WorldWideScience

Sample records for hybrid transparent electrode

  1. Graphene-based transparent electrodes for hybrid solar cells

    Directory of Open Access Journals (Sweden)

    Pengfei eLi

    2014-11-01

    Full Text Available The graphene-based transparent and conductive films were demonstrated to be cost-effective electrodes working in organic-inorganic hybrid Schottky solar cells. Large area graphene films were produced by chemical vapor deposition (CVD on copper foils and transferred onto glass as transparent electrodes. The hybrid solar cell devices consist of solution processed poly (3, 4-ethlenedioxythiophene: poly (styrenesulfonate (PEDOT: PSS which is sandwiched between silicon wafer and graphene electrode. The solar cells based on graphene electrodes, especially those doped with HNO3, has comparable performance to the reference devices using commercial indium tin oxide (ITO. Our work suggests that graphene-based transparent electrode is a promising candidate to replace ITO.

  2. Electromechanical properties of indium–tin–oxide/poly(3,4-ethylenedioxythiophene): Poly(styrenesulfonate) hybrid electrodes for flexible transparent electrodes

    International Nuclear Information System (INIS)

    Jung, Sunghoon; Lim, Kyounga; Kang, Jae-Wook; Kim, Jong-Kuk; Oh, Se-In; Eun, Kyoungtae; Kim, Do-Geun; Choa, Sung-Hoon

    2014-01-01

    We investigated an indium–tin–oxide (ITO)/poly(3,4-ethylenedioxythiophene): poly(styrenesulfonate) (PEDOT:PSS) hybrid electrode as a potential flexible and transparent electrode. In particular, the mechanical integrity of an ITO/PEDOT:PSS hybrid electrode deposited onto a polyethylene terephthalate (PET) substrate was investigated via outer/inner bending, twisting, stretching, and adhesion tests. A PEDOT:PSS layer was inserted between ITO and PET substrate as a buffer layer to improve the flexibility and electrical properties. When a PEDOT:PSS layer was inserted, the sheet resistance of the 20 nm-thick ITO film decreased from 270 Ω/square to 57 Ω/square. Notably, the ITO/PEDOT:PSS hybrid electrode had a constant resistance change (ΔR/R 0 ) within an outer and inner bending radius of 3 mm. The bending fatigue test showed that the ITO/PEDOT:PSS hybrid electrode can withstand 10,000 bending cycles. Furthermore, the stretched ITO/PEDOT:PSS hybrid electrode showed a fairly constant resistance change up to 4%, which is more stable than the resistance change of the ITO electrode. The ITO/PEDOT:PSS electrode also shows good adhesion strength. The superior flexibility of the ITO/PEDOT:PSS hybrid electrode is attributed to the existence of a flexible PEDOT:PSS layer. This indicates that the hybridization of an ITO and PEDOT:PSS layer is a promising electrode scheme for next-generation flexible transparent electrodes. - Highlights: • We propose a hybrid electrode for flexible electronics. • Electrode made from In 2 O 3 :SnO 2 /poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) • PEDOT:PSS as a buffer layer increases flexibility and electrical conductivity. • Hybrid electrode has a superior flexibility. • Hybrid electrode can be a promising flexible transparent electrode scheme

  3. Polymer-metal hybrid transparent electrodes for flexible electronics

    Science.gov (United States)

    Kang, Hongkyu; Jung, Suhyun; Jeong, Soyeong; Kim, Geunjin; Lee, Kwanghee

    2015-03-01

    Despite nearly two decades of research, the absence of ideal flexible and transparent electrodes has been the largest obstacle in realizing flexible and printable electronics for future technologies. Here we report the fabrication of ‘polymer-metal hybrid electrodes’ with high-performance properties, including a bending radius 95% and a sheet resistance solar cells that exhibit a high power conversion efficiency of 10% and polymer light-emitting diodes that can outperform those based on transparent conducting oxides.

  4. Highly transparent, low-haze, hybrid cellulose nanopaper as electrodes for flexible electronics

    KAUST Repository

    Xu, Xuezhu

    2016-06-01

    Paper is an excellent candidate to replace plastics as a substrate for flexible electronics due to its low cost, renewability and flexibility. Cellulose nanopaper (CNP), a new type of paper made of nanosized cellulose fibers, is a promising substrate material for transparent and flexible electrodes due to its potentially high transparency and high mechanical strength. Although CNP substrates can achieve high transparency, they are still characterized by high diffuse transmittance and small direct transmittance, resulting in high optical haze of the substrates. In this study, we proposed a simple methodology for large-scale production of high-transparency, low-haze CNP comprising both long cellulose nanofibrils (CNFs) and short cellulose nanocrystals (CNCs). By varying the CNC/CNF ratio in the hybrid CNP, we could tailor its total transmittance, direct transmittance and diffuse transmittance. By increasing the CNC content, the optical haze of the hybrid CNP could be decreased and its transparency could be increased. The direct transmittance and optical haze of the CNP were 75.1% and 10.0%, respectively, greatly improved from the values of previously reported CNP (31.1% and 62.0%, respectively). Transparent, flexible electrodes were fabricated by coating the hybrid CNP with silver nanowires (AgNWs). The electrodes showed a low sheet resistance (minimum 1.2 Ω sq-1) and a high total transmittance (maximum of 82.5%). The electrodes were used to make a light emitting diode (LED) assembly to demonstrate their potential use in flexible displays. © 2016 The Royal Society of Chemistry.

  5. Transparent Electrodes for Efficient Optoelectronics

    KAUST Repository

    Morales-Masis, Monica

    2017-03-30

    With the development of new generations of optoelectronic devices that combine high performance and novel functionalities (e.g., flexibility/bendability, adaptability, semi or full transparency), several classes of transparent electrodes have been developed in recent years. These range from optimized transparent conductive oxides (TCOs), which are historically the most commonly used transparent electrodes, to new electrodes made from nano- and 2D materials (e.g., metal nanowire networks and graphene), and to hybrid electrodes that integrate TCOs or dielectrics with nanowires, metal grids, or ultrathin metal films. Here, the most relevant transparent electrodes developed to date are introduced, their fundamental properties are described, and their materials are classified according to specific application requirements in high efficiency solar cells and flexible organic light-emitting diodes (OLEDs). This information serves as a guideline for selecting and developing appropriate transparent electrodes according to intended application requirements and functionality.

  6. Transparent Electrodes for Efficient Optoelectronics

    KAUST Repository

    Morales-Masis, Monica; De Wolf, Stefaan; Woods-Robinson, Rachel; Ager, Joel W.; Ballif, Christophe

    2017-01-01

    With the development of new generations of optoelectronic devices that combine high performance and novel functionalities (e.g., flexibility/bendability, adaptability, semi or full transparency), several classes of transparent electrodes have been developed in recent years. These range from optimized transparent conductive oxides (TCOs), which are historically the most commonly used transparent electrodes, to new electrodes made from nano- and 2D materials (e.g., metal nanowire networks and graphene), and to hybrid electrodes that integrate TCOs or dielectrics with nanowires, metal grids, or ultrathin metal films. Here, the most relevant transparent electrodes developed to date are introduced, their fundamental properties are described, and their materials are classified according to specific application requirements in high efficiency solar cells and flexible organic light-emitting diodes (OLEDs). This information serves as a guideline for selecting and developing appropriate transparent electrodes according to intended application requirements and functionality.

  7. Al-doped ZnO/Ag grid hybrid transparent conductive electrodes fabricated using a low-temperature process

    Energy Technology Data Exchange (ETDEWEB)

    An, Ha-Rim; Oh, Sung-Tag [Department of Materials Science and Engineering, Seoul National University of Science and Technology, Seoul 139-743 (Korea, Republic of); Kim, Chang Yeoul [Future Convergence Ceramic Division, Korea Institute Ceramic Engineering and Technology (KICET), Seoul 233-5 (Korea, Republic of); Baek, Seong-Ho [Energy Research Division, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 711-873 (Korea, Republic of); Park, Il-Kyu, E-mail: ikpark@ynu.ac.kr [Department of Electronic Engineering, Yeungnam University, Gyeongbuk 712-749 (Korea, Republic of); Ahn, Hyo-Jin, E-mail: hjahn@seoultech.ac.kr [Department of Materials Science and Engineering, Seoul National University of Science and Technology, Seoul 139-743 (Korea, Republic of)

    2014-12-05

    Highlights: • Al-doped ZnO/Ag transparent conductive electrode is fabricated at low temperature. • Performance of the hybrid transparent conductive electrode affected by the structure. • The performance enhancement mechanism is suggested. - Abstract: Al-doped ZnO (AZO)/Ag grid hybrid transparent conductive electrode (TCE) structures were fabricated at a low temperature by using electrohydrodynamic jet printing for the Ag grids and atomic layer deposition for the AZO layers. The structural investigations showed that the AZO/Ag grid hybrid structures consisted of Ag grid lines formed by Ag particles and the AZO layer covering the inter-spacing between the Ag grid lines. The Ag particles comprising the Ag grid lines were also capped by thin AZO layers, and the coverage of the AZO layers was increased with increasing the thickness of the AZO layer. Using the optimum thickness of AZO layer of 70 nm, the hybrid TCE structure showed an electrical resistivity of 5.45 × 10{sup −5} Ω cm, an optical transmittance of 80.80%, and a figure of merit value of 1.41 × 10{sup −2} Ω{sup −1}. The performance enhancement was suggested based on the microstructural investigations on the AZO/Ag grid hybrid structures.

  8. Embedding of inkjet-printed Ag-grid/ITO hybrid transparent electrode ...

    Indian Academy of Sciences (India)

    2018-02-02

    Feb 2, 2018 ... Keywords. Solution process; inkjet; electrohydrodynamic printing; transparent electrode; flexible electrode. 1. Introduction. Transparent electrodes (TEs) are one of the most indispensable materials to fabricate rapidly emerging elec- tronic devices, including flexible displays, touch panels, photovoltaic cells ...

  9. Silver nanowire-graphene hybrid transparent conductive electrodes for highly efficient inverted organic solar cells

    Science.gov (United States)

    Ye, Neng; Yan, Jielin; Xie, Shuang; Kong, Yuhan; Liang, Tao; Chen, Hongzheng; Xu, Mingsheng

    2017-07-01

    Silver nanowires (AgNWs) and graphene are both promising candidates as a transparent conductive electrode (TCE) to replace expensive and fragile indium tin oxide (ITO) TCE. A synergistically optimized performance is expected when the advantages of AgNWs and graphene are combined. In this paper, the AgNW-graphene hybrid electrode is constructed by depositing a graphene layer on top of the network of AgNWs. Compared with the pristine AgNWs electrode, the AgNW-graphene TCE exhibits reduced sheet resistance, lower surface roughness, excellent long-term stability, and corrosion resistance in corrosive liquids. The graphene layer covering the AgNWs provides additional conduction pathways for electron transport and collection by the electrode. Benefiting from these advantages of the hybrid electrodes, we achieve a power conversion efficiency of 8.12% of inverted organic solar cells using PTB7:PC71BM as the active layer, which is compared to that of the solar cells based on standard ITO TCE but about 10% higher than that based on AgNWs TCE.

  10. Transparent capacitors with hybrid ZnO:Al and Ag nanowires as electrodes

    International Nuclear Information System (INIS)

    Zhang, Guozhen; Wu, Hao; Wang, Xiao; Wang, Ti; Liu, Chang

    2016-01-01

    Transparent conducting films with a composite structure of AlZnO–Ag nanowires (AgNWs) have been prepared by atomic layer deposition. The sheet resistance was reduced from 120 to 9 Ω when the AgNW networks were involved. Transparent capacitors with Al_2O_3–TiO_2–Al_2O_3 dielectrics were fabricated on the composite electrodes and demonstrated a capacitance density of 10.1 fF μm"−"2, which was significantly higher than that of capacitors with AlZnO electrodes (8.8 fF μm"−"1). The capacitance density remained almost unchanged in a broad frequency range from 3 kHz to 1 MHz. Moreover, a low leakage current density of 2.4 × 10"−"7 A cm"−"2 at 1 V was achieved. Transparent and flexible capacitors were also fabricated using the composite electrodes, and demonstrated an improved bendability. The transparent capacitors showed an average optical transmittance over 70% in the visible range, and thus open the door to practical applications in transparent integrated circuits. (paper)

  11. Cu mesh for flexible transparent conductive electrodes.

    Science.gov (United States)

    Kim, Won-Kyung; Lee, Seunghun; Hee Lee, Duck; Hee Park, In; Seong Bae, Jong; Woo Lee, Tae; Kim, Ji-Young; Hun Park, Ji; Chan Cho, Yong; Ryong Cho, Chae; Jeong, Se-Young

    2015-06-03

    Copper electrodes with a micromesh/nanomesh structure were fabricated on a polyimide substrate using UV lithography and wet etching to produce flexible transparent conducting electrodes (TCEs). Well-defined mesh electrodes were realized through the use of high-quality Cu thin films. The films were fabricated using radio-frequency (RF) sputtering with a single-crystal Cu target--a simple but innovative approach that overcame the low oxidation resistance of ordinary Cu. Hybrid Cu mesh electrodes were fabricated by adding a capping layer of either ZnO or Al-doped ZnO. The sheet resistance and the transmittance of the electrode with an Al-doped ZnO capping layer were 6.197 ohm/sq and 90.657%, respectively, and the figure of merit was 60.502 × 10(-3)/ohm, which remained relatively unchanged after thermal annealing at 200 °C and 1,000 cycles of bending. This fabrication technique enables the mass production of large-area flexible TCEs, and the stability and high performance of Cu mesh hybrid electrodes in harsh environments suggests they have strong potential for application in smart displays and solar cells.

  12. Highly transparent, low-haze, hybrid cellulose nanopaper as electrodes for flexible electronics

    Science.gov (United States)

    Xuezhu Xu; Jian Zhou; Long Jiang; Gilles Lubineau; Tienkhee Ng; Boon S. Ooi; Hsien-Yu Liao; Chao Shen; Long Chen; Junyong Zhu

    2016-01-01

    Paper is an excellent candidate to replace plastics as a substrate for flexible electronics due to its low cost, renewability and flexibility. Cellulose nanopaper (CNP), a new type of paper made of nanosized cellulose fibers, is a promising substrate material for transparent and flexible electrodes due to its potentially high transparency and high mechanical strength....

  13. Sheet resistance, transmittance, and chromatic property of CNTs coated with PEDOT:PSS films for transparent electrodes of touch screen panels

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Bu-Jong; Han, Sang-Hoon; Park, Jin-Seok

    2014-12-01

    This study demonstrates hybrid-type transparent electrodes based on carbon nanotubes (CNTs) that possess characteristics desirable for touch screen panels. This has been accomplished by depositing CNTs via spray-coating and then depositing thin conductive polymer (such as PEDOT:PSS) films on the CNTs via spin-coating. For all of the samples such as CNTs, PEDOT:PSS, and hybrid (i.e., PEDOT:PSS-coated CNTs), their surface morphologies, sheet resistances, visible transmittances, and chromatic properties are characterized as functions of their preparation conditions. In the PEDOT:PSS-coated CNTs, the PEDOT:PSS particles fill up the voids between tubes in CNTs, forming a conduction bridge for electron transfer and eventually decreasing the sheet resistance of the hybrid electrode. Also, the hybrid electrode reveals a superior color property compared with that of CNTs or the PEDOT:PSS single electrode due to the complementary color relation between CNTs and PEDOT:PSS. Experimental results show that the fabricated hybrid-type electrodes can simultaneously satisfy the requirements necessary for transparent electrodes of touch screen panels such as the sheet resistance requiring to be lower than 100 Ω/sq, visible transmittance higher than 80%, and yellowness approaching to zero. - Highlights: • Hybrid-type (PEDOT:PSS-coated CNTs) electrodes for touch panels are fabricated. • PEDOT:PSS films are coated via spin-coating on spray-deposited CNTs. • Hybrid electrodes are fabricated by varying the thickness of CNTs and PEDOT:PSS. • The resistance, transmittance, and color properties have been analyzed. • Hybrid electrodes satisfy electrical and optical properties for touch panels.

