WorldWideScience

Sample records for hybrid underwater robotic

  1. The Development of a Hybrid Underwater Micro Biped Robot

    Directory of Open Access Journals (Sweden)

    S. Guo

    2006-01-01

    Full Text Available There has been a great demand, in the medical field and in industrial applications, for a novel micro biped robot with multiple degrees of freedom that can swim smoothly in water or in aqueous medium. The fish-like micro-robot studied is a type of miniature device that is installed with sensing and actuating elements. This article describes the new structure and motion mechanism of a hybrid type of underwater micro-robot using an ion-conducting polymer film (ICPF actuator, and discusses the swimming and floating characteristics of the micro-robot in water, measured by changing the voltage frequency and the amplitude of the input voltage. Results indicate that the swimming speed of the proposed underwater micro-robot can be controlled by changing the frequency of the input voltage, and the direction (upward or downward can be manipulated by changing the frequency of the electric current applied and the amplitude of the voltage.

  2. Underwater robots

    CERN Document Server

    Antonelli, Gianluca

    2014-01-01

    This book, now at the third edition, addresses the main control aspects in underwater manipulation tasks. The mathematical model with significant impact on the control strategy is discussed. The problem of controlling a 6-degrees-of-freedoms autonomous underwater vehicle is deeply investigated and a survey of fault detection/tolerant strategies for unmanned underwater vehicles is provided. Inverse kinematics, dynamic and interaction control for underwater vehicle-manipulator systems are then discussed. The code used to generate most of the numerical simulations is made available and briefly discussed.       

  3. Seeking Teachers for Underwater Robotics PD Program

    Science.gov (United States)

    McGrath, Beth; Sayres, Jason

    2012-01-01

    With funding from the National Science Foundation (NSF), ITEEA members will contribute to the development of a hybrid professional development program designed to facilitate the scale-up of an innovative underwater robotics curriculum. WaterBotics[TM] is an underwater robotics curriculum that targets students in middle and high school classrooms…

  4. Design of Underwater Robot Lines Based on a Hybrid Automatic Optimization Strategy

    Institute of Scientific and Technical Information of China (English)

    Wenjing Lyu; Weilin Luo

    2014-01-01

    In this paper, a hybrid automatic optimization strategy is proposed for the design of underwater robot lines. Isight is introduced as an integration platform. The construction of this platform is based on the user programming and several commercial software including UG6.0, GAMBIT2.4.6 and FLUENT12.0. An intelligent parameter optimization method, the particle swarm optimization, is incorporated into the platform. To verify the strategy proposed, a simulation is conducted on the underwater robot model 5470, which originates from the DTRC SUBOFF project. With the automatic optimization platform, the minimal resistance is taken as the optimization goal;the wet surface area as the constraint condition; the length of the fore-body, maximum body radius and after-body’s minimum radius as the design variables. With the CFD calculation, the RANS equations and the standard turbulence model are used for direct numerical simulation. By analyses of the simulation results, it is concluded that the platform is of high efficiency and feasibility. Through the platform, a variety of schemes for the design of the lines are generated and the optimal solution is achieved. The combination of the intelligent optimization algorithm and the numerical simulation ensures a global optimal solution and improves the efficiency of the searching solutions.

  5. Resources for Underwater Robotics Education

    Science.gov (United States)

    Wallace, Michael L.; Freitas, William M.

    2016-01-01

    4-H clubs can build and program underwater robots from raw materials. An annotated resource list for engaging youth in building underwater remotely operated vehicles (ROVs) is provided. This article is a companion piece to the Research in Brief article "Building Teen Futures with Underwater Robotics" in this issue of the "Journal of…

  6. Underwater Robots Surface in Utah

    Science.gov (United States)

    Hurd, Randy C.; Hacking, Kip S.; Damarjian, Jennifer L.; Wright, Geoffrey A.; Truscott, Tadd

    2015-01-01

    Underwater robots (or ROVs: Remotely Operated Vehicles as they are typically called in industry) have recently become a very popular instructional STEM activity. Nationally, ROVs have been used in science and technology classrooms for several years in cities such as Seattle, San Diego, Virginia Beach, and other coastal areas. In the past two…

  7. Survivability design for a hybrid underwater vehicle

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Biao; Wu, Chao; Li, Xiang; Zhao, Qingkai; Ge, Tong [State Key Lab of Ocean Engineering, School of Naval Architecture, Ocean and Civil Engineering, Shanghai Jiao Tong University, Shanghai 200240 (China)

    2015-03-10

    A novel hybrid underwater robotic vehicle (HROV) capable of working to the full ocean depth has been developed. The battery powered vehicle operates in two modes: operate as an untethered autonomous vehicle in autonomous underwater vehicle (AUV) mode and operate under remote control connected to the surface vessel by a lightweight, fiber optic tether in remotely operated vehicle (ROV) mode. Considering the hazardous underwater environment at the limiting depth and the hybrid operating modes, survivability has been placed on an equal level with the other design attributes of the HROV since the beginning of the project. This paper reports the survivability design elements for the HROV including basic vehicle design of integrated navigation and integrated communication, emergency recovery strategy, distributed architecture, redundant bus, dual battery package, emergency jettison system and self-repairing control system.

  8. Adaptive control of nonlinear underwater robotic systems

    Directory of Open Access Journals (Sweden)

    Thor I. Fossen

    1991-04-01

    Full Text Available The problem of controlling underwater mobile robots in 6 degrees of freedom (DOF is addressed. Uncertainties in the input matrix due to partly known nonlinear thruster characteristics are modeled as multiplicative input uncertainty. This paper proposes two methods to compensate for the model uncertainties: (1 an adaptive passivity-based control scheme and (2 deriving a hybrid (adaptive and sliding controller. The hybrid controller consists of a switching term which compensates for uncertainties in the input matrix and an on-line parameter estimation algorithm. Global stability is ensured by applying Barbalat's Lyapunovlike lemma. The hybrid controller is simulated for the horizontal motion of the Norwegian Experimental Remotely Operated Vehicle (NEROV.

  9. Efficient Modelling Methodology for Reconfigurable Underwater Robots

    DEFF Research Database (Denmark)

    Nielsen, Mikkel Cornelius; Blanke, Mogens; Schjølberg, Ingrid

    2016-01-01

    This paper considers the challenge of applying reconfigurable robots in an underwater environment. The main result presented is the development of a model for a system comprised of N, possibly heterogeneous, robots dynamically connected to each other and moving with 6 Degrees of Freedom (DOF......). This paper presents an application of the Udwadia-Kalaba Equation for modelling the Reconfigurable Underwater Robots. The constraints developed to enforce the rigid connection between robots in the system is derived through restrictions on relative distances and orientations. To avoid singularities...... in the orientation and, thereby, allow the robots to undertake any relative configuration the attitude is represented in Euler parameters....

  10. Efficient Modelling Methodology for Reconfigurable Underwater Robots

    DEFF Research Database (Denmark)

    Nielsen, Mikkel Cornelius; Blanke, Mogens; Schjølberg, Ingrid

    2016-01-01

    This paper considers the challenge of applying reconfigurable robots in an underwater environment. The main result presented is the development of a model for a system comprised of N, possibly heterogeneous, robots dynamically connected to each other and moving with 6 Degrees of Freedom (DOF......). This paper presents an application of the Udwadia-Kalaba Equation for modelling the Reconfigurable Underwater Robots. The constraints developed to enforce the rigid connection between robots in the system is derived through restrictions on relative distances and orientations. To avoid singularities...

  11. Efficient Modelling Methodology for Reconfigurable Underwater Robots

    DEFF Research Database (Denmark)

    Nielsen, Mikkel Cornelius; Blanke, Mogens; Schjølberg, Ingrid

    2016-01-01

    This paper considers the challenge of applying reconfigurable robots in an underwater environment. The main result presented is the development of a model for a system comprised of N, possibly heterogeneous, robots dynamically connected to each other and moving with 6 Degrees of Freedom (DOF...

  12. Experiments with Underwater Robot Localization and Tracking

    OpenAIRE

    Corke, Peter; Detwiler, Carrick; Dunbabin, Matthew; Hamilton, Michael; Rus, Daniela; Vasilescu, Iuliu

    2007-01-01

    This paper describes a novel experiment in which two very different methods of underwater robot localization are compared. The first method is based on a geometric approach in which a mobile node moves within a field of static nodes, and all nodes are capable of estimating the range to their neighbours acoustically. The second method uses visual odometry, from stereo cameras, by integrating scaled optical flow. The fundamental algorithmic principles of each localization technique is described...

  13. Centralised versus Decentralised Control Reconfiguration for Collaborating Underwater Robots

    DEFF Research Database (Denmark)

    Furno, Lidia; Nielsen, Mikkel Cornelius; Blanke, Mogens

    2015-01-01

    The present paper introduces an approach to fault-tolerant reconfiguration for collaborating underwater robots. Fault-tolerant reconfiguration is obtained using the virtual actuator approach, Steen (2005). The paper investigates properties of a centralised versus a decentralised implementation...... an underwater drill needs to be transported and positioned by three collaborating robots as part of an underwater autonomous operation....... and assesses the capabilities under communication constraints between the individual robots. In the centralised case, each robot sends information related to its own status to a unique virtual actuator that computes the necessary reconfiguration. In the decentralised case, each robot is equipped with its own...

  14. Modeling, Control and Energy Efficiency of Underwater Snake Robots

    OpenAIRE

    Kelasidi, Eleni

    2015-01-01

    This thesis is mainly motivated by the attribute of the snake robots that they are able to move over land as well as underwater while the physiology of the robot remains the same. This adaptability to different motion demands depending on the environment is one of the main characteristics of the snake robots. In particular, this thesis targets several interesting aspects regarding the modeling, control and energy efficiency of the underwater snake robots. This thesis address...

  15. Modeling and Control of Underwater Robotic Systems

    Energy Technology Data Exchange (ETDEWEB)

    Schjoelberg, I:

    1996-12-31

    This doctoral thesis describes modeling and control of underwater vehicle-manipulator systems. The thesis also presents a model and a control scheme for a system consisting of a surface vessel connected to an underwater robotic system by means of a slender marine structure. The equations of motion of the underwater vehicle and manipulator are described and the system kinematics and properties presented. Feedback linearization technique is applied to the system and evaluated through a simulation study. Passivity-based controllers for vehicle and manipulator control are presented. Stability of the closed loop system is proved and simulation results are given. The equation of motion for lateral motion of a cable/riser system connected to a surface vessel at the top end and to a thruster at the bottom end is described and stability analysis and simulations are presented. The equations of motion in 3 degrees of freedom of the cable/riser, surface vessel and robotic system are given. Stability analysis of the total system with PD-controllers is presented. 47 refs., 32 figs., 7 tabs.

  16. The design of underwater hull-cleaning robot

    Institute of Scientific and Technical Information of China (English)

    YUAN Fu-cai; GUO Li-bin; MENG Qing-xin; LIU Fu-qiang

    2004-01-01

    The research on underwater ship-hull cleaning robot was conducted on the purpose of realizing the automation of cleaning underwater ship hull so that service life of ship will be prolonged and ship speed will raised. Moreover, fuel consumption and the work intensity of divers will be reduced. In this paper, the current situation and the latest technology in China and abroad were analyzed;meanwhile, the typical characteristics of the underwater cleaning robot were introduced. According to the work principle of the underwater cleaning robot, the emphasis was put on the analysis and study of permanent-magnetic absorption, magnetic wheel, airproof and anticorrosion, underwater cleaning equipment and control system. The robot is easy in rotation and simple in control.

  17. Collision Avoidance of Moving Obstacles for Underwater Robots

    Directory of Open Access Journals (Sweden)

    KWON KYOUNG YOUB

    2006-10-01

    Full Text Available A fuzzy logic for autonomous navigation of underwater robot is proposed in this paper. The VFF(Virtual Force Field algorithm, which is widely used in the field of mobile robot, is modified for application to the autonomous navigation of underwater robot. This Modified Virtual Force Field(MVFF algorithm using the fuzzy logic can be used in either track keeping or obstacle avoidance. Fuzzy logics are devised to handle various situations which can be faced during autonomous navigation of underwater robot. A graphic simulator based on OpenGL for an autonomous navigation has been developed. The good performance of the proposed MVFF algorithm is verified through computer simulations on an underwater robot.

  18. QFD-based conceptual design of an autonomous underwater robot

    Directory of Open Access Journals (Sweden)

    Thip Pasawang

    2015-12-01

    Full Text Available Autonomous underwater robots in the past few years have been designed according to the individual concepts and experiences of the researchers. To design a robot, which meets all the requirements of potential users, is an advanced work. Hence, a systematic design method that could include users’ preferences and requirements is needed. This paper presents the quality function deployment (QFD technique to design an autonomous underwater robot focusing on the Thai Navy military mission. Important user requirements extracted from the QFD method are the ability to record videos, operating at depth up to 10 meters, the ability to operate remotely with cable and safety concerns related to water leakages. Less important user requirements include beauty, using renewable energy, operating remotely with radio and ability to work during night time. The important design parameters derived from the user requirements are a low cost-controller, an autonomous control algorithm, a compass sensor and vertical gyroscope, and a depth sensor. Of low-importance ranked design parameters include the module design, use clean energy, a low noise electric motor, remote surveillance design, a pressure hull, and a beautiful hull form design. The study results show the feasibility of using QFD techniques to systematically design the autonomous underwater robot to meet user requirements. Mapping between the design and expected parameters and a conceptual drafting design of an autonomous underwater robot are also presented.

  19. Controlling Underwater Robots with Electronic Nervous Systems

    Directory of Open Access Journals (Sweden)

    Joseph Ayers

    2010-01-01

    Full Text Available We are developing robot controllers based on biomimetic design principles. The goal is to realise the adaptive capabilities of the animal models in natural environments. We report feasibility studies of a hybrid architecture that instantiates a command and coordinating level with computed discrete-time map-based (DTM neuronal networks and the central pattern generators with analogue VLSI (Very Large Scale Integration electronic neuron (aVLSI networks. DTM networks are realised using neurons based on a 1-D or 2-D Map with two additional parameters that define silent, spiking and bursting regimes. Electronic neurons (ENs based on Hindmarsh–Rose (HR dynamics can be instantiated in analogue VLSI and exhibit similar behaviour to those based on discrete components. We have constructed locomotor central pattern generators (CPGs with aVLSI networks that can be modulated to select different behaviours on the basis of selective command input. The two technologies can be fused by interfacing the signals from the DTM circuits directly to the aVLSI CPGs. Using DTMs, we have been able to simulate complex sensory fusion for rheotaxic behaviour based on both hydrodynamic and optical flow senses. We will illustrate aspects of controllers for ambulatory biomimetic robots. These studies indicate that it is feasible to fabricate an electronic nervous system controller integrating both aVLSI CPGs and layered DTM exteroceptive reflexes.

  20. AEKF-SLAM: A New Algorithm for Robotic Underwater Navigation

    Directory of Open Access Journals (Sweden)

    Xin Yuan

    2017-05-01

    Full Text Available In this work, we focus on key topics related to underwater Simultaneous Localization and Mapping (SLAM applications. Moreover, a detailed review of major studies in the literature and our proposed solutions for addressing the problem are presented. The main goal of this paper is the enhancement of the accuracy and robustness of the SLAM-based navigation problem for underwater robotics with low computational costs. Therefore, we present a new method called AEKF-SLAM that employs an Augmented Extended Kalman Filter (AEKF-based SLAM algorithm. The AEKF-based SLAM approach stores the robot poses and map landmarks in a single state vector, while estimating the state parameters via a recursive and iterative estimation-update process. Hereby, the prediction and update state (which exist as well in the conventional EKF are complemented by a newly proposed augmentation stage. Applied to underwater robot navigation, the AEKF-SLAM has been compared with the classic and popular FastSLAM 2.0 algorithm. Concerning the dense loop mapping and line mapping experiments, it shows much better performances in map management with respect to landmark addition and removal, which avoid the long-term accumulation of errors and clutters in the created map. Additionally, the underwater robot achieves more precise and efficient self-localization and a mapping of the surrounding landmarks with much lower processing times. Altogether, the presented AEKF-SLAM method achieves reliably map revisiting, and consistent map upgrading on loop closure.

  1. Swimming, swarming and sensing. Bio-inspired underwater robotics

    NARCIS (Netherlands)

    Henrion, S.; Vercruyssen, T.; Müller, U.K.

    2014-01-01

    For operations in complex underwater environments, bio-inspired robots offer manoeuvrability, stealth and autonomy. They integrate propulsion and control systems into one multi-purpose undulatory propeller. By generating large counteracting forces, undulating fins generate a wide range of net

  2. Underwater Robotic Propulsors Inspired by Jetting Jellyfish

    OpenAIRE

    Marut, Kenneth Joseph

    2014-01-01

    Underwater surveillance missions both for defense and civilian applications are continually demanding the need for unmanned underwater vehicles or UUVs. Unmanned vehicles are needed to meet the logistical requirements for operation over long distances, greater depths, long duration, and harsh conditions. In order to design UUVs that not only satisfy these needs but are also adaptive and efficient, there has been increasing interest in taking inspiration from nature. These biomimetic/bio-insp...

  3. Collective Modular Underwater Robotic System for Long-Term Autonomous Operation

    DEFF Research Database (Denmark)

    Christensen, David Johan; Andersen, Jens Christian; Blanke, Mogens

    This paper provides a brief overview of an underwater robotic system for autonomous inspection in confined offshore underwater structures. The system, which is currently in development, consist of heterogeneous modular robots able to physically dock and communicate with other robots, transport to...

  4. Building Teen Futures with Underwater Robotics

    Science.gov (United States)

    Wallace, Michael L.; Freitas, William M.

    2016-01-01

    Preparing young Americans with science and technology skills has been on the forefront of educational reform for several years, and Extension has responded. Robotics projects have become a natural fit for 4-H clubs, with members' experiences ranging from using Lego® Mindstorms® and other "purchase and assemble" robotics kits to building…

  5. Hydrodynamic design of an underwater hull cleaning robot and its evaluation

    Directory of Open Access Journals (Sweden)

    Man Hyung Lee

    2012-12-01

    Full Text Available An underwater hull cleaning robot can be a desirable choice for the cleaning of large ships. It can make the cleaning process safe and economical. This paper presents a hydrodynamic design of an underwater cleaning robot and its evaluation for an underwater ship hull cleaning robot. The hydrodynamic design process of the robot body is described in detail. Optimal body design process with compromises among conflicting design requirements is given. Experimental results on the hydrodynamic performance of the robot are given.

  6. A Survey on Intermediation Architectures for Underwater Robotics

    Directory of Open Access Journals (Sweden)

    Xin Li

    2016-02-01

    Full Text Available Currently, there is a plethora of solutions regarding interconnectivity and interoperability for networked robots so that they will fulfill their purposes in a coordinated manner. In addition to that, middleware architectures are becoming increasingly popular due to the advantages that they are capable of guaranteeing (hardware abstraction, information homogenization, easy access for the applications above, etc.. However, there are still scarce contributions regarding the global state of the art in intermediation architectures for underwater robotics. As far as the area of robotics is concerned, this is a major issue that must be tackled in order to get a holistic view of the existing proposals. This challenge is addressed in this paper by studying the most compelling pieces of work for this kind of software development in the current literature. The studied works have been assessed according to their most prominent features and capabilities. Furthermore, by studying the individual pieces of work and classifying them several common weaknesses have been revealed and are highlighted. This provides a starting ground for the development of a middleware architecture for underwater robotics capable of dealing with these issues.

  7. A Survey on Intermediation Architectures for Underwater Robotics.

    Science.gov (United States)

    Li, Xin; Martínez, José-Fernán; Rodríguez-Molina, Jesús; Martínez, Néstor Lucas

    2016-02-04

    Currently, there is a plethora of solutions regarding interconnectivity and interoperability for networked robots so that they will fulfill their purposes in a coordinated manner. In addition to that, middleware architectures are becoming increasingly popular due to the advantages that they are capable of guaranteeing (hardware abstraction, information homogenization, easy access for the applications above, etc.). However, there are still scarce contributions regarding the global state of the art in intermediation architectures for underwater robotics. As far as the area of robotics is concerned, this is a major issue that must be tackled in order to get a holistic view of the existing proposals. This challenge is addressed in this paper by studying the most compelling pieces of work for this kind of software development in the current literature. The studied works have been assessed according to their most prominent features and capabilities. Furthermore, by studying the individual pieces of work and classifying them several common weaknesses have been revealed and are highlighted. This provides a starting ground for the development of a middleware architecture for underwater robotics capable of dealing with these issues.

  8. Surf-zone Underwater Robotic Demonstration Platform

    Science.gov (United States)

    2014-01-01

    dynamically advantageous shape for a robotic system. To address locomotive factors ARA completed a research and technical study based on an Archimedes ...effective hull shape. To study mobility and traction a propulsion system based on an Archimedes screw drive was used. A drive design based on an... Archimedes screw was chosen because of its ability to operate in various mediums with varying flow rates. A test bed was designed and assembled in order to

  9. Monitoring and Controlling an Underwater Robotic Arm

    Science.gov (United States)

    Haas, John; Todd, Brian Keith; Woodcock, Larry; Robinson, Fred M.

    2009-01-01

    The SSRMS Module 1 software is part of a system for monitoring an adaptive, closed-loop control of the motions of a robotic arm in NASA s Neutral Buoyancy Laboratory, where buoyancy in a pool of water is used to simulate the weightlessness of outer space. This software is so named because the robot arm is a replica of the Space Shuttle Remote Manipulator System (SSRMS). This software is distributed, running on remote joint processors (RJPs), each of which is mounted in a hydraulic actuator comprising the joint of the robotic arm and communicating with a poolside processor denoted the Direct Control Rack (DCR). Each RJP executes the feedback joint-motion control algorithm for its joint and communicates with the DCR. The DCR receives joint-angular-velocity commands either locally from an operator or remotely from computers that simulate the flight like SSRMS and perform coordinated motion calculations based on hand-controller inputs. The received commands are checked for validity before they are transmitted to the RJPs. The DCR software generates a display of the statuses of the RJPs for the DCR operator and can shut down the hydraulic pump when excessive joint-angle error or failure of a RJP is detected.

  10. Robotics Vision-based Heuristic Reasoning for Underwater Target Tracking and Navigation

    OpenAIRE

    Chua Kia; Mohd. Rizal Arshad

    2005-01-01

    This paper presents a robotics vision-based heuristic reasoning system for underwater target tracking and navigation. This system is introduced to improve the level of automation of underwater Remote Operated Vehicles (ROVs) operations. A prototype which combines computer vision with an underwater robotics system is successfully designed and developed to perform target tracking and intelligent navigation. This study focuses on developing image processing algorithms and fuzzy inference system ...

  11. Optical fiber based slide tactile sensor for underwater robots

    Institute of Scientific and Technical Information of China (English)

    TAN Ding-zhong; WANG Qi-ming; SONG Rui-han; YAO Xin; GU Yi-hua

    2008-01-01

    In the underwater environment,many visual sensors don't work,and many sensors which work well for robots working in space or on land can not be used underwater.Therefore,an optical fiber slide tactile sensor was designed based on the inner modulation mechanism of optical fibers.The principles and structure of the sensor are explained in detail.Its static and dynamic characteristics were analyzed theoretically and then simulated.A dynamic characteristic model was built and the simulation made using the GA based neural network.In order to improve sensor response,the recognition model of the sensor was designed based on the'inverse solution'principle of neural networks,increasing the control precision and the sensitivity of the manipulator.

  12. Braking Performance of a Biomimetic Squid-Like Underwater Robot

    Institute of Scientific and Technical Information of China (English)

    Md.Mahbubar Rahman; Sinpei Sugimori; Hiroshi Miki; Risa Yamamoto; Yugo Sanada; Yasuyuki Toda

    2013-01-01

    In this study,the braking performance of the undulating fin propulsion system ofa biomimetic squid-like underwater robot was investigated through free run experiment and simulation of the quasi-steady mathematical model.The quasi-steady equations of motion were solved using the measured and calculated hydrodynamic forces and compared with free-run test results.Various braking strategies were tested and discussed in terms of stopping ability and the forces acting on the stopping stage.The stopping performance of the undulating fin propulsion system tured out to be excellent considering the short stopping time and short stopping distance.This is because of the large negative thrust produced by progressive wave in opposite direction.It was confirmed that the undulating fin propulsion system can effectively perform braking even in complex underwater explorations.

  13. Robot fish bio-inspired fishlike underwater robots

    CERN Document Server

    Li, Zheng; Youcef-Toumi, Kamal; Alvarado, Pablo

    2015-01-01

    This book provides a comprehensive coverage on robot fish including design, modeling and optimization, control, autonomous control and applications. It gathers contributions by the leading researchers in the area. Readers will find the book very useful for designing and building robot fish, not only in theory but also in practice. Moreover, the book discusses various important issues for future research and development, including design methodology, control methodology, and autonomous control strategy. This book is intended for researchers and graduate students in the fields of robotics, ocean engineering and related areas.

  14. Head Orientation Stability of Underwater Snake-like Robot Swimming

    Institute of Scientific and Technical Information of China (English)

    Ke Yang∗; Xuyang Wang; Tong Ge; Chao Wu

    2015-01-01

    In prior research, the orientation of head of the snake⁃like robot is changed according to the sinusoidal wave. To solve this problem, we propose Central Pattern Generator ( CPG)⁃based control scheme with head⁃controller to stabilize the head of the underwater snake⁃like robot. The advantage of the CPG⁃based control scheme with head⁃controller is that the head of the underwater snake⁃like robot is direct to the target orientation during swimming. The relation between CPG parameters and orientation stability of head is discussed. The adaptation of the proposed method to environment changes is tested. The influences of CPG parameters and hydrodynamic forces on the orientation offset of head are investigated. The target orientation ( the input of head⁃controller) with an experimental optimization is calculated through a convenient method. To prove the feasibility of the proposed methodology, the different swimming modes have been implemented in our simulation platform. The results show that the oscillation of head’ s orientation is inhibited effectively, and the proposed method has strong adaptation to environment and CPG parameters changes.

  15. The hydrodynamics analysis for the underwater robot with a spherical hull

    Science.gov (United States)

    Lan, Xiaojuan; Sun, Hanxu; Jia, Qingxuan

    2009-05-01

    The underwater spherical robot has a spherical pressure hull which contains power modules, sensors, and so on. It lacks robot arms or end effectors but is highly maneuverable, for the simplest symmetrical geometry is the sphere. This paper analyzes the spherical robot's hydrodynamic model with CFD software, concludes the spherical robot's hydrodynamic characteristics, and compares these characteristics with the hydrodynamic model of another underwater robot which has a streamlined hull. The effect of sphere hydraulic resistance on the control of the robot is analyzed with some examples.

  16. Calibration system of underwater robot sensor based on CID algorithm

    Science.gov (United States)

    Wang, Xiaolong; Wang, Sen; Gao, Lifu; Wu, Shan; Wei, Shuheng

    2017-06-01

    In the calibration of static characteristic of the sensor, the original measured data are usually a nonlinear distribution. Based on this situation, underwater robot sensor static calibration system is designed. The system consists of four parts: a sensor, I-V conversion with amplifying circuit, microcontroller STM32F107 and a PC. The lower computer and the upper computer communicate by USB. A kind of adaptive cyclic iterative denoising (CID) algorithm is presented for data processing. Finally the curve will be fitted with compensation processing.

  17. Filtering Method for Location Estimation of an Underwater Robot

    Directory of Open Access Journals (Sweden)

    Nak Yong Ko

    2014-05-01

    Full Text Available This paper describes an application of extended Kalman filter(EKF for localization of an underwater robot. For the application, linearized model of robot motion and sensor measurement are derived. Like usual EKF, the method is recursion of two main steps: the time update(or prediction and measurement update. The measurement update uses exteroceptive sensors such as four acoustic beacons and a pressure sensor. The four beacons provide four range data from these beacons to the robot and pressure sensor does the depth data of the robot. One of the major contributions of the paper is suggestion of two measurement update approaches. The first approach corrects the predicted states using the measurement data individually. The second one corrects the predicted state using the measurement data collectively. The simulation analysis shows that EKF outperforms least squares or odometry based dead-reckoning in the precision and robustness of the estimation. Also, EKF with collective measurement update brings out better accuracy than the EKF with individual measurement update.

  18. Hydrodynamic Analysis of the Spherical Underwater Robot SUR-II

    Directory of Open Access Journals (Sweden)

    Chunfeng Yue

    2013-05-01

    Full Text Available Abstract This paper describes the development of the second-generation Spherical Underwater Robot (SUR-II. The new SUR-II has an improved propulsion system structure, resulting in better performance compared with the original design. This paper focuses on the characteristics of the water-jet thruster and the spherical hull of the SUR-II. To analyse its hydrodynamic characteristics, the main hydrodynamic parameters of the SUR-II were estimated based on two reasonable assumptions and a reasonable dynamic equation was proposed to describe the relationship between force and velocity. Drag coefficients were calculated separately for vertical and horizontal motions due to the fin on the robot's equator and the holes in the robot's hull. The holes had a particularly adverse effect on the horizontal drag coefficient. A hydrodynamic analysis using computational fluid dynamics was then carried out to verify the estimated parameters. The velocity vectors, pressure contours and drag coefficient for each state of motion were obtained. Finally, the propulsive force was determined experimentally to verify the theoretical calculations and simulation results.

  19. Hybrid robot climbing system design

    Science.gov (United States)

    Purna Irawan, Agustinus; Halim, Agus; Kurniawan, Hengky

    2017-09-01

    This research aims to develop a climbing hybrid robot, especially to design the structure of robot that quite strong and how to build an optimal mechanism for transmitting the motor’s rotation and torque to generate movement up the pole. In this research we use analytical methods using analysis software, simulation, a prototype, and robot trial. The result showed that robot could climb a pole by with maximum velocity 0.33m/s with a 20 kg load. Based on a weight diversity trial between 10 kg and 20 kg we obtained climb up load factor with value 0.970 ± 0.0223 and climb down load factor with value 0.910 ± 0.0163. Displacement of the frame structure was 7.58 mm. To minimize this displacement, the gate system was used so as to optimize the gripper while gripping the pole. The von Misses stress in the roller was 48.49 MPa, with 0.12 mm of displacement. This result could be a reference for robot development in further research.

  20. Design and implementation of a modular body for an underwater robot

    OpenAIRE

    Font Calafell, Davinia

    2009-01-01

    In the context of underwater robotics, most vehicles currently deployed use a propulsion system based on propellers. Propellers are very efficient but they tend to be noisy and fragile, in particular, in cluttered environment. Webbed legs are used by animals such as freshwater turtles so they may be a viable alternative to propellers. This project is part of a larger study that may lead to the development of an underwater robot using web feet propulsion in similar fashion as sea‐t...

  1. Simulation of a Hybrid Locomotion Robot Vehicle

    Science.gov (United States)

    Aarnio, P.

    2002-10-01

    This study describes a simulation process of a mobile robot. The focus is in kinematic and dynamic behavior simulations of hybrid locomotion robot vehicles. This research is motivated by the development needs of the WorkPartner field service robot. The whole robot system consists of a mobile platform and a two-hand manipulator. The robot platform, called Hybtor, is a hybrid locomotion robot capable of walking and driving by wheels as well as combining these two locomotion modes. This study describes first the general problems and their solutions in the dynamic simulation of mobile robots. A kinematic and dynamic virtual model of the Hybtor robot was built and simulations were carried out using one commercial simulation tool. Walking, wheel driven and rolking mode locomotion, which is a special hybrid locomotion style, has been simulated and analyzed. Position and force control issues during obstacle overrun and climbing were also studied.

  2. Validation of multi-body modelling methodology for reconfigurable underwater robots

    DEFF Research Database (Denmark)

    Nielsen, M.C.; Eidsvik, O. A.; Blanke, Mogens;

    2016-01-01

    This paper investigates the problem of employing reconfigurable robots in an underwater setting. The main results presented is the experimental validation of a modelling methodology for a system consisting of N dynamically connected robots with heterogeneous dynamics. Two distinct types....... The purpose of the model is to enable design of control strategies for cooperative reconfigurable underwater systems....... of experiments are performed, a series of hydrostatic free-decay tests and a series of open-loop trajectory tests. The results are compared to a simulation based on the modelling methodology. The modelling methodology shows promising results for usage with systems composed of reconfigurable underwater modules...

  3. Hybrid lidar radar receiver for underwater imaging applications

    Science.gov (United States)

    Seetamraju, Madhavi; Gurjar, Rajan; Squillante, Michael; Derderian, Jeffrey P.

    2009-05-01

    In this work, we present research performed to improve the receiver characteristics for underwater imaging applications using the hybrid lidar-radar detection technique. We report the development of the next-generation coherent heterodyne receiver using modulation of the optical receiver's amplifier gain. Significant advantages in the receiver specifications are achieved using a large-area, high gain, low-noise silicon avalanche photodiode (APD) as the photodetector cum frequency mixer-demodulator. We demonstrate that heterodyne detection by gain modulation of APD can be used to increase the signal-to-noise ratio, detection sensitivity and bandwidth for the hybrid receiver system.

  4. Underwater robots to safeguard Olympic Games in 2008

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    @@ A small-sized autonomous underwater vehicle(AUV) independently developed and built by CAS researchers has been designated as an underwater guard for the forthcoming Olympic Game in 2008 in Beijing. It has recently been approved by the Olympic Sub-committee of Sailing to be a component of the "underwater safety alert system" of the competition.

  5. AUTONOMOUS UNDERWATER HYBRID VEHICLE FOR OCEAN SURVEILLANCE

    Directory of Open Access Journals (Sweden)

    KIRUBAKARAN.S,

    2011-05-01

    Full Text Available Coastal areas are among the most vulnerable of all regions to global climate change. Projected impacts from global warming include rising sea levels, intensification of tropical cyclones, larger storm surges, increasing sea-surface temperatures, and – as the oceans absorb more of the carbon dioxide human activities emit to theatmosphere – growing acidification of surface waters. With an estimated 50 per cent of the world’s population now living within 60km of the coast and 60 per cent of cities with population over 5 million located within 100 km of the coast, the Potential impacts of climate change on coastal development and infrastructure is considerable. On-going development has manifested in the form of urban centers, tourist resorts, ports and Industrial areas. The rising sea levels and larger storm surges caused by climate change Threaten to compound such risks. In order to understand the Ocean systems, continuous time series Observation is essential and development of innovative Autonomous Underwater Vehicle (AUV with suite of sensors would be very useful.

  6. Simulation Platform of Underwater Quadruped Walking Robot Based on MotionGenesis Kane 5 3 and Central Pattern Generator

    Institute of Scientific and Technical Information of China (English)

    Ke Yang; XuYang Wang; Tong Ge; Chao Wu

    2014-01-01

    It will still in lack of a simulation platform used to learn the walking of underwater quadruped walking robot. In order to alleviate this shortage, a simulation platform for the underwater quadruped walking robot based on Kane dynamic model and CPG-based controller is constructed. The Kane dynamic model of the underwater quadruped walking robot is processed with a commercial package MotionGenesis Kane 5�3. The forces between the feet and ground are represented as a spring and damper. The relation between coefficients of spring and damper and stability of underwater quadruped walking robot in the stationary state is studied. The CPG-based controller consisted of Central Pattern Generator ( CPG) and PD controller is presented, which can be used to control walking of the underwater quadruped walking robot. The relation between CPG parameters and walking speed of underwater quadruped walking robot is investigated. The relation between coefficients of spring and damper and walking speed of underwater quadruped walking robot is studied. The results show that the simulation platform can imitate the stable walking of the underwater quadruped walking robot.

  7. Dynamics model of underwater robot motion control in 6 degrees of freedom

    Institute of Scientific and Technical Information of China (English)

    LI Ye; LIU Jian-cheng; SHEN Ming-xue

    2005-01-01

    In order to analyze underwater robot control system dynamics features, a system 6-DOF dynamics model was founded. Underwater robot linear and nonlinear hydrodynamics were analyzed by Taylor series,based on general motion equation. Special control system motion equation was deduced by cluster of inertial items and non-inertial items. For program convenience, motion equation matrix format was presented. Experimental principles of screw propellers, rudders and wings were discussed. Experimental data least-square curve fitting, interpolation and their corresponding traditional equation helped us to obtain the whole system dynamic response procedure. A series of simulation experiments show that the dynamics model is correct and reliable.The model can provide theory proof for analyzing underwater robot motion control system physics characters and provide a mathematic model for traditional control method.

  8. Tracking the position of the underwater robot for nuclear reactor inspection

    Energy Technology Data Exchange (ETDEWEB)

    Jeo, J. W.; Kim, C. H.; Seo, Y. C.; Choi, Y. S.; Kim, S. H. [KAERI, Taejon (Korea, Republic of)

    2003-10-01

    The tracking procedure of the underwater mobile robot moving and submerging ahead to nuclear reactor vessel for visual inspection, which is required to find the foreign objects such as loose parts, is described. The yellowish underwater robot body tends to present a big contrast to boron solute cold water of nuclear reactor vessel, tinged with indigo by the Cerenkov effect. In this paper, we have found and tracked the positions of underwater mobile robot using the two color information, yellow and indigo. From the horizontal and vertical profiles analysis of the color image, the blue, green, and the gray component have the inferior signal-to-noise characteristics compared to the red component. The center coordinates extraction procedures areas follows. The first step is to segment the underwater robot body to cold water with indigo background. From the RGB color components of the entire monitoring image taken with the color CCD camera, we have selected the red color component. In the selected red image, we extracted the positions of the underwater mobile robot using the following process sequences; binarization, labelling, and centroid extraction techniques. In the experiment carried out at the Youngkwang unit 5 nuclear reactor vessel, we have tracked the center positions of the underwater robot submerged near the cold leg and the hot leg way, which is fathomed to 10m deep in depth. When the position of the robot vehicle fluctuates between the previous and the current image frame due to the flickering noise and light source, installed temporally in the bottom of the reactor vessel, we adaptively adjusted the ROI window. Adding the ROI windows of the previous frame to the current frame, and then setting up the ROI window of the next image frame, we can robustly track the positions of the underwater robot and control the target position's divergence. From these facts, we can conclude that using the red component from color camera is more efficient tracking

  9. Robotics Vision-based Heuristic Reasoning for Underwater Target Tracking and Navigation

    Directory of Open Access Journals (Sweden)

    Chua Kia

    2008-11-01

    Full Text Available This paper presents a robotics vision-based heuristic reasoning system for underwater target tracking and navigation. This system is introduced to improve the level of automation of underwater Remote Operated Vehicles (ROVs operations. A prototype which combines computer vision with an underwater robotics system is successfully designed and developed to perform target tracking and intelligent navigation. This study focuses on developing image processing algorithms and fuzzy inference system for the analysis of the terrain. The vision system developed is capable of interpreting underwater scene by extracting subjective uncertainties of the object of interest. Subjective uncertainties are further processed as multiple inputs of a fuzzy inference system that is capable of making crisp decisions concerning where to navigate. The important part of the image analysis is morphological filtering. The applications focus on binary images with the extension of gray-level concepts. An open-loop fuzzy control system is developed for classifying the traverse of terrain. The great achievement is the system's capability to recognize and perform target tracking of the object of interest (pipeline in perspective view based on perceived condition. The effectiveness of this approach is demonstrated by computer and prototype simulations. This work is originated from the desire to develop robotics vision system with the ability to mimic the human expert's judgement and reasoning when maneuvering ROV in the traverse of the underwater terrain.

  10. Diving beneath the Surface: Underwater Robotics Lessons Bring STEM to Life for Teachers in Guam

    Science.gov (United States)

    Tweed, Anne; Arndt, Laura

    2017-01-01

    In spring 2014, education leaders from across Micronesia came together on the island of Guam to learn about underwater robotics and Marine Advanced Technology Education (MATE), a program based at Monterey Peninsula College in Monterey, California. Participants listened intently as they learned about building and participating in competitions with…

  11. Research on framework for formation control of multiple underwater robots in a dynamic environment

    Institute of Scientific and Technical Information of China (English)

    MENG Xian-song; XU Hong-gen; ZHANG Ming-jun

    2004-01-01

    In this paper a practical framework is proposed to keep formation control of multiple underwater robots in a dynamic environment. The approach is a viable solution to solve formation problem. The approach allows online planning of the formation paths using a Dijkstra's search algorithm based on the current sensor data. The formation is allowed to be dynamically changed in order to avoid obstacles in the environment. A controller is designed to keep the robots in their planned trajectories. It is shown that the approach is effec In this paper a practical framework is proposed to keep formation control of multiple underwater robots in a dynamic environment. The approach is a viable solution to solve formation problem.

  12. Computational and experimental study on dynamic behavior of underwater robots propelled by bionic undulating fins

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Bionic undulating fins, inspired by undulations of the median and/or paired fin (MPF) fish, have a bright prospective for un-derwater missions with higher maneuverability, lower noisy, and higher efficiency. In the present study, a coupled computa-tional fluid dynamics (CFD) model was proposed and implemented to facilitate numerical simulations on hydrodynamic ef-fects of the bionic undulating robots. Hydrodynamic behaviors of underwater robots propelled by two bionic undulating fins were computationally and experimentally studied within the three typical desired movement patterns, i.e., marching, yawing and yawing-while-marching. Moreover, several specific phenomena in the bionic undulation mode were unveiled and dis-cussed by comparison between the CFD and experimental results under the same kinematics parameter sets. The contributed work on the dynamic behavior of the undulating robots is of importance for study on the propulsion mechanism and control algorithms.

  13. SWARMs Ontology: A Common Information Model for the Cooperation of Underwater Robots.

    Science.gov (United States)

    Li, Xin; Bilbao, Sonia; Martín-Wanton, Tamara; Bastos, Joaquim; Rodriguez, Jonathan

    2017-03-11

    In order to facilitate cooperation between underwater robots, it is a must for robots to exchange information with unambiguous meaning. However, heterogeneity, existing in information pertaining to different robots, is a major obstruction. Therefore, this paper presents a networked ontology, named the Smart and Networking Underwater Robots in Cooperation Meshes (SWARMs) ontology, to address information heterogeneity and enable robots to have the same understanding of exchanged information. The SWARMs ontology uses a core ontology to interrelate a set of domain-specific ontologies, including the mission and planning, the robotic vehicle, the communication and networking, and the environment recognition and sensing ontology. In addition, the SWARMs ontology utilizes ontology constructs defined in the PR-OWL ontology to annotate context uncertainty based on the Multi-Entity Bayesian Network (MEBN) theory. Thus, the SWARMs ontology can provide both a formal specification for information that is necessarily exchanged between robots and a command and control entity, and also support for uncertainty reasoning. A scenario on chemical pollution monitoring is described and used to showcase how the SWARMs ontology can be instantiated, be extended, represent context uncertainty, and support uncertainty reasoning.

  14. Will an underwater robot ever replace the diver? A rather poor progress or a great success?

    Directory of Open Access Journals (Sweden)

    Olejnik Adam

    2016-03-01

    Full Text Available The article deals with the subject matter related to the development of underwater works technologies. Nearly 15 years ago one of the authors of this study published a material in the monthly magazine of “Podwodny Świat” (The Underwater World entitled “The Future of Underwater Technologies – the diver or the robot?” where he noted that the time of great changes in technologies aimed at researching the depths and conducting works under water has arrived. This new era mainly consists in the fact that on an increasing number of occasions the diver is replaced by an underwater robot. The presented material constitutes an attempt to provide an answer to the question whether the then posed thesis is still valid. In the article the authors discuss issues concerned with the development of techniques and technologies applied in the conquest of depths that leads them to the conclusion that the previously observed tendency of a double-tracked development of underwater technologies is gaining in strength, which causes that the works and exploration of bodies of water at great depths will be possible only with the use of unmanned techniques.

  15. Morphologically intelligent underactuated robot for underwater hull cleaning

    DEFF Research Database (Denmark)

    Souto, Daniel; Faina, Andres; López-Peña, Fernando

    2015-01-01

    in the use of the chemicals that are usually employed to prevent the growth of marine life on the hull and which are generally harmful to the environment. The robot described in this paper is an underactuated morphologically adapted robot that through an appropriate morphology and making use of the forces...

  16. Development and application of underwater robot vehicle for close inspection of spent fuels

    Energy Technology Data Exchange (ETDEWEB)

    Yun, J. S.; Park, B. S.; Song, T. G.; Kim, S. H.; Cho, M. W.; Ahn, S. H.; Lee, J. Y.; Oh, S. C.; Oh, W. J.; Shin, K. W.; Woo, D. H.; Kim, H. G.; Park, J. S

    1999-12-01

    The research and development efforts of the underwater robotic vehicle for inspection of spent fuels are focused on the development of an robotic vehicle which inspects spent fuels in the storage pool through remotely controlled actuation. For this purpose, a self balanced vehicle actuated by propellers is designed and fabricated, which consists of a radiation resistance camera, two illuminators, a pressure transducer and a manipulator. the algorithm for autonomous navigation is developed and its performance is tested at the swimming pool. The results of the underwater vehicle shows that the vehicle can easily navigate into the arbitrary directions while maintaining its balanced position. The camera provides a clear view of working environment by using the macro and zoom functions. The camera tilt device provides a wide field of view which is enough for monitoring the operation of manipulator. Also, the manipulator can pick up the dropped objects up to 4 kgf of weight. (author)

  17. Robotic Visual Tracking of Relevant Cues in Underwater Environments with Poor Visibility Conditions

    Directory of Open Access Journals (Sweden)

    Alejandro Maldonado-Ramírez

    2016-01-01

    Full Text Available Using visual sensors for detecting regions of interest in underwater environments is fundamental for many robotic applications. Particularly, for an autonomous exploration task, an underwater vehicle must be guided towards features that are of interest. If the relevant features can be seen from the distance, then smooth control movements of the vehicle are feasible in order to position itself close enough with the final goal of gathering visual quality images. However, it is a challenging task for a robotic system to achieve stable tracking of the same regions since marine environments are unstructured and highly dynamic and usually have poor visibility. In this paper, a framework that robustly detects and tracks regions of interest in real time is presented. We use the chromatic channels of a perceptual uniform color space to detect relevant regions and adapt a visual attention scheme to underwater scenes. For the tracking, we associate with each relevant point superpixel descriptors which are invariant to changes in illumination and shape. The field experiment results have demonstrated that our approach is robust when tested on different visibility conditions and depths in underwater explorations.

  18. Locomotion control of hybrid cockroach robots

    Science.gov (United States)

    Sanchez, Carlos J.; Chiu, Chen-Wei; Zhou, Yan; González, Jorge M.; Vinson, S. Bradleigh; Liang, Hong

    2015-01-01

    Natural systems retain significant advantages over engineered systems in many aspects, including size and versatility. In this research, we develop a hybrid robotic system using American (Periplaneta americana) and discoid (Blaberus discoidalis) cockroaches that uses the natural locomotion and robustness of the insect. A tethered control system was firstly characterized using American cockroaches, wherein implanted electrodes were used to apply an electrical stimulus to the prothoracic ganglia. Using this approach, larger discoid cockroaches were engineered into a remotely controlled hybrid robotic system. Locomotion control was achieved through electrical stimulation of the prothoracic ganglia, via a remotely operated backpack system and implanted electrodes. The backpack consisted of a microcontroller with integrated transceiver protocol, and a rechargeable battery. The hybrid discoid roach was able to walk, and turn in response to an electrical stimulus to its nervous system with high repeatability of 60%. PMID:25740855

  19. Dynamics of 3-DOF Hybrid Robot Manipulator

    Institute of Scientific and Technical Information of China (English)

    周兵; 毛泰祥; 杨汝清

    2004-01-01

    This paper introduces a 3-dof hybrid robotic manipulator which is constructed by combming a parallel mechanism and a pantograph to increase stiffness as well as workspace. And by analyzing its kinematics and dynamics with Lagrange's method, the dynamic model is obtained which is essential for feed-forward control of the manipulator. An explicit solution is given out. Finally, a simulation test is carried out on computers.

  20. In-Water Ship Hull Inspection with Smart Underwater Robots

    Science.gov (United States)

    2011-03-01

    Research Institute • Consultant to Disney , BAE Systems, etc. – design and control, robotics • MIT Research Engineer – fluid mechanics, biomimetics...valve for flow control down-hole, – low- cost acoustic modems, – quadrotors for HAB outbreaks. Navy’s class of Type 45 Destroyers ALSTOM Advanced...Feature-Based Nav Sonar and visual imagery both have a key role in building maps and navigating with them 3. Complex areas: Feature-Based Planning

  1. Adaptive sliding mode formation control of multiple underwater robots

    Directory of Open Access Journals (Sweden)

    Das Bikramaditya

    2014-12-01

    Full Text Available This paper proposes a new adaptive sliding mode control scheme for achieving coordinated motion control of a group of autonomous underwater vehicles with variable added mass. The control law considers the communication constraints in the acoustic medium. A common reference frame for velocity is assigned to a virtual leader dynamically. The performances of the proposed adaptive SMC were compared with that of a passivity based controller. To save the time and traveling distance for reaching the FRP by the follower AUVs, a sliding mode controller is proposed in this paper that drives the state trajectory of the AUV into a switching surface in the state space. It is observed from the obtained results that the proposed SMC provides improved performance in terms of accurately tracking the desired trajectory within less time compared to the passivity based controller. A communication consensus is designed ensuring the transfer of information among the AUVs so that they move collectively as a group. The stability of the overall closed-loop systems are analysed using Lyapunov theory and simulation results confirmed the robustness and efficiency of proposed controller.

  2. Some Considerations on an Underwater Robotic Manipulator Subjected to the Environmental Disturbances Caused by Water Current

    Directory of Open Access Journals (Sweden)

    Kołodziejczyk Waldemar

    2016-03-01

    Full Text Available The objective of this paper is to discuss some of the issues associated with environmental load on the three-link serial manipulator caused by underwater current. We have conducted CFD simulations to investigate hydrodynamic effects induced by changing current direction and changing with time current speed in order to better understand the physics of the problem. The results are presented in terms of moments of hydrodynamic forces plotted against relative position of the current and the robotic arm. Time history of hydrodynamic loads according to periodically changing current speed is presented and discussed.

  3. Dynamics of underwater legged locomotion: modeling and experiments on an octopus-inspired robot.

    Science.gov (United States)

    Calisti, M; Corucci, F; Arienti, A; Laschi, C

    2015-07-30

    This paper studies underwater legged locomotion (ULL) by means of a robotic octopus-inspired prototype and its associated model. Two different types of propulsive actions are embedded into the robot model: reaction forces due to leg contact with the ground and hydrodynamic forces such as the drag arising from the sculling motion of the legs. Dynamic parameters of the model are estimated by means of evolutionary techniques and subsequently the model is exploited to highlight some distinctive features of ULL. Specifically, the separation between the center of buoyancy (CoB)/center of mass and density affect the stability and speed of the robot, whereas the sculling movements contribute to propelling the robot even when its legs are detached from the ground. The relevance of these effects is demonstrated through robotic experiments and model simulations; moreover, by slightly changing the position of the CoB in the presence of the same feed-forward activation, a number of different behaviors (i.e. forward and backward locomotion at different speeds) are achieved.

  4. Hybrid Force Motion Synchronization Control of Robot Manipulators

    OpenAIRE

    Fikkan, Kristoffer

    2010-01-01

    The main objective of this thesis was to combine the theory on synchronization of robot manipulators with the concept of hybrid force/motion control; resulting in a controller capable of following both the trajectory of another robot and a desired force trajectory at the same time. This report includes a short introduction to synchronization theory for robot manipulators, and a more thorough summary of existing hybrid control schemes. An intuitive method for describing constraints caused...

  5. Hybrid Collaborative Stereo Vision System for Mobile Robots Formation

    Directory of Open Access Journals (Sweden)

    Flavio Roberti

    2010-02-01

    Full Text Available This paper presents the use of a hybrid collaborative stereo vision system (3D-distributed visual sensing using different kinds of vision cameras for the autonomous navigation of a wheeled robot team. It is proposed a triangulation-based method for the 3D-posture computation of an unknown object by considering the collaborative hybrid stereo vision system, and this way to steer the robot team to a desired position relative to such object while maintaining a desired robot formation. Experimental results with real mobile robots are included to validate the proposed vision system.

  6. MEMS sensors for assessing flow-related control of an underwater biomimetic robotic stingray.

    Science.gov (United States)

    Asadnia, Mohsen; Kottapalli, Ajay Giri Prakash; Haghighi, Reza; Cloitre, Audren; Alvarado, Pablo Valdivia Y; Miao, Jianmin; Triantafyllou, Michael

    2015-05-18

    A major difference between manmade underwater robotic vehicles (URVs) and undersea animals is the dense arrays of sensors on the body of the latter which enable them to execute extreme control of their limbs and demonstrate super-maneuverability. There is a high demand for miniaturized, low-powered, lightweight and robust sensors that can perform sensing on URVs to improve their control and maneuverability. In this paper, we present the design, fabrication and experimental testing of two types of microelectromechanical systems (MEMS) sensors that benefit the situational awareness and control of a robotic stingray. The first one is a piezoresistive liquid crystal polymer haircell flow sensor which is employed to determine the velocity of propagation of the stingray. The second one is Pb(Zr(0.52)Ti(0.48))O3 piezoelectric micro-diaphragm pressure sensor which measures various flapping parameters of the stingray's fins that are key parameters to control the robot locomotion. The polymer flow sensors determine that by increasing the flapping frequency of the fins from 0.5 to 3 Hz the average velocity of the stingray increases from 0.05 to 0.4 BL s(-1), respectively. The role of these sensors in detecting errors in control and functioning of the actuators in performing tasks like flapping at a desired amplitude and frequency, swimming at a desired velocity and direction are quantified. The proposed sensors are also used to provide inputs for a model predictive control which allows the robot to track a desired trajectory. Although a robotic stingray is used as a platform to emphasize the role of the MEMS sensors, the applications can be extended to most URVs.

  7. The development of a under-water robot system for inspection of the contaminated inner wall of nuclear research reactor

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Kyung Hoon; Kim, Byung Man; Cho, Hyung Suk; Park, Ki Yong [Korea Advanced Inst. of Science and Technology, Taejon (Korea, Republic of); Park, Young Soo; Yoon, Ji Sup; Lee, Byung Jik [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1997-12-31

    In this paper, an under-water robot system is developed in order to inspect the radiation level and decontaminate the contaminated inner wall of nuclear research reactor, TRIGA MARK III. This system is composed of the mobile robot which navigates autonomously under the water and the ground control unit which monitors and commands the motion of mobile robot. The mobile robot can move on the wall surface with five thruster systems and is composed of three parts, i.e., mechanical, control, and sensory parts. The five thruster system is configured such as one main thruster, two wall adhesion thruster, and two turning/buoyancy compensation thruster. The control part has 4 CPU boards and each board is configured such that one is in charge of supervisory control mode which controls the position of mobile robot and communicates with the ground control unit and the other board is designed to have motor control mode which drives two motors simultaneously. In secondary part, the laser scanner and fluorescent reflectors and the incilinometer are designed. The laser scanner with fluorescent reflectors provides the current position of the mobile robot on the wall surface and by incilinometer, the moving direction can be obtained. This paper describes the design and configuration procedures of under-water robot in detail and presents the experimental results for characteristic test of the thruster system. 11 refs., 4 tabs., 7 figs.

  8. A Network Coding Based Hybrid ARQ Protocol for Underwater Acoustic Sensor Networks.

    Science.gov (United States)

    Wang, Hao; Wang, Shilian; Zhang, Eryang; Zou, Jianbin

    2016-01-01

    Underwater Acoustic Sensor Networks (UASNs) have attracted increasing interest in recent years due to their extensive commercial and military applications. However, the harsh underwater channel causes many challenges for the design of reliable underwater data transport protocol. In this paper, we propose an energy efficient data transport protocol based on network coding and hybrid automatic repeat request (NCHARQ) to ensure reliability, efficiency and availability in UASNs. Moreover, an adaptive window length estimation algorithm is designed to optimize the throughput and energy consumption tradeoff. The algorithm can adaptively change the code rate and can be insensitive to the environment change. Extensive simulations and analysis show that NCHARQ significantly reduces energy consumption with short end-to-end delay.

  9. A Network Coding Based Hybrid ARQ Protocol for Underwater Acoustic Sensor Networks

    Directory of Open Access Journals (Sweden)

    Hao Wang

    2016-09-01

    Full Text Available Underwater Acoustic Sensor Networks (UASNs have attracted increasing interest in recent years due to their extensive commercial and military applications. However, the harsh underwater channel causes many challenges for the design of reliable underwater data transport protocol. In this paper, we propose an energy efficient data transport protocol based on network coding and hybrid automatic repeat request (NCHARQ to ensure reliability, efficiency and availability in UASNs. Moreover, an adaptive window length estimation algorithm is designed to optimize the throughput and energy consumption tradeoff. The algorithm can adaptively change the code rate and can be insensitive to the environment change. Extensive simulations and analysis show that NCHARQ significantly reduces energy consumption with short end-to-end delay.

  10. A Network Coding Based Hybrid ARQ Protocol for Underwater Acoustic Sensor Networks

    Science.gov (United States)

    Wang, Hao; Wang, Shilian; Zhang, Eryang; Zou, Jianbin

    2016-01-01

    Underwater Acoustic Sensor Networks (UASNs) have attracted increasing interest in recent years due to their extensive commercial and military applications. However, the harsh underwater channel causes many challenges for the design of reliable underwater data transport protocol. In this paper, we propose an energy efficient data transport protocol based on network coding and hybrid automatic repeat request (NCHARQ) to ensure reliability, efficiency and availability in UASNs. Moreover, an adaptive window length estimation algorithm is designed to optimize the throughput and energy consumption tradeoff. The algorithm can adaptively change the code rate and can be insensitive to the environment change. Extensive simulations and analysis show that NCHARQ significantly reduces energy consumption with short end-to-end delay. PMID:27618044

  11. A hybrid brain interface for a humanoid robot assistant.

    Science.gov (United States)

    Finke, Andrea; Knoblauch, Andreas; Koesling, Hendrik; Ritter, Helge

    2011-01-01

    We present an advanced approach towards a semi-autonomous, robotic personal assistant for handicapped people. We developed a multi-functional hybrid brain-robot interface that provides a communication channel between humans and a state-of-the-art humanoid robot, Honda's Humanoid Research Robot. Using cortical signals, recorded, processed and translated by an EEG-based brain-machine interface (BMI), human-robot interaction functions independently of users' motor control deficits. By exploiting two distinct cortical activity patterns, P300 and event-related desynchronization (ERD), the interface provides different dimensions for robot control. An empirical study demonstrated the functionality of the BMI guided humanoid robot. All participants could successfully control the robot that accomplished a shopping task.

