest current drive figure of merit ηCD≡n¯eIpR0/PRF=1.4 ×1017 A/W/m2 were achieved using the capacitively-coupled combline (CCC) antenna, designed to excite the LHW with a sharp and highly directional wavenumber spectrum. For Ip greater than about 5 kA, high energy electrons accelerated by the LHW become the dominant carrier of plasma current. The low value of ηCD observed so far are believed to be caused by a rapid loss of energetic electrons and parasitic losses of the LHW energy in the plasma periphery. ηCD is expected to improve by an order of magnitude by increasing the plasma current to improve energetic electron confinement. In addition, edge power losses are expected to be reduced by increasing the toroidal magnetic field to improve wave accessibility to the plasma core, and by launching the LHW from the inboard upper region of the torus to achieve better single-pass absorption.

  5. Evolution of Wave Energy Deposition Profile in HT-7 Lower Hybrid Current Drive Experiment

    Institute of Scientific and Technical Information of China (English)

    方瑜德; 石跃江; 匡光力; 刘岳修; 沈慰慈; 丁伯江

    2001-01-01

    Lower hybrid waves (LHWs) with a selected n‖ spectrum have been used to control the energy deposition profiles, and then the wave driven current profiles effectively in tokamak discharges. In our lower hybrid current drive experiment in the HT-7 tokamak, it was found that the set-up of the wave energy deposition profile is a graduation process. In the beginning phase of the wave injection duration, the waves (with different n‖ spectra)deposit almost all their energy in the central region of the plasma column, even if their n‖ are very different. Up to around one hundred milliseconds, the wave energy deposition profiles can only take their corresponding shapes according to the n‖ spectra of LHWs. It also shown that this evolution process is affected obviously by the LHW driven current profile, which has been formed early.

  6. The Nonlinear Coupling of Electromagnetic Ion Cyclotron and Lower Hybrid Waves in the Ring Current Region: The Magnetic Storm May 1-7 1998

    Science.gov (United States)

    Khazanov, G. V.; Krivorutsky, E.; Gamayunov, K.; Avanov, L.

    2003-01-01

    The excitation of lower hybrid waves (LHWs) is a widely discussed mechanism of interaction between plasma species in space, and is one of the unresolved questions of magnetospheric multi-ion plasmas. In this paper we present the morphology, dynamics, and level of LHW activity generated by electromagnetic ion cyclotron (EMIC) waves during the May 2-7, 1998 storm period on the global scale. The LHWs were calculated based on our newly developed self-consistent model that couples the system of two kinetic equations: one equation describes the ring current (RC) ion dynamic, and another equation describes the evolution of EMIC waves. It is found that the LHWs are excited by helium ions due to their mass dependent drift in the electric field of EMIC waves. The level of LHW activity is calculated assuming that the induced scattering process is the main saturation mechanism for these waves. The calculated LHWs electric fields are consistent with the observational data.

  7. The Nonlinear Coupling of Electromagnetic Ion Cyclotron and Lower Hybrid Waves in the Ring Current Region

    Science.gov (United States)

    Khazanov, G. V.

    2004-01-01

    The excitation of lower hybrid waves (LHWs) is a widely discussed mechanism of interaction between plasma species in space, and is one of the unresolved questions of magnetospheric multi-ion plasmas. In this paper we present the morphology, dynamics, and level of LHW activity generated by electromagnetic ion cyclotron (EMIC) waves during the May 2-7, 1998 storm period on the global scale. The LHWs were calculated based on a newly developed self-consistent model (Khazanov et. al., 2002, 2003) that couples the system of two kinetic equations: one equation describes the ring current (RC) ion dynamic, and another equation describes the evolution of EMIC waves. It is found that the LHWs are excited by helium ions due to their mass dependent drift in the electric field of EMIC waves. The level of LHW activity is calculated assuming that the induced scattering process is the main saturation mechanism for these waves. The calculated LHWs electric fields are consistent with the observational data.

  8. Experimental characteristics of a lower hybrid wave multi-junction coupler in the HT-7 tokamak

    Institute of Scientific and Technical Information of China (English)

    Ding Bo-Jiang; Jiang Min; Zhang Gong-Rang; Huang Feng; Zhao Yan-Ping; Kuang Guang-Li; HT-7 team; Shan Jia-Fang; Liu Fu-Kun; Fang Yu-De; Wei Wei; Wu Zhen-Wei; Chen Zhong-Yong; Xu Han-Dong; Wang Mao

    2006-01-01

    A phase-controlled lower hybrid wave (LHW) multi-junction (M J) coupler (3(rows)×4(columns)×4 (subwaveguides)) has been developed in the HT-7 tokamak. Simulations show that it is more effective for driving plasma current than an ordinary phase-controlled LHW antenna (3(rows)× 12(columns)) (traditional coupler). The plasma-wave coupling experiments show that the reflection coefficient (RC) is below 10%, implying that the MJ grill can launch the wave into the plasma effectively. The effect of power spectrum launched by the MJ coupler on RC indicates that an optimal condition is requisite for a better coupling in the lower hybrid current drive (LHCD) experiments. Studies indicate that the drive efficiency of the MJ antenna is higher than that of the traditional one, which is mainly ascribed to the discrepancy in impurity concentration, plasma temperature, and spectrum directivity. An improved confinement with an electron internal transport barrier is obtained by LHCD. The analysis shows that the modified negative (low)magnetic shear and the change of radial electric field profile due to LHCD are possible factors responsible for the eITB formation.

  9. Plasma current start-up experiments using outboard- and top-launch lower hybrid wave on the TST-2 spherical tokamak

    Science.gov (United States)

    Shinya, T.; Takase, Y.; Yajima, S.; Moeller, C.; Yamazaki, H.; Tsujii, N.; Yoshida, Y.; Ejiri, A.; Togashi, H.; Toida, K.; Furui, H.; Homma, H.; Nakamura, K.; Roidl, B.; Sonehara, M.; Takahashi, W.; Takeuchi, T.

    2017-03-01

    Non-inductive plasma current start-up experiments were performed using the lower hybrid wave (LHW) on the TST-2 spherical tokamak. The density limit, observed in previous experiments using the outboard-launch antenna, disappeared after changing the plasma condition in the scrape-off layer, and the plasma current reached about 20 kA. In order to improve the LHW power deposition in the plasma core through an up-shift of the parallel wavenumber during the first pass through the plasma, a new top-launch antenna was designed, fabricated and installed. The plasma current ramp-up to 12 kA was achieved using the top-launch antenna alone in a preliminary experiment. Ray-tracing calculations using the measured plasma parameters showed a large up-shift during the first pass, satisfying the strong electron Landau damping condition in the plasma core.

  10. Study of Bridging of the Spectral Gap in the Lower Hybrid Wave Current Drive in the HT-7 Tokamak

    Institute of Scientific and Technical Information of China (English)

    WANG Mao; DING Bojiang; XU Handong; ZHAO Lianmin; LIU Liang; LIN Shiyao; XU Ping; SUN Youwen; HU Huaichuan; YANG Yong; JIA Hua; WANG Xiaojie; WANG Dongxia; QIN Yongliang; FENG Jianqiang; LIU Fukun; SHAN Jiafang; ZHAO Yanping; HT-7 team

    2009-01-01

    An additional lower hybrid wave (LHW) with a higher refractive index(N//)was investigated in the HT-7 tokamak to bridge the spectral gap.It was found that the spectral gap between the wave and the electrons in the outer region was bridged by the additional wave with a higher N// spectrum.The results showed that the sawteeth oscillation was suppressed by launching the additional wave,and that the power deposition profile was moved outwards and the current profile was broadened due to the application of the additional wave.Our study indicates that the spectral gap may be bridged by an additional wave with a higher N// spectrum in the outer region.

  11. Lower hybrid wave resonance cone detection via CO/sub 2/ laser scattering

    Energy Technology Data Exchange (ETDEWEB)

    Wurden, G.A.; Wong, K.L.; Ono, M.

    1984-04-01

    Lower hybrid waves are studied in the Princeton ACT-I steady-state toroidal plasma device using a radially scanning CO/sub 2/ laser scattering system with both amplitude and phase sensitive detection techniques. Clearly defined resonance cones launched from external electrostatic antennas are seen to disappear as the plasma density is raised. Scaling of LHW laser signal with RF power in the presence of resonance cones shows nonlinearities associated with RF induced changes in the effective laser scattering volume. Absolute fluctuation level estimates suggest this occurs when e PHI/T/sub e/ greater than or equal to 1. Wavefront curvature effects can cause a complete loss of resonance cone laser signals, even though probes indicate that cones are still present. Measurements of the wave k/sub perpendicular/-spectrum in the plasma show direct evidence for electron Landau filtering of the original wave k/sub parallel/-spectrum launched from the antenna at the plasma edge, and strong dependence on antenna phasing. Finally, frequency shifts and loss of the resonance cone signal are associated with high levels of plasma density edge turbulence.

  12. Travelling waves in hybrid chemotaxis models

    CERN Document Server

    Franz, Benjamin; Painter, Kevin J; Erban, Radek

    2013-01-01

    Hybrid models of chemotaxis combine agent-based models of cells with partial differential equation models of extracellular chemical signals. In this paper, travelling wave properties of hybrid models of bacterial chemotaxis are investigated. Bacteria are modelled using an agent-based (individual-based) approach with internal dynamics describing signal transduction. In addition to the chemotactic behaviour of the bacteria, the individual-based model also includes cell proliferation and death. Cells consume the extracellular nutrient field (chemoattractant) which is modelled using a partial differential equation. Mesoscopic and macroscopic equations representing the behaviour of the hybrid model are derived and the existence of travelling wave solutions for these models is established. It is shown that cell proliferation is necessary for the existence of non-transient (stationary) travelling waves in hybrid models. Additionally, a numerical comparison between the wave speeds of the continuum models and the hybr...

  13. Travelling Waves in Hybrid Chemotaxis Models

    KAUST Repository

    Franz, Benjamin

    2013-12-18

    Hybrid models of chemotaxis combine agent-based models of cells with partial differential equation models of extracellular chemical signals. In this paper, travelling wave properties of hybrid models of bacterial chemotaxis are investigated. Bacteria are modelled using an agent-based (individual-based) approach with internal dynamics describing signal transduction. In addition to the chemotactic behaviour of the bacteria, the individual-based model also includes cell proliferation and death. Cells consume the extracellular nutrient field (chemoattractant), which is modelled using a partial differential equation. Mesoscopic and macroscopic equations representing the behaviour of the hybrid model are derived and the existence of travelling wave solutions for these models is established. It is shown that cell proliferation is necessary for the existence of non-transient (stationary) travelling waves in hybrid models. Additionally, a numerical comparison between the wave speeds of the continuum models and the hybrid models shows good agreement in the case of weak chemotaxis and qualitative agreement for the strong chemotaxis case. In the case of slow cell adaptation, we detect oscillating behaviour of the wave, which cannot be explained by mean-field approximations. © 2013 Society for Mathematical Biology.

  14. Particle acceleration in tangential discontinuities by lower hybrid waves

    Directory of Open Access Journals (Sweden)

    D. Spicer

    2002-01-01

    Full Text Available We consider the role that the lower-hybrid wave turbulence plays in providing the necessary resistivity at collisionless reconnection sights. The mechanism for generating the waves is considered to be the lower-hybrid drift instability. We find that the level of the wave amplitude is sufficient enough to heat and accelerate both electrons and ions.

  15. Studies of challenge in lower hybrid current drive capability at high density regime in experimental advanced superconducting tokamak

    Science.gov (United States)

    Ding, B. J.; Li, M. H.; Li, Y. C.; Wang, M.; Liu, F. K.; Shan, J. F.; Li, J. G.; Wan, B. N.; Wan

    2017-02-01

    Aiming at a fusion reactor, two issues must be solved for the lower hybrid current drive (LHCD), namely good lower hybrid wave (LHW)-plasma coupling and effective current drive at high density. For this goal, efforts have been made to improve LHW-plasma coupling and current drive capability at high density in experimental advanced superconducting tokamak (EAST). LHW-plasma coupling is improved by means of local gas puffing and gas puffing from the electron side is taken as a routine way for EAST to operate with LHCD. Studies of high density experiments suggest that low recycling and high lower hybrid (LH) frequency are preferred for LHCD experiments at high density, consistent with previous results in other machines. With the combination of 2.45 GHz and 4.6 GHz LH waves, a repeatable high confinement mode plasma with maximum density up to 19~\\text{m}-3$ was obtained by LHCD in EAST. In addition, in the first stage of LHCD cyclic operation, an alternative candidate for more economical fusion reactors has been demonstrated in EAST and further work will be continued.

  16. Effort of lower hybrid current drive experiments toward to H-mode in EAST

    Science.gov (United States)

    Ding, B. J.; Li, M. H.; Liu, F. K.; Shan, J. F.; Li, Y. C.; Wang, M.; Liu, L.; Zhao, L. M.; Yang, Y.; Wu, Z. G.; Feng, J. Q.; Hu, H. C.; Jia, H.; Cheng, M.; Zang, Q.; Lyu, B.; Duan, Y. M.; Lin, S. Y.; Wu, J. H.; Hillairet, J.; Ekedahl, A.; Peysson, Y.; Goniche, M.; Tuccillo, A. A.; Cesario, R.; Amicucci, L.; Shen, B.; Gong, X. Z.; Xu, G. S.; Zhao, H. L.; Hu, L. Q.; Li, J. G.; Wan, B. N.; EAST Team

    2017-02-01

    Lower hybrid current drive (LHCD) is an effective tool to achieve high confinement (H-mode) plasma in EAST. To utilize LHCD for accessing H-mode plasma, efforts have been made to improve LHW (lower hybrid wave)-plasma coupling and current drive capability at high density. Improved LHW-plasma coupling by means of local gas puffing and gas puffing from the electron side is routinely used during EAST operation with LHCD. High density experiments suggest that low recycling and high LH frequency are preferred for LHCD experiments at high density, consistent with previous results in other machines. The effect of LHCD on the current profile in EAST demonstrates that it is possible to control the plasma profile by optimizing the LHW spectrum. Repeatable H-mode plasma was obtained by LHCD and the maximum density during H-mode with the combination of 2.45 GHz and 4.6 GHz LH waves was up to 4.5  ×  1019 m-3.

  17. Laser second harmonic generation in a magnetoplasma assisted by an electrostatic wave

    Science.gov (United States)

    Tyagi, Yachna; Tripathi, Deepak; Walia, Keshav

    2017-04-01

    A laser produced plasma, and an electrostatic wave, helps to generate a strong harmonic radiation. The electrostatic wave assists k matching and contributes to non-linear coupling. In the case of the Bernstein wave assisted second harmonic, the frequency of the second harmonic is shifted from the laser second harmonic by electron cyclotron frequency. The lower hybrid wave (LHW) assisted second harmonic has frequency slightly shifted from the laser second harmonic. The upper hybrid wave (UHW) assisted second harmonic has frequency shifted by an amount ω that lies between max( ω c , ω p ) and ω U H . At a 0 = 0.1 and n ω , k → / n0 0 = 0.1, the normalized amplitude value the of electrostatic wave assisted second harmonic is quite high near the upper hybrid resonance. The effect of increasing ω c / ω p increases the max value of normalized amplitude.

  18. Full wave simulations of fast wave mode conversion and lower hybrid wave propagation in tokamaks

    DEFF Research Database (Denmark)

    Wright, J.C.; Bonoli, P.T.; Brambilla, M.;

    2004-01-01

    Fast wave (FW) studies of mode conversion (MC) processes at the ion-ion hybrid layer in toroidal plasmas must capture the disparate scales of the FW and mode converted ion Bernstein and ion cyclotron waves. Correct modeling of the MC layer requires resolving wavelengths on the order of k(perpendi......Fast wave (FW) studies of mode conversion (MC) processes at the ion-ion hybrid layer in toroidal plasmas must capture the disparate scales of the FW and mode converted ion Bernstein and ion cyclotron waves. Correct modeling of the MC layer requires resolving wavelengths on the order of k......). Two full wave codes, a massively-parallel-processor (MPP) version of the TORIC-2D finite Larmor radius code [M. Brambilla, Plasma Phys. Controlled Fusion 41, 1 (1999)] and also an all orders spectral code AORSA2D [E. F. Jaeger , Phys. Plasmas 9, 1873 (2002)], have been developed which for the first......)] to gain new understanding into the nature of FWMC in tokamaks. The massively-parallel-processor version of TORIC is also now capable of running with sufficient resolution to model planned lower hybrid range of frequencies experiments in the Alcator C-Mod. (C) 2004 American Institute of Physics....

  19. Stochastic Ion Heating by the Lower-Hybrid Waves

    Science.gov (United States)

    Khazanov, G.; Tel'nikhin, A.; Krotov, A.

    2011-01-01

    The resonance lower-hybrid wave-ion interaction is described by a group (differentiable map) of transformations of phase space of the system. All solutions to the map belong to a strange attractor, and chaotic motion of the attractor manifests itself in a number of macroscopic effects, such as the energy spectrum and particle heating. The applicability of the model to the problem of ion heating by waves at the front of collisionless shock as well as ion acceleration by a spectrum of waves is discussed. Keywords: plasma; ion-cyclotron heating; shocks; beat-wave accelerator.

  20. Gravity Waves from Tachyonic Preheating after Hybrid Inflation

    CERN Document Server

    Dufaux, Jean Francois; Kofman, Lev; Navros, Olga

    2008-01-01

    We study the stochastic background of gravitational waves produced from preheating in hybrid inflation models. We investigate different dynamical regimes of preheating in these models and we compute the resulting gravity wave spectra using analytical estimates and numerical simulations. We discuss the dependence of the gravity wave frequencies and amplitudes on the various potential parameters. We find that large regions of the parameter space leads to gravity waves that may be observable in upcoming interferometric experiments, including Advanced LIGO, but this generally requires very small coupling constants.

  1. Low Frequency Turbulence as the Source of High Frequency Waves in Multi-Component Space Plasmas

    Science.gov (United States)

    Khazanov, George V.; Krivorutsky, Emmanuel N.; Uritsky, Vadim M.

    2011-01-01

    Space plasmas support a wide variety of waves, and wave-particle interactions as well as wavewave interactions are of crucial importance to magnetospheric and ionospheric plasma behavior. High frequency wave turbulence generation by the low frequency (LF) turbulence is restricted by two interconnected requirements: the turbulence should be strong enough and/or the coherent wave trains should have the appropriate length. These requirements are strongly relaxed in the multi-component plasmas, due to the heavy ions large drift velocity in the field of LF wave. The excitation of lower hybrid waves (LHWs), in particular, is a widely discussed mechanism of interaction between plasma species in space and is one of the unresolved questions of magnetospheric multi-ion plasmas. It is demonstrated that large-amplitude Alfven waves, in particular those associated with LF turbulence, may generate LHW s in the auroral zone and ring current region and in some cases (particularly in the inner magnetosphere) this serves as the Alfven wave saturation mechanism. We also argue that the described scenario can playa vital role in various parts of the outer magnetosphere featuring strong LF turbulence accompanied by LHW activity. Using the data from THEMIS spacecraft, we validate the conditions for such cross-scale coupling in the near-Earth "flow-braking" magnetotail region during the passage of sharp injection/dipolarization fronts, as well as in the turbulent outflow region of the midtail reconnection site.

  2. DE-1 and COSMOS 1809 observations of lower hybrid waves excited by VLF whistler mode waves

    Science.gov (United States)

    Bell, T. F; Inan, U. S.; Lauben, D.; Sonwalkar, V. S.; Helliwell, R. A.; Sobolev, Ya. P.; Chmyrev, V. M.; Gonzalez, S.

    1994-01-01

    Past work demostrates that strong lower hybrid (LH) waves can be excited by electromagnetic whistler mode waves throughout large regions of the topside ionosphere and magnetosphere. The effects of the excited LH waves upon the suprathermal ion population in the topside ionosphere and magnetosphere depend upon the distribution of LH wave amplitude with wavelength lambda. The present work reports plasma wave data from the DE-1 and COSMOS 1809 spacecraft which suggests that the excited LH wave spectrum has components for which lambda less than or equal to 3.5 m when excitation occurs at a frequency roughly equal to the local lower hybrid resonance frequency. This wavelength limit is a factor of approximately 3 below that reported in past work and suggests that the excited LH waves can interact with suprathermal H(+) ions with energy less than or equal to 6 eV. This finding supports recent work concerning the heating of suprathermal ions above thunderstorm cells.

  3. Lower hybrid waves at the shock front: a reassessment

    Directory of Open Access Journals (Sweden)

    S. N. Walker

    2008-03-01

    Full Text Available The primary process occurring at a collisionless shock is the redistribution of the bulk upstream energy into other degrees of freedom. One part of this process results in the acceleration of electrons at the shock front. Accelerated electrons are observed at the terrestrial and other planetary shocks, comets, and their effects are observed in astrophysical phenomena such as supernova remnants and jets in the form of X-ray bremsstrahlung radiation. One of the physical models for electron acceleration at supercritical shocks is based on low-hybrid turbulence due to the presence of reflected ions in the foot region. Since lower hybrid waves propagate almost perpendicular to the magnetic field they can be simultaneously in resonance with both the unmagnetised ions (ω=Vik and magnetised electrons (ω=Vek||. In this paper, Cluster observations of the electric field are used to study the occurrence of lower hybrid waves in the front of the terrestrial bow shock. It is shown that the lower hybrid waves exist as isolated wave packets. However, the very low level of the observed lower hybrid turbulence is too small to impart significant energisation to the electron population.

  4. Hybridizing matter-wave and classical accelerometers

    Science.gov (United States)

    Lautier, J.; Volodimer, L.; Hardin, T.; Merlet, S.; Lours, M.; Pereira Dos Santos, F.; Landragin, A.

    2014-10-01

    We demonstrate a hybrid accelerometer that benefits from the advantages of both conventional and atomic sensors in terms of bandwidth (DC to 430 Hz) and long term stability. First, the use of a real time correction of the atom interferometer phase by the signal from the classical accelerometer enables to run it at best performance without any isolation platform. Second, a servo-lock of the DC component of the conventional sensor output signal by the atomic one realizes a hybrid sensor. This method paves the way for applications in geophysics and in inertial navigation as it overcomes the main limitation of atomic accelerometers, namely, the dead times between consecutive measurements.

  5. Hybridizing matter-wave and classical accelerometers

    Energy Technology Data Exchange (ETDEWEB)

    Lautier, J.; Volodimer, L.; Hardin, T.; Merlet, S.; Lours, M.; Pereira Dos Santos, F.; Landragin, A., E-mail: arnaud.landragin@obspm.fr [LNE-SYRTE, Observatoire de Paris, CNRS, UPMC, 61 avenue de l' Observatoire, 75014 Paris (France)

    2014-10-06

    We demonstrate a hybrid accelerometer that benefits from the advantages of both conventional and atomic sensors in terms of bandwidth (DC to 430 Hz) and long term stability. First, the use of a real time correction of the atom interferometer phase by the signal from the classical accelerometer enables to run it at best performance without any isolation platform. Second, a servo-lock of the DC component of the conventional sensor output signal by the atomic one realizes a hybrid sensor. This method paves the way for applications in geophysics and in inertial navigation as it overcomes the main limitation of atomic accelerometers, namely, the dead times between consecutive measurements.

  6. Hybridizing matter-wave and classical accelerometers

    CERN Document Server

    Lautier, Jean; Hardin, Thomas; Merlet, Sebastien; Santos, Franck Pereira Dos; Landragin, Arnaud

    2014-01-01

    We demonstrate a hybrid accelerometer that benefits from the advantages of both conventional and atomic sensors in terms of bandwidth (DC to 430 Hz) and long term stability. First, the use of a real time correction of the atom interferometer phase by the signal from the classical accelerometer enables to run it at best performances without any isolation platform. Second, a servo-lock of the DC component of the conventional sensor output signal by the atomic one realizes a hybrid sensor. This method paves the way for applications in geophysics and in inertial navigation as it overcomes the main limitation of atomic accelerometers, namely the dead times between consecutive measurements.

  7. Active graphene-silicon hybrid diode for terahertz waves.

    Science.gov (United States)

    Li, Quan; Tian, Zhen; Zhang, Xueqian; Singh, Ranjan; Du, Liangliang; Gu, Jianqiang; Han, Jiaguang; Zhang, Weili

    2015-05-11

    Controlling the propagation properties of the terahertz waves in graphene holds great promise in enabling novel technologies for the convergence of electronics and photonics. A diode is a fundamental electronic device that allows the passage of current in just one direction based on the polarity of the applied voltage. With simultaneous optical and electrical excitations, we experimentally demonstrate an active diode for the terahertz waves consisting of a graphene-silicon hybrid film. The diode transmits terahertz waves when biased with a positive voltage while attenuates the wave under a low negative voltage, which can be seen as an analogue of an electronic semiconductor diode. Here, we obtain a large transmission modulation of 83% in the graphene-silicon hybrid film, which exhibits tremendous potential for applications in designing broadband terahertz modulators and switchable terahertz plasmonic and metamaterial devices.

  8. Active graphene–silicon hybrid diode for terahertz waves

    Science.gov (United States)

    Li, Quan; Tian, Zhen; Zhang, Xueqian; Singh, Ranjan; Du, Liangliang; Gu, Jianqiang; Han, Jiaguang; Zhang, Weili

    2015-01-01

    Controlling the propagation properties of the terahertz waves in graphene holds great promise in enabling novel technologies for the convergence of electronics and photonics. A diode is a fundamental electronic device that allows the passage of current in just one direction based on the polarity of the applied voltage. With simultaneous optical and electrical excitations, we experimentally demonstrate an active diode for the terahertz waves consisting of a graphene–silicon hybrid film. The diode transmits terahertz waves when biased with a positive voltage while attenuates the wave under a low negative voltage, which can be seen as an analogue of an electronic semiconductor diode. Here, we obtain a large transmission modulation of 83% in the graphene–silicon hybrid film, which exhibits tremendous potential for applications in designing broadband terahertz modulators and switchable terahertz plasmonic and metamaterial devices. PMID:25959596

  9. Active graphene-silicon hybrid diode for terahertz waves

    Science.gov (United States)

    Li, Quan; Tian, Zhen; Zhang, Xueqian; Singh, Ranjan; Du, Liangliang; Gu, Jianqiang; Han, Jiaguang; Zhang, Weili

    2015-05-01

    Controlling the propagation properties of the terahertz waves in graphene holds great promise in enabling novel technologies for the convergence of electronics and photonics. A diode is a fundamental electronic device that allows the passage of current in just one direction based on the polarity of the applied voltage. With simultaneous optical and electrical excitations, we experimentally demonstrate an active diode for the terahertz waves consisting of a graphene-silicon hybrid film. The diode transmits terahertz waves when biased with a positive voltage while attenuates the wave under a low negative voltage, which can be seen as an analogue of an electronic semiconductor diode. Here, we obtain a large transmission modulation of 83% in the graphene-silicon hybrid film, which exhibits tremendous potential for applications in designing broadband terahertz modulators and switchable terahertz plasmonic and metamaterial devices.

  10. Active graphene–silicon hybrid diode for terahertz waves

    OpenAIRE

    Li, Quan; Tian, Zhen; Zhang, Xueqian; Singh, Ranjan; Du, Liangliang; Gu, Jianqiang; Han, Jiaguang; Zhang, Weili

    2015-01-01

    Controlling the propagation properties of the terahertz waves in graphene holds great promise in enabling novel technologies for the convergence of electronics and photonics. A diode is a fundamental electronic device that allows the passage of current in just one direction based on the polarity of the applied voltage. With simultaneous optical and electrical excitations, we experimentally demonstrate an active diode for the terahertz waves consisting of a graphene–silicon hybrid film. The di...

  11. A stochastic background of gravitational waves from hybrid preheating

    CERN Document Server

    García-Bellido, J; Garcia-Bellido, Juan; Figueroa, Daniel G.

    2006-01-01

    The process of reheating the universe after hybrid inflation is extremely violent. It proceeds through the nucleation and subsequent collision of large concentrations of energy density in bubble-like structures, which generate a significant fraction of energy in the form of gravitational waves. We study the power spectrum of the stochastic background of gravitational waves produced at reheating after hybrid inflation. We find that the amplitude could be significant for high-scale models, although the typical frequencies are well beyond what could be reached by planned gravitational wave observatories like LIGO, LISA or BBO. On the other hand, low-scale models could still produce a detectable stochastic background at frequencies accesible to those detectors. The discovery of such a background would open a new window into the very early universe.

  12. A Gravitational Wave Background from Reheating after Hybrid Inflation

    CERN Document Server

    Garcia-Bellido, Juan; Sastre, Alfonso

    2007-01-01

    The reheating of the universe after hybrid inflation proceeds through the nucleation and subsequent collision of large concentrations of energy density in the form of bubble-like structures moving at relativistic speeds. This generates a significant fraction of energy in the form of a stochastic background of gravitational waves, whose time evolution is determined by the successive stages of reheating. First, tachyonic preheating makes the amplitude of gravity waves grow exponentially fast. Second, bubble collisions add a new burst of gravitational radiation. Third, turbulent motions finally produce a self-similar time evolution, which allows us to extrapolate the amplitude and shape of this background till the end of reheating. We find that the fraction of energy density today in these primordial gravitational waves could be significant for GUT-scale models of inflation, although well beyond the frequency range sensitivity of gravitational wave observatories like LIGO, LISA or BBO. However, low-scale models ...

  13. Double hybrid inflation and gravitational waves

    CERN Document Server

    Lazarides, G

    2015-01-01

    A double hybrid inflationary scenario in non-minimal supergravity which can predict values of the tensor-to-scalar ratio up to about 0.05 is presented. Larger values of this ratio would require unacceptably large running of the scalar spectral index. The underlying supersymmetric particle physics model possesses, for the chosen values of the parameters, practically two inflationary paths, the trivial and the semi-shifted one. The trivial path is stabilized by supergravity and supports a first stage of inflation with a limited number of e-foldings. The tensor-to-scalar ratio can become appreciable with the scalar spectral index remaining acceptable, as a result of the competition between the relatively mild supergravity and the strong radiative corrections to the inflationary potential. The additional number of e-foldings required for solving the puzzles of hot big bang cosmology are generated by a second stage of inflation along the semi-shifted path. This is possible only because the semi-shifted path is alm...

  14. Plasma-maser instability of the ion acoustics wave in the presence of lower hybrid wave turbulence in inhomogeneous plasma

    Indian Academy of Sciences (India)

    M Singh; P N Deka

    2006-03-01

    A theoretical study is made on the generation mechanism of ion acoustics wave in the presence of lower hybrid wave turbulence field in inhomogeneous plasma on the basis of plasma-maser interaction. The lower hybrid wave turbulence field is taken as the low-frequency turbulence field. The growth rate of test high frequency ion acoustics wave is obtained with the involvement of spatial density gradient parameter. A comparative study of the role of density gradient for the generation of ion acoustics wave on the basis of plasma-maser effect is presented. It is found that the density gradient influences the growth rate of ion acoustics wave.

  15. Hybrid Modeling of Elastic Wave Scattering in a Welded Cylinder

    Science.gov (United States)

    Mahmoud, A.; Shah, A. H.; Popplewell, N.

    2003-03-01

    In the present study, a 3D hybrid method, which couples the finite element region with guided elastic wave modes, is formulated to investigate the scattering by a non-axisymmetric crack in a welded steel pipe. The algorithm is implemented on a parallel computing platform. Implementation is facilitated by the dynamic memory allocation capabilities of Fortran 90™ and the parallel processing directives of OpenMp™. The algorithm is validated against available numerical results. The agreement with a previous 2D hybrid model is excellent. Novel results are presented for the scattering of the first longitudinal mode from different non-axisymmetric cracks. The trend of the new results is consistent with the previous findings for the axisymmetric case. The developed model has potential application in ultrasonic nondestructive evaluation of welded steel pipes.

  16. Stochastic generation of currents by lower-hybrid waves

    Energy Technology Data Exchange (ETDEWEB)

    Gell, Y.; Nakach, R.

    1984-03-01

    A scheme for current generation based on a stochastic driving mechanism is proposed. The current in this approach is generated by launching into the plasma two lower-hybrid waves having appropriate different frequencies, wave numbers, and amplitudes. The phase-space analysis of the electron motion in such a configuration reveals the existence of a relatively broad stochastic layer far away from the separatrix, allowing for diffusion in velocity space of high-velocity electrons. The diffusion coefficient of this process is evaluated and the solution of the Fokker-Planck equation for the electron velocity distribution function is used to calculate the current J and the power dissipated P/sub d/ in generating it. A favorable J-to-P/sub d/ ratio for steady-current drive is found.

  17. The effect of lower hybrid waves on JET plasma rotation

    Science.gov (United States)

    Nave, M. F. F.; Kirov, K.; Bernardo, J.; Brix, M.; Ferreira, J.; Giroud, C.; Hawkes, N.; Hellsten, T.; Jonsson, T.; Mailloux, J.; Ongena, J.; Parra, F.; Contributors, JET

    2017-03-01

    This paper reports on observations of rotation in JET plasmas with lower hybrid current drive. Lower hybrid (LH) has a clear impact on rotation. The changes in core rotation can be either in the co- or counter-current directions. Experimental features that could determine the direction of rotation were investigated. Changes from co- to counter-rotation as the q-profile evolves from above unity to below unity suggests that magnetic shear could be important. However, LH can drive either co- or counter-rotation in discharges with similar magnetic shear and at the same plasma current. It is not clear if a slightly lower density is significant. A power scan at fixed density, shows a lower hybrid power threshold around 3 MW. For smaller LH powers, counter rotation increases with power, while for larger powers a trend towards co-rotation is found. The estimated counter-torque from the LH waves, would not explain the observed angular frequencies, neither would it explain the observation of co-rotation.

  18. Incommensurate Chirality Density Wave Transition in a Hybrid Molecular Framework

    Science.gov (United States)

    Hill, Joshua A.; Christensen, Kirsten E.; Goodwin, Andrew L.

    2017-09-01

    Using single-crystal x-ray diffraction we characterize the 235 K incommensurate phase transition in the hybrid molecular framework tetraethylammonium silver(I) dicyanoargentate, [NEt4]Ag3(CN )4 . We demonstrate the transition to involve spontaneous resolution of chiral [NEt4]+ conformations, giving rise to a state in which molecular chirality is incommensurately modulated throughout the crystal lattice. We refer to this state as an incommensurate chirality density wave (XDW) phase, which represents a fundamentally new type of chiral symmetry breaking in the solid state. Drawing on parallels to the incommensurate ferroelectric transition of NaNO2 , we suggest the XDW state arises through coupling between acoustic (shear) and molecular rotoinversion modes. Such coupling is symmetry forbidden at the Brillouin zone center but symmetry allowed for small but finite modulation vectors q =[0 ,0 ,qz]* . The importance of long-wavelength chirality modulations in the physics of this hybrid framework may have implications for the generation of mesoscale chiral textures, as required for advanced photonic materials.

  19. Long-wave approximation for hybridization modeling of local surface plasmonic resonance in nanoshells.

    Science.gov (United States)

    Li, Ben Q; Liu, Changhong

    2011-01-15

    A hybridization model for the localized surface plasmon resonance of a nanoshell is developed within the framework of long-wave approximation. Compared with the existing hybridization model derived from the hydrodynamic simulation of free electron gas, this approach is much simpler and gives identical results for a concentric nanoshell. Also, with this approach, the limitations associated with the original hybridization model are succinctly stated. Extension of this approach to hybridization modeling of more complicated structures such as multiplayered nanoshells is straightforward.

  20. Electromagnetic Components of Auroral Hiss and Lower Hybrid Waves in the Polar Magnetosphere

    Science.gov (United States)

    Wong, H. K.

    1995-01-01

    DE-1 has frequently observed waves in the whistler and lower hybrid frequencies range. Besides the electrostatic components, these waves also exhibit electromagnetic components. It is generally believed that these waves are excited by the electron acoustic instability and the electron-beam-driven lower hybrid instability. Because the electron acoustic and the lower hybrid waves are predominately electrostatic waves, they cannot account for the observed electromagnetic components. In this work, it is suggested that these electromagnetic components can be explained by waves that are generated near the resonance cone and that propagate away from the source. The role that these electromagnetic waves can play in particle acceleration processes at low altitude is discussed.

  1. Special purpose hybrid transfinite elements and unified computational methodology for accurately predicting thermoelastic stress waves

    Science.gov (United States)

    Tamma, Kumar K.; Railkar, Sudhir B.

    1988-01-01

    This paper represents an attempt to apply extensions of a hybrid transfinite element computational approach for accurately predicting thermoelastic stress waves. The applicability of the present formulations for capturing the thermal stress waves induced by boundary heating for the well known Danilovskaya problems is demonstrated. A unique feature of the proposed formulations for applicability to the Danilovskaya problem of thermal stress waves in elastic solids lies in the hybrid nature of the unified formulations and the development of special purpose transfinite elements in conjunction with the classical Galerkin techniques and transformation concepts. Numerical test cases validate the applicability and superior capability to capture the thermal stress waves induced due to boundary heating.

  2. Intermodal parametric gain of degenerate four wave mixing in large mode area hybrid photonic crystal fibers

    OpenAIRE

    Petersen, Sidsel Rübner; Lægsgaard, Jesper; Alkeskjold, Thomas Tanggaard

    2013-01-01

    Intermodal degenerate four wave mixing (FWM) is investigated numerically in large mode area hybrid photonic crystal fibers. The dispersion is controlled independently of core size, and thus allows for power scaling of the FWM process.

  3. Frequency conversion through spontaneous degenerate four wave mixing in large mode area hybrid photonic crystal fibers

    DEFF Research Database (Denmark)

    Petersen, Sidsel Rübner; Alkeskjold, Thomas Tanggaard; Olausson, Christina Bjarnal Thulin;

    2014-01-01

    Frequency conversion through spontaneous degenerate four wave mixing (FWM) is investigated in large mode area hybrid photonic crystal fibers. Different FWM processes are observed, phasematching between fiber modes of orthogonal polarization, intermodal phasematching across bandgaps, and intramodal...

  4. Intermodal parametric gain of degenerate four wave mixing in large mode area hybrid photonic crystal fibers

    DEFF Research Database (Denmark)

    Petersen, Sidsel Rübner; Lægsgaard, Jesper; Alkeskjold, Thomas Tanggaard

    2013-01-01

    Intermodal degenerate four wave mixing (FWM) is investigated numerically in large mode area hybrid photonic crystal fibers. The dispersion is controlled independently of core size, and thus allows for power scaling of the FWM process.......Intermodal degenerate four wave mixing (FWM) is investigated numerically in large mode area hybrid photonic crystal fibers. The dispersion is controlled independently of core size, and thus allows for power scaling of the FWM process....

  5. Polarization switch of four-wave mixing in large mode area hybrid photonic crystal fibers

    DEFF Research Database (Denmark)

    Petersen, Sidsel Rübner; Alkeskjold, Thomas Tanggaard; Olausson, Christina Bjarnal Thulin;

    2015-01-01

    Degenerate spontaneous four-wave mixing is considered in a large mode area hybrid photonic crystal fiber. Numerical and experimental results show birefringence assisted four-wave mixing for a certain polarization state of the pump field. The parametric gain can be turned on and off by switching...... the polarization state of the pump field between the two principal axis of the hybrid photonic crystal fiber. (C) 2015 Optical Society of America...

  6. Polarization switch of four-wave mixing in large mode area hybrid photonic crystal fibers.

    Science.gov (United States)

    Petersen, Sidsel R; Alkeskjold, Thomas T; Olausson, Christina B; Lægsgaard, Jesper

    2015-02-15

    Degenerate spontaneous four-wave mixing is considered in a large mode area hybrid photonic crystal fiber. Numerical and experimental results show birefringence assisted four-wave mixing for a certain polarization state of the pump field. The parametric gain can be turned on and off by switching the polarization state of the pump field between the two principal axis of the hybrid photonic crystal fiber.

  7. Alpha Channeling with High-field Launch of Lower Hybrid Waves

    CERN Document Server

    Ochs, Ian E; Fisch, Nathaniel J

    2015-01-01

    Although lower hybrid waves are effective at driving currents in present-day tokamaks, they are expected to interact strongly with high-energy particles in extrapolating to reactors. In the presence of a radial alpha particle birth gradient, this interaction can take the form of wave amplification rather than damping. While it is known that this amplification more easily occurs when launching from the tokamak high-field side, the extent of this amplification has not been made quantitative. Here, by tracing rays launched from the high- field-side of a tokamak, the required radial gradients to achieve amplification are calculated for a temperature and density regime consistent with a hot-ion-mode fusion reactor. These simulations, while valid only in the linear regime of wave amplification, nonetheless illustrate the possibilities for wave amplification using high-field launch of the lower hybrid wave.

  8. SDN Controlled mmWave Massive MIMO Hybrid Precoding for 5G Heterogeneous Mobile Systems

    Directory of Open Access Journals (Sweden)

    Na Chen

    2016-01-01

    Full Text Available In 5G mobile network, millimeter wave (mmWave and heterogeneous networks (Hetnets are significant techniques to sustain coverage and spectral efficiency. In this paper, we utilize the hybrid precoding to overcome hardware constraints on the analog-only beamforming in mmWave systems. Particularly, we identify the complicated antenna coordination and vast spatial domain information as the outstanding challenges in mmWave Hetnets. In our work, we employ software defined network (SDN to accomplish radio resource management (RRM and achieve flexible spacial coordination in mmWave Hetnets. In our proposed scheme, SDN controller is responsible for collecting the user channel state information (CSI and applying hybrid precoding based on the calculated null-space of victim users. Simulation results show that our design can effectively reduce the interference to victim users and support high quality of service.

  9. Parametric decay of plasma waves near the upper-hybrid resonance

    Science.gov (United States)

    Dodin, I. Y.; Arefiev, A. V.

    2017-03-01

    An intense X wave propagating perpendicularly to dc magnetic field is unstable with respect to a parametric decay into an electron Bernstein wave and a lower-hybrid wave. A modified theory of this effect is proposed that extends to the high-intensity regime, where the instability rate γ ceases to be a linear function of the incident-wave amplitude. An explicit formula for γ is derived and expressed in terms of cold-plasma parameters. Theory predictions are in reasonable agreement with the results of the particle-in-cell simulations presented in a separate publication.

  10. Four-wave parametric amplification in semiconductor quantum dot-metallic nanoparticle hybrid molecules.

    Science.gov (United States)

    Li, Jian-Bo; He, Meng-Dong; Chen, Li-Qun

    2014-10-06

    We study theoretically four-wave parametric amplification arising from the nonlinear optical response of hybrid molecules composed of semiconductor quantum dots and metallic nanoparticles. It is shown that highly efficient four-wave parametric amplification can be achieved by adjusting the frequency and intensity of the pump field and the distance between the quantum dot and the metallic nanoparticle. Specifically, the induced probe-wave gain is tunable in a large range from 1 to 1.43 × 10⁵. This gain reaches its maximum at the position of three-photon resonance. Our findings hold great promise for developing four-wave parametric oscillators.

  11. Interaction of runaway electrons with lower hybrid waves via anomalous Doppler broadening

    Science.gov (United States)

    Martín-Solís, J. R.; Sánchez, R.; Esposito, B.

    2002-05-01

    Due to the relativistic decrease of the electron cyclotron frequency, a cyclotron resonance may appear between runaway electrons and lower hybrid waves. A single particle description of the runaway dynamics [J. R. Martín-Solís et al., Phys. Plasmas 5, 2370 (1998)] is extended to analyze the effect of the interaction of runaway electrons with lower hybrid waves via anomalous Doppler broadening. The conditions under which the resonant interaction can play a role in limiting the runaway energy are established and it is shown that, under typical lower hybrid current drive operation parameters, an efficient wave-particle coupling may occur. Observations of a fast pitch angle scattering event during the current decay phase of Ohmic discharges in the Toroidal Experiment for Technically Oriented Research (TEXTOR) [R. J. E. Jaspers, Ph.D. thesis, Technical University Eindhoven (1995)] are interpreted in terms of such interaction.

  12. A hybrid continuous-wave terahertz imaging system

    Energy Technology Data Exchange (ETDEWEB)

    Dolganova, Irina N., E-mail: in.dolganova@gmail.com; Zaytsev, Kirill I., E-mail: kirzay@gmail.ru; Metelkina, Anna A.; Karasik, Valeriy E.; Yurchenko, Stanislav O., E-mail: st.yurchenko@mail.ru [Bauman Moscow State Technical University, 2nd Baumanskaya str. 5, Moscow 105005 (Russian Federation)

    2015-11-15

    A hybrid (active-passive mode) terahertz (THz) imaging system and an algorithm for imaging synthesis are proposed to enhance the THz image quality. The concept of image contrast is used to compare active and passive THz imaging. Combining the measurement of the self-emitted radiation of the object with the back-scattered source radiation measurement, it becomes possible to use the THz image to retrieve maximum information about the object. The experimental results confirm the advantages of hybrid THz imaging systems, which can be generalized for a wide range of applications in the material sciences, chemical physics, bio-systems, etc.

  13. Transverse ion acceleration by localized lower hybrid waves in the topside auroral ionosphere

    Energy Technology Data Exchange (ETDEWEB)

    Vago, J.L.

    1992-01-01

    Up to now, observations had been unable to show conclusively a one-to-one correspondence between perpendicular ion acceleration and a particular type of plasma wave within the O(+) source region below 2000 km. In this thesis, the author demonstrates that intense (100-300 mV/m) lower hybrid waves are responsible for transversely accelerating H(+) and O(+) ions to characteristic energies of up to 6 eV. This wave-particle interaction takes place in thin filamentary density cavities oriented along geomagnetic field lines. The measurements discussed were conducted in the nightside auroral zone at altitudes between 500 km and 1100 km. The results are consistent with theories of lower hybrid wave condensation and collapse.

  14. Transverse ion acceleration by localized lower hybrid waves in the topside auroral ionosphere

    Energy Technology Data Exchange (ETDEWEB)

    Vago, J.L.; Kintner, P.M.; Chesney, S.W.; Arnoldy, R.L.; Lynch, K.A.; Moore, T.E.; Pollock, C.J. (Cornell Univ., Ithaca, NY (United States) New Hampshire Univ., Durham (United States) NASA, Marshall Space Flight Center, Huntsville, AL (United States))

    1992-11-01

    Up to now, observations had been unable to show conclusively a one-to-one correspondence between perpendicular ion acceleration and a particular type of plasma wave within the O(+) source region below 2000 km. In this paper we demonstrate that intense (100-300 mV/m) lower hybrid waves are responsible for transversely accelerating H(+) and O(+) ions to characteristic energies of up to 6 eV. This wave-particle interaction takes place in thin filamentary density cavities oriented along geomagnetic field lines. The measurements we discuss were conducted in the nightside auroral zone at latitudes between 500 km and 1100 km. Our results are consistent with theories of lower hybrid wave condensation and collapse. 50 refs.

  15. Transverse ion acceleration by localized lower hybrid waves in the topside auroral ionosphere

    Science.gov (United States)

    Vago, J. L.; Kintner, P. M.; Chesney, S. W.; Arnoldy, R. L.; Lynch, K. A.; Moore, T. E.; Pollock, C. J.

    1992-01-01

    Up to now, observations had been unable to show conclusively a one-to-one correspondence between perpendicular ion acceleration and a particular type of plasma wave within the O(+) source region below 2000 km. In this paper we demonstrate that intense (100-300 mV/m) lower hybrid waves are responsible for transversely accelerating H(+) and O(+) ions to characteristic energies of up to 6 eV. This wave-particle interaction takes place in thin filamentary density cavities oriented along geomagnetic field lines. The measurements we discuss were conducted in the nightside auroral zone at latitudes between 500 km and 1100 km. Our results are consistent with theories of lower hybrid wave condensation and collapse.

  16. Hybrid localized waves supported by resonant anisotropic metasurfaces

    DEFF Research Database (Denmark)

    Bogdanov, A. A.; Yermakov, O. Y.; Ovcharenko, A. I.

    2016-01-01

    We study both theoretically and experimentally a new class of surface electromagnetic waves supported by resonant anisotropic metasurface. At certain frequency this type of metasurface demonstrates the topological transition from elliptical to hyperbolic regime.......We study both theoretically and experimentally a new class of surface electromagnetic waves supported by resonant anisotropic metasurface. At certain frequency this type of metasurface demonstrates the topological transition from elliptical to hyperbolic regime....

  17. Evaluation of thermally induced non-Fourier stress wave disturbances via tailored hybrid transfinite element formulations

    Science.gov (United States)

    Tamma, Kumar K.; Railkar, Sudhir B.

    1989-01-01

    Accurate solutions have been obtained for a class of non-Fourier models in dynamic thermoelasticity which are relevant to the understanding of thermally-induced stress wave disturbances. The method employs tailored hybrid formulations based on the transfinite element approach. The results show that significant thermal stresses may arise due to non-Fourier effects, especially when the speeds of propagation of the thermal and stress waves are equal.

  18. A rapid, fully non-contact, hybrid system for generating Lamb wave dispersion curves.

    Science.gov (United States)

    Harb, M S; Yuan, F G

    2015-08-01

    A rapid, fully non-contact, hybrid system which encompasses an air-coupled transducer (ACT) and a laser Doppler vibrometer (LDV) is presented for profiling A0 Lamb wave dispersion of an isotropic aluminum plate. The ACT generates ultrasonic pressure incident upon the surface of the plate. The pressure waves are partially refracted into the plate. The LDV is employed to measure the out-of-plane velocity of the excited Lamb wave mode at some distances where the Lamb waves are formed in the plate. The influence of the ACT angle of incidence on Lamb wave excitation is investigated and Snell's law is used to directly compute Lamb wave dispersion curves including phase and group velocity dispersion curves in aluminum plates from incident angles found to generate optimal A0 Lamb wave mode. The measured curves are compared to results obtained from a two-dimensional (2-D) Fast Fourier transform (FFT), Morlet wavelet transform (MWT) and theoretical predictions. It was concluded that the experimental results obtained using Snell's law concept are well in accordance with the theoretical solutions. The high degree of accuracy in the measured data with the theoretical results proved a high sensitivity of the air-coupled and laser ultrasound in characterizing Lamb wave dispersion in plate-like structures. The proposed non-contact hybrid system can effectively characterize the dispersive relation without knowledge of neither the materials characteristics nor the mathematical model.

  19. Hybrid dispersive media with controllable wave propagation: A new take on smart materials

    Energy Technology Data Exchange (ETDEWEB)

    Bergamini, Andrea E., E-mail: andrea.bergamini@empa.ch [Empa, Materials Science and Technology, Laboratory for Mechanical Integrity of Energy Systems, Überlandstrasse 129, CH-8600, Dübendorf (Switzerland); Zündel, Manuel [ETH Zürich, Institute of Mechanical Systems, Leonhardstrasse 21, CH-8092 Zürich (Switzerland); Flores Parra, Edgar A.; Ermanni, Paolo [ETH Zürich, Composite Materials and Adaptive Structures Laboratory, Leonhardstrasse 21, CH-8092 Zürich (Switzerland); Delpero, Tommaso [Empa, Materials Science and Technology, Laboratory for Mechanical Integrity of Energy Systems, Überlandstrasse 129, CH-8600 Dübendorf (Switzerland); Ruzzene, Massimo [Georgia Institute of Technology, G.W. Woodruff School of Mechanical Engineering, 801 Ferst Drive, Atlanta, Georgia 30332-0405 (United States)

    2015-10-21

    In this paper, we report on the wave transmission characteristics of a hybrid one dimensional (1D) medium. The hybrid characteristic is the result of the coupling between a 1D mechanical waveguide in the form of an elastic beam, supporting the propagation of transverse waves and a discrete electrical transmission line, consisting of a series of inductors connected to ground through capacitors. The capacitors correspond to a periodic array of piezoelectric patches that are bonded to the beam and that couple the two waveguides. The coupling leads to a hybrid medium that is characterized by a coincidence condition for the frequency/wavenumber value corresponding to the intersection of the branches of the two waveguides. In the frequency range centered at coincidence, the hybrid medium features strong attenuation of wave motion as a result of the energy transfer towards the electrical transmission line. This energy transfer, and the ensuing attenuation of wave motion, is alike the one obtained through internal resonating units of the kind commonly used in metamaterials. However, the distinct shape of the dispersion curves suggests how this energy transfer is not the result of a resonance and is therefore fundamentally different. This paper presents the numerical investigation of the wave propagation in the considered media, it illustrates experimental evidence of wave transmission characteristics and compares the performance of the considered configuration with that of internal resonating metamaterials. In addition, the ability to conveniently tune the dispersion properties of the electrical transmission line is exploited to adapt the periodicity of the domain and to investigate diatomic periodic configurations that are characterized by a richer dispersion spectrum and broader bandwidth of wave attenuation at coincidence. The medium consisting of mechanical, piezoelectric, and analog electronic elements can be easily interfaced to digital devices to offer a novel

  20. Hybrid dispersive media with controllable wave propagation: A new take on smart materials

    Science.gov (United States)

    Bergamini, Andrea E.; Zündel, Manuel; Flores Parra, Edgar A.; Delpero, Tommaso; Ruzzene, Massimo; Ermanni, Paolo

    2015-10-01

    In this paper, we report on the wave transmission characteristics of a hybrid one dimensional (1D) medium. The hybrid characteristic is the result of the coupling between a 1D mechanical waveguide in the form of an elastic beam, supporting the propagation of transverse waves and a discrete electrical transmission line, consisting of a series of inductors connected to ground through capacitors. The capacitors correspond to a periodic array of piezoelectric patches that are bonded to the beam and that couple the two waveguides. The coupling leads to a hybrid medium that is characterized by a coincidence condition for the frequency/wavenumber value corresponding to the intersection of the branches of the two waveguides. In the frequency range centered at coincidence, the hybrid medium features strong attenuation of wave motion as a result of the energy transfer towards the electrical transmission line. This energy transfer, and the ensuing attenuation of wave motion, is alike the one obtained through internal resonating units of the kind commonly used in metamaterials. However, the distinct shape of the dispersion curves suggests how this energy transfer is not the result of a resonance and is therefore fundamentally different. This paper presents the numerical investigation of the wave propagation in the considered media, it illustrates experimental evidence of wave transmission characteristics and compares the performance of the considered configuration with that of internal resonating metamaterials. In addition, the ability to conveniently tune the dispersion properties of the electrical transmission line is exploited to adapt the periodicity of the domain and to investigate diatomic periodic configurations that are characterized by a richer dispersion spectrum and broader bandwidth of wave attenuation at coincidence. The medium consisting of mechanical, piezoelectric, and analog electronic elements can be easily interfaced to digital devices to offer a novel

  1. mm-Wave Hybrid Photonic Wireless Links for Ultra-High Speed Wireless Transmissions

    DEFF Research Database (Denmark)

    Rommel, Simon; Vegas Olmos, Juan José; Tafur Monroy, Idelfonso

    Hybrid photonic-wireless transmission schemes in the mm-wave frequency range are promising candidates to enable the multi-gigabit per second data communications required from wireless and mobile networks of the 5th and future generations. Large FCC spectrum allocations for wireless transmission...

  2. An adaptive metamaterial beam with hybrid shunting circuits for extremely broadband control of flexural waves

    Science.gov (United States)

    Chen, Y. Y.; Hu, G. K.; Huang, G. L.

    2016-10-01

    A great deal of research has been devoted to controlling the dynamic behaviors of phononic crystals and metamaterials by directly tuning the frequency regions and/or widths of their inherent band gaps. Here, we report a new class of adaptive metamaterial beams with hybrid shunting circuits to realize super broadband Lamb-wave band gaps at an extreme subwavelength scale. The proposed metamaterial is made of a homogeneous host beam on which tunable local resonators consisting of hybrid shunted piezoelectric stacks with proof masses are attached. The hybrid shunting circuits are composed of negative-capacitance and negative-inductance elements connected in series or in parallel in order to tune the desired frequency-dependent stiffness. It is shown theoretically and numerically that by properly modifying the shunting impedance, the adaptive mechanical mechanism within the tunable resonator can produce high-pass and low-pass wave filtering capabilities for the zeroth-order anti-symmetric Lamb-wave modes. These unique behaviors are due to the hybrid effects from the negative-capacitance and negative-inductance circuit elements. Such a system opens up important perspectives for the development of adaptive vibration or wave-attenuation devices for broadband frequency applications.

  3. Continuous-wave Optically Pumped Lasing of Hybrid Perovskite VCSEL at Green Wavelength

    KAUST Repository

    Alias, Mohd Sharizal

    2017-05-08

    We demonstrate the lasing of a perovskite vertical-cavity surface-emitting laser at green wavelengths, which operates under continuous-wave optical pumping at room-temperature by embedding hybrid perovskite between dielectric mirrors deposited at low-temperature.

  4. Observation of the lower hybrid waves near the three-dimensional null pair

    Institute of Scientific and Technical Information of China (English)

    ZHOU Meng; DENG XiaoHua; FU Song; TANG RongXin; HU YunHui; LI ShiYou; A. VAIVADS; M. ANDRE; LIN Xi; LIN MingHui; ZHOU XiaoMin

    2009-01-01

    Magnetic reconnection is a fundamental process in plasma, which is thought to play important roles both in laboratory and natural plasmas through affecting magnetic topology, heating and accelerating particles. During an event on Oct. 1st, 2001, the Cluster tetrahedron circled around the magnetic re-connection region several times, and Xiao et al. First identified the null pair and found that the spectrum of the null-point oscillation shows the maximum power near the lower-hybrid frequency. In this paper we report the observation of electromagnetic and electrostatic wave enhancements near lower hybrid frequency associated with the reconnection process near the null pair. The lower hybrid waves (LHWs) with quasi-perpendicular propagation were identified and also confirmed by the power law of the spectrum of electric and magnetic fields.