  14. Sheet resistance, transmittance, and chromatic property of CNTs coated with PEDOT:PSS films for transparent electrodes of touch screen panels

    International Nuclear Information System (INIS)

    Kim, Bu-Jong; Han, Sang-Hoon; Park, Jin-Seok

    2014-01-01

    This study demonstrates hybrid-type transparent electrodes based on carbon nanotubes (CNTs) that possess characteristics desirable for touch screen panels. This has been accomplished by depositing CNTs via spray-coating and then depositing thin conductive polymer (such as PEDOT:PSS) films on the CNTs via spin-coating. For all of the samples such as CNTs, PEDOT:PSS, and hybrid (i.e., PEDOT:PSS-coated CNTs), their surface morphologies, sheet resistances, visible transmittances, and chromatic properties are characterized as functions of their preparation conditions. In the PEDOT:PSS-coated CNTs, the PEDOT:PSS particles fill up the voids between tubes in CNTs, forming a conduction bridge for electron transfer and eventually decreasing the sheet resistance of the hybrid electrode. Also, the hybrid electrode reveals a superior color property compared with that of CNTs or the PEDOT:PSS single electrode due to the complementary color relation between CNTs and PEDOT:PSS. Experimental results show that the fabricated hybrid-type electrodes can simultaneously satisfy the requirements necessary for transparent electrodes of touch screen panels such as the sheet resistance requiring to be lower than 100 Ω/sq, visible transmittance higher than 80%, and yellowness approaching to zero. - Highlights: • Hybrid-type (PEDOT:PSS-coated CNTs) electrodes for touch panels are fabricated. • PEDOT:PSS films are coated via spin-coating on spray-deposited CNTs. • Hybrid electrodes are fabricated by varying the thickness of CNTs and PEDOT:PSS. • The resistance, transmittance, and color properties have been analyzed. • Hybrid electrodes satisfy electrical and optical properties for touch panels

  15. Transparent platinum counter electrode for efficient semi-transparent dye-sensitized solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Iefanova, Anastasiia; Nepal, Jeevan; Poudel, Prashant; Davoux, Daren; Gautam, Umesh [Electrical Engineering and Computer Science Department, South Dakota State University, Brookings, SD 57006 (United States); Mallam, Venkataiah [Chemistry and Biochemistry Department, South Dakota State University, Brookings, SD 57006 (United States); Qiao, Qiquan [Electrical Engineering and Computer Science Department, South Dakota State University, Brookings, SD 57006 (United States); Logue, Brian [Chemistry and Biochemistry Department, South Dakota State University, Brookings, SD 57006 (United States); Baroughi, Mahdi Farrokh, E-mail: m.farrokhbaroughi@sdstate.edu [Electrical Engineering and Computer Science Department, South Dakota State University, Brookings, SD 57006 (United States)

    2014-07-01

    A method for fabrication of highly transparent platinum counter electrodes (CEs) has been developed based on spray coating of Pt nanoparticles (NPs) on hot substrates. This method leads to 86% reduction in Pt consumption reducing the Pt cost per peak watt of counter electrode from $0.79/Wp down to $0.11/Wp compared to the conventional Pt counter electrodes made by sputter deposition. The simplicity and low cost of this method provide a basis for an up-scalable fabrication process. The Pt NP layer is over 88% transparent, leading to overall transparency of 80% when incorporated with indium tin oxide/glass substrates for functional counter electrodes. This counter electrode exhibits a large surface area and high catalytic activity, comparable to that of the conventional opaque CEs. Semi-transparent dye-sensitized solar cells fabricated based on this counter electrode showed 6.17% power conversion efficiency. - Highlights: • Counter electrode (CE) prepared by spraying nanoparticle (NP) Pt on hot substrate. • Low cost and scalable fabrication process of CE. • The spray deposited CE uses 10 times less Pt compared to the sputtering method. • The CE is 80% transparent and exhibits a large surface and high catalytic activity. • A semitransparent dye-sensitized solar cell with Pt NP CE was 6.17% efficient.

  16. Technology ready use of single layer graphene as a transparent electrode for hybrid photovoltaic devices

    OpenAIRE

    Wang, Zhibing; Puls, Conor P.; Staley, Neal E.; Zhang, Yu; Todd, Aaron; Xu, Jian; Howsare, Casey A.; Hollander, Matthew J.; Robinson, Joshua A.; Liu, Ying

    2011-01-01

    Graphene has been used recently as a replacement for indium tin oxide (ITO) for the transparent electrode of an organic photovoltaic device. Due to its limited supply, ITO is considered as a limiting factor for the commercialization of organic solar cells. We explored the use of large-area graphene grown on copper by chemical vapor deposition (CVD) and then transferred to a glass substrate as an alternative transparent electrode. The transferred film was shown by scanning Raman spectroscopy m...

  17. Graphene Transparent Conductive Electrodes for Next- Generation Microshutter Arrays

    Science.gov (United States)

    Li, Mary; Sultana, Mahmooda; Hess, Larry

    2012-01-01

    Graphene is a single atomic layer of graphite. It is optically transparent and has high electron mobility, and thus has great potential to make transparent conductive electrodes. This invention contributes towards the development of graphene transparent conductive electrodes for next-generation microshutter arrays. The original design for the electrodes of the next generation of microshutters uses indium-tin-oxide (ITO) as the electrode material. ITO is widely used in NASA flight missions. The optical transparency of ITO is limited, and the material is brittle. Also, ITO has been getting more expensive in recent years. The objective of the invention is to develop a graphene transparent conductive electrode that will replace ITO. An exfoliation procedure was developed to make graphene out of graphite crystals. In addition, large areas of single-layer graphene were produced using low-pressure chemical vapor deposition (LPCVD) with high optical transparency. A special graphene transport procedure was developed for transferring graphene from copper substrates to arbitrary substrates. The concept is to grow large-size graphene sheets using the LPCVD system through chemical reaction, transfer the graphene film to a substrate, dope graphene to reduce the sheet resistance, and pattern the film to the dimension of the electrodes in the microshutter array. Graphene transparent conductive electrodes are expected to have a transparency of 97.7%. This covers the electromagnetic spectrum from UV to IR. In comparison, ITO electrodes currently used in microshutter arrays have 85% transparency in mid-IR, and suffer from dramatic transparency drop at a wavelength of near-IR or shorter. Thus, graphene also has potential application as transparent conductive electrodes for Schottky photodiodes in the UV region.

  18. Transparent Electrodes: A Review of the Use of Carbon-Based Nanomaterials

    Directory of Open Access Journals (Sweden)

    Edgar J. López-Naranjo

    2016-01-01

    Full Text Available Transparent conducting electrodes (TCE are extensively applied in a great range of optoelectronic and photovoltaic equipment (e.g., solar cells, touch panels, and flexible devices. Carbon-based nanomaterials are considered as suitable replacements to substitute traditional materials to manufacture TCE due to their remarkable characteristics, for example, high optical transmittance and outstanding electrical properties. In comparison with traditional indium tin oxide electrodes, carbon-based electrodes show good mechanical properties, chemical stability, and low cost. Nevertheless, major issues related to the development of good quality manufacture methods to produce carbon-based nanomaterials have to be overcome to meet massive market requirements. Hence, the development of alternative TCE materials as well as appropriate large production techniques that meet the requirements of a proper sheet resistance along with a high optical transparency is a priority. Therefore, in this work, we summarize and discuss novel production and synthesis methods, chemical treatments, and hybrid materials developed to satisfy the worldwide request for carbon-based nanomaterials.

  19. Flexible transparent electrode

    Science.gov (United States)

    Demiryont, Hulya; Shannon, Kenneth C., III; Moorehead, David; Bratcher, Matthew

    2011-06-01

    This paper presents the properties of the EclipseTECTM transparent conductor. EclipseTECTM is a room temperature deposited nanostructured thin film coating system comprised of metal-oxide semiconductor elements. The system possesses metal-like conductivity and glass-like transparency in the visible region. These highly conductive TEC films exhibit high shielding efficiency (35dB at 1 to 100GHz). EclipseTECTM can be deposited on rigid or flexible substrates. For example, EclipseTECTM deposited on polyethylene terephthalate (PET) is extremely flexible that can be rolled around a 9mm diameter cylinder with little or no reduction in electrical conductivity and that can assume pre-extension states after an applied stress is relieved. The TEC is colorless and has been tailored to have high visible transmittance which matches the eye sensitivity curve and allows the viewing of true background colors through the coating. EclipseTECTM is flexible, durable and can be tailored at the interface for applications such as electron- or hole-injecting OLED electrodes as well as electrodes in flexible displays. Tunable work function and optical design flexibility also make EclipseTECTM well-suited as a candidate for grid electrode replacement in next-generation photovoltaic cells.

  20. AZO-Ag-AZO transparent electrode for amorphous silicon solar cells

    International Nuclear Information System (INIS)

    Theuring, Martin; Vehse, Martin; Maydell, Karsten von; Agert, Carsten

    2014-01-01

    Metal-based transparent electrodes can be fabricated at low temperatures, which is crucial for various substrate materials and solar cells. In this work, an oxide-metal-oxide (OMO) transparent electrode based on aluminum zinc oxide (AZO) and silver is compared to AZO layers, fabricated at different temperatures and indium tin oxides. With the OMO structure, a sheet resistance of 7.1/square and a transparency above 80% for almost the entire visible spectrum were achieved. The possible application of such electrodes on a textured solar cell was demonstrated on the example of a rough ZnO substrate. An OMO structure is benchmarked in a n-i-p amorphous silicon solar cell against an AZO front contact fabricated at 200 °C. In the experiment, the OMO electrode shows a superior performance with an efficiency gain of 30%. - Highlights: • Multilayer transparent electrode based on aluminum zinc oxide (AZO) and Ag • Comparison of AZO-Ag-AZO transparent electrode to AZO and indium tin oxide • Performance of AZO-Ag-AZO transparent electrodes on textured surfaces • Comparison of amorphous silicon solar cells with different transparent electrodes

  1. Printed optically transparent graphene cellulose electrodes

    Science.gov (United States)

    Sinar, Dogan; Knopf, George K.; Nikumb, Suwas; Andrushchenko, Anatoly

    2016-02-01

    Optically transparent electrodes are a key component in variety of products including bioelectronics, touch screens, flexible displays, low emissivity windows, and photovoltaic cells. Although highly conductive indium tin oxide (ITO) films are often used in these electrode applications, the raw material is very expensive and the electrodes often fracture when mechanically stressed. An alternative low-cost material for inkjet printing transparent electrodes on glass and flexible polymer substrates is described in this paper. The water based ink is created by using a hydrophilic cellulose derivative, carboxymethyl cellulose (CMC), to help suspend the naturally hydrophobic graphene (G) sheets in a solvent composed of 70% DI water and 30% 2-butoxyethanol. The CMC chain has hydrophobic and hydrophilic functional sites which allow adsorption on G sheets and, therefore, permit the graphene to be stabilized in water by electrostatic and steric forces. Once deposited on the functionalized substrate the electrical conductivity of the printed films can be "tuned" by decomposing the cellulose stabilizer using thermal reduction. The entire electrode can be thermally reduced in an oven or portions of the electrode thermally modified using a laser annealing process. The thermal process can reduce the sheet resistance of G-CMC films to < 100 Ω/sq. Experimental studies show that the optical transmittance and sheet resistance of the G-CMC conductive electrode is a dependent on the film thickness (ie. superimposed printed layers). The printed electrodes have also been doped with AuCl3 to increase electrical conductivity without significantly increasing film thickness and, thereby, maintain high optical transparency.

  2. Ultrasmooth, extremely deformable and shape recoverable Ag nanowire embedded transparent electrode.

    Science.gov (United States)

    Nam, Sanggil; Song, Myungkwan; Kim, Dong-Ho; Cho, Byungjin; Lee, Hye Moon; Kwon, Jung-Dae; Park, Sung-Gyu; Nam, Kee-Seok; Jeong, Yongsoo; Kwon, Se-Hun; Park, Yun Chang; Jin, Sung-Ho; Kang, Jae-Wook; Jo, Sungjin; Kim, Chang Su

    2014-04-25

    Transparent electrodes have been widely used in electronic devices such as solar cells, displays, and touch screens. Highly flexible transparent electrodes are especially desired for the development of next generation flexible electronic devices. Although indium tin oxide (ITO) is the most commonly used material for the fabrication of transparent electrodes, its brittleness and growing cost limit its utility for flexible electronic devices. Therefore, the need for new transparent conductive materials with superior mechanical properties is clear and urgent. Ag nanowire (AgNW) has been attracting increasing attention because of its effective combination of electrical and optical properties. However, it still suffers from several drawbacks, including large surface roughness, instability against oxidation and moisture, and poor adhesion to substrates. These issues need to be addressed before wide spread use of metallic NW as transparent electrodes can be realized. In this study, we demonstrated the fabrication of a flexible transparent electrode with superior mechanical, electrical and optical properties by embedding a AgNW film into a transparent polymer matrix. This technique can produce electrodes with an ultrasmooth and extremely deformable transparent electrode that have sheet resistance and transmittance comparable to those of an ITO electrode.

  3. High-Efficiency Graphene Photo Sensor Using a Transparent Electrode

    Institute of Scientific and Technical Information of China (English)

    LIU Tao; HUANG Zheng

    2011-01-01

    We report the first implementation of transparent electrodes in bottom-gate graphene transistors used for photo detection.Compared to conventional nontransparent electrodes,the transparent electrodes allow photons to transmit through to the graphene beneath,providing an enlarged absorption area and thereby giving rise to an enhancement of photocurrent generation.The devices are fabricated with an asymmetric metallization scheme and the experimental results show that the maximum photocurrent density using the transparent electrodes (ITO and Pd/ITO) is over two times higher than that using the nontransparent electrodes (Ti and Pd),indicating a significant enhancement in the performance of graphene photo sensors.Graphene,a single-atomic-layer of carbon atoms with a zero-gap band structure has received great attention recently.[1-4] One promising application of graphene is in high-speed photodetection,owing to its high Fermi velocity (~1/300 of the speed of light),high electrical mobility (200000 cm2/Vs for both electrons and holes) and zero-gap induced wide absorption spectrum (in the visible-to-infrared range).[5,6]%We report the first implementation of transparent electrodes in bottom-gate graphene transistors used for photo detection. Compared to conventional nontransparent electrodes, the transparent electrodes allow photons to transmit through to the graphene beneath, providing an enlarged absorption area and thereby giving rise to an enhancement of photocurrent generation. The devices are fabricated with an asymmetric metallization scheme and the experimental results show that the maximum photocurrent density using the transparent electrodes (ITO and Pd/ITO) is over two times higher than that using the nontransparent electrodes (Ti and Pd), indicating a significant enhancement in the performance of graphene photo sensors.

