WorldWideScience

Sample records for hybrid vehicle performance

  1. Improving the performance of a hybrid electric vehicle by utilization regenerative braking energy of vehicle

    Directory of Open Access Journals (Sweden)

    Mohamed Mourad

    2011-01-01

    Full Text Available Environmentally friendly vehicles with range and performance capabilities surpassing those of conventional ones require a careful balance among competing goals for fuel efficiency, performance and emissions. It can be recuperated the energy of deceleration case of the vehicle to reuse it to recharge the storage energy of hybrid electric vehicle and increase the state of charge of batteries under the new conditions of vehicle operating in braking phase. Hybrid electric vehicle has energy storage which allows decreasing required peak value of power from prime mover, which is the internal combustion engine. The paper investigates the relationships between the driving cycle phases and the recuperation energy to the batteries system of hybrid electric vehicle. This work describes also a methodology for integrating this type of hybrid electric vehicle in a simulation program. A design optimization framework is then used to find the best position that we can utilize the recuperation energy to recharge the storage batteries of hybrid electric vehicle.

  2. Comparison performance of split plug-in hybrid electric vehicle and hybrid electric vehicle using ADVISOR

    Directory of Open Access Journals (Sweden)

    Mohd Rashid Muhammad Ikram

    2017-01-01

    Full Text Available Electric vehicle suffers from relatively short range and long charging times and consequently has not become an acceptable solution to the automotive consumer. The addition of an internal combustion engine to extend the range of the electric vehicle is one method of exploiting the high efficiency and lack of emissions of the electric vehicle while retaining the range and convenient refuelling times of a conventional gasoline powered vehicle. The term that describes this type of vehicle is a hybrid electric vehicle. Many configurations of hybrid electric vehicles have been designed and implemented, namely the series, parallel and power-split configurations. This paper discusses the comparison between Split Plug-in Hybrid Electric Vehicle(SPHEV and Hybrid Electric Vehicle(HEV. Modelling methods such as physics-based Resistive Companion Form technique and Bond Graph method are presented with powertrain component and system modelling examples. The modelling and simulation capability of existing tools such as ADvanced VehIcle SimulatOR (ADVISOR is demonstrated through application examples. Since power electronics is indispensable in hybrid vehicles, the issue of numerical oscillations in dynamic simulations involving power electronics is briefly addressed.

  3. Project Startup: Evaluating the Performance of Hydraulic Hybrid Refuse Vehicles

    Energy Technology Data Exchange (ETDEWEB)

    2015-09-01

    The Fleet Test and Evaluation Team at the National Renewable Energy Laboratory (NREL) is evaluating the in-service performance of 10 next-generation hydraulic hybrid refuse vehicles (HHVs), 8 previous-generation HHVs, and 8 comparable conventional diesel vehicles operated by Miami-Dade County's Public Works and Waste Management Department in southern Florida. The HHVs under study - Autocar E3 refuse trucks equipped with Parker Hannifin's RunWise Advanced Series Hybrid Drive systems - can recover as much as 70 percent of the energy typically lost during braking and reuse it to power the vehicle. NREL's evaluation will assess the performance of this technology in commercial operation and help Miami-Dade County determine the ideal routes for maximizing the fuel-saving potential of its HHVs.

  4. Hybrid vehicles

    Energy Technology Data Exchange (ETDEWEB)

    West, J.G.W. [Electrical Machines (United Kingdom)

    1997-07-01

    The reasons for adopting hybrid vehicles result mainly from the lack of adequate range from electric vehicles at an acceptable cost. Hybrids can offer significant improvements in emissions and fuel economy. Series and parallel hybrids are compared. A combination of series and parallel operation would be the ideal. This can be obtained using a planetary gearbox as a power split device allowing a small generator to transfer power to the propulsion motor giving the effect of a CVT. It allows the engine to run at semi-constant speed giving better fuel economy and reduced emissions. Hybrid car developments are described that show the wide range of possible hybrid systems. (author)

  5. Real-world environmental performance of hybrid vehicles

    NARCIS (Netherlands)

    Winkel, R.G.; Hendriksen, P.; Vermeulen, R.J.; Foster, D.L.

    2001-01-01

    With the further development and market introduction of hybrid vehicle technologies in recent years we are now at a stage where we can test whether the proclaimed advantages of hybrid propulsion in terms of fuel efficiency and emission reduction are actually realised. An important issue is that

  6. Real-world environmental performance of hybrid vehicles

    NARCIS (Netherlands)

    Winkel, R.G.; Hendriksen, P.; Vermeulen, R.J.; Foster, D.L.

    2001-01-01

    With the further development and market introduction of hybrid vehicle technologies in recent years we are now at a stage where we can test whether the proclaimed advantages of hybrid propulsion in terms of fuel efficiency and emission reduction are actually realised. An important issue is that sign

  7. Electric/Hybrid Vehicle Simulation

    Science.gov (United States)

    Slusser, R. A.; Chapman, C. P.; Brennand, J. P.

    1985-01-01

    ELVEC computer program provides vehicle designer with simulation tool for detailed studies of electric and hybrid vehicle performance and cost. ELVEC simulates performance of user-specified electric or hybrid vehicle under user specified driving schedule profile or operating schedule. ELVEC performs vehicle design and life cycle cost analysis.

  8. Performance Analysis of Hybrid Electric Vehicle over Different Driving Cycles

    Science.gov (United States)

    Panday, Aishwarya; Bansal, Hari Om

    2017-02-01

    Article aims to find the nature and response of a hybrid vehicle on various standard driving cycles. Road profile parameters play an important role in determining the fuel efficiency. Typical parameters of road profile can be reduced to a useful smaller set using principal component analysis and independent component analysis. Resultant data set obtained after size reduction may result in more appropriate and important parameter cluster. With reduced parameter set fuel economies over various driving cycles, are ranked using TOPSIS and VIKOR multi-criteria decision making methods. The ranking trend is then compared with the fuel economies achieved after driving the vehicle over respective roads. Control strategy responsible for power split is optimized using genetic algorithm. 1RC battery model and modified SOC estimation method are considered for the simulation and improved results compared with the default are obtained.

  9. Fuel Economy and Performance of Mild Hybrids with Ultracapacitors: Simulations and Vehicle Test Results (Presentation)

    Energy Technology Data Exchange (ETDEWEB)

    Gonder, J.; Pesaran, A.; Lustbader, J.; Tataria, H.

    2009-06-01

    NREL worked with GM and demonstrated equivalent performance in the Saturn Vue Belt Alternator Starter (BAS) hybrid vehicle whether running with its stock batteries or a retrofit ultracapacitor system.

  10. Environmental assessment for the electric and hybrid vehicle demonstration project, performance standards and financial incentives

    Energy Technology Data Exchange (ETDEWEB)

    LaBelle, S. J.

    1978-10-01

    The assessment is concerned with the impacts of the demonstration of electric and hybrid vehicles acquired to fulfill certain requirements of the Electric and Hybrid Vehicle Research, Development, and Demonstration Act, PL 94-413 as amended. The financial incentives programs and vehicle performance standards associated with the demonstration are also covered. Not included is an assessment of the long term effects of EHV commercialization and of the research and development program being carried out simultaneously with the demonstration, also in response to PL 94-413. These federal actions will be included in a programmatic environmental assessment scheduled for completion in FY 79.

  11. Hybrid vehicle control

    Energy Technology Data Exchange (ETDEWEB)

    Shallvari, Iva; Velnati, Sashidhar; DeGroot, Kenneth P.

    2015-07-28

    A method and apparatus for heating a catalytic converter's catalyst to an efficient operating temperature in a hybrid electric vehicle when the vehicle is in a charge limited mode such as e.g., the charge depleting mode or when the vehicle's high voltage battery is otherwise charge limited. The method and apparatus determine whether a high voltage battery of the vehicle is incapable of accepting a first amount of charge associated with a first procedure to warm-up the catalyst. If it is determined that the high voltage battery is incapable of accepting the first amount of charge, a second procedure with an acceptable amount of charge is performed to warm-up the catalyst.

  12. Hybrid vehicle control

    Science.gov (United States)

    Shallvari, Iva; Velnati, Sashidhar; DeGroot, Kenneth P.

    2015-07-28

    A method and apparatus for heating a catalytic converter's catalyst to an efficient operating temperature in a hybrid electric vehicle when the vehicle is in a charge limited mode such as e.g., the charge depleting mode or when the vehicle's high voltage battery is otherwise charge limited. The method and apparatus determine whether a high voltage battery of the vehicle is incapable of accepting a first amount of charge associated with a first procedure to warm-up the catalyst. If it is determined that the high voltage battery is incapable of accepting the first amount of charge, a second procedure with an acceptable amount of charge is performed to warm-up the catalyst.

  13. Hydraulic Hybrid Vehicles

    Science.gov (United States)

    EPA and the United Parcel Service (UPS) have developed a hydraulic hybrid delivery vehicle to explore and demonstrate the environmental benefits of the hydraulic hybrid for urban pick-up and delivery fleets.

  14. Cooling Performance Characteristics on Mobile Air-Conditioning System for Hybrid Electric Vehicles

    OpenAIRE

    Ho-Seong Lee; Moo-Yeon Lee

    2013-01-01

    This study investigates the cooling performance characteristics of the mobile air-conditioning system using R744 (CO2) for the hybrid electric vehicle as an alternative to both the R-134a and the conventional air-conditioning system. The developed air-conditioning system is operated with an electric driven compressor in the battery driving mode and a belt driven compressor in the engine driving mode. The cooling performance characteristics of the developed system have been analyzed by experim...

  15. HYBRID VEHICLE CONTROL SYSTEM

    Directory of Open Access Journals (Sweden)

    V. Dvadnenko

    2016-06-01

    Full Text Available The hybrid vehicle control system includes a start–stop system for an internal combustion engine. The system works in a hybrid mode and normal vehicle operation. To simplify the start–stop system, there were user new possibilities of a hybrid car, which appeared after the conversion. Results of the circuit design of the proposed system of basic blocks are analyzed.

  16. Energy Efficiency Comparison between Hydraulic Hybrid and Hybrid Electric Vehicles

    Directory of Open Access Journals (Sweden)

    Jia-Shiun Chen

    2015-05-01

    Full Text Available Conventional vehicles tend to consume considerable amounts of fuel, which generates exhaust gases and environmental pollution during intermittent driving cycles. Therefore, prospective vehicle designs favor improved exhaust emissions and energy consumption without compromising vehicle performance. Although pure electric vehicles feature high performance and low pollution characteristics, their limitations are their short driving range and high battery costs. Hybrid electric vehicles (HEVs are comparatively environmentally friendly and energy efficient, but cost substantially more compared with conventional vehicles. Hydraulic hybrid vehicles (HHVs are mainly operated using engines, or using alternate combinations of engine and hydraulic power sources while vehicles accelerate. When the hydraulic system accumulator is depleted, the conventional engine reengages; concurrently, brake-regenerated power is recycled and reused by employing hydraulic motor–pump modules in circulation patterns to conserve fuel and recycle brake energy. This study adopted MATLAB Simulink to construct complete HHV and HEV models for backward simulations. New European Driving Cycles were used to determine the changes in fuel economy. The output of power components and the state-of-charge of energy could be retrieved. Varying power component models, energy storage component models, and series or parallel configurations were combined into seven different vehicle configurations: the conventional manual transmission vehicle, series hybrid electric vehicle, series hydraulic hybrid vehicle, parallel hybrid electric vehicle, parallel hydraulic hybrid vehicle, purely electric vehicle, and hydraulic-electric hybrid vehicle. The simulation results show that fuel consumption was 21.80% lower in the series hydraulic hybrid vehicle compared to the series hybrid electric vehicle; additionally, fuel consumption was 3.80% lower in the parallel hybrid electric vehicle compared to the

  17. Handling performance control for hybrid 8-wheel-drive vehicle and simulation verification

    Science.gov (United States)

    Ni, Jun; Hu, Jibin

    2016-08-01

    In order to improve handling performance of a hybrid 8-Wheel-Drive vehicle, the handling performance control strategy was proposed. For armoured vehicle, besides handling stability in high speed, the minimum steer radius in low speed is also a key tactical and technical index. Based on that, the proposed handling performance control strategy includes 'Handling Stability' and 'Radius Minimization' control modes. In 'Handling Stability' control mode, 'Neutralsteer Radio' is defined to adjust the steering characteristics to satisfy different demand in different speed range. In 'Radius Minimization' control mode, the independent motors are controlled to provide an additional yaw moment to decrease the minimum steer radius. In order to verify the strategy, a simulation platform was built including engine and continuously variable transmission systems, generator and battery systems, independent motors and controllers systems, vehicle dynamic and tyre mechanical systems. The simulation results show that the handling performance of the vehicle can be enhanced significantly, and the minimum steer radius can be decreased by 20% which is significant improvement compared to the common level of main battle armoured vehicle around the world.

  18. Power Management Strategy of Hybrid Electric Vehicles Based on Quadratic Performance Index

    Directory of Open Access Journals (Sweden)

    Chaoying Xia

    2015-11-01

    Full Text Available An energy management strategy (EMS considering both optimality and real-time performance has become a challenge for the development of hybrid electric vehicles (HEVs in recent years. Previous EMSes based on the optimal control theory minimize the fuel consumption, but cannot be directly implemented in real-time because of the requirement for a prior knowledge of the entire driving cycle. This paper presents an innovative design concept and method to obtain a power management strategy for HEVs, which is independent of future driving conditions. A quadratic performance index is designed to ensure the vehicle drivability, maintain the battery energy sustainability and average and smooth the engine power and motor power to indirectly reduce fuel consumption. To further improve the fuel economy, two rules are adopted to avoid the inefficient engine operation by switching control modes between the electric and hybrid modes according to the required driving power. The derived power of the engine and motor are related to current vehicle velocity and battery residual energy, as well as their desired values. The simulation results over different driving cycles in Advanced Vehicle Simulator (ADVISOR show that the proposed strategy can significantly improve the fuel economy, which is very close to the optimal strategy based on Pontryagin’s minimum principle.

  19. Energy Efficiency Comparison between Hydraulic Hybrid and Hybrid Electric Vehicles

    OpenAIRE

    Jia-Shiun Chen

    2015-01-01

    Conventional vehicles tend to consume considerable amounts of fuel, which generates exhaust gases and environmental pollution during intermittent driving cycles. Therefore, prospective vehicle designs favor improved exhaust emissions and energy consumption without compromising vehicle performance. Although pure electric vehicles feature high performance and low pollution characteristics, their limitations are their short driving range and high battery costs. Hybrid electric vehicles (HEVs) ar...

  20. Hybrid electric vehicles TOPTEC

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-06-21

    This one-day TOPTEC session began with an overview of hybrid electric vehicle technology. Updates were given on alternative types of energy storage, APU control for low emissions, simulation programs, and industry and government activities. The keynote speech was about battery technology, a key element to the success of hybrids. The TOPEC concluded with a panel discussion on the mission of hybrid electric vehicles, with a perspective from industry and government experts from United States and Canada on their view of the role of this technology.

  1. Performance and driveline analyses of engine capacity in range extender engine hybrid vehicle

    Science.gov (United States)

    Praptijanto, Achmad; Santoso, Widodo Budi; Nur, Arifin; Wahono, Bambang; Putrasari, Yanuandri

    2017-01-01

    In this study, range extender engine designed should be able to meet the power needs of a power generator of hybrid electrical vehicle that has a minimum of 18 kW. Using this baseline model, the following range extenders will be compared between conventional SI piston engine (Baseline, BsL), engine capacity 1998 cm3, and efficiency-oriented SI piston with engine capacity 999 cm3 and 499 cm3 with 86 mm bore and stroke square gasoline engine in the performance, emission prediction of range extender engine, standard of charge by using engine and vehicle simulation software tools. In AVL Boost simulation software, range extender engine simulated from 1000 to 6000 rpm engine loads. The highest peak engine power brake reached up to 38 kW at 4500 rpm. On the other hand the highest torque achieved in 100 Nm at 3500 rpm. After that using AVL cruise simulation software, the model of range extended electric vehicle in series configuration with main components such as internal combustion engine, generator, electric motor, battery and the arthemis model rural road cycle was used to simulate the vehicle model. The simulation results show that engine with engine capacity 999 cm3 reported the economical performances of the engine and the emission and the control of engine cycle parameters.

  2. Cooling Performance Characteristics on Mobile Air-Conditioning System for Hybrid Electric Vehicles

    Directory of Open Access Journals (Sweden)

    Ho-Seong Lee

    2013-01-01

    Full Text Available This study investigates the cooling performance characteristics of the mobile air-conditioning system using R744 (CO2 for the hybrid electric vehicle as an alternative to both the R-134a and the conventional air-conditioning system. The developed air-conditioning system is operated with an electric driven compressor in the battery driving mode and a belt driven compressor in the engine driving mode. The cooling performance characteristics of the developed system have been analyzed by experiments under various operating conditions of inlet air temperature, air flow rates for the gas cooler side and evaporator side, and electric compressor revolution respectively. As a result, cooling performances of the tested air-conditioning system for the EDC driving mode (electricity driven compressor were better than those for the BDC driving mode (belt driven compressor. The cooling capacity and cooling COP of the tested air-conditioning system for both driving modes were over 5.0 kW and 2.0, respectively. The observed cooling performance of the tested air-conditioning system may be sufficient for the cabin cooling of hybrid electric vehicles.

  3. Near-term hybrid vehicle program, phase 1. Appendix A: Mission analysis and performance specification studies report

    Science.gov (United States)

    1979-01-01

    Results of a study leading to the preliminary design of a five passenger hybrid vehicle utilizing two energy sources (electricity and gasoline/diesel fuel) to minimize petroleum usage on a fleet basis are presented. The study methodology is described. Vehicle characterizations, the mission description, characterization, and impact on potential sales, and the rationale for the selection of the reference internal combustion engine vehicle are presented. Conclusions and recommendations of the mission analysis and performance specification report are included.

  4. Design, testing, and performance of a hybrid micro vehicle---The Hopping Rotochute

    Science.gov (United States)

    Beyer, Eric W.

    The Hopping Rotochute is a new hybrid micro vehicle that has been developed to robustly explore environments with rough terrain while minimizing energy consumption over long periods of time. The device consists of a small coaxial rotor system housed inside a lightweight cage. The vehicle traverses an area by intermittently powering a small electric motor which drives the rotor system, allowing the vehicle to hop over obstacles of various shapes and sizes. A movable internal mass controls the direction of travel while the egg-like exterior shape and low mass center allows the vehicle to passively reorient itself to an upright attitude when in contact with the ground. This dissertation presents the design, fabrication, and testing of a radio-controlled Hopping Rotochute prototype as well as an analytical study of the flight performance of the device. The conceptual design iterations are first outlined which were driven by the mission and system requirements assigned to the vehicle. The aerodynamic, mechanical, and electrical design of a prototype is then described, based on the final conceptual design, with particular emphasis on the fundamental trades that must be negotiated for this type of hopping vehicle. The fabrication and testing of this prototype is detailed as well as experimental results obtained from a motion capture system. Basic flight performance of the prototype are reported which demonstrates that the Hopping Rotochute satisfies all appointed system requirements. A dynamic model of the Hopping Rotochute is also developed in this thesis and employed to predict the flight performance of the vehicle. The dynamic model includes aerodynamic loads from the body and rotor system as well as a soft contact model to estimate the forces and moments during ground contact. The experimental methods used to estimate the dynamic model parameters are described while comparisons between measured and simulated motion are presented. Good correlation between these motions

  5. Near Term Hybrid Passenger Vehicle Development Program. Phase I, Final report. Appendix A: mission analysis and performance specification studies. Volume I

    Energy Technology Data Exchange (ETDEWEB)

    Traversi, M.; Barbarek, L.A.C.

    1979-04-20

    Studies are described which were performed for the Near Term Hybrid Vehicle program to determine passenger car usage patterns and to correlate these trip mission characteristics with vehicle design and performance specifications. (LCL)

  6. Hybrid and Electric Advanced Vehicle Systems Simulation

    Science.gov (United States)

    Beach, R. F.; Hammond, R. A.; Mcgehee, R. K.

    1985-01-01

    Predefined components connected to represent wide variety of propulsion systems. Hybrid and Electric Advanced Vehicle System (HEAVY) computer program is flexible tool for evaluating performance and cost of electric and hybrid vehicle propulsion systems. Allows designer to quickly, conveniently, and economically predict performance of proposed drive train.

  7. Military Hybrid Vehicle Survey

    Science.gov (United States)

    2011-08-03

    Furthermore, a standard duty cycle that is accepted for measuring fuel economy does not exist nor does a focus towards a particular technology. This...expanded into mild hybrid with the addition of a clutch connecting the generator to the transmission and additional energy storage [16-17...speed control and one for engine/generator torque [35]. Urban, Highway, Composite 33%, 27.9%, 49% General vehicle simulation [30]. Urban 19.0

  8. Hybrid Turbine Electric Vehicle

    Science.gov (United States)

    Viterna, Larry A.

    1997-01-01

    Hybrid electric power trains may revolutionize today's ground passenger vehicles by significantly improving fuel economy and decreasing emissions. The NASA Lewis Research Center is working with industry, universities, and Government to develop and demonstrate a hybrid electric vehicle. Our partners include Bowling Green State University, the Cleveland Regional Transit Authority, Lincoln Electric Motor Division, the State of Ohio's Department of Development, and Teledyne Ryan Aeronautical. The vehicle will be a heavy class urban transit bus offering double the fuel economy of today's buses and emissions that are reduced to 1/10th of the Environmental Protection Agency's standards. At the heart of the vehicle's drive train is a natural-gas-fueled engine. Initially, a small automotive engine will be tested as a baseline. This will be followed by the introduction of an advanced gas turbine developed from an aircraft jet engine. The engine turns a high-speed generator, producing electricity. Power from both the generator and an onboard energy storage system is then provided to a variable-speed electric motor attached to the rear drive axle. An intelligent power-control system determines the most efficient operation of the engine and energy storage system.

  9. Research on Hybrid Vehicle Drivetrain

    Science.gov (United States)

    Xie, Zhongzhi

    Hybrid cars as a solution to energy saving, emission reduction measures, have received widespread attention. Motor drive system as an important part of the hybrid vehicles as an important object of study. Based on the hybrid electric vehicle powertrain control system for permanent magnet synchronous motor as the object of study. Can be applied to hybrid car compares the characteristics of traction motors, chose permanent magnet synchronous Motors as drive motors for hybrid vehicles. Building applications in hybrid cars in MATLAB/Simulink simulation model of permanent-magnet synchronous motor speed control system and analysis of simulation results.

  10. Hybrid-Vehicle Transmission System

    Science.gov (United States)

    Lupo, G.; Dotti, G.

    1985-01-01

    Continuously-variable transmission system for hybrid vehicles couples internal-combustion engine and electric motor section, either individually or in parallel, to power vehicle wheels during steering and braking.

  11. Hybrid-Vehicle Transmission System

    Science.gov (United States)

    Lupo, G.; Dotti, G.

    1985-01-01

    Continuously-variable transmission system for hybrid vehicles couples internal-combustion engine and electric motor section, either individually or in parallel, to power vehicle wheels during steering and braking.

  12. Hybrid vehicle potential assessment. Volume 7. Hybrid vehicle review

    Energy Technology Data Exchange (ETDEWEB)

    Leschly, K.O.

    1979-09-30

    Review of hybrid vehicles (HVs) built during the past ten years or planned to be built in the near future is presented. An attempt is made to classify and analyze these vehicles to get an overall picture of their key characteristics. The review includes on-road hybrid passenger cars, trucks, vans, and buses.

  13. Hybrid vehicle potential assessment. Volume 7: Hybrid vehicle review

    Science.gov (United States)

    Leschly, K. O.

    1979-01-01

    Review of hybrid vehicles built during the past ten years or planned to be built in the near future is presented. An attempt is made to classify and analyze these vehicles to get an overall picture of their key characteristics. The review includes onroad hybrid passenger cars, trucks, vans, and buses.

  14. Hybrid Vehicle Program. Final report

    Energy Technology Data Exchange (ETDEWEB)

    None

    1984-06-01

    This report summarizes the activities on the Hybrid Vehicle Program. The program objectives and the vehicle specifications are reviewed. The Hybrid Vehicle has been designed so that maximum use can be made of existing production components with a minimum compromise to program goals. The program status as of the February 9-10 Hardware Test Review is presented, and discussions of the vehicle subsystem, the hybrid propulsion subsystem, the battery subsystem, and the test mule programs are included. Other program aspects included are quality assurance and support equipment. 16 references, 132 figures, 47 tables.

  15. Advanced propulsion system concept for hybrid vehicles

    Science.gov (United States)

    Bhate, S.; Chen, H.; Dochat, G.

    1980-01-01

    A series hybrid system, utilizing a free piston Stirling engine with a linear alternator, and a parallel hybrid system, incorporating a kinematic Stirling engine, are analyzed for various specified reference missions/vehicles ranging from a small two passenger commuter vehicle to a van. Parametric studies for each configuration, detail tradeoff studies to determine engine, battery and system definition, short term energy storage evaluation, and detail life cycle cost studies were performed. Results indicate that the selection of a parallel Stirling engine/electric, hybrid propulsion system can significantly reduce petroleum consumption by 70 percent over present conventional vehicles.

  16. Implications of driving patterns on well-to-wheel performance of plug-in hybrid electric vehicles.

    Science.gov (United States)

    Raykin, Leon; MacLean, Heather L; Roorda, Matthew J

    2012-06-05

    This study examines how driving patterns (distance and conditions) and the electricity generation supply interact to impact well-to-wheel (WTW) energy use and greenhouse gas (GHG) emissions of plug-in hybrid electric vehicles (PHEVs). The WTW performance of a PHEV is compared with that of a similar (nonplug-in) gasoline hybrid electric vehicle and internal combustion engine vehicle (ICEV). Driving PHEVs for short distances between recharging generally results in lower WTW total and fossil energy use and GHG emissions per kilometer compared to driving long distances, but the extent of the reductions depends on the electricity supply. For example, the shortest driving pattern in this study with hydroelectricity uses 81% less fossil energy than the longest driving pattern. However, the shortest driving pattern with coal-based electricity uses only 28% less fossil energy. Similar trends are observed in reductions relative to the nonplug-in vehicles. Irrespective of the electricity supply, PHEVs result in greater reductions in WTW energy use and GHG emissions relative to ICEVs for city than highway driving conditions. PHEVs charging from coal facilities only reduce WTW energy use and GHG emissions relative to ICEVs for certain favorable driving conditions. The study results have implications for environmentally beneficial PHEV adoption and usage patterns.

  17. CHOOSING DRIVING CYCLE OF HYBRID VEHICLE

    Directory of Open Access Journals (Sweden)

    A. Vorona

    2011-01-01

    Full Text Available The analysis of existing driving cycles was performed. After comparing some of the cycles, one specific driving cycle was selected for the hybrid vehicle as the most reliable in representing the real moving of the vehicle in operating conditions and which may be reproduced at experimental tests at the modeling roller stand.

  18. Fabrication of Hybrid Petroelectric Vehicle

    Directory of Open Access Journals (Sweden)

    G. Adinarayana

    2014-10-01

    Full Text Available In automobile sector, the need for alternative fuel as a replacement of conventional fossil fuel, due to its depletion and amount of emission has given way for new technologies like Fuel cells vehicles, Electric vehicles. Still a lot of advancement has to take place in these technologies for commercialization. The gap between the current fossil fuel technology and zero emission vehicles can be bridged by hybrid technology. Hybrid vehicles are those which can run on two or more powering sources/fuels. Feasibility of this technology is been proved in four wheelers and automobile giants like Toyota, Honda, and Hyundai have launched successful vehicles like Toyota prius, Honda insight etc. This technology maximizes the advantages of the two fuels and minimizes the disadvantages of the same. The best preferred hybrid pair is electric and fossil fuel. This increases the mileage of the vehicle twice the existing and also reduces the emission to half. At present, we like to explore the hybrid technology in the two wheeler sector and its feasibility on road. This paper deals with an attempt to make a hybrid with electric start and petrol run. Further a design of basic hybrid elements like motor, battery, and engine. As on today, hybrid products are one of the best solutions for all pollution hazards at a fairly nominal price. An investment within the means of a common man that guarantees a better environment to live in.

  19. Vehicle surge detection and pathway discrimination by pedestrians who are blind: Effect of adding an alert sound to hybrid electric vehicles on performance.

    Science.gov (United States)

    Kim, Dae Shik; Emerson, Robert Wall; Naghshineh, Koorosh; Pliskow, Jay; Myers, Kyle

    2012-05-01

    This study examined the effect of adding an artificially generated alert sound to a quiet vehicle on its detectability and localizability with 15 visually impaired adults. When starting from a stationary position, the hybrid electric vehicle with an alert sound was significantly more quickly and reliably detected than either the identical vehicle without such added sound or the comparable internal combustion engine vehicle. However, no significant difference was found between the vehicles in respect to how accurately the participants could discriminate the path of a given vehicle (straight vs. right turn). These results suggest that adding an artificial sound to a hybrid electric vehicle may help reduce delay in street crossing initiation by a blind pedestrian, but the benefit of such alert sound may not be obvious in determining whether the vehicle in his near parallel lane proceeds straight through the intersection or turns right in front of him.

  20. 1997 hybrid electric vehicle specifications

    Energy Technology Data Exchange (ETDEWEB)

    Sluder, S.; Larsen, R.; Duoba, M.

    1996-10-01

    The US DOE sponsors Advanced Vehicle Technology competitions to help educate the public and advance new vehicle technologies. For several years, DOE has provided financial and technical support for the American Tour de Sol. This event showcases electric and hybrid electric vehicles in a road rally across portions of the northeastern United States. The specifications contained in this technical memorandum apply to vehicles that will be entered in the 1997 American Tour de Sol. However, the specifications were prepared to be general enough for use by other teams and individuals interested in developing hybrid electric vehicles. The purpose of the specifications is to ensure that the vehicles developed do not present a safety hazard to the teams that build and drive them or to the judges, sponsors, or public who attend the competitions. The specifications are by no means the definitive sources of information on constructing hybrid electric vehicles - as electric and hybrid vehicles technologies advance, so will the standards and practices for their construction. In some cases, the new standards and practices will make portions of these specifications obsolete.

  1. Performance Evaluation of an In-Wheel Motor Cooling System in an Electric Vehicle/Hybrid Electric Vehicle

    Directory of Open Access Journals (Sweden)

    Dong Hyun Lim

    2014-02-01

    Full Text Available High power and miniaturization of motors in an in-wheel drive system, which is installed inside the wheels of a vehicle, are required for directly driving the wheels. In addition, an efficient cooling system is required to ensure high driving performance and durability. This study experimentally evaluated the heat dissipation performance of a 35-kW-class large-capacity in-wheel motor equipped with an internal-circulation-type oil-cooling system that exhibits high cooling performance and can be easily miniaturized to this motor. Temperatures of the coil and stator core of cooling systems with and without a radiator were measured in real time under in-wheel motor driving conditions. It was found that operating the cooling system at a continuous-rating maximum speed without the radiator was difficult. We confirmed that under continuous-rating base speed and continuous-rating maximum speed driving conditions, the cooling system with the radiator showed thermally stable operation. Furthermore, under maximum-rating base speed and maximum-rating maximum speed driving conditions, the cooling system with the radiator provided additional driving times of approximately 22 s and 2 s, respectively.

  2. Hybrid and Plug-in Electric Vehicles

    Energy Technology Data Exchange (ETDEWEB)

    None

    2014-05-20

    Hybrid and plug-in electric vehicles use electricity either as their primary fuel or to improve the efficiency of conventional vehicle designs. This new generation of vehicles, often called electric drive vehicles, can be divided into three categories: hybrid electric vehicles (HEVs), plug-in hybrid electric vehicles(PHEVs), and all-electric vehicles (EVs). Together, they have great potential to reduce U.S. petroleum use.

  3. Map-Based Power-Split Strategy Design with Predictive Performance Optimization for Parallel Hybrid Electric Vehicles

    Directory of Open Access Journals (Sweden)

    Jixiang Fan

    2015-09-01

    Full Text Available In this paper, a map-based optimal energy management strategy is proposed to improve the consumption economy of a plug-in parallel hybrid electric vehicle. In the design of the maps, which provide both the torque split between engine and motor and the gear shift, not only the current vehicle speed and power demand, but also the optimality based on the predicted trajectory of vehicle dynamics are considered. To seek the optimality, the equivalent consumption, which trades off the fuel and electricity usages, is chosen as the cost function. Moreover, in order to decrease the model errors in the process of optimization conducted in the discrete time domain, the variational integrator is employed to calculate the evolution of the vehicle dynamics. To evaluate the proposed energy management strategy, the simulation results performed on a professional GT-Suit simulator are demonstrated and the comparison to a real-time optimization method is also given to show the advantage of the proposed off-line optimization approach.

  4. Optimal control of hybrid vehicles

    CERN Document Server

    Jager, Bram; Kessels, John

    2013-01-01

    Optimal Control of Hybrid Vehicles provides a description of power train control for hybrid vehicles. The background, environmental motivation and control challenges associated with hybrid vehicles are introduced. The text includes mathematical models for all relevant components in the hybrid power train. The power split problem in hybrid power trains is formally described and several numerical solutions detailed, including dynamic programming and a novel solution for state-constrained optimal control problems based on Pontryagin’s maximum principle.   Real-time-implementable strategies that can approximate the optimal solution closely are dealt with in depth. Several approaches are discussed and compared, including a state-of-the-art strategy which is adaptive for vehicle conditions like velocity and mass. Two case studies are included in the book: ·        a control strategy for a micro-hybrid power train; and ·        experimental results obtained with a real-time strategy implemented in...

  5. Design study and performance analysis of 12S-14P field excitation flux switching motor for hybrid electric vehicle

    Science.gov (United States)

    Husin, Zhafir Aizat; Sulaiman, Erwan; Khan, Faisal; Mazlan, Mohamed Mubin Aizat; Othman, Syed Muhammad Naufal Syed

    2015-05-01

    This paper presents a new structure of 12slot-14pole field excitation flux switching motor (FEFSM) as an alternative candidate of non-Permanent Magnet (PM) machine for HEV drives. Design study, performance analysis and optimization of field excitation flux switching machine with non-rare-earth magnet for hybrid electric vehicle drive applications is done. The stator of projected machine consists of iron core made of electromagnetic steels, armature coils and field excitation coils as the only field mmf source. The rotor is consisted of only stack of iron and hence, it is reliable and appropriate for high speed operation. The design target is a machine with the maximum torque, power and power density, more than 210Nm, 123kW and 3.5kW/kg, respectively, which competes with interior permanent magnet synchronous machine used in existing hybrid electric vehicle. Some design feasibility studies on FEFSM based on 2D-FEA and deterministic optimization method will be applied to design the proposed machine.

  6. Development history of the Hybrid Test Vehicle

    Science.gov (United States)

    Trummel, M. C.; Burke, A. F.

    1983-01-01

    Phase I of a joint Department of Energy/Jet Propulsion Laboratory Program undertook the development of the Hybrid Test Vehicle (HTV), which has subsequently progressed through design, fabrication, and testing and evaluation phases. Attention is presently given to the design and test experience gained during the HTV development program, and a discussion is presented of the design features and performance capabilities of the various 'mule' vehicles, devoted to the separate development of engine microprocessor control, vehicle structure, and mechanical components, whose elements were incorporated into the final HTV design. Computer projections of the HTV's performance are given.

  7. Evaluation of Fuel-Cell Range Extender Impact on Hybrid Electrical Vehicle Performance

    DEFF Research Database (Denmark)

    Jensen, Hans-Christian Becker; Schaltz, Erik; Koustrup, Per Sune

    2013-01-01

    of a vehicle with an internal combustion engine (ICE). Fuel cells (FCs) can be added to an EV as an additional energy source. These are faster to refill and will therefore facilitate the transition from vehicles running on fossil fuel to electricity. Different EV setups with FC strategies are presented...

  8. Evaluation of Fuel-Cell Range Extender Impact on Hybrid Electrical Vehicle Performance

    DEFF Research Database (Denmark)

    Jensen, Hans-Christian Becker; Schaltz, Erik; Koustrup, Per Sune

    2013-01-01

    of a vehicle with an internal combustion engine (ICE). Fuel cells (FCs) can be added to an EV as an additional energy source. These are faster to refill and will therefore facilitate the transition from vehicles running on fossil fuel to electricity. Different EV setups with FC strategies are presented...

  9. Design Optimization and Performance of a Novel 6-Slot 5-Pole PMFSM with Hybrid Excitation for Hybrid Electric Vehicle

    Science.gov (United States)

    Sulaiman, Erwan; Kosaka, Takashi; Matsui, Nobuyuki

    With growing concerns over our environment, more and more people in automakers, governments and customers think that the electric drive becomes more attractive research. Since electric motors play an important role in both EVs and HEVs, it is a pressing need for researchers to develop advanced electric machines. As one of the candidates, permanent magnet flux switching machine (PMFSM) with additional coil excitation has several attractive features compared to interior permanent magnet synchronous machines (IPMSM) conventionally employed in HEV. The variable flux control capability and robust rotor structure make this machine becoming more attractive to apply for high speed motor drive system coupled with reduction gear. This paper presents an investigation into design possibility of 6-slot 5-pole PMFSM with hybrid excitation for traction drives in HEVs. An improved design is examined to gain a better performance in its maximum torque and power production. The final designed machine enables to keep much power density compared to existing IPMSM installed on the commercial SUV-HEV.

  10. Online energy management for hybrid electric vehicles

    NARCIS (Netherlands)

    Kessels, J.T.B.A.; Koot, M.W.T.; Bosch, P.P.J. van den; Kok, D.B.

    2008-01-01

    Hybrid electric vehicles (HEVs) are equipped with multiple power sources for improving the efficiency and performance of their power supply system. An energy management (EM) strategy is needed to optimize the internal power flows and satisfy the driver's power demand. To achieve maximum fuel profits

  11. Online energy management for hybrid electric vehicles

    NARCIS (Netherlands)

    Kessels, J.T.B.A.; Koot, M.W.T.; Bosch, P.P.J. van den; Kok, D.B.

    2008-01-01

    Hybrid electric vehicles (HEVs) are equipped with multiple power sources for improving the efficiency and performance of their power supply system. An energy management (EM) strategy is needed to optimize the internal power flows and satisfy the driver's power demand. To achieve maximum fuel profits

  12. Fuel Savings from Hybrid Electric Vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Bennion, K.; Thornton, M.

    2009-03-01

    NREL's study shows that hybrid electric vehicles can significantly reduce oil imports for use in light-duty vehicles, particularly if drivers switch to smaller, more fuel-efficient vehicles overall.

  13. Near-term hybrid vehicle program, phase 1

    Science.gov (United States)

    1979-01-01

    The preliminary design of a hybrid vehicle which fully meets or exceeds the requirements set forth in the Near Term Hybrid Vehicle Program is documented. Topics addressed include the general layout and styling, the power train specifications with discussion of each major component, vehicle weight and weight breakdown, vehicle performance, measures of energy consumption, and initial cost and ownership cost. Alternative design options considered and their relationship to the design adopted, computer simulation used, and maintenance and reliability considerations are also discussed.

  14. Control and Performance Evaluation of Multiphase FSPM Motor in Low-Speed Region for Hybrid Electric Vehicles

    Directory of Open Access Journals (Sweden)

    Feng Yu

    2015-09-01

    Full Text Available The flux-switching permanent-magnet (FSPM motor has been viewed as a highly reliable machine with both armature windings and magnets on the stator. Owing to the high torque-production capability with low torque ripple, FSPM motors with a higher number of phases are potential candidates for traction applications in hybrid electric vehicles (HEVs. However, existing research has mostly focused on the principles and static performance of multiphase FSPM motors, and little attention has been paid to advanced control strategies. In this paper, the fully decoupled current control of a 36/34-pole nine-phase FSPM (NP-FSPM motor is developed and the performance under different operating conditions is investigated. The aim of the design is to alleviate cross coupling effects and unwanted low-order stator harmonic currents, to guarantee fast transient response and small steady-state error. In addition, its fault-tolerance is further elaborated. These features are very important in automotive applications where low torque pulsation, high fault-tolerant capability and high dynamic performance are of major importance. Firstly, the research status of multiphase FSPM motors is briefly reviewed. Secondly, the mathematical model in the dq reference frames and control strategies are presented. Then, the control and performance of the NP-FSPM motor are evaluated by using MATLAB/Simulink. Finally, experiments on an NP-FSPM motor prototype are carried out to validate the study.

  15. Parallel Hybrid Vehicle Optimal Storage System

    Science.gov (United States)

    Bloomfield, Aaron P.

    2009-01-01

    A paper reports the results of a Hybrid Diesel Vehicle Project focused on a parallel hybrid configuration suitable for diesel-powered, medium-sized, commercial vehicles commonly used for parcel delivery and shuttle buses, as the missions of these types of vehicles require frequent stops. During these stops, electric hybridization can effectively recover the vehicle's kinetic energy during the deceleration, store it onboard, and then use that energy to assist in the subsequent acceleration.

  16. Electric and Hybrid Vehicle Technology: TOPTEC

    Energy Technology Data Exchange (ETDEWEB)

    1992-01-01

    Today, growing awareness of environmental and energy issues associated with the automobile has resulted in renewed interest in the electric vehicle. In recognition of this, the Society of Automotive Engineers has added a TOPTEC on electric vehicles to the series of technical symposia focused on key issues currently facing industry and government. This workshop on the Electric and Hybrid Vehicle provides an opportunity to learn about recent progress in these rapidly changing technologies. Research and development of both the vehicle and battery system has accelerated sharply and in fact, the improved technologies of the powertrain system make the performance of today's electric vehicle quite comparable to the equivalent gasoline vehicle, with the exception of driving range between refueling'' stops. Also, since there is no tailpipe emission, the electric vehicle meets the definition of Zero Emission Vehicle: embodied in recent air quality regulations. The discussion forum will include a review of the advantages and limitations of electric vehicles, where the technologies are today and where they need to be in order to get to production level vehicles, and the service and maintenance requirements once they get to the road. There will be a major focus on the status of battery technologies, the various approaches to recharge of the battery systems and the activities currently underway for developing standards throughout the vehicle and infrastructure system. Intermingled in all of this technology discussion will be a view of the new relationships emerging between the auto industry, the utilities, and government. Since the electric vehicle and its support system will be the most radical change ever introduced into the private vehicle sector of the transportation system, success in the market requires an understanding of the role of all of the partners, as well as the new technologies involved.

  17. Electric and Hybrid Vehicle Technology: TOPTEC

    Energy Technology Data Exchange (ETDEWEB)

    1992-12-01

    Today, growing awareness of environmental and energy issues associated with the automobile has resulted in renewed interest in the electric vehicle. In recognition of this, the Society of Automotive Engineers has added a TOPTEC on electric vehicles to the series of technical symposia focused on key issues currently facing industry and government. This workshop on the Electric and Hybrid Vehicle provides an opportunity to learn about recent progress in these rapidly changing technologies. Research and development of both the vehicle and battery system has accelerated sharply and in fact, the improved technologies of the powertrain system make the performance of today`s electric vehicle quite comparable to the equivalent gasoline vehicle, with the exception of driving range between ``refueling`` stops. Also, since there is no tailpipe emission, the electric vehicle meets the definition of ``Zero Emission Vehicle: embodied in recent air quality regulations. The discussion forum will include a review of the advantages and limitations of electric vehicles, where the technologies are today and where they need to be in order to get to production level vehicles, and the service and maintenance requirements once they get to the road. There will be a major focus on the status of battery technologies, the various approaches to recharge of the battery systems and the activities currently underway for developing standards throughout the vehicle and infrastructure system. Intermingled in all of this technology discussion will be a view of the new relationships emerging between the auto industry, the utilities, and government. Since the electric vehicle and its support system will be the most radical change ever introduced into the private vehicle sector of the transportation system, success in the market requires an understanding of the role of all of the partners, as well as the new technologies involved.

  18. Evaluation of the Effect of Operating Parameters on Thermal Performance of an Integrated Starter Generator in Hybrid Electric Vehicles

    Directory of Open Access Journals (Sweden)

    Moo-Yeon Lee

    2015-08-01

    Full Text Available The belt-driven-type integrated starter generator motor in a hybrid electric vehicle is vulnerable to thermal problems owing to its high output power and proximity to the engine. These problems may cause demagnetization and insulation breakdown, reducing the performance and durability of the motor. Hence, it is necessary to evaluate the thermal performance and enhance the cooling capacity of the belt-driven type Integrated Starter Generator. In this study, the internal temperature variations of the motor were investigated with respect to the operating parameters, particularly the rotation speed and environment temperature. At a maximum ambient temperature of 105 °C and rotation speed (motor design point of 4500 rpm, the coil of the motor was heated to approximately 189 °C in generating mode. The harsh conditions of the starting mode were analyzed by assuming that the motor operates during the start-up time at a maximum ambient temperature of 105 °C and rotation speed (motor design point of 800 rpm; the coil was heated to approximately 200 °C, which is close to the insulation temperature limit. The model for analyzing the thermal performance of the ISG was verified by comparing its results with those obtained through a generating-mode-based experiment

  19. Thermal Performance of Motor and Inverter in an Integrated Starter Generator System for a Hybrid Electric Vehicle

    Directory of Open Access Journals (Sweden)

    Sung Chul Kim

    2013-11-01

    Full Text Available If the integrated starter generator (ISG motor and inverter operate under continuously high loading conditions, the system’s performance and durability will decrease and the heat dissipation requirements will increase. Therefore, in this study, we developed two cooling designs for the ISG motor and inverter, and then carried out both a model analysis and an experiment on the fluid flow and thermal characteristics of the system under various operating conditions. As the outdoor temperature increased from 25 °C to 95 °C, the coil temperature of the air-cooled motor increased by about 82 °C. Under the harsh-air condition of 95 °C, the coil of the air-cooled motor increased to a maximum temperature of about 158.5 °C. We also determined that the temperature of the metal-oxide-semiconductor field-effect transistor (MOSFET chip in the liquid-cooled inverter increased to a maximum temperature of about 96.8 °C under a coolant flow rate of 4 L/min and a coolant temperature of 65 °C. The observed thermal performance of the ISG motor and inverter using the proposed cooling structures was found to be sufficient for heat loads under various real driving conditions for a hybrid electric vehicle (HEV.

  20. Internal combustion engines in hybrid vehicles

    NARCIS (Netherlands)

    Mourad, S.; Weijer, C.J.T. van de; Beckman, D.E.

    1998-01-01

    In this paper the use of internal combustion engines in hybrid powertrains is investigated. The substantial difference between the use of internal combustion engines in conventional and in hybrid vehicles mean that engines for hybrid vehicles should be designed specifically for the purpose. At the

  1. The Role of Interaction Patterns with Hybrid Electric Vehicle Eco-Features for Drivers' Eco-Driving Performance.

    Science.gov (United States)

    Arend, Matthias G; Franke, Thomas

    2017-03-01

    The objective of the present research was to understand drivers' interaction patterns with hybrid electric vehicles' (HEV) eco-features (electric propulsion, regenerative braking, neutral mode) and their relationship to fuel efficiency and driver characteristics (technical system knowledge, eco-driving motivation). Eco-driving (driving behaviors performed to achieve higher fuel efficiency) has the potential to reduce CO2 emissions caused by road vehicles. Eco-driving in HEVs is particularly challenging due to the systems' dynamic energy flows. As a result, drivers are likely to show diverse eco-driving behaviors, depending on factors like knowledge and motivation. The eco-features represent an interface for the control of the systems' energy flows. A sample of 121 HEV drivers who had constantly logged their fuel consumption prior to the study participated in an online questionnaire. Drivers' interaction patterns with the eco-features were related to fuel efficiency. A common factor was identified in an exploratory factor analysis, characterizing the intensity of actively dealing with electric energy, which was also related to fuel efficiency. Driver characteristics were not related to this factor, yet they were significant predictors of fuel efficiency. From the perspective of user-energy interaction, the relationship of the aggregated factor to fuel efficiency emphasizes the central role of drivers' perception of and interaction with energy conversions in determining HEV eco-driving success. To arrive at an in-depth understanding of drivers' eco-driving behaviors that can guide interface design, authors of future research should be concerned with the psychological processes that underlie drivers' interaction patterns with eco-features.

  2. Systems Engineering of Electric and Hybrid Vehicles

    Science.gov (United States)

    Kurtz, D. W.; Levin, R. R.

    1986-01-01

    Technical paper notes systems engineering principles applied to development of electric and hybrid vehicles such that system performance requirements support overall program goal of reduced petroleum consumption. Paper discusses iterative design approach dictated by systems analyses. In addition to obvious peformance parameters of range, acceleration rate, and energy consumption, systems engineering also considers such major factors as cost, safety, reliability, comfort, necessary supporting infrastructure, and availability of materials.

  3. Systems Engineering of Electric and Hybrid Vehicles

    Science.gov (United States)

    Kurtz, D. W.; Levin, R. R.

    1986-01-01

    Technical paper notes systems engineering principles applied to development of electric and hybrid vehicles such that system performance requirements support overall program goal of reduced petroleum consumption. Paper discusses iterative design approach dictated by systems analyses. In addition to obvious peformance parameters of range, acceleration rate, and energy consumption, systems engineering also considers such major factors as cost, safety, reliability, comfort, necessary supporting infrastructure, and availability of materials.

  4. 2011 Hyundai Sonata 3539 - Hybrid Electric Vehicle Battery Test Results

    Energy Technology Data Exchange (ETDEWEB)

    Matthew Shirk; Tyler Gray; Jeffrey Wishart

    2014-09-01

    The U.S. Department of Energy’s Advanced Vehicle Testing Activity Program consists of vehicle, battery, and infrastructure testing on advanced technology related to transportation. The activity includes tests on hybrid electric vehicles, including testing hybrid electric vehicle batteries when both the vehicles and batteries are new and at the conclusion of 160,000 miles of on-road fleet testing. This report documents battery testing performed for the 2011 Hyundai Sonata Hybrid (VIN KMHEC4A47BA003539). Battery testing was performed by Intertek Testing Services NA. The Idaho National Laboratory and Intertek collaborate on the Advanced Vehicle Testing Activity for the Vehicle Technologies Program of the U.S. Department of Energy.

  5. Steering Performance, Tactical Vehicles

    Science.gov (United States)

    2015-07-29

    NUMBER 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) Automotive Instrumentation Division (TEDT-AT-AD-I) U.S. Army Aberdeen Test Center 400...characterize the on-center vehicle responses of military vehicles for the purposes of influencing vehicle design and ensuring military truck steering... mechanism attached to the test vehicle’s steering wheel (or replaces the steering wheel) that is strain gaged and calibrated to measure the steering effort

  6. Optimization methods applied to hybrid vehicle design

    Science.gov (United States)

    Donoghue, J. F.; Burghart, J. H.

    1983-01-01

    The use of optimization methods as an effective design tool in the design of hybrid vehicle propulsion systems is demonstrated. Optimization techniques were used to select values for three design parameters (battery weight, heat engine power rating and power split between the two on-board energy sources) such that various measures of vehicle performance (acquisition cost, life cycle cost and petroleum consumption) were optimized. The apporach produced designs which were often significant improvements over hybrid designs already reported on in the literature. The principal conclusions are as follows. First, it was found that the strategy used to split the required power between the two on-board energy sources can have a significant effect on life cycle cost and petroleum consumption. Second, the optimization program should be constructed so that performance measures and design variables can be easily changed. Third, the vehicle simulation program has a significant effect on the computer run time of the overall optimization program; run time can be significantly reduced by proper design of the types of trips the vehicle takes in a one year period. Fourth, care must be taken in designing the cost and constraint expressions which are used in the optimization so that they are relatively smooth functions of the design variables. Fifth, proper handling of constraints on battery weight and heat engine rating, variables which must be large enough to meet power demands, is particularly important for the success of an optimization study. Finally, the principal conclusion is that optimization methods provide a practical tool for carrying out the design of a hybrid vehicle propulsion system.

  7. Hybrid and Plug-In Electric Vehicles (Brochure)

    Energy Technology Data Exchange (ETDEWEB)

    2014-05-01

    Hybrid and plug-in electric vehicles use electricity as their primary fuel or to improve the efficiency of conventional vehicle designs. These vehicles can be divided into three categories: hybrid electric vehicles (HEVs), plug-in hybrid electric vehicles (PHEVs), all-electric vehicles (EVs). Together, they have great potential to cut U.S. petroleum use and vehicle emissions.

  8. The Federal electric and hybrid vehicle program

    Science.gov (United States)

    Schwartz, H. J.

    1980-01-01

    The commercial development and use of electric and hybrid vehicles is discussed with respect to its application as a possible alternative transportation system. A market demonstration is described that seeks to place 10,000 electric hybrid vehicles into public and private sector demonstrations.

  9. Hybrid vehicle assessment. Phase 1: Petroleum savings analysis

    Science.gov (United States)

    Levin, R.; Liddle, S.; Deshpande, G.; Trummel, M.; Vivian, H. C.

    1984-01-01

    The results of a comprehensive analysis of near term electric hybrid vehicles are presented, with emphasis on their potential to save significant amounts of petroleum on a national scale in the 1990s. Performance requirements and expected annual usage patterns of these vehicles are first modeled. The projected U.S. fleet composition is estimated, and conceptual hybrid vehicle designs are conceived and analyzed for petroleum use when driven in the expected annual patterns. These petroleum consumption estimates are then compared to similar estimates for projected 1990 conventional vehicles having the same performance and driven in the same patterns. Results are presented in the form of three utility functions and comparisons of sevral conceptual designs are made. The Hybrid Vehicle (HV) design and assessment techniques are discussed and a general method is explained for selecting the optimum energy management strategy for any vehicle mission battery combination. Conclusions and recommendations are presented, and development recommendations are identified.

  10. Vibration Isolation for Parallel Hydraulic Hybrid Vehicles

    Directory of Open Access Journals (Sweden)

    The M. Nguyen

    2008-01-01

    Full Text Available In recent decades, several types of hybrid vehicles have been developed in order to improve the fuel economy and to reduce the pollution. Hybrid electric vehicles (HEV have shown a significant improvement in fuel efficiency for small and medium-sized passenger vehicles and SUVs. HEV has several limitations when applied to heavy vehicles; one is that larger vehicles demand more power, which requires significantly larger battery capacities. As an alternative solution, hydraulic hybrid technology has been found effective for heavy duty vehicle because of its high power density. The mechanical batteries used in hydraulic hybrid vehicles (HHV can be charged and discharged remarkably faster than chemical batteries. This feature is essential for heavy vehicle hybridization. One of the main problems that should be solved for the successful commercialization of HHV is the excessive noise and vibration involving with the hydraulic systems. This study focuses on using magnetorheological (MR technology to reduce the noise and vibration transmissibility from the hydraulic system to the vehicle body. In order to study the noise and vibration of HHV, a hydraulic hybrid subsystem in parallel design is analyzed. This research shows that the MR elements play an important role in reducing the transmitted noise and vibration to the vehicle body. Additionally, locations and orientations of the isolation system also affect the efficiency of the noise and vibration mitigation. In simulations, a skyhook control algorithm is used to achieve the highest possible effectiveness of the MR isolation system.

  11. Advanced propulsion system for hybrid vehicles

    Science.gov (United States)

    Norrup, L. V.; Lintz, A. T.

    1980-01-01

    A number of hybrid propulsion systems were evaluated for application in several different vehicle sizes. A conceptual design was prepared for the most promising configuration. Various system configurations were parametrically evaluated and compared, design tradeoffs performed, and a conceptual design produced. Fifteen vehicle/propulsion systems concepts were parametrically evaluated to select two systems and one vehicle for detailed design tradeoff studies. A single hybrid propulsion system concept and vehicle (five passenger family sedan)were selected for optimization based on the results of the tradeoff studies. The final propulsion system consists of a 65 kW spark-ignition heat engine, a mechanical continuously variable traction transmission, a 20 kW permanent magnet axial-gap traction motor, a variable frequency inverter, a 386 kg lead-acid improved state-of-the-art battery, and a transaxle. The system was configured with a parallel power path between the heat engine and battery. It has two automatic operational modes: electric mode and heat engine mode. Power is always shared between the heat engine and battery during acceleration periods. In both modes, regenerative braking energy is absorbed by the battery.

  12. Flight Testing of Hybrid Powered Vehicles

    Science.gov (United States)

    Story, George; Arves, Joe

    2006-01-01

    Hybrid Rocket powered vehicles have had a limited number of flights. Most recently in 2004, Scaled Composites had a successful orbital trajectory that put a private vehicle twice to over 62 miles high, the edge of space to win the X-Prize. This endeavor man rates a hybrid system. Hybrids have also been used in a number of one time launch attempts - SET-1, HYSR, HPDP. Hybrids have also been developed for use and flown in target drones. This chapter discusses various flight-test programs that have been conducted, hybrid vehicles that are in development, other hybrid vehicles that have been proposed and some strap-on applications have also been examined.

  13. Hybrid Power Management-Based Vehicle Architecture

    Science.gov (United States)

    Eichenberg, Dennis J.

    2011-01-01

    Hybrid Power Management (HPM) is the integration of diverse, state-of-the-art power devices in an optimal configuration for space and terrestrial applications (s ee figure). The appropriate application and control of the various power devices significantly improves overall system performance and efficiency. The basic vehicle architecture consists of a primary power source, and possibly other power sources, that provides all power to a common energy storage system that is used to power the drive motors and vehicle accessory systems. This architecture also provides power as an emergency power system. Each component is independent, permitting it to be optimized for its intended purpose. The key element of HPM is the energy storage system. All generated power is sent to the energy storage system, and all loads derive their power from that system. This can significantly reduce the power requirement of the primary power source, while increasing the vehicle reliability. Ultracapacitors are ideal for an HPM-based energy storage system due to their exceptionally long cycle life, high reliability, high efficiency, high power density, and excellent low-temperature performance. Multiple power sources and multiple loads are easily incorporated into an HPM-based vehicle. A gas turbine is a good primary power source because of its high efficiency, high power density, long life, high reliability, and ability to operate on a wide range of fuels. An HPM controller maintains optimal control over each vehicle component. This flexible operating system can be applied to all vehicles to considerably improve vehicle efficiency, reliability, safety, security, and performance. The HPM-based vehicle architecture has many advantages over conventional vehicle architectures. Ultracapacitors have a much longer cycle life than batteries, which greatly improves system reliability, reduces life-of-system costs, and reduces environmental impact as ultracapacitors will probably never need to be

  14. Battery control system for hybrid vehicle and method for controlling a hybrid vehicle battery

    Science.gov (United States)

    Bockelmann, Thomas R [Battle Creek, MI; Hope, Mark E [Marshall, MI; Zou, Zhanjiang [Battle Creek, MI; Kang, Xiaosong [Battle Creek, MI

    2009-02-10

    A battery control system for hybrid vehicle includes a hybrid powertrain battery, a vehicle accessory battery, and a prime mover driven generator adapted to charge the vehicle accessory battery. A detecting arrangement is configured to monitor the vehicle accessory battery's state of charge. A controller is configured to activate the prime mover to drive the generator and recharge the vehicle accessory battery in response to the vehicle accessory battery's state of charge falling below a first predetermined level, or transfer electrical power from the hybrid powertrain battery to the vehicle accessory battery in response to the vehicle accessory battery's state of charge falling below a second predetermined level. The invention further includes a method for controlling a hybrid vehicle powertrain system.