  5. Observation of the lower hybrid waves near the three-dimensional null pair

    Institute of Scientific and Technical Information of China (English)

    A.; VAIVADS; M.; ANDRE

    2009-01-01

    Magnetic reconnection is a fundamental process in plasma,which is thought to play important roles both in laboratory and natural plasmas through affecting magnetic topology,heating and accelerating particles. During an event on Oct. 1st,2001,the Cluster tetrahedron circled around the magnetic reconnection region several times,and Xiao et al. first identified the null pair and found that the spectrum of the null-point oscillation shows the maximum power near the lower-hybrid frequency. In this paper we report the observation of electromagnetic and electrostatic wave enhancements near lower hybrid frequency associated with the reconnection process near the null pair. The lower hybrid waves(LHWs) with quasi-perpendicular propagation were identified and also confirmed by the power law of the spectrum of electric and magnetic fields.

  6. Quantum electrostatic surface waves in a hybrid plasma waveguide: Effect of nano-sized slab

    Science.gov (United States)

    Shahmansouri, M.; Mahmodi Moghadam, M.

    2017-10-01

    The propagation properties of surface plasmon (SP) waves are studied in a hybrid plasma waveguide (consisting of plasma-gap-dielectric layers) with quantum effects including the Fermi-pressure, the Bohm potential and the exchange-correlation interaction. By using a quantum hydrodynamic model and Maxwell's equations, the dispersion relation of SP waves is derived, which describes the quantum corrected features of the dispersion properties of such surface waves. Previous results in this context are recovered. It is found that the exchange-correlation interactions and the presence of the second dielectric layer drastically modify the behaviors of the surface plasmon waves. The implications of our finding are discussed in some particular cases of interest. Our finding is applicable for understanding the surface wave behaviors in nano-scale systems.

  7. Hybrid yttrium iron garnet-ferromagnet structures for spin-wave devices

    Energy Technology Data Exchange (ETDEWEB)

    Papp, A., E-mail: apapp@nd.edu [Center for Nano Science and Technology and Department of Electrical Engineering, University of Notre Dame, Notre Dame, Indiana 46556 (United States); Pázmány Péter Catholic University, Faculty of Information Technology, Budapest 1088 (Hungary); Porod, W., E-mail: porod@nd.edu; Csaba, G., E-mail: gcsaba@nd.edu [Center for Nano Science and Technology and Department of Electrical Engineering, University of Notre Dame, Notre Dame, Indiana 46556 (United States)

    2015-05-07

    We study coupled ferromagnetic layers, which could facilitate low loss, sub 100 nm wavelength spin-wave propagation and manipulation. One of the layers is a low-loss garnet film (such as yttrium iron garnet (YIG)) that enables long-distance, coherent spin-wave propagation. The other layer is made of metal-based (Permalloy, Co, and CoFe) magnetoelectronic structures that can be used to generate, manipulate, and detect the spin waves. Using micromagnetic simulations, we analyze the interactions between the spin waves in the YIG and the metallic nanomagnet structures and demonstrate the components of a scalable spin-wave based signal processing device. We argue that such hybrid-metallic ferromagnet structures can be the basis of potentially high-performance, ultra low-power computing devices.

  8. Hybrid single-beam reconstruction technique for slow and fast varying wave fields.

    Science.gov (United States)

    Falaggis, Konstantinos; Kozacki, Tomasz; Kujawinska, Malgorzata

    2015-06-01

    An iterative single-beam wave field reconstruction technique that employs both non-paraxial, wave propagation based and paraxial deterministic phase retrieval techniques is presented. This approach overcomes two major obstacles that exist in the current state of the art techniques: iterative methods do not reconstruct slowly varying wave fields due to slow convergence and stagnation, and deterministic methods have paraxial limits, making the reconstructions of quickly varying object features impossible. In this work, a hybrid approach is reported that uses paraxial wave field corrections within iterative phase retrieval solvers. This technique is suitable for cases ranging from slow to fast varying wave fields, and unlike the currently available methods, can also reconstruct measurement objects with different regions of both slowly and quickly varying object features. It is further shown that this technique gives a higher accuracy than current single-beam phase retrieval techniques, and in comparison to the iterative methods, has a higher convergence speed.

  9. A hybrid method based upon nonlinear Lamb wave response for locating a delamination in composite laminates.

    Science.gov (United States)

    Yelve, Nitesh P; Mitra, Mira; Mujumdar, P M; Ramadas, C

    2016-08-01

    A new hybrid method based upon nonlinear Lamb wave response in time and frequency domains is introduced to locate a delamination in composite laminates. In Lamb wave based nonlinear method, the presence of damage is shown by the appearance of higher harmonics in the Lamb wave response. The proposed method not only uses this spectral information but also the corresponding temporal response data, for locating the delamination. Thus, the method is termed as a hybrid method. The paper includes formulation of the method and its application to locate a Barely Visible Impact Damage (BVID) induced delamination in a Carbon Fiber Reinforced Polymer (CFRP) laminate. The method gives the damage location fairly well. It is a baseline free method, as it does not need data from the pristine specimen.

  10. Paraxial Wentzel-Kramers-Brillouin method applied to the lower hybrid wave propagation

    Energy Technology Data Exchange (ETDEWEB)

    Bertelli, N.; Phillips, C. K.; Valeo, E.; Wilson, J. R. [Princeton Plasma Physics Laboratory, Princeton, New Jersey 08543 (United States); Maj, O.; Poli, E. [Max Planck Institute for Plasma Physics, EURATOM Association, Boltzmannstr. 2, 85748, Garching (Germany); Harvey, R. [CompX, Del Mar, California 92014 (United States); Wright, J. C.; Bonoli, P. T. [MIT Plasma Science and Fusion Center, Cambridge, Massachusetts 02139 (United States); Smirnov, A. P. [Lomonosov Moscow State University, Moscow (Russian Federation)

    2012-08-15

    The paraxial Wentzel-Kramers-Brillouin (pWKB) approximation, also called beam tracing method, has been employed in order to study the propagation of lower hybrid waves in a tokamak plasma. Analogous to the well-know ray tracing method, this approach reduces Maxwell's equations to a set of ordinary differential equations, while, in addition, retains the effects of the finite beam cross-section, and, thus, the effects of diffraction. A new code, LHBEAM (lower hybrid BEAM tracing), is presented, which solves the pWKB equations in tokamak geometry for arbitrary launching conditions and for analytic and experimental plasma equilibria. In addition, LHBEAM includes linear electron Landau damping for the evaluation of the absorbed power density and the reconstruction of the wave electric field in both the physical and Fourier space. Illustrative LHBEAM calculations are presented along with a comparison with the ray tracing code GENRAY and the full wave solver TORIC-LH.

  11. Influence of collisions on parametric instabilities induced by lower hybrid waves in tokamak plasmas

    Science.gov (United States)

    Castaldo, C.; Di Siena, A.; Fedele, R.; Napoli, F.; Amicucci, L.; Cesario, R.; Schettini, G.

    2016-01-01

    Parametric instabilities induced at the plasma edge by lower hybrid wave power externally coupled to tokamak plasmas have, via broadening of the antenna spectrum, strong influence on the power deposition and current drive in the core. For modeling the parametric instabilities at the tokamak plasma edge in lower hybrid current drive experiments, the effect of the collisions has been neglected so far. In the present work, a specific collisional parametric dispersion relation, useful to analyze these nonlinear phenomena near the lower hybrid antenna mouth, is derived for the first time, based on a kinetic model. Numerical solutions show that in such cold plasma regions the collisions prevent the onset of the parametric instabilities. This result is important for present lower hybrid current drive experiments, as well as in fusion reactor scenarios.

  12. Hybrid Model of Inhomogeneous Solar Wind Plasma Heating by Alfven Wave Spectrum: Parametric Studies

    Science.gov (United States)

    Ofman, L.

    2010-01-01

    Observations of the solar wind plasma at 0.3 AU and beyond show that a turbulent spectrum of magnetic fluctuations is present. Remote sensing observations of the corona indicate that heavy ions are hotter than protons and their temperature is anisotropic (T(sub perpindicular / T(sub parallel) >> 1). We study the heating and the acceleration of multi-ion plasma in the solar wind by a turbulent spectrum of Alfvenic fluctuations using a 2-D hybrid numerical model. In the hybrid model the protons and heavy ions are treated kinetically as particles, while the electrons are included as neutralizing background fluid. This is the first two-dimensional hybrid parametric study of the solar wind plasma that includes an input turbulent wave spectrum guided by observation with inhomogeneous background density. We also investigate the effects of He++ ion beams in the inhomogeneous background plasma density on the heating of the solar wind plasma. The 2-D hybrid model treats parallel and oblique waves, together with cross-field inhomogeneity, self-consistently. We investigate the parametric dependence of the perpendicular heating, and the temperature anisotropy in the H+-He++ solar wind plasma. It was found that the scaling of the magnetic fluctuations power spectrum steepens in the higher-density regions, and the heating is channeled to these regions from the surrounding lower-density plasma due to wave refraction. The model parameters are applicable to the expected solar wind conditions at about 10 solar radii.

  13. Hybrid local FEM/global LISA modeling of damped guided wave propagation in complex composite structures

    Science.gov (United States)

    Shen, Yanfeng; Cesnik, Carlos E. S.

    2016-09-01

    This paper presents a new hybrid modeling technique for the efficient simulation of guided wave generation, propagation, and interaction with damage in complex composite structures. A local finite element model is deployed to capture the piezoelectric effects and actuation dynamics of the transmitter, while the global domain wave propagation and interaction with structural complexity (structure features and damage) are solved utilizing a local interaction simulation approach (LISA). This hybrid approach allows the accurate modeling of the local dynamics of the transducers and keeping the LISA formulation in an explicit format, which facilitates its readiness for parallel computing. The global LISA framework was extended through the 3D Kelvin-Voigt viscoelasticity theory to include anisotropic damping effects for composite structures, as an improvement over the existing LISA formulation. The global LISA framework was implemented using the compute unified device architecture running on graphic processing units. A commercial preprocessor is integrated seamlessly with the computational framework for grid generation and material property allocation to handle complex structures. The excitability and damping effects are successfully captured by this hybrid model, with experimental validation using the scanning laser doppler vibrometry. To demonstrate the capability of our hybrid approach for complex structures, guided wave propagation and interaction with a delamination in a composite panel with stiffeners is presented.

  14. Hybrid Model of Inhomogeneous Solar Wind Plasma Heating by Alfven Wave Spectrum: Parametric Studies

    Science.gov (United States)

    Ofman, L.

    2010-01-01

    Observations of the solar wind plasma at 0.3 AU and beyond show that a turbulent spectrum of magnetic fluctuations is present. Remote sensing observations of the corona indicate that heavy ions are hotter than protons and their temperature is anisotropic (T(sub perpindicular / T(sub parallel) >> 1). We study the heating and the acceleration of multi-ion plasma in the solar wind by a turbulent spectrum of Alfvenic fluctuations using a 2-D hybrid numerical model. In the hybrid model the protons and heavy ions are treated kinetically as particles, while the electrons are included as neutralizing background fluid. This is the first two-dimensional hybrid parametric study of the solar wind plasma that includes an input turbulent wave spectrum guided by observation with inhomogeneous background density. We also investigate the effects of He++ ion beams in the inhomogeneous background plasma density on the heating of the solar wind plasma. The 2-D hybrid model treats parallel and oblique waves, together with cross-field inhomogeneity, self-consistently. We investigate the parametric dependence of the perpendicular heating, and the temperature anisotropy in the H+-He++ solar wind plasma. It was found that the scaling of the magnetic fluctuations power spectrum steepens in the higher-density regions, and the heating is channeled to these regions from the surrounding lower-density plasma due to wave refraction. The model parameters are applicable to the expected solar wind conditions at about 10 solar radii.

  15. Full Wave Simulation of Integrated Circuits Using Hybrid Numerical Methods

    Science.gov (United States)

    Tan, Jilin

    Transmission lines play an important role in digital electronics, and in microwave and millimeter-wave circuits. Analysis, modeling, and design of transmission lines are critical to the development of the circuitry in the chip, subsystem, and system levels. In the past several decays, at the EM modeling level, the quasi-static approximation has been widely used due to its great simplicity. As the clock rates increase, the inter-connect effects such as signal delay, distortion, dispersion, reflection, and crosstalk, limit the performance of microwave systems. Meanwhile, the quasi-static approach loses its validity for some complex system structures. Since the successful system design of the PCB, MCM, and the chip packaging, rely very much on the computer aided EM level modeling and simulation, many new methods have been developed, such as the full wave approach, to guarantee the successful design. Many difficulties exist in the rigorous EM level analysis. Some of these include the difficulties in describing the behavior of the conductors with finite thickness and finite conductivity, the field singularity, and the arbitrary multilayered multi-transmission lines structures. This dissertation concentrates on the full wave study of the multi-conductor transmission lines with finite conductivity and finite thickness buried in an arbitrary lossy multilayered environment. Two general approaches have been developed. The first one is the integral equation method in which the dyadic Green's function for arbitrary layered media has been correctly formulated and has been tested both analytically and numerically. By applying this method, the double layered high dielectric permitivitty problem and the heavy dielectrical lossy problem in multilayered media in the CMOS circuit design have been solved. The second approach is the edge element method. In this study, the correct functional for the two dimensional propagation problem has been successfully constructed in a rigorous way

  16. VLSI Implementation of Hybrid Wave-Pipelined 2D DWT Using Lifting Scheme

    Directory of Open Access Journals (Sweden)

    G. Seetharaman

    2008-01-01

    Full Text Available A novel approach is proposed in this paper for the implementation of 2D DWT using hybrid wave-pipelining (WP. A digital circuit may be operated at a higher frequency by using either pipelining or WP. Pipelining requires additional registers and it results in more area, power dissipation and clock routing complexity. Wave-pipelining does not have any of these disadvantages but requires complex trial and error procedure for tuning the clock period and clock skew between input and output registers. In this paper, a hybrid scheme is proposed to get the benefits of both pipelining and WP techniques. In this paper, two automation schemes are proposed for the implementation of 2D DWT using hybrid WP on both Xilinx, San Jose, CA, USA and Altera FPGAs. In the first scheme, Built-in self-test (BIST approach is used to choose the clock skew and clock period for I/O registers between the wave-pipelined blocks. In the second approach, an on-chip soft-core processor is used to choose the clock skew and clock period. The results for the hybrid WP are compared with nonpipelined and pipelined approaches. From the implementation results, the hybrid WP scheme requires the same area but faster than the nonpipelined scheme by a factor of 1.25–1.39. The pipelined scheme is faster than the hybrid scheme by a factor of 1.15–1.39 at the cost of an increase in the number of registers by a factor of 1.78–2.73, increase in the number of LEs by a factor of 1.11–1.32 and it increases the clock routing complexity.

  17. Role of fast waves in the central deposition of lower hybrid power

    Science.gov (United States)

    Heikkinen, J. A.; Tala, T. J. J.; Pättikangas, T. J. H.; Piliya, A. D.; Saveliev, A. N.; Karttunen, S. J.

    1999-10-01

    In tokamaks, lower hybrid (LH) waves are routinely used for current drive and heating of plasmas. The LH waves have two modes of propagation that are called the slow and the fast wave. Usually, the lower hybrid waves are launched as slow waves into a tokamak, but during the propagation part of the wave power can be transformed to fast waves. General characteristics of the mode transformation of slow waves to fast waves are first investigated with a simple quasitoroidal ray-tracing model. Next, the effect of mode transformed LH power on the deposition profiles in a JET-like tokamak is analysed by using the fast ray-tracing code FRTC. When the launched spectrum is at small values of the toroidal refractive index (1.6 icons/Journals/Common/lesssim" ALT="lesssim" ALIGN="TOP"/> nicons/Journals/Common/phi" ALT="phi" ALIGN="TOP"/>0 icons/Journals/Common/lesssim" ALT="lesssim" ALIGN="TOP"/> 2.0), the contribution of the fast wave to the deposited power is found to be significant and responsible for most of the absorption at the centre. When nicons/Journals/Common/phi" ALT="phi" ALIGN="TOP"/>0 is large (nicons/Journals/Common/phi" ALT="phi" ALIGN="TOP"/>0 icons/Journals/Common/gtrsim" ALT="gtrsim" ALIGN="TOP"/> 2.2), the effect of the mode transformed fast waves is small or negligible. At modest central densities (ne0 ~ 0.5 × 1020 m-3), the contribution of the fast wave to the power deposition can be more than 50% in the plasma centre. In consequence, the significant amount of wave energy absorbed in the fast mode must be carefully taken into account in modelling LH current drive experiments in the future. At low central densities (ne0 icons/Journals/Common/lesssim" ALT="lesssim" ALIGN="TOP"/> 0.3 × 1020 m-3), practically no absorption of fast waves occurs.

  18. Controllable wave propagation of hybrid dispersive medium with LC high-pass network (Conference Presentation)

    Science.gov (United States)

    Flores Parra, Edgar; Bergamini, Andrea E.; Ermanni, Paolo

    2017-04-01

    This work reports on the wave transmission characteristics of a hybrid one dimensional (1D) medium. The hybrid characteristic is the result of the coupling between a mechanical waveguide in the form of an elastic beam, and an electrical network. The network configuration investigated is an LC high-pass, consisting of a series of capacitors connected in series through grounded inductors. The capacitors correspond to a periodic array of piezoelectric patches that are bonded to the beam thus coupling the two waveguides. The coupling is characterized by a coincidence frequency/wavenumber corresponding to the intersection of the dispersion curves. At this coincidence frequency, the hybrid medium features attenuation of wave motion as a result of the energy transfer to the electrical network. This energy exchange is depicted in the dispersion by eigenvalue crossing, a particular case of eigenvalue veering. This paper presents the numerical investigations of the wave propagation in the considered medium, and validates the numerical findings with experimental evidence of the wave transmission characteristics. Moreover, the dispersion properties of the electrical network are further studied by varying the inductances thus exploiting the tunability of the periodic electrical domain, i.e: monoatomic and diatmomic unit cell configurations. The LC high-pass network offers several advantages over other configurations, from ease of implementation as the piezoelectric elements are not grounded, to a smaller inductance values to achieve attenuation at a given frequency. Such media could be interfaced with more complex electrical networks to create a new type of smart materials.

  19. Influence of plasma beta on the generation of lower hybrid and whistler waves by an ion velocity ring distribution

    Energy Technology Data Exchange (ETDEWEB)

    Winske, D., E-mail: winske@lanl.gov; Daughton, W. [Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States)

    2015-02-15

    We present results of three-dimensional electromagnetic particle-in-cell simulations of the lower hybrid ion ring instability, similar to our earlier results [D. Winske and W. Daughton, Phys. Plasma 19, 072109 (2012)], but at higher electron beta (β{sub e} = ratio of electron thermal pressure to magnetic pressure = 0.06, rather than at 0.006) with T{sub i} = T{sub e}. At higher electron beta, the level of lower hybrid waves at saturation normalized to the ion thermal energy (β{sub i} = 0.06 also) is only slightly smaller, but the corresponding magnetic fluctuations are about an order of magnitude larger, consistent with linear theory. After saturation, the waves evolve into whistler waves, through a number of possible mechanisms, with an average growth rate considerably smaller than the linear growth rate of the lower hybrid waves, to a peak fluctuation level that is about 20% above the lower hybrid wave saturation level. The ratio of the peak magnetic fluctuations associated with the whistler waves relative to those of the saturated lower hybrid waves, the ratio of the nonlinear growth rate of whistlers relative to the linear growth rate of lower hybrid waves, the amount of energy extracted from the ring, and the amount of heating of the background ions and electrons are comparable to those in the lower electron beta 3D simulation. This suggests that even at higher electron beta, the linear and nonlinear physics of the lower hybrid ion ring instability is dominated by electrostatic, wave-particle rather than wave-wave interactions.

  20. Influence of plasma beta on the generation of lower hybrid and whistler waves by an ion velocity ring distribution

    Science.gov (United States)

    Winske, D.; Daughton, W.

    2015-02-01

    We present results of three-dimensional electromagnetic particle-in-cell simulations of the lower hybrid ion ring instability, similar to our earlier results [D. Winske and W. Daughton, Phys. Plasma 19, 072109 (2012)], but at higher electron beta (βe = ratio of electron thermal pressure to magnetic pressure = 0.06, rather than at 0.006) with Ti = Te. At higher electron beta, the level of lower hybrid waves at saturation normalized to the ion thermal energy (βi = 0.06 also) is only slightly smaller, but the corresponding magnetic fluctuations are about an order of magnitude larger, consistent with linear theory. After saturation, the waves evolve into whistler waves, through a number of possible mechanisms, with an average growth rate considerably smaller than the linear growth rate of the lower hybrid waves, to a peak fluctuation level that is about 20% above the lower hybrid wave saturation level. The ratio of the peak magnetic fluctuations associated with the whistler waves relative to those of the saturated lower hybrid waves, the ratio of the nonlinear growth rate of whistlers relative to the linear growth rate of lower hybrid waves, the amount of energy extracted from the ring, and the amount of heating of the background ions and electrons are comparable to those in the lower electron beta 3D simulation. This suggests that even at higher electron beta, the linear and nonlinear physics of the lower hybrid ion ring instability is dominated by electrostatic, wave-particle rather than wave-wave interactions.

  1. Upper-hybrid wave driven Alfvenic turbulence in magnetized dusty plasmas

    CERN Document Server

    Misra, A P

    2010-01-01

    The nonlinear dynamics of coupled electrostatic upper-hybrid (UH) and Alfven waves (AWs) is revisited in a magnetized electron-ion plasma with charged dust impurities. A pair of nonlinear equations [J.Plasma Phys. 73, 3 (2006)] that describe the interaction of UH wave envelopes (including the relativistic electron mass increase) and the density as well as the compressional magnetic field perturbations associated with the AWs is solved numerically to show that many coherent solitary patterns can be excited and saturated due to modulational instability of unstable UH waves. The evolution of these solitary patterns is also shown to appear in the states of spatiotemporal coherence, temporal as well as spatiotemporal chaos due to collision and fusion among the patterns in stochastic motion. Furthermore, these spatiotemporal features are demonstrated by the analysis of wavelet power spectra. It is found that a redistribution of wave energy takes place to higher harmonic modes with small wavelengths which, in turn, ...

  2. Study of lower hybrid wave propagation in ionized gas by Hamiltonian theory

    CERN Document Server

    Casolari, Andrea

    2013-01-01

    In order to find an approximate solution to the Vlasov-Maxwell equation system describing the lower hybrid wave propagation in magnetic confined plasmas, the use of the WKB method leads to the ray tracing equations. The Hamiltonian character of the ray tracing equations is investigated analytically and numerically in order to deduce the physical properties of the wave propagating without absorption in the confined plasma. The consequences of the Hamiltonian character of the equations on the travelling wave, in particular, on the evolution of the parallel wavenumber along the propagation path have been accounted and the chaotic diffusion of the timeaveraged parallel wave-number towards higher values has been evaluated. Numerical analysis by means of a Runge-Kutta based algorithm implemented in a ray tracing code supplies the analytical considerations. A numerical tool based on the symplectic integration of the ray trajectories has been developed.

  3. Study of lower hybrid wave propagation in ionized gas by Hamiltonian theory

    Energy Technology Data Exchange (ETDEWEB)

    Casolari, A. [Università di Pisa, Pisa (Italy); Cardinali, A. [Associazione Euratom-ENEA sulla Fusione, C.P. 65 - I-00044 - Frascati, Rome (Italy)

    2014-02-12

    In order to find an approximate solution to the Vlasov-Maxwell equation system describing the lower hybrid wave propagation in magnetic confined plasmas, the use of the WKB method leads to the ray tracing equations. The Hamiltonian character of the ray tracing equations is investigated analytically and numerically in order to deduce the physical properties of the wave propagating without absorption in the confined plasma. The consequences of the Hamiltonian character of the equations on the travelling wave, in particular, on the evolution of the parallel wavenumber along the propagation path have been accounted and the chaotic diffusion of the timeaveraged parallel wave-number towards higher values has been evaluated. Numerical analysis by means of a Runge-Kutta based algorithm implemented in a ray tracing code supplies the analytical considerations. A numerical tool based on the symplectic integration of the ray trajectories has been developed.

  4. Opportunistic beam training with hybrid analog/digital codebooks for mmWave systems

    KAUST Repository

    Eltayeb, Mohammed E.

    2016-02-25

    © 2015 IEEE. Millimeter wave (mmWave) communication is one solution to provide more spectrum than available at lower carrier frequencies. To provide sufficient link budget, mmWave systems will use beamforming with large antenna arrays at both the transmitter and receiver. Training these large arrays using conventional approaches taken at lower carrier frequencies, however, results in high overhead. In this paper, we propose a beam training algorithm that efficiently designs the beamforming vectors with low training overhead. Exploiting mmWave channel reciprocity, the proposed algorithm relaxes the need for an explicit feedback channel, and opportunistically terminates the training process when a desired quality of service is achieved. To construct the training beamforming vectors, a new multi-resolution codebook is developed for hybrid analog/digital architectures. Simulation results show that the proposed algorithm achieves a comparable rate to that obtained by exhaustive search solutions while requiring lower training overhead when compared to prior work.

  5. The new wave of hybrid vehicles in Japan; La nouvelle vague de vehicules hybrides au Japon

    Energy Technology Data Exchange (ETDEWEB)

    Moille, F.

    2000-05-01

    The Japan Ministry of international trade and industry (MITI) has foreseen a 23% reduction of the consumption of internal combustion engines between 1995 and 2010. The Japanese automotive companies are seriously working on the development of less polluting and more economical vehicles. After the domination of the internal combustion engine with its good performances, and the quasi-exclusive use of electric-powered vehicles in urban areas for autonomy reasons, time has come for the development of hybrid vehicles which combine the advantages of both principles. With a very simple use for the driver, the hybrid vehicle is in fact based on a particularly complex technology which is explained for some prototypes presented in this paper. (J.S.)

  6. A Magnetic Flux Leakage and Magnetostrictive Guided Wave Hybrid Transducer for Detecting Bridge Cables

    Directory of Open Access Journals (Sweden)

    Jiang Xu

    2012-01-01

    Full Text Available Condition assessment of cables has gained considerable attention for the bridge safety. A magnetic flux leakage and magnetostrictive guided wave hybrid transducer is provided to inspect bridge cables. The similarities and differences between the two methods are investigated. The hybrid transducer for bridge cables consists of an aluminum framework, climbing modules, embedded magnetizers and a ribbon coil. The static axial magnetic field provided by the magnetizers meets the needs of the magnetic flux leakage testing and the magnetostrictive guided wave testing. The magnetizers also provide the attraction for the climbing modules. In the magnetic flux leakage testing for the free length of cable, the coil induces the axial leakage magnetic field. In the magnetostrictive guided wave testing for the anchorage zone, the coil provides a pulse high power variational magnetic field for generating guided waves; the coil induces the magnetic field variation for receiving guided waves. The experimental results show that the transducer with the corresponding inspection system could be applied to detect the broken wires in the free length and in the anchorage zone of bridge cables.

  7. Reduction of the equation for lower hybrid waves in a plasma to a nonlinear Schroedinger equation

    Science.gov (United States)

    Karney, C. F. F.

    1977-01-01

    Equations describing the nonlinear propagation of waves in an anisotropic plasma are rarely exactly soluble. However it is often possible to make approximations that reduce the exact equations into a simpler equation. The use of MACSYMA to make such approximations, and so reduce the equation describing lower hybrid waves into the nonlinear Schrodinger equation which is soluble by the inverse scattering method is demonstrated. MACSYMA is used at several stages in the calculation only because there is a natural division between calculations that are easiest done by hand, and those that are easiest done by machine.

  8. Hybrid surface waves in semi-infinite metal-dielectric lattices

    CERN Document Server

    Miret, Juan J; Jaksic, Zoran; Vukovic, Slobodan; Belic, Milivoj R

    2012-01-01

    We investigate surface waves at the boundary between a semi-infinite layered metal-dielectric nanostructure cut normally to the layers and a semi-infinite dielectric. Spatial dispersion properties of such a nanostructure can be dramatically affected by coupling of surface plasmons polaritons at different metal-dielectric interfaces. As a consequence, the effective medium approach is not applicable in general. It is demonstrated that Dyakonov-like surface waves with hybrid polarization can propagate in an angular range substantially enlarged compared to conventional birefringent materials. Our numerical simulations for an Ag-GaAs stack in contact with glass show a low to moderate influence of losses.

  9. Strong Optomechanical Interaction in Hybrid Plasmonic-Photonic Crystal Nanocavities with Surface Acoustic Waves.

    Science.gov (United States)

    Lin, Tzy-Rong; Lin, Chiang-Hsin; Hsu, Jin-Chen

    2015-09-08

    We propose dynamic modulation of a hybrid plasmonic-photonic crystal nanocavity using monochromatic coherent acoustic phonons formed by ultrahigh-frequency surface acoustic waves (SAWs) to achieve strong optomechanical interaction. The crystal nanocavity used in this study consisted of a defective photonic crystal beam coupled to a metal surface with a nanoscale air gap in between and provided hybridization of a highly confined plasmonic-photonic mode with a high quality factor and deep subwavelength mode volume. Efficient photon-phonon interaction occurs in the air gap through the SAW perturbation of the metal surface, strongly coupling the optical and acoustic frequencies. As a result, a large modulation bandwidth and optical resonance wavelength shift for the crystal nanocavity are demonstrated at telecommunication wavelengths. The proposed SAW-based modulation within the hybrid plasmonic-photonic crystal nanocavities beyond the diffraction limit provides opportunities for various applications in enhanced sound-light interaction and fast coherent acoustic control of optomechanical devices.

  10. Topology optimization of bounded acoustic problems using the hybrid finite element-wave based method

    DEFF Research Database (Denmark)

    Goo, Seongyeol; Wang, Semyung; Kook, Junghwan

    2017-01-01

    This paper presents an alternative topology optimization method for bounded acoustic problems that uses the hybrid finite element-wave based method (FE-WBM). The conventional method for the topology optimization of bounded acoustic problems is based on the finite element method (FEM), which...... is limited to low frequency applications due to considerable computational efforts. To this end, we propose a gradient-based topology optimization method that uses the hybrid FE-WBM whereby the entire domain of a problem is partitioned into design and non-design domains. In this respect, the FEM is used...... as a design domain of topology optimization, and the WBM is used as a non-design domain to increase computational efficiency. The adjoint variable method based on the hybrid FE-WBM is also proposed as a means of computing design sensitivities. Numerical examples are presented to demonstrate the effectiveness...

  11. On the possibility of reducing the instability threshold of a parametric decay of an extraordinary wave into two upper hybrid waves in an inhomogeneous plasma

    Energy Technology Data Exchange (ETDEWEB)

    Popov, A. Yu., E-mail: a.popov@mail.ioffe.ru; Gusakov, E. Z., E-mail: evgeniy.gusakov@mail.ioffe.ru [Russian Academy of Sciences, Ioffe Physical Technical Institute (Russian Federation)

    2015-01-15

    A parametric decay instability (PDI) of an extraordinary wave leading to excitation of two upper hybrid (UH) plasmons at frequencies close to half the pump wave frequency is analyzed. It is shown that the two-plasmon PDI power threshold can be significantly reduced under conditions of electron cyclotron resonance heating (ECRH) experiments in toroidal magnetic devices, where the plasma density profile is often nonmonotonic, which leads to the localization of UH waves.

  12. Suitability of post-Newtonian/numerical-relativity hybrid waveforms for gravitational wave detectors

    Energy Technology Data Exchange (ETDEWEB)

    MacDonald, Ilana; Nissanke, Samaya; Pfeiffer, Harald P, E-mail: macdonald@astro.utoronto.ca [Canadian Institute for Theoretical Astrophysics, University of Toronto, Toronto, Ontario M5S 3H8 (Canada)

    2011-07-07

    This paper presents a study of the sufficient accuracy of post-Newtonian and numerical relativity waveforms for the most demanding usage case: parameter estimation of strong sources in advanced gravitational wave detectors. For black hole binaries, these detectors require accurate waveform models which can be constructed by fusing an analytical post-Newtonian inspiral waveform with a numerical relativity merger-ringdown waveform. We perform a comprehensive analysis of errors that enter such 'hybrid waveforms'. We find that the post-Newtonian waveform must be aligned with the numerical relativity waveform to exquisite accuracy, about 1/100 of a gravitational wave cycle. Phase errors in the inspiral phase of the numerical relativity simulation must be controlled to {approx}< 0.1 rad. (These numbers apply to moderately optimistic estimates about the number of GW sources; exceptionally strong signals require even smaller errors.) The dominant source of error arises from the inaccuracy of the investigated post-Newtonian Taylor approximants. Using our error criterion, even at 3.5th post-Newtonian order, hybridization has to be performed significantly before the start of the longest currently available numerical waveforms which cover 30 gravitational wave cycles. The current investigation is limited to the equal-mass, zero-spin case and does not take into account calibration errors of the gravitational wave detectors.

  13. Generation of acoustic terahertz waves in hybrid InGaN/GaN quantum wells

    Science.gov (United States)

    Mahat, Meg; Llopis, Antonia; Choi, Tae Youl; Periera, Sergio; Watson, Ian; Neogi, Arup

    2015-03-01

    We have carried out differential transmission measurements on InGaN/ GaN quantum wells with Au nanoparticles inserted inside V-pits with high filling fraction. We have observed acoustic wave packets generated with multiple THz frequencies as 0.12 THz from GaN buffer layer, 0.22 THz from Au-InGaN multiple quantum wells region, 0.07 THz from sapphire substrate, and 0.17 THz mixed signals from the sample. These THz wave packets are observed as a result of generation of coherent acoustic phonons propagating in hybrid Au-InGaN quantum wells. The study of these acoustic THz wave generation is crucial for the imaging of nanostructures.

  14. Direct detection of lower hybrid wave using a reflectometer on Alcator C-Moda)

    Science.gov (United States)

    Shiraiwa, S.; Baek, S.; Dominguez, A.; Marmar, E.; Parker, R.; Kramer, G. J.

    2010-10-01

    The possibility of directly detecting a density perturbation produced by lower hybrid (LH) waves using a reflectometer is presented. We investigate the microwave scattering of reflectometer probe beams by a model density fluctuation produced by short wavelength LH waves in an Alcator C-Mod experimental condition. In the O-mode case, the maximum response of phase measurement is found to occur when the density perturbation is approximately centimeters in front of the antenna, where Bragg scattering condition is satisfied. In the X-mode case, the phase measurement is predicted to be more sensitive to the density fluctuation close to the cut-off layer. A feasibility test was carried out using a 50 GHz O-mode reflectometer on the Alcator C-Mod tokamak, and positive results including the detection of 4.6 GHz pump wave and parametric decay instabilities were obtained.

  15. Inter-ELM evolution of the pedestal structures in type-I ELMy H-mode plasmas with LHW and NBI heating on EAST

    Science.gov (United States)

    Han, X.; Zang, Q.; Xiao, S.; Wang, T.; Hu, A.; Tian, B.; Li, D.; Zhou, H.; Zhao, J.; Hsieh, C.; Li, M.; Yan, N.; Gong, X.; Hu, L.; Xu, G.; Gao, X.; the EAST Team

    2017-04-01

    The evolution characteristics of type-I ELMy high-confinement mode pedestal are examined in EAST based on the recently developed Thomson scattering system. The influence of the plasma current on pedestal evolvement has been confirmed experimentally. In the higher I p case (500 kA) the pedestal height shows an increase trend until the onset of next ELM and in the lower I p cases (300 and 400 kA), however, this buildup saturates at the first ∼30% of the ELM cycle. In contrast, the width increases only during the first ∼70% of the ELM cycle and then keeps almost stable in three I p cases, but resulting in different widening size of ∼1.5, 1 and 0.5 cm for 300, 400 and 500 kA respectively. Experimental results show that the pedestal pressure width has good correlation with poloidal beta as {{{Δ }}}{{p}{{e}},\\psi }=0.16\\sqrt{{{β }}{{p}{{o}}{{l}}}}, where the fitting coefficient 0.16 is not changed with different plasma currents but a little larger than that of other machines. For each current level, the pedestal density increases while the pedestal temperature decreases. But with increasing {I}{{p}} platforms, the pedestal height prior to the ELM onset shows a near quadratic (within error bars) increase. Experimental measurements demonstrate that the decrease of {{Δ }}{W}{{E}{{L}}{{M}}} with increasing {ν }{{p}{{e}}{{d}}}* comes mostly from the reduction of the plasma temperature drop, while the pedestal density height keeps relatively stable. Additional injection of LHW has been proved to modify the pedestal structure which should be responsible for the remaining scatter of the experimental data.

  16. Nonlinear coupling of lower hybrid waves to the kinetic low-frequency plasma response in the auroral ionosphere

    Science.gov (United States)

    Sanbonmatsu, K. Y.; Goldman, M. V.; Newman, D. L.

    A hybrid kinetic-fluid model is developed which is relevant to lower hybrid spikelets observed in the topside auroral ionosphere [Vago et al., 1992; Eriksson et al., 1994]. In contrast to previous fluid models [Shapiro et al., 1995; Tam and Chang, 1995; Seyler, 1994; Shapiro et al., 1993] our linear low frequency plasma response is magnetized and kinetic. Fluid theory is used to incorporate the nonlinear wave coupling. Performing a linear stability analysis, we calculate the growth rate for the modulational instability, driven by a lower hybrid wave pump. We find that both the magnetic and kinetic effects inhibit the modulational instability.

  17. Intermodal and cross-polarization four-wave mixing in large-core hybrid photonic crystal fibers

    DEFF Research Database (Denmark)

    Petersen, Sidsel Rübner; Alkeskjold, Thomas Tanggaard; Olausson, Christina Bjarnal Thulin;

    2015-01-01

    Degenerate four-wave mixing is considered in large mode area hybrid photonic crystal fibers, combining photonic bandgap guidance and index guidance. Co- and orthogonally polarized pump, signal and idler fields are considered numerically by calculating the parametric gain and experimentally...... by spontaneous degenerate four-wave mixing. Intermodal and birefringence assisted intramodal phase matching is observed. Good agreement between calculations and experimental observations is obtained. Intermodal four-wave mixing is achieved experimentally with a conversion efficiency of 17%. (C) 2015 Optical...

  18. Intermodal and cross-polarization four-wave mixing in large-core hybrid photonic crystal fibers.

    Science.gov (United States)

    Petersen, Sidsel R; Alkeskjold, Thomas T; Olausson, Christina B; Lægsgaard, Jesper

    2015-03-09

    Degenerate four-wave mixing is considered in large mode area hybrid photonic crystal fibers, combining photonic bandgap guidance and index guidance. Co- and orthogonally polarized pump, signal and idler fields are considered numerically by calculating the parametric gain and experimentally by spontaneous degenerate four-wave mixing. Intermodal and birefringence assisted intramodal phase matching is observed. Good agreement between calculations and experimental observations is obtained. Intermodal four-wave mixing is achieved experimentally with a conversion efficiency of 17%.

  19. Employing injection-locked FP LDs to set up a hybrid CATV/MW/MMW WDM light wave transmission system.

    Science.gov (United States)

    Lin, Chun-Yu; Lu, Hai-Han; Li, Chung-Yi; Wu, Po-Yi; Peng, Peng-Chun; Jhang, Tai-Wei; Lin, Che-Yu

    2014-07-01

    A hybrid cable television (CATV)/microwave (MW)/millimeter-wave (MMW) wavelength-division-multiplexing (WDM) light wave transmission system based on injection-locked Fabry-Perot laser diodes (FP LDs) is proposed and demonstrated. Different from conventional hybrid WDM light wave transmission systems, which need wavelength-selected distributed feedback laser diodes to support various services, the proposed systems employ injection-locked FP LDs to provide multiple applications. Over a 40 km single-mode fiber transport, impressive performances of carrier-to-noise ratio/composite second-order/composite triple-beat/bit error rate are obtained for 550 MHz CATV/20 GHz MW/40 GHz MMW/60 GHz MMW signal transmissions. Such a hybrid WDM light wave transmission system would be attractive for fiber links to provide broadband integrated services.

  20. Abortive and propagating intracellular calcium waves: analysis from a hybrid model.

    Directory of Open Access Journals (Sweden)

    Nara Guisoni

    Full Text Available The functional properties of inositol(1,4,5-triphosphate (IP3 receptors allow a variety of intracellular Ca(2+ phenomena. In this way, global phenomena, such as propagating and abortive Ca(2+ waves, as well as local events such as puffs, have been observed. Several experimental studies suggest that many features of global phenomena (e.g., frequency, amplitude, speed wave depend on the interplay of biophysical processes such as diffusion, buffering, efflux and influx rates, which in turn depend on parameters such as buffer concentration, Ca(2+ pump density, cytosolic IP3 level, and intercluster distance. Besides, it is known that cells are able to modify some of these parameters in order to regulate the Ca(2+ signaling. By using a hybrid model, we analyzed different features of the hierarchy of calcium events as a function of two relevant parameters for the calcium signaling, the intercluster distance and the pump strength or intensity. In the space spanned by these two parameters, we found two modes of calcium dynamics, one dominated by abortive calcium waves and the other by propagating waves. Smaller distances between the release sites promote propagating calcium waves, while the increase of the efflux rate makes the transition from propagating to abortive waves occur at lower values of intercluster distance. We determined the frontier between these two modes, in the parameter space defined by the intercluster distance and the pump strength. Furthermore, we found that the velocity of simulated calcium waves accomplishes Luther's law, and that an effective rate constant for autocatalytic calcium production decays linearly with both the intercluster distance and the pump strength.

  1. Simulation of mode conversion process from upper-hybrid waves to LO-mode waves in the vicinity of the plasmapause

    Directory of Open Access Journals (Sweden)

    M. J. Kalaee

    2010-06-01

    Full Text Available In order to clarify the role of the mode conversion process in the generation mechanism of LO-mode waves in the equatorial region of the plasmasphere, we have investigated the linear mode conversion process among upper-hybrid-resonance (UHR-mode, Z-mode and LO-mode waves by a numerical simulation solving Maxwell's equations and the equation of motion of a cold electron fluid. The wave coupling process occurring in the cold magnetized plasma are examined in detail. In order to give a realistic initial plasma condition in the numerical experiments, we use initial parameters inferred from observation data obtained around the generation region of LO-mode waves obtained by the Akebono satellite. A density gradient is estimated from the observed UHR frequency, and wave normal angles are estimated from the dispersion relation of cold plasma by comparing observed wave electric fields. Then, we perform numerical experiments of mode conversion processes using the density gradient of background plasma and the wave normal angle of incident upper hybrid mode waves determined from the observation results. We found that the characteristics of reproduced LO-mode waves in each simulation run are consistent with observations.

  2. Wave dispersion in the hybrid-Vlasov model: verification of Vlasiator

    CERN Document Server

    Kempf, Yann; von Alfthan, Sebastian; Vaivads, Andris; Palmroth, Minna; Koskinen, Hannu E J

    2013-01-01

    Vlasiator is a new hybrid-Vlasov plasma simulation code aimed at simulating the entire magnetosphere of the Earth. The code treats ions (protons) kinetically through Vlasov's equation in the six-dimensional phase space while electrons are a massless charge-neutralizing fluid [M. Palmroth et al., Journal of Atmospheric and Solar-Terrestrial Physics 99, 41 (2013); A. Sandroos et al., Parallel Computing 39, 306 (2013)]. For first global simulations of the magnetosphere, it is critical to verify and validate the model by established methods. Here, as part of the verification of Vlasiator, we characterize the low-\\beta\\ plasma wave modes described by this model and compare with the solution computed by the Waves in Homogeneous, Anisotropic Multicomponent Plasmas (WHAMP) code [K. R\\"onnmark, Kiruna Geophysical Institute Reports 179 (1982)], using dispersion curves and surfaces produced with both programs. The match between the two fundamentally different approaches is excellent in the low-frequency, long wavelength...

  3. Excitation of ion-cyclotron harmonic waves in lower-hybrid heating

    Science.gov (United States)

    Villalon, E.

    1981-06-01

    The parametric excitation of ion-cyclotron waves by a lower-hybrid pump field is studied in the assumption that the magnitude of the pump is constant. The spatial amplification factor is given as a function of the wavenumber mismatch as produced by the plasma density gradient, and of the linear damping rates of the excited ion-cyclotron and sideband waves. The analysis is applied to plasma edge parameters relevant to the JFT2 heating experiment. It is found that ion-cyclotron harmonic modes are excited depending on pump frequency and plasma density. These modes are shown to have finite damping rates. The parallel refractive indices n1z of the excited sideband fields are found to be always larger than that of the driven pump field. Transition to quasi-mode decay occurs either by decreasing the pump frequency or by increasing the applied RF-power.

  4. Hybrid electrodynamics and kinetics simulation for electromagnetic wave propagation in weakly ionized hydrogen plasmas.

    Science.gov (United States)

    Chen, Qiang; Chen, Bin

    2012-10-01

    In this paper, a hybrid electrodynamics and kinetics numerical model based on the finite-difference time-domain method and lattice Boltzmann method is presented for electromagnetic wave propagation in weakly ionized hydrogen plasmas. In this framework, the multicomponent Bhatnagar-Gross-Krook collision model considering both elastic and Coulomb collisions and the multicomponent force model based on the Guo model are introduced, which supply a hyperfine description on the interaction between electromagnetic wave and weakly ionized plasma. Cubic spline interpolation and mean filtering technique are separately introduced to solve the multiscalar problem and enhance the physical quantities, which are polluted by numerical noise. Several simulations have been implemented to validate our model. The numerical results are consistent with a simplified analytical model, which demonstrates that this model can obtain satisfying numerical solutions successfully.

  5. Hybrid metal-dielectric, slow wave structure with magnetic coupling and compensation

    Energy Technology Data Exchange (ETDEWEB)

    Smirnov, A.V., E-mail: asmirnov@radiabeam.com [RadiaBeam Systems LLC, 1713 Stewart St., Santa Monica, CA 90404 (United States); Savin, E. [RadiaBeam Systems LLC, 1713 Stewart St., Santa Monica, CA 90404 (United States); National Research Nuclear University “MEPhI”, Moscow 115409 (Russian Federation)

    2016-06-01

    A number of electron beam vacuum devices such as small radiofrequency (RF) linear accelerators (linacs) and microwave traveling wave tubes (TWTs) utilize slow wave structures which are usually rather complicated in production and may require multi-step brazing and time consuming tuning. Fabrication of these devices becomes challenging at centimeter wavelengths, at large number of cells, and when a series or mass production of such structures is required. A hybrid, metal-dielectric, periodic structure for low gradient, low beam current applications is introduced here as a modification of Andreev’s disk-and-washer (DaW) structure. Compensated type of coupling between even and odd TE01 modes in the novel structure results in negative group velocity with absolute values as high as 0.1c–0.2c demonstrated in simulations. Sensitivity to material imperfections and electrodynamic parameters of the disk-and-ring (DaR) structure are considered numerically using a single cell model.

  6. Lower Hybrid Wave Current Drive Efficiency on the HT-7 Tokamak

    Institute of Scientific and Technical Information of China (English)

    CHEN Zhong-Yong; WAN Bao-Nian; SHI Yue-Jiang; HU Li-Qun; XU Han-Dong; LI Guo-Chao

    2005-01-01

    @@ Lower hybrid (LH) wave current drive efficiency on our HT-7 tokamak has been investigated based on the hot electrical conductivity theory.The interaction of the residual toroidal electric field with fast electrons has been included in the determination of current drive efficiency.The LH wave power scan was performed in the plasma parameter ranges of Ip = 50-156kA, (n)e = 0.5 × 1019-1.6 × 1019 m-3, PLH = 50-350kW.The current drive efficiency is derived to be about 0.1 × 1019-0.4 × 1019 Am-2W-1 on the HT-7 tokamak, which depends on the electron density and the LH wave phase velocity.At the electron density of about 1.5 × 1019 m-3, with the LH wave parallel refraction index peaked at 1.8, the highest current drive efficiency was obtained.A more generally normalized method is introduced to analyse the experimental data, which combines all the data in one curve.The normalized parameters are independent of the plasma parameters.

  7. Electromagnetic wave absorption properties of barium titanate/carbon nanotube hybrid nanocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Melvin, Gan Jet Hong [Interdisciplinary Graduate School of Science and Technology, Shinshu University, Tokida, Ueda 386-8576 (Japan); Ni, Qing-Qing, E-mail: niqq@shinshu-u.ac.jp [Department of Functional Machinery and Mechanics, Shinshu University, Tokida, Ueda 386-8576 (Japan); Key Laboratory of Advanced Textile Materials and Manufacturing Technology, Ministry of Education, Zhejiang Sci-Tech University, Hangzhou (China); Natsuki, Toshiaki [Department of Functional Machinery and Mechanics, Shinshu University, Tokida, Ueda 386-8576 (Japan)

    2014-12-05

    Highlights: • BTO/CNT hybrid nanocomposites was prepared by sol–gel method. • BTO/CNT 60 wt.%, t = 1.1 mm showed a minimum reflection loss of ∼−56.5 dB. • Weight fraction and thickness can be manipulated for various absorption bands. - Abstract: Barium titanate/carbon nanotube (BTO/CNT) hybrid nanocomposites were fabricated by sol–gel method. The BTO/CNT hybrid nanomaterials were characterized using X-ray diffraction, transmission electron microscopy, field emission scanning electron microscopy, Raman and X-ray photoelectron spectroscopy. The BTO/CNT hybrid nanomaterials were then loaded in paraffin wax with different weight percentage, and pressed into toroidal shape with thickness of 1.0 mm to evaluate their complex permittivity and complex permeability using vector network analyzer. The reflection loss of the samples was calculated according to their measured complex permittivity and permeability. The minimum reflection loss of the BTO/CNT 60 wt.% hybrid nanocomposites sample with a thickness of 1.0 mm reached 29.6 dB (over 99.9% absorption) at 13.6 GHz, and also exhibited a wide response bandwidth where the frequency bandwidth of the reflection loss of less than −10 dB (over 90% absorption) was from 12.1 to 13.8 GHz. The BTO/CNT 60 wt.% hybrid nanocomposites with thickness of 1.1 mm showed a minimum reflection loss of ∼−56.5 dB (over 99.999% absorption) at 13.2 GHz and was the best absorber when compared with the other samples of different thickness. The reflection loss peak shifted to lower frequency and wider response bandwidth can be obtained as the thickness of the samples increased. The capability to modulate the absorption band of these samples to suit various applications in different frequency bands simply by manipulating their weight percentage and thickness indicates that these hybrid nanocomposites could be a promising electromagnetic wave absorber.

  8. Time-domain hybrid method for simulating large amplitude motions of ships advancing in waves

    Directory of Open Access Journals (Sweden)

    Shukui Liu

    2011-03-01

    Full Text Available Typical results obtained by a newly developed, nonlinear time domain hybrid method for simulating large amplitude motions of ships advancing with constant forward speed in waves are presented. The method is hybrid in the way of combining a time-domain transient Green function method and a Rankine source method. The present approach employs a simple double integration algorithm with respect to time to simulate the free-surface boundary condition. During the simulation, the diffraction and radiation forces are computed by pressure integration over the mean wetted surface, whereas the incident wave and hydrostatic restoring forces/moments are calculated on the instantaneously wetted surface of the hull. Typical numerical results of application of the method to the seakeeping performance of a standard containership, namely the ITTC S175, are herein presented. Comparisons have been made between the results from the present method, the frequency domain 3D panel method (NEWDRIFT of NTUA-SDL and available experimental data and good agreement has been observed for all studied cases between the results of the present method and comparable other data.

  9. Development of a hybrid wave based-transfer matrix model for sound transmission analysis.

    Science.gov (United States)

    Dijckmans, A; Vermeir, G

    2013-04-01

    In this paper, a hybrid wave based-transfer matrix model is presented that allows for the investigation of the sound transmission through finite multilayered structures placed between two reverberant rooms. The multilayered structure may consist of an arbitrary configuration of fluid, elastic, or poro-elastic layers. The field variables (structural displacements and sound pressures) are expanded in terms of structural and acoustic wave functions. The boundary and continuity conditions in the rooms determine the participation factors in the pressure expansions. The displacement of the multilayered structure is determined by the mechanical impedance matrix, which gives a relation between the pressures and transverse displacements at both sides of the structure. The elements of this matrix are calculated with the transfer matrix method. First, the hybrid model is numerically validated. Next a comparison is made with sound transmission loss measurements of a hollow brick wall and a sandwich panel. Finally, numerical simulations show the influence of structural damping, room dimensions and plate dimensions on the sound transmission loss of multilayered structures.

  10. Feedback control of current drive by using hybrid wave in tokamaks; Asservissement de la generation de courant par l`onde hybride dans un plasma de tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Wijnands, T.J. [Association Euratom-CEA, Centre d`Etudes Nucleaires de Cadarache, 13 - Saint-Paul-lez-Durance (France). Dept. de Recherches sur la Fusion Controlee]|[CEA Centre d`Etudes de Cadarache, 13 - Saint-Paul-lez-Durance (France). Direction des Sciences de la Matiere

    1997-03-01

    This work is focussed on an important and recent development in present day Controlled Nuclear Fusion Research and Tokamaks. The aim is to optimise the energy confinement for a certain magnetic configuration by adapting the radial distribution of the current. Of particular interest are feedback control scenarios with stationary modifications of the current profile using current, driven by Lower Hybrid waves. A new feedback control system has been developed for Tore Supra and has made a large number of new operation scenarios possible. In one of the experiments described here, there is no energy exchange between the poloidal field system and the plasma, the current is controlled by the power of the Lower Hybrid waves while the launched wave spectrum is used to optimise the current profile shape and the energy confinement. (author) 151 refs.

  11. Envelope Soliton in Multi-ion Plasma and Ion-Ion Hybrid Wave Excited by Energetic Electron Beam

    Institute of Scientific and Technical Information of China (English)

    WANG De-Yu; HUANG Guang-Li

    2001-01-01

    Another envelope soliton event below the H+ gyrofrequency and localized density depletion has been discoveredin the low auroral region (~1760 kin) by the Freja satellite. This envelope soliton has a characteristic frequencyat ~190 Hz, which is also close to the resonance frequency of hydrogen ion-oxygen ion hybrid wave. This event iscorrelated in time with the observations of the sharp increase of the ratio of oxygen ion density to hydrogen andwith the electron energization along the magnetic field. A theoretical model on the ion-ion hybrid wave excitedby an energetic electron beam has also been presented. It is found that the ion-ion hybrid wave is mainly excitedby the Cherenkov instability in the auroral region.

  12. An efficient hybrid pseudospectral/finite-difference scheme for solving the TTI pure P-wave equation

    KAUST Repository

    Zhan, Ge

    2013-02-19

    The pure P-wave equation for modelling and migration in tilted transversely isotropic (TTI) media has attracted more and more attention in imaging seismic data with anisotropy. The desirable feature is that it is absolutely free of shear-wave artefacts and the consequent alleviation of numerical instabilities generally suffered by some systems of coupled equations. However, due to several forward-backward Fourier transforms in wavefield updating at each time step, the computational cost is significant, and thereby hampers its prevalence. We propose to use a hybrid pseudospectral (PS) and finite-difference (FD) scheme to solve the pure P-wave equation. In the hybrid solution, most of the cost-consuming wavenumber terms in the equation are replaced by inexpensive FD operators, which in turn accelerates the computation and reduces the computational cost. To demonstrate the benefit in cost saving of the new scheme, 2D and 3D reverse-time migration (RTM) examples using the hybrid solution to the pure P-wave equation are carried out, and respective runtimes are listed and compared. Numerical results show that the hybrid strategy demands less computation time and is faster than using the PS method alone. Furthermore, this new TTI RTM algorithm with the hybrid method is computationally less expensive than that with the FD solution to conventional TTI coupled equations. © 2013 Sinopec Geophysical Research Institute.

  13. Lower hybrid frequency range waves generated by ion polarization drift due to electromagnetic ion cyclotron waves: Analysis of an event observed by the Van Allen Probe B

    Science.gov (United States)

    Khazanov, G. V.; Boardsen, S.; Krivorutsky, E. N.; Engebretson, M. J.; Sibeck, D.; Chen, S.; Breneman, A.

    2017-01-01

    We analyze a wave event that occurred near noon between 07:03 and 07:08 UT on 23 February 2014 detected by the Van Allen Probes B spacecraft, where waves in the lower hybrid frequency range (LHFR) and electromagnetic ion cyclotron (EMIC) waves are observed to be highly correlated, with Pearson correlation coefficient of 0.86. We assume that the correlation is the result of LHFR wave generation by the ions' polarization drift in the electric field of the EMIC waves. To check this assumption the drift velocities of electrons and H+, He+, and O+ ions in the measured EMIC wave electric field were modeled. Then the LHFR wave linear instantaneous growth rates for plasma with these changing drift velocities and different plasma compositions were calculated. The time distribution of these growth rates, their frequency distribution, and the frequency dependence of the ratio of the LHFR wave power spectral density (PSD) parallel and perpendicular to the ambient magnetic field to the total PSD were found. These characteristics of the growth rates were compared with the corresponding characteristics of the observed LHFR activity. Reasonable agreement between these features and the strong correlation between EMIC and LHFR energy densities support the assumption that the LHFR wave generation can be caused by the ions' polarization drift in the electric field of an EMIC wave.