  4. Wrinkled Graphene–AgNWs Hybrid Electrodes for Smart Window

    Directory of Open Access Journals (Sweden)

    Ki-Woo Jun

    2017-02-01

    Full Text Available Over the past few years, there has been an increasing demand for stretchable electrodes for flexible and soft electronic devices. An electrode in such devices requires special functionalities to be twisted, bent, stretched, and deformed into variable shapes and also will need to have the capacity to be restored to the original state. In this study, we report uni- or bi-axially wrinkled graphene–silver nanowire hybrid electrodes comprised of chemical vapor deposition (CVD-grown graphene and silver nanowires. A CVD-grown graphene on a Cu-foil was transferred onto a biaxially pre-strained elastomer substrate and silver nanowires were sprayed on the transferred graphene surface. The pre-strained film was relaxed uni-(or bi-axially to produce a wrinkled structure. The bi-axially wrinkled graphene and silver nanowires hybrid electrodes were very suitable for high actuating performance of electro-active dielectric elastomers compared with the wrinkle-free case. Present results show that the optical transparency of the highly stretchable electrode can be successfully tuned by modulating input voltages.

  5. Effect of annealing over optoelectronic properties of graphene based transparent electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Yadav, Shriniwas, E-mail: sniwas89@gmail.com; Kaur, Inderpreet, E-mail: inderpreety@yahoo.co.in [Academy of Scientific and Innovative Research- Central Scientific Instruments Organisation (AcSIR-CSIO), Sector-30C, Chandigarh (India); Council of Scientific and Industrial Research- Central Scientific Instruments Organisation (CSIR-CSIO), Sector-30C, Chandigarh (India)

    2016-04-13

    Graphene, an atom–thick two dimensional graphitic material have led various fundamental breakthroughs in the field of science and technology. Due to their exceptional optical, physical and electrical properties, graphene based transparent electrodes have shown several applications in organic light emitting diodes, solar cells and thin film transistors. Here, we are presenting effect of annealing over optoelectronic properties of graphene based transparent electrodes. Graphene based transparent electrodes have been prepared by wet chemical approach over glass substrates. After fabrication, these electrodes tested for optical transmittance in visible region. Sheet resistance was measured using four probe method. Effect of thermal annealing at 200 °C was studied over optical and electrical performance of these electrodes. Optoelectronic performance was judged from ratio of direct current conductivity to optical conductivity (σ{sub dc}/σ{sub opt}) as a figure of merit for transparent conductors. The fabricated electrodes display good optical and electrical properties. Such electrodes can be alternatives for doped metal oxide based transparent electrodes.

  6. Effect of annealing over optoelectronic properties of graphene based transparent electrodes

    Science.gov (United States)

    Yadav, Shriniwas; Kaur, Inderpreet

    2016-04-01

    Graphene, an atom-thick two dimensional graphitic material have led various fundamental breakthroughs in the field of science and technology. Due to their exceptional optical, physical and electrical properties, graphene based transparent electrodes have shown several applications in organic light emitting diodes, solar cells and thin film transistors. Here, we are presenting effect of annealing over optoelectronic properties of graphene based transparent electrodes. Graphene based transparent electrodes have been prepared by wet chemical approach over glass substrates. After fabrication, these electrodes tested for optical transmittance in visible region. Sheet resistance was measured using four probe method. Effect of thermal annealing at 200 °C was studied over optical and electrical performance of these electrodes. Optoelectronic performance was judged from ratio of direct current conductivity to optical conductivity (σdc/σopt) as a figure of merit for transparent conductors. The fabricated electrodes display good optical and electrical properties. Such electrodes can be alternatives for doped metal oxide based transparent electrodes.

  7. Laser Processed Silver Nanowire Network Transparent Electrodes for Novel Electronic Devices

    Science.gov (United States)

    Spechler, Joshua Allen

    Silver nanowire network transparent conducting layers are poised to make headway into a space previously dominated by transparent conducting oxides due to the promise of a flexible, scaleable, lab-atmosphere processable alternative. However, there are many challenges standing in the way between research scale use and consumer technology scale adaptation of this technology. In this thesis we will explore many, and overcome a few of these challenges. We will address the poor conductivity at the narrow nanowire-nanowire junction points in the network by developing a laser based process to weld nanowires together on a microscopic scale. We address the need for a comparative metric for transparent conductors in general, by taking a device level rather than a component level view of these layers. We also address the mechanical, physical, and thermal limitations to the silver nanowire networks by making composites from materials including a colorless polyimide and titania sol-gel. Additionally, we verify our findings by integrating these processes into devices. Studying a hybrid organic/inorganic heterojunction photovoltaic device we show the benefits of a laser processed electrode. Green phosphorescent organic light emitting diodes fabricated on a solution phase processed silver nanowire based electrode show favorable device metrics compared to a conductive oxide electrode based control. The work in this thesis is intended to push the adoption of silver nanowire networks to further allow new device architectures, and thereby new device applications.

  8. Silver nanowire/polyaniline composite transparent electrode with improved surface properties

    International Nuclear Information System (INIS)

    Kumar, A.B.V. Kiran; Jiang, Jianwei; Bae, Chang Wan; Seo, Dong Min; Piao, Longhai; Kim, Sang-Ho

    2014-01-01

    Highlights: • AgNWs/PANI transparent electrode was prepared by layer-by-layer coating method. • The surface roughness of the electrode reached to 6.5 nm (root mean square). • The electrode had reasonable sheet resistance (25 Ω/□) and transmittance (83.5%). - Abstract: Silver nanowires (AgNWs) are as potential candidates to replace indium tin oxide (ITO) in transparent electrodes because of their preferred conducting and optical properties. However, their rough surface properties are not favorable for the fabrication of optoelectronic devices, such as displays and thin-film solar cells. In the present investigation, AgNWs/polyaniline composite transparent electrodes with better surface properties were successfully prepared. AgNWs were incorporated into polyaniline:polystyrene sulfonate (PANI:PSS) by layer-by-layer coating and mechanical pressing. PANI:PSS decreased the surface roughness of the AgNWs electrode by filling the gap of the random AgNWs network. The transparent composite electrode had decreased surface roughness (root mean square 6.5 nm) with reasonable sheet resistance (25 Ω/□) and transmittance (83.5%)

  9. Transparent ambipolar organic thin film transistors based on multilayer transparent source-drain electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Nan; Hu, Yongsheng, E-mail: huyongsheng@ciomp.ac.cn, E-mail: liuxy@ciomp.ac.cn; Lin, Jie; Li, Yantao; Liu, Xingyuan, E-mail: huyongsheng@ciomp.ac.cn, E-mail: liuxy@ciomp.ac.cn [State Key Laboratory of Luminescence and Applications, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033 (China)

    2016-08-08

    A fabrication method for transparent ambipolar organic thin film transistors with transparent Sb{sub 2}O{sub 3}/Ag/Sb{sub 2}O{sub 3} (SAS) source and drain electrodes has been developed. A pentacene/N,N′-ditridecylperylene-3,4,9,10-tetracarboxylic di-imide (PTCDI-C13) bilayer heterojunction is used as the active semiconductor. The electrodes are deposited by room temperature electron beam evaporation. The devices are fabricated without damaging the active layers. The SAS electrodes have high transmittance (82.5%) and low sheet resistance (8 Ω/sq). High performance devices with hole and electron mobilities of 0.3 cm{sup 2}/V s and 0.027 cm{sup 2}/V s, respectively, and average visible range transmittance of 72% were obtained. These transistors have potential for transparent logic integrated circuit applications.

  10. A transparent electrode based on a metal nanotrough network.

    Science.gov (United States)

    Wu, Hui; Kong, Desheng; Ruan, Zhichao; Hsu, Po-Chun; Wang, Shuang; Yu, Zongfu; Carney, Thomas J; Hu, Liangbing; Fan, Shanhui; Cui, Yi

    2013-06-01

    Transparent conducting electrodes are essential components for numerous flexible optoelectronic devices, including touch screens and interactive electronics. Thin films of indium tin oxide-the prototypical transparent electrode material-demonstrate excellent electronic performances, but film brittleness, low infrared transmittance and low abundance limit suitability for certain industrial applications. Alternatives to indium tin oxide have recently been reported and include conducting polymers, carbon nanotubes and graphene. However, although flexibility is greatly improved, the optoelectronic performance of these carbon-based materials is limited by low conductivity. Other examples include metal nanowire-based electrodes, which can achieve sheet resistances of less than 10Ω □(-1) at 90% transmission because of the high conductivity of the metals. To achieve these performances, however, metal nanowires must be defect-free, have conductivities close to their values in bulk, be as long as possible to minimize the number of wire-to-wire junctions, and exhibit small junction resistance. Here, we present a facile fabrication process that allows us to satisfy all these requirements and fabricate a new kind of transparent conducting electrode that exhibits both superior optoelectronic performances (sheet resistance of ~2Ω □(-1) at 90% transmission) and remarkable mechanical flexibility under both stretching and bending stresses. The electrode is composed of a free-standing metallic nanotrough network and is produced with a process involving electrospinning and metal deposition. We demonstrate the practical suitability of our transparent conducting electrode by fabricating a flexible touch-screen device and a transparent conducting tape.

  11. Towards Flexible Transparent Electrodes Based on Carbon and Metallic Materials

    Directory of Open Access Journals (Sweden)

    Minghui Luo

    2017-01-01

    Full Text Available Flexible transparent electrodes (FTEs with high stability and scalability are in high demand for the extremely widespread applications in flexible optoelectronic devices. Traditionally, thin films of indium thin oxide (ITO served the role of FTEs, but film brittleness and scarcity of materials limit its further application. This review provides a summary of recent advances in emerging transparent electrodes and related flexible devices (e.g., touch panels, organic light-emitting diodes, sensors, supercapacitors, and solar cells. Mainly focusing on the FTEs based on carbon nanomaterials (e.g., carbon nanotubes and graphene and metal materials (e.g., metal grid and metal nanowires, we discuss the fabrication techniques, the performance improvement, and the representative applications of these highly transparent and flexible electrodes. Finally, the challenges and prospects of flexible transparent electrodes will be summarized.

  12. Modified silver nanowire transparent electrodes with exceptional stability against oxidation

    International Nuclear Information System (INIS)

    Idier, J; Neri, W; Ly, I; Poulin, P; Backov, R; Labrugère, C

    2016-01-01

    We report an easy method to prepare thin, flexible and transparent electrodes that show enhanced inertness toward oxidation using modified silver nanowires (Ag NWs). Stabilization is achieved through the adsorption of triphenylphosphine (PPh 3 ) onto the Ag NW hybrid dispersions prior to their 2D organization as transparent electrodes on polyethylene terephtalate (PET) films. After 110 days in air (20 °C) under atmospheric conditions, the transmittance of the PET/Ag NW/PPh 3 based films is nearly unchanged, while the transmittance of the PET/Ag NW-based films decreases by about 5%. The sheet resistance increases for both materials as time elapses, but the rate of increase is more than four times slower for films stabilized by PPh 3 . The improved transmittance and conductivity results in a significantly enhanced stability for the figure of merit σ dc /σ op . This phenomenon is highlighted in highly oxidative nitric acid vapor. The tested stabilized films in such conditions exhibit a decrease to σ dc /σ op of only 38% after 75 min, whereas conventional materials exhibit a relative loss of 71%. In addition, by contrast to other classes of stabilizers, such as polymer or graphene-based encapsulants, PPh 3 does not alter the transparency or conductivity of the modified films. While the present films are made by membrane filtration, the stabilization method could be implemented directly in other liquid processes, including industrially scalable ones. (paper)

  13. Metal nanogrids, nanowires, and nanofibers for transparent electrodes

    KAUST Repository

    Hu, Liangbing; Wu, Hui; Cui, Yi

    2011-01-01

    Metals possess the highest conductivity among all room-temperature materials; however, ultrathin metal films demonstrate decent optical transparency but poor sheet conductance due to electron scattering from the surface and grain boundaries. This article discusses engineered metal nanostructures in the form of nanogrids, nanowires, or continuous nanofibers as efficient transparent and conductive electrodes. Metal nanogrids are discussed, as they represent an excellent platform for understanding the fundamental science. Progress toward low-cost, nano-ink-based printed silver nanowire electrodes, including silver nanowire synthesis, film fabrication, wire-wire junction resistance, optoelectronic properties, and stability, are also discussed. Another important factor for low-cost application is to use earth-abundant materials. Copper-based nanowires and nanofibers are discussed in this context. Examples of device integrations of these materials are also given. Such metal nanostructure-based transparent electrodes are particularly attractive for solar cell applications. © 2011 Materials Research Society.

  14. Metal nanogrids, nanowires, and nanofibers for transparent electrodes

    KAUST Repository

    Hu, Liangbing

    2011-10-01

    Metals possess the highest conductivity among all room-temperature materials; however, ultrathin metal films demonstrate decent optical transparency but poor sheet conductance due to electron scattering from the surface and grain boundaries. This article discusses engineered metal nanostructures in the form of nanogrids, nanowires, or continuous nanofibers as efficient transparent and conductive electrodes. Metal nanogrids are discussed, as they represent an excellent platform for understanding the fundamental science. Progress toward low-cost, nano-ink-based printed silver nanowire electrodes, including silver nanowire synthesis, film fabrication, wire-wire junction resistance, optoelectronic properties, and stability, are also discussed. Another important factor for low-cost application is to use earth-abundant materials. Copper-based nanowires and nanofibers are discussed in this context. Examples of device integrations of these materials are also given. Such metal nanostructure-based transparent electrodes are particularly attractive for solar cell applications. © 2011 Materials Research Society.

  15. Highly Conductive Transparent and Flexible Electrodes Including Double-Stacked Thin Metal Films for Transparent Flexible Electronics.

    Science.gov (United States)

    Han, Jun Hee; Kim, Do-Hong; Jeong, Eun Gyo; Lee, Tae-Woo; Lee, Myung Keun; Park, Jeong Woo; Lee, Hoseung; Choi, Kyung Cheol

    2017-05-17

    To keep pace with the era of transparent and deformable electronics, electrode functions should be improved. In this paper, an innovative structure is suggested to overcome the trade-off between optical and electrical properties that commonly arises with transparent electrodes. The structure of double-stacked metal films showed high conductivity (electronics are expected.

  16. Transparent electrodes in the terahertz regime – a new approach

    DEFF Research Database (Denmark)

    Malureanu, Radu; Song, Z.; Zalkovskij, Maksim

    We suggest a new possibility for obtaining a transparent metallic film, thus allowing for completely transparent electrodes. By placing a complementary composite layer on top of the electrode, we can cancel the back-scattering of the latter thus obtaining a perfectly transparent structure. For ea...... of fabrication, we performed the first experiments in the THz regime, but the concept is applicable to the entire electromagnetic waves spectrum. We show that the experiments and theory match each other perfectly....