  12. Sine Rotation Vector Method for Attitude Estimation of an Underwater Robot.

    Science.gov (United States)

    Ko, Nak Yong; Jeong, Seokki; Bae, Youngchul

    2016-01-01

    This paper describes a method for estimating the attitude of an underwater robot. The method employs a new concept of sine rotation vector and uses both an attitude heading and reference system (AHRS) and a Doppler velocity log (DVL) for the purpose of measurement. First, the acceleration and magnetic-field measurements are transformed into sine rotation vectors and combined. The combined sine rotation vector is then transformed into the differences between the Euler angles of the measured attitude and the predicted attitude; the differences are used to correct the predicted attitude. The method was evaluated according to field-test data and simulation data and compared to existing methods that calculate angular differences directly without a preceding sine rotation vector transformation. The comparison verifies that the proposed method improves the attitude estimation performance.

  13. Underwater hybrid near-field acoustical holography based on the measurement of vector hydrophone array

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Hybrid near-field acoustical holography(NAH) is developed for reconstructing acoustic radiation from a cylindrical source in a complex underwater environment. In hybrid NAH,we combine statistically optimized near-field acoustical holography(SONAH) and broadband acoustical holography from intensity measurements(BAHIM) to reconstruct the underwater cylindrical source field. First,the BAHIM is utilized to regenerate as much acoustic pressures on the hologram surface as necessary,and then the acoustic pressures are taken as input to the formulation implemented numerically by SONAH. The main advantages of this technology are that the complex pressure on the hologram surface can be reconstructed without reference signal,and the measurement array can be smaller than the source,thus the practicability and efficiency of this technology are greatly enhanced. Numerical examples of a cylindrical source are demonstrated. Test results show that hybrid NAH can yield a more accurate reconstruction than conventional NAH. Then,an experiment has been carried out with a vector hydrophone array. The experimental results show the advantage of hybrid NAH in the reconstruction of an acoustic field and the feasibility of using a vector hydrophone array in an underwater NAH measurement,as well as the identification and localization of noise sources.

  14. Hybrid Battery Ultracapacitor System For Human Robotic Systems Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The objective of this proposal is to develop a hybrid battery-ultra capacitor storage system that powers human-robotic systems in space missions. Space missions...

  15. Hybrid stabilizing control on a real mobile robot

    NARCIS (Netherlands)

    Oelen, Wilco; Berghuis, Harry; Nijmeijer, Henk; Canudas de Wit, Carlos

    1995-01-01

    To establish empirical verification of a stabilizing controller for nonholonomic systems, the authors implement a hybrid control concept on a 2-DOF mobile robot. Practical issues of velocity control are also addressed through a velocity controller which transforms the mobile robot to a new system wi

  16. Hybrid Control Design for a Wheeled Mobile Robot

    DEFF Research Database (Denmark)

    Bak, Thomas; Bendtsen, Jan Dimon; Ravn, Anders Peter

    We present a hybrid systems solution to the problem of trajectory tracking for a four-wheel steered four-wheel driven mobile robot. The robot is modelled as a non-holonomic dynamic system subject to pure rolling, no-slip constraints. Under normal driving conditions, a nonlinear trajectory tracking...

  17. Hybrid Control Design for a Wheeled Mobile Robot

    DEFF Research Database (Denmark)

    Bak, Thomas; Bendtsen, Jan Dimon; Ravn, Anders Peter

    2003-01-01

    We present a hybrid systems solution to the problem of trajectory tracking for a four-wheel steered four-wheel driven mobile robot. The robot is modelled as a non-holonomic dynamic system subject to pure rolling, no-slip constraints. Under normal driving conditions, a nonlinear trajectory trackin....... The stability of the hybrid control scheme is finally analyzed using Lyapunov-like arguments....

  18. Hybrid nanocomposites based on electroactive hydrogels and cellulose nanocrystals for high-sensitivity electro-mechanical underwater actuation

    Science.gov (United States)

    Santaniello, Tommaso; Migliorini, Lorenzo; Locatelli, Erica; Monaco, Ilaria; Yan, Yunsong; Lenardi, Cristina; Comes Franchini, Mauro; Milani, Paolo

    2017-08-01

    We report the synthesis, fabrication and characterization of a hybrid hydrogel/cellulose nanocomposite, which exhibits high-performance electro-mechanical underwater actuation and high sensitivity in response to electrical stimuli below the standard potential of water electrolysis. The macromolecular structure of the material is constituted by an electroactive hydrogel, obtained through a photo-polymerization reaction with the use of three vinylic co-monomers: Na-4-vinylbenzenesulfonate, 2-hydroxyethylmethacrylate, and acrylonitrile. Different amounts (from 0.1% to 1.4% w/w) of biodegradable cellulose nanocrystals (CNCs) with sulfonate surface groups, obtained through the acidic hydrolysis of sulphite pulp lapsheets, are physically incorporated into the gel matrix during the synthesis step. Freestanding thin films of the nanocomposites are molded, and their swelling, mechanical and responsive properties are fully characterized. We observed that the embedding of the CNCs enhanced both the material Young’s modulus and its sensitivity to the applied electric field in the sub-volt regime (down to 5 mV cm-1). A demonstrator integrating multiple actuators that cooperatively bend together, mimicking the motion of an electro-valve, is also prototyped and tested. The presented nanocomposite is suitable for the development of soft smart components for bio-robotic applications and cells-based and bio-hybrid fluidic devices fabrication.

  19. Structural Dynamics of a Pulsed-Jet Propulsion System for Underwater Soft Robots

    Directory of Open Access Journals (Sweden)

    Federico Renda

    2015-06-01

    Full Text Available This paper entails the study of the pulsed-jet propulsion inspired by cephalopods in the frame of underwater bioinspired robotics. This propulsion routine involves a sequence of consecutive cycles of inflation and collapse of an elastic bladder, which, in the robotics artefact developed by the authors, is enabled by a cable-driven actuation of a deformable shell composed of rubber-like materials. In the present work an all-comprehensive formulation is derived by resorting to a coupled approach that comprises of a model of the structural dynamics of the cephalopod-like elastic bladder and a model of the pulsed-jet thrust production. The bladder, or mantle, is modelled by means of geometrically exact, axisymmetric, nonlinear shell theory, which yields an accurate estimation of the forces involved in driving the deformation of the structure in water. By coupling these results with those from a standard thrust model, the behaviour of the vehicle propelling itself in water is derived. The constitutive laws of the shell are also exploited as control laws with the scope of replicating the muscle activation routine observed in cephalopods. The model is employed to test various shapes, material properties and actuation routines of the mantle. The results are compared in terms of speed performance in order to identify suitable design guidelines. Altogether, the model is tested in more than 50 configurations, eventually providing useful insight for the development of more advanced vehicles and bringing evidence of its reliability in studying the dynamics of both man-made cephalopod-inspired robots and live specimens.

  20. Structural Dynamics of a Pulsed-Jet Propulsion System for Underwater Soft Robots

    Directory of Open Access Journals (Sweden)

    Federico Renda

    2015-06-01

    Full Text Available This paper entails the study of the pulsed-jet propulsion inspired by cephalopods in the frame of underwater bioinspired robotics. This propulsion routine involves a sequence of consecutive cycles of inflation and collapse of an elastic bladder, which, in the robotics artefact developed by the authors, is enabled by a cable-driven actuation of a deformable shell composed of rubber-like materials. In the present work an all-comprehensive formulation is derived by resorting to a coupled approach that comprises of a model of the structural dynamics of the cephalopod-like elastic bladder and a model of the pulsed-jet thrust production. The bladder, or mantle, is modelled by means of geometrically exact, axisymmetric, nonlinear shell theory, which yields an accurate estimation of the forces involved in driving the deformation of the structure in water. By coupling these results with those from a standard thrust model, the behaviour of the vehicle propelling itself in water is derived. The constitutive laws of the shell are also exploited as control laws with the scope of replicating the muscle activation routine observed in cephalopods. The model is employed to test various shapes, material properties and actuation routines of the mantle. The results are compared in terms of speed performance in order to identify suitable design guidelines. Altogether, the model is tested in more than 50 configurations, eventually providing useful insight for the development of more advanced vehicles and bringing evidence of its reliability in studying the dynamics of both man-made cephalopod-inspired robots and live specimens.

  1. Design specifications of the Human Robotic interface for the biomimetic underwater robot "yellow submarine project"

    CERN Document Server

    Bheemaiah, Anil

    2010-01-01

    This paper describes the design of a web based multi agent design for a collision avoidance auto navigation biomimetic submarine for submarine hydroelectricity. The paper describes the nature of the map - topology interface for river bodies and the design of interactive agents for the control of the robotic submarine. The agents are migratory on the web and are designed in XML/html interface with both interactive capabilities and visibility on a map. The paper describes mathematically the user interface and the map definition languages used for the multi agent description

  2. Combined Hybrid DFE and CCK Remodulator for Medium-Range Single-Carrier Underwater Acoustic Communications

    Directory of Open Access Journals (Sweden)

    Xialin Jiang

    2017-01-01

    Full Text Available Advanced modulation and channel equalization techniques are essential for improving the performance of medium-range single-carrier underwater acoustic communications. In this paper, an enhanced detection scheme, hybrid time-frequency domain decision feedback equalizer (DFE combined with complementary code keying (CCK remodulator, is presented. CCK modulation technique provides strong tolerance to intersymbol interference caused by multipath propagation in underwater acoustic channels. The conventional hybrid DFE, using a frequency domain feedforward filter and a time domain feedback filter, provides good performance along with low computational complexity. The error propagation in the feedback filter, caused by feedbacking wrong decisions prior to CCK demodulation, may lead to great performance degradation. In our proposed scheme, with the help of CCK coding gain, more accurate remodulated CCK chips can be used as feedback. The proposed detection scheme is tested by the practical ocean experiments. The experimental results show that the proposed detection scheme ensures robust communications over 10-kilometre underwater acoustic channels with the data rate at 5 Kbits/s in 3 kHz of channel bandwidth.

  3. Dynamic Modeling and Motion Simulation for A Winged Hybrid-Driven Underwater Glider

    Institute of Scientific and Technical Information of China (English)

    WANG Shu-xin; SUN Xiu-jun; WANG Yan-hui; WU Jian-guo; WANG Xiao-ming

    2011-01-01

    PETREL,a winged hybrid-driven underwater glider is a novel and practical marine survey platform which combines the features of legacy underwater glider and conventional AUV(autonomous underwater vehicle).It can be treated as a multi-rigid-body system with a floating base and a particular hydrodynamic profile.In this paper,theorems on linear and angular momentum are used to establish the dynamic equations of motion of each rigid body and the effect of translational and rotational motion of internal masses on the attitude control are taken into consideration.In addition,due to the unique external shape with fixed wings and deflectable rudders and the dual-drive operation in thrust and glide modes,the approaches of building dynamic model of conventional AUV and hydrodynamic model of submarine are introduced,and the tailored dynamic equations of the hybrid glider are formulated.Moreover,the behaviors of motion in glide and thrust operation are analyzed based on the simulation and the feasibility of the dynamic model is validated by data from lake field trials.

  4. PARASURG hybrid parallel robot for minimally invasive surgery.

    Science.gov (United States)

    Pisla, D; Gherman, B; Plitea, N; Gyurka, B; Vaida, C; Vlad, L; Graur, F; Radu, C; Suciu, M; Szilaghi, A; Stoica, A

    2011-01-01

    This paper presents the parallel hybrid robot, PARASURG 9M, for robotically assisted surgery, a robot which was entirely designed and produced in Romania. It is a versatile robot, being composed of a positioning and orientation module, PARASURG 5M with five degrees of freedom, having the possibility of attaching at its end either a laparoscope or an active surgical instrument for cutting/grasping, PARASIM, with four degrees of freedom. Based on its mathematical modelling, the first low-cost experimental model of the surgical robot has been built. The robot is part of the surgical robotic system, PARAMIS, with three arms, one used as a laparoscope holder, and other two for manipulating active instruments. When it is used as a manipulator of the camera, the user has the possibility to give commands in a large area for the positioning of the laparoscope using different interfaces: joystick, microphone, keyboard & mouse and haptic device. If the active surgical instrument, PARASIM, is attached, the robot commands are given through a haptic device. The main features that make the PARASURG 9M surgical robot suited for minimally invasive surgery are: precision, the elimination of the natural tremor of the surgeon, direct control over a smooth, precise, stable view of the internal surgical field for the surgeon. It also eliminates the need of a second surgeon to be present for the entire procedure (in the case of using the robot as a camera holder). In addition, there is improvement of surgeon dexterity in the case of using the PARASIM active instrument and better ergonomics in using the robot (in the case of the classic laparoscopy, the surgeon must adopt a difficult position for a long period of time, while the robot never gets tired). Having a relatively easy to understand, intuitive commanding system, the surgeons can rapidly adapt to the use of the PARASURG 9M robot in surgical procedures.

  5. Development of the pneumatic service robot with a hybrid type

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Cheol U; Choi, Hyeun Seok; Han, Chang Soo [Hanyang Univ., Seoul (Korea, Republic of)

    2001-07-01

    In this paper, the pneumatic service robot with a hybrid type is developed. A pneumatic has the advantage of good compliance, high payload-to-weight and payload-to-volume ratios, high speed and force capabilities. Using pneumatic actuators which have low stiffness, the service robot can guarantee safety. By suggesting a new serial-parallel hybrid type for the service robot which separates into positioning motion and orienting motion, we can achieve large workspace and high strength-to-moving-weight ratio at the same time. A sliding mode controller can be designed for tracking the desired output using the Lyapunov stability theory and structural properties of pneumatic servo systems. Through many experiments of circular trajectory, the pneumatic service robot is evaluated and verified.

  6. Hybrid Efficient Control Algorithms for Robot Manipulators

    Science.gov (United States)

    1991-11-01

    mod- eling of robot dynamics is difficult because of parameter uncertainties, unknown frictions. 2 payloads variations. Therefore, by using estimated... robot dynamics is produced for each mass and length. Moreover, unknown payload is reflected to m 2. To test the robustness to modeling uncertainties and

  7. Practical indoor mobile robot navigation using hybrid maps

    DEFF Research Database (Denmark)

    Özkil, Ali Gürcan; Fan, Zhun; Xiao, Jizhong

    2011-01-01

    This paper presents a practical navigation scheme for indoor mobile robots using hybrid maps. The method makes use of metric maps for local navigation and a topological map for global path planning. Metric maps are generated as 2D occupancy grids by a range sensor to represent local information...... about partial areas. The global topological map is used to indicate the connectivity of the 'places-of-interests' in the environment and the interconnectivity of the local maps. Visual tags on the ceiling to be detected by the robot provide valuable information and contribute to reliable localization...... robot and evaluated in a hospital environment....

  8. Hybrid Control Design for a Wheeled Mobile Robot

    DEFF Research Database (Denmark)

    Bak, Thomas; Bendtsen, Jan Dimon; Ravn, Anders Peter

    2003-01-01

    We present a hybrid systems solution to the problem of trajectory tracking for a four-wheel steered four-wheel driven mobile robot. The robot is modelled as a non-holonomic dynamic system subject to pure rolling, no-slip constraints. Under normal driving conditions, a nonlinear trajectory tracking...... feedback control law based on dynamic feedback linearization is sufficient to stabilize the system and ensure asymptotically stable tracking. Transitions to other modes are derived systematically from this model, whenever the configuration space of the controlled system has some fundamental singular points....... The stability of the hybrid control scheme is finally analyzed using Lyapunov-like arguments....

  9. Measurement and analysis of self-noise in hybrid-driven underwater gliders

    Directory of Open Access Journals (Sweden)

    LIU Lu

    2017-08-01

    Full Text Available The Hybrid-driven Underwater Glider (HUG is a new type of submersible vehicle which combines the functions of traditional Autonomous Underwater Vehicles(AUVand Autonomous Underwater Gliders(AUG. In order to study its noise source distribution and basic self-noise characteristics, a self-noise acquisition system based on the HUG was designed and developed, and a noise analysis test carried out in a free-field pool. In August 2016, the sea trial of the Petrel II glider was conducted in the South China Sea, with observation data at a depth range of 1 000 m as the research object. The self-noise data of the glider platform under different working conditions was obtained through the step-by-step operation method. The experimental analysis and results show that the self-noise acquisition system is stable. The contribution of mechanical noise to self-noise is greatest when the glider works in the gliding mode, while the self-noise band above 500 Hz is closely related to the work of the buoyancy adjustment unit, and peaks at 1 kHz. According to the analysis of the basic characteristics of self-noise, this provides some guidance for the implementation of vibration and noise reduction.

  10. HOPIS: hybrid omnidirectional and perspective imaging system for mobile robots.

    Science.gov (United States)

    Lin, Huei-Yung; Wang, Min-Liang

    2014-09-04

    In this paper, we present a framework for the hybrid omnidirectional and perspective robot vision system. Based on the hybrid imaging geometry, a generalized stereo approach is developed via the construction of virtual cameras. It is then used to rectify the hybrid image pair using the perspective projection model. The proposed method not only simplifies the computation of epipolar geometry for the hybrid imaging system, but also facilitates the stereo matching between the heterogeneous image formation. Experimental results for both the synthetic data and real scene images have demonstrated the feasibility of our approach.

  11. Throughput and Energy Efficiency of a Cooperative Hybrid ARQ Protocol for Underwater Acoustic Sensor Networks

    Directory of Open Access Journals (Sweden)

    Arindam Ghosh

    2013-11-01

    Full Text Available Due to its efficiency, reliability and better channel and resource utilization, cooperative transmission technologies have been attractive options in underwater as well as terrestrial sensor networks. Their performance can be further improved if merged with forward error correction (FEC techniques. In this paper, we propose and analyze a retransmission protocol named Cooperative-Hybrid Automatic Repeat reQuest (C-HARQ for underwater acoustic sensor networks, which exploits both the reliability of cooperative ARQ (CARQ and the efficiency of incremental redundancy-hybrid ARQ (IR-HARQ using rate-compatible punctured convolution (RCPC codes. Extensive Monte Carlo simulations are performed to investigate the performance of the protocol, in terms of both throughput and energy efficiency. The results clearly reveal the enhancement in performance achieved by the C-HARQ protocol, which outperforms both CARQ and conventional stop and wait ARQ (S&W ARQ. Further, using computer simulations, optimum values of various network parameters are estimated so as to extract the best performance out of the C-HARQ protocol.

  12. Throughput and energy efficiency of a cooperative hybrid ARQ protocol for underwater acoustic sensor networks.

    Science.gov (United States)

    Ghosh, Arindam; Lee, Jae-Won; Cho, Ho-Shin

    2013-11-08

    Due to its efficiency, reliability and better channel and resource utilization, cooperative transmission technologies have been attractive options in underwater as well as terrestrial sensor networks. Their performance can be further improved if merged with forward error correction (FEC) techniques. In this paper, we propose and analyze a retransmission protocol named Cooperative-Hybrid Automatic Repeat reQuest (C-HARQ) for underwater acoustic sensor networks, which exploits both the reliability of cooperative ARQ (CARQ) and the efficiency of incremental redundancy-hybrid ARQ (IR-HARQ) using rate-compatible punctured convolution (RCPC) codes. Extensive Monte Carlo simulations are performed to investigate the performance of the protocol, in terms of both throughput and energy efficiency. The results clearly reveal the enhancement in performance achieved by the C-HARQ protocol, which outperforms both CARQ and conventional stop and wait ARQ (S&W ARQ). Further, using computer simulations, optimum values of various network parameters are estimated so as to extract the best performance out of the C-HARQ protocol.

  13. Short-Range Sensor for Underwater Robot Navigation using Line-lasers and Vision

    DEFF Research Database (Denmark)

    Hansen, Peter Nicholas; Nielsen, Mikkel Cornelius; Christensen, David Johan

    2015-01-01

    This paper investigates a minimalistic laser-based range sensor, used for underwater inspection by Autonomous Underwater Vehicles (AUV). This range detection system system comprise two lasers projecting vertical lines, parallel to a camera’s viewing axis, into the environment. Using both lasers...

  14. Short-Range Sensor for Underwater Robot Navigation using Line-lasers and Vision

    DEFF Research Database (Denmark)

    Hansen, Peter Nicholas; Nielsen, Mikkel Cornelius; Christensen, David Johan;

    2015-01-01

    This paper investigates a minimalistic laser-based range sensor, used for underwater inspection by Autonomous Underwater Vehicles (AUV). This range detection system system comprise two lasers projecting vertical lines, parallel to a camera’s viewing axis, into the environment. Using both lasers f...

  15. QUASAR-370 hybrid phototube as a prototype of a photodetector for the next generation of deep underwater neutrino telescopes

    Energy Technology Data Exchange (ETDEWEB)

    Lubsandorzhiev, B.K. [Institute for Nuclear Research of the Russian Academy of Sciences, pr-t 60th Anniversary of October, 7A, 117312 Moscow (Russian Federation); Kepler Center for Astro and Particle Physics, University of Tuebingen, Auf der Morgenstelle 14, D-72076 Tuebingen (Germany)], E-mail: lubsand@inr.ac.ru

    2009-10-21

    In this paper we show that QUASAR-370 large area hybrid phototube, developed for and successfully used in a number of astroparticle physics experiments, the Lake Baikal deep underwater neutrino experiment among them, could be used as a prototype of a photodetector for the next generation of giant neutrino telescopes.

  16. A hybrid model for the three-dimensional scattering from objects in underwater waveguides

    Science.gov (United States)

    Zampolli, Mario; Burnett, David S.; Jensen, Finn B.; Schmidt, Henrik; Blottman, John B.

    2003-10-01

    The scattering from objects in underwater waveguides is a multi-scale problem, involving both near-field effects in the vicinity of the scatterer as well as long-range propagation through the waveguide. To solve this problem, 3-D Finite-Element STructural Acoustics software developed at SACLANTCEN (FESTA) and an underwater waveguide propagation model based on wavenumber integration developed at MIT (3-D OASES), are coupled into a hybrid model. In a three-step method, the propagation model is used to compute the incident acoustic field in the vicinity of the target, which may be floating, proud, partially buried or buried in the sediment. The incident field data is subsequently passed as an input to the finite-element tool to compute the target-scattered acoustic nearfield. In the final step, the scattered field is propagated through the waveguide by OASES. A second method of coupling between the two models is based on the characterization of the target scattering via spherical harmonic basis responses. The advantage of the second method is that the finite-element computations need to be performed only once for each frequency, regardless of the incident field. Results for different targets with multistatic source-receiver configurations and with focused acoustic incident fields are presented.

  17. Optimal Sensor placement for acoustic range-based underwater robotic positioning

    Digital Repository Service at National Institute of Oceanography (India)

    Glotzbach, T.; Moreno-Salinas, D.; Aranda, J.; Pascoal, A.M.

    This paper addresses the problem of optimal sensor placement for acoustic range-based underwater target positioning. In particular, we focus on the experimental set-up whereby target positioning is performed by measuring...

  18. A Hybrid Multi-Robot Control Architecture

    Science.gov (United States)

    2007-12-01

    Kostas Kostiadis, Johan Kummeneje, Itsuki Noda, Oliver Obst , Pat Rile, Timo Steffens, Yi Wang, and Xiang Yin. “Users Manual: RoboCup Soccer Server for... Williams . “Remote Agent: To Boldly Go Where No AI System Has Gone Before”. Artificial Intelligence, 103(1-2):5–47, 1998. 38. Myers, Karen L. “A Procedural...for Autonomous Robots”. IEEE trans- actions on Robotics and Automation, 10(1):34–43, February 1994. 50. Snedecor, George W. and William G. Cochran

  19. A hybrid Jacobian control for uncalibrated robot visual servoing

    Institute of Scientific and Technical Information of China (English)

    ZHANG Qizhi; GE Xinsheng; TEO Chee-Leong; LIM Siak-Piang

    2005-01-01

    This paper focuses on the visual servo control of an uncalibrated robotic arm with an eye-in-hand camera. Without a prior knowledge of the kinematics of the robotic arm or camera calibration, the proposed hybrid Jacobian controller can track a moving object using visual feedback and joint-space velocity feedback. The proposed hybrid control method is a combination of the uncalibrated visual servoing and approximate Jacobian feedback control. First, the Jacobian matrix from joint-space to image-space is estimated by recursive leastsquares (RLS) algorithm, and then the approximate Jacobian feedback controller is designed by using visual feedback and joint-space velocity feedback. The performances of the proposed control methods are illustrated by computer simulations.

  20. A multi-sensorial hybrid control for robotic manipulation in human-robot workspaces.

    Science.gov (United States)

    Pomares, Jorge; Perea, Ivan; García, Gabriel J; Jara, Carlos A; Corrales, Juan A; Torres, Fernando

    2011-01-01

    Autonomous manipulation in semi-structured environments where human operators can interact is an increasingly common task in robotic applications. This paper describes an intelligent multi-sensorial approach that solves this issue by providing a multi-robotic platform with a high degree of autonomy and the capability to perform complex tasks. The proposed sensorial system is composed of a hybrid visual servo control to efficiently guide the robot towards the object to be manipulated, an inertial motion capture system and an indoor localization system to avoid possible collisions between human operators and robots working in the same workspace, and a tactile sensor algorithm to correctly manipulate the object. The proposed controller employs the whole multi-sensorial system and combines the measurements of each one of the used sensors during two different phases considered in the robot task: a first phase where the robot approaches the object to be grasped, and a second phase of manipulation of the object. In both phases, the unexpected presence of humans is taken into account. This paper also presents the successful results obtained in several experimental setups which verify the validity of the proposed approach.

  1. A Multi-Sensorial Hybrid Control for Robotic Manipulation in Human-Robot Workspaces

    Directory of Open Access Journals (Sweden)

    Juan A. Corrales

    2011-10-01

    Full Text Available Autonomous manipulation in semi-structured environments where human operators can interact is an increasingly common task in robotic applications. This paper describes an intelligent multi-sensorial approach that solves this issue by providing a multi-robotic platform with a high degree of autonomy and the capability to perform complex tasks. The proposed sensorial system is composed of a hybrid visual servo control to efficiently guide the robot towards the object to be manipulated, an inertial motion capture system and an indoor localization system to avoid possible collisions between human operators and robots working in the same workspace, and a tactile sensor algorithm to correctly manipulate the object. The proposed controller employs the whole multi-sensorial system and combines the measurements of each one of the used sensors during two different phases considered in the robot task: a first phase where the robot approaches the object to be grasped, and a second phase of manipulation of the object. In both phases, the unexpected presence of humans is taken into account. This paper also presents the successful results obtained in several experimental setups which verify the validity of the proposed approach.

  2. Integrating Soft Robotics with the Robot Operating System: A Hybrid Pick and Place Arm

    Directory of Open Access Journals (Sweden)

    Ross M. McKenzie

    2017-08-01

    Full Text Available Soft robotic systems present a variety of new opportunities for solving complex problems. The use of soft robotic grippers, for example, can simplify the complexity in tasks such as the grasping of irregular and delicate objects. Adoption of soft robotics by the informatics community and industry, however, has been slow and this is, in-part, due to the amount of hardware and software that must be developed from scratch for each use of soft system components. In this paper, we detail the design, fabrication, and validation of an open-source framework that we designed to lower the barrier to entry for integrating soft robotic subsystems. This framework is built on the robot operating system (ROS, and we use it to demonstrate a modular, soft–hard hybrid system, which is capable of completing pick and place tasks. By lowering this barrier to entry through our open sourced hardware and software, we hope that system designers and Informatics researchers will find it easy to integrate soft components into their existing ROS-enabled robotic systems.

  3. Designing a Microhydraulically driven Mini robotic Squid

    Science.gov (United States)

    2016-05-20

    34Hybrid type of underwater micro biped robot with walking and swimming motions," in Mechatronics and Automation, 2005 IEEE International Conference, Niagara Falls, Ont., 2005. ...Secretary of Defense for Research and Engineering. Designing a Microhydraulically-driven Mini- robotic Squid by Kevin Dehan Meng B.S., U.S. Air...Committee on Graduate Students 2 Designing a Microhydraulically-driven Mini- robotic Squid by Kevin Dehan Meng Submitted to the Department

  4. Verification of CFD analysis methods for predicting the drag force and thrust power of an underwater disk robot

    Directory of Open Access Journals (Sweden)

    Joung Tae-Hwan

    2014-06-01

    Full Text Available This paper examines the suitability of using the Computational Fluid Dynamics (CFD tools, ANSYSCFX, as an initial analysis tool for predicting the drag and propulsion performance (thrust and torque of a concept underwater vehicle design. In order to select an appropriate thruster that will achieve the required speed of the Underwater Disk Robot (UDR, the ANSYS-CFX tools were used to predict the drag force of the UDR. Vertical Planar Motion Mechanism (VPMM test simulations (i.e. pure heaving and pure pitching motion by CFD motion analysis were carried out with the CFD software. The CFD results reveal the distribution of hydrodynamic values (velocity, pressure, etc. of the UDR for these motion studies. Finally, CFD bollard pull test simulations were performed and compared with the experimental bollard pull test results conducted in a model basin. The experimental results confirm the suitability of using the ANSYS-CFX tools for predicting the behavior of concept vehicles early on in their design process.

  5. Introduction to autonomous manipulation case study with an underwater robot, SAUVIM

    CERN Document Server

    Marani, Giacomo

    2014-01-01

    “Autonomous manipulation” is a challenge in robotic technologies. It refers to the capability of a mobile robot system with one or more manipulators that performs intervention tasks requiring physical contacts in unstructured environments and without continuous human supervision. Achieving autonomous manipulation capability is a quantum leap in robotic technologies as it is currently beyond the state of the art in robotics. This book addresses issues with the complexity of the problems encountered in autonomous manipulation including representation and modeling of robotic structures, kinematic and dynamic robotic control, kinematic and algorithmic singularity avoidance, dynamic task priority, workspace optimization and environment perception. Further development in autonomous manipulation should be able to provide robust improvements of the solutions for all of the above issues. The book provides an extensive tract on sensory-based autonomous manipulation for intervention tasks in unstructured environment...

  6. Robot Positioning and Navigation Based on Hybrid Wireless Sensor Network

    Institute of Scientific and Technical Information of China (English)

    Shun-cai YAO; Jin-dong TAN; Hong-xia PAN

    2010-01-01

    Traditional sensor network and robot navigation are based an the map of detecting the fields available in advance.The optimal algorithms are developed to solve the energy saving,the shortest path problems,etc.However,in the practical encironment,there are many fields,whose map is difficult to get,and needs to be detected.In this paper a kind of ad-hoc navigation algorithm is explored,which is based on the hybrid sensor network without the prior map in advance.The navigation system is composed of static nodes and dynamic nodes.The static nodes monitor the occurrances of the events and broadcast them.In the system,a kind of algorithm is to locate the robot,which is based on cluster broadcasting.The dynamic nodes detect the adversary or dangerous fields and broadcast warning messages.The robot gets the message and follows ad-hoc routine to arrive where the events occur.In the whole process,energy saving has been taken into account.The algorithms,which are based on the hybrid sensor network,are given in this paper.The simulation and practical results are also available.

  7. Nonholonomic Mobile Robot Trajectory Tracking using Hybrid Controller

    Directory of Open Access Journals (Sweden)

    Muhammad Safwan

    2016-04-01

    Full Text Available A control scheme is being presented for the trajectory tracking of a nonholonomic kinematic model of mobile robots. As a kinematic model of mobile robots is nonlinear in nature, therefore, it is controlling is always being a difficult task. Thus, a control hybrid scheme comprises of fuzzy logic and PID (Proportional Integral Derivative is being proposed, in which adaptive gains of PID controller is being tuned by a fuzzy logic controller. Moreover, the effectiveness of this innovative technique is also proved using the simulations by adding model uncertainties and external disturbances in the system. Besides, the fuzzy logic control system is also being compared by the proposed control system. Resultsattained shows that the fuzzy based PID controller drivesimproved results than fuzzy logic controller.

  8. Regions of Attraction for Hybrid Limit Cycles of Walking Robots

    CERN Document Server

    Manchester, Ian R; Levashov, Michael; Tedrake, Russ

    2010-01-01

    This paper illustrates the application of recent research in region-of-attraction analysis for nonlinear hybrid limit cycles. Three example systems are analyzed in detail: the van der Pol oscillator, the "rimless wheel", and the "compass gait", the latter two being simplified models of underactuated walking robots. The method used involves decomposition of the dynamics about the target cycle into tangential and transverse components, and a search for a Lyapunov function in the transverse dynamics using sum-of-squares analysis (semidefinite programming). Each example illuminates different aspects of the procedure, including optimization of transversal surfaces, the handling of impact maps, optimization of the Lyapunov function, and orbitally-stabilizing control design.

  9. A hybrid Force Position Control for a Upper Limb Rehabilitation Robot of Series Mechanism

    OpenAIRE

    Liu Yali; Ji Linhong

    2016-01-01

    Interactive rehabilitation robot which has better interaction is one main method to improve the patients’ motion performance. The rehabilitation robot developed by Tsinghua University UECM for patients having weakness with shoulder and elbow should be improved by increasing interactive parts to adapt to patients’ state. This paper described one control strategy to increase the interaction between robot and patients. The hybrid force position control for the upper limb rehabilitation robot UEC...

  10. Path Planning and Trajectory Control of Collaborative Mobile Robots Using Hybrid Control Architecture

    Directory of Open Access Journals (Sweden)

    Trevor Davies

    2008-08-01

    Full Text Available This paper presents the development and implementation a hybrid control architecture to direct a collective of three X80 mobile robots to multiple user-defined waypoints. The Genetic Algorithm Path Planner created an optimized, reduction in the time to complete the task, path plan for each robot in the collective such that each waypoint was visited once without colliding with a priori obstacles. The deliberative Genetic Algorithm Path Planner was then coupled with a reactive Potential Field Trajectory Planner and kinematic based controller to create a hybrid control architecture allowing the mobile robot to navigate between multiple user-defined waypoints, while avoiding a priori obstacles and obstacles detected using the robots' range sensors. The success of this hybrid control architecture was proven through simulation and experimentation using three of Dr. Robot's ™ wireless X80 mobile robots.

  11. The kinematics modeling based on Spinor theory for CT-guided hybrid robot

    Institute of Scientific and Technical Information of China (English)

    Tang Can; Liu Da; Wang Tianmiao; Yun Chao

    2009-01-01

    This paper focused on a simplified method for solving the hybrid robot kinematics in CT-guided (computerized tomography, CT) surgery. By position constraint introduced, the hybrid robot can be transformed as a redundant serial 7-DOF robot. The forward displacement calculation was developed based on the product-of-exponential formula (POE). Because of the kinematics complexity of the hybrid and redundant robot, the combination technique of Ulrich two-step iteration method and paul variables detachment method (UTI-PVD) was introduced to fulfill the inverse kinematics of redundant robot, the novelty of which lay in the flexibility of various robots structures and in high calculation efficiency for real-time control. The process of solving the inverse displacement was analyzed. The UTI-PVD method can be applicable to kinematics of many robots, especially for redundant robots with more than 6DOF. The kinematics simulation was provided, and robot dexterity analysis was presented. The results indicated that the hybrid robot could implement the minimally invasive CT-guided surgery.

  12. Brain-Map Based Carangiform Swimming Behaviour Modeling and Control in a Robotic Fish Underwater Vehicle

    Directory of Open Access Journals (Sweden)

    Abhra Roy Chowdhury

    2015-05-01

    Full Text Available Fish swimming demonstrates impressive speeds and exceptional characteristics in the fluid environment. The objective of this paper is to mimic undulatory swimming behaviour and its control of a body caudal fin (BCF carangiform fish in a robotic counterpart. Based on fish biology kinematics study, a 2-level behavior based distributed control scheme is proposed. The high-level control is modeled by robotic fish swimming behavior. It uses a Lighthill (LH body wave to generate desired joint trajectory patterns. Generated LH body wave is influenced by intrinsic kinematic parameters Tail-beat frequency (TBF and Caudal amplitude (CA which can be modulated to change the trajectory pattern. Parameter information is retrieved from a fish memory (cerebellum inspired brain map. This map stores operating region information on TBF and CA parameters obtained from yellow fin tuna kinematics study. Based on an environment based error feedback signal, robotic fish map selects the right parameters value showing adaptive behaviour. A finite state machine methodology has been used to model this brain-kinematic-map control. The low-level control is implemented using inverse dynamics based computed torque method (CTM with dynamic PD compensation. It tracks high-level generated and encoded patterns (trajectory for fish-tail undulation. Three types of parameter adaptation for the two chosen parameters have been shown to successfully emulate robotic fish swimming behavior. Based on the proposed control strategy joint-position and velocity tracking results are discussed. They are found to be satisfactory with error magnitudes within permissible bounds.

  13. Underwater imaging using a hybrid Kirchhoff migration: direction of arrival method and a sparse surface sensor array.

    Science.gov (United States)

    Dord, Jean-Francois; Farhat, Charbel

    2010-08-01

    This paper considers the problem of imaging a complex object submerged in shallow waters using a sparse surface sensor array and a hybrid signal processing method. This method is constructed by refining the Kirchhoff migration technique to incorporate a zoning of the sensors and an analysis of multiple reflections, and combining it with the direction of arrival estimation method. Its performance is assessed and analyzed with the shape identification of a mockup submarine by numerical simulation. The obtained numerical results highlight the potential of this approach for identifying underwater intruders.

  14. Stability and Capsize оf Free-Standing Hydrotank: Development of Trial Tanks to Test Underwater Robots

    Directory of Open Access Journals (Sweden)

    S. P. Severov

    2015-01-01

    Full Text Available The problem of capsizing object, which are free-supported under the forces of gravity, elasticity, friction, and other unpredictably changing external influences, is a global challenge for the civil engineering and for transport (air, road, rail, and others. Much of the research activities on capsizing the free-supported objects of the certain types are fragmentarily included in the different subject areas of technical applications. In particular, it is typical for a hydrotank that is a thin-walled shell-type liquid-filled container. The hydrotank problems are multiple structural, geometric and natural forms of nonlinearity. The aim of this study is to determine the phase and the critical parameters of the basic objects of simple shape with different supporting plane: cube; box; cylinder etc., pouring the fluid, with or without shell. Hydrotank capsize as a solid body with a fluid is analysed and as a first approximation this analysis precedes the assessment of stability of the object as a hydroelastic system. The experimental results prove the possibility to design, manufacture and use this type of hydrotanks to test underwater robots. The work gives more undestanding on the studied problem and on the sphere wherein results can be efficiently implemented.

  15. New Intelligent Transmission Concept for Hybrid Mobile Robot Speed Control

    Directory of Open Access Journals (Sweden)

    Nazim Mir-Nasiri

    2005-09-01

    Full Text Available This paper presents a new concept of a mobile robot speed control by using two degree of freedom gear transmission. The developed intelligent speed controller utilizes a gear box which comprises of epicyclic gear train with two inputs, one coupled with the engine shaft and another with the shaft of a variable speed dc motor. The net output speed is a combination of the two input speeds and is governed by the transmission ratio of the planetary gear train. This new approach eliminates the use of a torque converter which is otherwise an indispensable part of all available automatic transmissions, thereby reducing the power loss that occurs in the box during the fluid coupling. By gradually varying the speed of the dc motor a stepless transmission has been achieved. The other advantages of the developed controller are pulling over and reversing the vehicle, implemented by intelligent mixing of the dc motor and engine speeds. This approach eliminates traditional braking system in entire vehicle design. The use of two power sources, IC engine and battery driven DC motor, utilizes the modern idea of hybrid vehicles. The new mobile robot speed controller is capable of driving the vehicle even in extreme case of IC engine failure, for example, due to gas depletion.

  16. New Intelligent Transmission Concept for Hybrid Mobile Robot Speed Control

    Directory of Open Access Journals (Sweden)

    Nazim Mir-Nasiri

    2008-11-01

    Full Text Available This paper presents a new concept of a mobile robot speed control by using two degree of freedom gear transmission. The developed intelligent speed controller utilizes a gear box which comprises of epicyclic gear train with two inputs, one coupled with the engine shaft and another with the shaft of a variable speed dc motor. The net output speed is a combination of the two input speeds and is governed by the transmission ratio of the planetary gear train. This new approach eliminates the use of a torque converter which is otherwise an indispensable part of all available automatic transmissions, thereby reducing the power loss that occurs in the box during the fluid coupling. By gradually varying the speed of the dc motor a stepless transmission has been achieved. The other advantages of the developed controller are pulling over and reversing the vehicle, implemented by intelligent mixing of the dc motor and engine speeds. This approach eliminates traditional braking system in entire vehicle design. The use of two power sources, IC engine and battery driven DC motor, utilizes the modern idea of hybrid vehicles. The new mobile robot speed controller is capable of driving the vehicle even in extreme case of IC engine failure, for example, due to gas depletion..

  17. A removable hybrid robot system for long bone fracture reduction.

    Science.gov (United States)

    Wang, Tianmiao; Li, Changsheng; Hu, Lei; Tang, Peifu; Zhang, Lihai; Du, Hailong; Luan, Sheng; Wang, Lifeng; Tan, Yiming; Peng, Cheng

    2014-01-01

    In traditional long bone fracture reduction surgery, there are some drawbacks such as low accuracy, high radiation for surgeons and a risk of infection. To overcome these disadvantages, a removable hybrid robot system is developed, which integrates a removable series-parallel mechanism with a motor-double cylinder (MDC) driven mode. This paper describes the mechanism in detail, analyses the principle and the method of the fracture reduction, presents the surgical procedure, and verifies the reduction accuracy by experiments with bone models. The results are shown as follows. The mean deviations of the axial displacement and lateral displacement are 1.60mm and 1.26 mm respectively. The standard deviations are 0.69 mm and 0.30 mm. The mean deviations of the side angle and turn inward are 2.06° and 2.22° respectively. The standard deviations are 0.50° and 0.99°. This minimally invasive robot features high accuracy and zero radiation for surgeons, and is able to conduct fracture reduction for long bones.

  18. The effect of traveling wave shapes in the maneuver control and efficiency of an underwater robot propelled by an undulating fin

    Science.gov (United States)

    Liu, Hanlin; Curet, Oscar

    2016-11-01

    Effective control of propulsive undulating fins has the potential to enhance the maneuverability and efficiency of underwater vehicles allowing them to navigate in more complex environments. Aquatic animals using this type of propulsion are able to perform complex maneuvers by sending different traveling waves along one or multiple elongated fins. Recent work has investigated the propulsive forces, the hydrodynamics and the efficiency of an undulating ribbon fin. However, it is still not understood how different traveling wave shapes along the fin can be used to control the hydrodynamic forces and torques to perform different maneuvers. In this work, we study the effect of traveling wave shapes on the hydrodynamic forces and torques, swimming speed, maneuver control and propulsive performance of an underwater vehicle propelled by an undulating fin. The underwater robot propels by actuating a fin that is composed of sixteen independent rays interconnected with a flexible membrane. The hull contains all the electronics, batteries, motors and sensors. The underwater vehicle was tested in a water tank-flume facility. In a series of experiments, we measured the motion of the vessel and the power consumption for different traveling wave patterns. In addition, we measured the flow around the fin using Particle Image Velocimetry. We present the results concerning the power distribution along the fin, propulsive efficiency, free-swimming speed and pitch control based on different fin kinematics. National Science Foundation under Grant No. 1420774.

  19. Brain-Map Based Carangiform Swimming Behaviour Modeling and Control in a Robotic Fish Underwater Vehicle

    Directory of Open Access Journals (Sweden)

    Abhra Roy Chowdhury

    2015-05-01

    Full Text Available Fish swimming demonstrates impressive speeds and exceptional characteristics in the fluid environment. The objective of this paper is to mimic undulatory swimming behaviour and its control of a body caudal fin (BCF carangiform fish in a robotic counterpart. Based on fish biology kinematics study, a 2-level behavior based distributed control scheme is proposed. The high-level control is modeled by robotic fish swimming behavior. It uses a Lighthill (LH body wave to generate desired joint trajectory patterns. Generated LH body wave is influenced by intrinsic kinematic parameters Tail-beat frequency (TBF and Caudal amplitude (CA which can be modulated to change the trajectory pattern. Parameter information is retrieved from a fish memory (cerebellum inspired brain map. This map stores operating region information on TBF and CA parameters obtained from yellow fin tuna kinematics study. Based on an environment based error feedback signal, robotic fish map selects the right parameter/s value showing adaptive behaviour. A finite state machine methodology has been used to model this brain-kinematic-map control. The low-level control is implemented using inverse dynamics based computed torque method (CTM with dynamic PD compensation. It tracks high-level generated and encoded patterns (trajectory for fish-tail undulation. Three types of parameter adaptation for the two chosen parameters have been shown to successfully emulate robotic fish swimming behavior. Based on the proposed control strategy joint-position and velocity tracking results are discussed. They are found to be satisfactory with error magnitudes within permissible bounds.

  20. Accuracy improvement of a hybrid robot for ITER application using POE modeling method

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yongbo, E-mail: yongbo.wang@hotmail.com [Laboratory of Intelligent Machines, Lappeenranta University of Technology, FIN-53851 Lappeenranta (Finland); Wu, Huapeng; Handroos, Heikki [Laboratory of Intelligent Machines, Lappeenranta University of Technology, FIN-53851 Lappeenranta (Finland)

    2013-10-15

    Highlights: ► The product of exponential (POE) formula for error modeling of hybrid robot. ► Differential Evolution (DE) algorithm for parameter identification. ► Simulation results are given to verify the effectiveness of the method. -- Abstract: This paper focuses on the kinematic calibration of a 10 degree-of-freedom (DOF) redundant serial–parallel hybrid robot to improve its accuracy. The robot was designed to perform the assembling and repairing tasks of the vacuum vessel (VV) of the international thermonuclear experimental reactor (ITER). By employing the product of exponentials (POEs) formula, we extended the POE-based calibration method from serial robot to redundant serial–parallel hybrid robot. The proposed method combines the forward and inverse kinematics together to formulate a hybrid calibration method for serial–parallel hybrid robot. Because of the high nonlinear characteristics of the error model and too many error parameters need to be identified, the traditional iterative linear least-square algorithms cannot be used to identify the parameter errors. This paper employs a global optimization algorithm, Differential Evolution (DE), to identify parameter errors by solving the inverse kinematics of the hybrid robot. Furthermore, after the parameter errors were identified, the DE algorithm was adopted to numerically solve the forward kinematics of the hybrid robot to demonstrate the accuracy improvement of the end-effector. Numerical simulations were carried out by generating random parameter errors at the allowed tolerance limit and generating a number of configuration poses in the robot workspace. Simulation of the real experimental conditions shows that the accuracy of the end-effector can be improved to the same precision level of the given external measurement device.

  1. Effective pathfinding for four-wheeled robot based on combining Theta* and hybrid A* algorithms

    Directory of Open Access Journals (Sweden)

    Віталій Геннадійович Михалько

    2016-07-01

    Full Text Available Effective pathfinding algorithm based on Theta* and Hybrid A* algorithms was developed for four-wheeled robot. Pseudocode for algorithm was showed and explained. Algorithm and simulator for four-wheeled robot were implemented using Java programming language. Algorithm was tested on U-obstacles, complex maps and for parking problem

  2. Motion design of a hybrid wheeled/legged robot for lunar exploration

    Institute of Scientific and Technical Information of China (English)

    陈学东; 田文罡; 李小清; 渡边桂吾

    2003-01-01

    The robot consists of a quadruped mechanism and two active dual-wheel casters possesses the advan-tages of wheeled and legged mechanism, and can quickly move on the relatively plane ground with the wheeledmechanism, and can walk on the extremely uneven terrain with the legged mechanism. The effectiveness of themotion design of the hybrid robot is illustrated by simulation results.

  3. An intelligent hybrid behavior coordination system for an autonomous mobile robot

    Science.gov (United States)

    Luo, Chaomin; Krishnan, Mohan; Paulik, Mark; Fallouh, Samer

    2013-12-01

    In this paper, development of a low-cost PID controller with an intelligent behavior coordination system for an autonomous mobile robot is described that is equipped with IR sensors, ultrasonic sensors, regulator, and RC filters on the robot platform based on HCS12 microcontroller and embedded systems. A novel hybrid PID controller and behavior coordination system is developed for wall-following navigation and obstacle avoidance of an autonomous mobile robot. Adaptive control used in this robot is a hybrid PID algorithm associated with template and behavior coordination models. Software development contains motor control, behavior coordination intelligent system and sensor fusion. In addition, the module-based programming technique is adopted to improve the efficiency of integrating the hybrid PID and template as well as behavior coordination model algorithms. The hybrid model is developed to synthesize PID control algorithms, template and behavior coordination technique for wall-following navigation with obstacle avoidance systems. The motor control, obstacle avoidance, and wall-following navigation algorithms are developed to propel and steer the autonomous mobile robot. Experiments validate how this PID controller and behavior coordination system directs an autonomous mobile robot to perform wall-following navigation with obstacle avoidance. Hardware configuration and module-based technique are described in this paper. Experimental results demonstrate that the robot is successfully capable of being guided by the hybrid PID controller and behavior coordination system for wall-following navigation with obstacle avoidance.

  4. A Rough Set GA-based Hybrid Method for Robot Path Planning

    Institute of Scientific and Technical Information of China (English)

    Cheng-Dong Wu; Ying Zhang; Meng-Xin Li; Yong Yue

    2006-01-01

    In this paper, a hybrid method based on rough sets and genetic algorithms, is proposed to improve the speed of robot path planning. Decision rules are obtained using rough set theory. A series of available paths are produced by training obtained minimal decision rules. Path populations are optimised by using genetic algorithms until the best path is obtained. Experiment results show that this hybrid method is capable of improving robot path planning speed.

  5. 基于可视化技术的核电站水下机器人地面站设计%Underwater Robot Teleoperation System Based on Virtual Reality in Nuclear Power Plant

    Institute of Scientific and Technical Information of China (English)

    郭晓旗; 丑武胜; 方斌

    2013-01-01

    针对当前水下机器人地面控制系统可视化程度低、操控不便的问题,基于可视化技术设计了一套水下机器人的岸上地面站系统。该系统可以控制水下机器人的半自主定航向和定深度航行,接受、储存、回放水下机器人拍摄的录像。采用编程技术实现三维动画空间,结合传感器回传数据控制三维动画显示,真实地反映真实世界中水下机器人的运动姿态、位置、运行状态。结合声纳成像信息、摄像机回传图像信息的综合显示,实现了微小型水下机器人的遥操作控制。%According to the control complexity and the peculiar working environment of the nuclear power plant underwater robot ,a set of ground remote control system based on Pro/E and OpenGL is designed .This system can make the underwater robot semi-autonomously set course and navigate with constant depth .Meanwhile ,the system accepts ,storages and playbacks the video shot by underwater robot .Combined the virtual 3D reconstruction model of underwater robot with the environment images acquired by scanning sonar ,the moving posture ,location and operation condition of the underwater robot can be displayed in real time .Finally , the system realizes the small underwater robot BVR remote control with direct and reliable performance .

  6. Intelligent controller of a flexible hybrid robot machine for ITER assembly and maintenance

    Energy Technology Data Exchange (ETDEWEB)

    Al-saedi, Mazin I., E-mail: mazin.al-saedi@lut.fi; Wu, Huapeng; Handroos, Heikki

    2014-10-15

    Highlights: • Studying flexible multibody dynamic of hybrid parallel robot. • Investigating fuzzy-PD controller to control a hybrid flexible hydraulically driven robot. • Investigating ANFIS-PD controller to control a hybrid flexible robot. Compare to traditional PID this method gives better performance. • Using the equilibrium of reaction forces between the parallel and serial parts of hybrid robot to control the serial part hydraulically driven. - Abstract: The assembly and maintenance of International Thermonuclear Experimental Reactor (ITER) vacuum vessel (VV) is highly challenging since the tasks performed by the robot involve welding, material handling, and machine cutting from inside the VV. To fulfill the tasks in ITER application, this paper presents a hybrid redundant manipulator with four DOFs provided by serial kinematic axes and six DOFs by parallel mechanism. Thus, in machining, to achieve greater end-effector trajectory tracking accuracy for surface quality, a robust control of the actuators for the flexible link has to be deduced. In this paper, the intelligent control of a hydraulically driven parallel robot part based on the dynamic model and two control schemes have been investigated: (1) fuzzy-PID self tuning controller composed of the conventional PID control and with fuzzy logic; (2) adaptive neuro-fuzzy inference system-PID (ANFIS-PID) self tuning of the gains of the PID controller, which are implemented independently to control each hydraulic cylinder of the parallel robot based on rod position predictions. The obtained results of the fuzzy-PID and ANFIS-PID self tuning controller can reduce more tracking errors than the conventional PID controller. Subsequently, the serial component of the hybrid robot can be analyzed using the equilibrium of reaction forces at the universal joint connections of the hexa-element. To achieve precise positional control of the end effector for maximum precision machining, the hydraulic cylinder should

  7. Collision avoidance for a mobile robot based on radial basis function hybrid force control technique

    Institute of Scientific and Technical Information of China (English)

    Wen Shu-Huan

    2009-01-01

    Collision avoidance is always difficult in the planning path for a mobile robot. In this paper, the virtual force field between a mobile robot and an obstacle is formed and regulated to maintain a desired distance by hybrid force control algorithm. Since uncertainties from robot dynamics and obstacle degrade the performance of a collision avoidance task, intelligent control is used to compensate for the uncertainties. A radial basis function (RBF) neural network is used to regulate the force field of an accurate distance between a robot and an obstacle in this paper and then simulation studies are conducted to confirm that the proposed algorithm is effective.

  8. GENERAL: Collision avoidance for a mobile robot based on radial basis function hybrid force control technique

    Science.gov (United States)

    Wen, Shu-Huan

    2009-10-01

    Collision avoidance is always difficult in the planning path for a mobile robot. In this paper, the virtual force field between a mobile robot and an obstacle is formed and regulated to maintain a desired distance by hybrid force control algorithm. Since uncertainties from robot dynamics and obstacle degrade the performance of a collision avoidance task, intelligent control is used to compensate for the uncertainties. A radial basis function (RBF) neural network is used to regulate the force field of an accurate distance between a robot and an obstacle in this paper and then simulation studies are conducted to confirm that the proposed algorithm is effective.

  9. Hybrid robotic systems for upper limb rehabilitation after stroke: A review.

    Science.gov (United States)

    Resquín, Francisco; Cuesta Gómez, Alicia; Gonzalez-Vargas, Jose; Brunetti, Fernando; Torricelli, Diego; Molina Rueda, Francisco; Cano de la Cuerda, Roberto; Miangolarra, Juan Carlos; Pons, José Luis

    2016-11-01

    In recent years the combined use of functional electrical stimulation (FES) and robotic devices, called hybrid robotic rehabilitation systems, has emerged as a promising approach for rehabilitation of lower and upper limb motor functions. This paper presents a review of the state of the art of current hybrid robotic solutions for upper limb rehabilitation after stroke. For this aim, studies have been selected through a search using web databases: IEEE-Xplore, Scopus and PubMed. A total of 10 different hybrid robotic systems were identified, and they are presented in this paper. Selected systems are critically compared considering their technological components and aspects that form part of the hybrid robotic solution, the proposed control strategies that have been implemented, as well as the current technological challenges in this topic. Additionally, we will present and discuss the corresponding evidences on the effectiveness of these hybrid robotic therapies. The review also discusses the future trends in this field. Copyright © 2016 IPEM. Published by Elsevier Ltd. All rights reserved.

  10. Computational Study on a Squid-Like Underwater Robot with Two Undulating Side Fins

    Institute of Scientific and Technical Information of China (English)

    Md. Mahbubar Rahman; Yasuyuki Toda; Hiroshi Miki

    2011-01-01

    The undulating fin propulsion system is an instance of the bio-inspired propulsion systems. In the current study, the swimming motion of a squid-like robot with two undulating side fins, mimicking those of a Stingray or a Cuttlefish, was investigated through flow computation around the body. We used the finite analytic method for space discretization and Euler implicit scheme for time discretization along with the PISO algorithm for velocity pressure coupling. A body-fitted moving grid was generated using the Poisson equation at each time step. Based on the computed results, we discussed the features of the flow field and hydrodynamic forces acting on the body and fin. A simple relationship among the fin's principal dimensions was established. Numerical computation was done for various aspect ratios, fin angles and frequencies in order to validate the proposed relationship among principal dimensions. Subsequently, the relationship was examined base on the distribution of pressure difference between upper and lower surfaces and the distribution of the thrust force. In efficiency calculations, the undulating fins showed promising results. Finally, for the fin, the open characteristics from computed data showed satisfactory conformity with the experimental results.