  15. Energy management in hybrid electric vehicles: benefit of prediction

    NARCIS (Netherlands)

    Keulen, T. van; Jager, B. de; Kessels, J.T.B.A.; Steinbuch, M.

    2010-01-01

    Hybrid vehicles require a supervisory algorithm, often referred to as energy management strategy, which governs the drivetrain components. In general the energy management strategy objective is to minimize the fuel consumption subject to constraints on the components, vehicle performance and driver

  16. Electromechanical Energy Transduction for Hybrid Vehicles

    Science.gov (United States)

    Reddy Vanja, Sridhar; Kelly, Michael W.; Caruso, A. N.

    2010-03-01

    Hybrid vehicle technology seeks to reduce the total energy consumption used for vehicle locomotion by recovering and reutilizing kinetic energy that is otherwise unrecovered or dissipated in conventional vehicle deceleration. The goal of the work is to determine the transduction mechanisms that work towards a Carnot efficiency without considering constraints or limitations placed by cost or materials. Specifically, this talk will present ideal thermodynamic models of energy exchange between mechanical, electrostatic, electromechanical and electrochemical devices with a goal of projecting an ideal hybrid vehicle.

  17. DOE Hybrid and Electric Vehicle Test Platform

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Yimin [Advanced Vehicle Research Center, Danville, VA (United States)

    2012-03-31

    Based on the contract NT-42790 to the Department of Energy, “Plug-in Hybrid Ethanol Research Platform”, Advanced Vehicle Research Center (AVRC) Virginia has successfully developed the phase I electric drive train research platform which has been named as Laboratory Rapid Application Testbed (LabRAT). In phase II, LabRAT is to be upgraded into plug-in hybrid research platform, which will be capable of testing power systems for electric vehicles, and plug-in hybrid electric vehicles running on conventional as well as alternative fuels. LabRAT is configured as a rolling testbed with plentiful space for installing various component configurations. Component connections are modularized for flexibility and are easily replaced for testing various mechanisms. LabRAT is designed and built as a full functional vehicle chassis with a steering system, brake system and four wheel suspension. The rear drive axle offers maximum flexibility with a quickly changeable gear ratio final drive to accommodate different motor speed requirements. The electric drive system includes an electric motor which is mechanically connected to the rear axle through an integrated speed/torque sensor. Initially, a 100 kW UQM motor and corresponding UQM motor controller is used which can be easily replaced with another motor/controller combination. A lithium iron phosphate (LiFePO4) battery pack is installed, which consists of 108 cells of 100 AH capacity, giving the total energy capacity of 32.5 kWh. Correspondingly, a fully functional battery management system (BMS) is installed to perform battery cell operation monitoring, cell voltage balancing, and reporting battery real time operating parameters to vehicle controller. An advanced vehicle controller ECU is installed for controlling the drive train. The vehicle controller ECU receives traction or braking torque command from driver through accelerator and brake pedal position sensors and battery operating signals from the BMS through CAN BUS

  18. Lead-acid batteries in micro-hybrid vehicles

    Science.gov (United States)

    Albers, Joern; Meissner, Eberhard; Shirazi, Sepehr

    More and more vehicles hit the European automotive market, which comprise some type of micro-hybrid functionality to improve fuel efficiency and reduce emissions. Most carmakers already offer at least one of their vehicles with an optional engine start/stop system, while some other models are sold with micro-hybrid functions implemented by default. But these car concepts show a wide variety in detail-the term "micro-hybrid" may mean a completely different functionality in one vehicle model compared to another. Accordingly, also the battery technologies are not the same. There is a wide variety of batteries from standard flooded and enhanced flooded to AGM which all are claimed to be "best choice" for micro-hybrid applications. A technical comparison of micro-hybrid cars available on the European market has been performed. Different classes of cars with different characteristics have been identified. Depending on the scope and characteristics of micro-hybrid functions, as well as on operational strategies implemented by the vehicle makers, the battery operating duties differ significantly between these classes of vehicles. Additional laboratory investigations have been carried out to develop an understanding of effects observed in batteries operated in micro-hybrid vehicles pursuing different strategies, to identify limitations for applications of different battery technologies.

  19. Use of a thermophotovoltaic generator in a hybrid electric vehicle

    Science.gov (United States)

    Morrison, Orion; Seal, Michael; West, Edward; Connelly, William

    1999-03-01

    Viking 29 is the World's first thermophotovoltaic (TPV) powered automobile. The prototype was funded by the Department of Energy and designed and built by students and faculty at the Vehicle Research Institute (VRI) at Western Washington University. Viking 29 is a series hybrid electric vehicle that utilizes TPV generators to charge its battery pack. Acceleration, speed, and handling compare to modern high performance sports cars, while emissions are cleaner than current internal combustion engine vehicles.

  20. Survivability design for a hybrid underwater vehicle

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Biao; Wu, Chao; Li, Xiang; Zhao, Qingkai; Ge, Tong [State Key Lab of Ocean Engineering, School of Naval Architecture, Ocean and Civil Engineering, Shanghai Jiao Tong University, Shanghai 200240 (China)

    2015-03-10

    A novel hybrid underwater robotic vehicle (HROV) capable of working to the full ocean depth has been developed. The battery powered vehicle operates in two modes: operate as an untethered autonomous vehicle in autonomous underwater vehicle (AUV) mode and operate under remote control connected to the surface vessel by a lightweight, fiber optic tether in remotely operated vehicle (ROV) mode. Considering the hazardous underwater environment at the limiting depth and the hybrid operating modes, survivability has been placed on an equal level with the other design attributes of the HROV since the beginning of the project. This paper reports the survivability design elements for the HROV including basic vehicle design of integrated navigation and integrated communication, emergency recovery strategy, distributed architecture, redundant bus, dual battery package, emergency jettison system and self-repairing control system.

  1. Predictive cruise control in hybrid electric vehicles

    NARCIS (Netherlands)

    Keulen, T. van; Naus, M.J.G.; Jager, B. de; Molengraft, G.J.L. van de; Steinbuch, M.; Aneke, N.P.I.

    2009-01-01

    Deceleration rates have considerable influence on the fuel economy of hybrid electric vehicles. Given the vehicle characteristics and actual/measured operating conditions, as well as upcoming route information, optimal velocity trajectories can be constructed that maximize energy recovery. To suppor

  2. Electric and Hybrid Electric Vehicle Technologies

    Science.gov (United States)

    2007-11-02

    electric vehicles .10 In 1994, BART chose the bid submitted by U.S. Electricar to provide 45 converted Geo Prisms and to be the turnkey operator. However...Declining to Sign Contracts Rank (1 = highest) => 1 2 3 4 Cost too much per month (10) 6 2 1 1 Want to buy , not lease, an electric vehicle (4) 2 1...District DEFENSE ADVANCED RESEARCH PROJECTS AGENCY ELECTRIC AND HYBRID ELECTRIC VEHICLE TECHNOLOGIES COOPERATIVE AGREEMENT MDA972-93-1-0027 QUARTERLY

  3. Near hybrid passenger vehicle development program, phase 1. Appendices A and B. Mission analysis and performance specification studies report, volume 1

    Science.gov (United States)

    1979-01-01

    The three most promising vehicle use patterns (missions) for the near term electric hybrid vehicle were found to be all-purpose city driving, commuting, and family and civic business. The mission selection process was based principally on an analysis of the travel patterns found in the Nationwide Transportation Survey and on the Los Angeles and Washington, D.C. origin-destination studies data. Travel patterns in turn were converted to fuel requirements for 1985 conventional and hybrid cars. By this means, the potential fuel savings for each mission were estimated, and preliminary design requirements for hybrid vehicles were derived.

  4. Developing a Blended Type Course of Introduction to Hybrid Vehicles

    OpenAIRE

    Na Zhu

    2016-01-01

    An innovative course of introduction to hybrid vehicles is developed for both associate and bachelor degree programs for engineering technology with automotive/mechanical concentration. The hybrid vehicle course content includes several topics, such as the rational of pure electric vehicle and hybrid vehicle, hybrid vehicle propulsion systems, fundamentals of motor/generator systems, fundamentals of battery and energy management system, and introduction to various configurations of hybrid veh...

  5. Analysis of the performance of a passive hybrid powerplant to power a lightweight unmanned aerial vehicle for a high altitude mission

    Science.gov (United States)

    Renau, Jordi; Sánchez, Fernando; Lozano, Antonio; Barroso, Jorge; Barreras, Félix

    2017-07-01

    The objective of this research is to analyze the performance of a passive hybrid powerplant control system to be implemented in a lightweight unmanned aerial vehicle capable to ascend up to the high troposphere (10,000 m). The powerplant is based on a high-temperature PEM fuel cell connected in parallel to a set of lithium-polymer batteries and regulated by two power diodes. Test performed in steady state demonstrates that the use of the hybrid system increases the efficiency of the stack by more than 7% because the voltage at the main DC bus is limited by the batteries. The robustness of the passive control system is proved in a long-term test in which random perturbations of ±15% are applied to the average power that would be demanded during the ascent flight. The hybridization of the stack with the batteries eliminates sudden peaks in the current generated by the stack, which are responsible for prompt degradation phenomena that drastically reduce its useful lifetime. The study demonstrates that with the passive hybrid powerplant it is possible to reach the target height with the gas storage system considered in the application, contrary to what happens with the simple power plant.

  6. Design optimisation of a flywheel hybrid vehicle

    Energy Technology Data Exchange (ETDEWEB)

    Kok, D.B.

    1999-11-04

    during the engine start-up and shutdown periods. Correct throttle valve control ensures that hydrocarbon emissions are not critical for legislative emission limits, but the engine's standard lambda control cannot prevent an increase of nitric oxides. In order to improve tailpipe emissions, the thermo-chemical behaviour of the catalytic converter is investigated and adapted for hybrid vehicle application. In cold-start situations, the fuel consumption and exhaust gas emissions of a mechanical driveline with internal combustion engine increase. A detailed numerical investigation of the thermal behaviour of the hybrid driveline showed that the energy-efficient operation of the engine decreases thermal waste energy that is available to warm up driveline components. Therefore, a redesign of the cooling circuitry and thermal management of the driveline was required to improve system warm-up. A computer model has been developed that combines the functional description of the flywheel hybrid vehicle with the calculation of energy losses. Apart from standardised European drive cycles, velocity profiles that represent more realistic vehicle utilisation are used to assess and optimise the hybrid vehicle's fuel economy, exhaust gas emission and acceleration performance. Subdivision of energy consumption enabled the classification of those systems and components that have a major effect on fuel consumption. Of these, the optimised flywheel system, the hydraulic system, and the transmission consume energy of comparable magnitude in city driving. It is shown that the system's fuel economy is mainly a result of the improved engine operation. Regenerative braking has only limited effect on vehicle fuel consumption. Experiments with an early prototype of the hybrid driveline yielded no gains in fuel consumption when compared to a conventional CVT reference vehicle due to high storage losses in the flywheel system. However, the improved prototype of the flywheel hybrid

  7. Retrofits Convert Gas Vehicles into Hybrids

    Science.gov (United States)

    2012-01-01

    Successful space missions can rarely be attributed to a single thing. Rather, they are the result of a system of systems: integrated elements functioning effectively in their individual roles and together with related components, then those systems interacting with and supporting other systems to form a collaborative whole - from the spacecraft itself to the engineering and research teams that design and build it. An example is found in spacecraft power systems. Unlike a gas-powered car or a battery-powered laptop, most spacecraft are powered by multiple energy sources - such as photovoltaic panels, fuel cells, and batteries - working in tandem to ensure the spacecraft functions throughout the course of a mission. As with any system, the appropriate combination of elements and the method of their management are key to high performance and efficiency. One initiative at Glenn Research Center, the Hybrid Power Management (HPM) program, focused on joining new and mature technologies for optimal power systems applications in space and on Earth, with the goal not only to develop ultra-efficient space power systems, but to advance HPM to address global energy issues. The HPM program emerged from Glenn s long history of electric vehicle research dating back to the 1970s, including the NASA Hybrid Electric Transit Bus (HETB) project in the 1990s, which was the largest vehicle to use supercapacitor energy storage.

  8. Advanced hybrid vehicle propulsion system study

    Science.gov (United States)

    Schwarz, R.

    1982-01-01

    Results are presented of a study of an advanced heat engine/electric automotive hybrid propulsion system. The system uses a rotary stratified charge engine and ac motor/controller in a parallel hybrid configuration. The three tasks of the study were (1) parametric studies involving five different vehicle types, (2) design trade-off studies to determine the influence of various vehicle and propulsion system paramaters on system performance fuel economy and cost, and (3) a conceptual design establishing feasibility at the selected approach. Energy consumption for the selected system was .034 1/km (61.3 mpg) for the heat engine and .221 kWh/km (.356 kWh/mi) for the electric power system over a modified J227 a schedule D driving cycle. Life cycle costs were 7.13 cents/km (11.5 cents/mi) at $2/gal gasoline and 7 cents/kWh electricity for 160,000 km (100,000 mi) life.

  9. ELECTROMAGNETIC BIOSPHERE POLLUTION BY MOTOR TRANSPORT (VEHICLES, ELECTRIC VEHICLES, HYBRID VEHICLES

    Directory of Open Access Journals (Sweden)

    S. Selivanov

    2009-01-01

    Full Text Available The physics of the electromagnetic field is considered. The analysis of electromagnetic radiation on the human-being, the origin of which is the vehicle the electric vehicle, the hybrid vehicle is being considered. The monitoring of electromagnetic radiation of vehicles is carried out.

  10. 2011 Hyundai Sonata 4932 - Hybrid Electric Vehicle Battery Test Results

    Energy Technology Data Exchange (ETDEWEB)

    Tyler Gray; Matthew Shirk; Jeffrey Wishart

    2013-07-01

    The U.S. Department of Energy Advanced Vehicle Testing Activity Program consists of vehicle, battery, and infrastructure testing on advanced technology related to transportation. The activity includes tests on hybrid electric vehicles (HEVs), including testing the HEV batteries when both the vehicles and batteries are new and at the conclusion of 160,000 miles of on-road fleet testing. This report documents battery testing performed for the 2011 Hyundai Sonata Hybrid HEV (VIN KMHEC4A43BA004932). Battery testing was performed by the Electric Transportation Engineering Corporation dba ECOtality North America. The Idaho National Laboratory and ECOtality North America collaborate on the AVTA for the Vehicle Technologies Program of the DOE.

  11. Frontier battery development for hybrid vehicles.

    Science.gov (United States)

    Lewis, Heather; Park, Haram; Paolini, Maion

    2012-04-23

    Interest in hybrid-electric vehicles (HEVs) has recently spiked, partly due to an increasingly negative view toward the U.S. foreign oil dependency and environmental concerns. Though HEVs are becoming more common, they have a significant price premium over gasoline-powered vehicles. One of the primary drivers of this "hybrid premium" is the cost of the vehicles' batteries. This paper focuses on these batteries used in hybrid vehicles, examines the types of batteries used for transportation applications and addresses some of the technological, environmental and political drivers in battery development and the deployment of HEVs. This paper examines the claim, often voiced by HEV proponents, that by taking into account savings on gasoline and vehicle maintenance, hybrid cars are cheaper than traditional gasoline cars. This is done by a quantitative benefit-cost analysis, in addition to qualitative benefit-cost analysis from political, technological and environmental perspectives. The quantitative benefit-cost analysis shows that, taking account of all costs for the life of the vehicle, hybrid cars are in fact more expensive than gasoline-powered vehicles; however, after five years, HEVs will break even with gasoline cars. Our results show that it is likely that after 5 years, using hybrid vehicles should be cheaper in effect and yield a positive net benefit to society. There are a number of externalities that could significantly impact the total social cost of the car. These externalities can be divided into four categories: environmental, industrial, R&D and political. Despite short-term implications and hurdles, increased HEV usage forecasts a generally favorable long-term net benefit to society. Most notably, increasing HEV usage could decrease greenhouse gas emissions, while also decreasing U.S. dependence on foreign oil.

  12. Hybrid vehicle assessment. Phase I. Petroleum savings analysis

    Energy Technology Data Exchange (ETDEWEB)

    Levin, R.; Liddle, S.; Deshpande, G.; Trummel, M.; Vivian, H.

    1984-03-01

    This report presents the results of a comprehensive analysis of near-term electric-hybrid vehicles. Its purpose was to estimate their potential to save significant amounts of petroleum on a national scale in the 1990s. Performance requirements and expected annual usage patterns of these vehicles were first modeled. The projected US fleet composition was estimated, and conceptual hybrid vehicle designs were conceived and analyzed for petroleum use when driven in the expected annual patterns. These petroleum consumption estimates were then compared to similar estimates for projected 1990 conventional vehicles having the same performance and driven in the same patterns. Results are presented in the form of three utility functions and comparisons of several conceptual designs are made. The Hybrid Vehicle (HV) design and assessment techniques are discussed and a general method is explained for selecting the optimum energy management strategy for any vehicle-mission-battery combination. A discussion of lessons learned during the construction and test of the General Electric Hybrid Test Vehicle is also presented. Conclusions and recommendations are presented, and development recommendations are identified.

  13. Advanced hybrid and electric vehicles system optimization and vehicle integration

    CERN Document Server

    2016-01-01

    This contributed volume contains the results of the research program “Agreement for Hybrid and Electric Vehicles”, funded by the International Energy Agency. The topical focus lies on technology options for the system optimization of hybrid and electric vehicle components and drive train configurations which enhance the energy efficiency of the vehicle. The approach to the topic is genuinely interdisciplinary, covering insights from fields. The target audience primarily comprises researchers and industry experts in the field of automotive engineering, but the book may also be beneficial for graduate students.

  14. Electric and Hybrid Vehicle System Research and Development Project: Hybrid Vehicle Potential Assessment. Volume 1. Summary

    Energy Technology Data Exchange (ETDEWEB)

    Surber, F.T.

    1979-09-30

    The results of investigations conducted under Ce Hybrid Vehicle Potential Assessment Task are reported in 10 volumes. This volume contains an overview of the study and its results. The purpose of the overall study was to determine if the petroleum fuel savings achievable through the use of hybrid electric vehicles is worth the R and D expenditures needed to develop the hybrid vehicles and to determine R and D priorities. It was concluded that by the year 2010 hybrid vehicles could replace 80% of the automotive power that would otherwise be produced from petroleum fuels; the public should not suffer any mobility loss through the use of hybrid vehicles; high initial and life-cycle costs are a limiting factor; and R and D funds should be spent for systems design and the development of low-cost batteries and controllers. (LCL)

  15. Hybrid Vehicle Technologies and their potential for reducing oil use

    Science.gov (United States)

    German, John

    2006-04-01

    Vehicles with hybrid gasoline-electric powertrains are starting to gain market share. Current hybrid vehicles add an electric motor, battery pack, and power electronics to the conventional powertrain. A variety of engine/motor configurations are possible, each with advantages and disadvantages. In general, efficiency is improved due to engine shut-off at idle, capture of energy during deceleration that is normally lost as heat in the brakes, downsizing of the conventional engine, and, in some cases, propulsion on the electric motor alone. Ongoing increases in hybrid market share are dependent on cost reduction, especially the battery pack, efficiency synergies with other vehicle technologies, use of the high electric power to provide features desired by customers, and future fuel price and availability. Potential barriers include historically low fuel prices, high discounting of the fuel savings by new vehicle purchasers, competing technologies, and tradeoffs with other factors desired by customers, such as performance, utility, safety, and luxury features.

  16. Systems Engineering Technology Readiness Assessment of Hybrid-Electric Technologies for Tactical Wheeled Vehicles

    Science.gov (United States)

    2014-09-01

    Department of Energy. 2007. Energy Efficiency and Renewable Energy. “Freedom CAR and vehicle technology program; Plug-In hybrid- electric vehicle R&D Plan...ENGINEERING TECHNOLOGY READINESS ASSESSMENT OF HYBRID- ELECTRIC TECHNOLOGIES FOR TACTICAL WHEELED VEHICLES by Eddie E. McCown September 2014 Thesis...HYBRID- ELECTRIC TECHNOLOGIES FOR TACTICAL WHEELED VEHICLES 5. FUNDING NUMBERS 6. AUTHOR(S) Eddie E. McCown 7. PERFORMING ORGANIZATION NAME(S) AND

  17. Frontier battery development for hybrid vehicles

    Directory of Open Access Journals (Sweden)

    Lewis Heather

    2012-04-01

    Full Text Available Abstract Background Interest in hybrid-electric vehicles (HEVs has recently spiked, partly due to an increasingly negative view toward the U.S. foreign oil dependency and environmental concerns. Though HEVs are becoming more common, they have a significant price premium over gasoline-powered vehicles. One of the primary drivers of this “hybrid premium” is the cost of the vehicles’ batteries. This paper focuses on these batteries used in hybrid vehicles, examines the types of batteries used for transportation applications and addresses some of the technological, environmental and political drivers in battery development and the deployment of HEVs. Methods This paper examines the claim, often voiced by HEV proponents, that by taking into account savings on gasoline and vehicle maintenance, hybrid cars are cheaper than traditional gasoline cars. This is done by a quantitative benefit-cost analysis, in addition to qualitative benefit-cost analysis from political, technological and environmental perspectives. Results The quantitative benefit-cost analysis shows that, taking account of all costs for the life of the vehicle, hybrid cars are in fact more expensive than gasoline-powered vehicles; however, after five years, HEVs will break even with gasoline cars. Conclusions Our results show that it is likely that after 5 years, using hybrid vehicles should be cheaper in effect and yield a positive net benefit to society. There are a number of externalities that could significantly impact the total social cost of the car. These externalities can be divided into four categories: environmental, industrial, R&D and political. Despite short-term implications and hurdles, increased HEV usage forecasts a generally favorable long-term net benefit to society. Most notably, increasing HEV usage could decrease greenhouse gas emissions, while also decreasing U.S. dependence on foreign oil.

  18. Frontier battery development for hybrid vehicles

    Science.gov (United States)

    2012-01-01

    Background Interest in hybrid-electric vehicles (HEVs) has recently spiked, partly due to an increasingly negative view toward the U.S. foreign oil dependency and environmental concerns. Though HEVs are becoming more common, they have a significant price premium over gasoline-powered vehicles. One of the primary drivers of this “hybrid premium” is the cost of the vehicles’ batteries. This paper focuses on these batteries used in hybrid vehicles, examines the types of batteries used for transportation applications and addresses some of the technological, environmental and political drivers in battery development and the deployment of HEVs. Methods This paper examines the claim, often voiced by HEV proponents, that by taking into account savings on gasoline and vehicle maintenance, hybrid cars are cheaper than traditional gasoline cars. This is done by a quantitative benefit-cost analysis, in addition to qualitative benefit-cost analysis from political, technological and environmental perspectives. Results The quantitative benefit-cost analysis shows that, taking account of all costs for the life of the vehicle, hybrid cars are in fact more expensive than gasoline-powered vehicles; however, after five years, HEVs will break even with gasoline cars. Conclusions Our results show that it is likely that after 5 years, using hybrid vehicles should be cheaper in effect and yield a positive net benefit to society. There are a number of externalities that could significantly impact the total social cost of the car. These externalities can be divided into four categories: environmental, industrial, R&D and political. Despite short-term implications and hurdles, increased HEV usage forecasts a generally favorable long-term net benefit to society. Most notably, increasing HEV usage could decrease greenhouse gas emissions, while also decreasing U.S. dependence on foreign oil. PMID:22540987

  19. Near term hybrid passenger vehicle development program, phase 1

    Science.gov (United States)

    1980-01-01

    Missions for hybrid vehicles that promise to yield high petroleum impact were identified and a preliminary design, was developed that satisfies the mission requirements and performance specifications. Technologies that are critical to successful vehicle design, development and fabrication were determined. Trade-off studies to maximize fuel savings were used to develop initial design specifications of the near term hybrid vehicle. Various designs were "driven" through detailed computer simulations which calculate the petroleum consumption in standard driving cycles, the petroleum and electricity consumptions over the specified missions, and the vehicle's life cycle costs over a 10 year vehicle lifetime. Particular attention was given to the selection of the electric motor, heat engine, drivetrain, battery pack and control system. The preliminary design reflects a modified current compact car powered by a currently available turbocharged diesel engine and a 24 kW (peak) compound dc electric motor.

  20. Military Hybrid Vehicle Optimization and Control

    Science.gov (United States)

    2012-08-14

    and energy security, as well as reduce overall energy u ’C the concept of a microgrid has been introduced [7 ]. A microgricl is defined as an...vehicle-to-grid (V2G) technology has been show to have the ability to upport the microgrid ru a source, but also a storage device for excess energy [9...understood. The scope of this proposal includes introducing the concept of regarding a military hybrid vehicle as a microgrid and utilizing battery state

  1. Simulation of hybrid vehicle propulsion with an advanced battery model

    Energy Technology Data Exchange (ETDEWEB)

    Nallabolu, S.; Kostetzer, L.; Rudnyi, E. [CADFEM GmbH, Grafing (Germany); Geppert, M.; Quinger, D. [LION Smart GmbH, Frieding (Germany)

    2011-07-01

    In the recent years there has been observed an increasing concern about global warming and greenhouse gas emissions. In addition to the environmental issues the predicted scarcity of oil supplies and the dramatic increase in oil price puts new demands on vehicle design. As a result energy efficiency and reduced emission have become one of main selling point for automobiles. Hybrid electric vehicles (HEV) have therefore become an interesting technology for the governments and automotive industries. HEV are more complicated compared to conventional vehicles due to the fact that these vehicles contain more electrical components such as electric machines, power electronics, electronic continuously variable transmissions (CVT), and embedded powertrain controllers. Advanced energy storage devices and energy converters, such as Li-ion batteries, ultracapacitors, and fuel cells are also considered. A detailed vehicle model used for an energy flow analysis and vehicle performance simulation is necessary. Computer simulation is indispensible to facilitate the examination of the vast hybrid electric vehicle design space with the aim to predict the vehicle performance over driving profiles, estimate fuel consumption and the pollution emissions. There are various types of mathematical models and simulators available to perform system simulation of vehicle propulsion. One of the standard methods to model the complete vehicle powertrain is ''backward quasistatic modeling''. In this method vehicle subsystems are defined based on experiential models in the form of look-up tables and efficiency maps. The interaction between adjacent subsystems of the vehicle is defined through the amount of power flow. Modeling the vehicle subsystems like motor, engine, gearbox and battery is under this technique is based on block diagrams. The vehicle model is applied in two case studies to evaluate the vehicle performance and fuel consumption. In the first case study the affect

  2. Modeling of hybrid vehicle fuel economy and fuel engine efficiency

    Science.gov (United States)

    Wu, Wei

    "Near-CV" (i.e., near-conventional vehicle) hybrid vehicles, with an internal combustion engine, and a supplementary storage with low-weight, low-energy but high-power capacity, are analyzed. This design avoids the shortcoming of the "near-EV" and the "dual-mode" hybrid vehicles that need a large energy storage system (in terms of energy capacity and weight). The small storage is used to optimize engine energy management and can provide power when needed. The energy advantage of the "near-CV" design is to reduce reliance on the engine at low power, to enable regenerative braking, and to provide good performance with a small engine. The fuel consumption of internal combustion engines, which might be applied to hybrid vehicles, is analyzed by building simple analytical models that reflect the engines' energy loss characteristics. Both diesel and gasoline engines are modeled. The simple analytical models describe engine fuel consumption at any speed and load point by describing the engine's indicated efficiency and friction. The engine's indicated efficiency and heat loss are described in terms of several easy-to-obtain engine parameters, e.g., compression ratio, displacement, bore and stroke. Engine friction is described in terms of parameters obtained by fitting available fuel measurements on several diesel and spark-ignition engines. The engine models developed are shown to conform closely to experimental fuel consumption and motored friction data. A model of the energy use of "near-CV" hybrid vehicles with different storage mechanism is created, based on simple algebraic description of the components. With powertrain downsizing and hybridization, a "near-CV" hybrid vehicle can obtain a factor of approximately two in overall fuel efficiency (mpg) improvement, without considering reductions in the vehicle load.

  3. ENERGY MANAGEMENT STRATEGY FOR PARALLEL HYBRID ELECTRIC VEHICLES

    Institute of Scientific and Technical Information of China (English)

    Pu Jinhuan; Yin Chengliang; ZhangJianwu

    2005-01-01

    Energy management strategy (EMS) is the core of the real-time control algorithm of the hybrid electric vehicle (HEV). A novel EMS using the logic threshold approach with incorporation of a stand-by optimization algorithm is proposed. The aim of it is to minimize the engine fuel consumption and maintain the battery state of charge (SOC) in its operation range, while satisfying the vehicle performance and drivability requirements. The hybrid powertrain bench test is carried out to collect data of the engine, motor and battery pack, which are used in the EMS to control the powertrain. Computer simulation model of the HEV is established in the MATLAB/Simulink environment according to the bench test results. Simulation results are presented for behaviors of the engine, motor and battery. The proposed EMS is implemented for a real parallel hybrid car control system and validated by vehicle field tests.

  4. Plug-in hybrid electric vehicle R&D plan

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2007-06-01

    FCVT, in consultation with industry and other appropriate DOE offices, developed the Draft Plug-In Hybrid Electric Vehicle R&D Plan to accelerate the development and deployment of technologies critical for plug-in hybrid vehicles.

  5. A Comprehensive Overview of Hybrid Electric Vehicles

    Directory of Open Access Journals (Sweden)

    Caiying Shen

    2011-01-01

    Full Text Available As the environmental pollution and energy crises are getting more and more remarkable, hybrid electric vehicles (HEVs have taken on an accelerated pace in the world. A comprehensive overview of HEVs is presented in this paper, with the emphasis on configurations, main issues, and energy management strategies. Conclusions are discussed finally.

  6. Hybrid electric vehicles energy management strategies

    CERN Document Server

    Onori, Simona; Rizzoni, Giorgio

    2016-01-01

    This SpringerBrief deals with the control and optimization problem in hybrid electric vehicles. Given that there are two (or more) energy sources (i.e., battery and fuel) in hybrid vehicles, it shows the reader how to implement an energy-management strategy that decides how much of the vehicle’s power is provided by each source instant by instant. Hybrid Electric Vehicles: •introduces methods for modeling energy flow in hybrid electric vehicles; •presents a standard mathematical formulation of the optimal control problem; •discusses different optimization and control strategies for energy management, integrating the most recent research results; and •carries out an overall comparison of the different control strategies presented. Chapter by chapter, a case study is thoroughly developed, providing illustrative numerical examples that show the basic principles applied to real-world situations. In addition to the examples, simulation code is provided via a website, so that readers can work on the actua...

  7. Plug-In Hybrid Vehicle Analysis (Milestone Report)

    Energy Technology Data Exchange (ETDEWEB)

    Markel, T.; Brooker, A.; Gonder, J.; O' Keefe, M.; Simpson, A.; Thornton, M.

    2006-11-01

    NREL's plug-in hybrid electric vehicle (PHEV) analysis activities made great strides in FY06 to objectively assess PHEV technology, support the larger U.S. Department of Energy PHEV assessment effort, and share technical knowledge with the vehicle research community and vehicle manufacturers. This report provides research papers and presentations developed in FY06 to support these efforts. The report focuses on the areas of fuel economy reporting methods, cost and consumption benefit analysis, real-world performance expectations, and energy management strategies.

  8. Electric and hybrid vehicle environmental control subsystem study

    Science.gov (United States)

    Heitner, K. L.

    1980-01-01

    An environmental control subsystem (ECS) in electric and hybrid vehicles is studied. A combination of a combustion heater and gasoline engine (Otto cycle) driven vapor compression air conditioner is selected. The combustion heater, the small gasoline engine, and the vapor compression air conditioner are commercially available. These technologies have good cost and performance characteristics. The cost for this ECS is relatively close to the cost of current ECS's. Its effect on the vehicle's propulsion battery is minimal and the ECS size and weight do not have significant impact on the vehicle's range.

  9. Hydrogen hybrid vehicle engine development: Experimental program

    Energy Technology Data Exchange (ETDEWEB)

    Van Blarigan, P. [Sandia National Lab., Livermore, CA (United States)

    1995-09-01

    A hydrogen fueled engine is being developed specifically for the auxiliary power unit (APU) in a series type hybrid vehicle. Hydrogen is different from other internal combustion (IC) engine fuels, and hybrid vehicle IC engine requirements are different from those of other IC vehicle engines. Together these differences will allow a new engine design based on first principles that will maximize thermal efficiency while minimizing principal emissions. The experimental program is proceeding in four steps: (1) Demonstration of the emissions and the indicated thermal efficiency capability of a standard CLR research engine modified for higher compression ratios and hydrogen fueled operation. (2) Design and test a new combustion chamber geometry for an existing single cylinder research engine, in an attempt to improve on the baseline indicated thermal efficiency of the CLR engine. (3) Design and build, in conjunction with an industrial collaborator, a new full scale research engine designed to maximize brake thermal efficiency. Include a full complement of combustion diagnostics. (4) Incorporate all of the knowledge thus obtained in the design and fabrication, by an industrial collaborator, of the hydrogen fueled engine for the hybrid vehicle power train illustrator. Results of the CLR baseline engine testing are presented, as well as preliminary data from the new combustion chamber engine. The CLR data confirm the low NOx produced by lean operation. The preliminary indicated thermal efficiency data from the new combustion chamber design engine show an improvement relative to the CLR engine. Comparison with previous high compression engine results shows reasonable agreement.

  10. Electric vehicles, hybrid electric vehicles and fuel cell electric vehicles: what in the future

    Energy Technology Data Exchange (ETDEWEB)

    Maggetto, G.; Van Mierlo, J. [Vrije Universiteit, Brussel (Belgium)

    2000-07-01

    In urban area, due to their beneficial effect on environment, electric vehicles, hybrid electric vehicles and fuel cell electric vehicles are an important factor for improvement of traffic and more particular for a healthier environment. Moreover, the need for alternative energy source is growing and the price competition of alternatives against oil is becoming more and more realistic. Electric vehicles, hybrid electric vehicles and fuel cell electric vehicles are offering the best possibility for the use of new energy sources, because electricity can result from a transformation with high efficiency of these sources and is always used with the highest possible efficiency in systems with electric drives or components. Some basic considerations about the situation today and in a mid and long-term perspective, are presented together with the infrastructure developments.

  11. Battery Test Manual For Plug-In Hybrid Electric Vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Jeffrey R. Belt

    2010-09-01

    This battery test procedure manual was prepared for the United States Department of Energy (DOE), Office of Energy Efficiency and Renewable Energy (EERE), Vehicle Technologies Program. It is based on technical targets established for energy storage development projects aimed at meeting system level DOE goals for Plug-in Hybrid Electric Vehicles (PHEV). The specific procedures defined in this manual support the performance and life characterization of advanced battery devices under development for PHEV’s. However, it does share some methods described in the previously published battery test manual for power-assist hybrid electric vehicles. Due to the complexity of some of the procedures and supporting analysis, a revision including some modifications and clarifications of these procedures is expected. As in previous battery and capacitor test manuals, this version of the manual defines testing methods for full-size battery systems, along with provisions for scaling these tests for modules, cells or other subscale level devices.

  12. Battery Test Manual For Plug-In Hybrid Electric Vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Jeffrey R. Belt

    2010-12-01

    This battery test procedure manual was prepared for the United States Department of Energy (DOE), Office of Energy Efficiency and Renewable Energy (EERE), Vehicle Technologies Program. It is based on technical targets established for energy storage development projects aimed at meeting system level DOE goals for Plug-in Hybrid Electric Vehicles (PHEV). The specific procedures defined in this manual support the performance and life characterization of advanced battery devices under development for PHEV’s. However, it does share some methods described in the previously published battery test manual for power-assist hybrid electric vehicles. Due to the complexity of some of the procedures and supporting analysis, a revision including some modifications and clarifications of these procedures is expected. As in previous battery and capacitor test manuals, this version of the manual defines testing methods for full-size battery systems, along with provisions for scaling these tests for modules, cells or other subscale level devices.

  13. Gasoline hybrid pneumatic engine for efficient vehicle powertrain hybridization

    OpenAIRE

    Dimitrova, Zlatina; Maréchal, François

    2015-01-01

    The largest applied convertors in passenger cars are the internal combustion engines – gasoline, diesel, adapted also for operating on alternative fuels and hybrid modes. The number of components that are necessary to realize modern future propulsion system is inexorably increasing. The need for efficiency improvement of the vehicle energy system induces the search for an innovative methodology during the design process. In this article the compressed air is investigated as an innovative solu...

  14. Simulation of a Hybrid Locomotion Robot Vehicle

    Science.gov (United States)

    Aarnio, P.

    2002-10-01

    This study describes a simulation process of a mobile robot. The focus is in kinematic and dynamic behavior simulations of hybrid locomotion robot vehicles. This research is motivated by the development needs of the WorkPartner field service robot. The whole robot system consists of a mobile platform and a two-hand manipulator. The robot platform, called Hybtor, is a hybrid locomotion robot capable of walking and driving by wheels as well as combining these two locomotion modes. This study describes first the general problems and their solutions in the dynamic simulation of mobile robots. A kinematic and dynamic virtual model of the Hybtor robot was built and simulations were carried out using one commercial simulation tool. Walking, wheel driven and rolking mode locomotion, which is a special hybrid locomotion style, has been simulated and analyzed. Position and force control issues during obstacle overrun and climbing were also studied.

  15. Electric and plug-in hybrid vehicles advanced simulation methodologies

    CERN Document Server

    Varga, Bogdan Ovidiu; Moldovanu, Dan; Iclodean, Calin

    2015-01-01

    This book is designed as an interdisciplinary platform for specialists working in electric and plug-in hybrid electric vehicles powertrain design and development, and for scientists who want to get access to information related to electric and hybrid vehicle energy management, efficiency and control. The book presents the methodology of simulation that allows the specialist to evaluate electric and hybrid vehicle powertrain energy flow, efficiency, range and consumption. The mathematics behind each electric and hybrid vehicle component is explained and for each specific vehicle the powertrain

  16. Conversion of Gasoline Vehicles to CNG Hybrid Vehicles (CNG-Electric Vehicles

    Directory of Open Access Journals (Sweden)

    Abolfazl Halvaei Niasar

    2013-08-01

    Full Text Available The aim of this study is investigation of the feasibility and advantages of using the natural gas as an alternative to gasoline as a fuel for hybrid electric vehicles. Operating CNG vehicles are really beneficial in the Middle East region considering the fact that gasoline is offered at a heavily subsidized price and therefore, by converting a significant portion of the automobiles to run on CNG, the gasoline internal consumption could be reduced. This in turn will result in more oil being available for export which will be beneficial to the economy of country. Hybrid Vehicles mainly have a CNG engine along with an electric drive. The batteries of Hybrid Vehicles are charged by a CNG engine. The engine size is smaller and emissions may be considerably less in hybrid vehicles relative to typical vehicles since the CNG engine is employed only to recharge the electric batteries. Although CNG-Electric hybrid vehicles are less common than Diesel-Electric hybrids, but they have been tested in several U.S. cities such as Denver and Seattle. CNG-electric hybrids hold huge potential for the future in the fact that they are significantly cleaner sources of energy and are conveniently suited to serve the needs of the current economy and modes of transportation. The use of these alternative sources of fuels requires investment and significant studies need to be made to evaluate their efficiencies and reliability. This study would cover most of these aspects and also explores the use of these technologies with particular reference to Qatar and the Middle East.

  17. The new wave of hybrid vehicles in Japan; La nouvelle vague de vehicules hybrides au Japon

    Energy Technology Data Exchange (ETDEWEB)

    Moille, F.

    2000-05-01

    The Japan Ministry of international trade and industry (MITI) has foreseen a 23% reduction of the consumption of internal combustion engines between 1995 and 2010. The Japanese automotive companies are seriously working on the development of less polluting and more economical vehicles. After the domination of the internal combustion engine with its good performances, and the quasi-exclusive use of electric-powered vehicles in urban areas for autonomy reasons, time has come for the development of hybrid vehicles which combine the advantages of both principles. With a very simple use for the driver, the hybrid vehicle is in fact based on a particularly complex technology which is explained for some prototypes presented in this paper. (J.S.)

  18. A systematic design approach for two planetary gear split hybrid vehicles

    Science.gov (United States)

    Liu, Jinming; Peng, Huei

    2010-11-01

    Multiple power sources in a hybrid vehicle allow for flexible vehicle power-train operations, but also impose kinematic constraints due to component characteristics. This paper presents a design process that enables systematic search and screening through all three major dimensions of hybrid vehicle designs - system configuration, component sizing and control, to achieve optimal performance while satisfying the imposed constraints. An automated dynamic modelling method is first developed which enables the construction of hybrid vehicle model efficiently. A screening process then narrows down to configurations that satisfy drivability and operation constraints. Finally, a design and control optimisation strategy is carried out to obtain the best execution of each configuration. A case study for the design of a power-split hybrid vehicle with optimal fuel economy is used to demonstrate this overall hybrid vehicle design process.

  19. Analysis of plug-in hybrid electric vehicle utility factors

    Science.gov (United States)

    Bradley, Thomas H.; Quinn, Casey W.

    Plug-in hybrid electric vehicles (PHEVs) are hybrid electric vehicles that can be fueled from both conventional liquid fuels and grid electricity. To represent the total contribution of both of these fuels to the operation, energy use, and environmental impacts of PHEVs, researchers have developed the concept of the utility factor. As standardized in documents such as SAE J1711 and SAE J2841, the utility factor represents the proportion of vehicle distance travelled that can be allocated to a vehicle test condition so as to represent the real-world driving habits of a vehicle fleet. These standards must be used with care so that the results are understood within the context of the assumptions implicit in the standardized utility factors. This study analyzes and derives alternatives to the standard utility factors from the 2001 National Highway Transportation Survey, so as to understand the sensitivity of PHEV performance to assumptions regarding charging frequency, vehicle characteristics, driver characteristics, and means of defining the utility factor. Through analysis of these alternative utility factors, this study identifies areas where analysis, design, and policy development for PHEVs can be improved by alternative utility factor calculations.

  20. 2010 Honda Civic Hybrid UltraBattery Conversion 5577 - Hybrid Electric Vehicle Battery Test Results

    Energy Technology Data Exchange (ETDEWEB)

    Tyler Gray; Matthew Shirk; Jeffrey Wishart

    2013-07-01

    The U.S. Department of Energy Advanced Vehicle Testing Activity Program consists of vehicle, battery, and infrastructure testing on advanced technology related to transportation. The activity includes tests on hybrid electric vehicles (HEVs), including testing the HEV batteries when both the vehicles and batteries are new and at the conclusion of on-road fleet testing. This report documents battery testing performed for the 2010 Honda Civic HEV UltraBattery Conversion (VIN JHMFA3F24AS005577). Battery testing was performed by the Electric Transportation Engineering Corporation dba ECOtality North America. The Idaho National Laboratory and ECOtality North America collaborate on the AVTA for the Vehicle Technologies Program of the DOE.

  1. Smith Newton Vehicle Performance Evaluation - Cumulative (Brochure)

    Energy Technology Data Exchange (ETDEWEB)

    2014-08-01

    The Fleet Test and Evaluation Team at the U.S. Department of Energy's National Renewable Energy Laboratory is evaluating and documenting the performance of electric and plug-in hybrid electric drive systems in medium-duty trucks across the nation. U.S. companies participating in this evaluation project received funding from the American Recovery and Reinvestment Act to cover part of the cost of purchasing these vehicles. Through this project, Smith Electric Vehicles is building and deploying 500 all-electric medium-duty trucks that will be deployed by a variety of companies in diverse climates across the country.

  2. Performance Analysis of Ultra Capacitor Hybrid Electric Vehicles Drive System%超级电容式混合动力汽车驱动特性分析

    Institute of Scientific and Technical Information of China (English)

    百合提努尔

    2014-01-01

    本文是在建立实验模型的基础上,利用MATLAB仿真软件进行计算超级电容式混合动力汽车驱动特性数据,并从功率的角度在混合动力汽车实验台上测试获取的数据与计算数据相吻合。实验证明:在特定驾驶工况下获得的特性曲线,说明了影响混合动力驱动工况的各类因素,如车重等,同时表明了仿真软件计算出的特性曲线,为混合动力汽车各种工况下研究驱动特性提供依据。%Based on the establishment of experimental model, the data of ultra capacitor hybrid vehicle drive characteristics were calculated using MATLAB simulation software. Experiments showed that:in certain driving conditions, the characteristic curve illustrated a variety of factors that affect the working conditions of the hybrid drive, such as vehicle weight, etc., and showed the characteristic curve of hybrid vehicles under various conditions, which could provide basis for research on drive characteristics.

  3. Multivariable speed synchronisation for a parallel hybrid electric vehicle drivetrain

    Science.gov (United States)

    Alt, B.; Antritter, F.; Svaricek, F.; Schultalbers, M.

    2013-03-01

    In this article, a new drivetrain configuration of a parallel hybrid electric vehicle is considered and a novel model-based control design strategy is given. In particular, the control design covers the speed synchronisation task during a restart of the internal combustion engine. The proposed multivariable synchronisation strategy is based on feedforward and decoupled feedback controllers. The performance and the robustness properties of the closed-loop system are illustrated by nonlinear simulation results.

  4. Hybrid electric vehicle power management system

    Energy Technology Data Exchange (ETDEWEB)

    Bissontz, Jay E.

    2015-08-25

    Level voltage levels/states of charge are maintained among a plurality of high voltage DC electrical storage devices/traction battery packs that are arrayed in series to support operation of a hybrid electric vehicle drive train. Each high voltage DC electrical storage device supports a high voltage power bus, to which at least one controllable load is connected, and at least a first lower voltage level electrical distribution system. The rate of power transfer from the high voltage DC electrical storage devices to the at least first lower voltage electrical distribution system is controlled by DC-DC converters.

  5. High Temperature Power Converters for Military Hybrid Electric Vehicles

    Science.gov (United States)

    2011-08-09

    M) MINI-SYMPOSIUM AUGUST 9-11 DEARBORN, MICHIGAN HIGH TEMPERATURE POWER CONVERTERS FOR MILITARY HYBRID ELECTRIC VEHICLES ABSTRACT...SUBTITLE High Temperature Power Converters for Military Hybrid Electric Vehicles 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6...public release High Temperature Power Converters for Military Hybrid Electric Vehicles Page 2 of 8 I. INTRODUCTION Today, wide bandgap devices

  6. Mechanical Hybrid KERS Based on Toroidal Traction Drives: An Example of Smart Tribological Design to Improve Terrestrial Vehicle Performance

    Directory of Open Access Journals (Sweden)

    Francesco Bottiglione

    2013-01-01

    Full Text Available We analyse in terms of efficiency and traction capabilities a recently patented traction drive, referred to as the double roller full-toroidal variator (DFTV. We compare its performance with the single roller full-toroidal variator (SFTV and the single roller half-toroidal variator (SHTV. Modeling of these variators involves challenging tribological issues; the traction and efficiency performances depend on tribological phenomena occurring at the interface between rollers and disks, where the lubricant undergoes very severe elastohydrodynamic lubrication regimes. Interestingly, the DFTV shows an improvement of the mechanical efficiency over a wide range of transmission ratios and in particular at the unit speed ratio as in such conditions in which the DFTV allows for zero-spin, thus strongly enhancing its traction capabilities. The very high mechanical efficiency and traction performances of the DFTV are exploited to investigate the performance of a flywheel-based Kinetic Energy Recovery System (KERS, where the efficiency of the variator plays an important role in determining the overall energy recovery performance. The energy boost capabilities and the round-trip efficiency are calculated for the three different variators considered in this study. The results suggest that the energy recovery potential of the mechanical KERS can be improved with a proper choice of the variator.

  7. Energy storage specification requirements for hybrid-electric vehicle

    Science.gov (United States)

    Burke, A. F.

    1993-09-01

    A study has been made of energy storage unit requirements for hybrid-electric vehicles. The drivelines for these vehicles included both primary energy storage units and/or pulse power units. The primary energy storage units were sized to provide 'primary energy' ranges up to 60 km. The total power capability of the drivelines were such that the vehicles had 0 to 100 km/h acceleration times of 10 to 12 s. The power density requirements for primary energy storage devices to be used in hybrid vehicles are much higher than that for devices to be used in electric vehicles. The energy density and power density requirements for pulse-power devices for hybrid vehicles, are not much different than those in an electric vehicle. The cycle life requirements for primary energy-storage units for hybrid vehicles are about double that for electric vehicles, because of the reduced size of the storage units in the hybrid vehicles. The cycle life for pulse-power devices for hybrid vehicles is about the same as for electric vehicles having battery load leveling. Because of the need for additional components in the hybrid driveline, the cost of the energy storage units in hybrid vehicles should be much less (at least a factor of two) than those in electric vehicles. There are no presently available energy storage units that meet all the specifications for hybrid vehicle applications, but ultracapacitors and bipolar lead-acid batteries are under development that have the potential for meeting them. If flywheel systems having a mechanical system energy density of 40 to 50 W(center dot)h/kg and an electrical system power density of 2 to 3 kw/kg can be developed, they would have the potential of meeting specifications for primary storage and pulse power units.

  8. Distributed Heterogeneous Simulation of a Hybrid-Electric Vehicle

    Science.gov (United States)

    2006-03-29

    operate as a generator to convert mechanical energy from the diesel t~nginc 01 from regenerative braking to electrical energy. A vehicle control module...Distributed Heterogeneous Simulation of a Hybrid- Electric Vehicle Ning Wu’, Curtis Rands t , Charles E. Lucas!, Eric A. Walters§, and Maher A...Masrurit US Army RDECOM-TARDEC, Warren, MI, 48397 Hybrid- electric military vehicles provide many advantages over conventional military vehicles powered

  9. A summary of EHV propulsion technology. [Electric and Hybrid Vehicle

    Science.gov (United States)

    Schwartz, H. J.

    1983-01-01

    While the battery used by an electric vehicle is the primary determinant of range, and to a lesser extent of performance, the design of the vehicle's propulsion system establishes its performance level and is the greatest contributor to its purchase price. Propulsion system weight, efficiency and cost are related to the specific combination of components used. Attention is given to the development status of the U.S. Department of Energy's Electric and Hybrid Vehicle Program, through which propulsion component and system design improvements have been made which promise weight savings of 35-50 percent, efficiency gains of 25 percent, and lower costs, when compared to the state of the art at the program's inception.

  10. Cascade Control Solution for Traction Motor for Hybrid Electric Vehicles

    Directory of Open Access Journals (Sweden)

    Zsuzsa Preitl

    2007-10-01

    Full Text Available In this paper a hybrid electric vehicle is considered, which contains both aninternal combustion engine and an electric motor (EM. Without focusing on the othercomponents of the vehicle, the EM is treated in detail, both regarding modelling aspectsand control solutions.After a brief modelling of the plant, two cascade speed control solutions are presented: firsta classical PI+PI cascade control solution is presented. The control systems related totraction electric motors (used in vehicle traction must be able to cope with differentrequests, such as variation of the reference signal, load disturbances which depend on thetransport conditions and parametric disturbances regarding changes in the total mass ofthe vehicle. For this purpose, in the design of the speed controller (external loop a specificmethodology based on extension of the symmetrical optimum method is presented. Thecontrollers are developed using the Modulus–Optimum method for the inner loop, and theExtended Symmetrical Optimum Method, corrected based on the 2p-SO-method, for theouter loop (for a more efficient disturbance rejection.In order to force the behaviour of the system regarding the reference input, a correctionterm is introduced as a non-homogenous structured PI controller solution.Simulations were performed using numerical values taken from a real applicationconsisting in a hybrid vehicle prototype, showing satisfactory behaviour.

  11. Continual Energy Management System of Proton Exchange Membrane Fuel Cell Hybrid Power Electric Vehicles

    Directory of Open Access Journals (Sweden)

    Ren Yuan

    2016-01-01

    Full Text Available Current research status in energy management of Proton Exchange Membrane (PEM fuel cell hybrid power electric vehicles are first described in this paper, and then build the PEMFC/ lithium-ion battery/ ultra-capacitor hybrid system model. The paper analysis the key factors of the continuous power available in PEM fuel cell hybrid power electric vehicle and hybrid power system working status under different driving modes. In the end this paper gives the working flow chart of the hybrid power system and concludes the three items of the system performance analysis.

  12. From the Kinetic Energy Recovery System to the Thermo-Hydraulic Hybrid Motor Vehicle

    Science.gov (United States)

    Cristescu, Corneliu; Drumea, Petrin; Guta, Dragos; Dumitrescu, Catalin

    2011-12-01

    The paper presents some theoretical and experimental results obtained by the Hydraulics and Pneumatics Research Institute INOE 2000-IHP with its partners, regarding the creating of one hydraulic system able to recovering the kinetic energy of the motor vehicles, in the braking phases, and use this recovered energy in the starting and accelerating phases. Also, in the article is presented a testing stand, which was especially designed for testing the hydraulic system for recovery the kinetic energy. Through mounting of the kinetic energy recovering hydraulic system, on one motor vehicle, this vehicle became a thermo-hydraulic hybrid vehicle. Therefore, the dynamic behavior was analyzed for the whole hybrid motor vehicle, which includes the energy recovery system. The theoretical and experimental results demonstrate the possible performances of the hybrid vehicle and that the kinetic energy recovery hydraulic systems are good means to increase energy efficiency of the road motor vehicles and to decrease of the fuel consumption.

  13. Hybrid adaptive ascent flight control for a flexible launch vehicle

    Science.gov (United States)

    Lefevre, Brian D.

    For the purpose of maintaining dynamic stability and improving guidance command tracking performance under off-nominal flight conditions, a hybrid adaptive control scheme is selected and modified for use as a launch vehicle flight controller. This architecture merges a model reference adaptive approach, which utilizes both direct and indirect adaptive elements, with a classical dynamic inversion controller. This structure is chosen for a number of reasons: the properties of the reference model can be easily adjusted to tune the desired handling qualities of the spacecraft, the indirect adaptive element (which consists of an online parameter identification algorithm) continually refines the estimates of the evolving characteristic parameters utilized in the dynamic inversion, and the direct adaptive element (which consists of a neural network) augments the linear feedback signal to compensate for any nonlinearities in the vehicle dynamics. The combination of these elements enables the control system to retain the nonlinear capabilities of an adaptive network while relying heavily on the linear portion of the feedback signal to dictate the dynamic response under most operating conditions. To begin the analysis, the ascent dynamics of a launch vehicle with a single 1st stage rocket motor (typical of the Ares 1 spacecraft) are characterized. The dynamics are then linearized with assumptions that are appropriate for a launch vehicle, so that the resulting equations may be inverted by the flight controller in order to compute the control signals necessary to generate the desired response from the vehicle. Next, the development of the hybrid adaptive launch vehicle ascent flight control architecture is discussed in detail. Alterations of the generic hybrid adaptive control architecture include the incorporation of a command conversion operation which transforms guidance input from quaternion form (as provided by NASA) to the body-fixed angular rate commands needed by the

  14. The near-term hybrid vehicle program, phase 1

    Science.gov (United States)

    1979-01-01

    Performance specifications were determined for a hybrid vehicle designed to achieve the greatest reduction in fuel consumption. Based on the results of systems level studies, a baseline vehicle was constructed with the following basic paramaters: a heat engine power peak of 53 kW (VW gasoline engine); a traction motor power peak of 30 kW (Siemens 1GV1, separately excited); a heat engine fraction of 0.64; a vehicle curb weight of 2080 kg; a lead acid battery (35 kg weight); and a battery weight fraction of 0.17. The heat engine and the traction motor are coupled together with their combined output driving a 3 speed automatic transmission with lockup torque converter. The heat engine is equipped withe a clutch which allows it to be decoupled from the system.

  15. Implementation of Design Failure Modes and Effects Analysis for Hybrid Vehicle Systems

    OpenAIRE

    2016-01-01

    An increase emphasis has been placed on the automotive industry to develop advanced technology vehicles which meet increasing strict government regulations and standards for emissions and fuel economy while maintaining the safety, performance, and consumer appeal of the vehicle. In response to these requirements, hybrid and electric vehicle technologies have become more complex as the necessity for vehicles with an overall better environmental impact. Modern engineers must understand the cur...

  16. Electric and Hybrid Vehicle System Research and Development Project: Hybrid Vehicle Potential Assessment. Volume VI. Cost analysis

    Energy Technology Data Exchange (ETDEWEB)

    Hardy, K.S.

    1979-09-30

    The purpose of the cost analysis is to determine the economic feasibility of a variety of hybrid vehicles with respect to conventional vehicles specifically designed for the same duty cycle defined by the mission analysis. Several different hybrid configurations including parallel, parallel-flywheel, and series vehicles were evaluated. The ramifications of incorporating examples of advanced batteries, these being the advanced lead-acid, nickel-zinc, and sodium sulfur were also investigated. Vehicles were specifically designed with these batteries and for the driving cycles specified by the mission. Simulated operation on the missions yielded the energy consumption (petroleum and/or electricity) over the driving cycles. It was concluded that: in the event that gasoline prices reach $2.50 to $3.00/gal, hybrid vehicles in many applications will become economically competitive with conventional vehicles without subsidization; in some commercial applications hybrid vehicles could be economically competitive, when the gasoline price ranges from $1.20 to $1.50/gal. The cost per kWh per cycle of the advanced batteries is much more important economically than the specific energy; the series hybrid vehicles were found to be more expensive in comparison to the parallel or parallel-flywheel hybrids when designed as passenger vehicles; and hybrid vehicles designed for private use could become economically competitive and displace up to 50% of the fuel normally used on that mission if subsidies of $500 to $2000 were supplied to the owner/operator. (LCL)

  17. Dedicated auxiliary power units for Hybrid Electric Vehicles

    NARCIS (Netherlands)

    Mourad, S.; Weijer, C.J.T. van de

    1998-01-01

    The use of a dedicated auxiliary power unit is essential to utilize the potential that hybrid vehicles offer for efficient and ultra-clean transportation. An example of a hybrid project at the TNO Road-Vehicles Research Institute shows the development and the results of a dedicated auxiliary power

  18. Dedicated auxiliary power units for Hybrid Electric Vehicles

    NARCIS (Netherlands)

    Mourad, S.; Weijer, C.J.T. van de

    1998-01-01

    The use of a dedicated auxiliary power unit is essential to utilize the potential that hybrid vehicles offer for efficient and ultra-clean transportation. An example of a hybrid project at the TNO Road-Vehicles Research Institute shows the development and the results of a dedicated auxiliary power u

  19. Assessment of the potential of hybrid vehicles: Summary

    Science.gov (United States)

    Surber, F. T.