  17. A transparent, solvent-free laminated top electrode for perovskite solar cells

    OpenAIRE

    Makha, Mohammed; Fernandes, Silvia Let?cia; Jenatsch, Sandra; Offermans, Ton; Schleuniger, J?rg; Tisserant, Jean-Nicolas; V?ron, Anna C.; Hany, Roland

    2016-01-01

    Abstract A simple lamination process of the top electrode for perovskite solar cells is demonstrated. The laminate electrode consists of a transparent and conductive plastic/metal mesh substrate, coated with an adhesive mixture of poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate), PEDOT:PSS, and sorbitol. The laminate electrode showed a high degree of transparency of 85%. Best cell performance was achieved for laminate electrodes prepared with a sorbitol concentration of ~30 wt% per mil...

  18. Optically Transparent Thin-Film Electrode Chip for Spectroelectrochemical Sensing

    Energy Technology Data Exchange (ETDEWEB)

    Branch, Shirmir D.; Lines, Amanda M.; Lynch, John A.; Bello, Job M.; Heineman, William R.; Bryan, Samuel A.

    2017-07-03

    The electrochemical and spectroelectrochemical applications of an optically transparent thin film electrode chip are investigated. The working electrode is composed of indium tin oxide (ITO); the counter and quasi-reference electrodes are composed of platinum. The stability of the platinum quasi-reference electrode is modified by coating it with a planar, solid state Ag/AgCl layer. The Ag/AgCl reference is characterized with scanning electron microscopy and energy-dispersive X-ray spectroscopy. Open circuit potential measurements indicate that the potential of the planar Ag/AgCl electrode varies a maximum of 20 mV over four days. Cyclic voltammetry measurements show that the electrode chip is comparable to a standard electrochemical cell. Randles-Sevcik analysis of 10 mM K3[Fe(CN)6] in 0.1 M KCl using the electrode chip shows a diffusion coefficient of 1.59 × 10-6 cm2/s, in comparison to the standard electrochemical cell value of 2.38 × 10-6 cm2/s. By using the electrode chip in an optically transparent thin layer electrode (OTTLE), the spectroelectrochemical modulation of [Ru(bpy)3]2+ florescence was demonstrated, achieving a detection limit of 36 nM.

  19. Atomic-Layer-Deposited Transparent Electrodes for Silicon Heterojunction Solar Cells

    International Nuclear Information System (INIS)

    Demaurex, Benedicte; Seif, Johannes P.; Smit, Sjoerd; Macco, Bart; Kessels, W. M.; Geissbuhler, Jonas; De Wolf, Stefaan; Ballif, Christophe

    2014-01-01

    We examine damage-free transparent-electrode deposition to fabricate high-efficiency amorphous silicon/crystalline silicon heterojunction solar cells. Such solar cells usually feature sputtered transparent electrodes, the deposition of which may damage the layers underneath. Using atomic layer deposition, we insert thin protective films between the amorphous silicon layers and sputtered contacts and investigate their effect on device operation. We find that a 20-nm-thick protective layer suffices to preserve, unchanged, the amorphous silicon layers beneath. Insertion of such protective atomic-layer-deposited layers yields slightly higher internal voltages at low carrier injection levels. However, we identify the presence of a silicon oxide layer, formed during processing, between the amorphous silicon and the atomic-layer-deposited transparent electrode that acts as a barrier, impeding hole and electron collection

  20. Electrospun Metal Nanofiber Webs as High-Performance Transparent Electrode

    KAUST Repository

    Wu, Hui

    2010-10-13

    Transparent electrodes, indespensible in displays and solar cells, are currently dominated by indium tin oxide (ITO) films although the high price of indium, brittleness of films, and high vacuum deposition are limiting their applications. Recently, solution-processed networks of nanostructures such as carbon nanotubes (CNTs), graphene, and silver nanowires have attracted great attention as replacements. A low junction resistance between nanostructures is important for decreasing the sheet resistance. However, the junction resistances between CNTs and boundry resistances between graphene nanostructures are too high. The aspect ratios of silver nanowires are limited to ∼100, and silver is relatively expensive. Here, we show high-performance transparent electrodes with copper nanofiber networks by a low-cost and scalable electrospinning process. Copper nanofibers have ultrahigh aspect ratios of up to 100000 and fused crossing points with ultralow junction resistances, which result in high transmitance at low sheet resistance, e.g., 90% at 50 Ω/sq. The copper nanofiber networks also show great flexibility and stretchabilty. Organic solar cells using copper nanowire networks as transparent electrodes have a power efficiency of 3.0%, comparable to devices made with ITO electrodes. © 2010 American Chemical Society.

  1. Electrospun Metal Nanofiber Webs as High-Performance Transparent Electrode

    KAUST Repository

    Wu, Hui; Hu, Liangbing; Rowell, Michael W.; Kong, Desheng; Cha, Judy J.; McDonough, James R.; Zhu, Jia; Yang, Yuan; McGehee, Michael D.; Cui, Yi

    2010-01-01

    Transparent electrodes, indespensible in displays and solar cells, are currently dominated by indium tin oxide (ITO) films although the high price of indium, brittleness of films, and high vacuum deposition are limiting their applications. Recently, solution-processed networks of nanostructures such as carbon nanotubes (CNTs), graphene, and silver nanowires have attracted great attention as replacements. A low junction resistance between nanostructures is important for decreasing the sheet resistance. However, the junction resistances between CNTs and boundry resistances between graphene nanostructures are too high. The aspect ratios of silver nanowires are limited to ∼100, and silver is relatively expensive. Here, we show high-performance transparent electrodes with copper nanofiber networks by a low-cost and scalable electrospinning process. Copper nanofibers have ultrahigh aspect ratios of up to 100000 and fused crossing points with ultralow junction resistances, which result in high transmitance at low sheet resistance, e.g., 90% at 50 Ω/sq. The copper nanofiber networks also show great flexibility and stretchabilty. Organic solar cells using copper nanowire networks as transparent electrodes have a power efficiency of 3.0%, comparable to devices made with ITO electrodes. © 2010 American Chemical Society.

  2. Transparent, flexible, and solid-state supercapacitors based on graphene electrodes

    Science.gov (United States)

    Gao, Y.; Zhou, Y. S.; Xiong, W.; Jiang, L. J.; Mahjouri-samani, M.; Thirugnanam, P.; Huang, X.; Wang, M. M.; Jiang, L.; Lu, Y. F.

    2013-07-01

    In this study, graphene-based supercapacitors with optical transparency and mechanical flexibility have been achieved using a combination of poly(vinyl alcohol)/phosphoric acid gel electrolyte and graphene electrodes. An optical transmittance of ˜67% in a wavelength range of 500-800 nm and a 92.4% remnant capacitance under a bending angle of 80° have been achieved for the supercapacitors. The decrease in capacitance under bending is ascribed to the buckling of the graphene electrode in compression. The supercapacitors with high optical transparency, electrochemical stability, and mechanical flexibility hold promises for transparent and flexible electronics.

  3. Transparent, flexible, and solid-state supercapacitors based on graphene electrodes

    Directory of Open Access Journals (Sweden)

    Y. Gao

    2013-07-01

    Full Text Available In this study, graphene-based supercapacitors with optical transparency and mechanical flexibility have been achieved using a combination of poly(vinyl alcohol/phosphoric acid gel electrolyte and graphene electrodes. An optical transmittance of ∼67% in a wavelength range of 500-800 nm and a 92.4% remnant capacitance under a bending angle of 80° have been achieved for the supercapacitors. The decrease in capacitance under bending is ascribed to the buckling of the graphene electrode in compression. The supercapacitors with high optical transparency, electrochemical stability, and mechanical flexibility hold promises for transparent and flexible electronics.

  4. Analysis of an anti-reflecting nanowire transparent electrode for solar cells

    Science.gov (United States)

    Zhao, Zhexin; Wang, Ken Xingze; Fan, Shanhui

    2017-03-01

    Transparent electrodes are an important component in many optoelectronic devices, especially solar cells. In this paper, we investigate a nanowire transparent electrode that also functions as an anti-reflection coating for silicon solar cells, taking into account the practical constraints that the electrode is typically encapsulated and needs to be in electric contact with the semiconductor. Numerical simulations show that the electrode can provide near-perfect broadband anti-reflection over much of the frequency range above the silicon band gap for both polarizations while keeping the sheet resistance sufficiently low. To provide insights into the physics mechanism of this broadband anti-reflection, we introduce a generalized Fabry-Perot model, which captures the effects of the higher order diffraction channels as well as the modification of the reflection coefficient of the interface introduced by the nanowires. This model is validated using frequency-domain electromagnetic simulations. Our work here provides design guidelines for nanowire transparent electrode in a device configuration that is relevant for solar cell applications.

  5. Scalable Coating and Properties of Transparent, Flexible, Silver Nanowire Electrodes

    KAUST Repository

    Hu, Liangbing

    2010-05-25

    We report a comprehensive study of transparent and conductive silver nanowire (Ag NW) electrodes, including a scalable fabrication process, morphologies, and optical, mechanical adhesion, and flexibility properties, and various routes to improve the performance. We utilized a synthesis specifically designed for long and thin wires for improved performance in terms of sheet resistance and optical transmittance. Twenty Ω/sq and ∼ 80% specular transmittance, and 8 ohms/sq and 80% diffusive transmittance in the visible range are achieved, which fall in the same range as the best indium tin oxide (ITO) samples on plastic substrates for flexible electronics and solar cells. The Ag NW electrodes show optical transparencies superior to ITO for near-infrared wavelengths (2-fold higher transmission). Owing to light scattering effects, the Ag NW network has the largest difference between diffusive transmittance and specular transmittance when compared with ITO and carbon nanotube electrodes, a property which could greatly enhance solar cell performance. A mechanical study shows that Ag NW electrodes on flexible substrates show excellent robustness when subjected to bending. We also study the electrical conductance of Ag nanowires and their junctions and report a facile electrochemical method for a Au coating to reduce the wire-to-wire junction resistance for better overall film conductance. Simple mechanical pressing was also found to increase the NW film conductance due to the reduction of junction resistance. The overall properties of transparent Ag NW electrodes meet the requirements of transparent electrodes for many applications and could be an immediate ITO replacement for flexible electronics and solar cells. © 2010 American Chemical Society.

  6. Scalable Coating and Properties of Transparent, Flexible, Silver Nanowire Electrodes

    KAUST Repository

    Hu, Liangbing; Kim, Han Sun; Lee, Jung-Yong; Peumans, Peter; Cui, Yi

    2010-01-01

    We report a comprehensive study of transparent and conductive silver nanowire (Ag NW) electrodes, including a scalable fabrication process, morphologies, and optical, mechanical adhesion, and flexibility properties, and various routes to improve the performance. We utilized a synthesis specifically designed for long and thin wires for improved performance in terms of sheet resistance and optical transmittance. Twenty Ω/sq and ∼ 80% specular transmittance, and 8 ohms/sq and 80% diffusive transmittance in the visible range are achieved, which fall in the same range as the best indium tin oxide (ITO) samples on plastic substrates for flexible electronics and solar cells. The Ag NW electrodes show optical transparencies superior to ITO for near-infrared wavelengths (2-fold higher transmission). Owing to light scattering effects, the Ag NW network has the largest difference between diffusive transmittance and specular transmittance when compared with ITO and carbon nanotube electrodes, a property which could greatly enhance solar cell performance. A mechanical study shows that Ag NW electrodes on flexible substrates show excellent robustness when subjected to bending. We also study the electrical conductance of Ag nanowires and their junctions and report a facile electrochemical method for a Au coating to reduce the wire-to-wire junction resistance for better overall film conductance. Simple mechanical pressing was also found to increase the NW film conductance due to the reduction of junction resistance. The overall properties of transparent Ag NW electrodes meet the requirements of transparent electrodes for many applications and could be an immediate ITO replacement for flexible electronics and solar cells. © 2010 American Chemical Society.

  7. Transparent Electrodes with Nanotubes and Graphene for Printed Optoelectronic Applications

    Directory of Open Access Journals (Sweden)

    Marcin Słoma

    2014-01-01

    Full Text Available We report here on printed electroluminescent structures containing transparent electrodes made of carbon nanotubes and graphene nanoplatelets. Screen-printing and spray-coating techniques were employed. Electrodes and structures were examined towards optical parameters using spectrophotometer and irradiation meter. Electromechanical properties of transparent electrodes are exterminated with cyclical bending test. Accelerated aging process was conducted according to EN 62137 standard for reliability tests of electronics. We observed significant negative influence of mechanical bending on sheet resistivity of ITO, while resistivity of nanotube and graphene based electrodes remained stable. Aging process has also negative influence on ITO based structures resulting in delamination of printed layers, while those based on carbon nanomaterials remained intact. We observe negligible changes in irradiation for structures with carbon nanotube electrodes after accelerated aging process. Such materials demonstrate a high application potential in general purpose electroluminescent devices.

  8. Organic Light-Emitting Diodes on Solution-Processed Graphene Transparent Electrodes

    KAUST Repository

    Wu, Junbo

    2010-01-26

    Theoretical estimates indicate that graphene thin films can be used as transparent electrodes for thin-film devices such as solar cells and organic light-emitting diodes, with an unmatched combination of sheet resistance and transparency. We demonstrate organic light-emitting diodes with solution-processed graphene thin film transparent conductive anodes. The graphene electrodes were deposited on quartz substrates by spincoating of an aqueous dispersion of functionalized graphene, followed by a vacuum anneal step to reduce the sheet resistance. Small molecular weight organic materials and a metal cathode were directly deposited on the graphene anodes, resulting in devices with a performance comparable to control devices on indium-tin-oxide transparent anodes. The outcoupling efficiency of devices on graphene and indium-tin-oxide is nearly identical, in agreement with model predictions. © 2010 American Chemical Society.

  9. Organic Light-Emitting Diodes on Solution-Processed Graphene Transparent Electrodes

    KAUST Repository

    Wu, Junbo; Agrawal, Mukul; Becerril, Héctor A.; Bao, Zhenan; Liu, Zunfeng; Chen, Yongsheng; Peumans, Peter

    2010-01-01

    Theoretical estimates indicate that graphene thin films can be used as transparent electrodes for thin-film devices such as solar cells and organic light-emitting diodes, with an unmatched combination of sheet resistance and transparency. We

  10. Exploiting both optical and electrical anisotropy in nanowire electrodes for higher transparency.

    Science.gov (United States)

    Dong, Jianjin; Goldthorpe, Irene A

    2018-01-26

    Transparent electrodes such as indium tin oxide and random meshes of silver nanowires (AgNWs) have isotropic in-plane properties. However, we show that imparting some alignment to AgNWs can create anisotropic transparency and electrical conductivity characteristics that may benefit many applications. For example, liquid crystal displays and the touch sensors on top of them often only need to be transparent to one type of polarized light as well as predominantly conductive in only one direction. Herein, AgNWs are slightly preferentially aligned during their deposition by rod coating. Compared to randomly oriented AgNW films, the alignment boosts the transparency to perpendicularly polarized light, as well as achieves a higher transparency for a given sheet resistance in one direction compared to randomly oriented AgNWs films. These factors together increase the transparency of a 16 Ω/sq electrode by 7.3 percentage points. The alignment technique is cheap and scalable, compatible with roll-to-roll processes, and most importantly does not require extra processing steps, as rod coating is already a standard process for AgNW electrode fabrication.