  11. Autonomous Navigation Motion Control of Mobile Robots using Hybrid System Control Method

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Y.M. [Samsung Electronics Co., Ltd., Seoul (Korea); Lim, M.S. [Kyonggi Institute of Technology, Shihung (Korea); Lim, J.H. [Hanyang University, Seoul (Korea)

    2002-05-01

    This paper presents a framework of hybrid dynamic control systems for the motion control of wheeled mobile robot systems with nonholonomic constraints. The hybrid control system has the 3-layered hierarchical structure: digital automata for the higher process, mobile robot system for the lower process, and the interface as the interaction process between the continuous dynamics and the discrete dynamics. In the hybrid control architecture of mobile robot, the continuous dynamics of mobile robots are modeled by the switched systems. The abstract model and digital automata for the motion control are developed. In high level, the discrete states are defined by using the sensor-based search windows and the reference motions of a mobile robot in low level are specified in the abstracted motions. The mobile robots can perform both the motion planning and autonomous maneuvering with obstacle avoidance in indoor navigation problem. Simulation and experimental results show that hybrid system approach is an effective method for the autonomous maneuvering in indoor environments. (author). 13 refs., 13 figs., 1 tab.

  12. Joint Human-Robot Action: Virtual Intentionality and Hybrid Human-Robot Cultures

    NARCIS (Netherlands)

    Coeckelbergh, Mark

    2009-01-01

    How must we understand joint action between humans and robots? Responding to Knoblich & Sebanz (2008) I ask the question if robots would meet he conditions for joint action prescribed by standard theories. On such accounts, it seems, (present) robots do not have intentions, so it seems only 'assymet

  13. A Low Cost Vision Based Hybrid Fiducial Mark Tracking Technique for Mobile Industrial Robots

    Directory of Open Access Journals (Sweden)

    Mohammed Y Aalsalem

    2012-07-01

    Full Text Available The field of robotic vision is developing rapidly. Robots can react intelligently and provide assistance to user activities through sentient computing. Since industrial applications pose complex requirements that cannot be handled by humans, an efficient low cost and robust technique is required for the tracking of mobile industrial robots. The existing sensor based techniques for mobile robot tracking are expensive and complex to deploy, configure and maintain. Also some of them demand dedicated and often expensive hardware. This paper presents a low cost vision based technique called “Hybrid Fiducial Mark Tracking” (HFMT technique for tracking mobile industrial robot. HFMT technique requires off-the-shelf hardware (CCD cameras and printable 2-D circular marks used as fiducials for tracking a mobile industrial robot on a pre-defined path. This proposed technique allows the robot to track on a predefined path by using fiducials for the detection of Right and Left turns on the path and White Strip for tracking the path. The HFMT technique is implemented and tested on an indoor mobile robot at our laboratory. Experimental results from robot navigating in real environments have confirmed that our approach is simple and robust and can be adopted in any hostile industrial environment where humans are unable to work.

  14. Markov Chain Monte Carlo (MCMC) methods for parameter estimation of a novel hybrid redundant robot

    Energy Technology Data Exchange (ETDEWEB)

    Wang Yongbo, E-mail: yongbo.wang@hotmail.com [Laboratory of Intelligent Machine, Lappeenranta University of Technology, FIN-53851 Lappeenranta (Finland); Wu Huapeng; Handroos, Heikki [Laboratory of Intelligent Machine, Lappeenranta University of Technology, FIN-53851 Lappeenranta (Finland)

    2011-10-15

    This paper presents a statistical method for the calibration of a redundantly actuated hybrid serial-parallel robot IWR (Intersector Welding Robot). The robot under study will be used to carry out welding, machining, and remote handing for the assembly of vacuum vessel of International Thermonuclear Experimental Reactor (ITER). The robot has ten degrees of freedom (DOF), among which six DOF are contributed by the parallel mechanism and the rest are from the serial mechanism. In this paper, a kinematic error model which involves 54 unknown geometrical error parameters is developed for the proposed robot. Based on this error model, the mean values of the unknown parameters are statistically analyzed and estimated by means of Markov Chain Monte Carlo (MCMC) approach. The computer simulation is conducted by introducing random geometric errors and measurement poses which represent the corresponding real physical behaviors. The simulation results of the marginal posterior distributions of the estimated model parameters indicate that our method is reliable and robust.

  15. Analysis on the crossing obstacle of wheel-track hybrid mobile robot

    Institute of Scientific and Technical Information of China (English)

    帅立国

    2016-01-01

    A novel wheel-track hybrid mobile robot with many movement patterns is designed.According to different environments,it can switch between the pure wheel pattern and the pure track one.Ac-cording to a homogeneous coordinate transformation matrix, gravity stability and its obstacle perform-ance are analyzed.Its gravity equation and climbing obstacle conditions are established.Experimen-tal results show that this hybrid mobile robot could fully possess the advantages of both the wheel and the track mechanisms and achieve a good obstacle climbing capability.

  16. Verification hybrid control of a wheeled mobile robot and manipulator

    Science.gov (United States)

    Muszynska, Magdalena; Burghardt, Andrzej; Kurc, Krzysztof; Szybicki, Dariusz

    2016-04-01

    In this article, innovative approaches to realization of the wheeled mobile robots and manipulator tracking are presented. Conceptions include application of the neural-fuzzy systems to compensation of the controlled system's nonlinearities in the tracking control task. Proposed control algorithms work on-line, contain structure, that adapt to the changeable work conditions of the controlled systems, and do not require the preliminary learning. The algorithm was verification on the real object which was a Scorbot - ER 4pc robotic manipulator and a Pioneer - 2DX mobile robot.

  17. A hybrid search algorithm for swarm robots searching in an unknown environment.

    Science.gov (United States)

    Li, Shoutao; Li, Lina; Lee, Gordon; Zhang, Hao

    2014-01-01

    This paper proposes a novel method to improve the efficiency of a swarm of robots searching in an unknown environment. The approach focuses on the process of feeding and individual coordination characteristics inspired by the foraging behavior in nature. A predatory strategy was used for searching; hence, this hybrid approach integrated a random search technique with a dynamic particle swarm optimization (DPSO) search algorithm. If a search robot could not find any target information, it used a random search algorithm for a global search. If the robot found any target information in a region, the DPSO search algorithm was used for a local search. This particle swarm optimization search algorithm is dynamic as all the parameters in the algorithm are refreshed synchronously through a communication mechanism until the robots find the target position, after which, the robots fall back to a random searching mode. Thus, in this searching strategy, the robots alternated between two searching algorithms until the whole area was covered. During the searching process, the robots used a local communication mechanism to share map information and DPSO parameters to reduce the communication burden and overcome hardware limitations. If the search area is very large, search efficiency may be greatly reduced if only one robot searches an entire region given the limited resources available and time constraints. In this research we divided the entire search area into several subregions, selected a target utility function to determine which subregion should be initially searched and thereby reduced the residence time of the target to improve search efficiency.

  18. Application of Matrix Pencil Algorithm to Mobile Robot Localization Using Hybrid DOA/TOA Estimation

    Directory of Open Access Journals (Sweden)

    Lan Anh Trinh

    2012-12-01

    Full Text Available Localization plays an important role in robotics for the tasks of monitoring, tracking and controlling a robot. Much effort has been made to address robot localization problems in recent years. However, despite many proposed solutions and thorough consideration, in terms of developing a low‐cost and fast processing method for multiple‐source signals, the robot localization problem is still a challenge. In this paper, we propose a solution for robot localization with regards to these concerns. In order to locate the position of a robot, both the coordinate and the orientation of a robot are necessary. We develop a localization method using the Matrix Pencil (MP algorithm for hybrid detection of direction of arrival (DOA and time of arrival (TOA. TOA of the signal is estimated for computing the distance between the mobile robot and a base station (BS. Based on the distance and the estimated DOA, we can estimate the mobile robot’s position. The characteristics of the algorithm are examined through analysing simulated experiments and the results demonstrate the advantages of our method over previous works in dealing with the above challenges. The method is constructed based on the low‐cost infrastructure of radio frequency devices; the DOA/TOA estimation is performed with just single value decomposition for fast processing. Finally, the MP algorithm combined with tracking using a Kalman filter allows our proposed method to locate the positions of multiple source signals.

  19. Hybrid FES-robot cooperative control of ambulatory gait rehabilitation exoskeleton.

    Science.gov (United States)

    del-Ama, Antonio J; Gil-Agudo, Angel; Pons, José L; Moreno, Juan C

    2014-03-04

    Robotic and functional electrical stimulation (FES) approaches are used for rehabilitation of walking impairment of spinal cord injured individuals. Although devices are commercially available, there are still issues that remain to be solved. Control of hybrid exoskeletons aims at blending robotic exoskeletons and electrical stimulation to overcome the drawbacks of each approach while preserving their advantages. Hybrid actuation and control have a considerable potential for walking rehabilitation but there is a need of novel control strategies of hybrid systems that adequately manage the balance between FES and robotic controllers. Combination of FES and robotic control is a challenging issue, due to the non-linear behavior of muscle under stimulation and the lack of developments in the field of hybrid control. In this article, a cooperative control strategy of a hybrid exoskeleton is presented. This strategy is designed to overcome the main disadvantages of muscular stimulation: electromechanical delay and change in muscle performance over time, and to balance muscular and robotic actuation during walking.Experimental results in healthy subjects show the ability of the hybrid FES-robot cooperative control to balance power contribution between exoskeleton and muscle stimulation. The robotic exoskeleton decreases assistance while adequate knee kinematics are guaranteed. A new technique to monitor muscle performance is employed, which allows to estimate muscle fatigue and implement muscle fatigue management strategies. Kinesis is therefore the first ambulatory hybrid exoskeleton that can effectively balance robotic and FES actuation during walking. This represents a new opportunity to implement new rehabilitation interventions to induce locomotor activity in patients with paraplegia.Acronym list: 10 mWT: ten meters walking test; 6 MWT: six minutes walking test; FSM: finite-state machine; t-FSM: time-domain FSM; c-FSM: cycle-domain FSM; FES: functional electrical

  20. Real-time Walking Pattern Generation for a Biped Robot with Hybrid CPG-ZMP Algorithm

    Directory of Open Access Journals (Sweden)

    Bin He

    2014-10-01

    Full Text Available Biped robots have better mobility than conventional wheeled robots. The bio-inspired method based on a central pattern generator (CPG can be used to control biped robot walking in a manner like human beings. However, to achieve stable locomotion, it is difficult to modulate the parameters for the neural networks to coordinate every degree of freedom of the walking robot. The zero moment point (ZMP method is very popular for the stability control of biped robot walking. However, the reference trajectories have low energy efficiency, lack naturalness and need significant offline calculation. This paper presents a new method for biped real-time walking generation using a hybrid CPG-ZMP control algorithm. The method can realize a stable walking pattern by combining the ZMP criterion with rhythmic motion control. The CPG component is designed to generate the desired motion for each robot joint, which is modulated by phase resetting according to foot contact information. By introducing the ZMP location, the activity of the CPG output signal is adjusted to coordinate the limbs’ motion and allow the robot to maintain balance during the process of locomotion. The numerical simulation results show that, compared with the CPG method, the new hybrid CPG-ZMP algorithm can enhance the robustness of the CPG parameters and improve the stability of the robot. In addition, the proposed algorithm is more energy efficient than the ZMP method. The results also demonstrate that the control system can generate an adaptive walking pattern through interactions between the robot, the CPG and the environment.

  1. Hybrid procedure for total laryngectomy with a flexible robot-assisted surgical system.

    Science.gov (United States)

    Schuler, Patrick J; Hoffmann, Thomas K; Veit, Johannes A; Rotter, Nicole; Friedrich, Daniel T; Greve, Jens; Scheithauer, Marc O

    2017-06-01

    Total laryngectomy is a standard procedure in head-and-neck surgery for the treatment of cancer patients. Recent clinical experiences have indicated a clinical benefit for patients undergoing transoral robot-assisted total laryngectomy (TORS-TL) with commercially available systems. Here, a new hybrid procedure for total laryngectomy is presented. TORS-TL was performed in human cadavers (n = 3) using a transoral-transcervical hybrid procedure. The transoral approach was performed with a robotic flexible robot-assisted surgical system (Flex®) and compatible flexible instruments. Transoral access and visualization of anatomical landmarks were studied in detail. Total laryngectomy is feasible with a combined transoral-transcervical approach using the flexible robot-assisted surgical system. Transoral visualization of all anatomical structures is sufficient. The flexible design of the robot is advantageous for transoral surgery of the laryngeal structures. Transoral robot assisted surgery has the potential to reduce morbidity, hospital time and fistula rates in a selected group of patients. Initial clinical studies and further development of supplemental tools are in progress. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  2. A Dynamic Effective Fault Tolerance System in Robotic Manipulator using a Hybrid Neural Network based Controller

    Directory of Open Access Journals (Sweden)

    G. Jiji

    2014-04-01

    Full Text Available Robot manipulator play important role in the field of automobile industry, mainly it is used in gas welding application and manufacturing and assembling of motor parts. In complex trajectory, on each joint the speed of the robot manipulator is affected. For that reason, it is necessary to analyze the noise and vibration of robot's joints for predicting faults also improve the control precision of robotic manipulator. In this study we will propose a new fault detection system for Robot manipulator. The proposed hybrid fault detection system is designed based on fuzzy support vector machine and Artificial Neural Networks (ANNs. In this system the decouple joints are identified and corrected using fuzzy SVM, here non-linear signal are used for complete process and treatment, the Artificial Neural Networks (ANNs are used to detect the free-swinging and locked joint of the robot, two types of neural predictors are also employed in the proposed adaptive neural network structure. The simulation results of a hybrid controller demonstrate the feasibility and performance of the methodology.

  3. Design of remote control system for embedded underwater robot%基于嵌入式的水中机器人远程控制系统设计

    Institute of Scientific and Technical Information of China (English)

    王萧; 王一晶; 左志强

    2015-01-01

    A remote UDP communication control underwater mobile robot based on embedded Linux is designed in this paper. The embedded ARM9 microprocessor S3C2440 is used as the core in the developing process which with Linux real-time sys-tems embedded in it. Real-time video data delivered through Wi-Fi network is displayed on PC monitoring software. The sys-tem realizes UDP communication using Wi-Fi as the physical layer protocol of network communication. Moreover, watertight housing is designed with toughened glass material. Finally, the underwater robot is tested in the water environment with good performance. All the design requirements are achieved.%本文设计了一种基于嵌入式的远程UDP通信控制水中移动机器人。系统以内嵌ARM9的S3C2440芯片为核心,搭载嵌入式Linux系统,使得机器人能够在水面上通过Wi-Fi网络实现回传视频功能并显示在上位机的监控软件上。系统利用Wi-Fi作为网络通信的物理层协议,建立无线网络环境,基于Wi-Fi实现UDP通信,远程操纵机器人在水中前进。此外,还设计了钢化玻璃材质的防水外壳。最后,对机器人进行了水中运行测试,效果良好,达到了设计要求。

  4. Hybrid Control of a Two-Wheeled Automatic-Balancing Robot with Backlash Feature

    DEFF Research Database (Denmark)

    Løhndorf, Petar Durdevic; Yang, Zhenyu

    2013-01-01

    This paper investigates the application of hybrid control for an automatic balancing robot system subject to backlash effect. The developed controller is a type of sliding mode controller, refereed to as a switching controller, with respect to different situations i.e., whether the backlash...

  5. Probabilistic Hybrid Action Models for Predicting Concurrent Percept-driven Robot Behavior

    CERN Document Server

    Beetz, M; 10.1613/jair.1565

    2011-01-01

    This article develops Probabilistic Hybrid Action Models (PHAMs), a realistic causal model for predicting the behavior generated by modern percept-driven robot plans. PHAMs represent aspects of robot behavior that cannot be represented by most action models used in AI planning: the temporal structure of continuous control processes, their non-deterministic effects, several modes of their interferences, and the achievement of triggering conditions in closed-loop robot plans. The main contributions of this article are: (1) PHAMs, a model of concurrent percept-driven behavior, its formalization, and proofs that the model generates probably, qualitatively accurate predictions; and (2) a resource-efficient inference method for PHAMs based on sampling projections from probabilistic action models and state descriptions. We show how PHAMs can be applied to planning the course of action of an autonomous robot office courier based on analytical and experimental results.

  6. PERFORMANCE ANALYSIS OF ANTI-COLLISION ENABLED ROBOT USING HYBRID BEACON SCHEDULING APPROACH

    Directory of Open Access Journals (Sweden)

    P. Prabakaran

    2014-01-01

    Full Text Available In multi-robot environment, when many robots are moving in the same workspace, there is a possibility of their physical collision with themselves as well as with physical objects. In this study, hybrid beacon scheduling protocol is proposed and for avoiding such collisions in robotic mobile environment with low latency and power consumption. The purpose of deploying this protocol is to collect relevant data for processing and reporting. In particular, based on data reporting, the robotic nodes can be classified as time-driven or event-driven. The motivation behind this research is that it dynamically switches between the event-driven data-reporting and time-driven data-reporting schemes. As such, the proposed protocol accurately analyzes the environment being monitored using only moderate resource consumption. We have implemented the proposed protocol on a network simulator and analyzed its behaviors under various conditions.

  7. Novel Spherical Robot with Hybrid Pendulum Driving Mechanism

    Directory of Open Access Journals (Sweden)

    Sung-Su Ahn

    2014-11-01

    Full Text Available As regards omnidirectional driving, conventional one- and two-pendulum spherical robots have a limited capability due to a limited pendulum motion range. In particular, such robots cannot move from a stationary state in a parallel direction to the center horizontal axis to which the pendulums are attached. Thus, to overcome the limited driving capability of one- and two-pendulum driven spherical robots, a passive version of a spherical robot, called KisBot II, was developed with a curved two-pendulum driving mechanism operated by a joystick. However, this paper presents an active upgraded version of KisBot II that includes a DSP-based control system and Task-based software architecture for driving control and data communication, respectively. A dynamic model for two-pendulum driving is derived using the Lagrange equation method, and a feedback controller for linear driving using two pendulums is then constructed based on the dynamic model. Experiments with several motions verify the driving efficiency of the proposed novel spherical robot.

  8. A sizing-design methodology for hybrid fuel cell power systems and its application to an unmanned underwater vehicle

    Science.gov (United States)

    Cai, Q.; Brett, D. J. L.; Browning, D.; Brandon, N. P.

    Hybridizing a fuel cell with an energy storage unit (battery or supercapacitor) combines the advantages of each device to deliver a system with high efficiency, low emissions, and extended operation compared to a purely fuel cell or battery/supercapacitor system. However, the benefits of such a system can only be realised if the system is properly designed and sized, based on the technologies available and the application involved. In this work we present a sizing-design methodology for hybridisation of a fuel cell with a battery or supercapacitor for applications with a cyclic load profile with two discrete power levels. As an example of the method's application, the design process for selecting the energy storage technology, sizing it for the application, and determining the fuel load/range limitations, is given for an unmanned underwater vehicle (UUV). A system level mass and energy balance shows that hydrogen and oxygen storage systems dominate the mass and volume of the energy system and consequently dictate the size and maximum mission duration of a UUV.

  9. Robotics

    Science.gov (United States)

    Popov, E. P.; Iurevich, E. I.

    The history and the current status of robotics are reviewed, as are the design, operation, and principal applications of industrial robots. Attention is given to programmable robots, robots with adaptive control and elements of artificial intelligence, and remotely controlled robots. The applications of robots discussed include mechanical engineering, cargo handling during transportation and storage, mining, and metallurgy. The future prospects of robotics are briefly outlined.

  10. Hybrid Analytical and Data-Driven Modeling for Feed-Forward Robot Control †

    Directory of Open Access Journals (Sweden)

    René Felix Reinhart

    2017-02-01

    Full Text Available Feed-forward model-based control relies on models of the controlled plant, e.g., in robotics on accurate knowledge of manipulator kinematics or dynamics. However, mechanical and analytical models do not capture all aspects of a plant’s intrinsic properties and there remain unmodeled dynamics due to varying parameters, unmodeled friction or soft materials. In this context, machine learning is an alternative suitable technique to extract non-linear plant models from data. However, fully data-based models suffer from inaccuracies as well and are inefficient if they include learning of well known analytical models. This paper thus argues that feed-forward control based on hybrid models comprising an analytical model and a learned error model can significantly improve modeling accuracy. Hybrid modeling here serves the purpose to combine the best of the two modeling worlds. The hybrid modeling methodology is described and the approach is demonstrated for two typical problems in robotics, i.e., inverse kinematics control and computed torque control. The former is performed for a redundant soft robot and the latter for a rigid industrial robot with redundant degrees of freedom, where a complete analytical model is not available for any of the platforms.

  11. Hybrid Analytical and Data-Driven Modeling for Feed-Forward Robot Control †.

    Science.gov (United States)

    Reinhart, René Felix; Shareef, Zeeshan; Steil, Jochen Jakob

    2017-02-08

    Feed-forward model-based control relies on models of the controlled plant, e.g., in robotics on accurate knowledge of manipulator kinematics or dynamics. However, mechanical and analytical models do not capture all aspects of a plant's intrinsic properties and there remain unmodeled dynamics due to varying parameters, unmodeled friction or soft materials. In this context, machine learning is an alternative suitable technique to extract non-linear plant models from data. However, fully data-based models suffer from inaccuracies as well and are inefficient if they include learning of well known analytical models. This paper thus argues that feed-forward control based on hybrid models comprising an analytical model and a learned error model can significantly improve modeling accuracy. Hybrid modeling here serves the purpose to combine the best of the two modeling worlds. The hybrid modeling methodology is described and the approach is demonstrated for two typical problems in robotics, i.e., inverse kinematics control and computed torque control. The former is performed for a redundant soft robot and the latter for a rigid industrial robot with redundant degrees of freedom, where a complete analytical model is not available for any of the platforms.

  12. Towards image guided robotic surgery: multi-arm tracking through hybrid localization

    Energy Technology Data Exchange (ETDEWEB)

    Kwartowitz, David Morgan [Vanderbilt University, Department of Biomedical Engineering, Nashville, TN (United States); Mayo Clinic, Biomedical Imaging Resource, Rochester, MN (United States); Miga, Michael I. [Vanderbilt University, Department of Biomedical Engineering, Nashville, TN (United States); Herrell, S.D. [Vanderbilt University, Department of Urology, Nashville, TN (United States); Galloway, Robert L. [Vanderbilt University, Department of Biomedical Engineering, Nashville, TN (United States); Vanderbilt University, Department of Surgery, Nashville, TN (United States); Vanderbilt University, Department of Neurological Surgery, Nashville, TN (United States)

    2009-05-15

    Use of the robotic assisted surgery has been increasing in recent years, due both the continuous increase in the number of applications and the clinical benefits that surgical robots can provide. Currently robotic assisted surgery relies on endoscopic video for navigation, providing only surface visualization, thus limiting subsurface vision. To be able to visualize and identify subsurface information, techniques in image-guidance can be used. As part of designing an image guidance system, all arms of the robot need to be co-localized in a common coordinate system. In order to track multiple arms in a common coordinate space, intrinsic and extrinsic tracking methods can be used. First, the intrinsic tracking of the daVinci, specifically of the setup joints is analyzed. Because of the inadequacy of the setup joints for co-localization a hybrid tracking method is designed and implemented to mitigate the inaccuracy of the setup joints. Different both optical and magnetic tracking methods are examined for setup joint localization. The hybrid localization method improved the localization accuracy of the setup joints. The inter-arm accuracy in hybrid localization was improved to 3.02 mm. This inter-arm error value was shown to be further reduced when the arms are co-registered, thus reducing common error. (orig.)

  13. Hybrid Analytical and Data-Driven Modeling for Feed-Forward Robot Control †

    Science.gov (United States)

    Reinhart, René Felix; Shareef, Zeeshan; Steil, Jochen Jakob

    2017-01-01

    Feed-forward model-based control relies on models of the controlled plant, e.g., in robotics on accurate knowledge of manipulator kinematics or dynamics. However, mechanical and analytical models do not capture all aspects of a plant’s intrinsic properties and there remain unmodeled dynamics due to varying parameters, unmodeled friction or soft materials. In this context, machine learning is an alternative suitable technique to extract non-linear plant models from data. However, fully data-based models suffer from inaccuracies as well and are inefficient if they include learning of well known analytical models. This paper thus argues that feed-forward control based on hybrid models comprising an analytical model and a learned error model can significantly improve modeling accuracy. Hybrid modeling here serves the purpose to combine the best of the two modeling worlds. The hybrid modeling methodology is described and the approach is demonstrated for two typical problems in robotics, i.e., inverse kinematics control and computed torque control. The former is performed for a redundant soft robot and the latter for a rigid industrial robot with redundant degrees of freedom, where a complete analytical model is not available for any of the platforms. PMID:28208697

  14. A Hybrid System of Hierarchical Planning of Behaviour Selection Networks for Mobile Robot Control

    Directory of Open Access Journals (Sweden)

    Young-Seol Lee

    2014-04-01

    Full Text Available An office delivery robot receives a large amount of sensory data and there is uncertainty in its action outcomes. The robot should not only accomplish its goals using environmental information, but also consider various exceptions simultaneously. In this paper, we propose a hybrid system using hierarchical planning of modular behaviour selection networks to generate autonomous behaviour in the office delivery robot. Behaviour selection networks, one of the well-known behaviour-based methods suitable for goal-oriented tasks, are made up of several smaller behaviour modules. Planning is attached to the construct and adjust sequences of the modules by considering the sub-goals, the priority in each task and the user feedback. This helps the robot to quickly react in dynamic situations as well as achieve global goals efficiently. The proposed system is verified with both the Webot simulator and a Khepera II robot that runs in a real office environment carrying out delivery tasks. Experimental results have shown that a robot can achieve goals and generate module sequences successfully even in unpredictable situations. Additionally, the proposed planning method reduced the elapsed time during tasks by 17.5% since it adjusts the behaviour module sequences more effectively.

  15. Intelligent Hybrid Control Strategy for Trajectory Tracking of Robot Manipulators

    Directory of Open Access Journals (Sweden)

    Yi Zuo

    2008-01-01

    Full Text Available We address the problem of robust tracking control using a PD-plus-feedforward controller and an intelligent adaptive robust compensator for a rigid robotic manipulator with uncertain dynamics and external disturbances. A key feature of this scheme is that soft computer methods are used to learn the upper bound of system uncertainties and adjust the width of the boundary layer base. In this way, the prior knowledge of the upper bound of the system uncertainties does need not to be required. Moreover, chattering can be effectively eliminated, and asymptotic error convergence can be guaranteed. Numerical simulations and experiments of two-DOF rigid robots are presented to show effectiveness of the proposed scheme.

  16. Improved hybrid position/force controller design of a flexible robot manipulator using a sliding observer

    Institute of Scientific and Technical Information of China (English)

    Farooq M; Wang Daobo; Dar N. U

    2009-01-01

    An improved hybrid position/force controller design of a flexible robot manipulator is presented using a sliding observer. The friction between the end effector and the environment is considered and compensated. For systematic reasons the controller is designed taking into consideration the rigid link subsystems and the flexible joints. The proposed control system satisfies the stability of the two subsystems and copes with the uncertainty of robot dynamics. A sliding observer is designed to estimate the time derivative of the torque applied as input to the rigid part of the robot. For the stability of the observer, it is assumed that the uncertainty of the observed system is bounded. A MRAC algorithm is used for the estimation of the friction forces at the contact point between the end effector and the environment. Finally simulation and experimental results are given, to demonstrate the effectiveness of the proposed controller.

  17. Research on Path Planning of Underwater Robot Based on Fuzzy Algorithm%基于模糊算法的水下机器人路径规划研究

    Institute of Scientific and Technical Information of China (English)

    王妹婷; 陆柳延; 齐永锋; 吕学智; 蒋伟; 李生权

    2014-01-01

    Aiming at the complexity and uncertainty of working environments of underwater robot,in order to improve the capaci-ty of interacting with the external environment and autonomous navigation for autonomous underwater robot,a local path planning strate-gies of underwater robot combined line-of-sight navigation principles with fuzzy control algorithm in an unknown environment was pro-posed,and real-time obstacle avoidance was achieved by the robot. Obstacles and target information within a certain range was obtained by using the ranging sonar and short baseline system to detect the environment. The deflection angle of the underwater robot was real-time adjusted by adopting a fuzzy controller,and then the obstacles could be effectively avoided to reach the predetermined target point by the robot. Finally,a simulation experimental platform based on simulation by MATLAB was built. The number,sizes,shapes,and locations of obstacles were interactively set. The robot can avoid multiple obstacles in different road environments by adopting the fuzzy algorithm,which verifies effectiveness of the algorithm.%针对水下机器人的工作环境的复杂性与不确定性,为了提高自主式水下机器人与外部环境交互及自主航行的能力,结合视线导航原理与模糊控制算法,提出一种未知环境下水下机器人的局部路径规划策略,可实现机器人的实时避障功能。利用测距声呐、短基线系统对环境进行探测,得到一定范围内的障碍物与目标信息,通过模糊控制器实时调整水下机器人的运动偏转角度,有效地避开障碍物,达到预定目标点。最后通过MATLAB进行仿真,构建一个仿真实验平台,交互式设置障碍物的数量、大小、形状、位置等初始信息,机器人运用该算法在多障碍物、不同路障环境下,都能较好地实现机器人避障,验证了算法的有效性。

  18. Locomotion training of legged robots using hybrid machine learning techniques

    Science.gov (United States)

    Simon, William E.; Doerschuk, Peggy I.; Zhang, Wen-Ran; Li, Andrew L.

    1995-01-01

    In this study artificial neural networks and fuzzy logic are used to control the jumping behavior of a three-link uniped robot. The biped locomotion control problem is an increment of the uniped locomotion control. Study of legged locomotion dynamics indicates that a hierarchical controller is required to control the behavior of a legged robot. A structured control strategy is suggested which includes navigator, motion planner, biped coordinator and uniped controllers. A three-link uniped robot simulation is developed to be used as the plant. Neurocontrollers were trained both online and offline. In the case of on-line training, a reinforcement learning technique was used to train the neurocontroller to make the robot jump to a specified height. After several hundred iterations of training, the plant output achieved an accuracy of 7.4%. However, when jump distance and body angular momentum were also included in the control objectives, training time became impractically long. In the case of off-line training, a three-layered backpropagation (BP) network was first used with three inputs, three outputs and 15 to 40 hidden nodes. Pre-generated data were presented to the network with a learning rate as low as 0.003 in order to reach convergence. The low learning rate required for convergence resulted in a very slow training process which took weeks to learn 460 examples. After training, performance of the neurocontroller was rather poor. Consequently, the BP network was replaced by a Cerebeller Model Articulation Controller (CMAC) network. Subsequent experiments described in this document show that the CMAC network is more suitable to the solution of uniped locomotion control problems in terms of both learning efficiency and performance. A new approach is introduced in this report, viz., a self-organizing multiagent cerebeller model for fuzzy-neural control of uniped locomotion is suggested to improve training efficiency. This is currently being evaluated for a possible

  19. A low-cost EEG system-based hybrid brain-computer interface for humanoid robot navigation and recognition.

    Science.gov (United States)

    Choi, Bongjae; Jo, Sungho

    2013-01-01

    This paper describes a hybrid brain-computer interface (BCI) technique that combines the P300 potential, the steady state visually evoked potential (SSVEP), and event related de-synchronization (ERD) to solve a complicated multi-task problem consisting of humanoid robot navigation and control along with object recognition using a low-cost BCI system. Our approach enables subjects to control the navigation and exploration of a humanoid robot and recognize a desired object among candidates. This study aims to demonstrate the possibility of a hybrid BCI based on a low-cost system for a realistic and complex task. It also shows that the use of a simple image processing technique, combined with BCI, can further aid in making these complex tasks simpler. An experimental scenario is proposed in which a subject remotely controls a humanoid robot in a properly sized maze. The subject sees what the surrogate robot sees through visual feedback and can navigate the surrogate robot. While navigating, the robot encounters objects located in the maze. It then recognizes if the encountered object is of interest to the subject. The subject communicates with the robot through SSVEP and ERD-based BCIs to navigate and explore with the robot, and P300-based BCI to allow the surrogate robot recognize their favorites. Using several evaluation metrics, the performances of five subjects navigating the robot were quite comparable to manual keyboard control. During object recognition mode, favorite objects were successfully selected from two to four choices. Subjects conducted humanoid navigation and recognition tasks as if they embodied the robot. Analysis of the data supports the potential usefulness of the proposed hybrid BCI system for extended applications. This work presents an important implication for the future work that a hybridization of simple BCI protocols provide extended controllability to carry out complicated tasks even with a low-cost system.

  20. Hybrid Control of Long-Endurance Aerial Robotic Vehicles for Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Deok-Jin Lee

    2011-06-01

    Full Text Available This paper presents an effective hybrid control approach for building stable wireless sensor networks between heterogeneous unmanned vehicles using long‐ endurance aerial robotic vehicles. For optimal deployment of the aerial vehicles in communication networks, a gradient climbing based self‐estimating control algorithm is utilized to locate the aerial platforms to maintain maximum communication throughputs between distributed multiple nodes. The autonomous aerial robots, which function as communication relay nodes, extract and harvest thermal energy from the atmospheric environment to improve their flight endurance within specified communication coverage areas. The rapidly‐deployable sensor networks with the high‐endurance aerial vehicles can be used for various application areas including environment monitoring, surveillance, tracking, and decision‐making support. Flight test and simulation studies are conducted to evaluate the effectiveness of the proposed hybrid control technique for robust communication networks.

  1. Hybrid Method for the Navigation of Mobile Robot Using Fuzzy Logic and Spiking Neural Networks

    Directory of Open Access Journals (Sweden)

    Zineb LAOUICI

    2014-11-01

    Full Text Available the aim of this paper is to present a strategy describing a hybrid approach for the navigation of a mobile robot in a partially known environment. The main idea is to combine between fuzzy logic approach suitable for the navigation in an unknown environment and spiking neural networks approach for solving the problem of navigation in a known environment. In the literature, many approaches exist for the navigation purpose, for solving separately the problem in both situations. Our idea is based on the fact that we consider a mixed environment, and try to exploit the known environment parts for improving the path and time of navigation between the starting point and the target. The Simulation results, which are shown on two simulated scenarios, indicate that the hybridization improves the performance of robot navigation with regard to path length and the time of navigation.

  2. Flora Robotica – Mixed Societies of Symbiotic Robot-Plant Bio-Hybrids

    DEFF Research Database (Denmark)

    Hamann, Heiko; Wahby, Mostafa; Schmickl, Thomas

    2015-01-01

    Besides the life-as-it-could-be driver of artificial life research there is also the concept of extending natural life by creating hybrids or mixed societies that are built from natural and artificial components. In this paper we motivate and present the research program of the project flora...... for new functions of plants and robots. They also create novel design opportunities for an architecture that fuses the design and construction phase. The bio-hybrid is an example of mixed societies between 'hard' artificial and 'wet' natural life, which enables an interaction between natural...... and artificial ecologies. They form an embodied, self-organizing, and distributed cognitive system which is supposed to grow and develop over long periods of time resulting in the creation of meaningful architectural structures. A key idea is to assign equal roles to robots and plants in order to create a highly...

  3. Empirical evaluation of a practical indoor mobile robot navigation method using hybrid maps

    DEFF Research Database (Denmark)

    Özkil, Ali Gürcan; Fan, Zhun; Xiao, Jizhong

    2010-01-01

    This video presents a practical navigation scheme for indoor mobile robots using hybrid maps. The method makes use of metric maps for local navigation and a topological map for global path planning. Metric maps are generated as occupancy grids by a laser range finder to represent local information...... that the method is implemented successfully on physical robot in a hospital environment, which provides a practical solution for indoor navigation........ The navigation scheme based on the hybrid metric-topologica maps saves memory space and is also scalable and adaptable since new local maps can be easily added to the global topology, and the method can be deployed with minimum amount of modification if new areas are to be explored. The video demonstrated...

  4. Online assessment of human-robot interaction for hybrid control of walking.

    Science.gov (United States)

    del-Ama, Antonio J; Moreno, Juan C; Gil-Agudo, Angel; de-los-Reyes, Ana; Pons, José L

    2012-01-01

    Restoration of walking ability of Spinal Cord Injury subjects can be achieved by different approaches, as the use of robotic exoskeletons or electrical stimulation of the user's muscles. The combined (hybrid) approach has the potential to provide a solution to the drawback of each approach. Specific challenges must be addressed with specific sensory systems and control strategies. In this paper we present a system and a procedure to estimate muscle fatigue from online physical interaction assessment to provide hybrid control of walking, regarding the performances of the muscles under stimulation.

  5. Online Assessment of Human-Robot Interaction for Hybrid Control of Walking

    Directory of Open Access Journals (Sweden)

    Ana de-los-Reyes

    2011-12-01

    Full Text Available Restoration of walking ability of Spinal Cord Injury subjects can be achieved by different approaches, as the use of robotic exoskeletons or electrical stimulation of the user’s muscles. The combined (hybrid approach has the potential to provide a solution to the drawback of each approach. Specific challenges must be addressed with specific sensory systems and control strategies. In this paper we present a system and a procedure to estimate muscle fatigue from online physical interaction assessment to provide hybrid control of walking, regarding the performances of the muscles under stimulation.

  6. Soft Robotics Week

    CERN Document Server

    Rossiter, Jonathan; Iida, Fumiya; Cianchetti, Matteo; Margheri, Laura

    2017-01-01

    This book offers a comprehensive, timely snapshot of current research, technologies and applications of soft robotics. The different chapters, written by international experts across multiple fields of soft robotics, cover innovative systems and technologies for soft robot legged locomotion, soft robot manipulation, underwater soft robotics, biomimetic soft robotic platforms, plant-inspired soft robots, flying soft robots, soft robotics in surgery, as well as methods for their modeling and control. Based on the results of the second edition of the Soft Robotics Week, held on April 25 – 30, 2016, in Livorno, Italy, the book reports on the major research lines and novel technologies presented and discussed during the event.

  7. Practical indoor mobile robot navigation using hybrid maps

    DEFF Research Database (Denmark)

    Özkil, Ali Gürcan; Fan, Zhun; Xiao, Jizhong

    2011-01-01

    . The navigation scheme based on the hybrid metric-topological maps is scalable and adaptable since new local maps can be easily added to the global topology, and the method can be deployed with minimum amount of modification if new areas are to be explored. The method is implemented successfully on a physical...

  8. Software design of the hybrid robot machine for ITER vacuum vessel assembly and maintenance

    Energy Technology Data Exchange (ETDEWEB)

    Li, Ming, E-mail: Ming.Li@lut.fi [Laboratory of Intelligent Machines, Lappeenranta University of Technology (Finland); Wu, Huapeng; Handroos, Heikki [Laboratory of Intelligent Machines, Lappeenranta University of Technology (Finland); Yang, Guangyou [School of Mechanical Engineering, Hubei University of Technology, Wuhan (China)

    2013-10-15

    A specific software design is elaborated in this paper for the hybrid robot machine used for the ITER vacuum vessel (VV) assembly and maintenance. In order to provide the multi-machining-function as well as the complicated, flexible and customizable GUI designing satisfying the non-standardized VV assembly process in one hand, and in another hand guarantee the stringent machining precision in the real-time motion control of robot machine, a client–server-control software architecture is proposed, which separates the user interaction, data communication and robot control implementation into different software layers. Correspondingly, three particular application protocols upon the TCP/IP are designed to transmit the data, command and status between the client and the server so as to deal with the abundant data streaming in the software. In order not to be affected by the graphic user interface (GUI) modification process in the future experiment in VV assembly working field, the real-time control system is realized as a stand-alone module in the architecture to guarantee the controlling performance of the robot machine. After completing the software development, a milling operation is tested on the robot machine, and the result demonstrates that both the specific GUI operability and the real-time motion control performance could be guaranteed adequately in the software design.

  9. Applications of three-dimensional (3D) printing for microswimmers and bio-hybrid robotics.

    Science.gov (United States)

    Stanton, M M; Trichet-Paredes, C; Sánchez, S

    2015-04-07

    This article will focus on recent reports that have applied three-dimensional (3D) printing for designing millimeter to micrometer architecture for robotic motility. The utilization of 3D printing has rapidly grown in applications for medical prosthetics and scaffolds for organs and tissue, but more recently has been implemented for designing mobile robotics. With an increase in the demand for devices to perform in fragile and confined biological environments, it is crucial to develop new miniaturized, biocompatible 3D systems. Fabrication of materials at different scales with different properties makes 3D printing an ideal system for creating frameworks for small-scale robotics. 3D printing has been applied for the design of externally powered, artificial microswimmers and studying their locomotive capabilities in different fluids. Printed materials have also been incorporated with motile cells for bio-hybrid robots capable of functioning by cell contraction and swimming. These 3D devices offer new methods of robotic motility for biomedical applications requiring miniature structures. Traditional 3D printing methods, where a structure is fabricated in an additive process from a digital design, and non-traditional 3D printing methods, such as lithography and molding, will be discussed.

  10. A Hybrid Sender- and Receiver-Initiated Protocol Scheme in Underwater Acoustic Sensor Networks.

    Science.gov (United States)

    Lee, Jae-Won; Cho, Ho-Shin

    2015-01-01

    In this paper, we propose a method for sharing the handshakes of control packets among multiple nodes, which we call a hybrid sender- and receiver-initiated (HSR) protocol scheme. Handshake-sharing can be achieved by inviting neighbors to join the current handshake and by allowing them to send their data packets without requiring extra handshakes. Thus, HSR can reduce the signaling overhead involved in control packet exchanges during handshakes, as well as resolve the spatial unfairness problem between nodes. From an operational perspective, HSR resembles the well-known handshake-sharing scheme referred to as the medium access control (MAC) protocol using reverse opportunistic packet appending (ROPA). However, in ROPA the waiting time is not controllable for the receiver's neighbors and thus unexpected collisions may occur at the receiver due to hidden neighbors, whereas the proposed scheme allows all nodes to avoid hidden-node-induced collisions according to an elaborately calculated waiting time. Our computer simulations demonstrated that HSR outperforms ROPA with respect to both the throughput and delay by around 9.65% and 11.36%, respectively.

  11. A Hybrid Sender- and Receiver-Initiated Protocol Scheme in Underwater Acoustic Sensor Networks

    Directory of Open Access Journals (Sweden)

    Jae-Won Lee

    2015-11-01

    Full Text Available In this paper, we propose a method for sharing the handshakes of control packets among multiple nodes, which we call a hybrid sender- and receiver-initiated (HSR protocol scheme. Handshake-sharing can be achieved by inviting neighbors to join the current handshake and by allowing them to send their data packets without requiring extra handshakes. Thus, HSR can reduce the signaling overhead involved in control packet exchanges during handshakes, as well as resolve the spatial unfairness problem between nodes. From an operational perspective, HSR resembles the well-known handshake-sharing scheme referred to as the medium access control (MAC protocol using reverse opportunistic packet appending (ROPA. However, in ROPA the waiting time is not controllable for the receiver’s neighbors and thus unexpected collisions may occur at the receiver due to hidden neighbors, whereas the proposed scheme allows all nodes to avoid hidden-node-induced collisions according to an elaborately calculated waiting time. Our computer simulations demonstrated that HSR outperforms ROPA with respect to both the throughput and delay by around 9.65% and 11.36%, respectively.

  12. Diving Deep: A Comparative Study of Educator Undergraduate and Graduate Backgrounds and Their Effect on Student Understanding of Engineering and Engineering Careers, Utilizing an Underwater Robotics Program

    Science.gov (United States)

    Scribner, J. Adam

    Numerous studies have demonstrated that educators having degrees in their subjects significantly enhances student achievement, particularly in secondary mathematics and science (Chaney, 1995; Goe, 2007; Rowan, Chiang, & Miller, 1997; Wenglinsky, 2000). Yet, science teachers in states that adopt the Next Generation Science Standards will be facilitating classroom engineering activities despite the fact that few have backgrounds in engineering. This quantitative study analyzed ex-post facto WaterBotics (an innovative underwater robotics curriculum for middle and high school students) data to determine if educators having backgrounds in engineering (i.e., undergraduate and graduate degrees in engineering) positively affected student learning on two engineering outcomes: 1) the engineering design process, and 2) understanding of careers in engineering (who engineers are and what engineers do). The results indicated that educators having backgrounds in engineering did not significantly affect student understanding of the engineering design process or careers in engineering when compared to educators having backgrounds in science, mathematics, technology education, or other disciplines. There were, however, statistically significant differences between the groups of educators. Students of educators with backgrounds in technology education had the highest mean score on assessments pertaining to the engineering design process while students of educators with disciplines outside of STEM had the highest mean scores on instruments that assess for student understanding of careers in engineering. This might be due to the fact that educators who lack degrees in engineering but who teach engineering do a better job of "sticking to the script" of engineering curricula.

  13. Mechatronic Design of a New Humanoid Robot with Hybrid Parallel Actuation

    Directory of Open Access Journals (Sweden)

    Vítor Santos

    2012-10-01

    Full Text Available Humanoid robotics is unquestionably a challenging and long-term field of research. Of the numerous and most urgent challenges to tackle, autonomous and efficient locomotion may possibly be the most underdeveloped at present in the research community. Therefore, to pursue studies in relation to autonomy with efficient locomotion, the authors have been developing a new teen-sized humanoid platform with hybrid characteristics. The hybrid nature is clear in the mixed actuation based on common electrical motors and passive actuators attached in parallel to the motors. This paper presents the mechatronic design of the humanoid platform, focusing mainly on the mechanical structure, the design and simulation of the hybrid joints, and the different subsystems implemented. Trying to keep the appropriate human proportions and main degrees of freedom, the developed platform utilizes a distributed control architecture and a rich set of sensing capabilities, both ripe for future development and research.

  14. Mechatronic Design of a New Humanoid Robot with Hybrid Parallel Actuation

    Directory of Open Access Journals (Sweden)

    Vítor Santos

    2012-10-01

    Full Text Available Humanoid robotics is unquestionably a challenging and long‐term field of research. Of the numerous and most urgent challenges to tackle, autonomous and efficient locomotion may possibly be the most underdeveloped at present in the research community. Therefore, to pursue studies in relation to autonomy with efficient locomotion, the authors have been developing a new teen‐sized humanoid platform with hybrid characteristics. The hybrid nature is clear in the mixed actuation based on common electrical motors and passive actuators attached in parallel to the motors. This paper presents the mechatronic design of the humanoid platform, focusing mainly on the mechanical structure, the design and simulation of the hybrid joints, and the different subsystems implemented. Trying to keep the appropriate human proportions and main degrees of freedom, the developed platform utilizes a distributed control architecture and a rich set of sensing capabilities, both ripe for future development and research.

  15. Design and Optimization of a Hybrid-Driven Waist Rehabilitation Robot

    Directory of Open Access Journals (Sweden)

    Bin Zi

    2016-12-01

    Full Text Available In this paper a waist rehabilitation robot driven by cables and pneumatic artificial muscles (PAMs has been conceptualized and designed. In the process of mechanism design, the human body structure, the waist movement characteristics, and the actuators’ driving characteristics are the main considerable factors to make the hybrid-driven waist rehabilitation robot (HWRR cost-effective, safe, flexible, and well-adapted. A variety of sensors are chosen to measure the position and orientation of the recovery patient to ensure patient safety at the same time as the structure design. According to the structure specialty and function, the HWRR is divided into two independent parallel robots: the waist twist device and the lower limb traction device. Then these two devices are analyzed and evaluated, respectively. Considering the characters of the human body in the HWRR, the inverse kinematics and statics are studied when the waist and the lower limb are considered as a spring and link, respectively. Based on the inverse kinematics and statics, the effect of the contraction parameter of the PAM is considered in the optimization of the waist twist device, and the lower limb traction device is optimized using particle swarm optimization (PSO to minimize the global conditioning number over the feasible workspace. As a result of the optimization, an optimal rehabilitation robot design is obtained and the condition number of the Jacobian matrix over the feasible workspace is also calculated.

  16. Application of On-Board Evolutionary Algorithms to Underwater Robots to Optimally Replan Missions with Energy Constraints

    Directory of Open Access Journals (Sweden)

    M. L. Seto

    2012-01-01

    Full Text Available The objective is to show that on-board mission replanning for an AUV sensor coverage mission, based on available energy, enhances mission success. Autonomous underwater vehicles (AUVs are tasked to increasingly long deployments, consequently energy management issues are timely and relevant. Energy shortages can occur if the AUV unexpectedly travels against stronger currents, is not trimmed for the local water salinity has to get back on course, and so forth. An on-board knowledge-based agent, based on a genetic algorithm, was designed and validated to replan a near-optimal AUV survey mission. It considers the measured AUV energy consumption, attitudes, speed over ground, and known response to proposed missions through on-line dynamics and control predictions. For the case studied, the replanned mission improves the survey area coverage by a factor of 2 for an energy budget, that is, a factor of 2 less than planned. The contribution is a novel on-board cognitive capability in the form of an agent that monitors the energy and intelligently replans missions based on energy considerations with evolutionary methods.

  17. Hybrid Visual Servoing Control for Robotic Arc Welding Based on Structured Light Vision

    Institute of Scientific and Technical Information of China (English)

    XUDe; WANGLin-Kun; TUZhi-Guo; TANMin

    2005-01-01

    A novel hybrid visual servoing control method based on structured light vision is proposed for robotic arc welding with a general six degrees of freedom robot. It consists of a position control inner-loop in Cartesian space and two outer-loops. One is position-based visual control inCartesian space for moving in the direction of weld seam, i.e., weld seam tracking, another is imagebased visual control in image space for adjustment to eliminate the errors in the process of tracking.A new Jacobian matrix from image space of the feature point on structured light stripe to Cartesian space is provided for differential movement of the end-effector. The control system model is simplified and its stability is discussed. An experiment of arc welding protected by gas CO2 for verifying is well conducted.

  18. Power Management of Hybrid Power Systems with Li-Fe Batteries and Supercapacitors for Mobile Robots

    Directory of Open Access Journals (Sweden)

    Guohui Wang

    2014-05-01

    Full Text Available This paper presents an energy management strategy of a Li-Fe battery and supercapacitor hybrid power system to provide both high power density and energy density for mobile robots with fluctuating workloads. A two-phase power-optimization approach is proposed to exploit the high power density of supercapacitors and the high energy density of Li-Fe batteries. With our strategy, large peak power can be provided for a short time period whenever needed, while low power can be provided for very long time. A set of experiments have been conducted. The experimental results show that our strategy can effectively improve the performance of mobile robots and extend the lifetime of batteries.

  19. Trajectory generation algorithm for smooth movement of a hybrid-type robot Rocker-Pillar

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Seung Min; Choi, Dong Kyu; Kim, Jong Won [School of Mechanical and Aerospace Engineering, Seoul National University, Seoul (Korea, Republic of); Kim, Hwa Soo [Dept. of Mechanical System Engineering, Kyonggi University, Suwon (Korea, Republic of)

    2016-11-15

    While traveling on rough terrain, smooth movement of a mobile robot plays an important role in carrying out the given tasks successfully. This paper describes the trajectory generation algorithm for smooth movement of hybrid-type mobile robot Rocker-Pillar by adjusting the angular velocity of its caterpillar as well as each wheel velocity in such a manner to minimize a proper index for smoothness. To this end, a new Smoothness index (SI) is first suggested to evaluate the smoothness of movement of Rocker-Pillar. Then, the trajectory generation algorithm is proposed to reduce the undesired oscillations of its Center of mass (CoM). The experiment are performed to examine the movement of Rocker-Pillar climbing up the step whose height is twice larger than its wheel radius. It is verified that the resulting SI is improved by more than 40 % so that the movement of Rocker-Pillar becomes much smoother by the proposed trajectory algorithm.

  20. Prototyping a Hybrid Cooperative and Tele-robotic Surgical System for Retinal Microsurgery

    Science.gov (United States)

    Balicki, Marcin; Xia, Tian; Jung, Min Yang; Deguet, Anton; Vagvolgyi, Balazs; Kazanzides, Peter; Taylor, Russell

    2013-01-01

    This paper presents the design of a tele-robotic microsurgical platform designed for development of cooperative and tele-operative control schemes, sensor based smart instruments, user interfaces and new surgical techniques with eye surgery as the driving application. The system is built using the distributed component-based cisst libraries and the Surgical Assistant Workstation framework. It includes a cooperatively controlled EyeRobot2, a da Vinci Master manipulator, and a remote stereo visualization system. We use constrained optimization based virtual fixture control to provide Virtual Remote-Center-of-Motion (vRCM) and haptic feedback. Such system can be used in a hybrid setup, combining local cooperative control with remote tele-operation, where an experienced surgeon can provide hand-over-hand tutoring to a novice user. In another scheme, the system can provide haptic feedback based on virtual fixtures constructed from real-time force and proximity sensor information. PMID:24398557

  1. 3D Modelling of a Vectored Water Jet-Based Multi-Propeller Propulsion System for a Spherical Underwater Robot

    Directory of Open Access Journals (Sweden)

    Xichuan Lin

    2013-01-01

    Full Text Available This paper presents an improved modelling method for a water jet-based multi-propeller propulsion system. In our previous work, the modelling experiments were only carried out in 2D planes, whose experimental results had poor agreement when we wanted to control the propulsive forces in 3D space directly. This research extends the 2D modelling described in the authors' previous work into 3D space. By doing this, the model could include 3D space information, which is more useful than that of 2D space. The effective propulsive forces and moments in 3D space can be obtained directly by synthesizing the propulsive vectors of propellers. For this purpose, a novel experimental mechanism was developed to achieve the proposed 3D modelling. This mechanism was designed with the mass distribution centred for the robot. By installing a six-axis load-cell sensor at the equivalent mass centre, we obtained the direct propulsive effect of the system for the robot. Also, in this paper, the orientation surface and propulsive surfaces are developed to provide the 3D information of the propulsive system. Experiments for each propeller were first carried out to establish the models. Then, further experiments were carried out with all of the propellers working together to validate the models. Finally, we compared the various experimental results with the simulation data. The utility of this modelling method is discussed at length.

  2. 3D Modelling of a Vectored Water Jet-Based Multi-Propeller Propulsion System for a Spherical Underwater Robot

    Directory of Open Access Journals (Sweden)

    Xichuan Lin

    2013-01-01

    Full Text Available This paper presents an improved modelling method for a water jet‐based multi‐propeller propulsion system. In our previous work, the modelling experiments were only carried out in 2D planes, whose experimental results had poor agreement when we wanted to control the propulsive forces in 3D space directly. This research extends the 2D modelling described in the authors’ previous work into 3D space. By doing this, the model could include 3D space information, which is more useful than that of 2D space. The effective propulsive forces and moments in 3D space can be obtained directly by synthesizing the propulsive vectors of propellers. For this purpose, a novel experimental mechanism was developed to achieve the proposed 3D modelling. This mechanism was designed with the mass distribution centred for the robot. By installing a six‐axis load‐cell sensor at the equivalent mass centre, we obtained the direct propulsive effect of the system for the robot. Also, in this paper, the orientation surface and propulsive surfaces are developed to provide the 3D information of the propulsive system. Experiments for each propeller were first carried out to establish the models. Then, further experiments were carried out with all of the propellers working together to validate the models. Finally, we compared the various experimental results with the simulation data. The utility of this modelling method is discussed at length.

  3. Hybridizing Particle Swarm Optimization and Differential Evolution for the Mobile Robot Global Path Planning

    Directory of Open Access Journals (Sweden)

    Biwei Tang

    2016-05-01

    Full Text Available Global path planning is a challenging issue in the filed of mobile robotics due to its complexity and the nature of nondeterministic polynomial-time hard (NP-hard. Particle swarm optimization (PSO has gained increasing popularity in global path planning due to its simplicity and high convergence speed. However, since the basic PSO has difficulties balancing exploration and exploitation, and suffers from stagnation, its efficiency in solving global path planning may be restricted. Aiming at overcoming these drawbacks and solving the global path planning problem efficiently, this paper proposes a hybrid PSO algorithm that hybridizes PSO and differential evolution (DE algorithms. To dynamically adjust the exploration and exploitation abilities of the hybrid PSO, a novel PSO, the nonlinear time-varying PSO (NTVPSO, is proposed for updating the velocities and positions of particles in the hybrid PSO. In an attempt to avoid stagnation, a modified DE, the ranking-based self adaptive DE (RBSADE, is developed to evolve the personal best experience of particles in the hybrid PSO. The proposed algorithm is compared with four state-of-the-art evolutionary algorithms. Simulation results show that the proposed algorithm is highly competitive in terms of path optimality and can be considered as a vital alternative for solving global path planning.

  4. 1999 IEEE international conference on robotics and automation

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-07-01

    Topics covered in this conference include: biped robots; underwater vehicles; robot planning and programming for assembly; discrete event control of mobile robot maneuvering; navigation in unknown environment; biped robots; underwater vehicles; robot planning and programming for assembly; discrete event control of manufacturing systems; motion planning; robot control; actuator; teleoperation; force and position control; contact and grasping control; visual servo control; tactile sensing; mobile robots and applications; sensor-based navigation; underwater robotics; sensing, navigation and control; flexible manipulators; task scheduling; actuators and joint actuation; teleoperation; sensor-based teleoperation; contact geometry; sonar-based sensing; mobile robot-environment interaction; mobile robot motion planning; biology-inspired methods; service and underwater robots; manufacturing planning and scheduling; constraint and nonholonomic system; fault-tolerant robots; parallel manipulators; dexterous manipulation; computer vision in manufacturing; contact sensing; mobile robot field applications; flexible robots; fuzzy control; and more.

  5. Reinforcement learning based attitude stabilization for bionic underwater robots%仿生水下机器人的增强学习姿态镇定

    Institute of Scientific and Technical Information of China (English)

    林龙信; 谢海斌; 沈林成

    2012-01-01

    A reinforcement learning based adaptive PID controller was presented for the attitude stabilization of a kind of bionic underwater robot with two bionic undulating fins. The scheme of the reinforcement learning based adaptive PID controller was given concretely including the control law and the parameter adaptive method based on reinforcement learning. Simulation experiments of yaw angle stabilization based on actual model parameters were carried out. The results indicate that the stabilization performance of yaw angle is improved distinctly after several iterations of learning control and the controller can overcome ordinary disturbances in short time, exhibiting its preferable adaptability.%针对一类双波动鳍仿生水下机器人的姿态镇定问题,提出一种基于增强学习的自适应PID控制方法.对增强学习自适应PID控制器进行了具体设计,包括PD控制律和基于增强学习的参数自适应方法.基于实际模型参数对偏航角镇定问题进行了仿真试验.结果表明,经过较小次数的学习控制后,仿生水下机器人的偏航角镇定性能得到明显改善,而且能够在短时间内对一般性扰动进行抑制,表现出了较好的适应性.