    1980-01-01

    The potential of hybrid vehicles as a replacement of the conventional gasoline or diesel fueled internal combustion engine vehicle within the next 20 to 30 years, was assessed. Hybrid vehicle designs and applications which are technically and economically viable were studied to determine if reductions in petroleum usage were large enough to warrant major expenditures of research and development funds. Critical technical areas where research and development can be most usefully concentrated were identified.

  20. Active seat isolation for hybrid electric vehicles

    Science.gov (United States)

    Leo, Donald J.; Malowicki, Mark; Buckley, Stephen J.; Naganathan, Ganapathy

    1999-07-01

    A feasibility study in the use of induced strain actuators for active seal isolation is described. The focus of the work is the isolation of lightweight automotive seats for hybrid-electric vehicles. The feasibility study is based on a numerical analysis of a three-degree-of-freedom vibration model of the seat. Mass and inertia properties are based on measurements from a powered seat that is found in current model year automobiles. Tradeoffs between vertical acceleration of the seat, actuator stroke requirements, and isolation frequency are determined through numerical analysis of the vibration model. Root mean square accelerations and actuator strokes are computed using power spectral densities that model broadband excitation and road excitation that is filtered by the vehicle suspension. Numerical results using the road excitation indicate that factors of two to three reduction in vertical acceleration are achieved when the active isolation frequency is reduced to approximately 1 Hz with damping factors on the order of 10 to 30 percent critical. More significant reductions are achieved in the case of broadband floor excitation. Root mean square actuator strokes for both case are int he range of 0.4 to 50 mm. Root mean square accelerations in the vertical direction are consistent with the levels found in standard comfort curves.

  1. Environmental Assessment of the US Department of Energy Electric and Hybrid Vehicle Program

    Energy Technology Data Exchange (ETDEWEB)

    Singh, M.K.; Bernard, M.J. III; Walsh, R.F

    1980-11-01

    This environmental assessment (EA) focuses on the long-term (1985-2000) impacts of the US Department of Energy (DOE) electric and hybrid vehicle (EHV) program. This program has been designed to accelerate the development of EHVs and to demonstrate their commercial feasibility as required by the Electric and Hybrid Vehicle Research, Development and Demonstration Act of 1976 (P.L. 94-413), as amended (P.L. 95-238). The overall goal of the program is the commercialization of: (1) electric vehicles (EVs) acceptable to broad segments of the personal and commercial vehicle markets, (2) hybrid vehicles (HVs) with range capabilities comparable to those of conventional vehicles (CVs), and (3) advanced EHVs completely competitive with CVs with respect to both cost and performance. Five major EHV projects have been established by DOE: market demonstration, vehicle evaluation and improvement, electric vehicle commercialization, hybrid vehicle commercialization, and advanced vehicle development. Conclusions are made as to the effects of EV and HV commercialization on the: consumption and importation of raw materials; petroleum and total energy consumption; ecosystems impact from the time of obtaining raw material through vehicle use and materials recycling; environmental impacts on air and water quality, land use, and noise; health and safety aspects; and socio-economic factors. (LCL)

  2. Predictive control strategies for energy saving of hybrid electric vehicles based on traffic light information

    Directory of Open Access Journals (Sweden)

    Kaijiang YU

    2015-10-01

    Full Text Available As the conventional control method for hybrid electric vehicle doesn’t consider the effect of known traffic light information on the vehicle energy management, this paper proposes a model predictive control intelligent optimization strategies based on traffic light information for hybrid electric vehicles. By building the simplified model of the hybrid electric vehicle and adopting the continuation/generalized minimum residual method, the model prediction problem is solved. The simulation is conducted by using MATLAB/Simulink platform. The simulation results show the effectiveness of the proposed model of the traffic light information, and that the proposed model predictive control method can improve fuel economy and the real-time control performance significantly. The research conclusions show that the proposed control strategy can achieve optimal control of the vehicle trajectory, significantly improving fuel economy of the vehicle, and meet the system requirements for the real-time optimal control.

  3. Developing a Blended Type Course of Introduction to Hybrid Vehicles

    Directory of Open Access Journals (Sweden)

    Na Zhu

    2016-02-01

    Full Text Available An innovative course of introduction to hybrid vehicles is developed for both associate and bachelor degree programs for engineering technology with automotive/mechanical concentration. The hybrid vehicle course content includes several topics, such as the rational of pure electric vehicle and hybrid vehicle, hybrid vehicle propulsion systems, fundamentals of motor/generator systems, fundamentals of battery and energy management system, and introduction to various configurations of hybrid vehicle systems available in market and under development. Hybrid vehicle technology is a new area and developed rapidly in the field of automotive and mechanical engineering. Students need not only the fundamentals and concepts from college, but also the ability to keep up with the latest technology after their graduation. Therefore, a blended course type is employed to help students have a better understanding of the fundamentals of hybrid vehicle and developing their self-studying ability. Topics in the course have three steps of learning. Firstly, on-ground lecture is given in class, where the instructor explains basic knowledge, such as principles, equations, and design rules.  In this way, the students will have enough background knowledge and be able to conduct further self-reading and research work. Secondly, students are required to go to university’s desire to learn (D2L online system and finish the online part of the topic. In the D2L system, students will find a quiz and its supporting materials. Thirdly, students come back to the on-ground lecture and discuss the quiz in groups with instructor. After the discussion, the instructor gives students a conclusion of the topic and moves forward to the next topic. A computer simulation class is also given to help student better understand the operation strategies of the hybrid vehicle systems and have a trial of design of hybrid vehicle.

  4. A magneto rheological hybrid damper for railway vehicles suspensions

    Directory of Open Access Journals (Sweden)

    Gheorghe GHITA

    2012-09-01

    Full Text Available High speed railway vehicles features a specific lateral oscillation resulting from the coupled lateral displacement and yaw of the wheelset which leads to a sinusoid movement of the wheelset along the track, transferred to the entire vehicle. The amplitude of this oscillation is strongly dependant on vehicle’s velocity. Over a certain value, namely the critical speed, the instability phenomenon so-called hunting occurs. To raise the vehicle’s critical speed different designs of the suspension all leading to a much stiffer vehicle can be envisaged. Different simulations prove that a stiffer central suspension will decrease the passenger’s comfort in terms of lateral accelerations of the carboy. The authors propose a semi-active magneto rheological suspension to improve the vehicle’s comfort at high speeds. The suspension has as executive elements hybrid magneto rheological dampers operating under sequential control strategy type balance logic. Using an original mathematical model for the lateral dynamics of the vehicle the responses of the system with passive and semi-active suspensions are simulated. It is shown that the semi-active suspension can improve the vehicle performances.

  5. A study on optimization of hybrid drive train using Advanced Vehicle Simulator (ADVISOR)

    Science.gov (United States)

    Same, Adam; Stipe, Alex; Grossman, David; Park, Jae Wan

    This study investigates the advantages and disadvantages of three hybrid drive train configurations: series, parallel, and "through-the-ground" parallel. Power flow simulations are conducted with the MATLAB/Simulink-based software ADVISOR. These simulations are then applied in an application for the UC Davis SAE Formula Hybrid vehicle. ADVISOR performs simulation calculations for vehicle position using a combined backward/forward method. These simulations are used to study how efficiency and agility are affected by the motor, fuel converter, and hybrid configuration. Three different vehicle models are developed to optimize the drive train of a vehicle for three stages of the SAE Formula Hybrid competition: autocross, endurance, and acceleration. Input cycles are created based on rough estimates of track geometry. The output from these ADVISOR simulations is a series of plots of velocity profile and energy storage State of Charge that provide a good estimate of how the Formula Hybrid vehicle will perform on the given course. The most noticeable discrepancy between the input cycle and the actual velocity profile of the vehicle occurs during deceleration. A weighted ranking system is developed to organize the simulation results and to determine the best drive train configuration for the Formula Hybrid vehicle. Results show that the through-the-ground parallel configuration with front-mounted motors achieves an optimal balance of efficiency, simplicity, and cost. ADVISOR is proven to be a useful tool for vehicle power train design for the SAE Formula Hybrid competition. This vehicle model based on ADVISOR simulation is applicable to various studies concerning performance and efficiency of hybrid drive trains.

  6. A study on optimization of hybrid drive train using Advanced Vehicle Simulator (ADVISOR)

    Energy Technology Data Exchange (ETDEWEB)

    Same, Adam; Stipe, Alex; Grossman, David; Park, Jae Wan [Department of Mechanical and Aeronautical Engineering, University of California, Davis, One Shields Ave, Davis, CA 95616 (United States)

    2010-10-01

    This study investigates the advantages and disadvantages of three hybrid drive train configurations: series, parallel, and ''through-the-ground'' parallel. Power flow simulations are conducted with the MATLAB/Simulink-based software ADVISOR. These simulations are then applied in an application for the UC Davis SAE Formula Hybrid vehicle. ADVISOR performs simulation calculations for vehicle position using a combined backward/forward method. These simulations are used to study how efficiency and agility are affected by the motor, fuel converter, and hybrid configuration. Three different vehicle models are developed to optimize the drive train of a vehicle for three stages of the SAE Formula Hybrid competition: autocross, endurance, and acceleration. Input cycles are created based on rough estimates of track geometry. The output from these ADVISOR simulations is a series of plots of velocity profile and energy storage State of Charge that provide a good estimate of how the Formula Hybrid vehicle will perform on the given course. The most noticeable discrepancy between the input cycle and the actual velocity profile of the vehicle occurs during deceleration. A weighted ranking system is developed to organize the simulation results and to determine the best drive train configuration for the Formula Hybrid vehicle. Results show that the through-the-ground parallel configuration with front-mounted motors achieves an optimal balance of efficiency, simplicity, and cost. ADVISOR is proven to be a useful tool for vehicle power train design for the SAE Formula Hybrid competition. This vehicle model based on ADVISOR simulation is applicable to various studies concerning performance and efficiency of hybrid drive trains. (author)

  7. A hybrid electromagnetic shock absorber for active vehicle suspension systems

    Science.gov (United States)

    Ebrahimi, Babak; Bolandhemmat, Hamidreza; Behrad Khamesee, Mir; Golnaraghi, Farid

    2011-02-01

    The use of electromagnetic dampers (ED) in vehicle active suspension systems has drawn considerable attention in the past few years, attributed to the fact that active suspension systems have shown superior performance in improving ride comfort and road handling of terrain vehicles, compared with their passive and semi-active counterparts. Although demonstrating superb performance, active suspensions still have some shortcomings that must be overcome. They have high energy consumption, weight, and cost and are not fail-safe in case of a power breakdown. The novel hybrid ED, which is proposed in this paper, is a potential solution to the above-mentioned drawbacks of conventional active suspension systems. The proposed hybrid ED is designed to inherit the high-performance characteristics of an active ED with the reliability of a passive damper in a single package. The eddy current damping effect is utilised as a source of the passive damping. First, a prototype ED is designed and fabricated. The prototype ED is then utilised to experimentally establish the design requirements for a real-size active ED. This is accomplished by comparing its vibration isolation performance in a 1-DOF quarter-car test rig with that of a same-class semi-active damper. Then, after a real-size active ED is designed, the concept of hybrid damper is introduced to the damper design to address the drawbacks of the active ED. Finally, the finite-element method is used to accurately model and analyse the designed hybrid damper. It is demonstrated that by introducing the eddy current damping effect to the active part, a passive damping of approximately 1570 Ns/m is achieved. This amount of passive damping guarantees that the damper is fail-safe and reduces the power consumption more than 70%, compared with an active ED in an automotive active suspension system.

  8. Dynamic Modeling and Simulation of a Switched Reluctance Motor in a Series Hybrid Electric Vehicle

    Directory of Open Access Journals (Sweden)

    Siavash Sadeghi

    2010-04-01

    Full Text Available Dynamic behavior analysis of electric motors is required in order to accuratelyevaluate the performance, energy consumption and pollution level of hybrid electricvehicles. Simulation tools for hybrid electric vehicles are divided into steady state anddynamic models. Tools with steady-state models are useful for system-level analysiswhereas tools that utilize dynamic models give in-depth information about the behavior ofsublevel components. For the accurate prediction of hybrid electric vehicle performance,dynamic modeling of the motor and other components is necessary. Whereas the switchedreluctance machine is well suited for electric and hybrid electric vehicles, due to the simpleand rugged construction, low cost, and ability to operate over a wide speed range atconstant power, in this paper dynamic performance of the switched reluctance motor for eseries hybrid electric vehicles is investigated. For this purpose a switched reluctance motorwith its electrical drive is modeld and simulated first, and then the other components of aseries hybrid electric vehicle, such as battery, generator, internal combusion engine, andgearbox, are designed and linked with the electric motor. Finally a typical series hybridelectric vehicle is simulated for different drive cycles. The extensive simulation results showthe dynamic performance of SRM, battery, fuel consumption, and emissions.

  9. Hybrid and electric advanced vehicle systems (heavy) simulation

    Science.gov (United States)

    Hammond, R. A.; Mcgehee, R. K.

    1981-01-01

    A computer program to simulate hybrid and electric advanced vehicle systems (HEAVY) is described. It is intended for use early in the design process: concept evaluation, alternative comparison, preliminary design, control and management strategy development, component sizing, and sensitivity studies. It allows the designer to quickly, conveniently, and economically predict the performance of a proposed drive train. The user defines the system to be simulated using a library of predefined component models that may be connected to represent a wide variety of propulsion systems. The development of three models are discussed as examples.

  10. Generator voltage stabilisation for series-hybrid electric vehicles.

    Science.gov (United States)

    Stewart, P; Gladwin, D; Stewart, J; Cowley, R

    2008-04-01

    This paper presents a controller for use in speed control of an internal combustion engine for series-hybrid electric vehicle applications. Particular reference is made to the stability of the rectified DC link voltage under load disturbance. In the system under consideration, the primary power source is a four-cylinder normally aspirated gasoline internal combustion engine, which is mechanically coupled to a three-phase permanent magnet AC generator. The generated AC voltage is subsequently rectified to supply a lead-acid battery, and permanent magnet traction motors via three-phase full bridge power electronic inverters. Two complementary performance objectives exist. Firstly to maintain the internal combustion engine at its optimal operating point, and secondly to supply a stable 42 V supply to the traction drive inverters. Achievement of these goals minimises the transient energy storage requirements at the DC link, with a consequent reduction in both weight and cost. These objectives imply constant velocity operation of the internal combustion engine under external load disturbances and changes in both operating conditions and vehicle speed set-points. An electronically operated throttle allows closed loop engine velocity control. System time delays and nonlinearities render closed loop control design extremely problematic. A model-based controller is designed and shown to be effective in controlling the DC link voltage, resulting in the well-conditioned operation of the hybrid vehicle.

  11. Evaluation of heat engine for hybrid vehicle application

    Science.gov (United States)

    Schneider, H. W.

    1984-01-01

    The status of ongoing heat-engine developments, including spark-ignition, compression-ignition, internal-combustion, and external-combustion engines is presented. The potential of engine concepts under consideration for hybrid vehicle use is evaluated, using self-imposed criteria for selection. The deficiencies of the engines currently being evaluated in hybrid vehicles are discussed. Focus is on recent research with two-stroke, rotary, and free-piston engines. It is concluded that these engine concepts have the most promising potential for future application in hybrid vehicles. Recommendations are made for analysis and experimentation to evaluate stop-start and transient emission behavior of recommended engine concepts.

  12. Model-based eco-driving and integrated powertrain control for (hybrid) electric vehicles

    NARCIS (Netherlands)

    Ivens, T.; Spronkmans, S.; Rosca, B.; Wilkins, S.

    2013-01-01

    The Netherlands Organisation for Applied Scientific Research (TNO) is engaged in research, development and testing of a range of technologies relating to hybrid and electric vehicle energy management and performance. The impact of driver behaviour on vehicle energy consumption is a significant facto

  13. Hybrid Ant Algorithm and Applications for Vehicle Routing Problem

    Science.gov (United States)

    Xiao, Zhang; Jiang-qing, Wang

    Ant colony optimization (ACO) is a metaheuristic method that inspired by the behavior of real ant colonies. ACO has been successfully applied to several combinatorial optimization problems, but it has some short-comings like its slow computing speed and local-convergence. For solving Vehicle Routing Problem, we proposed Hybrid Ant Algorithm (HAA) in order to improve both the performance of the algorithm and the quality of solutions. The proposed algorithm took the advantages of Nearest Neighbor (NN) heuristic and ACO for solving VRP, it also expanded the scope of solution space and improves the global ability of the algorithm through importing mutation operation, combining 2-opt heuristics and adjusting the configuration of parameters dynamically. Computational results indicate that the hybrid ant algorithm can get optimal resolution of VRP effectively.

  14. Close Look at Hybrid Vehicle Loyalty and Ownership

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Ho-Ling [ORNL; Chin, Shih-Miao [ORNL; Wilson, Daniel W [ORNL; Oliveira Neto, Francisco Moraes [ORNL; Taylor, Rob D [ORNL

    2013-01-01

    In a news release dated April 9, 2012, Polk stated that only 35% of hybrid owners bought a hybrid again when they returned to market in 2011. These findings were based on an internal study conducted by Polk. The study also indicated that if repurchase behavior among the high volume audience of Toyota Prius owners wasn t factored in; hybrid loyalty would drop to under 25%. This news release has generated a lot of interest and concern by the automobile industry as well as consumers, since it was published, and caused many to think about the idea of hybrid loyalty as well as factors that influence consumers. Most reactions to the 35% hybrid loyalty dealt with concerns of the viability of hybrid technology as part of the solution to address transportation energy challenges. This paper attempts to shed more light on Polk s hybrid loyalty study as well as explore several information sources concerning hybrid loyalty status. Specifically, major factors that might impact the selection and acquisition of hybrid vehicles are addressed. This includes investigating the associations between hybrid market shares and influencing factors like fuel price and hybrid incentives, as well as the availability of hybrid models and other highly fuel efficient vehicle options. This effort is not in-depth study, but rather a short study to see if Polk s claim could be validated. This study reveals that Polk s claim was rather misleading because its definition of loyalty was very narrow. This paper also suggests that Polk s analysis failed to account for some very important factors, raising the question of whether it is fair to compare a vehicle drive train option (which hybrids are) with a vehicle brand in terms of loyalty and also raises the question of whether hybrid loyalty is even a valid point to consider. This report maintains that Polk s study does not prove that hybrid owners were dissatisfied with their vehicles, which was a common theme among reporting news agencies when Polk

  15. Structure improvement and electrochemical studies of bipolar nickel metal hydride batteries for hybrid electric vehicles

    Institute of Scientific and Technical Information of China (English)

    DENG Chao; SHI Peng-fei

    2006-01-01

    Nickel metal hydride battery in bipolar design offers some advantages for its application as a power storage system for electric and hybrid vehicles. This paper deals with the structure design and electrochemical studies of bipolar Ni/MH batteries for hybrid vehicles. An improvement is applied in bipolar battery design,and such bipolar Ni/MH batteries with 5 sub-cells have been assembled and investigated. Testing results show that bipolar batteries with improved structure have better compression tolerance and cycle performance than conventional ones. In addition, the improved bipolar batteries display excellent large current discharge ability and high power density. As simulating working conditions for hybrid vehicles, the batteries show good stability during pulse cycles, which verifies the possibility of being used as a power storage device on hybrid vehicles.

  16. Mathematical Modeling of the Three Phase Induction Motor Couple to DC Motor in Hybrid Electric Vehicle

    Directory of Open Access Journals (Sweden)

    Zulkarnain Lubis

    2009-01-01

    Full Text Available Problem statement: With emphasis on a cleaner environment and efficient operation, vehicles today rely more and more heavily on electrical power generation for success. Approach: Mathematical modeling the components of the HEV as the three phase induction motor couple to DC motor in hybrid electric vehicle was introduced. The controller of Induction Motor (IM was designed based on input-output feedback linearization technique. It allowed greater electrical generation capacity and the fuel economy and emissions benefits of hybrid electric automotive propulsion. Results: A typical series hybrid electric vehicle was modeled and investigated. Conclusion: Various tests, such as acceleration traversing ramp and fuel consumption and emission were performed on the proposed model of 3 phase induction motor coupler DC motor in electric hybrid vehicles drive.

  17. Vehicle height and posture control of the electronic air suspension system using the hybrid system approach

    Science.gov (United States)

    Sun, Xiaoqiang; Cai, Yingfeng; Chen, Long; Liu, Yanling; Wang, Shaohua

    2016-03-01

    The electronic air suspension (EAS) system can improve ride comfort, fuel economy and handling safety of vehicles by adjusting vehicle height. This paper describes the development of a novel controller using the hybrid system approach to adjust the vehicle height (height control) and to regulate the roll and pitch angles of the vehicle body during the height adjustment process (posture control). The vehicle height adjustment system of EAS poses challenging hybrid control problems, since it features different discrete modes of operation, where each mode has an associated linear continuous-time dynamic. In this paper, we propose a novel approach to the modelling and controller design problem for the vehicle height adjustment system of EAS. The system model is described firstly in the hybrid system description language (HYSDEL) to obtain a mixed logical dynamical (MLD) hybrid model. For the resulting model, a hybrid model predictive controller is tuned to improve the vehicle height and posture tracking accuracy and to achieve the on-off statuses direct control of solenoid valves. The effectiveness and performance of the proposed approach are demonstrated by simulations and actual vehicle tests.

  18. Hybrid Computational Model for High-Altitude Aeroassist Vehicles Project

    Data.gov (United States)

    National Aeronautics and Space Administration — A hybrid continuum/noncontinuum computational model will be developed for analyzing the aerodynamics and heating on aeroassist vehicles. Unique features of this...

  19. Stochastic Optimal Control of Parallel Hybrid Electric Vehicles

    Directory of Open Access Journals (Sweden)

    Feiyan Qin

    2017-02-01

    Full Text Available Energy management strategies (EMSs in hybrid electric vehicles (HEVs are highly related to the fuel economy and emission performances. However, EMS constitutes a challenging problem due to the complex structure of a HEV and the unknown or partially known driving cycles. To meet this problem, this paper adopts a stochastic dynamic programming (SDP method for the EMS of a specially designed vehicle, a pre-transmission single-shaft torque-coupling parallel HEV. In this parallel HEV, the auto clutch output is connected to the transmission input through an electric motor, which benefits an efficient motor assist operation. In this EMS, demanded torque of driver is modeled as a one-state Markov process to represent the uncertainty of future driving situations. The obtained EMS has been evaluated with ADVISOR2002 over two standard government drive cycles and a self-defined one, and compared with a dynamic programming (DP one and a rule-based one. Simulation results have shown the real-time performance of the proposed approach, and potential vehicle performance improvement relative to the rule-based one.

  20. Battery thermal models for hybrid vehicle simulations

    Science.gov (United States)

    Pesaran, Ahmad A.

    This paper summarizes battery thermal modeling capabilities for: (1) an advanced vehicle simulator (ADVISOR); and (2) battery module and pack thermal design. The National Renewable Energy Laboratory's (NREL's) ADVISOR is developed in the Matlab/Simulink environment. There are several battery models in ADVISOR for various chemistry types. Each one of these models requires a thermal model to predict the temperature change that could affect battery performance parameters, such as resistance, capacity and state of charges. A lumped capacitance battery thermal model in the Matlab/Simulink environment was developed that included the ADVISOR battery performance models. For thermal evaluation and design of battery modules and packs, NREL has been using various computer aided engineering tools including commercial finite element analysis software. This paper will discuss the thermal ADVISOR battery model and its results, along with the results of finite element modeling that were presented at the workshop on "Development of Advanced Battery Engineering Models" in August 2001.

  1. Plug-in hybrid electric vehicles in dynamical energy markets

    NARCIS (Netherlands)

    Kessels, J.T.B.A.; Bosch, P.P.J. van den

    2008-01-01

    The plug-in hybrid electric vehicle allows vehicle propulsion from multiple internal power sources. Electric energy from the grid can be utilized by means of the plug-in connection. An on-line energy management (EM) strategy is proposed to minimize the costs for taking energy from each power source.

  2. The Impact of Hybrid Vehicles on Street Crossings

    Science.gov (United States)

    Wiener, William; Naghshineh, Koorosh; Salisbury, Brad; Rozema, Randall

    2006-01-01

    The authors had three purposes: (a) to compare the sound output of a Toyota Corolla, a vehicle powered by an internal combustion engine (ICE) with that of a hybrid vehicle (Prius) under conditions of acceleration and approach in relation to the potential decision of a pedestrian who is visually impaired to begin to cross the street, (b) to…

  3. Bipolar lead-acid power source (BILAPS) for hybrid vehicles

    NARCIS (Netherlands)

    Schmal, D.; Saakes, M.; Mourad, S.; Have, P. ten

    1999-01-01

    In hybrid electric vehicles (HEV's) the requirements on batteries for energy storage are completely different from those in battery powered electric vehicles (BEV's). In order to come to a succesful development of HEV's, beside fullfilling the technical requirements, the battery has to have a long

  4. Plug-in hybrid electric vehicles in dynamical energy markets

    NARCIS (Netherlands)

    Kessels, J.T.B.A.; Bosch, P.P.J. van den

    2008-01-01

    The plug-in hybrid electric vehicle allows vehicle propulsion from multiple internal power sources. Electric energy from the grid can be utilized by means of the plug-in connection. An on-line energy management (EM) strategy is proposed to minimize the costs for taking energy from each power source.

  5. Bipolar lead-acid power source (BILAPS) for hybrid vehicles

    NARCIS (Netherlands)

    Schmal, D.; Saakes, M.; Mourad, S.; Have, P. ten

    1999-01-01

    In hybrid electric vehicles (HEV's) the requirements on batteries for energy storage are completely different from those in battery powered electric vehicles (BEV's). In order to come to a succesful development of HEV's, beside fullfilling the technical requirements, the battery has to have a long l

  6. Bipolar lead-acid power source (BILAPS) for hybrid vehicles

    NARCIS (Netherlands)

    Schmal, D.; Saakes, M.

    1998-01-01

    In hybrid electric vehicles (HEV's) the requirements on batteries for energy storage are completely different from those in battery powered electric vehicles (BEV's). In order to come to a succesful development of HEV's, beside fullfilling the technical requirements, the battery has to have a long l

  7. Electric and hybrid electric vehicle study utilizing a time-stepping simulation

    Science.gov (United States)

    Schreiber, Jeffrey G.; Shaltens, Richard K.; Beremand, Donald G.

    1992-01-01

    The applicability of NASA's advanced power technologies to electric and hybrid vehicles was assessed using a time-stepping computer simulation to model electric and hybrid vehicles operating over the Federal Urban Driving Schedule (FUDS). Both the energy and power demands of the FUDS were taken into account and vehicle economy, range, and performance were addressed simultaneously. Results indicate that a hybrid electric vehicle (HEV) configured with a flywheel buffer energy storage device and a free-piston Stirling convertor fulfills the emissions, fuel economy, range, and performance requirements that would make it acceptable to the consumer. It is noted that an assessment to determine which of the candidate technologies are suited for the HEV application has yet to be made. A proper assessment should take into account the fuel economy and range, along with the driveability and total emissions produced.

  8. Technology and implementation of electric vehicles and plug‐in hybrid electric vehicles

    DEFF Research Database (Denmark)

    Hansen, Kenneth; Mathiesen, Brian Vad; Connolly, David

    2011-01-01

    developments. Different business models and policies are also outlined along with a description of the on‐going research and demonstration projects. An analysis of the current and near term electric and plug‐in hybrid electric vehicles indicate that the cost for family cars will not change much, while...... the ranges of electric vehicles will increase and may even double for some family cars compared to the existing models. The average driving range in this report increases from around 150 km for existing electric vehicles to more than 200 km for near term electric vehicles (expected new models in 2012......In this report state of the art electric vehicle and plug‐in hybrid electric vehicle technology is presented to clarify the current and near term development. The current status of diffusion for electric vehicles in Denmark, Sweden and internationally is presented as well as the expected...

  9. Technology and implementation of electric vehicles and plug‐in hybrid electric vehicles

    DEFF Research Database (Denmark)

    Hansen, Kenneth; Mathiesen, Brian Vad; Connolly, David

    2011-01-01

    In this report state of the art electric vehicle and plug‐in hybrid electric vehicle technology is presented to clarify the current and near term development. The current status of diffusion for electric vehicles in Denmark, Sweden and internationally is presented as well as the expected...... developments. Different business models and policies are also outlined along with a description of the on‐going research and demonstration projects. An analysis of the current and near term electric and plug‐in hybrid electric vehicles indicate that the cost for family cars will not change much, while...... the ranges of electric vehicles will increase and may even double for some family cars compared to the existing models. The average driving range in this report increases from around 150 km for existing electric vehicles to more than 200 km for near term electric vehicles (expected new models in 2012...

  10. A Hybrid Intelligent Multisensor Positioning Methodology for Reliable Vehicle Navigation

    Directory of Open Access Journals (Sweden)

    Xu Li

    2015-01-01

    Full Text Available With the rapid development of intelligent transportation systems worldwide, it becomes more important to realize accurate and reliable vehicle positioning in various environments whether GPS is available or not. This paper proposes a hybrid intelligent multisensor positioning methodology fusing the information from low-cost sensors including GPS, MEMS-based strapdown inertial navigation system (SINS and electronic compass, and velocity constraint, which can achieve a significant performance improvement over the integration scheme only including GPS and MEMS-based SINS. First, the filter model of SINS aided by multiple sensors is presented in detail and then an improved Kalman filter with sequential measurement-update processing is developed to realize the filtering fusion. Further, a least square support vector machine- (LS SVM- based intelligent module is designed and augmented with the improved KF to constitute the hybrid positioning system. In case of GPS outages, the LS SVM-based intelligent module trained recently is used to predict the position error to achieve more accurate positioning performance. Finally, the proposed hybrid positioning method is evaluated and compared with traditional methods through real field test data. The experimental results validate the feasibility and effectiveness of the proposed method.

  11. Trade-off results and preliminary designs of Near-Term Hybrid Vehicles

    Science.gov (United States)

    Sandberg, J. J.

    1980-01-01

    Phase I of the Near-Term Hybrid Vehicle Program involved the development of preliminary designs of electric/heat engine hybrid passenger vehicles. The preliminary designs were developed on the basis of mission analysis, performance specification, and design trade-off studies conducted independently by four contractors. THe resulting designs involve parallel hybrid (heat engine/electric) propulsion systems with significant variation in component selection, power train layout, and control strategy. Each of the four designs is projected by its developer as having the potential to substitute electrical energy for 40% to 70% of the petroleum fuel consumed annually by its conventional counterpart.

  12. Hybrid and Plug-In Electric Vehicles (Spanish Version); Clean Cities, Energy Efficiency & Renewable Energy (EERE)

    Energy Technology Data Exchange (ETDEWEB)

    None

    2015-08-01

    This is a Spanish-language brochure about hybrid and plug-in electric vehicles, which use electricity as their primary fuel or to improve the efficiency of conventional vehicle designs. These vehicles can be divided into three categories: hybrid electric vehicles (HEVs), plug-in hybrid electric vehicles (PHEVs), all-electric vehicles (EVs). Together, they have great potential to cut U.S. petroleum use and vehicle emissions.

  13. Development of an Experimental Vehicle with Hybrid Energy System

    Directory of Open Access Journals (Sweden)

    Patricia Ciancio

    2013-06-01

    Full Text Available The first solar car competition in Latin America, in «The Solar Road» category, across the AtacamaDesert, Chile (2011 gave origin to an interdisciplinary project to encourage the use of sustainableenergy applied to the urban transport, without the use of fossil fuels damaging to the environment. Itaimed to develop a vehicle with minimum energy consumption for its transport, lightweight, stable,low-cost, and zero emission based on the combination of photovoltaic solar energy and electricpower obtained from a generator driven by human traction both stored in a battery. In this paper, theinherent aspects of the project and execution stages of an experimental hybrid vehicle, called PampaSolar, are presented. This includes the conception and sizing of the resistant structure, adoption ofthe solar cells configuration, battery sizing and choice, three-phase generator and electronicinstrumentation development, according to the basis of the competition and related loads. The analysisof the results of electric, electronic, mechanical, and vehicle energy systems during competitiondemonstrated a reliable performance, getting the award for the most efficient use of solar energy.

  14. Near Term Hybrid Passenger Vehicle Development Program. Phase I, Final report. Appendix B: trade-off studies. Volume I

    Energy Technology Data Exchange (ETDEWEB)

    Traversi, M.; Piccolo, R.

    1979-06-11

    Trade-off studies of Near Term Hybrid Vehicle (NTHV) design elements were performed to identify the most promising design concept in terms of achievable petroleum savings. The activities in these studies are described. The results are presented as preliminary NTHV body design, expected fuel consumption as a function of vehicle speed, engine requirements, battery requirements, and vehicle reliability and cost. (LCL)

  15. Commercial viability of hybrid vehicles : best household use and cross national considerations.

    Energy Technology Data Exchange (ETDEWEB)

    Santini, D. J.; Vyas, A. D.

    1999-07-16

    Japanese automakers have introduced hybrid passenger cars in Japan and will soon do so in the US. In this paper, we report how we used early computer simulation model results to compare the commercial viability of a hypothetical near-term (next decade) hybrid mid-size passenger car configuration under varying fuel price and driving patterns. The fuel prices and driving patterns evaluated are designed to span likely values for major OECD nations. Two types of models are used. One allows the ''design'' of a hybrid to a specified set of performance requirements and the prediction of fuel economy under a number of possible driving patterns (called driving cycles). Another provides an estimate of the incremental cost of the hybrid in comparison to a comparably performing conventional vehicle. In this paper, the models are applied to predict the NPV cost of conventional gasoline-fueled vehicles vs. parallel hybrid vehicles. The parallel hybrids are assumed to (1) be produced at high volume, (2) use nickel metal hydride battery packs, and (3) have high-strength steel bodies. The conventional vehicle also is assumed to have a high-strength steel body. The simulated vehicles are held constant in many respects, including 0-60 time, engine type, aerodynamic drag coefficient, tire rolling resistance, and frontal area. The hybrids analyzed use the minimum size battery pack and motor to meet specified 0-60 times. A key characteristic affecting commercial viability is noted and quantified: that hybrids achieve the most pronounced fuel economy increase (best use) in slow, average-speed, stop-and-go driving, but when households consistently drive these vehicles under these conditions, they tend to travel fewer miles than average vehicles. We find that hours driven is a more valuable measure than miles. Estimates are developed concerning hours of use of household vehicles versus driving cycle, and the pattern of minimum NPV incremental cost (or benefit) of

  16. Commercial viability of hybrid vehicles : best household use and cross national considerations.

    Energy Technology Data Exchange (ETDEWEB)

    Santini, D. J.; Vyas, A. D.

    1999-07-16

    Japanese automakers have introduced hybrid passenger cars in Japan and will soon do so in the US. In this paper, we report how we used early computer simulation model results to compare the commercial viability of a hypothetical near-term (next decade) hybrid mid-size passenger car configuration under varying fuel price and driving patterns. The fuel prices and driving patterns evaluated are designed to span likely values for major OECD nations. Two types of models are used. One allows the ''design'' of a hybrid to a specified set of performance requirements and the prediction of fuel economy under a number of possible driving patterns (called driving cycles). Another provides an estimate of the incremental cost of the hybrid in comparison to a comparably performing conventional vehicle. In this paper, the models are applied to predict the NPV cost of conventional gasoline-fueled vehicles vs. parallel hybrid vehicles. The parallel hybrids are assumed to (1) be produced at high volume, (2) use nickel metal hydride battery packs, and (3) have high-strength steel bodies. The conventional vehicle also is assumed to have a high-strength steel body. The simulated vehicles are held constant in many respects, including 0-60 time, engine type, aerodynamic drag coefficient, tire rolling resistance, and frontal area. The hybrids analyzed use the minimum size battery pack and motor to meet specified 0-60 times. A key characteristic affecting commercial viability is noted and quantified: that hybrids achieve the most pronounced fuel economy increase (best use) in slow, average-speed, stop-and-go driving, but when households consistently drive these vehicles under these conditions, they tend to travel fewer miles than average vehicles. We find that hours driven is a more valuable measure than miles. Estimates are developed concerning hours of use of household vehicles versus driving cycle, and the pattern of minimum NPV incremental cost (or benefit) of

  17. Series hybrid vehicles and optimized hydrogen engine design

    Energy Technology Data Exchange (ETDEWEB)

    Smith, J.R.; Aceves, S. [Lawrence Livermore National Lab., CA (United States); Van Blarigan, P. [Sandia National Labs., Livermore, CA (United States)

    1995-05-10

    Lawrence Livermore, Sandia Livermore and Los Alamos National Laboratories have a joint project to develop an optimized hydrogen fueled engine for series hybrid automobiles. The major divisions of responsibility are: system analysis, engine design and kinetics modeling by LLNL; performance and emission testing, and friction reduction by SNL; computational fluid mechanics and combustion modeling by LANL. This project is a component of the Department of Energy, Office of Utility Technology, National Hydrogen Program. We report here on the progress on system analysis and preliminary engine testing. We have done system studies of series hybrid automobiles that approach the PNGV design goal of 34 km/liter (80 mpg), for 384 km (240 mi) and 608 km (380 mi) ranges. Our results indicate that such a vehicle appears feasible using an optimized hydrogen engine. The impact of various on-board storage options on fuel economy are evaluated. Experiments with an available engine at the Sandia Combustion Research Facility demonstrated NO{sub x} emissions of 10 to 20 ppm at an equivalence ratio of 0.4, rising to about 500 ppm at 0.5 equivalence ratio using neat hydrogen. Hybrid vehicle simulation studies indicate that exhaust NO{sub x} concentrations must be less than 180 ppm to meet the 0.2 g/mile California Air Resources Board ULEV or Federal Tier II emissions regulations. We have designed and fabricated a first generation optimized hydrogen engine head for use on an existing single cylinder Onan engine. This head currently features 14.8:1 compression ratio, dual ignition, water cooling, two valves and open quiescent combustion chamber to minimize heat transfer losses.

  18. Data Fusion Modeling for an RT3102 and Dewetron System Application in Hybrid Vehicle Stability Testing

    Directory of Open Access Journals (Sweden)

    Zhibin Miao

    2015-08-01

    Full Text Available More and more hybrid electric vehicles are driven since they offer such advantages as energy savings and better active safety performance. Hybrid vehicles have two or more power driving systems and frequently switch working condition, so controlling stability is very important. In this work, a two-stage Kalman algorithm method is used to fuse data in hybrid vehicle stability testing. First, the RT3102 navigation system and Dewetron system are introduced. Second, a modeling of data fusion is proposed based on the Kalman filter. Then, this modeling is simulated and tested on a sample vehicle, using Carsim and Simulink software to test the results. The results showed the merits of this modeling.

  19. Hybrid systems, optimal control and hybrid vehicles theory, methods and applications

    CERN Document Server

    Böhme, Thomas J

    2017-01-01

    This book assembles new methods showing the automotive engineer for the first time how hybrid vehicle configurations can be modeled as systems with discrete and continuous controls. These hybrid systems describe naturally and compactly the networks of embedded systems which use elements such as integrators, hysteresis, state-machines and logical rules to describe the evolution of continuous and discrete dynamics and arise inevitably when modeling hybrid electric vehicles. They can throw light on systems which may otherwise be too complex or recondite. Hybrid Systems, Optimal Control and Hybrid Vehicles shows the reader how to formulate and solve control problems which satisfy multiple objectives which may be arbitrary and complex with contradictory influences on fuel consumption, emissions and drivability. The text introduces industrial engineers, postgraduates and researchers to the theory of hybrid optimal control problems. A series of novel algorithmic developments provides tools for solving engineering pr...

  20. Demonstration of Heavy Hybrid Diesel Fleet Vehicles

    Science.gov (United States)

    2016-03-01

    losses due to uneven pavement , and representative of most installations. • Track Weather Station: ATC setup equipment to measure and record weather...the conventional utility truck provide a better, more rigid ride. Acceleration of the vehicle is very poor. The vehicles continuously fall behind

  1. Hybrid tabu search for the multi-depot vehicle routing problem

    Science.gov (United States)

    Hu, Shan-Liang

    2010-07-01

    A hybrid tabu search for the multi-depot vehicle routing problem is considered in this paper. The purpose of the proposed approach is to decrease the number of used vehicles and the total travel cost. An extensive numerical experiment was performed on benchmark problem instances available in literature, the computational results are presented to show the high effectiveness and performance of the proposed approaches.

  2. An investigation on the fuel savings potential of hybrid hydraulic refuse collection vehicles.

    Science.gov (United States)

    Bender, Frank A; Bosse, Thomas; Sawodny, Oliver

    2014-09-01

    Refuse trucks play an important role in the waste collection process. Due to their typical driving cycle, these vehicles are characterized by large fuel consumption, which strongly affects the overall waste disposal costs. Hybrid hydraulic refuse vehicles offer an interesting alternative to conventional diesel trucks, because they are able to recuperate, store and reuse braking energy. However, the expected fuel savings can vary strongly depending on the driving cycle and the operational mode. Therefore, in order to assess the possible fuel savings, a typical driving cycle was measured in a conventional vehicle run by the waste authority of the City of Stuttgart, and a dynamical model of the considered vehicle was built up. Based on the measured driving cycle and the vehicle model including the hybrid powertrain components, simulations for both the conventional and the hybrid vehicle were performed. Fuel consumption results that indicate savings of about 20% are presented and analyzed in order to evaluate the benefit of hybrid hydraulic vehicles used for refuse collection. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. A New Method to Optimize Semiactive Hybrid Energy Storage System for Hybrid Electrical Vehicle by Using PE Function

    Directory of Open Access Journals (Sweden)

    Cong Zhang

    2015-01-01

    Full Text Available Although both battery and super-capacitor are important power sources for hybrid electric vehicles, there is no accurate configuration theory to match the above two kinds of power sources which have significantly different characteristics on energy and power storage for the goal of making good use of their individual features without size wasting. In this paper, a new performance is presented that is used for analysis and optimal design method of battery and super-capacitor for hybrid energy storage system of a parallel hybrid electrical vehicle. In order to achieve optimal design with less consumption, the power-energy function is applied to establish direct mathematical relationship between demand power and the performance. During matching process, firstly, three typical operating conditions are chosen as the basis of design; secondly, the energy and power capacity evaluation methods for the parameters of battery and super-capacitor in hybrid energy storage system are proposed; thirdly, the mass, volume, and cost of the system are optimized simultaneously by using power-energy function. As a result, there are significant advantages on mass, volume, and cost for the hybrid energy storage system with the matching method. Simulation results fit well with the results of analysis, which confirms that the optimized design can meet the demand of hybrid electric vehicle well.

  4. Fuel optimal control of parallel hybrid electric vehicles

    Institute of Scientific and Technical Information of China (English)

    Jinhuan PU; Chenliang YIN; Jianwu ZHANG

    2008-01-01

    A mathematical model for fuel optimal control and its corresponding dynamic programming (DP) recurs-ive equation were established for an existing parallel hybrid electric vehicle (HEV). Two augmented cost func-tions for gear shifting and engine stop-starting were designed to limit their frequency. To overcome the prob-lem of numerical DP dimensionality, an algorithm to restrict the exploring region was proposed. The algorithm significantly reduced the computational complexity. The system model was converted into real-time simulation code by using MATLAB/RTW to improve computation efficiency. Comparison between the results of a chassis dynamometer test, simulation, and DP proves that the proposed method can compute the performance limita-tion of the HEV within an acceptable time period and can be used to evaluate and optimize the control strategy.

  5. Battery Management Systems in Electric and Hybrid Vehicles

    Directory of Open Access Journals (Sweden)

    Michael Pecht

    2011-10-01

    Full Text Available The battery management system (BMS is a critical component of electric and hybrid electric vehicles. The purpose of the BMS is to guarantee safe and reliable battery operation. To maintain the safety and reliability of the battery, state monitoring and evaluation, charge control, and cell balancing are functionalities that have been implemented in BMS. As an electrochemical product, a battery acts differently under different operational and environmental conditions. The uncertainty of a battery’s performance poses a challenge to the implementation of these functions. This paper addresses concerns for current BMSs. State evaluation of a battery, including state of charge, state of health, and state of life, is a critical task for a BMS. Through reviewing the latest methodologies for the state evaluation of batteries, the future challenges for BMSs are presented and possible solutions are proposed as well.

  6. Vehicle Sideslip Angle Estimation Based on Hybrid Kalman Filter

    Directory of Open Access Journals (Sweden)

    Jing Li

    2016-01-01

    Full Text Available Vehicle sideslip angle is essential for active safety control systems. This paper presents a new hybrid Kalman filter to estimate vehicle sideslip angle based on the 3-DoF nonlinear vehicle dynamic model combined with Magic Formula tire model. The hybrid Kalman filter is realized by combining square-root cubature Kalman filter (SCKF, which has quick convergence and numerical stability, with square-root cubature based receding horizon Kalman FIR filter (SCRHKF, which has robustness against model uncertainty and temporary noise. Moreover, SCKF and SCRHKF work in parallel, and the estimation outputs of two filters are merged by interacting multiple model (IMM approach. Experimental results show the accuracy and robustness of the hybrid Kalman filter.

  7. Direct hydrogen fuel cell systems for hybrid vehicles

    Science.gov (United States)

    Ahluwalia, Rajesh K.; Wang, X.

    Hybridizing a fuel cell system with an energy storage system offers an opportunity to improve the fuel economy of the vehicle through regenerative braking and possibly to increase the specific power and decrease the cost of the combined energy conversion and storage systems. Even in a hybrid configuration it is advantageous to operate the fuel cell system in a load-following mode and use the power from the energy storage system when the fuel cell alone cannot meet the power demand. This paper discusses an approach for designing load-following fuel cell systems for hybrid vehicles and illustrates it by applying it to pressurized, direct hydrogen, polymer-electrolyte fuel cell (PEFC) systems for a mid-size family sedan. The vehicle level requirements relative to traction power, response time, start-up time and energy conversion efficiency are used to select the important parameters for the PEFC stack, air management system, heat rejection system and the water management system.

  8. 2011 Honda CR-Z 2982 - Hybrid Electric Vehicle Battery Test Results

    Energy Technology Data Exchange (ETDEWEB)

    Gray, Tyler [Intertek Testing Services NA, Phoenix, AZ (United States). Center for Evaluation of Clean Energy Technology (CECET); Wishart, Jeffrey [Intertek Testing Services NA, Phoenix, AZ (United States). Center for Evaluation of Clean Energy Technology (CECET); Shirk, Matthew [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2014-09-01

    The U.S. Department of Energy’s Advanced Vehicle Testing Activity Program consists of vehicle, battery, and infrastructure testing on advanced technology related to transportation. The activity includes tests on hybrid electric vehicles, including testing traction batteries when both the vehicles and batteries are new and at the conclusion of 160,000 miles of on-road fleet testing. This report documents battery testing performed for the 2011 Honda CR-Z (VIN JHMZF1C64BS002982). Battery testing was performed by Intertek Testing Services NA. The Idaho National Laboratory and Intertek collaborate on the Advanced Vehicle Testing Activity for the Vehicle Technologies Office of the U.S. Department of Energy.

  9. 2011 Honda CR-Z 4466 - Hybrid Electric Vehicle Battery Test Results

    Energy Technology Data Exchange (ETDEWEB)

    Tyler Gray; Matthew Shirk; Jeffrey Wishart

    2014-09-01

    The U.S. Department of Energy’s Advanced Vehicle Testing Activity Program consists of vehicle, battery, and infrastructure testing on advanced technology related to transportation. The activity includes tests on hybrid electric vehicles, including testing traction batteries when both the vehicles and batteries are new and at the conclusion of 160,000 miles of on-road fleet testing. This report documents battery testing performed for the 2011 Honda CR-Z (VIN JHMZF1C67BS004466). Battery testing was performed by Intertek Testing Services NA. The Idaho National Laboratory and Intertek collaborate on the Advanced Vehicle Testing Activity for the Vehicle Technologies Office of the U.S. Department of Energy.

  10. 2010 Toyota Prius VIN 6063 Hybrid Electric Vehicle Battery Test Results

    Energy Technology Data Exchange (ETDEWEB)

    Tyler Gray; Matthew Shirk

    2013-01-01

    The U.S. Department of Energy Advanced Vehicle Testing Activity Program consists of vehicle, battery, and infrastructure testing on advanced technology related to transportation. The activity includes tests on hybrid electric vehicles (HEVs), including testing the HEV batteries when both the vehicles and batteries are new and at the conclusion of 160,000 miles of on road fleet testing. This report documents battery testing performed for the 2010 Toyota Prius HEV (VIN JTDKN3DU5A0006063). Battery testing was performed by the Electric Transportation Engineering Corporation dba ECOtality North America. The Idaho National Laboratory and ECOtality North America collaborate on the Advanced Vehicle Testing Activity for the Vehicle Technologies Program of the U.S. Department of Energy.

  11. Plug-In Hybrid Electric Vehicle Penetration Scenarios

    Energy Technology Data Exchange (ETDEWEB)

    Balducci, Patrick J.

    2008-04-03

    This report examines the economic drivers, technology constraints, and market potential for plug-in hybrid electric vehicles (PHEVs) in the U.S. A PHEV is a hybrid vehicle with batteries that can be recharged by connecting to the grid and an internal combustion engine that can be activated when batteries need recharging. The report presents and examines a series of PHEV market penetration scenarios. Based on input received from technical experts and industry representative contacted for this report and data obtained through a literature review, annual market penetration rates for PHEVs are presented from 2013 through 2045 for three scenarios. Each scenario is examined and implications for PHEV development are explored.

  12. Plug-In Hybrid Electric Vehicle Penetration Scenarios

    Energy Technology Data Exchange (ETDEWEB)

    Balducci, Patrick J.

    2008-04-03

    This report examines the economic drivers, technology constraints, and market potential for plug-in hybrid electric vehicles (PHEVs) in the U.S. A PHEV is a hybrid vehicle with batteries that can be recharged by connecting to the grid and an internal combustion engine that can be activated when batteries need recharging. The report presents and examines a series of PHEV market penetration scenarios. Based on input received from technical experts and industry representative contacted for this report and data obtained through a literature review, annual market penetration rates for PHEVs are presented from 2013 through 2045 for three scenarios. Each scenario is examined and implications for PHEV development are explored.

  13. Hybrid Technologies for Clandestine Electric Reconnaissance Vehicles (CERV)

    Science.gov (United States)

    2011-08-01

    of other on board equipment. The OPC and high voltage Energy Storage system operate in concert with the Motor-Generator and Controller to form...the Vehicle DC Bus. When operating in PHEV mode from external power, the OPC provides power to the Vehicle DC Bus if either the Energy Storage System...commercial electric and hybrid buses. He has designed several motor drives including a 500 HP drive for sonar pulse power using a flywheel for energy

  14. Catalog of components for electric and hybrid vehicle propulsion systems

    Science.gov (United States)

    Eissler, H. C.

    1981-01-01

    This catalog of commercially available electric and hybrid vehicle propulsion system components is intended for designers and builders of these vehicles and contains 50 categories of components. These categories include those components used between the battery terminals and the output axle hub, as well as some auxiliary equipment. An index of the components and a listing of the suppliers and their addresses and phone numbers are included.

  15. Preliminary design data package, appendix C. [hybrid electric vehicles

    Science.gov (United States)

    1979-01-01

    The data and documentation required to define the preliminary design of a near term hybrid vehicle and to quantify its operational characteristics are presented together with the assumptions and rationale behind the design decisions. Aspects discussed include development requirements for the propulsion system, the chassis system, the body, and the vehicle systems. Particular emphasis is given to the controls, the heat engine, and the batteries.

  16. Thermal simulation of a cooling system of hybrid commercial vehicles; Thermalsimulation eine Hybrid-LKW-Kuehlsystems

    Energy Technology Data Exchange (ETDEWEB)

    Stroh, Christoph; Schnoerch, Stefan; Rathberger, Christian [Magna Powertrain Engineering Center Steyr GmbH und Co. KG, St. Valentin (Austria)

    2012-11-01

    In the past few years hybrid vehicles have been in the center of automotive engineering efforts, in particular in the field of passenger cars. But hybrid powertrains will also be important for commercial trucks. This focus on hybrid vehicles leads to high demands on thermal management since the additional components in a hybrid vehicle need appropriate cooling or even heating. In the given paper the simulation of a complete cooling system of a hybrid commercial vehicle will be explained. For this virtual examination the commercial 1D thermal management software KULI will be used, a co-simulation with several programs will not be done deliberately. Yet all aspects which are relevant for a global assessment of the thermal management are considered. The main focus is put on the investigation of appropriate concepts for the fluid circuits, including low and high temperature circuits, electric water pumps, etc. Moreover, also a refrigerant circuit with a chiller for active battery cooling will be used, the appropriate control strategy is implemented as well. For simulating transient profiles a simple driving simulation model is included, using road profile, ambient conditions, and various vehicle parameters as input. In addition an engine model is included which enables the investigation of fuel consumption potentials. This simulation model shows how the thermal management of a hybrid vehicle can be investigated with a single program and with reasonable effort. (orig.)

  17. Unregulated emissions from light-duty hybrid electric vehicles

    Science.gov (United States)

    Suarez-Bertoa, R.; Astorga, C.

    2016-07-01

    The number of registrations of light duty hybrid electric vehicles has systematically increased over the last years and it is expected to keep growing. Hence, evaluation of their emissions becomes very important in order to be able to anticipate their impact and share in the total emissions from the transport sector. For that reason the emissions from a Euro 5 compliant hybrid electric vehicle (HV2) and a Euro 5 plug-in hybrid electric vehicle (PHV1) were investigated with special interest on exhaust emissions of ammonia, acetaldehyde and ethanol. Vehicles were tested over the World harmonized Light-duty Test Cycle (WLTC) at 23 and -7 °C using two different commercial fuels E5 and E10 (gasoline containing 5% and 10% vol/vol of ethanol, respectively). PHV1 resulted in lower emissions than HV2 due to the pure electric strategy used by the former. PHV1 and HV2 showed lower regulated emissions than conventional Euro 5 gasoline light duty vehicles. However, emissions of ammonia (2-8 and 6-15 mg km-1 at 22 and -7 °C, respectively), ethanol (0.3-0.8 and 2.6-7.2 mg km-1 at 22 and -7 °C, respectively) and acetaldehyde (∼0.2 and 0.8-2.7 mg km-1 at 22 and -7 °C, respectively) were in the same range of those recently reported for conventional gasoline light duty vehicles.

  18. Electric machine for hybrid motor vehicle

    Science.gov (United States)

    Hsu, John Sheungchun

    2007-09-18

    A power system for a motor vehicle having an internal combustion engine and an electric machine is disclosed. The electric machine has a stator, a permanent magnet rotor, an uncluttered rotor spaced from the permanent magnet rotor, and at least one secondary core assembly. The power system also has a gearing arrangement for coupling the internal combustion engine to wheels on the vehicle thereby providing a means for the electric machine to both power assist and brake in relation to the output of the internal combustion engine.

  19. Statics of levitated vehicle model with hybrid magnets

    Institute of Scientific and Technical Information of China (English)

    Desheng LI; Zhiyuan LU; Tianwu DONG

    2009-01-01

    By studying the special characteristics of permanent and electronic magnets, a levitated vehicle model with hybrid magnets is established. The mathematical model of the vehicle is built based on its dynamics equation by studying its machine structure and working principle. Based on the model, the basic characteristics and the effect between the excluding forces from permanent magnets in three different spatial directions are analyzed, statics characteristics of the interference forces in three different spatial directions are studied, and self-adjusting equilibrium characteristics and stabilization are analyzed. Based on the structure above, the vehicle can levitate steadily by control system adjustment.

  20. Advanced continuously variable transmissions for electric and hybrid vehicles

    Science.gov (United States)

    Loewenthal, S. H.

    1980-01-01

    A brief survey of past and present continuously variable transmissions (CVT) which are potentially suitable for application with electric and hybrid vehicles is presented. Discussion of general transmission requirements and benefits attainable with a CVT for electric vehicle use is given. The arrangement and function of several specific CVT concepts are cited along with their current development status. Lastly, the results of preliminary design studies conducted under a NASA contract for DOE on four CVT concepts for use in advanced electric vehicles are reviewed.

  1. Stirling engine electric hybrid vehicle propulsion system conceptual design study. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Dochat, G; Artiles, A; Killough, J; Ray, A; Chen, H S

    1978-08-01

    Results of a six-month study to characterize a series Stirling engine electric hybrid vehicle propulsion system are presented. The Stirling engine was selected as the heat conversion element to exploit the high efficiency (> .36), low pollution, multi-fuel and quiet operation of this machine. A free-piston Stirling engine driving a linear alternator in a hermatically sealed enclosure was chosen to gain the reliability, long life, and maintenance free characteristics of a sealed unit. The study performs trade off evaluations, selection of engine, battery, motor and inverter size, optimization of components, and develops a conceptual design and characterization of the total propulsion system. The conclusion of the study is that a Stirling engine electric hybrid propulsion system can be used successfully to augment the battery storage of a passenger vehicle and will result in significant savings of petroleum energy over present passenger vehicles. The performance and range augmentation of the hybrid design results in significant improvements over an all electric vehicle. The hybrid will be capable of performing 99% of the passenger vehicle annual trip distribution requirements with extremely low fuel usage. (TFD)

  2. Aeromechanical stability analysis of a multirotor vehicle model representing a hybrid heavy lift airship (HHLA)

    Science.gov (United States)

    Venkatesan, C.; Friedmann, P. P.