  14. Formation of lower-hybrid solitary structures by modulational interaction between lower-hybrid and dispersive Alfvén waves

    Directory of Open Access Journals (Sweden)

    J. O. Hall

    2009-03-01

    Full Text Available We investigate the possibility that lower-hybrid solitary structures (LHSS, which are frequently observed in the Earth's ionosphere and magnetosphere, are formed as a result of a modulational interaction between lower-hybrid and dispersive Alfvén waves of initially small amplitude. A large amplitude lower-hybrid pump wave can excite density structures with length scales transverse to the geomagnetic field of the order of the ion gyroradius via a modulational instability. The structure formation in the nonlinear stage of the instability is investigated by numerical solutions of the governing equations, using plasma parameters relevant for LHSS observations in the upper ionosphere and in the magnetosphere. The numerical solutions reveal that the lower-hybrid waves become self-localized inside cylindrically symmetric (with respect to the ambient magnetic field density cavities, in qualitative agreement with observations. Our model includes thermal electron effects but shows no stabilization at the ion sound gyroradius, suggesting that any preference of observed LHSS for that perpendicular scale likely is due to processes arresting the cavity collapse.

  15. A hybrid stimulation strategy for suppression of spiral waves in cardiac tissue

    Energy Technology Data Exchange (ETDEWEB)

    Xu Binbin, E-mail: xubinbin@hotmail.fr [LE2I, CNRS UMR 5158, Universite de Bourgogne, Dijon (France); Jacquir, Sabir, E-mail: sjacquir@u-bourgogne.fr [LE2I, CNRS UMR 5158, Universite de Bourgogne, Dijon (France); Laurent, Gabriel; Bilbault, Jean-Marie [LE2I, CNRS UMR 5158, Universite de Bourgogne, Dijon (France); Binczak, Stephane, E-mail: stbinc@u-bourgogne.fr [LE2I, CNRS UMR 5158, Universite de Bourgogne, Dijon (France)

    2011-08-15

    Highlights: > Simulation of a cardiac tissue by a modified 2D FitzHugh-Nagumo model. > Stimulation of monophasic impulsions from a grid of electrodes to the cardiac tissue. > Propose a method by modifying the tissue's sodium channels and electrical stimulation. > The method leading to suppress spiral waves without generating new ones. > Optimal parameters of a successful suppression of spiral waves are investigated. - Abstract: Atrial fibrillation (AF) is the most common cardiac arrhythmia whose mechanisms are thought to be mainly due to the self perpetuation of spiral waves (SW). To date, available treatment strategies (antiarrhythmic drugs, radiofrequency ablation of the substrate, electrical cardioversion) to restore and to maintain a normal sinus rhythm have limitations and are associated with AF recurrences. The aim of this study was to assess a way of suppressing SW by applying multifocal electrical stimulations in a simulated cardiac tissue using a 2D FitzHugh-Nagumo model specially convenient for AF investigations. We identified stimulation parameters for successful termination of SW. However, SW reinduction, following the electrical stimuli, leads us to develop a hybrid strategy based on sodium channel modification for the simulated tissue.

  16. Interaction between the lower hybrid wave and density fluctuations in the scrape-off layer

    Energy Technology Data Exchange (ETDEWEB)

    Peysson, Y., E-mail: yves.peysson@cea.fr [CEA, IRFM, 13108 Saint Paul-lez-Durance (France); Madi, M.; Kabalan, K. [AUB, Bliss Street (Lebanon); Decker, J. [EPFL, CRPP (Switzerland)

    2015-12-10

    In the present paper, the perturbation of the launched power spectrum of the Lower Hybrid wave at the separatrix by electron density fluctuations in the scrape-off layer is investigated. Considering a slab geometry with magnetic field lines parallel to the toroidal direction, the full wave equation is solved using Comsol Multiphysics® for a fully active multi-junction like LH antenna made of two modules. When electron density fluctuations are incorporated in the dielectric tensor over a thin perturbed layer in front of the grill, it is shown that the power spectrum may be strongly modified from the antenna mouth to the plasma separatrix as the wave propagates. The diffraction effect leads to the appearance of multiple satellite lobes with randomly varying positions, a feature consistent with the recently developed model that has been applied successfully to high density discharges on the Tokamak Tore Supra corresponding to the large spectral gap regime [Decker J. et al. Phys. Plasma 21 (2014) 092504]. The perturbation is found to be maximum for the Fourier components of the fluctuating spectrum in the vicinity of the launched LH wavelength.

  17. Study on the Detectability of the Sky-Surface Wave Hybrid Radar

    Directory of Open Access Journals (Sweden)

    Hou Chengyu

    2014-01-01

    Full Text Available Working in the HF (high-frequency band and the transmitter and receiver locating separately, the sky-surface wave hybrid radar both has the capabilities of the OTHR (over-the-horizon radar and the advantage of the bistatic radar. As the electromagnetic wave will be disturbed by the ionosphere, interfered by the sea clutter and attenuated by the sea surface, the detectability of this radar system is more complex. So, in this paper, we will discuss the problem detailedly. First of all, the radar equation is deduced based on the propagation of the electromagnetic wave. Then, how to calculate the effect of the ionosphere and the propagation loss is discussed. And an example based on the radar equation is given. At last, the ambiguity function is used to analyze the range and velocity resolution. From the result, we find that the resolution has relation with the location of the target and the height of reflection point of the ionosphere. But compared with the location, the effect of the ionospheric height can be ignored.

  18. Analysis of Upper Hybrid Wave Growth Rates From Measured Electron Distributions; An Encounter With the Source of Auroral Roar

    Science.gov (United States)

    Bounds, S. R.; Kletzing, C. A.; Labelle, J. W.; Samara, M.; Yoon, P. H.

    2005-12-01

    In January of 2003, the High Bandwidth Auroral Rocket (HIBAR) passed through two regions of strong upper hybrid wave emission associated with the approximate matching of the upper hybrid frequency to twice the electron cyclotron frequency (fuh = 2 fce) (Samara 2004) These types of emission are believed to be the source of the HF auroral roar often observed by ground based receivers. The current model theorizes that the free space 0-mode waves observed on the ground are produced through mode conversion of strong emission of Z-mode, or upper hybrid waves. The relativistic electron cyclotron maser exhibits significant growth rates for the Z-mode when the local upper hybrid frequency is just below (~1%) twice the electron cyclotron frequency and with the appropriately unstable electron distribution (Yoon 1996, Yoon 1998, Yoon 2000). Though auroral roar is frequently observed from the ground, the source region has rarely been identified in-situ and even more rarely with sufficient bandwidth to analyze the underlying physical processes. Analysis of the electron distributions from HIBAR show good agreement with the theoretical distributions used by Yoon:98. HIBAR encountered three separate regions where fuh ≍ 2 fce, two of these regions include strong upper hybrid emission, while the third is void of upper hybrid wave activity. The measured particle distributions demonstrate that, in the two regions with wave emission, the relativistic electron cyclotron maser instability produces Z mode wave growth rates at least an order of magnitude greater than the electron collision frequency. In the third region without wave emission, the growth rates are much smaller in both amplitude and the extent of occurance. Samara, M., J. LaBelle, C. A. Kletzing, and S. R. Bounds, Rocket observations of structured upper hybrid wave at fuh=2fce, Geophys. Res. Lett., 31, L22804, doi:10.1029/2004GL021043. Yoon, P. H., A. T. Weatherwax, and T. J. Rosenberg, Lower ionospheric cyclotron maser

  19. Hybrid simulations of whistler waves generation and current closure by a pulsed tether in the ionosphere

    Science.gov (United States)

    Chang, C. L.; Lipatov, A. S.; Drobot, A. T.; Papadopoulos, K.; Satya-Narayana, P.

    1994-01-01

    The dynamic response of a magnetized collisionless plasma to an externally driven, finite size, sudden switch-on current source across the magnetic field has been studied using a two dimensional hybrid code. It was found that the predominant plasma response was the excitation of whistler waves and the formation of current closure by induced currents in the plasma. The results show that the current closure path consists of: (a) two antiparallel field-aligned current channels at the end of the imposed current sheet; and (b) a cross-field current region connecting these channels. The formation of the current closure path occured in the whistler timescale much shorter than that of MHD and the closure region expanded continuously in time. The current closure process was accompanied by significant energy loss due to whistler radiation.

  20. Degenerate four wave mixing in large mode area hybrid photonic crystal fibers

    DEFF Research Database (Denmark)

    Petersen, Sidsel Rübner; Alkeskjold, Thomas Tanggaard; Lægsgaard, Jesper

    2013-01-01

    Spontaneous degenerate four wave mixing (FWM) is investigated in large mode area hybrid photonic crystal fibers, in which photonic bandgap guidance and index guidance is combined. Calculations show the parametric gain is maximum on the edge of a photonic bandgap, for a large range of pump...... wavelengths. The FWM products are observed on the edges of a transmission band experimentally, in good agreement with the numerical results. Thereby the bandedges can be used to control the spectral positions of FWM products through a proper fiber design. The parametric gain control combined with a large mode...... area fiber design potentially allows for power scaling of light at wavelengths not easily accessible with e.g. rare earth ions....

  1. Degenerate four wave mixing in large mode area hybrid photonic crystal fibers.

    Science.gov (United States)

    Petersen, Sidsel R; Alkeskjold, Thomas T; Lægsgaard, Jesper

    2013-07-29

    Spontaneous degenerate four wave mixing (FWM) is investigated in large mode area hybrid photonic crystal fibers, in which photonic bandgap guidance and index guidance is combined. Calculations show the parametric gain is maximum on the edge of a photonic bandgap, for a large range of pump wavelengths. The FWM products are observed on the edges of a transmission band experimentally, in good agreement with the numerical results. Thereby the bandedges can be used to control the spectral positions of FWM products through a proper fiber design. The parametric gain control combined with a large mode area fiber design potentially allows for power scaling of light at wavelengths not easily accessible with e.g. rare earth ions.

  2. A Novel Cell-Based Hybrid Acoustic Wave Biosensor with Impedimetric Sensing Capabilities

    Directory of Open Access Journals (Sweden)

    Ioana Voiculescu

    2013-03-01

    Full Text Available A novel multiparametric biosensor system based on living cells will be presented. The biosensor system includes two biosensing techniques on a single device: resonant frequency measurements and electric cell-substrate impedance sensing (ECIS. The multiparametric sensor system is based on the innovative use of the upper electrode of a quartz crystal microbalance (QCM resonator as working electrode for the ECIS technique. The QCM acoustic wave sensor consists of a thin AT-cut quartz substrate with two gold electrodes on opposite sides. For integration of the QCM with the ECIS technique a semicircular counter electrode was fabricated near the upper electrode on the same side of the quartz crystal. Bovine aortic endothelial live cells (BAECs were successfully cultured on this hybrid biosensor. Finite element modeling of the bulk acoustic wave resonator using COMSOL simulations was performed. Simultaneous gravimetric and impedimetric measurements performed over a period of time on the same cell culture were conducted to validate the device’s sensitivity. The time necessary for the BAEC cells to attach and form a compact monolayer on the biosensor was 35~45 minutes for 1.5 × 104 cells/cm2 BAECs; 60 minutes for 2.0 × 104 cells/cm2 BAECs; 70 minutes for 3.0 × 104 cells/cm2 BAECs; and 100 minutes for 5.0 × 104 cells/cm2 BAECs. It was demonstrated that this time is the same for both gravimetric and impedimetric measurements. This hybrid biosensor will be employed in the future for water toxicity detection.

  3. Non-conforming hybrid meshes for efficient 2-D wave propagation using the Discontinuous Galerkin Method

    Science.gov (United States)

    Hermann, Verena; Käser, Martin; Castro, Cristóbal E.

    2011-02-01

    We present a Discontinuous Galerkin finite element method using a high-order time integration technique for seismic wave propagation modelling on non-conforming hybrid meshes in two space dimensions. The scheme can be formulated to achieve the same approximation order in space and time and avoids numerical artefacts due to non-conforming mesh transitions or the change of the element type. A point-wise Gaussian integration along partially overlapping edges of adjacent elements is used to preserve the schemes accuracy while providing a higher flexibility in the problem-adapted mesh generation process. We describe the domain decomposition strategy of the parallel implementation and validate the performance of the new scheme by numerical convergence test and experiments with comparisons to independent reference solutions. The advantage of non-conforming hybrid meshes is the possibility to choose the mesh spacing proportional to the seismic velocity structure, which allows for simple refinement or coarsening methods even for regular quadrilateral meshes. For particular problems of strong material contrasts and geometrically thin structures, the scheme reduces the computational cost in the sense of memory and run-time requirements. The presented results promise to achieve a similar behaviour for an extension to three space dimensions where the coupling of tetrahedral and hexahedral elements necessitates non-conforming mesh transitions to avoid linking elements in form of pyramids.

  4. An adaptive metamaterial beam with hybrid shunting circuits for extremely broadband control of flexural wave (Conference Presentation)

    Science.gov (United States)

    Chen, Yangyang; Huang, Guoliang

    2017-04-01

    A great deal of research has been devoted to controlling the dynamic behaviors of phononic crystals and metamaterials by directly tuning the frequency regions and/or widths of their inherent band gaps. Here, we present a novel approach to achieve extremely broadband flexural wave/vibration attenuation based on tunable local resonators made of piezoelectric stacks shunted by hybrid negative capacitance and negative inductance circuits with proof masses attached on a host beam. First, wave dispersion relations of the adaptive metamaterial beam are calculated analytically by using the transfer matrix method. The unique modulus tuning properties induced by the hybrid shunting circuits are then characterized conceptually, from which the frequency dependent modulus tuning curves of the piezoelectric stack located within wave attenuation frequency regions are quantitatively identified. As an example, a flexural wave high-pass band filter with a wave attenuation region from 0 to 23.0 kHz is demonstrated analytically and numerically by using the hybrid shunting circuit, in which the two electric components are connected in series. By changing the connection pattern to be parallel, another super wide wave attenuation region from 13.5 to 73.0 kHz is demonstrated to function as a low-pass filter at a subwavelength scale. The proposed adaptive metamaterial possesses a super wide band gap created both naturally and artificially. Therefore, it can be used for the transient wave mitigation at extremely broadband frequencies such as blast or impact loadings. We envision that the proposed design and approach can open many possibilities in broadband vibration and wave control.

  5. Density convection near radiating ICRF antennas and its effect on the coupling of lower hybrid waves

    Energy Technology Data Exchange (ETDEWEB)

    Ekedahl, A.; Colas, L.; Beaumont, B.; Bibet, Ph.; Bremond, S.; Kazarian, F. [Association Euratom-CEA Cadarache, 13 - Saint-Paul-lez-Durance (France). Dept. de Recherches sur la Fusion Controlee; Mayoral, M.L.; Mailloux, J. [Euratom/UKAEA Fusion Association, Culham Science Centre, Abingdon, OX (United Kingdom); Noterdaeme, J.M. [Max-Planck-Institut fuer Plasmaphysik, Euratom Association, Garching (Germany)]|[Gent University, EESA Dept. (Belgium); Tuccillo, A.A. [Associazione Euratom-ENEA sulla Fusione, CR Frascati, Rome (Italy)

    2003-07-01

    Combined operation of lower hybrid (LH) and Ion Cyclotron Resonance Frequency (ICRF) waves can result in a degradation of the LH wave coupling, as observed both in the Tore-Supra and Jet tokamaks. The reflection coefficient on the part of the LH launcher magnetically connected to the powered ICRF antenna increases, suggesting a local decrease in the electron density in the connecting flux tubes. This has been confirmed by Langmuir probe measurements on the LH launchers in the latest Tore-Supra experiments. Moreover, recent experiments in Jet indicate that the LH coupling degradation depends on the ICRF power and its launched k{sub /} spectrum. The 2D density distribution around the Tore-Supra ICRF antennas has been modelled with the CELLS-code, balancing parallel losses with diffusive transport and sheath induced ExB convection, obtained from RF field mapping using the ICANT-code. The calculations are in qualitative agreement with the experimental observations, i.e. density depletion is obtained, localised mainly in the antenna shadow, and dependent on ICRF power and antenna spectrum. (authors)

  6. Modification of ordinary-mode reflectometry system to detect lower-hybrid waves in Alcator C-Moda)

    Science.gov (United States)

    Baek, S. G.; Shiraiwa, S.; Parker, R. R.; Dominguez, A.; Kramer, G. J.; Marmar, E. S.

    2012-10-01

    Backscattering experiments to detect lower-hybrid (LH) waves have been performed in Alcator C-Mod, using the two modified channels (60 GHz and 75 GHz) of an ordinary-mode reflectometry system with newly developed spectral recorders that can continuously monitor spectral power at a target frequency. The change in the baseline of the spectral recorder during the LH wave injection is highly correlated to the strength of the X-mode non-thermal electron cyclotron emission. In high density plasmas where an anomalous drop in the lower hybrid current drive efficiency is observed, the observed backscattered signals are expected to be generated near the last closed flux surface, demonstrating the presence of LH waves within the plasma. This experimental technique can be useful in identifying spatially localized LH electric fields in the periphery of high-density plasmas.

  7. Hybrid local FEM/global LISA modeling of guided wave propagation and interaction with damage in composite structures

    Science.gov (United States)

    Shen, Yanfeng; Cesnik, Carlos E. S.

    2015-03-01

    This paper presents a hybrid modeling technique for the efficient simulation of guided wave propagation and interaction with damage in composite structures. This hybrid approach uses a local finite element model (FEM) to compute the excitability of guided waves generated by piezoelectric transducers, while the global domain wave propagation, wave-damage interaction, and boundary reflections are modeled with the local interaction simulation approach (LISA). A small-size multi-physics FEM with non-reflective boundaries (NRB) was built to obtain the excitability information of guided waves generated by the transmitter. Frequency-domain harmonic analysis was carried out to obtain the solution for all the frequencies of interest. Fourier and inverse Fourier transform and frequency domain convolution techniques are used to obtain the time domain 3-D displacement field underneath the transmitter under an arbitrary excitation. This 3-D displacement field is then fed into the highly efficient time domain LISA simulation module to compute guided wave propagation, interaction with damage, and reflections at structural boundaries. The damping effect of composite materials was considered in the modified LISA formulation. The grids for complex structures were generated using commercial FEM preprocessors and converted to LISA connectivity format. Parallelization of the global LISA solution was achieved through Compute Unified Design Architecture (CUDA) running on Graphical Processing Unit (GPU). The multi-physics local FEM can reliably capture the detailed dimensions and local dynamics of the piezoelectric transducers. The global domain LISA can accurately solve the 3-D elastodynamic wave equations in a highly efficient manner. By combining the local FEM with global LISA, the efficient and accurate simulation of guided wave structural health monitoring procedure is achieved. Two numerical case studies are presented: (1) wave propagation in a unidirectional CFRP composite plate

  8. Semi-classical description of matter wave interferometers and hybrid quantum systems

    Energy Technology Data Exchange (ETDEWEB)

    Schneider, Mathias

    2015-02-16

    This work considers the semi-classical description of two applications involving cold atoms. This is, on one hand, the behavior of a BOSE-EINSTEIN condensate in hybrid systems, i.e. in contact with a microscopic object (carbon nanotubes, fullerenes, etc.). On the other, the evolution of phase space distributions in matter wave interferometers utilizing ray tracing methods was discussed. For describing condensates in hybrid systems, one can map the GROSS-PITAEVSKII equation, a differential equation in the complex-valued macroscopic wave function, onto a system of two differential equations in density and phase. Neglecting quantum dispersion, one obtains a semiclassical description which is easily modified to incorporate interactions between condensate and microscopical object. In our model, these interactions comprise attractive forces (CASIMIR-POLDER forces) and loss of condensed atoms due to inelastic collisions at the surface of the object. Our model exhibited the excitation of sound waves that are triggered by the object's rapid immersion, and spread across the condensate thereafter. Moreover, local particle loss leads to a shrinking of the bulk condensate. We showed that the total number of condensed particles is decreasing potentially in the beginning (large condensate, strong mean field interaction), while it decays exponentially in the long-time limit (small condensate, mean field inetraction negligible). For representing the physics of matter wave interferometers in phase space, we utilized the WIGNER function. In semi-classical approximation, which again consists in ignoring the quantum dispersion, this representation is subject to the same equation of motion as classical phase space distributions, i.e. the LIOUVILLE equation. This implies that time evolution of theWIGNER function follows a phase space flow that consists of classical trajectories (classical transport). This means, for calculating a time-evolved distribution, one has know the initial

  9. The hybrid of SnO2 nanoparticle and polypyrrole aerogel: an excellent electromagnetic wave absorbing materials

    Science.gov (United States)

    Wang, Yu; Dai, Xiaoqing; Jiang, Wanchun; Wu, Fan; Xie, Aming

    2016-07-01

    As a kind of costless and lightweight material, SnO2 nanoparticles@polypyrrole hybrid aerogels have been synthesized and displayed electromagnetic wave absorbing (EWA) performance. Only with 10 wt% of nano-SnO2 filler loading in wax, effective EWA bandwidth of the hybrid aerogel can reach 7.28 GHz which is the widest lightweight EWA material among the reported absorbents. Through the regulation of sample thicknesses, effective EWA at lower frequencies can also be achieved. It was demonstrated that this aerogel can be used as an effective lightweight broadband EWA material.

  10. Multi-spacecraft observations of broadband waves near the lower hybrid frequency at the Earthward edge of the magnetopause

    Directory of Open Access Journals (Sweden)

    M. André

    Full Text Available Broadband waves around the lower hybrid frequency (around 10 Hz near the magnetopause are studied, using the four Cluster satellites. These waves are common at the Earthward edge of the boundary layer, consistent with earlier observations, and can have amplitudes at least up to 5 mV/m. These waves are similar on all four Cluster satellites, i.e. they are likely to be distributed over large areas of the boundary. The strongest electric fields occur during a few seconds, i.e. over distances of a few hundred km in the frame of the moving magnetopause, a scale length comparable to the ion gyroradius. The strongest magnetic oscillations in the same frequency range are typically found in the boundary layer, and across the magnetopause. During an event studied in detail, the magnetopause velocity is consistent with a large-scale depression wave, i.e. an inward bulge of magnetosheath plasma, moving tailward along the nominal magnetopause boundary. Preliminary investigations indicate that a rather flat front side of the large-scale wave is associated with a rather static small-scale electric field, while a more turbulent backside of the large-scale wave is associated with small-scale time varying electric field wave packets.

    Key words. Magnetospheric physics (magnetopause, cusp, and boundary layers – Space plasma physics (waves and in-stabilities

  11. Experimental characterization of the lower hybrid wave field on the first pass using a magnetic probe array

    Science.gov (United States)

    Shinya, T.; Baek, S. G.; Wallace, G. M.; Parker, R. R.; Shiraiwa, S.; Takase, Y.

    2016-10-01

    Experimental characterization of the lower hybrid (LH) wave propagation from the launcher to the core plasma is important to validate an antenna spectrum model and to identify parasitic wave-edge plasma interactions occurring in front of the launcher. On Alcator C-Mod, the wave frequency spectrum and dominant parallel wavenumber are characterized with two probe arrays installed near the edge plasma. The first one is mounted on a radially movable structure that is about 108 deg toroidally away from the launcher. A phasing scan experiment at moderate density suggests a resonance-cone propagation of the launched slow LH wave with a finite spectral width. As plasma density is raised, the measured power decreases, correlated with the observed loss of efficiency. Recently, the second probe array with an increased number of probes has been installed on a limiter that is 54 deg. toroidally away from the launcher, which is expected to be dominantly sensitive to the wave-field directly leaving the launcher. An initial measurement shows that the probe array detects a coherent wave field. A full-wave model to evaluate the wave electric-field pattern in front of the probe array is under development. If available, further experimental and modeling results will be presented. Supported by USDoE Award(s) DE-FC02-99ER54512 and Japan/U.S. Cooperation in Fusion Research and Development.

  12. Observations of a free-energy source for intense electrostatic waves. [in upper atmosphere near upper hybrid resonance frequency

    Science.gov (United States)

    Kurth, W. S.; Frank, L. A.; Gurnett, D. A.; Burek, B. G.; Ashour-Abdalla, M.

    1980-01-01

    Significant progress has been made in understanding intense electrostatic waves near the upper hybrid resonance frequency in terms of the theory of multiharmonic cyclotron emission using a classical loss-cone distribution function as a model. Recent observations by Hawkeye 1 and GEOS 1 have verified the existence of loss-cone distributions in association with the intense electrostatic wave events, however, other observations by Hawkeye and ISEE have indicated that loss cones are not always observable during the wave events, and in fact other forms of free energy may also be responsible for the instability. Now, for the first time, a positively sloped feature in the perpendicular distribution function has been uniquely identified with intense electrostatic wave activity. Correspondingly, we suggest that the theory is flexible under substantial modifications of the model distribution function.

  13. A Comment on Interaction of Lower Hybrid Waves with the Current-Driven Ion-Acoustic Instability

    DEFF Research Database (Denmark)

    Schrittwieser, R.; Juul Rasmussen, Jens

    1985-01-01

    Majeski et al. (1984) have investigated the interaction between the current-driven 'ion-acoustic' instability and high frequency lower hybrid waves. The 'ion-acoustic' instability was excited by drawing an electron current through the plasma column of a single-ended Q-machine by means of a positi......Majeski et al. (1984) have investigated the interaction between the current-driven 'ion-acoustic' instability and high frequency lower hybrid waves. The 'ion-acoustic' instability was excited by drawing an electron current through the plasma column of a single-ended Q-machine by means...... of a positively biased cold plate. Schmittwieser et al. do not believe that the observed instability is of the ion-acoustic type but that it is rather the so-called potential relaxation instability....

  14. Enabling inter- and intra-chip optical wireless interconnect by the aid of hybrid plasmonic leaky-wave optical antennas

    Science.gov (United States)

    Ebrahimi, Vahid; Yousefi, Leila; Mohammad-Taheri, Mahmoud

    2017-01-01

    In this paper, we propose a new method to provide optical link in Photonic Integrated Circuits (PICs). The proposed method uses two hybrid plasmonic leaky-wave optical antennas, operating at the standard optical telecommunication wavelength of 1.55 μm, to provide inter-chip interconnect between two layers in a photonic chip and also intra-chip interconnect between two different photonic ICs. Linearly tapered couplers are designed to couple the optical signal from the silicon waveguide to the hybrid plasmonic antennas. The performance of the proposed optical link is verified using numerical full wave simulation. The proposed structure is planar, and can be fabricated using standard CMOS technology which makes it the superior candidate for realization of future multi-layered Photonic Integrated Circuits.

  15. Design and implementation of a multichannel millimeter wave interferometer for the Compact Toroidal Hybrid experiment

    Energy Technology Data Exchange (ETDEWEB)

    Miller, M. C.; Hanson, J. D.; Hartwell, G. J.; Knowlton, S. F.; Maurer, D. A.; Stevenson, B. A. [Physics Department, Auburn University, Auburn, Alabama 36849 (United States)

    2012-10-15

    A three-channel 1 mm wave interferometer has been designed, assembled, and installed on the Compact Toroidal Hybrid torsatron (CTH). The interferometer design makes novel use of a subharmonic mixer for detection, which simplifies alignment. It employs a single electronically tunable source that is repetitively chirped using a sawtooth waveform of frequency up to 1 MHz. The 15.25 GHz drive oscillator is multiplied in two stages to 122 GHz before a final doubler stage brings it to 244 GHz. Local oscillator (LO) power at 122 GHz is directed through waveguide to the LO input of the subharmonic mixer of each viewing chord, simplifying alignment. Phase detection is performed by directly digitizing the amplified mixer outputs at 50 MHz and processing them with a software algorithm. Initial measurements made with the central chord of the new interferometer agree with those from the existing 4 mm system at low densities. The 1 mm system performs well in current-driven discharges reaching densities over 10{sup 19} m{sup -3}, whereas the lower frequency interferometer is found to be less reliable due to loss of fringes. This is a critical improvement for experiments studying the onset, avoidance, and vacuum magnetic transform dependence of disruptions in the CTH device.

  16. Antenna-coupled silicon-organic hybrid integrated photonic crystal modulator for broadband electromagnetic wave detection

    CERN Document Server

    Zhang, Xingyu; Subbaraman, Harish; Wang, Shiyi; Zhan, Qiwen; Luo, Jingdong; Jen, Alex K -Y; Chung, Chi-jui; Yan, Hai; Pan, Zeyu; Nelson, Robert L; Lee, Charles Y -C; Chen, Ray T

    2015-01-01

    In this work, we design, fabricate and characterize a compact, broadband and highly sensitive integrated photonic electromagnetic field sensor based on a silicon-organic hybrid modulator driven by a bowtie antenna. The large electro-optic (EO) coefficient of organic polymer, the slow-light effects in the silicon slot photonic crystal waveguide (PCW), and the broadband field enhancement provided by the bowtie antenna, are all combined to enhance the interaction of microwaves and optical waves, enabling a high EO modulation efficiency and thus a high sensitivity. The modulator is experimentally demonstrated with a record-high effective in-device EO modulation efficiency of r33=1230pm/V. Modulation response up to 40GHz is measured, with a 3-dB bandwidth of 11GHz. The slot PCW has an interaction length of 300um, and the bowtie antenna has an area smaller than 1cm2. The bowtie antenna in the device is experimentally demonstrated to have a broadband characteristics with a central resonance frequency of 10GHz, as we...

  17. Global SH-wave propagation in a 2D whole Moon model using the parallel hybrid PSM/FDM method

    Science.gov (United States)

    Jiang, Xianghua; Wang, Yanbin; Qin, Yanfang; Takenaka, Hiroshi

    2015-06-01

    We present numerical modeling of SH-wave propagation for the recently proposed whole Moon model and try to improve our understanding of lunar seismic wave propagation. We use a hybrid PSM/FDM method on staggered grids to solve the wave equations and implement the calculation on a parallel PC cluster to improve the computing efficiency. Features of global SH-wave propagation are firstly discussed for a 100-km shallow and 900-km deep moonquakes, respectively. Effects of frequency range and lateral variation of crust thickness are then investigated with various models. Our synthetic waveforms are finally compared with observed Apollo data to show the features of wave propagation that were produced by our model and those not reproduced by our models. Our numerical modeling show that the low-velocity upper crust plays significant role in the development of reverberating wave trains. Increasing frequency enhances the strength and duration of the reverberations. Surface multiples dominate wavefields for shallow event. Core-mantle reflections can be clearly identified for deep event at low frequency. The layered whole Moon model and the low-velocity upper crust produce the reverberating wave trains following each phases consistent with observation. However, more realistic Moon model should be considered in order to explain the strong and slow decay scattering between various phases shown on observation data.

  18. A hyperbolic function approach to constructing exact solitary wave solutions of the Hybrid lattice and discrete mKdV lattice

    Institute of Scientific and Technical Information of China (English)

    Zha Qi-Lao; Sirendaoreji

    2006-01-01

    Some new exact solitary wave solutions of the Hybrid lattice and discrete mKdV lattice are obtained by using a hyperbolic function approach.This approach can also be applied to other nonlinear differential-difference equations.

  19. ‘Who Said It Was Simple!’ Third-Wave Feminist Coalition and Audre Lorde's Intersectionalist Hybrid Poetics of Difference

    Directory of Open Access Journals (Sweden)

    Yomna Saber

    2015-05-01

    Full Text Available Third-Wave Feminism digs its roots in intersectionality and coalition, which were not fully realised in Second-Wave Feminism. However, the movement is usually under attack for lacking a clear agenda. Recent scholarship strongly suggests that third wavers get back to third-world writers, like Audre Lorde, to realise an anti-racist and inclusive feminism.  Lorde occupies a distinctive position in feminist literature; a poet who resides in too many margins being black, female and lesbian. This essay draws an analogy between third wave intersectionality and postcolonial hybridity, and argues that Lorde's use of hybridity is a 'third space' that she opens up in her poetry to disrupt spheres of supremacy through its interdependence and reciprocal construction that defy dualisms, hence realising coalition. The analysis is anchored by HomiBhabha's definition of hybridity in colonial discourse. Key Words: Third-Wave Feminism, intersectionality, hybridity, dualism, Audre Lorde, HomiBhabha.

  20. Is Hybrid Education and Videoconferencing the Wave of the Future for Online Courses?

    Science.gov (United States)

    Popma, Joe

    2012-01-01

    A comprehensive literature review examines the effectiveness of hybrid education utilizing videoconferencing. The observations and perceptions of both students and the instructor participating in a hybrid pilot program will be discussed. Discussion highlights the value of hybrid education within the context of the students' busy schedules and…

  1. Catastrophic instabilities of modified DA-DC hybrid surface waves in a semi-bounded plasma system

    Science.gov (United States)

    Lee, Myoung-Jae; Jung, Young-Dae

    2016-06-01

    We find the catastrophic instabilities and derive the growth rates for the dust-cyclotron resonance (DCR) and dust-rotation resonance (DRR) modes of the modified dust-acoustic and dust-cyclotron (DA-DC) hybrid surface waves propagating at the plasma-vacuum interface where the plasma is semi-bounded and composed of electrons and rotating dust grains. The effects of magnetic field and dust rotation frequency on the DCR- and DDR-modes are also investigated. We find that the dust rotation frequency enhances the growth rate of DCR-mode and the effect of dust rotation on this resonance mode decreases with an increase of the wave number. We also find that an increase of magnetic field strength enhances the DCR growth rate, especially, for the short wavelength regime. In the case of DRR-mode, the growth rate is found to be decreased less sensitively with an increase of the wave number compared with the case of DCR, but much significantly enhanced by an increase of dust rotation frequency. The DRR growth rate also decreases with an increase of the magnetic field strength, especially in the long wavelength regime. Interestingly, we find that catastrophic instabilities occur for both DCR- and DRR-modes of the modified DA-DC hybrid surface waves when the rotational frequency is close to the dust-cyclotron frequency. Both modes can also be excited catastrophically due to the cooperative interaction between the DCR-mode and the DRR-mode.

  2. A hybrid MAC protocol design for energy-efficient very-high-throughput millimeter wave, wireless sensor communication networks

    Science.gov (United States)

    Jian, Wei; Estevez, Claudio; Chowdhury, Arshad; Jia, Zhensheng; Wang, Jianxin; Yu, Jianguo; Chang, Gee-Kung

    2010-12-01

    This paper presents an energy-efficient Medium Access Control (MAC) protocol for very-high-throughput millimeter-wave (mm-wave) wireless sensor communication networks (VHT-MSCNs) based on hybrid multiple access techniques of frequency division multiplexing access (FDMA) and time division multiplexing access (TDMA). An energy-efficient Superframe for wireless sensor communication network employing directional mm-wave wireless access technologies is proposed for systems that require very high throughput, such as high definition video signals, for sensing, processing, transmitting, and actuating functions. Energy consumption modeling for each network element and comparisons among various multi-access technologies in term of power and MAC layer operations are investigated for evaluating the energy-efficient improvement of proposed MAC protocol.

  3. Global effects of transmitted shock wave propagation through the Earth's inner magnetosphere: First results from 3-D hybrid kinetic modeling

    Science.gov (United States)

    Lipatov, A. S.; Sibeck, D. G.

    2016-09-01

    We use a new hybrid kinetic model to simulate the response of ring current, outer radiation belt, and plasmaspheric particle populations to impulsive interplanetary shocks. Since particle distributions attending the interplanetary shock waves and in the ring current and radiation belts are non-Maxwellian, wave-particle interactions play a crucial role in energy transport within the inner magnetosphere. Finite gyroradius effects become important in mass loading the shock waves with the background plasma in the presence of higher energy ring current and radiation belt ions and electrons. Initial results show that shocks cause strong deformations in the global structure of the ring current, radiation belt, and plasmasphere. The ion velocity distribution functions at the shock front, in the ring current, and in the radiation belt help us determine energy transport through the Earth's inner magnetosphere.

  4. A hybrid surface layer parameterization scheme for the two-way fully coupled atmosphere-ocean wave system WEW

    Science.gov (United States)

    Katsafados, Petros; Papadopoulos, Anastasios; Varlas, George; Korres, Gerasimos

    2015-04-01

    The two-way fully coupled atmosphere-ocean wave system WEW has been recently developed in order to study the factors that contribute to the air-sea interaction processes and feedbacks. The coupled system consists of two components: the atmospheric component which is based on the Workstation Eta non-hydrostatic limited area model and the ocean-wave component which is based on the fourth generation OpenMP (OMP) version of the WAM model. The WEW has been already evaluated in a number of high-impact weather and sea state events where generally a more realistic representation of the momentum exchanges in the ocean wind-wave system has been shown However, the new developed wind-wave parameterization scheme reduces both the near surface wind speed and the significant wave height as a response to the increased aerodynamic drag considered by the atmospheric model over rough sea surfaces. Such behavior is mainly attributed to the surface layer parameterization scheme of the atmospheric component which is based on the Mellor-Yamada-Janjic (MYJ) scheme. It is noted that this scheme has been adjusted to support independent atmospheric simulations. Therefore, we proceed to develop a new hybrid surface layer parameterization based on the MYJ and the Janssen schemes that operate in the atmospheric and ocean wave components of the WEW, respectively. In this case the roughness length depends on the wave age instead of the Charnock parameter following the formulation proposed by Vickers and Mahrt. The spatial variability of the wave age is estimated at each ocean wave component time step and it is directly provided to the MYJ scheme. The parameterization of the viscous sublayer and the universal functions for the estimation of the near surface wind speed have been also revised accordingly. In this study, a test version of the new hybrid scheme of WEW has been statistically evaluated against a number of buoys and satellite retrievals over the Mediterranean Sea in a case study of high

  5. Conversion of electrostatic upper hybrid emissions to electromagnetic O and X mode waves in the Earth's magnetosphere

    Energy Technology Data Exchange (ETDEWEB)

    Budden, K.G.; Jones, D.

    1987-02-01

    The linear conversion of electrostatic upper hybrid emissions via the Z mode to electromagnetic ordinary (O) mode waves has for some time been invoked for the source of Terrestrial and Saturnian myriametric and Jovian kilometric radiations. The conversion occurs by virtue of the emissions' propagation in concentration gradients, and for it to be efficient it is necessary for the gradient to be normal to the ambient magnetic field. Suitable concentration gradients are believed to occur at the plasmapause and at the magnetopause. Ray theory predicts only O mode production whereas full wave theory in a cold plasma shows that both O and X (extraordinary) mode are produced, their relative intensities depending on the plasma parameters. Full wave theory in a warm plasma, besides yielding more accurate information on the O and X modes also provides an insight into the effect of conversion on the source plasma wave. Results obtained from these three levels of theory are compared using plasma parameters derived from wave experiments on spacecraft.

  6. Proton Heating by Pick-up Ion Driven Cyclotron Waves in the Outer Heliosphere: Hybrid Expanding Box Simulations

    Science.gov (United States)

    Hellinger, Petr; Trávníček, Pavel M.

    2016-11-01

    Using a one-dimensional hybrid expanding box model, we investigate properties of the solar wind in the outer heliosphere. We assume a proton-electron plasma with a strictly transverse ambient magnetic field and, aside from the expansion, we take into account the influence of a continuous injection of cold pick-up protons through the charge-exchange process between the solar wind protons and hydrogen of interstellar origin. The injected cold pick-up protons form a ring distribution function, which rapidly becomes unstable, and generate Alfvén cyclotron waves. The Alfvén cyclotron waves scatter pick-up protons to a spherical shell distribution function that thickens over that time owing to the expansion-driven cooling. The Alfvén cyclotron waves heat solar wind protons in the perpendicular direction (with respect to the ambient magnetic field) through cyclotron resonance. At later times, the Alfvén cyclotron waves become parametrically unstable and the generated ion-acoustic waves heat protons in the parallel direction through Landau resonance. The resulting heating of the solar wind protons is efficient on the expansion timescale.

  7. Proton heating by pick-up ion driven cyclotron waves in the outer heliosphere: Hybrid expanding box simulations

    CERN Document Server

    Hellinger, Petr

    2016-01-01

    Using one-dimensional hybrid expanding box model we investigate properties of the solar wind in the outer heliosphere. We assume a proton-electron plasma with a strictly transverse ambient magnetic field and, beside the expansion, we take into account influence of a continuous injection of cold pick-up protons through the charge-exchange process between the solar wind protons and hydrogen of interstellar origin. The injected cold pick-up protons form a ring distribution function that rapidly becomes unstable and generate Alfv\\'en cyclotron waves. The Alfv\\'en cyclotron waves scatter pick-up protons to a spherical shell distribution function that thickens over that time owing to the expansion-driven cooling. The Alf\\'ven cyclotron waves heat solar wind protons in the perpendicular direction (with respect to the ambient magnetic field) through the cyclotron resonance. At later times, the Alfv\\'en cyclotron waves become parametrically unstable and the generated ion acoustic waves heat protons in the parallel dir...

  8. Medium-energy electrons and heavy ions in Jupiter's magnetosphere - Effects of lower hybrid wave-particle interactions

    Science.gov (United States)

    Barbosa, D. D.

    1986-01-01

    A theory of medium-energy (about keV) electrons and heavy ions in Jupiter's magnetosphere is presented. Lower hybrid waves are generated by the combined effects of a ring instability of neutral wind pickup ions and the modified two-stream instability associated with transport of cool Iogenic plasma. The quasi-linear energy diffusion coefficient for lower hybrid wave-particle interactions is evaluated, and several solutions to the diffusion equation are given. Calculations based on measured wave properties show that the noise substantially modifies the particle distribution functions. The effects are to accelerate superthermal ions and electrons to keV energies and to thermalize the pickup ions on time scales comparable to the particle residence time. The S(2+)/S(+) ratio at medium energies is a measure of the relative contribution from Iogenic thermal plasma and neutral wind ions, and this important quantity should be determined from future measurements. The theory also predicts a preferential acceleration of heavy ions with an accleration time that scales inversely with the root of the ion mass. Electrons accelerated by the process contribute to further reionization of the neutral wind by electron impact, thus providing a possible confirmation of Alfven's critical velocity effect in the Jovian magnetosphere.

  9. Characterization of onset of parametric decay instability of lower hybrid waves

    Energy Technology Data Exchange (ETDEWEB)

    Baek, S. G.; Bonoli, P. T.; Parker, R. R.; Shiraiwa, S.; Wallace, G. M.; Porkolab, M.; Brunner, D.; Faust, I. C.; Hubbard, A. E.; LaBombard, B. L.; Lau, C. [MIT Plasma Science and Fusion Center, Cambridge, MA (United States); Takase, Y. [The University of Tokyo, Kashiwa (Japan)

    2014-02-12

    The goal of the lower hybrid current drive (LHCD) program on Alcator C-Mod is to develop and optimize ITER-relevant steady-state plasmas by controlling the current density profile. Using a 4×16 waveguide array, over 1 MW of LH power at 4.6 GHz has been successfully coupled to the plasmas. However, current drive efficiency precipitously drops as the line averaged density (nÐœ„{sub e}) increases above 10{sup 20}m{sup −3}. Previous numerical work shows that the observed loss of current drive efficiency in high density plasmas stems from the interactions of LH waves with edge/scrape-off layer (SOL) plasmas [Wallace et al., Physics of Plasmas 19, 062505 (2012)]. Recent observations of parametric decay instability (PDI) suggest that non-linear effects should be also taken into account to fully characterize the parasitic loss mechanisms [Baek et al., Plasma Phys. Control Fusion 55, 052001 (2013)]. In particular, magnetic configuration dependent ion cyclotron PDIs are observed using the probes near nÐœ„{sub e}≈1.2×10{sup 20}m{sup −3}. In upper single null plasmas, ion cyclotron PDI is excited near the low field side separatrix with no apparent indications of pump depletion. The observed ion cyclotron PDI becomes weaker in inner wall limited plasmas, which exhibit enhanced current drive effects. In lower single null plasmas, the dominant ion cyclotron PDI is excited near the high field side (HFS) separatrix. In this case, the onset of PDI is correlated with the decrease in pump power, indicating that pump wave power propagates to the HFS and is absorbed locally near the HFS separatrix. Comparing the observed spectra with the homogeneous growth rate calculation indicates that the observed ion cyclotron instability is excited near the plasma periphery. The incident pump power density is high enough to overcome the collisional homogeneous threshold. For C-Mod plasma parameters, the growth rate of ion sound quasi-modes is found to be typically smaller by an

  10. Heating and current drive by fast wave in lower hybrid range of frequency on Versatile Experiment Spherical Torus

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sun-Ho, E-mail: shkim95@kaeri.re.kr [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Jeong, Seung-Ho [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Lee, Hyunwoo; Lee, Byungje [KwangWoon University, Seoul (Korea, Republic of); Jo, Jong-Gab; Lee, Hyun-Young; Hwang, Yong-Seok [Seoul National University, Seoul (Korea, Republic of)

    2016-11-01

    An efficient heating and current drive scheme in central or off-axis region is required to realize steady state operation of tokamak fusion reactor. And the fast wave in lower hybrid resonance range of frequency could be a candidate for such an efficient scheme in high density and high temperature plasmas. Its propagation and absorption characteristics including current drive and coupling efficiency are analyzed for Versatile Experiment Spherical Torus and it is shown that it is possible to drive current with considerable current drive efficiency in central region. The RF system for the fast wave experiment including klystron, transmission systems, inter-digital antenna, and RF diagnostics are given as well in this paper.

  11. A unified formulation for guided-wave propagation in multi-layered mixed anisotropic-isotropic hybrid aerospace composites

    Science.gov (United States)

    Barazanchy, Darun; Giurgiutiu, Victor

    2016-04-01

    A unified approach was formulated to predict guided-wave propagation in a material regardless its degree of anisotropy, thereby having one solution method for both isotropic and anisotropic material. The unified approach was based on the coupled eigenvalue problem derived from Chirstoffels equation for a lamina. The eigenvalue problem yielded a set of eigenvalues, and corresponding eigenvectors that were used to obtain the stress-displacement matrix. The dispersion curves were obtained by applying the traction free boundary conditions to the stress-displacement matrix, and searching for sign changes in the complex determinant of the matrix. To search for sign changes, hence the velocity-wavenumber pairs which yielded a solution to the problem, the real and imaginary part of the complex determinant had to change sign simultaneously. A phase angle approach was, therefore, developed and successfully applied. A refinement algorithm was applied to refine the accuracy of the solution without increasing the computational time significantly. A high accuracy was required to calculated the correct partial-wave participation factors. The obtained partial-wave participation factors were used to calculate the modeshape through the thickness for each velocity-wavenumber pair. To identify the different wave types, A0, S0, SHS0, SHA0, a modeshape identification was applied successfully. The unified approach was evaluated for hybrid aerospace composites. In addition, the two most common solution methods: (i) the global matrix method; and (ii) the transfer matrix method were applied, and a comparative study between the different methods was performed.

  12. Excitation of whistler waves below the lower hybrid frequency by a loop antenna located in an enhanced density duct

    Science.gov (United States)

    Kudrin, Alexander V.; Ostafiychuk, Oleg M.; Zaboronkova, Tatyana M.

    2017-08-01

    Whistler wave radiation from a loop antenna located in a cylindrical duct with enhanced plasma density is considered in the case where the wave frequency is less than the lower hybrid frequency. Using the full-wave formulation, the total radiation resistance and the partial radiation resistances corresponding to guided eigenmodes of such a duct and unguided waves radiating to the background magnetoplasma are calculated and analyzed as functions of the plasma and source parameters. The emphasis is placed on the radiation characteristics of the considered source in the presence of an artificial near-antenna duct that can be created during active experiments in the ionosphere. Conditions are revealed under which the total radiation resistance is predominantly determined by the excitation of the eigenmodes of the duct. It is shown that the presence of an enhanced density duct can lead to a notable increase in the radiation resistance of a loop antenna in the discussed frequency range even if the duct is rather narrow and capable of guiding only a single low-order eigenmode. The results obtained can be helpful in understanding the basic features of excitation of the ducted whistlers and planning the related ionospheric and laboratory experiments.

  13. Hybrid ANFIS with ant colony optimization algorithm for prediction of shear wave velocity from a carbonate reservoir in Iran

    Directory of Open Access Journals (Sweden)

    Hadi Fattahi

    2016-12-01

    Full Text Available Shear wave velocity (Vs data are key information for petrophysical, geophysical and geomechanical studies. Although compressional wave velocity (Vp measurements exist in almost all wells, shear wave velocity is not recorded for most of elderly wells due to lack of technologic tools. Furthermore, measurement of shear wave velocity is to some extent costly. This study proposes a novel methodology to remove aforementioned problems by use of hybrid adaptive neuro fuzzy inference system (ANFIS with ant colony optimization algorithm (ACO based on fuzzy c–means clustering (FCM and subtractive clustering (SCM. The ACO is combined with two ANFIS models for determining the optimal value of its user–defined parameters. The optimization implementation by the ACO significantly improves the generalization ability of the ANFIS models. These models are used in this study to formulate conventional well log data into Vs in a quick, cheap, and accurate manner. A total of 3030 data points was used for model construction and 833 data points were employed for assessment of ANFIS models. Finally, a comparison among ANFIS models, and six well–known empirical correlations demonstrated ANFIS models outperformed other methods. This strategy was successfully applied in the Marun reservoir, Iran.

  14. Technico-economical analysis of a hybrid wave power-air compression storage system

    OpenAIRE

    Hernandez-Torres, David; Bridier, Laurent; David, Mathieu; Lauret, Philippe; Ardiale, Thomas

    2015-01-01

    International audience; This paper presents a technico-economical analysis of a Pelamis wave power generator coupled with a proposed air compression storage system. Ocean wave measurements and forecasts are used from a site near the city of Saint-Pierre in Réunion island, France. The insular context requires both smoothing and forecast of the output power from the wave power system. The storage system is a solution to meet this requirement. Several power network services are defined by the ut...

  15. Jacobian Elliptic Function Method and Solitary Wave Solutions for Hybrid Lattice Equation

    Institute of Scientific and Technical Information of China (English)

    WANG Rui-Min; DAI Chao-Qing; ZHANG Jie-Fang

    2006-01-01

    In this paper, we have successfully extended the Jacobian elliptic function expansion approach to nonlinear differential-difference equations. The Hybrid lattice equation is chosen to illustrate this approach. As a consequence,twelve families of Jacobian elliptic function solutions with different parameters of the Hybrid lattice equation are obtained.When the modulus m → 1 or 0, doubly-periodic solutions degenerate to solitonic solutions and trigonometric function solutions, respectively.

  16. Identification of waves in the lower-hybrid frequency range in the scrape-off layer plasma of Alcator C-Mod

    Science.gov (United States)

    Shinya, Takahiro; Gyou Baek, Seung; Wallace, Gregory M.; Shiraiwa, Syun'ichi; Takase, Yuichi; Parker, Ronald R.; Bonoli, Paul T.; Brunner, Dan; Faust, Ian; LaBombard, Brian L.; Wukitch, Steve

    2017-03-01

    Polarization resolved measurements of the parallel refractive index {{N}\\parallel}\\equiv c{{k}\\parallel}/ω of the driven RF waves in the lower hybrid (LH) range of frequencies are performed using arrays of RF magnetic probes in the scrape-off layer plasma of Alcator C-Mod. The measured {{N}\\parallel} of the RF magnetic field component parallel to the background magnetic field is about  -1.6, which corresponds to the peak of the launched LH {{N}\\parallel} spectrum. Based on the wave dispersion relationship, this wave is identified as the LH slow wave. On the other hand, the RF magnetic field component perpendicular to the magnetic field is found to have a lower {{N}\\parallel} of  -1.2, and is detected only near the last closed flux surface. This wave is identified as the LH fast wave generated by slow-fast wave mode conversion.

  17. Self-Adaptive Power Control Mechanism in D2D Enabled Hybrid Cellular Network with mmWave Small Cells:An Optimization Approach

    OpenAIRE

    Raza, Syed Ahsan; Hassan, Syed Ali; Pervaiz, Haris Bin; Ni, Qiang; Musavian, Leila

    2016-01-01

    Millimeter wave (mmWave) and Device-to-Device (D2D) communications have been considered as the key enablers of the next generation networks. We consider a D2D-enabled hybrid cellular network compromising of μW macro-cells coexisting with mmWave small cells. We investigate the dynamic resource sharing in downlink transmission to maximize the energy efficiency (EE) of the priority, or cellular users (CUs), that are opportunistically served by either macrocells or mmWave small cells, while satis...

  18. A wave-shaped hybrid piezoelectric and triboelectric nanogenerator based on P(VDF-TrFE) nanofibers.

    Science.gov (United States)

    Chen, Xuexian; Han, Mengdi; Chen, Haotian; Cheng, Xiaoliang; Song, Yu; Su, Zongming; Jiang, Yonggang; Zhang, Haixia

    2017-01-19

    A wave-shaped hybrid nanogenerator (NG) with mutually enhanced piezoelectric and triboelectric output is presented in this work. By sandwiching piezoelectric P(VDF-TrFE) nanofibers between wave-shaped Kapton films, the device forms a three-layer structure, which can generate piezoelectric and triboelectric outputs simultaneously in one press and release cycle. Through systematic situational analysis and experimental validation, the three-layer structure can achieve obvious improvement of the output performance for both parts. When triggered with 4 Hz external force, the piezoelectric part generates a peak output and current of 96 V and 3.8 μA, which is ∼2 times higher than its initial output. Meanwhile, the performance of triboelectric parts also increases 8 V and 16 V with the assistance of piezoelectric potential. The enhanced high output enables the hybrid nanogenerator to instantaneously light up LEDs and charges capacitors quickly, which shows extensive application prospects in the field of self-powered systems or sensor networks.

  19. Design and Preparation of RF System for the Lower Hybrid Fast Wave Heating and Current Drive Research on VEST

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sun Ho; Jeong, Seung Ho [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Lee, Hyun Woo; Lee, Byung Je [Kwang Woon University, Chuncheon (Korea, Republic of); Jo, Jong Gab; Lee, Hyun Young; Hwang, Yong Seok [Seoul National University, Seoul (Korea, Republic of)

    2015-10-15

    Continuous current drive is one of the key issues for tokamak to be a commercial fusion reactor. As a part of new and efficient current drive concept research by using a Lower Hybrid Fast Wave (LHFW), the experimental study is planned on Versatile Experiment Spherical Torus (VEST) and a RF system is being developed in collaboration with Kwang Woon University (KWU), Korea Accelerator Plasma Research Association (KAPRA) and Seoul National University (SNU). The LHFW RF system includes UHF band klystron, inter-digital antenna, RF diagnostics and power transmission sub components such as circulator, DC breaker, vacuum feed-thru. The design and preparation status of the RF system will be presented in the meeting in detail. A RF system has been designed and prepared for the experimental study of efficient current drive by using Lower Hybrid Fast Wave. Overall LHFW RF system including diagnostics is designed to deliver about 10 kW in UHF band. And the key hardware components including klystron and antenna are being prepared and designed through the collaboration with KWU, KAPRA and SNU.

  20. Development of numerical methods to calculate the propagation and the absorption of the hybrid wave in tokamaks; Developpement des methodes numeriques pour la resolution de la propagation et de l`absorption de l`onde hybride dans les tokamaks

    Energy Technology Data Exchange (ETDEWEB)

    Sebelin, E

    1997-12-15

    Full-wave calculations based on trial functions are carried out for solving the lower hybrid current drive problem in tokamaks. A variational method is developed and provides an efficient system to describe in a global manner both the propagation and the absorption of the electromagnetic waves in plasmas. The calculation is fully carried out in the case of circular and concentric flux surfaces. The existence and uniqueness of the solution of the wave propagation equation is mathematically proved. The first realistic simulations are performed for the high aspect ratio tokamak TRIAM-1M. It is checked that the main features of the lower-hybrid wave dynamics are well described numerically. (A.C.) 81 refs.

  1. Offshore energy structures for wind power, wave energy and hybrid marine platforms

    CERN Document Server

    Karimirad, Madjid

    2014-01-01

    This book provides all the key information needed to design offshore structures for renewable energy applications successfully. Suitable for practicing engineers and students, the author conveys design principles and best practices in a clear, concise manner, focusing on underlying physics while eschewing complicated mathematical detail. The text connects underlying scientific theory with industry standards and practical implementation issues for offshore wind turbines, wave energy converters and current turbines. Combined concepts such as wave-wind energy platforms are discussed, as well. Cov

  2. Boundaries of Parametric Gain due to Four-wave Mixing in Hybrid Photonic Crystal Fibers

    DEFF Research Database (Denmark)

    Petersen, Sidsel Rübner; Lægsgaard, Jesper; Alkeskjold, Thomas Tanggaard

    2014-01-01

    Parametric gain by four-wave mixing is considered in photonic crystal fibers for an undepleted pump. The mode distributions are wavelength dependent, thus field overlap integrals cannot be simplified, and an extended gain region is observed......Parametric gain by four-wave mixing is considered in photonic crystal fibers for an undepleted pump. The mode distributions are wavelength dependent, thus field overlap integrals cannot be simplified, and an extended gain region is observed...

  3. A hybrid scheme for absorbing edge reflections in numerical modeling of wave propagation

    KAUST Repository

    Liu, Yang

    2010-03-01

    We propose an efficient scheme to absorb reflections from the model boundaries in numerical solutions of wave equations. This scheme divides the computational domain into boundary, transition, and inner areas. The wavefields within the inner and boundary areas are computed by the wave equation and the one-way wave equation, respectively. The wavefields within the transition area are determined by a weighted combination of the wavefields computed by the wave equation and the one-way wave equation to obtain a smooth variation from the inner area to the boundary via the transition zone. The results from our finite-difference numerical modeling tests of the 2D acoustic wave equation show that the absorption enforced by this scheme gradually increases with increasing width of the transition area. We obtain equally good performance using pseudospectral and finite-element modeling with the same scheme. Our numerical experiments demonstrate that use of 10 grid points for absorbing edge reflections attains nearly perfect absorption. © 2010 Society of Exploration Geophysicists.