  11. A transparent, solvent-free laminated top electrode for perovskite solar cells.

    Science.gov (United States)

    Makha, Mohammed; Fernandes, Silvia Letícia; Jenatsch, Sandra; Offermans, Ton; Schleuniger, Jürg; Tisserant, Jean-Nicolas; Véron, Anna C; Hany, Roland

    2016-01-01

    A simple lamination process of the top electrode for perovskite solar cells is demonstrated. The laminate electrode consists of a transparent and conductive plastic/metal mesh substrate, coated with an adhesive mixture of poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate), PEDOT:PSS, and sorbitol. The laminate electrode showed a high degree of transparency of 85%. Best cell performance was achieved for laminate electrodes prepared with a sorbitol concentration of ~30 wt% per milliliter PEDOT:PSS dispersion, and using a pre-annealing temperature of 120°C for 10 min before lamination. Thereby, perovskite solar cells with stabilized power conversion efficiencies of (7.6 ± 1.0)% were obtained which corresponds to 80% of the reference devices with reflective opaque gold electrodes.

  12. Enhanced electrical conductivity in Xe ion irradiated CNT based transparent conducting electrode on PET substrate

    Science.gov (United States)

    Surbhi; Sharma, Vikas; Singh, Satyavir; Garg, Priyanka; Asokan, K.; Sachdev, Kanupriya

    2018-02-01

    An investigation of MWCNT-based hybrid electrode films with improved electrical conductivity after Xe ion irradiation is reported. A multilayer hybrid structure of Ag-MWCNT layer embedded in between two ZnO layers was fabricated and evaluated, pre and post 100 keV Xe ion irradiation, for their performance as Transparent Conducting Electrode in terms of their optical and electrical properties. X-ray diffraction pattern exhibits highly c-axis oriented ZnO films with a small variation in lattice parameters with an increase in ion fluence. There is no significant change in the surface roughness of these films. Raman spectra were used to confirm the presence of CNT. The pristine multilayer films exhibit an average transmittance of ˜70% in the entire visible region and the transmittance increases with Xe ion fluence. A significant enhancement in electrical conductivity post-Xe ion irradiation viz from 1.14 × 10-7 Ω-1 cm-1 (pristine) to 7.04 × 103 Ω-1 cm-1 is seen which is due to the high connectivity in the top layer with Ag-CNT hybrid layer facilitating the smooth transfer of electrons.

  13. Synthesis and Characterization of Graphene/ITO Nanoparticle Hybrid Transparent Conducting Electrode

    Institute of Scientific and Technical Information of China (English)

    Jae-Kwan Kim; Ji-Myon Lee

    2018-01-01

    The combination of graphene with conductive nanoparticles, forming graphene–nanoparticle hybrid materials, offers a number of excellent properties for advanced engineering applications. A novel and simple method was developed to deposit 10 wt% tin-doped indium tin oxide (ITO) nanoparticles on graphene. The method involved a combination of a solution-based environmen-tally friendly electroless deposition approach and subse-quent vacuum annealing.A stable organic-free solution of ITO was prepared from economical salts of In(NO3)3?H2O and SnCl4. The obtained ITO nanostructure exhibited a unique architecture, with uniformly dispersed 25–35 nm size ITO nanoparticles, containing only the crystallized In2O3phase.The synthesized ITO nanoparticles–graphene hybrid exhibited very good and reproducible optical transparency in the visible range (more than 85%) and a 28.2% improvement in electrical conductivity relative to graphene synthesized by chemical vapor deposition.It was observed that the ITO nanoparticles affect the position of the Raman signal of graphene,in which the D,G,and 2D peaks were redshifted by 5.65, 5.69, and 9.74 cm-1,respectively, and the annealing conditions had no signifi-cant effect on the Raman signatures of graphene.

  14. Synthesis and Characterization of Graphene/ITO Nanoparticle Hybrid Transparent Conducting Electrode

    Science.gov (United States)

    Hemasiri, Bastian Waduge Naveen Harindu; Kim, Jae-Kwan; Lee, Ji-Myon

    2018-03-01

    The combination of graphene with conductive nanoparticles, forming graphene-nanoparticle hybrid materials, offers a number of excellent properties for advanced engineering applications. A novel and simple method was developed to deposit 10 wt% tin-doped indium tin oxide (ITO) nanoparticles on graphene. The method involved a combination of a solution-based environmentally friendly electroless deposition approach and subsequent vacuum annealing. A stable organic-free solution of ITO was prepared from economical salts of In(NO3) 3 · H2O and SnCl4. The obtained ITO nanostructure exhibited a unique architecture, with uniformly dispersed 25-35 nm size ITO nanoparticles, containing only the crystallized In2O3 phase. The synthesized ITO nanoparticles-graphene hybrid exhibited very good and reproducible optical transparency in the visible range (more than 85%) and a 28.2% improvement in electrical conductivity relative to graphene synthesized by chemical vapor deposition. It was observed that the ITO nanoparticles affect the position of the Raman signal of graphene, in which the D, G, and 2D peaks were redshifted by 5.65, 5.69, and 9.74 cm-1, respectively, and the annealing conditions had no significant effect on the Raman signatures of graphene. [Figure not available: see fulltext.

  15. Nitrogen-doped graphene as transparent counter electrode for efficient dye-sensitized solar cells

    International Nuclear Information System (INIS)

    Wang, Guiqiang; Fang, Yanyan; Lin, Yuan; Xing, Wei; Zhuo, Shuping

    2012-01-01

    Graphical abstract: Display Omitted Highlights: ► NG sheets are prepared through a hydrothermal reduction of graphite oxide. ► The transparent NG counter electrodes of DSCs are fabricated at room temperature. ► Transparent NG electrode exhibits excellent catalytic activity for the reduction of I 3 − . ► The DSC with NG electrode achieves a comparable efficiency to that of the Pt-based cell. ► The efficiency of rear illumination is about 85% that of front illumination. -- Abstract: Nitrogen-doped graphene sheets are prepared through a hydrothermal reduction of graphite oxide in the presence of ammonia and applied to fabricate the transparent counter electrode of dye-sensitized solar cells. The atomic percentage of nitrogen in doped graphene sample is about 2.5%, and the nitrogen bonds display pyridine and pyrrole-like configurations. Cyclic voltammetry studies demonstrate a much higher electrocatalytic activity toward I − /I 3 − redox reaction for nitrogen-doped graphene, as compared with pristine graphene. The dye-sensitized solar cell with this transparent nitrogen-doped graphene counter electrode shows conversion efficiencies of 6.12% and 5.23% corresponding to front-side and rear-side illumination, respectively. Meanwhile, the cell with a Pt counter electrode shows a conversion efficiency of 6.97% under the same experimental condition. These promising results highlight the potential application of nitrogen-doped graphene in cost-effective, transparent dye-sensitized solar cells.

  16. High aspect ratio silver grid transparent electrodes using UV embossing process

    Directory of Open Access Journals (Sweden)

    Dong Jin Kim

    2017-10-01

    Full Text Available This study presents a UV embossing process to fabricate high aspect ratio silver grid transparent electrodes on a polymer film. Transparent electrodes with a high optical transmittance (93 % and low sheet resistance (4.6 Ω/sq were fabricated without any high temperature or vacuum processes. The strong adhesion force between the UV resin and the silver ink enables the fabrication of silver microstructures with an aspect ratio higher than 3. The high aspect ratio results in a low sheet resistance while maintaining a high optical transmittance. Multi-layer transparent electrodes were fabricated by repeating the proposed UV process. Additionally, a large-area of 8-inch touch panel was fabricated with the proposed UV process. The proposed UV process is a relatively simple and low cost process making it suitable for large-area production as well as mass production.

  17. The Joule heating problem in silver nanowire transparent electrodes

    Science.gov (United States)

    Khaligh, H. H.; Xu, L.; Khosropour, A.; Madeira, A.; Romano, M.; Pradére, C.; Tréguer-Delapierre, M.; Servant, L.; Pope, M. A.; Goldthorpe, I. A.

    2017-10-01

    Silver nanowire transparent electrodes have shown considerable potential to replace conventional transparent conductive materials. However, in this report we show that Joule heating is a unique and serious problem with these electrodes. When conducting current densities encountered in organic solar cells, the average surface temperature of indium tin oxide (ITO) and silver nanowire electrodes, both with sheet resistances of 60 ohms/square, remains below 35 °C. However, in contrast to ITO, the temperature in the nanowire electrode is very non-uniform, with some localized points reaching temperatures above 250 °C. These hotspots accelerate nanowire degradation, leading to electrode failure after 5 days of continuous current flow. We show that graphene, a commonly used passivation layer for these electrodes, slows nanowire degradation and creates a more uniform surface temperature under current flow. However, the graphene does not prevent Joule heating in the nanowires and local points of high temperature ultimately shift the failure mechanism from nanowire degradation to melting of the underlying plastic substrate. In this paper, surface temperature mapping, lifetime testing under current flow, post-mortem analysis, and modelling illuminate the behaviour and failure mechanisms of nanowires under extended current flow and provide guidelines for managing Joule heating.

  18. Improve the surface of silver nanowire transparent electrode using a double-layer structure for the quantum-dot light-emitting diodes

    Science.gov (United States)

    Cho, Seok Hyeon; Been Heo, Su; Kang, Seong Jun

    2018-03-01

    We developed a double-layer structured transparent electrode for use in flexible quantum-dot light-emitting diodes (QLEDs). Silver nanowires (AgNWs) and highly conductive poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) were coated on a transparent substrate to obtain a highly conductive and flexible transparent electrode. The highly conductive PEDOT:PSS improved the surface roughness of the AgNWs transparent electrode film as well as the surface coverage area of the film. The double-layer structured transparent electrode showed superior mechanical properties than conventional indium-tin oxide (ITO) and AgNWs transparent electrodes. QLEDs with the double-layer structured transparent electrode also showed good reliability under cyclic bending conditions. These results indicate that the double-layer structured AgNWs/PEDOT:PSS transparent electrode described here is a feasible alternative to ITO transparent electrodes for flexible QLEDs.

  19. Transparent and Flexible Supercapacitors with Networked Electrodes.

    Science.gov (United States)

    Kiruthika, S; Sow, Chaitali; Kulkarni, G U

    2017-10-01

    Transparent and flexible energy storage devices have received immense attention due to their suitability for innovative electronics and displays. However, it remains a great challenge to fabricate devices with high storage capacity and high degree of transmittance. This study describes a simple process for fabrication of supercapacitors with ≈75% of visible transparency and areal capacitance of ≈3 mF cm -2 with high stability tested over 5000 cycles of charging and discharging. The electrodes consist of Au wire networks obtained by a simple crackle template method which are coated with MnO 2 nanostructures by electrodeposition process. Importantly, the membrane separator itself is employed as substrate to bring in the desired transparency and light weight while additionally exploiting its porous nature in enhancing the interaction of electrolyte with the active material from both sides of the substrate, thereby enhancing the storage capacity. The method opens up new ways for fabricating transparent devices. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. High adhesion transparent conducting films using graphene oxide hybrid carbon nanotubes

    International Nuclear Information System (INIS)

    Da, Shi-Xun; Wang, Jie; Geng, Hong-Zhang; Jia, Song-Lin; Xu, Chun-Xia; Li, Lin-Ge; Shi, Pei-Pei; Li, Guangfen

    2017-01-01

    Graphical abstract: The GO hybrid CNTs to fabricate TCFs could dramatically enhance the conductivity, adhesion, flatness, and wettability of the films, all these improvements are advantageous for optoelectronic applications. - Highlights: • TCFs were fabricated using GO/CNT hybrid inks by a simple spray method. • Conductivity of TCFs was improved through the hybrid of GO/CNT, sheet resistance of TCFs was 146 Ω/sq at the transmittance of 86.0% when the ratio of GO/CNT got 1.5:1.0. • The flatness and wettability of TCFs were improved dramatically, which is advantageous for the solution-based processing of organic electronics for spraying and printing. • The adhesion of the TCFs increased dramatically with the raise of the ratio GO/CNT hybrid. - Abstract: Flexible transparent conducting films (TCFs) with carbon nanotubes (CNTs) have attracted more and more attention for their wide range of potential applications. While, there are still some problems to be solved on several aspects. In this study, a graphene oxide/carbon nanotube (GO/CNT) hybrid TCF was fabricated through the simple spray coating method. GO sheets were introduced to form new electron transporting channels. It was found that the best optoelectronic property films were fabricated when the ratio of GO/CNT is 1.5:1.0, which the sheet resistance of the film was found to be 146 Ω/sq at the transmittance of 86.0%. Due to the two-dimensional structure and the oxidation groups of GO sheets, flatness and wettability of the electrode surface was improved obviously. Adhesion factor of the TCFs was calculated by the change of transparent and sheet resistance after trial test, the addition of GO sheets enhanced the adhesion dramatically and the mechanism was analyzed. Improvements of conductivity, flatness, wettability and adhesion above are all advantageous for the solution-based processing of organic electronics for spraying and printing.

  1. High adhesion transparent conducting films using graphene oxide hybrid carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Da, Shi-Xun; Wang, Jie; Geng, Hong-Zhang, E-mail: genghz@tjpu.edu.cn; Jia, Song-Lin; Xu, Chun-Xia; Li, Lin-Ge; Shi, Pei-Pei; Li, Guangfen

    2017-01-15

    Graphical abstract: The GO hybrid CNTs to fabricate TCFs could dramatically enhance the conductivity, adhesion, flatness, and wettability of the films, all these improvements are advantageous for optoelectronic applications. - Highlights: • TCFs were fabricated using GO/CNT hybrid inks by a simple spray method. • Conductivity of TCFs was improved through the hybrid of GO/CNT, sheet resistance of TCFs was 146 Ω/sq at the transmittance of 86.0% when the ratio of GO/CNT got 1.5:1.0. • The flatness and wettability of TCFs were improved dramatically, which is advantageous for the solution-based processing of organic electronics for spraying and printing. • The adhesion of the TCFs increased dramatically with the raise of the ratio GO/CNT hybrid. - Abstract: Flexible transparent conducting films (TCFs) with carbon nanotubes (CNTs) have attracted more and more attention for their wide range of potential applications. While, there are still some problems to be solved on several aspects. In this study, a graphene oxide/carbon nanotube (GO/CNT) hybrid TCF was fabricated through the simple spray coating method. GO sheets were introduced to form new electron transporting channels. It was found that the best optoelectronic property films were fabricated when the ratio of GO/CNT is 1.5:1.0, which the sheet resistance of the film was found to be 146 Ω/sq at the transmittance of 86.0%. Due to the two-dimensional structure and the oxidation groups of GO sheets, flatness and wettability of the electrode surface was improved obviously. Adhesion factor of the TCFs was calculated by the change of transparent and sheet resistance after trial test, the addition of GO sheets enhanced the adhesion dramatically and the mechanism was analyzed. Improvements of conductivity, flatness, wettability and adhesion above are all advantageous for the solution-based processing of organic electronics for spraying and printing.