    1984-01-01

    Hybrid Heavy Lift Airship (HHLA) is a proposed candidate vehicle aimed at providing heavy lift capability at low cost. This vehicle consists of a buoyant envelope attached to a supporting structure to which four rotor systems, taken from existing helicopters are attached. Nonlinear equations of motion capable of modelling the dynamics of this coupled multi-rotor/support frame/vehicle system have been developed. Using these equations of motion the aeroelastic and aeromechanical stability analysis is performed aimed at identifying potential instabilities which could occur for this type of vehicle. The coupling between various blade, supporting structure and rigid body modes is identified. Furthermore, the effects of changes in buoyancy ratio (Buoyant lift/total weight) on the dynamic characteristics of the vehicle are studied. The dynamic effects found are of considerable importance for the design of such vehicles. The analytical model developed is also useful for studying the aeromechanical stability of single rotor and tandem rotor coupled rotor/fuselage systems.

  3. S 400 BlueHYBRID. First hybrid vehicle with Li-ion technology; S 400 BlueHYBRID. Erstes Hybridfahrzeug mit Li-Ionen-Technologie

    Energy Technology Data Exchange (ETDEWEB)

    Vollrath, Oliver; Armstrong, Neil; Schenk, Juergen; Bitsche, Otmar; Lamm, Arnold [Daimler AG, Stuttgart (Germany)

    2009-07-01

    Mercedes Benz advances the electrification of the drive strand in all performance classes and in all models from the start-stop system till to the full hybrid. Thereby, the S 400 BlueHYBRID presents the first Mercedes-Benz hybrid. Equipped with the characteristics of a start-stop system, with a recovery of the brake energy and with an electrical support of the drive, this hybrid obtains a saving of the consumption of approximately 20 %. By means of the design of the components and by means of the selection of a standard installation size, all hybrid-specific construction units in the vehicle porch could be arranged. Here, a special role comes to the used battery technology, since it became possible to arrange the hybrid battery in the size and the building area of a conventional starter battery accordingly.

  4. Development of Novel Bipolar Nickel/Metal Hydride Batteries for Hybrid Electric Vehicles

    Institute of Scientific and Technical Information of China (English)

    邓超; 史鹏飞; 张森

    2005-01-01

    This paper deals with the design and development of bipolar Ni/MH batteries. After optimizing the parameters of bipolar plates by adjusting electrode thickness and modifying the capacity ratio of two adjacent electrodes of a single cell, some bipolar Ni/MH stacks with a voltage of 6 V were assembled and examined. Electrochemical testing results showed that the bipolar battery has excellent high rate discharge and recharge characteristics, satisfying pulse discharge performance even in a low state of charge (SOC). Moreover, the battery showed good stability during pulse cycles as simulating hybrid electric vehicle working conditions. It would be a promising alternative for power storage system in hybrid electxic vehicles.

  5. DIAGNOSTICS CONCEPTION OF ELECTRICAL DRIVE OF A HYBRID VEHICLE

    Directory of Open Access Journals (Sweden)

    Y. Borodenko

    2012-01-01

    Full Text Available Conceptual approach to creat the diagnostic system of the power elements of the electric drive of the hybrid vehicle has been considered. Approbation of the imitation model of electric drive with brushless DC electric motor as a diagnostic object has been carried out.

  6. Route-Based Control of Hybrid Electric Vehicles: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Gonder, J. D.

    2008-01-01

    Today's hybrid electric vehicle controls cannot always provide maximum fuel savings over all drive cycles. Route-based controls could improve HEV fuel efficiency by 2%-4% and help save nearly 6.5 million gallons of fuel annually.

  7. ADОPTIVE CONTROL OF THE HYBRID VEHICLE POWER UNIT

    Directory of Open Access Journals (Sweden)

    S. Serikov

    2014-10-01

    Full Text Available The problem of adaptive control of the hybrid vehicle power unit, which makes it possible to minimize the quality criterion under constraints on the state parameters and the control vector is considered. A formal statement of the optimization problem is given. The solution of this problem by the method of neural network control based on the adaptive criticism is considered.

  8. Sensorless Suitability Analysis of Hybrid PM Machines for Electric Vehicles

    DEFF Research Database (Denmark)

    Matzen, Torben Nørregaard; Rasmussen, Peter Omand

    2009-01-01

    Electrical machines for traction in electric vehicles are an essential component which attract attention with respect to machine design and control as a part of the emerging renewable industry. For the hybrid electric machine to replace the familiar behaviour of the combustion engine torque...

  9. Hybrid-Electric Vehicle with Natural Gas-Diesel Engine

    Directory of Open Access Journals (Sweden)

    Lino Guzzella

    2013-07-01

    Full Text Available In this paper we demonstrate the potential of combining electric hybridization with a dual-fuel natural gas-Diesel engine. We show that carbon dioxide emissions can be reduced to 43 gram per kilometer with a subcompact car on the New European Driving Cycle (NEDC. The vehicle is operated in charge-sustaining mode, which means that all energy is provided by the fuel. The result is obtained by hardware-in-the-loop experiments where the engine is operated on a test bench while the rest of the powertrain as well as the vehicle are simulated. By static engine measurements we demonstrate that the natural gas-Diesel engine reaches efficiencies of up to 39.5%. The engine is operated lean at low loads with low engine out nitrogen oxide emissions such that no nitrogen oxide aftertreatment is necessary. At medium to high loads the engine is operated stoichiometrically, which enables the use of a cost-efficient three-way catalytic converter. By vehicle emulation of a non-hybrid vehicle on the Worldwide harmonized Light vehicles Test Procedure (WLTP, we demonstrate that transient operation of the natural gas-Diesel engine is also possible, thus enabling a non-hybridized powertrain as well.

  10. Phase I of the Near-Term Hybrid Passenger-Vehicle Development Program. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1980-10-01

    Under contract to the Jet Propulsion Laboratory of the California Institute of Technology, Minicars conducted Phase I of the Near-Term Hybrid Passenger Vehicle (NTHV) Development Program. This program led to the preliminary design of a hybrid (electric and internal combustion engine powered) vehicle and fulfilled the objectives set by JPL. JPL requested that the report address certain specific topics. A brief summary of all Phase I activities is given initially; the hybrid vehicle preliminary design is described in Sections 4, 5, and 6. Table 2 of the Summary lists performance projections for the overall vehicle and some of its subsystems. Section 4.5 gives references to the more-detailed design information found in the Preliminary Design Data Package (Appendix C). Alternative hybrid-vehicle design options are discussed in Sections 3 through 6. A listing of the tradeoff study alternatives is included in Section 3. Computer simulations are discussed in Section 9. Section 8 describes the supporting economic analyses. Reliability and safety considerations are discussed specifically in Section 7 and are mentioned in Sections 4, 5, and 6. Section 10 lists conclusions and recommendations arrived at during the performance of Phase I. A complete bibliography follows the list of references.

  11. Electric and Hybrid Vehicle System Research and Development Project: Hybrid Vehicle Potential Assessment. Volume IV. Series systems

    Energy Technology Data Exchange (ETDEWEB)

    Popinski, Z.

    1979-09-30

    In the Hybrid Vehicle Potential Assessment Task three major powertrain configurations (parallel, parallel with flywheel, and series) were studied. An evaluation of the series configuration is presented. The series configuration has the advantage that the engine is mechanically uncoupled from the wheels and can be operated at its best economy point much of the time. The mechanical energy produced by the engine is converted through a generator into electrical energy which is used to drive the motor or charge the batteries. This configuration offers a good degree of flexibility. It has the disadvantage that substantial losses of energy occur since the mechanical energy from the engine passes through several components before being used to drive the wheels. The energy produced by the engine is reduced by the product of efficiencies of components connected in series. Trade-offs involved in the study of the series configuration were directed toward establishing the size of the engine, motor and generator to meet vehicle acceleration performance; determining what level to operate the engine, and determining when to use the battery. These results were then used in the electric range simulation.

  12. Adaptive powertrain control for plugin hybrid electric vehicles

    Science.gov (United States)

    Kedar-Dongarkar, Gurunath; Weslati, Feisel

    2013-10-15

    A powertrain control system for a plugin hybrid electric vehicle. The system comprises an adaptive charge sustaining controller; at least one internal data source connected to the adaptive charge sustaining controller; and a memory connected to the adaptive charge sustaining controller for storing data generated by the at least one internal data source. The adaptive charge sustaining controller is operable to select an operating mode of the vehicle's powertrain along a given route based on programming generated from data stored in the memory associated with that route. Further described is a method of adaptively controlling operation of a plugin hybrid electric vehicle powertrain comprising identifying a route being traveled, activating stored adaptive charge sustaining mode programming for the identified route and controlling operation of the powertrain along the identified route by selecting from a plurality of operational modes based on the stored adaptive charge sustaining mode programming.

  13. Adaptive powertrain control for plugin hybrid electric vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Kedar-Dongarkar, Gurunath; Weslati, Feisel

    2013-10-15

    A powertrain control system for a plugin hybrid electric vehicle. The system comprises an adaptive charge sustaining controller; at least one internal data source connected to the adaptive charge sustaining controller; and a memory connected to the adaptive charge sustaining controller for storing data generated by the at least one internal data source. The adaptive charge sustaining controller is operable to select an operating mode of the vehicle's powertrain along a given route based on programming generated from data stored in the memory associated with that route. Further described is a method of adaptively controlling operation of a plugin hybrid electric vehicle powertrain comprising identifying a route being traveled, activating stored adaptive charge sustaining mode programming for the identified route and controlling operation of the powertrain along the identified route by selecting from a plurality of operational modes based on the stored adaptive charge sustaining mode programming.

  14. Vehicle conversion to hybrid gasoline/alternative fuel operation

    Science.gov (United States)

    Donakowski, T. D.

    1982-01-01

    The alternative fuels considered are compressed natural gas (CNG), liquefied natural gas (LNG), liquid petroleum gas (LPG), and methanol; vehicles were required to operate in a hybrid or dual-fuel gasoline/alternative fuel mode. Economic feasibility was determined by comparing the costs of continued use of gasoline fuel with the use of alternative fuel and retrofitted equipment. Differences in the amounts of future expenditures are adjusted by means of a total life-cycle costing. All fuels studied are technically feasible to allow a retrofit conversion to hybrid gasoline/alternative fuel operation except for methanol. Conversion to LPG is not recommended for vehicles with more than 100,000 km (60,000 miles) of prior use. Methanol conversion is not recommended for vehicles with more than 50,00 km (30,000 miles).

  15. 78 FR 2797 - Federal Motor Vehicle Safety Standards; Minimum Sound Requirements for Hybrid and Electric Vehicles

    Science.gov (United States)

    2013-01-14

    ...As required by the Pedestrian Safety Enhancement Act (PSEA) of 2010 this rule proposes to establish a Federal motor vehicle safety standard (FMVSS) setting minimum sound requirements for hybrid and electric vehicles. This new standard would require hybrid and electric passenger cars, light trucks and vans (LTVs), medium and heavy duty, trucks, and buses, low speed vehicles (LSVs), and motorcycles to produce sounds meeting the requirements of this standard. This proposed standard applies to electric vehicles (EVs) and to those hybrid vehicles (HVs) that are capable of propulsion in any forward or reverse gear without the vehicle's internal combustion engine (ICE) operating. This standard would ensure that blind, visually-impaired, and other pedestrians are able to detect and recognize nearby hybrid and electric vehicles, as required by the PSEA, by requiring that hybrid and electric vehicles emit sound that pedestrians would be able to hear in a range of ambient environments and contain acoustic signal content that pedestrians will recognize as being emitted from a vehicle. The benefit of reducing the pedestrian injury rate per registered vehicle of HVs to ICE vehicles when 4.1% of the fleet is HV and EV would be 2790 fewer pedestrian and pedalcyclist injuries. We also estimate that this proposal will result in 10 fewer pedestrian and pedalcyclist injuries caused by LSVs. Thus, 2800 total injured pedestrians are expected to be avoided due to this proposal representing 35 equivalent lives saved. We do not estimate any quantifiable benefits for EVs because it is our view that EV manufacturers would have installed alert sounds in their cars without passage of the PSEA and this proposed rule. Comparison of costs and benefits expected due to this rule provides a cost of $0.83 to $0.99 million per equivalent life saved across the 3 and 7 percent discount levels for the light EV and HV and LSV fleet. According to our present model, a countermeasure that allows a vehicle

  16. Fuel-Cell-Powered Vehicle with Hybrid Power Management

    Science.gov (United States)

    Eichenberg, Dennis J.

    2010-01-01

    Figure 1 depicts a hybrid electric utility vehicle that is powered by hydrogenburning proton-exchange-membrane (PEM) fuel cells operating in conjunction with a metal hydride hydrogen-storage unit. Unlike conventional hybrid electric vehicles, this vehicle utilizes ultracapacitors, rather than batteries, for storing electric energy. This vehicle is a product of continuing efforts to develop the technological discipline known as hybrid power management (HPM), which is oriented toward integration of diverse electric energy-generating, energy-storing, and energy- consuming devices in optimal configurations. Instances of HPM were reported in five prior NASA Tech Briefs articles, though not explicitly labeled as HPM in the first three articles: "Ultracapacitors Store Energy in a Hybrid Electric Vehicle" (LEW-16876), Vol. 24, No. 4 (April 2000), page 63; "Photovoltaic Power Station With Ultracapacitors for Storage" (LEW- 17177), Vol. 27, No. 8 (August 2003), page 38; "Flasher Powered by Photovoltaic Cells and Ultracapacitors" (LEW-17246), Vol. 27, No. 10 (October 2003), page 37; "Hybrid Power Management" (LEW-17520), Vol. 29, No. 12 (December 2005), page 35; and "Ultracapacitor-Powered Cordless Drill" (LEW-18116-1), Vol. 31, No. 8 (August 2007), page 34. To recapitulate from the cited prior articles: The use of ultracapacitors as energy- storage devices lies at the heart of HPM. An ultracapacitor is an electrochemical energy-storage device, but unlike in a conventional rechargeable electrochemical cell or battery, chemical reactions do not take place during operation. Instead, energy is stored electrostatically at an electrode/electrolyte interface. The capacitance per unit volume of an ultracapacitor is much greater than that of a conventional capacitor because its electrodes have much greater surface area per unit volume and the separation between the electrodes is much smaller.

  17. City of Las Vegas Plug-in Hybrid Electric Vehicle Demonstration Program

    Energy Technology Data Exchange (ETDEWEB)

    None

    2013-12-31

    The City of Las Vegas was awarded Department of Energy (DOE) project funding in 2009, for the City of Las Vegas Plug-in Hybrid Electric Vehicle Demonstration Program. This project allowed the City of Las Vegas to purchase electric and plug-in hybrid electric vehicles and associated electric vehicle charging infrastructure. The City anticipated the electric vehicles having lower overall operating costs and emissions similar to traditional and hybrid vehicles.

  18. Intelligent Scheduling of Public Traffic Vehicles Based on a Hybrid Genetic Algorithm

    Institute of Scientific and Technical Information of China (English)

    ZHANG Feizhou; CAO Xuejun; YANG Dongkai

    2008-01-01

    A genetic algorithm (GA) and a hybrid genetic algorithm (HGA) were used for optimal scheduling of public vehicles based on their actual operational environments.The performance for three kinds of vehicular levels were compared using one-point and two-point crossover operations.The vehicle scheduling times are improved by the intelligent characteristics of the GA.The HGA,which integrates the genetic algorithm with a tabu search,further improves the convergence performance and the optimization by avoiding the premature convergence of the GA.The results show that intelligent scheduling of public vehicles based on the HGA overcomes the shortcomings of traditional scheduling methods.The vehicle operation management efficiency is improved by this essential technology for intelligent scheduling of public vehicles.

  19. 2011 Chevrolet Volt VIN 0815 Plug-In Hybrid Electric Vehicle Battery Test Results

    Energy Technology Data Exchange (ETDEWEB)

    Tyler Gray; Matthew Shirk; Jeffrey Wishart

    2013-07-01

    The U.S. Department of Energy (DOE) Advanced Vehicle Testing Activity (AVTA) program consists of vehicle, battery, and infrastructure testing on advanced technology related to transportation. The activity includes tests on plug-in hybrid electric vehicles (PHEVs), including testing the PHEV batteries when both the vehicles and batteries are new and at the conclusion of 12,000 miles of on-road fleet testing. This report documents battery testing performed for the 2011 Chevrolet Volt PHEV (VIN 1G1RD6E48BU100815). The battery testing was performed by the Electric Transportation Engineering Corporation (eTec) dba ECOtality North America. The Idaho National Laboratory and ECOtality North America collaborate on the AVTA for the Vehicle Technologies Program of the DOE.

  20. Hybrid vehicles - an alternative for the Swedish market; Hybridfordon - ett alternativ foer den svenska bilparken

    Energy Technology Data Exchange (ETDEWEB)

    Egebaeck, Karl-Erik; Bucksch, S.

    2000-06-01

    The object of this report is to assemble information on and describe the situation for the development of hybrid vehicles and various alternatives within this field of development. In the report the description is concentrated mainly on the combination of combustion engine and electric battery, which is the most common combination in present day hybrid vehicles. In order to take a glimpse into the future even the combination of fuel cells and electric battery is described. The light duty electric hybrid vehicles which have been developed up to now are mainly parallel hybrids. If the development of hybrid systems takes place it will most certainly concern light duty vehicles which will come to be parallel hybrids equipped with an Otto or a diesel engine, depending on what the manufacturers wish to back. In the report the use of series hybrid vehicles is estimated to be limited to heavy-duty hybrid vehicles. Hybrids will not be likely to be relevant for heavy-duty vehicles, with the exception of those lorries which operate in city centres, i.e. lorries which are used to distribute goods to shops, garbage vehicles and certain types of working vehicle for service purposes. Continued development of the hybrid system for buses seems uncertain for various reasons. If there is a technical breakthrough in the manufacture of batteries and simultaneously the manufacturers increase their efforts to develop hybrid vehicles, the situation can be changed so that there is a speedier introduction of hybrid vehicles for heavy-duty vehicles.

  1. Thermal modeling of secondary lithium batteries for electric vehicle/hybrid electric vehicle applications

    Science.gov (United States)

    Al-Hallaj, Said; Selman, J. R.

    A major obstacle to the development of commercially successful electric vehicles (EV) or hybrid electric vehicles (HEV) is the lack of a suitably sized battery. Lithium ion batteries are viewed as the solution if only they could be "scaled-up safely", i.e. if thermal management problems could be overcome so the batteries could be designed and manufactured in much larger sizes than the commercially available near-2-Ah cells. Here, we review a novel thermal management system using phase-change material (PCM). A prototype of this PCM-based system is presently being manufactured. A PCM-based system has never been tested before with lithium-ion (Li-ion) batteries and battery packs, although its mode of operation is exceptionally well suited for the cell chemistry of the most common commercially available Li-ion batteries. The thermal management system described here is intended specifically for EV/HEV applications. It has a high potential for providing effective thermal management without introducing moving components. Thereby, the performance of EV/HEV batteries may be improved without complicating the system design and incurring major additional cost, as is the case with "active" cooling systems requiring air or liquid circulation.

  2. Smith Newton Vehicle Performance Evaluation – Cumulative; Energy Efficiency & Renewable Energy (EERE), Vehicle Technologies Office (VTO)

    Energy Technology Data Exchange (ETDEWEB)

    None

    2015-04-29

    The Fleet Test and Evaluation Team at the U.S. Department of Energy's National Renewable Energy Laboratory is evaluating and documenting the performance of electric and plug-in hybrid electric drive systems in medium-duty trucks across the nation. U.S. companies participating in this evaluation project received funding from the American Recovery and Reinvestment Act to cover part of the cost of purchasing these vehicles.

  3. Economic and environmental comparison of conventional, hybrid, electric and hydrogen fuel cell vehicles

    Science.gov (United States)

    Granovskii, Mikhail; Dincer, Ibrahim; Rosen, Marc A.

    Published data from various sources are used to perform economic and environmental comparisons of four types of vehicles: conventional, hybrid, electric and hydrogen fuel cell. The production and utilization stages of the vehicles are taken into consideration. The comparison is based on a mathematical procedure, which includes normalization of economic indicators (prices of vehicles and fuels during the vehicle life and driving range) and environmental indicators (greenhouse gas and air pollution emissions), and evaluation of an optimal relationship between the types of vehicles in the fleet. According to the comparison, hybrid and electric cars exhibit advantages over the other types. The economic efficiency and environmental impact of electric car use depends substantially on the source of the electricity. If the electricity comes from renewable energy sources, the electric car is advantageous compared to the hybrid. If electricity comes from fossil fuels, the electric car remains competitive only if the electricity is generated on board. It is shown that, if electricity is generated with an efficiency of about 50-60% by a gas turbine engine connected to a high-capacity battery and an electric motor, the electric car becomes advantageous. Implementation of fuel cells stacks and ion conductive membranes into gas turbine cycles permits electricity generation to increase to the above-mentioned level and air pollution emissions to decrease. It is concluded that the electric car with on-board electricity generation represents a significant and flexible advance in the development of efficient and ecologically benign vehicles.

  4. Development of a software platform for a plug-in hybrid electric vehicle simulator

    Science.gov (United States)

    Karlis, Athanasios; Bibeau, Eric; Zanetel, Paul; Lye, Zelon

    2012-03-01

    Electricity use for transportation has had limited applications because of battery storage range issues, although many recent successful demonstrations of electric vehicles have been achieved. Renewable biofuels such as biodiesel and bioethanol also contribute only a small percentage of the overall energy mix for mobility. Recent advances in hybrid technologies have significantly increased vehicle efficiencies. More importantly, hybridization now allows a significant reduction in battery capacity requirements compared to pure electric vehicles, allowing electricity to be used in the overall energy mix in the transportation sector. This paper presents an effort made to develop a Plug-in Hybrid Electric Vehicle (PHEV) platform that can act as a comprehensive alternative energy vehicle simulator. Its goal is to help in solving the pressing needs of the transportation sector, both in terms of contributing data to aid policy decisions for reducing fossil fuel use, and to support research in this important area. The Simulator will allow analysing different vehicle configurations, and control strategies with regards to renewable and non-renewable fuel and electricity sources. The simulation platform models the fundamental aspects of PHEV components, that is, process control, heat transfer, chemical reactions, thermodynamics and fluid properties. The outcomes of the Simulator are: (i) determining the optimal combination of fuels and grid electricity use, (ii) performing greenhouse gas calculations based on emerging protocols being developed, and (iii) optimizing the efficient and proper use of renewable energy sources in a carbon constrained world.

  5. Smith Newton Vehicle Performance Evaluation - Gen 2 - Cumulative (Brochure)

    Energy Technology Data Exchange (ETDEWEB)

    2014-08-01

    The Fleet Test and Evaluation Team at the U.S. Department of Energy's National Renewable Energy Laboratory is evaluating and documenting the performance of electric and plug-in hybrid electric drive systems in medium-duty trucks across the nation. U.S. companies participating in this evaluation project received funding from the American Recovery and Reinvestment Act to cover part of the cost of purchasing these vehicles. Through this project, Smith Electric Vehicles is building and deploying 500 all-electric medium-duty trucks that will be deployed by a variety of companies in diverse climates across the country.

  6. Smith Newton Vehicle Performance Evaluation - 1st Quarter 2014 (Brochure)

    Energy Technology Data Exchange (ETDEWEB)

    2014-04-01

    The Fleet Test and Evaluation Team at the U.S. Department of Energy's National Renewable Energy Laboratory is evaluating and documenting the performance of electric and plug-in hybrid electric drive systems in medium-duty trucks across the nation. U.S. companies participating in this evaluation project received funding from the American Recovery and Reinvestment Act to cover part of the cost of purchasing these vehicles. Through this project, Smith Electric Vehicles is building and deploying 500 all-electric medium-duty trucks that will be deployed by a variety of companies in diverse climates across the country.

  7. Smith Newton Vehicle Performance Evaluation - Gen2 - 2013 (Brochure)

    Energy Technology Data Exchange (ETDEWEB)

    2014-04-01

    The Fleet Test and Evaluation Team at the U.S. Department of Energy's National Renewable Energy Laboratory is evaluating and documenting the performance of electric and plug-in hybrid electric drive systems in medium-duty trucks across the nation. U.S. companies participating in this evaluation project received funding from the American Recovery and Reinvestment Act to cover part of the cost of purchasing these vehicles. Through this project, Smith Electric Vehicles is building and deploying 500 all-electric medium-duty trucks that will be deployed by a variety of companies in diverse climates across the country.

  8. Linear engine development for series hybrid electric vehicles

    Science.gov (United States)

    Toth-Nagy, Csaba

    This dissertation argues that diminishing oil reserves, concern over global climate change, and desire to improve ambient air quality all demand the development of environment-friendly personal transportation. In certain applications, series hybrid electric vehicles offer an attractive solution to reducing fuel consumption and emissions. Furthermore, linear engines are emerging as a powerplant suited to series HEV applications. In this dissertation, a linear engine/alternator was considered as the auxiliary power unit of a range extender series hybrid electric vehicle. A prototype linear engine/alternator was developed, constructed and tested at West Virginia University. The engine was a 2-stroke, 2-cylinder, dual piston, direct injection, diesel engine. Experiment on the engine was performed to study its behavior. The study variables included mass of the translator, amount of fuel injected, injection timing, load, and stroke with operating frequency and mechanical efficiency as the basis of comparison. The linear engine was analyzed in detail and a simple simulation model was constructed to compare the trends of simulation with the experimental data and to expand on the area where the experimental data were lacking. The simulation was based on a simple and analytical model, rather than a detailed and intensely numerical one. The experimental and theoretical data showed similar trends. Increasing translator mass decreased the operating frequency and increased compression ratio. Larger mass and increased compression ratio improved the ability of the engine to sustain operation and the engine was able to idle on less fuel injected into the cylinder. Increasing the stroke length caused the operating frequency to drop. Increasing fueling or decreasing the load resulted in increased operating frequency. This projects the possibility of using the operating frequency as an input for feedback control of the engine. Injection timing was varied to investigate two different

  9. Predictive control strategy for power management in parallel hybrid-electric vehicle

    DEFF Research Database (Denmark)

    Nodeh, Mohammad Taqi; Gholizade, Hossein; Hajizadeh, Amin

    2016-01-01

    In this paper, a hybrid model-based nonlinear optimal control method is used to compute the optimal power distribution and power management in parallel hybrid electric vehicles. In the power management strategy, for optimal power distribution between the internal combustion engine, electrical...... system and the other subsystems, nonlinear predictive control is applied. In order to achieve this goal, a hierarchical control structure is utilized. This type of control structure consists of three levels of monitoring, coordinating and local controllers. Nonlinear modeling and performance index...... in the proposed method should be formulated at the regulatory level of the controller. Discrete dynamic mode of operation (motor-generator) in hybrid electric vehicle requires to use a dual-mode switch model and to define an alternative expression of performance index for the optimal control problem...

  10. The research of controller area network on hybrid electrical vehicle

    Institute of Scientific and Technical Information of China (English)

    Wu Hongxing; Song Liwei; Kou Baoquan; Cheng Shukang

    2006-01-01

    It is of increasing importance to design and implement vehicle networks for transferring information between electrical control units on Hybrid Electrical Vehicle (HEV). This paper presents a scheme of using Controller Area Network (CAN) technology to realize communication and datasharing between the electrical units on the HEV. The principle and communication protocol of Electrical Control Units (ECU) CAN node are introduced. By considering different sensitivity of the devices to the latency of data transportation, a new design procedure is proposed for the purpose of simplifying network codes and wiring harness, reducing assembly space and weight, improving assembly efficiency, and enhancing fault-diagnose in auto networks.

  11. Battery Test Manual For 48 Volt Mild Hybrid Electric Vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Walker, Lee Kenneth [Idaho National Laboratory

    2017-03-01

    This manual details the U.S. Advanced Battery Consortium and U.S. Department of Energy Vehicle Technologies Program goals, test methods, and analysis techniques for a 48 Volt Mild Hybrid Electric Vehicle system. The test methods are outlined stating with characterization tests, followed by life tests. The final section details standardized analysis techniques for 48 V systems that allow for the comparison of different programs that use this manual. An example test plan is included, along with guidance to filling in gap table numbers.

  12. An Effective Hybrid Optimization Algorithm for Capacitated Vehicle Routing Problem

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Capacitated vehicle routing problem (CVRP) is an important combinatorial optimization problem. However, it is quite difficult to achieve an optimal solution with the traditional optimization methods owing to the high computational complexity. A hybrid algorithm was developed to solve the problem, in which an artificial immune clonal algorithm (AICA) makes use of the global search ability to search the optimal results and simulated annealing (SA) algorithm employs certain probability to avoid becoming trapped in a local optimum. The results obtained from the computational study show that the proposed algorithm is a feasible and effective method for capacitated vehicle routing problem.

  13. Noise and vibration reduction technology in hybrid vehicle development; Hybrid sha kaihatsu ni okeru shindo soon teigen gijutsu

    Energy Technology Data Exchange (ETDEWEB)

    Yoshioa, T.; Sugita, H. [Toyota Motor Corp., Aichi (Japan)

    2000-03-01

    Accomplishing both environmental protection and good NVH performance has become a significant task in automotive development The first-in-the-world hybrid passenger car of mass production. 'Prius', has achieved superior NV performance compared with conventional vehicles with a 1.5-liter engine along with 50% reduction of fuel consumption and CO{sub 2} emissions. low HC, CO and NO{sub x} emissions. This paper describes NV reduction technology for solving problems peculiar to the hybrid vehicle such as engine start/stop vibration, drone noise at low engine speed and motor/generator noise and vibration. It also mentions application technology of low rolling resistance tires with light weight wheels and recycled material for sound proofing. (author)

  14. Maneuvering Performance of Autonomous Underwater Vehicles

    Science.gov (United States)

    2006-04-28

    tuning of PID controllers for Bluefin’s streamlined vehicles was tested on four 21" vehicles, generally achieving heading performance of 0.5 degrees and...and M. Nagurka 2004. Design of PID controllers satisfying gain margin and sensitivity constraints on a set of plants. Automatica, 40, 111-116

  15. AUTONOMOUS UNDERWATER HYBRID VEHICLE FOR OCEAN SURVEILLANCE

    Directory of Open Access Journals (Sweden)

    KIRUBAKARAN.S,

    2011-05-01

    Full Text Available Coastal areas are among the most vulnerable of all regions to global climate change. Projected impacts from global warming include rising sea levels, intensification of tropical cyclones, larger storm surges, increasing sea-surface temperatures, and – as the oceans absorb more of the carbon dioxide human activities emit to theatmosphere – growing acidification of surface waters. With an estimated 50 per cent of the world’s population now living within 60km of the coast and 60 per cent of cities with population over 5 million located within 100 km of the coast, the Potential impacts of climate change on coastal development and infrastructure is considerable. On-going development has manifested in the form of urban centers, tourist resorts, ports and Industrial areas. The rising sea levels and larger storm surges caused by climate change Threaten to compound such risks. In order to understand the Ocean systems, continuous time series Observation is essential and development of innovative Autonomous Underwater Vehicle (AUV with suite of sensors would be very useful.

  16. Phase I of the Near-Term Hybrid Passenger-Vehicle Development Program. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1980-10-01

    Heat engine/electric hybrid vehicles offer the potential of greatly reduced petroleum consumption, compared to conventional vehicles, without the disadvantages of limited performance and operating range associated with purely electric vehicles. This report documents a hybrid-vehicle design approach which is aimed at the development of the technology required to achieve this potential - in such a way that it is transferable to the auto industry in the near term. The development of this design approach constituted Phase I of the Near-Term Hybrid-Vehicle Program. The major tasks in this program were: (1) Mission Analysis and Performance Specification Studies; (2) Design Tradeoff Studies; and (3) Preliminary Design. Detailed reports covering each of these tasks are included as appendices to this report and issued under separate cover; a fourth task, Sensitivity Studies, is also included in the report on the Design Tradeoff Studies. Because of the detail with which these appendices cover methodology and both interim and final results, the body of this report was prepared as a brief executive summary of the program activities and results, with appropriate references to the detailed material in the appendices.

  17. Development of a Electrically Inspired Low Emission Microcontroller Based Hybrid Vehicle

    Directory of Open Access Journals (Sweden)

    M. Habib Ullah

    2012-01-01

    Full Text Available Problem statement: Recently, influx of research afford is being concentrated in automobile engineering to develop low emission hybrid electric vehicle to reduce the greenhouse gases such as hydro-carbons, carbon monoxide, carbon dioxide, produces from the vehicle. Approach: Hybrid Electric Vehicles (HEVs powered by electric machines and an Internal Combustion Engine (ICE are a promising mean of reducing emissions and fuel consumption without compromising vehicle functionality and driving performances. Reduction of emission is a significant issue to save the environment from pollution that cause of many diseases in urban areas is almost entirely due to transport using fossil fuel. Although zero emission transport has not been developed and used practically yet. Results: This study introduce a control mechanism for alternative hybrid electric vehicle combination of electric motor and gasoline engine that reduce the use of fossil fuel without compromising the overall car performance. Conclusion: In this study, a microcontroller based control mechanism of HEV is introduced which consists of battery, voltage indicator, DC motor controller and battery charger."

  18. Phase I of the Near-Term Hybrid Vehicle Program. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1979-09-10

    Heat engine/electric hybrid vehicles offer the potential of greatly reduced petroleum consumption, compared to conventional vehicles, without the disadvantages of limited performance and operating range associated with pure electric vehicles. This report documents a hybrid vehicle design approach which is aimed at the development of the technology required to achieve this potential, in such a way that it is transferable to the auto industry in the near term. The development of this design approach constituted Phase I of the Near-Term Hybrid Vehicle Program. The major tasks in this program were: mission analysis and performance specification studies; design tradeoff studies; and preliminary design. Detailed reports covering each of these tasks are included as appendices to this report. A fourth task, sensitivity studies, is also included in the report on the design tradeoff studies. Because of the detail with which these appendices cover methodology and results, the body of this report has been prepared as a brief executive summary of the program activities and results, with appropriate references to the detailed material in the appendices.

  19. A new type of hybrid vehicle in Japan; Un nouveau type de vehicule hybride au Japon

    Energy Technology Data Exchange (ETDEWEB)

    Henry, P.

    2004-04-01

    During the 37. edition of the Tokyo Motor Show in October 2003, several fuel cell hybrid vehicles were presented by Japanese car makers who grant considerable budgets to develop less polluting vehicles. The trend chosen by Japanese car manufacturers concerns the hybrid system combining fuel cell and battery. Stress has been put also on intelligent systems for navigation and safety but also on the design and comfort. However, even if the environment protection is the main challenge of the Japanese automotive industry, the driving pleasure remains the most profitable medium-term market to be exploitable by industrialists. (J.S.)

  20. Dynamic Modeling and Simulation on a Hybrid Power System for Electric Vehicle Applications

    Directory of Open Access Journals (Sweden)

    Hong-Wen He

    2010-11-01

    Full Text Available Hybrid power systems, formed by combining high-energy-density batteries and high-power-density ultracapacitors in appropriate ways, provide high-performance and high-efficiency power systems for electric vehicle applications. This paper first establishes dynamic models for the ultracapacitor, the battery and a passive hybrid power system, and then based on the dynamic models a comparative simulation between a battery only power system and the proposed hybrid power system was done under the UDDS (Urban Dynamometer Driving Schedule. The simulation results showed that the hybrid power system could greatly optimize and improve the efficiency of the batteries and their dynamic current was also decreased due to the participation of the ultracapacitors, which would have a good influence on batteries’ cycle life. Finally, the parameter matching for the passive hybrid power system was studied by simulation and comparisons.

  1. Aerodynamic design of electric and hybrid vehicles: A guidebook

    Science.gov (United States)

    Kurtz, D. W.

    1980-01-01

    A typical present-day subcompact electric hybrid vehicle (EHV), operating on an SAE J227a D driving cycle, consumes up to 35% of its road energy requirement overcoming aerodynamic resistance. The application of an integrated system design approach, where drag reduction is an important design parameter, can increase the cycle range by more than 15%. This guidebook highlights a logic strategy for including aerodynamic drag reduction in the design of electric and hybrid vehicles to the degree appropriate to the mission requirements. Backup information and procedures are included in order to implement the strategy. Elements of the procedure are based on extensive wind tunnel tests involving generic subscale models and full-scale prototype EHVs. The user need not have any previous aerodynamic background. By necessity, the procedure utilizes many generic approximations and assumptions resulting in various levels of uncertainty. Dealing with these uncertainties, however, is a key feature of the strategy.

  2. Performance of hybrid photovoltaic collector

    OpenAIRE

    Garbisu Eugui, Josu

    2010-01-01

    The aim of the present project is the study of the performance of a combined photovoltaic-thermal plant, called also hybrid system, located in south Italy, evaluating the efficiency of the photovoltaic and thermal systems and the advantage respect to the two single plants (photovoltaic and thermal ). This research project has two objectives fundamentals of efficiency improvement energy from solar photovoltaic panels. On one hand, increase photovoltaic efficiency, at the same time an...

  3. A 6-DOF vibration isolation system for hydraulic hybrid vehicles

    Science.gov (United States)

    Nguyen, The; Elahinia, Mohammad; Olson, Walter W.; Fontaine, Paul

    2006-03-01

    This paper presents the results of vibration isolation analysis for the pump/motor component of hydraulic hybrid vehicles (HHVs). The HHVs are designed to combine gasoline/diesel engine and hydraulic power in order to improve the fuel efficiency and reduce the pollution. Electric hybrid technology is being applied to passenger cars with small and medium engines to improve the fuel economy. However, for heavy duty vehicles such as large SUVs, trucks, and buses, which require more power, the hydraulic hybridization is a more efficient choice. In function, the hydraulic hybrid subsystem improves the fuel efficiency of the vehicle by recovering some of the energy that is otherwise wasted in friction brakes. Since the operation of the main component of HHVs involves with rotating parts and moving fluid, noise and vibration are an issue that affects both passengers (ride comfort) as well as surrounding people (drive-by noise). This study looks into the possibility of reducing the transmitted noise and vibration from the hydraulic subsystem to the vehicle's chassis by using magnetorheological (MR) fluid mounts. To this end, the hydraulic subsystem is modeled as a six degree of freedom (6-DOF) rigid body. A 6-DOF isolation system, consisting of five mounts connected to the pump/motor at five different locations, is modeled and simulated. The mounts are designed by combining regular elastomer components with MR fluids. In the simulation, the real loading and working conditions of the hydraulic subsystem are considered and the effects of both shock and vibration are analyzed. The transmissibility of the isolation system is monitored in a wide range of frequencies. The geometry of the isolation system is considered in order to sustain the weight of the hydraulic system without affecting the design of the chassis and the effectiveness of the vibration isolating ability. The simulation results shows reduction in the transmitted vibration force for different working cycles of

  4. Kinetic energy recovery and power management for hybrid electric vehicles

    OpenAIRE

    P. Suntharalingam

    2011-01-01

    The major contribution of the work presented in this thesis is a thorough investigation of the constraints on regenerative braking and kinetic energy recovery enhancement for electric/hybrid electric vehicles during braking. Regenerative braking systems provide an opportunity to recycle the braking energy, which is otherwise dissipated as heat in the brake pads. However, braking energy harnessing is a relatively new concept in the automotive sector which still requires further research and de...

  5. Research on the Interior Sound Quality in Hybrid Electric Vehicle

    Directory of Open Access Journals (Sweden)

    Liao Lian Ying

    2016-01-01

    Full Text Available Even the overall level of vehicle interior noise of hybrid electric vehicle (HEV reduced to a certain degree, the vibration and noise generated by the engine, motor, generator and power split have made greater effect on the vehicle interior sound quality in HEV. In order to research the feature of vehicle interior sound quality in HEV, the HEV is used to be the research object, the binaural noise sample of the driver when playing different kinds of music in the vehicle with the speed of sixty kilometers per hour is collected. ArtemiS is used to conduct frequency division processing, so as to obtain the relative weight of each frequency band and the overall noise. The tone, roughness and sharpness of sound quality subjective evaluation parameters are quantified, the SPSS is used to establish the linear regression model of the sample, and the best masking music tracks are found out. Then, the sound samples that contains the best music tracks and the simple vehicle interior noise are re-collected, the regression model and ArtemiS are used to predict the subjective evaluation value. The research results show that when adding the music, the tone degree rises and the lowering degree decreases, thus the disturbing degree reduces, which significantly improves the sound quality in the HEV.

  6. EHV systems technology - A look at the principles and current status. [Electric and Hybrid Vehicle

    Science.gov (United States)

    Kurtz, D. W.; Levin, R. R.

    1983-01-01

    An examination of the basic principles and practices of systems engineering is undertaken in the context of their application to the component and subsystem technologies involved in electric and hybrid vehicle (EHV) development. The limitations of purely electric vehicles are contrasted with hybrid, heat engine-incorporating vehicle technology, which is inherently more versatile. A hybrid vehicle concept assessment methodology is presented which employs current technology and yet fully satisfies U.S. Department of Energy petroleum displacement goals.

  7. GRAPHICAL REPRESENTATION OF A HYBRID-AIR VEHICLE USING CATIA V5 SOFTWARE

    Directory of Open Access Journals (Sweden)

    BOGHIAN Gabriel Marcel

    2017-05-01

    Full Text Available Development and implementation of alternative solutions in vehicles propelled by internal combustion engines are made by creators of technology and environmental planners only through technical information and rigorous technical calculations applied from the design stage. In this context, Hybrid-Air vehicles are gaining ground being supported by environmental policies for reducing emissions and the fuel consumption, addressing at the same time issues of global warming and global dependence on oil. This paper describes the procedure to graphically represent a vehicle using Hybrid-Air technology with the help of Catia V5 software. The way in which this system can be graphically represented is presented step by step; its solid foundation is represented by engine and transmission calculations performed in Mathcad and Mathconnex.

  8. Railway vehicle performance optimisation using virtual homologation

    Science.gov (United States)

    Magalhães, H.; Madeira, J. F. A.; Ambrósio, J.; Pombo, J.

    2016-09-01

    Unlike regular automotive vehicles, which are designed to travel in different types of roads, railway vehicles travel mostly in the same route during their life cycle. To accept the operation of a railway vehicle in a particular network, a homologation process is required according to local standard regulations. In Europe, the standards EN 14363 and UIC 518, which are used for railway vehicle acceptance, require on-track tests and/or numerical simulations. An important advantage of using virtual homologation is the reduction of the high costs associated with on-track tests by studying the railway vehicle performance in different operation conditions. This work proposes a methodology for the improvement of railway vehicle design with the objective of its operation in selected railway tracks by using optimisation. The analyses required for the vehicle improvement are performed under control of the optimisation method global and local optimisation using direct search. To quantify the performance of the vehicle, a new objective function is proposed, which includes: a Dynamic Performance Index, defined as a weighted sum of the indices obtained from the virtual homologation process; the non-compensated acceleration, which is related to the operational velocity; and a penalty associated with cases where the vehicle presents an unacceptable dynamic behaviour according to the standards. Thus, the optimisation process intends not only to improve the quality of the vehicle in terms of running safety and ride quality, but also to increase the vehicle availability via the reduction of the time for a journey while ensuring its operational acceptance under the standards. The design variables include the suspension characteristics and the operational velocity of the vehicle, which are allowed to vary in an acceptable range of variation. The results of the optimisation lead to a global minimum of the objective function in which the suspensions characteristics of the vehicle are

  9. Thermoelectrics as elements of hybrid-electric vehicle thermal energy systems

    Science.gov (United States)

    Headings, Leon; Washington, Gregory; Jaworski, Christopher M.

    2008-03-01

    Despite vast technological improvements, the traditional internal combustion powered vehicle still achieves only 25- 30% efficiency, with the remainder lost primarily as heat. While the load leveling offered by hybrid-electric vehicle technology helps to improve this overall efficiency, part of the efficiency gains are achieved by making new systems such as regenerative braking viable. In a similar fashion, thermoelectric (TE) energy recovery has long been considered for traditional vehicles with mixed results, but little has been done to consider thermoelectrics in the framework of the unique energy systems of hybrid vehicles. Systems that may not have been viable or even possible with traditional vehicles may offer improvements to system efficiency as well as emissions, vehicle durability, passenger comfort, and cost. This research describes a simulation developed for evaluating and optimizing thermoelectric energy recovery systems and results for four different system configurations. Two novel system configurations are presented which offer the potential for additional benefits such as emissions reduction that will soon be quantified. In addition, a test setup is presented which was constructed for the testing and validation of various thermoelectric recovery systems. Actual test performance was near the expected theoretical performance and supported the conclusions reached from the computer simulations.

  10. Modelization and Simulation of an Electric and Fuel Cell Hybrid Vehicle under Real Conditions

    Directory of Open Access Journals (Sweden)

    Victor Alfonsin

    2015-06-01

    Full Text Available This paper presents a toolbox for the simulation of a zero emission urban hybrid bus, which combines batteries and fuel cells. This type of vehicle performs predefined routes with a certain frequency, then they are an ideal option to the replacement of combustion engines with renewable energy systems. The simulation of these vehicles can be made for different standard driving cycles (ECE-15, EUDC, NEDC, SFUDS or for real routes from GPS device data. This will allow to consider the orography of the route, considering the slope that overcomes the vehicle at each time, generally this parameter is not included in other models, and it could become a determining factor for the applicability of these vehicles on certain specified routes. Moreover, this tool lets to study and to analyse other not easily quantifiable factors, such as the weather or peak-hour traffic. Finally, the performance of an urban hybrid bus was investigated to assess its theoretical range and the technical feasibility of zero-emission vehicles. Keywords: Electric vehicle; Battery; Fuel cell; Hydrogen; Simulation 

  11. Aerodynamic characteristics of sixteen electric, hybrid, and subcompact vehicles

    Science.gov (United States)

    Kurtz, D. W.

    1979-01-01

    An elementary electric and hybrid vehicle aerodynamic data base was developed using data obtained on sixteen electric, hybrid, and sub-compact production vehicles tested in the Lockheed-Georgia low-speed wind tunnel. Zero-yaw drag coefficients ranged from a high of 0.58 for a boxey delivery van and an open roadster to a low of about 0.34 for a current four-passenger proto-type automobile which was designed with aerodynamics as an integrated parameter. Vehicles were tested at yaw angles up to 40 degrees and a wing weighting analysis is presented which yields a vehicle's effective drag coefficient as a function of wing velocity and driving cycle. Other parameters investigated included the effects of windows open and closed, radiators open and sealed, and pop-up headlights. Complete six-component force and moment data are presented in both tabular and graphical formats. Only limited commentary is offered since, by its very nature, a data base should consist of unrefined reference material. A justification for pursuing efficient aerodynamic design of EHVs is presented.

  12. Computational fluid dynamics challenges for hybrid air vehicle applications

    Science.gov (United States)

    Carrin, M.; Biava, M.; Steijl, R.; Barakos, G. N.; Stewart, D.

    2017-06-01

    This paper begins by comparing turbulence models for the prediction of hybrid air vehicle (HAV) flows. A 6 : 1 prolate spheroid is employed for validation of the computational fluid dynamics (CFD) method. An analysis of turbulent quantities is presented and the Shear Stress Transport (SST) k-ω model is compared against a k-ω Explicit Algebraic Stress model (EASM) within the unsteady Reynolds-Averaged Navier-Stokes (RANS) framework. Further comparisons involve Scale Adaptative Simulation models and a local transition transport model. The results show that the flow around the vehicle at low pitch angles is sensitive to transition effects. At high pitch angles, the vortices generated on the suction side provide substantial lift augmentation and are better resolved by EASMs. The validated CFD method is employed for the flow around a shape similar to the Airlander aircraft of Hybrid Air Vehicles Ltd. The sensitivity of the transition location to the Reynolds number is demonstrated and the role of each vehicle£s component is analyzed. It was found that the ¦ns contributed the most to increase the lift and drag.

  13. Hybrid vehicle turbine engine technology support (HVTE-TS) project. 1995--1996 annual report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-12-31

    This report presents a summary of technical work accomplished on the Hybrid Vehicle Turbine Engine--Technology Support (HVTE-TS) Project during calendar years 1995 and 1996. Work was performed under an initial National Aeronautics and Space Administration (NASA) contract DEN3-336. As of September 1996 the contract administration was transferred to the US Department of Energy (DoE) Chicago Operations Office, and renumbered as DE-AC02-96EE50553. The purpose of the HVTE-TS program is to develop gas turbine engine technology in support of DoE and automotive industry programs exploring the use of gas turbine generator sets in hybrid-electric automotive propulsion systems. The program focus is directed to the development of four key technologies to be applied to advanced turbogenerators for hybrid vehicles: Structural ceramic materials and processes; Low emissions combustion systems; Regenerators and seals systems; and Insulation systems and processes. 60 figs., 9 tabs.

  14. The Pneumatic Hybrid Vehicle - A New Concept for Fuel Consumption Reduction

    Energy Technology Data Exchange (ETDEWEB)

    Trajkovic, Sasa

    2010-07-01

    model of the pneumatic hybrid engine was developed in the engine simulation package GT-Power and validated against real experimental data. After a successful validation process, the model was used for parameter studies. In this way the influence of important parameters such as tank valve diameter, tank valve opening and closing could, together with their effect on the pneumatic hybrid engine performance, be investigated. A pneumatic hybrid vehicle model was developed in Matlab/Simulink. The engine part of the vehicle model consisted of engine data obtained from the GT-Power model. Vehicle drive cycle simulations showed that the fuel consumption of a conventional bus could be reduced by up to 58% when converted to a pneumatic hybrid bus

  15. Hybrid PID and PSO-based control for electric power assist steering system for electric vehicle

    Science.gov (United States)

    Hanifah, R. A.; Toha, S. F.; Ahmad, S.

    2013-12-01

    Electric power assist steering (EPAS) system provides an important significance in enhancing the driving performance of a vehicle with its energy-conserving features. This paper presents a hybrid PID (Proportional-Integral-Derivative) and particle swarm optimization (PSO) based control scheme to minimize energy consumption for EPAS. This single objective optimization scheme is realized using the PSO technique in searching for best gain parameters of the PID controller. The fast tuning feature of this optimum PID controller produced high-quality solutions. Simulation results show the performance and effectiveness of the hybrid PSO-PID based controller as opposed to the conventional PID controller.

  16. Energy regenerative suspension test for EEV and hybrid vehicle

    Science.gov (United States)

    Abdullah, M. A.; Jamil, J. F.; Muhammad, N. S.

    2015-12-01

    The world is demanding on the alternative fuel and reducing the fuel consumption of land transportation especially in the automotive industries. This paper emphasizes the development of the energy regenerative suspension system (EReSS) for energy efficient vehicle (EEV) or hybrid. The EReSS product is fabricated and tested on the laboratory and real vehicle. The test is conducted to test the function of the EReSS system on real vehicle. The test is done using the multimeter to record the reading of voltage produces by the EReSS system that is attached to the vehicle suspension system. The experiment starts by setting the parameters in the EReSS system which is the number of windings with a standard magnet. Road irregularity is one of the important parts of the experiment which is set to be various types of road condition and driving style. A domestic car model is selected for the EReSS test that the system can be installed. The test of the EReSS gives out the maximum output voltage of 5.6 V with 530 windings. Improvement on the material can increase the output voltage. The EReSS is function on the real vehicle by producing voltage by harvesting the kinetic energy from the suspension vibration.

  17. The International Energy Agency's implementing agreement on hybrid and electric vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Thibodeau, C. [Natural Resources Canada, Ottawa, ON (Canada). Office of Energy Efficiency

    2007-07-01

    This presentation discussed implementing agreements and programs developed by the International Energy Agency (IEA) for hybrid and electric vehicles. The agreement was designed to provide an international platform for the coordination of ideas, themes, and technologies related to hybrid and electric vehicles. Industries, governments, and users must also communicate to ensure the successful deployment of new technologies, laws and incentives. International collaboration programs will lower the cost for implementing new technologies in addition to enhancing information exchange. The IEA's Hybrid Electric Vehicles (IA-HEV) program was designed to promote pre-competitive research projects and provide information on hybrid vehicles and their impacts on energy efficiency and the environment. Annex groups related to the program include: (1) an information exchange on HEV technologies and programs; (2) an annex on hybrid electric vehicles; (3) clean city vehicles; (4) electrochemical systems; (5) electric cycles; (6) heavy-duty hybrid vehicles; (7) fuel cells for vehicles; and (8) deployment of HEVs. The Hybrid and Electric Vehicles Annex Group was established in 1994 to exchange information and prepare a series of reports on subjects related to components for hybrid vehicles, as well as on topics related to plug-in hybrid electric vehicles (PHEV). A new annex group has been proposed to study advanced battery technologies, policy issues, charging, marketability, and group administration. It was concluded that the group will report on progress and make all its research and findings available. Details of the IEA structure and governing board were provided. 6 figs.

  18. Development of an Auxiliary Power Unit Specification for Medium Duty Series Hybrid Electric Vehicles

    Science.gov (United States)

    1998-06-01

    As a part of the Defense Advanced Research Projects Agency (DARPA) program to develop hybrid and electric vehicles , a specification for medium duty...hybrid electric vehicles . Intended applications include medium duty commercial vehicles and buses. For the purposes of this specification an APU is

  19. A Hybrid Vehicle Detection Method Based on Viola-Jones and HOG + SVM from UAV Images.

    Science.gov (United States)

    Xu, Yongzheng; Yu, Guizhen; Wang, Yunpeng; Wu, Xinkai; Ma, Yalong

    2016-08-19

    A new hybrid vehicle detection scheme which integrates the Viola-Jones (V-J) and linear SVM classifier with HOG feature (HOG + SVM) methods is proposed for vehicle detection from low-altitude unmanned aerial vehicle (UAV) images. As both V-J and HOG + SVM are sensitive to on-road vehicles' in-plane rotation, the proposed scheme first adopts a roadway orientation adjustment method, which rotates each UAV image to align the roads with the horizontal direction so the original V-J or HOG + SVM method can be directly applied to achieve fast detection and high accuracy. To address the issue of descending detection speed for V-J and HOG + SVM, the proposed scheme further develops an adaptive switching strategy which sophistically integrates V-J and HOG + SVM methods based on their different descending trends of detection speed to improve detection efficiency. A comprehensive evaluation shows that the switching strategy, combined with the road orientation adjustment method, can significantly improve the efficiency and effectiveness of the vehicle detection from UAV images. The results also show that the proposed vehicle detection method is competitive compared with other existing vehicle detection methods. Furthermore, since the proposed vehicle detection method can be performed on videos captured from moving UAV platforms without the need of image registration or additional road database, it has great potentials of field applications. Future research will be focusing on expanding the current method for detecting other transportation modes such as buses, trucks, motors, bicycles, and pedestrians.

  20. Electric-drive tractability indicator integrated in hybrid electric vehicle tachometer

    Science.gov (United States)

    Tamai, Goro; Zhou, Jing; Weslati, Feisel

    2014-09-02

    An indicator, system and method of indicating electric drive usability in a hybrid electric vehicle. A tachometer is used that includes a display having an all-electric drive portion and a hybrid drive portion. The all-electric drive portion and the hybrid drive portion share a first boundary which indicates a minimum electric drive usability and a beginning of hybrid drive operation of the vehicle. The indicated level of electric drive usability is derived from at least one of a percent battery discharge, a percent maximum torque provided by the electric drive, and a percent electric drive to hybrid drive operating cost for the hybrid electric vehicle.

  1. Optimal Control of Engine Warmup in Hybrid Vehicles

    Directory of Open Access Journals (Sweden)

    van Reeven Vital

    2016-01-01

    Full Text Available An Internal Combustion Engine (ICE under cold conditions experiences increased friction losses due to a high viscosity of the lubricant. With the additional control freedom present in hybrid electric vehicles, the losses during warmup can be minimized and fuel can be saved. In this paper, firstly, a control-oriented model of the ICE, describing the warmup behavior, is developed and validated on measured vehicle data. Secondly, the two-state, non-autonomous fuel optimization, for a parallel hybrid electric vehicle with stop-start functionality, is solved using optimal control theory. The principal behavior of the Lagrange multipliers is explicitly derived, including the discontinuities (jumps that are caused by the constraints on the lubricant temperature and the energy in the battery system. The minimization of the Hamiltonian for this two-state problem is also explicitly solved, resulting in a computationally efficient algorithm. The optimal controller shows the fuel benefit, as a function of the initial temperature, for a long-haul truck simulated on the FTP-75.

  2. Energy management strategy for a parallel hybrid electric vehicle equipped with a battery/ultra-capacitor hybrid energy storage system

    Institute of Scientific and Technical Information of China (English)

    Jun-yi LIANG; Jian-long ZHANG; Xi ZHANG; Shi-fei YUAN; Cheng-liang YIN

    2013-01-01

    To solve the low power density issue of hybrid electric vehicular batteries,a combination of batteries and ultracapacitors(UCs)could be a solution.The high power density feature of UCs can improve the performance of battery/UC hybrid energy storage systems(HESSs).This paper presents a parallel hybrid electric vehicle(HEV)equipped with an internal combustion engine and an HESS.An advanced energy management strategy(EMS),mainly based on fuzzy logic,is proposed to improve the fuel economy of the HEV and the endurance of the HESS.The EMS is capable of determining the ideal distribution of output power among the internal combustion engine,battery,and UC according to the propelling power or regenerative braking power of the vehicle.To validate the effectiveness of the EMS,numerical simulation and experimental validations are carried out.The results indicate that EMS can effectively control the power sources to work within their respective efficient areas.The battery load can be mitigated and prolonged battery life can be expected.The electrical energy consumption in the HESS is reduced by 3.91%compared with that in the battery only system.Fuel consumption of the HEV is reduced by 24.3% compared with that of the same class conventional vehicles under Economic Commission of Europe driving cycle.

  3. Control Strategy Optimization for Parallel Hybrid Electric Vehicles Using a Memetic Algorithm

    Directory of Open Access Journals (Sweden)

    Yu-Huei Cheng

    2017-03-01

    Full Text Available Hybrid electric vehicle (HEV control strategy is a management approach for generating, using, and saving energy. Therefore, the optimal control strategy is the sticking point to effectively manage hybrid electric vehicles. In order to realize the optimal control strategy, we use a robust evolutionary computation method called a “memetic algorithm (MA” to optimize the control parameters in parallel HEVs. The “local search” mechanism implemented in the MA greatly enhances its search capabilities. In the implementation of the method, the fitness function combines with the ADvanced VehIcle SimulatOR (ADVISOR and is set up according to an electric assist control strategy (EACS to minimize the fuel consumption (FC and emissions (HC, CO, and NOx of the vehicle engine. At the same time, driving performance requirements are also considered in the method. Four different driving cycles, the new European driving cycle (NEDC, Federal Test Procedure (FTP, Economic Commission for Europe + Extra-Urban driving cycle (ECE + EUDC, and urban dynamometer driving schedule (UDDS are carried out using the proposed method to find their respectively optimal control parameters. The results show that the proposed method effectively helps to reduce fuel consumption and emissions, as well as guarantee vehicle performance.