  6. Marine Robot Autonomy

    CERN Document Server

    2013-01-01

    Autonomy for Marine Robots provides a timely and insightful overview of intelligent autonomy in marine robots. A brief history of this emerging field is provided, along with a discussion of the challenges unique to the underwater environment and their impact on the level of intelligent autonomy required.  Topics covered at length examine advanced frameworks, path-planning, fault tolerance, machine learning, and cooperation as relevant to marine robots that need intelligent autonomy.  This book also: Discusses and offers solutions for the unique challenges presented by more complex missions and the dynamic underwater environment when operating autonomous marine robots Includes case studies that demonstrate intelligent autonomy in marine robots to perform underwater simultaneous localization and mapping  Autonomy for Marine Robots is an ideal book for researchers and engineers interested in the field of marine robots.      

  7. Google™ underwater

    Science.gov (United States)

    Showstack, Randy

    2012-10-01

    The first underwater panoramic images were added to Google Maps™, the company announced on 25 September. This first “underwater Street View collection,” launched in partnership with the Caitlin Seaview Survey, provides people with the opportunity to “become the next virtual Jacques Cousteau.” For more information, see: maps.google.com/ocean.

  8. Toward hybrid force/position control for the Cerberus epicardial robot.

    Science.gov (United States)

    Breault, Macauley S; Costanza, Adam D; Wood, Nathan A; Passineau, Michael J; Riviere, Cameron N

    2015-01-01

    Gene therapies have emerged as a promising treatment for congestive heart failure, yet they lack a method for minimally invasive, uniform delivery. To address this need we developed Cerberus, a minimally invasive parallel wire robot for cardiac interventions. Prior work on Cerberus was limited to controlling the device using only position feedback. In order to ensure safety for both the patient and the device, as well as to improve the performance of the device, this paper presents work on enhancing the existing system with force feedback capabilities. By modeling the statics of the system and developing a tension distribution optimization technique, existing position control schemes were modified to a hybrid force/position controller. Experimental results show that using a hybrid force-position control scheme as opposed to position decreases positioning error by 38%.

  9. Adaptive Hybrid Visual Servo Regulation of Mobile Robots Based on Fast Homography Decomposition

    Directory of Open Access Journals (Sweden)

    Chunfu Wu

    2015-01-01

    Full Text Available For the monocular camera-based mobile robot system, an adaptive hybrid visual servo regulation algorithm which is based on a fast homography decomposition method is proposed to drive the mobile robot to its desired position and orientation, even when object’s imaging depth and camera’s position extrinsic parameters are unknown. Firstly, the homography’s particular properties caused by mobile robot’s 2-DOF motion are taken into account to induce a fast homography decomposition method. Secondly, the homography matrix and the extracted orientation error, incorporated with the desired view’s single feature point, are utilized to form an error vector and its open-loop error function. Finally, Lyapunov-based techniques are exploited to construct an adaptive regulation control law, followed by the experimental verification. The experimental results show that the proposed fast homography decomposition method is not only simple and efficient, but also highly precise. Meanwhile, the designed control law can well enable mobile robot position and orientation regulation despite the lack of depth information and camera’s position extrinsic parameters.

  10. 控制动作下带缆遥控水下机器人的水动力特性%Hydrodynamic Characteristics of Tethered Underwater Robot Under Control Manipulations

    Institute of Scientific and Technical Information of China (English)

    吴家鸣; 崔寅; 邓威; 伍力; 马志权

    2012-01-01

    首先利用模糊神经网络算法构建了基于完整的带缆遥控水下机器人水动力数学模型的控制器,对水下机器人多自由度上的轨迹和姿态进行控制;然后,针对传统螺旋桨推进力分析方法中的缺陷,引入神经网络相关理论并结合计算流体方法对推进力和转速之间的相互关系进行辨识和换算;在此基础上构建了一个完整的、包括模糊神经控制器、机器人水动力数学模型以及推进力和转速换算模块的带缆遥控水下机器人控制系统;最后,在考虑系统各部分间相互影响的前提下进行了水动力特性的整体分析和计算.数值计算结果表明,所建立的控制系统可以对带缆遥控水下机器人进行有效的轨迹和姿态控制,文中方法可以从整体的角度分析一定控制动作下水下机器人的水动力响应.%A controller based on an integrated hydrodynamic model of the tethered underwater robot is constructed with the help of FNN ( Fuzzy Neural Network) algorithm and is used to control the trajectory and attitude of the robot in multiple degrees of freedom. Then, in order to remedy the disadvantages of the traditional method of analyzing propeller propulsion, a new method combining the theory of neural network and the computational fluid dynamics technique is proposed for the conversion between the propulsion and the rotating speed. Moreover, an integrated control system, which consists of a FNN controller, a robotic hydrodynamic model and a conversion module of propulsion and rotating speed, is presented for the tethered underwater robot. Finally, the hydrodynamic characteristics of the robot are globally analyzed and calculated by taking into consideration the interaction among different parts of the robot. Numerical simulation results indicate that the proposed system effectively controls the trajectory and attitude of the tethered underwater robot, and that it helps to globally calculate the

  11. A hybrid CPG-ZMP control system for stable walking of a simulated flexible spine humanoid robot.

    Science.gov (United States)

    Or, Jimmy

    2010-04-01

    Biped humanoid robots have gained much popularity in recent years. These robots are mainly controlled by two major control methods, the biologically-inspired approach based on Central Pattern Generator (CPG) and the engineering-oriented approach based on Zero Moment Point (ZMP). Given that flexibility in the body torso is required in some human activities, we believe that it is beneficial for the next generation of humanoid robots to have a flexible spine as humans do. In order to cope with the increased complexity in controlling this type of robot, a new kind of control system is necessary. Currently, there is no controller that allows a flexible spine humanoid robot to maintain stability in real-time while walking with dynamic spine motions. This paper presents a new hybrid CPG-ZMP control system for the walking of a realistically simulated flexible spine humanoid robot. Experimental results showed that using our control method, the robot is able to adapt its spine motions in real-time to allow stable walking. Our control system could be used for the control of the next generation humanoid robots.

  12. Tailor-made rehabilitation approach using multiple types of hybrid assistive limb robots for acute stroke patients: A pilot study.

    Science.gov (United States)

    Fukuda, Hiroyuki; Morishita, Takashi; Ogata, Toshiyasu; Saita, Kazuya; Hyakutake, Koichi; Watanabe, Junko; Shiota, Etsuji; Inoue, Tooru

    2016-01-01

    This article investigated the feasibility of a tailor-made neurorehabilitation approach using multiple types of hybrid assistive limb (HAL) robots for acute stroke patients. We investigated the clinical outcomes of patients who underwent rehabilitation using the HAL robots. The Brunnstrom stage, Barthel index (BI), and functional independence measure (FIM) were evaluated at baseline and when patients were transferred to a rehabilitation facility. Scores were compared between the multiple-robot rehabilitation and single-robot rehabilitation groups. Nine hemiplegic acute stroke patients (five men and four women; mean age 59.4 ± 12.5 years; four hemorrhagic stroke and five ischemic stroke) underwent rehabilitation using multiple types of HAL robots for 19.4 ± 12.5 days, and 14 patients (six men and eight women; mean age 63.2 ± 13.9 years; nine hemorrhagic stroke and five ischemic stroke) underwent rehabilitation using a single type of HAL robot for 14.9 ± 8.9 days. The multiple-robot rehabilitation group showed significantly better outcomes in the Brunnstrom stage of the upper extremity, BI, and FIM scores. To the best of the authors' knowledge, this is the first pilot study demonstrating the feasibility of rehabilitation using multiple exoskeleton robots. The tailor-made rehabilitation approach may be useful for the treatment of acute stroke.

  13. [Robotics].

    Science.gov (United States)

    Bier, J

    2000-05-01

    Content of this paper is the current state of the art of robots in surgery and the ongoing work on the field of surgical robotics at the Clinic for Maxillofacial Surgery at the Charité. Robots in surgery allows the surgeon to transform the accuracy of the imaging systems directly during the intervention and to plan an intervention beforehand. In this paper firstly the state of the art is described. Subsequently the scientific work at the clinic is described in detail. The paper closes with a outlook for future applications of robotics systems in maxillofacial surgery.

  14. Dynamics modelling and Hybrid Suppression Control of space robots performing cooperative object manipulation

    Science.gov (United States)

    Zarafshan, P.; Moosavian, S. Ali A.

    2013-10-01

    Dynamics modelling and control of multi-body space robotic systems composed of rigid and flexible elements is elaborated here. Control of such systems is highly complicated due to severe under-actuated condition caused by flexible elements, and an inherent uneven nonlinear dynamics. Therefore, developing a compact dynamics model with the requirement of limited computations is extremely useful for controller design, also to develop simulation studies in support of design improvement, and finally for practical implementations. In this paper, the Rigid-Flexible Interactive dynamics Modelling (RFIM) approach is introduced as a combination of Lagrange and Newton-Euler methods, in which the motion equations of rigid and flexible members are separately developed in an explicit closed form. These equations are then assembled and solved simultaneously at each time step by considering the mutual interaction and constraint forces. The proposed approach yields a compact model rather than common accumulation approach that leads to a massive set of equations in which the dynamics of flexible elements is united with the dynamics equations of rigid members. To reveal such merits of this new approach, a Hybrid Suppression Control (HSC) for a cooperative object manipulation task will be proposed, and applied to usual space systems. A Wheeled Mobile Robotic (WMR) system with flexible appendages as a typical space rover is considered which contains a rigid main body equipped with two manipulating arms and two flexible solar panels, and next a Space Free Flying Robotic system (SFFR) with flexible members is studied. Modelling verification of these complicated systems is vigorously performed using ANSYS and ADAMS programs, while the limited computations of RFIM approach provides an efficient tool for the proposed controller design. Furthermore, it will be shown that the vibrations of the flexible solar panels results in disturbing forces on the base which may produce undesirable errors

  15. An intelligent control framework for robot-aided resistance training using hybrid system modeling and impedance estimation.

    Science.gov (United States)

    Xu, Guozheng; Guo, Xiaobo; Zhai, Yan; Li, Huijun

    2015-08-01

    This study presents a novel therapy control method for robot-assisted resistance training using the hybrid system modeling technology and the estimated patient's bio-impedance changes. A new intelligent control framework based on hybrid system theory is developed, to automatically generate the desired resistive force and to make accommodating emergency behavior, when monitoring the changes of the impaired limb's muscle strength or the unpredictable safety-related occurrences during the execution of the training task. The impaired limb's muscle strength progress is online evaluated using its bio-damping and bio-stiffness estimation results. The proposed method is verified with a custom constructed therapeutic robot system featuring a Barrett WAM™ compliant manipulator. A typical inpatient stroke subject was recruited and enrolled in a ten-week resistance training program. Preliminary results show that the proposed therapeutic strategy can enhance the impaired limb's muscle strength and has practicability for robot-aided rehabilitation training.

  16. Hybrid Taguchi DNA Swarm Intelligence for Optimal Inverse Kinematics Redundancy Resolution of Six-DOF Humanoid Robot Arms

    Directory of Open Access Journals (Sweden)

    Hsu-Chih Huang

    2014-01-01

    Full Text Available This paper presents a hybrid Taguchi deoxyribonucleic acid (DNA swarm intelligence for solving the inverse kinematics redundancy problem of six degree-of-freedom (DOF humanoid robot arms. The inverse kinematics problem of the multi-DOF humanoid robot arm is redundant and has no general closed-form solutions or analytical solutions. The optimal joint configurations are obtained by minimizing the predefined performance index in DNA algorithm for real-world humanoid robotics application. The Taguchi method is employed to determine the DNA parameters to search for the joint solutions of the six-DOF robot arms more efficiently. This approach circumvents the disadvantage of time-consuming tuning procedure in conventional DNA computing. Simulation results are conducted to illustrate the effectiveness and merit of the proposed methods. This Taguchi-based DNA (TDNA solver outperforms the conventional solvers, such as geometric solver, Jacobian-based solver, genetic algorithm (GA solver and ant, colony optimization (ACO solver.

  17. Hybrid Force Control Based on ICMAC for an Astronaut Rehabilitative Training Robot

    Directory of Open Access Journals (Sweden)

    Lixun Zhang

    2012-08-01

    Full Text Available A novel Astronaut Rehabilitative Training Robot (ART based on a cable‐driven mechanism is represented in this paper. ART, a typical passive force servo system, can help astronauts to bench press in a microgravity environment. The purpose of this paper is to design controllers to eliminate the surplus force caused by an astronaut’s active movements. Based on the dynamics modelling of the cable‐driven unit, a hybrid force controller based on improved credit assignment CMAC (ICMAC is presented. A planning method for the cable tension is proposed so that the dynamic load produced by the ART can realistically simulate the gravity and inertial force of the barbell in a gravity environment. Finally, MATLAB simulation results of the man‐machine cooperation system are provided in order to verify the effectiveness of the proposed control strategy. The simulation results show that the hybrid control method based on the structure invariance principle can inhibit the surplus force and that ICMAC can improve the dynamic performance of the passive force servo system. Furthermore, the hybrid force controller based on ICMAC can ensure the stability of the system.

  18. A hybrid path-oriented code assignment CDMA-based MAC protocol for underwater acoustic sensor networks.

    Science.gov (United States)

    Chen, Huifang; Fan, Guangyu; Xie, Lei; Cui, Jun-Hong

    2013-11-04

    Due to the characteristics of underwater acoustic channel, media access control (MAC) protocols designed for underwater acoustic sensor networks (UWASNs) are quite different from those for terrestrial wireless sensor networks. Moreover, in a sink-oriented network with event information generation in a sensor field and message forwarding to the sink hop-by-hop, the sensors near the sink have to transmit more packets than those far from the sink, and then a funneling effect occurs, which leads to packet congestion, collisions and losses, especially in UWASNs with long propagation delays. An improved CDMA-based MAC protocol, named path-oriented code assignment (POCA) CDMA MAC (POCA-CDMA-MAC), is proposed for UWASNs in this paper. In the proposed MAC protocol, both the round-robin method and CDMA technology are adopted to make the sink receive packets from multiple paths simultaneously. Since the number of paths for information gathering is much less than that of nodes, the length of the spreading code used in the POCA-CDMA-MAC protocol is shorter greatly than that used in the CDMA-based protocols with transmitter-oriented code assignment (TOCA) or receiver-oriented code assignment (ROCA). Simulation results show that the proposed POCA-CDMA-MAC protocol achieves a higher network throughput and a lower end-to-end delay compared to other CDMA-based MAC protocols.

  19. A Hybrid Path-Oriented Code Assignment CDMA-Based MAC Protocol for Underwater Acoustic Sensor Networks

    Directory of Open Access Journals (Sweden)

    Huifang Chen

    2013-11-01

    Full Text Available Due to the characteristics of underwater acoustic channel, media access control (MAC protocols designed for underwater acoustic sensor networks (UWASNs are quite different from those for terrestrial wireless sensor networks. Moreover, in a sink-oriented network with event information generation in a sensor field and message forwarding to the sink hop-by-hop, the sensors near the sink have to transmit more packets than those far from the sink, and then a funneling effect occurs, which leads to packet congestion, collisions and losses, especially in UWASNs with long propagation delays. An improved CDMA-based MAC protocol, named path-oriented code assignment (POCA CDMA MAC (POCA-CDMA-MAC, is proposed for UWASNs in this paper. In the proposed MAC protocol, both the round-robin method and CDMA technology are adopted to make the sink receive packets from multiple paths simultaneously. Since the number of paths for information gathering is much less than that of nodes, the length of the spreading code used in the POCA-CDMA-MAC protocol is shorter greatly than that used in the CDMA-based protocols with transmitter-oriented code assignment (TOCA or receiver-oriented code assignment (ROCA. Simulation results show that the proposed POCA-CDMA-MAC protocol achieves a higher network throughput and a lower end-to-end delay compared to other CDMA-based MAC protocols.

  20. Non-manufacturing applications of robotics; Applications non-manufacturieres de la robotique

    Energy Technology Data Exchange (ETDEWEB)

    Dauchez, P. [LIRMM, Laboratoire d' Informatique, de Robotique et de Microelectronique de Montpellier, 34 (France)

    2000-12-01

    This book presents the different non-manufacturing sectors of activity where robotics can have useful or necessary applications: underwater robotics, agriculture robotics, road work robotics, nuclear robotics, medical-surgery robotics, aids to disabled people, entertainment robotics. Service robotics has been voluntarily excluded because this developing sector is not mature yet. (J.S.)

  1. Compliant landing of a trotting quadruped robot based on hybrid motion/force robust control

    Institute of Scientific and Technical Information of China (English)

    郎琳; 王剑; 韦庆; 马宏绪

    2016-01-01

    A compliant landing strategy for a trotting quadruped robot on unknown rough terrains based on contact force control is presented. Firstly, in order to lower the disturbance caused by the landing impact force, a landing phase is added between the swing phase and the stance phase, where the desired contact force is set as a small positive constant. Secondly, the joint torque optimization of the stance legs is formulated as a quadratic programming (QP) problem subject to equality and inequality/bound constraints. And a primal-dual dynamical system solver based on linear variational inequalities (LVI) is applied to solve this QP problem. Furthermore, based on the optimization results, a hybrid motion/force robust controller is designed to realize the tracking of the contact force, while the constraints of the stance feet landing angles are fulfilled simultaneously. Finally, the experiments are performed to validate the proposed methods.

  2. Hybrid gait training with an overground robot for people with incomplete spinal cord injury: a pilot study

    Directory of Open Access Journals (Sweden)

    Antonio J del-Ama

    2014-05-01

    Full Text Available Locomotor training has proved to provide beneficial effect in terms of mobility in incomplete paraplegic patients. Neuroprosthetic technology can contribute to increase the efficacy of a training paradigm in the promotion of a locomotor pattern. Robotic exoskeletons can be used to manage the unavoidable loss of performance of artificially-driven muscles. Hybrid exoskeletons blend complementary robotic and neuro-prosthetic technologies. The aim of this pilot study was to determine the effects of hybrid gait training in three case studies with persons with incomplete spinal cord injury in terms of locomotion performance during assisted gait, patient-robot adaptations, impact on ambulation and assessment of lower limb muscle strength and spasticity. Participants with incomplete Spinal Cord Injury (SCI received interventions with a hybrid bilateral exoskeleton for 4 days. Assessment of gait function revealed that patients improved the 6 minutes and 10 meters walking tests after the intervention, and further improvements were observed one week after the intervention. Muscle examination revealed improvements in knee and hip sagittal muscle balance scores and decreased score in ankle extensor balance. It is concluded that improvements in biomechanical function of the knee joint after the tested overground hybrid gait trainer are coherent with improvements in gait performance.

  3. International Conference on Underwater Environment

    CERN Document Server

    Jaulin, Luc; Creuze, Vincent; Debese, Nathalie; Quidu, Isabelle; Clement, Benoît; Billon-Coat, Annick

    2016-01-01

    This volume constitutes the results of the International Conference on Underwater Environment, MOQESM’14, held at “Le Quartz” Conference Center in Brest, France, on October 14-15, 2014, within the framework of the 9th Sea Tech Week, International Marine Science and Technology Event. The objective of MOQESM'14 was to bring together researchers from both academia and industry, interested in marine robotics and hydrography with application to the coastal environment mapping and underwater infrastructures surveys. The common thread of the conference is the combination of technical control, perception, and localization, typically used in robotics, with the methods of mapping and bathymetry. The papers presented in this book focus on two main topics. Firstly, coastal and infrastructure mapping is addressed, focusing not only on hydrographic systems, but also on positioning systems, bathymetry, and remote sensing. The proposed methods rely on acoustic sensors such as side scan sonars, multibeam echo sounders, ...

  4. Robots

    Institute of Scientific and Technical Information of China (English)

    驷萍

    1997-01-01

    一篇介绍机器人的文章写得如此耐读,如此清新! 首先.我们弄清了robot一词的来历: It was used first in 1920 in a play by Czcchoslovak writer Karel Capek.The wordrobot comes from the Czech word for slave. 上句提供了一个时间:1920。文章接着便抓住这个时间做文章: 且The word robot.and robots themselves are less than 100 years old.But humanshave been dreaming of real and imaginary copies of themselves for thousands of years. 文章就这样写出了波澜,1920年和 thousands of years自然而然构成了强烈对比。1954年和1960s是两个谈及机器人时不得不一提的时间: In 1954,the world’s first robot was produced in the United States. During the 1960s,the first industrial robots appeared beside human workers infactories.下面这句让我们体味到 the Czech word for slave中的 slave不仅言之有理,而且影视和小说里的机器人“造反”,进而 killed the humans who made them的情节也“事出有因”: What do today’s robots do?Robots do work.Work that human consideruninteresting or dangerous.…do many jobs that people consider tiring. 本文将机器人的“功过”放在一起写,笔

  5. Team Robot Motion Planning in Dynamics Environments Using a New Hybrid Algorithm (Honey Bee Mating Optimization-Tabu List

    Directory of Open Access Journals (Sweden)

    Mohammad Abaee Shoushtary

    2014-01-01

    Full Text Available This paper describes a new hybrid algorithm extracted from honey bee mating optimization (HBMO algorithm (for robot travelling distance minimization and tabu list technique (for obstacle avoidance for team robot system. This algorithm was implemented in a C++ programming language on a Pentium computer and simulated on simple cylindrical robots in a simulation software. The environment in this simulation was dynamic with moving obstacles and goals. The results of simulation have shown validity and reliability of new algorithm. The outcomes of simulation have shown better performance than ACO and PSO algorithm (society, nature algorithms with respect to two well-known metrics included, ATPD (average total path deviation and AUTD (average uncovered target distance.

  6. RAO-II: an AUV for underwater inspection

    OpenAIRE

    Oliver, G.; Ortiz, A.; Bonin, F.

    2008-01-01

    AIRSUB is a research project funded by the Spanish Ministry of Science and Technology whose aim is to explore the industrial applications of underwater robots. The Systems, Robotics and Vision Group (SRV) from the University of the Balearic Islands (UIB) is responsible for the subproject of cable/pipeline inspection [1]. To this purpose, an Autonomous Underwater Vehicle (AUV) is under development as a platform to test the vision algorithms, control strategies and software ar...

  7. Robotics Vision-Based System of Autonomous Underwater Vehicle for an Underwater Pipeline Tracker%自主式水下机器人的光视觉管道探测跟踪系统

    Institute of Scientific and Technical Information of China (English)

    曾文静; 徐玉如; 万磊; 张铁栋

    2012-01-01

    The detection and tracking of underwater pipeline based on monocular vision system of AUV(autonomous underwater vehicle) were addressed.An integrated vision system including software and hardware structure was designed.The feature of underwater pipeline image was analyzed and according to that,corresponding pre-processing method was proposed.An improved Hough transforming was advanced to obtain pipeline contour.Pipeline reference zone was estimated to increase the accuracy and decrease the time cost of pipeline tracking.Finally,the system was validated to be effective and feasible through the tank experiments.%研究了自主式水下机器人(AUV)利用单目光视觉系统对水下管道的检测跟踪问题,对实现该方法的各个过程从硬件组成和软件体系结构两方面进行了阐述,从而完成了一整套水下光视觉系统的软、硬件设计.分析了水下管道图像的特点,结合该特点阐述了图像预处理过程,提出了一种改进的Hough变换方法,改善了管道边界的提取效果.同时采用管道参考区域预测方法,提高了管道的检测率以及实时性,并利用水池试验对系统的可行性和有效性进行了验证.

  8. Robust Intelligence (RI) under uncertainty: Mathematical foundations of autonomous hybrid (human-machine-robot) teams, organizations and systems

    OpenAIRE

    Lawless, William F.

    2013-01-01

    To develop a theory of Robust Intelligence (RI), we continue to advance our theory of interdependence on the efficient and effective control of systems of autonomous hybrid teams composed of robots, machines and humans working interchangeably. As is the case with humans, we believe that RI is less likely to be achieved by individual computational agents; instead, we propose that a better path to RI is with interdependent agents. However, unlike conventional computational models where agents a...

  9. Field Trials of the Nereus Hybrid Underwater Robotic Vehicle in the Challenger Deep of the Mariana Trench

    Science.gov (United States)

    2010-06-01

    significant scientific discoveries over the past 50 years including identifying and sampling mid- ocean ridge volcanic processes, hydrothermal...materials for 11,000 m operations, e.g. Kevlar , result in large-diameter cables that exhibit poor hydrodynamic characteristics and that require very...steel and Kevlar cables. To date, light-fiber teth- ers have principally been employed in military applications; relatively few light-fiber tether

  10. A Low Cost Vision Based Hybrid Fiducial Mark Tracking Technique for Mobile Industrial Robots

    OpenAIRE

    Mohammed Y Aalsalem; Wazir Zada Khan; Quratul Ain Arshad

    2012-01-01

    The field of robotic vision is developing rapidly. Robots can react intelligently and provide assistance to user activities through sentient computing. Since industrial applications pose complex requirements that cannot be handled by humans, an efficient low cost and robust technique is required for the tracking of mobile industrial robots. The existing sensor based techniques for mobile robot tracking are expensive and complex to deploy, configure and maintain. Also some of them demand dedic...

  11. Creating Hybrid Learning Experiences in Robotics: Implications for Supporting Teaching and Learning

    Science.gov (United States)

    Frerichs, Saundra Wever; Barker, Bradley; Morgan, Kathy; Patent-Nygren, Megan; Rezac, Micaela

    2012-01-01

    Geospatial and Robotics Technologies for the 21st Century (GEAR-Tech-21), teaches science, technology, engineering and mathematics (STEM) through robotics, global positioning systems (GPS), and geographic information systems (GIS) activities for youth in grades 5-8. Participants use a robotics kit, handheld GPS devices, and GIS technology to…

  12. Hybrid System Design for the Coordination of Multi-Modal Aerial Robots

    DEFF Research Database (Denmark)

    Koo, T. John; Quottrup, Michael Melholt; Clifton, C. A.

    2006-01-01

    In this paper we provide a framework for the coordination of a network of heterogeneous aerial robots by using temporal logic to formulate mission speci¯cations for the network of robots. The full dynamics of the aerial robots are considered, and multiple controllers that can cope with various co...

  13. Creating Hybrid Learning Experiences in Robotics: Implications for Supporting Teaching and Learning

    Science.gov (United States)

    Frerichs, Saundra Wever; Barker, Bradley; Morgan, Kathy; Patent-Nygren, Megan; Rezac, Micaela

    2012-01-01

    Geospatial and Robotics Technologies for the 21st Century (GEAR-Tech-21), teaches science, technology, engineering and mathematics (STEM) through robotics, global positioning systems (GPS), and geographic information systems (GIS) activities for youth in grades 5-8. Participants use a robotics kit, handheld GPS devices, and GIS technology to…

  14. A Novel Mittag-Leffler Kernel Based Hybrid Fault Diagnosis Method for Wheeled Robot Driving System

    Directory of Open Access Journals (Sweden)

    Xianfeng Yuan

    2015-01-01

    presents a novel hybrid fault diagnosis framework based on Mittag-Leffler kernel (ML-kernel support vector machine (SVM and Dempster-Shafer (D-S fusion. Using sensor data sampled under different running conditions, the proposed approach initially establishes multiple principal component analysis (PCA models for fault feature extraction. The fault feature vectors are then applied to train the probabilistic SVM (PSVM classifiers that arrive at a preliminary fault diagnosis. To improve the accuracy of preliminary results, a novel ML-kernel based PSVM classifier is proposed in this paper, and the positive definiteness of the ML-kernel is proved as well. The basic probability assignments (BPAs are defined based on the preliminary fault diagnosis results and their confidence values. Eventually, the final fault diagnosis result is archived by the fusion of the BPAs. Experimental results show that the proposed framework not only is capable of detecting and identifying the faults in the robot driving system, but also has better performance in stability and diagnosis accuracy compared with the traditional methods.

  15. Parallel Robot Scheduling to Minimize Mean Tardiness with Unequal Release Date and Precedence Constraints Using a Hybrid Intelligent System

    Directory of Open Access Journals (Sweden)

    Tarık Çakar

    2012-12-01

    Full Text Available This paper considers the problem of scheduling a given number of jobs on a specified number of identical parallel robots with unequal release dates and precedence constraints in order to minimize mean tardiness. This problem is strongly NP-hard. The author proposes a hybrid intelligent solution system, which uses Genetic Algorithms and Simulated Annealing (GA+SA. A genetic algorithm, as is well known, is an efficient tool for the solution of combinatorial optimization problems. Solutions for problems of different scales are found using genetic algorithms, simulated annealing and a Hybrid Intelligent Solution System (HISS. Computational results of empirical experiments show that the Hybrid Intelligent Solution System (HISS is successful with regards to solution quality and computational time.

  16. Design of a Simple and Modular 2-DOF Ankle Physiotherapy Device Relying on a Hybrid Serial-Parallel Robotic Architecture

    Directory of Open Access Journals (Sweden)

    Christos E. Syrseloudis

    2011-01-01

    Full Text Available The aim of this work is to propose a new 2-DOF robotic platform with hybrid parallel-serial structure and to undertake its parametric design so that it can follow the whole range of ankle related foot movements. This robot can serve as a human ankle rehabilitation device. The existing ankle rehabilitation devices present typically one or more of the following shortcomings: redundancy, large size, or high cost, hence the need for a device that could offer simplicity, modularity, and low cost of construction and maintenance. In addition, our targeted device must be safe during operation, disallow undesirable movements of the foot, while adaptable to any human foot. Our detailed study of foot kinematics has led us to a new hybrid architecture, which strikes a balance among all aforementioned goals. It consists of a passive serial kinematics chain with two adjustable screws so that the axes of the chain match the two main ankle-axes of typical feet. An active parallel chain, which consists of two prismatic actuators, provides the movement of the platform. Thus, the platform can follow the foot movements, thanks to the passive chain, and also possesses the advantages of parallel robots, including rigidity, high stiffness and force capabilities. The lack of redundancy yields a simpler device with lower size and cost. The paper describes the kinematics modelling of the platform and analyses the force and velocity transmission. The parametric design of the platform is carried out; our simulations confirm the platform's suitability for ankle rehabilitation.

  17. CISM Course on Basics of Robotics : Theory and Components of Manipulators and Robots

    CERN Document Server

    Knapczyk, Józef

    1999-01-01

    This volume contains the basic concepts of modern robotics, basic definitions, systematics of robots in industry, service, medicine and underwater activity. Important information on walking and mili-walking machines are included as well as possible applications of microrobots in medicine, agriculture, underwater activity.

  18. 遥操作干式高压海底管道维修焊接机器人系统%Tele-operated TIG welding robot for hyperbaric underwater pipeline repair welding

    Institute of Scientific and Technical Information of China (English)

    焦向东; 周灿丰; 薛龙; 高辉; 房晓明

    2009-01-01

    Among the available underwater pipeline repair methods, hyperbaric TIG welding technology may be the easier one to obtain better joint quality. Due to the low automation level and the bevel preparation difficulty, the repair welding should be conducted based on both the welding knowledge of the welder on deck and the operation skill of the diver. A tele-operated robot for all position hypetharic pipe welding was developed. In the specified case of underwater welding, the process was controlled by a surface based operator, a clear and real time image of the arc as well as the image of groove location were required. An observation system of three cameras for chamber, groove and weld was also developed respectively. All the necessary message of vision, welding current and arc voltage were collected and transferred to the surface by the developed computerized information system. The underwater pipeline maintanence system consists of the welding robot, observation system, the informarion system, together with the habitation. The chamber gas type, the welding power source and arc striking were also studied. With the welding proceedure developed in the hyperbaric welding laboratory, a good weld was obtained in a underwater pipe repair welding test at Bohai sea.%干式高压焊接是既能保证焊接质量又易于实施的海底管道维修方法.基于目前的自动化技术水平和海管坡口制备难度大的现实,提出了基于高级焊工焊接知识和潜水员水下工作技能的遥控海底管道维修焊接策略.研制了一套干式高压环境管道全位置焊接机器人及其分置于水面母船甲板和水下干式舱的机器人焊接控制系统,研制了分别用于场景、坡口和焊缝的视觉监视系统,以及计算机远程信息采集监控系统,它们与水下干式舱系统一道构成了水下干式管道维修系统.还研究了干式舱充气气体种类、焊接电源特殊性和舱内引弧问题.利用先期在干式高压焊

  19. Multi-Modal Local Sensing and Communication for Collective Underwater Systems

    CERN Document Server

    Kernbach, Serge; Sutantyo, Donny

    2011-01-01

    This paper is devoted to local sensing and communication for collective underwater systems used in networked and swarm modes. It is demonstrated that a specific combination of modal and sub-modal communication, used simultaneously for robot-robot and robot-object detection, can create a dedicated cooperation between multiple AUVs. These technologies, platforms and experiments are shortly described, and allow us to make a conclusion about useful combinations of different signaling approaches for collective underwater systems.

  20. Teleoperation of a manipulator with a master robot of different kinematics: using bilateral control by state converge

    OpenAIRE

    Peña, César; Aracil Santonja, Rafael; Saltaren Pazmiño, Roque Jacinto; Banfield, Ilka

    2008-01-01

    This paper presents the teleoperation method of manipulators which have different kinematics with respect of the master robots using bilateral control by state convergence. This method makes a relation between the kinematics of the master and slave robot using a virtual robot. This method allows controlling manipulators which are a part of different kinds of robot as: climber robots, underwater robots, human robots, etc.

  1. In vitro spine testing using a robot-based testing system: comparison of displacement control and "hybrid control".

    Science.gov (United States)

    Bell, Kevin M; Hartman, Robert A; Gilbertson, Lars G; Kang, James D

    2013-06-21

    The two leading control algorithms for in-vitro spine biomechanical testing-"load control" and "displacement control"-are limited in their lack of adaptation to changes in the load-displacement response of a spine specimen-pointing to the need for sufficiently sophisticated control algorithms that are able to govern the application of loads/motions to a spine specimen in a more realistic, adaptive manner. A robotics-based spine testing system was programmed with a novel hybrid control algorithm combining "load control" and "displacement control" into a single, robust algorithm. Prior to in-vitro cadaveric testing, preliminary testing of the new algorithm was performed using a rigid-body-spring model with known structural properties. The present study also offers a direct comparison between "hybrid control" and "displacement control". The hybrid control algorithm enabled the robotics-based spine testing system to apply pure moments to an FSU (in flexion/extension, lateral bending, or axial rotation) in an unconstrained manner through active control of secondary translational/rotational degrees-of-freedom-successfully minimizing coupled forces/moments. The characteristic nonlinear S-shaped curves of the primary moment-rotation responses were consistent with previous reports of the FSU having a region of low stiffness (neutral zone) bounded by regions of increasing stiffness (elastic zone). Direct comparison of "displacement control" and "hybrid control" showed that hybrid control was able to actively minimize off-axis forces and resulted in larger neutral zone and range of motion. Copyright © 2013 Elsevier Ltd. All rights reserved.

  2. A hybrid algorithm for tracking and following people using a robotic dog

    NARCIS (Netherlands)

    M.C. Liem; A. Visser; F.C.A. Groen

    2008-01-01

    The capability to follow a person in a domestic environment is an important prerequisite for a robot companion. In this paper, a tracking algorithm is presented that makes it possible to follow a person using a small robot. This algorithm can track a person while moving around, regardless of the som

  3. Robotics

    Science.gov (United States)

    Rothschild, Lynn J.

    2012-01-01

    Earth's upper atmosphere is an extreme environment: dry, cold, and irradiated. It is unknown whether our aerobiosphere is limited to the transport of life, or there exist organisms that grow and reproduce while airborne (aerophiles); the microenvironments of suspended particles may harbor life at otherwise uninhabited altitudes[2]. The existence of aerophiles would significantly expand the range of planets considered candidates for life by, for example, including the cooler clouds of a hot Venus-like planet. The X project is an effort to engineer a robotic exploration and biosampling payload for a comprehensive survey of Earth's aerobiology. While many one-shot samples have been retrieved from above 15 km, their results are primarily qualitative; variations in method confound comparisons, leaving such major gaps in our knowledge of aerobiology as quantification of populations at different strata and relative species counts[1]. These challenges and X's preliminary solutions are explicated below. X's primary balloon payload is undergoing a series of calibrations before beginning flights in Spring 2012. A suborbital launch is currently planned for Summer 2012. A series of ground samples taken in Winter 2011 is being used to establish baseline counts and identify likely background contaminants.

  4. Hybrid Kalman Filter/Fuzzy Logic based Position Control of Autonomous Mobile Robot

    Directory of Open Access Journals (Sweden)

    Nitin Afzulpurkar

    2008-11-01

    Full Text Available This paper describes position control of autonomous mobile robot using combination of Kalman filter and Fuzzy logic techniques. Both techniques have been used to fuse information from internal and external sensors to navigate a typical mobile robot in an unknown environment. An obstacle avoidance algorithm utilizing stereo vision technique has been implemented for obstacle detection. The odometry errors due to systematic-errors (such as unequal wheel diameter, the effect of the encoder resolution etc. and/or non-systematic errors (ground plane, wheel-slip etc. contribute to various motion control problems of the robot. During the robot moves, whether straight-line and/or arc, create the position and orientation errors which depend on systematic and/or non-systematic odometry errors. The main concern in most of the navigating systems is to achieve the real-time and robustness performances to precisely control the robot movements. The objective of this research is to improve the position and the orientation of robot motion. From the simulation and experiments, we prove that the proposed mobile robot moves from start position to goal position with greater accuracy avoiding obstacles.

  5. Self-organization via active exploration in robotic applications. Phase 2: Hybrid hardware prototype

    Science.gov (United States)

    Oegmen, Haluk

    1993-01-01

    In many environments human-like intelligent behavior is required from robots to assist and/or replace human operators. The purpose of these robots is to reduce human time and effort in various tasks. Thus the robot should be robust and as autonomous as possible in order to eliminate or to keep to a strict minimum its maintenance and external control. Such requirements lead to the following properties: fault tolerance, self organization, and intelligence. A good insight into implementing these properties in a robot can be gained by considering human behavior. In the first phase of this project, a neural network architecture was developed that captures some fundamental aspects of human categorization, habit, novelty, and reinforcement behavior. The model, called FRONTAL, is a 'cognitive unit' regulating the exploratory behavior of the robot. In the second phase of the project, FRONTAL was interfaced with an off-the-shelf robotic arm and a real-time vision system. The components of this robotic system, a review of FRONTAL, and simulation studies are presented in this report.

  6. Underwater manipulator

    Science.gov (United States)

    Schrum, P.B.; Cohen, G.H.

    1993-04-20

    Self-contained, waterproof, water-submersible, remote-controlled apparatus is described for manipulating a device, such as an ultrasonic transducer for measuring crack propagation on an underwater specimen undergoing shock testing. The subject manipulator includes metal bellows for transmittal of angular motions without the use of rotating shaft seals or O-rings. Inside the manipulator, a first stepper motor controls angular movement. In the preferred embodiment, the bellows permit the first stepper motor to move an ultrasonic transducer [plus minus]45 degrees in a first plane and a second bellows permit a second stepper motor to move the transducer [plus minus]10 degrees in a second plane orthogonal to the first. In addition, an XY motor-driven table provides XY motion.

  7. A novel EOG/EEG hybrid human-machine interface adopting eye movements and ERPs: application to robot control.

    Science.gov (United States)

    Ma, Jiaxin; Zhang, Yu; Cichocki, Andrzej; Matsuno, Fumitoshi

    2015-03-01

    This study presents a novel human-machine interface (HMI) based on both electrooculography (EOG) and electroencephalography (EEG). This hybrid interface works in two modes: an EOG mode recognizes eye movements such as blinks, and an EEG mode detects event related potentials (ERPs) like P300. While both eye movements and ERPs have been separately used for implementing assistive interfaces, which help patients with motor disabilities in performing daily tasks, the proposed hybrid interface integrates them together. In this way, both the eye movements and ERPs complement each other. Therefore, it can provide a better efficiency and a wider scope of application. In this study, we design a threshold algorithm that can recognize four kinds of eye movements including blink, wink, gaze, and frown. In addition, an oddball paradigm with stimuli of inverted faces is used to evoke multiple ERP components including P300, N170, and VPP. To verify the effectiveness of the proposed system, two different online experiments are carried out. One is to control a multifunctional humanoid robot, and the other is to control four mobile robots. In both experiments, the subjects can complete tasks effectively by using the proposed interface, whereas the best completion time is relatively short and very close to the one operated by hand.

  8. Design and optimization of hybrid structure robot%混联机器人结构设计及优化

    Institute of Scientific and Technical Information of China (English)

    胡德成; 刁燕; 陈章平

    2011-01-01

    针对传统开放手术病人创伤大、微创手术医生易疲劳等现状,设计出一种基于混联结构的微创手术机器人.为满足微创手术的各种复杂动作,该机器人采用冗余8自由度结构提高其灵活性;结合球关节结构紧凑特点,所设计机器人采用串并联相结合的混联结构提高自身刚度,满足微创手术机器人高精度、小尺寸要求.依据所设计结构,在Matlab软件中对机器人的运动学、灵活工作空间等求解及仿真,论证了结构设计的合理性.%Specific to big trauma of patients in traditional open surgery and easy fatigue of doctors inMinimally Invasive Surgery(MIS),a MIS robot based on hybrid structure Was designed,which could meetvarious complex movements in MIS by applying redundancy 8 DOF to improve itsflexibility;Combined withthe compact structure of globe joint,the robot designed adopts hybrid structure with series and parallel corn-bination to improve its free stiffness and meet the requirement of MIS robot for high precision and smallsize.According to the structure design,simulation and solving for the kinematics andflexible space of robotis carried out with MATLAB software,which rationality of the structure design is demorhstrated.

  9. Hybrid Fuel Cells Power for Long Duration Robot Missions in Field Environments

    OpenAIRE

    Thangavelautham, Jekan; Gallardo, Danielle; Strawser, Daniel; Dubowsky, Steven

    2017-01-01

    Mobile robots are often needed for long duration missions. These include search and rescue, sentry, repair, surveillance and entertainment. Current power supply technology limit walking and climbing robots from many such missions. Internal combustion engines have high noise and emit toxic exhaust while rechargeable batteries have low energy densities and high rates of self-discharge. In theory, fuel cells do not have such limitations. In particular Proton Exchange Membrane (PEMs) can provide ...

  10. Research on biomimetic underwater vehicles for underwater ISR

    Science.gov (United States)

    Szymak, Piotr; Praczyk, Tomasz; Naus, Krzysztof; Szturomski, Bogdan; Malec, Marcin; Morawski, Marcin

    2016-05-01

    Autonomous Biomimetic Underwater Vehicles BUVs driven by an undulating propulsion are a new branch in an area of an underwater robotics. They imitate both the construction and kinematics of a motion of underwater living organisms, e.g. fishes. Such vehicles have several features crucial from the point of view of military applications, e.g. larger secrecy and potential range of operation. The paper presents results of the research on BUVs carried out within two (Polish and EDA) projects both led by Polish Naval Academy. At the beginning, the initial efforts in building Polish BUV called CyberFish are included. Then, selected results of the tests of subsystems, e.g. navigational and 3D model of BUV built within national project are described. Next, the initial research achieved in the international project are showed. At the end, the schedule of the research planned to carry out within both projects is inserted. The paper is mainly focused on the hardware development of the BUVs.

  11. Evaluation of three force-position hybrid control methods for a robot-based biological joint-testing system.

    Science.gov (United States)

    Hsieh, Hong-Jung; Hu, Chih-Chung; Lu, Tung-Wu; Lu, Hsuan-Lun; Kuo, Mei-Ying; Kuo, Chien-Chung; Hsu, Horng-Chaung

    2016-06-07

    Robot-based joint-testing systems (RJTS) can be used to perform unconstrained laxity tests, measuring the stiffness of a degree of freedom (DOF) of the joint at a fixed flexion angle while allowing the other DOFs unconstrained movement. Previous studies using the force-position hybrid (FPH) control method proposed by Fujie et al. (J Biomech Eng 115(3):211-7, 1993) focused on anterior/posterior tests. Its convergence and applicability on other clinically relevant DOFs such as valgus/varus have not been demonstrated. The current s1tudy aimed to develop a 6-DOF RJTS using an industrial robot, to propose two new force-position hybrid control methods, and to evaluate the performance of the methods and FPH in controlling the RJTS for anterior/posterior and valgus/varus laxity tests of the knee joint. An RJTS was developed using an industrial 6-DOF robot with a 6-component load-cell attached at the effector. The performances of FPH and two new control methods, namely force-position alternate control (FPA) and force-position hybrid control with force-moment control (FPHFM), for unconstrained anterior/posterior and valgus/varus laxity tests were evaluated and compared with traditional constrained tests (CT) in terms of the number of control iterations, total time and the constraining forces and moments. As opposed to CT, the other three control methods successfully reduced the constraining forces and moments for both anterior/posterior and valgus/varus tests, FPHFM being the best followed in order by FPA and FPH. FPHFM had root-mean-squared constraining forces and moments of less than 2.2 N and 0.09 Nm, respectively at 0° flexion, and 2.3 N and 0.14 Nm at 30° flexion. The corresponding values for FPH were 8.5 N and 0.33 Nm, and 11.5 N and 0.45 Nm, respectively. Given the same control parameters including the compliance matrix, FPHFM and FPA reduced the constraining loads of FPH at the expense of additional control iterations, and thus increased total time, FPA

  12. Design, Development and Testing of Underwater Vehicles: ITB Experience

    CERN Document Server

    Muljowidodo, Said D; Budiyono, Agus; Nugroho, Sapto A

    2008-01-01

    The last decade has witnessed increasing worldwide interest in the research of underwater robotics with particular focus on the area of autonomous underwater vehicles (AUVs). The underwater robotics technology has enabled human to access the depth of the ocean to conduct environmental surveys, resources mapping as well as scientific and military missions. This capability is especially valuable for countries with major water or oceanic resources. As an archipelagic nation with more than 13,000 islands, Indonesia has one of the most abundant living and non-organic oceanic resources. The needs for the mapping, exploration, and environmental preservation of the vast marine resources are therefore imperative. The challenge of the deep water exploration has been the complex issues associated with hazardous and unstructured undersea and sea-bed environments. The paper reports the design, development and testing efforts of underwater vehicle that have been conducted at Institut Teknologi Bandung. Key technology areas...

  13. Underwater Propulsion Principle for a Non-superposition Amphibious Transformable Robot%非叠加型可变形两栖机器人水下推进方法

    Institute of Scientific and Technical Information of China (English)

    王明辉; 马书根; 李斌; 李楠; 李立

    2015-01-01

    受自然界中变形虫和生物蛇启发,将可变形和链式构型特性引入两栖机器人。通过运动特性、水环境适应性和可变形能力扩展等综合分析,设计了没有添加额外水下推进机构的非叠加型两栖机器人链式可变形构型。该机器人在陆地环境具有较高机动性外,还具有履带划水和仿生划水组合的复合推进方式。提出基于理想推进器的履带划水推进模型;针对仿生划水时运动学与流体力的耦合关系,提出基于拉格朗日方程的运动学-动力学联合运动模型,并建立了转向模型,完成仿生推进方式的水中机动性能分析。通过仿真分析了履刺高度和分布等机构参数以及幅值、频率等运动参数对水下推进性能的影响。利用基于链式可变形构型研制的机器人样机Amoeba-II进行了水环境试验,验证该构型在水下推进中的有效性,并对履带划水和仿生划水的推进效率、稳定性进行对比。%Inspired by amoebae and snake in the nature, the transformable capability and link-type structure is brought in an amphibious robot. The link-type transformable configuration without adding extra underwater propulsion mechanism is designed for an amphibious robot through analysis on the movement characteristics, extending on the water environment adaptability and transformable ability, which has crawler-swimming propulsion mode and the bionic propulsion mode. The model of the crawler-swimming propulsion mode is established based on the ideal propeller. Aiming at the coupling relationship between the kinematics and fluid force in the fish-like propulsion mode, the associated model on the kinematics and dynamics is put forward based on the Lagrange equation. Together with the steering model, the motion performance of the bionic propulsion is analyzed. The simulation demonstrates the influence of the mechanism parameters such as height and distribution of the track

  14. Design of a modular autonomous underwater vehicle for archaeological investigations

    OpenAIRE

    Reggiannini, Marco; Pascali, Maria Antonietta; Moroni, Davide; Salvetti, Ovidio; Allotta,Benedetto; Bartolini, Fabio; Bellavia, Fabio; Colombo, Carlo; Conti, Roberto; Costanzi, Riccardo; Fanfani, Marco; Gelli, Jonathan; Monni, Niccol?; Natalini, Marco; Pazzaglia, Fabio

    2015-01-01

    MARTA (MARine Tool for Archaeology) is a modular AUV (Autonomous Underwater Vehicle) designed and developed by the University of Florence in the framework of the ARROWS (ARchaeological RObot systems for the World's Seas) FP7 European project. The ARROWS project challenge is to provide the underwater archaeologists with technological tools for cost affordable campaigns: i.e. ARROWS adapts and develops low cost AUV technologies to significantly reduce the cost of archaeological operations, cove...

  15. Underwater Sound Reference Division

    Data.gov (United States)

    Federal Laboratory Consortium — The Underwater Sound Reference Division (USRD) serves as the U.S. standardizing activity in the area of underwater acoustic measurements, as the National Institute...

  16. Underwater Sound Reference Division

    Data.gov (United States)

    Federal Laboratory Consortium — The Underwater Sound Reference Division (USRD) serves as the U.S. standardizing activity in the area of underwater acoustic measurements, as the National Institute...

  17. Performance of Underwater Weldments

    Science.gov (United States)

    1990-09-05

    Underwater Wet Welds," Underwater Welding Soudage Sous L’Eau, Proceedings of the International Conference held at Trondheim, Norway, 27-28 June 1983 under...Wet Welds", Underwater Welding Soudage Sous L’Eau, Proceedings of the International Conference held at Trondheim, Norway, 27-28 June 1983 under the

  18. Visual feedback navigation for cable tracking by autonomous underwater vehicles; Jiritsugata kaichu robot no gazo shori ni motozuku cable jido tsuiju

    Energy Technology Data Exchange (ETDEWEB)

    Takai, M.; Ura, T. [The University of Tokyo, Tokyo (Japan). Institute of Industrial Science; Balasuriya, B.; Lam, W. [The University of Tokyo, Tokyo (Japan); Kuroda, Y. [Meiji Univ., Tokyo (Japan)

    1997-08-01

    A vision processing unit was introduced into autonomous underwater vehicles (AUV) to judge the visual situation and to construct an environmental observation platform that can collect wide-range and high-precision measurement data. The cable optionally installed at the bottom of the sea was recognized by vision processing to propose automatic tracking technique. An estimator that compensates for the hough conversion or time delay and a PSA controller that is used as a target value set mechanism or lower-level controller were introduced as the factor technology required for automatic tracking. The feature of the automatic tracking is that a general-purpose platform which can observe the prescribed range environmentally in high precision and density can be constructed because the observation range required by the observer can be prescribed near the sea-bottom surface using a cable. The verification result off Omi Hachiman at Lake Biwa showed that AUV can be used for the high-precision environmental survey in the range prescribed near the sea-bottom surface using a cable. 8 refs., 8 figs., 1 tab.

  19. A Hybrid of Modified PSO and Local Search on a Multi-robot Search System

    Directory of Open Access Journals (Sweden)

    Mohammad Naim Rastgoo

    2015-07-01

    Full Text Available Particle swarm optimization (PSO, a new population-based algorithm, has recently been used on multi-robot systems. Although this algorithm is applied to solve many optimization problems as well as multi-robot systems, it has some drawbacks when it is applied on multi-robot search systems to find a target in a search space containing big static obstacles. One of these defects is premature convergence. This means that one of the properties of basic PSO is that when particles are spread in a search space, as time increases they tend to converge in a small area. This shortcoming is also evident on a multi-robot search system, particularly when there are big static obstacles in the search space that prevent the robots from finding the target easily; therefore, as time increases, based on this property they converge to a small area that may not contain the target and become entrapped in that area. Another shortcoming is that basic PSO cannot guarantee the global convergence of the algorithm. In other words, initially particles explore different areas, but in some cases they are not good at exploiting promising areas, which will increase the search time. This study proposes a method based on the particle swarm optimization (PSO technique on a multi-robot system to find a target in a search space containing big static obstacles. This method is not only able to overcome the premature convergence problem but also establishes an efficient balance between exploration and exploitation and guarantees global convergence, reducing the search time by combining with a local search method, such as A-star. To validate the effectiveness and usefulness of algorithms, a simulation environment has been developed for conducting simulation-based experiments in different scenarios and for reporting experimental results. These experimental results have demonstrated that the proposed method is able to overcome the premature convergence problem and guarantee global

  20. A new hybrid machine design for a 6 DOF industrial robot arm

    CSIR Research Space (South Africa)

    Shaik, AA

    2012-05-01

    Full Text Available of units sold since 1960 amounted to more than 2 230 000, and the IFR (International Federation of Robotics) estimates the total number of operational industrial robots worldwide to be between 1 021 000 and 1 300 000 units at the end of 2009. [Exec sum... productivity to be competitive on the global market and the competition for market share in rising consumer markets. [IFR 1] The main drivers for the strong recovery in 2010 were automotive manufacturers and the electronics industry. In addition...

  1. Design of a small underwater robot control system applied in ship detection%一种小型船检水下机器人控制系统

    Institute of Scientific and Technical Information of China (English)

    郭佳

    2015-01-01

    本文主要分析履带式爬壁机器人控制系统。由于船舶表面结构特殊,设计一款履带式吸附机器人应用于船舶检测,可以代替人工在相对狭小空间或危险的环境中进行船体检测工作。通过控制机器人的自由移动,实现测量方法的全方位改进,提高船舶检测效率。%This paper is analysis of the “tracked wall-climbing robot” control system, due to the special structure of the ship surface,and submitted a detection method based on crawler measuring robot and applied in ship detection, replacing human doing hull routine detection small space or dangerous environments. Through remote control robot move freely, it can be achieved all-round improvement of measurement methods, improving detection efficiency.

  2. Combining a hybrid robotic system with a bain-machine interface for the rehabilitation of reaching movements: A case study with a stroke patient.

    Science.gov (United States)

    Resquin, F; Ibañez, J; Gonzalez-Vargas, J; Brunetti, F; Dimbwadyo, I; Alves, S; Carrasco, L; Torres, L; Pons, Jose Luis

    2016-08-01

    Reaching and grasping are two of the most affected functions after stroke. Hybrid rehabilitation systems combining Functional Electrical Stimulation with Robotic devices have been proposed in the literature to improve rehabilitation outcomes. In this work, we present the combined use of a hybrid robotic system with an EEG-based Brain-Machine Interface to detect the user's movement intentions to trigger the assistance. The platform has been tested in a single session with a stroke patient. The results show how the patient could successfully interact with the BMI and command the assistance of the hybrid system with low latencies. Also, the Feedback Error Learning controller implemented in this system could adjust the required FES intensity to perform the task.

  3. Innovation and Operation with Robotized Systems

    OpenAIRE

    Rigaud, Vincent

    2009-01-01

    The presentation will summarized state of the art of underwater vehicles in the different domains of applications as, offshore, military and oceanographic business. The present paper is a focus which reports on the status of French Institute for Sea Exploitation (Ifremer) new Trends in underwater systems as an illustration of research in the underwater robotics domain applied to oceanographic applications. It will focus on recent innovations, improvements and operational references of the Rem...

  4. Robotics combined with electrical stimulation: hybrid support of arm and hand for functional training after stroke

    NARCIS (Netherlands)

    Westerveld, A.J.

    2014-01-01

    Reach, grasp and release is part of many functional movements. Graying of society leads to more stroke victims and fewer health care professionals. Technology might be a solution to support certain rehabilitation therapies in future health care. Robotic systems have been developed for support of arm

  5. Robotics combined with electrical stimulation: hybrid support of arm and hand for functional training after stroke

    NARCIS (Netherlands)

    Westerveld, Ard

    2014-01-01

    Reach, grasp and release is part of many functional movements. Graying of society leads to more stroke victims and fewer health care professionals. Technology might be a solution to support certain rehabilitation therapies in future health care. Robotic systems have been developed for support of arm

  6. Soft robotics: a bioinspired evolution in robotics.

    Science.gov (United States)

    Kim, Sangbae; Laschi, Cecilia; Trimmer, Barry

    2013-05-01

    Animals exploit soft structures to move effectively in complex natural environments. These capabilities have inspired robotic engineers to incorporate soft technologies into their designs. The goal is to endow robots with new, bioinspired capabilities that permit adaptive, flexible interactions with unpredictable environments. Here, we review emerging soft-bodied robotic systems, and in particular recent developments inspired by soft-bodied animals. Incorporating soft technologies can potentially reduce the mechanical and algorithmic complexity involved in robot design. Incorporating soft technologies will also expedite the evolution of robots that can safely interact with humans and natural environments. Finally, soft robotics technology can be combined with tissue engineering to create hybrid systems for medical applications.

  7. Marine Robots : Applications in Marine Archaeology

    Digital Repository Service at National Institute of Oceanography (India)

    Maurya, P.K.; Pascoal, A.; Gaur, A.

    This article explains how underwater robots have the potential to become companions (buddies) to divers, effectively assisting them by carrying tools and instrumentation and taking high resolution images under the commands of the divers...