  2. Highly conductive interwoven carbon nanotube and silver nanowire transparent electrodes

    Directory of Open Access Journals (Sweden)

    Andrew J Stapleton, Rakesh A Afre, Amanda V Ellis, Joe G Shapter, Gunther G Andersson, Jamie S Quinton and David A Lewis

    2013-01-01

    Full Text Available Electrodes fabricated using commercially available silver nanowires (AgNWs and single walled carbon nanotubes (SWCNTs produced sheet resistances in the range 4–24 Ω squ−1 with specular transparencies up to 82 %. Increasing the aqueous dispersibility of SWCNTs decreased the bundle size present in the film resulting in improved SWCNT surface dispersion in the films without compromising transparency or sheet resistance. In addition to providing conduction pathways between the AgNW network, the SWCNTs also provide structural support, creating stable self-supporting films. Entanglement of the AgNWs and SWCNTs was demonstrated to occur in solution prior to deposition by monitoring the transverse plasmon resonance mode of the AgNWs during processing. The interwoven AgNW/SWCNT structures show potential for use in optoelectronic applications as transparent electrodes and as an ITO replacement.

  3. Transparent conductive graphene electrode in GaN-based ultra-violet light emitting diodes.

    Science.gov (United States)

    Kim, Byung-Jae; Mastro, Michael A; Hite, Jennifer; Eddy, Charles R; Kim, Jihyun

    2010-10-25

    We report a graphene-based transparent conductive electrode for use in ultraviolet (UV) GaN light emitting diodes (LEDs). A few-layer graphene (FLG) layer was mechanically deposited. UV light at a peak wavelength of 368 nm was successfully emitted by the FLG layer as transparent contact to p-GaN. The emission of UV light through the thin graphene layer was brighter than through the thick graphene layer. The thickness of the graphene layer was characterized by micro-Raman spectroscopy. Our results indicate that this novel graphene-based transparent conductive electrode holds great promise for use in UV optoelectronics for which conventional ITO is less transparent than graphene.

  4. Engineering Silver Nanowire Networks: From Transparent Electrodes to Resistive Switching Devices.

    Science.gov (United States)

    Du, Haiwei; Wan, Tao; Qu, Bo; Cao, Fuyang; Lin, Qianru; Chen, Nan; Lin, Xi; Chu, Dewei

    2017-06-21

    Metal nanowires (NWs) networks with high conductance have shown potential applications in modern electronic components, especially the transparent electrodes over the past decade. In metal NW networks, the electrical connectivity of nanoscale NW junction can be modulated for various applications. In this work, silver nanowire (Ag NW) networks were selected to achieve the desired functions. The Ag NWs were first synthesized by a classic polyol process, and spin-coated on glass to fabricate transparent electrodes. The as-fabricated electrode showed a sheet resistance of 7.158 Ω □ -1 with an optical transmittance of 79.19% at 550 nm, indicating a comparable figure of merit (FOM, or Φ TC ) (13.55 × 10 -3 Ω -1 ). Then, two different post-treatments were designed to tune the Ag NWs for not only transparent electrode but also for threshold resistive switching (RS) application. On the one hand, the Ag NW film was mechanically pressed to significantly improve the conductance by reducing the junction resistance. On the other hand, an Ag@AgO x core-shell structure was deliberately designed by partial oxidation of Ag NWs through simple ultraviolet (UV)-ozone treatment. The Ag core can act as metallic interconnect and the insulating AgO x shell acts as a switching medium to provide a conductive pathway for Ag filament migration. By fabricating Ag/Ag@AgO x /Ag planar structure, a volatile threshold switching characteristic was observed and an on/off ratio of ∼100 was achieved. This work showed that through different post-treatments, Ag NW network can be engineered for diverse functions, transforming from transparent electrodes to RS devices.

  5. Transparent Electrodes Based on Silver Nanowire Networks: From Physical Considerations towards Device Integration.

    Science.gov (United States)

    Bellet, Daniel; Lagrange, Mélanie; Sannicolo, Thomas; Aghazadehchors, Sara; Nguyen, Viet Huong; Langley, Daniel P; Muñoz-Rojas, David; Jiménez, Carmen; Bréchet, Yves; Nguyen, Ngoc Duy

    2017-05-24

    The past few years have seen a considerable amount of research devoted to nanostructured transparent conducting materials (TCM), which play a pivotal role in many modern devices such as solar cells, flexible light-emitting devices, touch screens, electromagnetic devices, and flexible transparent thin film heaters. Currently, the most commonly used TCM for such applications (ITO: Indium Tin oxide) suffers from two major drawbacks: brittleness and indium scarcity. Among emerging transparent electrodes, silver nanowire (AgNW) networks appear to be a promising substitute to ITO since such electrically percolating networks exhibit excellent properties with sheet resistance lower than 10 Ω/sq and optical transparency of 90%, fulfilling the requirements of most applications. In addition, AgNW networks also exhibit very good mechanical flexibility. The fabrication of these electrodes involves low-temperature processing steps and scalable methods, thus making them appropriate for future use as low-cost transparent electrodes in flexible electronic devices. This contribution aims to briefly present the main properties of AgNW based transparent electrodes as well as some considerations relating to their efficient integration in devices. The influence of network density, nanowire sizes, and post treatments on the properties of AgNW networks will also be evaluated. In addition to a general overview of AgNW networks, we focus on two important aspects: (i) network instabilities as well as an efficient Atomic Layer Deposition (ALD) coating which clearly enhances AgNW network stability and (ii) modelling to better understand the physical properties of these networks.

  6. Fabrication and characterization of transparent metallic electrodes in the terahertz domain

    DEFF Research Database (Denmark)

    Zalkovskij, Maksim; Malureanu, Radu; Song, Zhengyong

    The demand for transparent electrodes keeps increasing as new generations of electronic devices appear, including solar cells and touch screens. Indium tin oxide (ITO) is the most promising transparent electrode material to date [1] although there are several limitations when using ITO. Firstly...... by the use of the T-Ray 4000 terahertz time-domain spectroscopy system. The physics behind the cancellation of the scattering from the target opaque layer requires carefully chosen geometrical parameters of the metamaterial layers, AB and C, (see Fig. 1(b)). Figure 1(c) displays the transmittance through...

  7. Electrical performance of polymer ferroelectric capacitors fabricated on plastic substrate using transparent electrodes

    KAUST Repository

    Bhansali, Unnat Sampatraj

    2012-09-01

    Polymer-based flexible ferroelectric capacitors have been fabricated using a transparent conducting oxide (ITO) and a transparent conducting polymer (PEDOT:PSS). It is found that the polarization fatigue performance with transparent oxide electrodes exhibits a significant improvement over the polymer electrodes (20% vs 70% drop in polarization after 10 6 cycles). This result can be explained based on a charge injection model that is controlled by interfacial band-offsets, and subsequent pinning of ferroelectric domain walls by the injected carriers. Furthermore, the coercive field (E c) of devices with our polymer electrodes is nearly 40% lower than reported values with similar polymer electrodes. Surprisingly, this difference was found to be related to the dry etching process used to define the top electrodes, which is reported for the first time by this group. The temperature dependence of relative permittivity of both devices shows a typical first order ferroelectric-to-paraelectric phase transition, but with a reduced Curie temperature compared to reference devices fabricated on Pt. © 2012 Elsevier B.V. All rights reserved.

  8. Electrical performance of polymer ferroelectric capacitors fabricated on plastic substrate using transparent electrodes

    KAUST Repository

    Bhansali, Unnat Sampatraj; Khan, Yasser; Alshareef, Husam N.

    2012-01-01

    Polymer-based flexible ferroelectric capacitors have been fabricated using a transparent conducting oxide (ITO) and a transparent conducting polymer (PEDOT:PSS). It is found that the polarization fatigue performance with transparent oxide electrodes exhibits a significant improvement over the polymer electrodes (20% vs 70% drop in polarization after 10 6 cycles). This result can be explained based on a charge injection model that is controlled by interfacial band-offsets, and subsequent pinning of ferroelectric domain walls by the injected carriers. Furthermore, the coercive field (E c) of devices with our polymer electrodes is nearly 40% lower than reported values with similar polymer electrodes. Surprisingly, this difference was found to be related to the dry etching process used to define the top electrodes, which is reported for the first time by this group. The temperature dependence of relative permittivity of both devices shows a typical first order ferroelectric-to-paraelectric phase transition, but with a reduced Curie temperature compared to reference devices fabricated on Pt. © 2012 Elsevier B.V. All rights reserved.

  9. High conductivity and transparent aluminum-based multi-layer source/drain electrodes for thin film transistors

    Science.gov (United States)

    Yao, Rihui; Zhang, Hongke; Fang, Zhiqiang; Ning, Honglong; Zheng, Zeke; Li, Xiaoqing; Zhang, Xiaochen; Cai, Wei; Lu, Xubing; Peng, Junbiao

    2018-02-01

    In this study, high conductivity and transparent multi-layer (AZO/Al/AZO-/Al/AZO) source/drain (S/D) electrodes for thin film transistors were fabricated via conventional physical vapor deposition approaches, without toxic elements or further thermal annealing process. The 68 nm-thick multi-layer films with excellent optical properties (transparency: 82.64%), good electrical properties (resistivity: 6.64  ×  10-5 Ω m, work function: 3.95 eV), and superior surface roughness (R q   =  0.757 nm with scanning area of 5  ×  5 µm2) were fabricated as the S/D electrodes. Significantly, comprehensive performances of AZO films are enhanced by the insertion of ultra-thin Al layers. The optimal transparent TFT with this multi-layer S/D electrodes exhibited a decent electrical performance with a saturation mobility (µ sat) of 3.2 cm2 V-1 s-1, an I on/I off ratio of 1.59  ×  106, a subthreshold swing of 1.05 V/decade. The contact resistance of AZO/Al/AZO/Al/AZO multi-layer electrodes is as low as 0.29 MΩ. Moreover, the average visible light transmittance of the unpatterned multi-layers constituting a whole transparent TFT could reach 72.5%. The high conductivity and transparent multi-layer S/D electrodes for transparent TFTs possessed great potential for the applications of the green and transparent displays industry.

  10. Nanopatterned Metallic Films for Use As Transparent Conductive Electrodes in Optoelectronic Devices

    KAUST Repository

    Catrysse, Peter B.; Fan, Shanhui

    2010-01-01

    We investigate the use of nanopatterned metallic films as transparent conductive electrodes in optoelectronic devices. We find that the physics of nanopatterned electrodes, which are often optically thin metallic films, differs from

  11. Polymer-Assisted Direct Deposition of Uniform Carbon Nanotube Bundle Networks for High Performance Transparent Electrodes

    KAUST Repository

    Hellstrom, Sondra L.; Lee, Hang Woo; Bao, Zhenan

    2009-01-01

    Flexible transparent electrodes are crucial for touch screen, flat panel display, and solar cell technologies. While carbon nanotube network electrodes show promise, characteristically poor dispersion properties have limited their practicality. We report that addition of small amounts of conjugated polymer to nanotube dispersions enables straightforward fabrication of uniform network electrodes by spin-coating and simultaneous tuning of parameters such as bundle size and density. After treatment in thionyl chloride, electrodes have sheet resistances competitive with other reported carbon nanotube based transparent electrodes to date. © 2009 American Chemical Society.

  12. Polymer-Assisted Direct Deposition of Uniform Carbon Nanotube Bundle Networks for High Performance Transparent Electrodes

    KAUST Repository

    Hellstrom, Sondra L.

    2009-06-23

    Flexible transparent electrodes are crucial for touch screen, flat panel display, and solar cell technologies. While carbon nanotube network electrodes show promise, characteristically poor dispersion properties have limited their practicality. We report that addition of small amounts of conjugated polymer to nanotube dispersions enables straightforward fabrication of uniform network electrodes by spin-coating and simultaneous tuning of parameters such as bundle size and density. After treatment in thionyl chloride, electrodes have sheet resistances competitive with other reported carbon nanotube based transparent electrodes to date. © 2009 American Chemical Society.

  13. All-solution processed semi-transparent perovskite solar cells with silver nanowires electrode

    International Nuclear Information System (INIS)

    Yang, Kaiyu; Li, Fushan; Zhang, Jianhua; Veeramalai, Chandrasekar Perumal; Guo, Tailiang

    2016-01-01

    In this work, we report an all-solution route to produce semi-transparent high efficiency perovskite solar cells (PSCs). Instead of an energy-consuming vacuum process with metal deposition, the top electrode is simply deposited by spray-coating silver nanowires (AgNWs) under room temperature using fabrication conditions and solvents that do not damage or dissolve the underlying PSC. The as-fabricated semi-transparent perovskite solar cell shows a photovoltaic output with dual side illuminations due to the transparency of the AgNWs. With a back cover electrode, the open circuit voltage increases significantly from 1.01 to 1.16 V, yielding high power conversion efficiency from 7.98 to 10.64%. (paper)

  14. Metal-mesh based transparent electrode on a 3-D curved surface by electrohydrodynamic jet printing

    International Nuclear Information System (INIS)

    Seong, Baekhoon; Yoo, Hyunwoong; Jang, Yonghee; Ryu, Changkook; Byun, Doyoung; Nguyen, Vu Dat

    2014-01-01

    Invisible Ag mesh transparent electrodes (TEs), with a width of 7 μm, were prepared on a curved glass surface by electrohydrodynamic (EHD) jet printing. With a 100 μm pitch, the EHD jet printed the Ag mesh on the convex glass which had a sheet resistance of 1.49 Ω/□. The printing speed was 30 cm s −1 using Ag ink, which had a 10 000 cPs viscosity and a 70 wt% Ag nanoparticle concentration. We further showed the performance of a 3-D transparent heater using the Ag mesh transparent electrode. The EHD jet printed an invisible Ag grid transparent electrode with good electrical and optical properties with promising applications on printed optoelectronic devices. (technical note)

  15. Graphene as a transparent electrode for amorphous silicon-based solar cells

    International Nuclear Information System (INIS)

    Vaianella, F.; Rosolen, G.; Maes, B.

    2015-01-01

    The properties of graphene in terms of transparency and conductivity make it an ideal candidate to replace indium tin oxide (ITO) in a transparent conducting electrode. However, graphene is not always as good as ITO for some applications, due to a non-negligible absorption. For amorphous silicon photovoltaics, we have identified a useful case with a graphene-silica front electrode that improves upon ITO. For both electrode technologies, we simulate the weighted absorption in the active layer of planar amorphous silicon-based solar cells with a silver back-reflector. The graphene device shows a significantly increased absorbance compared to ITO-based cells for a large range of silicon thicknesses (34.4% versus 30.9% for a 300 nm thick silicon layer), and this result persists over a wide range of incidence angles

  16. Graphene as a transparent electrode for amorphous silicon-based solar cells

    Science.gov (United States)

    Vaianella, F.; Rosolen, G.; Maes, B.

    2015-06-01

    The properties of graphene in terms of transparency and conductivity make it an ideal candidate to replace indium tin oxide (ITO) in a transparent conducting electrode. However, graphene is not always as good as ITO for some applications, due to a non-negligible absorption. For amorphous silicon photovoltaics, we have identified a useful case with a graphene-silica front electrode that improves upon ITO. For both electrode technologies, we simulate the weighted absorption in the active layer of planar amorphous silicon-based solar cells with a silver back-reflector. The graphene device shows a significantly increased absorbance compared to ITO-based cells for a large range of silicon thicknesses (34.4% versus 30.9% for a 300 nm thick silicon layer), and this result persists over a wide range of incidence angles.