  4. U.S. Department of Energy Vehicle Technologies Program: Battery Test Manual For Plug-In Hybrid Electric Vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Christophersen, Jon P. [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2014-09-01

    This battery test procedure manual was prepared for the United States Department of Energy (DOE), Office of Energy Efficiency and Renewable Energy (EERE), Vehicle Technologies Office. It is based on technical targets for commercial viability established for energy storage development projects aimed at meeting system level DOE goals for Plug-in Hybrid Electric Vehicles (PHEV). The specific procedures defined in this manual support the performance and life characterization of advanced battery devices under development for PHEV’s. However, it does share some methods described in the previously published battery test manual for power-assist hybrid electric vehicles. Due to the complexity of some of the procedures and supporting analysis, future revisions including some modifications and clarifications of these procedures are expected. As in previous battery and capacitor test manuals, this version of the manual defines testing methods for full-size battery systems, along with provisions for scaling these tests for modules, cells or other subscale level devices. The DOE-United States Advanced Battery Consortium (USABC), Technical Advisory Committee (TAC) supported the development of the manual. Technical Team points of contact responsible for its development and revision are Renata M. Arsenault of Ford Motor Company and Jon P. Christophersen of the Idaho National Laboratory. The development of this manual was funded by the Unites States Department of Energy, Office of Energy Efficiency and Renewable Energy, Vehicle Technologies Office. Technical direction from DOE was provided by David Howell, Energy Storage R&D Manager and Hybrid Electric Systems Team Leader. Comments and questions regarding the manual should be directed to Jon P. Christophersen at the Idaho National Laboratory (jon.christophersen@inl.gov).

  5. Review and Comparison of Power Management Approaches for Hybrid Vehicles with Focus on Hydraulic Drives

    Directory of Open Access Journals (Sweden)

    Mohammad Ali Karbaschian

    2014-05-01

    Full Text Available The main advantage of hybrid powertrains is based on the efficient transfer of power and torque from power sources to the powertrain as well as recapturing of reversible energies without effecting the vehicle performance. The benefits of hybrid hydraulic powertrains can be better utilized with an appropriate power management. In this paper, different types of power management algorithms like off-line and on-line methods are briefly reviewed and classified. Finally, the algorithms are evaluated and compared. Therefore, different related criteria are evaluated and applied.

  6. Design and Comparison of Power Systems for a Fuel Cell Hybrid Electric Vehicle

    DEFF Research Database (Denmark)

    Schaltz, Erik; Rasmussen, Peter Omand

    2008-01-01

    In a fuel cell hybrid electric vehicle (FCHEV) the fuel cell stack is assisted by one or more energy storage devices. Thereby the system cost, mass, and volume can be decreased, and a significant better performance can be obtained. Two often used energy storage devices are the battery...... ultracapacitors are the only energy storage device the system becomes too big and heavy. A fuel cell/battery/ultracapacitor hybrid provides the longest life time of the batteries. If the fuel cell stack power is too small, the system will be big, heavy, and have a poor efficiency....

  7. IEA implementing agreement for hybrid and electric vehicle technologies and programmes, Annex VII hybrid vehicles : Topic 13, assessment of the energy consumption of hybrid trucks using ADVISOR

    NARCIS (Netherlands)

    Eelkema, J.; Winkel, R.G.; Geraets, R.; Verbakel, M.J.L.

    2002-01-01

    This topic report focuses on the possible benefits of the application of a hybrid powertrain in heavy-duty vehicles. The main objective is to assess whether a significant reduction in fuel consumption is feasible. An average Dutch distribution truck with a conventional driveline will be compared to

  8. IEA implementing agreement for hybrid and electric vehicle technologies and programmes, Annex VII hybrid vehicles : Topic 13, assessment of the energy consumption of hybrid trucks using ADVISOR

    NARCIS (Netherlands)

    Eelkema, J.; Winkel, R.G.; Geraets, R.; Verbakel, M.J.L.

    2002-01-01

    This topic report focuses on the possible benefits of the application of a hybrid powertrain in heavy-duty vehicles. The main objective is to assess whether a significant reduction in fuel consumption is feasible. An average Dutch distribution truck with a conventional driveline will be compared to

  9. Combined Optimal Sizing and Control for a Hybrid Tracked Vehicle

    Directory of Open Access Journals (Sweden)

    Huei Peng

    2012-11-01

    Full Text Available The optimal sizing and control of a hybrid tracked vehicle is presented and solved in this paper. A driving schedule obtained from field tests is used to represent typical tracked vehicle operations. Dynamics of the diesel engine-permanent magnetic AC synchronous generator set, the lithium-ion battery pack, and the power split between them are modeled and validated through experiments. Two coupled optimizations, one for the plant parameters, forming the outer optimization loop and one for the control strategy, forming the inner optimization loop, are used to achieve minimum fuel consumption under the selected driving schedule. The dynamic programming technique is applied to find the optimal controller in the inner loop while the component parameters are optimized iteratively in the outer loop. The results are analyzed, and the relationship between the key parameters is observed to keep the optimal sizing and control simultaneously.

  10. Design Optimization of a Hybrid Electric Vehicle Powertrain

    Science.gov (United States)

    Mangun, Firdause; Idres, Moumen; Abdullah, Kassim

    2017-03-01

    This paper presents an optimization work on hybrid electric vehicle (HEV) powertrain using Genetic Algorithm (GA) method. It focused on optimization of the parameters of powertrain components including supercapacitors to obtain maximum fuel economy. Vehicle modelling is based on Quasi-Static-Simulation (QSS) backward-facing approach. A combined city (FTP-75)-highway (HWFET) drive cycle is utilized for the design process. Seeking global optimum solution, GA was executed with different initial settings to obtain sets of optimal parameters. Starting from a benchmark HEV, optimization results in a smaller engine (2 l instead of 3 l) and a larger battery (15.66 kWh instead of 2.01 kWh). This leads to a reduction of 38.3% in fuel consumption and 30.5% in equivalent fuel consumption. Optimized parameters are also compared with actual values for HEV in the market.

  11. Karakats: the Bricolage of Hybrid Vehicles that Skate and Swim

    Directory of Open Access Journals (Sweden)

    Patrick Laviolette

    2015-06-01

    Full Text Available This paper explores the material culture of ‘karakat’ (Russian karakatitsa hybrid vehicles in the town of Kallaste, east Estonia. It focuses on the social factors that allow karakat culture to change. The region of study was part of the Soviet Union so the phenomenon of self-assembled vehicles implies socialist and communist considerations. Local people are still surrounded by the material legacy of that time. Technological assemblages from the past therefore continue to live in the present. It was popular in the USSR to maintain off-road vehicles, which were put together with the owner’s own hands. Such a bricolage technique has been preserved since the middle of the 20th century and is something that is used as a marker of local identity. The distribution of spare parts was problematic in former Soviet times and this has influenced the way men now make karakats. Current owners spend a lot of time servicing their vehicles. The issue of masculinity is highly relevant here because dealing with technology is seen as a masculine activity. Moreover, because it is increasingly open to tourists, karakat culture is becoming a tradable commodity.

  12. Intelligent Energy Management Strategy for a Separated-Axle Parallel Hybrid Electric Vehicle

    Directory of Open Access Journals (Sweden)

    Naser Fallahi

    2014-03-01

    Full Text Available Hybrid electric vehicles (HEV in addition to provide the benefits of electric vehicles could satisfy consumers for some performances of conventional internal combustion engine (ICE vehicles such as acceleration and long range. On this way, suitable energy optimization strategies should be employed to get desired efficiency, less fuel consumption and pollution. One of the favorite and simple configurations of HEVs is parallel type. A student team at University of Kashan, IRAN have designed and manufactured Shaheb 2 hybrid electric vehicle. It is a separated-axle (or Through-to-Road (TTR parallel HEV type based on Pride platform. Employed energy management in Shaheb 2 is on/off strategy and three modes; motor, engine and hybrid have been implemented. This paper investigates the modeling of separated-axle (or TTR parallel type of HEV in ADVISOR software and then evaluates two control strategies for Shaheb 2; on/off strategy and an intelligent control based on fuzzy logic. On this way, maximizing the engine is considered as objective function. The simulation results indicate that the fuzzy strategy leads to less fuel consumption and lower pollution for given UDDS driving cycle rather than on/off strategy for Shaheb 2.

  13. Hybrid Vehicle Comparison Testing Using Ultracapacitor vs. Battery Energy Storage (Presentation)

    Energy Technology Data Exchange (ETDEWEB)

    Gonder, J.; Pesaran, A.; Lustbader, J.; Tataria, H.

    2010-02-01

    With support from General Motors, NREL researchers converted and tested a hybrid electric vehicle (HEV) with three energy storage configurations: a nickel metal-hydride battery and two ultracapacitor (Ucap) modules. They found that the HEV equipped with one Ucap module performed as well as or better than the HEV with a stock NiMH battery configuration. Thus, Ucaps could increase the market penetration and fuel savings of HEVs.

  14. A review of composite material applications in the automotive industry for the electric and hybrid vehicle

    Science.gov (United States)

    Bauer, J. L.

    1979-01-01

    A review is made of the state-of-the-art in regard to the use of composite materials for reducing the structural mass of automobiles. Reduction of mass provides, in addition to other engineering improvements, increased performance/range advantages that are particularly needed in the electric and hybrid vehicle field. Problems encountered include the attainment of mass production techniques and the prevention of environmental hazards.

  15. Electric and hybrid vehicles environmental control subsystem study

    Science.gov (United States)

    1981-01-01

    An environmental control subsystem (ECS) in the passenger compartment of electric and hybrid vehicles is studied. Various methods of obtaining the desired temperature control for the battery pack is also studied. The functional requirements of ECS equipment is defined. Following categorization by methodology, technology availability and risk, all viable ECS concepts are evaluated. Each is assessed independently for benefits versus risk, as well as for its feasibility to short, intermediate and long term product development. Selection of the preferred concept is made against these requirements, as well as the study's major goal of providing safe, highly efficient and thermally confortable ECS equipment.

  16. Intelligent emission-sensitive routing for plugin hybrid electric vehicles.

    Science.gov (United States)

    Sun, Zhonghao; Zhou, Xingshe

    2016-01-01

    The existing transportation sector creates heavily environmental impacts and is a prime cause for the current climate change. The need to reduce emissions from this sector has stimulated efforts to speed up the application of electric vehicles (EVs). A subset of EVs, called plug-in hybrid electric vehicles (PHEVs), backup batteries with combustion engine, which makes PHEVs have a comparable driving range to conventional vehicles. However, this hybridization comes at a cost of higher emissions than all-electric vehicles. This paper studies the routing problem for PHEVs to minimize emissions. The existing shortest-path based algorithms cannot be applied to solving this problem, because of the several new challenges: (1) an optimal route may contain circles caused by detour for recharging; (2) emissions of PHEVs not only depend on the driving distance, but also depend on the terrain and the state of charge (SOC) of batteries; (3) batteries can harvest energy by regenerative braking, which makes some road segments have negative energy consumption. To address these challenges, this paper proposes a green navigation algorithm (GNA) which finds the optimal strategies: where to go and where to recharge. GNA discretizes the SOC, then makes the PHEV routing problem to satisfy the principle of optimality. Finally, GNA adopts dynamic programming to solve the problem. We evaluate GNA using synthetic maps generated by the delaunay triangulation. The results show that GNA can save more than 10 % energy and reduce 10 % emissions when compared to the shortest path algorithm. We also observe that PHEVs with the battery capacity of 10-15 KWh detour most and nearly no detour when larger than 30 KWh. This observation gives some insights when developing PHEVs.

  17. Isolated Bidirectional DC-DC Converter for Hybrid Electric Vehicle Application

    Science.gov (United States)

    2006-06-13

    34Approved for public release: distribution is unlimited" Isolated Bidirectional DC-DC Converter for Hybrid Electric Vehicle Applications Sonya...requirements for DC-DC converters for electric and hybrid vehicles . This paper introduces a bidirectional, isolated DC-DC converter for medium power...the design and build of a medium power DC-DC converter . Key words: Power Converter , DC-DC, Hybrid Electric Vehicle , Battery, Galvanically Isolation

  18. A Hybrid Positioning Strategy for Vehicles in a Tunnel Based on RFID and In-Vehicle Sensors

    Directory of Open Access Journals (Sweden)

    Xiang Song

    2014-12-01

    Full Text Available Many intelligent transportation system applications require accurate, reliable, and continuous vehicle positioning. How to achieve such positioning performance in extended GPS-denied environments such as tunnels is the main challenge for land vehicles. This paper proposes a hybrid multi-sensor fusion strategy for vehicle positioning in tunnels. First, the preliminary positioning algorithm is developed. The Radio Frequency Identification (RFID technology is introduced to achieve preliminary positioning in the tunnel. The received signal strength (RSS is used as an indicator to calculate the distances between the RFID tags and reader, and then a Least Mean Square (LMS federated filter is designed to provide the preliminary position information for subsequent global fusion. Further, to improve the positioning performance in the tunnel, an interactive multiple model (IMM-based global fusion algorithm is developed to fuse the data from preliminary positioning results and low-cost in-vehicle sensors, such as electronic compasses and wheel speed sensors. In the actual implementation of IMM, the strong tracking extended Kalman filter (STEKF algorithm is designed to replace the conventional extended Kalman filter (EKF to achieve model individual filtering. Finally, the proposed strategy is evaluated through experiments. The results validate the feasibility and effectiveness of the proposed strategy.

  19. A hybrid positioning strategy for vehicles in a tunnel based on RFID and in-vehicle sensors.

    Science.gov (United States)

    Song, Xiang; Li, Xu; Tang, Wencheng; Zhang, Weigong; Li, Bin

    2014-01-01

    Many intelligent transportation system applications require accurate, reliable, and continuous vehicle positioning. How to achieve such positioning performance in extended GPS-denied environments such as tunnels is the main challenge for land vehicles. This paper proposes a hybrid multi-sensor fusion strategy for vehicle positioning in tunnels. First, the preliminary positioning algorithm is developed. The Radio Frequency Identification (RFID) technology is introduced to achieve preliminary positioning in the tunnel. The received signal strength (RSS) is used as an indicator to calculate the distances between the RFID tags and reader, and then a Least Mean Square (LMS) federated filter is designed to provide the preliminary position information for subsequent global fusion. Further, to improve the positioning performance in the tunnel, an interactive multiple model (IMM)-based global fusion algorithm is developed to fuse the data from preliminary positioning results and low-cost in-vehicle sensors, such as electronic compasses and wheel speed sensors. In the actual implementation of IMM, the strong tracking extended Kalman filter (STEKF) algorithm is designed to replace the conventional extended Kalman filter (EKF) to achieve model individual filtering. Finally, the proposed strategy is evaluated through experiments. The results validate the feasibility and effectiveness of the proposed strategy.

  20. STRUCTURE DEVELOPMENT AND SIMULATION OF PLUG-IN HYBRID ELECTRIC VEHICLE

    OpenAIRE

    A. A. Marozka; Yu. N. Petrenko

    2013-01-01

    Electric-drive vehicles (EDVs) have gained attention, especially in the context of growing concerns about global warming and energy security aspects associated with road transport. The main characteristic of EDVs is that the torque is supplied to the wheels by an electric motor that is powered either solely by a battery or in combination with an internal combustion engine (ICE). This covers hybrid electric vehicles (HEVs), battery electric vehicles (BEVs), and plug-in hybrid electric vehicles...

  1. A Hybrid Vehicle Detection Method Based on Viola-Jones and HOG + SVM from UAV Images

    Science.gov (United States)

    Xu, Yongzheng; Yu, Guizhen; Wang, Yunpeng; Wu, Xinkai; Ma, Yalong

    2016-01-01

    A new hybrid vehicle detection scheme which integrates the Viola-Jones (V-J) and linear SVM classifier with HOG feature (HOG + SVM) methods is proposed for vehicle detection from low-altitude unmanned aerial vehicle (UAV) images. As both V-J and HOG + SVM are sensitive to on-road vehicles’ in-plane rotation, the proposed scheme first adopts a roadway orientation adjustment method, which rotates each UAV image to align the roads with the horizontal direction so the original V-J or HOG + SVM method can be directly applied to achieve fast detection and high accuracy. To address the issue of descending detection speed for V-J and HOG + SVM, the proposed scheme further develops an adaptive switching strategy which sophistically integrates V-J and HOG + SVM methods based on their different descending trends of detection speed to improve detection efficiency. A comprehensive evaluation shows that the switching strategy, combined with the road orientation adjustment method, can significantly improve the efficiency and effectiveness of the vehicle detection from UAV images. The results also show that the proposed vehicle detection method is competitive compared with other existing vehicle detection methods. Furthermore, since the proposed vehicle detection method can be performed on videos captured from moving UAV platforms without the need of image registration or additional road database, it has great potentials of field applications. Future research will be focusing on expanding the current method for detecting other transportation modes such as buses, trucks, motors, bicycles, and pedestrians. PMID:27548179

  2. A Hybrid Algorithm Based on ACO and PSO for Capacitated Vehicle Routing Problems

    Directory of Open Access Journals (Sweden)

    Yucheng Kao

    2012-01-01

    Full Text Available The vehicle routing problem (VRP is a well-known combinatorial optimization problem. It has been studied for several decades because finding effective vehicle routes is an important issue of logistic management. This paper proposes a new hybrid algorithm based on two main swarm intelligence (SI approaches, ant colony optimization (ACO and particle swarm optimization (PSO, for solving capacitated vehicle routing problems (CVRPs. In the proposed algorithm, each artificial ant, like a particle in PSO, is allowed to memorize the best solution ever found. After solution construction, only elite ants can update pheromone according to their own best-so-far solutions. Moreover, a pheromone disturbance method is embedded into the ACO framework to overcome the problem of pheromone stagnation. Two sets of benchmark problems were selected to test the performance of the proposed algorithm. The computational results show that the proposed algorithm performs well in comparison with existing swarm intelligence approaches.

  3. Enhanced performance hybrid-arq

    KAUST Repository

    Fareed, Muhammad Mehboob

    2016-06-16

    Apparatuses, computer readable media, and methods are provided for enhancing hybrid automatic repeat request (ARQ) performance. In an example method, a communication device transmits a first element of a vector, where the vector is selected using the information bits to be transmitted as an index in a code book. In some embodiments, this code book is constructed using Linear Constellation Precoding (LCP). If a NACK is received, the communication device transmits a second element of the vector. The process of transmitting elements of the vector continues until an ACK is received or the maximum number of transmission attempts is reached. If an ACK is received, the communication device transmits a first element of another vector of the code book that encodes a second set of information bits. This procedure may continue until all information bits have been transmitted successfully.

  4. MODELLING AND TORQUE TRACKING CONTROL OF PERMANENT MAGNET SYNCHRONOUS MOTOR FOR HYBRID ELECTRIC VEHICLES

    Directory of Open Access Journals (Sweden)

    Mohd Sabirin Rahmat

    2013-06-01

    Full Text Available This paper presents a detailed derivation of a permanent magnet synchronous motor, which may be used as the electric power train for the simulation of a hybrid electric vehicle. A torque tracking control of the permanent magnet synchronous motor is developed by using an adaptive proportional-integral-derivative controller. Several tests such as step function, saw tooth function, sine wave function and square wave function were used in order to examine the performance of the proposed control structure. The effectiveness of the proposed controller was verified and compared with the same system under a PID controller and the desired control. The result of the observations shows that the proposed control structure proves to be effective in tracking the desired torque with a good response. The findings of this study will be considered in the design, optimisation and experimentation of series hybrid electric vehicle.

  5. Fuel economy of hybrid fuel-cell vehicles

    Science.gov (United States)

    Ahluwalia, Rajesh K.; Wang, X.; Rousseau, A.

    The potential improvement in fuel economy of a mid-size fuel-cell vehicle by combining it with an energy storage system has been assessed. An energy management strategy is developed and used to operate the direct hydrogen, pressurized fuel-cell system in a load-following mode and the energy storage system in a charge-sustaining mode. The strategy places highest priority on maintaining the energy storage system in a state where it can supply unanticipated boost power when the fuel-cell system alone cannot meet the power demand. It is found that downsizing a fuel-cell system decreases its efficiency on a drive cycle which is compensated by partial regenerative capture of braking energy. On a highway cycle with limited braking energy the increase in fuel economy with hybridization is small but on the stop-and-go urban cycle the fuel economy can improve by 27%. On the combined highway and urban drive cycles the fuel economy of the fuel-cell vehicle is estimated to increase by up to 15% by hybridizing it with an energy storage system.

  6. Hybrid Video Stabilization for Mobile Vehicle Detection on SURF in Aerial Surveillance

    Directory of Open Access Journals (Sweden)

    Gao Chunxian

    2015-01-01

    Full Text Available Detection of moving vehicles in aerial video sequences is of great importance with many promising applications in surveillance, intelligence transportation, or public service applications such as emergency evacuation and policy security. However, vehicle detection is a challenging task due to global camera motion, low resolution of vehicles, and low contrast between vehicles and background. In this paper, we present a hybrid method to efficiently detect moving vehicle in aerial videos. Firstly, local feature extraction and matching were performed to estimate the global motion. It was demonstrated that the Speeded Up Robust Feature (SURF key points were more suitable for the stabilization task. Then, a list of dynamic pixels was obtained and grouped for different moving vehicles by comparing the different optical flow normal. To enhance the precision of detection, some preprocessing methods were applied to the surveillance system, such as road extraction and other features. A quantitative evaluation on real video sequences indicated that the proposed method improved the detection performance significantly.

  7. Development & optimization of a rule-based energy management strategy for fuel economy improvement in hybrid electric vehicles

    Science.gov (United States)

    Asfoor, Mostafa

    The gradual decline of oil reserves and the increasing demand for energy over the past decades has resulted in automotive manufacturers seeking alternative solutions to reduce the dependency on fossil-based fuels for transportation. A viable technology that enables significant improvements in the overall energy conversion efficiencies is the hybridization of conventional vehicle drive systems. This dissertation builds on prior hybrid powertrain development at the University of Idaho. Advanced vehicle models of a passenger car with a conventional powertrain and three different hybrid powertrain layouts were created using GT-Suite. These different powertrain models were validated against a variety of standard driving cycles. The overall fuel economy, energy consumption, and losses were monitored, and a comprehensive energy analysis was performed to compare energy sources and sinks. The GT-Suite model was then used to predict the formula hybrid SAE vehicle performance. Inputs to this model were a numerically predicted engine performance map, an electric motor torque curve, vehicle geometry, and road load parameters derived from a roll-down test. In this case study, the vehicle had a supervisory controller that followed a rule-based energy management strategy to insure a proper power split during hybrid mode operation. The supervisory controller parameters were optimized using discrete grid optimization method that minimized the total amount of fuel consumed during a specific urban driving cycle with an average speed of approximately 30 [mph]. More than a 15% increase in fuel economy was achieved by adding supervisory control and managing power split. The vehicle configuration without the supervisory controller displayed a fuel economy of 25 [mpg]. With the supervisory controller this rose to 29 [mpg]. Wider applications of this research include hybrid vehicle controller designs that can extend the range and survivability of military combat platforms. Furthermore, the

  8. Procedure for the Design of a Hybrid-Series Vehicle and the Hybridization Degree Choice

    Directory of Open Access Journals (Sweden)

    Antonino Coccia

    2010-03-01

    Full Text Available For years, the interest of the UDR1 research group has focused on the development of a Hybrid Series (HS vehicle, different from the standard one thanks to the use of a Gas Turbine set (GT as a thermal engine. The reason for this choice resides in the opportunity to reduce weight and dimensions, in comparison to a traditional Internal Combustion Engine (ICE. It is not possible to use the GT engine set directly for the vehicle traction, therefore the UDR1 HS configuration shows the GT set connected with the electric generator only. The result is that the traction is purely electric. The resulting engine configuration is a commonly defined Hybrid Series. Many efforts are spent in the definition of a generic scientific method to define the correct ratio (Degree of Hybridization between the installed power of the battery pack and that of the GT electric generator, which simultaneously guarantees the life of the battery pack and the capacity of the vehicle to complete a common mission without lack of energy or stopping. This article reports a method to define the power ratio between battery pack and GT generator, applied to a recent commission for the development of a mini city bus.

  9. U.S. Department of Energy -- Advanced Vehicle Testing Activity: Plug-in Hybrid Electric Vehicle Testing and Demonstration Activities

    Energy Technology Data Exchange (ETDEWEB)

    James E. Francfort; Donald Karner; John G. Smart

    2009-05-01

    The U.S. Department of Energy’s (DOE) Advanced Vehicle Testing Activity (AVTA) tests plug-in hybrid electric vehicles (PHEV) in closed track, dynamometer and onroad testing environments. The onroad testing includes the use of dedicated drivers on repeated urban and highway driving cycles that range from 10 to 200 miles, with recharging between each loop. Fleet demonstrations with onboard data collectors are also ongoing with PHEVs operating in several dozen states and Canadian Provinces, during which trips- and miles-per-charge, charging demand and energy profiles, and miles-per-gallon and miles-per-kilowatt-hour fuel use results are all documented, allowing an understanding of fuel use when vehicles are operated in charge depleting, charge sustaining, and mixed charge modes. The intent of the PHEV testing includes documenting the petroleum reduction potential of the PHEV concept, the infrastructure requirements, and operator recharging influences and profiles. As of May 2008, the AVTA has conducted track and dynamometer testing on six PHEV conversion models and fleet testing on 70 PHEVs representing nine PHEV conversion models. A total of 150 PHEVs will be in fleet testing by the end of 2008, all with onboard data loggers. The onroad testing to date has demonstrated 100+ miles per gallon results in mostly urban applications for approximately the first 40 miles of PHEV operations. The primary goal of the AVTA is to provide advanced technology vehicle performance benchmark data for technology modelers, research and development programs, and technology goal setters. The AVTA testing results also assist fleet managers in making informed vehicle purchase, deployment and operating decisions. The AVTA is part of DOE’s Vehicle Technologies Program. These AVTA testing activities are conducted by the Idaho National Laboratory and Electric Transportation Engineering Corporation, with Argonne National Laboratory providing dynamometer testing support. The proposed paper

  10. Development of commercial hybrid electric vehicle with native key components

    Directory of Open Access Journals (Sweden)

    S. V. Bakhmutov

    2014-01-01

    Full Text Available The perspectives of development of medium weight cargo vehicles with hybrid powertrain including Russian native key components are considered in this article. Series-parallel scheme of HEV is more relevant owing to limitations of series and parallel schemes. An example of this technology is described. This technical solution has good facilities for variation of HEV and AWD type. The authors have patented it. In addition, another main issue is to choose the types of key components with good correlation for parameters of ICE, electric motors, batteries, and inverter. Using mathematical model of the vehicle a selection and correlation of technical characteristics were carried out to meet ecological and economical requirements. After computing calculation two control strategies were accepted. The first strategy contributes to good fuel consumption, while the other one is aimed at ecology. Researchers use test benches to confirm the results of calculation, and this one was built by the authors applying native components. The result of experiment on the test bench is the growth of fuel consumption of the medium weight cargo vehicle by 25% and compliance with ecological class Euro-4.

  11. Hybrid Modeling Improves Health and Performance Monitoring

    Science.gov (United States)

    2007-01-01

    Scientific Monitoring Inc. was awarded a Phase I Small Business Innovation Research (SBIR) project by NASA's Dryden Flight Research Center to create a new, simplified health-monitoring approach for flight vehicles and flight equipment. The project developed a hybrid physical model concept that provided a structured approach to simplifying complex design models for use in health monitoring, allowing the output or performance of the equipment to be compared to what the design models predicted, so that deterioration or impending failure could be detected before there would be an impact on the equipment's operational capability. Based on the original modeling technology, Scientific Monitoring released I-Trend, a commercial health- and performance-monitoring software product named for its intelligent trending, diagnostics, and prognostics capabilities, as part of the company's complete ICEMS (Intelligent Condition-based Equipment Management System) suite of monitoring and advanced alerting software. I-Trend uses the hybrid physical model to better characterize the nature of health or performance alarms that result in "no fault found" false alarms. Additionally, the use of physical principles helps I-Trend identify problems sooner. I-Trend technology is currently in use in several commercial aviation programs, and the U.S. Air Force recently tapped Scientific Monitoring to develop next-generation engine health-management software for monitoring its fleet of jet engines. Scientific Monitoring has continued the original NASA work, this time under a Phase III SBIR contract with a joint NASA-Pratt & Whitney aviation security program on propulsion-controlled aircraft under missile-damaged aircraft conditions.

  12. Navistar eStar Vehicle Performance Evaluation - Cumulative (Brochure)

    Energy Technology Data Exchange (ETDEWEB)

    2014-08-01

    The Fleet Test and Evaluation Team at the U.S. Department of Energy's National Renewable Energy Laboratory is evaluating and documenting the performance of electric and plug-in hybrid electric drive systems in medium duty trucks across the nation. U.S. companies participating in this evaluation project received funding from the American Recovery and Reinvestment Act to cover part of the cost of purchasing these vehicles. Through this project, Navistar will build and deploy all-electric medium-duty trucks. The trucks will be deployed in diverse climates across the country.

  13. Near-term hybrid vehicle program, phase 1. Appendix D: Sensitivity analysis resport

    Science.gov (United States)

    1979-01-01

    Parametric analyses, using a hybrid vehicle synthesis and economics program (HYVELD) are described investigating the sensitivity of hybrid vehicle cost, fuel usage, utility, and marketability to changes in travel statistics, energy costs, vehicle lifetime and maintenance, owner use patterns, internal combustion engine (ICE) reference vehicle fuel economy, and drive-line component costs and type. The lowest initial cost of the hybrid vehicle would be $1200 to $1500 higher than that of the conventional vehicle. For nominal energy costs ($1.00/gal for gasoline and 4.2 cents/kWh for electricity), the ownership cost of the hybrid vehicle is projected to be 0.5 to 1.0 cents/mi less than the conventional ICE vehicle. To attain this ownership cost differential, the lifetime of the hybrid vehicle must be extended to 12 years and its maintenance cost reduced by 25 percent compared with the conventional vehicle. The ownership cost advantage of the hybrid vehicle increases rapidly as the price of fuel increases from $1 to $2/gal.

  14. Propulsion system research and development for electric and hybrid vehicles

    Science.gov (United States)

    Schwartz, H. J.

    1980-01-01

    An approach to propulsion subsystem technology is presented. Various tests of component reliability are described to aid in the production of better quality vehicles. component characterization work is described to provide engineering data to manufacturers on component performance and on important component propulsion system interactions.

  15. A hybrid algorithm combining EKF and RLS in synchronous estimation of road grade and vehicle' mass for a hybrid electric bus

    Science.gov (United States)

    Sun, Yong; Li, Liang; Yan, Bingjie; Yang, Chao; Tang, Gongyou

    2016-02-01

    This paper proposes a novel hybrid algorithm for simultaneously estimating the vehicle mass and road grade for hybrid electric bus (HEB). First, the road grade in current step is estimated using extended Kalman filter (EKF) with the initial state including velocity and engine torque. Second, the vehicle mass is estimated twice, one with EKF and the other with recursive least square (RLS) using the estimated road grade. A more accurate value of the estimated mass is acquired by weighting the trade-off between EKF and RLS. Finally, the road grade and vehicle mass thus obtained are used as the initial states for the next step, and two variables could be decoupled from the nonlinear vehicle dynamics by performing the above procedure repeatedly. Simulation results show that in different starting conditions, the proposed algorithm provides higher accuracy and faster convergence speed, compared with the results using EKF or RLS alone.

  16. Start up of a new annex Electrochemical Power Sources and Energy Storage Systems in the implementing agreement hybrid and electric vehicles of the International Energy Agency

    Energy Technology Data Exchange (ETDEWEB)

    Hacker, V.; Fuchs, H.; Kordesch, K. [Technical Univ. Graz, (Austria)

    2000-07-01

    It is understood that continuing research and development in battery and supercapacitor technologies should ensure the future of hybrid and electric vehicles. In order to promote research and development efforts along those lines, it was decided to prolong the work performed by Annex V Advanced Batteries and Supercapacitors for Electric Vehicles during the second phase of the Implementing Agreement on Hybrid and Electric Vehicles of the International Energy Agency. The authors, acting as intermediate Operating Agent, prepared a proposal to be used as framework for the organization and structure, without detailing exploratory research. They were careful not to overlap the work done on Advanced Fuel Cells by creating an interface of Fuel Cells and battery technology for mobile applications that meet the performance requirements of hybrid systems. They also included fuel cell electric vehicles and fuel cell hybrid vehicles in this new annex. The authors concluded with an invitation to former and other participating countries to join the Annex.

  17. Traffic flow characteristics in a mixed traffic system consisting of ACC vehicles and manual vehicles: A hybrid modelling approach

    Science.gov (United States)

    Yuan, Yao-Ming; Jiang, Rui; Hu, Mao-Bin; Wu, Qing-Song; Wang, Ruili

    2009-06-01

    In this paper, we have investigated traffic flow characteristics in a traffic system consisting of a mixture of adaptive cruise control (ACC) vehicles and manual-controlled (manual) vehicles, by using a hybrid modelling approach. In the hybrid approach, (i) the manual vehicles are described by a cellular automaton (CA) model, which can reproduce different traffic states (i.e., free flow, synchronised flow, and jam) as well as probabilistic traffic breakdown phenomena; (ii) the ACC vehicles are simulated by using a car-following model, which removes artificial velocity fluctuations due to intrinsic randomisation in the CA model. We have studied the traffic breakdown probability from free flow to congested flow, the phase transition probability from synchronised flow to jam in the mixed traffic system. The results are compared with that, where both ACC vehicles and manual vehicles are simulated by CA models. The qualitative and quantitative differences are indicated.

  18. Lithium-ion Battery Degradation Assessment and Remaining Useful Life Estimation in Hybrid Electric Vehicle

    Directory of Open Access Journals (Sweden)

    Nabil Laayouj

    2016-06-01

    Full Text Available Abstract—Prognostic activity deals with prediction of the remaining useful life (RUL of physical systems based on their actual health state and their usage conditions. RUL estimation gives operators a potent tool in decision making by quantifying how much time is left until functionality is lost. In addition, it can be used to improve the characterization of the material proprieties that govern damage propagation for the structure being monitored. RUL can be estimated by using three main approaches, namely model-based, data-driven and hybrid approaches. The prognostics methods used later in this paper are hybrid and data-driven approaches, which employ the Particle Filter in the first one and the autoregressive integrated moving average in the second. The performance of the suggested approaches is evaluated in a comparative study on data collected from lithium-ion battery of hybrid electric vehicle.

  19. Development of Capacitors for Power Electronics in Hybrid Vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Balachandran, U. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2016-02-16

    The purpose of this CRADA is to develop a fabrication process to reduce the manufacturing cost for a very compact, high temperature, film-on-foil high energy-density PLZT (Pb-La-Zr- Ti-O) capacitor. Motivation for this CRADA is derived from the DOE’s Office of Vehicle Technologies (OVT) program, which seeks to advance technologies to improve vehicle fuel efficiency in the mid-term and facilitate the transition to electric drive vehicles over the longterm. The objective of Argonne’s work is to develop and characterize high-performance capacitors on base-metal foils. The PLZT film-on-foil prepared using a spin-coating technique

  20. Electrically heated particulate filter regeneration methods and systems for hybrid vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Gonze, Eugene V. (Pinckney, MI); Paratore, Jr., Michael J. (Howell, MI)

    2010-10-12

    A control system for controlling regeneration of a particulate filter for a hybrid vehicle is provided. The system generally includes a regeneration module that controls current to the particulate filter to initiate regeneration. An engine control module controls operation of an engine of the hybrid vehicle based on the control of the current to the particulate filter.

  1. Operational performance of the ETH-hybrid III drive system - at the test stand and in the vehicle; Betriebsverhalten des ETH-Hybrid III Antriebes - Auf dem dynamischen Pruefstand und im Fahrzeug

    Energy Technology Data Exchange (ETDEWEB)

    Dietrich, P.; Eberle, M.K.

    1999-07-01

    The position and the way of operation of the ETH hybrid III drive system in an Otto engine, an electric motor, a flywheel and an infinitely variable wide-range transmission are presented. The consumption values for gasoline and electric power are shown for constant drive and in city cycles. The achievable conservation of 40% at gasoline operation is not limited to one cycle and shows the robustness of this measure to improve partial load operation. The sensitiveness towards the evaluated current generation is shown by means of the autarkic charge operation. (orig.) [German] Es wird die Anordnung und die Betriebsweise des ETH-Hybrid III Antriebes mit einem Ottomotor, einem Elektromotor, einem Schwungrad und einem stufenlosen Weitbereichsgetriebe dargestellt. Es werden die Verbrauchswerte bei Konstantfahrt und in Stadtzyklen sowohl fuer Benzin und Strom aufgezeigt. Die erzielbaren 40% Verbrauchseinsparung im Benzinbetrieb ist nicht nur auf einen Zyklus beschraenkt und zeigt die Robustheit dieser Teillastverbesserungsmassnahme auf. Anhand des autarken Ladebetriebes wird die Sensitivitaet gegenueber der betrachteten Stromherstellung aufgezeigt. (orig.)

  2. Further validation of artificial neural network-based emissions simulation models for conventional and hybrid electric vehicles.

    Science.gov (United States)

    Tóth-Nagy, Csaba; Conley, John J; Jarrett, Ronald P; Clark, Nigel N

    2006-07-01

    With the advent of hybrid electric vehicles, computer-based vehicle simulation becomes more useful to the engineer and designer trying to optimize the complex combination of control strategy, power plant, drive train, vehicle, and driving conditions. With the desire to incorporate emissions as a design criterion, researchers at West Virginia University have developed artificial neural network (ANN) models for predicting emissions from heavy-duty vehicles. The ANN models were trained on engine and exhaust emissions data collected from transient dynamometer tests of heavy-duty diesel engines then used to predict emissions based on engine speed and torque data from simulated operation of a tractor truck and hybrid electric bus. Simulated vehicle operation was performed with the ADVISOR software package. Predicted emissions (carbon dioxide [CO2] and oxides of nitrogen [NO(x)]) were then compared with actual emissions data collected from chassis dynamometer tests of similar vehicles. This paper expands on previous research to include different driving cycles for the hybrid electric bus and varying weights of the conventional truck. Results showed that different hybrid control strategies had a significant effect on engine behavior (and, thus, emissions) and may affect emissions during different driving cycles. The ANN models underpredicted emissions of CO2 and NO(x) in the case of a class-8 truck but were more accurate as the truck weight increased.

  3. FORECASTING OF PERFORMANCE EVALUATION OF NEW VEHICLES

    Directory of Open Access Journals (Sweden)

    O. S. Krasheninin

    2016-12-01

    Full Text Available Purpose. The research work focuses on forecasting of performance evaluation of the tractive and non-tractive vehicles that will satisfy and meet the needs and requirements of the railway industry, which is constantly evolving. Methodology. Analysis of the technical condition of the existing fleet of rolling stock (tractive and non-tractive of Ukrainian Railways shows a substantial reduction that occurs in connection with its moral and physical wear and tear, as well as insufficient and limited purchase of new units of the tractive and non-tractive rolling stock in the desired quantity. In this situation there is a necessity of search of the methods for determination of rolling stock technical characteristics. One of such urgent and effective measures is to conduct forecasting of the defining characteristics of the vehicles based on the processes of their reproduction in conditions of limited resources using a continuous exponential function. The function of the growth rate of the projected figure degree for the vehicle determines the logistic characteristic that with unlimited resources has the form of an exponent, and with low ones – that of a line. Findings. The data obtained according to the proposed method allowed determining the expected (future value, that is the ratio of load to volume of the body for non-tractive rolling stock (gondola cars and weight-to-power for tractive rolling stock, the degree of forecast reliability and the standard forecast error, which show high prediction accuracy for the completed procedure. As a result, this will allow estimating the required characteristics of vehicles in the forecast year with high accuracy. Originality. The concept of forecasting the characteristics of the vehicles for decision-making on the evaluation of their prospects was proposed. Practical value. The forecasting methodology will reliably determine the technical parameters of tractive and non-tractive rolling stock, which will meet

  4. Hybrid Map-Based Navigation Method for Unmanned Ground Vehicle in Urban Scenario

    Directory of Open Access Journals (Sweden)

    Huiyan Chen

    2013-07-01

    Full Text Available To reduce the data size of metric map and map matching computational cost in unmanned ground vehicle self-driving navigation in urban scenarios, a metric-topological hybrid map navigation system is proposed in this paper. According to the different positioning accuracy requirements, urban areas are divided into strong constraint (SC areas, such as roads with lanes, and loose constraint (LC areas, such as intersections and open areas. As direction of the self-driving vehicle is provided by traffic lanes and global waypoints in the road network, a simple topological map is fit for the navigation in the SC areas. While in the LC areas, the navigation of the self-driving vehicle mainly relies on the positioning information. Simultaneous localization and mapping technology is used to provide a detailed metric map in the LC areas, and a window constraint Markov localization algorithm is introduced to achieve accurate position using laser scanner. Furthermore, the real-time performance of the Markov algorithm is enhanced by using a constraint window to restrict the size of the state space. By registering the metric maps into the road network, a hybrid map of the urban scenario can be constructed. Real unmanned vehicle mapping and navigation tests demonstrated the capabilities of the proposed method.

  5. Electric and Hybrid Vehicles Program 18th annual report to Congress for Fiscal Year 1994

    Science.gov (United States)

    1995-04-01

    The Department remains focused on the technologies that are critical to making electric and hybrid vehicles commercially viable and competitive with current production gasoline-fueled vehicles in performance, reliability, and affordability. During Fiscal Year 1994, significant progress was made toward fulfilling the intent of Congress. The Department and the United States Advanced Battery Consortium (a partnership of the three major domestic automobile manufacturers) continued to work together and to focus the efforts of battery developers on the battery technologies that are most likely to be commercialized in the near term. Progress was made in industry cost-shared contracts toward demonstrating the technical feasibility of fuel cells for passenger bus and light duty vehicle applications. Two industry teams which will develop hybrid vehicle propulsion technologies have been selected through competitive procurement and have initiated work, in Fiscal Year 1994. In addition, technical studies and program planning continue, as required by the Energy Policy Act of 1992, to achieve the goals of reducing the transportation sector dependence on imported oil, reducing the level of environmentally harmful emissions, and enhancing industrial productivity and competitiveness.

  6. Dynamic simulation of urban hybrid electric vehicles; Dynamische Simulation von Stadthybridfahrzeugen

    Energy Technology Data Exchange (ETDEWEB)

    Winke, Florian; Bargende, Michael [Stuttgart Univ. (Germany). Inst. fuer Verbrennungsmotoren und Kraftfahrwesen (IVK)

    2013-09-15

    As a result of the rising requirements on the development process of modern vehicles, simulation models for the prediction of fuel efficiency have become an irreplaceable tool in the automotive industry. Especially for the design of hybrid electric drivetrains, the increasingly short development cycles can only be met by the use of efficient simulation models. At the IVK of the University of Stuttgart, different approaches to simulating the longitudinal dynamics of hybrid electric vehicles were analysed and compared within the presented project. The focus of the investigations was on urban operation. The objective was to develop a hybrid vehicle concept that allows an equitable comparison with pure battery electric vehicles. (orig.)

  7. Energy control strategy for parallel hydrostatic transmission hybrid vehicles

    Institute of Scientific and Technical Information of China (English)

    SUN Hui; JIANG Ji-hai; WANG Xin

    2009-01-01

    Aimed at the relatively lower energy density and complicated coordinating operation between two power sources, a special energy control strategy is required to maximize the fuel saving potential. Then a new type of configuration for hydrostatic transmission hybrid vehicles (PHHV) and the selection criterion for impor-tant components are proposed. Based on the optimization of planet gear transmission ratio and the analysis of op-timal energy distribution for the proposed PHHV on a representative urban driving cycle, a fuzzy torque control strategy and a braking energy regeneration strategy are designed and developed to realize the real-time control of energy for the proposed PHHV. Simulation results demonstrate that the energy control strategy effectively im-proves the fuel economy of PHHV.

  8. Numerical simulation of active track tensioning system for autonomous hybrid vehicle

    Science.gov (United States)

    Mȩżyk, Arkadiusz; Czapla, Tomasz; Klein, Wojciech; Mura, Gabriel

    2017-05-01

    One of the most important components of a high speed tracked vehicle is an efficient suspension system. The vehicle should be able to operate both in rough terrain for performance of engineering tasks as well as on the road with high speed. This is especially important for an autonomous platform that operates either with or without human supervision, so that the vibration level can rise compared to a manned vehicle. In this case critical electronic and electric parts must be protected to ensure the reliability of the vehicle. The paper presents a dynamic parameters determination methodology of suspension system for an autonomous high speed tracked platform with total weight of about 5 tonnes and hybrid propulsion system. Common among tracked vehicles suspension solutions and cost-efficient, the torsion-bar system was chosen. One of the most important issues was determining optimal track tensioning - in this case an active hydraulic system was applied. The selection of system parameters was performed with using numerical model based on multi-body dynamic approach. The results of numerical analysis were used to define parameters of active tensioning control system setup. LMS Virtual.Lab Motion was used for multi-body dynamics numerical calculation and Matlab/SIMULINK for control system simulation.

  9. The Impact of Hybrid Electric Vehicles Incentives on Demand and the Determinants of Hybrid-Vehicle Adoption

    Science.gov (United States)

    Riggieri, Alison

    According to the Energy Information Administration, transportation currently accounts for over 60% of U.S. oil demand (E.I.A. 2010). Improving automobile energy efficiency could therefore reduce oil consumption and the negative environmental effects of automobile use. Subsidies for energy-efficient technologies such as hybrid-electric vehicles have gained political popularity since their introduction into the market and therefore have been implemented with increasing frequency. After the introduction of hybrid-electric vehicles into the U.S. market, the federal government initially implemented a 2000 federal tax deduction for these vehicles (later increased to a 3500 credit). Many states followed, offering various exemptions, such as high-occupancy vehicle (HOV) lane use, and excise-tax, sales-tax, and income-tax exemptions. Because not all states have implemented these subsidies, this policy topic is an ideal candidate for an outcome evaluation using an observational study postulation. States adopt incentives for different reasons based on factors that make adoption more attractive, however, so it is first necessary to identify these differences that predict policy adoption. This allows for the evaluative work to control for self selection bias. Three classes of internal determinants of policy adoption, political context, problem severity, and institutional support, and one type of external diffusion factor, are tested using logistic regression. Results suggest that the number of neighboring states that have already adopted incentives are consistently a determinant of diffusion for all three types of incentives test, HOV lane exemptions, sales-tax exemptions, and income-tax exemptions. In terms of internal factors, constituent support, a type of political context, predicts, sale-tax, income-tax, and HOV lane exemptions, but that the other two classes of determinants, problem severity and institutional support, were not universally significant across types of

  10. High-performance computers for unmanned vehicles

    Science.gov (United States)

    Toms, David; Ettinger, Gil J.

    2005-10-01

    The present trend of increasing functionality onboard unmanned vehicles is made possible by rapid advances in high-performance computers (HPCs). An HPC is characterized by very high computational capability (100s of billions of operations per second) contained in lightweight, rugged, low-power packages. HPCs are critical to the processing of sensor data onboard these vehicles. Operations such as radar image formation, target tracking, target recognition, signal intelligence signature collection and analysis, electro-optic image compression, and onboard data exploitation are provided by these machines. The net effect of an HPC is to minimize communication bandwidth requirements and maximize mission flexibility. This paper focuses on new and emerging technologies in the HPC market. Emerging capabilities include new lightweight, low-power computing systems: multi-mission computing (using a common computer to support several sensors); onboard data exploitation; and large image data storage capacities. These new capabilities will enable an entirely new generation of deployed capabilities at reduced cost. New software tools and architectures available to unmanned vehicle developers will enable them to rapidly develop optimum solutions with maximum productivity and return on investment. These new technologies effectively open the trade space for unmanned vehicle designers.

  11. Technology Roadmaps - Electric and plug-in hybrid electric vehicles (EV/PHEV)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2011-06-15

    The mass deployment of electric and plug-in hybrid electric vehicles (EVs and PHEVs) that rely on low greenhouse gas (GHG) emission electricity generation has great potential to significantly reduce the consumption of petroleum and other high CO2-emitting transportation fuels. The vision of the Electric and Plug-in Hybrid (EV/PHEV) Vehicles Roadmap is to achieve by 2050 the widespread adoption and use of EVs and PHEVs, which together represent more than 50% of annual LDV (light duty vehicle) sales worldwide. In addition to establishing a vision, this roadmap sets strategic goals to achieve it, and identifies the steps that need to be taken to accomplish these goals. This roadmap also outlines the roles and collaboration opportunities for different stakeholders and shows how government policy can support the overall achievement of the vision. The strategic goals for attaining the widespread adoption and use of EVs and PHEVs worldwide by 2050 cover the development of the EV/PHEV market worldwide through 2030 and involve targets that align with global targets to stabilise GHG concentrations. These technology-specific goals include the following: Set targets for electric-drive vehicle sales; Develop coordinated strategies to support the market introduction of electric-drive vehicles; Improve industry understanding of consumer needs and behaviours; Develop performance metrics for characterising vehicles; Foster energy storage RD and D initiatives to reduce costs and address resource-related issues; and, Develop and implement recharging infrastructure. The roadmap outlines additional recommendations that must be considered in order to successfully meet the technology milestones and strategic goals. These recommendations include the following: Use a comprehensive mix of policies that provide a clear framework and balance stakeholder interests; Engage in international collaboration efforts; and, Address policy and industry needs at a national level. The IEA will work in an

  12. Future Potential of Hybrid and Diesel Powertrains in the U.S. Light-duty Vehicle Market

    Energy Technology Data Exchange (ETDEWEB)

    Greene, D.L.

    2004-08-23

    Diesel and hybrid technologies each have the potential to increase light-duty vehicle fuel economy by a third or more without loss of performance, yet these technologies have typically been excluded from technical assessments of fuel economy potential on the grounds that hybrids are too expensive and diesels cannot meet Tier 2 emissions standards. Recently, hybrid costs have come down and the few hybrid makes available are selling well. Diesels have made great strides in reducing particulate and nitrogen oxide emissions, and are likely though not certain to meet future standards. In light of these developments, this study takes a detailed look at the market potential of these two powertrain technologies and their possible impacts on light-duty vehicle fuel economy. A nested multinomial logit model of vehicle choice was calibrated to 2002 model year sales of 930 makes, models and engine-transmission configurations. Based on an assessment of the status and outlook for the two technologies, market shares were predicted for 2008, 2012 and beyond, assuming no additional increase in fuel economy standards or other new policy initiatives. Current tax incentives for hybrids are assumed to be phased out by 2008. Given announced and likely introductions by 2008, hybrids could capture 4-7% and diesels 2-4% of the light-duty market. Based on our best guesses for further introductions, these shares could increase to 10-15% for hybrids and 4-7% for diesels by 2012. The resulting impacts on fleet average fuel economy would be about +2% in 2008 and +4% in 2012. If diesels and hybrids were widely available across vehicle classes, makes, and models, they could capture 40% or more of the light-duty vehicle market.

  13. Preliminary Assessment of Plug-in Hybrid Electric Vehicles on Wind Energy Markets

    Energy Technology Data Exchange (ETDEWEB)

    Short, W.; Denholm, P.

    2006-04-01

    This report examines a measure that may potentially reduce oil use and also more than proportionately reduce carbon emissions from vehicles. The authors present a very preliminary analysis of plug-in hybrid electric vehicles (PHEVs) that can be charged from or discharged to the grid. These vehicles have the potential to reduce gasoline consumption and carbon emissions from vehicles, as well as improve the viability of renewable energy technologies with variable resource availability. This paper is an assessment of the synergisms between plug-in hybrid electric vehicles and wind energy. The authors examine two bounding cases that illuminate this potential synergism.

  14. Development of hybrid electric vehicle powertrain test system based on virtue instrument

    Science.gov (United States)

    Xu, Yanmin; Guo, Konghui; Chen, Liming

    2017-05-01

    Hybrid powertrain has become the standard configuration of some automobile models. The test system of hybrid vehicle powertrain was developed based on virtual instrument, using electric dynamometer to simulate the work of engines, to test the motor and control unit of the powertrain. The test conditions include starting, acceleration, and deceleration. The results show that the test system can simulate the working conditions of the hybrid electric vehicle powertrain under various conditions.

  15. Study on the combined influence of battery models and sizing strategy for hybrid and battery-based electric vehicles

    DEFF Research Database (Denmark)

    Pinto, Cláudio; Barreras, Jorge V.; de Castro, Ricardo

    2017-01-01

    This paper presents a study of the combined influence of battery models and sizing strategy for hybrid and battery-based electric vehicles. In particular, the aim is to find the number of battery (and supercapacitor) cells to propel a light vehicle to run two different standard driving cycles....... Despite the same tendency, when a hybrid vehicle is taken into account, the influence of the battery models is dependent on the sizing strategy. In this work, two sizing strategies are evaluated: dynamic programming and filter-based. For the latter, the complexity of the battery model has a clear....... Three equivalent circuit models are considered to simulate the battery electrical performance: linear static, non-linear static and non-linear with first-order dynamics. When dimensioning a battery-based vehicle, less complex models may lead to a solution with more battery cells and higher costs...

  16. Near-term hybrid vehicle program, phase 1. Appendix B: Design trade-off studies report. Volume 2: Supplement to design trade-off studies

    Science.gov (United States)

    1979-01-01

    Results of studies leading to the preliminary design of a hybrid passenger vehicle which is projected to have the maximum potential for reducing petroleum consumption in the near term are presented. Heat engine/electric hybrid vehicle tradeoffs, assessment of battery power source, and weight and cost analysis of key components are among the topics covered. Performance of auxiliary equipment, such as power steering, power brakes, air conditioning, lighting and electrical accessories, heating and ventilation is discussed along with the selection of preferred passenger compartment heating procedure for the hybrid vehicle. Waste heat from the engine, thermal energy storage, and an auxiliary burner are among the approaches considered.

  17. Optimization of batteries for plug-in hybrid electric vehicles

    Science.gov (United States)

    English, Jeffrey Robb

    This thesis presents a method to quickly determine the optimal battery for an electric vehicle given a set of vehicle characteristics and desired performance metrics. The model is based on four independent design variables: cell count, cell capacity, state-of-charge window, and battery chemistry. Performance is measured in seven categories: cost, all-electric range, maximum speed, acceleration, battery lifetime, lifetime greenhouse gas emissions, and charging time. The performance of each battery is weighted according to a user-defined objective function to determine its overall fitness. The model is informed by a series of battery tests performed on scaled-down battery samples. Seven battery chemistries were tested for capacity at different discharge rates, maximum output power at different charge levels, and performance in a real-world automotive duty cycle. The results of these tests enable a prediction of the performance of the battery in an automobile. Testing was performed at both room temperature and low temperature to investigate the effects of battery temperature on operation. The testing highlighted differences in behavior between lithium, nickel, and lead based batteries. Battery performance decreased with temperature across all samples with the largest effect on nickel-based chemistries. Output power also decreased with lead acid batteries being the least affected by temperature. Lithium-ion batteries were found to be highly efficient (>95%) under a vehicular duty cycle; nickel and lead batteries have greater losses. Low temperatures hindered battery performance and resulted in accelerated failure in several samples. Lead acid, lead tin, and lithium nickel alloy batteries were unable to complete the low temperature testing regime without losing significant capacity and power capability. This is a concern for their applicability in electric vehicles intended for cold climates which have to maintain battery temperature during long periods of inactivity

  18. OPTIMAL TORQUE CONTROL STRATEGY FOR PARALLEL HYBRID ELECTRIC VEHICLE WITH AUTOMATIC MECHANICAL TRANSMISSION

    Institute of Scientific and Technical Information of China (English)

    GU Yanchun; YIN Chengliang; ZHANG Jianwu

    2007-01-01

    In parallel hybrid electrical vehicle (PHEV) equipped with automatic mechanical transmission (AMT), the driving smoothness and the clutch abrasion are the primary considerations for powertrain control during gearshift and clutch operation. To improve these performance indexes of PHEV, a coordinated control system is proposed through the analyzing of HEV powertrain dynamic characteristics. Using the method of minimum principle, the input torque of transmission is optimized to improve the driving sinoothness of vehicle. Using the methods of fuzzy logic and fuzzy-PID, the engaging speed of clutch and the throttle opening of engine are manipulated to ensure the smoothness of clutch engagement and reduce the abrasion of clutch friction plates. The motor provides the difference between the required input torque of transmission and the torque transmitted through clutch plates. Results of simulation and experiments show that the proposed control strategy performs better than the contrastive control system, the smoothness of driving and the abrasion of clutch can be improved simultaneously.

  19. Review on Automotive Power Generation System on Plug-in Hybrid Electric Vehicles & Electric Vehicles

    Directory of Open Access Journals (Sweden)

    Leong Yap Wee

    2016-01-01

    Full Text Available Regenerative braking is a function to recharge power bank on the Plug-in electric vehicles (PHEV and electric vehicles (EV. The weakness of this system is, it can only perform its function when the vehicle is slowing down or by stepping the brake foot pedal. In other words, the electricity recharging system is inconsistent, non-continuous and geography dependent. To overcome the weakness of the regenerative braking system, it is suggested that to apply another generator which is going to be parallel with the regenerative braking system so that continuous charging can be achieved. Since the ironless electricity generator has a less counter electromotive force (CEMF comparing to an ironcored electricity generator and no cogging torque. Applying the ironless electricity generator parallel to the regenerative braking system is seen one of the options which creates sustainable charging system compared to cored electricity generator.

  20. Genomic Prediction of Barley Hybrid Performance

    Directory of Open Access Journals (Sweden)

    Norman Philipp

    2016-07-01

    Full Text Available Hybrid breeding in barley ( L. offers great opportunities to accelerate the rate of genetic improvement and to boost yield stability. A crucial requirement consists of the efficient selection of superior hybrid combinations. We used comprehensive phenotypic and genomic data from a commercial breeding program with the goal of examining the potential to predict the hybrid performances. The phenotypic data were comprised of replicated grain yield trials for 385 two-way and 408 three-way hybrids evaluated in up to 47 environments. The parental lines were genotyped using a 3k single nucleotide polymorphism (SNP array based on an Illumina Infinium assay. We implemented ridge regression best linear unbiased prediction modeling for additive and dominance effects and evaluated the prediction ability using five-fold cross validations. The prediction ability of hybrid performances based on general combining ability (GCA effects was moderate, amounting to 0.56 and 0.48 for two- and three-way hybrids, respectively. The potential of GCA-based hybrid prediction requires that both parental components have been evaluated in a hybrid background. This is not necessary for genomic prediction for which we also observed moderate cross-validated prediction abilities of 0.51 and 0.58 for two- and three-way hybrids, respectively. This exemplifies the potential of genomic prediction in hybrid barley. Interestingly, prediction ability using the two-way hybrids as training population and the three-way hybrids as test population or vice versa was low, presumably, because of the different genetic makeup of the parental source populations. Consequently, further research is needed to optimize genomic prediction approaches combining different source populations in barley.