  8. Hybrid neural network fraction integral terminal sliding mode control of an Inchworm robot manipulator

    Science.gov (United States)

    Rahmani, Mehran; Ghanbari, Ahmad; Ettefagh, Mir Mohammad

    2016-12-01

    This paper proposes a control scheme based on the fraction integral terminal sliding mode control and adaptive neural network. It deals with the system model uncertainties and the disturbances to improve the control performance of the Inchworm robot manipulator. A fraction integral terminal sliding mode control applies to the Inchworm robot manipulator to obtain the initial stability. Also, an adaptive neural network is designed to approximate the system uncertainties and unknown disturbances to reduce chattering phenomena. The weight matrix of the proposed adaptive neural network can be updated online, according to the current state error information. The stability of the proposed control method is proved by Lyapunov theory. The performance of the adaptive neural network fraction integral terminal sliding mode control is compared with three other conventional controllers such as sliding mode control, integral terminal sliding mode control and fraction integral terminal sliding mode control. Simulation results show the effectiveness of the proposed control method.

  9. Inverse Kinematics of a Humanoid Robot with Non-Spherical Hip: A Hybrid Algorithm Approach

    Directory of Open Access Journals (Sweden)

    Rafael Cisneros Limón

    2013-04-01

    Full Text Available This paper describes an approach to solve the inverse kinematics problem of humanoid robots whose construction shows a small but non negligible offset at the hip which prevents any purely analytical solution to be developed. Knowing that a purely numerical solution is not feasible due to variable efficiency problems, the proposed one first neglects the offset presence in order to obtain an approximate “solution” by means of an analytical algorithm based on screw theory, and then uses it as the initial condition of a numerical refining procedure based on the Levenberg‐Marquardt algorithm. In this way, few iterations are needed for any specified attitude, making it possible to implement the algorithm for real‐time applications. As a way to show the algorithm’s implementation, one case of study is considered throughout the paper, represented by the SILO2 humanoid robot.

  10. Hybrid Rendering Architecture for Realtime and Photorealistic Simulation of Robot-Assisted Surgery.

    Science.gov (United States)

    Müller, Sebastijan; Bihlmaier, Andreas; Irgenfried, Stephan; Wörn, Heinz

    2016-01-01

    In this paper we present a method for combining realtime and non-realtime (photorealistic) rendering with open source software. Realtime rendering provides sufficient realism and is a good choice for most simulation and regression testing purposes in robot-assisted surgery. However, for proper end-to-end testing of the system, some computer vision algorithms require high fidelity images that capture more minute details of the real scene. One of the central practical obstacles to combining both worlds in a uniform way is creating models that are suitable for both kinds of rendering paradigms. We build a modeling pipeline using open source tools that builds on established, open standards for data exchange. The result is demonstrated through a unified model of the medical OpenHELP phantom used in the Gazebo robotics simulator, which can at the same time be rendered with more visual fidelity in the Cycles raytracer.

  11. Toward Hybrid Force/Position Control for the Cerberus Epicardial Robot

    OpenAIRE

    Breault, Macauley S.; Costanza, Adam D.; Wood, Nathan A.; Passineau, Michael J.; Riviere, Cameron N.

    2015-01-01

    Gene therapies have emerged as a promising treatment for congestive heart failure, yet they lack a method for minimally invasive, uniform delivery. To address this need we developed Cerberus, a minimally invasive parallel wire robot for cardiac interventions. Prior work on Cerberus was limited to controlling the device using only position feedback. In order to ensure safety for both the patient and the device, as well as to improve the performance of the device, this paper presents work on en...

  12. Inverse Kinematics of a Humanoid Robot with Non-Spherical Hip: A Hybrid Algorithm Approach

    OpenAIRE

    2013-01-01

    This paper describes an approach to solve the inverse kinematics problem of humanoid robots whose construction shows a small but non negligible offset at the hip which prevents any purely analytical solution to be developed. Knowing that a purely numerical solution is not feasible due to variable efficiency problems, the proposed one first neglects the offset presence in order to obtain an approximate “solution” by means of an analytical algorithm based on screw theory, a...

  13. A Hybrid Method of Analyzing Patents for Sustainable Technology Management in Humanoid Robot Industry

    Directory of Open Access Journals (Sweden)

    Jongchan Kim

    2016-05-01

    Full Text Available A humanoid, which refers to a robot that resembles a human body, imitates a human’s intelligence, behavior, sense, and interaction in order to provide various types of services to human beings. Humanoids have been studied and developed constantly in order to improve their performance. Humanoids were previously developed for simple repetitive or hard work that required significant human power. However, intelligent service robots have been developed actively these days to provide necessary information and enjoyment; these include robots manufactured for home, entertainment, and personal use. It has become generally known that artificial intelligence humanoid technology will significantly benefit civilization. On the other hand, Successful Research and Development (R & D on humanoids is possible only if they are developed in a proper direction in accordance with changes in markets and society. Therefore, it is necessary to analyze changes in technology markets and society for developing sustainable Management of Technology (MOT strategies. In this study, patent data related to humanoids are analyzed by various data mining techniques, including topic modeling, cross-impact analysis, association rule mining, and social network analysis, to suggest sustainable strategies and methodologies for MOT.

  14. Blind equalization for underwater communications

    NARCIS (Netherlands)

    Blom, Koen Cornelis Hubertus

    2014-01-01

    Underwater wireless (sensor) networks would vastly improve man's ability to explore and exploit remote aquatic environments. Despite underwater sensor and vehicle technology being relatively mature, underwater communications is still a major challenge. The most challenging characteristics of the und

  15. A distributed architecture for enabling autonomous underwater intervention missions

    OpenAIRE

    Palomeras N.; Garcia J.C.; Prats M.; Fernandez J.J.; Sanz P.J.; Ridao P.

    2010-01-01

    This work introduces the main aspects related with a new architecture defined for an ongoing research project named RAUVI (i.e. Reconfigurable AUV for Intervention Missions). Two initially independent architectures for the underwater vehicle and the robotic arm have been combined into a new schema that allows for reactive and deliberative behaviours on both subsystems. Reactive actions are performed through a low-level control layer in communication with the robot hardwar...

  16. A scalable hybrid multi-robot SLAM method for highly detailed maps

    NARCIS (Netherlands)

    M. Pfingsthorn; B. Slamet; A. Visser

    2007-01-01

    Recent successful SLAM methods employ hybrid map representations combining the strengths of topological maps and occupancy grids. Such representations often facilitate multi-agent mapping. In this paper, a successful SLAM method is presented, which is inspired by the manifold data structure by Howar

  17. A scalable hybrid multi-robot SLAM method for highly detailed maps

    NARCIS (Netherlands)

    Pfingsthorn, M.; Slamet, B.; Visser, A.

    2008-01-01

    Recent successful SLAM methods employ hybrid map representations combining the strengths of topological maps and occupancy grids. Such representations often facilitate multi-agent mapping. In this paper, a successful SLAM method is presented, which is inspired by the manifold data structure by Howar

  18. Underwater camera with depth measurement

    Science.gov (United States)

    Wang, Wei-Chih; Lin, Keng-Ren; Tsui, Chi L.; Schipf, David; Leang, Jonathan

    2016-04-01

    The objective of this study is to develop an RGB-D (video + depth) camera that provides three-dimensional image data for use in the haptic feedback of a robotic underwater ordnance recovery system. Two camera systems were developed and studied. The first depth camera relies on structured light (as used by the Microsoft Kinect), where the displacement of an object is determined by variations of the geometry of a projected pattern. The other camera system is based on a Time of Flight (ToF) depth camera. The results of the structural light camera system shows that the camera system requires a stronger light source with a similar operating wavelength and bandwidth to achieve a desirable working distance in water. This approach might not be robust enough for our proposed underwater RGB-D camera system, as it will require a complete re-design of the light source component. The ToF camera system instead, allows an arbitrary placement of light source and camera. The intensity output of the broadband LED light source in the ToF camera system can be increased by putting them into an array configuration and the LEDs can be modulated comfortably with any waveform and frequencies required by the ToF camera. In this paper, both camera were evaluated and experiments were conducted to demonstrate the versatility of the ToF camera.

  19. Underwater Scene Composition

    Science.gov (United States)

    Kim, Nanyoung

    2009-01-01

    In this article, the author describes an underwater scene composition for elementary-education majors. This project deals with watercolor with crayon or oil-pastel resist (medium); the beauty of nature represented by fish in the underwater scene (theme); texture and pattern (design elements); drawing simple forms (drawing skill); and composition…

  20. Underwater Acoustic Networking Techniques

    CERN Document Server

    Otnes, Roald; Casari, Paolo; Goetz, Michael; Husøy, Thor; Nissen, Ivor; Rimstad, Knut; van Walree, Paul; Zorzi, Michele

    2012-01-01

    This literature study presents an overview of underwater acoustic networking. It provides a background and describes the state of the art of all networking facets that are relevant for underwater applications. This report serves both as an introduction to the subject and as a summary of existing protocols, providing support and inspiration for the development of network architectures.

  1. DESIGN OF ROBOTIC COLONIZER CONTROL SYSTEM FOR AQUEOUS ENVIRONMENT

    Directory of Open Access Journals (Sweden)

    C.VENKATESH

    2013-05-01

    Full Text Available Now a days there is a huge interest on underwater communication systems for various applications in order to explore aqueous environments. Intelligent robots and cooperative multi- agent robotic systems can be very efficient tools to speed up search and research operations in remote areas. Robots are also useful to do jobs inareas and in situations that are hazardous for human, they can go anywhere that is not reachable my humans and can go into gaps and move trough small holes that are impossible for humans and even trained dogs. in this paper, a wireless underwater mobile robot system is designed in order to study the behavior of artemia group. anew idea has been presented for underwater mobile robot system which is consists of two parts, first is the underwater mechanical robot and the second is ZigBee wireless based mobile robot which controls and moves the first part. by this system different patterns motion control (linear, circular, zigzag, etc. has been performed and proved the ability to control group of robot by controlling the group of artemia and monitoring the underwater mobile robot control with the help of water proof RF wireless camera and also explore the details present around the mobile robot

  2. Hybrid echo and x-ray image guidance for cardiac catheterization procedures by using a robotic arm: a feasibility study

    Energy Technology Data Exchange (ETDEWEB)

    Ma Yingliang; Penney, Graeme P; Razavi, Reza; Rhode, Kawal S [Division of Imaging Sciences, King' s College, London SE1 7EH (United Kingdom); Bos, Dennis; Frissen, Peter [Philips Applied Technologies, High Tech. Campus 7, 5656 AE Eindhoven (Netherlands); Rinaldi, C Aldo, E-mail: y.ma@kcl.ac.u [Department of Cardiology, Guy' s and St Thomas' NHS Foundation Trust, London SE1 7EH (United Kingdom)

    2010-07-07

    We present a feasibility study on hybrid echocardiography (echo) and x-ray image guidance for cardiac catheterization procedures. A self-tracked, remotely operated robotic arm with haptic feedback was developed that attached to a standard x-ray table. This was used to safely manipulate a three-dimensional (3D) trans-thoracic echo probe during simultaneous x-ray fluoroscopy and echo acquisitions. By a combination of calibration and tracking of the echo and x-ray systems, it was possible to register the 3D echo images with the 2D x-ray images. Visualization of the combined data was achieved by either overlaying triangulated surfaces extracted from segmented echo data onto the x-ray images or by overlaying volume rendered 3D echo data. Furthermore, in order to overcome the limited field of view of the echo probe, it was possible to create extended field of view (EFOV) 3D echo images by co-registering multiple tracked echo data to generate larger roadmaps for procedure guidance. The registration method was validated using a cross-wire phantom and showed a 2D target registration error of 3.5 mm. The clinical feasibility of the method was demonstrated during two clinical cases for patients undergoing cardiac pacing studies. The EFOV technique was demonstrated using two healthy volunteers. (note)

  3. A Robotic System with a Hybrid Motion Cueing Controller for Inertia Tensor Approximation in Micro-Manipulations

    Directory of Open Access Journals (Sweden)

    Umar Asif

    2011-09-01

    Full Text Available This paper summarizes the development of a robotic system for the approximation of inertia tensor of micro‐sized rigid bodies. We described the design and computer‐based simulation of a 6‐DOF motion platform in our earlier work [32] that benefits from an anthropological serial manipulator design. In [32] we emphasized that, in contrast to a standard configuration based on linear actuators, a mechanism with actuator design inspired from an anthropological kinematic structure offers relatively a larger motion envelope and higher dexterity making it a viable motion platform for micromanipulations. After having described the basic design and kinematic analysis of our motion platform in [32], we now aim to propose an advanced motion cueing algorithm for facilitating the identification of inertial parameters at micron‐level. The motion cueing algorithm for achieving high fidelity dynamic simulation is described in this paper using a hybrid force‐position‐based controller. The inertia tensor identification is done by generating a controlled motion on the specimen and measuring the resultant forces and moments to approximate the inertia tensor using rigid body dynamics equations. The paper evaluates the performance of the controller using closed‐loop dynamic simulations and validates the significance of the proposed method through experimental results.

  4. Three-dimensional needle-tip localization by electric field potential and camera hybridization for needle electromyography exam robotic simulator

    Science.gov (United States)

    He, Siyu; Gomez-Tames, Jose; Yu, Wenwei

    2016-01-01

    As one of neurological tests, needle electromygraphy exam (NEE) plays an important role to evaluate the conditions of nerves and muscles. Neurology interns and novice medical staff need repetitive training to improve their skills in performing the exam. However, no training systems are able to reproduce multiple pathological conditions to simulate real needle electromyogram exam. For the development of a robotic simulator, three components need to be realized: physical modeling of upper limb morphological features, position-dependent electromyogram generation, and needle localization; the latter is the focus of this study. Our idea is to couple two types of sensing mechanism in order to acquire the needle-tip position with high accuracy. One is to segment the needle from camera images and calculate its insertion point on the skin surface by a top-hat transform algorithm. The other is voltage-based depth measurement, in which a conductive tissue-like phantom was used to realize both needle-tip localization and physical sense of needle insertion. For that, a pair of electrodes was designed to generate a near-linear voltage distribution along the depth direction of the tissue-like phantom. The accuracy of the needle-tip position was investigated by the electric field potential and camera hybridization. The results showed that the needle tip could be detected with an accuracy of 1.05±0.57 mm. PMID:27382339

  5. Factors Predicting the Effects of Hybrid Assistive Limb Robot Suit during the Acute Phase of Central Nervous System Injury.

    Science.gov (United States)

    Chihara, Hideo; Takagi, Yasushi; Nishino, Kazunari; Yoshida, Kazumichi; Arakawa, Yoshiki; Kikuchi, Takayuki; Takenobu, Yohei; Miyamoto, Susumu

    2016-01-01

    To improve the activities of daily living of patients with injury to the central nervous system, physical therapy starting from the acute phase of the injury is important. Recently, the efficacy of physical therapy using a hybrid assistive limb (HAL) robot suit was reported. However, individual differences exist in the effects of HAL. We investigated factors predicting the effects of HAL in 15 patients at our institution with central nervous system injury, primarily due to stroke, who underwent training using HAL during the acute phase. Patients were classified as either "with HAL suitability" or "without HAL suitability" based on scores from 10-m walking speed, gait, satisfaction, and pain. In both groups, Brunnstrom stage before HAL intervention, Fugl-Meyer assessment (FMA), stroke impairment assessment set (SIAS), and functional independence measure (FIM) were evaluated. Although motor function items did not differ significantly, FIM cognitive function items (P = 0.036), visuospatial perception items on SIAS (P = 0.0277), and pain items on SIAS (P = 0.0122) differed significantly between groups. These results indicated that training using HAL does not involve pain in patients with central nervous system injury during the acute phase, and exhibits positive effects in patients without pain and with high communication ability and visuospatial perception function. When conducting HAL intervention, incorporating functional assessment scores (FIM and SIAS), including peripheral items, may be useful to predict the suitability of HAL.

  6. Demonstration of a semi-autonomous hybrid brain-machine interface using human intracranial EEG, eye tracking, and computer vision to control a robotic upper limb prosthetic.

    Science.gov (United States)

    McMullen, David P; Hotson, Guy; Katyal, Kapil D; Wester, Brock A; Fifer, Matthew S; McGee, Timothy G; Harris, Andrew; Johannes, Matthew S; Vogelstein, R Jacob; Ravitz, Alan D; Anderson, William S; Thakor, Nitish V; Crone, Nathan E

    2014-07-01

    To increase the ability of brain-machine interfaces (BMIs) to control advanced prostheses such as the modular prosthetic limb (MPL), we are developing a novel system: the Hybrid Augmented Reality Multimodal Operation Neural Integration Environment (HARMONIE). This system utilizes hybrid input, supervisory control, and intelligent robotics to allow users to identify an object (via eye tracking and computer vision) and initiate (via brain-control) a semi-autonomous reach-grasp-and-drop of the object by the MPL. Sequential iterations of HARMONIE were tested in two pilot subjects implanted with electrocorticographic (ECoG) and depth electrodes within motor areas. The subjects performed the complex task in 71.4% (20/28) and 67.7% (21/31) of trials after minimal training. Balanced accuracy for detecting movements was 91.1% and 92.9%, significantly greater than chance accuracies (p system improvements implemented for the second subject. Our hybrid-BMI design prevented all but one baseline false positive from initiating the system. The novel approach demonstrated in this proof-of-principle study, using hybrid input, supervisory control, and intelligent robotics, addresses limitations of current BMIs.

  7. Optimal Sensor Layouts in Underwater Locomotory Systems

    Science.gov (United States)

    Colvert, Brendan; Kanso, Eva

    2015-11-01

    Retrieving and understanding global flow characteristics from local sensory measurements is a challenging but extremely relevant problem in fields such as defense, robotics, and biomimetics. It is an inverse problem in that the goal is to translate local information into global flow properties. In this talk we present techniques for optimization of sensory layouts within the context of an idealized underwater locomotory system. Using techniques from fluid mechanics and control theory, we show that, under certain conditions, local measurements can inform the submerged body about its orientation relative to the ambient flow, and allow it to recognize local properties of shear flows. We conclude by commenting on the relevance of these findings to underwater navigation in engineered systems and live organisms.

  8. Development of tools and techniques for monitoring underwater artifacts

    Science.gov (United States)

    Lazar, Iulian; Ghilezan, Alin; Hnatiuc, Mihaela

    2016-12-01

    The different assessments provide information on the best methods to approach an artifact. The presence and extent of potential threats to archaeology must also be determined. In this paper we present an underwater robot, built in the laboratory, able to identify the artifact and to get it to the surface. It is an underwater remotely operated vehicle (ROV) which can be controlled remotely from the shore, a boat or a control station and communication is possible through an Ethernet cable with a maximum length of 100 m. The robot is equipped with an IP camera which sends real time images that can be accessed anywhere from within the network. The camera also has a microSD card to store the video. The methods developed for data communication between the robot and the user is present. A communication protocol between the client and server is developed to control the ROV.

  9. Emulating a robotic manipulator arm with an hybrid motion-control system

    Science.gov (United States)

    Aragón-González, G.; León-Galicia, A.; Noriega-Hernández, M.; Salazar-Hueta, A.

    2015-01-01

    A motion control system with four and 1/2 degrees of freedom, designed to move small objects within a 0.25 m3 space, parallel to a horizontal table, with high speed and performance similar to a robotic manipulator arm was built. The machine employs several actuators and control devices. Its main characteristic is to incorporate a servomotor, steeper motors, electromechanical and fluid power actuators and diverse control resources. A group of actuators arranged on a spherical coordinates system is attached to the servomotor platform. A linear pneumatic actuator with an angular grip provides the radial extension and load clamping capacity. Seven inductive proximity sensors and one encoder provide feedback, for operating the actuators under closed loop conditions. Communication between the sensors and control devices is organized by a PLC. A touch screen allows governing the system remotely, easily and interactively, without knowing the specific programming language of each control component. The graphic environment on the touch screen guides the user to design and store control programs, establishing coordinated automatic routines for moving objects in space, simulation and implementation of industrial positioning or machining processes.

  10. A Review on the Key Software and Hardware Technology of the Advanced Robotic Manipulator Used for Underwater Structures Repair%水下结构物修复用先进机械手软硬件关键技术综述

    Institute of Scientific and Technical Information of China (English)

    周灿丰; 孙潇; 高辉; 焦向东

    2015-01-01

    机器人进行水下结构物维修时,不仅处于非结构化环境,而且存在浮游碰撞危险,作业区域可达性差,水下环境识别困难等特殊问题,所以,进一步提升机器人智能化水平非常重要。英国GRL公司用于焊缝检验的先进海底机械手A RM系统采用先进的人机接口以及工厂用机器人的某些技术,实现了机械手的控制。以ARM的开发经验为基础,目前GRL公司正在研制更为先进的机器人控制系统Polecat ,该系统将用于ROV导航员的训练平台Rovsim以及一系列欧盟和商业项目之中,其适用场合不仅包括海洋工程,也包括核电和其他环境。%When a robot is to carry out underwater structure repair ,it works in an unstructured environment .More significantly , some special problems should be solved , such as collision hazard in floating ,bad accessibility to working areas ,and difficult registration in underwater en‐vironment ,so to improve the intelligence level of subsea robots is very important .This paper de‐scribes the development of the ARM System ,an advanced subsea manipulator for weld inspection made by GRL UK .ARM uses an advanced man‐machine interface and provides robotic control of the manipulator adopting techniques developed in factory robots . A more advanced robotic control system ,Polecat ,is currently being developed by GRL UK ,based on experience gained from ARM .Polecat will be used in an ROV pilot trainer ,Rovsim ,and a number of European Union projects and other commercial projects ,which can be used subsea or in the nuclear power field .

  11. A New HLA-Based Distributed Control Architecture for Agricultural Teams of Robots in Hybrid Applications with Real and Simulated Devices or Environments

    Directory of Open Access Journals (Sweden)

    Rafael J. Martínez

    2011-04-01

    Full Text Available The control architecture is one of the most important part of agricultural robotics and other robotic systems. Furthermore its importance increases when the system involves a group of heterogeneous robots that should cooperate to achieve a global goal. A new control architecture is introduced in this paper for groups of robots in charge of doing maintenance tasks in agricultural environments. Some important features such as scalability, code reuse, hardware abstraction and data distribution have been considered in the design of the new architecture. Furthermore, coordination and cooperation among the different elements in the system is allowed in the proposed control system. By integrating a network oriented device server Player, Java Agent Development Framework (JADE and High Level Architecture (HLA, the previous concepts have been considered in the new architecture presented in this paper. HLA can be considered the most important part because it not only allows the data distribution and implicit communication among the parts of the system but also allows to simultaneously operate with simulated and real entities, thus allowing the use of hybrid systems in the development of applications.

  12. A new HLA-based distributed control architecture for agricultural teams of robots in hybrid applications with real and simulated devices or environments.

    Science.gov (United States)

    Nebot, Patricio; Torres-Sospedra, Joaquín; Martínez, Rafael J

    2011-01-01

    The control architecture is one of the most important part of agricultural robotics and other robotic systems. Furthermore its importance increases when the system involves a group of heterogeneous robots that should cooperate to achieve a global goal. A new control architecture is introduced in this paper for groups of robots in charge of doing maintenance tasks in agricultural environments. Some important features such as scalability, code reuse, hardware abstraction and data distribution have been considered in the design of the new architecture. Furthermore, coordination and cooperation among the different elements in the system is allowed in the proposed control system. By integrating a network oriented device server Player, Java Agent Development Framework (JADE) and High Level Architecture (HLA), the previous concepts have been considered in the new architecture presented in this paper. HLA can be considered the most important part because it not only allows the data distribution and implicit communication among the parts of the system but also allows to simultaneously operate with simulated and real entities, thus allowing the use of hybrid systems in the development of applications.

  13. Hybridation GPS/Vision monoculaire pour la navigation autonome d'un robot en milieu extérieur

    OpenAIRE

    Codol, Jean-Marie

    2012-01-01

    We are witnessing nowadays the importation of ICT (Information and Communications Technology) in robotics. These technologies will give birth, in upcoming years, to the general public service robotics. This future, if realised, shall be the result of many research conducted in several domains: mechatronics, telecommunications, automatics, signal and image processing, artificial intelligence ... One particularly interesting aspect in mobile robotics is hence the simultaneous localisation and m...

  14. Underwater wireless communication system

    Energy Technology Data Exchange (ETDEWEB)

    Goh, J H; Shaw, A; Al-Shamma' a, A I, E-mail: j.h.goh@2006.ljmu.ac.u [Liverpool John Moores University, General Engineering Research Institute (GERI), RF and Microwave Group, Byrom Street, Liverpool, L3 3AF (United Kingdom)

    2009-07-01

    Underwater communication has a range of applications including remotely operated vehicle (ROV) and autonomous underwater vehicle (AUV) communication and docking in the offshore industry. Current underwater transmission techniques is primarily utilise sound waves for large distance at lower frequencies and the velocity of sound in water is approximately 1500m/s the resultant communications have problems with multi-path propagation and low bandwidth problems. The use of electromagnetic (EM) techniques underwater has largely been overlooked because of the attenuation due to the conductivity of seawater. However, for short range applications, the higher frequencies and much higher velocity can prove advantageous. This paper will outline a project which will utilise recent investigations that demonstrate EM wave propagation up to the MHz frequency range is possible in seawater.

  15. China's First Salvaging Robot for Nuclear Power Plants

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    @@ Researchers from the CAS Institute of Optics and Electronics in Chengdu,capital of southwest China's Sichuan Province, have been successful in building China's first robot for searching and retrieving underwater foreign objects in nuclear power stations.

  16. Conceptual design of a miniaturized hybrid local actuator for Minimally Invasive Robotic Surgery (MIRS) instruments.

    Science.gov (United States)

    Saedi, Soheil; Mirbagheri, Alireza; Farahmand, Farzam

    2011-01-01

    The actuation mechanism of the tip of an endoscopic instrument is a major problem in designing miniature scale motorized instruments, especially when a high level of functionality and multi degrees of freedom (DOF) are concerned. We evaluated the different possible actuation methods for an endoscopic needle holder and proposed a new design of hybrid local-actuation, including a micro DC motor and a piezoelectric (PZT) actuator. The DC motor provided the long movement course required for opening-closing function of the gripper while the PZT guaranteed the high gripping force required for holding the needle. A compact serial configuration was considered for the actuators, producing an overall size of 10 mm in diameter and 39 mm in length, so that it could be implemented in the limited space available. The efficacy of the design was analyzed in a simulation study, using FEM and it was shown that the needle holder is capable to apply a sufficiently high gripping force of 22 N.

  17. Imaging-guided thoracoscopic resection of a ground-glass opacity lesion in a hybrid operating room equipped with a robotic C-arm CT system.

    Science.gov (United States)

    Hsieh, Chen-Ping; Hsieh, Ming-Ju; Fang, Hsin-Yueh; Chao, Yin-Kai

    2017-05-01

    The intraoperative identification of small pulmonary nodules through video-assisted thoracoscopic surgery remains challenging. Although preoperative CT-guided nodule localization is commonly used to detect tumors during video-assisted thoracoscopic surgery (VATS), this approach carries inherent risks. We report the case of a patient with stage I lung cancer presenting as an area of ground-glass opacity (GGO) in the right upper pulmonary lobe. He successfully underwent a single-stage, CT-guided localization and removal of the pulmonary nodule within a hybrid operating room (OR) equipped with a robotic C-arm.

  18. Multimodal hybrid imaging agents for sentinel node mapping as a means to (re)connect nuclear medicine to advances made in robot-assisted surgery

    Energy Technology Data Exchange (ETDEWEB)

    KleinJan, Gijs H. [Leiden University Medical Hospital, Interventional Molecular Imaging Laboratory, Department of Radiology, Leiden (Netherlands); The Netherlands Cancer Institute - Antoni van Leeuwenhoek Hospital, Department of Nuclear Medicine, Amsterdam (Netherlands); Berg, Nynke S. van den [Leiden University Medical Hospital, Interventional Molecular Imaging Laboratory, Department of Radiology, Leiden (Netherlands); The Netherlands Cancer Institute - Antoni van Leeuwenhoek Hospital, Department of Urology, Amsterdam (Netherlands); Jong, Jeroen de [The Netherlands Cancer Institute - Antoni van Leeuwenhoek Hospital, Department of Pathology, Amsterdam (Netherlands); Wit, Esther M.; Poel, Henk G. van der [The Netherlands Cancer Institute - Antoni van Leeuwenhoek Hospital, Department of Urology, Amsterdam (Netherlands); Thygessen, Helene [The Netherlands Cancer Institute - Antoni van Leeuwenhoek Hospital, Department of Biostatistics, Amsterdam (Netherlands); Vegt, Erik [The Netherlands Cancer Institute - Antoni van Leeuwenhoek Hospital, Department of Nuclear Medicine, Amsterdam (Netherlands); Leeuwen, Fijs W.B. van [Leiden University Medical Hospital, Interventional Molecular Imaging Laboratory, Department of Radiology, Leiden (Netherlands); The Netherlands Cancer Institute - Antoni van Leeuwenhoek Hospital, Department of Urology, Amsterdam (Netherlands); The Netherlands Cancer Institute - Antoni van Leeuwenhoek Hospital, Department of Head and Neck Surgery and Oncology, Amsterdam (Netherlands)

    2016-07-15

    Radical prostatectomy and complementary extended pelvic lymph node dissection (ePLND) of sentinel lymph nodes (SNs) and non-sentinel lymph nodes (LNs) at risk of containing metastases are increasingly being performed using high-tech robot-assisted approaches. Although this technological evolution has clear advantages, the physical nature of robotic systems limits the integrated use of routine radioguided surgery technologies. Hence, engineering effort in robotics are focused on the integration of fluorescence guidance technologies. Using the hybrid SN tracer indocyanine green-{sup 99m}Tc-nanocolloid (radioactive and fluorescent), for the first time in combination with a robot-integrated laparoscope, we investigated whether the robot-assisted approach affects the accuracy of fluorescence detection of SNs identified preoperatively using nuclear medicine. The study included 55 patients (Briganti nomogram-based risk >5 % on LN metastases) scheduled for robot-assisted radical prostatectomy, SN biopsy and ePLND. Following indocyanine green-{sup 99m}Tc-nanocolloid injection, preoperative nuclear imaging (lymphoscintigraphy and SPECT/CT) was used to locate the SN(s). The fluorescence laparoscope was used intraoperatively to identify the SN(s) with standard fluorescence settings (in 50 patients) and with customized settings (in 5 patients). The number and location of the SNs, the radioactive, fluorescence (both in vivo and ex vivo) and tumour status of the resected SNs/LNs, and postoperative complications were recorded and analysed. Combined, preoperative lymphoscintigraphy and SPECT/CT imaging identified 212 SNs (median 4 per patient). Intraoperative fluorescence imaging using standard fluorescence settings visualized 80.4 % (148/184 SNs; 50 patients; ex vivo 97.8 %). This increased to 85.7 % (12/14 SNs; 5 patients; ex vivo 100 %) with customized fluorescence settings. SPECT/CT images provided guidance towards the residual SNs. Ex vivo all removed SNs were radioactive. SNs

  19. Trends in underwater warfare : From an underwater acoustics perspective

    NARCIS (Netherlands)

    Ort, C.M.; Driessen, F.P.G.

    2002-01-01

    Technological developments concerning underwater systems for Anti Submarine Warfare (ASW) and Mine Counter Measures (MCM) are directed at optimally countering the underwater threat in the near future. Countering the existing underwater threat is already extremely difficult, but there are several tre

  20. Securing underwater wireless communication networks

    OpenAIRE

    Domingo Aladrén, Mari Carmen

    2011-01-01

    Underwater wireless communication networks are particularly vulnerable to malicious attacks due to the high bit error rates, large and variable propagation delays, and low bandwidth of acoustic channels. The unique characteristics of the underwater acoustic communication channel, and the differences between underwater sensor networks and their ground-based counterparts require the development of efficient and reliable security mechanisms. In this article, a compl...

  1. SmartPATH: An Efficient Hybrid ACO-GA Algorithm for Solving the Global Path Planning Problem of Mobile Robots

    Directory of Open Access Journals (Sweden)

    Imen Châari

    2014-07-01

    Full Text Available Path planning is a fundamental optimization problem that is crucial for the navigation of a mobile robot. Among the vast array of optimization approaches, we focus in this paper on Ant Colony Optimization (ACO and Genetic Algorithms (GA for solving the global path planning problem in a static environment, considering their effectiveness in solving such a problem. Our objective is to design an efficient hybrid algorithm that takes profit of the advantages of both ACO and GA approaches for the sake of maximizing the chance to find the optimal path even under real-time constraints. In this paper, we present smartPATH, a new hybrid ACO-GA algorithm that relies on the combination of an improved ACO algorithm (IACO for efficient and fast path selection, and a modified crossover operator to reduce the risk of falling into a local minimum. We demonstrate through extensive simulations that smartPATH outperforms classical ACO (CACO, GA algorithms. It also outperforms the Dijkstra exact method in solving the path planning problem for large graph environments. It improves the solution quality up to 57% in comparison with CACO and reduces the execution time up to 83% as compared to Dijkstra for large and dense graphs. In addition, the experimental results on a real robot shows that smartPATH finds the optimal path with a probability up to 80% with a small gap not exceeding 1m in 98%.

  2. Design-Oriented Enhanced Robotics Curriculum

    Science.gov (United States)

    Yilmaz, M.; Ozcelik, S.; Yilmazer, N.; Nekovei, R.

    2013-01-01

    This paper presents an innovative two-course, laboratory-based, and design-oriented robotics educational model. The robotics curriculum exposed senior-level undergraduate students to major robotics concepts, and enhanced the student learning experience in hybrid learning environments by incorporating the IEEE Region-5 annual robotics competition…

  3. Design-Oriented Enhanced Robotics Curriculum

    Science.gov (United States)

    Yilmaz, M.; Ozcelik, S.; Yilmazer, N.; Nekovei, R.

    2013-01-01

    This paper presents an innovative two-course, laboratory-based, and design-oriented robotics educational model. The robotics curriculum exposed senior-level undergraduate students to major robotics concepts, and enhanced the student learning experience in hybrid learning environments by incorporating the IEEE Region-5 annual robotics competition…

  4. The Development of a Radiation Hardened Robot for Nuclear Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Seung Ho; Kim, Chang Hoi; Seo, Yong Chil (and others)

    2007-04-15

    We has been developed two remotely controlled robotic systems. One is a underwater vehicle for inspection of the internal structures of PWRs and retrieving foreign stubs in the reactor pressure vessels and reactor coolant pipes. The other robotic system consists of a articulated-type mobile robot capable of recovering the failure of the fuel exchange machine and a mini modular mobile robot for inspection of feeder pipes with ultrasonic array sensors in PHWRs. The underwater robot has been designed by considering radiation effect, underwater condition, and accessibility to the working area. The size of underwater robot is designed to enter the cold legs. A extendable manipulator is mounted on the mobile robot, which can restore nuclear fuel exchange machine. The mini modular mobile robot is composed of dual inch worm mechanisms, which are constructed by two gripper bodies that can fix the robot body on to the pipe and move along the longitudinal and to rotate in a circumferential direction to access all of the outer surfaces of the pipe.

  5. A Virtual World for an Autonomous Underwater Vehicle

    Science.gov (United States)

    1994-12-01

    NPS AUV components. Four cross -body thrusters: two lateral and two vertical. Two card cages contain 68030/OS-9 and 386/DOS microprocessors. 61 xiv...underwater docking and parking, and multiple AUV submerged communication and mission coordination. EAVE class vehicles are constructed on open frames using...Neither definiton appears suitable for general robot control. Multiple dissimilar Al processes must interact in an intelligent manner to achieve the

  6. Point features extraction: towards slam for an autonomous underwater vehicle

    CSIR Research Space (South Africa)

    Matsebe, O

    2010-07-01

    Full Text Available Page 1 of 11 25th International Conference of CAD/CAM, Robotics & Factories of the Future Conference, 13-16 July 2010, Pretoria, South Africa POINT FEATURES EXTRACTION: TOWARDS SLAM FOR AN AUTONOMOUS UNDERWATER VEHICLE O. Matsebe1,2, M... Page 2 of 11 25th International Conference of CAD/CAM, Robotics & Factories of the Future Conference, 13-16 July 2010, Pretoria, South Africa vehicle is equipped with a Mechanically Scanned Imaging Sonar (Micron DST Sonar) which is able...

  7. Depth Level Control System using Peripheral Interface Controller for Underwater Vehicle

    Directory of Open Access Journals (Sweden)

    Muhamad Fadli Ghani

    2013-01-01

    Full Text Available This research explained on a design and development of an Automatic Depth Control System for underwater vehicle. Definition of underwater vehicle is a robotic sub-sea that is a part of the emerging field of autonomous and unmanned vehicles. This project shows the implementation’s development of an Automatic Depth Control System on a test prototyping vehicle especially involved small-scale and low cost sub-sea robots. The Automatic Depth Control System assembled with mechanical system and module of electronic system for development of a controller.

  8. Exploratorium: Robots.

    Science.gov (United States)

    Brand, Judith, Ed.

    2002-01-01

    This issue of Exploratorium Magazine focuses on the topic robotics. It explains how to make a vibrating robotic bug and features articles on robots. Contents include: (1) "Where Robot Mice and Robot Men Run Round in Robot Towns" (Ray Bradbury); (2) "Robots at Work" (Jake Widman); (3) "Make a Vibrating Robotic Bug" (Modesto Tamez); (4) "The Robot…

  9. Underwater Navigation using Pseudolite

    Directory of Open Access Journals (Sweden)

    Krishneshwar Tiwary

    2011-07-01

    Full Text Available Using pseudolite or pseudo satellite, a proven technology for ground and space applications for the augmentation of GPS, is proposed for underwater navigation. Global positioning systems (GPS like positioning for underwater system, needs minimum of four pseudolite-ranging signals for pseudo-range and accumulated delta range measurements. Using four such measurements and using the models of underwater attenuation and delays, the navigation solution can be found. However, for application where the one-way ranging does not give good accuracy, alternative algorithms based upon the bi-directional and self-difference ranging is proposed using selfcalibrated pseudolite array algorithm. The hardware configuration is proposed for pseudolite transceiver for making the self-calibrated array. The pseudolite array, fixed or moored under the sea, can give position fixing similar to GPS for underwater applications.Defence Science Journal, 2011, 61(4, pp.331-336, DOI:http://dx.doi.org/10.14429/dsj.61.1087

  10. 4自由度混联机器人静刚度分析%Stiffness Analysis of a 4-DOF Hybrid Robot

    Institute of Scientific and Technical Information of China (English)

    汪满新; 王攀峰; 宋轶民; 赵学满; 黄田

    2011-01-01

    研究一种新型混联机器人模块-Bicept的半解析刚度建模方法.该模块由—含恰约束支链的2自由度平面并联机构和一与动平台末端串接的2自由度转头构成,是Tricept机器人的一种二维形式,具有制造成本低,工作空间大的特点,配以长行程导轨,可用于飞机壁板数字化自动制孔等场合.在完成2自由度并联机构位置逆解分析和变形分析基础之上,基于全变形雅可比矩阵建立该机构的静刚度半解析模型.建模中考虑了所有支链构件及铰链的弹性贡献,并侧重研究其恰约束支链弯曲刚度的精确建模问题.通过算例获得Bicept机器人面内静刚度在工作空间中的分布规律,并通过ANSYS有限元分析软件验证了计算结果的正确性.%A semi-analytical approach for the stiffness modeling of a novel hybrid robot named Bicept is presented. The robot is composed of a 2-DOF planar parallel mechanism with two unconstrained active limbs and a properly constrained passive limb, plus a 2-DOF rotating head attached to the platform. The Bicept is a simplified 2D version of the well known Tricept robot, featuring low manufacturing cost and large workspace. The robot can be employed as a module to configure a robotic cell for automatic drilling or riveting in aircraft large structural components assembly by adding a translational motion along a long reference track. On the basis of the inverse position and deformation analyses, the stiffness modeling of the 2-DOF planar parallel mechanism within the Bicept is formulated by using the overall Jacobian and taking into account the compliances of all limb components and joints. Particular interest is placed upon the precise formulation of the bending stiffness matrix of the properly constrained passive limb. The stiffness distributions throughout the entire task workplace are evaluated and the modeling validity is verified by a commercial ANSYS software at two specific configurations.

  11. Testing of a Hybrid FES-Robot Assisted Hand Motor Training Program in Sub-Acute Stroke Survivors

    Directory of Open Access Journals (Sweden)

    GRIGORAS, A. V.

    2016-11-01

    Full Text Available While hands-on therapy is the most commonly used technique for upper limb rehabilitation after stroke, it requires a therapist and residual activity and is best suited for active-assisted exercises. Robotic therapy on the other hand, can provide intention driven training in a motivating environment. We compared a robotic and standard therapy group, allowing intention driven finger flexion/extention respectively active-assisted exercises and a standard therapy only group. A total of 25 patients, 2 to 6 months post–stroke, with moderate motor deficit (Fugl-Meyer Assessment or FMA between 15 and 50, were randomly assigned in one of the groups. Patients practiced 30 minutes of hands-on therapy each day for 2 weeks with a supplementary 30 minutes of robotic therapy each day for patients in the experimental group. Subjects were evaluated using the FMA, Box and Blocks test (BBT and Stroke Impact Scale (SIS before and after the treatment. Patients in the experimental group showed higher average gain in all tests than those in the control group but only the SIS average gain was on the limit of statistical significance. This study shows the potential efficacy of robotic therapy for hand rehabilitation in subacute stroke patients.

  12. Stiffness Analysis of a 6-DOF Hybrid Robot%一种6自由度混联机器人静刚度分析

    Institute of Scientific and Technical Information of China (English)

    窦永磊; 汪满新; 王攀峰; 黄田

    2015-01-01

    针对焊接、切割、打磨、抛光等轻型加工需求,提出一种由面对称3-UPU并联机构及3自由度转头组成的6自由度混联机器人,侧重研究其中并联机构刚度的半解析建模与全域快速预估问题。从分析系统的力旋量系和变形协调条件入手,构造出计及所有支链构件及铰链弹性贡献的半解析静刚度模型。通过算例揭示整机静刚度在任务空间中随位形的变化规律,并借助ANSYS有限元分析软件在典型位形验证了所建模型的正确性。%To meet the demanding in modular design of robotized devices for welding, cutting, deburring and polishing, etc, a novel 6-DOF hybrid robot compose of a plane symmetrical 3-UPU parallel mechanism plus a 3-DOF rotating head is presented. With a brief introduction to the architecture of the robot, a semi-analytical stiffness model of the 3-UPU parallel mechanism is formulated by analyzing the wrenches systems imposed by the UPU limbs upon the platform. This leads to the complete formulation of the static and deformation equations, resulting in a comprehensive stiffness model that accounts for the compliances of all limb components and joints. With the aid of this approach, the stiffness of a prototype machine throughout the entire task workspace is evaluated. The computational results are validated by the ANSYS at two typical configurations.

  13. Hybrid environmental robot: a tool for monitoring gas on flooded area; Robo ambiental hibrido: utilizacao como ferramenta para monitoramento de gases em areas alagadas

    Energy Technology Data Exchange (ETDEWEB)

    Goes, Emerson de; Cerqueira, Romulo Curty; Reis, Ney Robinson S. [PETROBRAS, Rio de Janeiro, RJ (Brazil)

    2008-07-01

    The impoundment of rivers for power generation leads to flooding of vast areas of land vegetation. Most submerged plants, die and enter into decomposition, releasing CO2 (carbon dioxide), CH4 (methane gas) into the air for many years. Scientists from around the world seek to clarify the processes to which these gases are submitted and their contributions to the process of global warming. Estimates suggest that the re-use of methane that passes through the turbines of these power plants could increase their energy potential by 75% and reduce their emissions of these gases by 65%, reducing their impact on global warming and resulting in carbon credits. To check the feasibility of using new processes and technologies to generate energy that recycles this biogas, operations for monitoring these biogases become routine tasks. The frequency is such that the exposure of humans to the risks of gas combustion, inherent to scenarios where these operations take place, becomes unacceptable. This motivates the use of robots in this activity. This paper presents the multi-mission platform Hybrid Environmental Robot, named 'Chico Mendes', as a tool for tracking gas emission and specially designed for flooded forest areas.

  14. Explosive welding underwater

    Energy Technology Data Exchange (ETDEWEB)

    Sim, T.; Allen, K.; Lowes, J.M.

    1980-06-11

    Explosive welding underwater is described. First and second underwater tubular members are assembled together so that the outer surface of the first tubular member and the inner surface of the second tubular member are spaced apart to form an annular cavity. The cavity is closed by seals accommodated in portions of the second tubular member, and is then cleaned and dried and filled with a gas at a pressure greater than the surrounding water pressure. The pressure in the cavity is reduced prior to detonating an explosive charge within the first tubular member to weld the members together. The second tubular member may include portions for receiving further seals so as to subdivide the cavity into a number of zones. The pressures in the zones then can be separately adjusted so as to be able to control the pressure difference a cross each seal. 9 claims.

  15. Mechanics of underwater noise

    CERN Document Server

    Ross, Donald

    1976-01-01

    Mechanics of Underwater Noise elucidates the basic mechanisms by which noise is generated, transmitted by structures and radiated into the sea. Organized into 10 chapters, this book begins with a description of noise, decibels and levels, significance of spectra, and passive sonar equation. Subsequent chapters discuss sound waves in liquids; acoustic radiation fundamentals; wind-generated ocean ambient noise; vibration isolation and structural damping; and radiation by plate flexural vibrations. Other chapters address cavitation, propeller cavitation noise, radiation by fluctuating-force (dipo

  16. Underwater Gliders: A Review

    Directory of Open Access Journals (Sweden)

    Javaid Muhammad Yasar

    2014-07-01

    Full Text Available Underwater gliders are a type of underwater vehicle that transverse the oceans by shifting its buoyancy, during which its wings develop a component of the downward motion in the horizontal plane, thus producing a forward force. They are primarily used in oceanography sensing and data collection and play an important role in ocean research and development. Although there have been considerable developments in these gliders since the development of the first glider concept in 1989, to date, no review of these gliders have been done. This paper reviews existing underwater gliders, with emphasis on their respective working principles, range and payload capacity. All information on gliders available in the public domain or published in literature from the year 2000-2013 was reviewed. The majority of these gliders have an operational depth of 1000 m and a payload of less than 25 kg. The exception is a blend-body shape glider, which has a payload of approximately 800 kg and an operational depth around about 300 m. However, the commercialization of these gliders has been limited with only three know examples that have been successfully commercialized.

  17. Design and control of an embedded vision guided robotic fish with multiple control surfaces.

    Science.gov (United States)

    Yu, Junzhi; Wang, Kai; Tan, Min; Zhang, Jianwei

    2014-01-01

    This paper focuses on the development and control issues of a self-propelled robotic fish with multiple artificial control surfaces and an embedded vision system. By virtue of the hybrid propulsion capability in the body plus the caudal fin and the complementary maneuverability in accessory fins, a synthesized propulsion scheme including a caudal fin, a pair of pectoral fins, and a pelvic fin is proposed. To achieve flexible yet stable motions in aquatic environments, a central pattern generator- (CPG-) based control method is employed. Meanwhile, a monocular underwater vision serves as sensory feedback that modifies the control parameters. The integration of the CPG-based motion control and the visual processing in an embedded microcontroller allows the robotic fish to navigate online. Aquatic tests demonstrate the efficacy of the proposed mechatronic design and swimming control methods. Particularly, a pelvic fin actuated sideward swimming gait was first implemented. It is also found that the speeds and maneuverability of the robotic fish with coordinated control surfaces were largely superior to that of the swimming robot propelled by a single control surface.

  18. Robot maps, robot moves, robot avoids

    OpenAIRE

    Farrugia, Claire

    2014-01-01

    Robotics is a cornerstone for this century’s innovations. From robot nurses to your own personal assistant, most robots need to know: ‘where is it?’ ‘Where should it go?’ And ‘how to get there?’ Without answers to these questions a robot cannot do much. http://www.um.edu.mt/think/robot-maps-robot-moves-robot-avoids/

  19. Robot maps, robot moves, robot avoids

    OpenAIRE

    Farrugia, Claire; Duca, Edward

    2014-01-01

    Robotics is a cornerstone for this century’s innovations. From robot nurses to your own personal assistant, most robots need to know: ‘where is it?’ ‘Where should it go?’ And ‘how to get there?’ Without answers to these questions a robot cannot do much. http://www.um.edu.mt/think/robot-maps-robot-moves-robot-avoids/

  20. Robot Actors, Robot Dramaturgies

    DEFF Research Database (Denmark)

    Jochum, Elizabeth

    This paper considers the use of tele-operated robots in live performance. Robots and performance have long been linked, from the working androids and automata staged in popular exhibitions during the nineteenth century and the robots featured at Cybernetic Serendipity (1968) and the World Expo...

  1. Robot Actors, Robot Dramaturgies

    DEFF Research Database (Denmark)

    Jochum, Elizabeth

    This paper considers the use of tele-operated robots in live performance. Robots and performance have long been linked, from the working androids and automata staged in popular exhibitions during the nineteenth century and the robots featured at Cybernetic Serendipity (1968) and the World Expo...

  2. Handling uncertainty and networked structure in robot control

    CERN Document Server

    Tamás, Levente

    2015-01-01

    This book focuses on two challenges posed in robot control by the increasing adoption of robots in the everyday human environment: uncertainty and networked communication. Part I of the book describes learning control to address environmental uncertainty. Part II discusses state estimation, active sensing, and complex scenario perception to tackle sensing uncertainty. Part III completes the book with control of networked robots and multi-robot teams. Each chapter features in-depth technical coverage and case studies highlighting the applicability of the techniques, with real robots or in simulation. Platforms include mobile ground, aerial, and underwater robots, as well as humanoid robots and robot arms. Source code and experimental data are available at http://extras.springer.com. The text gathers contributions from academic and industry experts, and offers a valuable resource for researchers or graduate students in robot control and perception. It also benefits researchers in related areas, such as computer...

  3. Robotic architectures

    CSIR Research Space (South Africa)

    Mtshali, M

    2010-01-01

    Full Text Available In the development of mobile robotic systems, a robotic architecture plays a crucial role in interconnecting all the sub-systems and controlling the system. The design of robotic architectures for mobile autonomous robots is a challenging...

  4. Student-Built Underwater Video and Data Capturing Device

    Science.gov (United States)

    Whitt, F.

    2016-12-01

    Students from Stockbridge High School Robotics Team invention is a low cost underwater video and data capturing device. This system is capable of shooting time-lapse photography and/or video for up to 3 days of video at a time. It can be used in remote locations without having to change batteries or adding additional external hard drives for data storage. The video capturing device has a unique base and mounting system which houses a pi drive and a programmable raspberry pi with a camera module. This system is powered by two 12 volt batteries, which makes it easier for users to recharge after use. Our data capturing device has the same unique base and mounting system as the underwater camera. The data capturing device consists of an Arduino and SD card shield that is capable of collecting continuous temperature and pH readings underwater. This data will then be logged onto the SD card for easy access and recording. The low cost underwater video and data capturing device can reach depths up to 100 meters while recording 36 hours of video on 1 terabyte of storage. It also features night vision infrared light capabilities. The cost to build our invention is $500. The goal of this was to provide a device that can easily be accessed by marine biologists, teachers, researchers and citizen scientists to capture photographic and water quality data in marine environments over extended periods of time.

  5. Overview of a Hybrid Underwater Camera System

    Science.gov (United States)

    2014-07-01

    integrated HUC system. As part of the HUC system, the Navigator display is also transmitted to a monocular display installed on a diver’s helmet. An...feet in length, 6.5 feet in width with a maximum depth of 8 feet. Pumps are used to generate a current in the flume. The water holds particulate matter

  6. TIGRE - An autonomous ground robot for outdoor exploration

    OpenAIRE

    Martins, Alfredo; Amaral, Guilherme; Dias, André; Almeida, Carlos; Almeida, José; Silva, Eduardo

    2013-01-01

    13th International Conference on Autonomous Robot Systems (Robotica), 2013 In this paper we present an autonomous ground robot developed for outdoor applications in unstructured scenarios. The robot was developed as a versatile robotics platform for development, test and validation of research in navigation, control, perception and multiple robot coordination on all terrain scenarios. The hybrid systems approach to the control architecture is discussed in the context of multiple robot coor...

  7. Enhanced Geometric Map:a 2D & 3D Hybrid City Model of Large Scale Urban Environment for Robot Navigation

    Institute of Scientific and Technical Information of China (English)

    LI Haifeng; HU Zunhe; LIU Jingtai

    2016-01-01

    To facilitate scene understanding and robot navigation in large scale urban environment, a two-layer enhanced geometric map (EGMap) is designed using videos from a monocular onboard camera. The 2D layer of EGMap consists of a 2D building boundary map from top-down view and a 2D road map, which can support localization and advanced map-matching when compared with standard polyline-based maps. The 3D layer includes features such as 3D road model, and building facades with coplanar 3D vertical and horizontal line segments, which can provide the 3D metric features to localize the vehicles and flying-robots in 3D space. Starting from the 2D building boundary and road map, EGMap is initially constructed using feature fusion with geometric constraints under a line feature-based simultaneous localization and mapping (SLAM) framework iteratively and progressively. Then, a local bundle adjustment algorithm is proposed to jointly refine the camera localizations and EGMap features. Furthermore, the issues of uncertainty, memory use, time efficiency and obstacle effect in EGMap construction are discussed and analyzed. Physical experiments show that EGMap can be successfully constructed in large scale urban environment and the construction method is demonstrated to be very accurate and robust.

  8. Anthropomorphic Robot Hand And Teaching Glove

    Science.gov (United States)

    Engler, Charles D., Jr.

    1991-01-01

    Robotic forearm-and-hand assembly manipulates objects by performing wrist and hand motions with nearly human grasping ability and dexterity. Imitates hand motions of human operator who controls robot in real time by programming via exoskeletal "teaching glove". Telemanipulator systems based on this robotic-hand concept useful where humanlike dexterity required. Underwater, high-radiation, vacuum, hot, cold, toxic, or inhospitable environments potential application sites. Particularly suited to assisting astronauts on space station in safely executing unexpected tasks requiring greater dexterity than standard gripper.

  9. Underwater Hearing in Turtles.

    Science.gov (United States)

    Willis, Katie L

    2016-01-01

    The hearing of turtles is poorly understood compared with the other reptiles. Although the mechanism of transduction of sound into a neural signal via hair cells has been described in detail, the rest of the auditory system is largely a black box. What is known is that turtles have higher hearing thresholds than other reptiles, with best frequencies around 500 Hz. They also have lower underwater hearing thresholds than those in air, owing to resonance of the middle ear cavity. Further studies demonstrated that all families of turtles and tortoises share a common middle ear cavity morphology, with scaling best suited to underwater hearing. This supports an aquatic origin of the group. Because turtles hear best under water, it is important to examine their vulnerability to anthropogenic noise. However, the lack of basic data makes such experiments difficult because only a few species of turtles have published audiograms. There are also almost no behavioral data available (understandable due to training difficulties). Finally, few studies show what kinds of sounds are behaviorally relevant. One notable paper revealed that the Australian snake-necked turtle (Chelodina oblonga) has a vocal repertoire in air, at the interface, and under water. Findings like these suggest that there is more to the turtle aquatic auditory scene than previously thought.

  10. Localization Algorithms of Underwater Wireless Sensor Networks: A Survey

    Science.gov (United States)

    Han, Guangjie; Jiang, Jinfang; Shu, Lei; Xu, Yongjun; Wang, Feng

    2012-01-01

    In Underwater Wireless Sensor Networks (UWSNs), localization is one of most important technologies since it plays a critical role in many applications. Motivated by widespread adoption of localization, in this paper, we present a comprehensive survey of localization algorithms. First, we classify localization algorithms into three categories based on sensor nodes’ mobility: stationary localization algorithms, mobile localization algorithms and hybrid localization algorithms. Moreover, we compare the localization algorithms in detail and analyze future research directions of localization algorithms in UWSNs. PMID:22438752

  11. OFDM for underwater acoustic communications

    CERN Document Server

    Zhou, Shengli

    2014-01-01

    A blend of introductory material and advanced signal processing and communication techniques, of critical importance to underwater system and network development This book, which is the first to describe the processing techniques central to underwater OFDM, is arranged into four distinct sections: First, it describes the characteristics of underwater acoustic channels, and stresses the difference from wireless radio channels. Then it goes over the basics of OFDM and channel coding. The second part starts with an overview of the OFDM receiver, and develops various modules for the receiver des

  12. Robot and robot system

    Science.gov (United States)

    Behar, Alberto E. (Inventor); Marzwell, Neville I. (Inventor); Wall, Jonathan N. (Inventor); Poole, Michael D. (Inventor)

    2011-01-01

    A robot and robot system that are capable of functioning in a zero-gravity environment are provided. The robot can include a body having a longitudinal axis and having a control unit and a power source. The robot can include a first leg pair including a first leg and a second leg. Each leg of the first leg pair can be pivotally attached to the body and constrained to pivot in a first leg pair plane that is substantially perpendicular to the longitudinal axis of the body.

  13. Development of under water inspection robot 'AQUAROBOT'. Suichu chosa robot 'akuarobo' no kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    Takahashi, H. (Port and Harbour Research Institute, Kanagawa (Japan))

    1991-09-15

    With a purpose of developing a robot that can work at a high efficiency in building constructions in underwater environment with a great depth and under strong currents, an underwater walking robot was developed that can retain its position, and can move on rugged terrains safely and freely. The land exclusive No. 1 robot was build in 1985, the water-proof underwater No. 2 robot for site experiments in 1987, and water-proof compact No. 3 robot in 1989. This paper describes the summary of the No. 2 robot and its walking experiments. The robot weighs 857 kg in air and 440 kg in water, has six insect type legs, each having three revolute joints, and is driven by DC motors. It self-contains six earthing sensors, two inclinometers, one each of direction sensor and depth sensor, which are controlled by a personal computer. The AQUAROBOT'' is connected to control devices on a mother ship by means of electric-fiber composite cables. The irregularity the robot can walk over is {plus minus} 35 cm, and the maximum walkable depth is 50 m. The results of a walking experiment at a water depth of 24 m verified its practicability with a walking speed of 0.61-1.4 m min, a walking error of {plus minus} 21 cm, and a measuring accuracy of {plus minus} 3cm. 3 figs., 2 tabs.