  4. Efficient Hybrid-Spectral Model for Fully Nonlinear Numerical Wave Tank

    DEFF Research Database (Denmark)

    Christiansen, Torben; Bingham, Harry B.; Engsig-Karup, Allan Peter;

    2013-01-01

    A new hybrid-spectral solution strategy is proposed for the simulation of the fully nonlinear free surface equations based on potential flow theory. A Fourier collocation method is adopted horisontally for the discretization of the free surface equations. This is combined with a modal Chebyshev T...

  5. Wave transmission through two-dimensional structures by the hybrid FE/WFE approach

    Science.gov (United States)

    Mitrou, Giannoula; Ferguson, Neil; Renno, Jamil

    2017-02-01

    The knowledge of the wave transmission and reflection characteristics in connected two-dimensional structures provides the necessary background for many engineering prediction methodologies. Extensive efforts have previously been exerted to investigate the propagation of waves in two-dimensional periodic structures. This work focuses on the analysis of the wave propagation and the scattering properties of joined structures comprising of two or more plates. The joint is modelled using the finite element (FE) method whereas each (of the joined) plate(s) is modelled using the wave and finite element (WFE) method. This latter approach is based on post-processing a standard FE model of a small segment of the plate using periodic structure theory; the FE model of the segment can be obtained using any commercial/in-house FE package. Stating the equilibrium and continuity conditions at the interfaces and expressing the motion in the plates in terms of the waves in each plate yield the reflection and transmission matrices of the joint. These can then be used to obtain the response of the whole structure, as well as investigating the frequency and incidence dependence for the flow of power in the system.

  6. Contrast improvement of continuous wave diffuse optical tomography reconstruction by hybrid approach using least square and genetic algorithm.

    Science.gov (United States)

    Patra, Rusha; Dutta, Pranab K

    2015-07-01

    Reconstruction of the absorption coefficient of tissue with good contrast is of key importance in functional diffuse optical imaging. A hybrid approach using model-based iterative image reconstruction and a genetic algorithm is proposed to enhance the contrast of the reconstructed image. The proposed method yields an observed contrast of 98.4%, mean square error of 0.638×10⁻³, and object centroid error of (0.001 to 0.22) mm. Experimental validation of the proposed method has also been provided with tissue-like phantoms which shows a significant improvement in image quality and thus establishes the potential of the method for functional diffuse optical tomography reconstruction with continuous wave setup. A case study of finger joint imaging is illustrated as well to show the prospect of the proposed method in clinical diagnosis. The method can also be applied to the concentration measurement of a region of interest in a turbid medium.

  7. Hybrid interferometer with nonlinear four-wave mixing process and linear beam splitter.

    Science.gov (United States)

    Liu, Shengshuai; Jing, Jietai

    2017-07-10

    Optical interferometer has played an important role in optics. Up to now, many kinds of interferometers have been realized and found their applications. In this letter, we experimentally construct an interferometer by using parametric amplifier as a wave splitter and beam splitter as a wave combiner. We make measurements of interference fringes and explore the relationships between the interference visibility of the interferometer and various system parameters, such as the gain of the parametric amplifier, the one-photon detuning and the temperature of the Rb-85 vapor cell.

  8. Analysis and design of hybrid leaky-wave antennas loaded with frequency selective surfaces

    OpenAIRE

    García Vigueras, María

    2013-01-01

    [SPA] En esta tesis se propone una nueva antena de tipo Leaky-Wave (Leaky Wave Antenna, LWA). Estas antenas han recibido mucha atención en las últimas décadas por ser altamente directivas. En concreto, constituyen una solución especialmente atractiva para aplicaciones que requieran altas prestaciones y precisión, como en sistemas de comunicación por satélite y radar. Concretamente, las LWAs consideradas en esta tesis se basan en la radiación producida por una onda de fuga que se propaga por ...

  9. Wave dispersion in the hybrid-Vlasov model: Verification of Vlasiator

    OpenAIRE

    Kempf, Yann; Pokhotelov, Dimitry; von Alfthan, Sebastian; Vaivads, Andris; Palmroth, Minna; Koskinen, Hannu E. J.

    2013-01-01

    Vlasiator is a new hybrid-Vlasov plasma simulation code aimed at simulating the entire magnetosphere of the Earth. The code treats ions (protons) kinetically through Vlasov's equation in the six-dimensional phase space while electrons are a massless charge-neutralizing fluid [M. Palmroth et al., Journal of Atmospheric and Solar-Terrestrial Physics 99, 41 (2013); A. Sandroos et al., Parallel Computing 39, 306 (2013)]. For first global simulations of the magnetosphere, it is critical to verify ...

  10. Internal transport barrier triggered by non-linear lower hybrid wave deposition under condition of beam-driven toroidal rotation

    Science.gov (United States)

    Gao, Q. D.; Budny, R. V.

    2015-03-01

    By using gyro-Landau fluid transport model (GLF23), time-dependent integrated modeling is carried out using TRANSP to explore the dynamic process of internal transport barrier (ITB) formation in the neutral beam heating discharges. When the current profile is controlled by LHCD (lower hybrid current drive), with appropriate neutral beam injection, the nonlinear interplay between the transport determined gradients in the plasma temperature (Ti,e) and toroidal velocity (Vϕ) and the E×B flow shear (including q-profile) produces transport bifurcations, generating spontaneously a stepwise growing ITB. In the discharge, the constraints imposed by the wave propagation condition causes interplay of the LH driven current distribution with the plasma configuration modification, which constitutes non-linearity in the LH wave deposition. The non-linear effects cause bifurcation in LHCD, generating two distinct quasi-stationary reversed magnetic shear configurations. The change of current profile during the transition period between the two quasi-stationary states results in increase of the E×B shearing flow arising from toroidal rotation. The turbulence transport suppression by sheared E×B flow during the ITB development is analysed, and the temporal evolution of some parameters characterized the plasma confinement is examined. Ample evidence shows that onset of the ITB development is correlated with the enhancement of E×B shearing rate caused by the bifurcation in LHCD. It is suggested that the ITB triggering is associated with the non-linear effects of the LH power deposition.

  11. A TVD-WAF-based hybrid finite volume and finite difference scheme for nonlinearly dispersive wave equations

    Directory of Open Access Journals (Sweden)

    Jing Yin

    2015-07-01

    Full Text Available A total variation diminishing-weighted average flux (TVD-WAF-based hybrid numerical scheme for the enhanced version of nonlinearly dispersive Boussinesq-type equations was developed. The one-dimensional governing equations were rewritten in the conservative form and then discretized on a uniform grid. The finite volume method was used to discretize the flux term while the remaining terms were approximated with the finite difference method. The second-order TVD-WAF method was employed in conjunction with the Harten-Lax-van Leer (HLL Riemann solver to calculate the numerical flux, and the variables at the cell interface for the local Riemann problem were reconstructed via the fourth-order monotone upstream-centered scheme for conservation laws (MUSCL. The time marching scheme based on the third-order TVD Runge-Kutta method was used to obtain numerical solutions. The model was validated through a series of numerical tests, in which wave breaking and a moving shoreline were treated. The good agreement between the computed results, documented analytical solutions, and experimental data demonstrates the correct discretization of the governing equations and high accuracy of the proposed scheme, and also conforms the advantages of the proposed shock-capturing scheme for the enhanced version of the Boussinesq model, including the convenience in the treatment of wave breaking and moving shorelines and without the need for a numerical filter.

  12. Development of hybrid composite radar wave absorbing structure for stealth applications

    Indian Academy of Sciences (India)

    T Annil Kumar; J Inayathullah; V A Nagarajan; S Hari Kumar

    2016-02-01

    The ideally invisible stealth radomes are usually sandwiched constructions composed of E-glass/epoxy composite, polyvinyl chloride foam and frequency selective surfaces (FSS). Nylon 6/6 and balsa wood are well known for their low dielectric properties. In this work the electromagnetic (EM) wave transmission characteristics of the existing stealth radomes were improved by employing nylon 6/6 fibre and balsa wood, along with E-glass/epoxy composite without compromising the mechanical properties. The free space measurement technique was performed to measure the EM wave transmission characteristics in the X-band frequency range (8.2–12.4 GHz) for a specific FSS. The flexural strength of the sandwiched constructions were investigated with three-point bending test.

  13. Hybrid Eulerian and Lagrangian Simulation of Steep and Breaking Waves and Surface Fluxes in High Winds

    Science.gov (United States)

    2012-09-30

    codes are parallelized using message passing interface (MPI) based on domain decomposition. For SPH , graphics processing unit (GPU) computing, which is...aims at developing a numerical capability using a Lagrangian Smoothed Particle Hydrodynamics ( SPH ) method and an Eulerian Level-Set Method (LSM) for...the SPH and LSM with environmental input provided by coupled wind and wave simulations at far field; (2) Use the numerical method developed in (1

  14. Four-wave mixing stability in hybrid photonic crystal fibers with two zero-dispersion wavelengths.

    Science.gov (United States)

    Sévigny, Benoit; Vanvincq, Olivier; Valentin, Constance; Chen, Na; Quiquempois, Yves; Bouwmans, Géraud

    2013-12-16

    The four-wave mixing process in optical fibers is generally sensitive to dispersion uniformity along the fiber length. However, some specific phase matching conditions show increased robustness to longitudinal fluctuations in fiber dimensions, which affect the dispersion, even for signal and idler wavelengths far from the pump. In this paper, we present the method by which this point is found, how the fiber design characteristics impact on the stable point and demonstrate the stability through propagation simulations using the non-linear Schrödinger equation.

  15. Ultrathin Terahertz Quarter-wave plate based on Split Ring Resonator and Wire Grating hybrid Metasurface

    Science.gov (United States)

    Nouman, Muhammad Tayyab; Hwang, Ji Hyun; Jang, Jae-Hyung

    2016-12-01

    Planar metasurface based quarter-wave plates offer various advantages over conventional waveplates in terms of compactness, flexibility and simple fabrication; however they offer very narrow bandwidth of operation. Here, we demonstrate a planar terahertz (THz) metasurface capable of linear to circular polarization conversion and vice versa in a wide frequency range. The proposed metasurface is based on horizontally connected split ring resonators and is realized on an ultrathin (0.05λ) zeonor substrate. The fabricated quarter waveplate realizes linear to circular polarization conversion in two broad frequency bands comprising 0.64-0.82 THz and 0.96-1.3 THz with an insertion loss ranging from -3.9 to -10 dB. By virtue of ultrathin sub wavelength thickness, the proposed waveplate design is well suited for application in near field THz optical systems. Additionally, the proposed metasurface design offers novel transmission phase characteristics that present further opportunities to realize dynamic polarization control of incident waves.

  16. Seismic Wave Scattering Through a Compressed Hybrid BEM/FEM Method

    CERN Document Server

    Guarín-Zapata, Nicolás; Jaramillo, Juan

    2014-01-01

    Approximated numerical techniques, for the solution of the elastic wave scattering problem over semi-infinite domains are reviewed. The approximations involve the representation of the half-space by a boundary condition described in terms of 2D boundary element discretizations. The classical BEM matrices are initially re-written into the form of a dense dynamic stiffness matrix and later approximated to a banded matrix. The resulting final banded matrix is then used like a standard finite element to solve the wave scattering problem at lower memory requirements. The accuracy of the reviewed methods is benchmarked against the classical problems of a semi-circular and a rectangular canyon. Results are presented in the time and frequency domain, as well as in terms of relative errors in the considered approximations. The main goal of the paper is to give the analyst a method that can be used at the practising level where an approximate solution is enough in order to support engineering decisions.

  17. 700-W diffusion-cooled large-area 40.68-MHz excited CO2 laser employing split-wave hybrid confocal resonator

    Science.gov (United States)

    Vitruk, Peter; Schemmer, James; Byron, Stan

    1998-09-01

    A novel non-waveguide, non-free-space CO2 laser resonator cavity, referred to as the split-wave hybrid (SWH) resonator, is described. Traditional resonator mirrors combined with two specially designed light reflecting electrode walls, which enclose the active medium, form the SWH resonator cavity. Light reflecting walls in the split-wave resonator act as wave-front-splitting mirrors in an interferometer, similar to a Fresnel double mirror or Lloyd mirror interferometer. Wave- front of the intra-cavity laser beam is significantly tilted with respect to the resonator walls, which facilitates lowest order mode selection in this resonator. Additionally, electrode wall surfaces contain discontinuities, which further enhances non-waveguide mode discrimination in the SWH resonator.

  18. Hybrid Model Representation of a TLP Including Flexible Topsides in Non-Linear Regular Waves

    Directory of Open Access Journals (Sweden)

    Christof Wehmeyer

    2014-08-01

    Full Text Available The rising demand for renewable energy solutions is forcing the established industries to expand and continue evolving. For the wind energy sector, the vast resources in deep sea locations have encouraged research towards the installation of turbines in deeper waters. One of the most promising technologies able to solve this challenge is the floating wind turbine foundation. For the ultimate limit state, where higher order wave loads have a significant influence, a design tool that couples non-linear excitations with structural dynamics is required. To properly describe the behavior of such a structure, a numerical model is proposed and validated by physical test results. The model is applied to a case study of a tension leg platform with a flexible topside mimicking the tower and a lumped mass mimicking the rotor-nacelle assembly. The model is additionally compared to current commercial software, where the need for the coupled higher order dynamics proposed in this paper becomes evident.

  19. Fabrication of two-color annular hybrid wave plate for three-dimensional super-resolution microscopy

    Science.gov (United States)

    Kumagai, Hiroshi; Iketaki, Yoshinori; Jahn, Kornel; Bokor, Nador

    2016-03-01

    In super-resolution microscopy, we use fluorescence depletion, where an erase beam quenches a molecule in the S1 state generated by a pump beam, and then prevents fluorescence from the S1 state. When a tight doughnut shaped erase beam with is focused on the dyed sample together with a Gaussian pump beam, the remaining fluorescence spot in the focal plane becomes smaller than the diffraction-limited size. Applying destructive interference to the erase beam, erase beam has a minute three-dimensional dark spot surrounded by the light near the focal region. Since this spot introduces fluorescence depletion along the optical axis as in the focal plane, we can achieve three-dimensional super-resolution microscopy. However, to overcome the diffraction limit, an extremely precise optical alignment is required for projecting the focused pump beam into the dark spot of the erase beam. To resolve this technical issue, we fabricated a two-color annular hybrid wave plate (TAHWP) by combining two multi-order wave quartz plates. Although the pump and erase beams co-axially pass through the plate; the pump beam retains its original Gaussian shape, while the erase beam undergoes destructive interference. Inserting the TAHWP into a commercial scanning laser microscope, a three-dimensional spherical fluorescence spot with a volume of (~100 nm)3 can be created. Beside eliminating alignment problems and yielding a compact setup, the TAHWP makes our proposed method very suitable for commercial microscope systems. In this study, we report about detailed fabrication procedure and three-dimensional image properties given by the TAHWP.

  20. Characterization of the onset of ion cyclotron parametric decay instability of lower hybrid waves in a diverted tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Baek, S. G., E-mail: sgbaek@mit.edu; Parker, R. R.; Shiraiwa, S.; Wallace, G. M.; Bonoli, P. T.; Porkolab, M.; Brunner, D.; Faust, I. C.; Hubbard, A. E.; LaBombard, B.; Lau, C. [MIT Plasma Science and Fusion Center, Cambridge, Massachusetts 02139 (United States); Takase, Y. [University of Tokyo, Kashiwa 277-8561 (Japan)

    2014-06-15

    The goal of the lower hybrid current drive (LHCD) program on Alcator C-Mod is to develop and optimize reactor-relevant steady-state plasmas by controlling current density profile. However, current drive efficiency precipitously decreases as the line averaged density (n{sup ¯}{sub e}) increases above ∼1 × 10{sup 20} m{sup −3}. Previous simulations show that the observed loss of current drive efficiency in high density plasmas stems from the interactions of LH waves with edge/scrape-off layer plasmas [Wallace et al., Phys. Plasmas 19, 062505 (2012)]. A recent observation [Baek et al., Plasma Phys. Controlled Fusion 55, 052001 (2013)] shows that the configuration dependent ion cyclotron parametric decay instability (PDI) is excited in the density range where the discrepancy between the experiments and simulations remains. Comparing the observed spectra with the homogeneous growth rate spectra indicates that the observed ion cyclotron PDI can be excited not only at the low-field-side but also at the high-field-side (HFS) edge of the tokamak. The model analysis shows that a relevant PDI process to Alcator C-Mod LHCD experiments is decay into ion cyclotron quasi-mode driven by parallel coupling. The underlying cause of the observed onset of ion cyclotron PDI is likely due to the weaker radial penetration of the LH wave in high density plasmas, which can lead to enhanced convective growth. Configuration-dependent PDIs are found to be correlated with different edge density profiles in different magnetic configurations. While the HFS edge of the tokamak can be potentially susceptible to PDI, as evidenced by experimental observations and ray-tracing analyses, enhancing single-pass absorption is expected to help recover the LHCD efficiency at reactor-relevant densities because it could suppress several parasitic loss mechanisms that are exacerbated in multi-pass regimes.

  1. Internal transport barrier triggered by non-linear lower hybrid wave deposition under condition of beam-driven toroidal rotation

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Q. D., E-mail: qgao@swip.ac.cn [Southwestern Institute of Physics, Chengdu 610041 (China); Budny, R. V. [Princeton Plasma Physics Laboratory, Princeton University, Princeton, New Jersey 08543 (United States)

    2015-03-15

    By using gyro-Landau fluid transport model (GLF23), time-dependent integrated modeling is carried out using TRANSP to explore the dynamic process of internal transport barrier (ITB) formation in the neutral beam heating discharges. When the current profile is controlled by LHCD (lower hybrid current drive), with appropriate neutral beam injection, the nonlinear interplay between the transport determined gradients in the plasma temperature (T{sub i,e}) and toroidal velocity (V{sub ϕ}) and the E×B flow shear (including q-profile) produces transport bifurcations, generating spontaneously a stepwise growing ITB. In the discharge, the constraints imposed by the wave propagation condition causes interplay of the LH driven current distribution with the plasma configuration modification, which constitutes non-linearity in the LH wave deposition. The non-linear effects cause bifurcation in LHCD, generating two distinct quasi-stationary reversed magnetic shear configurations. The change of current profile during the transition period between the two quasi-stationary states results in increase of the E×B shearing flow arising from toroidal rotation. The turbulence transport suppression by sheared E×B flow during the ITB development is analysed, and the temporal evolution of some parameters characterized the plasma confinement is examined. Ample evidence shows that onset of the ITB development is correlated with the enhancement of E×B shearing rate caused by the bifurcation in LHCD. It is suggested that the ITB triggering is associated with the non-linear effects of the LH power deposition.

  2. Outgassing of plasma facing antenna front for lower hybrid wave launcher

    Energy Technology Data Exchange (ETDEWEB)

    Maebara, Sunao E-mail: maebara@felsunl.tokai.jaeri.go.jp; Goniche, Marc; Kazarian, Fabienne; Seki, Masami; Ikeda, Yoshitaka; Imai, Tsuyoshi; Bibet, Philippe; Froissard, Philippe; Rey, Guy

    2000-11-01

    A 3.7 GHz mock-up antenna module using carbon fiber composite (CFC) was fabricated and tested for the development of a heat-resistive front of the lower hybrid current drive (LHCD) antenna. This module has four waveguides and a water cooling channel, the length is 206 mm. The CFC surface was coated with a thin titanium layer and was plated with copper in order to reduce RF losses, to bond rods and septum plates and to assemble them with cooling channel. The RF losses and the outgassing rates of this CFC module at high RF power were measured during long pulses. When the injected power varies between 30 and 100 kW, the RF losses measured by calorimetery, were found to be in the range of 1.0-1.2%. It is found that this experimental value is 2.5-3.0 times higher than the theoretical value of pure copper. Stationary operation of the CFC module with water cooling is performed at the RF power density of 45 MW m{sup -2} during 1000 s. The outgassing rates from the CFC module are in the range of 0.93{approx}1.3x10{sup -6} Pam{sup -3} s{sup -1} m{sup -2} at the module temperature of 120 deg. C, it is low enough for an antenna material. No significant bonding defects occurred during the steady-state operation. It is assessed that a CFC module is an attractive candidate for a heat-resistive front of LHCD antenna.

  3. Influence of gas puff location on the coupling of lower hybrid waves in JET ELMy H-mode plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Ekedahl, A. [CEA, IRFM, France; Petrzilka, V. [Assoc. Euratom-IPP.CR, Czech Republic; Baranov, Y. [EURATOM / UKAEA, UK; Brix, M [UKAEA Fusion, Culham UK; Goniche, M. [CEA, IRFM, France; Jacquet, P. [EURATOM / UKAEA, Abingdon, UK; Kirov, K K [Association EURATOM-CCFE, Abingdon, UK; Klepper, C Christopher [ORNL; Mailloux, J. [EURATOM / UKAEA, UK; Mayoral, M.-L. [EURATOM / UKAEA, UK; Nave, M. F. F. [Association EURATOM/IST, Lisbon, Portugal; Ongena, J. [Laboratory for Plasma Physics-ERM/KMS (LPP-ERM/KMS), Brussels, Belgium

    2012-01-01

    Reliable coupling of the lower hybrid current drive (LHCD) to H-mode plasmas in JET is made feasible through a dedicated gas injection system, located at the outer wall and magnetically connected to the antenna (Pericoli Ridolfini et al 2004 Plasma Phys. Control. Fusion 46 349, Ekedahl et al 2005 Nucl. Fusion 45 351, Ekedahl et al 2009 Plasma Phys. Control. Fusion 51 044001). An experiment was carried out in JET in order to investigate whether a gas injection from the top of the torus, as is foreseen for the main gas injection in ITER, could also provide good coupling of the LH waves if magnetically connected to the antenna. The results show that a top gas injection was not efficient for providing a reliable LHCD power injection, in spite of being magnetically connected and in spite of using almost twice the amount of gas flow compared with the dedicated outer mid-plane gas puffing system. A dedicated gas injection system, set in the outer wall and magnetically connected to the LHCD antenna, is therefore recommended in order to provide the reliable coupling conditions for an LHCD antenna in ITER.

  4. Efficient and broadband optical parametric four wave mixing in chalcogenide-PMMA hybrid microwires

    CERN Document Server

    Ahmad, Raja

    2012-01-01

    The recent development of devices based on novel nonlinear materials like chalcogenides (ChGs), silicon (Si) and other semi-conductors has revolutionized the field of nonlinear photonics [1,2,3]. Among the nonlinear effects observed in these materials, four-wave mixing (FWM) is the process that finds the most applications including wavelength conversion [4], optical regeneration [5,6], optical delay [7], time-domain demultiplexing[8], temporal cloaking[9] and negative refraction[10]. Although FWM has been observed in several media including chalcogenides [11,12,13,14], silicon[15, 16], bismuth [17] and silica [18,19], there is a continued quest for devices that realize efficient and broadband FWM while offering compactness, low-power consumption and compatibility with optical fibers. Here, we demonstrate the fabrication of 10 cm long polymer cladded chalcogenide (As2Se3) microwires to realize FWM-led sub watt threshold (70-370 mW) wavelength conversion with a 12 dB bandwidth as broad as 190 nm, and conversion...

  5. Hybrid multicore/vectorisation technique applied to the elastic wave equation on a staggered grid

    Science.gov (United States)

    Titarenko, Sofya; Hildyard, Mark

    2017-07-01

    In modern physics it has become common to find the solution of a problem by solving numerically a set of PDEs. Whether solving them on a finite difference grid or by a finite element approach, the main calculations are often applied to a stencil structure. In the last decade it has become usual to work with so called big data problems where calculations are very heavy and accelerators and modern architectures are widely used. Although CPU and GPU clusters are often used to solve such problems, parallelisation of any calculation ideally starts from a single processor optimisation. Unfortunately, it is impossible to vectorise a stencil structured loop with high level instructions. In this paper we suggest a new approach to rearranging the data structure which makes it possible to apply high level vectorisation instructions to a stencil loop and which results in significant acceleration. The suggested method allows further acceleration if shared memory APIs are used. We show the effectiveness of the method by applying it to an elastic wave propagation problem on a finite difference grid. We have chosen Intel architecture for the test problem and OpenMP (Open Multi-Processing) since they are extensively used in many applications.

  6. STUDY OF THE CORRELATION BETWEEN POWER DEPOSITION OFTHE LOWER HYBRID WAVES AND THE HARDX-RAY RADIATION ON HT-7 TOKAMAK

    Institute of Scientific and Technical Information of China (English)

    石跃江; 万宝年; 凌必利; 丁伯江

    2001-01-01

    A seven-channel NaI(T1) detector array installed on an HT-7 superconducting tokamak has been used to detect the hard X-ray (Ehv>20 keV) emitted from the plasma. The physical mechanism of the lower hybrid waves propagating and absorbed in the plasma is investigated by the measurement of the hard X-ray radial profile at different discharge parameters.

  7. Numerical Simulation of P-Wave Propagation in Rock Mass with Granular Material-Filled Fractures Using Hybrid Continuum-Discrete Element Method

    Science.gov (United States)

    Gui, Y. L.; Zhao, Z. Y.; Zhou, H. Y.; Wu, W.

    2016-10-01

    In this paper, a cohesive fracture model is applied to model P-wave propagation through fractured rock mass using hybrid continuum-discrete element method, i.e. Universal Distinct Element Code (UDEC). First, a cohesive fracture model together with the background of UDEC is presented. The cohesive fracture model considers progressive failure of rock fracture rather than an abrupt damage through simultaneously taking into account the elastic, plastic and damage mechanisms as well as a modified failure function. Then, a series of laboratory tests from the literature on P-wave propagation through rock mass containing single fracture and two parallel fractures are introduced and the numerical models used to simulate these laboratory tests are described. After that, all the laboratory tests are simulated and presented. The results show that the proposed model, particularly the cohesive fracture model, can capture very well the wave propagation characteristics in rock mass with non-welded and welded fractures with and without filling materials. In the meantime, in order to identify the significance of fracture on wave propagation, filling materials with different particle sizes and the fracture thickness are discussed. Both factors are found to be crucial for wave attenuation. The simulations also show that the frequency of transmission wave is lowered after propagating through fractures. In addition, the developed numerical scheme is applied to two-dimensional wave propagation in the rock mass.

  8. Wave

    DEFF Research Database (Denmark)

    Ibsen, Lars Bo

    2008-01-01

    Estimates for the amount of potential wave energy in the world range from 1-10 TW. The World Energy Council estimates that a potential 2TW of energy is available from the world’s oceans, which is the equivalent of twice the world’s electricity production. Whilst the recoverable resource is many t...

  9. Hybrid integration of synthesized dielectric image waveguides in substrate integrated circuit technology and its millimeter wave applications

    Science.gov (United States)

    Patrovsky, Andreas

    This thesis deals with a novel type of integrated dielectric waveguide which is synthesized on a planar grounded substrate by perforation of the zones adjacent to a guiding channel in the center. The resulting Substrate Integrated Image Guide (SIIG) not only allows for low-loss guidance of electromagnetic waves in a similar way as the standard image guide, but also meets the requirements of low cost and ease of integration. A first objective was the detailed analysis of the propagation properties of fundamental and higher order modes in this waveguide structure, regarding attenuation, dispersion behavior, bandwidth, leakage effects, and the impact of fabrication tolerances. For this purpose, specifically adapted techniques of analysis are presented, since established methods for the conventional image guide can not be applied to the more complex periodic SIIG. Commercial electromagnetic full-wave software is used along with a dual-line approach involving a subsequent extraction of the propagation constant from simulated S-parameters. Alternatively, the solution of the eigenmode problem of a single SIIG unit cell also performs the task. Both techniques are in good agreement and provide accurate results, which is supported by measurements on laser-fabricated prototypes. It is shown that the achievable attenuation is much lower than in the standard integrated technologies and that losses mainly depend on the chosen dielectric material. As a consequence, the SIIG also is an attractive technology for applications beyond the mmW band, i. e. in the terahertz range. Design recommendations for the geometric parameters of the SIIG are discussed and a simplified equivalent model with homogeneous dielectric regions is introduced to speed up the design of passive components. Low-loss transitions between dissimilar waveguide structures are indispensable key components for a hybrid integrated platform. In order to enable the connection of standard measurement equipment in the W

  10. Investigation on High Performance of 10m Semi Anechoic Chamber by using Open-Top Hollow Pyramidal Hybrid EM Wave Absorber

    Science.gov (United States)

    Kurihara, Hiroshi; Saito, Toshifumi; Suzuki, Yoshikazu; Nishikata, Atsuhiro; Hashimoto, Osamu

    The emission radiated from electric and electronic equipments is evaluated through OATS. Recently, it is not fully prepared the environment for OATS because of a variety of communication radiation sources (e.g., digital television broadcast and cellular phone station). Therefore, the EM anechoic chambers are becoming more and more important as EMI test site. On the other hand, the EM anechoic chambers are needed high performance in order to cut down EMI countermeasure cost and calculate the antenna factor. The objective of this paper is mainly to present the EM wave absorber design in order to obtain within ±2dB against the theoretical site attenuation values in the 10m semi anechoic chamber at 30MHz to 300MHz. We get the necessary reflectivity of EM wave absorber by the basic site attenuation equation. We design the open-top hollow pyramidal new hybrid EM wave absorber consisted of 180cm long dielectric loss foam and ferrite tiles. Then, we design the 10m semi anechoic chamber by using the ray-tracing simulation and construct it in the size of L24m×W15.2m×H11.2m. More over, we measure the site attenuation of the constructed 10m semi anechoic chamber by using the broadband calculable dipole antennas. As the result, we confirm the validity of the designed open-top hollow pyramidal new hybrid EM wave absorber.

  11. Modeling, Control, and Simulation of Battery Storage Photovoltaic-Wave Energy Hybrid Renewable Power Generation Systems for Island Electrification in Malaysia

    Directory of Open Access Journals (Sweden)

    Nahidul Hoque Samrat

    2014-01-01

    Full Text Available Today, the whole world faces a great challenge to overcome the environmental problems related to global energy production. Most of the islands throughout the world depend on fossil fuel importation with respect to energy production. Recent development and research on green energy sources can assure sustainable power supply for the islands. But unpredictable nature and high dependency on weather conditions are the main limitations of renewable energy sources. To overcome this drawback, different renewable sources and converters need to be integrated with each other. This paper proposes a standalone hybrid photovoltaic- (PV- wave energy conversion system with energy storage. In the proposed hybrid system, control of the bidirectional buck-boost DC-DC converter (BBDC is used to maintain the constant dc-link voltage. It also accumulates the excess hybrid power in the battery bank and supplies this power to the system load during the shortage of hybrid power. A three-phase complex vector control scheme voltage source inverter (VSI is used to control the load side voltage in terms of the frequency and voltage amplitude. Based on the simulation results obtained from Matlab/Simulink, it has been found that the overall hybrid framework is capable of working under the variable weather and load conditions.

  12. Modeling, control, and simulation of battery storage photovoltaic-wave energy hybrid renewable power generation systems for island electrification in Malaysia.

    Science.gov (United States)

    Samrat, Nahidul Hoque; Bin Ahmad, Norhafizan; Choudhury, Imtiaz Ahmed; Bin Taha, Zahari

    2014-01-01

    Today, the whole world faces a great challenge to overcome the environmental problems related to global energy production. Most of the islands throughout the world depend on fossil fuel importation with respect to energy production. Recent development and research on green energy sources can assure sustainable power supply for the islands. But unpredictable nature and high dependency on weather conditions are the main limitations of renewable energy sources. To overcome this drawback, different renewable sources and converters need to be integrated with each other. This paper proposes a standalone hybrid photovoltaic- (PV-) wave energy conversion system with energy storage. In the proposed hybrid system, control of the bidirectional buck-boost DC-DC converter (BBDC) is used to maintain the constant dc-link voltage. It also accumulates the excess hybrid power in the battery bank and supplies this power to the system load during the shortage of hybrid power. A three-phase complex vector control scheme voltage source inverter (VSI) is used to control the load side voltage in terms of the frequency and voltage amplitude. Based on the simulation results obtained from Matlab/Simulink, it has been found that the overall hybrid framework is capable of working under the variable weather and load conditions.

  13. Application of the Aero-Hydro-Elastic Model, HAWC2-WAMIT, to Offshore Data from Floating Power Plants Hybrid Wind- and Wave-Energy Test Platform, P37

    DEFF Research Database (Denmark)

    Bellew, Sarah; Yde, Anders; Verelst, David Robert

    2014-01-01

    numerical models, which can combine the aerodynamic, hydrodynamic, structural exibility and mooring components. Very little oshore data exists, however, in order to validate these numerical models. Floating Power Plant are the developers of a oating, hybrid wind- and wave-energy device. The device uses...... full-scale prototype, the P80, which has a width of 80 m. As part of the development, Floating Power Plant have completed 4 oshore test-phases (totalling over 2 years oshore operation) on a 37 m wide scaled test device, the P37. This paper focuses on the comparison of one of the leading numerical...... the pitching wave energy devices, not only to increase and smooth the power output from the platform, but also to take the energy from the waves in a controlled manner, resulting in a stable platform for the wind turbine and a safe harbour for O&M. They are currently developing the nal design for their rst...

  14. Travelling-wave ion mobility mass spectrometry and negative ion fragmentation of hybrid and complex N-glycans.

    Science.gov (United States)

    Harvey, David J; Scarff, Charlotte A; Edgeworth, Matthew; Pagel, Kevin; Thalassinos, Konstantinos; Struwe, Weston B; Crispin, Max; Scrivens, James H

    2016-11-01

    Nitrogen collisional cross sections (CCSs) of hybrid and complex glycans released from the glycoproteins IgG, gp120 (from human immunodeficiency virus), ovalbumin, α1-acid glycoprotein and thyroglobulin were measured with a travelling-wave ion mobility mass spectrometer using dextran as the calibrant. The utility of this instrument for isomer separation was also investigated. Some isomers, such as Man3 GlcNAc3 from chicken ovalbumin and Man3 GlcNAc3 Fuc1 from thyroglobulin could be partially resolved and identified by their negative ion fragmentation spectra obtained by collision-induced decomposition (CID). Several other larger glycans, however, although existing as isomers, produced only asymmetric rather than separated arrival time distributions (ATDs). Nevertheless, in these cases, isomers could often be detected by plotting extracted fragment ATDs of diagnostic fragment ions from the negative ion CID spectra obtained in the transfer cell of the Waters Synapt mass spectrometer. Coincidence in the drift times of all fragment ions with an asymmetric ATD profile in this work, and in the related earlier paper on high-mannose glycans, usually suggested that separations were because of conformers or anomers, whereas symmetrical ATDs of fragments showing differences in drift times indicated isomer separation. Although some significant differences in CCSs were found for the smaller isomeric glycans, the differences found for the larger compounds were usually too small to be analytically useful. Possible correlations between CCSs and structural types were also investigated, and it was found that complex glycans tended to have slightly smaller CCSs than high-mannose glycans of comparable molecular weight. In addition, biantennary glycans containing a core fucose and/or a bisecting GlcNAc residue fell on different mobility-m/z trend lines to those glycans not so substituted with both of these substituents contributing to larger CCSs. Copyright © 2016 John Wiley & Sons

  15. Thermoelectric-pyroelectric hybrid energy generation from thermopower waves in core-shell structured carbon nanotube-PZT nanocomposites

    Science.gov (United States)

    Yeo, Taehan; Hwang, Hayoung; Shin, Dongjoon; Seo, Byungseok; Choi, Wonjoon

    2017-02-01

    There is an urgent need to develop a suitable energy source owing to the rapid development of various innovative devices using micro-nanotechnology. The thermopower wave (TW), which produces a high specific power during the combustion of solid fuel inside micro-nanostructure materials, is a unique energy source for unusual platforms that cannot use conventional energy sources. Here, we report on the significant enhancement of hybrid energy generation of pyroelectrics and thermoelectrics from TWs in carbon nanotube (CNT)-PZT (lead zirconate titanate, P(Z0.5-T0.5)) composites for the first time. Conventional TWs use only charge carrier transport driven by the temperature gradient along the core materials to produce voltage. In this study, a core-shell structure of CNTs-PZTs was prepared to utilize both the temperature gradient along the core material (thermoelectrics) and the dynamic change in the temperature of the shell structure (pyroelectrics) induced by TWs. The dual mechanism of energy generation in CNT-PZT composites amplified the average peak and duration of the voltage up to 403 mV and 612 ms, respectively, by a factor of 2 and 60 times those for the composites without a PZT layer. Furthermore, dynamic voltage measurements and structural analysis in repetitive TWs confirmed that CNT-PZT composites maintain the original performance in multiple TWs, which improves the reusability of materials. The advanced TWs obtained by the application of a PZT layer as a pyroelectric material contributes to the extension of the usable energy portion as well as the development of TW-based operating devices.

  16. Application of P-wave Hybrid Theory to the Scattering of Electrons from He+ and Resonances in He and H ion

    Science.gov (United States)

    Bhatia, A. K.

    2012-01-01

    The P-wave hybrid theory of electron-hydrogen elastic scattering [Phys. Rev. A 85, 052708 (2012)] is applied to the P-wave scattering from He ion. In this method, both short-range and long-range correlations are included in the Schroedinger equation at the same time, by using a combination of a modified method of polarized orbitals and the optical potential formalism. The short-correlation functions are of Hylleraas type. It is found that the phase shifts are not significantly affected by the modification of the target function by a method similar to the method of polarized orbitals and they are close to the phase shifts calculated earlier by Bhatia [Phys. Rev. A 69, 032714 (2004)]. This indicates that the correlation function is general enough to include the target distortion (polarization) in the presence of the incident electron. The important fact is that in the present calculation, to obtain similar results only a 20-term correlation function is needed in the wave function compared to the 220- term wave function required in the above-mentioned calculation. Results for the phase shifts, obtained in the present hybrid formalism, are rigorous lower bounds to the exact phase shifts. The lowest P-wave resonances in He atom and hydrogen ion have been calculated and compared with the results obtained using the Feshbach projection operator formalism [Phys. Rev. A, 11, 2018 (1975)]. It is concluded that accurate resonance parameters can be obtained by the present method, which has the advantage of including corrections due to neighboring resonances, bound states and the continuum in which these resonance are embedded.

  17. Elastic wave band gaps tuned by configuring radii of rods in two-dimensional phononic crystals with a hybrid square-like lattice

    Science.gov (United States)

    Liu, Rongqiang; Zhao, Haojiang; Zhang, Yingying; Guo, Honghwei; Deng, Zongquan

    2015-12-01

    The plane wave expansion (PWE) method is used to calculate the band gaps of two-dimensional (2D) phononic crystals (PCs) with a hybrid square-like (HSL) lattice. Band structures of both XY-mode and Z-mode are calculated. Numerical results show that the band gaps between any two bands could be maximized by altering the radius ratio of the inclusions at different positions. By comparing with square lattice and bathroom lattice, the HSL lattice is more efficient in creating larger gaps.

  18. Analysis on the Radiation Property of the Bounded Modes of Periodic Leaky-Wave Structure with Finite-Length Using a Hybrid Method.

    Science.gov (United States)

    Li, Zheng; Wang, Junhong; Duan, Jianjie; Zhang, Zhan; Chen, Meie

    2016-03-18

    In this paper the radiation property of the one-dimensional periodic leaky-wave structure is analysed using a new hybrid method, which involves the mode expansion method for expanding the periodic aperture field in terms of spatial harmonics and the method of effective radiation sections for transforming the expanded fields into far fields. Using this method, the radiation of each spatial harmonic can be achieved, and the contributions of the harmonics (especially the bounded modes) to the total radiation of the periodic leaky-wave structure can be calculated. The main findings in this paper demonstrate that the bounded modes in a finite length structure have obvious contribution to the far-field radiation, which was considered to be non-radiative and always ignored in the conventional researches.

  19. The Realization of Low Loop Voltage Start-up of HT-7 Tokamak Discharge with the Assistance of Lower Hybrid Wave

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Low voltage start-up was realized in HT-7 discharges under the assistance of lower hybrid (LH) waves. The use of a strong LH wave, which can change its N// spectrum in a large range of several milliseconds, made the loop voltage for start-up reduce from around 20 V to less than 5 V. It means that the electric field for HT-7 start-up decreases from 2.5~3 V/m to 0.6 V/m.Some physical phenomena such as the consumption of magnetic flux in start-up phase and the radiation from the initial plasma were observed in this kind of low voltage start-up discharges.

  20. Design of a plasmonic-organic hybrid slot waveguide integrated with a bowtie-antenna for terahertz wave detection

    CERN Document Server

    Zhang, Xingyu; Subbaraman, Harish; Pan, Zeyu; Chen, Chin-Ta; Chen, Ray T

    2016-01-01

    Electromagnetic (EM) wave detection over a large spectrum has recently attracted significant amount of attention. Traditional electronic EM wave sensors use large metallic probes which distort the field to be measured and also have strict limitations on the detectable RF bandwidth. To address these problems, integrated photonic EM wave sensors have been developed to provide high sensitivity and broad bandwidth. Previously we demonstrated a compact, broadband, and sensitive integrated photonic EM wave sensor, consisting of an organic electro-optic (EO) polymer refilled silicon slot photonic crystal waveguide (PCW) modulator integrated with a gold bowtie antenna, to detect the X band of the electromagnetic spectrum. However, due to the relative large RC constant of the silicon PCW, such EM wave sensors can only work up to tens of GHz. In this work, we present a detailed design and discussion of a new generation of EM wave sensors based on EO polymer refilled plasmonic slot waveguides in conjunction with bowtie ...

  1. Proton, Helium and Minor Ion Interactions with Circularly Polarized Alfven and Ion-cyclotron waves in the Expanding Solar Wind: Hybrid Simulations

    Science.gov (United States)

    Velli, M.; Liewer, P. C.; Goldstein, B. E.

    2000-05-01

    We present simulations of parallel propagating Alfvén waves in the accelerating solar wind and their interactions with protons, alpha particles, and minor ions using an expanding box hybrid code (Liewer et al., 1999). In this model, the average solar wind flow speed is a given external function, and the simulation domain follows a plasma parcel as it expands both in the radial and transverse directions accordingly: the decrease of Alfvén speed and density with distance from the Sun are taken into account self-consistently. It is therefore possible to carry out a detailed study of frequency drifting and the coming into resonance with the waves at different radial locations of particles with differing charge to mass ratios. Simulations of monochromatic waves as well as waves with well-developed spectra are presented for plasmas with one, two and three ion species. We observe preferential heating and acceleration of protons and minor ions. Under some conditions, we obtain the scaling observed in coronal hole solar wind: the heavy ion temperature is proportional to its mass (Liewer et al., 2000). A comparison with predictions from models based on such quasi-linear or linear analyses will also be presented. P. C. Liewer, M. Velli and B. E. Goldstein, in Solar Wind Nine, S. Habbal, R. Esser, J. V. Hollweg, P. A. Isenberg, eds., (AIP Conference Proceedings 471, 1999) 449. P. C. Liewer, M. Velli, and B. E. Goldstein, in Proc. ACE 2000 Conference (2000) to be published.

  2. One-dimensional full wave treatment of mode conversion process at the ion-ion hybrid resonance in a bounded tokamak plasma

    Energy Technology Data Exchange (ETDEWEB)

    Monakhov, I.; Becoulet, A.; Fraboulet, D.; NGuyen, F

    1998-09-01

    A consistent picture of the mode conversion (MC) process at the ion-ion hybrid resonance in a bounded plasma of a tokamak is discussed, which clarifies the role of the global fast wave interference and cavity effects in the determination of the MC efficiency. This picture is supported by simulations with one-dimensional full wave kinetic code `VICE`. The concept of the `global resonator`, formed by the R = n{sup 2}{sub ||} boundary cutoffs [B. Saoutic et al., Phys. Rev. Lett. 76, 1647 (1996)], is justified, as well as the importance of a proper tunneling factor choice {eta}{sub cr} = 0.22 [A. K. Ram et al., Phys. Plasmas 3, 1976 (1996)]. The MC scheme behavior appears to be very sensitive to the MC layer position relative to the global wave field pattern, i.e. to the local value of `poloidal` electric field at the resonance. Optimal MC regimes are found to be attainable without requirement of a particular parallel wavenumber choice. (author) 40 refs.

  3. Hybrid genetic algorithm tuned support vector machine regression for wave transmission prediction of horizontally interlaced multilayer moored floating pipe breakwater

    Digital Repository Service at National Institute of Oceanography (India)

    Patil, S.G.; Mandal, S.; Hegde, A.V.; Muruganandam, A.

    of HIMMFPB using regular wave fl ume at Marine Structure Laboratory, National Institute of Technology, Surathkal, India. The results are compared with artifi cial neural network (ANN) model in terms of Correlation Coeffi cient, Root Mean Square Error...

  4. A Mathematical Approach to Hybridization

    Science.gov (United States)

    Matthews, P. S. C.; Thompson, J. J.

    1975-01-01

    Presents an approach to hybridization which exploits the similarities between the algebra of wave functions and vectors. This method will account satisfactorily for the number of orbitals formed when applied to hybrids involving the s and p orbitals. (GS)

  5. New high-order, semi-implicit Hybridized Discontinuous Galerkin - Spectral Element Method (HDG-SEM) for simulation of complex wave propagation involving coupling between seismic, hydro-acoustic and infrasonic waves: numerical analysis and case studies.

    Science.gov (United States)

    Terrana, S.; Vilotte, J. P.; Guillot, L.

    2015-12-01

    New seismological monitoring networks combine broadband seismic receivers, hydrophones and micro-barometers antenna, providing complementary observation of source-radiated waves. Exploiting these observations requires accurate and multi-media - elastic, hydro-acoustic, infrasound - wave simulation methods, in order to improve our physical understanding of energy exchanges at material interfaces.We present here a new development of a high-order Hybridized Discontinuous Galerkin (HDG) method, for the simulation of coupled seismic and acoustic wave propagation, within a unified framework ([1],[2]) allowing for continuous and discontinuous Spectral Element Methods (SEM) to be used in the same simulation, with conforming and non-conforming meshes. The HDG-SEM approximation leads to differential - algebraic equations, which can be solved implicitly using energy-preserving time-schemes.The proposed HDG-SEM is computationally attractive, when compared with classical Discontinuous Galerkin methods, involving only the approximation of the single-valued traces of the velocity field along the element interfaces as globally coupled unknowns. The formulation is based on a variational approximation of the physical fluxes, which are shown to be the explicit solution of an exact Riemann problem at each element boundaries. This leads to a highly parallel and efficient unstructured and high-order accurate method, which can be space-and-time adaptive.A numerical study of the accuracy and convergence of the HDG-SEM is performed through a number of case studies involving elastic-acoustic (infrasound) coupling with geometries of increasing complexity. Finally, the performance of the method is illustrated through realistic case studies involving ground wave propagation associated to topography effects.In conclusion, we outline some on-going extensions of the method.References:[1] Cockburn, B., Gopalakrishnan, J., Lazarov, R., Unified hybridization of discontinuous Galerkin, mixed and

  6. Current generation by helicons and lower hybrid waves in modern tokamaks and reactors ITER and DEMO. Scenarios, modeling and antennae

    Energy Technology Data Exchange (ETDEWEB)

    Vdovin, V. L., E-mail: vdov@nfi.kiae.ru [National Research Centre ' Kurchatov Institute,' (Russian Federation)

    2013-02-15

    The innovative concept and 3D full-wave code modeling the off-axis current drive by radio-frequency (RF) waves in large-scale tokamaks, ITER and DEMO, for steady-state operation with high efficiency is proposed. The scheme uses the helicon radiation (fast magnetosonic waves at high (20-40) ion cyclotron frequency harmonics) at frequencies of 500-700 MHz propagating in the outer regions of the plasmas with a rotational transform. It is expected that the current generated by helicons, in conjunction with the bootstrap current, ensure the maintenance of a given value of the total current in the stability margin q(0) {>=} 2 and q(a) {>=} 4, and will help to have regimes with a negative magnetic shear and internal transport barrier to ensure stability at high normalized plasma pressure {beta}{sub N} > 3 (the so-called advanced scenarios) of interest for the commercial reactor. Modeling with full-wave three-dimensional codes PSTELION and STELEC showed flexible control of the current profile in the reactor plasmas of ITER and DEMO, using multiple frequencies, the positions of the antennae and toroidal wave slow down. Also presented are the results of simulations of current generation by helicons in the DIII-D, T-15MD, and JT-60AS tokamaks. Commercially available continuous-wave klystrons of the MW/tube range are promising for commercial stationary fusion reactors. The compact antennae of the waveguide type are proposed, and an example of a possible RF system for today's tokamaks is given. The advantages of the scheme (partially tested at lower frequencies in tokamaks) are a significant decline in the role of parametric instabilities in the plasma periphery, the use of electrically strong resonator-waveguide type antennae, and substantially greater antenna-plasma coupling.

  7. Current generation by helicons and lower hybrid waves in modern tokamaks and reactors ITER and DEMO. Scenarios, modeling and antennae

    Science.gov (United States)

    Vdovin, V. L.

    2013-02-01

    The innovative concept and 3D full-wave code modeling the off-axis current drive by radio-frequency (RF) waves in large-scale tokamaks, ITER and DEMO, for steady-state operation with high efficiency is proposed. The scheme uses the helicon radiation (fast magnetosonic waves at high (20-40) ion cyclotron frequency harmonics) at frequencies of 500-700 MHz propagating in the outer regions of the plasmas with a rotational transform. It is expected that the current generated by helicons, in conjunction with the bootstrap current, ensure the maintenance of a given value of the total current in the stability margin q(0) ≥ 2 and q( a) ≥ 4, and will help to have regimes with a negative magnetic shear and internal transport barrier to ensure stability at high normalized plasma pressure β N > 3 (the so-called advanced scenarios) of interest for the commercial reactor. Modeling with full-wave three-dimensional codes PSTELION and STELEC showed flexible control of the current profile in the reactor plasmas of ITER and DEMO, using multiple frequencies, the positions of the antennae and toroidal wave slow down. Also presented are the results of simulations of current generation by helicons in the DIII-D, T-15MD, and JT-60AS tokamaks. Commercially available continuous-wave klystrons of the MW/tube range are promising for commercial stationary fusion reactors. The compact antennae of the waveguide type are proposed, and an example of a possible RF system for today's tokamaks is given. The advantages of the scheme (partially tested at lower frequencies in tokamaks) are a significant decline in the role of parametric instabilities in the plasma periphery, the use of electrically strong resonator-waveguide type antennae, and substantially greater antenna-plasma coupling.

  8. Charge Density Wave and Crystal Structure of KxWO3 (x=0.20 and 0.22) Prepared by Hybrid Microwave Method

    Science.gov (United States)

    Chen, Runze; Gao, Chaojun; Bu, Kun; Hao, Xiaoyu; Wang, Zichen; Wen, Lianjun; Guo, Juan; Chao, Mingju; Liang, Erjun; Yang, Lihong; Dong, Cheng

    2017-02-01

    Potassium tungsten bronzes KxWO3 (x=0.20 and 0.22) with the coexistence of charge density wave (CDW) and superconductivity (SC) were prepared from K2WO4, WO3 and W powders using a hybrid microwave method. The structure refinement confirmed that all samples had a pure hexagonal phase with the space group of P63 /mcm. The distortion degree of W-O octahedron declines with x and is independent of synthesis condition for the same x (=0.20). The CDW transition is studied as a function of residual resistivity ratio. By increasing the crystallinity of sample, this transition can be suppressed, which is probably attributed to the interaction between CDW and defects in crystallites. The CDW transition temperature increases with x, which may be related to the decline of the distortion degree of W-O octahedron. The competition between CDW and SC is observed according to the resistivity and magnetization measurements.

  9. Four-wave mixing signal enhancement and optical bistability of a hybrid metal nanoparticle-quantum dot molecule in a nanomechanical resonator.

    Science.gov (United States)

    Li, Jian-Bo; Liang, Shan; Xiao, Si; He, Meng-Dong; Kim, Nam-Chol; Chen, Li-Qun; Wu, Gui-Hong; Peng, Yu-Xiang; Luo, Xiao-Yu; Guo, Ze-Ping

    2016-02-08

    We investigate theoretically four-wave mixing (FWM) response and optical bistability (OB) in a hybrid nanosystem composed of a metal nanoparticle (MNP) and a semiconductor quantum dot (SQD) coupled to a nanomechanical resonator (NR). It is shown that the FWM signal is enhanced by more than three orders of magnitude as compared to that of the system without exciton-phonon interaction, and the FWM signal can also be suppressed significantly and broadened due to the exciton-plasmon interaction. As the MNP couples strongly with the SQD, the bistable FWM response can be achieved by adjusting the SQD-MNP distance and the pumping intensity. For a given pumping constant and a fixed SQD-MNP distance, the enhanced exciton-phonon interaction can promote the occurrence of bistability. Our findings not only present a feasible way to detect the spacing between two nanoparticles, but also hold promise for developing quantum switches and nanoscale rulers.

  10. Fiber-wireless integrated mobile backhaul network based on a hybrid millimeter-wave and free-space-optics architecture with an adaptive diversity combining technique.

    Science.gov (United States)

    Zhang, Junwen; Wang, Jing; Xu, Yuming; Xu, Mu; Lu, Feng; Cheng, Lin; Yu, Jianjun; Chang, Gee-Kung

    2016-05-01

    We propose and experimentally demonstrate a novel fiber-wireless integrated mobile backhaul network based on a hybrid millimeter-wave (MMW) and free-space-optics (FSO) architecture using an adaptive combining technique. Both 60 GHz MMW and FSO links are demonstrated and fully integrated with optical fibers in a scalable and cost-effective backhaul system setup. Joint signal processing with an adaptive diversity combining technique (ADCT) is utilized at the receiver side based on a maximum ratio combining algorithm. Mobile backhaul transportation of 4-Gb/s 16 quadrature amplitude modulation frequency-division multiplexing (QAM-OFDM) data is experimentally demonstrated and tested under various weather conditions synthesized in the lab. Performance improvement in terms of reduced error vector magnitude (EVM) and enhanced link reliability are validated under fog, rain, and turbulence conditions.

  11. HT一7低杂波天线精确定位系统%The Accurate Positioning System of the Antenna in HT- 7 Lower Hybrid Wave

    Institute of Scientific and Technical Information of China (English)

    林建安; 匡光力; 刘岳修

    2001-01-01

    In the paper the composition and working principle of the accurate positioning system of the antenna in HT- 7 lower hybrid wave is introduced and the principle and process of software and hardware' s design is described. The principle and method for making periodic digital signals by using high- speed output ports of single- chip computer is analyzed in detail and detailed frame- graphs of related programs are given.%文中主要介绍了HT一7低杂波天线精确定位系统的组成及工作原理,描述了软硬件设计的原理和过程,详细地分析了单片机高速输出端口生成周期性数字信号的原理和方法,并给出了相关程序的详细框图。

  12. Novel Raman Parametric Hybrid L-Band Amplifier with Four-Wave Mixing Suppressed Pump for Terabits Dense Wavelength Division Multiplexed Systems

    Directory of Open Access Journals (Sweden)

    Gaganpreet Kaur

    2016-01-01

    Full Text Available We demonstrate improved performance of parametric amplifier cascaded with Raman amplifier for gain of 54.79 dB. We report amplification of L-band using 100 × 10 Gbps Dense Wavelength Division Multiplexed (DWDM system with 25 GHz channel spacing. The gain achieved is the highest reported so far with gain flatness of 3.38 dB without using any gain flattening technique. Hybrid modulated parametric pump is used for suppressing four-wave mixing (FWM around pump region, resulting in improvement of gain flatness by 2.42 dB. The peak to peak variation of gain is achieved less than 1.6 dB. DWDM system with 16-channel, 25 GHz spaced system has been analyzed thoroughly with hybrid modulated parametric pump amplified Raman-FOPA amplifier for gain flatness and improved performance in terms of BER and Q-factor.

  13. 天地波组网雷达同步控制系统设计%Synchronous Control System Design of Hybrid Sky-Surface Wave Radar Network

    Institute of Scientific and Technical Information of China (English)

    李正勇; 严颂华; 刘志忠; 吴雄斌; 张兰

    2014-01-01

    天地波组网高频地波雷达采用天波发射、地波接收和地波发射、地波接收的形式实现对海洋表面动力学参数如海洋表面流场、风场等的监测,具有覆盖面积广、回波蕴含信息丰富等特点。由于采用收发分置模式,这种组网雷达需要解决接收站与发射站、以及多个接收站之间的同步问题,主要有时间、频率和相位三大同步。针对探测海洋动力学参数的要求,分析了天地波组网雷达对同步的需求,提出了同步控制系统的设计方案,包括基于授时 GPS实现的系统外同步设计以及基于 FPGA实现的系统内同步设计,并给出了相应的硬件和软件实现以及闭环和外场测试结果。该方案解决了天地波组网同步问题,海边进行的天地波组网现场实验也证明了该方案的正确性。%High frequency hybrid sky-surface wave radar network is designed to extract sea surface state parameters such as sea current and wind speed.It works by transmitting both sky wave and ground wave then receiving ground waves,so this radar network has the feature of wide coved area,abundant backward wave information and so on.Since the transmitting stations and the receiving stations are separated,there needs a perfect synchronization system between the separated receivers and transmitters,as well as among multiple receiving stations,which involves time synchronization,frequency synchronization and phase syn-chronization.In order to satisfy the requirement of the radar network,a scheme of synchronous control sys-tem is presented which includes external synchronization sub-system based on GPS and internal synchroniza-tion sub-system based on FPGA.The scheme solves the problem of synchronization for hybrid sky-surface wave radar.The experimental results prove the validity of the proposed scheme.