  1. A Pilot Study of Pedestrians with Visual Impairments Detecting Traffic Gaps and Surges Containing Hybrid Vehicles.

    Science.gov (United States)

    Emerson, Robert Wall; Naghshineh, Koorosh; Hapeman, Julie; Wiener, William

    2011-03-01

    The increasing number of hybrid and quiet internal combustion engine vehicles may impact the travel abilities of pedestrians who are blind. Pedestrians who rely on auditory cues for structuring their travel may face challenges in making crossing decisions in the presence of quiet vehicles. This article describes results of initial studies looking at the crossing decisions of pedestrians who are blind at an uncontrolled crossing (no traffic control) and a light controlled intersection. The presence of hybrid vehicles was a factor in each situation. At the uncontrolled crossing, Toyota hybrids were most difficult to detect but crossing decisions were made more often in small gaps ended by a Honda hybrid. These effects were seen only at speed under 20 mph. At the light controlled intersection, parallel surges of traffic were most difficult to detect when made up only of a Ford Escape hybrid. Results suggest that more controlled studies of vehicle characteristics impacting crossing decisions of pedestrians who are blind are warranted.

  2. Solving the vehicle routing problem by a hybrid meta-heuristic algorithm

    OpenAIRE

    Yousefikhoshbakht, Majid; Khorram, Esmaile

    2012-01-01

    The vehicle routing problem (VRP) is one of the most important combinational optimization problems that has nowadays received much attention because of its real application in industrial and service problems. The VRP involves routing a fleet of vehicles, each of them visiting a set of nodes such that every node is visited by exactly one vehicle only once. So, the objective is to minimize the total distance traveled by all the vehicles. This paper presents a hybrid two-phase algorithm called s...

  3. EMI Measurement and Mitigation Testing for the ARPA Hybrid Electric Vehicle Program

    Science.gov (United States)

    1996-08-27

    will be a more realistic approach for evaluating the EMI radiated from the electric vehicles . Vehicle Converter TyJ:!e OJ:!en-Field Screen Room...radiation from the electric vehicles considered were motor controllers, de to de converters , power steering motors, brake vacuum pumps, distribution...the ARPA Hybrid Electric Vehicle Program Anthony B. Bruno Engineering and Technical Services Department Oscar R. Zelaya Submarine Electromagnetic

  4. Design comparison of single phase outer and inner-rotor hybrid excitation flux switching motor for hybrid electric vehicles

    Science.gov (United States)

    Mazlan, Mohamed Mubin Aizat; Sulaiman, Erwan; Husin, Zhafir Aizat; Othman, Syed Muhammad Naufal Syed; Khan, Faisal

    2015-05-01

    In hybrid excitation machines (HEMs), there are two main flux sources which are permanent magnet (PM) and field excitation coil (FEC). These HEMs have better features when compared with the interior permanent magnet synchronous machines (IPMSM) used in conventional hybrid electric vehicles (HEVs). Since all flux sources including PM, FEC and armature coils are located on the stator core, the rotor becomes a single piece structure similar with switch reluctance machine (SRM). The combined flux generated by PM and FEC established more excitation fluxes that are required to produce much higher torque of the motor. In addition, variable DC FEC can control the flux capabilities of the motor, thus the machine can be applied for high-speed motor drive system. In this paper, the comparisons of single-phase 8S-4P outer and inner rotor hybrid excitation flux switching machine (HEFSM) are presented. Initially, design procedures of the HEFSM including parts drawing, materials and conditions setting, and properties setting are explained. Flux comparisons analysis is performed to investigate the flux capabilities at various current densities. Then the flux linkages of PM with DC FEC of various DC FEC current densities are examined. Finally torque performances are analyzed at various armature and FEC current densities for both designs. As a result, the outer-rotor HEFSM has higher flux linkage of PM with DC FEC and higher average torque of approximately 10% when compared with inner-rotor HEFSM.

  5. Smith Newton Vehicle Performance Evaluation -- Gen 2 -- Cumulative; Energy Efficiency & Renewable Energy (EERE), Vehicle Technologies Office (VTO)

    Energy Technology Data Exchange (ETDEWEB)

    None

    2014-10-01

    The Fleet Test and Evaluation Team at the U.S. Department of Energy's National Renewable Energy Laboratory is evaluating and documenting the performance of electric and plug-in hybrid electric drive systems in medium-duty trucks across the nation. U.S. companies participating in this evaluation project received funding from the American Recovery and Reinvestment Act to cover part of the cost of purchasing these vehicles. Through this project, Smith Electric Vehicles is building and deploying 500 all-electric medium-duty trucks that will be deployed by a variety of companies in diverse climates across the country.

  6. Energy management of electric and hybrid vehicles dependent on powertrain configuration

    Science.gov (United States)

    Varga, Bogdan

    2012-06-01

    Electric and hybrid vehicles are going to become the most reliable source of transport for future years. The CO2 and NOx targets in Euro 6 normative puts the producers of vehicles in a dilemma, whether to adapt the internal combustion engines further, or to develop hybrid or electric power trains that are going to reach the pollution limit of the future norms or to go below that. Before acting a well-developed strategy in determining the optimum power flow has to be developed by producers; CRUISE software is a tool with the unique and special characteristics to determine the optimum in this highly important area. Whether electric vehicle, electric vehicle with range extender or a hybrid with CVT or planetary gearbox, the complexity of the mathematical modules remains the same, giving the developer the possibility to create complex functions and distinctive characteristics for each component of the vehicle. With such a powerful tool it becomes extremely easy to evaluate the energy flow in all directions, from electric machine to the battery, from electric machine to the power generator, and from the electric machine to the internal combustion engine. Applying to the (Electric Vehicle, Electric Vehicle with Range Extender, Hybrid vehicle with CVT, Hybrid vehicle with planetary gear set) the ECE-15 in a virtual environment (urban driving cycle) the simulation results show a different usage, rate of storage and efficiency concerning the energy, this being dependent of the power train configuration in most part.

  7. A Hybrid Vehicle Detection Method Based on Viola-Jones and HOG + SVM from UAV Images

    Directory of Open Access Journals (Sweden)

    Yongzheng Xu

    2016-08-01

    Full Text Available A new hybrid vehicle detection scheme which integrates the Viola-Jones (V-J and linear SVM classifier with HOG feature (HOG + SVM methods is proposed for vehicle detection from low-altitude unmanned aerial vehicle (UAV images. As both V-J and HOG + SVM are sensitive to on-road vehicles’ in-plane rotation, the proposed scheme first adopts a roadway orientation adjustment method, which rotates each UAV image to align the roads with the horizontal direction so the original V-J or HOG + SVM method can be directly applied to achieve fast detection and high accuracy. To address the issue of descending detection speed for V-J and HOG + SVM, the proposed scheme further develops an adaptive switching strategy which sophistically integrates V-J and HOG + SVM methods based on their different descending trends of detection speed to improve detection efficiency. A comprehensive evaluation shows that the switching strategy, combined with the road orientation adjustment method, can significantly improve the efficiency and effectiveness of the vehicle detection from UAV images. The results also show that the proposed vehicle detection method is competitive compared with other existing vehicle detection methods. Furthermore, since the proposed vehicle detection method can be performed on videos captured from moving UAV platforms without the need of image registration or additional road database, it has great potentials of field applications. Future research will be focusing on expanding the current method for detecting other transportation modes such as buses, trucks, motors, bicycles, and pedestrians.

  8. Testing Low-Energy, High-Power Energy Storage Alternatives in a Full-Hybrid Vehicle (Presentation)

    Energy Technology Data Exchange (ETDEWEB)

    Cosgrove, J.; Gonger, J.

    2014-01-01

    Automakers have been mass producing hybrid electric vehicles (HEVs) for well over a decade, and the technology has proven to be very effective at reducing per-vehicle gasoline use. However, the battery cost in HEVs contribute to higher incremental cost of HEVs (a few thousand dollars) than the cost of comparable conventional vehicles, which has limited HEV market penetration. Significant cost reductions/performance improvements to the energy storage system (ESS) can improve the vehicle-level cost vs. benefit relationship for HEVs. Such an improvement could lead to larger HEV market penetration and greater aggregate gasoline savings. After significant analysis by the National Renewable Energy Laboratory (NREL), the United States Advanced Battery Consortium (USABC) and Department of Energy (DOE) Energy Storage program suggested a new set of requirements for ESS for power-assist HEVs for cost reduction without impacting performance and fuel economy significantly. With support from DOE, NREL has developed an HEV test platform for in-vehicle performance and fuel economy validation testing of the hybrid system using such LEESS devices. This poster will describe development of the LEESS HEV test platform, and LEESS laboratory as well as in-vehicle evaluation results. The first LEESS technology tested was lithium-ion capacitors (LICs) - i.e., asymmetric electrochemical energy storage devices possessing one electrode with battery-type characteristics (lithiated graphite) and one with ultracapacitor-type characteristics (carbon). We will discuss the performance and fuel saving results with LIC with comparison with original NiMH battery.

  9. Investigation of Control Model in a New Series Hybrid Hydraulic/Electric System for Heavy Vehicles Based on Energy Efficiency

    Directory of Open Access Journals (Sweden)

    Soroosh Mahmoodi

    2016-01-01

    Full Text Available An interesting model which was able to recuperate and reuse braking energy was investigated. It was named series hybrid hydraulic/electric system (SHHES. The innovated model was presented for heavy hybrid vehicles to overcome the existing drawbacks of single energy storage sources. The novelty of this paper was investigation of a new series hybrid vehicle with triple sources, combustion engine, electric motor, and hydraulic sources. It was simulated with MATLAB-Simulink and different operational mode of control system was investigated. The aim was to improve the efficiency of the energy-loading components in the power train system and the transmission system independently. The ability to store and reuse the kinetic energy was added to the system to prevent energy wasting while the vehicle was braking. Control models were also investigated to realize suitable control algorithms to offer the best efficiency in system components for different vehicle conditions. The torque control strategy based on fuzzy logic controller was proposed to achieve better vehicle performance while the fuel consumption was minimized. The results implied efficient storage and usage in the transmission system. A small vehicle model experimentally verified the simulation results.

  10. Flexural performance of woven hybrid composites

    Science.gov (United States)

    Maslinda, A. B.; Majid, M. S. Abdul; Dan-mallam, Y.; Mazawati, M.

    2016-07-01

    This paper describes the experimental investigation of the flexural performance of natural fiber reinforced polymer composites. Hybrid composites consist of interwoven kenaf/jute and kenaf/hemp fibers was prepared by infusion process using epoxy as polymer matrix. Woven kenaf, jute and hemp composites were also prepared for comparison. Both woven and hybrid composites were subjected to three point flexural test. From the result, bending resistance of hybrid kenaf/jute and kenaf/hemp composites was higher compared to their individual fiber. Hybridization with high strength fiber such as kenaf enhanced the capability of jute and hemp fibers to withstand bending load. Interlocking between yarns in woven fabric make pull out fibers nearly impossible and increase the flexural performance of the hybrid composites.

  11. Solving the Vehicle Routing Problem with Stochastic Demands via Hybrid Genetic Algorithm-Tabu Search

    Directory of Open Access Journals (Sweden)

    Z. Ismail

    2008-01-01

    Full Text Available This study considers a version of the stochastic vehicle routing problem where customer demands are random variables with known probability distribution. A new scheme based on a hybrid GA and Tabu Search heuristic is proposed for this problem under a priori approach with preventive restocking. The relative performance of the proposed HGATS is compared to each GA and TS alone, on a set of randomly generated problems following some discrete probability distributions. The problem data are inspired by real case of VRPSD in waste collection. Results from the experiment show the advantages of the proposed algorithm that are its robustness and better solution qualities resulted.

  12. The impact of hybrid and electric powertrains on vehicle dynamics, control systems and energy regeneration

    Science.gov (United States)

    Crolla, David A.; Cao, Dongpu

    2012-01-01

    The background to the development of so-called green or low-carbon vehicles continues to be relentlessly reviewed throughout the literature. Research and development (R&D) on novel powertrains - often based on electric or hybrid technology - has been dominating automotive engineering around the world for the first two decades of the twenty-first century. Inevitably, most of the R&D has focused on powertrain technology and energy management challenges. However, as new powertrains have started to become commercially available, their effects on other aspects of vehicle performance have become increasingly important. This article focuses on the review of the integration of new electrified powertrains with the vehicle dynamics and control systems. The integration effects can be discussed in terms of three generic aspects of vehicle motions, namely roll-plane, pitch-plane and yaw-plane, which however are strongly coupled. The topic on regenerative suspension is further discussed. It quickly becomes clear that this integration poses some interesting future engineering challenges to maintain currently accepted levels of ride, handling and stability performance.

  13. Phase I of the Near Term Hybrid Passenger Vehicle Development Program. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1980-10-01

    The results of Phase I of the Near-Term Hybrid Vehicle Program are summarized. This phase of the program ws a study leading to the preliminary design of a 5-passenger hybrid vehicle utilizing two energy sources (electricity and gasoline/diesel fuel) to minimize petroleum usage on a fleet basis. This report presents the following: overall summary of the Phase I activity; summary of the individual tasks; summary of the hybrid vehicle design; summary of the alternative design options; summary of the computer simulations; summary of the economic analysis; summary of the maintenance and reliability considerations; summary of the design for crash safety; and bibliography.

  14. Hybrid vehicle system studies and optimized hydrogen engine design

    Energy Technology Data Exchange (ETDEWEB)

    Smith, J.R.; Aceves, S.

    1995-04-26

    We have done system studies of series hydrogen hybrid automobiles that approach the PNGV design goal of 34 km/liter (80 mpg), for 384 km (240 mi) and 608 km (380 mi) ranges. Our results indicate that such a vehicle appears feasible using an optimized hydrogen engine. We have evaluated the impact of various on-board storage options on fuel economy. Experiments in an available engine at the Sandia CRF demonstrated NO{sub x} emissions of 10 to 20 ppM at an equivalence ratio of 0.4, rising to about 500 ppm at 0.5 equivalence ratio using neat hydrogen. Hybrid simulation studies indicate that exhaust NO{sub x} concentrations must be less than 180 ppM to meet the 0.2 g/mile ULEV or Federal Tier II emissions regulations. LLNL has designed and fabricated a first generation optimized hydrogen engine head for use on an existing Onan engine. This head features 15:1 compression ratio, dual ignition, water cooling, two valves and open quiescent combustion chamber to minimize heat transfer losses. Initial testing shows promise of achieving an indicated efficiency of nearly 50% and emissions of less than 100 ppM NO{sub x}. Hydrocarbons and CO are to be measured, but are expected to be very low since their only source is engine lubricating oil. A successful friction reduction program on the Onan engine should result in a brake thermal efficiency of about 42% compared to today`s gasoline engines of 32%. Based on system studies requirements, the next generation engine will be about 2 liter displacement and is projected to achieve 46% brake thermal efficiency with outputs of 15 kW for cruise and 40 kW for hill climb.

  15. Near Term Hybrid Passenger Vehicle Development Program. Phase I, Final report. Appendix B: trade-off studies. Volume II. Appendices. [SPEC-78

    Energy Technology Data Exchange (ETDEWEB)

    Traversi, M.; Piccolo, R.

    1979-06-15

    These appendices to the Near Term Hybrid Vehicle Trade-off Studies reports present data on the SPEC-78 computer model for simulating vehicle performance, fuel economy, and exhaust emissions; propulsion system alternatives; lead-acid and sodium-sulfur batteries; and production cost estimates. (LCL)

  16. Ductility Performance of Hybrid Fibre Reinforced Concrete

    OpenAIRE

    S. Eswari; P.N. Raghunath; Suguna, K

    2008-01-01

    This study presents a study on the ductility performance of hybrid fibre reinforced concrete. The influence of fibre content on the ductility performance of hybrid fibre reinforced concrete specimens having different fibre volume fractions was investigated. The parameters of investigation included modulus of rupture, ultimate load, service load, ultimate and service load deflection, crack width, energy ductility and deflection ductility. A total of 27 specimens, 100×100×500 mm, were tested to...

  17. A Hybrid Genetic Algorithm for Vehicle Routing Problem with Complex Constraints

    Institute of Scientific and Technical Information of China (English)

    CHEN Yan; LU Jun; LI Zeng-zhi

    2006-01-01

    Most research on the Vehicle Routing Problem (VRP) is focused on standard conditions, which is not suitable for specific cases. A Hybrid Genetic Algorithm is proposed to solve a Vehicle Routing Problem (VRP) with complex side constraints. A novel coding method is designed especially for side constraints. A greedy algorithm combined with a random algorithm is introduced to enable the diversity of the initial population, as well as a local optimization algorithm employed to improve the searching efficiency. In order to evaluate the performance, this mechanism has been implemented in an oil distribution center, the experimental and executing results show that the near global optimal solution can be easily and quickly obtained by this method, and the solution is definitely satisfactory in the VRP application.

  18. A control strategy for parallel hybrid electric vehicles based on extremum seeking

    Science.gov (United States)

    Dinçmen, Erkin; Aksun Güvenç, Bilin

    2012-02-01

    An energy management control strategy for a parallel hybrid electric vehicle based on the extremum-seeking method for splitting torque between the internal combustion engine and electric motor is proposed in this paper. The control strategy has two levels of operation: the upper and lower levels. The upper level decision-making controller chooses the vehicle operation mode such as the simultaneous use of the internal combustion engine and electric motor, use of only the electric motor, use of only the internal combustion engine, or regenerative braking. In the simultaneous use of the internal combustion engine and electric motor, the optimum energy distribution between these two sources of energy is determined via the extremum-seeking algorithm that searches for maximum drivetrain efficiency. A dynamic programming solution is also obtained and used to form a benchmark for performance evaluation of the proposed method based on extremum seeking. Detailed simulations using a realistic model are presented to illustrate the effectiveness of the methodology.

  19. Real-time optimization power-split strategy for hybrid electric vehicles

    Institute of Scientific and Technical Information of China (English)

    XIA ChaoYing; ZHANG Cong

    2016-01-01

    Energy management strategies based on optimal control theory can achieve minimum fuel consumption for hybrid electric vehicles,but the requirement for driving cycles known in prior leads to a real-time problem.A real-time optimization power-split strategy is proposed based on linear quadratic optimal control.The battery state of charge sustainability and fuel economy are ensured by designing a quadratic performance index combined with two rules.The engine power and motor power of this strategy are calculated in real-time based on current system state and command,and not related to future driving conditions.The simulation results in ADVISOR demonstrate that,under the conditions of various driving cycles,road slopes and vehicle parameters,the proposed strategy significantly improves fuel economy,which is very close to that of the optimal control based on Pontryagin's minimum principle,and greatly reduces computation complexity.

  20. Prospects for the application of GaN power devices in hybrid electric vehicle drive systems

    Science.gov (United States)

    Su, Ming; Chen, Chingchi; Rajan, Siddharth

    2013-07-01

    GaN, a wide bandgap semiconductor successfully implemented in optical and high-speed electronic devices, has gained momentum in recent years for power electronics applications. Along with rapid progress in material and device processing technologies, high-voltage transistors over 600 V have been reported by a number of teams worldwide. These advances make GaN highly attractive for the growing market of electrified vehicles, which currently employ bipolar silicon devices in the 600-1200 V class for the traction inverter. However, to capture this billion-dollar power market, GaN has to compete with existing IGBT products and deliver higher performance at comparable or lower cost. This paper reviews key achievements made by the GaN semiconductor industry, requirements of the automotive electric drive system and remaining challenges for GaN power devices to fit in the inverter application of hybrid vehicles.

  1. Initial position estimation strategy for a surface permanent magnet synchronous motor used in hybrid electric vehicles

    Institute of Scientific and Technical Information of China (English)

    Bing TIAN; Qun-tao AN; Li SUN‡; Dong-yang SUN; Jian-dong DUAN

    2016-01-01

    A novel nonlinear model for surface permanent magnet synchronous motors (SPMSMs) is adopted to estimate the initial rotor position for hybrid electric vehicles (HEVs). Usually, the accuracy of initial rotor position estimation for SPMSMs relies on magnetic saturation. To verify the saturation effect, the transient finite element analysis (FEA) model is presented first. Hybrid injection of a static voltage vector (SVV) superimposed with a high-frequency rotating voltage is proposed. The magnetic polarity is roughly identified with the aid of the saturation evaluation function, based on which an estimation of the position is performed. During this procedure, a special demodulation is suggested to extract signals of iron core saturation and rotor position. A Simulink/MATLAB platform for SPMSMs at standstill is constituted, and the effectiveness of the proposed strategy is verified. The proposed method is also validated by experimental results of an SPMSM drive.

  2. Design and Comparison of Power Systems for a Fuel Cell Hybrid Electric Vehicle

    DEFF Research Database (Denmark)

    Schaltz, Erik; Rasmussen, Peter Omand

    2008-01-01

    In a fuel cell hybrid electric vehicle (FCHEV) the fuel cell stack is assisted by one or more energy storage devices. Thereby the system cost, mass, and volume can be decreased, and a significant better performance can be obtained. Two often used energy storage devices are the battery...... and ultracapacitor. In this paper a design method to design the power system of a FCHEV is presented. 10 cases of combining the fuel stack with either the battery, ultracapacitor, or both are investigated. The system volume, mass, efficiency, and battery lifetime are also compared. It is concluded that when...... ultracapacitors are the only energy storage device the system becomes too big and heavy. A fuel cell/battery/ultracapacitor hybrid provides the longest life time of the batteries. If the fuel cell stack power is too small, the system will be big, heavy, and have a poor efficiency....

  3. Plug-in hybrid electric vehicles: battery degradation, grid support, emissions, and battery size tradeoffs

    Science.gov (United States)

    Peterson, Scott B.

    Plug-in hybrid electric vehicles (PHEVs) may become a substantial part of the transportation fleet in a decade or two. This dissertation investigates battery degradation, and how introducing PHEVs may influence the electricity grid, emissions, and petroleum use in the US. It examines the effects of combined driving and vehicle-to-grid (V2G) usage on lifetime performance of commercial Li-ion cells. The testing shows promising capacity fade performance: more than 95% of the original cell capacity remains after thousands of driving days. Statistical analyses indicate that rapid vehicle motive cycling degraded the cells more than slower, V2G galvanostatic cycling. These data are used to examine the potential economic implications of using vehicle batteries to store grid electricity generated at off-peak hours for off-vehicle use during peak hours. The maximum annual profit with perfect market information and no battery degradation cost ranged from ˜US140 to 250 in the three cities. If measured battery degradation is applied the maximum annual profit decreases to ˜10-120. The dissertation predicts the increase in electricity load and emissions due to vehicle battery charging in PJM and NYISO with the current generators, with a 50/tonne CO2 price, and with existing coal generators retrofitted with 80% CO2 capture. It also models emissions using natural gas or wind+gas. We examined PHEV fleet percentages between 0.4 and 50%. Compared to 2020 CAFE standards, net CO2 emissions in New York are reduced by switching from gasoline to electricity; coal-heavy PJM shows smaller benefits unless coal units are fitted with CCS or replaced with lower CO2 generation. NOX is reduced in both RTOs, but there is upward pressure on SO2 emissions or allowance prices under a cap. Finally the dissertation compares increasing the all-electric range (AER) of PHEVs to installing charging infrastructure. Fuel use was modeled with National Household Travel Survey and Greenhouse Gasses, Regulated

  4. Estimation of CO2 reduction by parallel hard-type power hybridization for gasoline and diesel vehicles.

    Science.gov (United States)

    Oh, Yunjung; Park, Junhong; Lee, Jong Tae; Seo, Jigu; Park, Sungwook

    2017-10-01

    The purpose of this study is to investigate possible improvements in ICEVs by implementing fuzzy logic-based parallel hard-type power hybrid systems. Two types of conventional ICEVs (gasoline and diesel) and two types of HEVs (gasoline-electric, diesel electric) were generated using vehicle and powertrain simulation tools and a Matlab-Simulink application programming interface. For gasoline and gasoline-electric HEV vehicles, the prediction accuracy for four types of LDV models was validated by conducting comparative analysis with the chassis dynamometer and OBD test data. The predicted results show strong correlation with the test data. The operating points of internal combustion engines and electric motors are well controlled in the high efficiency region and battery SOC was well controlled within ±1.6%. However, for diesel vehicles, we generated virtual diesel-electric HEV vehicle because there is no available vehicles with similar engine and vehicle specifications with ICE vehicle. Using a fuzzy logic-based parallel hybrid system in conventional ICEVs demonstrated that HEVs showed superior performance in terms of fuel consumption and CO2 emission in most driving modes. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Optimization of Key Parameters of Energy Management Strategy for Hybrid Electric Vehicle Using DIRECT Algorithm

    Directory of Open Access Journals (Sweden)

    Jingxian Hao

    2016-11-01

    Full Text Available The rule-based logic threshold control strategy has been frequently used in energy management strategies for hybrid electric vehicles (HEVs owing to its convenience in adjusting parameters, real-time performance, stability, and robustness. However, the logic threshold control parameters cannot usually ensure the best vehicle performance at different driving cycles and conditions. For this reason, the optimization of key parameters is important to improve the fuel economy, dynamic performance, and drivability. In principle, this is a multiparameter nonlinear optimization problem. The logic threshold energy management strategy for an all-wheel-drive HEV is comprehensively analyzed and developed in this study. Seven key parameters to be optimized are extracted. The optimization model of key parameters is proposed from the perspective of fuel economy. The global optimization method, DIRECT algorithm, which has good real-time performance, low computational burden, rapid convergence, is selected to optimize the extracted key parameters globally. The results show that with the optimized parameters, the engine operates more at the high efficiency range resulting into a fuel savings of 7% compared with non-optimized parameters. The proposed method can provide guidance for calibrating the parameters of the vehicle energy management strategy from the perspective of fuel economy.

  6. Electromagnetic Analysis and Design of Switched Reluctance Double-Rotor Machine for Hybrid Electric Vehicles

    Directory of Open Access Journals (Sweden)

    Shouliang Han

    2014-10-01

    Full Text Available The double-rotor machine is a kind of multiple input and output electromechanical energy transducer with two electrical ports and two mechanical ports, which is an ideal transmission system for hybrid electric vehicles and has a series of advantages such as integration of power and energy, high efficiency and compaction. In this paper, a switched reluctance double-rotor machine (SRDRM is proposed for hybrid electric vehicles, while no conductor or PM in the middle rotor. This machine not only inherits the merits of switched reluctance machine, such as simple salient rotor structure, high reliability and wide speed range, but also can avoid the outer rotor’s cooling problem effectively. By using an equivalent magnetic circuit model, the function of middle rotor yoke is analyzed. Electromagnetic analyses of the SRDRM are performed with analytical calculations and 2-D finite element methods, including the effects of main parameters on performance. Finally, a 4.4 kW prototype machine is designed and manufactured, and the tests are performed, which validate the proposed design method.

  7. Multi-objective decoupling algorithm for active distance control of intelligent hybrid electric vehicle

    Science.gov (United States)

    Luo, Yugong; Chen, Tao; Li, Keqiang

    2015-12-01

    The paper presents a novel active distance control strategy for intelligent hybrid electric vehicles (IHEV) with the purpose of guaranteeing an optimal performance in view of the driving functions, optimum safety, fuel economy and ride comfort. Considering the complexity of driving situations, the objects of safety and ride comfort are decoupled from that of fuel economy, and a hierarchical control architecture is adopted to improve the real-time performance and the adaptability. The hierarchical control structure consists of four layers: active distance control object determination, comprehensive driving and braking torque calculation, comprehensive torque distribution and torque coordination. The safety distance control and the emergency stop algorithms are designed to achieve the safety and ride comfort goals. The optimal rule-based energy management algorithm of the hybrid electric system is developed to improve the fuel economy. The torque coordination control strategy is proposed to regulate engine torque, motor torque and hydraulic braking torque to improve the ride comfort. This strategy is verified by simulation and experiment using a forward simulation platform and a prototype vehicle. The results show that the novel control strategy can achieve the integrated and coordinated control of its multiple subsystems, which guarantees top performance of the driving functions and optimum safety, fuel economy and ride comfort.

  8. Feasibility study and techno-economic analysis of an SOFC/battery hybrid system for vehicle applications

    Science.gov (United States)

    Aguiar, P.; Brett, D. J. L.; Brandon, N. P.

    A feasibility study and techno-economic analysis for a hybrid power system intended for vehicular traction applications has been performed. The hybrid consists of an intermediate temperature solid oxide fuel cell (IT-SOFC) operating at 500-800 °C and a sodium-nickel chloride (ZEBRA) battery operating at 300 °C. Such a hybrid system has the benefits of extended range and fuel flexibility (due to the IT-SOFC), high power output and rapid response time (due to the battery). The above hybrid has been compared to a fuel cell-only, a battery-only and an ICE vehicle. It is shown that the capital cost associated with a fuel cell-only vehicle is still much higher than that of any other power source option and that a battery-only option would potentially encounter weight and volume limitations, particularly for long drive times. It is concluded that increasing drive time per day decreases substantially the payback time in relation to an ICE vehicle running on gasoline and thus that the hybrid vehicle is an economically attractive option for commercial vehicles with long drive times. In the case where the battery has reached volume production prices at £70 kWh -1 and current fuel duty values remain unchanged then a payback time gasoline equivalent fuel economy of 25.1 km L -1, almost twice that of a gasoline fuelled ICE vehicle of the same size, and CO 2 emissions of 71.6 g km -1, well below any new technology target set so far. It is therefore recommended that a SOFC/ZEBRA demonstration be built to further explore its viability.

  9. Hybrid secure beamforming and vehicle selection using hierarchical agglomerative clustering for C-RAN-based vehicle-to-infrastructure communications in vehicular cyber-physical systems

    National Research Council Canada - National Science Library

    Xu, Dongyang; Ren, Pinyi; Du, Qinghe; Sun, Li

    2016-01-01

    ...–enhancing mechanisms in the physical layer. In this article, we propose a hybrid beamforming and vehicle-selection framework for vehicle-to-infrastructure communications to broadcast high-speed confidential messages...

  10. Penalty for Fuel Economy - System Level Perspectives on the Reliability of Hybrid Electric Vehicles During Normal and Graceful Degradation Operation

    Science.gov (United States)

    2008-08-27

    the issue of system level reliability in hybrid electric vehicles from a quantitative point of view. It also introduces a quantitative meaning to the...internal combustion engine based vehicle and later transition of those to hybrid electric vehicles . The paper intends to drive the point that in HEV...Generally people tend to think only in terms of fuel economy and additional cost premium on vehicle price while discussing about hybrid electric

  11. Study on Power Switching Process of a Hybrid Electric Vehicle with In-Wheel Motors

    Directory of Open Access Journals (Sweden)

    Shaohua Wang

    2016-01-01

    Full Text Available Hybrid electric vehicles with in-wheel motors (IWM achieve a variety of driving modes by two power sources—the engine and the IWM. One of the critical problems that exists in such vehicle is the different transient characteristics between the engine and the IWM. Therefore, switching processes between the power sources have noteworthy impacts on vehicle dynamics and driving performance. For the particular switching process of the pure electric mode to the engine driving mode, a specific control strategy coordinating clutch torque, motor torque, and engine torque was proposed to solve drivability issues caused by inconsistent responses of different power sources during the mode transition. The specific switching process could be described as follows: the engine was started by IWM with the clutch serving as a key enabling actuator, dynamic torque compensation through IWM was implemented after engine started, and, meanwhile, engine speed was controlled to track the target speed through the closed loop PID control strategy. The bench tests results showed that the vehicle jerk caused during mode switching was reduced and fast and smooth mode switching was realized, which leads to the improvement of vehicle’s riding comfort.

  12. The Swedish electric and hybrid vehicle R, D and D program. Seminar October 1998

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-12-01

    This publication presents a selection of the ongoing projects in the form of abstracts, within the KFB RDD-program Electric- and Hybrid Vehicles. These projects were presented at a project manager seminar 20-21 October 1998

  13. Real World Operation of a Complex Plug-in Hybrid Electric Vehicle: Analysis of Its CO 2 Emissions and Operating Costs

    OpenAIRE

    2014-01-01

    Plug-in hybrid electric vehicles (pHEVs) could represent the stepping stone to move towards a more sustainable mobility and combine the benefits of electric powertrains with the high range capability of conventional vehicles. Nevertheless, despite the huge potential in terms of CO 2 emissions reduction, the performance of such vehicles has to be deeply investigated in real world driving conditions considering also the CO 2 production related to battery recharge which, on the contrary, is curr...

  14. Impact of Plug-in Hybrid Electric Vehicle on Power Distribution System Considering Vehicle to Grid Technology: A Review

    Directory of Open Access Journals (Sweden)

    A. Aljanad

    2015-08-01

    Full Text Available This study presents a comprehensive review of the potential technical impacts of plug-in hybrid electric vehicles on power distribution and transmission systems. This review also presents various power quality impacts on the power system in several aspects. This review conveys a detailed analysis of electric vehicle charging strategies on electrical distribution networks. The two charging aspects (coordinated/uncoordinated and intelligent scheduling of charging are discussed in terms of their impacts on power systems. Vehicle to grid technology are investigated, elaborated and evaluated based on technical, suitability and configuration aspects.

  15. A comparative study of hybrid electric vehicle fuel consumption over diverse driving cycles

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    Environmental pollution and declining resources of fossil fuels in recent years,have increased demand for better fuel economy and less pollution for ground transportation.Among the alternative solutions provided by researchers in recent decades,hybrid electric vehicles consisted of an internal combustion engine and an electric motor have been considered as a promising solution in the short-term.In the present study,fuel economy characteristics of a parallel hybrid electric vehicle are investigated by using ...

  16. Electromagnetic Analysis and Design of Switched Reluctance Double-Rotor Machine for Hybrid Electric Vehicles

    OpenAIRE

    Shouliang Han; Shumei Cui; Liwei Song; Ching Chuen Chan

    2014-01-01

    The double-rotor machine is a kind of multiple input and output electromechanical energy transducer with two electrical ports and two mechanical ports, which is an ideal transmission system for hybrid electric vehicles and has a series of advantages such as integration of power and energy, high efficiency and compaction. In this paper, a switched reluctance double-rotor machine (SRDRM) is proposed for hybrid electric vehicles, while no conductor or PM in the middle rotor. This machine not onl...

  17. Hybrid Electric Vehicle Experimental Model with CAN Network Real Time Control

    Directory of Open Access Journals (Sweden)

    RATOI, M.

    2010-05-01

    Full Text Available In this paper an experimental model with a distributed control system of a hybrid electrical vehicle is presented. A communication CAN network of high speed (1 Mbps assures a distributed control of the all components. The modeling and the control of different operating regimes are realized on an experimental test-bench of a hybrid electrical vehicle. The experimental results concerning the variations of the mains variables (currents, torques, speeds are presented.

  18. Energy Management Strategies based on efficiency map for Fuel Cell Hybrid Vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Feroldi, Diego; Serra, Maria; Riera, Jordi [Institut de Robotica i Informatica Industrial (CSIC-UPC), C. Llorens i Artigas 4, 08028 Barcelona (Spain)

    2009-05-15

    The addition of a fast auxiliary power source like a supercapacitor bank in fuel cell-based vehicles has a great potential because permits a significant reduction of the hydrogen consumption and an improvement of the vehicle efficiency. The Energy Management Strategies, commanding the power split between the power sources in the hybrid arrangement to fulfil the power requirement, perform a fundamental role to achieve this objective. In this work, three strategies based on the knowledge of the fuel cell efficiency map are proposed. These strategies are attractive due to the relative simplicity of the real time implementation and the good performance. The strategies are tested both in a simulation environment and in an experimental setup using a 1.2-kW PEM fuel cell. The results, in terms of hydrogen consumption, are compared with an optimal case, which is assessed trough an advantageous technique also introduced in this work and with a pure fuel cell vehicle as well. This comparative reveals high efficiency and good performance, allowing to save up to 26% of hydrogen in urban scenarios. (author)

  19. Optimal Energy Management for a Complex Hybrid Electric Vehicle:Tolerating Power-loss of Motor

    Institute of Scientific and Technical Information of China (English)

    ZHANG Pei-zhi; YIN Cheng-liang; ZHANG Yong; WU Zhi-wei

    2009-01-01

    The energy management may perform well under normal conditions, but may lead to poor behavior under abnormal situations. To tackle this problem, an optimal control strategy called rule-based equivalent fuel consumption minimization strategy (RECMS) is developed for a new complex hybrid electric vehicle (CHEV).It optimizes the energy efficiency and drive performance to cater for normal and power-loss operations of the tractive motor. Firstly, the strategy formulates a novel objective function based on the equivalent fuel concept.By accounting for the actual fuel cost, the equivalent fuel cost for the electric machines and virtual fuel cost for the drivability, the cost function is obtained. Furthermore, some penalty factors are presented to optimize the performance target. Finally, experiments for a practical CHEV are performed to validate a simulation model.Then simulations are carried out for both rule-based and RECMS. The results show that the optimal energy management is working well.

  20. MATHEMATICAL MODEL OF HYBRID ELECTRIC VEHICLE HIGH-VOLTAGE BATTERY IDENTIFICATION

    Directory of Open Access Journals (Sweden)

    S. Serikov

    2010-01-01

    Full Text Available The mathematical model of hybrid electric vehicle NiMH high-voltage battery is obtained. This model allows to explore the interaction of vehicle tractive electric drive and high-voltage battery at the electric motive power motion and in the process of recuperation of braking kinetic energy.

  1. Hybrid self organizing migrating algorithm - Scatter search for the task of capacitated vehicle routing problem

    Science.gov (United States)

    Davendra, Donald; Zelinka, Ivan; Senkerik, Roman; Jasek, Roman; Bialic-Davendra, Magdalena

    2012-11-01

    One of the new emerging application strategies for optimization is the hybridization of existing metaheuristics. The research combines the unique paradigms of solution space sampling of SOMA and memory retention capabilities of Scatter Search for the task of capacitated vehicle routing problem. The new hybrid heuristic is tested on the Taillard sets and obtains good results.

  2. A New Supercapacitor and Li-ion Battery Hybrid System for Electric Vehicle in ADVISOR

    Science.gov (United States)

    Peng, Xiao; Shuhai, Quan; Changjun, Xie

    2017-02-01

    The supercapacitor (SC) and Li-ion battery(BT) hybrid energy storage system(HESS) electric vehicle(EV) is gaining universal attention. The topology is of importance for the SC/BT HESS. A new SC/BT topology HESS with a rule-based energy management strategy for EV was proposed. The BT pack is connected directly to the DC link via a controlled switch. The SC pack is connected to the DC link via a controlled switch. A uni-directional DC/DC converter is connected between the SC pack and the BT pack. The braking regeneration energy is all harvested by the SC pack. The output power of BT pack is limited. The different SC/BT configurations with varied BT maximum Ah capacity factor and SC maximum capacity factor are simulated in ADVISOR. Simulation results show that BT maximum Ah capacity factor has little impact on vehicle acceleration performance and maximum speed. SC maximum capacity factor has significant impact on vehicle acceleration performance and maximum speed. The fuel economy isn’t affected.

  3. Autonomous prediction of performance-based standards for heavy vehicles

    CSIR Research Space (South Africa)

    Berman, R

    2015-11-01

    Full Text Available determined by physical testing or detailed vehicle simulations, both of which are costly and time consuming processes. This paper presents a data driven, detailed model to predict the low-speed performance of an articulated vehicle, given only the vehicle...

  4. Series Hybrid Electric Vehicle Power System Optimization Based on Genetic Algorithm

    Science.gov (United States)

    Zhu, Tianjun; Li, Bin; Zong, Changfu; Wu, Yang

    2017-09-01

    Hybrid electric vehicles (HEV), compared with conventional vehicles, have complex structures and more component parameters. If variables optimization designs are carried on all these parameters, it will increase the difficulty and the convergence of algorithm program, so this paper chooses the parameters which has a major influence on the vehicle fuel consumption to make it all work at maximum efficiency. First, HEV powertrain components modelling are built. Second, taking a tandem hybrid structure as an example, genetic algorithm is used in this paper to optimize fuel consumption and emissions. Simulation results in ADVISOR verify the feasibility of the proposed genetic optimization algorithm.

  5. Design tradeoff studies and sensitivity analysis, appendices B1 - B4. [hybrid electric vehicles

    Science.gov (United States)

    1979-01-01

    Documentation is presented for a program which separately computes fuel and energy consumption for the two modes of operation of a hybrid electric vehicle. The distribution of daily travel is specified as input data as well as the weights which the component driving cycles are given in each of the composite cycles. The possibility of weight reduction through the substitution of various materials is considered as well as the market potential for hybrid vehicles. Data relating to battery compartment weight distribution and vehicle handling analysis is tabulated.

  6. Hybrid nanostructured materials for high-performance electrochemical capacitors

    KAUST Repository

    Yu, Guihua

    2013-03-01

    The exciting development of advanced nanostructured materials has driven the rapid growth of research in the field of electrochemical energy storage (EES) systems which are critical to a variety of applications ranging from portable consumer electronics, hybrid electric vehicles, to large industrial scale power and energy management. Owing to their capability to deliver high power performance and extremely long cycle life, electrochemical capacitors (ECs), one of the key EES systems, have attracted increasing attention in the recent years since they can complement or even replace batteries in the energy storage field, especially when high power delivery or uptake is needed. This review article describes the most recent progress in the development of nanostructured electrode materials for EC technology, with a particular focus on hybrid nanostructured materials that combine carbon based materials with pseudocapacitive metal oxides or conducting polymers for achieving high-performance ECs. This review starts with an overview of EES technologies and the comparison between various EES systems, followed by a brief description of energy storage mechanisms for different types of EC materials. This review emphasizes the exciting development of both hybrid nanomaterials and novel support structures for effective electrochemical utilization and high mass loading of active electrode materials, both of which have brought the energy density of ECs closer to that of batteries while still maintaining their characteristic high power density. Last, future research directions and the remaining challenges toward the rational design and synthesis of hybrid nanostructured electrode materials for next-generation ECs are discussed. © 2012 Elsevier Ltd.

  7. OPTIMIZATION APPROACH FOR HYBRID ELECTRIC VEHICLE POWERTRAIN DESIGN

    Institute of Scientific and Technical Information of China (English)

    Zhu Zhengli; Zhang Jianwu; Yin Chengliang

    2005-01-01

    According to bench test results of fuel economy and engine emission for the real powertrain system of EQ7200HEV car, a 3-D performance map oriented quasi-linear model is developed for the configuration of the powertrain components such as internal combustion engine, traction electric motor, transmission, main retarder and energy storage unit. A genetic algorithm based on optimization procedure is proposed and applied for parametric optimization of the key components by consideration of requirements of some driving cycles. Through comparison of numerical results obtained by the genetic algorithm with those by traditional optimization methods, it is shown that the present approach is quite effective and efficient in emission reduction and fuel economy for the design of the hybrid electric car powertrain.

  8. PEMFC Optimization Strategy with Auxiliary Power Source in Fuel Cell Hybrid Vehicle

    Directory of Open Access Journals (Sweden)

    Tinton Dwi Atmaja

    2012-02-01

    Full Text Available Page HeaderOpen Journal SystemsJournal HelpUser You are logged in as...aulia My Journals My Profile Log Out Log Out as UserNotifications View (27 new ManageJournal Content SearchBrowse By Issue By Author By Title Other JournalsFont SizeMake font size smaller Make font size default Make font size largerInformation For Readers For Authors For LibrariansKeywords CBPNN Displacement FLC LQG/LTR Mixed PMA Ventilation bottom shear stress direct multiple shooting effective fuzzy logic geoelectrical method hourly irregular wave missile trajectory panoramic image predator-prey systems seawater intrusion segmentation structure development pattern terminal bunt manoeuvre Home About User Home Search Current Archives ##Editorial Board##Home > Vol 23, No 1 (2012 > AtmajaPEMFC Optimization Strategy with Auxiliary Power Source in Fuel Cell Hybrid VehicleTinton Dwi Atmaja, Amin AminAbstractone of the present-day implementation of fuel cell is acting as main power source in Fuel Cell Hybrid Vehicle (FCHV. This paper proposes some strategies to optimize the performance of Polymer Electrolyte Membrane Fuel Cell (PEMFC implanted with auxiliary power source to construct a proper FCHV hybridization. The strategies consist of the most updated optimization method determined from three point of view i.e. Energy Storage System (ESS, hybridization topology and control system analysis. The goal of these strategies is to achieve an optimum hybridization with long lifetime, low cost, high efficiency, and hydrogen consumption rate improvement. The energy storage system strategy considers battery, supercapacitor, and high-speed flywheel as the most promising alternative auxiliary power source. The hybridization topology strategy analyzes the using of multiple storage devices injected with electronic components to bear a higher fuel economy and cost saving. The control system strategy employs nonlinear control system to optimize the ripple factor of the voltage and the current

  9. Engine control strategy for a series hybrid electric vehicle incorporating load-leveling and computer controlled energy management

    Energy Technology Data Exchange (ETDEWEB)

    Hochgraf, C.G.; Ryan, M.J.; Wiegman, H.L. [Univ. of Wisconsin, Madison, WI (United States)

    1996-09-01

    This paper identifies important engine, alternator and battery characteristics needed for determining an appropriate engine control strategy for a series hybrid electric vehicle. Examination of these characteristics indicates that a load-leveling strategy applied to the small engine will provide better fuel economy than a power-tracking scheme. An automatic energy management strategy is devised whereby a computer controller determines the engine-alternator turn-on and turn-off conditions and controls the engine-alternator autonomously. Battery state of charge is determined from battery voltage and current measurements. Experimental results of the system`s performance in a test vehicle during city driving are presented.

  10. Emissions impacts and benefits of plug-in hybrid electric vehicles and vehicle-to-grid services.

    Science.gov (United States)

    Sioshansi, Ramteen; Denholm, Paul

    2009-02-15

    Plug-in hybrid electric vehicles (PHEVs) have been promoted as a potential technology to reduce emissions of greenhouse gases and other pollutants by using electricity instead of petroleum, and byimproving electric system efficiency by providing vehicle-to-grid (V2G) services. We use an electric power system model to explicitly evaluate the change in generator dispatches resulting from PHEV deployment in the Texas grid, and apply fixed and non-parametric estimates of generator emissions rates, to estimate the resulting changes in generation emissions. We find that by using the flexibility of when vehicles may be charged, generator efficiency can be increased substantially. By changing generator dispatch, a PHEVfleet of up to 15% of light-duty vehicles can actually decrease net generator NOx emissions during the ozone season, despite the additional charging load. By adding V2G services, such as spinning reserves and energy storage, CO2, SO2, and NOx emissions can be reduced even further.

  11. High Performance Monopropellants for Future Planetary Ascent Vehicles Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Physical Sciences Inc. proposes to design, develop, and demonstrate, a novel high performance monopropellant for application in future planetary ascent vehicles. Our...

  12. Graduate Automotive Technology Education (GATE) Program: Center of Automotive Technology Excellence in Advanced Hybrid Vehicle Technology at West Virginia University

    Energy Technology Data Exchange (ETDEWEB)

    Nigle N. Clark

    2006-12-31

    This report summarizes the technical and educational achievements of the Graduate Automotive Technology Education (GATE) Center at West Virginia University (WVU), which was created to emphasize Advanced Hybrid Vehicle Technology. The Center has supported the graduate studies of 17 students in the Department of Mechanical and Aerospace Engineering and the Lane Department of Computer Science and Electrical Engineering. These students have addressed topics such as hybrid modeling, construction of a hybrid sport utility vehicle (in conjunction with the FutureTruck program), a MEMS-based sensor, on-board data acquisition for hybrid design optimization, linear engine design and engine emissions. Courses have been developed in Hybrid Vehicle Design, Mobile Source Powerplants, Advanced Vehicle Propulsion, Power Electronics for Automotive Applications and Sensors for Automotive Applications, and have been responsible for 396 hours of graduate student coursework. The GATE program also enhanced the WVU participation in the U.S. Department of Energy Student Design Competitions, in particular FutureTruck and Challenge X. The GATE support for hybrid vehicle technology enhanced understanding of hybrid vehicle design and testing at WVU and encouraged the development of a research agenda in heavy-duty hybrid vehicles. As a result, WVU has now completed three programs in hybrid transit bus emissions characterization, and WVU faculty are leading the Transportation Research Board effort to define life cycle costs for hybrid transit buses. Research and enrollment records show that approximately 100 graduate students have benefited substantially from the hybrid vehicle GATE program at WVU.

  13. Ductility Performance of Hybrid Fibre Reinforced Concrete

    Directory of Open Access Journals (Sweden)

    S. Eswari

    2008-01-01

    Full Text Available This study presents a study on the ductility performance of hybrid fibre reinforced concrete. The influence of fibre content on the ductility performance of hybrid fibre reinforced concrete specimens having different fibre volume fractions was investigated. The parameters of investigation included modulus of rupture, ultimate load, service load, ultimate and service load deflection, crack width, energy ductility and deflection ductility. A total of 27 specimens, 100×100×500 mm, were tested to study the above parameters. The specimens incorporated 0.0 to 2.0% volume fraction of polyolefin and steel fibres in different proportions. The ductility performance of hybrid fibre reinforced concrete specimens was compared with that of plain concrete. The test results show that addition of 2.0% by volume of hybrid fibres improves the ductility performance appreciably. An adaptive Neuro-Fuzzy based model has been proposed to predict the ductility performance characteristics. A reasonably close agreement has been obtained between the experimental and predicted results.

  14. Parametric Matching of Drivetrain For Parallel Hybrid Electric Vehicle

    National Research Council Canada - National Science Library

    Zhang Zhongwei; Yu Hao; Li Yingli

    2013-01-01

    ...; this thesis presents a simulation analysis of the PHEV and the influence on vehicle characteristic by component parameters of drivetrain, and studies the parametric choice and proper parametric...

  15. Economic Scheduling of Residential Plug-In (Hybrid Electric Vehicle (PHEV Charging

    Directory of Open Access Journals (Sweden)

    Maigha

    2014-03-01

    Full Text Available In the past decade, plug-in (hybrid electric vehicles (PHEVs have been widely proposed as a viable alternative to internal combustion vehicles to reduce fossil fuel emissions and dependence on petroleum. Off-peak vehicle charging is frequently proposed to reduce the stress on the electric power grid by shaping the load curve. Time of use (TOU rates have been recommended to incentivize PHEV owners to shift their charging patterns. Many utilities are not currently equipped to provide real-time use rates to their customers, but can provide two or three staggered rate levels. To date, an analysis of the optimal number of levels and rate-duration of TOU rates for a given consumer demographic versus utility generation mix has not been performed. In this paper, we propose to use the U.S. National Household Travel Survey (NHTS database as a basis to analyze typical PHEV energy requirements. We use Monte Carlo methods to model the uncertainty inherent in battery state-of-charge and trip duration. We conclude the paper with an analysis of a different TOU rate schedule proposed by a mix of U.S. utilities. We introduce a centralized scheduling strategy for PHEV charging using a genetic algorithm to accommodate the size and complexity of the optimization.

  16. A Soft-Switching Inverter for High-Temperature Advanced Hybrid Electric Vehicle Traction Motor Drives

    Energy Technology Data Exchange (ETDEWEB)

    Lai, Jason [Virginia Polytechnic Inst. and State Univ. (Virginia Tech), Blacksburg, VA (United States); Yu, Wensong [Virginia Polytechnic Inst. and State Univ. (Virginia Tech), Blacksburg, VA (United States); Sun, Pengwei [Virginia Polytechnic Inst. and State Univ. (Virginia Tech), Blacksburg, VA (United States); Leslie, Scott [Powerex, Inc., Harrison, OH (United States); Prusia, Duane [Powerex, Inc., Harrison, OH (United States); Arnet, Beat [Azure Dynamics, Oak Park, MI (United States); Smith, Chris [Azure Dynamics, Oak Park, MI (United States); Cogan, Art [Azure Dynamics, Oak Park, MI (United States)

    2012-03-31

    The state-of-the-art hybrid electric vehicles (HEVs) require the inverter cooling system to have a separate loop to avoid power semiconductor junction over temperatures because the engine coolant temperature of 105°C does not allow for much temperature rise in silicon devices. The proposed work is to develop an advanced soft-switching inverter that will eliminate the device switching loss and cut down the power loss so that the inverter can operate at high-temperature conditions while operating at high switching frequencies with small current ripple in low inductance based permanent magnet motors. The proposed tasks also include high-temperature packaging and thermal modeling and simulation to ensure the packaged module can operate at the desired temperature. The developed module will be integrated with the motor and vehicle controller for dynamometer and in-vehicle testing to prove its superiority. This report will describe the detailed technical design of the soft-switching inverters and their test results. The experiments were conducted both in module level for the module conduction and switching characteristics and in inverter level for its efficiency under inductive and dynamometer load conditions. The performance will be compared with the DOE original specification.

  17. Uncertainty analysis and design optimization of hybrid rocket motor powered vehicle for suborbital flight

    Directory of Open Access Journals (Sweden)

    Zhu Hao

    2015-06-01

    Full Text Available In this paper, we propose an uncertainty analysis and design optimization method and its applications on a hybrid rocket motor (HRM powered vehicle. The multidisciplinary design model of the rocket system is established and the design uncertainties are quantified. The sensitivity analysis of the uncertainties shows that the uncertainty generated from the error of fuel regression rate model has the most significant effect on the system performances. Then the differences between deterministic design optimization (DDO and uncertainty-based design optimization (UDO are discussed. Two newly formed uncertainty analysis methods, including the Kriging-based Monte Carlo simulation (KMCS and Kriging-based Taylor series approximation (KTSA, are carried out using a global approximation Kriging modeling method. Based on the system design model and the results of design uncertainty analysis, the design optimization of an HRM powered vehicle for suborbital flight is implemented using three design optimization methods: DDO, KMCS and KTSA. The comparisons indicate that the two UDO methods can enhance the design reliability and robustness. The researches and methods proposed in this paper can provide a better way for the general design of HRM powered vehicles.

  18. A Hybrid Chaos-Particle Swarm Optimization Algorithm for the Vehicle Routing Problem with Time Window

    Directory of Open Access Journals (Sweden)

    Qi Hu

    2013-04-01

    Full Text Available State-of-the-art heuristic algorithms to solve the vehicle routing problem with time windows (VRPTW usually present slow speeds during the early iterations and easily fall into local optimal solutions. Focusing on solving the above problems, this paper analyzes the particle encoding and decoding strategy of the particle swarm optimization algorithm, the construction of the vehicle route and the judgment of the local optimal solution. Based on these, a hybrid chaos-particle swarm optimization algorithm (HPSO is proposed to solve VRPTW. The chaos algorithm is employed to re-initialize the particle swarm. An efficient insertion heuristic algorithm is also proposed to build the valid vehicle route in the particle decoding process. A particle swarm premature convergence judgment mechanism is formulated and combined with the chaos algorithm and Gaussian mutation into HPSO when the particle swarm falls into the local convergence. Extensive experiments are carried out to test the parameter settings in the insertion heuristic algorithm and to evaluate that they are corresponding to the data’s real-distribution in the concrete problem. It is also revealed that the HPSO achieves a better performance than the other state-of-the-art algorithms on solving VRPTW.

  19. Analysis Platform for Energy Efficiency Enhancement in Hybrid and Full Electric Vehicles

    Directory of Open Access Journals (Sweden)

    NICOLAICA, M.-O.

    2016-02-01

    Full Text Available The current paper presents a new virtual analysis method that is applied both on hybrid and electric vehicle architectures with the purpose of contributing to the improvement of energy efficiency. The study is based on Matlab modeling and simulation. A set of parameters are considered in order to assess the system performance. The benefit is given by the comparative overview obtained after the completed analysis. The effectiveness of the analysis method is confirmed by a sequence of simulation results combined in several case studies. The impulse of the research is given by the fact that the automotive market is focusing on wider simulation techniques and better control strategies that lead to more efficient vehicles. Applying the proposed method during design would improve the battery management and controls strategy. The advantage of this method is that the system behavior with regards to energy efficiency can be evaluated from an early concept phase. The results contribute to the actual necessity of driving more efficient and more environmental friendly vehicles.

  20. Sensorless torque control scheme of induction motor for hybrid electric vehicle

    Institute of Scientific and Technical Information of China (English)

    Yan LIU; Cheng SHAO

    2007-01-01

    In this paper,the sensorless torque robust tracking problem of the induction motor for hybrid electric vehicle(HEV)applications is addressed.Because motor parameter variations in HEV applications are larger than in industrial drive system,the conventional field-oriented control(FOC)provides poor performance.Therefore,a new robust PI-based extension of the FOC controller and a speed-flux observer based on sliding mode and Lyapunov theory are developed in order to Improve the overall performance.Simulation results show that the proposed sensorless torque control scheme is robust with respect to motor parameter variations and loading disturbances.In addition,the operating flux of the motor is chosen optimally to minimize the consumption of electric energy,which results in a significant reduction in energy losses shown by simulations.

  1. Mode Shift Control for a Hybrid Heavy-Duty Vehicle with Power-Split Transmission

    Directory of Open Access Journals (Sweden)

    Kun Huang

    2017-02-01

    Full Text Available Given that power-split transmission (PST is considered to be a major powertrain technology for hybrid heavy-duty vehicles (HDVs, the development and application of PST in the HDVs make mode shift control an essential aspect of powertrain system design. This paper presents a shift schedule design and torque control strategy for a hybrid HDV with PST during mode shift, intended to reduce the output torque variation and improve the shift quality (SQ. Firstly, detailed dynamic models of the hybrid HDV are developed to analyze the mode shift characteristics. Then, a gear shift schedule calculation method including a dynamic shift schedule and an economic shift schedule is provided. Based on the dynamic models and the designed shift schedule, a mode shift performance simulator is built using MATLAB/Simulink, and simulations are carried out. Through analysis of the dynamic equations, it is seen that the inertia torques of the motor–generator lead to the occurrence of transition torque. To avoid the unwanted transition torque, we use a mode shift control strategy that coordinates the motor–generator torque to compensate for the transition torque. The simulation and experimental results demonstrate that the output torque variation during mode shift is effectively reduced by the proposed control strategy, thereby improving the SQ.