  17. Graphene as a transparent electrode for amorphous silicon-based solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Vaianella, F., E-mail: Fabio.Vaianella@umons.ac.be; Rosolen, G.; Maes, B. [Micro- and Nanophotonic Materials Group, Faculty of Science, University of Mons, 20 place du Parc, B-7000 Mons (Belgium)

    2015-06-28

    The properties of graphene in terms of transparency and conductivity make it an ideal candidate to replace indium tin oxide (ITO) in a transparent conducting electrode. However, graphene is not always as good as ITO for some applications, due to a non-negligible absorption. For amorphous silicon photovoltaics, we have identified a useful case with a graphene-silica front electrode that improves upon ITO. For both electrode technologies, we simulate the weighted absorption in the active layer of planar amorphous silicon-based solar cells with a silver back-reflector. The graphene device shows a significantly increased absorbance compared to ITO-based cells for a large range of silicon thicknesses (34.4% versus 30.9% for a 300 nm thick silicon layer), and this result persists over a wide range of incidence angles.

  18. Percolation effects in supercapacitors with thin, transparent carbon nanotube electrodes.

    Science.gov (United States)

    King, Paul J; Higgins, Thomas M; De, Sukanta; Nicoloso, Norbert; Coleman, Jonathan N

    2012-02-28

    We have explored the effects of percolation on the properties of supercapacitors with thin nanotube networks as electrodes. We find the equivalent series resistance, R(ESR), and volumetric capacitance, C(V), to be thickness independent for relatively thick electrodes. However, once the electrode thickness falls below a threshold thickness (∼100 nm for R(ESR) and ∼20 nm for C(V)), the properties of the electrode become thickness dependent. We show the thickness dependence of both R(ESR) and C(V) to be consistent with percolation theory. While this is expected for R(ESR), that the capacitance follows a percolation scaling law is not. This occurs because, for sparse networks, the capacitance is proportional to the fraction of nanotubes connected to the main network. This fraction, in turn, follows a percolation scaling law. This allows us to understand and quantify the limitations on the achievable capacitance for transparent supercapacitors. We find that supercapacitors with thickness independent R(ESR) and C(V) occupy a well-defined region of the Ragone plot. However, supercapacitors whose electrodes are limited by percolation occupy a long tail to lower values of energy and power density. For example, replacing electrodes with transparency of T = 80% with thinner networks displaying T = 97% will result in a 20-fold reduction of both power and energy density.

  19. Stretchable Transparent Electrode Arrays for Simultaneous Electrical and Optical Interrogation of Neural Circuits in Vivo.

    Science.gov (United States)

    Zhang, Jing; Liu, Xiaojun; Xu, Wenjing; Luo, Wenhan; Li, Ming; Chu, Fangbing; Xu, Lu; Cao, Anyuan; Guan, Jisong; Tang, Shiming; Duan, Xiaojie

    2018-04-09

    Recent developments of transparent electrode arrays provide a unique capability for simultaneous optical and electrical interrogation of neural circuits in the brain. However, none of these electrode arrays possess the stretchability highly desired for interfacing with mechanically active neural systems, such as the brain under injury, the spinal cord, and the peripheral nervous system (PNS). Here, we report a stretchable transparent electrode array from carbon nanotube (CNT) web-like thin films that retains excellent electrochemical performance and broad-band optical transparency under stretching and is highly durable under cyclic stretching deformation. We show that the CNT electrodes record well-defined neuronal response signals with negligible light-induced artifacts from cortical surfaces under optogenetic stimulation. Simultaneous two-photon calcium imaging through the transparent CNT electrodes from cortical surfaces of GCaMP-expressing mice with epilepsy shows individual activated neurons in brain regions from which the concurrent electrical recording is taken, thus providing complementary cellular information in addition to the high-temporal-resolution electrical recording. Notably, the studies on rats show that the CNT electrodes remain operational during and after brain contusion that involves the rapid deformation of both the electrode array and brain tissue. This enables real-time, continuous electrophysiological monitoring of cortical activity under traumatic brain injury. These results highlight the potential application of the stretchable transparent CNT electrode arrays in combining electrical and optical modalities to study neural circuits, especially under mechanically active conditions, which could potentially provide important new insights into the local circuit dynamics of the spinal cord and PNS as well as the mechanism underlying traumatic injuries of the nervous system.

  20. Transparent nickel selenide used as counter electrode in high efficient dye-sensitized solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Jia, Jinbiao; Wu, Jihuai, E-mail: jhwu@hqu.edu.cn; Tu, Yongguang; Huo, Jinghao; Zheng, Min; Lin, Jianming

    2015-08-15

    Highlights: • A transparent Ni{sub 0.85}Se is prepared by a facile solvothermal reaction. • Ni{sub 0.85}Se electrode has better electrocatalytic activity than Pt electrode. • DSSC with Ni{sub 0.85}Se electrode obtains efficiency of 8.88%, higher than DSSC with Pt. • DSSC with Ni{sub 0.85}Se/mirror electrode achieves an efficiency of 10.19%. - Abstract: A transparent nickel selenide (Ni{sub 0.85}Se) is prepared by a facile solvothermal reaction and used as an efficient Pt-free counter electrode (CE) for dye-sensitized solar cells (DSSCs). Field emission scanning electron microscopy observes that the as-prepared Ni{sub 0.85}Se possesses porous structure. Cyclic voltammogram measurement indicates that Ni{sub 0.85}Se electrode has larger current density than Pt electrode. Electrochemical impedance spectroscopy shows that the Ni{sub 0.85}Se electrode has lower charge-transfer resistance than Pt electrode. Under simulated solar light irradiation with intensity of 100 mW cm{sup −2} (AM 1.5), the DSSC based on the Ni{sub 0.85}Se CE achieves a power conversion efficiency (PCE) of 8.88%, which is higher than the solar cell based on Pt CE (8.13%). Based on the transparency of Ni{sub 0.85}Se, the DSSC with Ni{sub 0.85}Se/mirror achieves a PCE of 10.19%.

  1. Ultra-Thin Optically Transparent Carbon Electrodes Produced from Layers of Adsorbed Proteins

    Science.gov (United States)

    Alharthi, Sarah A.; Benavidez, Tomas E.; Garcia, Carlos D.

    2013-01-01

    This work describes a simple, versatile, and inexpensive procedure to prepare optically transparent carbon electrodes, using proteins as precursors. Upon adsorption, the protein-coated substrates were pyrolyzed under reductive conditions (5% H2) to form ultra-thin, conductive electrodes. Because proteins spontaneously adsorb to interfaces forming uniform layers, the proposed method does not require a precise control of the preparation conditions, specialized instrumentation, or expensive precursors. The resulting electrodes were characterized by a combination of electrochemical, optical, and spectroscopic means. As a proof-of-concept, the optically-transparent electrodes were also used as substrate for the development of an electrochemical glucose biosensor. The proposed films represent a convenient alternative to more sophisticated, and less available, carbon-based nanomaterials. Furthermore, these films could be formed on a variety of substrates, without classical limitations of size or shape. PMID:23421732

  2. Smooth Nanowire/Polymer Composite Transparent Electrodes

    KAUST Repository

    Gaynor, Whitney; Burkhard, George F.; McGehee, Michael D.; Peumans, Peter

    2011-01-01

    Smooth composite transparent electrodes are fabricated via lamination of silver nanowires into the polymer poly-(4,3-ethylene dioxythiophene): poly(styrene-sulfonate) (PEDOT:PSS). The surface roughness is dramatically reduced compared to bare nanowires. High-efficiency P3HT:PCBM organic photovoltaic cells can be fabricated using these composites, reproducing the performance of cells on indium tin oxide (ITO) on glass and improving the performance of cells on ITO on plastic. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Smooth Nanowire/Polymer Composite Transparent Electrodes

    KAUST Repository

    Gaynor, Whitney

    2011-04-29

    Smooth composite transparent electrodes are fabricated via lamination of silver nanowires into the polymer poly-(4,3-ethylene dioxythiophene): poly(styrene-sulfonate) (PEDOT:PSS). The surface roughness is dramatically reduced compared to bare nanowires. High-efficiency P3HT:PCBM organic photovoltaic cells can be fabricated using these composites, reproducing the performance of cells on indium tin oxide (ITO) on glass and improving the performance of cells on ITO on plastic. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Aerosol jet printed silver nanowire transparent electrode for flexible electronic application

    Science.gov (United States)

    Tu, Li; Yuan, Sijian; Zhang, Huotian; Wang, Pengfei; Cui, Xiaolei; Wang, Jiao; Zhan, Yi-Qiang; Zheng, Li-Rong

    2018-05-01

    Aerosol jet printing technology enables fine feature deposition of electronic materials onto low-temperature, non-planar substrates without masks. In this work, silver nanowires (AgNWs) are proposed to be printed into transparent flexible electrodes using a Maskless Mesoscale Material Deposition Aerosol Jet® printing system on a glass substrate. The influence of the most significant process parameters, including printing cycles, printing speed, and nozzle size, on the performance of AgNW electrodes was systematically studied. The morphologies of printed patterns were characterized by scanning electron microscopy, and the transmittance was evaluated using an ultraviolet-visible spectrophotometer. Under optimum conditions, high transparent AgNW electrodes with a sheet resistance of 57.68 Ω/sq and a linewidth of 50.9 μm were obtained, which is an important step towards a higher performance goal for flexible electronic applications.

  5. High-performance NiO/Ag/NiO transparent electrodes for flexible organic photovoltaic cells.

    Science.gov (United States)

    Xue, Zhichao; Liu, Xingyuan; Zhang, Nan; Chen, Hong; Zheng, Xuanming; Wang, Haiyu; Guo, Xiaoyang

    2014-09-24

    Transparent electrodes with a dielectric-metal-dielectric (DMD) structure can be implemented in a simple manufacturing process and have good optical and electrical properties. In this study, nickel oxide (NiO) is introduced into the DMD structure as a more appropriate dielectric material that has a high conduction band for electron blocking and a low valence band for efficient hole transport. The indium-free NiO/Ag/NiO (NAN) transparent electrode exhibits an adjustable high transmittance of ∼82% combined with a low sheet resistance of ∼7.6 Ω·s·q(-1) and a work function of 5.3 eV after UVO treatment. The NAN electrode shows excellent surface morphology and good thermal, humidity, and environmental stabilities. Only a small change in sheet resistance can be found after NAN electrode is preserved in air for 1 year. The power conversion efficiencies of organic photovoltaic cells with NAN electrodes deposited on glass and polyethylene terephthalate (PET) substrates are 6.07 and 5.55%, respectively, which are competitive with those of indium tin oxide (ITO)-based devices. Good photoelectric properties, the low-cost material, and the room-temperature deposition process imply that NAN electrode is a striking candidate for low-cost and flexible transparent electrode for efficient flexible optoelectronic devices.

  6. Emerging Transparent Conducting Electrodes for Organic Light Emitting Diodes

    Directory of Open Access Journals (Sweden)

    Tze-Bin Song

    2014-03-01

    Full Text Available Organic light emitting diodes (OLEDs have attracted much attention in recent years as next generation lighting and displays, due to their many advantages, including superb performance, mechanical flexibility, ease of fabrication, chemical versatility, etc. In order to fully realize the highly flexible features, reduce the cost and further improve the performance of OLED devices, replacing the conventional indium tin oxide with better alternative transparent conducting electrodes (TCEs is a crucial step. In this review, we focus on the emerging alternative TCE materials for OLED applications, including carbon nanotubes (CNTs, metallic nanowires, conductive polymers and graphene. These materials are selected, because they have been applied as transparent electrodes for OLED devices and achieved reasonably good performance or even higher device performance than that of indium tin oxide (ITO glass. Various electrode modification techniques and their effects on the device performance are presented. The effects of new TCEs on light extraction, device performance and reliability are discussed. Highly flexible, stretchable and efficient OLED devices are achieved based on these alternative TCEs. These results are summarized for each material. The advantages and current challenges of these TCE materials are also identified.

  7. Stretchable, Transparent, and Stretch-Unresponsive Capacitive Touch Sensor Array with Selectively Patterned Silver Nanowires/Reduced Graphene Oxide Electrodes.

    Science.gov (United States)

    Choi, Tae Young; Hwang, Byeong-Ung; Kim, Bo-Yeong; Trung, Tran Quang; Nam, Yun Hyoung; Kim, Do-Nyun; Eom, Kilho; Lee, Nae-Eung

    2017-05-31

    Stretchable and transparent touch sensors are essential input devices for future stretchable transparent electronics. Capacitive touch sensors with a simple structure of only two electrodes and one dielectric are an established technology in current rigid electronics. However, the development of stretchable and transparent capacitive touch sensors has been limited due to changes in capacitance resulting from dimensional changes in elastomeric dielectrics and difficulty in obtaining stretchable transparent electrodes that are stable under large strains. Herein, a stretch-unresponsive stretchable and transparent capacitive touch sensor array was demonstrated by employing stretchable and transparent electrodes with a simple selective-patterning process and by carefully selecting dielectric and substrate materials with low strain responsivity. A selective-patterning process was used to embed a stretchable and transparent silver nanowires/reduced graphene oxide (AgNWs/rGO) electrode line into a polyurethane (PU) dielectric layer on a polydimethylsiloxane (PDMS) substrate using oxygen plasma treatment. This method provides the ability to directly fabricate thin film electrode lines on elastomeric substrates and can be used in conventional processes employed in stretchable electronics. We used a dielectric (PU) with a Poisson's ratio smaller than that of the substrate (PDMS), which prevented changes in the capacitance resulting from stretching of the sensor. The stretch-unresponsive touch sensing capability of our transparent and stretchable capacitive touch sensor has great potential in wearable electronics and human-machine interfaces.

  8. Facile Synthesis of Ultralong and Thin Copper Nanowires and Its Application to High-Performance Flexible Transparent Conductive Electrodes

    Science.gov (United States)

    Wang, Yaxiong; Liu, Ping; Zeng, Baoqing; Liu, Liming; Yang, Jianjun

    2018-03-01

    A hydrothermal method for synthesizing ultralong and thin copper nanowires (CuNWs) with average diameter of 35 nm and average length of 100 μm is demonstrated in this paper. The concerning raw materials include copric (II) chloride dihydrate (CuCl2·2H2O), octadecylamine (ODA), and ascorbic acid, which are all very cheap and nontoxic. The effect of different reaction time and different molar ratios to the reaction products were researched. The CuNWs prepared by the hydrothermal method were applied to fabricate CuNW transparent conductive electrode (TCE), which exhibited excellent conductivity-transmittance performance with low sheet resistance of 26.23 Ω /\\square and high transparency at 550 nm of 89.06% (excluding Polyethylene terephthalate (PET) substrate). The electrode fabrication process was carried out at room temperature, and there was no need for post-treatment. In order to decrease roughness and protect CuNW TCEs against being oxidized, we fabricated CuNW/poly(methyl methacrylate) (PMMA) hybrid TCEs (HTCEs) using PMMA solution. The CuNW/PMMA HTCEs exhibited low surface roughness and chemical stability as compared with CuNW TCEs.