  14. Study of lower hybrid wave propagation and absorption in a tokamak plasma using hard X-Ray tomography; Etude de la propagation et de l'absorption de l'onde hybride dans un plasma de tokamak par tomographie X haute energie

    Energy Technology Data Exchange (ETDEWEB)

    Imbeaux, F

    1999-09-22

    Control of the current density profile is a critical issue in view to obtain high fusion performances in tokamak plasmas? It is therefore important to be able to control the power deposition profile of the lower hybrid wave, which has the highest current drive efficiency among all other non-inductive additional methods. Propagation and absorption of this wave are investigated in the Tore Supra tokamak using a new hard x-ray tomographic system and a new ray-tracing/Fokker-Planck code. These tools are described in detail and allow to analyse the lower hybrid power deposition profile dependence as a function of various plasma parameters (density, magnetic field, current) and of the injected wave spectrum. A good agreement between the code and the measurements found when the central electron temperature is greater than about 3 keV, that is in regimes where the wave undergoes only a few reflections before being absorbed. The simulations are then used to interpret the experimental trends. The lower hybrid power deposition profile is in nearly all discharges localised at a normalised minor radius of 0.2-0.3, and is weakly sensitive to variations of plasma parameters. It is hence difficult to perform an efficient control of the current profile generated by the lower hybrid wave in Tore Supra. This goal may nevertheless be reached by using an original method, which uses an auxiliary lower hybrid wave injected by a vertical port of the torus. This method is investigated by means of the simulation code. (author)

  15. Multi-step surface functionalization of polyimide based evanescent wave photonic biosensors and application for DNA hybridization by Mach-Zehnder interferometer

    Energy Technology Data Exchange (ETDEWEB)

    Melnik, Eva [Health and Environment Department, Nano Systems, AIT Austrian Institute of Technology GmbH, Donau-City-Strasse 1, 1220 Vienna (Austria); Department of Analytical Chemistry, University of Vienna, Waehringer Strasse 38, 1090 Vienna (Austria); Bruck, Roman [Health and Environment Department, Nano Systems, AIT Austrian Institute of Technology GmbH, Donau-City-Strasse 1, 1220 Vienna (Austria); Hainberger, Rainer, E-mail: rainer.hainberger@ait.ac.at [Health and Environment Department, Nano Systems, AIT Austrian Institute of Technology GmbH, Donau-City-Strasse 1, 1220 Vienna (Austria); Laemmerhofer, Michael, E-mail: michael.laemmerhofer@univie.ac.at [Department of Analytical Chemistry, University of Vienna, Waehringer Strasse 38, 1090 Vienna (Austria)

    2011-08-12

    Highlights: {yields} We realize a biosensing platform for polyimide evanescent photonic wave sensors. {yields} We show that the surface functionalization via silanisation and biotinylation followed by streptavidin immobilization do not destroy or damage the thin polyimide film. {yields} A highly dense streptavidin layer enables the immobilisation of biotinylated ligands such as biotinylated ssDNA for the selective measurement of DNA hybridization. - Abstract: The process of surface functionalization involving silanization, biotinylation and streptavidin bonding as platform for biospecific ligand immobilization was optimized for thin film polyimide spin-coated silicon wafers, of which the polyimide film serves as a wave guiding layer in evanescent wave photonic biosensors. This type of optical sensors make great demands on the materials involved as well as on the layer properties, such as the optical quality, the layer thickness and the surface roughness. In this work we realized the binding of a 3-mercaptopropyl trimethoxysilane on an oxygen plasma activated polyimide surface followed by subsequent derivatization of the reactive thiol groups with maleimide-PEG{sub 2}-biotin and immobilization of streptavidin. The progress of the functionalization was monitored by using different fluorescence labels for optimization of the chemical derivatization steps. Further, X-ray photoelectron spectroscopy and atomic force microscopy were utilized for the characterization of the modified surface. These established analytical methods allowed to derive information like chemical composition of the surface, surface coverage with immobilized streptavidin, as well as parameters of the surface roughness. The proposed functionalization protocol furnished a surface density of 144 fmol mm{sup -2} streptavidin with good reproducibility (13.9% RSD, n = 10) and without inflicted damage to the surface. This surface modification was applied to polyimide based Mach-Zehnder interferometer

  16. Real-space and plane-wave hybrid method for electronic structure calculations for two-dimensional materials

    Science.gov (United States)

    Do, V. Nam; Le, H. Anh; Vu, V. Thieu

    2017-04-01

    We propose a computational approach to combining the plane-wave method and the real-space treatment to describe the periodic variation in the material plane and the decay of wave functions from the material surfaces. The proposed approach is natural for two-dimensional material systems and thus may circumvent some intrinsic limitations involving the artificial replication of material layers in traditional supercell methods. In particular, we show that the proposed method is easy to implement and, especially, computationally effective since low-cost computational algorithms, such as iterative and recursive techniques, can be used to treat matrices with block tridiagonal structure. Using this approach we show first-principles features that supplement the current knowledge of some fundamental issues in bilayer graphene systems, including the coupling between the two graphene layers, the preservation of the σ band of monolayer graphene in the electronic structure of the bilayer system, and the differences in low-energy band structure between the AA- and AB-stacked configurations.

  17. A hybrid method for determination of the acoustic impedance of an unflanged cylindrical duct for multimode wave

    Science.gov (United States)

    Snakowska, Anna; Jurkiewicz, Jerzy; Gorazd, Łukasz

    2017-05-01

    The paper presents derivation of the impedance matrix based on the rigorous solution of the wave equation obtained by the Wiener-Hopf technique for a semi-infinite unflanged cylindrical duct. The impedance matrix allows, in turn, calculate the acoustic impedance along the duct and, as a special case, the radiation impedance. The analysis is carried out for a multimode incident wave accounting for modes coupling on the duct outlet not only qualitatively but also quantitatively for a selected source operating inside. The quantitative evaluation of the acoustic impedance requires setting of modes amplitudes which has been obtained applying the mode decomposition method to the far-field pressure radiation measurements and theoretical formulae for single mode directivity characteristics for an unflanged duct. Calculation of the acoustic impedance for a non-uniform distribution of the sound pressure and the sound velocity on a duct cross section requires determination of the acoustic power transmitted along/radiated from a duct. In the paper, the impedance matrix, the power, and the acoustic impedance were derived as functions of Helmholtz number and distance from the outlet.

  18. Hybrid excitations due to crystal field, spin-orbit coupling, and spin waves in LiFePO4

    Science.gov (United States)

    Yiu, Yuen; Le, Manh Duc; Toft-Peterson, Rasmus; Ehlers, Georg; McQueeney, Robert J.; Vaknin, David

    2017-03-01

    We report on the spin waves and crystal field excitations in single crystal LiFePO4 by inelastic neutron scattering over a wide range of temperatures, below and above the antiferromagnetic transition of this system. In particular, we find extra excitations below TN=50 K that are nearly dispersionless and are most intense around magnetic zone centers. We show that these excitations correspond to transitions between thermally occupied excited states of Fe2 + due to splitting of the S =2 levels that arise from the crystal field and spin-orbit interactions. These excitations are further amplified by the highly distorted nature of the oxygen octahedron surrounding the iron atoms. Above TN, magnetic fluctuations are observed up to at least 720 K, with an additional inelastic excitation around 4 meV, which we attribute to single-ion effects, as its intensity weakens slightly at 720 K compared to 100 K, which is consistent with the calculated cross sections using a single-ion model. Our theoretical analysis, using the MF-RPA model, provides both detailed spectra of the Fe d shell and estimates of the average ordered magnetic moment and TN. By applying the MF-RPA model to a number of existing spin-wave results from other Li M PO4 (M =Mn , Co, and Ni), we are able to obtain reasonable predictions for the moment sizes and transition temperatures.

  19. Novel inorganic-organic hybrids constructed from multinuclear copper cluster and Keggin polyanions: from 1D wave-like chain to 2D network.

    Science.gov (United States)

    Wang, Xiuli; Wang, Yufei; Liu, Guocheng; Tian, Aixiang; Zhang, Juwen; Lin, Hongyan

    2011-09-28

    Two novel inorganic-organic hybrids constructed from Keggin-type polyanions and multinuclear copper clusters based on 1-H-1,2,3-benzotriazole (HBTA), [Cu(I)(8)(BTA)(4)(HBTA)(8)(SiMo(12)O(40))]·2H(2)O (1) and [Cu(II)(6)(OH)(4)(BTA)(4)(SiW(12)O(40))(H(2)O)(6)]·6H(2)O (2), have been hydrothermally synthesized and structurally characterized by single crystal X-ray diffraction, elemental analyses, IR spectra and thermogravimetric (TG) analyses. In compound 1, eight Cu(I) ions were linked by twelve HBTA/BTA ligands to form an octanuclear Cu(I) cluster, which is connected by SiMo(12)O(40)(4-) anion with two bridging O atoms and two terminal O atoms to construct a one-dimensional (1D) wave-like chain. The octanuclear copper unit represents the maximum subunit linked just by amine ligands in the POMs system. In 2, four BTA ligands linked five Cu(II) ions constructing a pentanuclear "porphyrin-like" subunit, which is connected by another Cu(II) ion to form a 1D metal-organic band. The SiW(12)O(40)(4-) polyanions as tetradentate inorganic linkages extend the 1D band into a two-dimensional (2D) network with (8(3))(2)(8(5)·10) topology. To the best of our knowledge, compounds 1 and 2 represent the first examples of inorganic-organic hybrids based on metal-HBTA multinuclear subunits and polyoxometalates. The photocatalysis and electrochemical properties have been investigated in this paper.

  20. Ag-Ag2S/reduced graphene oxide hybrids used as long-wave UV radiation emitting nanocomposites

    Science.gov (United States)

    Li, Wenyao; Xu, Ruoyu; Ling, Min; He, Guanjie

    2017-10-01

    We report a facile thermal decomposition approach to synthesize Ag-Ag2S/reduced graphene oxide (Ag-Ag2S/rGO), the Ag-Ag2S nanoparticles uniformly dispersed on reduced graphene oxide with diameters of 10-20 nm. The photoluminescence spectra of Ag-Ag2S/rGO showed two obvious emission peaks at 327 and 339 nm with the excitation wavelength at 287 nm. Compared with Ag-Ag2S heterostructured clusters with two peaks at 407 and 430 nm, it showed a big blue shift and higher intensity, which makes it a novel candidate for long-wave UV radiation emitting nanocomposite.

  1. Hybrid multilevel plane wave based near-field far-field transformation utilising combined near- and far-field translations

    Directory of Open Access Journals (Sweden)

    C. H. Schmidt

    2009-05-01

    Full Text Available The radiation of large antennas and those operating at low frequencies can be determined efficiently by near-field measurement techniques and a subsequent near-field far-field transformation. Various approaches and algorithms have been researched but for electrically large antennas and irregular measurement contours advanced algorithms with low computation complexity are required. In this paper an algorithm employing plane waves as equivalent sources and utilising efficient diagonal translation operators is presented. The efficiency is further enhanced using simple far-field translations in combination with the expensive near-field translations. In this way a low complexity near-field transformation is achieved, which works for arbitrary sample point distributions and incorporates a full probe correction without increasing the complexity.

  2. Evolution of a hybrid micro-macro entangled state of the qubit-oscillator system via the generalized rotating wave approximation

    Science.gov (United States)

    Chakrabarti, R.; Yogesh, V.

    2016-04-01

    We study the evolution of the hybrid entangled states in a bipartite (ultra) strongly coupled qubit-oscillator system. Using the generalized rotating wave approximation the reduced density matrices of the qubit and the oscillator are obtained. The reduced density matrix of the oscillator yields the phase space quasi probability distributions such as the diagonal P-representation, the Wigner W-distribution and the Husimi Q-function. In the strong coupling regime the Q-function evolves to uniformly separated macroscopically distinct Gaussian peaks representing ‘kitten’ states at certain specified times that depend on multiple time scales present in the interacting system. The ultrastrong coupling strength of the interaction triggers appearance of a large number of modes that quickly develop a randomization of their phase relationships. A stochastic averaging of the dynamical quantities sets in, and leads to the decoherence of the system. The delocalization in the phase space of the oscillator is studied by using the Wehrl entropy. The negativity of the W-distribution reflects the departure of the oscillator from the classical states, and allows us to study the underlying differences between various information-theoretic measures such as the Wehrl entropy and the Wigner entropy. Other features of nonclassicality such as the existence of the squeezed states and appearance of negative values of the Mandel parameter are realized during the course of evolution of the bipartite system. In the parametric regime studied here these properties do not survive in the time-averaged limit.

  3. Direct generation of graphene plasmonic polaritons at THz frequencies via four wave mixing in the hybrid graphene sheets waveguides.

    Science.gov (United States)

    Sun, Yu; Qiao, Guofu; Sun, Guodong

    2014-11-17

    A compact waveguide incorporating a high-index nano-ridge sandwiched between graphene sheets is proposed for the direct generation of graphene plasmonic polaritons (GSPs) via four wave mixing (FWM). The proposed waveguide supports GSP modes at the THz frequencies and photonic modes at the infrared wavelengths. Due to the strong confinement of coupled graphene sheets, the GSP modes concentrate in the high-index nano-ridge far below the diffraction limit, which improves integral overlap with the photonic modes and greatly facilitates the FWM process. To cope with the ultra-high effective refractive of the GSP modes, an alternative energy conservation diagram is selected for the degenerated FWM, which corresponds to one pump photon transfers its energy to two signal photons and one GSP photon. The single mode condition of the generated symmetric GSP modes is analyzed by the effective index method to suppress the undesired conversion. Due to the unique tunability of GSPs, the phase matching condition can be satisfied by tuning the chemical potential of the graphene sheets employing external gates. The FWM pumped at 1,550 nm with a peak power of 1 kW is theoretically investigated by solving the modified coupled mode equations. The generated GSP power reaches its maximum up to 67 W at a propagation distance of only 43.7 μm. The proposed waveguide have a great potential for integrated chip-scale GSP source.

  4. Study of Scrape-Off-Layer Width in Ohmic and Lower Hybrid Wave Heated Double-Null Divertor Plasma in EAST%Study of Scrape-Off-Layer Width in Ohmic and Lower Hybrid Wave Heated Double-Null Divertor Plasma in EAST

    Institute of Scientific and Technical Information of China (English)

    王亮; 刘鹏; 蒋敏; 熊豪; 万宝年; 高翔; 郭后扬; 胡立群; 吴振伟; 朱思铮; 罗广南; 徐国盛; 常加峰; 张炜; 颜宁; 丁斯晔; 刘少承; 明廷凤; 汪惠乾

    2011-01-01

    Edge profiles in Ohmic and lower hybrid (LH) wave heated discharges in EAST are presented. A comparison of the measured profiles is made with those from the theoretical prediction for the scrape-off-layer (SOL) width. The edge plasma parameters are diagnosed by a triple probe divertor diagnostic system and fast reciprocating probes at the outer mid-plane. The experimental results show that the SOL width of double-null (DN) divertor plasmas in EAST appears to exhibit a negative dependence on the power crossing the separatrix, which is consistent with the collisional SOL scalings of JET and Alcator C-Mod. This will provide useful information for extrapolation to the ITER SOL width scaling for power deposition.

  5. Ring Current-Electromagnetic Ion Cyclotron Waves Coupling

    Science.gov (United States)

    Khazanov, G. V.

    2005-01-01

    The effect of Electromagnetic Ion Cyclotron (EMIC) waves, generated by ion temperature anisotropy in Earth s ring current (RC), is the best known example of wave- particle interaction in the magnetosphere. Also, there is much controversy over the importance of EMIC waves on RC depletion. Under certain conditions, relativistic electrons, with energies 21 MeV, can be removed from the outer radiation belt (RB) by EMIC wave scattering during a magnetic storm. That is why the calculation of EMIC waves must be a very critical part of the space weather studies. The new RC model that we have developed and present for the first time has several new features that we have combine together in a one single model: (a) several lower frequency cold plasma wave modes are taken into account; (b) wave tracing of these wave has been incorporated in the energy EMIC wave equation; (c) no assumptions regarding wave shape spectra have been made; (d) no assumptions regarding the shape of particle distribution have been made to calculate the growth rate; (e) pitch-angle, energy, and mix diffusions are taken into account together for the first time; (f) the exact loss-cone RC analytical solution has been found and coupled with bounce-averaged numerical solution of kinetic equation; (g) the EMIC waves saturation due to their modulation instability and LHW generation are included as an additional factor that contributes to this process; and (h) the hot ions were included in the real part of dielectric permittivity tensor. We compare our theoretical results with the different EMIC waves models as well as RC experimental data.

  6. Reciprocating Probe Measurements of L-H Transition in LHCD H-mode on EAST

    DEFF Research Database (Denmark)

    Peng, Liu; Guosheng, Xu; Huiqian, Wang

    2013-01-01

    only. Reciprocating Langmuir probe measurements at the outer midplane showed that the electron density ne and electron temperature Te in the scrape-off layer (SOL) were significantly reduced in the ELM-free phase, resulting in the increase of lower-hybrid wave (LHW) reflection. It was found...

  7. Parametric decay instability near the upper hybrid resonance in magnetically confined fusion plasmas

    DEFF Research Database (Denmark)

    Hansen, Søren Kjer; Nielsen, Stefan Kragh; Salewski, Mirko

    2017-01-01

    In this paper we investigate parametric decay of an electromagnetic pump wave into two electrostatic daughter waves, particularly an X-mode pump wave decaying into a warm upper hybrid wave (a limit of an electron Bernstein wave) and a warm lower hybrid wave. We describe the general theory...

  8. High-Order Hybridized Discontinuous Galerkin (HDG) Method for Wave Propagation Simulation in Complex Geophysical Media - Elastic, Acoustic and Hydro-Acoustic - an Unifying Framework to Couple Continuous Spectral Element and Discontinuous Galerkin Methods.

    Science.gov (United States)

    Sébastien, T.; Vilotte, J. P.; Guillot, L.; Mariotti, C.

    2014-12-01

    Today seismological observation systems combine broadband seismic receivers, hydrophones and micro-barometers antenna that provide complementary observations of source-radiated waves in heterogeneous and complex geophysical media. Exploiting these observations requires accurate and multi-physics - elastic, hydro-acoustic, infrasonic - wave simulation methods. A popular approach is the Spectral Element Method (SEM) (Chaljub et al, 2006) which is high-order accurate (low dispersion error), very flexible to parallelization and computationally attractive due to efficient sum factorization technique and diagonal mass matrix. However SEMs suffer from lack of flexibility in handling complex geometry and multi-physics wave propagation. High-order Discontinuous Galerkin Methods (DGMs), i.e. Dumbser et al (2006), Etienne et al. (2010), Wilcox et al (2010), are recent alternatives that can handle complex geometry, space-and-time adaptativity, and allow efficient multi-physics wave coupling at interfaces. However, DGMs are more memory demanding and less computationally attractive than SEMs, especially when explicit time stepping is used. We propose a new class of higher-order Hybridized Discontinuous Galerkin Spectral Elements (HDGSEM) methods for spatial discretization of wave equations, following the unifying framework for hybridization of Cockburn et al (2009) and Nguyen et al (2011), which allows for a single implementation of conforming and non-conforming SEMs. When used with energy conserving explicit time integration schemes, HDGSEM is flexible to handle complex geometry, computationally attractive and has significantly less degrees of freedom than classical DGMs, i.e., the only coupled unknowns are the single-valued numerical traces of the velocity field on the element's faces. The formulation can be extended to model fractional energy loss at interfaces between elastic, acoustic and hydro-acoustic media. Accuracy and performance of the HDGSEM are illustrated and

  9. High-order Hybridized Discontinuous Galerkin (HDG) method for wave propagation simulation in complex geophysical media (elastic, acoustic and hydro-acoustic); an unifying framework to couple continuous Spectral Element and Discontinuous Galerkin Methods

    Science.gov (United States)

    Terrana, Sebastien; Vilotte, Jean-Pierre; Guillot, Laurent; Mariotti, Christian

    2015-04-01

    Today seismological observation systems combine broadband seismic receivers, hydrophones and micro-barometers antenna that provide complementary observations of source-radiated waves in heterogeneous and complex geophysical media. Exploiting these observations requires accurate and multi-physics - elastic, hydro-acoustic, infrasonic - wave simulation methods. A popular approach is the Spectral Element Method (SEM) (Chaljub et al, 2006) which is high-order accurate (low dispersion error), very flexible to parallelization and computationally attractive due to efficient sum factorization technique and diagonal mass matrix. However SEMs suffer from lack of flexibility in handling complex geometry and multi-physics wave propagation. High-order Discontinuous Galerkin Methods (DGMs), i.e. Dumbser et al (2006), Etienne et al. (2010), Wilcox et al (2010), are recent alternatives that can handle complex geometry, space-and-time adaptativity, and allow efficient multi-physics wave coupling at interfaces. However, DGMs are more memory demanding and less computationally attractive than SEMs, especially when explicit time stepping is used. We propose a new class of higher-order Hybridized Discontinuous Galerkin Spectral Elements (HDGSEM) methods for spatial discretization of wave equations, following the unifying framework for hybridization of Cockburn et al (2009) and Nguyen et al (2011), which allows for a single implementation of conforming and non-conforming SEMs. When used with energy conserving explicit time integration schemes, HDGSEM is flexible to handle complex geometry, computationally attractive and has significantly less degrees of freedom than classical DGMs, i.e., the only coupled unknowns are the single-valued numerical traces of the velocity field on the element's faces. The formulation can be extended to model fractional energy loss at interfaces between elastic, acoustic and hydro-acoustic media. Accuracy and performance of the HDGSEM are illustrated and

  10. A modulating effect of Tropical Instability Wave (TIW)-induced surface wind feedback in a hybrid coupled model of the tropical Pacific

    Science.gov (United States)

    Zhang, Rong-Hua

    2016-10-01

    Tropical Instability Waves (TIWs) and the El Niño-Southern Oscillation (ENSO) are two air-sea coupling phenomena that are prominent in the tropical Pacific, occurring at vastly different space-time scales. It has been challenging to adequately represent both of these processes within a large-scale coupled climate model, which has led to a poor understanding of the interactions between TIW-induced feedback and ENSO. In this study, a novel modeling system was developed that allows representation of TIW-scale air-sea coupling and its interaction with ENSO. Satellite data were first used to derive an empirical model for TIW-induced sea surface wind stress perturbations (τTIW). The model was then embedded in a basin-wide hybrid-coupled model (HCM) of the tropical Pacific. Because τTIW were internally determined from TIW-scale sea surface temperatures (SSTTIW) simulated in the ocean model, the wind-SST coupling at TIW scales was interactively represented within the large-scale coupled model. Because the τTIW-SSTTIW coupling part of the model can be turned on or off in the HCM simulations, the related TIW wind feedback effects can be isolated and examined in a straightforward way. Then, the TIW-scale wind feedback effects on the large-scale mean ocean state and interannual variability in the tropical Pacific were investigated based on this embedded system. The interactively represented TIW-scale wind forcing exerted an asymmetric influence on SSTs in the HCM, characterized by a mean-state cooling and by a positive feedback on interannual variability, acting to enhance ENSO amplitude. Roughly speaking, the feedback tends to increase interannual SST variability by approximately 9%. Additionally, there is a tendency for TIW wind to have an effect on the phase transition during ENSO evolution, with slightly shortened interannual oscillation periods. Additional sensitivity experiments were performed to elucidate the details of TIW wind effects on SST evolution during ENSO

  11. Wave and plasma measurements and GPS diagnostics of the main ionospheric trough as a hybrid method used for Space Weather purposes

    Directory of Open Access Journals (Sweden)

    H. Rothkaehl

    2008-02-01

    Full Text Available The region of the main ionospheric trough is a unique region of the ionosphere, where different types of waves and instabilities can be generated. This region of the ionosphere acts like a lens, focusing a variety of indicators from the equator of plasmapause and local ionospheric plasma. This paper reports the results of monitoring the mid-latitude trough structure, dynamics and wave activity. For these purposes, the data gathered by the currently-operating DEMETER satellite and past diagnostics located on IK-19, Apex, and MAGION-3 spacecraft, as well as TEC measurements were used. A global-time varying picture of the ionospheric trough was reconstructed using the sequence of wave spectra registered and plasma measurements in the top-side ionosphere. The authors present the wave activity from ULF frequency band to the HF frequency detected inside the trough region and discuss its properties during geomagnetic disturbances. It is thought that broadband emissions are correlated with low frequency radiation, which is excited by the wave-particle interaction in the equatorial plasmapause and moves to the ionosphere along the geomagnetic field line. In the ionosphere, the suprathermal electrons can interact with these electrostatic waves and excite electron acoustic waves or HF longitudinal plasma waves.

    Furthermore, the electron density trough can provide useful data on the magnetosphere ionosphere dynamics and morphology and, in consequence, can be used for Space Weather purposes.

  12. 短波射线追踪技术中的电离层混合建模方法%Ionosphere hybrid modeling method for short-wave ray tracing

    Institute of Scientific and Technical Information of China (English)

    栗伟珉; 苏东林; 阎照文; 刘焱

    2012-01-01

    在国际参考电离层模型和多层准抛物模型的基础上,提出了一种混合应用两种模型进行电离层建模的新方法.利用射线追踪技术,分别对混合模型和传统国际参考电离层模型下短波射线在电离层中的轨迹进行了仿真,得到了电波群路径.通过与实测电波群路径的对比,结果表明:对中国中纬度地区在电离层混合模型下的射线追踪精度优于传统国际参考电离层模型下的射线追踪精度,同时混合建模方法降低了多层准抛物模型对输入条件的要求,扩展了多层准抛物模型在射线追踪技术中的应用范围.%Based on the international reference ionosphere(IRI) and the quasi-parabolic segments(QPS) model,a new ionosphere hybrid modeling method for short-wave ray tracing was proposed.The group ranges which show the short-wave propagation trace in the ionosphere were obtained separately by simulation in the hybrid model and the IRI model.By comparing the simulated results and the ionospheric oblique incidence sounding experimental data,the hybrid modeling method accuracy at mid-latitude region in China was analyzed.It indicates the ray tracing simulation accuracy in the hybrid model on experimental day better than the one in the IRI model.The limit to the QPS model's input is reduced by the hybrid modeling method and the QPS model's application range is extended in ray tracing technology.

  13. Parametric decay of linearly polarized shear Alfvén waves in oblique propagation: One and two-dimensional hybrid simulations

    National Research Council Canada - National Science Library

    Lorenzo Matteini; Simone Landi; Luca Del Zanna; Marco Velli; Petr Hellinger

    2010-01-01

      The parametric instability of a monochromatic shear Alfvén wave in oblique propagation with respect the ambient magnetic field is investigated in a kinetic regime, performing one-dimensional (1-D...

  14. ‘Who Said It Was Simple!’ Third-Wave Feminist Coalition and Audre Lorde's Intersectionalist Hybrid Poetics of Difference

    OpenAIRE

    Yomna Saber

    2015-01-01

    Third-Wave Feminism digs its roots in intersectionality and coalition, which were not fully realised in Second-Wave Feminism. However, the movement is usually under attack for lacking a clear agenda. Recent scholarship strongly suggests that third wavers get back to third-world writers, like Audre Lorde, to realise an anti-racist and inclusive feminism.  Lorde occupies a distinctive position in feminist literature; a poet who resides in too many margins being black, female and lesbian. This e...

  15. Study of electric and magnetic field fluctuations from lower hybrid drift instability waves in the terrestrial magnetotail with the fully kinetic, semi-implicit, adaptive multi level multi domain method

    Science.gov (United States)

    Innocenti, M. E.; Norgren, C.; Newman, D.; Goldman, M.; Markidis, S.; Lapenta, G.

    2016-05-01

    The newly developed fully kinetic, semi-implicit, adaptive multi-level multi-domain (MLMD) method is used to simulate, at realistic mass ratio, the development of the lower hybrid drift instability (LHDI) in the terrestrial magnetotail over a large wavenumber range and at a low computational cost. The power spectra of the perpendicular electric field and of the fluctuations of the parallel magnetic field are studied at wavenumbers and times that allow to appreciate the onset of the electrostatic and electromagnetic LHDI branches and of the kink instability. The coupling between electric and magnetic field fluctuations observed by Norgren et al. ["Lower hybrid drift waves: Space observations," Phys. Rev. Lett. 109, 055001 (2012)] for high wavenumber LHDI waves in the terrestrial magnetotail is verified. In the MLMD simulations presented, a domain ("coarse grid") is simulated with low resolution. A small fraction of the entire domain is then simulated with higher resolution also ("refined grid") to capture smaller scale, higher frequency processes. Initially, the MLMD method is validated for LHDI simulations. MLMD simulations with different levels of grid refinement are validated against the standard semi-implicit particle in cell simulations of domains corresponding to both the coarse and the refined grid. Precious information regarding the applicability of the MLMD method to turbulence simulations is derived. The power spectra of MLMD simulations done with different levels of refinements are then compared. They consistently show a break in the magnetic field spectra at k⊥di˜30 , with di the ion skin depth and k⊥ the perpendicular wavenumber. The break is observed at early simulated times, Ωcit <6 , with Ωci the ion cyclotron frequency. It is due to the initial decoupling of electric and magnetic field fluctuations at intermediate and low wavenumbers, before the development of the electromagnetic LHDI branch. Evidence of coupling between electric and magnetic

  16. Analysis and experimental validation of the middle-frequency vibro-acoustic coupling property for aircraft structural model based on the wave coupling hybrid FE-SEA method

    Science.gov (United States)

    Yan, Yunju; Li, Pengbo; Lin, Huagang

    2016-06-01

    The finite element (FE) method is suitable for low frequency analysis and the statistical energy analysis (SEA) for high frequency analysis, but the vibro-acoustic coupling analysis at middle frequency, especially with a certain range of uncertainty system, requires some new methods. A hybrid FE-SEA method is proposed in this study and the Monte Carlo method is used to check the hybrid FE-SEA method through the energy response analysis of a beam-plate built-up structure with some uncertainty, and the results show that two kinds of calculation results match well consistently. Taking the advantage of the hybrid FE-SEA method, the structural vibration and the cabin noise field responses under the vibro-acoustic coupling for an aircraft model are numerically analyzed, and, also, the corresponding experiment is carried out to verify the simulated results. Results show that the structural vibration responses at low frequency accord well with the experiment, but the error at high frequency is greater. The error of sound pressure response level in cabin throughout the spectrum is less than 3 dB. The research proves the reliability of the method proposed in this paper. This indicates that the proposed method can overcome the strict limitations of the traditional method for a large complex structure with uncertainty factors, and it can also avoid the disadvantages of solving complex vibro-acoustic system using the finite element method or statistical energy analysis in the middle frequency.

  17. Hybrid Baryons

    CERN Document Server

    Page, P R

    2003-01-01

    We review the status of hybrid baryons. The only known way to study hybrids rigorously is via excited adiabatic potentials. Hybrids can be modelled by both the bag and flux-tube models. The low-lying hybrid baryon is N 1/2^+ with a mass of 1.5-1.8 GeV. Hybrid baryons can be produced in the glue-rich processes of diffractive gamma N and pi N production, Psi decays and p pbar annihilation.

  18. Localized lower hybrid acceleration of ionospheric plasma

    Science.gov (United States)

    Kintner, P. M.; Vago, J.; Chesney, S.; Arnoldy, R. L.; Lynch, K. A.; Pollock, C. J.; Moore, T. E.

    1992-01-01

    Observations of the transverse acceleration of ions in localized regions of intense lower hybrid waves at altitudes near 1000 km in the auroral ionosphere are reported. The acceleration regions are thin filaments with dimensions across geomagnetic field lines of about 50-100 m corresponding to 5-10 thermal ion gyroradii or one hot ion gyroradius. Within the acceleration region lower hybrid waves reach peak-to-peak amplitudes of 100-300 mV/m and ions are accelerated transversely with characteristic energies of the order of 10 eV. These observations are consistent with theories of lower hybrid wave collapse.

  19. Hybrid vehicles

    Energy Technology Data Exchange (ETDEWEB)

    West, J.G.W. [Electrical Machines (United Kingdom)

    1997-07-01

    The reasons for adopting hybrid vehicles result mainly from the lack of adequate range from electric vehicles at an acceptable cost. Hybrids can offer significant improvements in emissions and fuel economy. Series and parallel hybrids are compared. A combination of series and parallel operation would be the ideal. This can be obtained using a planetary gearbox as a power split device allowing a small generator to transfer power to the propulsion motor giving the effect of a CVT. It allows the engine to run at semi-constant speed giving better fuel economy and reduced emissions. Hybrid car developments are described that show the wide range of possible hybrid systems. (author)

  20. Pseudovector mesons, hybrids and glueballs

    CERN Document Server

    Burakovsky, L; Burakovsky, Leonid; Page, Philip R.

    2000-01-01

    We consider glueball- (hybrid) meson mixing for the low-lying four pseudovector states. The h_1'(1380) decays dominantly to K*K with some presence in rho pi and omega eta. The newly observed h_1(1600) has a D- to S-wave width ratio to omega eta which does not enable differentiation between a conventional and hybrid meson interpretation. We predict the decay pattern of the isopartner conventional or hybrid meson b_1(1650). A notably narrow s sbar partner h_1'(1810) is predicted.

  1. Collapse of Electrostatic Waves in Magnetoplasmas

    DEFF Research Database (Denmark)

    Shukla, P. K.; Yu, M. Y.; Juul Rasmussen, Jens

    1984-01-01

    The two-fluid model is employed to investigate the collapse of electrostatic waves in magnetized plasmas. It is found that nonlinear interaction of ion cyclotron, upper-, and lower-hybrid waves with adiabatic particle motion along the external magnetic field can cause wave-field collapse....

  2. Phoxonic Hybrid Superlattice.

    Science.gov (United States)

    Alonso-Redondo, Elena; Huesmann, Hannah; El Boudouti, El-Houssaine; Tremel, Wolfgang; Djafari-Rouhani, Bahram; Butt, Hans-Juergen; Fytas, George

    2015-06-17

    We studied experimentally and theoretically the direction-dependent elastic and electromagnetic wave propagation in a supported film of hybrid PMMA (poly[methyl-methacrylate])-TiO2 superlattice (SL). In the direction normal to the layers, this one-dimensional periodic structure opens propagation band gaps for both hypersonic (GHz) phonons and near-UV photons. The high mismatch of elastic and optical impedance results in a large dual phoxonic band gap. The presence of defects inherent to the spin-coating fabrication technique is sensitively manifested in the band gap region. Utilizing Brillouin light scattering, phonon propagation along the layers was observed to be distinctly different from propagation normal to them and can, under certain conditions (SL thickness and substrate elasticity), reveal the nanomechanical properties of the constituent layers. Besides the first realization of unidirectional phoxonic behavior, hybrid (soft-hard) periodic materials are a promising simple platform for opto-acoustic interactions and applications such as filters and Bragg mirrors.

  3. Hybrid Metaheuristics

    CERN Document Server

    2013-01-01

    The main goal of this book is to provide a state of the art of hybrid metaheuristics. The book provides a complete background that enables readers to design and implement hybrid metaheuristics to solve complex optimization problems (continuous/discrete, mono-objective/multi-objective, optimization under uncertainty) in a diverse range of application domains. Readers learn to solve large scale problems quickly and efficiently combining metaheuristics with complementary metaheuristics, mathematical programming, constraint programming and machine learning. Numerous real-world examples of problems and solutions demonstrate how hybrid metaheuristics are applied in such fields as networks, logistics and transportation, bio-medical, engineering design, scheduling.

  4. Hybrid intermediaries

    OpenAIRE

    Cetorelli, Nicola

    2014-01-01

    I introduce the concept of hybrid intermediaries: financial conglomerates that control a multiplicity of entity types active in the "assembly line" process of modern financial intermediation, a system that has become known as shadow banking. The complex bank holding companies of today are the best example of hybrid intermediaries, but I argue that financial firms from the "nonbank" space can just as easily evolve into conglomerates with similar organizational structure, thus acquiring the cap...

  5. Hybrid composites

    CSIR Research Space (South Africa)

    Jacob John, Maya

    2009-04-01

    Full Text Available effect was observed for the elongation at break of the hybrid composites. The impact strength of the hybrid composites increased with the addition of glass fibres. The tensile and impact properties of thermoplastic natural rubber reinforced short... panels made from conventional structural materials. Figure 3 illustrates the performance of cellular biocomposite panels against conventional systems used for building and residential construction, namely a pre- cast pre-stressed hollow core concrete...

  6. Electromagnetic Waves

    DEFF Research Database (Denmark)

    This book is dedicated to various aspects of electromagnetic wave theory and its applications in science and technology. The covered topics include the fundamental physics of electromagnetic waves, theory of electromagnetic wave propagation and scattering, methods of computational analysis...

  7. Nonlinear wave interactions in quantum magnetoplasmas

    CERN Document Server

    Shukla, P K; Marklund, M; Stenflo, L

    2006-01-01

    Nonlinear interactions involving electrostatic upper-hybrid (UH), ion-cyclotron (IC), lower-hybrid (LH), and Alfven waves in quantum magnetoplasmas are considered. For this purpose, the quantum hydrodynamical equations are used to derive the governing equations for nonlinearly coupled UH, IC, LH, and Alfven waves. The equations are then Fourier analyzed to obtain nonlinear dispersion relations, which admit both decay and modulational instabilities of the UH waves at quantum scales. The growth rates of the instabilities are presented. They can be useful in applications of our work to diagnostics in laboratory and astrophysical settings.

  8. Surface spin-electron acoustic waves in magnetically ordered metals

    CERN Document Server

    Andreev, Pavel A

    2015-01-01

    Degenerate plasmas with motionless ions show existence of three surface waves: the Langmuir wave, the electromagnetic wave, and the zeroth sound. Applying the separated spin evolution quantum hydrodynamics to half-space plasma we demonstrate the existence of the surface spin-electron acoustic wave (SSEAW). We study dispersion of the SSEAW. We show that there is hybridization between the surface Langmuir wave and the SSEAW at rather small spin polarization. In the hybridization area the dispersion branches are located close to each other. In this area there is a strong interaction between these waves leading to the energy exchange. Consequently, generating the Langmuir waves with the frequencies close to hybridization area we can generate the SSEAWs. Thus, we report a method of creation of the SEAWs.

  9. Nonlinear lower hybrid modeling in tokamak plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Napoli, F.; Schettini, G. [Università Roma Tre, Dipartimento di Ingegneria, Roma (Italy); Castaldo, C.; Cesario, R. [Associazione EURATOM/ENEA sulla Fusione, Centro Ricerche Frascati (Italy)

    2014-02-12

    We present here new results concerning the nonlinear mechanism underlying the observed spectral broadening produced by parametric instabilities occurring at the edge of tokamak plasmas in present day LHCD (lower hybrid current drive) experiments. Low frequency (LF) ion-sound evanescent modes (quasi-modes) are the main parametric decay channel which drives a nonlinear mode coupling of lower hybrid (LH) waves. The spectrum of the LF fluctuations is calculated here considering the beating of the launched LH wave at the radiofrequency (RF) operating line frequency (pump wave) with the noisy background of the RF power generator. This spectrum is calculated in the frame of the kinetic theory, following a perturbative approach. Numerical solutions of the nonlinear LH wave equation show the evolution of the nonlinear mode coupling in condition of a finite depletion of the pump power. The role of the presence of heavy ions in a Deuterium plasma in mitigating the nonlinear effects is analyzed.

  10. Plasma waves

    CERN Document Server

    Swanson, DG

    1989-01-01

    Plasma Waves discusses the basic development and equations for the many aspects of plasma waves. The book is organized into two major parts, examining both linear and nonlinear plasma waves in the eight chapters it encompasses. After briefly discussing the properties and applications of plasma wave, the book goes on examining the wave types in a cold, magnetized plasma and the general forms of the dispersion relation that characterize the waves and label the various types of solutions. Chapters 3 and 4 analyze the acoustic phenomena through the fluid model of plasma and the kinetic effects. Th

  11. Heat Waves

    Science.gov (United States)

    Heat Waves Dangers we face during periods of very high temperatures include: Heat cramps: These are muscular pains and ... having trouble with the heat. If a heat wave is predicted or happening… - Slow down. Avoid strenuous ...

  12. Wave Star

    DEFF Research Database (Denmark)

    Kramer, Morten; Brorsen, Michael; Frigaard, Peter

    Denne rapport beskriver numeriske beregninger af forskellige flydergeometrier for bølgeenergianlæget Wave Star.......Denne rapport beskriver numeriske beregninger af forskellige flydergeometrier for bølgeenergianlæget Wave Star....

  13. Hybrid microelectronic technology

    Science.gov (United States)

    Moran, P.

    Various areas of hybrid microelectronic technology are discussed. The topics addressed include: basic thick film processing, thick film pastes and substrates, add-on components and attachment methods, thin film processing, and design of thick film hybrid circuits. Also considered are: packaging hybrid circuits, automating the production of hybrid circuits, application of hybrid techniques, customer's view of hybrid technology, and quality control and assurance in hybrid circuit production.

  14. Wave Dragon

    DEFF Research Database (Denmark)

    Kofoed, Jens Peter; Frigaard, Peter; Sørensen, H. C.

    1998-01-01

    This paper concerns with the development of the wave energy converter (WEC) Wave Dragon. This WEC is based on the overtopping principle. An overview of the performed research done concerning the Wave Dragon over the past years is given, and the results of one of the more comprehensive studies......, concerning a hydraulic evaluation and optimisation of the geometry of the Wave Dragon, is presented. Furthermore, the plans for the future development projects are sketched....

  15. Electromagnetic Waves

    DEFF Research Database (Denmark)

    This book is dedicated to various aspects of electromagnetic wave theory and its applications in science and technology. The covered topics include the fundamental physics of electromagnetic waves, theory of electromagnetic wave propagation and scattering, methods of computational analysis......, material characterization, electromagnetic properties of plasma, analysis and applications of periodic structures and waveguide components, etc....

  16. Wave phenomena

    CERN Document Server

    Towne, Dudley H

    1988-01-01

    This excellent undergraduate-level text emphasizes optics and acoustics, covering inductive derivation of the equation for transverse waves on a string, acoustic plane waves, boundary-value problems, polarization, three-dimensional waves and more. With numerous problems (solutions for about half). ""The material is superbly chosen and brilliantly written"" - Physics Today. Problems. Appendices.

  17. Surface wave modelling and simulation for wave tanks and coastal areas

    OpenAIRE

    Groesen, van, E.; Bunnik, T.; Andonowati

    2011-01-01

    For testing ships and offshore structures in hydrodynamic laboratories, the sea and ocean states should be represented as realistic as possible in the wave tanks in which the scaled experiments are executed. To support efficient testing, accurate software that determines and translates the required wave maker motion into the downstream waves is very helpful. This paper describes an efficient hybrid spatial-spectral code that can deal with simulations above flat and varying bottom. The accurac...

  18. Hybrid Gear

    Science.gov (United States)

    Handschuh, Robert F. (Inventor); Roberts, Gary D. (Inventor)

    2016-01-01

    A hybrid gear consisting of metallic outer rim with gear teeth and metallic hub in combination with a composite lay up between the shaft interface (hub) and gear tooth rim is described. The composite lay-up lightens the gear member while having similar torque carrying capability and it attenuates the impact loading driven noise/vibration that is typical in gear systems. The gear has the same operational capability with respect to shaft speed, torque, and temperature as an all-metallic gear as used in aerospace gear design.

  19. Hybrid Qualifications

    DEFF Research Database (Denmark)

    has turned out as a major focus of European education and training policies and certainly is a crucial principle underlying the European Qualifications Framework (EQF). In this context, «hybrid qualifications» (HQ) may be seen as an interesting approach to tackle these challenges as they serve «two...... masters», i.e. by producing skills for the labour market and enabling individuals to progress more or less directly to higher education. The specific focus of this book is placed on conditions, structures and processes which help to combine VET with qualifications leading into higher education...

  20. Tropical Cyclogenesis in a Tropical Wave Critical Layer: Easterly Waves

    Science.gov (United States)

    Dunkerton, T. J.; Montgomery, M. T.; Wang, Z.

    2009-01-01

    The development of tropical depressions within tropical waves over the Atlantic and eastern Pacific is usually preceded by a "surface low along the wave" as if to suggest a hybrid wave-vortex structure in which flow streamlines not only undulate with the waves, but form a closed circulation in the lower troposphere surrounding the low. This structure, equatorward of the easterly jet axis, is identified herein as the familiar critical layer of waves in shear flow, a flow configuration which arguably provides the simplest conceptual framework for tropical cyclogenesis resulting from tropical waves, their interaction with the mean flow, and with diabatic processes associated with deep moist convection. The recirculating Kelvin cat's eye within the critical layer represents a sweet spot for tropical cyclogenesis in which a proto-vortex may form and grow within its parent wave. A common location for storm development is given by the intersection of the wave's critical latitude and trough axis at the center of the cat's eye, with analyzed vorticity centroid nearby. The wave and vortex live together for a time, and initially propagate at approximately the same speed. In most cases this coupled propagation continues for a few days after a tropical depression is identified. For easterly waves, as the name suggests, the propagation is westward. It is shown that in order to visualize optimally the associated Lagrangian motions, one should view the flow streamlines, or stream function, in a frame of reference translating horizontally with the phase propagation of the parent wave. In this co-moving frame, streamlines are approximately equivalent to particle trajectories. The closed circulation is quasi-stationary, and a dividing streamline separates air within the cat's eye from air outside.

  1. Key Aspects of Wave Energy

    DEFF Research Database (Denmark)

    Margheritini, Lucia; Nørgaard, Jørgen Harck

    2012-01-01

    Diversification of renewable energy sources is fundamental to ensure sustainability. In this contest, wave energy can provide a substantial contribution as soon as the sector breaks into the market. In order to accelerate shift from a technology to a market focus and reduce technical and non...... be used as a breakwater therefore providing a solid structure for harbor protection; the Wave Star can be used as a base for offshore wind and photovoltaic installation in the middle of the sea, realizing an hybrid renewable energy platform. It is the authors´ believe that taking wave energy devices......-technical risks, it is critical to provide comprehensive and reliable information on the technologies without neglecting attractive advantages. It is possible to underline a different key of lecture of wave energy performance by considering efficiency and power production as well as device versatility...

  2. Nonlinear spatial mode imaging of hybrid photonic crystal fibers

    DEFF Research Database (Denmark)

    Petersen, Sidsel Rübner; Alkeskjold, Thomas Tanggaard; Laurila, Marko;

    2013-01-01

    Degenerate spontaneous four wave mixing is studied for the rst time in a large mode area hybrid photonic crystal ber, where light con nement is achieved by combined index- and bandgap guiding. Four wave mixing products are generated on the edges of the bandgaps, which is veri ed by numerical...

  3. Intuitionistic hybrid logic

    DEFF Research Database (Denmark)

    Braüner, Torben

    2011-01-01

    Intuitionistic hybrid logic is hybrid modal logic over an intuitionistic logic basis instead of a classical logical basis. In this short paper we introduce intuitionistic hybrid logic and we give a survey of work in the area.......Intuitionistic hybrid logic is hybrid modal logic over an intuitionistic logic basis instead of a classical logical basis. In this short paper we introduce intuitionistic hybrid logic and we give a survey of work in the area....

  4. Continuity Controlled Hybrid Automata

    OpenAIRE

    Bergstra, J. A.; Middelburg, C.A.

    2004-01-01

    We investigate the connections between the process algebra for hybrid systems of Bergstra and Middelburg and the formalism of hybrid automata of Henzinger et al. We give interpretations of hybrid automata in the process algebra for hybrid systems and compare them with the standard interpretation of hybrid automata as timed transition systems. We also relate the synchronized product operator on hybrid automata to the parallel composition operator of the process algebra. It turns out that the f...

  5. Making waves

    Science.gov (United States)

    Kruse, Karsten

    2017-01-01

    Traveling waves propagating along surfaces play an important role for intracellular organization. Such waves can appear spontaneously in reaction-diffusion systems, but only few general criteria for their existence are known. Analyzing the dynamics of the Min proteins in Escherichia coli, Levine and Kessler (2016 New J. Phys. 18 122001) now identified a new mechanism for the emergence of traveling waves that relies on conservation laws. From their analysis one can expect traveling waves to be a generic feature of systems made of proteins that have a cytoplasmic and a membrane-bound state.

  6. Janus Waves

    OpenAIRE

    2016-01-01

    We show the existence of a family of waves that share a common interesting property affecting the way they propagate and focus. These waves are a superposition of twin waves, which are conjugate to each other under inversion of the propagation direction. In analogy to holography, these twin "real" and "virtual" waves are related respectively to the converging and the diverging part of the beam and can be clearly visualized in real space at two distinct foci under the action of a focusing lens...

  7. Multiresolution wavelet-ANN model for significant wave height forecasting.

    Digital Repository Service at National Institute of Oceanography (India)

    Deka, P.C.; Mandal, S.; Prahlada, R.

    Hybrid wavelet artificial neural network (WLNN) has been applied in the present study to forecast significant wave heights (Hs). Here Discrete Wavelet Transformation is used to preprocess the time series data (Hs) prior to Artificial Neural Network...

  8. Hybridized tetraquarks

    Directory of Open Access Journals (Sweden)

    A. Esposito

    2016-07-01

    Full Text Available We propose a new interpretation of the neutral and charged X,Z exotic hadron resonances. Hybridized-tetraquarks are neither purely compact tetraquark states nor bound or loosely bound molecules but rather a manifestation of the interplay between the two. While meson molecules need a negative or zero binding energy, its counterpart for h-tetraquarks is required to be positive. The formation mechanism of this new class of hadrons is inspired by that of Feshbach metastable states in atomic physics. The recent claim of an exotic resonance in the Bs0π± channel by the D0 Collaboration and the negative result presented subsequently by the LHCb Collaboration are understood in this scheme, together with a considerable portion of available data on X,Z particles. Considerations on a state with the same quantum numbers as the X(5568 are also made.

  9. Hybridized Tetraquarks

    CERN Document Server

    Esposito, A.; Polosa, A.D.

    2016-01-01

    We propose a new interpretation of the neutral and charged X, Z exotic hadron resonances. Hybridized-tetraquarks are neither purely compact tetraquark states nor bound or loosely bound molecules. The latter would require a negative or zero binding energy whose counterpart in h-tetraquarks is a positive quantity. The formation mechanism of this new class of hadrons is inspired by that of Feshbach metastable states in atomic physics. The recent claim of an exotic resonance in the Bs pi+- channel by the D0 collaboration and the negative result presented subsequently by the LHCb collaboration are understood in this scheme, together with a considerable portion of available data on X, Z particles. Considerations on a state with the same quantum numbers as the X(5568) are also made.

  10. Two Photon Couplings of Hybrid Mesons

    CERN Document Server

    Page, P R

    1996-01-01

    A new formalism is developed for the two photon production of hybrid mesons via intermediate hadronic decays. In an adiabatic and non--relativistic context with spin 1 pair creation we obtain the first absolute estimates of unmixed hybrid production strengths to be small (0.03 - 3 eV) in relation to experimental meson widths (0.1 - 5 keV). Within this context, two photon collisions therefore strongly discriminate between hybrid and conventional meson wave function components at BaBar, Cleo II, LEP2 and LHC, filtering out non--gluonic components. Decay widths of unmixed hybrids are tiny. The formalism also induces conventional meson two photon widths roughly in agreement with experiment.

  11. Atom-Light Hybrid Interferometer.

    Science.gov (United States)

    Chen, Bing; Qiu, Cheng; Chen, Shuying; Guo, Jinxian; Chen, L Q; Ou, Z Y; Zhang, Weiping

    2015-07-24

    A new type of hybrid atom-light interferometer is demonstrated with atomic Raman amplification processes replacing the beam splitting elements in a traditional interferometer. This nonconventional interferometer involves correlated optical and atomic waves in the two arms. The correlation between atoms and light developed with the Raman process makes this interferometer different from conventional interferometers with linear beam splitters. It is observed that the high-contrast interference fringes are sensitive to the optical phase via a path change as well as the atomic phase via a magnetic field change. This new atom-light correlated hybrid interferometer is a sensitive probe of the atomic internal state and should find wide applications in precision measurement and quantum control with atoms and photons.

  12. Effect of wave localization on plasma instabilities

    Energy Technology Data Exchange (ETDEWEB)

    Levedahl, W.K.

    1987-01-01

    The Anderson model of wave localization in random media is invoked to study the effect of solar-wind density turbulence on plasma processes associated with the solar type-III radio burst. ISEE-3 satellite data indicate that a possible model for the type-III process is the parametric decay of Langmuir waves excited by solar-flare electron streams into daughter electromagnetic and ion-acoustic waves. The threshold for this instability, however, is much higher than observed Langmuir-wave levels because of rapid wave convection of the transverse electromagnetic daughter wave in the case where the solar wind is assumed homogeneous. Langmuir and transverse waves near critical density satisfy the Ioffe-Riegel criteria for wave localization in the solar wind with observed density fluctuations {approximately}1%. Computer simulations using a linearized hybrid code show that an electron beam will excite localized Langmuir waves in a plasma with density turbulence. An action-principle approach is used to develop a theory of nonlinear wave processes when waves are localized. A theory of resonant particles diffusion by localized waves is developed to explain the saturation of the beam-plasma instability.

  13. Optically induced interaction of magnetic moments in hybrid metamaterials.

    Science.gov (United States)

    Miroshnichenko, Andrey E; Luk'yanchuk, Boris; Maier, Stefan A; Kivshar, Yuri S

    2012-01-24

    We propose a novel type of hybrid metal-dielectric structures composed of silicon nanoparticles and split-ring resonators for advanced control of optically induced magnetic response. We reveal that a hybrid "metamolecule" may exhibit a strong distance-dependent magnetic interaction that may flip the magnetization orientation and support "antiferromagnetic" ordering in a hybrid metamaterial created by a periodic lattice of such metamolecules. The propagation of magnetization waves in the hybrid structures opens new ways for manipulating artificial "antiferromagnetic" ordering at high frequencies. © 2011 American Chemical Society

  14. Wave Dragon

    DEFF Research Database (Denmark)

    Tedd, James; Kofoed, Jens Peter; Friis-Madsen, Erik

    2008-01-01

    Since March 2003 a prototype of Wave Dragon has been tested in an inland sea in Denmark. This has been a great success with all subsystems tested and improved through working in an offshore environment. The project has proved the Wave Dragon device and has enabled the next stage, a production sized...

  15. Wave Dragon

    DEFF Research Database (Denmark)

    Tedd, James; Kofoed, Jens Peter; Friis-Madsen, Erik;

    2008-01-01

    Since March 2003 a prototype of Wave Dragon has been tested in an inland sea in Denmark. This has been a great success with all subsystems tested and improved through working in an offshore environment. The project has proved the Wave Dragon device and has enabled the next stage, a production sized...

  16. Wave Star

    DEFF Research Database (Denmark)

    Kramer, Morten; Brorsen, Michael; Frigaard, Peter

    Nærværende rapport beskriver numeriske beregninger af den hydrodynamiske interaktion mellem 5 flydere i bølgeenergianlægget Wave Star.......Nærværende rapport beskriver numeriske beregninger af den hydrodynamiske interaktion mellem 5 flydere i bølgeenergianlægget Wave Star....

  17. Wave Solutions

    CERN Document Server

    Christov, Ivan C

    2012-01-01

    In classical continuum physics, a wave is a mechanical disturbance. Whether the disturbance is stationary or traveling and whether it is caused by the motion of atoms and molecules or the vibration of a lattice structure, a wave can be understood as a specific type of solution of an appropriate mathematical equation modeling the underlying physics. Typical models consist of partial differential equations that exhibit certain general properties, e.g., hyperbolicity. This, in turn, leads to the possibility of wave solutions. Various analytical techniques (integral transforms, complex variables, reduction to ordinary differential equations, etc.) are available to find wave solutions of linear partial differential equations. Furthermore, linear hyperbolic equations with higher-order derivatives provide the mathematical underpinning of the phenomenon of dispersion, i.e., the dependence of a wave's phase speed on its wavenumber. For systems of nonlinear first-order hyperbolic equations, there also exists a general ...

  18. Strong Decays of Hybrid Mesons from the Heavy Quark Expansion of QCD

    CERN Document Server

    Page, P R

    1998-01-01

    We calculate the strong decays of hybrid mesons to conventional mesons for all the lowest lying J^PC hybrids of flavour uu, dd, ss, cc and bb. A decay operator developed from the heavy quark expansion of quantum chromodynamics is employed. We show that the selection rule that hybrid mesons do not decay to identical S-wave mesons, found in other models, is preserved. We predict decays of charmonium hybrids, discuss decays of J^PC=1^-+ exotic isovector hybrids of various masses, and interpret the \\pi(1800) as a hybrid meson.

  19. Electromagnetic waves and electron anisotropies downstream of supercritical interplanetary shocks

    CERN Document Server

    Wilson, L B; Szabo, A; Breneman, A; Cattell, C A; Goetz, K; Kellogg, P J; Kersten, K; Kasper, J C; Maruca, B A; Pulupa, M

    2012-01-01

    We present waveform observations of electromagnetic lower hybrid and whistler waves with f_ci 1.01. Thus, the whistler mode waves appear to be driven by a heat flux instability and cause perpendicular heating of the halo electrons. The lower hybrid waves show a much weaker correlation between \\partialB and normalized heat flux magnitude and are often observed near magnetic field gradients. A third type of event shows fluctuations consistent with a mixture of both lower hybrid and whistler mode waves. These results suggest that whistler waves may indeed be regulating the electron heat flux and the halo temperature anisotropy, which is important for theories and simulations of electron distribution evolution from the sun to the earth.

  20. Continuity Controlled Hybrid Automata

    NARCIS (Netherlands)

    Bergstra, J.A.; Middelburg, C.A.