  14. 混合遗传进化机器人同时定位路径偏移纠正%Correction of Robot Simultaneous Location Path Offset Based on Hybrid Genetic Evolution

    Institute of Scientific and Technical Information of China (English)

    何伟娜; 夏栋梁

    2014-01-01

    The robot simultaneous localization and mapping technology is the key technology to realize autonomous position⁃ing and control during the movement of the robot, in the robot simultaneous localization of target homing process, it often ap⁃pears offset path, path offset correction is necessary, the precise control is achieved. A multi way tree based on the hybrid mobile robot simultaneous localization path offset correction control method is proposed, the first tree hybrid genetic evolu⁃tionary robot simultaneous localization and control modeling is constructed, the multi information fusion of robot simultane⁃ous localization, the mixed genetic evolutionary multi tree based robot simultaneous localization path correction test func⁃tion is obtained. The simulation and experiment results show that the algorithm can be realized, location path offset correc⁃tion robot is obtained. With fast convergence speed to find the optimal path, the global optimization ability and search speed can be improved significantly.%机器人的同时定位与地图创建技术是实现机器人移动过程中自主定位和控制的关键技术,在机器人同时定位目标的过程中,常出现路径偏移,需要进行路径偏移纠正,实现精确控制。提出一种基于多叉树混合遗传进化的机器人同时定位路径偏移纠正控制方法,首先进行多叉树混合遗传进化机器人同时定位控制建模,在对多信息融合下进行机器人同时定位,得到基于多叉树混合遗传进化的机器人同时定位路径修正测试函数。仿真实验和研究结果表明,该算法可以实现机器人同时定位路径偏移纠正,对机器人的控制精度较高,以较快的收敛速度找到了最优路径,其全局优化能力和搜索速度都得到了显著提高。

  15. Transient dynamic analysis of industrial robot based on rigid-flexible hybrid modeling%基于刚柔耦合建模的工业机器人瞬变动力学分析

    Institute of Scientific and Technical Information of China (English)

    潘祥生; 李露; 沈惠平; 李爱成

    2013-01-01

    为适应工业机器人高速、重载、高精度的要求,以工业机械臂的瞬变过程为研究对象,提出以末端执行器的振幅判断机器人在瞬变过程中的动态性能,利用多体动力学和有限元的方法建立刚柔耦合模型,对工业机器人在整个作业过程中的动态特性进行描述和分析,仿真计算工业机器人在振幅最大时刻的应力分布及危险区域节点的应力变化,为机器人的动态性能评估、疲劳强度分析和寿命预测提供了依据.%In order to adapt to the high-speed,heavy load and high-precision requirement of industrial robots,a rigid-flexible hybrid modeling method was put forward to determine the dynamic characteristic of industrial robots by using the amplitude of the end efector and by taking the transient process of the industrial robot as research object,and the rigid-flexible hybrid model was established by applying multi-body dynamics and finite element method.The dynamic characteristic of industrial robots in its whole working cycle was described and analyzed.The stress distribution and the nodal stress variation in dangerous area at maximum amplitude were simulated and calculated,providing a basis for dynamic performance evaluation,fatigue strength analysis and life prediction of the industrial robots.

  16. Control of Open Contour Formations of Autonomous Underwater Vehicles

    Directory of Open Access Journals (Sweden)

    Uwe Zimmer

    2008-11-01

    Full Text Available In this paper, we propose a distributed elastic behaviour for a deformable chain-like formation of small autonomous underwater vehicles with the task of forming special shapes which have been explicitly defined or are defined by some iso-contour of an environmental concentration field. In the latter case, the formation has to move in such a way as to meet certain formation parameters as well as adapt to the iso-line. We base our controller on our previous models (for manually controlled end points using general curve evolution theory but will also propose appropriate motions for the end robots of an open chain.

  17. Underwater boom box

    Science.gov (United States)

    White, M. Catherine

    So far, there is no evidence that humpback whales are negatively affected by noise emitted from underwater speakers that may one day be used to measure warming in the oceans. A group of independent biologists from Cornell University monitored the behavior of the whales before, during, and after a scaled-down version of the controversial Acoustic Thermometry of Ocean Climate (ATOC) experiment off the coast of Hawaii. In 84 trials from February through March, they “saw no overt response from the whales.” Previous observations of similar sound transmissions at California's Pioneer Seamount, the other site planned for the experiment, also found no sign of disturbance among marine mammals, including elephant seals and several whale species. More observations are needed, however, before the experiment can be deemed safe, the Cornell biologists advised.

  18. Underwater inverse LIBS (iLIBS) for marine archaeology

    Science.gov (United States)

    Asmus, J.; Magde, M.; Elford, J.; Magde, D.; Parfenov, V.

    2013-05-01

    In recent years there have been enormous advances in nautical archaeology through developments in SONAR technologies as well as in manned and robotic submersible vehicles. The number of sunken vessel discoveries has escalated in many of the seas of the world in response to the widespread application of these and other new tools. Customarily, surviving artifacts within the debris field of a wreck are collected and then moved to laboratories, centers, or institutions for analyses and possible conservation. Frequently, the conservation phase involves chemical treatments to stabilize an artefact to standard temperature, pressure, and humidity instead of an undersea environment. Many of the artefacts encountered at an underwater site are now characterized and restored in-situ in accordance with modern trends in art conservation. Two examples of this trend are exemplified by the resting place of the wreck of the Titanic in the Atlantic and the Cancun Underwater Park in the Caribbean Sea. These two debris fields have been turned into museums for diving visitors. Several research groups have investigated the possibility of adapting the well-established analytical tool Laser Induced Breakdown Spectroscopy (LIBS) to in-situ elemental analyses of underwater cultural, historic, and archaeological artefacts where discovered, rather than as a phase of a salvage operation. As the underwater laser ablation associated with LIBS generates a "snowplough" shockwave within the aqueous matrix, the atomic emission spectrum is usually severely attenuated in escaping from the target. Consequently, probative experiments to date generally invoke a submerged air chamber or air jet to isolate water from the interaction zone as well as employ more complex double-pulse lasers. These measures impose severe logistical constraints on the examination of widely dispersed underwater artefacts. In order to overcome this constraint we report on water-immersion LIBS experiments performed with oblique

  19. Underwater optical wireless communication network

    Science.gov (United States)

    Arnon, Shlomi

    2010-01-01

    The growing need for underwater observation and subsea monitoring systems has stimulated considerable interest in advancing the enabling technologies of underwater wireless communication and underwater sensor networks. This communication technology is expected to play an important role in investigating climate change, in monitoring biological, biogeochemical, evolutionary, and ecological changes in the sea, ocean, and lake environments, and in helping to control and maintain oil production facilities and harbors using unmanned underwater vehicles (UUVs), submarines, ships, buoys, and divers. However, the present technology of underwater acoustic communication cannot provide the high data rate required to investigate and monitor these environments and facilities. Optical wireless communication has been proposed as the best alternative to meet this challenge. Models are presented for three kinds of optical wireless communication links: (a) a line-of-sight link, (b) a modulating retroreflector link, and (c) a reflective link, all of which can provide the required data rate. We analyze the link performance based on these models. From the analysis, it is clear that as the water absorption increases, the communication performance decreases dramatically for the three link types. However, by using the scattered light it was possible to mitigate this decrease in some cases. It is concluded from the analysis that a high-data-rate underwater optical wireless network is a feasible solution for emerging applications such as UUV-to-UUV links and networks of sensors, and extended ranges in these applications could be achieved by applying a multi-hop concept.

  20. Motion Modeling of Crawling Robot Based on Layer Controlled Hybrid Petri Net%爬行机器人的分层可控混成Petri网建模研究

    Institute of Scientific and Technical Information of China (English)

    高庆吉; 武晓霞; 刘芳; 李万民

    2011-01-01

    飞机表面爬行机器人是一个复杂的离散事件和连续动态事件相结合的混成运动系统,为描述系统的静态特性和动态行为,提出一种分层可控混成Petri网模型.依据爬行运动机构定义了Petri网模型组成元素,建立了爬行机器人单轴和双轴分层可控混成Petri网,该模型可接收上层运动轨迹指令并输出爬行动作序列.实验表明,基于该模型实施的飞机模拟机舱表面爬行控制安全可靠,验证了模型的正确性和实用性.%In order to describe static characteristics and dynamic behavior of the crawling robot on the aircraft surface which is a complex hybrid motor system as a combination of discrete event and continuous events, the layer controlled hybrid Petri nets is proposed.The definition of constituent elements of the Petri net is given based on the crawling robot movement mechanism and then established single axis layer controlled hybrid Petri net and dual axis layer controlled hybrid Petri net of crawling robot, the model of which could receive the upper trajectory commands and outputs crawling action sequences. Experiments show that: the implementation of creeping control on simulate cabin of the aircraft based on the model was safe and reliable, so the correctness and practicability of the model is verified.

  1. A programmable molecular robot.

    Science.gov (United States)

    Muscat, Richard A; Bath, Jonathan; Turberfield, Andrew J

    2011-03-09

    We have developed a programmable and auton-omous molecular robot whose motion is fueled by DNA hybridization. Instructions determining the path to be followed are programmed into the fuel molecules, allowing precise control of cargo motion on a branched track.

  2. Vision-Based Autonomous Underwater Vehicle Navigation in Poor Visibility Conditions Using a Model-Free Robust Control

    Directory of Open Access Journals (Sweden)

    Ricardo Pérez-Alcocer

    2016-01-01

    Full Text Available This paper presents a vision-based navigation system for an autonomous underwater vehicle in semistructured environments with poor visibility. In terrestrial and aerial applications, the use of visual systems mounted in robotic platforms as a control sensor feedback is commonplace. However, robotic vision-based tasks for underwater applications are still not widely considered as the images captured in this type of environments tend to be blurred and/or color depleted. To tackle this problem, we have adapted the lαβ color space to identify features of interest in underwater images even in extreme visibility conditions. To guarantee the stability of the vehicle at all times, a model-free robust control is used. We have validated the performance of our visual navigation system in real environments showing the feasibility of our approach.

  3. Validation of Underwater Sensor Package Using Feature Based SLAM

    Directory of Open Access Journals (Sweden)

    Christopher Cain

    2016-03-01

    Full Text Available Robotic vehicles working in new, unexplored environments must be able to locate themselves in the environment while constructing a picture of the objects in the environment that could act as obstacles that would prevent the vehicles from completing their desired tasks. In enclosed environments, underwater range sensors based off of acoustics suffer performance issues due to reflections. Additionally, their relatively high cost make them less than ideal for usage on low cost vehicles designed to be used underwater. In this paper we propose a sensor package composed of a downward facing camera, which is used to perform feature tracking based visual odometry, and a custom vision-based two dimensional rangefinder that can be used on low cost underwater unmanned vehicles. In order to examine the performance of this sensor package in a SLAM framework, experimental tests are performed using an unmanned ground vehicle and two feature based SLAM algorithms, the extended Kalman filter based approach and the Rao-Blackwellized, particle filter based approach, to validate the sensor package.

  4. Validation of Underwater Sensor Package Using Feature Based SLAM.

    Science.gov (United States)

    Cain, Christopher; Leonessa, Alexander

    2016-03-17

    Robotic vehicles working in new, unexplored environments must be able to locate themselves in the environment while constructing a picture of the objects in the environment that could act as obstacles that would prevent the vehicles from completing their desired tasks. In enclosed environments, underwater range sensors based off of acoustics suffer performance issues due to reflections. Additionally, their relatively high cost make them less than ideal for usage on low cost vehicles designed to be used underwater. In this paper we propose a sensor package composed of a downward facing camera, which is used to perform feature tracking based visual odometry, and a custom vision-based two dimensional rangefinder that can be used on low cost underwater unmanned vehicles. In order to examine the performance of this sensor package in a SLAM framework, experimental tests are performed using an unmanned ground vehicle and two feature based SLAM algorithms, the extended Kalman filter based approach and the Rao-Blackwellized, particle filter based approach, to validate the sensor package.

  5. Computer Simulations Imply Forelimb-Dominated Underwater Flight in Plesiosaurs.

    Directory of Open Access Journals (Sweden)

    Shiqiu Liu

    2015-12-01

    Full Text Available Plesiosaurians are an extinct group of highly derived Mesozoic marine reptiles with a global distribution that spans 135 million years from the Early Jurassic to the Late Cretaceous. During their long evolutionary history they maintained a unique body plan with two pairs of large wing-like flippers, but their locomotion has been a topic of debate for almost 200 years. Key areas of controversy have concerned the most efficient biologically possible limb stroke, e.g. whether it consisted of rowing, underwater flight, or modified underwater flight, and how the four limbs moved in relation to each other: did they move in or out of phase? Previous studies have investigated plesiosaur swimming using a variety of methods, including skeletal analysis, human swimmers, and robotics. We adopt a novel approach using a digital, three-dimensional, articulated, free-swimming plesiosaur in a simulated fluid. We generated a large number of simulations under various joint degrees of freedom to investigate how the locomotory repertoire changes under different parameters. Within the biologically possible range of limb motion, the simulated plesiosaur swims primarily with its forelimbs using an unmodified underwater flight stroke, essentially the same as turtles and penguins. In contrast, the hindlimbs provide relatively weak thrust in all simulations. We conclude that plesiosaurs were forelimb-dominated swimmers that used their hind limbs mainly for maneuverability and stability.

  6. 基于结构光的机器人弧焊混合视觉伺服控制%Hybrid Visual Servoing Control for Robotic Arc Welding Based on Structured Light Vision

    Institute of Scientific and Technical Information of China (English)

    徐德; 王麟琨; 涂志国; 谭民

    2005-01-01

    A novel hybrid visual servoing control method based on structured light vision is proposed for robotic arc welding with a general six degrees of freedom robot. It consists of a position control inner-loop in Cartesian space and two outer-loops. One is position-based visual control in Cartesian space for moving in the direction of weld seam, i.e., weld seam tracking, another is imagebased visual control in image space for adjustment to eliminate the errors in the process of tracking.A new Jacobian matrix from image space of the feature point on structured light stripe to Cartesian space is provided for differential movement of the end-effector. The control system model is simplified and its stability is discussed. An experiment of arc welding protected by gas CO2 for verifying is well conducted.

  7. Adaptive Backstepping Controller Design for Leveling Control of an Underwater Platform Based on Joint Space

    Directory of Open Access Journals (Sweden)

    Zhi-Lin Zeng

    2014-01-01

    Full Text Available This paper focuses on high precision leveling control of an underwater heavy load platform, which is viewed as an underwater parallel robot on the basis of its work pattern. The kinematic of platform with deformation is analyzed and the dynamics model of joint space is established. An adaptive backstepping controller according to Lyapunov's function is proposed for leveling control of platform based on joint space. Furthermore, the “lowest point fixed angle error” leveling scheme called “chase” is chosen for leveling control of platform. The digital simulation and practical experiment of single joint space actuator are carried out, and the results show high precision servo control of joint space. On the basis of this, the platform leveling control simulation relies on the hardware-in-loop system. The results indicate that the proposed controller can effectively restrain the influence from system parameter uncertainties and external disturbance to realize high precision leveling control of the underwater platform.

  8. Experimental Investigation to the Kinematics of a Blue Spotted Ray like Underwater Propulsor

    Directory of Open Access Journals (Sweden)

    Jianhui He

    2013-08-01

    Full Text Available Engineers have long been impressed by the swimming speed and agility of fish. Their research effort has been focusing on the development of a new technique of propulsion by mimicking biological fish. The aim of the present work is to develop a biological inspired underwater propulsor that emulates the performance of bluspotted ray. We first measured the morphology and captured the movement of a real bluespotted ray to provide some useful references for biomimetic mechanism design. By virtue of the modular and reconfigurable design concept, a bluspotted ray like underwater propulsor was considered and developed. An experiment system was set up to investigate the effect of various kinematic parameters including frequency, amplitude, wavelength on the propulsion velocity, thrust and efficiency of the fish robot. The results show that the designed biomimetic underwater propulsor is able to propel itself effectively.

  9. A Spatial Reference Grid for Real-Time Autonomous Underwater Modeling using 3-D Sonar

    Energy Technology Data Exchange (ETDEWEB)

    Auran, P.G.

    1996-12-31

    The offshore industry has recognized the need for intelligent underwater robotic vehicles. This doctoral thesis deals with autonomous underwater vehicles (AUVs) and concentrates on a data representation for real-time image formation and analysis. Its main objective is to develop a 3-D image representation suitable for autonomous perception objectives underwater, assuming active sonar as the main sensor for perception. The main contributions are: (1) A dynamical image representation for 3-D range data, (2) A basic electronic circuit and software system for 3-D sonar sampling and amplitude thresholding, (3) A model for target reliability, (4) An efficient connected components algorithm for 3-D segmentation, (5) A method for extracting general 3-D geometrical representations from segmented echo clusters, (6) Experimental results of planar and curved target modeling. 142 refs., 120 figs., 10 tabs.

  10. Covert underwater acoustic communications.

    Science.gov (United States)

    Ling, Jun; He, Hao; Li, Jian; Roberts, William; Stoica, Petre

    2010-11-01

    Low probability of detection (LPD) communications are conducted at a low received signal-to-noise ratio (SNR) to deter eavesdroppers to sense the presence of the transmitted signal. Successful detection at intended receiver heavily relies on the processing gain achieved by employing the direct-sequence spread-spectrum (DSSS) technique. For scenarios that lack a sufficiently low SNR to maintain LPD, another metric, referred to as low probability of interception (LPI), is of interest to protect the privacy of the transmitted information. If covert communications take place in underwater acoustic (UWA) environments, then additional challenges are present. The time-varying nature of the UWA channel prevents the employment of a long spreading waveform. Furthermore, UWA environments are frequency-selective channels with long memory, which imposes challenges to the design of the spreading waveform. In this paper, a covert UWA communication system that adopts the DSSS technique and a coherent RAKE receiver is investigated. Emphasis is placed on the design of a spreading waveform that not only accounts for the transceiver structure and frequency-selective nature of the UWA channel, but also possesses a superior LPI. The proposed techniques are evaluated using both simulated and SPACE'08 in-water experimental data.

  11. Underwater Sensor Nodes and Networks

    Directory of Open Access Journals (Sweden)

    Jaime Lloret

    2013-09-01

    Full Text Available Sensor technology has matured enough to be used in any type of environment. The appearance of new physical sensors has increased the range of environmental parameters for gathering data. Because of the huge amount of unexploited resources in the ocean environment, there is a need of new research in the field of sensors and sensor networks. This special issue is focused on collecting recent advances on underwater sensors and underwater sensor networks in order to measure, monitor, surveillance of and control of underwater environments. On the one hand, from the sensor node perspective, we will see works related with the deployment of physical sensors, development of sensor nodes and transceivers for sensor nodes, sensor measurement analysis and several issues such as layer 1 and 2 protocols for underwater communication and sensor localization and positioning systems. On the other hand, from the sensor network perspective, we will see several architectures and protocols for underwater environments and analysis concerning sensor network measurements. Both sides will provide us a complete view of last scientific advances in this research field.

  12. 基于遗传算法的四自由度混联机器人轨迹规划%Trajectory Planning of Four DOF Hybrid Robot Based on Genetic Algorithm

    Institute of Scientific and Technical Information of China (English)

    陈小立; 严宏志; 温广旭

    2014-01-01

    研究机器人轨迹优化控制问题,为了兼顾机器人高速运动的平稳性与工作效率,以四自由度混联机器人为研究对象,提出了一种基于遗传算法的轨迹规划方案。运用坐标变换法建立混联机器人的运动学模型;在考虑机器人位置、速度、加速度约束的基础上,采用"3-5-3"法在关节空间对机器人进行轨迹规划。通过遗传算法对各路径点间的时间间隔进行最优规划,获得各关节的位置、速度、加速度轨迹图像。仿真结果表明,所设计的方案能保证机器人运行时间最优以及轨迹连续平滑。%In order to improve hybrid robot's productivity and get a smooth high-speed movement, a method for trajectory planning based on genetic algorithm was presented. The kinematic model of hybrid robot was established by coordinate transformation method;the robot's trajectory in joint space was planned by"3-5-3" method while consid-ering constraints of position,velocity and acceleration. In order to obtain the trajectory picture of each point's posi-tion, velocity and acceleration, the time intervals between each path point were planned with the genetic algorithm. The simulation results show that the method can make the working time optimal and the robot's trajectory smooth.

  13. Energy source possibilities in underwater technics

    Science.gov (United States)

    Farin, Juho

    1991-04-01

    Underwater energy source possibilities are treated. The power demand of underwater vehicles is restricted to approximately 0.5 MW. Besides well known primary and secondary batteries as well as conventional diesel engines and closed cycle diesels, fuel cells, radio nuclear isotopes and small nuclear reactors have already been installed or tested in conditions representative of underwater.

  14. Forward and inverse solution of a 9-DOF hybrid robot for minimally invasive surgery%9自由度混联微创外科机器人的正反解

    Institute of Scientific and Technical Information of China (English)

    张帆; 刘达; 王田苗

    2011-01-01

    Focusing on the recently developed “5 R + 4T” 9-DOF ( degree-of-freedom ) hybrid robot for thoracoabdominal percutaneous cryosurgery by the robotics institute of Beijing University of Aeronautics and Astronautics, an original single-constraint-condition algorithm was put forward to obtain analytic solutions to the forward and inverse kinematics of the robot, based on the product of exponentials (POE) formula using inverse transformation method and characteristics of inverse matrix. The mutual derivation between the forward and the inverse solution, namely, the effectiveness of the algorithm, was demonstrated by several sets of numeric data. A modification for the algorithm was also advanced by discussing the demonstration results, so as to expand the range of its applicability. This algorithm overcomes the difficulties in performing the forward and inverse kinematic calculations which result from the DOF redundancy and the structure complexity of the hybrid robot, bringing a new idea about solving kinematic problems of multi-DOF hybrid robots.%针对北京航空航天大学机器人研究所最新开发的用于胸腹部冷冻穿刺手术的9自由度"5R+4T"混联机器人,基于指数积公式,利用反变换法和逆矩阵的特性,提出了一种在单约束条件下,得到该机器人解析形式正反解的新算法.通过数值算例验证了正反解的互推性,即算法的有效性,并经过对算例的分析给出了修正方案,扩大了算法的适用范围.该方法克服了因为混联机器人自由度多、结构复杂而带来的难以完成正反解计算的困难,为多自由度混联机器人的运动学求解提供了一种新的思路.

  15. Robot Aesthetics

    DEFF Research Database (Denmark)

    Jochum, Elizabeth Ann; Putnam, Lance Jonathan

    This paper considers art-based research practice in robotics through a discussion of our course and relevant research projects in autonomous art. The undergraduate course integrates basic concepts of computer science, robotic art, live performance and aesthetic theory. Through practice...... in robotics research (such as aesthetics, culture and perception), we believe robot aesthetics is an important area for research in contemporary aesthetics....

  16. Design of Autonomous Underwater Vehicle

    Directory of Open Access Journals (Sweden)

    Tadahiro Hyakudome

    2011-03-01

    Full Text Available There are concerns about the impact that global warming will have on our environment, and which will inevitably result in expanding deserts and rising water levels. While a lot of underwater vehicles are utilized, AUVs (Autonomous Underwater Vehicle were considered and chosen, as the most suitable tool for conduction survey concerning these global environmental problems. AUVs can comprehensive survey because the vehicle does not have to be connected to the support vessel by tether cable. When such underwater vehicles are made, it is necessary to consider about the following things. 1 Seawater and Water Pressure Environment, 2 Sink, 3 There are no Gas or Battery Charge Stations, 4 Global Positioning System cannot use, 5 Radio waves cannot use. In the paper, outline of above and how deal about it are explained.

  17. A Hybrid Neural Network Approach for Kinematic Modeling of a Novel 6-UPS Parallel Human-Like Mastication Robot

    Directory of Open Access Journals (Sweden)

    Hadi Kalani

    2016-04-01

    Full Text Available Introduction we aimed to introduce a 6-universal-prismatic-spherical (UPS parallel mechanism for the human jaw motion and theoretically evaluate its kinematic problem. We proposed a strategy to provide a fast and accurate solution to the kinematic problem. The proposed strategy could accelerate the process of solution-finding for the direct kinematic problem by reducing the number of required iterations in order to reach the desired accuracy level. Materials and Methods To overcome the direct kinematic problem, an artificial neural network and third-order Newton-Raphson algorithm were combined to provide an improved hybrid method. In this method, approximate solution was presented for the direct kinematic problem by the neural network. This solution could be considered as the initial guess for the third-order Newton-Raphson algorithm to provide an answer with the desired level of accuracy. Results The results showed that the proposed combination could help find a approximate solution and reduce the execution time for the direct kinematic problem, The results showed that muscular actuations showed periodic behaviors, and the maximum length variation of temporalis muscle was larger than that of masseter and pterygoid muscles. By reducing the processing time for solving the direct kinematic problem, more time could be devoted to control calculations.. In this method, for relatively high levels of accuracy, the number of iterations and computational time decreased by 90% and 34%, respectively, compared to the conventional Newton method. Conclusion The present analysis could allow researchers to characterize and study the mastication process by specifying different chewing patterns (e.g., muscle displacements.

  18. Design, modeling and optimization of an underwater manipulator with four-bar mechanism and compliant linkage

    Energy Technology Data Exchange (ETDEWEB)

    Jin, Sang Ok; Kim, Ji Hoon; Bae, Jang Ho; Kim, Jong Won [School of Mechanical and Aerospace Engineering, Seoul National University, Seoul (Korea, Republic of); Seo, Tae Won [School of Mechanical Engineering, Yeungnam University, Gyeongsan (Korea, Republic of)

    2016-09-15

    Underwater manipulators are very important for a robot to perform a specific operation in water. Conventional robot arm manipulators have been suggested for various operations but have not been suitable for repeated motion in gathering something. This paper presents a new underwater manipulator design for gathering things such as starfish on the sea floor. The manipulator is composed of a four-bar linkage to achieve repeated motion along a loop and compliant linkages to enhance the efficiency of the gathering work. Kinematic and quasi-static analyses were performed to calculate the loop path and the reaction force at the actuation point. Based on the analysis, optimal design was performed to maximize the working distance with the height difference and the reaction moments considered as constraints. A prototype was assembled to test the performance of the manipulator, and the empirical loop path was compared to simulation results.

  19. Anatomic viral detection is automated: the application of a robotic molecular pathology system for the detection of DNA viruses in anatomic pathology substrates, using immunocytochemical and nucleic acid hybridization techniques.

    Science.gov (United States)

    Montone, K. T.; Brigati, D. J.; Budgeon, L. R.

    1989-01-01

    This paper presents the first automated system for simultaneously detecting human papilloma, herpes simplex, adenovirus, or cytomegalovirus viral antigens and gene sequences in standard formalin-fixed, paraffin-embedded tissue substrates and tissue culture. These viruses can be detected by colorimetric in situ nucleic acid hybridization, using biotinylated DNA probes, or by indirect immunoperoxidase techniques, using polyclonal or monoclonal antibodies, in a 2.0-hour assay performed at a single automated robotic workstation. Images FIG. 1 FIG. 4 FIG. 5 FIG. 6 FIG. 7 FIG. 8 FIG. 9 FIG. 10 FIG. 11 PMID:2773514

  20. Cross-Coordinated Control: An Experimentally Verified Technique for the Hybrid Twist and Wrench Control of a Voltage-Controlled Industrial Robot

    Science.gov (United States)

    1988-12-30

    Figure 2.5. Ignoring robot dynamics , we model the contact with the environ- ment as a pure stiffness, ke. This is the effective stiffness due to contact...rotated into the fixed frame using -a = M R 1 (3.50) The forward analysis is now complete. 3.3 Dynamics Nearly all models for robot dynamics presented in

  1. Robotic Architectures

    Directory of Open Access Journals (Sweden)

    Mbali Mtshali

    2010-01-01

    Full Text Available In the development of mobile robotic systems, a robotic architecture plays a crucial role in interconnecting all the sub-systems and controlling the system. The design of robotic architectures for mobile autonomous robots is a challenging and complex task. With a number of existing architectures and tools to choose from, a review of the existing robotic architecture is essential. This paper surveys the different paradigms in robotic architectures. A classification of the existing robotic architectures and comparison of different proposals attributes and properties have been carried out. The paper also provides a view on the current state of designing robot architectures. It also proposes a conceptual model of a generalised robotic architecture for mobile autonomous robots.Defence Science Journal, 2010, 60(1, pp.15-22, DOI:http://dx.doi.org/10.14429/dsj.60.96

  2. Underwater laser imaging system (UWLIS)

    Energy Technology Data Exchange (ETDEWEB)

    DeLong, M. [Lawrence Livermore National Lab., CA (United States)

    1994-11-15

    Practical limitations with underwater imaging systems area reached when the noise in the back scattered radiation generated in the water between the imaging system and the target obscures the spatial contrast and resolution necessary for target discovery and identification. The advent of high power lasers operating in the blue-green portion of the visible spectrum (oceanic transmission window) has led to improved experimental illumination systems for underwater imaging. Range-gated and synchronously scanned devices take advantage of the unique temporal and spatial coherence properties of laser radiation, respectively, to overcome the deleterious effects of common volume back scatter.

  3. RF-modulated pulsed fiber optic lidar transmitter for improved underwater imaging and communications

    Science.gov (United States)

    Kimpel, F.; Chen, Y.; Fouron, J.-L.; Akbulut, M.; Engin, D.; Gupta, S.

    2011-03-01

    We present results on the design, development and initial testing of a fiber-optic based RF-modulated lidar transmitter operating at 532nm, for underwater imaging application in littoral waters. The design implementation is based on using state-of-the-art high-speed FPGAs, thereby producing optical waveforms with arbitrary digital-RF-modulated pulse patterns with carrier frequencies >= 3GHz, with a repetition rate of 0.5-1MHz, and with average powers >=5W (at 532nm). Use of RF-modulated bursts above 500MHz, instead of single optical pulse lidar detection, reduces the effect of volumetric backscatter for underwater imaging application, leading to an improved signal-to-noise-ratio (SNR) and contrast, for a given range. Initial underwater target detection tests conducted at Patuxent River Naval Air Station, MD, in a large water-tank facility, validates the advantages of this hybrid-lidar-radar (HLR) approach for improved underwater imaging, over a wide range of turbidity levels and both white and black targets. The compact, robust and power-efficient fiber laser architecture lends very well to lidar sensor integration on unmanned-underwater-vehicle (UUV) platforms. HLR transmitters can also provide similar advantages in active-sensing situations dominated by continuous backscatter, e.g. underwater communications, imaging through smoke and fire environment, rotor-craft landing in degraded visual environment, and pointing-tracking of active-EO sensors through fog.

  4. Robotic Planetary Drill Tests

    Science.gov (United States)

    Glass, Brian J.; Thompson, S.; Paulsen, G.

    2010-01-01

    Several proposed or planned planetary science missions to Mars and other Solar System bodies over the next decade require subsurface access by drilling. This paper discusses the problems of remote robotic drilling, an automation and control architecture based loosely on observed human behaviors in drilling on Earth, and an overview of robotic drilling field test results using this architecture since 2005. Both rotary-drag and rotary-percussive drills are targeted. A hybrid diagnostic approach incorporates heuristics, model-based reasoning and vibration monitoring with neural nets. Ongoing work leads to flight-ready drilling software.

  5. A study on the clustering technology of underwater isomorphic sensor networks based on energy balance.

    Science.gov (United States)

    Wang, Fei; Wang, Liming; Han, Yan; Liu, Bin; Wang, Jian; Su, Xinyan

    2014-01-01

    Nowadays, there is a greater need for energy efficient and stable underwater sensor networks (UWSNs). Underwater sensors usually do not have enough power, so the goal of underwater sensor networks is to make the network have a long lifetime. An underwater heterogeneous sensor network (UWHSN) is one way to cluster the sensors, and the application of UWHSNs is simple and fast, but robots, lifetime and energy-partition are all drawbacks of UWHSNs. In this paper we propose the underwater isomorphic sensor network (UWISN) clustering technology. By analyzing the characteristics of UWISNs, we determine that an UWISN has strong expansibility, mobility, energy-efficiency and long lifetime. An UWISN adopts normal sensor nodes to be cluster heads, and these cluster heads communicate with each other. This paper seeks the optimal number of clusters and uses FCM to elect cluster heads and establish the network. In addition, an idea of real cluster heads and the method to elect them have been proposed. Finally, the simulation results show that the solution is effective and UWISNs can improve the energy consumption of an UWSN.

  6. Repetitive Learning Control for Time-varying Robotic Systems: A Hybrid Learning Scheme%时变机器人系统的重复学习控制:一种混合学习方案

    Institute of Scientific and Technical Information of China (English)

    孙明轩; 何熊熊; 陈冰玉

    2007-01-01

    Repetitive learning control is presented for finitetime-trajectory tracking of uncertain time-varying robotic systems. A hybrid learning scheme is given to cope with the constant and time-varying unknowns in system dynamics, where the time functions are learned in an iterative learning way, without the aid of Taylor expression, while the conventional differential learning method is suggested for estimating the constant ones.It is distinct that the presented repetitive learning control avoids the requirement for initial repositioning at the beginning of each cycle, and the time-varying unknowns are not necessary to be periodic. It is shown that with the adoption of hybrid learning,the boundedness of state variables of the closed-loop system is guaranteed and the tracking error is ensured to converge to zero as iteration increases. The effectiveness of the proposed scheme is demonstrated through numerical simulation.

  7. A Probabilistic and Highly Efficient Topology Control Algorithm for Underwater Cooperating AUV Networks

    Directory of Open Access Journals (Sweden)

    Ning Li

    2017-05-01

    Full Text Available The aim of the Smart and Networking Underwater Robots in Cooperation Meshes (SWARMs project is to make autonomous underwater vehicles (AUVs, remote operated vehicles (ROVs and unmanned surface vehicles (USVs more accessible and useful. To achieve cooperation and communication between different AUVs, these must be able to exchange messages, so an efficient and reliable communication network is necessary for SWARMs. In order to provide an efficient and reliable communication network for mission execution, one of the important and necessary issues is the topology control of the network of AUVs that are cooperating underwater. However, due to the specific properties of an underwater AUV cooperation network, such as the high mobility of AUVs, large transmission delays, low bandwidth, etc., the traditional topology control algorithms primarily designed for terrestrial wireless sensor networks cannot be used directly in the underwater environment. Moreover, these algorithms, in which the nodes adjust their transmission power once the current transmission power does not equal an optimal one, are costly in an underwater cooperating AUV network. Considering these facts, in this paper, we propose a Probabilistic Topology Control (PTC algorithm for an underwater cooperating AUV network. In PTC, when the transmission power of an AUV is not equal to the optimal transmission power, then whether the transmission power needs to be adjusted or not will be determined based on the AUV’s parameters. Each AUV determines their own transmission power adjustment probability based on the parameter deviations. The larger the deviation, the higher the transmission power adjustment probability is, and vice versa. For evaluating the performance of PTC, we combine the PTC algorithm with the Fuzzy logic Topology Control (FTC algorithm and compare the performance of these two algorithms. The simulation results have demonstrated that the PTC is efficient at reducing the

  8. Underwater olfaction for real-time detection of submerged unexploded ordnance

    Science.gov (United States)

    Harper, Ross J.; Dock, Matthew L.

    2007-04-01

    The presence of Underwater Unexploded Ordnance (UUXO) represents a considerable threat in the marine environment. Elevated concentrations of dissolved explosive compounds, such as TNT and RDX, may be produced in the vicinity of degraded UUXO shell casings and are known to have significant toxicant effects on local marine organisms. During World War II and in subsequent years, the US military inadvertently or, in some cases intentionally, deposited many thousands of tons of UUXO in US coastal waters. Much of this material is difficult to locate by magnetometry or sonar imaging techniques, and can be extremely challenging to identify by visual means after lying on the bottom of the ocean for several decades. The present work is focused on advances in underwater olfaction, wherein trace amounts of dissolved explosive compounds may be detected and discriminated from other chemical species found in the marine environment, for the purpose of establishing safe cordons and/or neutralization of the explosives. ICx Nomadics has developed the first known real-time sensor system that is capable of detecting chemical signatures emanating from underwater explosives. The SeaPup sensor, which is based on the fluorescence-quenching transduction mechanism of an amplifying fluorescent polymer (AFP), is capable of real-time detection of the trace chemical signatures emanating from submerged explosive compounds. The SeaPup system has been successfully tested on various marine platforms, including a crawler robot, an autonomous underwater vehicle (AUV), and a remotely operated underwater vehicle (ROV). In one study, the SeaPup was shown to effectively map liquid phase "explosive scent plumes" emanating from an underwater source of TNT. The presented paper will provide an overview of the history, current status, and future development of explosive analyte detection in the underwater environment.

  9. Underwater noise due to precipitation

    DEFF Research Database (Denmark)

    Crum, Lawrence A.; Pumphrey, Hugh C.; Prosperetti, Andrea;

    1989-01-01

    surface, both for individual and for multiple events such as those produced by artificial and natural rainfall, has been examined. The studies indicate that the major contribution to the underwater noise produced by both rain and snow is that associated with the oscillations of gas bubbles introduced...

  10. Underwater Applications of Acoustical Holography

    Directory of Open Access Journals (Sweden)

    P. C. Mehta

    1984-01-01

    Full Text Available The paper describes the basic technique of acoustical holography. Requirements for recording the acoustical hologram are discussed with its ability for underwater imaging in view. Some practical systems for short-range and medium-range imaging are described. The advantages of acoustical holography over optical imaging, acoustical imaging and sonars are outlined.

  11. Calibration of Underwater Sound Transducers

    Directory of Open Access Journals (Sweden)

    H.R.S. Sastry

    1983-07-01

    Full Text Available The techniques of calibration of underwater sound transducers for farfield, near-field and closed environment conditions are reviewed in this paper .The design of acoustic calibration tank is mentioned. The facilities available at Naval Physical & Oceanographic Laboratory, Cochin for calibration of transducers are also listed.

  12. 多喷枪协同式喷涂五轴混联机器人设计%Design of 5-axes Hybrid Robot with Several Spray Guns for Collaborative Spraying

    Institute of Scientific and Technical Information of China (English)

    李菊; 赵德安; 沈惠平; 邓嘉鸣; 蒋益兴; 徐伟

    2012-01-01

    A parallel mechanism was used in spray painting equipment for large and flat cube workpiece. A 5-axes decoupling hybrid spraying robot was designed. The mechanism design, working principle, kinematical analysis, drive mode, hardware composition and control method of control system for the spraying robot were expounded. The robot had compact structure, high spraying efficiency, uniform coating thickness, simple operation, and good prospect.%针对大型扁平型立方体工件的喷涂工艺特点,将并联机构应用于喷涂工艺,设计了一种控制解耦性很好的五轴混联喷涂机器人,阐述了这种喷涂机器人的机构设计、工作原理、运动学分析、驱动方式、控制系统硬件组成及其控制方式.该机器人具有结构紧凑、喷涂效率高、涂层厚度均匀和操作简便等特点,具有较好的应用前景.

  13. Current trend of robotics application in medical

    Science.gov (United States)

    Olanrewaju, O. A.; Faieza, A. A.; Syakirah, K.

    2013-06-01

    The applications of robotics in recent years has emerged beyond the field of manufacturing or industrial robots itself. Robotics applications are now widely used in medical, transport, underwater, entertainment and military sector. In medical field, these applications should be emphasized in view of the increasing challenges due to the variety of findings in the field of medicine which requires new inventions to ease work process. The objective of this review paper is to study and presents the past and on-going research in medical robotics with emphasis on rehabilitation (assistive care) and surgery robotics which are certainly the two main practical fields where robots application are commonly used presently. The study found that, rehabilitation and surgery robotics applications grow extensively with the finding of new invention, as well as research that is being undertaken and to be undertaken. The importance of medical robot in medical industry is intended to offer positive outcomes to assist human business through a complicated task that involves a long period, accuracy, focus and other routines that cannot be accomplished by human ability alone.

  14. Robot vision environmental perception method based on hybrid features%机器人的混合特征视觉环境感知方法

    Institute of Scientific and Technical Information of China (English)

    杨俊友; 马乐; 白殿春; 东俊光

    2012-01-01

    提出一种基于颜色直方图和SIFT混合特征的机器人视觉环境感知方法.该方法将颜色直方图的“色”与SIFT算法的“形”有机结合,有效提高了感知精度和实时性.对图像进行平均亮度调整并对颜色直方图特征加入主颜色直方图,使之对环境光照和动态变化具有更好的鲁棒性;通过控制特征点数和加入局部颜色统计信息方式改进SIFT算法,提高了特征生成速度和匹配准确度.利用分级匹配方法加速了特征检索过程,并采用本文提出的基于数据知识的推理方法进一步提高了感知精度.仿真与实验结果表明,随着数据库规模扩大,本文方法在感知精度和实时性上的性能优势越发明显.%An image-matching method for robot environmental perception based on hybrid features from color histograms baaed on the scale-invariant feature transform (SIFT) is proposed. The SIFT is combined with color histograms to make a compromise between high perception accuracy and real-time processing needs. First, images are processed by making an average of the lightness, then the extracted features are added to the main color histogram, which is more robust against lightness and dynamics in the environment. The number of SIFT values is controlled and local color statistical information is added to the SIFT,which is more accurate and faster for real-time matching. After wards,the process of features-retrieval is accelerated by hierarchical matching. Finally, the scheme is optimized using the proposed reasoning method based on previous knowledge from databases,to further improve the accuracy of perception the simulation and experiment results show that when the scale of the database is growing,the advantage of the proposea method proposed is prominent.

  15. A chaotic spread spectrum system for underwater acoustic communication

    Science.gov (United States)

    Ren, Hai-Peng; Bai, Chao; Kong, Qingju; Baptista, Murilo S.; Grebogi, Celso

    2017-07-01

    Acoustic communication is a key technology to exchange information underwater, which is of great significance to explore marine resources and to marine defense. The underwater acoustic channel is a time-space-frequency varying channel characterized by serious multipath effect, limited frequency band, complex environmental noises and significant Doppler frequency shift phenomenon, which makes underwater acoustic communication with low Bit Error Rate (BER) to be a challenging task. A novel chaotic spread spectrum acoustic communication method with low BER is proposed in this paper. A chaotic signal, generated by a hybrid dynamical system, is used as a spread spectrum sequence at the transmitter end. At the receiver end, a corresponding chaotic matched filter is used to offset the effect of multipath propagation and noise. The proposed method does not require the complicated equalization and modulation-demodulation technologies that are necessary for conventional acoustic communication. Simulation results show that the proposed method has good anti-interference ability and lower BER as compared to other traditional methods.

  16. Filigree Robotics

    DEFF Research Database (Denmark)

    Tamke, Martin; Evers, Henrik Leander; Clausen Nørgaard, Esben

    2016-01-01

    Filigree Robotics experiments with the combination of traditional ceramic craft with robotic fabrication in order to generate a new narrative of fine three-dimensional ceramic ornament for architecture....

  17. Intelligent Mobile Olfaction of Swarm Robots

    National Research Council Canada - National Science Library

    Siti Nurmaini; Bambang Tutuko; Aulia Rahman Thoharsin

    2013-01-01

      This work presents intelligent mobile olfaction design and experimental results of intelligent swarm robots to detection a gas/odour source in an indoor environment by using multi agent based on hybrid algorithm...

  18. Army Robotics

    Science.gov (United States)

    2009-10-07

    Army Robotics 07 October 2009 Dr. Grant Gerhart, Senior Research Scientist Bernard Theisen, Joint Center for Robotics DISTRIBUTION STATEMENT A... Robots 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Grant Gerhart; Bernard Theisen 5d. PROJECT NUMBER 5e. TASK...CBRNE • IED Defeat Systems • Disarm / Disrupt • Reconnaissance • Investigation • Explosive Sniffer • Common Robotic Kit • EOD • Convoy • Log

  19. TARDEC Robotics

    Science.gov (United States)

    2010-01-12

    unclassified TARDEC Robotics Dr. James L. Overholt Director, Joint Center for Robotics US Army TARDEC Report Documentation Page Form ApprovedOMB No...COVERED - 4. TITLE AND SUBTITLE TARDEC Robotics 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) James L. Overholt... Robotics , Network and Control Components with a Focus on Customer Driven Requirements to Provide Full System Solutions to the War Fighter Technology

  20. Robot Futures

    DEFF Research Database (Denmark)

    Christoffersen, Anja; Grindsted Nielsen, Sally; Jochum, Elizabeth Ann;

    Robots are increasingly used in health care settings, e.g., as homecare assistants and personal companions. One challenge for personal robots in the home is acceptance. We describe an innovative approach to influencing the acceptance of care robots using theatrical performance. Live performance i...... perceive social robots interacting with humans in a future care scenario through a scripted performance. We discuss our methods and initial findings, and outline future work....

  1. Mobile robots

    Energy Technology Data Exchange (ETDEWEB)

    Wolfe, W.J.; Marquina, N.

    1986-01-01

    This book presents papers given at a conference on mobile robots. Topics the conference included are the following: mobility systems for robotic vehicles; detection and control of mobile robot motion by real-time computer vision, obstacle avoidance algorithms for an autonomous land vehicle; hierarchical processor and matched filters for range image processing; asynchronous distributed control system for a mobile robot, and, planning in a hierarchical nested autonomous control system.

  2. La Vida Robot - High School Engineering Program Combats Engineering Brain Drain

    Energy Technology Data Exchange (ETDEWEB)

    Cameron, Allan; Lajvardi, Fredi (Carl Hayden High School, Phoenix, AZ)

    2006-03-15

    Carl Hayden High School has built an impressive reputation with its robotics club. At a time when interest in science, math and engineering is declining, the Falcon Robotics club has young people fired up about engineering. Their program in underwater robots (MATE) and FIRST robotics is becoming a national model, not for building robots, but for building engineers. Teachers Fredi Lajvardi and Allan Cameron will present their story (How kids 'from the mean streets of Phoenix took on the best from M.I.T. in the national underwater bot championship' - Wired Magazine, April 2005) and how every student needs the opportunity to 'do real engineering.'

  3. Sensor Network Architectures for Monitoring Underwater Pipelines

    OpenAIRE

    Imad Jawhar; Jameela Al-Jaroodi; Nader Mohamed; Liren Zhang

    2011-01-01

    This paper develops and compares different sensor network architecture designs that can be used for monitoring underwater pipeline infrastructures. These architectures are underwater wired sensor networks, underwater acoustic wireless sensor networks, RF (Radio Frequency) wireless sensor networks, integrated wired/acoustic wireless sensor networks, and integrated wired/RF wireless sensor networks. The paper also discusses the reliability challenges and enhancement approaches for these network...

  4. Fish-inspired robots: design, sensing, actuation, and autonomy--a review of research.

    Science.gov (United States)

    Raj, Aditi; Thakur, Atul

    2016-04-13

    Underwater robot designs inspired by the behavior, physiology, and anatomy of fishes can provide enhanced maneuverability, stealth, and energy efficiency. Over the last two decades, robotics researchers have developed and reported a large variety of fish-inspired robot designs. The purpose of this review is to report different types of fish-inspired robot designs based upon their intended locomotion patterns. We present a detailed comparison of various design features like sensing, actuation, autonomy, waterproofing, and morphological structure of fish-inspired robots reported in the past decade. We believe that by studying the existing robots, future designers will be able to create new designs by adopting features from the successful robots. The review also summarizes the open research issues that need to be taken up for the further advancement of the field and also for the deployment of fish-inspired robots in practice.

  5. Cooperative OFDM underwater acoustic communications

    CERN Document Server

    Cheng, Xilin; Cheng, Xiang

    2016-01-01

    Following underwater acoustic channel modeling, this book investigates the relationship between coherence time and transmission distances. It considers the power allocation issues of two typical transmission scenarios, namely short-range transmission and medium-long range transmission. For the former scenario, an adaptive system is developed based on instantaneous channel state information. The primary focus is on cooperative dual-hop orthogonal frequency division multiplexing (OFDM). This book includes the decomposed fountain codes designed to enable reliable communications with higher energy efficiency. It covers the Doppler Effect, which improves packet transmission reliability for effective low-complexity mirror-mapping-based intercarrier interference cancellation schemes capable of suppressing the intercarrier interference power level. Designed for professionals and researchers in the field of underwater acoustic communications, this book is also suitable for advanced-level students in electrical enginee...

  6. Determination of Spatial Configuration of an Underwater Swarm with Minimum Data

    Directory of Open Access Journals (Sweden)

    Ramiro dell'Erba

    2015-07-01

    Full Text Available This paper is the extension of work presented at the IARP Conference “Bio inspired robotics” held in Frascati (Italy, 14 May 2014. The subject is the localization problem of an underwater swarm of autonomous underwater robots (AUV, in the frame of the HARNESS project; by localization, we mean the relative swarm configuration, i.e., the geometrical shape of the group. The result is achieved by using the signals that the robots exchange. The swarm is organized by rules and conceived to perform tasks, ranging from environmental monitoring to terrorism-attack surveillance. Two methods of determining the shape of the swarm, both based on trilateration calculation, are proposed. The first method focuses on the robot's speed. In this case, we use our knowledge of the speeds and distances between the machines, while the second method considers only distances and the orientation angles of the robots. Unlike a trilateration problem, we do not know the position of the beacons and this renders the problem a difficult one. Moreover, we have very few data. More than one step of motion is needed to resolve the multiple solutions found, owing to the symmetries of the system and optimization process of one or more objective functions leading to the final configuration. We subsequently checked our algorithm using a simulator taking into account random errors affecting the measurements.

  7. Taiwan's underwater cultural heritage documentation management

    Science.gov (United States)

    Tung, Y.-Y.

    2015-09-01

    Taiwan is an important trading and maritime channels for many countries since ancient time. Numerous relics lie underwater due to weather, wars, and other factors. In the year of 2006, Bureau of Cultural Heritage (BOCH) entrusted the Underwater Archaeological Team of Academia Sinica to execute the underwater archaeological investigation projects. Currently, we verified 78 underwater targets, with 78 site of those had been recognized as shipwrecks sites. Up to date, there is a collection of 638 underwater objects from different underwater archaeological sites. Those artefacts are distributed to different institutions and museums. As very diverse management methods/systems are applied for every individual institution, underwater cultural heritage data such as survey, excavation report, research, etc. are poorly organized and disseminated for use. For better communication regarding to Taiwan's underwater cultural heritage in every level, a universal format of documentation should be established. By comparing the existing checklist used in Taiwan with guidelines that are followed in other countries, a more intact and appropriate underwater cultural heritage condition documentation system can be established and adapted in Taiwan.

  8. Action-Specific Effects Underwater

    OpenAIRE

    Witt, Jessica; Schuck, Donald M; Taylor, J. Eric T.

    2011-01-01

    Action-specific effects on perception are apparent in terrestrial environments. For example, targets that require more effort to walk, jump, or throw to look farther away than when the targets require less effort. Here, we examined whether action-specific effects would generalize to an underwater environment. Instead, perception might be geometrically precise, rather than action-specific, in an environment that is novel from an evolutionary perspective. We manipulated ease to swim by giving p...

  9. Underwater Acoustic Beacon Location System

    Science.gov (United States)

    2016-12-23

    transpose operator is a standard operator in linear or matrix algebra . The transpose operator converts the row vector   T aaaa z,y,x=P to a column...February 2017 The below identified patent application is available for licensing. Requests for information should be addressed to...300087 1 of 31 UNDERWATER ACOUSTIC BEACON LOCATION SYSTEM [0001] The present application claims the benefit of United States Provisional

  10. The Norwegian research programme on advanced robotic systems

    Directory of Open Access Journals (Sweden)

    Olav Egeland

    1991-04-01

    Full Text Available The Norwegian research programme on advanced robot systems has been focused on sensory control of robots for industrial applications and telerobotics for underwater operations. This paper gives an overview of experimental work and ongoing research. An exciting area in sensory control is visual servoing where camera images at video rate are used to grasp moving objects. Also compliant motion in partially unknown environments is a research topic. New robot control systems have been developed to apply sensory control to robotic manipulators at an acceptable sampling rate. In telerobotics the main work has been on the combination of remote control and local sensory loops in the manipulator. Also in this case visual servoing anti force control are important. The generation and updating of a world model used in a graphic display of the worksite using sensory information has been tested in combination with large delay times in the communication channel. The use of visual and acoustic data for the control of remotely operated vehicles and autonomous underwater vehicles is studied for use in robotic systems. Light-weight robot manipulators with redundant degrees of freedom and high performance joints are being designed for mobile robot applications.

  11. Robot Mechanisms

    CERN Document Server

    Lenarcic, Jadran; Stanišić, Michael M

    2013-01-01

    This book provides a comprehensive introduction to the area of robot mechanisms, primarily considering industrial manipulators and humanoid arms. The book is intended for both teaching and self-study. Emphasis is given to the fundamentals of kinematic analysis and the design of robot mechanisms. The coverage of topics is untypical. The focus is on robot kinematics. The book creates a balance between theoretical and practical aspects in the development and application of robot mechanisms, and includes the latest achievements and trends in robot science and technology.

  12. Robot Futures

    DEFF Research Database (Denmark)

    Christoffersen, Anja; Grindsted Nielsen, Sally; Jochum, Elizabeth Ann

    Robots are increasingly used in health care settings, e.g., as homecare assistants and personal companions. One challenge for personal robots in the home is acceptance. We describe an innovative approach to influencing the acceptance of care robots using theatrical performance. Live performance...... is a useful testbed for developing and evaluating what makes robots expressive; it is also a useful platform for designing robot behaviors and dialogue that result in believable characters. Therefore theatre is a valuable testbed for studying human-robot interaction (HRI). We investigate how audiences...... perceive social robots interacting with humans in a future care scenario through a scripted performance. We discuss our methods and initial findings, and outline future work....

  13. VSiPMT for underwater neutrino telescopes

    Energy Technology Data Exchange (ETDEWEB)

    Barbarino, Giancarlo [Università di Napoli Federico II, Dipartimento di Scienze Fisiche, via Cintia 80126 Napoli (Italy); Asmundis, Riccardo de [Istituto Nazionale di fisica Nucleare, sezione di Napoli, Complesso di Monte S. Angelo Ed. 6, via Cintia 80126 Napoli (Italy); De Rosa, Gianfranca [Università di Napoli Federico II, Dipartimento di Scienze Fisiche, via Cintia 80126 Napoli (Italy); Maximiliano Mollo, Carlos [Istituto Nazionale di fisica Nucleare, sezione di Napoli, Complesso di Monte S. Angelo Ed. 6, via Cintia 80126 Napoli (Italy); Vivolo, Daniele, E-mail: vivolo@na.infn.it [Università di Napoli Federico II, Dipartimento di Scienze Fisiche, via Cintia 80126 Napoli (Italy); Istituto Nazionale di fisica Nucleare, sezione di Napoli, Complesso di Monte S. Angelo Ed. 6, via Cintia 80126 Napoli (Italy)

    2013-10-11

    Underwater neutrino telescopes are nowadays considered among the most important aims in the field of astroparticle physics. Their structure consists of a cubic-kilometer three-dimensional array of photosensitive devices aimed at the detection of the Cherenkov light emitted by charged particles produced by high energy neutrino interactions with the Earth. To date, a crucial role in this kind of experiments has been played by PhotoMultiplier Tubes (PMTs), however they suffer from many drawbacks such as linearity-to-gain relationship and difficulty in single photon counting. The next generation of experiments will require further improvements in photon detectors performances, therefore alternatives to PMTs are currently under study. In particular the most promising development in this field is represented by the rapidly emerging CMOS p-n Geiger-mode avalanche photodiode technology (G-APD or SiPM), that will allow the detection of high-speed single photons with high gain and linearity. In order to overcome the limit of small sensitive surfaces we suggest an innovative design for a modern hybrid, high gain, silicon based Vacuum Silicon Photomultiplier Tube (VSiPMT) based on the combination of a SiPM with a hemispherical vacuum glass PMT standard envelope. In this work we describe the full SiPM characterization realized by our group and we present the results of our Geant4-based simulations of electron backscattering over the SiPM surface.

  14. VSiPMT for underwater neutrino telescopes

    Science.gov (United States)

    Barbarino, Giancarlo; de Asmundis, Riccardo; De Rosa, Gianfranca; Maximiliano Mollo, Carlos; Vivolo, Daniele

    2013-10-01

    Underwater neutrino telescopes are nowadays considered among the most important aims in the field of astroparticle physics. Their structure consists of a cubic-kilometer three-dimensional array of photosensitive devices aimed at the detection of the Cherenkov light emitted by charged particles produced by high energy neutrino interactions with the Earth. To date, a crucial role in this kind of experiments has been played by PhotoMultiplier Tubes (PMTs), however they suffer from many drawbacks such as linearity-to-gain relationship and difficulty in single photon counting. The next generation of experiments will require further improvements in photon detectors performances, therefore alternatives to PMTs are currently under study. In particular the most promising development in this field is represented by the rapidly emerging CMOS p-n Geiger-mode avalanche photodiode technology (G-APD or SiPM), that will allow the detection of high-speed single photons with high gain and linearity. In order to overcome the limit of small sensitive surfaces we suggest an innovative design for a modern hybrid, high gain, silicon based Vacuum Silicon Photomultiplier Tube (VSiPMT) based on the combination of a SiPM with a hemispherical vacuum glass PMT standard envelope. In this work we describe the full SiPM characterization realized by our group and we present the results of our Geant4-based simulations of electron backscattering over the SiPM surface.