  2. Review of composite material applications in the automotive industry for the electric and hybrid vehicle. Annual report, November 1978

    Energy Technology Data Exchange (ETDEWEB)

    Bauer, J.L.

    1979-07-01

    A comprehensive review is made of the state-of-the-art in regard to the use of composite materials for reducing the structural mass of automobiles. Reduction of mass will provide, in addition to other engineering improvements, increased performance/range advantages that are particularly needed in the electric and hybrid vehicle field. Problems to be overcome include the attainment of mass production techniques and the prevention of environmental hazards.

  3. Design of Solar/Electric Powered Hybrid Vehicle (SEPHV System with Charge Pattern Optimization for Energy Cost

    Directory of Open Access Journals (Sweden)

    T.Balamurugan

    2014-01-01

    Full Text Available This paper proposes a Solar Electric Powered Hybrid Vehicle (SEPHV system which solves the major problems of fuel and pollution. An electric vehicle usually uses a battery which has been charged by external electrical power supply. All recent electric vehicles present a drive on AC power supplied motor. An inverter set is required to be connected with the battery through which AC power is converted to DC power. During this conversion many losses take place and also the maintenance cost of the AC System is very high. The proposed topology has the most feasible solar/electric power generation system mounted on the vehicle to charge the battery during all durations. With a view of providing ignited us to develop this “Solar/Electric Powered Hybrid Vehicle” [SEPHV].This multi charging vehicle can charge itself from both solar and electric power. The vehicle is altered out of a Maruti Omni vehicle by replacing its engine with a 1.2HP, 24V Permanent Magnet DC [PMDC] Motor. The Supply to the motor is obtained from a battery set of 12V, 150AH. The household electric supply of 230V is reduced with a step-down transformer to 48V and then it is converted to the DC with a rectifying unit to charge the battery. Two solar panels each with a rating of 230watts are attached to the top of the Vehicle to grab the solar energy and is controlled with a help of charge controller. The SEPHV can be driven by 1.2 HP PMDC motor consisting of two 230 watts PV panel in the voltage rating of 24 V. The power which is absorbed by the PV panel is stored into the four 150 AH 12 V batteries. When there is no presence of sun, electric power supply act as an auxiliary energy source. For controlling speed of the motor, a switch is designed with four tapping, provided with different values of resistance at each tapping. It acts as a speed control switch for Solar/Electric Powered Hybrid Vehicle. This type of technique is to reduce the running cost and increasing the running

  4. Development of ultra-battery for hybrid-electric vehicle applications

    Science.gov (United States)

    Lam, L. T.; Louey, R.

    Transport is one of the largest sources of human-induced greenhouse gas emissions and fossil-fuels consumption. This has lead to a growing demand for hybrid-electric vehicles (HEVs) to reduce air pollution and consumption of fossil fuels. CSIRO Energy Technology has developed the ultra-battery, a new technology that will reduce the cost and boost the performance of batteries in HEVs. The ultra-battery is a hybrid energy-storage device, which combines an asymmetric supercapacitor, and a lead-acid battery in one unit cell, taking the best from both technologies without the need for extra electronic controls. The capacitor will enhance the power and lifespan of the lead-acid battery as it acts as a buffer in discharging and charging. Consequently, this hybrid technology is able to provide and absorb charge rapidly during vehicle acceleration and braking. The ultra-battery has been subjected to a variety of tests. To date, results show that the discharge and charge power of the ultra-battery is ∼50% higher and its cycle-life is at least three times longer than that of the conventional lead-acid counterpart. Furthermore, the ultra-battery is able to be produced as either flooded-electrolyte or valve-regulated designs in the existing lead-acid factory and also able to reconfigure for a variety of applications, such as conventional automobile, power tool, forklift, high-power uninterruptible power supply and remote-area power supply. The prototype ultra-batteries have been constructed and are under laboratory evaluation and field trial. The success of the ultra-battery will obviously make HEVs more affordable and widespread. This, in turn, will reduce greenhouse gas emissions in the urban environment and the consumption of limited supplies of fossil fuels.

  5. Performance evaluation and design of flight vehicle control systems

    CERN Document Server

    Falangas, Eric T

    2015-01-01

    This book will help students, control engineers and flight dynamics analysts to model and conduct sophisticated and systemic analyses of early flight vehicle designs controlled with multiple types of effectors and to design and evaluate new vehicle concepts in terms of satisfying mission and performance goals. Performance Evaluation and Design of Flight Vehicle Control Systems begins by creating a dynamic model of a generic flight vehicle that includes a range of elements from airplanes and launch vehicles to re-entry vehicles and spacecraft. The models may include dynamic effects dealing with structural flexibility, as well as dynamic coupling between structures and actuators, propellant sloshing, and aeroelasticity, and they are typically used for control analysis and design. The book shows how to efficiently combine different types of effectors together, such as aero-surfaces, TVC, throttling engines and RCS, to operate as a system by developing a mixing logic atrix. Methods of trimming a vehicle controll...

  6. PERFORMANCE SIMULATION OF VEHICLES EQUIPPED WITH TRACTION DRIVE CVTS

    Institute of Scientific and Technical Information of China (English)

    Zhang Xianjie; William E.Tobler; Zhang Yi; Zou Zhanjiang

    2005-01-01

    A computer model for the performance simulation of vehicles equipped with traction drive continuously variable transmission (CVT) is presented. The model integrates the traction drive CVT subsystem into an existing overall vehicle system. The characteristics of engine output torque are formulated using neural networks, and torque converter is modeled using lookup tables. Component inputs and outputs are coupled in the dynamic equations and interfaces in the powertrain system. The model simulation can provide evaluation of vehicle performance in drivability, fuel economy and emission levels for various drive ranges prior to the prototyping of the vehicle. As a design tool, the model assists engineers in understanding the effect of powertrain components on vehicle performance and making decisions in the selection of key design parameters. The model is implemented in the MATLAB/Simulink environment. The performance simulation of a test vehicle is included as a numerical example to illustrate the effectiveness of the model.

  7. Obstacle performance of cobalt-enriching crust wheeled mining vehicle

    Institute of Scientific and Technical Information of China (English)

    HUANG Zhong-hua; LIU Shao-jun; XIE Ya

    2006-01-01

    A cobalt-enriching crust mining vehicle with four independent driven wheels was proposed. The influence of center-of-gravity position of mining vehicle on obstacle performance was studied. The results show that the mining vehicle has optimal obstacle performance with center-of-gravity position in the middle of suspension. A virtual prototype based on ADAMS software was built and its obstacle performance was simulated. Simulation results show that the mining vehicle with four independent driven wheels has excellent obstacle performance, the maximum climbing capacity is no less than 30°, the maximal ditch width and shoulder height are no less than wheel radius ofmining vehicle. Thus wheeled mining vehicle is feasible for cobalt-enriching crust commercial mining.

  8. A Study on Control Strategy of Regenerative Braking in the Hydraulic Hybrid Vehicle Based on ECE Regulations

    Directory of Open Access Journals (Sweden)

    Tao Liu

    2013-01-01

    Full Text Available This paper establishes a mathematic model of composite braking in the hydraulic hybrid vehicle and analyzes the constraint condition of parallel regenerative braking control algorithm. Based on regenerative braking system character and ECE (Economic Commission of Europe regulations, it introduces the control strategy of regenerative braking in parallel hydraulic hybrid vehicle (PHHV. Finally, the paper establishes the backward simulation model of the hydraulic hybrid vehicle in Matlab/simulink and makes a simulation analysis of the control strategy of regenerative braking. The results show that this strategy can equip the hydraulic hybrid vehicle with strong brake energy recovery power in typical urban drive state.

  9. Impact of adding artificially generated alert sound to hybrid electric vehicles on their detectability by pedestrians who are blind

    Directory of Open Access Journals (Sweden)

    Dae Shik Kim, PhD

    2012-04-01

    Full Text Available A repeated-measures design with block randomization was used for the study, in which 14 adults with visual impairments attempted to detect three different vehicles: a hybrid electric vehicle (HEV with an artificially generated sound (Vehicle Sound for Pedestrians [VSP], an HEV without the VSP, and a comparable internal combustion engine (ICE vehicle. The VSP vehicle (mean +/– standard deviation [SD] = 38.3 +/– 14.8 m was detected at a significantly farther distance than the HEV (mean +/– SD = 27.5 +/– 11.5 m, t = 4.823, p < 0.001, but no significant difference existed between the VSP and ICE vehicles (mean +/– SD = 34.5 +/– 14.3 m, t = 1.787, p = 0.10. Despite the overall sound level difference between the two test sites (parking lot = 48.7 dBA, roadway = 55.1 dBA, no significant difference in detection distance between the test sites was observed, F(1, 13 = 0.025, p = 0.88. No significant interaction was found between the vehicle type and test site, F(1.31, 16.98 = 0.272, p = 0.67. The findings of the study may help us understand how adding an artificially generated sound to an HEV could affect some of the orientation and mobility tasks performed by blind pedestrians.

  10. Impact of adding artificially generated alert sound to hybrid electric vehicles on their detectability by pedestrians who are blind.

    Science.gov (United States)

    Kim, Dae Shik; Emerson, Robert Wall; Naghshineh, Koorosh; Pliskow, Jay; Myers, Kyle

    2012-01-01

    A repeated-measures design with block randomization was used for the study, in which 14 adults with visual impairments attempted to detect three different vehicles: a hybrid electric vehicle (HEV) with an artificially generated sound (Vehicle Sound for Pedestrians [VSP]), an HEV without the VSP, and a comparable internal combustion engine (ICE) vehicle. The VSP vehicle (mean +/- standard deviation [SD] = 38.3 +/- 14.8 m) was detected at a significantly farther distance than the HEV (mean +/- SD = 27.5 +/- 11.5 m), t = 4.823, p < 0.001, but no significant difference existed between the VSP and ICE vehicles (mean +/- SD = 34.5 +/- 14.3 m), t = 1.787, p = 0.10. Despite the overall sound level difference between the two test sites (parking lot = 48.7 dBA, roadway = 55.1 dBA), no significant difference in detection distance between the test sites was observed, F(1, 13) = 0.025, p = 0.88. No significant interaction was found between the vehicle type and test site, F(1.31, 16.98) = 0.272, p = 0.67. The findings of the study may help us understand how adding an artificially generated sound to an HEV could affect some of the orientation and mobility tasks performed by blind pedestrians.

  11. Novel biofuel formulations for enhanced vehicle performance

    Energy Technology Data Exchange (ETDEWEB)

    Miller, Dennis [Michigan State Univ., East Lansing, MI (United States); Narayan, Ramani [Michigan State Univ., East Lansing, MI (United States); Berglund, Kris [Michigan State Univ., East Lansing, MI (United States); Lira, Carl [Michigan State Univ., East Lansing, MI (United States); Schock, Harold [Michigan State Univ., East Lansing, MI (United States); Jaberi, Farhad [Michigan State Univ., East Lansing, MI (United States); Lee, Tonghun [Michigan State Univ., East Lansing, MI (United States); Anderson, James [Michigan State Univ., East Lansing, MI (United States); Wallington, Timothy [Michigan State Univ., East Lansing, MI (United States); Kurtz, Eric [Michigan State Univ., East Lansing, MI (United States); Ruona, Will; Hass, Heinz

    2013-08-30

    This interdisciplinary research program at Michigan State University, in collaboration with Ford Motor Company, has explored the application of tailored or designed biofuels for enhanced vehicle performance and reduced emissions. The project has included a broad range of experimental research, from chemical and biological formation of advanced biofuel components to multicylinder engine testing of blended biofuels to determine engine performance parameters. In addition, the project included computation modeling of biofuel physical and combustion properties, and simulation of advanced combustion modes in model engines and in single cylinder engines. Formation of advanced biofuel components included the fermentation of five-carbon and six-carbon sugars to n-butanol and to butyric acid, two four-carbon building blocks. Chemical transformations include the esterification of the butyric acid produced to make butyrate esters, and the esterification of succinic acid with n-butanol to make dibutyl succinate (DBS) as attractive biofuel components. The conversion of standard biodiesel, made from canola or soy oil, from the methyl ester to the butyl ester (which has better fuel properties), and the ozonolysis of biodiesel and the raw oil to produce nonanoate fuel components were also examined in detail. Physical and combustion properties of these advanced biofuel components were determined during the project. Physical properties such as vapor pressure, heat of evaporation, density, and surface tension, and low temperature properties of cloud point and cold filter plugging point were examined for pure components and for blends of components with biodiesel and standard petroleum diesel. Combustion properties, particularly emission delay that is the key parameter in compression ignition engines, was measured in the MSU Rapid Compression Machine (RCM), an apparatus that was designed and constructed during the project simulating the compression stroke of an internal combustion

  12. Electric and hybrid electric vehicles: A technology assessment based on a two-stage Delphi study

    Energy Technology Data Exchange (ETDEWEB)

    Vyas, A.D.; Ng, H.K.; Santini, D.J.; Anderson, J.L.

    1997-12-01

    To address the uncertainty regarding future costs and operating attributes of electric and hybrid electric vehicles, a two stage, worldwide Delphi study was conducted. Expert opinions on vehicle attributes, current state of the technology, possible advancements, costs, and market penetration potential were sought for the years 2000, 2010, and 2020. Opinions related to such critical components as batteries, electric drive systems, and hybrid vehicle engines, as well as their respective technical and economic viabilities, were also obtained. This report contains descriptions of the survey methodology, analytical approach, and results of the analysis of survey data, together with a summary of other factors that will influence the degree of market success of electric and hybrid electric vehicle technologies. Responses by industry participants, the largest fraction among all the participating groups, are compared with the overall responses. An evaluation of changes between the two Delphi stages is also summarized. An analysis of battery replacement costs for various types is summarized, and variable operating costs for electric and hybrid vehicles are compared with those of conventional vehicles. A market penetration analysis is summarized, in which projected market shares from the survey are compared with predictions of shares on the basis of two market share projection models that use the cost and physical attributes provided by the survey. Finally, projections of market shares beyond the year 2020 are developed by use of constrained logit models of market shares, statistically fitted to the survey data.

  13. UC Davis Fuel Cell, Hydrogen, and Hybrid Vehicle (FCH2V) GATE Center of Excellence

    Energy Technology Data Exchange (ETDEWEB)

    Erickson, Paul

    2012-05-31

    This is the final report of the UC Davis Fuel Cell, Hydrogen, and Hybrid Vehicle (FCH2V) GATE Center of Excellence which spanned from 2005-2012. The U.S. Department of Energy (DOE) established the Graduate Automotive Technology Education (GATE) Program, to provide a new generation of engineers and scientists with knowledge and skills to create advanced automotive technologies. The UC Davis Fuel Cell, Hydrogen, and Hybrid Vehicle (FCH2V) GATE Center of Excellence established in 2005 is focused on research, education, industrial collaboration and outreach within automotive technology. UC Davis has had two independent GATE centers with separate well-defined objectives and research programs from 1998. The Fuel Cell Center, administered by ITS-Davis, has focused on fuel cell technology. The Hybrid-Electric Vehicle Design Center (HEV Center), administered by the Department of Mechanical and Aeronautical Engineering, has focused on the development of plug-in hybrid technology using internal combustion engines. The merger of these two centers in 2005 has broadened the scope of research and lead to higher visibility of the activity. UC Davis's existing GATE centers have become the campus's research focal points on fuel cells and hybrid-electric vehicles, and the home for graduate students who are studying advanced automotive technologies. The centers have been highly successful in attracting, training, and placing top-notch students into fuel cell and hybrid programs in both industry and government.

  14. Simulation Analysis on Driving Cycle of a Hybrid Electric Vehicle%混合动力汽车行驶工况的仿真分析

    Institute of Scientific and Technical Information of China (English)

    李东东; 程金瑞; 田源玉

    2012-01-01

    Vehicle performance is influenced by actual driving condition directly.For a hybrid electric vehicle,selection of its componemnts and formulation of control strategy are closely related to road driving cycle.Driving cycle of a vehicle is analyzed in this paper.modeling and simulation of a mini hybrid electric vehicle is comducted by using GT-DRIV.The simulation results show that the hybrid electric vehicle has obvious advantages than traditional vehicle in fuel economy.Better electric distribution will be the key point in hybrid electric vehicle design.%汽车的实际行驶条件对汽车性能具有直接影响。对于混合动力汽车,其部件的选型以及控制策略的制定都与道路行驶工况密切相关文章对汽车行驶工况做了相应的分析.利用GT—DRIVE软件对某微型混合动力汽车进行了建模与仿真仿真结果表明,在经济性方面混合动力汽车比传统汽车有明显的优势.如何更好地分配混合动力汽车功率将是混合动力汽车研究的重点.

  15. Cyclic Parameter Refinement of 4S-10 Hybrid Flux-Switching Motor for Lightweight Electric Vehicle

    Science.gov (United States)

    Rani, J. Abd; Sulaiman, E.; Kumar, R.

    2017-08-01

    A great deal of attention has been given to the reduction of lighting the vehicle because the lighter the vehicle the energy consumption is comparatively low. Hence, the lightweight electric vehicle was introduced for lower carbon footprint and the sizing of the vehicle itself. One of the components to reduce the weight of the vehicle is the propulsion system which comprised of electric motor functioning as the source of torque to drive the propulsion system of the machine. This paper presents the refinement methodology for the optimized design of the 4S-10P E-Core hybrid excitation flux switching motor. The purpose of the refinement methodology is to improve the torque production of the optimized motor. The result of the successful improvement of the torque production is justifiable for a lightweight electric vehicle to drive the propulsion system.

  16. A hybrid GA-TS algorithm for open vehicle routing optimization of coal mines material

    Energy Technology Data Exchange (ETDEWEB)

    Yu, S.W.; Ding, C.; Zhu, K.J. [China University of Geoscience, Wuhan (China)

    2011-08-15

    In the open vehicle routing problem (OVRP), the objective is to minimize the number of vehicles and the total distance (or time) traveled. This study primarily focuses on solving an open vehicle routing problem (OVRP) by applying a novel hybrid genetic algorithm and the Tabu search (GA-TS), which combines the GA's parallel computing and global optimization with TS's Tabu search skill and fast local search. Firstly, the proposed algorithm uses natural number coding according to the customer demands and the captivity of the vehicle for globe optimization. Secondly, individuals of population do TS local search with a certain degree of probability, namely, do the local routing optimization of all customer sites belong to one vehicle. The mechanism not only improves the ability of global optimization, but also ensures the speed of operation. The algorithm was used in Zhengzhou Coal Mine and Power Supply Co., Ltd.'s transport vehicle routing optimization.

  17. Aeromechanical stability analysis of a multirotor vehicle with application to hybrid heavy lift helicopter dynamics

    Science.gov (United States)

    Venkatesan, C.; Friedmann, P. P.

    1984-01-01

    The Hybrid Heavy Lift Helicopter (HHLH) is a potential candidate vehicle aimed at providing heavy lift capability at low cost. This vehicle consists of a buoyant envelope attached to a supporting structure. Four rotor systems are also attached to the supporting structure. Nonlinear equations of motion capable of modeling the dynamics of this multi-rotor/support frame/vehicle system have been developed and used to study the fundamental aeromechanical stability characteristics of this class of vehicles. The mechanism of coupling between the blades, supporting structure and rigid body modes is identified and the effect of buoyancy ratio (buoyant lift/total weight) on the vehicle dynamics is studied. It is shown that dynamics effects have a major role in the design of such vehicles. The analytical model developed is also useful for studying the aeromechanical stability of single rotor and tandem rotor coupled rotor/fuselage systems.

  18. Aeromechanical stability analysis of a multirotor vehicle with application to hybrid heavy lift helicopter dynamics

    Science.gov (United States)

    Venkatesan, C.; Friedmann, P. P.

    1984-01-01

    The Hybrid Heavy Lift Helicopter (HHLH) is a potential candidate vehicle aimed at providing heavy lift capability at low cost. This vehicle consists of a buoyant envelope attached to a supporting structure. Four rotor systems are also attached to the supporting structure. Nonlinear equations of motion capable of modeling the dynamics of this multi-rotor/support frame/vehicle system have been developed and used to study the fundamental aeromechanical stability characteristics of this class of vehicles. The mechanism of coupling between the blades, supporting structure and rigid body modes is identified and the effect of buoyancy ratio (buoyant lift/total weight) on the vehicle dynamics is studied. It is shown that dynamics effects have a major role in the design of such vehicles. The analytical model developed is also useful for studying the aeromechanical stability of single rotor and tandem rotor coupled rotor/fuselage systems.

  19. Transfer impedance simulation and measurement methods to analyse shielding behaviour of HV cables used in Electric-Vehicles and Hybrid-Electric-Vehicles

    Science.gov (United States)

    Mushtaq, Abid; Frei, Stephan

    2016-09-01

    In the power drive system of the Electric Vehicles (EVs) and Hybrid Electric Vehicles (HEVs), High Voltage (HV) cables play a major role in evaluating the EMI of the whole system. Transfer impedance (ZT) is the most commonly used performance parameter for the HV cable. To analyse and design HV cables and connectors with better shielding effectiveness (SE), appropriate measurement and simulation methods are required. In this paper, Ground Plate Method (GPM) with improvements has been proposed to measure ZT. Use of low-frequency ferrites to avoid ground-loop effects has also been investigated. Additionally, a combination of analytical model with a circuit model has been implemented to simulate limitations (frequency response) of the test setup. Also parametrical studies using the analytical model have been performed to analyse the shielding behaviour of HV cables.

  20. Control strategy of fuel cell/supercapacitors hybrid power sources for electric vehicle

    Energy Technology Data Exchange (ETDEWEB)

    Thounthong, Phatiphat; Raeel, Stephane; Davat, Bernard [Institut National Polytechnique de Lorraine (INPL), GREEN, CNRS (UMR 7037) 2, Avenue de la Foret de Haye, 54516 Vandoeuvre-les-Nancy (France)

    2006-07-14

    This paper presents a control principle for utilizing PEM fuel cell as main power source and supercapacitors as auxiliary power source for electric vehicle applications. The strategy is based on dc link voltage regulation, and fuel cell is simply operating in almost steady state conditions in order to minimize the mechanical stresses of fuel cell and to ensure a good synchronization between fuel flow and fuel cell current. Supercapacitors are functioning during transient energy delivery or transient energy recovery. To authenticate control algorithms, the system structure is realized by analogical current loops and digital voltage loops (dSPACE). The experimental results with a 500W PEM fuel cell point out the fuel cell starvation problem when operating with dynamic load, and also confirm that the supercapacitor can improve system performance for hybrid power sources. (author)

  1. Investigation of Battery/Ultracapacitor Energy Storage Rating for a Fuel Cell Hybrid Electric Vehicle

    DEFF Research Database (Denmark)

    Schaltz, Erik; Khaligh, A.; Rasmussen, Peter Omand

    2008-01-01

    Combining high energy density batteries and high power density ultracapacitors in Fuel Cell Hybrid Electric Vehicles (FCHEV) results in a high efficient, high performance, low size, and light system. Often the batteries are rated with respect to their energy requirement in order to reduce...... their volume and mass. This does not prevent deep discharges of the batteries, which is critical to their lifetime. In this paper, the ratings of the batteries and ultracapacitors in a FCHEV are investigated. Comparison of system volume, mass, efficiency, and battery lifetime due to the rating of the energy...... storage devices are presented. It is concluded, that by sufficient rating of the battery or ultracapacitors, an appropriate balance between system volume, mass, efficiency, and battery lifetime is achievable....

  2. Hybrid Computational Model for High-Altitude Aeroassist Vehicles Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The proposed effort addresses a need for accurate computational models to support aeroassist and entry vehicle system design over a broad range of flight conditions...

  3. Navistar eStar Vehicle Performance Evaluation - 1st Quarter 2014; Energy Efficiency & Renewable Energy (EERE), Vehicle Technologies Office (VTO)

    Energy Technology Data Exchange (ETDEWEB)

    Ragatz, A.

    2014-04-01

    The Fleet Test and Evaluation Team at the U.S. Department of Energy's National Renewable Energy Laboratory is evaluating and documenting the performance of electric and plug-in hybrid electric drive systems in medium duty trucks across the nation. U.S. companies participating in this evaluation project received funding from the American Recovery and Reinvestment Act to cover part of the cost of purchasing these vehicles. Through this project, Navistar will build and deploy all-electric medium-duty trucks. The trucks will be deployed in diverse climates across the country.

  4. Hybrid Control of Long-Endurance Aerial Robotic Vehicles for Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Deok-Jin Lee

    2011-06-01

    Full Text Available This paper presents an effective hybrid control approach for building stable wireless sensor networks between heterogeneous unmanned vehicles using long‐ endurance aerial robotic vehicles. For optimal deployment of the aerial vehicles in communication networks, a gradient climbing based self‐estimating control algorithm is utilized to locate the aerial platforms to maintain maximum communication throughputs between distributed multiple nodes. The autonomous aerial robots, which function as communication relay nodes, extract and harvest thermal energy from the atmospheric environment to improve their flight endurance within specified communication coverage areas. The rapidly‐deployable sensor networks with the high‐endurance aerial vehicles can be used for various application areas including environment monitoring, surveillance, tracking, and decision‐making support. Flight test and simulation studies are conducted to evaluate the effectiveness of the proposed hybrid control technique for robust communication networks.

  5. An Investigation into Regenerative Braking Control Strategy for Hybrid Electric Vehicle

    Institute of Scientific and Technical Information of China (English)

    PENG Dong; YIN Cheng-liang; ZHANG Jian-wu

    2005-01-01

    Energy regeneration during braking is an important technique for hybrid electric vehicle (HEV) to improve their fuel economy and extend their driving range. Due to the effect of regenerative braking torque which is added by electric motor, the braking torque distribution between front and rear axles should be changed and the control logic of anti-lock braking system (ABS) ought to be adjusted according to the regenerative braking torque. This paper put forward a braking control strategy for hybrid electric vehicle; the control strategy is implemented with eight DOFs (Degree-of-Freedom) nonlinear vehicle forward simulation model which is built under the environment of Matlab/Simulink. Based on target wheel slip ratio, a fuzzy logic approach was applied to maintain the optimal target slip ratio so that best compromise between hydraulic torque and regenerative torque can be obtained for the vehicle.

  6. Controlling Torque Distribution for Parallel Hybrid Vehicle Based on Hierarchical Structure Fuzzy Logic

    Institute of Scientific and Technical Information of China (English)

    HuangMiao-hua; JinGuo-dong

    2003-01-01

    The Hierarchical Structure Fuzzy Logic Control(HSFLC) strategies of torque distribute for Parallel Hybrid Electric Vehicle (PHEV) in the mocle of operation of the vehicle i. e. , acceleration, cruise, deceleration etc. have been studied. Using secondly developed the hybrid vehicle simulation tool ADVISOR, the dynamic model of PHEV has been set up by MATLAB/SIMULINK. The engine, motor as well as the battery characteristics have been studied. Simulation results show that the proposed hierarchical structured fuzzy logic control strategy is effective over the entire operating range of the vehicle in terms of fuel economy. Based on the analyses of the simulation results and driver's experiences, a fuzzy controller is designed and developed to control the torque distribution. The controller is evaluated via hardware-in-the-loop simulator (HILS). The results show that controller verify its value.

  7. An optimal energy management development for various configuration of plug-in and hybrid electric vehicle

    Institute of Scientific and Technical Information of China (English)

    Morteza Montazeri-Gh; Mehdi Mahmoodi-K

    2015-01-01

    Due to soaring fuel prices and environmental concerns, hybrid electric vehicle (HEV) technology attracts more attentions in last decade. Energy management system, configuration of HEV and traffic conditions are the main factors which affect HEV's fuel consumption, emission and performance. Therefore, optimal management of the energy components is a key element for the success of a HEV. An optimal energy management system is developed for HEV based on genetic algorithm. Then, different powertrain system component combinations effects are investigated in various driving cycles. HEV simulation results are compared for default rule-based, fuzzy and GA-fuzzy controllers by using ADVISOR. The results indicate the effectiveness of proposed optimal controller over real world driving cycles. Also, an optimal powertrain configuration to improve fuel consumption and emission efficiency is proposed for each driving condition. Finally, the effects of batteries in initial state of charge and hybridization factor are investigated on HEV performance to evaluate fuel consumption and emissions. Fuel consumption average reduction of about 14% is obtained for optimal configuration data in contrast to default configuration. Also results indicate that proposed controller has reduced emission of about 10% in various traffic conditions.

  8. A road safety performance indicator for vehicle fleet compatibility.

    Science.gov (United States)

    Christoph, Michiel; Vis, Martijn Alexander; Rackliff, Lucy; Stipdonk, Henk

    2013-11-01

    This paper discusses the development and the application of a safety performance indicator which measures the intrinsic safety of a country's vehicle fleet related to fleet composition. The indicator takes into account both the 'relative severity' of individual collisions between different vehicle types, and the share of those vehicle types within a country's fleet. The relative severity is a measure for the personal damage that can be expected from a collision between two vehicles of any type, relative to that of a collision between passenger cars. It is shown how this number can be calculated using vehicle mass only. A sensitivity analysis is performed to study the dependence of the indicator on parameter values and basic assumptions made. The indicator is easy to apply and satisfies the requirements for appropriate safety performance indicators. It was developed in such a way that it specifically scores the intrinsic safety of a fleet due to its composition, without being influenced by other factors, like helmet wearing. For the sake of simplicity, and since the required data is available throughout Europe, the indicator was applied to the relative share of three of the main vehicle types: passenger cars, heavy goods vehicles and motorcycles. Using the vehicle fleet data from 13EU Member States and Norway, the indicator was used to rank the countries' safety performance. The UK was found to perform best in terms of its fleet composition (value is 1.07), while Greece has the worst performance with the highest indicator value (1.41).

  9. Hybrid discrete particle swarm optimization algorithm for capacitated vehicle routing problem

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Capacitated vehicle routing problem (CVRP) is an NP-hard problem. For large-scale problems, it is quite difficult to achieve an optimal solution with traditional optimization methods due to the high computational complexity. A new hybrid approximation algorithm is developed in this work to solve the problem. In the hybrid algorithm, discrete particle swarm optimization (DPSO) combines global search and local search to search for the optimal results and simulated annealing (SA) uses certain probability to avoid being trapped in a local optimum. The computational study showed that the proposed algorithm is a feasible and effective approach for capacitated vehicle routing problem, especially for large scale problems.

  10. Hybrid electric vehicles and electrochemical storage systems — a technology push-pull couple

    Science.gov (United States)

    Gutmann, Günter

    In the advance of fuel cell electric vehicles (EV), hybrid electric vehicles (HEV) can contribute to reduced emissions and energy consumption of personal cars as a short term solution. Trade-offs reveal better emission control for series hybrid vehicles, while parallel hybrid vehicles with different drive trains may significantly reduce fuel consumption as well. At present, costs and marketing considerations favor parallel hybrid vehicles making use of small, high power batteries. With ultra high power density cells in development, exceeding 1 kW/kg, high power batteries can be provided by adapting a technology closely related to consumer cell production. Energy consumption and emissions may benefit from regenerative braking and smoothing of the internal combustion engine (ICE) response as well, with limited additional battery weight. High power supercapacitors may assist the achievement of this goal. Problems to be solved in practice comprise battery management to assure equilibration of individual cell state-of-charge for long battery life without maintenance, and efficient strategies for low energy consumption.

  11. Eco-efficiency optimization of Hybrid Electric Vehicle based on response surface method and genetic algorithm

    OpenAIRE

    Nzisabira, Jonathan; Louvigny, Yannick; Duysinx, Pierre

    2008-01-01

    The electric vehicles (EV) and sometimes the hybrid electric vehicle (HEV) technologies are environmentally very efficient but can not succeed on the market because of a smaller ability to satisfy customer’s requirements. Comparison of clean technologies in automotive and transportation systems has been measured using different analysis tools such as LCA (life cycle analysis). However, these instruments never account for the user’s satisfaction which partly explains the market acceptance prob...

  12. The mechanical hybrid vehicle: an investigation of a flywheel-based vehicular regenerative energy capture system

    OpenAIRE

    Diego-Ayala, U.; Martinez-Gonzalez, P.; McGlashan, N; Pullen, K. R.

    2008-01-01

    Capturing braking energy by regeneration into an onboard energy storage unit offers the potential to reduce significantly the fuel consumption of vehicles. A common technique is to generate electricity in the motors of a hybrid electric vehicle when braking, and to use this to charge an onboard electrochemical battery. However, such batteries are costly, bulky, and generally not amenable to fast charging as this affects battery life and capacity. In order to overcome these problems, a mechani...

  13. Development of Fuzzy Logic and Neural Network Control and Advanced Emissions Modeling for Parallel Hybrid Vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Rajagopalan, A.; Washington, G.; Rizzoni, G.; Guezennec, Y.

    2003-12-01

    This report describes the development of new control strategies and models for Hybrid Electric Vehicles (HEV) by the Ohio State University. The report indicates results from models created in NREL's ADvanced VehIcle SimulatOR (ADVISOR 3.2), and results of a scalable IC Engine model, called in Willan's Line technique, implemented in ADVISOR 3.2.

  14. Novel biofuel formulations for enhanced vehicle performance

    Energy Technology Data Exchange (ETDEWEB)

    Miller, Dennis [Michigan State Univ., East Lansing, MI (United States); Narayan, Ramani [Michigan State Univ., East Lansing, MI (United States); Berglund, Kris [Michigan State Univ., East Lansing, MI (United States); Lira, Carl [Michigan State Univ., East Lansing, MI (United States); Schock, Harold [Michigan State Univ., East Lansing, MI (United States); Jaberi, Farhad [Michigan State Univ., East Lansing, MI (United States); Lee, Tonghun [Michigan State Univ., East Lansing, MI (United States); Anderson, James [Michigan State Univ., East Lansing, MI (United States); Wallington, Timothy [Michigan State Univ., East Lansing, MI (United States); Kurtz, Eric [Michigan State Univ., East Lansing, MI (United States); Ruona, Will; Hass, Heinz

    2013-08-30

    This interdisciplinary research program at Michigan State University, in collaboration with Ford Motor Company, has explored the application of tailored or designed biofuels for enhanced vehicle performance and reduced emissions. The project has included a broad range of experimental research, from chemical and biological formation of advanced biofuel components to multicylinder engine testing of blended biofuels to determine engine performance parameters. In addition, the project included computation modeling of biofuel physical and combustion properties, and simulation of advanced combustion modes in model engines and in single cylinder engines. Formation of advanced biofuel components included the fermentation of five-carbon and six-carbon sugars to n-butanol and to butyric acid, two four-carbon building blocks. Chemical transformations include the esterification of the butyric acid produced to make butyrate esters, and the esterification of succinic acid with n-butanol to make dibutyl succinate (DBS) as attractive biofuel components. The conversion of standard biodiesel, made from canola or soy oil, from the methyl ester to the butyl ester (which has better fuel properties), and the ozonolysis of biodiesel and the raw oil to produce nonanoate fuel components were also examined in detail. Physical and combustion properties of these advanced biofuel components were determined during the project. Physical properties such as vapor pressure, heat of evaporation, density, and surface tension, and low temperature properties of cloud point and cold filter plugging point were examined for pure components and for blends of components with biodiesel and standard petroleum diesel. Combustion properties, particularly emission delay that is the key parameter in compression ignition engines, was measured in the MSU Rapid Compression Machine (RCM), an apparatus that was designed and constructed during the project simulating the compression stroke of an internal combustion

  15. Powertrain Matching and Optimization of Dual-Motor Hybrid Driving System for Electric Vehicle Based on Quantum Genetic Intelligent Algorithm

    Directory of Open Access Journals (Sweden)

    Yong Wang

    2014-01-01

    Full Text Available In order to increase the driving range and improve the overall performance of all-electric vehicles, a new dual-motor hybrid driving system with two power sources was proposed. This system achieved torque-speed coupling between the two power sources and greatly improved the high performance working range of the motors; at the same time, continuously variable transmission (CVT was achieved to efficiently increase the driving range. The power system parameters were determined using the “global optimization method”; thus, the vehicle’s dynamics and economy were used as the optimization indexes. Based on preliminary matches, quantum genetic algorithm was introduced to optimize the matching in the dual-motor hybrid power system. Backward simulation was performed on the combined simulation platform of Matlab/Simulink and AVL-Cruise to optimize, simulate, and verify the system parameters of the transmission system. Results showed that quantum genetic algorithms exhibited good global optimization capability and convergence in dealing with multiobjective and multiparameter optimization. The dual-motor hybrid-driving system for electric cars satisfied the dynamic performance and economy requirements of design, efficiently increasing the driving range of the car, having high performance, and reducing energy consumption of 15.6% compared with the conventional electric vehicle with single-speed reducers.

  16. Development of Production-Intent Plug-In Hybrid Vehicle Using Advanced Lithium-Ion Battery Packs with Deployment to a Demonstration Fleet

    Energy Technology Data Exchange (ETDEWEB)

    No, author

    2013-09-29

    The primary goal of this project was to speed the development of one of the first commercially available, OEM-produced plug-in hybrid electric vehicles (PHEV). The performance of the PHEV was expected to double the fuel economy of the conventional hybrid version. This vehicle program incorporated a number of advanced technologies, including advanced lithium-ion battery packs and an E85-capable flex-fuel engine. The project developed, fully integrated, and validated plug-in specific systems and controls by using GM’s Global Vehicle Development Process (GVDP) for production vehicles. Engineering Development related activities included the build of mule vehicles and integration vehicles for Phases I & II of the project. Performance data for these vehicles was shared with the U.S. Department of Energy (DOE). The deployment of many of these vehicles was restricted to internal use at GM sites or restricted to assigned GM drivers. Phase III of the project captured the first half or Alpha phase of the Engineering tasks for the development of a new thermal management design for a second generation battery module. The project spanned five years. It included six on-site technical reviews with representatives from the DOE. One unique aspect of the GM/DOE collaborative project was the involvement of the DOE throughout the OEM vehicle development process. The DOE gained an understanding of how an OEM develops vehicle efficiency and FE performance, while balancing many other vehicle performance attributes to provide customers well balanced and fuel efficient vehicles that are exciting to drive. Many vehicle content and performance trade-offs were encountered throughout the vehicle development process to achieve product cost and performance targets for both the OEM and end customer. The project team completed two sets of PHEV development vehicles with fully integrated PHEV systems. Over 50 development vehicles were built and operated for over 180,000 development miles. The team

  17. Smith Newton Vehicle Performance Evaluation - Gen2 - 1Q2014 (Brochure)

    Energy Technology Data Exchange (ETDEWEB)

    2014-04-01

    The Fleet Test and Evaluation Team at the U.S. Department of Energy's National Renewable Energy Laboratory is evaluating and documenting the performance of electric and plug-in hybrid electric drive systems in medium-duty trucks across the nation. U.S. companies participating in this evaluation project received funding from the American Recovery and Reinvestment Act to cover part of the cost of purchasing these vehicles. Through this project, Smith Electric Vehicles is building and deploying 500 all-electric medium-duty trucks that will be deployed by a variety of companies in diverse climates across the country.

  18. Smith Newton Vehicle Performance Evaluation – 4th Quarter 2013; NREL (National Renewable Energy Laboratory)

    Energy Technology Data Exchange (ETDEWEB)

    None

    2014-01-01

    The Fleet Test and Evaluation Team at the U.S. Department of Energy's National Renewable Energy Laboratory is evaluating and documenting the performance of electric and plug-in hybrid electric drive systems in medium-duty trucks across the nation. U.S. companies participating in this evaluation project received funding from the American Recovery and Reinvestment Act to cover part of the cost of purchasing these vehicles. Through this project, Smith Electric Vehicles is building and deploying 500 all-electric medium-duty trucks that will be deployed by a variety of companies in diverse climates across the country.

  19. Smith Newton Vehicle Performance Evaluation – Gen 2 – Cumulative; Energy Efficiency & Renewable Energy (EERE)

    Energy Technology Data Exchange (ETDEWEB)

    None

    2014-10-01

    The Fleet Test and Evaluation Team at the U.S. Department of Energy's National Renewable Energy Laboratory is evaluating and documenting the performance of electric and plug-in hybrid electric drive systems in medium-duty trucks across the nation. U.S. companies participating in this evaluation project received funding from the American Recovery and Reinvestment Act to cover part of the cost of purchasing these vehicles. Through this project, Smith Electric Vehicles is building and deploying 500 all-electric medium-duty trucks that will be deployed by a variety of companies in diverse climates across the country.

  20. Lunar roving vehicle navigation system performance review

    Science.gov (United States)

    Smith, E. C.; Mastin, W. C.

    1973-01-01

    The design and operation of the lunar roving vehicle (LRV) navigation system are briefly described. The basis for the premission LRV navigation error analysis is explained and an example included. The real time mission support operations philosophy is presented. The LRV navigation system operation and accuracy during the lunar missions are evaluated.

  1. Influence of plug-in hybrid electric vehicles on smart grids; Management der Trendwatching Group. Einfluss von Plug-In Hybrid Vehicles auf intelligente Verteilnetze (Smart Grids) - Schlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Horbaty, R. [ENCO Energie Consulting AG, Bubendorf (Switzerland); Strub, P. [Pierre Strub, Basel (Switzerland)

    2008-12-15

    This final report for the Swiss Federal Office of Energy (SFOE) takes a look at the influence of plug-in hybrid vehicles on intelligent electricity distribution grids. The work of a trend-watching group which examined the regulatory services at the interface between such 'smart' grids and electrically powered vehicles is reported on. The trend-watching group includes research institutes, energy suppliers, NGOs, the automobile industry and technology companies. Vehicle-to-grid concepts and innovative developments in the Swiss market are commented on and the group's own activities (research, business models, technological development and politics) are discussed. The group will accompany relevant research programs and the implementation of measures as well as accompanying feasibility evaluations concerning current market developments. The Swiss federal strategy is to be discussed and international co-operation (with the IEA) is to be further strengthened.

  2. Hybrid ventilation systems and high performance buildings

    Energy Technology Data Exchange (ETDEWEB)

    Utzinger, D.M. [Wisconsin Univ., Milwaukee, WI (United States). School of Architecture and Urban Planning

    2009-07-01

    This paper described hybrid ventilation design strategies and their impact on 3 high performance buildings located in southern Wisconsin. The Hybrid ventilation systems combined occupant controlled natural ventilation with mechanical ventilation systems. Natural ventilation was shown to provide adequate ventilation when appropriately designed. Proper control integration of natural ventilation into hybrid systems was shown to reduce energy consumption in high performance buildings. This paper also described the lessons learned from the 3 buildings. The author served as energy consultant on all three projects and had the responsibility of designing and integrating the natural ventilation systems into the HVAC control strategy. A post occupancy evaluation of building energy performance has provided learning material for architecture students. The 3 buildings included the Schlitz Audubon Nature Center completed in 2003; the Urban Ecology Center completed in 2004; and the Aldo Leopold Legacy Center completed in 2007. This paper included the size, measured energy utilization intensity and percentage of energy supplied by renewable solar power and bio-fuels on site for each building. 6 refs., 2 tabs., 6 figs.

  3. Hybrid three-dimensional and support vector machine approach for automatic vehicle tracking and classification using a single camera

    Science.gov (United States)

    Kachach, Redouane; Cañas, José María

    2016-05-01

    Using video in traffic monitoring is one of the most active research domains in the computer vision community. TrafficMonitor, a system that employs a hybrid approach for automatic vehicle tracking and classification on highways using a simple stationary calibrated camera, is presented. The proposed system consists of three modules: vehicle detection, vehicle tracking, and vehicle classification. Moving vehicles are detected by an enhanced Gaussian mixture model background estimation algorithm. The design includes a technique to resolve the occlusion problem by using a combination of two-dimensional proximity tracking algorithm and the Kanade-Lucas-Tomasi feature tracking algorithm. The last module classifies the shapes identified into five vehicle categories: motorcycle, car, van, bus, and truck by using three-dimensional templates and an algorithm based on histogram of oriented gradients and the support vector machine classifier. Several experiments have been performed using both real and simulated traffic in order to validate the system. The experiments were conducted on GRAM-RTM dataset and a proper real video dataset which is made publicly available as part of this work.

  4. A Polar Fuzzy Control Scheme for Hybrid Power System Using Vehicle-To-Grid Technique

    Directory of Open Access Journals (Sweden)

    Mohammed Elsayed Lotfy

    2017-07-01

    Full Text Available A novel polar fuzzy (PF control approach for a hybrid power system is proposed in this research. The proposed control scheme remedies the issues of system frequency and the continuity of demand supply caused by renewable sources’ uncertainties. The hybrid power system consists of a wind turbine generator (WTG, solar photovoltaics (PV, a solar thermal power generator (STPG, a diesel engine generator (DEG, an aqua-electrolyzer (AE, an ultra-capacitor (UC, a fuel-cell (FC, and a flywheel (FW. Furthermore, due to the high cost of the battery energy storage system (BESS, a new idea of vehicle-to-grid (V2G control is applied to use the battery of the electric vehicle (EV as equivalent to large-scale energy storage units instead of small batteries to improve the frequency stability of the system. In addition, EV customers’ convenience is taken into account. A minimal-order observer is used to estimate the supply error. Then, the area control error (ACE signal is calculated in terms of the estimated supply error and the frequency deviation. ACE is considered in the frequency domain. Two PF approaches are utilized in the intended system. The mission of each controller is to mitigate one frequency component of ACE. The responsibility for ACE compensation is shared among all parts of the system according to their speed of response. The performance of the proposed control scheme is compared to the conventional fuzzy logic control (FLC. The effectiveness and robustness of the proposed control technique are verified by numerical simulations under various scenarios.

  5. Stochastic Optimal Control for Series Hybrid Electric Vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Malikopoulos, Andreas [ORNL

    2013-01-01

    Increasing demand for improving fuel economy and reducing emissions has stimulated significant research and investment in hybrid propulsion systems. In this paper, we address the problem of optimizing online the supervisory control in a series hybrid configuration by modeling its operation as a controlled Markov chain using the average cost criterion. We treat the stochastic optimal control problem as a dual constrained optimization problem. We show that the control policy that yields higher probability distribution to the states with low cost and lower probability distribution to the states with high cost is an optimal control policy, defined as an equilibrium control policy. We demonstrate the effectiveness of the efficiency of the proposed controller in a series hybrid configuration and compare it with a thermostat-type controller.

  6. Design of a Road Friendly SAS System for Heavy-Duty Vehicles Based on a Fuzzy-Hybrid-ADD and GH-Control Strategy

    OpenAIRE

    Jing Zhao; Pak Kin Wong; Zhengchao Xie; Xinbo Ma; Caiyang Wei

    2016-01-01

    Semiactive suspension (SAS) system has been widely used for its outstanding performance in offering competent ride quality, road holding, and handling capacity. However, the road friendliness is also one of the crucial factors that should be attached in the design of the SAS system for heavy-duty vehicles. In this study, a fuzzy controlled hybrid-acceleration driven damper (ADD) and ground hook- (GH-) control strategy is proposed for SAS system of heavy-duty vehicles. Firstly, a quarter-vehic...

  7. Control of AWD System for Vehicle Performance and Safety

    Directory of Open Access Journals (Sweden)

    Jung Hojin

    2016-01-01

    Full Text Available AWD (All-Wheel Drive system transfers drive force to all wheels so that it can help vehicle escape low mu surface or climb hill more conveniently. Recently, AWD system for on road vehicle has become popular to improve vehicle driving performance. However, there has not been enough research of applying AWD system for vehicle stability especially for lateral movement. Compared with ESC (Electronic Stability Control, AWD system does not cause any inconveniences to the driver because it controls vehicle only by distributing front and rear drive torque, without using brake. By allowing slipping/locking of wet clutch inside the transfer case, AWD system can distribute different amount of torque between front and rear axle. This paper introduces modelling of AWD system and suggests the control of AWD system based on peak slip ratio and slip angle at which tyre saturates. Carsim based vehicle simulation results of AWD controller is presented.

  8. A road safety performance indicator for vehicle fleet compatibility.

    NARCIS (Netherlands)

    Christoph, M. Vis, M.A. Rackliff, L. & Stipdonk, H.

    2013-01-01

    This paper discusses the development and the application of a safety performance indicator which measures the intrinsic safety of a country's vehicle fleet related to fleet composition. The indicator takes into account both the ‘relative severity’ of individual collisions between different vehicle t

  9. Life cycle assessment of hybrid vehicles recycling: Comparison of three business lines of dismantling.

    Science.gov (United States)

    Belboom, Sandra; Lewis, Grégory; Bareel, Pierre-François; Léonard, Angélique

    2016-04-01

    This paper undertakes an environmental evaluation of hybrid vehicles recycling, using industrial data from Comet Traitement SA in Belgium. Three business lines have been modelled and analysed. The first one is relative to the business as usual with a dismantling to recover batteries and engines followed by shredding and post shredding treatments. The second one considers, in addition, the removal of electronic control units (ECU) before shredding followed by same steps than in the first line and the last one is relative to the additional removal of big plastic parts before shredding and business as usual post shredding treatments. Results show non-significant environmental benefits when ECU or large parts of plastics are recovered before shredding. Improvements in terms of environmental benefits are lower than the uncertainty of the results. Indeed, the performing usual process for end-of-life vehicles (ELV) treatment reaches 97% of the ELV which is valorised in terms of metal and energy recoveries. Post shredding treatment units include metals, plastics and energy recovery of residues. Comet business as usual route for ELV valorisation is in accordance with the requirements of the European directive and recommendations for further improvement with dismantling of other parts (ECU or plastics) before shredding are non-relevant in this case.

  10. Hybrid optimal online-overnight charging coordination of plug-in electric vehicles in smart grid

    Science.gov (United States)

    Masoum, Mohammad A. S.; Nabavi, Seyed M. H.

    2016-10-01

    Optimal coordinated charging of plugged-in electric vehicles (PEVs) in smart grid (SG) can be beneficial for both consumers and utilities. This paper proposes a hybrid optimal online followed by overnight charging coordination of high and low priority PEVs using discrete particle swarm optimization (DPSO) that considers the benefits of both consumers and electric utilities. Objective functions are online minimization of total cost (associated with grid losses and energy generation) and overnight valley filling through minimization of the total load levels. The constraints include substation transformer loading, node voltage regulations and the requested final battery state of charge levels (SOCreq). The main challenge is optimal selection of the overnight starting time (toptimal-overnight,start) to guarantee charging of all vehicle batteries to the SOCreq levels before the requested plug-out times (treq) which is done by simultaneously solving the online and overnight objective functions. The online-overnight PEV coordination approach is implemented on a 449-node SG; results are compared for uncoordinated and coordinated battery charging as well as a modified strategy using cost minimizations for both online and overnight coordination. The impact of toptimal-overnight,start on performance of the proposed PEV coordination is investigated.

  11. A Single-Degree-of-Freedom Energy Optimization Strategy for Power-Split Hybrid Electric Vehicles

    Directory of Open Access Journals (Sweden)

    Chaoying Xia

    2017-07-01

    Full Text Available This paper presents a single-degree-of-freedom energy optimization strategy to solve the energy management problem existing in power-split hybrid electric vehicles (HEVs. The proposed strategy is based on a quadratic performance index, which is innovatively designed to simultaneously restrict the fluctuation of battery state of charge (SOC and reduce fuel consumption. An extended quadratic optimal control problem is formulated by approximating the fuel consumption rate as a quadratic polynomial of engine power. The approximated optimal control law is obtained by utilizing the solution properties of the Riccati equation and adjoint equation. It is easy to implement in real-time and the engineering significance is explained in details. In order to validate the effectiveness of the proposed strategy, the forward-facing vehicle simulation model is established based on the ADVISOR software (Version 2002, National Renewable Energy Laboratory, Golden, CO, USA. The simulation results show that there is only a little fuel consumption difference between the proposed strategy and the Pontryagin’s minimum principle (PMP-based global optimal strategy, and the proposed strategy also exhibits good adaptability under different initial battery SOC, cargo mass and road slope conditions.

  12. Modeling and control of a hybrid-electric vehicle for drivability and fuel economy improvements

    Science.gov (United States)

    Koprubasi, Kerem

    The gradual decline of oil reserves and the increasing demand for energy over the past decades has resulted in automotive manufacturers seeking alternative solutions to reduce the dependency on fossil-based fuels for transportation. A viable technology that enables significant improvements in the overall tank-to-wheel vehicle energy conversion efficiencies is the hybridization of electrical and conventional drive systems. Sophisticated hybrid powertrain configurations require careful coordination of the actuators and the onboard energy sources for optimum use of the energy saving benefits. The term optimality is often associated with fuel economy, although other measures such as drivability and exhaust emissions are also equally important. This dissertation focuses on the design of hybrid-electric vehicle (HEV) control strategies that aim to minimize fuel consumption while maintaining good vehicle drivability. In order to facilitate the design of controllers based on mathematical models of the HEV system, a dynamic model that is capable of predicting longitudinal vehicle responses in the low-to-mid frequency region (up to 10 Hz) is developed for a parallel HEV configuration. The model is validated using experimental data from various driving modes including electric only, engine only and hybrid. The high fidelity of the model makes it possible to accurately identify critical drivability issues such as time lags, shunt, shuffle, torque holes and hesitation. Using the information derived from the vehicle model, an energy management strategy is developed and implemented on a test vehicle. The resulting control strategy has a hybrid structure in the sense that the main mode of operation (the hybrid mode) is occasionally interrupted by event-based rules to enable the use of the engine start-stop function. The changes in the driveline dynamics during this transition further contribute to the hybrid nature of the system. To address the unique characteristics of the HEV

  13. Effects of Electric Vehicle Fast Charging on Battery Life and Vehicle Performance

    Energy Technology Data Exchange (ETDEWEB)

    Matthew Shirk; Jeffrey Wishart

    2015-04-01

    As part of the U.S. Department of Energy’s Advanced Vehicle Testing Activity, four new 2012 Nissan Leaf battery electric vehicles were instrumented with data loggers and operated over a fixed on-road test cycle. Each vehicle was operated over the test route, and charged twice daily. Two vehicles were charged exclusively by AC level 2 EVSE, while two were exclusively DC fast charged with a 50 kW charger. The vehicles were performance tested on a closed test track when new, and after accumulation of 50,000 miles. The traction battery packs were removed and laboratory tested when the vehicles were new, and at 10,000-mile intervals. Battery tests include constant-current discharge capacity, electric vehicle pulse power characterization test, and low peak power tests. The on-road testing was carried out through 70,000 miles, at which point the final battery tests were performed. The data collected over 70,000 miles of driving, charging, and rest are analyzed, including the resulting thermal conditions and power and cycle demands placed upon the battery. Battery performance metrics including capacity, internal resistance, and power capability obtained from laboratory testing throughout the test program are analyzed. Results are compared within and between the two groups of vehicles. Specifically, the impacts on battery performance, as measured by laboratory testing, are explored as they relate to battery usage and variations in conditions encountered, with a primary focus on effects due to the differences between AC level 2 and DC fast charging. The contrast between battery performance degradation and the effect on vehicle performance is also explored.

  14. Conventional, Hybrid, or Electric Vehicles: Which Technology for an Urban Distribution Centre?

    Directory of Open Access Journals (Sweden)

    Philippe Lebeau

    2015-01-01

    Full Text Available Freight transport has an important impact on urban welfare. It is estimated to be responsible for 25% of CO2 emissions and up to 50% of particles matters generated by the transport sector in cities. Facing that problem, the European Commission set the objective of reaching free CO2 city logistics by 2030 in major urban areas. In order to achieve this goal, electric vehicles could be an important part of the solution. However, this technology still faces a number of barriers, in particular high purchase costs and limited driving range. This paper explores the possible integration of electric vehicles in urban logistics operations. In order to answer this research question, the authors have developed a fleet size and mix vehicle routing problem with time windows for electric vehicles. In particular, an energy consumption model is integrated in order to consider variable range of electric vehicles. Based on generated instances, the authors analyse different sets of vehicles in terms of vehicle class (quadricycles, small vans, large vans, and trucks and vehicle technology (petrol, hybrid, diesel, and electric vehicles. Results show that a fleet with different technologies has the opportunity of reducing costs of the last mile.

  15. Conventional, Hybrid, or Electric Vehicles: Which Technology for an Urban Distribution Centre?

    Science.gov (United States)

    Lebeau, Philippe; De Cauwer, Cedric; Van Mierlo, Joeri; Macharis, Cathy; Verbeke, Wouter; Coosemans, Thierry

    2015-01-01

    Freight transport has an important impact on urban welfare. It is estimated to be responsible for 25% of CO2 emissions and up to 50% of particles matters generated by the transport sector in cities. Facing that problem, the European Commission set the objective of reaching free CO2 city logistics by 2030 in major urban areas. In order to achieve this goal, electric vehicles could be an important part of the solution. However, this technology still faces a number of barriers, in particular high purchase costs and limited driving range. This paper explores the possible integration of electric vehicles in urban logistics operations. In order to answer this research question, the authors have developed a fleet size and mix vehicle routing problem with time windows for electric vehicles. In particular, an energy consumption model is integrated in order to consider variable range of electric vehicles. Based on generated instances, the authors analyse different sets of vehicles in terms of vehicle class (quadricycles, small vans, large vans, and trucks) and vehicle technology (petrol, hybrid, diesel, and electric vehicles). Results show that a fleet with different technologies has the opportunity of reducing costs of the last mile. PMID:26236769

  16. Conventional, Hybrid, or Electric Vehicles: Which Technology for an Urban Distribution Centre?

    Science.gov (United States)

    Lebeau, Philippe; De Cauwer, Cedric; Van Mierlo, Joeri; Macharis, Cathy; Verbeke, Wouter; Coosemans, Thierry

    2015-01-01

    Freight transport has an important impact on urban welfare. It is estimated to be responsible for 25% of CO2 emissions and up to 50% of particles matters generated by the transport sector in cities. Facing that problem, the European Commission set the objective of reaching free CO2 city logistics by 2030 in major urban areas. In order to achieve this goal, electric vehicles could be an important part of the solution. However, this technology still faces a number of barriers, in particular high purchase costs and limited driving range. This paper explores the possible integration of electric vehicles in urban logistics operations. In order to answer this research question, the authors have developed a fleet size and mix vehicle routing problem with time windows for electric vehicles. In particular, an energy consumption model is integrated in order to consider variable range of electric vehicles. Based on generated instances, the authors analyse different sets of vehicles in terms of vehicle class (quadricycles, small vans, large vans, and trucks) and vehicle technology (petrol, hybrid, diesel, and electric vehicles). Results show that a fleet with different technologies has the opportunity of reducing costs of the last mile.