    2004-01-01

    We investigate the connections between the process algebra for hybrid systems of Bergstra and Middelburg and the formalism of hybrid automata of Henzinger et al. We give interpretations of hybrid automata in the process algebra for hybrid systems and compare them with the standard interpretation of

  1. Continuity controlled Hybrid Automata

    NARCIS (Netherlands)

    Bergstra, J.A.; Middelburg, C.A.

    2008-01-01

    We investigate the connections between the process algebra for hybrid systems of Bergstra and Middelburg and the formalism of hybrid automata of Henzinger et al. We give interpretations of hybrid automata in the process algebra for hybrid systems and compare them with the standard interpretation of

  2. Dynamic square superlattice of Faraday waves

    Science.gov (United States)

    Kahouadji, Lyes; Chergui, Jalel; Juric, Damir; Shin, Seungwon; Tuckerman, Laurette

    2014-11-01

    Faraday waves are computed in a 3D container using BLUE, a code based on a hybrid Front-Tracking/Level-set algorithm for Lagrangian tracking of arbitrarily deformable phase interfaces. A new dynamic superlattice pattern is described which consists of a set of square waves arranged in a two-by-two array. The corners of this array are connected by a bridge whose position oscillates in time between the two diagonals.

  3. Waves, damped wave and observation

    CERN Document Server

    Phung, Kim Dang

    2009-01-01

    We consider the wave equation in a bounded domain (eventually convex). Two kinds of inequality are described when occurs trapped ray. Applications to control theory are given. First, we link such kind of estimate with the damped wave equation and its decay rate. Next, we describe the design of an approximate control function by an iterative time reversal method.

  4. Current drive with combined electron cyclotron wave and high harmonic fast wave in tokamak plasmas

    Science.gov (United States)

    Li, J. C.; Gong, X. Y.; Dong, J. Q.; Wang, J.; Zhang, N.; Zheng, P. W.; Yin, C. Y.

    2016-12-01

    The current driven by combined electron cyclotron wave (ECW) and high harmonic fast wave is investigated using the GENRAY/CQL3D package. It is shown that no significant synergetic current is found in a range of cases with a combined ECW and fast wave (FW). This result is consistent with a previous study [Harvey et al., in Proceedings of IAEA TCM on Fast Wave Current Drive in Reactor Scale Tokamaks (Synergy and Complimentarily with LHCD and ECRH), Arles, France, IAEA, Vienna, 1991]. However, a positive synergy effect does appear with the FW in the lower hybrid range of frequencies. This positive synergy effect can be explained using a picture of the electron distribution function induced by the ECW and a very high harmonic fast wave (helicon). The dependence of the synergy effect on the radial position of the power deposition, the wave power, the wave frequency, and the parallel refractive index is also analyzed, both numerically and physically.

  5. Gravity waves

    Science.gov (United States)

    Fritts, David

    1987-02-01

    Gravity waves contributed to the establishment of the thermal structure, small scale (80 to 100 km) fluctuations in velocity (50 to 80 m/sec) and density (20 to 30%, 0 to peak). Dominant gravity wave spectrum in the middle atmosphere: x-scale, less than 100 km; z-scale, greater than 10 km; t-scale, less than 2 hr. Theorists are beginning to understand middle atmosphere motions. There are two classes: Planetary waves and equatorial motions, gravity waves and tidal motions. The former give rise to variability at large scales, which may alter apparent mean structure. Effects include density and velocity fluctuations, induced mean motions, and stratospheric warmings which lead to the breakup of the polar vortex and cooling of the mesosphere. On this scale are also equatorial quasi-biennial and semi-annual oscillations. Gravity wave and tidal motions produce large rms fluctuations in density and velocity. The magnitude of the density fluctuations compared to the mean density is of the order of the vertical wavelength, which grows with height. Relative density fluctuations are less than, or of the order of 30% below the mesopause. Such motions may cause significant and variable convection, and wind shear. There is a strong seasonal variation in gravity wave amplitude. Additional observations are needed to address and quantify mean and fluctuation statistics of both density and mean velocity, variability of the mean and fluctuations, and to identify dominant gravity wave scales and sources as well as causes of variability, both temporal and geographic.

  6. Computational and theoretical study of the wave-particle interaction of protons and waves

    Energy Technology Data Exchange (ETDEWEB)

    Moya, P.S.; Munoz, V. [Chile Univ., Santiago (Chile). Dept. de Fisica; Vinas, A.F. [NASA Goddard Space Flight Center, Greenbelt, MD (United States). Heliophysics Science Div.; Valdivia, J.A. [Chile Univ., Santiago (Chile). Dept. de Fisica; Centro para el Desarrollo de la Nanociencia y Nanotecnologia, CEDENNA (Chile); CEIBA complejidad, Bogota (Colombia)

    2012-11-01

    We study the wave-particle interaction and the evolution of electromagnetic waves propagating through a plasma composed of electrons and protons, using two approaches. First, a quasilinear kinetic theory has been developed to study the energy transfer between waves and particles, with the subsequent acceleration and heating of protons. Second, a one-dimensional hybrid numerical simulation has been performed, with and without including an expanding-box model that emulates the spherical expansion of the solar wind, to investigate the fully nonlinear evolution of this wave-particle interaction. Numerical results of both approaches show that there is an anisotropic evolution of proton temperature. (orig.)

  7. Wave Dragon

    DEFF Research Database (Denmark)

    Tedd, James; Kofoed, Jens Peter; Knapp, W.

    2006-01-01

    Wave Dragon is a floating wave energy converter working by extracting energy principally by means of overtopping of waves into a reservoir. A 1:4.5 scale prototype has been sea tested for 20 months. This paper presents results from testing, experiences gained and developments made during...... this extended period. The prototype is highly instrumented. The overtopping characteristic and the power produced are presented here. This has enabled comparison between the prototype and earlier results from both laboratory model and computer simulation. This gives the optimal operating point and the expected...

  8. Ion cyclotron waves at Titan

    Science.gov (United States)

    Russell, C. T.; Wei, H. Y.; Cowee, M. M.; Neubauer, F. M.; Dougherty, M. K.

    2016-03-01

    During the interaction of Titan's thick atmosphere with the ambient plasma, it was expected that ion cyclotron waves would be generated by the free energy of the highly anisotropic velocity distribution of the freshly ionized atmospheric particles created in the interaction. However, ion cyclotron waves are rarely observed near Titan, due to the long growth times of waves associated with the major ion species from Titan's ionosphere, such as CH4+ and N2+. In the over 100 Titan flybys obtained by Cassini to date, there are only two wave events, for just a few minutes during T63 flyby and for tens of minutes during T98 flyby. These waves occur near the gyrofrequencies of proton and singly ionized molecular hydrogen. They are left-handed, elliptically polarized, and propagate nearly parallel to the field lines. Hybrid simulations are performed to understand the wave growth under various conditions in the Titan environment. The simulations using the plasma and field conditions during T63 show that pickup protons with densities ranging from 0.01 cm-3 to 0.02 cm-3 and singly ionized molecular hydrogens with densities ranging from 0.015 cm-3 to 0.25 cm-3 can drive ion cyclotron waves with amplitudes of ~0.02 nT and of ~0.04 nT within appropriate growth times at Titan, respectively. Since the T98 waves were seen farther upstream than the T63 waves, it is possible that the instability was stronger and grew faster on T98 than T63.

  9. Janus Waves

    CERN Document Server

    Papazoglou, Dimitris G; Tzortzakis, Stelios

    2016-01-01

    We show the existence of a family of waves that share a common interesting property affecting the way they propagate and focus. These waves are a superposition of twin waves, which are conjugate to each other under inversion of the propagation direction. In analogy to holography, these twin "real" and "virtual" waves are related respectively to the converging and the diverging part of the beam and can be clearly visualized in real space at two distinct foci under the action of a focusing lens. Analytic formulas for the intensity distribution after focusing are derived, while numerical and experimental demonstrations are given for some of the most interesting members of this family, the accelerating Airy and ring-Airy beams.

  10. Design guidelines of triboelectric nanogenerator for water wave energy harvesters

    Science.gov (United States)

    Ahmed, Abdelsalam; Hassan, Islam; Jiang, Tao; Youssef, Khalid; Liu, Lian; Hedaya, Mohammad; Abu Yazid, Taher; Zu, Jean; Wang, Zhong Lin

    2017-05-01

    Ocean waves are one of the cleanest and most abundant energy sources on earth, and wave energy has the potential for future power generation. Triboelectric nanogenerator (TENG) technology has recently been proposed as a promising technology to harvest wave energy. In this paper, a theoretical study is performed on a duck-shaped TENG wave harvester recently introduced in our work. To enhance the design of the duck-shaped TENG wave harvester, the mechanical and electrical characteristics of the harvester’s overall structure, as well as its inner configuration, are analyzed, respectively, under different wave conditions, to optimize parameters such as duck radius and mass. Furthermore, a comprehensive hybrid 3D model is introduced to quantify the performance of the TENG wave harvester. Finally, the influence of different TENG parameters is validated by comparing the performance of several existing TENG wave harvesters. This study can be applied as a guideline for enhancing the performance of TENG wave energy harvesters.

  11. Design guidelines of triboelectric nanogenerator for water wave energy harvesters

    KAUST Repository

    Ahmed, Abdelsalam

    2017-04-11

    Ocean waves are one of the cleanest and most abundant energy sources on earth, and wave energy has the potential for future power generation. Triboelectric nanogenerator (TENG) technology has recently been proposed as a promising technology to harvest wave energy. In this paper, a theoretical study is performed on a duck-shaped TENG wave harvester recently introduced in our work. To enhance the design of the duck-shaped TENG wave harvester, the mechanical and electrical characteristics of the harvester\\'s overall structure, as well as its inner configuration, are analyzed, respectively, under different wave conditions, to optimize parameters such as duck radius and mass. Furthermore, a comprehensive hybrid 3D model is introduced to quantify the performance of the TENG wave harvester. Finally, the influence of different TENG parameters is validated by comparing the performance of several existing TENG wave harvesters. This study can be applied as a guideline for enhancing the performance of TENG wave energy harvesters.

  12. Bottleneck Accumulation of Hybrid Magnetoelastic Bosons

    Science.gov (United States)

    Bozhko, Dmytro A.; Clausen, Peter; Melkov, Gennadii A.; L'vov, Victor S.; Pomyalov, Anna; Vasyuchka, Vitaliy I.; Chumak, Andrii V.; Hillebrands, Burkard; Serga, Alexander A.

    2017-06-01

    An ensemble of magnons, quanta of spin waves, can be prepared as a Bose gas of weakly interacting quasiparticles. Furthermore, the thermalization of the overpopulated magnon gas through magnon-magnon scattering processes, which conserve the number of particles, can lead to the formation of a Bose-Einstein condensate at the bottom of a spin-wave spectrum. However, magnon-phonon scattering can significantly modify this scenario and new quasiparticles are formed—magnetoelastic bosons. Our observations of a parametrically populated magnon gas in a single-crystal film of yttrium iron garnet by means of wave-vector-resolved Brillouin light scattering spectroscopy evidence a novel condensation phenomenon: A spontaneous accumulation of hybrid magnetoelastic bosonic quasiparticles at the intersection of the lowest magnon mode and a transversal acoustic wave.

  13. Wave Star

    DEFF Research Database (Denmark)

    Kramer, Morten; Frigaard, Peter

    Nærværende rapport beskriver modelforsøg udført på Aalborg Universitet, Institut for Byggeri og Anlæg med bølgeenergianlæget Wave Star.......Nærværende rapport beskriver modelforsøg udført på Aalborg Universitet, Institut for Byggeri og Anlæg med bølgeenergianlæget Wave Star....

  14. Wave Star

    DEFF Research Database (Denmark)

    Kramer, Morten; Andersen, Thomas Lykke

    Nærværende rapport beskriver modelforsøg udført på Aalborg Universitet, Institut for Vand, Jord og Miljøteknik med bølgeenergianlægget Wave Star.......Nærværende rapport beskriver modelforsøg udført på Aalborg Universitet, Institut for Vand, Jord og Miljøteknik med bølgeenergianlægget Wave Star....

  15. Blast Waves

    CERN Document Server

    Needham, Charles E

    2010-01-01

    The primary purpose of this text is to document many of the lessons that have been learned during the author’s more than forty years in the field of blast and shock. The writing therefore takes on an historical perspective, in some sense, because it follows the author’s experience. The book deals with blast waves propagating in fluids or materials that can be treated as fluids. It begins by distinguishing between blast waves and the more general category of shock waves. It then examines several ways of generating blast waves, considering the propagation of blast waves in one, two and three dimensions as well as through the real atmosphere. One section treats the propagation of shocks in layered gases in a more detailed manner. The book also details the interaction of shock waves with structures in particular reflections, progressing from simple to complex geometries, including planar structures, two-dimensional structures such as ramps or wedges, reflections from heights of burst, and three-dimensional st...

  16. Dynamics of rogue waves on multisoliton background in the Benjamin Ono equation

    Indian Academy of Sciences (India)

    YUN-KAI LIU; BIAO LI

    2017-04-01

    For the Benjamin Ono equation, the Hirota bilinear method and long wave limit method are applied to obtain the breathers and the rogue wave solutions. Bright and dark rogue waves exist in the Benjamin Ono equation, and their typical dynamics are analysed and illustrated. The semirational solutions possessing rogue waves and solitons are also obtained, and demonstrated by the three-dimensional figures. Furthermore, the hybrid of rogue wave and breather solutions are also found in the Benjamin Ono equation.

  17. Wave Generation Theory

    DEFF Research Database (Denmark)

    Frigaard, Peter; Høgedal, Michael; Christensen, Morten

    The intention of this manual is to provide some formulas and techniques which can be used for generating waves in hydraulic laboratories. Both long crested waves (2-D waves) and short crested waves (3-D waves) are considered....

  18. Wave Generation Theory

    OpenAIRE

    Frigaard, Peter; Høgedal, Michael; Christensen, Morten

    1993-01-01

    The intention of this manual is to provide some formulas and techniques which can be used for generating waves in hydraulic laboratories. Both long crested waves (2-D waves) and short crested waves (3-D waves) are considered.

  19. Study of a condition for the mode conversion from purely perpendicular electrostatic waves to electromagnetic waves

    Science.gov (United States)

    Kalaee, Mohammad Javad; Katoh, Yuto

    2016-07-01

    One of the mechanisms for generating electromagnetic plasma waves (Z-mode and LO-mode) is mode conversion from electrostatic waves into electromagnetic waves in inhomogeneous plasma. Herein, we study a condition required for mode conversion of electrostatic waves propagating purely perpendicular to the ambient magnetic field, by numerically solving the full dispersion relation. An approximate model is derived describing the coupling between electrostatic waves (hot plasma Bernstein mode) and Z-mode waves at the upper hybrid frequency. The model is used to study conditions required for mode conversion from electrostatic waves (electrostatic electron cyclotron harmonic waves, including Bernstein mode) into electromagnetic plasma waves (LO-mode). It is shown that for mode conversion to occur in inhomogeneous plasma, the angle between the boundary surface and the magnetic field vector should be within a specific range. The range of the angle depends on the norm of the k vector of waves at the site of mode conversion in the inhomogeneous region. The present study reveals that inhomogeneity alone is not a sufficient condition for mode conversion from electrostatic waves to electromagnetic plasma waves and that the angle between the magnetic field and the density gradient plays an important role in the conversion process.

  20. New inroads on the Physics of Upper Hybrid Turbulence

    Science.gov (United States)

    Papadopoulos, Konstantinos Dennis; Najmi, Amir; Eliasson, Bengt

    2016-07-01

    The physics associated with excitation of Upper Hybrid (UH) turbulence, including the observed high and low frequency wave spectra and the resultant plasma heating and acceleration is still covered with many puzzles that have yet to be understood within the context of traditional theories. A set of new computer simulations using a Vlasov code revealed several critical plasma wave features associated with driving waves in the upper hybrid resonance. In addition to the well-known excitation of a lower hybrid wave and an upper hybrid sideband shifted by the Lower Hybrid (LH) frequency usually seen in Stimulated Electromagnetic Emission (SEE) observations in ionospheric HF heating experiments the following major features were apparent: 1. Broadening of the wavenumber spectral region at the at the UH frequency 2. Excitation of all Bernstein modes associated with cyclotron frequency harmonics both below and above the UH frequency 3. The electron heating, in the form of bulk heating (close to a Dryvestein distribution) is due to a part of the wave-number spectrum associated with the first Bernstein mode, although its wave intensity is more than 20 dB lower than the intensity of the UH branch 4. An exception to the previous feature occurs when the UH frequency is close to an harmonic of the electron cyclotron frequency (ω_{UH} ≈ n Ω_e), when the first UH lower sideband equals a multiple of the cyclotron frequency (ω_{UH} - ω_{LH} ≈ n Ω_e). In this case the electron heating is due the downshifted UH waves, it is much stronger than in the non-resonant case and it is in the form of the high-energy tail. The implications of the new theory of the UH turbulence in the interpretation of observations in space plasmas and wave particle interactions will be discussed. Acknowledgment: The authors acknowledge discussions with their colleagues G. Milikh, S. Surma, Xi Shao and R. Sagdeev. Work supported by AFOSR MURI grant FA95501410019.

  1. Nonlinear wave-wave interactions and wedge waves

    Institute of Scientific and Technical Information of China (English)

    Ray Q.Lin; Will Perrie

    2005-01-01

    A tetrad mechanism for exciting long waves,for example edge waves,is described based on nonlinear resonant wave-wave interactions.In this mechanism,resonant interactions pass energy to an edge wave,from the three participating gravity waves.The estimated action flux into the edge wave can be orders of magnitude greater than the transfer fluxes derived from other competing mechanisms,such as triad interactions.Moreover,the numerical results show that the actual transfer rates into the edge wave from the three participating gravity waves are two-to three- orders of magnitude greater than bottom friction.

  2. Lower hybrid to whistler mode conversion on a density striation

    CERN Document Server

    Camporeale, Enrico; Colestock, Patrick

    2013-01-01

    When a wave packet composed of short wavelength lower hybrid modes traveling in an homogeneous plasma region encounters an inhomogeneity, it can resonantly excite long wavelength whistler waves via a linear mechanism known as mode conversion. An enhancement of lower hybrid/whistler activity has been often observed by sounding rockets and satellites in the presence of density depletions (striations) in the upper ionosphere. We address here the process of linear mode conversion of lower hybrid to whistler waves, mediated by a density striation, using a scalar-field formalism (in the limit of cold plasma linear theory) which we solve numerically. We show that the mode conversion can effectively transfer a large amount of energy from the short to the long wavelength modes. We also study how the efficiency scales by changing the properties (width and amplitude) of the density striation. We present a general criterion for the width of the striation that, if fulfilled, maximizes the conversion efficiency. Such a cri...

  3. From hybrid swarms to swarms of hybrids

    Science.gov (United States)

    The introgression of modern humans (Homo sapiens) with Neanderthals 40,000 YBP after a half-million years of separation, may have led to the best example of a hybrid swarm on earth. Modern trade and transportation in support of the human hybrids has continued to introduce additional species, genotyp...

  4. The Hybrid Museum: Hybrid Economies of Meaning

    DEFF Research Database (Denmark)

    Vestergaard, Vitus

    2013-01-01

    this article shows that there are two different museum mindsets where the second mindset leans towards participatory practices. It is shown how a museum can support a hybrid economy of meaning that builds on both a user generated economy of meaning and an institutional economy of meaning and adds value to both....... Such a museum is referred to as a hybrid museum....

  5. Hydraulic Hybrid Vehicles

    Science.gov (United States)

    EPA and the United Parcel Service (UPS) have developed a hydraulic hybrid delivery vehicle to explore and demonstrate the environmental benefits of the hydraulic hybrid for urban pick-up and delivery fleets.

  6. Hybrid Management in Hospitals

    DEFF Research Database (Denmark)

    Byrkjeflot, Haldor; Jespersen, Peter Kragh

    2010-01-01

    Artiklen indeholder et litteraturbaseret studium af ledelsesformer i sygehuse, hvor sundhedsfaglig ledelse og generel ledelse mikses til hybride ledelsesformer......Artiklen indeholder et litteraturbaseret studium af ledelsesformer i sygehuse, hvor sundhedsfaglig ledelse og generel ledelse mikses til hybride ledelsesformer...

  7. Hybrid Nanoelectronics: Future of Computer Technology

    Institute of Scientific and Technical Information of China (English)

    Wei Wang; Ming Liu; Andrew Hsu

    2006-01-01

    Nanotechnology may well prove to be the 21st century's new wave of scientific knowledge that transforms people's lives. Nanotechnology research activities are booming around the globe. This article reviews the recent progresses made on nanoelectronic research in US and China, and introduces several novel hybrid solutions specifically useful for future computer technology. These exciting new directions will lead to many future inventions, and have a huge impact to research communities and industries.

  8. Resin Catalyst Hybrids

    Institute of Scientific and Technical Information of China (English)

    S. Asaoka

    2005-01-01

    @@ 1Introduction: What are resin catalyst hybrids? There are typically two types of resin catalyst. One is acidic resin which representative is polystyrene sulfonic acid. The other is basic resin which is availed as metal complex support. The objective items of this study on resin catalyst are consisting of pellet hybrid, equilibrium hybrid and function hybrid of acid and base,as shown in Fig. 1[1-5].

  9. Mesoscale hybrid calibration artifact

    Science.gov (United States)

    Tran, Hy D.; Claudet, Andre A.; Oliver, Andrew D.

    2010-09-07

    A mesoscale calibration artifact, also called a hybrid artifact, suitable for hybrid dimensional measurement and the method for make the artifact. The hybrid artifact has structural characteristics that make it suitable for dimensional measurement in both vision-based systems and touch-probe-based systems. The hybrid artifact employs the intersection of bulk-micromachined planes to fabricate edges that are sharp to the nanometer level and intersecting planes with crystal-lattice-defined angles.

  10. The lightest hybrid meson supermultiplet in QCD

    Energy Technology Data Exchange (ETDEWEB)

    Dudek, Jozef J

    2011-10-01

    We interpret the spectrum of meson states recently obtained in non-perturbative lattice QCD calculations in terms of constituent quark-antiquark bound states and states, called 'hybrids', in which the q{bar q} pair is supplemented by an excitation of the gluonic field. We identify a lightest supermultiplet of hybrid mesons with J{sup PC} = (0,1,2){sup {-+}}, 1{sup -} built from a gluonic excitation of chromomagnetic character coupled to q{bar q} in an S-wave. The next lightest hybrids are suggested to be quark orbital excitations with the same gluonic excitation, while the next distinct gluonic excitation is significantly heavier. Existing models of gluonic excitations are compared to these findings and possible phenomenological consequences explored.

  11. The lightest hybrid meson supermultiplet in QCD

    CERN Document Server

    Dudek, Jozef J

    2011-01-01

    We interpret the spectrum of meson states recently obtained in non-perturbative lattice QCD calculations in terms of constituent quark-antiquark bound states and states, called `hybrids', in which the qqbar pair is supplemented by an excitation of the gluonic field. We identify a lightest supermultiplet of hybrid mesons with JPC = (0,1,2)-+, 1-- built from a gluonic excitation of chromomagnetic character coupled to qqbar in an S-wave. The next lightest hybrids are suggested to be quark orbital excitations with the same gluonic excitation, while the next distinct gluonic excitation is significantly heavier. Existing models of gluonic excitations are compared to these findings and possible phenomenological consequences explored.

  12. Hybrid-free Josephson Parametric Converter

    Science.gov (United States)

    Frattini, N. E.; Narla, A.; Sliwa, K. M.; Shankar, S.; Hatridge, M.; Devoret, M. H.

    A necessary component for any quantum computation architecture is the ability to perform efficient quantum operations. In the microwave regime of superconducting qubits, these quantum-limited operations can be realized with a non-degenerate Josephson junction based three-wave mixer, the Josephson Parametric Converter (JPC). Currently, the quantum signal of interest must pass through a lossy 180 degree hybrid to be presented as a differential drive to the JPC. This hybrid therefore places a limit on the quantum efficiency of the system and also increases the device footprint. We present a new design for the JPC eliminating the need for any external hybrid. We also show that this design has nominally identical performance to the conventional JPC. Work supported by ARO, AFOSR and YINQE.

  13. Realizing the Hybrid Library.

    Science.gov (United States)

    Pinfield, Stephen; Eaton, Jonathan; Edwards, Catherine; Russell, Rosemary; Wissenburg, Astrid; Wynne, Peter

    1998-01-01

    Outlines five projects currently funded by the United Kingdom's Electronic Libraries Program (eLib): HyLiFe (Hybrid Library of the Future), MALIBU (MAnaging the hybrid Library for the Benefit of Users), HeadLine (Hybrid Electronic Access and Delivery in the Library Networked Environment), ATHENS (authentication scheme), and BUILDER (Birmingham…

  14. Homoploid hybrid expectations

    Science.gov (United States)

    Homoploid hybrid speciation occurs when a stable, fertile, and reproductively isolated lineage results from hybridization between two distinct species without a change in ploidy level. Reproductive isolation between a homoploid hybrid species and its parents is generally attained via chromosomal re...

  15. Hybrid armature projectile

    Science.gov (United States)

    Hawke, Ronald S.; Asay, James R.; Hall, Clint A.; Konrad, Carl H.; Sauve, Gerald L.; Shahinpoor, Mohsen; Susoeff, Allan R.

    1993-01-01

    A projectile for a railgun that uses a hybrid armature and provides a seed block around part of the outer surface of the projectile to seed the hybrid plasma brush. In addition, the hybrid armature is continuously vaporized to replenish plasma in a plasma armature to provide a tandem armature and provides a unique ridge and groove to reduce plasama blowby.

  16. Intraply Hybrid Composite Design

    Science.gov (United States)

    Chamis, C. C.; Sinclair, J. H.

    1986-01-01

    Several theoretical approaches combined in program. Intraply hybrid composites investigated theoretically and experimentally at Lewis Research Center. Theories developed during investigations and corroborated by attendant experiments used to develop computer program identified as INHYD (Intraply Hybrid Composite Design). INHYD includes several composites micromechanics theories, intraply hybrid composite theories, and integrated hygrothermomechanical theory. Equations from theories used by program as appropriate for user's specific applications.

  17. Hybrid quantum information processing

    Energy Technology Data Exchange (ETDEWEB)

    Furusawa, Akira [Department of Applied Physics, School of Engineering, The University of Tokyo (Japan)

    2014-12-04

    I will briefly explain the definition and advantage of hybrid quantum information processing, which is hybridization of qubit and continuous-variable technologies. The final goal would be realization of universal gate sets both for qubit and continuous-variable quantum information processing with the hybrid technologies. For that purpose, qubit teleportation with a continuousvariable teleporter is one of the most important ingredients.

  18. Time-accurate AB-simulations of irregular coastal waves above bathymetry

    NARCIS (Netherlands)

    Groesen, van E. (Brenny); Andonowati,; Lee, Joseph Hun-Wei; Ng, Chiu-On

    2011-01-01

    In this contribution the performance is shown of a hybrid spectral-spatial implementation of the AB model for uni-directional waves above varying bottom. For irregular waves of JONSWAP-type, with peak periods of 9 and 12[s], significant wave height of 3[m], running from 30 to 15[m] depth over a 1:20

  19. Enhanced localization of Dyakonov-like surface waves in left-handed materials

    DEFF Research Database (Denmark)

    Crasovan, L. C.; Takayama, O.; Artigas, D.

    2006-01-01

    We address the existence and properties of hybrid surface waves forming at interfaces between left-handed materials and dielectric birefringent media. The existence conditions of such waves are found to be highly relaxed in comparison to Dyakonov waves existing in right-handed media. We show that...

  20. Tropical cyclogenesis in a tropical wave critical layer: easterly waves

    Directory of Open Access Journals (Sweden)

    T. J. Dunkerton

    2009-08-01

    Full Text Available The development of tropical depressions within tropical waves over the Atlantic and eastern Pacific is usually preceded by a "surface low along the wave" as if to suggest a hybrid wave-vortex structure in which flow streamlines not only undulate with the waves, but form a closed circulation in the lower troposphere surrounding the low. This structure, equatorward of the easterly jet axis, is identified herein as the familiar critical layer of waves in shear flow, a flow configuration which arguably provides the simplest conceptual framework for tropical cyclogenesis resulting from tropical waves, their interaction with the mean flow, and with diabatic processes associated with deep moist convection. The recirculating Kelvin cat's eye within the critical layer represents a sweet spot for tropical cyclogenesis in which a proto-vortex may form and grow within its parent wave. A common location for storm development is given by the intersection of the wave's critical latitude and trough axis at the center of the cat's eye, with analyzed vorticity centroid nearby. The wave and vortex live together for a time, and initially propagate at approximately the same speed. In most cases this coupled propagation continues for a few days after a tropical depression is identified. For easterly waves, as the name suggests, the propagation is westward. It is shown that in order to visualize optimally the associated Lagrangian motions, one should view the flow streamlines, or stream function, in a frame of reference translating horizontally with the phase propagation of the parent wave. In this co-moving frame, streamlines are approximately equivalent to particle trajectories. The closed circulation is quasi-stationary, and a dividing streamline separates air within the cat's eye from air outside. The critical layer equatorward of the easterly jet axis is important to tropical cyclogenesis because its cat's eye provides (i a region of

  1. Novel hybrid method: pulse CO2 laser-TIG hybrid welding by coordinated control

    Institute of Scientific and Technical Information of China (English)

    Chen Yanbin; Lei Zhenglong; Li Liqun; Wu Lin; Xie Cheng

    2006-01-01

    In continuous wave CO2 laser-TIG hybrid welding process, the laser energy is not fully utilized because of the absorption and defocusing by plasma in the arc space. Therefore, the optimal welding result can only be achieved in a limited energy range. In order to improve the welding performance further, a novel hybrid welding method-pulse CO2 laser-TIG arc hybrid welding by coordinated control is proposed and investigated. The experimental results indicate that, compared with continuous wave CO2 laser-TIG hybrid welding, the absorption and defocusing of laser energy by plasma are decreased further, and at the same time, the availability ratio of laser and arc energy can be increased when a coordinated frequency is controlled. As a result, the weld appearance is also improved as well as the weld depth is deepened. Furthermore, the effect of frequency and phase of pulse laser and TIG arc on the arc images and welding characteristics is also studied. However, the novel hybrid method has great potentials in the application of industrials from views of techniques and economy.

  2. GPAW optimized for Blue Gene/P using hybrid programming

    DEFF Research Database (Denmark)

    Kristensen, Mads Ruben Burgdorff; Happe, Hans Henrik; Vinter, Brian

    2009-01-01

    In this work we present optimizations of a Grid-based projector-augmented wave method software, GPAW for the Blue Gene/P architecture. The improvements are achieved by exploring the advantage of shared and distributed memory programming also known as hybrid programming. The work focuses on optimi......In this work we present optimizations of a Grid-based projector-augmented wave method software, GPAW for the Blue Gene/P architecture. The improvements are achieved by exploring the advantage of shared and distributed memory programming also known as hybrid programming. The work focuses...

  3. Shallow Water Waves and Solitary Waves

    CERN Document Server

    Hereman, Willy

    2013-01-01

    Encyclopedic article covering shallow water wave models used in oceanography and atmospheric science. Sections: Definition of the Subject; Introduction and Historical Perspective; Completely Integrable Shallow Water Wave Equations; Shallow Water Wave Equations of Geophysical Fluid Dynamics; Computation of Solitary Wave Solutions; Numerical Methods; Water Wave Experiments and Observations; Future Directions, and Bibliography.

  4. Waves & vibrations

    OpenAIRE

    Nicolas, Maxime

    2016-01-01

    Engineering school; This course is designed for students of Polytech Marseille, engineering school. It covers first the physics of vibration of the harmonic oscillator with damping and forcing, coupled oscillators. After a presentation of the wave equation, the vibration of strings, beams and membranes are studied.

  5. Wave Dragon

    DEFF Research Database (Denmark)

    Kramer, Morten; Frigaard, Peter

    På foranledning af Löwenmark F.R.I, er der udført numeriske beregninger af Wave Dragons (herefter WD) armes effektivitet for forskellige geometriske udformninger. 5 geometriske modeller, hvor WD's arme er forkortet/forlænget er undersøgt for 3 forskellige drejninger af armene. I alt er 15...

  6. Wave Dragon

    DEFF Research Database (Denmark)

    Kramer, Morten; Frigaard, Peter

    På foranledning af Löwenmark F.R.I, er der udført numeriske beregninger af Wave Dragons (herefter WD) armes effektivitet for forskellige geometriske udformninger. 5 geometriske modeller, hvor WD's arme er forkortet/forlænget er undersøgt for 3 forskellige drejninger af armene. I alt er 15...

  7. Nonlinear Landau damping and Alfven wave dissipation

    Science.gov (United States)

    Vinas, Adolfo F.; Miller, James A.

    1995-01-01

    Nonlinear Landau damping has been often suggested to be the cause of the dissipation of Alfven waves in the solar wind as well as the mechanism for ion heating and selective preacceleration in solar flares. We discuss the viability of these processes in light of our theoretical and numerical results. We present one-dimensional hybrid plasma simulations of the nonlinear Landau damping of parallel Alfven waves. In this scenario, two Alfven waves nonresonantly combine to create second-order magnetic field pressure gradients, which then drive density fluctuations, which in turn drive a second-order longitudinal electric field. Under certain conditions, this electric field strongly interacts with the ambient ions via the Landau resonance which leads to a rapid dissipation of the Alfven wave energy. While there is a net flux of energy from the waves to the ions, one of the Alfven waves will grow if both have the same polarization. We compare damping and growth rates from plasma simulations with those predicted by Lee and Volk (1973), and also discuss the evolution of the ambient ion distribution. We then consider this nonlinear interaction in the presence of a spectrum of Alfven waves, and discuss the spectrum's influence on the growth or damping of a single wave. We also discuss the implications for wave dissipation and ion heating in the solar wind.

  8. The hydrogen hybrid option

    Energy Technology Data Exchange (ETDEWEB)

    Smith, J.R.

    1993-10-15

    The energy efficiency of various piston engine options for series hybrid automobiles are compared with conventional, battery powered electric, and proton exchange membrane (PEM) fuel cell hybrid automobiles. Gasoline, compressed natural gas (CNG), and hydrogen are considered for these hybrids. The engine and fuel comparisons are done on a basis of equal vehicle weight, drag, and rolling resistance. The relative emissions of these various fueled vehicle options are also presented. It is concluded that a highly optimized, hydrogen fueled, piston engine, series electric hybrid automobile will have efficiency comparable to a similar fuel cell hybrid automobile and will have fewer total emissions than the battery powered vehicle, even without a catalyst.

  9. Coupling of α-channeling to |k∥| upshift in lower hybrid current drive

    Energy Technology Data Exchange (ETDEWEB)

    Ochs, I. E. [Harvard University, Cambridge, MA (United States). Department of Physics.; Bertelli, N. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Fisch, N. J. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States)

    2014-08-26

    Although lower hybrid waves have been shown to be effective in driving plasma current in present-day tokamaks, they are predicted to strongly interact with the energetic α particles born from fusion reactions in eventual tokamak reactors.

  10. Tropical cyclogenesis in a tropical wave critical layer: easterly waves

    Directory of Open Access Journals (Sweden)

    T. J. Dunkerton

    2008-06-01

    Full Text Available The development of tropical depressions within tropical waves over the Atlantic and eastern Pacific is usually preceded by a "surface low along the wave" as if to suggest a hybrid wave-vortex structure in which flow streamlines not only undulate with the waves, but form a closed circulation in the lower troposphere surrounding the low. This structure, equatorward of the easterly jet axis, resembles the familiar critical layer of waves in shear flow, a flow configuration which arguably provides the simplest conceptual framework for tropical cyclogenesis resulting from tropical waves, their interaction with the mean flow, and with diabatic processes associated with deep moist convection. The critical layer represents a sweet spot for tropical cyclogenesis in which a proto-vortex may form and grow within its parent wave. A common location for storm development within the critical layer is given by the intersection of the wave's critical latitude and trough axis, with analyzed vorticity centroid nearby. The wave and vortex live together for a time, and initially propagate at approximately the same speed. In most cases this coupled propagation continues for a few days after a tropical depression is identified. For easterly waves, as the name suggests, the propagation is westward. It is shown that in order to visualize optimally this "marsupial paradigm" one should view the flow streamlines, or stream function, in a frame of reference translating horizontally with the phase propagation of the parent wave. This translation requires an appropriate "gauge" that renders translating streamlines and isopleths of translating stream function approximately equivalent to flow trajectories. In the translating frame, the closed circulation is stationary, and a dividing streamline effectively separates air within the critical layer from air outside. The critical layer equatorward of the easterly jet axis is important to tropical cyclogenesis because it

  11. Toroidal Electromagnetic Particle-in-Cell Code with Gyro-kinetic Electron and Fully-kinetic ion

    Science.gov (United States)

    Lin, Jingbo; Zhang, Wenlu; Liu, Pengfei; Li, Ding

    2016-10-01

    A kinetic simulation model has been developed using gyro-kinetic electron and fully-kinetic ion by removing fast gyro motion of electrons using the Lie-transform perturbation theory. A particle-in-cell kinetic code is developed based on this model in general magnetic flux coordinate systems, which is particularly suitable for simulations of toroidally confined plasma. Single particle motion and field solver are successfully verified respectively. Integrated electrostatic benchmark, for example the lower-hybrid wave (LHW) and ion Bernstein wave (IBW), shows a good agreement with theoretical results. Preliminary electromagnetic benchmark of fast wave at lower hybrid frequency range is also presented. This code can be a first-principal tool to investigate high frequency nonlinear phenomenon, such as parametric decay instability, during lower-hybrid current drive (LHCD) and ion cyclotron radio frequency heating (ICRF) with complex geometry effect included. Supported by National Special Research Program of China For ITER and National Natural Science Foundation of China.

  12. Hybridization and extinction.

    Science.gov (United States)

    Todesco, Marco; Pascual, Mariana A; Owens, Gregory L; Ostevik, Katherine L; Moyers, Brook T; Hübner, Sariel; Heredia, Sylvia M; Hahn, Min A; Caseys, Celine; Bock, Dan G; Rieseberg, Loren H

    2016-08-01

    Hybridization may drive rare taxa to extinction through genetic swamping, where the rare form is replaced by hybrids, or by demographic swamping, where population growth rates are reduced due to the wasteful production of maladaptive hybrids. Conversely, hybridization may rescue the viability of small, inbred populations. Understanding the factors that contribute to destructive versus constructive outcomes of hybridization is key to managing conservation concerns. Here, we survey the literature for studies of hybridization and extinction to identify the ecological, evolutionary, and genetic factors that critically affect extinction risk through hybridization. We find that while extinction risk is highly situation dependent, genetic swamping is much more frequent than demographic swamping. In addition, human involvement is associated with increased risk and high reproductive isolation with reduced risk. Although climate change is predicted to increase the risk of hybridization-induced extinction, we find little empirical support for this prediction. Similarly, theoretical and experimental studies imply that genetic rescue through hybridization may be equally or more probable than demographic swamping, but our literature survey failed to support this claim. We conclude that halting the introduction of hybridization-prone exotics and restoring mature and diverse habitats that are resistant to hybrid establishment should be management priorities.

  13. Spoof Plasmon Hybridization

    CERN Document Server

    Zhang, Jingjing; Luo, Yu; Shen, Xiaopeng; Maier, Stefan A; Cui, Tie Jun

    2016-01-01

    Plasmon hybridization between closely spaced nanoparticles yields new hybrid modes not found in individual constituents, allowing for the engineering of resonance properties and field enhancement capabilities of metallic nanostructure. Experimental verifications of plasmon hybridization have been thus far mostly limited to optical frequencies, as metals cannot support surface plasmons at longer wavelengths. Here, we introduce the concept of 'spoof plasmon hybridization' in highly conductive metal structures and investigate experimentally the interaction of localized surface plasmon resonances (LSPR) in adjacent metal disks corrugated with subwavelength spiral patterns. We show that the hybridization results in the splitting of spoof plasmon modes into bonding and antibonding resonances analogous to molecular orbital rule and plasmonic hybridization in optical spectrum. These hybrid modes can be manipulated to produce enormous field enhancements (larger than 5000) by tuning the separation between disks or alte...

  14. Marine Fish Hybridization

    KAUST Repository

    He, Song

    2017-04-01

    Natural hybridization is reproduction (without artificial influence) between two or more species/populations which are distinguishable from each other by heritable characters. Natural hybridizations among marine fishes were highly underappreciated due to limited research effort; it seems that this phenomenon occurs more often than is commonly recognized. As hybridization plays an important role in biodiversity processes in the marine environment, detecting hybridization events and investigating hybridization is important to understand and protect biodiversity. The first chapter sets the framework for this disseration study. The Cohesion Species Concept was selected as the working definition of a species for this study as it can handle marine fish hybridization events. The concept does not require restrictive species boundaries. A general history and background of natural hybridization in marine fishes is reviewed during in chapter as well. Four marine fish hybridization cases were examed and documented in Chapters 2 to 5. In each case study, at least one diagnostic nuclear marker, screened from among ~14 candidate markers, was found to discriminate the putative hybridizing parent species. To further investigate genetic evidence to support the hybrid status for each hybrid offspring in each case, haploweb analysis on diagnostic markers (nuclear and/or mitochondrial) and the DAPC/PCA analysis on microsatellite data were used. By combining the genetic evidences, morphological traits, and ecological observations together, the potential reasons that triggered each hybridization events and the potential genetic/ecology effects could be discussed. In the last chapter, sequences from 82 pairs of hybridizing parents species (for which COI barcoding sequences were available either on GenBank or in our lab) were collected. By comparing the COI fragment p-distance between each hybridizing parent species, some general questions about marine fish hybridization were discussed: Is

  15. Impact of Wave Dragon on Wave Climate

    DEFF Research Database (Denmark)

    Andersen, Thomas Lykke; Tedd, James; Kramer, Morten

    This report is an advisory paper for use in determining the wave dragon effects on hydrography, by considering the effect on the wave climate in the region of a wave dragon. This is to be used in the impact assessment for the Wave Dragon pre-commercial demonstrator.......This report is an advisory paper for use in determining the wave dragon effects on hydrography, by considering the effect on the wave climate in the region of a wave dragon. This is to be used in the impact assessment for the Wave Dragon pre-commercial demonstrator....

  16. Topology Optimization for Wave Propagation Problems with Experimental Validation

    DEFF Research Database (Denmark)

    Christiansen, Rasmus Ellebæk

    from acoustics, however problems for TE or TM polarized electromagnetic waves and shear waves in solids in two dimensions may be treated using the proposed methods with minor modifications. A brief introduction to wave problems and to density-based topology optimizationis included, as is a brief......This Thesis treats the development and experimental validation of density-based topology optimization methods for wave propagation problems. Problems in the frequency regime where design dimensions are between approximately one fourth and ten wavelengths are considered. All examples treat problems...... discussion of the finite element method and a hybrid ofa wave based method and the finite element method, used to discretize the modelproblems under consideration. A short discussion of the benefits and drawbacks of applying the hybrid method compared to the finite element method, used in conjunction...

  17. Relativistic spherical plasma waves

    Science.gov (United States)

    Bulanov, S. S.; Maksimchuk, A.; Schroeder, C. B.; Zhidkov, A. G.; Esarey, E.; Leemans, W. P.

    2012-02-01

    Tightly focused laser pulses that diverge or converge in underdense plasma can generate wake waves, having local structures that are spherical waves. Here we study theoretically and numerically relativistic spherical wake waves and their properties, including wave breaking.

  18. Gravitational waves

    CERN Document Server

    Ciufolini, I; Moschella, U; Fre, P

    2001-01-01

    Gravitational waves (GWs) are a hot topic and promise to play a central role in astrophysics, cosmology, and theoretical physics. Technological developments have led us to the brink of their direct observation, which could become a reality in the coming years. The direct observation of GWs will open an entirely new field: GW astronomy. This is expected to bring a revolution in our knowledge of the universe by allowing the observation of previously unseen phenomena, such as the coalescence of compact objects (neutron stars and black holes), the fall of stars into supermassive black holes, stellar core collapses, big-bang relics, and the new and unexpected.With a wide range of contributions by leading scientists in the field, Gravitational Waves covers topics such as the basics of GWs, various advanced topics, GW detectors, astrophysics of GW sources, numerical applications, and several recent theoretical developments. The material is written at a level suitable for postgraduate students entering the field.

  19. Wave Star

    DEFF Research Database (Denmark)

    Kramer, Morten; Frigaard, Peter; Brorsen, Michael

    Nærværende rapport beskriver foreløbige hovedkonklusioner på modelforsøg udført på Aalborg Universitet, Institut for Vand, Jord og Miljøteknik med bølgeenergianlægget Wave Star i perioden 13/9 2004 til 12/11 2004.......Nærværende rapport beskriver foreløbige hovedkonklusioner på modelforsøg udført på Aalborg Universitet, Institut for Vand, Jord og Miljøteknik med bølgeenergianlægget Wave Star i perioden 13/9 2004 til 12/11 2004....

  20. Wave Propagation

    CERN Document Server

    Ferrarese, Giorgio

    2011-01-01

    Lectures: A. Jeffrey: Lectures on nonlinear wave propagation.- Y. Choquet-Bruhat: Ondes asymptotiques.- G. Boillat: Urti.- Seminars: D. Graffi: Sulla teoria dell'ottica non-lineare.- G. Grioli: Sulla propagazione del calore nei mezzi continui.- T. Manacorda: Onde nei solidi con vincoli interni.- T. Ruggeri: "Entropy principle" and main field for a non linear covariant system.- B. Straughan: Singular surfaces in dipolar materials and possible consequences for continuum mechanics

  1. Shock Waves

    CERN Document Server

    Jiang, Z

    2005-01-01

    The International Symposium on Shock Waves (ISSW) is a well established series of conferences held every two years in a different location. A unique feature of the ISSW is the emphasis on bridging the gap between physicists and engineers working in fields as different as gas dynamics, fluid mechanics and materials sciences. The main results presented at these meetings constitute valuable proceedings that offer anyone working in this field an authoritative and comprehensive source of reference.

  2. Engineering semiconductor hybrids for sensing

    Science.gov (United States)

    Gumbs, Godfrey; Iurov, Andrii; Huang, Danhong

    2016-06-01

    The effect of screening of the coulomb interaction between two layers of two-dimensional electrons, such as in graphene, by a highly doped semiconducting substrate is investigated. We employ the random-phase approximation to calculate the dispersion equation of this hybrid structure in order to determine the plasmon excitation spectrum. When an electric current is passed through a layer, the low-frequency plasmons in the layer may bifurcate into separate streams due to the current-driving effect. At a critical wave vector, determined by the separation between layers and their distance from the surface, their phase velocities may be in opposite directions and a surface plasmon instability leads to the emission of radiation. Applications to detectors and other electromagnetic devices exploiting nano-plasmonics are discussed.

  3. Voltage amplification of thermopower waves via current crowding at high resistances in self-propagating combustion waves

    Science.gov (United States)

    Yeo, Taehan; Hwang, Hayoung; Cho, Yonghwan; Shin, Dongjoon; Choi, Wonjoon

    2015-07-01

    Combustion wave propagation in micro/nanostructured materials generates a chemical-thermal-electrical energy conversion, which enables the creation of an unusual source of electrical energy, called a thermopower wave. In this paper, we report that high electrical resistance regimes would significantly amplify the output voltage of thermopower waves, because the current crowding creates a narrow path for charge carrier transport. We show that the structurally defective regions in the hybrid composites of chemical fuels and carbon nanotube (CNT) arrays determine both the resistance levels of the hybrid composites and the corresponding output voltage of thermopower waves. A sudden acceleration of the crowded charges would be induced by the moving reaction front of the combustion wave when the supplied driving force overcomes the potential barrier to cause charge carrier transport over the defective region. This property is investigated experimentally for the locally manipulated defective areas using diverse methods. In this study, thermopower waves in CNT-based hybrid composites are able to control the peak voltages in the range of 10-1000 mV by manipulating the resistance from 10 Ω to 100 kΩ. This controllable voltage generation from thermopower waves may enable applications using the combustion waves in micro/nanostructured materials and better understanding of the underlying physics.

  4. Henkin and Hybrid Logic

    DEFF Research Database (Denmark)

    Blackburn, Patrick Rowan; Huertas, Antonia; Manzano, Maria;

    2014-01-01

    Leon Henkin was not a modal logician, but there is a branch of modal logic that has been deeply influenced by his work. That branch is hybrid logic, a family of logics that extend orthodox modal logic with special proposition symbols (called nominals) that name worlds. This paper explains why...... Henkin’s techniques are so important in hybrid logic. We do so by proving a completeness result for a hybrid type theory called HTT, probably the strongest hybrid logic that has yet been explored. Our completeness result builds on earlier work with a system called BHTT, or basic hybrid type theory...... is due to the first-order perspective, which lies at the heart of Henin’s best known work and hybrid logic....

  5. BSA Hybrid Synthesized Polymer

    Institute of Scientific and Technical Information of China (English)

    Zong Bin LIU; Xiao Pei DENG; Chang Sheng ZHAO

    2006-01-01

    Bovine serum albumin (BSA), a naturally occurring biopolymer, was regarded as a polymeric material to graft to an acrylic acid (AA)-N-vinyl pyrrolidone (NVP) copolymer to form a biomacromolecular hybrid polymer. The hybrid polymer can be blended with polyethersulfone (PES) to increase the hydrophilicity of the PES membrane, which suggested that the hybrid polymer might have a wide application in the modification of biomaterials.

  6. Hybrid Action Systems

    DEFF Research Database (Denmark)

    Ronkko, Mauno; Ravn, Anders P.

    1997-01-01

    a differential action, which allows differential equations as primitive actions. The extension allows us to model hybrid systems with both continuous and discrete behaviour. The main result of this paper is an extension of such a hybrid action system with parallel composition. The extension does not change...... the original meaning of the parallel composition, and therefore also the ordinary action systems can be composed in parallel with the hybrid action systems....

  7. HYBRID VEHICLE CONTROL SYSTEM

    Directory of Open Access Journals (Sweden)

    V. Dvadnenko

    2016-06-01

    Full Text Available The hybrid vehicle control system includes a start–stop system for an internal combustion engine. The system works in a hybrid mode and normal vehicle operation. To simplify the start–stop system, there were user new possibilities of a hybrid car, which appeared after the conversion. Results of the circuit design of the proposed system of basic blocks are analyzed.

  8. Nanoscale Organic Hybrid Electrolytes

    KAUST Repository

    Nugent, Jennifer L.

    2010-08-20

    Nanoscale organic hybrid electrolytes are composed of organic-inorganic hybrid nanostructures, each with a metal oxide or metallic nanoparticle core densely grafted with an ion-conducting polyethylene glycol corona - doped with lithium salt. These materials form novel solvent-free hybrid electrolytes that are particle-rich, soft glasses at room temperature; yet manifest high ionic conductivity and good electrochemical stability above 5V. © 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Hybrid radiator cooling system

    Science.gov (United States)

    France, David M.; Smith, David S.; Yu, Wenhua; Routbort, Jules L.

    2016-03-15

    A method and hybrid radiator-cooling apparatus for implementing enhanced radiator-cooling are provided. The hybrid radiator-cooling apparatus includes an air-side finned surface for air cooling; an elongated vertically extending surface extending outwardly from the air-side finned surface on a downstream air-side of the hybrid radiator; and a water supply for selectively providing evaporative cooling with water flow by gravity on the elongated vertically extending surface.

  10. Waves in complex systems

    Science.gov (United States)

    Xie, Hang

    inhomogeneities. By varying such geometric patterns, we attempt to optimize the ratio of the Hall voltage to the longitudinal voltage at the limit of small applied magnetic field. Several optimal nano-pattern designs have been found through the use of genetic algorithm, with enhancement of the Hall effect up to 500%. The third topic involves the interaction of electromagnetic waves with crystals composed of fractal units. Here the fractal unit can possess multiple electromagnetic resonances, in exact analogy to atoms in a solid crystal. In particular, these resonances can be very subwavelength in character, and when the fractal units are periodically arranged, there can be coupling between the fractal local resonances and Bragg scattering, leading to hybrid modes with a rich array of interesting characteristics. The study of the above wave phenomena requires a diverse assortment of numerical techniques. A section of the thesis is devoted to their exposition.

  11. Semiannual Status Report. [excitation of electromagnetic waves in the whistler frequency range

    Science.gov (United States)

    1994-01-01

    During the last six months, we have continued our study of the excitation of electromagnetic waves in the whistler frequency range and the role that these waves will play in the acceleration of electrons and ions in the auroral region. A paper entitled 'Electron Beam Excitation of Upstream Waves in the Whistler Mode Frequency Range' was listed in the Journal of Geophysical Research. In this paper, we have shown that an anisotropic electron beam (or gyrating electron beam) is capable of generating both left-hand and right-hand polarized electromagnetic waves in the whistler frequency range. Since right-hand polarized electromagnetic waves can interact with background electrons and left-hand polarized waves can interact with background ions through cyclotron resonance, it is possible that these beam generated left-hand and right-hand polarized electromagnetic waves can accelerate either ions or electrons (or both), depending on the physical parameters under consideration. We are currently carrying out a comprehensive study of the electromagnetic whistler and lower hybrid like waves observed in the auroral zone using both wave and particle data. Our first task is to identify these wave modes and compare it with particle observations. Using both the DE-1 particle and wave measurements, we can positively identify those electromagnetics lower hybrid like waves as fast magnetosonic waves and the upper cutoff of these waves is the local lower hybrid frequency. From the upper cutoff of the frequency spectrum, one can infer the particle density and the result is in very good agreement with the particle data. Since these electromagnetic lower hybrid like waves can have frequencies extended down to the local ion cyclotron frequency, it practically confirms that they are not whistler waves.

  12. Semiannual Status Report. [excitation of electromagnetic waves in the whistler frequency range

    Science.gov (United States)

    1994-01-01

    During the last six months, we have continued our study of the excitation of electromagnetic waves in the whistler frequency range and the role that these waves will play in the acceleration of electrons and ions in the auroral region. A paper entitled 'Electron Beam Excitation of Upstream Waves in the Whistler Mode Frequency Range' was listed in the Journal of Geophysical Research. In this paper, we have shown that an anisotropic electron beam (or gyrating electron beam) is capable of generating both left-hand and right-hand polarized electromagnetic waves in the whistler frequency range. Since right-hand polarized electromagnetic waves can interact with background electrons and left-hand polarized waves can interact with background ions through cyclotron resonance, it is possible that these beam generated left-hand and right-hand polarized electromagnetic waves can accelerate either ions or electrons (or both), depending on the physical parameters under consideration. We are currently carrying out a comprehensive study of the electromagnetic whistler and lower hybrid like waves observed in the auroral zone using both wave and particle data. Our first task is to identify these wave modes and compare it with particle observations. Using both the DE-1 particle and wave measurements, we can positively identify those electromagnetics lower hybrid like waves as fast magnetosonic waves and the upper cutoff of these waves is the local lower hybrid frequency. From the upper cutoff of the frequency spectrum, one can infer the particle density and the result is in very good agreement with the particle data. Since these electromagnetic lower hybrid like waves can have frequencies extended down to the local ion cyclotron frequency, it practically confirms that they are not whistler waves.

  13. Hybrid Unifying Variable Supernetwork Model

    Institute of Scientific and Technical Information of China (English)

    LIU; Qiang; FANG; Jin-qing; LI; Yong

    2015-01-01

    In order to compare new phenomenon of topology change,evolution,hybrid ratio and network characteristics of unified hybrid network theoretical model with unified hybrid supernetwork model,this paper constructed unified hybrid variable supernetwork model(HUVSM).The first layer introduces a hybrid ratio dr,the

  14. Large Unifying Hybrid Supernetwork Model

    Institute of Scientific and Technical Information of China (English)

    LIU; Qiang; FANG; Jin-qing; LI; Yong

    2015-01-01

    For depicting multi-hybrid process,large unifying hybrid network model(so called LUHNM)has two sub-hybrid ratios except dr.They are deterministic hybrid ratio(so called fd)and random hybrid ratio(so called gr),respectively.

  15. Making Waves: Seismic Waves Activities and Demonstrations

    Science.gov (United States)

    Braile, S. J.; Braile, L. W.

    2011-12-01

    The nature and propagation of seismic waves are fundamental concepts necessary for understanding the exploration of Earth's interior structure and properties, plate tectonics, earthquakes, and seismic hazards. Investigating seismic waves is also an engaging approach to learning basic principles of the physics of waves and wave propagation. Several effective educational activities and demonstrations are available for teaching about seismic waves, including the stretching of a spring to demonstrate elasticity; slinky wave propagation activities for compressional, shear, Rayleigh and Love waves; the human wave activity to demonstrate P- and S- waves in solids and liquids; waves in water in a simple wave tank; seismic wave computer animations; simple shake table demonstrations of model building responses to seismic waves to illustrate earthquake damage to structures; processing and analysis of seismograms using free and easy to use software; and seismic wave simulation software for viewing wave propagation in a spherical Earth. The use of multiple methods for teaching about seismic waves is useful because it provides reinforcement of the fundamental concepts, is adaptable to variable classroom situations and diverse learning styles, and allows one or more methods to be used for authentic assessment. The methods described here have been used effectively with a broad range of audiences, including K-12 students and teachers, undergraduate students in introductory geosciences courses, and geosciences majors.

  16. Hybrid Rocket Technology

    National Research Council Canada - National Science Library

    Sankaran Venugopal; K K Rajesh; V Ramanujachari

    2011-01-01

    With their unique operational characteristics, hybrid rockets can potentially provide safer, lower-cost avenues for spacecraft and missiles than the current solid propellant and liquid propellant systems...