  15. A Modular Approach for a Family of Ground Mobile Robots

    Directory of Open Access Journals (Sweden)

    Giuseppe Quaglia

    2013-07-01

    Full Text Available This paper deals with Epi.q, a family of mobile robots whose main characteristic is a wheel-legged hybrid locomotion. These multi-purpose robots can be successfully exploited for security and surveillance tasks. The document presents state of the art security robotics, the Epi.q mechanical architecture, the concept behind the robot driving unit, three prototypes and the design of a new one.

  16. Nacre-inspired design of mechanical stable coating with underwater superoleophobicity.

    Science.gov (United States)

    Xu, Li-Ping; Peng, Jitao; Liu, Yibiao; Wen, Yongqiang; Zhang, Xueji; Jiang, Lei; Wang, Shutao

    2013-06-25

    Because of the frequent oil spill accidents in marine environment, stable superoleophobic coatings under seawater are highly desired. Current underwater superoleophobic surfaces often suffer from mechanical damages and lose their superoleophobicity gradually. It remains a challenge to fabricate a stable and robust underwater superoleophobic film which can endure harsh conditions in practical application. Nacre is one of most extensively studied rigid biological materials. Inspired by the outstanding mechanical property of seashell nacre and those underwater superoleophobic surfaces from nature, we fabricated a polyelectrolyte/clay hybrid film via typical layer-by-layer (LBL) method based on building blocks with high surface energy. 'Bricks-and-mortar' structure of seashell nacre was conceptually replicated into the prepared film, which endows the obtained film with excellent mechanical property and great abrasion resistance. In addtion, the prepared film also exhibits stable underwater superoleophobicity, low oil adhesion, and outstanding environment durability in artificial seawater. We anticipate that this work will provide a new method to design underwater low-oil-adhesion film with excellent mechanical property and improved stability, which may advance the practical applications in marine antifouling and microfluidic devices.

  17. The application of virtual prototyping methods to determine the dynamic parameters of mobile robot

    Science.gov (United States)

    Kurc, Krzysztof; Szybicki, Dariusz; Burghardt, Andrzej; Muszyńska, Magdalena

    2016-04-01

    The paper presents methods used to determine the parameters necessary to build a mathematical model of an underwater robot with a crawler drive. The parameters present in the dynamics equation will be determined by means of advanced mechatronic design tools, including: CAD/CAE software andMES modules. The virtual prototyping process is described as well as the various possible uses (design adaptability) depending on the optional accessories added to the vehicle. A mathematical model is presented to show the kinematics and dynamics of the underwater crawler robot, essential for the design stage.

  18. Robot Path Planning in Uncertain Environments: A Language Measure-theoretic Approach

    Science.gov (United States)

    2014-01-01

    approximation of chance-constrained stochastic predic- tive control. IEEE Transactions on Robotics . 2010;26(3):502–517. [7] Chakravorty S, Kumar S... Transactions on Robotics and Automation. 2007;23(2):331–341. [3] Rhoads B, Mezić I, Poje A. Minimum Time feedback control of autonomous underwater vehicles...2005. p. 194–198. [2] Pêtrès C, Pailhas Y, Patrón P, Petillot Y, Evans J, Lane D. Path Planning for autonomous underwater vehicles. IEEE

  19. 基于自由度分配和方位特征集的混联机器人机型设计方法及应用%Type Design Method and the Application for Hybrid Robot Based on Freedom Distribution and Position and Orientation Characteristic Set

    Institute of Scientific and Technical Information of China (English)

    沈惠平; 赵海彬; 邓嘉鸣; 孟庆梅; 朱伟; 杨廷力

    2011-01-01

    Hybrid robot mechanisms has both better performances and advantages which combines the better stiffness and precise position that parallel mechanism owns and the bigger workspace and better control decoupling that series mechanisms owns. The key of design hybrid robot is the number of DOFs in series or in parallel, the order distribution of DOFs, the combination method of DOFs based on position and orientation characteristic (POC) set of manipulator, and the module structure and performance evaluation of novel parallel mechanisms with less DOF. The design method for hybrid robot based on freedom distribution and POC set is proposed, including the definition, symbol denotation method and the advantage and disadvantage analysis of both hybrid robot with single-point operation and hybrid robot with mult-point collaborative operation. Accordingly, all the possible structure combinations, design principles and design procedure of hybrid robots with 3~5 DOFs are given. A lot of novel topological structures of hybrid robot were designed. Meanwhile, both 5-axis hybrid robots with single airbrush and with mult-airbrush for spray painting are developed respectively according to the design method. Furthermore, the performance for the two spray robots with different structures is compared. The research provides a general method for hybrid robot mechanism design and provides mechanism design theory basis for development of complex advanced equipment.%混联机器人机构兼有并联机构刚度好、定位精确及串联机构工作空间大、控制解耦性好等两方面的综合性能及优点,其设计的关键是基于操作器方位特征集的串(并)联自由度数目和顺序分配、组合方式及新型少自由度并联机构模块的构造及其性能评价.提出基于自由度分配和方位特征集的混联机器人机型设计方法,提出单点作业、多点协同作业二类混联机器人的定义、符号表示方法并分析其优缺点;给出

  20. Automation Middleware and Algorithms for Robotic Underwater Sensor Networks

    Science.gov (United States)

    2009-01-01

    for Cooperative Exploration,” IEEE Transactions on Automatic Control , letter of final acceptance received June, 2009. [in press, refereed] Shi, Z...submitted on July 7, 2009. [submitted, refereed] Zhang, F. (2009), “Geometric Cooperative Control of Particle Formations,” IEEE Transactions on Automatic Control , submitted

  1. Robotic surgery.

    Science.gov (United States)

    Diana, M; Marescaux, J

    2015-01-01

    Proficiency in minimally invasive surgery requires intensive and continuous training, as it is technically challenging for unnatural visual and haptic perceptions. Robotic and computer sciences are producing innovations to augment the surgeon's skills to achieve accuracy and high precision during complex surgery. This article reviews the current use of robotically assisted surgery, focusing on technology as well as main applications in digestive surgery, and future perspectives. The PubMed database was interrogated to retrieve evidence-based data on surgical applications. Internal and external consulting with key opinion leaders, renowned robotics laboratories and robotic platform manufacturers was used to produce state-of-the art business intelligence around robotically assisted surgery. Selected digestive procedures (oesophagectomy, gastric bypass, pancreatic and liver resections, rectal resection for cancer) might benefit from robotic assistance, although the current level of evidence is insufficient to support widespread adoption. The surgical robotic market is growing, and a variety of projects have recently been launched at both academic and corporate levels to develop lightweight, miniaturized surgical robotic prototypes. The magnified view, and improved ergonomics and dexterity offered by robotic platforms, might facilitate the uptake of minimally invasive procedures. Image guidance to complement robotically assisted procedures, through the concepts of augmented reality, could well represent a major revolution to increase safety and deal with difficulties associated with the new minimally invasive approaches. © 2015 BJS Society Ltd. Published by John Wiley & Sons Ltd.

  2. Marinization concept for the TRICEPT TR600 robot

    Energy Technology Data Exchange (ETDEWEB)

    Meyer, A.; Aust, E.; Niemann, H.R.; Santos, J.F. dos [GKSS-Forschungszentrum Geesthacht GmbH (Germany). Inst. fuer Materialforschung; Hammerin, R.; Neumann, K.E. [Neos Robotics AB, Taeby (Sweden); Gibson, D. [National Hyperbaric Centre, Aberdeen (United Kingdom)

    1998-11-01

    The need for automated welding repair systems of marine structures, ship hulls and nuclear installations had lead to an increasing demand for subsea robots. Considering the application of friction welding to perform underwater repairs, a TRICEPT TR600 robot has been identified as the most suitable system to withstand the high reaction forces characteristic of this process. This study reviews initially the research and development work carried out at GKSS to modify and test a Siemens-MANUTEC robot. After a description of the TRICEPT TR600 robot a marinization concept is presented and discussed in detail. Problems of galvanic corrosion in seawater are addressed in a separate chapter. The deflection of the robot in subsea water currents is estimated with a worst-case calculation. (orig.) [Deutsch] Der Wunsch, Roboter auch unter Wasser einsetzen zu koennen, waechst mit steigendem Interesse nach automatisierten Schweissverfahren fuer Reparaturen an marinen Bauwerken, Schiffsruempfen und in Kernenergieanlagen. Fuer den Einsatz von Reibschweissverfahren fuer diese Reparaturen wurde der TRICEPT TR600-Roboter ausgewaehlt, da dieser auch den charakteristisch hohen Prozesskraeften widerstehen kann. Die notwendigen Modifikationen und Pruefungen werden beispielhaft anhand des bei der GKSS modifizierten Siemens-MANUTEC-Roboters vorgestellt. Nach einer Beschreibung des TRICEPT-Roboters werden die notwendigen Umbaumassnahmen detailliert dargestellt und diskutiert. Auf die Problematik der galvanischen Korrosion in Seewasser wird in einem gesonderten Kapitel naeher eingegangen. Zusaetzlich wird eine moegliche Ablenkung des Roboters durch Wasserstroemung ueberschlaegig berechnet. (orig.)

  3. Active control of robot manipulator compliance

    Science.gov (United States)

    Nguyen, C. C.; Pooran, F. J.

    1986-01-01

    Work performed at Catholic University on the research grant entitled Active Control of Robot Manipulator Compliance, supported by NASA/Goddard space Flight Center during the period of May 15th, 1986 to November 15th, 1986 is described. The modelling of the two-degree-of-freedom robot is first presented. Then the complete system including the robot and the hybrid controller is simulated on an IBM-XT Personal Computer. Simulation results showed that proper adjustments of controller gains enable the robot to perform successful operations. Further research should focus on developing a guideline for the controller gain design to achieve system stability.

  4. An OFDM Receiver with Frequency Domain Diversity Combined Impulsive Noise Canceller for Underwater Network

    Science.gov (United States)

    Saotome, Rie; Hai, Tran Minh; Matsuda, Yasuto; Suzuki, Taisaku; Wada, Tomohisa

    2015-01-01

    In order to explore marine natural resources using remote robotic sensor or to enable rapid information exchange between ROV (remotely operated vehicles), AUV (autonomous underwater vehicle), divers, and ships, ultrasonic underwater communication systems are used. However, if the communication system is applied to rich living creature marine environment such as shallow sea, it suffers from generated Impulsive Noise so-called Shrimp Noise, which is randomly generated in time domain and seriously degrades communication performance in underwater acoustic network. With the purpose of supporting high performance underwater communication, a robust digital communication method for Impulsive Noise environments is necessary. In this paper, we propose OFDM ultrasonic communication system with diversity receiver. The main feature of the receiver is a newly proposed Frequency Domain Diversity Combined Impulsive Noise Canceller. The OFDM receiver utilizes 20–28 KHz ultrasonic channel and subcarrier spacing of 46.875 Hz (MODE3) and 93.750 Hz (MODE2) OFDM modulations. In addition, the paper shows Impulsive Noise distribution data measured at a fishing port in Okinawa and at a barge in Shizuoka prefectures and then proposed diversity OFDM transceivers architecture and experimental results are described. By the proposed Impulsive Noise Canceller, frame bit error rate has been decreased by 20–30%. PMID:26351656

  5. An OFDM Receiver with Frequency Domain Diversity Combined Impulsive Noise Canceller for Underwater Network.

    Science.gov (United States)

    Saotome, Rie; Hai, Tran Minh; Matsuda, Yasuto; Suzuki, Taisaku; Wada, Tomohisa

    2015-01-01

    In order to explore marine natural resources using remote robotic sensor or to enable rapid information exchange between ROV (remotely operated vehicles), AUV (autonomous underwater vehicle), divers, and ships, ultrasonic underwater communication systems are used. However, if the communication system is applied to rich living creature marine environment such as shallow sea, it suffers from generated Impulsive Noise so-called Shrimp Noise, which is randomly generated in time domain and seriously degrades communication performance in underwater acoustic network. With the purpose of supporting high performance underwater communication, a robust digital communication method for Impulsive Noise environments is necessary. In this paper, we propose OFDM ultrasonic communication system with diversity receiver. The main feature of the receiver is a newly proposed Frequency Domain Diversity Combined Impulsive Noise Canceller. The OFDM receiver utilizes 20-28 KHz ultrasonic channel and subcarrier spacing of 46.875 Hz (MODE3) and 93.750 Hz (MODE2) OFDM modulations. In addition, the paper shows Impulsive Noise distribution data measured at a fishing port in Okinawa and at a barge in Shizuoka prefectures and then proposed diversity OFDM transceivers architecture and experimental results are described. By the proposed Impulsive Noise Canceller, frame bit error rate has been decreased by 20-30%.

  6. An OFDM Receiver with Frequency Domain Diversity Combined Impulsive Noise Canceller for Underwater Network

    Directory of Open Access Journals (Sweden)

    Rie Saotome

    2015-01-01

    Full Text Available In order to explore marine natural resources using remote robotic sensor or to enable rapid information exchange between ROV (remotely operated vehicles, AUV (autonomous underwater vehicle, divers, and ships, ultrasonic underwater communication systems are used. However, if the communication system is applied to rich living creature marine environment such as shallow sea, it suffers from generated Impulsive Noise so-called Shrimp Noise, which is randomly generated in time domain and seriously degrades communication performance in underwater acoustic network. With the purpose of supporting high performance underwater communication, a robust digital communication method for Impulsive Noise environments is necessary. In this paper, we propose OFDM ultrasonic communication system with diversity receiver. The main feature of the receiver is a newly proposed Frequency Domain Diversity Combined Impulsive Noise Canceller. The OFDM receiver utilizes 20–28 KHz ultrasonic channel and subcarrier spacing of 46.875 Hz (MODE3 and 93.750 Hz (MODE2 OFDM modulations. In addition, the paper shows Impulsive Noise distribution data measured at a fishing port in Okinawa and at a barge in Shizuoka prefectures and then proposed diversity OFDM transceivers architecture and experimental results are described. By the proposed Impulsive Noise Canceller, frame bit error rate has been decreased by 20–30%.

  7. 基于仿射混杂系统控制设计的机器人导航控制%Robot Navigation Based on Control Synthesis of Piecewise Affine Hybrid Systems

    Institute of Scientific and Technical Information of China (English)

    王慧芳; 陈阳舟

    2008-01-01

    Control synthesis and reachability analysis of the piecewise affine hybrid systems on simplices were applied for safely steering a robot from a given position to a final position with consideration of optimality. Based on the triangulation of the state space of a robot, a dual graph was constructed following the target attractive principle, and then a path planning algorithm was presented to find a sequence of adjacent triangles that were traversed by the shortest path. According to the characteristics of affine systems on simplices, a motion planning algorithm was proposed to determine the translational and rotational velocities for a robot. The simulation results demonstrate the effectiveness of the algorithms.%根据单纯形仿射混杂系统的可达性分析设计控制律,使机器人在平面任意两点间运行,保证其安全性并考虑其最优性.对机器人的状态空间进行三角划分,根据目标吸引原理来建立其对偶图,针对对偶图提出路径规划算法得到最短路径穿越的三角形序列.然后根据仿射系统在单纯形中的性质,提出运动规划算法,得到机器人的角速度和线速度,控制机器人穿越给定的三角形序列到达目标点.仿真结果表明了方法的有效性.

  8. Robotic buildings(s)

    NARCIS (Netherlands)

    Bier, H.H.

    2014-01-01

    Technological and conceptual advances in fields such as artificial intelligence, robotics, and material science have enabled robotic building to be in the last decade prototypically implemented. In this context, robotic building implies both physically built robotic environments and robotically supp

  9. Robotic buildings(s)

    NARCIS (Netherlands)

    Bier, H.H.

    2014-01-01

    Technological and conceptual advances in fields such as artificial intelligence, robotics, and material science have enabled robotic building to be in the last decade prototypically implemented. In this context, robotic building implies both physically built robotic environments and robotically supp

  10. Acoustic signal analysis of underwater elastic cylinder

    Institute of Scientific and Technical Information of China (English)

    LI Xiukun; YANG Shi'e

    2001-01-01

    The echoes of underwater elastic cylinder comprise two types of acoustic components: Geometrical scattering waves and elastic scattering waves. The transfer function is appropriate to characterize the echo of targets. And the discrete wavelet transform of amplitude spectrum is presented and used to identify the resonant components of underwater targets.PACS numbers: 43.30, 43.60

  11. Coefficient of variation of underwater irradiance fluctuations

    Science.gov (United States)

    Weber, V. L.

    2010-06-01

    We consider underwater sunlight fluctuations in the case of a one-dimensional irregular sea surface. Several rigorous and approximate models are proposed, which make it possible to analytically treat and physically explain the dependence of the coefficient of variation of the underwater irradiance on the depth, the wind velocity, and optical parameters of the sea water.

  12. 29 CFR 1926.912 - Underwater blasting.

    Science.gov (United States)

    2010-07-01

    ... 29 Labor 8 2010-07-01 2010-07-01 false Underwater blasting. 1926.912 Section 1926.912 Labor... (CONTINUED) SAFETY AND HEALTH REGULATIONS FOR CONSTRUCTION Blasting and the Use of Explosives § 1926.912 Underwater blasting. (a) A blaster shall conduct all blasting operations, and no shot shall be fired...

  13. ROV Based Underwater Blurred Image Restoration

    Institute of Scientific and Technical Information of China (English)

    LIU Zhishen; DING Tianfu; WANG Gang

    2003-01-01

    In this paper, we present a method of ROV based image processing to restore underwater blurry images from the theory of light and image transmission in the sea. Computer is used to simulate the maximum detection range of the ROV under different water body conditions. The receiving irradiance of the video camera at different detection ranges is also calculated. The ROV's detection performance under different water body conditions is given by simulation. We restore the underwater blurry images using the Wiener filter based on the simulation. The Wiener filter is shown to be a simple useful method for underwater image restoration in the ROV underwater experiments. We also present examples of restored images of an underwater standard target taken by the video camera in these experiments.

  14. Quantum imaging for underwater arctic navigation

    Science.gov (United States)

    Lanzagorta, Marco

    2017-05-01

    The precise navigation of underwater vehicles is a difficult task due to the challenges imposed by the variable oceanic environment. It is particularly difficult if the underwater vehicle is trying to navigate under the Arctic ice shelf. Indeed, in this scenario traditional navigation devices such as GPS, compasses and gyrocompasses are unavailable or unreliable. In addition, the shape and thickness of the ice shelf is variable throughout the year. Current Arctic underwater navigation systems include sonar arrays to detect the proximity to the ice. However, these systems are undesirable in a wartime environment, as the sound gives away the position of the underwater vehicle. In this paper we briefly describe the theoretical design of a quantum imaging system that could allow the safe and stealthy navigation of underwater Arctic vehicles.

  15. MECHANICAL DESIGN OF AN AUTONOMOUS MARINE ROBOTIC SYSTEM FOR INTERACTION WITH DIVERS

    Directory of Open Access Journals (Sweden)

    Nikola Stilinović

    2016-09-01

    Full Text Available SCUBA diving, professional or recreational, remains one of the most hazardous activities known by man, mostly due to the fact that the human survival in the underwater environment requires use of technical equipment such as breathing regulators. Loss of breathing gas supply, burst eardrum, decompression sickness and nitrogen narcosis are just a few problems which can occur during an ordinary dive and result in injuries, long-term illnesses or even death. Most common way to reduce the risk of diving is to dive in pairs, thus allowing divers to cooperate with each other and react when uncommon situation occurs. Having the ability to react before an unwanted situation happens would improve diver safety. This paper describes an autonomous marine robotic system that replaces a human dive buddy. Such a robotic system, developed within an FP7 project “CADDY – Cognitive Autonomous Diving Buddy” provides a symbiotic link between robots and human divers in the underwater. The proposed concept consists of a diver, an autonomous underwater vehicle (AUV Buddy and an autonomous surface vehicle (ASV PlaDyPos, acting within a cooperative network linked via an acoustic communication channel. This is a first time that an underwater human-robot system of such a scale has ever been developed. In this paper, focus is put on mechanical characteristics of the robotic vehicles.

  16. Mechanism Architecture of Hybrid Serial-parallel Robot Dog%混联仿生机器狗构型研究

    Institute of Scientific and Technical Information of China (English)

    姜铭; 李鹭扬

    2012-01-01

    The research of biomimetic robot has become one of the hottest spots of robotics. As living beings evolving for many years, it is difficulty that kinematics features of organisms can completely be realized by man-made mechanisms. In order to overcome the disadvantages of low stiffness and weak function of hind limbs, which widely exist in biomimetic robot, robot dog is studied as an example to propose the rule of importance/weight so as to simplify movement joints. In other words, by considering the base behavioral characteristics and the physical construction of each joint, main functions are put in order according their importance so that each movement joint can be easily designed with mechanical structure. Based on the work mentioned above, 24-DOF robot dog is designed by using 2-DOF parallel rotation machines (RGRR-I and RGRR-II), as well as 1-DOF joint structure. It has many advantages such as simple structure, easy manufacture, high stiffness, convenient control, agile movement, etc. This method may be useful to design other kinds of biomimetic robot.%仿生机器人研究是机器人学研究的热点之一,由于多年的进化,生物的各关节运动一般难以用机械结构完全实现.为克服目前仿生机器人普遍存在的刚度低、肢体功能弱等不足,以机器狗为研究对象,结合狗的基本行为特征和各关节的生理结构,将各关节的主要功能进行排序,并提出重要性/权重法作为机器狗设计中简化各运动关节的依据;据此分别运用并联双自由度转动机构RGRR-Ⅰ、RGRR- Ⅱ以及单自由度转动机构设计机器狗的各关节,并构造出24自由度的混联机器狗.所设计的混联机器狗具有结构简单、制造容易、刚度强、控制便捷、肢体运动灵活等优点.此研究思路和方法,对其他类型的仿生机器人设计有借鉴作用.

  17. 10th FSR (Field and Service Robotics)

    CERN Document Server

    Barfoot, Timothy

    2016-01-01

    This book contains the proceedings of the 10th FSR, (Field and Service Robotics) which is the leading single-track conference on applications of robotics in challenging environments. The 10th FSR was held in Toronto, Canada from 23-26 June 2015. The book contains 42 full-length, peer-reviewed papers organized into a variety of topics: Aquatic, Vision, Planetary, Aerial, Underground, and Systems. The goal of the book and the conference is to report and encourage the development and experimental evaluation of field and service robots, and to generate a vibrant exchange and discussion in the community. Field robots are non-factory robots, typically mobile, that operate in complex and dynamic environments: on the ground (Earth or other planets), under the ground, underwater, in the air or in space. Service robots are those that work closely with humans to help them with their lives. The first FSR was held in Canberra, Australia, in 1997. Since that first meeting, FSR has been held roughly every two years, cycling...

  18. Robot umanoidi o robot umani?

    Directory of Open Access Journals (Sweden)

    Domenico Parisi

    2009-01-01

    Full Text Available Che cosa e' un robot? A che cosa serve un robot? Un robot e' qualcosa di fisico, costruito da noi, che somiglia a un organismo vivente e si comporta come un organismo vivente. Gli organismi viventi comprendono gli animali e le piante, ma i robot riproducono gli animali piuttosto che le piante, anche se ci sono tentativi di costruire robotpiante. Comportarsi come un animale significa avere degli organi sensoriali con cui ricevere informazioni dall'ambiente e degli organi motori che permettono di spostarsi nell'ambiente o di muovere una qualche parte del proprio corpo, ad esempio la testa o un braccio, in maniera non programmata, ma autonoma, cioe' rispondendo agli stimoli che arrivano momento per momento ai sensori del robot. Questo risponde alla domanda "Che cosa e' un robot?".

  19. Design and Experimental Validation of a USBL Underwater Acoustic Positioning System

    Directory of Open Access Journals (Sweden)

    Joel Reis

    2016-09-01

    Full Text Available This paper presents the steps for developing a low-cost POrtableNavigation Tool for Underwater Scenarios (PONTUS to be used as a localization device for subsea targets. PONTUS consists of an integrated ultra-short baseline acoustic positioning system aided by an inertial navigation system. Built on a practical design, it can be mounted on an underwater robotic vehicle or be operated by a scuba diver. It also features a graphical user interface that provides information on the tracking of the designated target, in addition to some details on the physical properties inside PONTUS. A full disclosure of the architecture of the tool is first presented, followed by thorough technical descriptions of the hardware components ensemble and the software development process. A series of experiments was carried out to validate the developed prototype, and the results are presented herein, which allow assessing its overall performance.

  20. Using Unmanned Underwater Vehicles as Research Platforms in Coastal Ocean Studies

    Institute of Scientific and Technical Information of China (English)

    HOU Weilin; Kendall L. Carder; David K. Costello; DU Keping; LIU Zhishen

    2003-01-01

    The advantages of using unmanned underwater vehicles in coastal ocean studies are emphasized. Two types of representative vehicles, remotely operated vehicle (ROV) and autonomous underwater vehicle (AUV) from University of South Florida, are discussed. Two individual modular sensor packages designed and tested for these platforms and field measurement results are also presented. The bottom classification and albedo package, BCAP, provides fast and accurate estimates of bottom albedos, along with other parameters such as in-water remote sensing reflectance. The real-time ocean bottom optical topographer, ROBOT, reveals high-resolution 3-dimentional bottom topography for target identification. Field data and results from recent Coastal Benthic Optical Properties field campaign, 1999 and 2000, are presented. Advantages and limitations of these vehicles and applications of modular sensor packages are compared and discussed.

  1. Control of Oscillating Foil for Propulsion of Biorobotic Autonomous Underwater Vehicle (AUV

    Directory of Open Access Journals (Sweden)

    S. N. Singh

    2005-01-01

    Full Text Available The paper treats the question of control of a laterally and rotationally oscillating hydrofoil for the propulsion of biologically inspired robotic (biorobotic autonomous underwater vehicles (BAUVs. Sinusoidal oscillations of foils produce maneuvering and propulsive forces. The design is based on the internal model principle. Two springs are used to transmit forces from the actuators to the foil. Oscillating fins produce periodic forces, which can be used for fish-like propulsion and control of autonomous underwater vehicles (AUVs. The equations of motion of the foil include hydrodynamic lift and moment based on linear, unsteady, aerodynamic theory. A control law is derived for the lateral and rotational sinusoidal oscillation of the foil. In the closed-loop system, the lateral displacement and the rotational angle of the foil asymptotically follow sinusoidal trajectories of distinct frequencies and amplitudes independently. Simulation results are presented to show the trajectory tracking performance of the foil for different freestream velocities and sinusoidal command trajectories.

  2. Thruster fault diagnosis method based on Gaussian particle filter for autonomous underwater vehicles

    Directory of Open Access Journals (Sweden)

    Yu-shan Sun

    2016-05-01

    Full Text Available Autonomous Underwater Vehicles (AUVs generally work in complex marine environments. Any fault in AUVs may cause significant losses. Thus, system reliability and automatic fault diagnosis are important. To address the actuator failure of AUVs, a fault diagnosis method based on the Gaussian particle filter is proposed in this study. Six free-space motion equation mathematical models are established in accordance with the actuator configuration of AUVs. The value of the control (moment loss parameter is adopted on the basis of these models to represent underwater vehicle malfunction, and an actuator failure model is established. An improved Gaussian particle filtering algorithm is proposed and is used to estimate the AUV failure model and motion state. Bayes algorithm is employed to perform robot fault detection. The sliding window method is adopted for fault magnitude estimation. The feasibility and validity of the proposed method are verified through simulation experiments and experimental data.

  3. Design and Experimental Validation of a USBL Underwater Acoustic Positioning System

    Science.gov (United States)

    Reis, Joel; Morgado, Marco; Batista, Pedro; Oliveira, Paulo; Silvestre, Carlos

    2016-01-01

    This paper presents the steps for developing a low-cost POrtableNavigation Tool for Underwater Scenarios (PONTUS) to be used as a localization device for subsea targets. PONTUS consists of an integrated ultra-short baseline acoustic positioning system aided by an inertial navigation system. Built on a practical design, it can be mounted on an underwater robotic vehicle or be operated by a scuba diver. It also features a graphical user interface that provides information on the tracking of the designated target, in addition to some details on the physical properties inside PONTUS. A full disclosure of the architecture of the tool is first presented, followed by thorough technical descriptions of the hardware components ensemble and the software development process. A series of experiments was carried out to validate the developed prototype, and the results are presented herein, which allow assessing its overall performance. PMID:27649181

  4. Research of Flexible Robotic Manufacturing Cell Scheduling Problem Based on Hybrid Genetic Algorithm%基于遗传算法的柔性机器人制造单元调度问题研究

    Institute of Scientific and Technical Information of China (English)

    龙传泽; 杨煜俊

    2015-01-01

    考虑机器人在装载站、机床、卸载站三者间搬运时间和空载时间的情况下求解柔性机器人制造单元Job-shop类型调度问题,目标是求所有工件加工完成并搬至卸载站的最短时间. 首先,在分析机器人制造单元调度问题特点的基础上建立其数学模型,提出了一种新的对机器人搬运工序排序组成搬运序列矩阵的调度方法,机器人按搬运序列搬运,机床则按先到先服务规则( FCFS )加工;然后针对这种调度方法提出了一种改进遗传算法,为遗传算法设计了一种基于搬运工序编码方法与启发式分配策略,设计了一种启发式搬运矩阵调整方法,最后,把启发式调整算法与遗传算法结合组成混合算法对调度问题进行求解,通过标准算例计算,验证了算法的有效性.%Considering the transport time of robot among loading station machine and unloading station to solve flexible robotic manufacturing cell scheduling problem . The goal is to find the shortest time for all workpiece is completed and moved to unload station. Firstly, mathematical model is established based on a-nalysis of the characteristics of flexible robot manufacturing cell scheduling problems. A new scheduling method based on sequence matrix of robot transport operation is proposed, machine processing is based on first come first serve rule ( FCFS); Then, an improved genetic algorithm is proposed for this scheduling method ,handling procedure code method and heuristic assignment strategy for genetic algorithm is designed, heuristic handling sequence adjustment algorithm is proposed;Finally, heuristic algorithm is combined with genetic algorithm to build hybrid algorithm to solve this scheduling problem, through the standard example calculation, verified the effectiveness of the algorithm.

  5. Development of a continuum robot for colonoscopy

    Institute of Scientific and Technical Information of China (English)

    Hu Haiyan; Li Mantian; Wang Pengfei; Feng Yuan; Sun Lining

    2009-01-01

    A novel continuum robot for colonoscopy is presented. The aim is to develop a robot for colonoscopy which can provide the same functions as conventional colonoscope, but much less pain and discomfort for patient. In contrast to traditional rigid-link robot, the robot features a continuous backbone with no joints. The continuum robot is 300 mm in total length and 12 mm in diameter that is less than the average diameter of human colon (20 mm). The robot has a total of 4 DOF (degrees of freedom) and is actuated remotely by 6 hybrid step motors through super-elastic NiTi wires. Its shape can be changed with high dexterity, therefore ensuring its adaptability to the tortuous shape of human colon. The mechanical structure, kinematics and DSP-based control system are discussed; prototype experiments are carried out to validate the kinematics model and to show the motion performances.

  6. 基于旋量理论的混联采摘机器人正运动学分析与试验%Forward kinematics analysis and experiment of hybrid harvesting robot based on screw theory

    Institute of Scientific and Technical Information of China (English)

    阳涵疆; 李立君; 高自成

    2016-01-01

    为满足油茶果机械化、自动化采摘的要求,避免利用传统的Denavit-Hartenberg(D-H)参数法对机器人进行运动学分析时的缺陷,提出了一种基于旋量理论构建混联采摘机器人运动学方程的方法。根据混联采摘机器人机械臂的结构特点进行简化;基于所提出的方法建立了机器人正运动学方程,获得末端执行器的位置正解;随机选取5组关节变量值,得出末端执行器在基础坐标系各坐标轴上的最大绝对位置误差为10.4 mm,远小于末端执行器200 mm的开度,满足该机器人末端执行器的采摘工作要求,验证了通过文中所提出的方法建立混联采摘机器人运动学正解方程的可行性及方程的正确性。该研究可为后续开展混联采摘机器人控制方法和轨迹规划研究提供参考。%In this paper, the research progress of the camellia oleifera fruit harvesting equipment was introduced. This paper simplified the structure of the 2P4R hybrid camellia oleifera fruit harvesting robot, which included waist part, arm part and wrist part. The manipulator could accomplish 6 kinds of movements including waist revolution, translational motion of vertical slider and horizontal slider, and 3 kinds of revolute motions of the wrist part. In arm part, the fore-arm is linked with back-arm by 2 components; one is link-bar below and the other is lower-arm above. Fore-arm is paralleled with back-arm and link-bar is paralleled with lower-arm. It means these 4 components form a parallel quadrilateral mechanism, which not only increases the stiffness of the arm part, but also can obtain larger end effector working space through a smaller drive stroke, and thus, the harvesting robot meets the requirements of large end effector working space when it clamps the camellia oleifera trunk. Robot can adjust the posture and position of the end effector by controlling the rotation of waist part and wrist part and the translation of

  7. Intelligent Autonomy for Unmanned Surface and Underwater Vehicles

    Science.gov (United States)

    Huntsberger, Terry; Woodward, Gail

    2011-01-01

    As the Autonomous Underwater Vehicle (AUV) and Autonomous Surface Vehicle (ASV) platforms mature in endurance and reliability, a natural evolution will occur towards longer, more remote autonomous missions. This evolution will require the development of key capabilities that allow these robotic systems to perform a high level of on-board decisionmaking, which would otherwise be performed by humanoperators. With more decision making capabilities, less a priori knowledge of the area of operations would be required, as these systems would be able to sense and adapt to changing environmental conditions, such as unknown topography, currents, obstructions, bays, harbors, islands, and river channels. Existing vehicle sensors would be dual-use; that is they would be utilized for the primary mission, which may be mapping or hydrographic reconnaissance; as well as for autonomous hazard avoidance, route planning, and bathymetric-based navigation. This paper describes a tightly integrated instantiation of an autonomous agent called CARACaS (Control Architecture for Robotic Agent Command and Sensing) developed at JPL (Jet Propulsion Laboratory) that was designed to address many of the issues for survivable ASV/AUV control and to provide adaptive mission capabilities. The results of some on-water tests with US Navy technology test platforms are also presented.

  8. Robotic system

    Science.gov (United States)

    Ambrose, Robert O. (Inventor)

    2003-01-01

    A robot having a plurality of interconnected sections is disclosed. Each of the sections includes components which are moveable relative to components of an adjacent section. A plurality of electric motors are operably connected to at least two of said relatively moveable components to effect relative movement. A fitted, removable protective covering surrounds the sections to protect the robot.

  9. Delta robot

    NARCIS (Netherlands)

    Herder, J.L.; Van der Wijk, V.

    2010-01-01

    The invention relates to a delta robot comprising a stationary base (2) and a movable platform (3) that is connected to the base with three chains of links (4,5,6), and comprising a balancing system incorporating at least one pantograph (7) for balancing the robot's center of mass, wherein the at le

  10. Robotics 101

    Science.gov (United States)

    Sultan, Alan

    2011-01-01

    Robots are used in all kinds of industrial settings. They are used to rivet bolts to cars, to move items from one conveyor belt to another, to gather information from other planets, and even to perform some very delicate types of surgery. Anyone who has watched a robot perform its tasks cannot help but be impressed by how it works. This article…

  11. Delta robot

    NARCIS (Netherlands)

    Herder, J.L.; Van der Wijk, V.

    2010-01-01

    The invention relates to a delta robot comprising a stationary base (2) and a movable platform (3) that is connected to the base with three chains of links (4,5,6), and comprising a balancing system incorporating at least one pantograph (7) for balancing the robot's center of mass, wherein the at le

  12. Robotic environments

    NARCIS (Netherlands)

    Bier, H.H.

    2011-01-01

    Technological and conceptual advances in fields such as artificial intelligence, robotics, and material science have enabled robotic architectural environments to be implemented and tested in the last decade in virtual and physical prototypes. These prototypes are incorporating sensing-actuating mec

  13. Communications and Control for Enhanced Autonomy in Underwater Vehicles for Deep Oceanographic Research

    Science.gov (United States)

    Jakuba, M.; Kinsey, J. C.; Yoerger, D. R.; Whitcomb, L. L.; Camilli, R.; Murphy, C.; Bowen, A.; German, C. R.

    2010-12-01

    NASA’s Astrobiology Science and Technology for Exploring Planets (ASTEP) program is a science-driven program to produce advances in scientific and technological capabilities for planetary exploration. Oceanographic robotic vehicles and planetary exploration robots have proven to be highly effective scientific tools for performing scientific research in remote, extreme, and hostile environments that preclude direct human presence. In both domains, the planets and the world’s oceans, human oversight of remote robotic exploration can dramatically enhance scientific return in comparison to purely pre-planned missions by combining the perception, intelligence, and domain knowledge of the human operators with the super-human physical and sensory capabilities of robots. The degree of human oversight, however, is restricted in sea and space by physical limits on the bandwidth and time delay of communications between human operators and remote robotic platforms. Enhanced robotic autonomy can alleviate this obstacle. We present a communications and control architecture for underwater oceanographic robot vehicles that has permitted us to introduce elements of enhanced autonomy into operations with the Woods Hole Oceanographic Institution's Autonomous Underwater Vehicles (AUVs) Nereus and Sentry. Our architecture is designed to facilitate: (1) autonomous distillation of scientific data and transmission of salient synopses from the remote vehicle to its human operators; (2) high-level near real-time human supervision and control of mission programming; (3) semi-supervised learning of environmental models for enhanced survey and search mission effectiveness. Specific capabilities our group has demonstrated include selective data delivery via acoustic link; near real-time reprogramming of vehicle mission programs during otherwise preplanned dives; and validation of autonomous decision-making processes with human-supervision. These elements have been recently demonstrated

  14. 一种轮足复合式爬壁机器人机构运动学分析%Kinematic analysis of the wall-climbing robot with a biped-wheel hybrid locomotion mechanism

    Institute of Scientific and Technical Information of China (English)

    董伟光; 王洪光; 姜勇

    2015-01-01

    针对一种具有轮足复合式移动机构的爬壁机器人的运动学问题开展相关研究。通过变换矩阵将2种基本运动模式的运动学表达式关联起来,同时引入附着面倾角,构建复合运动模式的运动学模型。在逆运动学分析中,基于给定任务建立了一种运动模式判断流程。针对复合运动模式逆运动学求解中的多解问题,提出一种基于吸附安全性考虑的求解优化方案。最后通过壁面凹过渡仿真实验对所提方法进行验证,结果显示机器人可以成功实现壁面过渡,表明文中所述运动学分析方法的正确性与有效性。%The kinematics of the wall⁃climbing robot with a biped⁃wheel hybrid locomotion mechanism is studied. The kinematic equations of the two basic locomotion modes are integrated using a transformation matrix. In addition, the tilt angle of the attachment wall is introduced to the kinematic expression to build the kinematics model of hy⁃brid locomotion mode. A judgment process of locomotion modes is built based on a given task in the inverse kine⁃matics. Aiming at the multi⁃solution problem in solving inverse kinematics of the hybrid locomotion mode, an opti⁃mization method is proposed considering adsorption safety. Finally, the method is verified through simulation of wall concave transition. The results showed that the wall transition of the robot can be achieved successfully and the method proposed is practical and effective for the hybrid locomotion mechanism.

  15. 4th Pacific Rim Underwater Acoustics Conference

    CERN Document Server

    Xu, Wen; Cheng, Qianliu; Zhao, Hangfang

    2016-01-01

    These proceedings are a collection of 16 selected scientific papers and reviews by distinguished international experts that were presented at the 4th Pacific Rim Underwater Acoustics Conference (PRUAC), held in Hangzhou, China in October 2013. The topics discussed at the conference include internal wave observation and prediction; environmental uncertainty and coupling to sound propagation; environmental noise and ocean dynamics; dynamic modeling in acoustic fields; acoustic tomography and ocean parameter estimation; time reversal and matched field processing; underwater acoustic localization and communication as well as measurement instrumentations and platforms. These proceedings provide insights into the latest developments in underwater acoustics, promoting the exchange of ideas for the benefit of future research.

  16. AURP: An AUV-Aided Underwater Routing Protocol for Underwater Acoustic Sensor Networks

    Directory of Open Access Journals (Sweden)

    Sunghwan Kim

    2012-02-01

    Full Text Available Deploying a multi-hop underwater acoustic sensor network (UASN in a large area brings about new challenges in reliable data transmissions and survivability of network due to the limited underwater communication range/bandwidth and the limited energy of underwater sensor nodes. In order to address those challenges and achieve the objectives of maximization of data delivery ratio and minimization of energy consumption of underwater sensor nodes, this paper proposes a new underwater routing scheme, namely AURP (AUV-aided underwater routing protocol, which uses not only heterogeneous acoustic communication channels but also controlled mobility of multiple autonomous underwater vehicles (AUVs. In AURP, the total data transmissions are minimized by using AUVs as relay nodes, which collect sensed data from gateway nodes and then forward to the sink. Moreover, controlled mobility of AUVs makes it possible to apply a short-range high data rate underwater channel for transmissions of a large amount of data. To the best to our knowledge, this work is the first attempt to employ multiple AUVs as relay nodes in a multi-hop UASN to improve the network performance in terms of data delivery ratio and energy consumption. Simulations, which are incorporated with a realistic underwater acoustic communication channel model, are carried out to evaluate the performance of the proposed scheme, and the results indicate that a high delivery ratio and low energy consumption can be achieved.

  17. AURP: an AUV-aided underwater routing protocol for underwater acoustic sensor networks.

    Science.gov (United States)

    Yoon, Seokhoon; Azad, Abul K; Oh, Hoon; Kim, Sunghwan

    2012-01-01

    Deploying a multi-hop underwater acoustic sensor network (UASN) in a large area brings about new challenges in reliable data transmissions and survivability of network due to the limited underwater communication range/bandwidth and the limited energy of underwater sensor nodes. In order to address those challenges and achieve the objectives of maximization of data delivery ratio and minimization of energy consumption of underwater sensor nodes, this paper proposes a new underwater routing scheme, namely AURP (AUV-aided underwater routing protocol), which uses not only heterogeneous acoustic communication channels but also controlled mobility of multiple autonomous underwater vehicles (AUVs). In AURP, the total data transmissions are minimized by using AUVs as relay nodes, which collect sensed data from gateway nodes and then forward to the sink. Moreover, controlled mobility of AUVs makes it possible to apply a short-range high data rate underwater channel for transmissions of a large amount of data. To the best to our knowledge, this work is the first attempt to employ multiple AUVs as relay nodes in a multi-hop UASN to improve the network performance in terms of data delivery ratio and energy consumption. Simulations, which are incorporated with a realistic underwater acoustic communication channel model, are carried out to evaluate the performance of the proposed scheme, and the results indicate that a high delivery ratio and low energy consumption can be achieved.

  18. Intelligence for Human-Assistant Planetary Surface Robots

    Science.gov (United States)

    Hirsh, Robert; Graham, Jeffrey; Tyree, Kimberly; Sierhuis, Maarten; Clancey, William J.

    2006-01-01

    The central premise in developing effective human-assistant planetary surface robots is that robotic intelligence is needed. The exact type, method, forms and/or quantity of intelligence is an open issue being explored on the ERA project, as well as others. In addition to field testing, theoretical research into this area can help provide answers on how to design future planetary robots. Many fundamental intelligence issues are discussed by Murphy [2], including (a) learning, (b) planning, (c) reasoning, (d) problem solving, (e) knowledge representation, and (f) computer vision (stereo tracking, gestures). The new "social interaction/emotional" form of intelligence that some consider critical to Human Robot Interaction (HRI) can also be addressed by human assistant planetary surface robots, as human operators feel more comfortable working with a robot when the robot is verbally (or even physically) interacting with them. Arkin [3] and Murphy are both proponents of the hybrid deliberative-reasoning/reactive-execution architecture as the best general architecture for fully realizing robot potential, and the robots discussed herein implement a design continuously progressing toward this hybrid philosophy. The remainder of this chapter will describe the challenges associated with robotic assistance to astronauts, our general research approach, the intelligence incorporated into our robots, and the results and lessons learned from over six years of testing human-assistant mobile robots in field settings relevant to planetary exploration. The chapter concludes with some key considerations for future work in this area.

  19. Robotic transportation.

    Science.gov (United States)

    Lob, W S

    1990-09-01

    Mobile robots perform fetch-and-carry tasks autonomously. An intelligent, sensor-equipped mobile robot does not require dedicated pathways or extensive facility modification. In the hospital, mobile robots can be used to carry specimens, pharmaceuticals, meals, etc. between supply centers, patient areas, and laboratories. The HelpMate (Transitions Research Corp.) mobile robot was developed specifically for hospital environments. To reach a desired destination, Help-Mate navigates with an on-board computer that continuously polls a suite of sensors, matches the sensor data against a pre-programmed map of the environment, and issues drive commands and path corrections. A sender operates the robot with a user-friendly menu that prompts for payload insertion and desired destination(s). Upon arrival at its selected destination, the robot prompts the recipient for a security code or physical key and awaits acknowledgement of payload removal. In the future, the integration of HelpMate with robot manipulators, test equipment, and central institutional information systems will open new applications in more localized areas and should help overcome difficulties in filling transport staff positions.

  20. UNEXMIN H2020 Project: an underwater explorer for flooded mines

    Science.gov (United States)

    Lopes, Luís; Zajzon, Norbert; Bodo, Balázs; Henley, Stephen; Žibret, Gorazd; Almeida, José; Vörös, Csaba; Horvath, Janos; Dizdarevič, Tatjana; Rossi, Claudio; McLoughlin, Mike

    2017-04-01

    UNEXMIN (Underwater Explorer for Flooded Mines, Grant Agreement No. 690008, www.unexmin.eu) is a project funded by the European Commission's HORIZON2020 Framework Programme. The project is developing a multi-platform robotic system for the autonomous exploration and mapping of Europe's flooded mines. The robotic system - UX-1 - will use non-invasive methods for the 3D mapping of abandoned flooded mines, bringing new important geological and mineralogical data that cannot be currently obtained by any other means. This technology will allow the development or update of geological models at local and regional levels. The data collected will then be used to consider new exploration scenarios for the possible re-opening of some of Europe's abandoned mines which may still contain valuable resources of strategic minerals. The deployment of a multi-robotic system in such a confined environment poses challenges that must be overcome so that the robots can work autonomously, without damaging the equipment and the mine itself. Key challenges are related to the i) structural design for robustness and resilience, ii) localization, navigation and 3D mapping, iii) guidance, propulsion and control, iv) autonomous operation and supervision, v) data processing, interpretation and evaluation. The scientific instrument array is currently being tested, built and tailored for the submersible: pH, electrical conductivity, pressure and temperature analyzers and a water sampler (water sampling methods), a magnetic field analyzer, a gamma-ray counter and a sub-bottom profiler (geophysical methods) and a multispectral and UV fluorescence imaging units (optical observation methods). The instruments have been selected to generate data of maximum geoscientific interest, considering the limiting factors of the submerged underground environment, the necessary robotic functions, the size for the robot and other constraints. Other crucial components for the robot's functionality (such as movement

  1. Sequence and Chance: Design and control methods for entertainment robots

    DEFF Research Database (Denmark)

    Jochum, Elizabeth Ann; Millar, Philip; Nuñez, David

    2016-01-01

    This paper describes innovative approaches to the design and control of entertainment robots. Live performance is a useful testbed for developing and evaluating what makes robots expressive [10] [13] [18]; it is also a platform for designing creative solutions for robot design and control...... mechanisms for believable and expressive robots. Entertainment robots require creative approaches to robot design and control, including motion planning, coordination and hybrid control systems. The exigencies of live performance require situated, embodied robots to move autonomously or semi......-autonomously alongside human actors and in coordination with human operators. Using design and control approaches from traditional puppetry, engineers can design creative solutions for generating expressive robot motion. We outline some of these creative approaches as they are used in live theatre performances...

  2. Cultural Robotics: The Culture of Robotics and Robotics in Culture

    OpenAIRE

    2013-01-01

    In this paper, we have investigated the concept of "Cultural Robotics" with regard to the evolution of social into cultural robots in the 21st Century. By defining the concept of culture, the potential development of a culture between humans and robots is explored. Based on the cultural values of the robotics developers, and the learning ability of current robots, cultural attributes in this regard are in the process of being formed, which would define the new concept of cultural robotics. Ac...

  3. An overview of the configuration and manipulation of soft robotics for on-orbit servicing

    Institute of Scientific and Technical Information of China (English)

    Zhongliang; JING; Lingfeng; QIAO; Han; PAN; Yongsheng; YANG; Wujun; CHEN

    2017-01-01

    Soft robots refer to robots that are softer and more flexible when compared with conventional rigidbodied robots. Soft robots are adapted to unstructured environments due to their flexibility, deformability and energy-absorbing properties. Thus, they have tremendous application prospects in on-orbit servicing(OOS).This study discusses the configuration and manipulation of soft robotics. Usually, learning from living beings is used to develop the configurations of most soft robots. In this study, typical soft robots are introduced based on what they mimic. The discussion of manipulation is divided into two parts, namely actuation and control.The study also involves describing and comparing several types of actuations. Studies on the control of soft robots are also reviewed. In this study, potential application of soft robotics for on-orbit servicing is analyzed.A hybrid configuration and manipulation of space soft robots for future research are proposed based on the current development of soft robotics, and some challenges are discussed.

  4. Evolution: Fossil Ears and Underwater Sonar.

    Science.gov (United States)

    Lambert, Olivier

    2016-08-22

    A key innovation in the history of whales was the evolution of a sonar system together with high-frequency hearing. Fossils of an archaic toothed whale's inner ear bones provide clues for a stepwise emergence of underwater echolocation ability.

  5. Active-imaging-based underwater navigation

    Science.gov (United States)

    Monnin, David; Schmitt, Gwenaël.; Fischer, Colin; Laurenzis, Martin; Christnacher, Frank

    2015-10-01

    Global navigation satellite systems (GNSS) are widely used for the localization and the navigation of unmanned and remotely operated vehicles (ROV). In contrast to ground or aerial vehicles, GNSS cannot be employed for autonomous underwater vehicles (AUV) without the use of a communication link to the water surface, since satellite signals cannot be received underwater. However, underwater autonomous navigation is still possible using self-localization methods which determines the relative location of an AUV with respect to a reference location using inertial measurement units (IMU), depth sensors and even sometimes radar or sonar imaging. As an alternative or a complementary solution to common underwater reckoning techniques, we present the first results of a feasibility study of an active-imaging-based localization method which uses a range-gated active-imaging system and can yield radiometric and odometric information even in turbid water.

  6. Navigation System Fault Diagnosis for Underwater Vehicle

    DEFF Research Database (Denmark)

    Falkenberg, Thomas; Gregersen, Rene Tavs; Blanke, Mogens

    2014-01-01

    This paper demonstrates fault diagnosis on unmanned underwater vehicles (UUV) based on analysis of structure of the nonlinear dynamics. Residuals are generated using dierent approaches in structural analysis followed by statistical change detection. Hypothesis testing thresholds are made signal b...

  7. Sensor network architectures for monitoring underwater pipelines.

    Science.gov (United States)

    Mohamed, Nader; Jawhar, Imad; Al-Jaroodi, Jameela; Zhang, Liren

    2011-01-01

    This paper develops and compares different sensor network architecture designs that can be used for monitoring underwater pipeline infrastructures. These architectures are underwater wired sensor networks, underwater acoustic wireless sensor networks, RF (radio frequency) wireless sensor networks, integrated wired/acoustic wireless sensor networks, and integrated wired/RF wireless sensor networks. The paper also discusses the reliability challenges and enhancement approaches for these network architectures. The reliability evaluation, characteristics, advantages, and disadvantages among these architectures are discussed and compared. Three reliability factors are used for the discussion and comparison: the network connectivity, the continuity of power supply for the network, and the physical network security. In addition, the paper also develops and evaluates a hierarchical sensor network framework for underwater pipeline monitoring.

  8. Sensor Network Architectures for Monitoring Underwater Pipelines

    Directory of Open Access Journals (Sweden)

    Imad Jawhar

    2011-11-01

    Full Text Available This paper develops and compares different sensor network architecture designs that can be used for monitoring underwater pipeline infrastructures. These architectures are underwater wired sensor networks, underwater acoustic wireless sensor networks, RF (Radio Frequency wireless sensor networks, integrated wired/acoustic wireless sensor networks, and integrated wired/RF wireless sensor networks. The paper also discusses the reliability challenges and enhancement approaches for these network architectures. The reliability evaluation, characteristics, advantages, and disadvantages among these architectures are discussed and compared. Three reliability factors are used for the discussion and comparison: the network connectivity, the continuity of power supply for the network, and the physical network security. In addition, the paper also develops and evaluates a hierarchical sensor network framework for underwater pipeline monitoring.

  9. Time Synchronization for Mobile Underwater Sensor Networks

    Directory of Open Access Journals (Sweden)

    Ying Guo

    2013-01-01

    Full Text Available Time synchronization is very crucial for the implementation of energy constricted underwater wireless sensor networks (UWSN. The purpose of this paper is to present a time synchronization algorithm which is suitable to UWSN. Although several time synchronization protocols have been developed, most of them tend to break down when implemented on mobile underwater sensor networks. In this paper, we analyze the effect of node mobility, and propose a Mobile Counteracted Time Synchronization approach, called “Mc-Sync”, which is a novel time synchronization scheme for mobile underwater acoustic sensor networks. It makes use of two mobile reference nodes to counteract the effect of node mobility. We also analyze and design the optimized trajectories of the two mobile reference nodes in underwater environment. We show through analysis and simulation that Mc-Sync provides much better performance than existing schemes.

  10. Underwater Acoustic Sensing with Optical Fibres

    Directory of Open Access Journals (Sweden)

    V. V. Rampal

    1982-01-01

    Full Text Available The use of optical fibres for the detection of acoustic pressure underwater has been discussed with particular reference to the recent literature on the development of fibre optic hydrophones.

  11. Autonomous underwater riser inspection tool

    Energy Technology Data Exchange (ETDEWEB)

    Camerini, Claudio; Marnet, Robson [Petrobras SA, (Brazil); Freitas, Miguel; Von der Weid, Jean Pierre [CPTI/PUC-Rio, Rio de Janeiro, (Brazil); Artigas Lander, Ricardo [EngeMOVI, Curitiba, (Brazil)

    2010-07-01

    The detection of damage on the riser is a serious concern for pipeline companies. Visual examinations by remotely operated vehicle (ROV) are presently carried out to detect the defects but this process has limitations and is expensive. This paper presents the development of a new tool to ensure autonomous underwater riser inspection (AURI) that uses the riser itself for guidance. The AURI, which is autonomous in terms of control and power supply, is equipped with several cameras that perform a complete visual inspection of the riser with 100 % coverage of the external surface of the riser. The paper presents the detailed characteristics of the first AURI prototype, describes its launching procedure and provides the preliminary test results from pool testing. The results showed that the AURI is a viable system for autonomous riser inspection. Offshore tests on riser pipelines are scheduled to be performed shortly.

  12. Human-robot interaction strategies for walker-assisted locomotion

    CERN Document Server

    Cifuentes, Carlos A

    2016-01-01

    This book presents the development of a new multimodal human-robot interface for testing and validating control strategies applied to robotic walkers for assisting human mobility and gait rehabilitation. The aim is to achieve a closer interaction between the robotic device and the individual, empowering the rehabilitation potential of such devices in clinical applications. A new multimodal human-robot interface for testing and validating control strategies applied to robotic walkers for assisting human mobility and gait rehabilitation is presented. Trends and opportunities for future advances in the field of assistive locomotion via the development of hybrid solutions based on the combination of smart walkers and biomechatronic exoskeletons are also discussed. .

  13. Robot Companions: Technology for Humans

    CERN Document Server

    Kernbach, Serge

    2011-01-01

    Creation of devices and mechanisms which help people has a long history. Their inventors always targeted practical goals such as irrigation, harvesting, devices for construction sites, measurement, and, last but not least, military tasks for different mechanical and later mechatronic systems. Development of such assisting mechanisms counts back to Greek engineering, came through Middle Ages and led finally in XIX and XX centuries to autonomous devices, which we call today "Robots". This chapter provides overview of several robotic technologies, introduces bio-/chemo- hybrid and collective systems and discuss their applications in service areas.

  14. Underwater Multi-Vehicle Trajectory Alignment and Mapping Using Acoustic and Optical Constraints

    Directory of Open Access Journals (Sweden)

    Ricard Campos

    2016-03-01

    Full Text Available Multi-robot formations are an important advance in recent robotic developments, as they allow a group of robots to merge their capacities and perform surveys in a more convenient way. With the aim of keeping the costs and acoustic communications to a minimum, cooperative navigation of multiple underwater vehicles is usually performed at the control level. In order to maintain the desired formation, individual robots just react to simple control directives extracted from range measurements or ultra-short baseline (USBL systems. Thus, the robots are unaware of their global positioning, which presents a problem for the further processing of the collected data. The aim of this paper is two-fold. First, we present a global alignment method to correct the dead reckoning trajectories of multiple vehicles to resemble the paths followed during the mission using the acoustic messages passed between vehicles. Second, we focus on the optical mapping application of these types of formations and extend the optimization framework to allow for multi-vehicle geo-referenced optical 3D mapping using monocular cameras. The inclusion of optical constraints is not performed using the common bundle adjustment techniques, but in a form improving the computational efficiency of the resulting optimization problem and presenting a generic process to fuse optical reconstructions with navigation data. We show the performance of the proposed method on real datasets collected within the Morph EU-FP7 project.

  15. Social Robots

    DEFF Research Database (Denmark)

    Social robotics is a cutting edge research area gathering researchers and stakeholders from various disciplines and organizations. The transformational potential that these machines, in the form of, for example, caregiving, entertainment or partner robots, pose to our societies and to us...... as individuals seems to be limited by our technical limitations and phantasy alone. This collection contributes to the field of social robotics by exploring its boundaries from a philosophically informed standpoint. It constructively outlines central potentials and challenges and thereby also provides a stable...