  17. Households' Stories of Their Encounters with a Plug-In Hybrid Electric Vehicle

    Science.gov (United States)

    Caperello, Nicolette D.; Kurani, Kenneth S.

    2012-01-01

    One way to progress toward greenhouse gas reductions is for people to drive plug-in hybrid electric vehicles (PHEVs). Households in this study participated in a 4- to 6-week PHEV driving trial. A narrative of each household's encounter with the PHEV was constructed by the researchers from multiple in-home interviews, questionnaires completed by…

  18. Development and testing of a bipolar lead-acid battery for hybrid electric vehicles

    NARCIS (Netherlands)

    Saakes, M.; Kluiters, E.; Schmal, D.; Mourad, S.; Have, P.T.J.H. ten

    1999-01-01

    An 80 V bipolar lead-acid battery was constructed and tested using hybrid electric vehicle (HEV) drive cycles. Drive cycles with a peak power of 6.7 kW, equal to 1/5 of the total power profile required for the HEV studied, were run successfully. Model calculations showed that the 80 V module constru

  19. Development and testing of a bipolar lead-acid battery for hybrid electric vehicles

    NARCIS (Netherlands)

    Saakes, M.; Kluiters, E.; Schmal, D.; Mourad, S.; Have, P.T.J.H. ten

    1999-01-01

    An 80 V bipolar lead-acid battery was constructed and tested using hybrid electric vehicle (HEV) drive cycles. Drive cycles with a peak power of 6.7 kW, equal to 1/5 of the total power profile required for the HEV studied, were run successfully. Model calculations showed that the 80 V module constru

  20. CURRENT VECTOR CONTROL OF PERMANENT-MAGNET SYNCHRONOUS MOTOR OF HYBRID VEHICLE ENGINE

    Directory of Open Access Journals (Sweden)

    S. Serikov

    2009-01-01

    Full Text Available Characteristics of traction permanent-magnet synchronous motor under current vector optimum control in the possible traction-speed mode area which are relevant for hybrid vehicle engine have been investigated. As a criterion of optimality a maximum of electromagnetic moment per unit of current have been taken.

  1. ELECTRICAL AND DYNAMIC BRAKING OF THE HYBRID VEHICLE ON THE ROADS WITH LOW COUPLING COEFFICIENT

    Directory of Open Access Journals (Sweden)

    Sitovskyi, O.

    2013-06-01

    Full Text Available There were carried out theoretical researches of the processes of the electrical and dynamic braking of the vehicle with hybrid power-plant on the roads with low coupling coefficient, it was proved the probability of the wheels blocking appearing, during electrical and dynamic braking.

  2. The Swedish electric and hybrid vehicle R, D and D program. Seminar no. 2, June 1999

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-09-01

    This publication presents a selection of the ongoing and finalised projects in form of abstracts, within the KFB RDD-program Electric- and Hybride Vehicles. These projects were presented at the second project manager seminar 14-15 June 1999. The first project manager seminar was held 20-21 October 1998

  3. Development and testing of a bipolar lead-acid battery for hybrid electric vehicles

    NARCIS (Netherlands)

    Mourad, S.; Saakes, M.; Kluiters, C.E.; Schmal, D.; Have, P. ten

    1998-01-01

    A 80V bipolar lead-acid battery was constructed and tested using Hybrid Electric Vehicle (HEV) drive cycles. Drive cycles with a peak power of 6.7kW, equal to 1/5 of the total power profile required for the HEV studied, were run succesfully. Model calculations showed that the constructed 80V module,

  4. Research Experience with a Plug-In Hybrid Electric Vehicle: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Markel, T.; Pesaran, A.; Kelly, K.; Thornton, M.; Nortman, P.

    2007-12-01

    This technical document reports on the exploratory research conducted by NREL on PHEV technology using a Toyota Prius that has been converted to a plug-in hybrid electric vehicle. The data includes both controlled dynamometer and on-road test results, particularly for hilly driving. The results highlight the petroleum savings and benefits of PHEV technology.

  5. Development and testing of a bipolar lead-acid battery for hybrid electric vehicles

    NARCIS (Netherlands)

    Saakes, M.; Kluiters, E.; Schmal, D.; Mourad, S.; Have, P.T.J.H. ten

    1999-01-01

    An 80 V bipolar lead-acid battery was constructed and tested using hybrid electric vehicle (HEV) drive cycles. Drive cycles with a peak power of 6.7 kW, equal to 1/5 of the total power profile required for the HEV studied, were run successfully. Model calculations showed that the 80 V module

  6. Energy management strategies for electric and plug-in hybrid electric vehicles

    CERN Document Server

    Williamson, Sheldon S

    2013-01-01

    Covers power electronics and motor drives for energy management of electric and plug-in hybrid electric vehicles Addresses specific issues and design solutions related to photovoltaic/grid based EV battery charging infrastructures and on-board battery management systems Emphasis on power electronic converter topologies for on-board battery management

  7. Lyapunov based control of hybrid energy storage system in electric vehicles

    DEFF Research Database (Denmark)

    El Fadil, H.; Giri, F.; Guerrero, Josep M.

    2012-01-01

    This paper deals with a Lyapunov based control principle in a hybrid energy storage system for electric vehicle. The storage system consists on fuel cell (FC) as a main power source and a supercapacitor (SC) as an auxiliary power source. The power stage of energy conversion consists on a boost...

  8. Modeling and Nonlinear Control of Fuel Cell / Supercapacitor Hybrid Energy Storage System for Electric Vehicles

    DEFF Research Database (Denmark)

    El Fadil, Hassan; Giri, Fouad; Guerrero, Josep M.

    2014-01-01

    This paper deals with the problem of controlling hybrid energy storage system (HESS) for electric vehicle. The storage system consists of a fuel cell (FC), serving as the main power source, and a supercapacitor (SC), serving as an auxiliary power source. It also contains a power block for energy...

  9. Optimal control of a repowered vehicle: Plug-in fuel cell against plug-in hybrid electric powertrain

    Energy Technology Data Exchange (ETDEWEB)

    Tribioli, L., E-mail: laura.tribioli@unicusano.it; Cozzolino, R. [Dept. of Industrial Engineering, University of Rome Niccolo’ Cusano (Italy); Barbieri, M. [Engineering Dept., University of Naples Parthenope, Centro Direzionale-Isola C4, 80143 Naples (Italy)

    2015-03-10

    This paper describes two different powertrain configurations for the repowering of a conventional vehicle, equipped with an internal combustion engine (ICE). A model of a mid-sized ICE-vehicle is realized and then modified to model both a parallel plug-in hybrid electric powertrain and a proton electrolyte membrane (PEM) fuel cell (FC) hybrid powertrain. The vehicle behavior under the application of an optimal control algorithm for the energy management is analyzed for the different scenarios and results are compared.

  10. Investigation of Control Algorithms for Tracked Vehicle Mobility Load Emulation for a Combat Hybrid Electric Power System

    Science.gov (United States)

    2009-07-30

    Investigation of Control Algorithms for Tracked Vehicle Mobility Load Emulation for a Combat Hybrid Electric Power System Jarrett Goodell and...TITLE AND SUBTITLE Investigation of Control Algorithms for Tracked Vehicle Mobility Load Emulation for a Combat Hybrid Electric Power System 5a...for ~ 22 ton tracked vehicle • Tested and Developed: – Motors, Generators, Batteries, Inverters, DC-DC Converters , Thermal Management, Pulse Power

  11. Utilization of rotor kinetic energy storage for hybrid vehicles

    Science.gov (United States)

    Hsu, John S.

    2011-05-03

    A power system for a motor vehicle having an internal combustion engine, the power system comprises an electric machine (12) further comprising a first excitation source (47), a permanent magnet rotor (28) and a magnetic coupling rotor (26) spaced from the permanent magnet rotor and at least one second excitation source (43), the magnetic coupling rotor (26) also including a flywheel having an inertial mass to store kinetic energy during an initial acceleration to an operating speed; and wherein the first excitation source is electrically connected to the second excitation source for power cycling such that the flywheel rotor (26) exerts torque on the permanent magnet rotor (28) to assist braking and acceleration of the permanent magnet rotor (28) and consequently, the vehicle. An axial gap machine and a radial gap machine are disclosed and methods of the invention are also disclosed.

  12. Modeling and Validation of Power-split and P2 Parallel Hybrid Electric Vehicles SAE 2013-01-1470)

    Science.gov (United States)

    The Advanced Light-Duty Powertrain and Hybrid Analysis tool was created by EPA to evaluate the Greenhouse Gas (GHG) emissions of Light-Duty (LD) vehicles. It is a physics-based, forward-looking, full vehicle computer simulator capable of analyzing various vehicle types combined ...

  13. Modeling and Validation of Power-split and P2 Parallel Hybrid Electric Vehicles SAE 2013-01-1470)

    Science.gov (United States)

    The Advanced Light-Duty Powertrain and Hybrid Analysis tool was created by EPA to evaluate the Greenhouse Gas (GHG) emissions of Light-Duty (LD) vehicles. It is a physics-based, forward-looking, full vehicle computer simulator capable of analyzing various vehicle types combined ...

  14. U.S. Department of Energy Vehicle Technologies Program -- Advanced Vehicle Testing Activity -- Plug-in Hybrid Electric Vehicle Charging Infrastructure Review

    Energy Technology Data Exchange (ETDEWEB)

    Kevin Morrow; Donald Darner; James Francfort

    2008-11-01

    Plug-in hybrid electric vehicles (PHEVs) are under evaluation by various stake holders to better understand their capability and potential benefits. PHEVs could allow users to significantly improve fuel economy over a standard HEV and in some cases, depending on daily driving requirements and vehicle design, have the ability to eliminate fuel consumption entirely for daily vehicle trips. The cost associated with providing charge infrastructure for PHEVs, along with the additional costs for the on-board power electronics and added battery requirements associated with PHEV technology will be a key factor in the success of PHEVs. This report analyzes the infrastructure requirements for PHEVs in single family residential, multi-family residential and commercial situations. Costs associated with this infrastructure are tabulated, providing an estimate of the infrastructure costs associated with PHEV deployment.

  15. A hybrid fault detection and isolation strategy for a team of cooperating unmanned vehicles

    Science.gov (United States)

    Tousi, M. M.; Khorasani, K.

    2015-01-01

    In this paper, a hybrid fault detection and isolation (FDI) methodology is developed for a team of cooperating unmanned vehicles. The proposed approach takes advantage of the cooperative nature of the team to detect and isolate relatively low-severity actuator faults that are otherwise not detectable and isolable by the vehicles themselves individually. The approach is hybrid and consists of both low-level (agent/team level) and high-level [discrete-event systems (DES) level] FDI modules. The high-level FDI module is formulated in the DES supervisory control framework, whereas the low-level FDI module invokes classical FDI techniques. By properly integrating the two FDI modules, a larger class of faults can be detected and isolated as compared to the existing techniques in the literature that rely on each level separately. Simulation results for a team of five unmanned aerial vehicles are also presented to demonstrate the effectiveness and capabilities of our proposed methodology.

  16. Energy Management of Hybrid Electric Vehicles: 15 years of development at the Ohio State University

    Directory of Open Access Journals (Sweden)

    Rizzoni Giorgio

    2015-01-01

    Full Text Available The aim of this paper is to document 15 years of hybrid electric vehicle energy management research at The Ohio State University Center for Automotive Research (OSUCAR. Hybrid Electric Vehicle (HEV technology encompasses many diverse aspects. In this paper we focus exclusively on the evolution of supervisory control strategies for on-board energy management in HEV. We present a series of control algorithms that have been developed in simulation and implemented in prototype vehicles for charge-sustaining HEVs at OSU-CAR. These solutions span from fuzzy-logic control algorithms to more sophisticated model-based optimal control methods. Finally, methods developed for plug-in HEVs energy management are also discussed

  17. Substantial improvements of fuel economy. Potentials of electric and hybrid electric vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Joergensen, K. [Technical Univ. of Denmark (Denmark); Nielsen, L.H. [Forskningscenter Risoe (Denmark)

    1996-12-01

    This paper evaluates the scope for improvement of the energy and environmental impacts of road traffic by means of electrical and hybrid electric propulsion. These technologies promise considerable improvements of the fuel economy of vehicles compared to the present vehicle types as well as beneficial effects for the energy and traffic system. The paper - based on work carried out in the project `Transportation fuel based on renewable energy`, funded by the National Energy Agency of Denmark and carried out by Department of Buildings and Energy, Technical University of Denmark and System Analysis Department, Risoe National Laboratory - assesses the potentials for reduction of the primary energy consumption and emissions, and points to the necessary technical development to reap these benefits. A case study concerning passenger cars is analysed by means of computer simulations, comparing electric and hybrid electric passenger car to an equivalent reference vehicle (a conventional gasoline passenger car). (au) 10 refs.

  18. M1078 Hybrid Hydraulic Vehicle Fuel Economy Evaluation

    Science.gov (United States)

    2012-09-01

    PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS. 1. REPORT DATE (DD-MM-YYYY) 28-09-2012 2. REPORT TYPE Interim Report 3. DATES COVERED (From...system shakedown and developmental testing. During developmental testing, a hydraulic motor failure occurred. Although not catastrophic, the motor...main hydraulic hybrid system control module to request the TCM to shift the transmission. Clutch Operation with engine- off (hydraulic-only power) or

  19. Design and Analysis of Electro-mechanical Hybrid Anti-lock Braking System for Hybrid Electric Vehicle Utilizing Motor Regenerative Braking

    Institute of Scientific and Technical Information of China (English)

    ZHANG Jianlong; YIN Chengliang; ZHANG Jianwu

    2009-01-01

    Braking on low adhesion-coefficient roads, hybrid electric vehicle's motor regenerative torque is switched off to safeguard the normal anti-lock braking system (ABS) function. When the ABS control is terminated, the motor regenerative braking is readmitted.Aiming at avoiding permanent cycles from hydraulic anti-lock braking to motor regenerative braking, a novel electro-mechanical hybrid anti-lock braking system using fuzzy logic is designed. Different from the traditional single control structure, this system has a two-layered hierarchical structure. The first layer is responsible for harmonious adjustment or interaction between regenerative system and anti-lock braking system. The second layer is responsible for braking torque distribution and adjustment. The closed-loop simulation model is built. Control strategy and method for coordination between regenerative and anti-lock braking are developed. Simulation braking on low adhesion-coefficient roads with fuzzy logic control and real vehicle braking field test are presented. The results from simulating analysis and experiment show braking performance of the vehicle is perfect, harmonious coordination between regenerative and anti-lock braking function, significant amount of braking energy can be recovered and the proposed control strategy and method are effective.

  20. Interest of general tools of functional simulation in the idea of `mecatronic` groups: an application to energy management of hybrid vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Esteve, D.; Jammes, B.; Vinassa, J.M.; Marpinard, J.C.

    1994-04-01

    This report is a first approach of the simulation to validate the structure of the traction chain of a hybrid vehicle. This first step relies on the use of existing models in libraries of simulation programs. The next steps are going to consist in improving these models, in writing others one more performing and to test this simulation about energy management. (N.C.).

  1. Near-term hybrid vehicle program, phase 1. Appendix B: Design trade-off studies report. Volume 3: Computer program listings

    Science.gov (United States)

    1979-01-01

    A description and listing is presented of two computer programs: Hybrid Vehicle Design Program (HYVELD) and Hybrid Vehicle Simulation Program (HYVEC). Both of the programs are modifications and extensions of similar programs developed as part of the Electric and Hybrid Vehicle System Research and Development Project.

  2. Dynamic Performance of Subway Vehicle with Linear Induction Motor System

    Science.gov (United States)

    Wu, Pingbo; Luo, Ren; Hu, Yan; Zeng, Jing

    The light rail vehicle with Linear Induction Motor (LIM) bogie, which is a new type of urban rail traffic tool, has the advantages of low costs, wide applicability, low noise, simple maintenance and better dynamic behavior. This kind of vehicle, supported and guided by the wheel and rail, is not driven by the wheel/rail adhesion force, but driven by the electromagnetic force between LIM and reaction plate. In this paper, three different types of suspensions and their characteristic are discussed with considering the interactions both between wheel and rail and between LIM and reaction plate. A nonlinear mathematical model of the vehicle with LIM bogie is set up by using the software SIMPACK, and the electromechanical model is also set up on Simulink roof. Then the running behavior of the LIM vehicle is simulated, and the influence of suspension on the vehicle dynamic performance is investigated.

  3. FASTSim: A Model to Estimate Vehicle Efficiency, Cost and Performance

    Energy Technology Data Exchange (ETDEWEB)

    Brooker, A.; Gonder, J.; Wang, L.; Wood, E.; Lopp, S.; Ramroth, L.

    2015-05-04

    The Future Automotive Systems Technology Simulator (FASTSim) is a high-level advanced vehicle powertrain systems analysis tool supported by the U.S. Department of Energy’s Vehicle Technologies Office. FASTSim provides a quick and simple approach to compare powertrains and estimate the impact of technology improvements on light- and heavy-duty vehicle efficiency, performance, cost, and battery batches of real-world drive cycles. FASTSim’s calculation framework and balance among detail, accuracy, and speed enable it to simulate thousands of driven miles in minutes. The key components and vehicle outputs have been validated by comparing the model outputs to test data for many different vehicles to provide confidence in the results. A graphical user interface makes FASTSim easy and efficient to use. FASTSim is freely available for download from the National Renewable Energy Laboratory’s website (see www.nrel.gov/fastsim).

  4. A high performance pneumatic braking system for heavy vehicles

    Science.gov (United States)

    Miller, Jonathan I.; Cebon, David

    2010-12-01

    Current research into reducing actuator delays in pneumatic brake systems is opening the door for advanced anti-lock braking algorithms to be used on heavy goods vehicles. However, these algorithms require the knowledge of variables that are impractical to measure directly. This paper introduces a sliding mode braking force observer to support a sliding mode controller for air-braked heavy vehicles. The performance of the observer is examined through simulations and field testing of an articulated heavy vehicle. The observer operated robustly during single-wheel vehicle simulations, and provided reasonable estimates of surface friction from test data. The effect of brake gain errors on the controller and observer are illustrated, and a recursive least squares estimator is derived for the brake gain. The estimator converged within 0.3 s in simulations and vehicle trials.

  5. Electric and hybrid vehicle program; Site Operator Program

    Energy Technology Data Exchange (ETDEWEB)

    Warren, J.F.

    1992-05-01

    Activities during the second quarter included the second meeting of the Site Operators in Phoenix, AZ in late April. The meeting was held in conjunction with the Solar and Electric 500 Race activities. Delivery of vehicles ordered previously has begun, although two of the operators are experiencing some delays in receiving their vehicles. Public demonstration activities continue, with an apparent increasing level of awareness and interest being displayed by the public. Initial problems with the Site Operator Database have been corrected and revised copies of the program have been supplied to the Program participants. Operating and Maintenance data is being supplied and submitted to INEL on a monthly basis. Interest in the Site Operator Program is being reflected in requests for information from several organizations from across the country, representing a wide diversity of interests. These organizations have been referred to existing Site Operators with the explanation that the program will not be adding new participants, but that most of the existing organizations are willing to work with other groups. The exception to this was the addition of Potomac Electric Power Company (PEPCO) to the program. PEPCO has been awarded a subcontract to operate and maintain the DOE owned G-Van and Escort located in Washington, DC. They will provide data on these vehicles, as well as a Solectria Force which PEPCO has purchased. The Task Force intends to be actively involved in the infrastructure development in a wide range of areas. These include, among others, personnel development, safety, charging, and servicing. Work continues in these areas. York Technical College (YORK) has completed the draft outline for the EV Technician course. This is being circulated to organizations around the country for comments. Kansas State University (KSU) is working with a private sector company to develop a energy dispensing meter for opportunity charging in public areas.

  6. Electric and hybrid vehicle program; Site Operator Program

    Science.gov (United States)

    Warren, J. F.

    1992-05-01

    Activities during the second quarter included the second meeting of the Site Operators in Phoenix, AZ in late April. The meeting was held in conjunction with the Solar and Electric 500 Race activities. Delivery of vehicles ordered previously has begun, although two of the operators are experiencing some delays in receiving their vehicles. Public demonstration activities continue, with an apparent increasing level of awareness and interest being displayed by the public. Initial problems with the Site Operator Database have been corrected and revised copies of the program have been supplied to the program participants. Operating and Maintenance data is being supplied and submitted to INEL on a monthly basis. Interest in the Site Operator Program is being reflected in requests for information from several organizations from across the country, representing a wide diversity of interests. These organizations have been referred to existing Site Operators with the explanation that the program will not be adding new participants, but that most of the existing organizations are willing to work with other groups. The exception to this was the addition of Potomac Electric Power Company (PEPCO) to the program. PEPCO has been awarded a subcontract to operate and maintain the DOE owned G-Van and Escort located in Washington, DC. They will provide data on these vehicles, as well as a Solectria Force which PEPCO has purchased. The Task Force intends to be actively involved in the infrastructure development in a wide range of areas. These include, among others, personnel development, safety, charging, and servicing. Work continues in these areas. York Technical College (YORK) has completed the draft outline for the EV Technician course. This is being circulated to organizations around the country for comments. Kansas State University (KSU) is working with a private sector company to develop a energy dispensing meter for opportunity charging in public areas.

  7. Motion coordination and performance analysis of multiple vehicle systems

    Science.gov (United States)

    Sharma, Vikrant

    In this dissertation, issues related to multiple vehicle systems are studied. First, the issue of vehicular congestion is addressed and its effect on the performance of some systems studied. Motion coordination algorithms for some systems of interest are also developed. The issue of vehicular congestion is addressed by characterizing the effect of increasing the number of vehicles, in a bounded region, on the speed of the vehicles. A multiple vehicle routing problem is considered where vehicles are required to stay velocity-dependent distance away from each other to avoid physical collisions. Optimal solutions to the minimum time routing are characterized and are found to increase with the square root of the number of vehicles in the environment, for different distributions of the sources and destinations of the vehicles. The second issue addressed is that of the effect of vehicular congestion on the delay associated with data delivery in wireless networks where vehicles are used to transport data to increase the wireless capacity of the network. Tight bounds on the associated delay are derived. The next problem addressed is that of covering an arbitrary path-connected two dimensional region, using multiple unmanned aerial vehicles, in minimum time. A constant-factor optimal algorithm is presented for any given initial positions of the vehicles inside the environment. The last problem addressed is that of the deployment of an environment monitoring network of mobile sensors to improve the network lifetime and sensing quality. A distributed algorithm is presented that improves the system's performance starting from an initial deployment.

  8. Electric and hybrid vehicle system R/D

    Science.gov (United States)

    Schwartz, H. J.

    1980-01-01

    The work being done to characterize the level of current propulsion technology through component testing is described. Important interactions between the battery and the propulsion system will be discussed. Component development work, involving traction motors, motor controllers and transmissions are described and current results are presented. Studies of advanced electric and hybrid propulsion system studies are summarized and the status of propulsion system development work supported by the project is described. A strategy for fostering joint industry/government projects for commercialization of propulsion components and systems is described briefly.

  9. Batteries for electric and hybrid-electric vehicles.

    Science.gov (United States)

    Cairns, Elton J; Albertus, Paul

    2010-01-01

    Batteries have powered vehicles for more than a century, but recent advances, especially in lithium-ion (Li-ion) batteries, are bringing a new generation of electric-powered vehicles to the market. Key barriers to progress include system cost and lifetime, and derive from the difficulty of making a high-energy, high-power, and reversible electrochemical system. Indeed, although humans produce many mechanical and electrical systems, the number of reversible electrochemical systems is very limited. System costs may be brought down by using cathode materials less expensive than those presently employed (e.g., sulfur or air), but reversibility will remain a key challenge. Continued improvements in the ability to synthesize and characterize materials at desired length scales, as well as to use computations to predict new structures and their properties, are facilitating the development of a better understanding and improved systems. Battery research is a fascinating area for development as well as a key enabler for future technologies, including advanced transportation systems with minimal environmental impact.

  10. Solving the vehicle routing problem by a hybrid meta-heuristic algorithm

    Science.gov (United States)

    Yousefikhoshbakht, Majid; Khorram, Esmaile

    2012-08-01

    The vehicle routing problem (VRP) is one of the most important combinational optimization problems that has nowadays received much attention because of its real application in industrial and service problems. The VRP involves routing a fleet of vehicles, each of them visiting a set of nodes such that every node is visited by exactly one vehicle only once. So, the objective is to minimize the total distance traveled by all the vehicles. This paper presents a hybrid two-phase algorithm called sweep algorithm (SW) + ant colony system (ACS) for the classical VRP. At the first stage, the VRP is solved by the SW, and at the second stage, the ACS and 3-opt local search are used for improving the solutions. Extensive computational tests on standard instances from the literature confirm the effectiveness of the presented approach.

  11. PM Motor Parametric Design Analyses for a Hybrid Electric Vehicle Traction Drive Application

    Energy Technology Data Exchange (ETDEWEB)

    Staunton, R.H.

    2004-10-11

    The Department of Energy's (DOE) Office of FreedomCAR (Cooperative Automotive Research) and Vehicle Technologies office has a strong interest in making rapid progress in permanent magnet (PM) machine development. The DOE FreedomCAR program is directing various technology development projects that will advance the technology and hopefully lead to a near-term request for proposals (RFP) for a to-be-determined level of initial production. This aggressive approach is possible because the technology is clearly within reach and the approach is deemed essential, based on strong market demand, escalating fuel prices, and competitive considerations. In response, this study began parallel development paths that included a literature search/review, development and utilization of multiple parametric models, verification of the modeling methodology, development of an interior PM (IPM) machine baseline design, development of alternative machine baseline designs, and cost analyses for several candidate machines. This report summarizes the results of these activities as of September 2004. This report provides background and summary information for recent machine parametric studies and testing programs that demonstrate both the potential capabilities and technical limitations of brushless PM machines (axial gap and radial gap), the IPM machine, the surface-mount PM machines (interior or exterior rotor), induction machines, and switched-reluctance machines. The FreedomCAR program, while acknowledging the progress made by Oak Ridge National Laboratory (ORNL), Delphi, Delco-Remy International, and others in these programs, has redirected efforts toward a ''short path'' to a marketable and competitive PM motor for hybrid electric vehicle (HEV) traction applications. The program has developed a set of performance targets for the type of traction machine desired. The short-path approach entails a comprehensive design effort focusing on the IPM machine and meeting

  12. PM Motor Parametric Design Analyses for Hybrid Electric Vehicle Traction Drive Application: Interim Report

    Energy Technology Data Exchange (ETDEWEB)

    Staunton, R.H.

    2004-08-11

    The Department of Energy's (DOE) Office of FreedomCAR (Cooperative Automotive Research) and Vehicle Technologies has a strong interest in making rapid progress in permanent magnet (PM) machine development. The program is directing various technology development projects that will advance the technology and lead to request for proposals (RFP) for manufacturer prototypes. This aggressive approach is possible because the technology is clearly within reach and the approach is deemed essential, based on strong market demand, escalating fuel prices, and competitive considerations. In response, this study began parallel development paths that included a literature search/review, development and utilization of multiple parametric models to determine the effects of design parameters, verification of the modeling methodology, development of an interior PM (IPM) machine baseline design, development of alternative machine baseline designs, and cost analyses for several candidate machines. This interim progress report summarizes the results of these activities as of June 2004. This report provides background and summary information for recent machine parametric studies and testing programs that demonstrate both the potential capabilities and technical limitations of brushless PM machines (axial gap and radial gap), the IPM machine, the surface-mount PM machines (interior or exterior rotor), induction machines, and switched reluctance machines. The FreedomCAR program, while acknowledging the progress made by Oak Ridge National Laboratory, Delphi, Delco-Remy International, and others in these programs, has redirected efforts toward a ''short path'' to a marketable and competitive PM motor for hybrid electric vehicle traction applications. The program has developed a set of performance targets for the type of traction machine desired. The short-path approach entails a comprehensive design effort focusing on the IPM machine and meeting the performance

  13. Simulating Study on Drive System Performance for Hybrid Electric Bus Based on ADVISOR

    Directory of Open Access Journals (Sweden)

    Wang Xingxing

    2017-01-01

    Full Text Available Hybrid electric bus has a number of advantages when compared with ordinary passenger cars, but in the dynamic matching and the vehicle performance are difficult to detect, thus limits its development process. In this paper, combined with the actual models, the hybrid electric bus module parameters were modified in the software of ADVISOR (Advanced Vehicle Simulator, main including: module of the vehicle, the wheel module, motor module, a battery module and engine module, three kinds of bus models for A, B and C were established, and the related performance that need to be analyzed was set up, such as acceleration, gradability, emissions and energy utilization and so on, in order to ensure the vehicle running in the same environment and convenient for comparison, a fixed vehicle driving cycles was chose, then the simulation results was analyzed, and the various performance was compared with the dynamic indicators and economic indicators which determined by referencing of traditional city bus standard and each other, and finally, the performance optimal model of B was chose out which can meet the demand, its related performance parameters of the simulation results are as follows: the best gradability is 26%, maximum speed is 72.7km/h, maximum acceleration is 1.7m/s2, 0~50km/h acceleration time is 9.5s and fuel consumption is 25L/km.

  14. AN ASSESSMENT OF FLYWHEEL HIGH POWER ENERGY STORAGE TECHNOLOGY FOR HYBRID VEHICLES

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, James Gerald [ORNL

    2012-02-01

    An assessment has been conducted for the DOE Vehicle Technologies Program to determine the state of the art of advanced flywheel high power energy storage systems to meet hybrid vehicle needs for high power energy storage and energy/power management. Flywheel systems can be implemented with either an electrical or a mechanical powertrain. The assessment elaborates upon flywheel rotor design issues of stress, materials and aspect ratio. Twelve organizations that produce flywheel systems submitted specifications for flywheel energy storage systems to meet minimum energy and power requirements for both light-duty and heavy-duty hybrid applications of interest to DOE. The most extensive experience operating flywheel high power energy storage systems in heavy-duty and light-duty hybrid vehicles is in Europe. Recent advances in Europe in a number of vehicle racing venues and also in road car advanced evaluations are discussed. As a frame of reference, nominal weight and specific power for non-energy storage components of Toyota hybrid electric vehicles are summarized. The most effective utilization of flywheels is in providing high power while providing just enough energy storage to accomplish the power assist mission effectively. Flywheels are shown to meet or exceed the USABC power related goals (discharge power, regenerative power, specific power, power density, weight and volume) for HEV and EV batteries and ultracapacitors. The greatest technical challenge facing the developer of vehicular flywheel systems remains the issue of safety and containment. Flywheel safety issues must be addressed during the design and testing phases to ensure that production flywheel systems can be operated with adequately low risk.

  15. Transient Performance of Electrical System in a Military Vehicle

    Directory of Open Access Journals (Sweden)

    Zang Kemao

    2004-01-01

    Full Text Available Electrical system in a military vehicle is a low voltage (28 V dc system which is an unsymmetrical and nonlinear system made up of silicon-rectifying generator and a battery in parallel. Studies have been carried out using numerical method to calculate its transient performance. State variable and coordinate transformation have been adopted to express the functional modes and its transfer law of the silicon-rectifying generator; the battery is expressed as a simplified equivalent circuit according to its characteristics during transient process: Consequently, the general mathematical model of electrical system in a military vehicle is presented. Examples of electrical systems in somemilitary vehicles have been taken to carry out the calculation of transient performance and the findings have been compared with the test results of an actual vehicle to show that the numerical method designed works.

  16. A Novel Torque Coordination Control Strategy of a Single-Shaft Parallel Hybrid Electric Vehicle Based on Model Predictive Control

    Directory of Open Access Journals (Sweden)

    Jing Sun

    2015-01-01

    Full Text Available The torque coordination control during mode transition is a very important task for hybrid electric vehicle (HEV with a clutch serving as the key enabling actuator element. Poor coordination will deteriorate the drivability of the driver and lead to excessive wearing to the clutch friction plates. In this paper, a novel torque coordination control strategy for a single-shaft parallel hybrid electric vehicle is presented to coordinate the motor torque, engine torque, and clutch torque so that the seamless mode switching can be achieved. Different to the existing model predictive control (MPC methods, only one model predictive controller is needed and the clutch torque is taken as an optimized variable rather than a known parameter. Furthermore, the successful idea of model reference control (MRC is also used for reference to generate the set-point signal required by MPC. The parameter sensitivity is studied for better performance of the proposed model predictive controller. The simulation results validate that the proposed novel torque coordination control strategy has less vehicle jerk, less torque interruption, and smaller clutch frictional losses, compared with the baseline method. In addition, the sensitivity and adaptiveness of the proposed novel torque coordination control strategy are evaluated.

  17. Experimental Study on Communication Delay of Powertrain System of Plug-In Hybrid Electric Vehicles

    Directory of Open Access Journals (Sweden)

    Dafang Wang

    2013-01-01

    Full Text Available In order to contrast and analyze the real-time performance of the powertrain system of a plug-in hybrid electric vehicle, a mathematical model of the system delay is established under the circumstances that the transmission adopts the CAN (controller area network protocol and the TTCAN (time-triggered CAN protocol, respectively, and the interior of the controller adopts the foreground-background mode and the OSEK mode respectively. In addition, an experimental platform is developed to test communication delays of messages under 4 different implementation models. The 4 models are testing under the CAN protocol while the controller interior adopts the foreground-background mode; testing under the CAN protocol while the controller interior adopts the OSEK mode; testing under the TTCAN protocol while the controller interior adopts the foreground-background mode, and testing under the TTCAN protocol while the controller interior adopts the OSEK mode. The theoretical and testing results indicate that the communication delay of the OSEK mode is a little longer than the one of the foreground-background mode. Moreover, compared with the CAN protocol, the periodic message has a better real-time performance under the TTCAN protocol, while the nonperiodic message has a worse one.

  18. Online energy management strategy of fuel cell hybrid electric vehicles based on data fusion approach

    Science.gov (United States)

    Zhou, Daming; Al-Durra, Ahmed; Gao, Fei; Ravey, Alexandre; Matraji, Imad; Godoy Simões, Marcelo

    2017-10-01

    Energy management strategy plays a key role for Fuel Cell Hybrid Electric Vehicles (FCHEVs), it directly affects the efficiency and performance of energy storages in FCHEVs. For example, by using a suitable energy distribution controller, the fuel cell system can be maintained in a high efficiency region and thus saving hydrogen consumption. In this paper, an energy management strategy for online driving cycles is proposed based on a combination of the parameters from three offline optimized fuzzy logic controllers using data fusion approach. The fuzzy logic controllers are respectively optimized for three typical driving scenarios: highway, suburban and city in offline. To classify patterns of online driving cycles, a Probabilistic Support Vector Machine (PSVM) is used to provide probabilistic classification results. Based on the classification results of the online driving cycle, the parameters of each offline optimized fuzzy logic controllers are then fused using Dempster-Shafer (DS) evidence theory, in order to calculate the final parameters for the online fuzzy logic controller. Three experimental validations using Hardware-In-the-Loop (HIL) platform with different-sized FCHEVs have been performed. Experimental comparison results show that, the proposed PSVM-DS based online controller can achieve a relatively stable operation and a higher efficiency of fuel cell system in real driving cycles.

  19. Electric and hybrid vehicle program, site operator program quarterly progress report for April through June 1996 (third quarter of fiscal year 1996)

    Energy Technology Data Exchange (ETDEWEB)

    Francfort, J. [Lockheed Idaho Technologies Co., Idaho Falls, ID (United States); Bassett, R.R. [Sandia National Labs., Albuquerque, NM (United States); Briasco, S. [Los Angeles Dept. of Water and Power, CA (United States)] [and others

    1997-01-01

    The US Department of Energy (DOE) Site Operator Program was initially established to meet the requirements of the Electric and Hybrid Vehicle Research, Development, and Demonstration Act of 1976. The Program has since evolved in response to new legislation and interests. The goals of the Site Operator Program include the field evaluation of electric vehicles (EVs) in real-world applications and environments; the advancement of electric vehicle technologies; the development of infrastructure elements necessary to support significant electric vehicle use; and increasing the awareness and acceptance of EVs by the public. The Site Operator Program currently consists of eleven participants under contract and two other organizations that have data-sharing agreements with the Program (Table ES-1). Several national organizations have joined DOE to further the introduction and awareness of electric vehicles, including: (1) EVAmerica (a utility program) and DOE conduct performance and evaluation tests to support market development for electric vehicles; and (2) DOE, the Department of Transportation, the Electric Transportation Coalition, and the Electric Vehicle Association of the Americas are conducting a series of workshops to encourage urban groups in Clean Cities (a DOE program) to initiate the policies and infrastructure development necessary to support large-scale demonstrations, and ultimately the mass market use, of electric vehicles. The current focus of the Program is the collection and dissemination of EV operations and performance data to aid in the evaluation of real-world EV use. This report contains several sections with vehicle evaluation as a focus.

  20. Electric and hybrid vehicle program, site operator program quarterly progress report for April through June 1996 (third quarter of fiscal year 1996)

    Energy Technology Data Exchange (ETDEWEB)

    Francfort, J. [Lockheed Idaho Technologies Co., Idaho Falls, ID (United States); Bassett, R.R. [Sandia National Labs., Albuquerque, NM (United States); Briasco, S. [Los Angeles Dept. of Water and Power, CA (United States)] [and others

    1997-01-01

    The US Department of Energy (DOE) Site Operator Program was initially established to meet the requirements of the Electric and Hybrid Vehicle Research, Development, and Demonstration Act of 1976. The Program has since evolved in response to new legislation and interests. The goals of the Site Operator Program include the field evaluation of electric vehicles (EVs) in real-world applications and environments; the advancement of electric vehicle technologies; the development of infrastructure elements necessary to support significant electric vehicle use; and increasing the awareness and acceptance of EVs by the public. The Site Operator Program currently consists of eleven participants under contract and two other organizations that have data-sharing agreements with the Program (Table ES-1). Several national organizations have joined DOE to further the introduction and awareness of electric vehicles, including: (1) EVAmerica (a utility program) and DOE conduct performance and evaluation tests to support market development for electric vehicles; and (2) DOE, the Department of Transportation, the Electric Transportation Coalition, and the Electric Vehicle Association of the Americas are conducting a series of workshops to encourage urban groups in Clean Cities (a DOE program) to initiate the policies and infrastructure development necessary to support large-scale demonstrations, and ultimately the mass market use, of electric vehicles. The current focus of the Program is the collection and dissemination of EV operations and performance data to aid in the evaluation of real-world EV use. This report contains several sections with vehicle evaluation as a focus.

  1. Electric and hybrid vehicle site operators program: Thinking of the future

    Science.gov (United States)

    Kansas State University, with support from federal, state, public, and private companies, is participating in the Department of Energy's Electric Vehicle Site Operator Program. Through participation in this program, Kansas State is displaying, testing, and evaluating electric or hybrid vehicle technology. This participation will provide organizations the opportunity to examine the latest EHV prototypes under actual operating conditions. KSU proposes to purchase one electric or hybrid van and two electric cars during the first two years of this five-year program. KSU has purchased one G-Van built by Conceptor Industries, Toronto, Canada and has initiated a procurement order to purchase two Soleq 1993 Ford EVcort station wagons. The G-Van has been signed in order for the public to be aware that this is an electric drive vehicle. Financial participants' names have been stenciled on the back door of the van. This vehicle is available for short term loan to interested utilities and companies. When other vehicles are obtained, the G-Van will be maintained on K-State's campus.

  2. Brake Performance Analysis of ABS for Eddy Current and Electrohydraulic Hybrid Brake System

    Directory of Open Access Journals (Sweden)

    Ren He

    2013-01-01

    Full Text Available This paper introduces an eddy current and electro-hydraulic hybrid brake system to solve problems such as wear, thermal failure, and slow response of traditional vehicle brake system. Mathematical model was built to calculate the torque of the eddy current brake system and hydraulic brake system and analyze the braking force distribution between two types of brake systems. A fuzzy controller on personal computer based on LabVIEW and Matlab was designed and a set of hardware in the loop system was constructed to validate and analyze the performance of the hybrid brake system. Through lots of experiments on dry and wet asphalt roads, the hybrid brake system achieves perfect performance on the experimental bench, the hybrid system reduces abrasion and temperature of the brake disk, response speed is enhanced obviously, fuzzy controller keeps high utilization coefficient due to the optimal slip ratio regulation, and the total brake time has a smaller decrease than traditional hydraulic brake system.

  3. LQR-Based Power Train Control Method Design for Fuel Cell Hybrid Vehicle

    Directory of Open Access Journals (Sweden)

    Yun Haitao

    2013-01-01

    Full Text Available Based on the mathematical model of fuel cell hybrid vehicle (FCHV proposed in our previous study, a multistate feedback control strategy of the hybrid power train is designed based on the linear quadratic regulator (LQR algorithm. A Kalman Filter (KF observer is introduced to estimate state of charge (SOC of the battery firstly, and then a linear quadratic regulator is constructed to compute the state feedback gain matrix of the closed-loop control system. At last, simulation and actual test are utilized to demonstrate this new approach.

  4. The electric motor in the hybrid vehicle. A comparison of three different types of electric motors; Der Elektromotor im Hybridfahrzeug. Vergleich von drei unterschiedlichen Elektromotorentypen

    Energy Technology Data Exchange (ETDEWEB)

    Petschnik, Harald

    2009-07-01

    According to the experts, hybrid technology is the key technology in the automotive industry for the next few decades. Many of the well established automobile manufacturers are focusing their research and development activities on this upcoming technology. The big advantage of hybrid vehicles is the electrified powertrain. Due to intelligent combination of the combustion- and electric engine, the benefits of the two different powertrain configurations can be used. The following research is concerned and closely examines the role of the electric engine in the hybrid vehicle. The scope of the research is focused on the demands of an electric engine, the technical configuration, functionality and economy of three different engine types which are often used in the serial production and prototyping. In order to make a direct comparison of the performance of this different engine types, they were all tested in a go-cart. The go-carts for each engine were constructed in the same way. The interpretation of the measurement results showed that the synchronous engine with permanent magnets had the best performance when considering the level of electrical efficiency, closely followed by the switched reluctance motor. The efficiency of the electrical motor makes a high contribution to the total efficiency of the vehicle. The measurement result confirms the selection of a synchronous motor is, under consideration of the electrical efficiency, the most advantageous solution for hybrid vehicles. (orig.)

  5. Plug-in-Hybrid Vehicle Use, Energy Consumption, and Greenhouse Emissions: An Analysis of Household Vehicle Placements in Northern California

    Directory of Open Access Journals (Sweden)

    Daniel Kammen

    2011-03-01

    Full Text Available We report on the real-world use over the course of one year of a nickel-metal-hydride plug-in hybrid—the Toyota Plug-In HV—by a set of 12 northern California households able to charge at home and work. From vehicle use data, energy and greenhouse-emissions implications are also explored. A total of 1557 trips—most using under 0.5 gallons of gasoline—ranged up to 2.4 hours and 133 miles and averaged 14 minutes and 7 miles. 399 charging events averaged 2.6 hours. The maximum lasted 4.6 hours. Most recharges added less than 1.4 kWh, with a mean charge of 0.92 kWh. The average power drawn was under one-half kilowatt. The greenhouse gas emissions from driving and charging were estimated to be 2.6 metric tons, about half of the emissions expected from a 22.4-mpg vehicle (the MY2009 fleet-wide real-world average. The findings contribute to better understanding of how plug-in hybrids might be used, their potential impact, and how potential benefits and requirements vary for different plug-in-vehicle designs. For example, based on daily driving distances, 20 miles of charge-depleting range would have been fully utilized on 81% of days driven, whereas 40 miles would not have been fully utilized on over half of travel days.

  6. Effect of extreme temperatures on battery charging and performance of electric vehicles

    Science.gov (United States)

    Lindgren, Juuso; Lund, Peter D.

    2016-10-01

    Extreme temperatures pose several limitations to electric vehicle (EV) performance and charging. To investigate these effects, we combine a hybrid artificial neural network-empirical Li-ion battery model with a lumped capacitance EV thermal model to study how temperature will affect the performance of an EV fleet. We find that at -10 °C, the self-weighted mean battery charging power (SWMCP) decreases by 15% compared to standard 20 °C temperature. Active battery thermal management (BTM) during parking can improve SWMCP for individual vehicles, especially if vehicles are charged both at home and at workplace; the median SWMCP is increased by over 30%. Efficiency (km/kWh) of the vehicle fleet is maximized when ambient temperature is close to 20 °C. At low (-10 °C) and high (+40 °C) ambient temperatures, cabin preconditioning and BTM during parking can improve the median efficiency by 8% and 9%, respectively. At -10 °C, preconditioning and BTM during parking can also improve the fleet SOC by 3-6%-units, but this also introduces a "base" load of around 140 W per vehicle. Finally, we observe that the utility of the fleet can be increased by 5%-units by adding 3.6 kW chargers to workplaces, but further improved charging infrastructure would bring little additional benefit.

  7. Hybrids - Best of both worlds. [liquid and solid propellants mated for safe reliable and low cost launch vehicles

    Science.gov (United States)

    Goldberg, Ben E.; Wiley, Dan R.

    1991-01-01

    An overview is presented of hybrid rocket propulsion systems whereby combining solids and liquids for launch vehicles could produce a safe, reliable, and low-cost product. The primary subsystems of a hybrid system consist of the oxidizer tank and feed system, an injector system, a solid fuel grain enclosed in a pressure vessel case, a mixing chamber, and a nozzle. The hybrid rocket has an inert grain, which reduces costs of development, transportation, manufacturing, and launch by avoiding many safety measures that must be taken when operating with solids. Other than their use in launch vehicles, hybrids are excellent for simulating the exhaust of solid rocket motors for material development.

  8. Development of high performance hybrid rocket fuels

    Science.gov (United States)

    Zaseck, Christopher R.

    . In order to examine paraffin/additive combustion in a motor environment, I conducted experiments on well characterized aluminum based additives. In particular, I investigate the influence of aluminum, unpassivated aluminum, milled aluminum/polytetrafluoroethylene (PTFE), and aluminum hydride on the performance of paraffin fuels for hybrid rocket propulsion. I use an optically accessible combustor to examine the performance of the fuel mixtures in terms of characteristic velocity efficiency and regression rate. Each combustor test consumes a 12.7 cm long, 1.9 cm diameter fuel strand under 160 kg/m 2s of oxygen at up to 1.4 MPa. The experimental results indicate that the addition of 5 wt.% 30 mum or 80 nm aluminum to paraffin increases the regression rate by approximately 15% compared to neat paraffin grains. At higher aluminum concentrations and nano-scale particles sizes, the increased melt layer viscosity causes slower regression. Alane and Al/PTFE at 12.5 wt.% increase the regression of paraffin by 21% and 32% respectively. Finally, an aging study indicates that paraffin can protect air and moisture sensitive particles from oxidation. The opposed burner and aluminum/paraffin hybrid rocket experiments show that additives can alter bulk fuel properties, such as viscosity, that regulate entrainment. The general effect of melt layer properties on the entrainment and regression rate of paraffin is not well understood. Improved understanding of how solid additives affect the properties and regression of paraffin is essential to maximize performance. In this document I investigate the effect of melt layer properties on paraffin regression using inert additives. Tests are performed in the optical cylindrical combustor at ˜1 MPa under a gaseous oxygen mass flux of ˜160 kg/m2s. The experiments indicate that the regression rate is proportional to mu0.08rho 0.38kappa0.82. In addition, I explore how to predict fuel viscosity, thermal conductivity, and density prior to testing

  9. Evaluation of logistic and economic impacts of hybrid vehicle propulsion/microgrid concepts: Demonstration of LOCSS applied to HE HMMWV in future unit of action

    Science.gov (United States)

    Farrell, Michael; Tiberi, Lisa; Burns, Joseph; Udvare, Thomas B.

    2006-05-01

    Computer models have been developed and used to predict the performance of vehicles equipped with advanced fuel and power train technologies such as hybrid electric or fuel cells. However, simulations that describe the interaction of the vehicle with the rest of the vehicle fleet and infrastructure are just emerging. This paper documents the results of an experiment to demonstrate the utility of these types of simulations. The experiment examined the business case of fielding hybrid electric, high-mobility multipurpose wheeled vehicles (HE HMMWVs) in a future Army organization. The hypothesis was that fielding HE vehicles would significantly reduce fuel consumption due to the economy offered by the HE technology and reducing the number of generators as a result of using the vehicles to generate electrical power. The Logistical and Combat Systems Simulation (LOCSS) was used to estimate differences in fuel consumption and associated equipment during a 72-hour operation with and without HE HMMWVs. There was a 25 percent reduction in fuel consumption over the systems examined. However, due to the relatively low density of the HE vehicles in the organization, the total difference in fuel consumption was not operationally significant; and the savings in fuel costs did not overcome the additional procurement costs over a twenty-year life cycle.

  10. Design, Modeling and Energy Management of a PEM Fuel Cell / Supercapacitor Hybrid Vehicle

    Directory of Open Access Journals (Sweden)

    Wahib Andari

    2017-01-01

    Full Text Available This work concerns the study and the modeling of hybrid Proton Exchange Membrane (PEM Fuel Cell electric vehicle. In fact, the paper deals with the model description of the powertrain which includes two energy sources: a PEM Fuel Cell as a primary source and a supercapacitor as a secondary source. The architecture is two degrees of freedom permitting a stability of the DC bus voltage. The hybridation of primary source with an energy storage system can improve vehicle dynamic response during transients and hydrogen consumption. The proposed energy management algorithm allows us to have a minimum hydrogen consumption. This algorithm is based on supercapacitor state of charge (SOC control and acceleration/deceleration phases making possible braking energy recovery. The proposed model is simulated and tested using Matlab/Simulink software allowing rapid transitions between sources. The obtained results with the New European Driving Cycle (NEDC cycle demonstrate a 22% gain in hydrogen consumption.

  11. Near term hybrid passenger vehicle development program. Phase I. Appendices A and B. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1980-01-01

    In this report vehicle use patterns or missions are defined and studied. The three most promising missions were found to be: all-purpose city driving which has the maximum potential market penetration; commuting which requires mainly a two-passenger car; and family and civic business driving which have minimal range requirements. The mission selection process was based principally on an analysis of the travel patterns found in the Nationwide Transportation Survey and on the Los Angeles and Washington, DC origin-destination studies data presented by General Research Corporation in Volume II of this report. Travel patterns in turn were converted to fuel requirements for 1985 conventional and hybrid cars. By this means the potential fuel savings for each mission were estimated, and preliminary design requirements for hybrid vehicles were derived.

  12. MODELING AND IMPLEMENTATION OF SPEED GOVERNOR FOR THE HYBRID ELECTRIC VEHICLE ENGINE

    Institute of Scientific and Technical Information of China (English)

    Feng Qishan; Zhang Jianwu; Yin Chengliang

    2005-01-01

    A speed control analysis for an in-line gasoline fueled internal combustion (IC) engine is presented for the purpose of alleviation of high frequency oscillations in engine revolutions. A dynamic cylinder-by-cylinder model is proposed, base on slider-crank mechanism, which is extended to develop a digital governor providing a high fidelity estimation of rotary speed oscillation for hybrid vehicle engines. A modified PID controller that P and I gain is placed in feedback path is also described for hybrid electric vehicle (HEV) engine speed regulation. By comparison between measured and estimated signals, it is demonstrated that a good agreement has been achieved and the governor behaves an excellent damping speed ripple.

  13. Battery Sizing for Plug-in Hybrid Electric Vehicles in Beijing: A TCO Model Based Analysis

    OpenAIRE

    Cong Hou; Hewu Wang; Minggao Ouyang

    2014-01-01

    This paper proposes a total cost of ownership (TCO) model for battery sizing of plug-in hybrid electric vehicles (PHEVs). The proposed systematic TCO model innovatively integrates the Beijing driving database and optimal PHEV energy management strategies developed earlier. The TCO, including battery, fuel, electricity, and salvage costs, is calculated in yearly cash flows. The salvage cost, based on battery degradation model, is proposed for the first time. The results show that the optimal b...

  14. A hybrid differential evolution algorithm to vehicle routing problem with fuzzy demands

    Science.gov (United States)

    Erbao, Cao; Mingyong, Lai

    2009-09-01

    In this paper, the vehicle routing problem with fuzzy demands (VRPFD) is considered, and a fuzzy chance constrained program model is designed, based on fuzzy credibility theory. Then stochastic simulation and differential evolution algorithm are integrated to design a hybrid intelligent algorithm to solve the fuzzy chance constrained program model. Moreover, the influence of the dispatcher preference index on the final objective of the problem is discussed using stochastic simulation, and the best value of the dispatcher preference index is obtained.

  15. Battery Sizing for Plug-in Hybrid Electric Vehicles in Beijing: A TCO Model Based Analysis

    OpenAIRE

    Cong Hou; Hewu Wang; Minggao Ouyang

    2014-01-01

    This paper proposes a total cost of ownership (TCO) model for battery sizing of plug-in hybrid electric vehicles (PHEVs). The proposed systematic TCO model innovatively integrates the Beijing driving database and optimal PHEV energy management strategies developed earlier. The TCO, including battery, fuel, electricity, and salvage costs, is calculated in yearly cash flows. The salvage cost, based on battery degradation model, is proposed for the first time. The results show that the optimal b...

  16. Hybrid power train for light commercial vehicles; Hybridantriebsstrang fuer leichte Nutzfahrzeuge

    Energy Technology Data Exchange (ETDEWEB)

    Somschor, B.; Buchhold, O. (ZF Friedrichshafen AG, Friedrichshafen)

    2007-07-01

    Light commercial vehicles are a rapidly growing vehicle segment. These vehicles are used for several purposes e.g. supply of different goods, construction areas, special applications. A high number of vehicles are used in cities or in urban arena with a high density of traffic and typical environmental polluting. In the meantime legislation in several industrialized countries around the world have the target to protect environment, e.g., Euro 4 or 5 regulations or Japan 10. In parallel the automotive industries (ACEA) in Europe has given a self obligation to reduce the CO{sub 2} emission until 2008 to a value of 140 g/km. A lot of activities are started by automotive industry and there suppliers in the past to meet these requirements. Beside already well known development activities like weight optimisation, lower driving and air resistance or improved diesel engine the hybrid power train, a combination of electric motor generator and combustion engine seems to be in the future an imported solution to meet these requirements in the future. Several possibilities to realize a hybrid power train for these applications is shown including the possibilities ZF have to show a hybrid power train for these types of applications. Advantages and disadvantages of the several possibilities are discussed from different point of view. The needed basic functions of a hybrid power train are discussed and system is recommended to use for these types of applications. A simulation model is shown and described including the realisation and results for different driving cycles. The influence on fuel consumption and emissions divided by functions are shown. A solution optimised for light commercial application is shown. Further more first results based on practical experiences are described. (orig.)

  17. Spatial, temporal, and hybrid decompositions for large-scale vehicle routing with time windows

    Energy Technology Data Exchange (ETDEWEB)

    Bent, Russell W [Los Alamos National Laboratory

    2010-01-01

    This paper studies the use of decomposition techniques to quickly find high-quality solutions to large-scale vehicle routing problems with time windows. It considers an adaptive decomposition scheme which iteratively decouples a routing problem based on the current solution. Earlier work considered vehicle-based decompositions that partitions the vehicles across the subproblems. The subproblems can then be optimized independently and merged easily. This paper argues that vehicle-based decompositions, although very effective on various problem classes also have limitations. In particular, they do not accommodate temporal decompositions and may produce spatial decompositions that are not focused enough. This paper then proposes customer-based decompositions which generalize vehicle-based decouplings and allows for focused spatial and temporal decompositions. Experimental results on class R2 of the extended Solomon benchmarks demonstrates the benefits of the customer-based adaptive decomposition scheme and its spatial, temporal, and hybrid instantiations. In particular, they show that customer-based decompositions bring significant benefits over large neighborhood search in contrast to vehicle-based decompositions.

  18. Intelligent Hybrid Vehicle Power Control - Part 1: Machine Learning of Optimal Vehicle Power

    Science.gov (United States)

    2012-06-30

    secondary power source, an HEV uses a smaller and more efficient engine in its drivetrain . Because of the dual-power-source nature, the design and...the motor or both can provide the traction power to the drivetrain . During vehicle deceleration, the regenerative braking power is captured to charge...is generated for each time step t as a function of Pbatt(t) and ωeng(t) for the given drivetrain power Pdrive-sh(t), and the electric load power

  19. A hybrid system approach to airspeed, angle of attack and sideslip estimation in Unmanned Aerial Vehicles

    KAUST Repository

    Shaqura, Mohammad

    2015-06-01

    Fixed wing Unmanned Aerial Vehicles (UAVs) are an increasingly common sensing platform, owing to their key advantages: speed, endurance and ability to explore remote areas. While these platforms are highly efficient, they cannot easily be equipped with air data sensors commonly found on their larger scale manned counterparts. Indeed, such sensors are bulky, expensive and severely reduce the payload capability of the UAVs. In consequence, UAV controllers (humans or autopilots) have little information on the actual mode of operation of the wing (normal, stalled, spin) which can cause catastrophic losses of control when flying in turbulent weather conditions. In this article, we propose a real-time air parameter estimation scheme that can run on commercial, low power autopilots in real-time. The computational method is based on a hybrid decomposition of the modes of operation of the UAV. A Bayesian approach is considered for estimation, in which the estimated airspeed, angle of attack and sideslip are described statistically. An implementation on a UAV is presented, and the performance and computational efficiency of this method are validated using hardware in the loop (HIL) simulation and experimental flight data and compared with classical Extended Kalman Filter estimation. Our benchmark tests shows that this method is faster than EKF by up to two orders of magnitude. © 2015 IEEE.

  20. Distributed energy resources management using plug-in hybrid electric vehicles as a fuel-shifting demand response resource

    DEFF Research Database (Denmark)

    Morais, Hugo; Sousa, Tiago; Soares, J.

    2015-01-01

    In the smart grids context, distributed energy resources management plays an important role in the power systems' operation. Battery electric vehicles and plug-in hybrid electric vehicles should be important resources in the future distribution networks operation. Therefore, it is important...... to develop adequate methodologies to schedule the electric vehicles' charge and discharge processes, avoiding network congestions and providing ancillary services.This paper proposes the participation of plug-in hybrid electric vehicles in fuel shifting demand response programs. Two services are proposed......, namely the fuel shifting and the fuel discharging. The fuel shifting program consists in replacing the electric energy by fossil fuels in plug-in hybrid electric vehicles daily trips, and the fuel discharge program consists in use of their internal combustion engine to generate electricity injecting...