  17. Hybrid FOSS Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Armstrong researchers are continuing their efforts to further develop FOSS technologies. A hybrid FOSS technique (HyFOSS) employs conventional continuous grating...

  18. Geometrical vs wave optics under gravitational waves

    CERN Document Server

    Angélil, Raymond

    2015-01-01

    We present some new derivations of the effect of a plane gravitational wave on a light ray. A simple interpretation of the results is that a gravitational wave causes a phase modulation of electromagnetic waves. We arrive at this picture from two contrasting directions, namely null geodesics and Maxwell's equations, or, geometric and wave optics. Under geometric optics, we express the geodesic equations in Hamiltonian form and solve perturbatively for the effect of gravitational waves. We find that the well-known time-delay formula for light generalizes trivially to massive particles. We also recover, by way of a Hamilton-Jacobi equation, the phase modulation obtained under wave optics. Turning then to wave optics, rather than solving Maxwell's equations directly for the fields, as in most previous approaches, we derive a perturbed wave equation (perturbed by the gravitational wave) for the electromagnetic four-potential. From this wave equation it follows that the four-potential and the electric and magnetic...

  19. Hybrid squeezing of solitonic resonant radiation in photonic crystal fibers

    CERN Document Server

    Tran, Truong X; Soeller, Christoph; Blow, Keith J; Biancalana, Fabio

    2011-01-01

    We report on the existence of a novel kind of squeezing in photonic crystal fibers which is conceptually intermediate between the four-wave mixing induced squeezing, in which all the participant waves are monochromatic waves, and the self-phase modulation induced squeezing for a single pulse in a coherent state. This hybrid squeezing occurs when an arbitrary short soliton emits quasi-monochromatic resonant radiation near a zero group velocity dispersion point of the fiber. Photons around the resonant frequency become strongly correlated due to the presence of the classical soliton, and a reduction of the quantum noise below the shot noise level is predicted.

  20. Investigation of the hybrid electron linac with negative group velocity

    Science.gov (United States)

    Savin, E. A.; Alekhanov, R. Yu.; Bulanov, A. V.; Kaminskiy, V. I.; Matsievskiy, S. V.; Sobenin, N. P.

    2016-09-01

    Hybrid accelerator, incorporating travelling wave (TW) and standing wave (SW) structures is proposed and discussed. Accelerator can sum up an RF focusing in the SW buncher and lower losses in the TW accelerating structure walls. Moreover, the structure without dumping load is proposed. Input power and beam loading are chosen to minimize power reflection from buncher maintain travelling wave regime in the accelerating structure while beam loading is on. In this case SW buncher operates as a dumping load, so all input power either goes to beam or dissipates in the wall losses, it increases structure efficiency. RF characteristics and beam dynamics simulations have been performed.

  1. From hybrid swarms to swarms of hybrids

    Science.gov (United States)

    Stohlgren, Thomas J.; Szalanski, Allen L; Gaskin, John F.; Young, Nicholas E.; West, Amanda; Jarnevich, Catherine S.; Tripodi, Amber

    2015-01-01

    Science has shown that the introgression or hybridization of modern humans (Homo sapiens) with Neanderthals up to 40,000 YBP may have led to the swarm of modern humans on earth. However, there is little doubt that modern trade and transportation in support of the humans has continued to introduce additional species, genotypes, and hybrids to every country on the globe. We assessed the utility of species distributions modeling of genotypes to assess the risk of current and future invaders. We evaluated 93 locations of the genus Tamarix for which genetic data were available. Maxent models of habitat suitability showed that the hybrid, T. ramosissima x T. chinensis, was slightly greater than the parent taxa (AUCs > 0.83). General linear models of Africanized honey bees, a hybrid cross of Tanzanian Apis mellifera scutellata and a variety of European honey bee including A. m. ligustica, showed that the Africanized bees (AUC = 0.81) may be displacing European honey bees (AUC > 0.76) over large areas of the southwestern U.S. More important, Maxent modeling of sub-populations (A1 and A26 mitotypes based on mDNA) could be accurately modeled (AUC > 0.9), and they responded differently to environmental drivers. This suggests that rapid evolutionary change may be underway in the Africanized bees, allowing the bees to spread into new areas and extending their total range. Protecting native species and ecosystems may benefit from risk maps of harmful invasive species, hybrids, and genotypes.

  2. Circuit QED with hybrid metamaterial transmission lines

    Energy Technology Data Exchange (ETDEWEB)

    Ruloff, Stefan; Taketani, Bruno; Wilhelm, Frank [Theoretical Physics, Universitaet des Saarlandes, Saarbruecken (Germany)

    2016-07-01

    We're working on the theory of metamaterials providing some interesting results. The negative refraction index causes an opposite orientation of the wave vector k and the Poynting vector S of the travelling waves. Hence the metamaterial has a falling dispersion relation ∂ω(k)/∂k < 0 implying that low frequencies correspond to short wavelengths. Metamaterials are simulated by left-handed transmission lines consisting of discrete arrays of series capacitors and parallel inductors to ground. Unusual physics arises when right-and left-handed transmission lines are coupled forming a hybrid metamaterial transmission line. E.g. if a qubit is placed in front of a hybrid metamaterial transmission line terminated in an open circuit, the spontaneous emission rate is weakened or unaffected depending on the transition frequency of the qubit. Some other research interests are the general analysis of metamaterial cavities and the mode structure of hybrid metamaterial cavities for QND readout of multi-qubit operators. Especially the precise answer to the question about the definition of the mode volume of a metamaterial cavity is one of our primary goals.

  3. Microlattice Metamaterials for Tailoring Ultrasonic Transmission with Elastoacoustic Hybridization

    Science.gov (United States)

    Krödel, Sebastian; Daraio, Chiara

    2016-12-01

    Materials with designed microscale architectures, like microlattices, can achieve extreme mechanical properties. Most studies of microlattices focus on their quasistatic response, but their structural dimensions naturally prime them for ultrasonic applications. Here we report that microlattices constitute a class of acoustic metamaterials that exploit elastoacoustic hybridization to tailor ultrasonic wave propagation. Selecting the microlattice geometry allows the formation of hybridization band gaps that effectively attenuate (by >2 orders of magnitude) acoustic signals. The hybridization gaps stem from the interaction of pressure waves in a surrounding medium (e.g., water) with localized bending modes of the trusses in the microlattice. Outside these band gaps, the microlattices are highly transmissive (>80 % ) because their acoustic impedance is close to that of water. Our work can have important implications in the design of acoustic metamaterial applications in biomedical imaging, cell-based assay technology, and acoustic isolators in microelectromechanical systems.

  4. CMS-Wave

    Science.gov (United States)

    2014-10-27

    2014 2. REPORT TYPE 3. DATES COVERED 00-00-2014 to 00-00-2014 4. TITLE AND SUBTITLE CMS -Wave 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM...Program CMS -Wave CMS -Wave is a two-dimensional spectral wind-wave generation and transformation model that employs a forward-marching, finite...difference method to solve the wave action conservation equation. Capabilities of CMS -Wave include wave shoaling, refraction, diffraction, reflection

  5. Electric field dependence of hybridized gap in InAs/GaSb quantum well system

    Science.gov (United States)

    Ruan, Jiufu; Wei, Xiangfei; Wang, Weiyang

    2017-02-01

    We demonstrate theoretically that exchange interaction induced by electron-hole scattering via Coulomb interaction can cause a hybridized gap in InAs/GaSb based type II and broken-gap quantum wells. The hybridized energy spectra are obtained analytically at the low temperature and long wave limits. An electric field depended hybridized gap about 4 meV opens at the anti-crossing points of the hybridized energy spectra, in accordance with experimental measurements. The hybridized gap varies linearly with the gate electric voltage due to the fact that the electric field can change the exchange self-energy by tuning the overlap of the wavefunctions and the Fermi energy. Our theoretical results can give a deep insight of the origin of the hybridized gap and provide a simple way to determine the value and the position of the hybridized gap in the presence of the gate electric voltage.

  6. Inferring Magnetospheric Heavy Ion Density using EMIC Waves

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Eun-Hwa; Johnson, Jay R.; Kim, Hyomin; Lee, Dong-Hun

    2014-05-01

    We present a method to infer heavy ion concentration ratios from EMIC wave observations that result from ionion hybrid (IIH) resonance. A key feature of the ion-ion hybrid resonance is the concentration of wave energy in a field-aligned resonant mode that exhibits linear polarization. This mode converted wave is localized at the location where the frequency of a compressional wave driver matches the IIH resonance condition, which depends sensitively on the heavy ion concentration. This dependence makes it possible to estimate the heavy ion concentration ratio. In this letter, we evaluate the absorption coefficients at the IIH resonance at Earth's geosynchronous orbit for variable concentrations of He+ and field-aligned wave numbers using a dipole magnetic field. Although wave absorption occurs for a wide range of heavy ion concentrations, it only occurs for a limited range of field-aligned wave numbers such that the IIH resonance frequency is close to, but not exactly the same as the crossover frequency. Using the wave absorption and observed EMIC waves from GOES-12 satellite, we demonstrate how this technique can be used to estimate that the He+ concentration is around 4% near L = 6.6.

  7. Cardiac hybrid imaging

    Energy Technology Data Exchange (ETDEWEB)

    Gaemperli, Oliver [University Hospital Zurich, Cardiac Imaging, Zurich (Switzerland); University Hospital Zurich, Nuclear Cardiology, Cardiovascular Center, Zurich (Switzerland); Kaufmann, Philipp A. [University Hospital Zurich, Cardiac Imaging, Zurich (Switzerland); Alkadhi, Hatem [University Hospital Zurich, Institute of Diagnostic and Interventional Radiology, Zurich (Switzerland)

    2014-05-15

    Hybrid cardiac single photon emission computed tomography (SPECT)/CT imaging allows combined assessment of anatomical and functional aspects of cardiac disease. In coronary artery disease (CAD), hybrid SPECT/CT imaging allows detection of coronary artery stenosis and myocardial perfusion abnormalities. The clinical value of hybrid imaging has been documented in several subsets of patients. In selected groups of patients, hybrid imaging improves the diagnostic accuracy to detect CAD compared to the single imaging techniques. Additionally, this approach facilitates functional interrogation of coronary stenoses and guidance with regard to revascularization procedures. Moreover, the anatomical information obtained from CT coronary angiography or coronary artery calcium scores (CACS) adds prognostic information over perfusion data from SPECT. The use of cardiac hybrid imaging has been favoured by the dissemination of dedicated hybrid systems and the release of dedicated image fusion software, which allow simple patient throughput for hybrid SPECT/CT studies. Further technological improvements such as more efficient detector technology to allow for low-radiation protocols, ultra-fast image acquisition and improved low-noise image reconstruction algorithms will be instrumental to further promote hybrid SPECT/CT in research and clinical practice. (orig.)

  8. Hybrid intelligent engineering systems

    CERN Document Server

    Jain, L C; Adelaide, Australia University of

    1997-01-01

    This book on hybrid intelligent engineering systems is unique, in the sense that it presents the integration of expert systems, neural networks, fuzzy systems, genetic algorithms, and chaos engineering. It shows that these new techniques enhance the capabilities of one another. A number of hybrid systems for solving engineering problems are presented.

  9. A Hybrid Imagination

    DEFF Research Database (Denmark)

    Jamison, Andrew; Christensen, Steen Hyldgaard; Botin, Lars

    contexts, or sites, for mixing scientific knowledge and technical skills from different fields and social domains into new combinations, thus fostering what the authors term a “hybrid imagination”. Such a hybrid imagination is especially important today, as a way to counter the competitive and commercial...

  10. Hybrid trajectory spaces

    NARCIS (Netherlands)

    Collins, P.J.

    2005-01-01

    In this paper, we present a general framework for describing and studying hybrid systems. We represent the trajectories of the system as functions on a hybrid time domain, and the system itself by its trajectory space, which is the set of all possible trajectories. The trajectory space is given a na

  11. Editorial: Hybrid Systems

    DEFF Research Database (Denmark)

    Olderog, Ernst-Rüdiger; Ravn, Anders Peter

    2007-01-01

    An introduction to three papers in a special issue on Hybrid Systems. These paper were first presented at an IFIP WG 2.2 meeting in Skagen 2005.......An introduction to three papers in a special issue on Hybrid Systems. These paper were first presented at an IFIP WG 2.2 meeting in Skagen 2005....

  12. Parametric decay instability near the upper hybrid resonance in magnetically confined fusion plasmas

    Science.gov (United States)

    Hansen, S. K.; Nielsen, S. K.; Salewski, M.; Stejner, M.; Stober, J.; the ASDEX Upgrade Team

    2017-10-01

    In this paper we investigate parametric decay of an electromagnetic pump wave into two electrostatic daughter waves, particularly an X-mode pump wave decaying into a warm upper hybrid wave (a limit of an electron Bernstein wave) and a warm lower hybrid wave. We describe the general theory of the above parametric decay instability (PDI), unifying earlier treatments, and show that it may occur in underdense and weakly overdense plasmas. The PDI theory is used to explain anomalous sidebands observed in collective Thomson scattering (CTS) spectra at the ASDEX Upgrade tokamak. The theory may also account for similar observations during CTS experiments in stellarators, as well as in some 1st harmonic electron cyclotron resonance and O-X-B heating experiments.

  13. A LINEAR HYBRID MODEL OF MSE AND BEM FOR FLOATING STRUCTURES IN COASTAL ZONES

    Institute of Scientific and Technical Information of China (English)

    ZHANG Jun; MIAO Guo-ping

    2006-01-01

    A linear hybrid model of Mild Slope Equation (MSE) and Boundary Element Method (BEM) is developed to study the wave propagation around floating structures in coastal zones. Both the wave refraction under the influence of topography and the wave diffraction by floating structures are considered. Hence, the model provides wave properties around the coastal floating structures of arbitrary shape but also the wave forces on and the hydrodynamic characteristics of the structures. Different approaches are compared to demonstrate the validity of the present hybrid model. Several numerical tests are carried out for the cases of pontoons under different circumstances. The results show that the influence of topography on the hydrodynamic characteristics of floating structures in coastal regions is important and must not be ignored in the most wave period range with practical interests.

  14. Efficient Wave Energy Amplification with Wave Reflectors

    DEFF Research Database (Denmark)

    Kramer, Morten Mejlhede; Frigaard, Peter Bak

    2002-01-01

    Wave Energy Converters (WEC's) extract wave energy from a limited area, often a single point or line even though the wave energy is generally spread out along the wave crest. By the use of wave reflectors (reflecting walls) the wave energy is effectively focused and increased to approximately 130......-140%. In the paper a procedure for calculating the efficiency and optimizing the geometry of wave reflectors are described, this by use of a 3D boundary element method. The calculations are verified by laboratory experiments and a very good agreement is found. The paper gives estimates of possible power benifit...... for different geometries of the wave reflectors and optimal geometrical design parameters are specified. On this basis inventors of WEC's can evaluate whether a specific WEC possible could benefit from wave reflectors....

  15. Cyclotron waves in a non-neutral plasma column

    Energy Technology Data Exchange (ETDEWEB)

    Dubin, Daniel H. E. [Department of Physics, University of California at San Diego, La Jolla, California 92093 (United States)

    2013-04-15

    A kinetic theory of linear electrostatic plasma waves with frequencies near the cyclotron frequency {Omega}{sub c{sub s}} of a given plasma species s is developed for a multispecies non-neutral plasma column with general radial density and electric field profiles. Terms in the perturbed distribution function up to O(1/{Omega}{sub c{sub s}{sup 2}}) are kept, as are the effects of finite cyclotron radius r{sub c} up to O(r{sub c}{sup 2}). At this order, the equilibrium distribution is not Maxwellian if the plasma temperature or rotation frequency is not uniform. For r{sub c}{yields}0, the theory reproduces cold-fluid theory and predicts surface cyclotron waves propagating azimuthally. For finite r{sub c}, the wave equation predicts that the surface wave couples to radially and azimuthally propagating Bernstein waves, at locations where the wave frequency equals the local upper hybrid frequency. The equation also predicts a second set of Bernstein waves that do not couple to the surface wave, and therefore have no effect on the external potential. The wave equation is solved both numerically and analytically in the WKB approximation, and analytic dispersion relations for the waves are obtained. The theory predicts that both types of Bernstein wave are damped at resonances, which are locations where the Doppler-shifted wave frequency matches the local cyclotron frequency as seen in the rotating frame.

  16. Climate change impact on wave energy in the Persian Gulf

    Science.gov (United States)

    Kamranzad, Bahareh; Etemad-Shahidi, Amir; Chegini, Vahid; Yeganeh-Bakhtiary, Abbas

    2015-06-01

    Excessive usage of fossil fuels and high emission of greenhouse gases have increased the earth's temperature, and consequently have changed the patterns of natural phenomena such as wind speed, wave height, etc. Renewable energy resources are ideal alternatives to reduce the negative effects of increasing greenhouse gases emission and climate change. However, these energy sources are also sensitive to changing climate. In this study, the effect of climate change on wave energy in the Persian Gulf is investigated. For this purpose, future wind data obtained from CGCM3.1 model were downscaled using a hybrid approach and modification factors were computed based on local wind data (ECMWF) and applied to control and future CGCM3.1 wind data. Downscaled wind data was used to generate the wave characteristics in the future based on A2, B1, and A1B scenarios, while ECMWF wind field was used to generate the wave characteristics in the control period. The results of these two 30-yearly wave modelings using SWAN model showed that the average wave power changes slightly in the future. Assessment of wave power spatial distribution showed that the reduction of the average wave power is more in the middle parts of the Persian Gulf. Investigation of wave power distribution in two coastal stations (Boushehr and Assalouyeh ports) indicated that the annual wave energy will decrease in both stations while the wave power distribution for different intervals of significant wave height and peak period will also change in Assalouyeh according to all scenarios.

  17. Hybrid reactors. [Fuel cycle

    Energy Technology Data Exchange (ETDEWEB)

    Moir, R.W.

    1980-09-09

    The rationale for hybrid fusion-fission reactors is the production of fissile fuel for fission reactors. A new class of reactor, the fission-suppressed hybrid promises unusually good safety features as well as the ability to support 25 light-water reactors of the same nuclear power rating, or even more high-conversion-ratio reactors such as the heavy-water type. One 4000-MW nuclear hybrid can produce 7200 kg of /sup 233/U per year. To obtain good economics, injector efficiency times plasma gain (eta/sub i/Q) should be greater than 2, the wall load should be greater than 1 MW.m/sup -2/, and the hybrid should cost less than 6 times the cost of a light-water reactor. Introduction rates for the fission-suppressed hybrid are usually rapid.

  18. Hybrid propulsion technology program

    Science.gov (United States)

    1990-01-01

    Technology was identified which will enable application of hybrid propulsion to manned and unmanned space launch vehicles. Two design concepts are proposed. The first is a hybrid propulsion system using the classical method of regression (classical hybrid) resulting from the flow of oxidizer across a fuel grain surface. The second system uses a self-sustaining gas generator (gas generator hybrid) to produce a fuel rich exhaust that was mixed with oxidizer in a separate combustor. Both systems offer cost and reliability improvement over the existing solid rocket booster and proposed liquid boosters. The designs were evaluated using life cycle cost and reliability. The program consisted of: (1) identification and evaluation of candidate oxidizers and fuels; (2) preliminary evaluation of booster design concepts; (3) preparation of a detailed point design including life cycle costs and reliability analyses; (4) identification of those hybrid specific technologies needing improvement; and (5) preperation of a technology acquisition plan and large scale demonstration plan.

  19. THEMIS Observations of the Magnetopause Electron Diffusion Region: Large Amplitude Waves and Heated Electrons

    CERN Document Server

    Tang, Xiangwei; Dombeck, John; Dai, Lei; Wilson, Lynn B; Breneman, Aaron; Hupach, Adam

    2013-01-01

    We present the first observations of large amplitude waves in a well-defined electron diffusion region at the sub-solar magnetopause using data from one THEMIS satellite. These waves identified as whistler mode waves, electrostatic solitary waves, lower hybrid waves and electrostatic electron cyclotron waves, are observed in the same 12-sec waveform capture and in association with signatures of active magnetic reconnection. The large amplitude waves in the electron diffusion region are coincident with abrupt increases in electron parallel temperature suggesting strong wave heating. The whistler mode waves which are at the electron scale and enable us to probe electron dynamics in the diffusion region were analyzed in detail. The energetic electrons (~30 keV) within the electron diffusion region have anisotropic distributions with T_{e\\perp}/T_{e\\parallel}>1 that may provide the free energy for the whistler mode waves. The energetic anisotropic electrons may be produced during the reconnection process. The whi...

  20. Teleportation of Nonclassical Wave Packets of light

    CERN Document Server

    Lee, Noriyuki; Takeno, Yuishi; Takeda, Shuntaro; Webb, James; Huntington, Elanor; Furusawa, Akira

    2012-01-01

    We report on the experimental quantum teleportation of strongly nonclassical wave packets of light. To perform this full quantum operation while preserving and retrieving the fragile non-classicality of the input state, we have developed a broadband, zero-dispersion teleportation apparatus that works in conjunction with time-resolved state preparation equipment. Our approach brings within experimental reach a whole new set of hybrid protocols involving discrete- and continuous-variable techniques in quantum information processing for optical sciences.

  1. Ion tail formation by cascade trapping in lower-hybrid heating experiments

    Energy Technology Data Exchange (ETDEWEB)

    Gell, Y.; Nakach, R.

    1986-03-01

    The possibility of the operation of a multistep trapping process in the interaction of the ions of a plasma with lower--hybrid waves, leading to the formation of a tail in the ion velocity distribution, is investigated. Considering waves propagating perpendicularly to a homogeneous magnetic field, it is found that the spectral nature of the lower-hybrid excitation and the dependency of the perpendicular wave vector on the radial coordinate of the torus are the characteristics of the system which enable this cascading acceleration to take place. The conditions and limitations for the operation of this mechanism are discussed.

  2. Simulating an ocean wave power plant with Homer

    Directory of Open Access Journals (Sweden)

    Jones S. Silva, Alexandre Beluco, Luiz Emílio B. de Almeida

    2014-01-01

    Full Text Available In recent years, renewable resources have become an important alternative to increase the capacity of power generation. Among the resources available, the energy in the oceans have attracted more interest and experiencing a period of strong development. Wave energy is the one that is currently closest to reach a stage of technical and economic maturity. In this process, computational tools to facilitate evaluation of the feasibility of power systems including ocean wave power plants are critical. This paper presents the use of software Homer, version Legacy, for evaluation of technical and economic feasibility of hybrid energy systems including contribution of wave energy. Homer is a software designed for the optimization of micro power systems that has a very broad spectrum of applications. A case study in southern Brazil is presented, studying the inclusion of an ocean wave power plant in a wind biodiesel hybrid system and showing the functionality of Homer for this purpose.

  3. Whistler Waves Associated with Weak Interplanetary Shocks

    Science.gov (United States)

    Velez, J. C. Ramirez; Blanco-Cano, X.; Aguilar-Rodriguez, E.; Russell, C. T.; Kajdic, P.; Jian,, L. K.; Luhmann, J. G.

    2012-01-01

    We analyze the properties of 98 weak interplanetary shocks measured by the dual STEREO spacecraft over approximately 3 years during the past solar minimum. We study the occurrence of whistler waves associated with these shocks, which on average are high beta shocks (0.2 whistler waves can extend up to 100,000 km in the upstream region but in most cases (88%) are contained in a distance within 30,000 km from the shock. This corresponds to a larger region with upstream whistlers associated with IP shocks than previously reported in the literature. The maximum amplitudes of the waves are observed next to the shock interface, and they decrease as the distance to the shock increases. In most cases the wave propagation direction becomes more aligned with the magnetic field as the distance to the shock increases. These two facts suggest that most of the waves in the upstream region are Landau damping as they move away from the shock. From the analysis we also conclude that it is likely that the generation mechanism of the upstream whistler waves is taking place at the shock interface. In the downstream region, the waves are irregularly polarized, and the fluctuations are very compressive; that is, the compressive component of the wave clearly dominates over the transverse one. The majority of waves in the downstream region (95%) propagate at oblique angles with respect to the ambient magnetic field (>60 deg.). The wave propagation with respect to the shock-normal direction has no preferred direction and varies similarly to the upstream case. It is possible that downstream fluctuations are generated by ion relaxation as suggested in previous hybrid simulation shocks.

  4. Evolution of intensity noise and hybrid correlation

    Science.gov (United States)

    Ahmed, Irfan; Lau, Condon; Wang, Ruimin; Zhang, Da; Li, Xinghua; Li, Kangkang; Li, Changbiao; Zhang, Yanpeng

    2017-06-01

    We report the evolution of spontaneous parametric four-wave mixing (SP-FWM) as a small peak in the dip of Autler-Townes splitting in the medium of coherent non linear crystal of Pr3+:Y2SiO5. We demonstrate the results of a composite signal with evolution from pure fluorescence to a hybrid state of light to pure SP-FWM. By investigating the composite signal in frequency/time domains and studying hybrid correlations (positive/negative or anti-correlation) among three channels, i.e. Stokes (anti-Stokes) with composite signal, we demonstrate the evolution of SP-FWM processes from fluorescence. Such correlations can have potential applications in all-optical communication and quantum teleportation.

  5. Smooth sandwich gravitational waves

    CERN Document Server

    Podolsky, J

    1999-01-01

    Gravitational waves which are smooth and contain two asymptotically flat regions are constructed from the homogeneous pp-waves vacuum solution. Motion of free test particles is calculated explicitly and the limit to an impulsive wave is also considered.

  6. The physics of waves

    CERN Document Server

    Georgi, Howard

    1993-01-01

    The first complete introduction to waves and wave phenomena by a renowned theorist. Covers damping, forced oscillations and resonance; normal modes; symmetries; traveling waves; signals and Fourier analysis; polarization; diffraction.

  7. A new gravitational wave background from the Big Bang

    CERN Document Server

    Garcia-Bellido, Juan

    2008-01-01

    The reheating of the universe after hybrid inflation proceeds through the nucleation and subsequent collision of large concentrations of energy density in the form of bubble-like structures moving at relativistic speeds. This generates a significant fraction of energy in the form of a stochastic background of gravitational waves, whose time evolution is determined by the successive stages of reheating: First, tachyonic preheating makes the amplitude of gravity waves grow exponentially fast. Second, bubble collisions add a new burst of gravitational radiation. Third, turbulent motions finally sets the end of gravitational waves production. From then on, these waves propagate unimpeded to us. We find that the fraction of energy density today in these primordial gravitational waves could be significant for GUT scale models of inflation, although well beyond the frequency range sensitivity of gravitational wave observatories like LIGO, LISA or BBO. However, low-scale models could still produce a detectable signal...

  8. Cassini observations of ion cyclotron waves and ions anisotropy

    Science.gov (United States)

    Crary, F. J.; Dols, V. J.; Cassidy, T. A.; Tokar, R. L.

    2013-12-01

    In Saturn's equatorial, inner magnetosphere, the production of fresh ions in a pick-up distribution generates ion cyclotron waves. These waves are a sensitive indicator of fresh plasma production, but the quantitative relation between wave properties and ionization rates is nontrivial. We present a combined analysis of Cassini MAG and CAPS data, from a variety of equatorial orbits between 2005 and 2012. Using the MAG data, we determine the amplitude and peak frequency of ion cyclotron waves. From the CAPS data we extract the parallel and perpendicular velocity distribution of water group ions. We compare these results with hybrid simulations of the ion cyclotron instability and relate the observed wave amplitudes and ion velocity distributions to the production rate of pickup ions. The resulting relation between wave and plasma properties will allow us to infer ion production rates even at times when no direct ion measurements are available.

  9. Effect of wave localization on plasma instabilities. Ph. D. Thesis

    Energy Technology Data Exchange (ETDEWEB)

    Levedahl, W.K.

    1987-10-01

    The Anderson model of wave localization in random media is involved to study the effect of solar wind density turbulence on plasma processes associated with the solar type III radio burst. ISEE-3 satellite data indicate that a possible model for the type III process is the parametric decay of Langmuir waves excited by solar flare electron streams into daughter electromagnetic and ion acoustic waves. The threshold for this instability, however, is much higher than observed Langmuir wave levels because of rapid wave convection of the transverse electromagnetic daughter wave in the case where the solar wind is assumed homogeneous. Langmuir and transverse waves near critical density satisfy the Ioffe-Reigel criteria for wave localization in the solar wind with observed density fluctuations -1 percent. Numerical simulations of wave propagation in random media confirm the localization length predictions of Escande and Souillard for stationary density fluctations. For mobile density fluctuations localized wave packets spread at the propagation velocity of the density fluctuations rather than the group velocity of the waves. Computer simulations using a linearized hybrid code show that an electron beam will excite localized Langmuir waves in a plasma with density turbulence. An action principle approach is used to develop a theory of non-linear wave processes when waves are localized. A theory of resonant particles diffusion by localized waves is developed to explain the saturation of the beam-plasma instability. It is argued that localization of electromagnetic waves will allow the instability threshold to be exceeded for the parametric decay discussed above.

  10. Hybrid electric vehicles TOPTEC

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-06-21

    This one-day TOPTEC session began with an overview of hybrid electric vehicle technology. Updates were given on alternative types of energy storage, APU control for low emissions, simulation programs, and industry and government activities. The keynote speech was about battery technology, a key element to the success of hybrids. The TOPEC concluded with a panel discussion on the mission of hybrid electric vehicles, with a perspective from industry and government experts from United States and Canada on their view of the role of this technology.

  11. Hybrid systems with constraints

    CERN Document Server

    Daafouz, Jamal; Sigalotti, Mario

    2013-01-01

    Control theory is the main subject of this title, in particular analysis and control design for hybrid dynamic systems.The notion of hybrid systems offers a strong theoretical and unified framework to cope with the modeling, analysis and control design of systems where both continuous and discrete dynamics interact. The theory of hybrid systems has been the subject of intensive research over the last decade and a large number of diverse and challenging problems have been investigated. Nevertheless, many important mathematical problems remain open.This book is dedicated mainly to

  12. Hybrid Bloch Brane

    CERN Document Server

    Bazeia, D; Losano, L

    2016-01-01

    This work reports on models described by two real scalar fields coupled with gravity in the five-dimensional spacetime, with a warped geometry involving one infinite extra dimension. Through a mechanism that smoothly changes a thick brane into a hybrid brane, one investigates the appearance of hybrid branes hosting internal structure, characterized by the splitting on the energy density and the volcano potential, induced by the parameter which controls interactions between the two scalar fields. In particular, we investigate distinct symmetric and asymmetric hybrid brane scenarios.

  13. Hybrid Bloch brane

    Energy Technology Data Exchange (ETDEWEB)

    Bazeia, D.; Lima, Elisama E.M.; Losano, L. [Universidade Federal da Paraiba, Departamento de Fisica, Joao Pessoa, PB (Brazil)

    2017-02-15

    This work reports on models described by two real scalar fields coupled with gravity in the five-dimensional spacetime, with a warped geometry involving one infinite extra dimension. Through a mechanism that smoothly changes a thick brane into a hybrid brane, one investigates the appearance of hybrid branes hosting internal structure, characterized by the splitting on the energy density and the volcano potential, induced by the parameter which controls interactions between the two scalar fields. In particular, we investigate distinct symmetric and asymmetric hybrid brane scenarios. (orig.)

  14. Hybrid silicon evanescent devices

    Directory of Open Access Journals (Sweden)

    Alexander W. Fang

    2007-07-01

    Full Text Available Si photonics as an integration platform has recently been a focus of optoelectronics research because of the promise of low-cost manufacturing based on the ubiquitous electronics fabrication infrastructure. The key challenge for Si photonic systems is the realization of compact, electrically driven optical gain elements. We review our recent developments in hybrid Si evanescent devices. We have demonstrated electrically pumped lasers, amplifiers, and photodetectors that can provide a low-cost, scalable solution for hybrid integration on a Si platform by using a novel hybrid waveguide architecture, consisting of III-V quantum wells bonded to Si waveguides.

  15. Chaotic mixer improves microarray hybridization.

    Science.gov (United States)

    McQuain, Mark K; Seale, Kevin; Peek, Joel; Fisher, Timothy S; Levy, Shawn; Stremler, Mark A; Haselton, Frederick R

    2004-02-15

    Hybridization is an important aspect of microarray experimental design which influences array signal levels and the repeatability of data within an array and across different arrays. Current methods typically require 24h and use target inefficiently. In these studies, we compare hybridization signals obtained in conventional static hybridization, which depends on diffusional target delivery, with signals obtained in a dynamic hybridization chamber, which employs a fluid mixer based on chaotic advection theory to deliver targets across a conventional glass slide array. Microarrays were printed with a pattern of 102 identical probe spots containing a 65-mer oligonucleotide capture probe. Hybridization of a 725-bp fluorescently labeled target was used to measure average target hybridization levels, local signal-to-noise ratios, and array hybridization uniformity. Dynamic hybridization for 1h with 1 or 10ng of target DNA increased hybridization signal intensities approximately threefold over a 24-h static hybridization. Similarly, a 10- or 60-min dynamic hybridization of 10ng of target DNA increased hybridization signal intensities fourfold over a 24h static hybridization. In time course studies, static hybridization reached a maximum within 8 to 12h using either 1 or 10ng of target. In time course studies using the dynamic hybridization chamber, hybridization using 1ng of target increased to a maximum at 4h and that using 10ng of target did not vary over the time points tested. In comparison to static hybridization, dynamic hybridization reduced the signal-to-noise ratios threefold and reduced spot-to-spot variation twofold. Therefore, we conclude that dynamic hybridization based on a chaotic mixer design improves both the speed of hybridization and the maximum level of hybridization while increasing signal-to-noise ratios and reducing spot-to-spot variation.

  16. Hybrid polymer microspheres

    Science.gov (United States)

    Rembaum, A.

    1980-01-01

    Techniques have been successfully tested for bonding polymeric spheres, typically 0.1 micron in diameter, to spheres with diameter up to 100 microns. Hybrids are being developed as improved packing material for ion-exchange columns, filters, and separators.

  17. Hybrid adsorptive membrane reactor

    Science.gov (United States)

    Tsotsis, Theodore T. (Inventor); Sahimi, Muhammad (Inventor); Fayyaz-Najafi, Babak (Inventor); Harale, Aadesh (Inventor); Park, Byoung-Gi (Inventor); Liu, Paul K. T. (Inventor)

    2011-01-01

    A hybrid adsorbent-membrane reactor in which the chemical reaction, membrane separation, and product adsorption are coupled. Also disclosed are a dual-reactor apparatus and a process using the reactor or the apparatus.

  18. Hybrid photon detectors

    CERN Document Server

    D'Ambrosio, C

    2003-01-01

    Hybrid photon detectors detect light via vacuum photocathodes and accelerate the emitted photoelectrons by an electric field towards inversely polarized silicon anodes, where they are absorbed, thus producing electron-hole pairs. These, in turn, are collected and generate electronic signals on their ohmic contacts. This review first describes the characteristic properties of the main components of hybrid photon detectors: light entrance windows, photocathodes, and silicon anodes. Then, essential relations describing the trajectories of photoelectrons in electric and magnetic fields and their backscattering from the silicon anodes are derived. Depending on their anode configurations, three families of hybrid photon detectors are presented: hybrid photomultiplier tubes with single anodes for photon counting with high sensitivity and for gamma spectroscopy; multi-anode photon detector tubes with anodes subdivided into square or hexagonal pads for position-sensitive photon detection; imaging silicon pixel array t...

  19. Functional hybrid materials

    National Research Council Canada - National Science Library

    Fahmi, Amir; Pietsch, Torsten; Mendoza, Cesar; Cheval, Nicolas

    2009-01-01

    .... This paper describes our group's achievements towards the development of multifunctional nanostructures via self-assembly of hybrid systems based on the block copolymer PS-b-P4VP and inorganic nanoparticles (NPs...

  20. Hybrid Rocket Technology

    Directory of Open Access Journals (Sweden)

    Sankaran Venugopal

    2011-04-01

    Full Text Available With their unique operational characteristics, hybrid rockets can potentially provide safer, lower-cost avenues for spacecraft and missiles than the current solid propellant and liquid propellant systems. Classical hybrids can be throttled for thrust tailoring, perform in-flight motor shutdown and restart. In classical hybrids, the fuel is stored in the form of a solid grain, requiring only half the feed system hardware of liquid bipropellant engines. The commonly used fuels are benign, nontoxic, and not hazardous to store and transport. Solid fuel grains are not highly susceptible to cracks, imperfections, and environmental temperature and are therefore safer to manufacture, store, transport, and use for launch. The status of development based on the experience of the last few decades indicating the maturity of the hybrid rocket technology is given in brief.Defence Science Journal, 2011, 61(3, pp.193-200, DOI:http://dx.doi.org/10.14429/dsj.61.518

  1. Nitrous Paraffin Hybrid Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The Nitrous Oxide Paraffin Hybrid engine (N2OP) is a proposed technology designed to provide small launch vehicles with high specific impulse, indefinitely storable...

  2. Hybrid adsorptive membrane reactor

    Science.gov (United States)

    Tsotsis, Theodore T.; Sahimi, Muhammad; Fayyaz-Najafi, Babak; Harale, Aadesh; Park, Byoung-Gi; Liu, Paul K. T.

    2011-03-01

    A hybrid adsorbent-membrane reactor in which the chemical reaction, membrane separation, and product adsorption are coupled. Also disclosed are a dual-reactor apparatus and a process using the reactor or the apparatus.

  3. Hybridity in Disgrace

    Institute of Scientific and Technical Information of China (English)

    刘建平

    2015-01-01

    John Maxwell Coetzee's masterpiece-Disgrace is the representative work about post colonialism.The novel describes a series of disgraceful events happened between the white and the black in the post apartheid South Africa.The famous literature theory-hybridity of Homi K.Bhabha is the very key theory to analyze the work.In post apartheid South Africa,hybridity is the only way for the white and the black to coexist.

  4. Hybrid Baryon Signatures

    CERN Document Server

    Page, P R

    2000-01-01

    We discuss whether a low-lying hybrid baryon should be defined as a three quark - gluon bound state or as three quarks moving on an excited adiabatic potential. We show that the latter definition becomes exact, not only for very heavy quarks, but also for specific dynamics. We review the literature on the signatures of hybrid baryons, with specific reference to strong hadronic decays, electromagnetic couplings, diffractive production and production in psi decay.

  5. Hybrid vertical cavity laser

    DEFF Research Database (Denmark)

    Chung, Il-Sug; Mørk, Jesper

    2010-01-01

    A new hybrid vertical cavity laser structure for silicon photonics is suggested and numerically investigated. It incorporates a silicon subwavelength grating as a mirror and a lateral output coupler to a silicon ridge waveguide.......A new hybrid vertical cavity laser structure for silicon photonics is suggested and numerically investigated. It incorporates a silicon subwavelength grating as a mirror and a lateral output coupler to a silicon ridge waveguide....

  6. Requirements for Hybrid Cosimulation

    Science.gov (United States)

    2014-08-16

    hybrid cosimulation version of the Functional Mockup Interface (FMI) standard. A cosimulation standard de nes interfaces that enable diverse simulation...cosimulation standards, and specifically provides guidance for development of a hybrid cosimulation version of the Functional Mockup Interface (FMI) standard...V. Peetz, and S. Wolf. The functional mockup interface for tool independent exchange of simulation models. In Proc. of the 8-th International

  7. Hybrid Modelling of Individual Movement and Collective Behaviour

    KAUST Repository

    Franz, Benjamin

    2013-01-01

    Mathematical models of dispersal in biological systems are often written in terms of partial differential equations (PDEs) which describe the time evolution of population-level variables (concentrations, densities). A more detailed modelling approach is given by individual-based (agent-based) models which describe the behaviour of each organism. In recent years, an intermediate modelling methodology - hybrid modelling - has been applied to a number of biological systems. These hybrid models couple an individual-based description of cells/animals with a PDE-model of their environment. In this chapter, we overview hybrid models in the literature with the focus on the mathematical challenges of this modelling approach. The detailed analysis is presented using the example of chemotaxis, where cells move according to extracellular chemicals that can be altered by the cells themselves. In this case, individual-based models of cells are coupled with PDEs for extracellular chemical signals. Travelling waves in these hybrid models are investigated. In particular, we show that in contrary to the PDEs, hybrid chemotaxis models only develop a transient travelling wave. © 2013 Springer-Verlag Berlin Heidelberg.

  8. Artificial plasma cusp generated by upper hybrid instabilities in HF heating experiments at HAARP

    Science.gov (United States)

    Kuo, Spencer; Snyder, Arnold

    2013-05-01

    High Frequency Active Auroral Research Program digisonde was operated in a fast mode to record ionospheric modifications by the HF heating wave. With the O mode heater of 3.2 MHz turned on for 2 min, significant virtual height spread was observed in the heater off ionograms, acquired beginning the moment the heater turned off. Moreover, there is a noticeable bump in the virtual height spread of the ionogram trace that appears next to the plasma frequency (~ 2.88 MHz) of the upper hybrid resonance layer of the HF heating wave. The enhanced spread and the bump disappear in the subsequent heater off ionograms recorded 1 min later. The height distribution of the ionosphere in the spread situation indicates that both electron density and temperature increases exceed 10% over a large altitude region (> 30 km) from below to above the upper hybrid resonance layer. This "mini cusp" (bump) is similar to the cusp occurring in daytime ionograms at the F1-F2 layer transition, indicating that there is a small ledge in the density profile reminiscent of F1-F2 layer transitions. Two parametric processes exciting upper hybrid waves as the sidebands by the HF heating waves are studied. Field-aligned purely growing mode and lower hybrid wave are the respective decay modes. The excited upper hybrid and lower hybrid waves introduce the anomalous electron heating which results in the ionization enhancement and localized density ledge. The large-scale density irregularities formed in the heat flow, together with the density irregularities formed through the parametric instability, give rise to the enhanced virtual height spread. The results of upper hybrid instability analysis are also applied to explain the descending feature in the development of the artificial ionization layers observed in electron cyclotron harmonic resonance heating experiments.

  9. GPU-accelerated discontinuous Galerkin methods on hybrid meshes

    Science.gov (United States)

    Chan, Jesse; Wang, Zheng; Modave, Axel; Remacle, Jean-Francois; Warburton, T.

    2016-08-01

    We present a time-explicit discontinuous Galerkin (DG) solver for the time-domain acoustic wave equation on hybrid meshes containing vertex-mapped hexahedral, wedge, pyramidal and tetrahedral elements. Discretely energy-stable formulations are presented for both Gauss-Legendre and Gauss-Legendre-Lobatto (Spectral Element) nodal bases for the hexahedron. Stable timestep restrictions for hybrid meshes are derived by bounding the spectral radius of the DG operator using order-dependent constants in trace and Markov inequalities. Computational efficiency is achieved under a combination of element-specific kernels (including new quadrature-free operators for the pyramid), multi-rate timestepping, and acceleration using Graphics Processing Units.

  10. Robust Hybrid Finite Element Methods for Antennas and Microwave Circuits

    Science.gov (United States)

    Gong, J.; Volakis, John L.

    1996-01-01

    One of the primary goals in this dissertation is concerned with the development of robust hybrid finite element-boundary integral (FE-BI) techniques for modeling and design of conformal antennas of arbitrary shape. Both the finite element and integral equation methods will be first overviewed in this chapter with an emphasis on recently developed hybrid FE-BI methodologies for antennas, microwave and millimeter wave applications. The structure of the dissertation is then outlined. We conclude the chapter with discussions of certain fundamental concepts and methods in electromagnetics, which are important to this study.

  11. WaveNet

    Science.gov (United States)

    2015-10-30

    generates wave and wind roses and histograms of directional wave data required to define the wave climate for Corps projects. Five published technical...on the CIRP wiki: http://cirpwiki.info/wiki/Main_Page Application of Products Projected Benefits Documentation Points of Contact CIRP Website Figure 2. Display of time series of wave height ( blue ) and wind speed (red)

  12. Waves in inhomogeneous media

    NARCIS (Netherlands)

    Gerritsen, S.

    2007-01-01

    In this thesis we study wave propagation in inhomogeneous media. Examples of the classical (massless) waves we consider are acoustic waves (sound) and electromagnetic waves (light, for example). Interaction with inhomogeneities embedded in a reference medium alter the propagation direction, velocity

  13. A Simple Wave Driver

    Science.gov (United States)

    Temiz, Burak Kagan; Yavuz, Ahmet

    2015-01-01

    This study was done to develop a simple and inexpensive wave driver that can be used in experiments on string waves. The wave driver was made using a battery-operated toy car, and the apparatus can be used to produce string waves at a fixed frequency. The working principle of the apparatus is as follows: shortly after the car is turned on, the…

  14. Waves in inhomogeneous media

    NARCIS (Netherlands)

    Gerritsen, S.

    2007-01-01

    In this thesis we study wave propagation in inhomogeneous media. Examples of the classical (massless) waves we consider are acoustic waves (sound) and electromagnetic waves (light, for example). Interaction with inhomogeneities embedded in a reference medium alter the propagation direction, velocity

  15. Linear Rogue waves

    CERN Document Server

    Yuce, C

    2015-01-01

    We predict the existence of linear discrete rogue waves. We discuss that Josephson effect is the underlying reason for the formation of such waves. We study linear rogue waves in continuous system and present an exact analytical rogue wave solution of the Schrodinger-like equation.

  16. Finsler p p -waves

    Science.gov (United States)

    Fuster, Andrea; Pabst, Cornelia

    2016-11-01

    In this work we present Finsler gravitational waves. These are a Finslerian version of the well-known p p -waves, generalizing the very special relativity line element. Our Finsler p p -waves are an exact solution of Finslerian Einstein's equations in vacuum and describe gravitational waves propagating in an anisotropic background.

  17. On the feasibility of the use of wind SAR to downscale waves on shallow water

    Science.gov (United States)

    Gutiérrez, O. Q.; Filipponi, F.; Taramelli, A.; Valentini, E.; Camus, P.; Méndez, F. J.

    2016-01-01

    In recent years, wave reanalyses have become popular as a powerful source of information for wave climate research and engineering applications. These wave reanalyses provide continuous time series of offshore wave parameters; nevertheless, in coastal areas or shallow water, waves are poorly described because spatial resolution is not detailed. By means of wave downscaling, it is possible to increase spatial resolution in high temporal coverage simulations, using forcing from wind and offshore wave databases. Meanwhile, the reanalysis wave databases are enough to describe the wave climate at the limit of simulations; wind reanalyses at an adequate spatial resolution to describe the wind structure near the coast are not frequently available. Remote sensing synthetic aperture radar (SAR) has the ability to detect sea surface signatures and estimate wind fields at high resolution (up to 300 m) and high frequency. In this work a wave downscaling is done on the northern Adriatic Sea, using a hybrid methodology and global wave and wind reanalysis as forcing. The wave fields produced were compared to wave fields produced with SAR winds that represent the two dominant wind regimes in the area: the bora (ENE direction) and sirocco (SE direction). Results show a good correlation between the waves forced with reanalysis wind and SAR wind. In addition, a validation of reanalysis is shown. This research demonstrates how Earth observation products, such as SAR wind fields, can be successfully up-taken into oceanographic modeling, producing similar downscaled wave fields when compared to waves forced with reanalysis wind.

  18. Formal Verification of Full-Wave Rectifier: A Case Study

    CERN Document Server

    Lata, Kusum

    2009-01-01

    We present a case study of formal verification of full-wave rectifier for analog and mixed signal designs. We have used the Checkmate tool from CMU [1], which is a public domain formal verification tool for hybrid systems. Due to the restriction imposed by Checkmate it necessitates to make the changes in the Checkmate implementation to implement the complex and non-linear system. Full-wave rectifier has been implemented by using the Checkmate custom blocks and the Simulink blocks from MATLAB from Math works. After establishing the required changes in the Checkmate implementation we are able to efficiently verify the safety properties of the full-wave rectifier.

  19. Studies on seismic waves

    Institute of Scientific and Technical Information of China (English)

    张海明; 陈晓非

    2003-01-01

    The development of seismic wave study in China in the past four years is reviewed. The discussion is divided into several aspects, including seismic wave propagation in laterally homogeneous media, laterally heterogeneous media, anisotropic and porous media, surface wave and seismic wave inversion, and seismic wave study in prospecting and logging problems. Important projects in the current studies on seismic wave is suggested as the development of high efficient numerical methods, and applying them to the studies of excitation and propagation of seismic waves in complex media and strong ground motion, which will form a foundation for refined earthquake hazard analysis and prediction.

  20. Wave Data Analysis

    DEFF Research Database (Denmark)

    Alikhani, Amir; Frigaard, Peter; Burcharth, Hans F.

    1998-01-01

    The data collected over the course of the experiment must be analysed and converted into a form suitable for its intended use. Type of analyses range from simple to sophisticated. Depending on the particular experiment and the needs of the researcher. In this study three main part of irregular wave...... data analyses are presented e.g. Time Domain (Statistical) Analyses, Frequency Domain (Spectral) Analyses and Wave Reflection Analyses. Random wave profile and definitions of representative waves, distributions of individual wave height and wave periods and spectra of sea waves are presented....

  1. A Comparison of Nature Waves and Model Waves with Special Reference to Wave Grouping

    DEFF Research Database (Denmark)

    Burcharth, Hans F.

    This paper represents a comparative analyses of the occurrence of wave grouping in field storm waves and laboratory waves with similar power spectra and wave height distribution.......This paper represents a comparative analyses of the occurrence of wave grouping in field storm waves and laboratory waves with similar power spectra and wave height distribution....

  2. Hybrid Modelling of a Traveling Wave Piezoelectric Motor

    DEFF Research Database (Denmark)

    El, Ghouti N.

    torque at low speed, quiet operation (ultrasonic), simple structure, compactness in size and no electromagnetic interferences. However, the mathematical model of the PEM is complex and difficult to derive due to its driving principle based on high-frequency mechanical vibrations and frictional force...... the performance characteristics of the PEM under various working conditions. The main objective of this PhD project is to derive a suitable model for investigating some nonlinear control strategies in a simulated environment. Most of the existing modeling approaches are inappropriate for the control community due......) and finally the basic laws of dynamics. In order to overcome some of the drawbacks of the existing methods, and thereby meet the needs of the control community, three main approaches are considered in this modeling task. First, the equivalent circuit method is investigated in order to derive a lumped model...

  3. Stochastic wave propagation

    CERN Document Server

    Sobczyk, K

    1985-01-01

    This is a concise, unified exposition of the existing methods of analysis of linear stochastic waves with particular reference to the most recent results. Both scalar and vector waves are considered. Principal attention is concentrated on wave propagation in stochastic media and wave scattering at stochastic surfaces. However, discussion extends also to various mathematical aspects of stochastic wave equations and problems of modelling stochastic media.

  4. Sources of localized waves

    OpenAIRE

    Chatzipetros, Argyrios Alexandros

    1994-01-01

    The synthesis of two types of Localized Wave (L W) pulses is considered; these are the 'Focus Wave Model (FWM) pulse and the X Wave pulse. First, we introduce the modified bidirectional representation where one can select new basis functions resulting in different representations for a solution to the scalar wave equation. Through this new representation, we find a new class of focused X Waves which can be extremely localized. The modified bidirectional decomposition is applied...

  5. Waves at Navigation Structures

    Science.gov (United States)

    2014-10-27

    ABSTRACT 15. SUBJECT TERMS 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT Same as Report (SAR) 18. NUMBER OF PAGES 2 19a. NAME...upgrades the Coastal Modeling System’s ( CMS ) wave model CMS -Wave, a phase-averaged spectral wave model, and BOUSS-2D, a Boussinesq-type nonlinear wave...provided by this work unit address these critical needs of the Corps’ navigation mission. Description Issue Addressed CMS -Wave application at Braddock

  6. Relativistic spherical plasma waves

    CERN Document Server

    Bulanov, S S; Schroeder, C B; Zhidkov, A G; Esarey, E; Leemans, W P

    2011-01-01

    Tightly focused laser pulses as they diverge or converge in underdense plasma can generate wake waves, having local structures that are spherical waves. Here we report on theoretical study of relativistic spherical wake waves and their properties, including wave breaking. These waves may be suitable as particle injectors or as flying mirrors that both reflect and focus radiation, enabling unique X-ray sources and nonlinear QED phenomena.

  7. Wave-Ice interaction

    Institute of Scientific and Technical Information of China (English)

    沈奚海莉

    2001-01-01

    The growth and movement of sea ice cover are influenced by the presence of wave field. Inturn, the wave field is influenced by the presence of ice cover. Their interaction is not fully understood.In this paper, we discuss some current understanding on wave attenuation when it propagates through frag-mented ice cover, ice drift due to the wave motion, and the growth characteristics of ice cover in wave field.

  8. Lower Hybrid Current Drive in Tore Supra

    Energy Technology Data Exchange (ETDEWEB)

    Ekedahl, A.; Goniche, M.; Guilhem, D.; Kazarian, F.; Peysson, Y. and Tore Supra Team [CEA, IRFM, F-13108 St Paul Les Durance, (France)

    2009-07-01

    Since the mission of Tore Supra is to produce quasi-steady-state discharges, the lower hybrid current drive (LHCD) system constitutes the most important method of additional hewing and noninductive current drive. A description of the LHCD is given, including the different launcher designs developed for the Tore Supra long-pulse program. Following the completion of the Composants Internes et Limiteur project, together with the installation of a high-performance LHCD launcher, world record discharges, injected and extracted energy exceeding 1 GJ, were obtained in 2003. With the flexibility of lower hybrid (LH) waves to tailor the current profile, an enhanced performance regime, the so-called LHEP has been maintained in quasi-steady-state discharges. Detailed measurements of the fast electron distribution have allowed us to constrain LHCD ray-tracing models and to quantify parametric dependencies describing the fast electron tail. Localized heat loads oil the LHCD launchers due to interaction with fast particles have been measured and quantified, using infrared imaging and calorimetric measurements oil water-cooled plasma facing components. Furthermore, experimental results in the area of LH wave coupling are presented. (authors)

  9. Enhanced localization of Dyakonov-like surface waves in left-handed materials

    DEFF Research Database (Denmark)

    Crasovan, L. C.; Takayama, O.; Artigas, D.;

    2006-01-01

    We address the existence and properties of hybrid surface waves forming at interfaces between left-handed materials and dielectric birefringent media. The existence conditions of such waves are found to be highly relaxed in comparison to Dyakonov waves existing in right-handed media. We show...... that left-handed materials cause the coexistence of several surface solutions, which feature an enhanced degree of localization. Remarkably, we find that the hybrid surface modes appear for large areas in the parameter space, a key property in view of their experimental observation. © 2006 The American...

  10. The Hybrids of Postmodernism

    Directory of Open Access Journals (Sweden)

    Dana BĂDULESCU

    2014-09-01

    Full Text Available Hybridization is a fundamental characteristic of postmodernism, included by Ihab Hassan in his “catena” of features. This paper looks into the hybrids of postmodernism, which are the result of migration, displacement and uprooting, the re-visitation of myths, folklore and legends, or projections of their author’s imagination. The hybrids used as examples here are drawn from several novels written by Salman Rushdie, especially The Satanic Verses, two short stories, one by Márquez and the other by Donald Barthelme, Borges’s Book of Imaginary Beings, Cărtărescu’s Encyclopaedia of Dragons and Michelle Cliff’s No Telephone to Heaven. Diverse as they may be, these hybrids emphasize a defining characteristic of postmodernism, which is its pluralism. I conclude that the hybrids of postmodernism are aesthetically or politically subversive. Besides, what makes them difficult to grasp is their unfixed and protean nature. They ask for high leaps of the imagination, a total suspension of disbelief and a complete surrender to the powerful seduction of imagination on the reader’s part.

  11. Numerical Simulation of Spatial Lag Between Wave Breaking Point and Location of Maximum Wave-Induced Current

    Institute of Scientific and Technical Information of China (English)

    ZHENG Jin-hai; TANG Yu

    2009-01-01

    A quasi three-dimensional numerical model of wave-driven coastal currents with the effects of surface rollers is developed for the study of the spatial lag between the location of the maximum wave-induced current and the wave breaking point.The governing equations are derived from Navier-Stokes equations and solved by the hybrid method combining the fractional step finite different method in the horizontal plane with a Galerkin finite element method in the vertical direction.The surface rollers effects are considered through incorporating the creation and evolution of the roller area into the free surface shear stress.An energy equation facilitates the computation process which transfers the wave breaking energy dissipation to the surface roller energy.The wave driver model is a phase-averaged wave model based on the wave action balance equation.Two sets of laboratory experiments producing breaking waves that generated longshore currents on a planar beach are used to evaluate the model's performance.The present wave-driven coastal current model with the roller effect in the surface shear stress term can produce satisfactory results by increasing the wave-induced nearshore current velocity inside the surf zone and shifting the location of the maximum longshore current velocity landward.

  12. Freak waves in counterpropagating wave systems

    Science.gov (United States)

    Støle-Hentschel, Susanne; Rye, Lisa; Raustøl, Anne; Trulsen, Karsten

    2016-04-01

    The kurtosis of unimodal and counterpropagating bimodal wave systems is compared by means of laboratory experiments and simulations. Both give strong evidence that a bimodal wave system with waves travelling in opposite directions has reduced kurtosis compared to the corresponding unidirectional case. We thus anticipate reduced probability of freak waves in counterpropagating waves. The laboratory tests were performed with a JONSWAP wavefield in a long and narrow flume. The unimodal case was run with a damping beach in one end, while the bimodality was created by inserting a reflecting wall. The simulations were carried out with a numerical wave tank based on a Higher order spectral method employing partially or non-reflecting boundary conditions.