  16. Autonomous Underwater Vehicle Planning for Information Exploitation

    Science.gov (United States)

    2012-03-01

    Remotely Operated Vehicles (ROV’s) and Autonomous Underwater Vehicles (AUVs) are being used extensively in fields of underwater cartography , exploration...controls required to follow each candidate trajectory. What we are essentially doing is computing the time- histories of the states and controls along...numerically differentiate (3.24) in order to check a given constraint on Ψ such as |Ψ̇(t)| ≤ Ψ̇max. The net result is a time- history of the states and

  17. Ocean Variability Effects on Underwater Acoustic Communications

    Science.gov (United States)

    2007-09-30

    B is about 6 dB higher than that during enviromental case A. Due to the large aperture and deployment range of the MPL array, the channel impulse...coherence. IMPACT /APPLICATIONS The developed receiver is a robust structure for high data rate underwater digital communications at high frequencies...H.-C. Song, W. S. Hodgkiss, M. B. Porter, and the KauaiEx group, “ Impact of Ocean Variability on Coherent Underwater Acoustic Communications

  18. HYDRODYNAMIC ANALYSIS AND SIMULATION OF A SWIMMING BIONIC ROBOT TUNA

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    A dynamic model for undulatory locomotion was proposed to study the swimming mechanism of a developed bionic robot tuna. On the basis of inviscid hydrodynamics and rigid-body dynamics, the momentum and propulsive force required for propelling the swimming robot tuna's flexible body was calculated. By solving the established dynamic equations and efficiency formula, the swimming velocity and propulsive efficiency of the bionic robot tuna were obtained. The relationship between the kinematic parameters of the robot tuna's body curve and the hydrodynamic performances was established and discussed after hydrodynamic simulations. The results presented in this article can be used to increase the swimming speed, propulsive thrust, and the efficiency of underwater vehicles effectively.

  19. Design and Implementation of Autonomous Sonar Based Vehicle Robot

    Directory of Open Access Journals (Sweden)

    Muhammad Adil Ansari

    2011-07-01

    Full Text Available Autonomous robots are intelligent machines that are capable of performing desired tasks by themselves, without explicit human control. This paper presents design and implementation of the ASVR (Autonomous Sonar Based Vehicle Robot. ASVR is a microcontroller based, programmable mobile robot that can sense and react to its environment and can work in partially known and unpredictable environments. A novel algorithm based on ultrasonic sensors and simple calculations for real-time obstacle detection and avoidance that is intended for mobile robots is also outlined. Also a novel technique is proposed and implemented for steering referencing of vehicle. The design is implemented in air using ultrasonic sensors but can be adapted using sonar to underwater environments where it has important applications such as deep sea maintenance and reconnaissance tasks. The paper also presents performance results of a prototype developed to prove the design concept.

  20. Five-Link Biped Robot Hybrid Control via Fuzzy Neural Networks%基于模糊神经网络的5连杆双足机器人混杂控制

    Institute of Scientific and Technical Information of China (English)

    刘治; 李春文

    2002-01-01

    The paper presents a new fuzzy neural networks (FNN) hybrid controller to solve the trajectory tracking problem of biped robots in the single-support phase. The advantages of fuzzy neural network, H∞ controller and inverse system method are integrated in this paper for control purpose. A new multi-layers fuzzy CMAC is applied to approximate the system information of biped robot . On the one hand, we regard construction errors of FNN as external disturbances, and then use H∞controller to attenuate such disturbances. On the other hand, apply the strong approximate capability of FNN to construct the inverse system and offer efficient system information to H∞ controller. As the result, L2 gain can be attenuated by the presented fuzzy neural network structure and adaptive algorithm.%针对双足机器人单脚支撑期控制问题,提出了一种新型的模糊神经网络混杂控制方法.该种方法结合了模糊神经网络、H∞控制及逆系统方法的优点.应用了一种新的多层模糊CMAC神经网络对系统进行逼近,一方面将模糊神经网络的构造误差看作系统的干扰,利用H∞控制对干扰进行抑制.另一方面利用模糊神经网络对系统模型进行逼近,为逆系统的构建和H∞控制率的设计提供了有效的系统信息.并证明了在采用本文提出的模糊神经网络和自适应算法后可以抑制L2增益.

  1. Development of ICPF Actuated Underwater Microrobots

    Institute of Scientific and Technical Information of China (English)

    Xiuo-Fen Ye; Bao-Feng Gao; Shu-Xiang Guo; Li-Quan Wang

    2006-01-01

    It is our target to develop underwater microrobots for medical and industrial applications. This kind of underwater microrobots should have the characteristics of flexibility, good response and safety. Its structure should be simple and it can be driven by low voltage and produces no pollution or noise. The low actuating voltage and quick bending responses of Ionic Conducting Polymer Film (ICPF) are considered very useful and attractive for constructing various types of actuators and sensors. In this paper, we will first study the characteristics of the ICPF actuator used in underwater microrobot to realize swimming and walking. Then, we propose a new prototype model of underwater swimming microrobot utilizing only one piece of ICPF as the servo actuator. Through theoretic analysis, the motion mechanism of the microrobot is illustrated. It can swim forward and vertically. The relationships between moving speed and signal voltage amplitude and signal frequency is obtained after experimental study. Lastly, we present a novel underwater crab-like walking microrobot named crabliker-1. It has eight legs, and each leg is made up of two pieces of ICPF. Three sample processes of the octopod gait are proposed with a new analyzing method. The experimental results indicate that the crab-like underwater microrobot can perform transverse and rotation movement when the legs of the crab collaborate.

  2. Affordable underwater wireless optical communication using LEDs

    Science.gov (United States)

    Pilipenko, Vladimir; Arnon, Shlomi

    2013-09-01

    In recent years the need for high data rate underwater wireless communication (WC) has increased. Nowadays, the conventional technology for underwater communication is acoustic. However, the maximum data rate that acoustic technology can provide is a few kilobits per second. On the other hand, emerging applications such as underwater imaging, networks of sensors and swarms of underwater vehicles require much faster data rates. As a result, underwater optical WC, which can provide much higher data rates, has been proposed as an alternative means of communication. In addition to high data rates, affordable communication systems become an important feature in the development requirements. The outcome of these requirements is a new system design based on off-the-shelf components such as blue and green light emitting diodes (LEDs). This is due to the fact that LEDs offer solutions characterized by low cost, high efficiency, reliability and compactness. However, there are some challenges to be met when incorporating LEDs as part of the optical transmitter, such as low modulation rates and non linearity. In this paper, we review the main challenges facing the incorporation of LEDs as an integral part of underwater WC systems and propose some techniques to mitigate the LED limitations in order to achieve high data rate communication

  3. Underwater Multi-Node Radio Communication Solutions for Planetary Exploration

    Science.gov (United States)

    Kawar, Zaid Fares Yousef; Haddad, Sanad Atef Sari; Mestariheh, Feras R. M.; Jonsson, Lars Jonas

    2015-01-01

    The exploration of the presumably life harboring subsurface ocean of Europa will provide scientists with extensive new knowledge in the search for extraterrestrial life. A highly miniaturized payload is required to penetrate a narrow passage through the thick ice crust covering Europa's surface. Underwater wireless communications may be the most viable means of communication for such exploratory missions, accounting for size and weight restrictions. This presents a challenge to achieve satisfactory data rates and a range that permits autonomous underwater vehicles (AUVs) to communicate within their region of operation, as well as with a surface lander or orbiter. This work presents thorough prototype experimentation on an underwater communication system established between several nodes using RF signals. During an eight-week internship experience at NASA's Ames Research Center in September-October 2014, our team developed a Europa exploration mission concept, built representative hardware, and carried out tests to assess the feasibility of key aspects of the concept. Experiments demonstrating the viability of RF communication underwater comprised inspecting the effect of depth and horizontal distance on signal strength as well as the optimum positioning of antennas. To test the system's performance, two submersibles were designed and built. A commercially available remotely operated vehicle (ROV) was also modified and used as a main communication node. The two submersibles were wirelessly connected and accommodated sensors capable of characterizing water properties and equipped with 2.4 GHz, 1 mW transceivers to communicate the measured data. The communication procedure is that the main communication node requests the collected data from the two submersibles when in range and receives it instantly through RF. This work models what may take place during an actual mission to Europa. The developed mission concept involved a hybrid communication system consisting of

  4. Strong underwater adhesives made by self-assembling multi-protein nanofibres.

    Science.gov (United States)

    Zhong, Chao; Gurry, Thomas; Cheng, Allen A; Downey, Jordan; Deng, Zhengtao; Stultz, Collin M; Lu, Timothy K

    2014-10-01

    Many natural underwater adhesives harness hierarchically assembled amyloid nanostructures to achieve strong and robust interfacial adhesion under dynamic and turbulent environments. Despite recent advances, our understanding of the molecular design, self-assembly and structure-function relationships of these natural amyloid fibres remains limited. Thus, designing biomimetic amyloid-based adhesives remains challenging. Here, we report strong and multi-functional underwater adhesives obtained from fusing mussel foot proteins (Mfps) of Mytilus galloprovincialis with CsgA proteins, the major subunit of Escherichia coli amyloid curli fibres. These hybrid molecular materials hierarchically self-assemble into higher-order structures, in which, according to molecular dynamics simulations, disordered adhesive Mfp domains are exposed on the exterior of amyloid cores formed by CsgA. Our fibres have an underwater adhesion energy approaching 20.9 mJ m(-2), which is 1.5 times greater than the maximum of bio-inspired and bio-derived protein-based underwater adhesives reported thus far. Moreover, they outperform Mfps or curli fibres taken on their own and exhibit better tolerance to auto-oxidation than Mfps at pH ≥ 7.0.

  5. Strong underwater adhesives made by self-assembling multi-protein nanofibres

    Science.gov (United States)

    Zhong, Chao; Gurry, Thomas; Cheng, Allen A.; Downey, Jordan; Deng, Zhengtao; Stultz, Collin M.; Lu, Timothy K.

    2014-10-01

    Many natural underwater adhesives harness hierarchically assembled amyloid nanostructures to achieve strong and robust interfacial adhesion under dynamic and turbulent environments. Despite recent advances, our understanding of the molecular design, self-assembly and structure-function relationships of these natural amyloid fibres remains limited. Thus, designing biomimetic amyloid-based adhesives remains challenging. Here, we report strong and multi-functional underwater adhesives obtained from fusing mussel foot proteins (Mfps) of Mytilus galloprovincialis with CsgA proteins, the major subunit of Escherichia coli amyloid curli fibres. These hybrid molecular materials hierarchically self-assemble into higher-order structures, in which, according to molecular dynamics simulations, disordered adhesive Mfp domains are exposed on the exterior of amyloid cores formed by CsgA. Our fibres have an underwater adhesion energy approaching 20.9 mJ m-2, which is 1.5 times greater than the maximum of bio-inspired and bio-derived protein-based underwater adhesives reported thus far. Moreover, they outperform Mfps or curli fibres taken on their own and exhibit better tolerance to auto-oxidation than Mfps at pH ≥ 7.0.

  6. Light Robotics

    DEFF Research Database (Denmark)

    Glückstad, Jesper; Palima, Darwin

    Light Robotics - Structure-Mediated Nanobiophotonics covers the latest means of sculpting of both light and matter for achieving bioprobing and manipulation at the smallest scales. The synergy between photonics, nanotechnology and biotechnology spans the rapidly growing field of nanobiophotonics...

  7. 9th International Conference on Field and Service Robotics

    CERN Document Server

    Corke, Peter; Roberts, Jonathan

    2015-01-01

    FSR, the International Conference on Field and Service Robotics, is a robotics Symposium which has established over the past ten years the latest research and practical results towards the use of field and service robotics in the community with particular focus on proven technology. The first meeting was held in Canberra, Australia, in 1997. Since then the meeting has been held every two years in the pattern Asia, America, Europe.   Field robots are non-factory robots, typically mobile, that operate in complex, and dynamic environments; on the ground (of earth or planets), under the ground, underwater, in the air or in space. Service robots are those that work closely with humans to help them with their lives. This book present the results of the ninth edition of Field and Service Robotics, FSR13, held in Brisbane, Australia on 9th-11th December 2013. The conference provided a forum for researchers, professionals, and robot manufactures to exchange up-to-date technical knowledge and experience. This book off...

  8. Cognitive Robotics

    OpenAIRE

    Levesque, Hector J.; Lakemeyer, Gerhard

    2010-01-01

    This chapter is dedicated to the memory of Ray Reiter. It is also an overview of cognitive robotics, as we understand it to have been envisaged by him.1 Of course, nobody can control the use of a term or the direction of research. We apologize in advance to those who feel that other approaches to cognitive robotics and related problems are inadequately represented here.

  9. Introduction to the special issue on Advances in intelligent nonlinear control for robotic systems

    Institute of Scientific and Technical Information of China (English)

    Chee Khiang PANG; Huajin TANG; Qing Wei JIA

    2010-01-01

    @@ In the last two decades, robotic systems have achieved wide applications in every aspect of human society, including industrial manufacturing, automotive production, medical devices, and social lives. With the diversity of application do-mains, control techniques have pervaded from industrial robot manipulators, wheeled or legged mobile robots, unmanned autonomous aerial, ground, and underwater vehicles, to humanoid robots, and haptic devices, etc. The growing number of applications of robotics and increasing requirements for system stability, reliability, and safety, are posing new and challenging theoretical and technological problems for modeling and control of these highly nonlinear systems. Control of these complex systems is highly challenging due to the inherent nonlinear response and strong heterogeneity in dif-ferent parts as computers, sensors, hardware objects, etc. As such, novel nonlinear control strategies are essential to the advancement of robotic systems and corresponding technologies.

  10. Robot Rescue

    Science.gov (United States)

    Morring, Frank, Jr.

    2004-01-01

    Tests with robots and the high-fidelity Hubble Space Telescope mockup astronauts use to train for servicing missions have convinced NASA managers it may be possible to maintain and upgrade the orbiting observatory without sending a space shuttle to do the job. In a formal request last week, the agency gave bidders until July 16 to sub-mit proposals for a robotic mission to the space telescope before the end of 2007. At a minimum, the mission would attach a rocket motor to deorbit the telescope safely when its service life ends. In the best case, it would use state-of-the- art robotics to prolong its life on orbit and install new instruments. With the space shuttle off-limits for the job under strict post-Columbia safety policies set by Administrator Sean O'Keefe, NASA has designed a "straw- man" robotic mission that would use an Atlas V or Delta N to launch a 20,ooO-lb. "Hubble Robotic Vehicle" to service the telescope. There, a robotic arm would grapple it, much as the shuttle does.

  11. [Robotic surgery].

    Science.gov (United States)

    Moreno-Portillo, Mucio; Valenzuela-Salazar, Carlos; Quiroz-Guadarrama, César David; Pachecho-Gahbler, Carlos; Rojano-Rodríguez, Martín

    2014-12-01

    Medicine has experienced greater scientific and technological advances in the last 50 years than in the rest of human history. The article describes relevant events, revises concepts and advantages and clinical applications, summarizes published clinical results, and presents some personal reflections without giving dogmatic conclusions about robotic surgery. The Society of American Gastrointestinal and Endoscopic Surgeons (SAGES) defines robotic surgery as a surgical procedure using technology to aid the interaction between surgeon and patient. The objective of the surgical robot is to correct human deficiencies and improve surgical skills. The capacity of repeating tasks with precision and reproducibility has been the base of the robot´s success. Robotic technology offers objective and measurable advantages: - Improving maneuverability and physical capacity during surgery. - Correcting bad postural habits and tremor. - Allowing depth perception (3D images). - Magnifying strength and movement limits. - Offering a platform for sensors, cameras, and instruments. Endoscopic surgery transformed conceptually the way of practicing surgery. Nevertheless in the last decade, robotic assisted surgery has become the next paradigm of our era.

  12. Multisensor robot navigation system

    Science.gov (United States)

    Persa, Stelian; Jonker, Pieter P.

    2002-02-01

    Almost all robot navigation systems work indoors. Outdoor robot navigation systems offer the potential for new application areas. The biggest single obstacle to building effective robot navigation systems is the lack of accurate wide-area sensors for trackers that report the locations and orientations of objects in an environment. Active (sensor-emitter) tracking technologies require powered-device installation, limiting their use to prepared areas that are relative free of natural or man-made interference sources. The hybrid tracker combines rate gyros and accelerometers with compass and tilt orientation sensor and DGPS system. Sensor distortions, delays and drift required compensation to achieve good results. The measurements from sensors are fused together to compensate for each other's limitations. Analysis and experimental results demonstrate the system effectiveness. The paper presents a field experiment for a low-cost strapdown-IMU (Inertial Measurement Unit)/DGPS combination, with data processing for the determination of 2-D components of position (trajectory), velocity and heading. In the present approach we have neglected earth rotation and gravity variations, because of the poor gyroscope sensitivities of our low-cost ISA (Inertial Sensor Assembly) and because of the relatively small area of the trajectory. The scope of this experiment was to test the feasibility of an integrated DGPS/IMU system of this type and to develop a field evaluation procedure for such a combination.

  13. Advanced Concepts for Underwater Acoustic Channel Modeling

    Science.gov (United States)

    Etter, P. C.; Haas, C. H.; Ramani, D. V.

    2014-12-01

    This paper examines nearshore underwater-acoustic channel modeling concepts and compares channel-state information requirements against existing modeling capabilities. This process defines a subset of candidate acoustic models suitable for simulating signal propagation in underwater communications. Underwater-acoustic communications find many practical applications in coastal oceanography, and networking is the enabling technology for these applications. Such networks can be formed by establishing two-way acoustic links between autonomous underwater vehicles and moored oceanographic sensors. These networks can be connected to a surface unit for further data transfer to ships, satellites, or shore stations via a radio-frequency link. This configuration establishes an interactive environment in which researchers can extract real-time data from multiple, but distant, underwater instruments. After evaluating the obtained data, control messages can be sent back to individual instruments to adapt the networks to changing situations. Underwater networks can also be used to increase the operating ranges of autonomous underwater vehicles by hopping the control and data messages through networks that cover large areas. A model of the ocean medium between acoustic sources and receivers is called a channel model. In an oceanic channel, characteristics of the acoustic signals change as they travel from transmitters to receivers. These characteristics depend upon the acoustic frequency, the distances between sources and receivers, the paths followed by the signals, and the prevailing ocean environment in the vicinity of the paths. Properties of the received signals can be derived from those of the transmitted signals using these channel models. This study concludes that ray-theory models are best suited to the simulation of acoustic signal propagation in oceanic channels and identifies 33 such models that are eligible candidates.

  14. Geometric documentation of underwater archaeological sites

    Directory of Open Access Journals (Sweden)

    Eleni Diamanti

    2013-12-01

    Full Text Available Photogrammetry has often been the most preferable method for the geometric documentation of monuments, especially in cases of highly complex objects, of high accuracy and quality requirements and, of course, budget, time or accessibility limitations. Such limitations, requirements and complexities are undoubtedly features of the highly challenging task of surveying an underwater archaeological site. This paper is focused on the case of a Hellenistic shipwreck found in Greece at the Southern Euboean gulf, 40-47 meters below the sea surface. Underwater photogrammetry was chosen as the ideal solution for the detailed and accurate mapping of a shipwreck located in an environment with limited accessibility. There are time limitations when diving at these depths so it is essential that the data collection time is kept as short as possible. This makes custom surveying techniques rather impossible to apply. However, with the growing use of consumer cameras and photogrammetric software, this application is becoming easier, thus benefiting a wide variety of underwater sites. Utilizing cameras for underwater photogrammetry though, poses some crucial modeling problems, due to the refraction effect and further additional parameters which have to be co-estimated [1]. The applied method involved an underwater calibration of the camera as well as conventional field survey measurements in order to establish a reference frame. The application of a three-dimensional trilateration using common tape measures was chosen for this reason. Among the software that was used for surveying and photogrammetry processing, were Site Recorder SE, Eos Systems Photomodeler, ZI’s SSK and Rhinoceros. The underwater archaeological research at the Southern Euboean gulf is a continuing project carried out by the Hellenic Institute for Marine Archaeology (H.I.M.A. in collaboration with the Greek Ephorate of Underwater Antiquities, under the direction of the archaeologist G

  15. The development of controller and navigation algorithm for underwater wall crawler

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Hyung Suck; Kim, Kyung Hoon; Kim, Min Young [Korea Advanced Institute of Science and Technology, Taejon (Korea)

    1999-01-01

    In this project, the control system of a underwater robotic vehicle(URV) for underwater wall inspection in the nuclear reactor pool or the related facilities has been developed. The following 4-sub projects have been studied for this project: (1) Development of the controller and motor driver for the URV (2) Development of the control algorithm for the tracking control of the URV (3) Development of the localization system (4) Underwater experiments of the developed system. First, the dynamic characteristic of thruster with the DC servo-motor was analyzed experimentally. Second the controller board using the INTEL 80C196 was designed and constructed, and the software for the communication and motor control is developed. Third the PWM motor-driver was developed. Fourth the localization system using the laser scanner and inclinometer was developed and tested in the pool. Fifth the dynamics of the URV was studied and the proper control algorithms for the URV was proposed. Lastly the validation of the integrated system was experimentally performed. (author). 27 refs., 51 figs., 8 tabs.

  16. Cultural Robotics: The Culture of Robotics and Robotics in Culture

    Directory of Open Access Journals (Sweden)

    Hooman Samani

    2013-12-01

    Full Text Available In this paper, we have investigated the concept of "Cultural Robotics" with regard to the evolution of social into cultural robots in the 21st Century. By defining the concept of culture, the potential development of a culture between humans and robots is explored. Based on the cultural values of the robotics developers, and the learning ability of current robots, cultural attributes in this regard are in the process of being formed, which would define the new concept of cultural robotics. According to the importance of the embodiment of robots in the sense of presence, the influence of robots in communication culture is anticipated. The sustainability of robotics culture based on diversity for cultural communities for various acceptance modalities is explored in order to anticipate the creation of different attributes of culture between robots and humans in the future.

  17. Reliability Architecture for Collaborative Robot Control Systems in Complex Environments

    Directory of Open Access Journals (Sweden)

    Liang Tang

    2016-02-01

    Full Text Available Many different kinds of robot systems have been successfully deployed in complex environments, while research into collaborative control systems between different robots, which can be seen as a hybrid internetware safety-critical system, has become essential. This paper discusses ways to construct robust and secure reliability architecture for collaborative robot control systems in complex environments. First, the indication system for evaluating the realtime reliability of hybrid internetware systems is established. Next, a dynamic collaborative reliability model for components of hybrid internetware systems is proposed. Then, a reliable, adaptive and evolutionary computation method for hybrid internetware systems is proposed, and a timing consistency verification solution for collaborative robot control internetware applications is studied. Finally, a multi-level security model supporting dynamic resource allocation is established.

  18. Orthophoto imaging and GIS for seabed visualization and underwater archaeology

    OpenAIRE

    Seinturier, Julien; Drap, Pierre; Durand, Anne; Vincent, N.; Cibecchi, F.; Papani, O.; Grussenmeyer, Pierre

    2004-01-01

    We present here the first step of an interdisciplinary work dealing with underwater photogrammetry and archaeological data management. In the framework of a phd project we develop a set of tools from underwater data capture to 3D underwater GIS for archaeological excavation. The phd project, managed by Julien Seinturier, is monitored by Odile Papini for the data fusion aspect and Pierre Drap for the underwater photogrammetrical aspect. The project is financed together by the French Region PAC...

  19. On Modeling Eavesdropping Attacks in Underwater Acoustic Sensor Networks †

    OpenAIRE

    Qiu Wang; Hong-Ning Dai; Xuran Li; Hao Wang; Hong Xiao

    2016-01-01

    The security and privacy of underwater acoustic sensor networks has received extensive attention recently due to the proliferation of underwater activities. This paper proposes an analytical model to investigate the eavesdropping attacks in underwater acoustic sensor networks. Our analytical framework considers the impacts of various underwater acoustic channel conditions (such as the acoustic signal frequency, spreading factor and wind speed) and different hydrophones (isotropic hydrophones ...

  20. Rehabilitation robotics.

    Science.gov (United States)

    Krebs, H I; Volpe, B T

    2013-01-01

    This chapter focuses on rehabilitation robotics which can be used to augment the clinician's toolbox in order to deliver meaningful restorative therapy for an aging population, as well as on advances in orthotics to augment an individual's functional abilities beyond neurorestoration potential. The interest in rehabilitation robotics and orthotics is increasing steadily with marked growth in the last 10 years. This growth is understandable in view of the increased demand for caregivers and rehabilitation services escalating apace with the graying of the population. We provide an overview on improving function in people with a weak limb due to a neurological disorder who cannot properly control it to interact with the environment (orthotics); we then focus on tools to assist the clinician in promoting rehabilitation of an individual so that s/he can interact with the environment unassisted (rehabilitation robotics). We present a few clinical results occurring immediately poststroke as well as during the chronic phase that demonstrate superior gains for the upper extremity when employing rehabilitation robotics instead of usual care. These include the landmark VA-ROBOTICS multisite, randomized clinical study which demonstrates clinical gains for chronic stroke that go beyond usual care at no additional cost.

  1. Medical robotics.

    Science.gov (United States)

    Ferrigno, Giancarlo; Baroni, Guido; Casolo, Federico; De Momi, Elena; Gini, Giuseppina; Matteucci, Matteo; Pedrocchi, Alessandra

    2011-01-01

    Information and communication technology (ICT) and mechatronics play a basic role in medical robotics and computer-aided therapy. In the last three decades, in fact, ICT technology has strongly entered the health-care field, bringing in new techniques to support therapy and rehabilitation. In this frame, medical robotics is an expansion of the service and professional robotics as well as other technologies, as surgical navigation has been introduced especially in minimally invasive surgery. Localization systems also provide treatments in radiotherapy and radiosurgery with high precision. Virtual or augmented reality plays a role for both surgical training and planning and for safe rehabilitation in the first stage of the recovery from neurological diseases. Also, in the chronic phase of motor diseases, robotics helps with special assistive devices and prostheses. Although, in the past, the actual need and advantage of navigation, localization, and robotics in surgery and therapy has been in doubt, today, the availability of better hardware (e.g., microrobots) and more sophisticated algorithms(e.g., machine learning and other cognitive approaches)has largely increased the field of applications of these technologies,making it more likely that, in the near future, their presence will be dramatically increased, taking advantage of the generational change of the end users and the increasing request of quality in health-care delivery and management.

  2. Rehabilitation robotics

    Science.gov (United States)

    KREBS, H.I.; VOLPE, B.T.

    2015-01-01

    This chapter focuses on rehabilitation robotics which can be used to augment the clinician’s toolbox in order to deliver meaningful restorative therapy for an aging population, as well as on advances in orthotics to augment an individual’s functional abilities beyond neurorestoration potential. The interest in rehabilitation robotics and orthotics is increasing steadily with marked growth in the last 10 years. This growth is understandable in view of the increased demand for caregivers and rehabilitation services escalating apace with the graying of the population. We will provide an overview on improving function in people with a weak limb due to a neurological disorder who cannot properly control it to interact with the environment (orthotics); we will then focus on tools to assist the clinician in promoting rehabilitation of an individual so that s/he can interact with the environment unassisted (rehabilitation robotics). We will present a few clinical results occurring immediately poststroke as well as during the chronic phase that demonstrate superior gains for the upper extremity when employing rehabilitation robotics instead of usual care. These include the landmark VA-ROBOTICS multisite, randomized clinical study which demonstrates clinical gains for chronic stroke that go beyond usual care at no additional cost. PMID:23312648

  3. Omnidirectional Underwater Camera Design and Calibration

    Directory of Open Access Journals (Sweden)

    Josep Bosch

    2015-03-01

    Full Text Available This paper presents the development of an underwater omnidirectional multi-camera system (OMS based on a commercially available six-camera system, originally designed for land applications. A full calibration method is presented for the estimation of both the intrinsic and extrinsic parameters, which is able to cope with wide-angle lenses and non-overlapping cameras simultaneously. This method is valid for any OMS in both land or water applications. For underwater use, a customized housing is required, which often leads to strong image distortion due to refraction among the different media. This phenomena makes the basic pinhole camera model invalid for underwater cameras, especially when using wide-angle lenses, and requires the explicit modeling of the individual optical rays. To address this problem, a ray tracing approach has been adopted to create a field-of-view (FOV simulator for underwater cameras. The simulator allows for the testing of different housing geometries and optics for the cameras to ensure a complete hemisphere coverage in underwater operation. This paper describes the design and testing of a compact custom housing for a commercial off-the-shelf OMS camera (Ladybug 3 and presents the first results of its use. A proposed three-stage calibration process allows for the estimation of all of the relevant camera parameters. Experimental results are presented, which illustrate the performance of the calibration method and validate the approach.

  4. Underwater Calibration of Dome Port Pressure Housings

    Science.gov (United States)

    Nocerino, E.; Menna, F.; Fassi, F.; Remondino, F.

    2016-03-01

    Underwater photogrammetry using consumer grade photographic equipment can be feasible for different applications, e.g. archaeology, biology, industrial inspections, etc. The use of a camera underwater can be very different from its terrestrial use due to the optical phenomena involved. The presence of the water and camera pressure housing in front of the camera act as additional optical elements. Spherical dome ports are difficult to manufacture and consequently expensive but at the same time they are the most useful for underwater photogrammetry as they keep the main geometric characteristics of the lens unchanged. Nevertheless, the manufacturing and alignment of dome port pressure housing components can be the source of unexpected changes of radial and decentring distortion, source of systematic errors that can influence the final 3D measurements. The paper provides a brief introduction of underwater optical phenomena involved in underwater photography, then presents the main differences between flat and dome ports to finally discuss the effect of manufacturing on 3D measurements in two case studies.

  5. Omnidirectional underwater camera design and calibration.

    Science.gov (United States)

    Bosch, Josep; Gracias, Nuno; Ridao, Pere; Ribas, David

    2015-03-12

    This paper presents the development of an underwater omnidirectional multi-camera system (OMS) based on a commercially available six-camera system, originally designed for land applications. A full calibration method is presented for the estimation of both the intrinsic and extrinsic parameters, which is able to cope with wide-angle lenses and non-overlapping cameras simultaneously. This method is valid for any OMS in both land or water applications. For underwater use, a customized housing is required, which often leads to strong image distortion due to refraction among the different media. This phenomena makes the basic pinhole camera model invalid for underwater cameras, especially when using wide-angle lenses, and requires the explicit modeling of the individual optical rays. To address this problem, a ray tracing approach has been adopted to create a field-of-view (FOV) simulator for underwater cameras. The simulator allows for the testing of different housing geometries and optics for the cameras to ensure a complete hemisphere coverage in underwater operation. This paper describes the design and testing of a compact custom housing for a commercial off-the-shelf OMS camera (Ladybug 3) and presents the first results of its use. A proposed three-stage calibration process allows for the estimation of all of the relevant camera parameters. Experimental results are presented, which illustrate the performance of the calibration method and validate the approach.

  6. The Hybrid Ethical Reasoning Agent IMMANUEL

    DEFF Research Database (Denmark)

    Bentzen, Martin Mose; Linder, Felix

    We introduce a novel software library that supportsthe implementation of hybrid ethical reasoning agents (HERA).The objective is to make moral principles available to robotprogramming. At its current stage, HERA can assess the moralpermissibility of actions using the principle of double effect......, andit can make utilitarian judgments.We present the prototype robotIMMANUEL based on HERA. The robot will be used to conductresearch on joint moral reasoning in human-robot interaction....

  7. The Hybrid Ethical Reasoning Agent IMMANUEL

    DEFF Research Database (Denmark)

    Bentzen, Martin Mose; Linder, Felix

    We introduce a novel software library that supportsthe implementation of hybrid ethical reasoning agents (HERA).The objective is to make moral principles available to robotprogramming. At its current stage, HERA can assess the moralpermissibility of actions using the principle of double effect, a......, andit can make utilitarian judgments.We present the prototype robotIMMANUEL based on HERA. The robot will be used to conductresearch on joint moral reasoning in human-robot interaction....

  8. Generic robot architecture

    Science.gov (United States)

    Bruemmer, David J [Idaho Falls, ID; Few, Douglas A [Idaho Falls, ID

    2010-09-21

    The present invention provides methods, computer readable media, and apparatuses for a generic robot architecture providing a framework that is easily portable to a variety of robot platforms and is configured to provide hardware abstractions, abstractions for generic robot attributes, environment abstractions, and robot behaviors. The generic robot architecture includes a hardware abstraction level and a robot abstraction level. The hardware abstraction level is configured for developing hardware abstractions that define, monitor, and control hardware modules available on a robot platform. The robot abstraction level is configured for defining robot attributes and provides a software framework for building robot behaviors from the robot attributes. Each of the robot attributes includes hardware information from at least one hardware abstraction. In addition, each robot attribute is configured to substantially isolate the robot behaviors from the at least one hardware abstraction.

  9. Enabling Persistent Autonomy for Underwater Gliders with Ocean Model Predictions and Terrain Based Navigation

    Directory of Open Access Journals (Sweden)

    Andrew eStuntz

    2016-04-01

    Full Text Available Effective study of ocean processes requires sampling over the duration of long (weeks to months oscillation patterns. Such sampling requires persistent, autonomous underwater vehicles, that have a similarly long deployment duration. The spatiotemporal dynamics of the ocean environment, coupled with limited communication capabilities, make navigation and localization difficult, especially in coastal regions where the majority of interesting phenomena occur. In this paper, we consider the combination of two methods for reducing navigation and localization error; a predictive approach based on ocean model predictions and a prior information approach derived from terrain-based navigation. The motivation for this work is not only for real-time state estimation, but also for accurately reconstructing the actual path that the vehicle traversed to contextualize the gathered data, with respect to the science question at hand. We present an application for the practical use of priors and predictions for large-scale ocean sampling. This combined approach builds upon previous works by the authors, and accurately localizes the traversed path of an underwater glider over long-duration, ocean deployments. The proposed method takes advantage of the reliable, short-term predictions of an ocean model, and the utility of priors used in terrain-based navigation over areas of significant bathymetric relief to bound uncertainty error in dead-reckoning navigation. This method improves upon our previously published works by 1 demonstrating the utility of our terrain-based navigation method with multiple field trials, and 2 presenting a hybrid algorithm that combines both approaches to bound navigational error and uncertainty for long-term deployments of underwater vehicles. We demonstrate the approach by examining data from actual field trials with autonomous underwater gliders, and demonstrate an ability to estimate geographical location of an underwater glider to 2

  10. Modeling and Model Identification of Autonomous Underwater Vehicles

    Science.gov (United States)

    2015-06-01

    IDENTIFICATION OF AUTONOMOUS UNDERWATER VEHICLES by Jose Alberti June 2015 Thesis Advisor: Noel du Toit Second Reader: Douglas...Master’s Thesis 4. TITLE AND SUBTITLE MODELING AND MODEL IDENTIFICATION OF AUTONOMOUS UNDERWATER VEHICLES 5. FUNDING NUMBERS 6. AUTHOR(S...unlimited 12b. DISTRIBUTION CODE 13. ABSTRACT (maximum 200 words) As autonomous underwater vehicles (AUVs) are deployed in more complex

  11. Wave run up in Zones of Underwater Canyons

    Directory of Open Access Journals (Sweden)

    Katline Koblev A. Julio

    2013-01-01

    Full Text Available The wave run up on coast and shore protection constructions in zones of underwater canyons is considered. The mathematical model of wave run up on the coast, considering distinctions in biases of underwater and surface parts of the coastal slope, allowing to receive setup parameters in zones of the underwater canyons, corresponding to data of supervision is offered.

  12. 46 CFR 167.05-40 - Underwater survey.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Underwater survey. 167.05-40 Section 167.05-40 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) NAUTICAL SCHOOLS PUBLIC NAUTICAL SCHOOL SHIPS Definitions § 167.05-40 Underwater survey. Underwater survey means the examination of the vessel's...

  13. Cloud Robotics Platforms

    Directory of Open Access Journals (Sweden)

    Busra Koken

    2015-01-01

    Full Text Available Cloud robotics is a rapidly evolving field that allows robots to offload computation-intensive and storage-intensive jobs into the cloud. Robots are limited in terms of computational capacity, memory and storage. Cloud provides unlimited computation power, memory, storage and especially collaboration opportunity. Cloud-enabled robots are divided into two categories as standalone and networked robots. This article surveys cloud robotic platforms, standalone and networked robotic works such as grasping, simultaneous localization and mapping (SLAM and monitoring.

  14. Cooperating mobile robots

    Energy Technology Data Exchange (ETDEWEB)

    Harrington, John J.; Eskridge, Steven E.; Hurtado, John E.; Byrne, Raymond H.

    2004-02-03

    A miniature mobile robot provides a relatively inexpensive mobile robot. A mobile robot for searching an area provides a way for multiple mobile robots in cooperating teams. A robotic system with a team of mobile robots communicating information among each other provides a way to locate a source in cooperation. A mobile robot with a sensor, a communication system, and a processor, provides a way to execute a strategy for searching an area.

  15. Application of time reversal in underwater communication

    Institute of Scientific and Technical Information of China (English)

    LU Minghui; ZHANG Bixing; WANG Chenghao

    2004-01-01

    Time reversal is applied to the underwater spreading spectrum coding communication. On the base of analyzing the focusing characteristics of the time reversal in underwater waveguide, the time reversal is studied to overcome the wave distortion of the encoded signal caused by the multi-path effect. The experiment research for underwater coding communication is carried out in a lab water tank and the corresponding theoretical analysis is also conducted by Binary Phase Shift Keying (BPSK) encoding and Barker code with 7 chips for the spreading spectrum signal. The results show that the time reversal can improve the focusing gain and increase the ratio of the principal to the second lobe of the coding signal, and can decrease the bit error rate and increase the communication distance.

  16. Medical robotics

    CERN Document Server

    Troccaz, Jocelyne

    2013-01-01

    In this book, we present medical robotics, its evolution over the last 30 years in terms of architecture, design and control, and the main scientific and clinical contributions to the field. For more than two decades, robots have been part of hospitals and have progressively become a common tool for the clinician. Because this domain has now reached a certain level of maturity it seems important and useful to provide a state of the scientific, technological and clinical achievements and still open issues. This book describes the short history of the domain, its specificity and constraints, and

  17. Robot Choreography

    DEFF Research Database (Denmark)

    Jochum, Elizabeth Ann; Heath, Damith

    2016-01-01

    We propose a robust framework for combining performance paradigms with human robot interaction (HRI) research. Following an analysis of several case studies that combine the performing arts with HRI experiments, we propose a methodology and “best practices” for implementing choreography and other...... performance paradigms in HRI experiments. Case studies include experiments conducted in laboratory settings, “in the wild”, and live performance settings. We consider the technical and artistic challenges of designing and staging robots alongside humans in these various settings, and discuss how to combine...

  18. Serendipitous Offline Learning in a Neuromorphic Robot.

    Science.gov (United States)

    Stewart, Terrence C; Kleinhans, Ashley; Mundy, Andrew; Conradt, Jörg

    2016-01-01

    We demonstrate a hybrid neuromorphic learning paradigm that learns complex sensorimotor mappings based on a small set of hard-coded reflex behaviors. A mobile robot is first controlled by a basic set of reflexive hand-designed behaviors. All sensor data is provided via a spike-based silicon retina camera (eDVS), and all control is implemented via spiking neurons simulated on neuromorphic hardware (SpiNNaker). Given this control system, the robot is capable of simple obstacle avoidance and random exploration. To train the robot to perform more complex tasks, we observe the robot and find instances where the robot accidentally performs the desired action. Data recorded from the robot during these times is then used to update the neural control system, increasing the likelihood of the robot performing that task in the future, given a similar sensor state. As an example application of this general-purpose method of training, we demonstrate the robot learning to respond to novel sensory stimuli (a mirror) by turning right if it is present at an intersection, and otherwise turning left. In general, this system can learn arbitrary relations between sensory input and motor behavior.

  19. Energy-Efficient Underwater Surveillance by Means of Hybrid Aquacopters

    Science.gov (United States)

    2014-12-01

    the drone . The target motion was conducted at random. Figure 61. Physical setup of the CAVR lab test for the UKF tracking of a target (helmet...filter 105 convergence time to the true position of the target. This behavior highlighted the importance of regulating the position of the sensor

  20. Autonomous underwater pipeline monitoring navigation system

    Science.gov (United States)

    Mitchell, Byrel; Mahmoudian, Nina; Meadows, Guy

    2014-06-01

    This paper details the development of an autonomous motion-control and navigation algorithm for an underwater autonomous vehicle, the Ocean Server IVER3, to track long linear features such as underwater pipelines. As part of this work, the Nonlinear and Autonomous Systems Laboratory (NAS Lab) developed an algorithm that utilizes inputs from the vehicles state of the art sensor package, which includes digital imaging, digital 3-D Sidescan Sonar, and Acoustic Doppler Current Profilers. The resulting algorithms should tolerate real-world waterway with episodic strong currents, low visibility, high sediment content, and a variety of small and large vessel traffic.

  1. Stabilization of coordinated motion for underwater vehicles

    Institute of Scientific and Technical Information of China (English)

    Fan Wu; Zhi-Yong Geng

    2011-01-01

    This paper presents a coordinating and stabilizing control law for a group of underwater vehicles with unstable dynamics. The coordinating law is derived from a potential that only depends on the relative configuration of the underwater vehicles. Being coordinated, the group behaves like one mechanical system with symmetry, and we focus on stabilizing a family of coordinated motions, called relative equilibria. The stabilizing law is derived using energy shaping to stabilize the relative equilibria which involve each vehicle translating along its longest (unstable) axis without spinning,while maintaining a relative configuration within the group.The proposed control law is physically motivated and avoids the linearization or cancellation of nonlinearities.

  2. DESIGN OPTIMISATION OF AN UNMANNED UNDERWATER VEHICLE

    Directory of Open Access Journals (Sweden)

    FIRDAUS ABDULLAH

    2007-08-01

    Full Text Available The results of fluid flow simulation around an unmanned underwater vehicle (UUV are presented in this paper. The UUV represents a small submarine for underwater search and rescue operation, which suits the local river conditions. The flow simulation was performed with a commercially available computational fluid dynamics package, Star-CD. The effects of the UUV geometry on the velocity and pressure distributions on the UUV surface were discussed for Re=500,000 and 3,000,000. The discussion led to an improved design of the UUV with a smoother velocity profile around the UUV body.

  3. Robotic Partial Nephrectomy Using Robotic Bulldog Clamps

    OpenAIRE

    2011-01-01

    Background and Objectives: The need for a skilled assistant to perform hilar clamping during robotic partial nephrectomy is a potential limitation of the technique. We describe our experience using robotic bulldog clamps applied by the console surgeon for hilar clamping. Methods: A total of 60 consecutive patients underwent robotic partial nephrectomy, 30 using laparoscopic bulldog clamps applied by the assistant and 30 using robotic bulldog clamps applied with the robotic Prograsp instrument...

  4. Design and Implementation of Paired Pectoral Fins Locomotion of Labriform Fish Applied to a Fish Robot

    Institute of Scientific and Technical Information of China (English)

    Patar Ebenezer Sitorus; Yul Yunazwin Nazaruddin; Edi Leksono; Agus Budiyono

    2009-01-01

    In present, there are increasing interests in the research on mechanical and control system of underwater vehicles. These ongoing research efforts are motivated by more pervasive applications of such vehicles including seabed oil and gas explorations, scientific deep ocean surveys, military purposes, ecological and water environmental studies, and also entertainments.However, the performance of underwater vehicles with screw type propellers is not prospective in terms of its efficiency and maneuverability. The main weaknesses of this kind of propellers are the production of vortices and sudden generation of thrust forces which make the control of the position and motion difficult.On the other hand, fishes and other aquatic animals are efficient swimmers, posses high maneuverability, are able to follow trajectories, can efficiently stabilize themselves in currents and surges, create less wakes than currently used underwater vehicle,and also have a noiseless propulsion. The fish's locomotion mechanism is mainly controlled by its caudal fin and paired pectoral fins. They are classified into Body and/or Caudal Fin (BCF) and Median and/or paired Pectoral Fins (MPF). The study of highly efficient swimming mechanisms of fish can inspire a better underwater vehicles thruster design and its mechanism.There are few studies on underwater vehicles or fish robots using paired pectoral fins as thruster. The work presented in this paper represents a contribution in this area covering study, design and implementation of locomotion mechanisms of paired pectoral fins in a fish robot. The performance and viability of the biomimetic method for underwater vehicles are highlighted through in-water experiment of a robotic fish.

  5. Dynamics Modeling and Analysis of a Wall-Climbing Robot with Biped-Wheel Hybrid Locomotion Mechanism%一种轮足复合式爬壁机器人动力学建模与分析

    Institute of Scientific and Technical Information of China (English)

    董伟光; 王洪光; 姜勇

    2015-01-01

    For a wall-climbing robot, solution of the reasonable values of adhesion force in different states is studied. Firstly, a biped-wheel hybrid locomotion mechanism including closed loop constraint is analyzed and split into open chain mechanisms according to motion equivalence principle. Dynamic model of the open chain mechanism is built using Newton-Euler method. Based on the dynamic model and the critical conditions for motion failure as constraint function, the adhesion force model is built for the wall-climbing robot moving on arbitrarily inclined surface. Then, the reasonable values of adhesion force in different states can be obtained. The simulation and experiments show that the parameters obtained by the force model can ensure adhesion safety. Therefore, the model constructed is reasonable and can provide theoretical basis for reasonable control of adhesion force in various motion states.%针对爬壁机器人不同状态下吸附力合理值的求解问题开展研究。首先分析了一种包含闭链约束的轮足复合型移动机构,基于运动等效原则将其拆成开链机构。利用牛顿-欧拉算法对分拆后的开链机构进行动力学建模。基于动力学模型,以运动失效的临界条件为约束函数,构建爬壁机器人在不同倾角壁面上的吸附力学模型,从而获得不同状态下吸附力的合理值。仿真和实验表明基于该模型获得的吸附力参数能够保证机器人的安全吸附。因此所构建的模型是合理的,可以为爬壁机器人在不同状态下合理控制吸附力大小提供理论依据。

  6. Low complexity lossless compression of underwater sound recordings.

    Science.gov (United States)

    Johnson, Mark; Partan, Jim; Hurst, Tom

    2013-03-01

    Autonomous listening devices are increasingly used to study vocal aquatic animals, and there is a constant need to record longer or with greater bandwidth, requiring efficient use of memory and battery power. Real-time compression of sound has the potential to extend recording durations and bandwidths at the expense of increased processing operations and therefore power consumption. Whereas lossy methods such as MP3 introduce undesirable artifacts, lossless compression algorithms (e.g., flac) guarantee exact data recovery. But these algorithms are relatively complex due to the wide variety of signals they are designed to compress. A simpler lossless algorithm is shown here to provide compression factors of three or more for underwater sound recordings over a range of noise environments. The compressor was evaluated using samples from drifting and animal-borne sound recorders with sampling rates of 16-240 kHz. It achieves >87% of the compression of more-complex methods but requires about 1/10 of the processing operations resulting in less than 1 mW power consumption at a sampling rate of 192 kHz on a low-power microprocessor. The potential to triple recording duration with a minor increase in power consumption and no loss in sound quality may be especially valuable for battery-limited tags and robotic vehicles.

  7. An underwater robo-leader for collective motion studies

    Science.gov (United States)

    Sanchez, Yair; Wilhelmus, Monica M.

    2016-11-01

    A wide range of aquatic species, from bacteria to large tuna, exhibits collective behavior. It has long been hypothesized that the formation of complex configurations brings an energetic advantage to the members of a group as well as protection against larger predators or harmful agents. Lately, however, laboratory experiments have suggested that both the physics and the behavioral aspects of collective motion yield more complexity than previously attributed. With the goal to understand the fluid mechanical implications behind collective motion in a laboratory setting, we have developed a new device to induce this behavior on demand. Following recent studies of lab-induced vertical migration of Artemia salina, we have designed and constructed a remotely controlled underwater robotic swimmer that acts as a leader for groups of phototactic organisms. Preliminary quantitative flow visualizations done during vertical migration of brine shrimp show that this new instrument does induce collective motion in the laboratory. With this setup, we can address the hydrodynamic effect of having different swarm configurations, a variable that so far has been challenging to study in a controllable and reproducible manner.

  8. Laws on Robots, Laws by Robots, Laws in Robots : Regulating Robot Behaviour by Design

    NARCIS (Netherlands)

    Leenes, R.E.; Lucivero, F.

    2015-01-01

    Speculation about robot morality is almost as old as the concept of a robot itself. Asimov’s three laws of robotics provide an early and well-discussed example of moral rules robots should observe. Despite the widespread influence of the three laws of robotics and their role in shaping visions of

  9. Laws on Robots, Laws by Robots, Laws in Robots : Regulating Robot Behaviour by Design

    NARCIS (Netherlands)

    Leenes, R.E.; Lucivero, F.

    2015-01-01

    Speculation about robot morality is almost as old as the concept of a robot itself. Asimov’s three laws of robotics provide an early and well-discussed example of moral rules robots should observe. Despite the widespread influence of the three laws of robotics and their role in shaping visions of fu

  10. Robotic Deposition of TiO2 Films on Flexible Substrates from Hybrid Inks: Investigation of Synthesis-Processing-Microstructure-Photocatalytic Relationships.

    Science.gov (United States)

    Torres Arango, Maria A; Valença de Andrade, Alana S; Cipollone, Domenic T; Grant, Lynnora O; Korakakis, Dimitris; Sierros, Konstantinos A

    2016-09-21

    TiO2 is an important material widely used in optoelectronic devices due to its semiconducting and photocatalytic properties, nontoxicity, and chemically inert nature. Some indicative applications include water purification systems and energy harvesting. The use of solution, water-based inks for the direct writing of TiO2 on flexible substrates is of paramount importance since it enables low-cost and low-energy intensive large-area manufacturing, compatible with roll-to-roll processing. In this work we study the effect of crystalline TiO2 and polymer addition on the rheological and direct writing properties of Ti-organic/TiO2 inks. We also report on the bridging crystallite formation from the Ti-organic precursor into the TiO2 crystalline phase, under ultraviolet (UV) exposure or mild heat treatments up to 150 °C. Such crystallite formation is found to be enhanced by polymers with strong polarity and pKα such as polyacrylic acid (PAA). X-ray diffraction (XRD) coupled with Raman and X-ray photoelectron (XPS) spectroscopy are used to investigate the crystalline-phase transformation dependence based on the initial TiO2 crystalline-phase concentration and polymer addition. Transmission electron microscopy imaging and selected area electron diffraction patterns confirm the crystalline nature of such bridging printed structures. The obtained inks are patterned on flexible substrates using nozzle-based robotic deposition, a lithography-free, additive manufacturing technique that allows the direct writing of material in specific, digitally predefined, substrate locations. Photocatalytic degradation of methylene blue solutions highlights the potential of the studied films for chemical degradation applications, from low-cost environmentally friendly materials systems.

  11. Robotic Surgery

    Science.gov (United States)

    Childress, Vincent W.

    2007-01-01

    The medical field has many uses for automated and remote-controlled technology. For example, if a tissue sample is only handled in the laboratory by a robotic handling system, then it will never come into contact with a human. Such a system not only helps to automate the medical testing process, but it also helps to reduce the chances of…

  12. Beyond Robotics

    Science.gov (United States)

    Tally, Beth; Laverdure, Nate

    2006-01-01

    Chantilly High School Academy Robotics Team Number 612 from Chantilly, Virginia, is an award-winning team of high school students actively involved with FIRST (For Inspiration and Recognition of Science and Technology), a multinational nonprofit organization that inspires students to transform culture--making science, math, engineering and…

  13. Vitruvian Robot

    DEFF Research Database (Denmark)

    Hasse, Cathrine

    2017-01-01

    . They are sexist, primitively normative and clearly ‘wax-doll machines’. So though Ava’s dimensions are perfect she, like the Vitruvian Man, remains a fiction. In real life, however, we may have to deal with an increasing solipsism stemming from people engaging with machines like sex robots. In this case...

  14. Robotic membranes

    DEFF Research Database (Denmark)

    Ramsgaard Thomsen, Mette

    2008-01-01

    , Vivisection and Strange Metabolisms, were developed at the Centre for Information Technology and Architecture (CITA) at the Royal Danish Academy of Fine Arts in Copenhagen as a means of engaging intangible digital data with tactile physical material. As robotic membranes, they are a dual examination...

  15. Ideas on a system design for end-user robots

    Science.gov (United States)

    Bonasso, R. P.; Slack, Marc G.

    1992-11-01

    Robots are being used successfully in factory automation; however, recently there has been some success in building robots which can operate in field environments, where the domain is less predictable. New perception and control techniques have been developed which allow a robot to accomplish its mission while dealing with natural changes in both land and underwater environments. Unfortunately, efforts in this area have resulted in many one-of-a-kind robots, limited to research laboratories or carefully delimited field task arenas. A user who would like to apply robotic technology to a particular field problem must basically start from scratch. The problem is that the robotic technology (i.e., the hardware and software) which might apply to the user's domain exists in a diverse array of formats and configurations. For end-user robots to become a reality, an effort to standardize some aspects of the robotic technology must be made, in much the same way that personal computer technology is becoming standardized. Presently, a person can buy a computer and then acquire hardware and software extensions which simply `plug in' and provide the user with the required utility without the user having to understand the inner workings of the pieces of the system. This technology even employs standardized interface specifications so the user is presented with a familiar interaction paradigm. This paper outlines some system requirements (hardware and software) and a preliminary design for end-user robots for field environments, drawing parallels to the trends in the personal computer market. The general conclusion is that the appropriate components as well as an integrating architecture are already available, making development of out-of-the- box, turnkey robots for a certain range of commonly required tasks a potential reality.

  16. Need and Role of Underwater Acoustic Sensor Networks

    Directory of Open Access Journals (Sweden)

    Tajinder Singh

    2013-07-01

    Full Text Available The field of underwater acoustic sensor networking is growing rapidly thanks to the key role it plays in many military and commercial applications. Among these are disaster prevention, tactical surveillance, offshore exploration, pollution monitoring and oceanographic data collection. Moreover, unmanned or autonomous underwater vehicles (UUVs, AUVs, equipped with sensors, will enable the exploration of natural undersea resources and gathering of scientific data in collaborative monitoring missions. Underwater acoustic networking is the enabling technology for these applications. The objective of this paper is to understand several fundamental key aspects of underwater acoustic communications. Different architectures for two-dimensional and three-dimensional underwater sensor networks are discussed, and the characteristics of the underwater channel are detailed. The main challenges for the development of efficient networking solutions posed by the underwater environment are detailed. This paper also presents a detailed explanation of the sensor networks used in tsunami detection. We then present an overview of the recent advances

  17. IVO develops a new repair technique for underwater sites. Viscous doughlike substance underwater cracks

    Energy Technology Data Exchange (ETDEWEB)

    Klingstedt, G.; Leisio, C. [ed.

    1998-07-01

    A viscous sealant is revolutionizing repair of the stone and concrete masonry of underwater dams, bridges and canals. There is now no need for expensive and time-consuming cofferdams, since a diver can extrude quick-setting mortar into underwater structures needing repair. This technique has worked well in recent years in various parts of Finland even in strongly flowing water. IVO experts are now starting to look more beyond the borders of Finland

  18. Human-like Compliance for Dexterous Robot Hands

    Science.gov (United States)

    Jau, Bruno M.

    1995-01-01

    This paper describes the Active Electromechanical Compliance (AEC) system that was developed for the Jau-JPL anthropomorphic robot. The AEC system imitates the functionality of the human muscle's secondary function, which is to control the joint's stiffness: AEC is implemented through servo controlling the joint drive train's stiffness. The control strategy, controlling compliant joints in teleoperation, is described. It enables automatic hybrid position and force control through utilizing sensory feedback from joint and compliance sensors. This compliant control strategy is adaptable for autonomous robot control as well. Active compliance enables dual arm manipulations, human-like soft grasping by the robot hand, and opens the way to many new robotics applications.

  19. Development of a Minimally Actuated Jumping-Rolling Robot

    Directory of Open Access Journals (Sweden)

    Thanhtam Ho

    2015-04-01

    Full Text Available This paper presents development of a hybrid mobile robot in order to take advantage of both rolling and jumping locomotion on the ground. According to the unique design of the mechanism, the robot is able to execute both jumping and rolling skilfully by using only one DC motor. Changing the centre of gravity enables rolling of the robot and storage of energy is utilized for jumping. Mechanism design and control logic are validated by computer simulation. Simulation results show that the robot can jump nearly 1.3 times its diameter and roll at the speed of 3.3 times its diameter per second.

  20. Development of a New Manta Robot Considering the Propulsive Resistance

    Directory of Open Access Journals (Sweden)

    Kota Mikuriya

    2017-03-01

    Full Text Available In recent years, biological research of an aquatic lifeis carried out actively. The sea is a dangerous environment forhumans, so that we cannot investigate an aquatic life for a longperiod of time. In addition, conventional underwater robots havea common mechanism for propulsion with screw propellers.Noises generated by screw propellers have a possibility of givinga bad effect on the biological behavior. On the other hand,biomimetic robots can investigate aquatic lives without affectingthem significantly. Our laboratory has developed a Manta robotthat has propulsion mechanisms with pectoral fins, mimickingthe pectoral fin of the manta ray. Conventional Manta robotshave a problem that its swimming speed is insufficient forinvestigating aquatic lives. In this paper, we develop anautonomous Manta robot that is excellent in the propulsionperformance by taking account of propulsion resistance causedby the body shape. Several experiments are conducted to showthe effectiveness of the proposed method, in the point of theswimming speed and propulsive efficiency