  13. Long Waves Associated with Bichromatic Waves

    Institute of Scientific and Technical Information of China (English)

    DONG Guohai(董国海); YE Wenya(叶文亚); Nicholas Dodd

    2001-01-01

    A numerical model of low frequency waves is presented. The model is based on that of Roelvink (1993), but the numerical techniques used in the solution are based on the so-called Weighted-Average Flux (WAF) method withTime-Operator-Splitting (TOS) used for the treatment of the source terms. This method allows a small number ofcomputational points to be used, and is particularly efficient in modeling wave setup. The short wave (or primary wave)energy equation is solved with a traditional Lax-Wendroff technique. A nonlinear wave theory is introduced. The modeldescribed in this paper is found to be satisfactory in modeling low frequency waves associated with incident bichromaticwaves.

  14. Research on Hybrid Vehicle Drivetrain

    Science.gov (United States)

    Xie, Zhongzhi

    Hybrid cars as a solution to energy saving, emission reduction measures, have received widespread attention. Motor drive system as an important part of the hybrid vehicles as an important object of study. Based on the hybrid electric vehicle powertrain control system for permanent magnet synchronous motor as the object of study. Can be applied to hybrid car compares the characteristics of traction motors, chose permanent magnet synchronous Motors as drive motors for hybrid vehicles. Building applications in hybrid cars in MATLAB/Simulink simulation model of permanent-magnet synchronous motor speed control system and analysis of simulation results.

  15. RF wave propagation and scattering in turbulent tokamak plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Horton, W., E-mail: wendell.horton@gmail.com; Michoski, C. [Institute for Fusion Studies, The University of Texas at Austin, Austin, TX 78654 (United States); Peysson, Y.; Decker, J. [CEA, IRFM, 13108, Saint-Paul, Durance Cedex (France)

    2015-12-10

    Drift wave turbulence driven by the steep electron and ion temperature gradients in H-mode divertor tokamaks produce scattering of the RF waves used for heating and current drive. The X-ray emission spectra produced by the fast electrons require the turbulence broaden RF wave spectrum. Both the 5 GHz Lower Hybrid waves and the 170 GHz electron cyclotron [EC] RF waves experience scattering and diffraction by the electron density fluctuations. With strong LHCD there are bifurcations in the coupled turbulent transport dynamics giving improved steady-state confinement states. The stochastic scattering of the RF rays makes the prediction of the distribution of the rays and the associated particle heating a statistical problem. Thus, we introduce a Fokker-Planck equation for the probably density of the RF rays. The general frame work of the coupled system of coupled high frequency current driving rays with the low-frequency turbulent transport determines the profiles of the plasma density and temperatures.

  16. Hybrid elastic solids

    KAUST Repository

    Lai, Yun

    2011-06-26

    Metamaterials can exhibit electromagnetic and elastic characteristics beyond those found in nature. In this work, we present a design of elastic metamaterial that exhibits multiple resonances in its building blocks. Band structure calculations show two negative dispersion bands, of which one supports only compressional waves and thereby blurs the distinction between a fluid and a solid over a finite frequency regime, whereas the other displays super anisotropy-in which compressional waves and shear waves can propagate only along different directions. Such unusual characteristics, well explained by the effective medium theory, have no comparable analogue in conventional solids and may lead to novel applications. © 2011 Macmillan Publishers Limited. All rights reserved.

  17. for hybrid dynamical systems

    Directory of Open Access Journals (Sweden)

    Wassim M. Haddad

    2001-01-01

    Full Text Available In this paper we develop a unified dynamical systems framework for a general class of systems possessing left-continuous flows; that is, left-continuous dynamical systems. These systems are shown to generalize virtually all existing notions of dynamical systems and include hybrid, impulsive, and switching dynamical systems as special cases. Furthermore, we generalize dissipativity, passivity, and nonexpansivity theory to left-continuous dynamical systems. Specifically, the classical concepts of system storage functions and supply rates are extended to left-continuous dynamical systems providing a generalized hybrid system energy interpretation in terms of stored energy, dissipated energy over the continuous-time dynamics, and dissipated energy over the resetting events. Finally, the generalized dissipativity notions are used to develop general stability criteria for feedback interconnections of left-continuous dynamical systems. These results generalize the positivity and small gain theorems to the case of left-continuous, hybrid, and impulsive dynamical systems.

  18. Hybrid Action Systems

    DEFF Research Database (Denmark)

    Rönnkö, M.; Ravn, Anders Peter; Sere, K.

    2003-01-01

    In this paper we investigate the use of action systems with differential actions in the specifcation of hybrid systems. As the main contribution we generalize the definition of a differential action, allowing the use of arbitrary relations over model variables and their time-derivatives in modell......In this paper we investigate the use of action systems with differential actions in the specifcation of hybrid systems. As the main contribution we generalize the definition of a differential action, allowing the use of arbitrary relations over model variables and their time...... parallel composition. Moreover, as the strength of the action system formalism is the support for stepwise development by refinement, we investigate refinement involving a differential action. We show that, due to the predicate transformer semantics, standard action refinement techniques apply also...... to the differential action, thus, allowing stepwise development of hybrid systems Udgivelsesdato: JAN 1...

  19. Conditional Hybrid Nonclassicality

    Science.gov (United States)

    Agudelo, E.; Sperling, J.; Costanzo, L. S.; Bellini, M.; Zavatta, A.; Vogel, W.

    2017-09-01

    We derive and implement a general method to characterize the nonclassicality in compound discrete- and continuous-variable systems. For this purpose, we introduce the operational notion of conditional hybrid nonclassicality which relates to the ability to produce a nonclassical continuous-variable state by projecting onto a general superposition of discrete-variable subsystem. We discuss the importance of this form of quantumness in connection with interfaces for quantum communication. To verify the conditional hybrid nonclassicality, a matrix version of a nonclassicality quasiprobability is derived and its sampling approach is formulated. We experimentally generate an entangled, hybrid Schrödinger cat state, using a coherent photon-addition process acting on two temporal modes, and we directly sample its nonclassicality quasiprobability matrix. The introduced conditional quantum effects are certified with high statistical significance.

  20. Porosity in hybrid materials

    Energy Technology Data Exchange (ETDEWEB)

    Schaefer, D.W.; Beaucage, G.; Loy, D. [Sandia National Labs., Albuquerque, NM (United States)

    1995-12-31

    Multicomponent, or hybrid composites are emerging as precursors to porous materials. Sacrifice of an ephemeral phase can be used to generate porosity, the nature of which depends on precursor structure. Retention of an organic constituent, on the other hand, can add desirable toughness to an otherwise brittle ceramic. We use small-angle x-ray and neutron scattering to examine porosity in both simple and hybrid materials. We find that microphase separation controls porosity in almost all systems studied. Pore distributions are controlled by the detailed bonding within and between phases as well as the flexibility of polymeric constituents. Thus hybridization opens new regions of pore distributions not available in simple systems. We look at several sacrificial concepts and show that it is possible to generate multimodal pore size distributions due to the complicated phase structure in the precursor.

  1. Photoproduction of Hybrid Mesons

    CERN Document Server

    Barnes, T

    1998-01-01

    In this contribution I discuss prospects for photoproducing hybrid mesons at CEBAF, based on recent model results and experimental indications of possible hybrids. One excellent opportunity appears to be a search for the I=1, JPC=2+-, neutral "(b2)o" hybrid in (a2 pi)o through diffractive photoproduction. Other notable possibilities accessible through pi+ or pio exchange photoproduction are I=1, JPC=1-+, charged "pi1+" in f1 pi+, (b1 pi)+ and (rho pi)+; piJ(1770)+ in f2 pi+ and (b1 pi)+; pi(1800)+ in f0 pi+, f2 pi+, omega rho+ and (rho pi)+; a1 in f1 pi+ and f2 pi+; and omega in (rho pi)o, omega eta and (K1 K)o.

  2. Nonlinear generation of whistler waves by an ion beam

    Science.gov (United States)

    Akimoto, K.; Winske, D.

    1989-01-01

    An electromagnetic hybrid code is used to simulate a new mechanism for whistler wave generation by an ion beam. First, a field-aligned ion beam becomes unstable to the electromagnetic ion/ion right-hand resonant instability which generates large amplitude MHD-like waves. These waves then trap the ion beam and increase its effective temperature anisotropy. As a result, the growth rates of the electron/whistler instability are significantly enhanced, and whistlers start to grow above the noise level. At the same time, because of the reduced parallel drift speed of the ion beam, the frequencies of the whistlers are also downshifted. Full simulations were performed to isolate and separately investigate the electron/ion whistler instability. The results are in agreement with the assumption of fluid electrons in the hybrid simulations and with the linear theory of the instability.

  3. Electron beam injection during active experiments. I - Electromagnetic wave emissions

    Science.gov (United States)

    Winglee, R. M.; Kellogg, P. J.

    1990-01-01

    The wave emissions produced in Echo 7 experiment by active injections of electron beams were investigated to determine the properties of the electromagnetic and electrostatic fields for both the field-aligned and cross-field injection in such experiments and to evaluate the sources of free energy and relative efficiencies for the generation of the VLF and HF emissions. It is shown that, for typical beam energies in active experiments, electromagnetic effects do not substantially change the bulk properties of the beam, spacecraft charging, and plasma particle acceleration. Through simulations, beam-generated whistlers; fundamental z-mode and harmonic x-mode radiation; and electrostatic electron-cyclotron, upper-hybrid, Langmuir, and lower-hybrid waves were identified. The characteristics of the observed wave spectra were found to be sensitive to both the ratio of the electron plasma frequency to the cyclotron frequency and the angle of injection relative to the magnetic field.

  4. Robust Wave Resource Estimation

    DEFF Research Database (Denmark)

    Lavelle, John; Kofoed, Jens Peter

    2013-01-01

    An assessment of the wave energy resource at the location of the Danish Wave Energy test Centre (DanWEC) is presented in this paper. The Wave Energy Converter (WEC) test centre is located at Hanstholm in the of North West Denmark. Information about the long term wave statistics of the resource...... is necessary for WEC developers, both to optimise the WEC for the site, and to estimate its average yearly power production using a power matrix. The wave height and wave period sea states parameters are commonly characterized with a bivariate histogram. This paper presents bivariate histograms and kernel...... density estimates of the PDF as a function both of Hm0 and Tp, and Hm0 and T0;2, together with the mean wave power per unit crest length, Pw, as a function of Hm0 and T0;2. The wave elevation parameters, from which the wave parameters are calculated, are filtered to correct or remove spurious data...

  5. Fracture channel waves

    Science.gov (United States)

    Nihei, Kurt T.; Yi, Weidong; Myer, Larry R.; Cook, Neville G. W.; Schoenberg, Michael

    1999-03-01

    The properties of guided waves which propagate between two parallel fractures are examined. Plane wave analysis is used to obtain a dispersion equation for the velocities of fracture channel waves. Analysis of this equation demonstrates that parallel fractures form an elastic waveguide that supports two symmetric and two antisymmetric dispersive Rayleigh channel waves, each with particle motions and velocities that are sensitive to the normal and tangential stiffnesses of the fractures. These fracture channel waves degenerate to shear waves when the fracture stiffnesses are large, to Rayleigh waves and Rayleigh-Lamb plate waves when the fracture stiffnesses are low, and to fracture interface waves when the fractures are either very closely spaced or widely separated. For intermediate fracture stiffnesses typical of fractured rock masses, fracture channel waves are dispersive and exhibit moderate to strong localization of guided wave energy between the fractures. The existence of these waves is examined using laboratory acoustic measurements on a fractured marble plate. This experiment confirms the distinct particle motion of the fundamental antisymmetric fracture channel wave (A0 mode) and demonstrates the ease with which a fracture channel wave can be generated and detected.

  6. Smart hybrid rotary damper

    Science.gov (United States)

    Yang, C. S. Walter; DesRoches, Reginald

    2014-03-01

    This paper develops a smart hybrid rotary damper using a re-centering smart shape memory alloy (SMA) material as well as conventional energy-dissipating metallic plates that are easy to be replaced. The ends of the SMA and steel plates are inserted in the hinge. When the damper rotates, all the plates bend, providing energy dissipating and recentering characteristics. Such smart hybrid rotary dampers can be installed in structures to mitigate structural responses and to re-center automatically. The damaged energy-dissipating plates can be easily replaced promptly after an external excitation, reducing repair time and costs. An OpenSEES model of a smart hybrid rotary was established and calibrated to reproduce the realistic behavior measured from a full-scale experimental test. Furthermore, the seismic performance of a 3-story moment resisting model building with smart hybrid rotary dampers designed for downtown Los Angeles was also evaluated in the OpenSEES structural analysis software. Such a smart moment resisting frame exhibits perfect residual roof displacement, 0.006", extremely smaller than 18.04" for the conventional moment resisting frame subjected to a 2500 year return period ground motion for the downtown LA area (an amplified factor of 1.15 on Kobe earthquake). The smart hybrid rotary dampers are also applied into an eccentric braced steel frame, which combines a moment frame system and a bracing system. The results illustrate that adding smart hybrid rotaries in this braced system not only completely restores the building after an external excitation, but also significantly reduces peak interstory drifts.

  7. Analog and hybrid computing

    CERN Document Server

    Hyndman, D E

    2013-01-01

    Analog and Hybrid Computing focuses on the operations of analog and hybrid computers. The book first outlines the history of computing devices that influenced the creation of analog and digital computers. The types of problems to be solved on computers, computing systems, and digital computers are discussed. The text looks at the theory and operation of electronic analog computers, including linear and non-linear computing units and use of analog computers as operational amplifiers. The monograph examines the preparation of problems to be deciphered on computers. Flow diagrams, methods of ampl

  8. Hybrid Weyl semimetal

    Science.gov (United States)

    Li, Fei-Ye; Luo, Xi; Dai, Xi; Yu, Yue; Zhang, Fan; Chen, Gang

    2016-09-01

    We construct a tight-binding model realizing one pair of Weyl nodes and three distinct Weyl semimetals. In the type-I (type-II) Weyl semimetal, both nodes belong to type-I (type-II) Weyl nodes. In addition, there exists a third type, previously undiscovered and dubbed "hybrid Weyl semimetal", in which one Weyl node is of type I while the other is of type II. For the hybrid Weyl semimetal, we further demonstrate the bulk Fermi surfaces and the topologically protected surface states, analyze the unique Landau-level structure and quantum oscillation, and discuss the conditions for possible material realization.

  9. Toyota hybrid synergy drive

    Energy Technology Data Exchange (ETDEWEB)

    Gautschi, H.

    2008-07-01

    This presentation made at the Swiss 2008 research conference on traffic by Hannes Gautschi, director of service and training at the Toyota company in Switzerland, takes a look at Toyota's hybrid drive vehicles. The construction of the vehicles and their combined combustion engines and electric generators and drives is presented and the combined operation of these components is described. Braking and energy recovery are discussed. Figures on the performance, fuel consumption and CO{sub 2} output of the hybrid vehicles are compared with those of conventional vehicles.

  10. Toyota hybrid synergy drive

    Energy Technology Data Exchange (ETDEWEB)

    Gautschi, H.

    2008-07-01

    This presentation made at the Swiss 2008 research conference on traffic by Hannes Gautschi, director of service and training at the Toyota company in Switzerland, takes a look at Toyota's hybrid drive vehicles. The construction of the vehicles and their combined combustion engines and electric generators and drives is presented and the combined operation of these components is described. Braking and energy recovery are discussed. Figures on the performance, fuel consumption and CO{sub 2} output of the hybrid vehicles are compared with those of conventional vehicles.

  11. THERMALLY CLEAVABLE HYBRID MATERIALS

    Directory of Open Access Journals (Sweden)

    Constantin Gaina

    2011-12-01

    Full Text Available Thermally cleavable hybrid materials were prepared by the Diels-Alder cycloaddition reaction of poly(vinyl furfural to N phenylmaleimido-N’-(triethoxysilylpropylurea followed by the sol-gel condensation reaction of trietoxysilyl groups with water and acetic acid. Thermal and dynamic mechanical analysis, dielectric and FTIR spectroscopy were used to characterize the structure and properties of the composites. The size of the inorganic silica particles in the hybrid material varied dependent on the silica content. The DSC study of the prepared materials revealed that the cleavage process of the formed cycloadducts takes place at temperatures varying between 143-165°C and is an endothermic process.

  12. The hybrid BCI

    Directory of Open Access Journals (Sweden)

    Gert Pfurtscheller

    2010-04-01

    Full Text Available Nowadays, everybody knows what a hybrid car is. A hybrid car normally has 2 engines, its main purpose being to enhance energy efficiency and reduce CO2 output. Similarly, a typical hybrid brain-computer interface (BCI is also composed of 2 BCIs or at least one BCI and another system. Such a hybrid BCI, like any BCI, must fulfil the following four criteria: (i the device must rely on signals recorded directly from the brain; (ii there must be at least one recordable brain signal that the user can intentionally modulate to effect goal-directed behaviour; (iii real time processing; and (iv the user must obtain feedback. This paper introduces some hybrid BCIs which have already been published or are currently in development or validation, and some concepts for future work. The BCIs described classify 2 EEG patterns: One is the event-related (desynchronisation (ERD, ERS of sensorimotor rhythms, and the other is the steady-state visual evoked potential (SSVEP. The hybrid BCI can either have more than one input whereby the inputs are typically processed simultaneously or operate 2 systems sequentially, whereby the first system can act as a “brain switch”. In the case of self-paced operation of a SSVEP-based hand orthosis control with an motor imagery-based switch it was possible to reduce the rate of false positives during resting periods by about 50% compared to the SSVEP BCI alone. It is shown that such a brain switch can also rely on hemodynamic changes measured through near-infrared spectroscopy (NIRS. Another interesting approach is a hybrid BCI with simultaneous operations of ERD- and SSVEP-based BCIs. Here it is important to prove the existing promising offline simulation results with online experiments. Hybrid BCIs can also use one brain signal and another input. Such an additional input can be a physiological signal like the heart rate but also a signal from an external device like, an eye gaze control system.

  13. Improving longitudinal motion prediction of hybrid monohulls with the viscous effect

    Institute of Scientific and Technical Information of China (English)

    ZHANG Heng; LI Ji-de

    2007-01-01

    A new method improves prediction of the motion of a hybrid monohull in regular waves. Stem section hydrodynamic coefficients of a hybrid monohull with harmonic oscillation were computed using the Reynolds Averaged Navier-Stokes Equations (RANSE). The governing equations were solved using the finite volume method. The VOF method was used for free surface treatment, and RNGK-ε turbulence model was employed in viscous flow calculation. The whole computational domain was divided into many blocks each with structured grids, and the dynamic process was treated with moving grids. Using a 2-D strip method and 2.5D theory with the correction hydrodynamic coefficients allows consideration of the viscous effect when predicting longitudinal motion of a hybrid monohull in regular waves. The method is effective at predicting motion of a hybrid monohull, showing that the viscous effect on a semi-submerged body cannot be ignored.

  14. Hybrid Computational Simulation and Study of Terahertz Pulsed Photoconductive Antennas

    Science.gov (United States)

    Emadi, R.; Barani, N.; Safian, R.; Nezhad, A. Zeidaabadi

    2016-08-01

    A photoconductive antenna (PCA) has been numerically investigated in the terahertz (THz) frequency band based on a hybrid simulation method. This hybrid method utilizes an optoelectronic solver, Silvaco TCAD, and a full-wave electromagnetic solver, CST. The optoelectronic solver is used to find the accurate THz photocurrent by considering realistic material parameters. Performance of photoconductive antennas and temporal behavior of the excited photocurrent for various active region geometries such as bare-gap electrode, interdigitated electrodes, and tip-to-tip rectangular electrodes are investigated. Moreover, investigations have been done on the center of the laser illumination on the substrate, substrate carrier lifetime, and diffusion photocurrent associated with the carriers temperature, to achieve efficient and accurate photocurrent. Finally, using the full-wave electromagnetic solver and the calculated photocurrent obtained from the optoelectronic solver, electromagnetic radiation of the antenna and its associated detected THz signal are calculated and compared with a measurement reference for verification.

  15. Hybrid Computational Simulation and Study of Terahertz Pulsed Photoconductive Antennas

    Science.gov (United States)

    Emadi, R.; Barani, N.; Safian, R.; Nezhad, A. Zeidaabadi

    2016-11-01

    A photoconductive antenna (PCA) has been numerically investigated in the terahertz (THz) frequency band based on a hybrid simulation method. This hybrid method utilizes an optoelectronic solver, Silvaco TCAD, and a full-wave electromagnetic solver, CST. The optoelectronic solver is used to find the accurate THz photocurrent by considering realistic material parameters. Performance of photoconductive antennas and temporal behavior of the excited photocurrent for various active region geometries such as bare-gap electrode, interdigitated electrodes, and tip-to-tip rectangular electrodes are investigated. Moreover, investigations have been done on the center of the laser illumination on the substrate, substrate carrier lifetime, and diffusion photocurrent associated with the carriers temperature, to achieve efficient and accurate photocurrent. Finally, using the full-wave electromagnetic solver and the calculated photocurrent obtained from the optoelectronic solver, electromagnetic radiation of the antenna and its associated detected THz signal are calculated and compared with a measurement reference for verification.

  16. Hybridizing Gravitationl Waveforms of Inspiralling Binary Neutron Star Systems

    Science.gov (United States)

    Cullen, Torrey; LIGO Collaboration

    2016-03-01

    Gravitational waves are ripples in space and time and were predicted to be produced by astrophysical systems such as binary neutron stars by Albert Einstein. These are key targets for Laser Interferometer and Gravitational Wave Observatory (LIGO), which uses template waveforms to find weak signals. The simplified template models are known to break down at high frequency, so I wrote code that constructs hybrid waveforms from numerical simulations to accurately cover a large range of frequencies. These hybrid waveforms use Post Newtonian template models at low frequencies and numerical data from simulations at high frequencies. They are constructed by reading in existing Post Newtonian models with the same masses as simulated stars, reading in the numerical data from simulations, and finding the ideal frequency and alignment to ``stitch'' these waveforms together.

  17. Electron Acceleration by High Power Radio Waves in the Ionosphere

    Science.gov (United States)

    Bernhardt, Paul

    2012-10-01

    At the highest ERP of the High Altitude Auroral Research Program (HAARP) facility in Alaska, high frequency (HF) electromagnetic (EM) waves in the ionosphere produce artificial aurora and electron-ion plasma layers. Using HAARP, electrons are accelerated by high power electrostatic (ES) waves to energies >100 times the thermal temperature of the ambient plasma. These ES waves are driven by decay of the pump EM wave tuned to plasma resonances. The most efficient acceleration process occurs near the harmonics of the electron cyclotron frequency in earth's magnetic field. Mode conversion plays a role in transforming the ES waves into EM signals that are recorded with ground receivers. These diagnostic waves, called stimulated EM emissions (SEE), show unique resonant signatures of the strongest electron acceleration. This SEE also provides clues about the ES waves responsible for electron acceleration. The electron gas is accelerated by high frequency modes including Langmuir (electron plasma), upper hybrid, and electron Bernstein waves. All of these waves have been identified in the scattered EM spectra as downshifted sidebands of the EM pump frequency. Parametric decay is responsible low frequency companion modes such as ion acoustic, lower hybrid, and ion Bernstein waves. The temporal evolution of the scattered EM spectrum indicates development of field aligned irregularities that aid the mode conversion process. The onset of certain spectral features is strongly correlated with glow plasma discharge structures that are both visible with the unaided eye and detectable using radio backscatter techniques at HF and UHF frequencies. The primary goals are to understand natural plasma layers, to study basic plasma physics in a unique ``laboratory with walls,'' and to create artificial plasma structures that can aid radio communications.

  18. NEW WIND WAVE GROWTH RELATIONS

    Institute of Scientific and Technical Information of China (English)

    WU Shu-ping; HOU Yi-jun; YIN Bao-shu

    2004-01-01

    In the present paper combining the relationship between wave steepness and wave age with the significant wave energy balance equation for wind wave,a new wind wave growth relation is presented.Comparisons with the other existing wind wave growth relations show that the results in present paper accord better with the wind wave growth process.

  19. Wave Forecasting Using Neuro Wavelet Technique

    Directory of Open Access Journals (Sweden)

    Pradnya Dixit

    2014-12-01

    Full Text Available In the present work a hybrid Neuro-Wavelet Technique is used for forecasting waves up to 6 hr, 12 hr, 18 hr and 24 hr in advance using hourly measured significant wave heights at an NDBC station 41004 near the east coast of USA. The NW Technique is employed by combining two methods, Discrete Wavelet Transform and Artificial Neural Networks. The hourly data of previously measured significant wave heights spanning over 2 years from 2010 and 2011 is used to calibrate and test the models. The discrete wavelet transform of NWT analyzes frequency of signal with respect to time at different scales. It decomposes time series into low (approximate and high (detail frequency components. The decomposition of approximate can be carried out up to desired multiple levels in order to provide more detail and approximate components which provides relatively smooth varying amplitude series. The neural network is trained with decorrelated approximate and detail wavelet coefficients. The outputs of networks during testing are reconstructed back using inverse DWT. The results were judged by drawing the wave plots, scatter plots and other error measures. The developed models show reasonable accuracy in prediction of significant wave heights from 6 to 24 hours. To compare the results traditional ANN models were also developed at the same location using the same data and for same time interval.

  20. Harvesting Broad Frequency Band Blue Energy by a Triboelectric-Electromagnetic Hybrid Nanogenerator.

    Science.gov (United States)

    Wen, Zhen; Guo, Hengyu; Zi, Yunlong; Yeh, Min-Hsin; Wang, Xin; Deng, Jianan; Wang, Jie; Li, Shengming; Hu, Chenguo; Zhu, Liping; Wang, Zhong Lin

    2016-07-26

    Ocean wave associated energy is huge, but it has little use toward world energy. Although such blue energy is capable of meeting all of our energy needs, there is no effective way to harvest it due to its low frequency and irregular amplitude, which may restrict the application of traditional power generators. In this work, we report a hybrid nanogenerator that consists of a spiral-interdigitated-electrode triboelectric nanogenerator (S-TENG) and a wrap-around electromagnetic generator (W-EMG) for harvesting ocean energy. In this design, the S-TENG can be fully isolated from the external environment through packaging and indirectly driven by the noncontact attractive forces between pairs of magnets, and W-EMG can be easily hybridized. Notably, the hybrid nanogenerator could generate electricity under either rotation mode or fluctuation mode to collect energy in ocean tide, current, and wave energy due to the unique structural design. In addition, the characteristics and advantages of outputs indicate that the S-TENG is irreplaceable for harvesting low rotation speeds (10 Hz). The complementary output can be maximized and hybridized for harvesting energy in a broad frequency range. Finally, a single hybrid nanogenerator unit was demonstrated to harvest blue energy as a practical power source to drive several LEDs under different simulated water wave conditions. We also proposed a blue energy harvesting system floating on the ocean surface that could simultaneously harvest wind, solar, and wave energy. The proposed hybrid nanogenerator renders an effective and sustainable progress in practical applications of the hybrid nanogenerator toward harvesting water wave energy offered by nature.

  1. An Obliquely Propagating Electromagnetic Lower-Hybrid-Drift Instability in Plasmas with Negative Ions

    Institute of Scientific and Technical Information of China (English)

    WANG Feihu; ZHANG Zhou; CHEN Yinhua; HUANG Feng

    2007-01-01

    In this study,by employing a local fluid theory for warm plasma containing negative ions,an obliquely propagating electromagnetic instability in the lower hybrid frequency range driven by cross-field currents or relative drifts between electrons and ions Was investigated.It is found that the growth rate of the lower-hybrid-drift instability(LHDI)can be controlled by appropriate selection of the propagation direction,the wave number and the relative population of the negative ions.

  2. Fast electron dynamics in lower hybrid current drive experiment on HT-7 tokamak

    Institute of Scientific and Technical Information of China (English)

    Shi Yue-Jiang; Kuang Gang-Li; Li Jian-Gang; HT-7 Team; Wan Bao-Nian; Chen Zhong-Yong; Hu Li-Qun; Lin Shi-Yao; Ruan Huai-Lin; Qian Jin-Ping; Zhen Xiang-Jun; Ding Bo-Jiang

    2005-01-01

    The dynamic behaviour of fast electron in lower hybrid current drive (LHCD) experiments is a crucial issue in the sense of enhancing plasma performance. A new hard x-ray diagnostic system on HT-7 allows the investigation of the lower hybrid wave dynamics. The behaviour of fast electron is studied in several kinds of LHCD experiments, including long pulse discharges, high performance discharges and counter-LHCD experiments.

  3. Hybrid Ventilation Air Flow Process

    DEFF Research Database (Denmark)

    Heiselberg, Per Kvols

    The scope of this annex is therefore to obtain better knowledge of the use of hybrid ventilation technologies. The annex focus on development of control strategies for hybrid ventilation, on development of methods to predict hybrid ventilation performance in office buildings and on implementation...

  4. (Hybrid) Baryons Symmetries and Masses

    CERN Document Server

    Page, P R

    1999-01-01

    We construct (hybrid) baryons in the flux-tube model of Isgur and Paton. In the limit of adiabatic quark motion, we build proper eigenstates of orbital angular momentum and construct the flavour, spin and J^P of hybrid baryons from the symmetries of the system. The lowest mass hybrid baryon is estimated at approximately 2 GeV.

  5. Improved hybrid rocket fuel

    Science.gov (United States)

    Dean, David L.

    1995-01-01

    McDonnell Douglas Aerospace, as part of its Independent R&D, has initiated development of a clean burning, high performance hybrid fuel for consideration as an alternative to the solid rocket thrust augmentation currently utilized by American space launch systems including Atlas, Delta, Pegasus, Space Shuttle, and Titan. It could also be used in single stage to orbit or as the only propulsion system in a new launch vehicle. Compared to solid propellants based on aluminum and ammonium perchlorate, this fuel is more environmentally benign in that it totally eliminates hydrogen chloride and aluminum oxide by products, producing only water, hydrogen, nitrogen, carbon oxides, and trace amounts of nitrogen oxides. Compared to other hybrid fuel formulations under development, this fuel is cheaper, denser, and faster burning. The specific impulse of this fuel is comparable to other hybrid fuels and is between that of solids and liquids. The fuel also requires less oxygen than similar hybrid fuels to produce maximum specific impulse, thus reducing oxygen delivery system requirements.

  6. Workshop on hybrid rice

    Institute of Scientific and Technical Information of China (English)

    TANZhijun

    1994-01-01

    FAO, in collaboration with FEDEARROZ in Colombia and EMBRAPA / CNPAF in Brail, organized a workshop on the Establishment of a Coorperative Research Network on Hybrid Rice in Latin America and the Caribbean held from Mar 16 to 18, 1994 at EMBRAPA/CNPAF in Brazil. Dr MAO Changxiang,

  7. Teelt van hybride wintertarwerassen

    NARCIS (Netherlands)

    Timmer, R.D.; Paauw, J.G.M.

    2003-01-01

    Om de mogelijkheden van de teelt van hybride wintertarwerassen onder Nederlandse omstandigheden in beeld te brengen zijn er van 2000-2002 proeven uitgevoerd op het PPO-proefbedrijf te Lelystad. In deze proeven zijn een 4-tal hybriderassen (Hybnos, Hyno-braba, Hyno-esta, Mercury) vergeleken met een s

  8. Organics go hybrid

    Science.gov (United States)

    Lanzani, Guglielmo; Petrozza, Annamaria; Caironi, Mario

    2017-01-01

    From displays to solar cells, the field of organic optoelectronics has come a long way over the past 50 years, but the realization of an electrically pumped organic laser remains elusive. The answer may lie with hybrid organic-inorganic materials called perovskites.

  9. Hybrid-secure MPC 

    DEFF Research Database (Denmark)

    Lucas, Christoph; Raub, Dominik; Maurer, Ueli

    2010-01-01

    Most protocols for distributed, fault-tolerant computation, or multi-party computation (MPC), provide security guarantees in an all-or-nothing fashion. In contrast, a hybrid-secure protocol provides different security guarantees depending on the set of corrupted parties and the computational powe...

  10. Indexical Hybrid Tense Logic

    DEFF Research Database (Denmark)

    Blackburn, Patrick Rowan; Jørgensen, Klaus Frovin

    2012-01-01

    In this paper we explore the logic of now, yesterday, today and tomorrow by combining the semantic approach to indexicality pioneered by Hans Kamp [9] and refined by David Kaplan [10] with hybrid tense logic. We first introduce a special now nominal (our @now corresponds to Kamp’s original now...

  11. Nuclear hybrid energy infrastructure

    Energy Technology Data Exchange (ETDEWEB)

    Agarwal, Vivek; Tawfik, Magdy S.

    2015-02-01

    The nuclear hybrid energy concept is becoming a reality for the US energy infrastructure where combinations of the various potential energy sources (nuclear, wind, solar, biomass, and so on) are integrated in a hybrid energy system. This paper focuses on challenges facing a hybrid system with a Small Modular Reactor at its core. The core of the paper will discuss efforts required to develop supervisory control center that collects data, supports decision-making, and serves as an information hub for supervisory control center. Such a center will also be a model for integrating future technologies and controls. In addition, advanced operations research, thermal cycle analysis, energy conversion analysis, control engineering, and human factors engineering will be part of the supervisory control center. Nuclear hybrid energy infrastructure would allow operators to optimize the cost of energy production by providing appropriate means of integrating different energy sources. The data needs to be stored, processed, analyzed, trended, and projected at right time to right operator to integrate different energy sources.

  12. Hybrid printed electronics

    NARCIS (Netherlands)

    Koetse, M.; Smits, E.; Rubingh, E.; Teunissen, P.; Kusters, R.; Abbel, R.; Brand, J. van den

    2016-01-01

    Although many electronic functionalities can be realized by printed or organic electronics, short-term marketable products often require robust, reproducible, and nondisturbing technologies. In this chapter we show how hybrid electronics, a combination of printed circuitry, thin-film electronics,

  13. Hybrid keyword search auctions

    KAUST Repository

    Goel, Ashish

    2009-01-01

    Search auctions have become a dominant source of revenue generation on the Internet. Such auctions have typically used per-click bidding and pricing. We propose the use of hybrid auctions where an advertiser can make a per-impression as well as a per-click bid, and the auctioneer then chooses one of the two as the pricing mechanism. We assume that the advertiser and the auctioneer both have separate beliefs (called priors) on the click-probability of an advertisement. We first prove that the hybrid auction is truthful, assuming that the advertisers are risk-neutral. We then show that this auction is superior to the existing per-click auction in multiple ways: 1. We show that risk-seeking advertisers will choose only a per-impression bid whereas risk-averse advertisers will choose only a per-click bid, and argue that both kind of advertisers arise naturally. Hence, the ability to bid in a hybrid fashion is important to account for the risk characteristics of the advertisers. 2. For obscure keywords, the auctioneer is unlikely to have a very sharp prior on the click-probabilities. In such situations, we show that having the extra information from the advertisers in the form of a per-impression bid can result in significantly higher revenue. 3. An advertiser who believes that its click-probability is much higher than the auctioneer\\'s estimate can use per-impression bids to correct the auctioneer\\'s prior without incurring any extra cost. 4. The hybrid auction can allow the advertiser and auctioneer to implement complex dynamic programming strategies to deal with the uncertainty in the click-probability using the same basic auction. The per-click and per-impression bidding schemes can only be used to implement two extreme cases of these strategies. As Internet commerce matures, we need more sophisticated pricing models to exploit all the information held by each of the participants. We believe that hybrid auctions could be an important step in this direction. The

  14. Safety Evaluation of a Hybrid Substructure for Offshore Wind Turbine

    Directory of Open Access Journals (Sweden)

    Min-Su Park

    2016-01-01

    Full Text Available Towers and rotor-nacelles are being enlarged to respond to the need for higher gross generation of the wind turbines. However, the accompanying enlargement of the substructure supporting these larger offshore wind turbines makes it strongly influenced by the effect of wave forces. In the present study, the hybrid substructure is suggested to reduce the wave forces by composing a multicylinder having different radii near free surface and a gravity substructure at the bottom of the multicylinder. In addition, the reaction forces acting on the substructure due to the very large dead load of the offshore wind turbine require very firm foundations. This implies that the dynamic pile-soil interaction has to be fully considered. Therefore, ENSOFT Group V7.0 is used to calculate the stiffness matrices on the pile-soil interaction conditions. These matrices are then used together with the loads at TP (Transition Piece obtained from GH-Bladed for the structural analysis of the hybrid substructure by ANSYS ASAS. The structural strength and deformation are evaluated to derive an ultimate structural safety of the hybrid substructure for various soil conditions and show that the first few natural frequencies of the substructure are heavily influenced by the wind turbine. Therefore, modal analysis is carried out through GH-Bladed to examine the resonance between the wind turbine and the hybrid substructure.

  15. Evolution of lower hybrid turbulence in the ionosphere

    Energy Technology Data Exchange (ETDEWEB)

    Ganguli, G.; Crabtree, C.; Mithaiwala, M.; Rudakov, L.; Scales, W. [Plasma Physics Division, Naval Research Laboratory, Washington, DC 20375-5346 (United States)

    2015-11-15

    Three-dimensional evolution of the lower hybrid turbulence driven by a spatially localized ion ring beam perpendicular to the ambient magnetic field in space plasmas is analyzed. It is shown that the quasi-linear saturation model breaks down when the nonlinear rate of scattering by thermal electron is larger than linear damping rates, which can occur even for low wave amplitudes. The evolution is found to be essentially a three-dimensional phenomenon, which cannot be accurately explained by two-dimensional simulations. An important feature missed in previous studies of this phenomenon is the nonlinear conversion of electrostatic lower hybrid waves into electromagnetic whistler and magnetosonic waves and the consequent energy loss due to radiation from the source region. This can result in unique low-amplitude saturation with extended saturation time. It is shown that when the nonlinear effects are considered the net energy that can be permanently extracted from the ring beam is larger. The results are applied to anticipate the outcome of a planned experiment that will seed lower hybrid turbulence in the ionosphere and monitor its evolution.

  16. Vlasov Simulations of Ionospheric Heating Near Upper Hybrid Resonance

    Science.gov (United States)

    Najmi, A. C.; Eliasson, B. E.; Shao, X.; Milikh, G. M.; Papadopoulos, K.

    2014-12-01

    It is well-known that high-frequency (HF) heating of the ionosphere can excite field- aligned density striations (FAS) in the ionospheric plasma. Furthermore, in the neighborhood of various resonances, the pump wave can undergo parametric instabilities to produce a variety of electrostatic and electromagnetic waves. We have used a Vlasov simulation with 1-spatial dimension, 2-velocity dimensions, and 2-components of fields, to study the effects of ionospheric heating when the pump frequency is in the vicinity of the upper hybrid resonance, employing parameters currently available at ionospheric heaters such as HAARP. We have found that by seeding theplasma with a FAS of width ~20% of the simulation domain, ~10% depletion, and by applying a spatially uniform HF dipole pump electric field, the pump wave gives rise to a broad spectrum of density fluctuations as well as to upper hybrid and lower hybrid oscillating electric fields. We also observe collisionless bulk-heating of the electrons that varies non-linearly with the amplitude of the pump field.

  17. Evolution of lower hybrid turbulence in the ionosphere

    Science.gov (United States)

    Ganguli, G.; Crabtree, C.; Mithaiwala, M.; Rudakov, L.; Scales, W.

    2015-11-01

    Three-dimensional evolution of the lower hybrid turbulence driven by a spatially localized ion ring beam perpendicular to the ambient magnetic field in space plasmas is analyzed. It is shown that the quasi-linear saturation model breaks down when the nonlinear rate of scattering by thermal electron is larger than linear damping rates, which can occur even for low wave amplitudes. The evolution is found to be essentially a three-dimensional phenomenon, which cannot be accurately explained by two-dimensional simulations. An important feature missed in previous studies of this phenomenon is the nonlinear conversion of electrostatic lower hybrid waves into electromagnetic whistler and magnetosonic waves and the consequent energy loss due to radiation from the source region. This can result in unique low-amplitude saturation with extended saturation time. It is shown that when the nonlinear effects are considered the net energy that can be permanently extracted from the ring beam is larger. The results are applied to anticipate the outcome of a planned experiment that will seed lower hybrid turbulence in the ionosphere and monitor its evolution.

  18. 3D Evolution of Lower Hybrid Turbulence in the Ionosphere

    Science.gov (United States)

    Ganguli, Gurudas; Crabtree, Chris; Rudakov, Leonid

    2016-10-01

    Three-dimensional evolution of the lower hybrid turbulence driven by a spatially localized ion ring beam perpendicular to the ambient magnetic field in space plasmas is considered. It is shown that the quasi-linear saturation model breaks down when the nonlinear rate of scattering by thermal electron is larger than linear damping rates, which can occur even for low wave amplitudes. The evolution is found to be essentially a three-dimensional phenomenon, which cannot be accurately explained by two-dimensional simulations. An important feature missed in previous studies of this phenomenon is the nonlinear conversion of electrostatic lower hybrid waves into electromagnetic whistler and magnetosonic waves and the consequent energy loss due to radiation from the source region that can result in unique low-amplitude saturation with extended saturation time. It is shown that when the realistic nonlinear effects are considered the net energy that can be permanently extracted from the ring beam is larger. The results are applied to anticipate the outcome of a planned experiment that will seed lower hybrid turbulence in the ionosphere and monitor its evolution. NRL Base Program.

  19. Wave Meteorology and Soaring

    Science.gov (United States)

    Wiley, Scott

    2008-01-01

    This viewgraph document reviews some mountain wave turbulence and operational hazards while soaring. Maps, photographs, and satellite images of the meteorological phenomena are included. Additionally, photographs of aircraft that sustained mountain wave damage are provided.

  20. Coronal Waves and Oscillations

    Directory of Open Access Journals (Sweden)

    Nakariakov Valery M.

    2005-07-01

    Full Text Available Wave and oscillatory activity of the solar corona is confidently observed with modern imaging and spectral instruments in the visible light, EUV, X-ray and radio bands, and interpreted in terms of magnetohydrodynamic (MHD wave theory. The review reflects the current trends in the observational study of coronal waves and oscillations (standing kink, sausage and longitudinal modes, propagating slow waves and fast wave trains, the search for torsional waves, theoretical modelling of interaction of MHD waves with plasma structures, and implementation of the theoretical results for the mode identification. Also the use of MHD waves for remote diagnostics of coronal plasma - MHD coronal seismology - is discussed and the applicability of this method for the estimation of coronal magnetic field, transport coefficients, fine structuring and heating function is demonstrated.

  1. Electromagnetic ultrasonic guided waves

    CERN Document Server

    Huang, Songling; Li, Weibin; Wang, Qing

    2016-01-01

    This book introduces the fundamental theory of electromagnetic ultrasonic guided waves, together with its applications. It includes the dispersion characteristics and matching theory of guided waves; the mechanism of production and theoretical model of electromagnetic ultrasonic guided waves; the effect mechanism between guided waves and defects; the simulation method for the entire process of electromagnetic ultrasonic guided wave propagation; electromagnetic ultrasonic thickness measurement; pipeline axial guided wave defect detection; and electromagnetic ultrasonic guided wave detection of gas pipeline cracks. This theory and findings on applications draw on the author’s intensive research over the past eight years. The book can be used for nondestructive testing technology and as an engineering reference work. The specific implementation of the electromagnetic ultrasonic guided wave system presented here will also be of value for other nondestructive test developers.

  2. Viscothermal wave propagation

    NARCIS (Netherlands)

    Nijhof, Marten Jozef Johannes

    2010-01-01

    In this work, the accuracy, efficiency and range of applicability of various (approximate) models for viscothermal wave propagation are investigated. Models for viscothermal wave propagation describe thewave behavior of fluids including viscous and thermal effects. Cases where viscothermal effects a

  3. Detonation Wave Profile

    Energy Technology Data Exchange (ETDEWEB)

    Menikoff, Ralph [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-12-14

    The Zel’dovich-von Neumann-Doering (ZND) profile of a detonation wave is derived. Two basic assumptions are required: i. An equation of state (EOS) for a partly burned explosive; P(V, e, λ). ii. A burn rate for the reaction progress variable; d/dt λ = R(V, e, λ). For a steady planar detonation wave the reactive flow PDEs can be reduced to ODEs. The detonation wave profile can be determined from an ODE plus algebraic equations for points on the partly burned detonation loci with a specified wave speed. Furthermore, for the CJ detonation speed the end of the reaction zone is sonic. A solution to the reactive flow equations can be constructed with a rarefaction wave following the detonation wave profile. This corresponds to an underdriven detonation wave, and the rarefaction is know as a Taylor wave.

  4. Controlling spiral wave with target wave in oscillatory systems

    Institute of Scientific and Technical Information of China (English)

    Liu Fu-Cheng; Wang Xiao-Fei; Li Xue-Chen; Dong Li-Fang

    2007-01-01

    Spiral waves have been controlled by generating target waves with a localized inhomogeneity in the oscillatory medium. The competition between the spiral waves and target waves is discussed. The effect of the localized inhomogeneity size has also been studied.

  5. Tailoring the parametric gain in large mode area hybrid photonic crystal fibers

    DEFF Research Database (Denmark)

    Petersen, Sidsel Rübner; Lægsgaard, Jesper; Alkeskjold, Thomas Tanggaard

    2013-01-01

    The spectral width of parametric gain peaks due to degenerate four-wave mixing is investigated numerically in large-mode-area hybrid photonic crystal fibers. The width is varied for a maintained pump wavelength and gain maximum position by tailoring the dispersion.......The spectral width of parametric gain peaks due to degenerate four-wave mixing is investigated numerically in large-mode-area hybrid photonic crystal fibers. The width is varied for a maintained pump wavelength and gain maximum position by tailoring the dispersion....

  6. Explosive Line Wave Generators

    Science.gov (United States)

    2013-12-01

    curvature produced by each line wave generator. Piezoelectric pins were used for an additional assessment of the explosive lens design...to a visual assessment of the wave curvature from the high speed camera images, the explosive lens design was also evaluated using piezoelectric pins...High Explosive Firing Complex (HEFC). The various explosive line wave generators were taped vertically on a supporting board and the detonation wave

  7. Electron Whistler Mode Waves Associated with Collisionless Magnetic Reconnection

    Institute of Scientific and Technical Information of China (English)

    GUO Jun; YU Bin; GUO Guang-Hai; ZHAO Bo

    2011-01-01

    @@ The results of particle-in-cell (PIC) simulations are presented on the evolution of the electron whistler waves during the collisionless magnetic reconnection.The simulation results show that the electron whistler waves with frequency higher than the lower hybrid frequency are found to occur in the electrons outflow region.Moreover, the present results indicate that these electron whistler waves with high-frequency in the region greater than an ion inertial scale of the x-line are irrelevant to the fast reconnection, but are generated as a result of the reconnection processes.%The results of particle-in-cell (PIC) simulations are presented on the evolution of the electron whistler waves during the collisionless magnetic reconnection. The simulation results show that the electron whistler waves with frequency higher than the lower hybrid frequency are found to occur in the electrons outflow region. Moreover,the present results indicate that these electron whistler waves with high-frequency in the region greater than an ion inertial scale of the x-line are irrelevant to the fast reconnection, but are generated as a result of the reconnection processes.

  8. Ants exhibit asymmetric hybridization in a mosaic hybrid zone.

    Science.gov (United States)

    Purcell, Jessica; Zahnd, Sacha; Athanasiades, Anouk; Türler, Rebecca; Chapuisat, Michel; Brelsford, Alan

    2016-10-01

    Research on hybridization between species provides unparalleled insights into the pre- and postzygotic isolating mechanisms that drive speciation. In social organisms, colony-level incompatibilities may provide additional reproductive barriers not present in solitary species, and hybrid zones offer an opportunity to identify these barriers. Here, we use genotyping-by-sequencing to sequence hundreds of markers in a hybrid zone between two socially polymorphic ant species, Formica selysi and Formica cinerea. We characterize the zone, determine the frequency of hybrid workers, infer whether hybrid queens or males are produced and investigate whether hybridization is influenced by colony social organization. We also compare cuticular hydrocarbon profiles and aggression levels between the two species. The hybrid zone exhibits a mosaic structure. The asymmetric distribution of hybrids skewed towards F. cinerea suggests a pattern of unidirectional nuclear gene flow from F. selysi into F. cinerea. The occurrence of backcrossed individuals indicates that hybrid queens and/or males are fertile, and the presence of the F. cinerea mitochondrial haplotype in 97% of hybrids shows that successful F1 hybrids will generally have F. cinerea mothers and F. selysi fathers. We found no evidence that social organization contributes to speciation, because hybrids occur in both single-queen and multiple-queen colonies. Strongly differentiated cuticular hydrocarbon profiles and heightened interspecific aggression further reveal that species recognition cues are both present and perceived. The discovery of fertile hybrids and asymmetrical gene flow is unusual in ants, and this hybrid zone will therefore provide an ideal system with which to investigate speciation in social insects.

  9. Wave Dragon MW

    DEFF Research Database (Denmark)

    Kofoed, Jens Peter; Frigaard, Peter

    Wave Dragon is a wave energy converter of the overtopping type. The device has been thoroughly tested on a 1:51.8 scale model in wave laboratories and a 1:4.5 scale model deployed in Nissum Bredning, a large inland waterway in Denmark. Based on the experience gained a full scale, multi MW prototype...

  10. Wave Dragon MW

    DEFF Research Database (Denmark)

    Kofoed, Jens Peter; Frigaard, Peter

    Wave Dragon is a wave energy converter of the overtopping type. The device has been thoroughly tested on a 1:51.8 scale model in wave laboratories and a 1:4.5 scale model deployed in Nissum Bredning, a large inland waterway in Denmark. Based on the experience gained a full scale, multi MW prototype...

  11. The Wave Energy Sector

    DEFF Research Database (Denmark)

    2017-01-01

    This Handbook for Ocean Wave Energy aims at providing a guide into the field of ocean wave energy utilization. The handbook offers a concise yet comprehensive overview of the main aspects and disciplines involved in the development of wave energy converters (WECs). The idea for the book has been ...

  12. A linear dispersion relation for the hybrid kinetic-ion/fluid-electron model of plasma physics

    CERN Document Server

    Told, Daniel; Astfalk, Patrick; Jenko, Frank

    2016-01-01

    A dispersion relation for a commonly used hybrid model of plasma physics is developed, which combines fully kinetic ions and a massless-electron fluid description. Although this model and variations of it have been used to describe plasma phenomena for about 40 years, to date there exists no general dispersion relation to describe the linear wave physics contained in the model. Previous efforts along these lines are extended here to retain arbitrary wave propagation angles, temperature anisotropy effects, as well as additional terms in the generalized Ohm's law which determines the electric field. A numerical solver for the dispersion relation is developed, and linear wave physics is benchmarked against solutions of a full Vlasov-Maxwell dispersion relation solver. This work opens the door to a more accurate interpretation of existing and future wave and turbulence simulations using this type of hybrid model.

  13. Reflectors and resonators for high-k bulk Bloch plasmonic waves in multilayer hyperbolic metamaterials

    DEFF Research Database (Denmark)

    Zhukovsky, Sergei; Lavrinenko, Andrei

    2012-01-01

    We propose proof-of-concept designs of Bragg reflectors and Fabry-Pe´rot resonators for large wave vector waves (Bloch bulk plasmon polaritons) in multilayer metal-dielectric hyperbolic metamaterials. The designs are based on hybrid multilayers having both subwavelength and wavelength-scale struc......We propose proof-of-concept designs of Bragg reflectors and Fabry-Pe´rot resonators for large wave vector waves (Bloch bulk plasmon polaritons) in multilayer metal-dielectric hyperbolic metamaterials. The designs are based on hybrid multilayers having both subwavelength and wavelength......-scale structuring. This multiscale approach is shown to be a promising platform for using bulk plasmonic waves in complex multilayer metamaterials as a new kind of information carriers....

  14. A generalized hybrid transfinite element computational approach for nonlinear/linear unified thermal/structural analysis

    Science.gov (United States)

    Tamma, Kumar K.; Railkar, Sudhir B.

    1987-01-01

    The present paper describes the development of a new hybrid computational approach for applicability for nonlinear/linear thermal structural analysis. The proposed transfinite element approach is a hybrid scheme as it combines the modeling versatility of contemporary finite elements in conjunction with transform methods and the classical Bubnov-Galerkin schemes. Applicability of the proposed formulations for nonlinear analysis is also developed. Several test cases are presented to include nonlinear/linear unified thermal-stress and thermal-stress wave propagations. Comparative results validate the fundamental capablities of the proposed hybrid transfinite element methodology.

  15. External pumping of hybrid nanostructures in microcavity with Frenkel and Wannier-Mott excitons

    Science.gov (United States)

    Dubovskiy, O. A.; Agranovich, V. M.

    2016-09-01

    The exciton-exciton interaction in hybrid nanostructures with resonating Frenkel and Wannier-Mott excitons was investigated in many publications. In microcavity the hybrid nanostructures can be exposed to different types of optical pumping, the most common one being pumping through one of the microcavity side. However, not investigated and thus never been discussed the hybrid excitons generation by pumping of confined quantum wells from the side of empty microcavity without nanostructures in a wave guided configuration. Here, we consider the hybrid excitations in cavity with organic and inorganic quantum wells and with different types of pumping from external source. The frequency dependence for intensity of excitations in hybrid structure is also investigated. The results may be used for search of most effective fluorescence and relaxation processes. The same approach may be used when both quantum wells are organic or inorganic.

  16. Wave turbulence in annular wave tank

    Science.gov (United States)

    Onorato, Miguel; Stramignoni, Ettore

    2014-05-01

    We perform experiments in an annular wind wave tank at the Dipartimento di Fisica, Universita' di Torino. The external diameter of the tank is 5 meters while the internal one is 1 meter. The tank is equipped by two air fans which can lead to a wind of maximum 5 m/s. The present set up is capable of studying the generation of waves and the development of wind wave spectra for large duration. We have performed different tests including different wind speeds. For large wind speed we observe the formation of spectra consistent with Kolmogorv-Zakharov predictions.

  17. Physics of waves

    CERN Document Server

    Elmore, William C

    1985-01-01

    Because of the increasing demands and complexity of undergraduate physics courses (atomic, quantum, solid state, nuclear, etc.), it is often impossible to devote separate courses to the classic wave phenomena of optics, acoustics, and electromagnetic radiation. This brief comprehensive text helps alleviate the problem with a unique overview of classical wave theory in one volume.By examining a sequence of concrete and specific examples (emphasizing the physics of wave motion), the authors unify the study of waves, developing abstract and general features common to all wave motion. The fundam

  18. The Wave Dragon

    DEFF Research Database (Denmark)

    Sørensen, H. C.; Hansen, R.; Friis-Madsen, E.

    2000-01-01

    The Wave Dragon is an offshore wave energy converter of the overtopping type, utilizing a patented wave reflector design to focus the waves towards a ramp, and the overtopping is used for electricity production through a set of Kaplan/propeller hydro turbines. During the last 2 years, excessive...... design an testing has been performed on a scale 1:50 model of the Wave Dragon, and on a scale 1:3:5 model turbine. Thus survivability, overtopping, hydraulic response, turbine performance and feasibility have been verified....

  19. Energy Efficiency Comparison between Hydraulic Hybrid and Hybrid Electric Vehicles

    Directory of Open Access Journals (Sweden)

    Jia-Shiun Chen

    2015-05-01

    Full Text Available Conventional vehicles tend to consume considerable amounts of fuel, which generates exhaust gases and environmental pollution during intermittent driving cycles. Therefore, prospective vehicle designs favor improved exhaust emissions and energy consumption without compromising vehicle performance. Although pure electric vehicles feature high performance and low pollution characteristics, their limitations are their short driving range and high battery costs. Hybrid electric vehicles (HEVs are comparatively environmentally friendly and energy efficient, but cost substantially more compared with conventional vehicles. Hydraulic hybrid vehicles (HHVs are mainly operated using engines, or using alternate combinations of engine and hydraulic power sources while vehicles accelerate. When the hydraulic system accumulator is depleted, the conventional engine reengages; concurrently, brake-regenerated power is recycled and reused by employing hydraulic motor–pump modules in circulation patterns to conserve fuel and recycle brake energy. This study adopted MATLAB Simulink to construct complete HHV and HEV models for backward simulations. New European Driving Cycles were used to determine the changes in fuel economy. The output of power components and the state-of-charge of energy could be retrieved. Varying power component models, energy storage component models, and series or parallel configurations were combined into seven different vehicle configurations: the conventional manual transmission vehicle, series hybrid electric vehicle, series hydraulic hybrid vehicle, parallel hybrid electric vehicle, parallel hydraulic hybrid vehicle, purely electric vehicle, and hydraulic-electric hybrid vehicle. The simulation results show that fuel consumption was 21.80% lower in the series hydraulic hybrid vehicle compared to the series hybrid electric vehicle; additionally, fuel consumption was 3.80% lower in the parallel hybrid electric vehicle compared to the

  20. Hybrid simulation of whistler excitation by electron beams in two-dimensional non-periodic domains

    Energy Technology Data Exchange (ETDEWEB)

    Woodroffe, J.R., E-mail: woodrofj@erau.edu; Streltsov, A.V., E-mail: streltsa@erau.edu

    2014-11-01

    We present a two-dimensional hybrid fluid-PIC scheme for the simulation of whistler wave excitation by relativistic electron beams. This scheme includes a number of features which are novel to simulations of this type, including non-periodic boundary conditions and fresh particle injection. Results from our model suggest that non-periodicity of the simulation domain results in the development of fundamentally different wave characteristics than are observed in periodic domains.