  9. Paper-based transparent flexible thin film supercapacitors

    Science.gov (United States)

    Gao, Kezheng; Shao, Ziqiang; Wu, Xue; Wang, Xi; Zhang, Yunhua; Wang, Wenjun; Wang, Feijun

    2013-05-01

    Paper-based transparent flexible thin film supercapacitors were fabricated using CNF-[RGO]n hybrid paper as an electrode material and charge collector. Owing to the self-anti-stacking of distorted RGO nanosheets and internal electrolyte nanoscale-reservoirs, the device exhibited good electrochemical performance (about 1.73 mF cm-2), and a transmittance of about 56% (at 550 nm).Paper-based transparent flexible thin film supercapacitors were fabricated using CNF-[RGO]n hybrid paper as an electrode material and charge collector. Owing to the self-anti-stacking of distorted RGO nanosheets and internal electrolyte nanoscale-reservoirs, the device exhibited good electrochemical performance (about 1.73 mF cm-2), and a transmittance of about 56% (at 550 nm). Electronic supplementary information (ESI) available: Experimental, TEM image, IR spectra, and XRD spectra of cellulose nanofibers, TEM image, and XRD spectra of RGO, graphite, GO nanosheets, CNF paper, and CNF-[RGO]20 hybrid paper, high-resolution C1s spectra of GO, Raman spectra of GO nanosheets, cross-sectional FESEM image of CNF-[RGO]20 hybrid paper and stress-strain curve of T-SC-20. See DOI: 10.1039/c3nr00674c

  10. Structural and Optical Properties of Spray Coated Carbon Hybrid Materials Applied to Transparent and Flexible Electrodes

    Directory of Open Access Journals (Sweden)

    Grzegorz Wroblewski

    2017-01-01

    Full Text Available Transparent and flexible electrodes were fabricated with cost-effective spray coating technique on polyethylene terephthalate foil substrates. Particularly designed paint compositions contained mixtures of multiwalled carbon nanotubes and graphene platelets to achieve their desired rheology and electrooptical layers parameters. Electrodes were prepared in standard technological conditions without the need of clean rooms or high temperature processing. The sheet resistance and optical transmittance of fabricated layers were tuned with the number of coatings; then the most suitable relation of these parameters was designated through the figure of merit. Optical measurements were performed in the range of wavelengths from 250 to 2500 nm with a spectrophotometer with the integration sphere. Spectral dependence of total and diffusive optical transmission for thin films with graphene platelet covered by multiwalled carbon nanotubes was designated which allowed determining the relative absorbance. Layer parameters such as thickness, refractive index, energy gap, and effective reflectance coefficient show the correlation of electrooptical properties with the technological conditions. Moreover the structural properties of fabricated layers were examined by means of the X-ray diffraction.

  11. Transparent and flexible electrodes and supercapacitors using polyaniline/single-walled carbon nanotube composite thin films

    Science.gov (United States)

    Ge, Jun; Cheng, Guanghui; Chen, Liwei

    2011-08-01

    Large-scale transparent and flexible electronic devices have been pursued for potential applications such as those in touch sensors and display technologies. These applications require that the power source of these devices must also comply with transparent and flexible features. Here we present transparent and flexible supercapacitors assembled from polyaniline (PANI)/single-walled carbon nanotube (SWNT) composite thin film electrodes. The ultrathin, optically homogeneous and transparent, electrically conducting films of the PANI/SWNT composite show a large specific capacitance due to combined double-layer capacitance and pseudo-capacitance mechanisms. A supercapacitor assembled using electrodes with a SWNT density of 10.0 µg cm-2 and 59 wt% PANI gives a specific capacitance of 55.0 F g-1 at a current density of 2.6 A g-1, showing its possibility for transparent and flexible energy storage.

  12. Investigation of ITO free transparent conducting polymer based electrode

    Science.gov (United States)

    Sharma, Vikas; Sapna, Sachdev, Kanupriya

    2016-05-01

    The last few decades have seen a significant improvement in organic semiconductor technology related to solar cell, light emitting diode and display panels. The material and structure of the transparent electrode is one of the major concerns for superior performance of devices such as OPV, OLED, touch screen and LCD display. Commonly used ITO is now restricted due to scarcity of indium, its poor mechanical properties and rigidity, and mismatch of energy levels with the active layer. Nowadays DMD (dielectric-metal-dielectric) structure is one of the prominent candidates as alternatives to ITO based electrode. We have used solution based spin coated polymer layer as the dielectric layer with silver thin film embedded in between to make a polymer-metal-polymer (PMP) structure for TCE applications. The PMP structure shows low resistivity (2.3 x 10-4Ω-cm), high carrier concentration (2.9 x 1021 cm-3) and moderate transparency. The multilayer PMP structure is characterized with XRD, AFM and Hall measurement to prove its suitability for opto-electronic device applications.

  13. Investigation of ITO free transparent conducting polymer based electrode

    International Nuclear Information System (INIS)

    Sharma, Vikas; Sapna,; Sachdev, Kanupriya

    2016-01-01

    The last few decades have seen a significant improvement in organic semiconductor technology related to solar cell, light emitting diode and display panels. The material and structure of the transparent electrode is one of the major concerns for superior performance of devices such as OPV, OLED, touch screen and LCD display. Commonly used ITO is now restricted due to scarcity of indium, its poor mechanical properties and rigidity, and mismatch of energy levels with the active layer. Nowadays DMD (dielectric-metal-dielectric) structure is one of the prominent candidates as alternatives to ITO based electrode. We have used solution based spin coated polymer layer as the dielectric layer with silver thin film embedded in between to make a polymer-metal-polymer (PMP) structure for TCE applications. The PMP structure shows low resistivity (2.3 x 10"−"4Ω-cm), high carrier concentration (2.9 x 10"2"1 cm"−"3) and moderate transparency. The multilayer PMP structure is characterized with XRD, AFM and Hall measurement to prove its suitability for opto-electronic device applications.

  14. Investigation of ITO free transparent conducting polymer based electrode

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, Vikas; Sapna,; Sachdev, Kanupriya [Department of Physics, Malaviya National Institute of Technology Jaipur, JLN Marg, Jaipur-India-302017 (India)

    2016-05-23

    The last few decades have seen a significant improvement in organic semiconductor technology related to solar cell, light emitting diode and display panels. The material and structure of the transparent electrode is one of the major concerns for superior performance of devices such as OPV, OLED, touch screen and LCD display. Commonly used ITO is now restricted due to scarcity of indium, its poor mechanical properties and rigidity, and mismatch of energy levels with the active layer. Nowadays DMD (dielectric-metal-dielectric) structure is one of the prominent candidates as alternatives to ITO based electrode. We have used solution based spin coated polymer layer as the dielectric layer with silver thin film embedded in between to make a polymer-metal-polymer (PMP) structure for TCE applications. The PMP structure shows low resistivity (2.3 x 10{sup −4}Ω-cm), high carrier concentration (2.9 x 10{sup 21} cm{sup −3}) and moderate transparency. The multilayer PMP structure is characterized with XRD, AFM and Hall measurement to prove its suitability for opto-electronic device applications.

  15. Low Reflectivity and High Flexibility of Tin-Doped Indium Oxide Nanofiber Transparent Electrodes

    KAUST Repository

    Wu, Hui

    2011-01-12

    Tin-doped indium oxide (ITO) has found widespread use in solar cells, displays, and touch screens as a transparent electrode; however, two major problems with ITO remain: high reflectivity (up to 10%) and insufficient flexibility. Together, these problems severely limit the applications of ITO films for future optoelectronic devices. In this communication, we report the fabrication of ITO nanofiber network transparent electrodes. The nanofiber networks show optical reflectivity as low as 5% and high flexibility; the nanofiber networks can be bent to a radius of 2 mm with negligible changes in the sheet resistance. © 2010 American Chemical Society.

  16. Visibility and oxidation stability of hybrid-type copper mesh electrodes with combined nickel-carbon nanotube coating

    Science.gov (United States)

    Kim, Bu-Jong; Hwang, Young-Jin; Park, Jin-Seok

    2017-04-01

    Hybrid-type transparent conductive electrodes (TCEs) were fabricated by coating copper (Cu) meshes with carbon nanotube (CNT) via electrophoretic deposition, and with nickel (Ni) via electroplating. For the fabricated electrodes, the effects of the coating with CNT and Ni on their transmittance and reflectance in the visible-light range, electrical sheet resistance, and chromatic parameters (e.g., redness and yellowness) were characterized. Also, an oxidation stability test was performed by exposing the electrodes to air for 20 d at 85 °C and 85% temperature and humidity conditions, respectively. It was discovered that the CNT coating considerably reduced the reflectance of the Cu meshes, and that the Ni coating effectively protected the Cu meshes against oxidation. Furthermore, after the coating with CNT, both the redness and yellowness of the Cu mesh regardless of the Ni coating approached almost zero, indicating a natural color. The experiment results confirmed that the hybrid-type Cu meshes with combined Ni-CNT coating improved characteristics in terms of reflectance, sheet resistance, oxidation stability, and color, superior to those of the primitive Cu mesh, and also simultaneously satisfied most of the requirements for TCEs.

  17. Fast-switching initially-transparent liquid crystal light shutter with crossed patterned electrodes

    Directory of Open Access Journals (Sweden)

    Joon Heo

    2015-04-01

    Full Text Available We propose an initially transparent light shutter using polymer-networked liquid crystals with crossed patterned electrodes. The proposed light shutter is switchable between the transparent and opaque states, and it exhibits a fast response time and a low operating voltage. In the transparent state, the light shutter has high transmittance; in the opaque state, it can block the background image and provides black color. We expect that the proposed light shutter can be applied to see-through displays and smart windows.

  18. New Transparent Laser-Drilled Fluorine-doped Tin Oxide covered Quartz Electrodes for Photo-Electrochemical Water Splitting

    International Nuclear Information System (INIS)

    Hernández, Simelys; Tortello, Mauro; Sacco, Adriano; Quaglio, Marzia; Meyer, Toby; Bianco, Stefano; Saracco, Guido; Pirri, C. Fabrizio; Tresso, Elena

    2014-01-01

    Graphical abstract: - Highlights: • A new transparent, conductive and porous electrode was developed. • It has a high effective surface area available for catalyst molecules attachment. • It is an ideal support for testing new anodic and cathodic photoactive materials. • The proof-of-concept was achieved in an appositely designed water photo-electrolyzer. • The EIS technique was used as a very powerful tool to characterize the new designed electrode. - Abstract: A new-designed transparent, conductive and porous electrode was developed for application in a compact laboratory-scale proton exchange membrane (PEM) photo-electrolyzer. The electrode is made of a thin transparent quartz sheet covered with fluorine-doped tin oxide (FTO), in which an array of holes is laser-drilled to allow water and gas permeation. The electrical, morphological, optical and electrochemical characterization of the drilled electrodes is presented in comparison with a non-drilled one. The drilled electrode exhibits, in the visible region, a good transmittance (average value of 62%), a noticeable reflectance due to the light scattering effect of the hole-drilled internal region, and a higher effective surface area than the non-drilled electrode. The proof-of-concept of the applicability of the drilled electrode was achieved by using it as a support for a traditional photocatalyst (i.e. commercial TiO 2 nanoparticles). The latter, coupled with a polymeric electrolyte membrane (i.e.Nafion 117) and a Pt counter electrode, forms a transparent membrane electrode assembly (MEA), with a good conductivity, wettability and porosity. Electrochemical impedance spectroscopy (EIS) was used as a very powerful tool to gain information on the real active surface of the new drilled electrode and the main electrochemical parameters driving the charge transfer reactions on it. This new electrode architecture is demonstrated to be an ideal support for testing new anodic and cathodic photoactive

  19. Carbon nanotube-graphene composite film as transparent conductive electrode for GaN-based light-emitting diodes

    KAUST Repository

    Kang, Chun Hong

    2016-08-23

    Transparent conductive electrodes (TCE) made of carbon nanotube (CNT) and graphene composite for GaN-based light emitting diodes (LED) are presented. The TCE with 533-Ω/□ sheet resistance and 88% transmittance were obtained when chemical-vapor-deposition grown graphene was fused across CNT networks. With an additional 2-nm thin NiOx interlayer between the TCE and top p-GaN layer of the LED, the forward voltage was reduced to 5.12 V at 20-mA injection current. Four-fold improvement in terms of light output power was observed. The improvement can be ascribed to the enhanced lateral current spreading across the hybrid CNT-graphene TCE before injection into the p-GaN layer.

  20. Carbon nanotube-graphene composite film as transparent conductive electrode for GaN-based light-emitting diodes

    KAUST Repository

    Kang, Chun Hong; Shen, Chao; M. Saheed, M. Shuaib; Mohamed, Norani Muti; Ng, Tien Khee; Ooi, Boon S.; Burhanudin, Zainal Arif

    2016-01-01

    Transparent conductive electrodes (TCE) made of carbon nanotube (CNT) and graphene composite for GaN-based light emitting diodes (LED) are presented. The TCE with 533-Ω/□ sheet resistance and 88% transmittance were obtained when chemical-vapor-deposition grown graphene was fused across CNT networks. With an additional 2-nm thin NiOx interlayer between the TCE and top p-GaN layer of the LED, the forward voltage was reduced to 5.12 V at 20-mA injection current. Four-fold improvement in terms of light output power was observed. The improvement can be ascribed to the enhanced lateral current spreading across the hybrid CNT-graphene TCE before injection into the p-GaN layer.

  1. Improvements in purification of silver nanowires by decantation and fabrication of flexible transparent electrodes. Application to capacitive touch sensors

    International Nuclear Information System (INIS)

    Mayousse, Céline; Celle, Caroline; Moreau, Eléonore; Carella, Alexandre; Simonato, Jean-Pierre; Mainguet, Jean-François

    2013-01-01

    Transparent flexible electrodes made of metallic nanowires, and in particular silver nanowires (AgNWs), appear as an extremely promising alternative to transparent conductive oxides for future optoelectronic devices. Though significant progresses have been made the last few years, there is still some room for improvement regarding the synthesis of high quality silver nanowire solutions and fabrication process of high performance electrodes. We show that the commonly used purification process can be greatly simplified through decantation. Using this process it is possible to fabricate flexible electrodes by spray coating with sheet resistance lower than 25 Ω sq −1 at 90% transparency in the visible spectrum. These electrodes were used to fabricate an operative transparent flexible touch screen. To our knowledge this is the first reported AgNW based touch sensor relying on capacitive technology. (paper)

  2. Silver nanowire based flexible electrodes with improved properties: High conductivity, transparency, adhesion and low haze

    International Nuclear Information System (INIS)

    Kiran Kumar, A.B.V.; Wan Bae, Chang; Piao, Longhai; Kim, Sang-Ho

    2013-01-01

    Graphical abstract: This graphical abstract illustrates the schematic representation of the main drawbacks and rectifications for AgNWs based transparent electrodes. - Highlights: • Films exhibited low sheet resistance and optical properties with R s ≤ 30 Ω/□ and T ≥ 90%. • We decreased haze to 2% by controlling AgNWs length, diameter, and concentration. • We achieved good adhesion for AgNWs on PET film. • There is no significant change in resistance in the bending angle from 0° to 180°, and on twisting. - Abstract: Recent work has been focusing on solution processable transparent electrodes for various applications including solar cells and displays. As well as, the research aims majorly at silver nanowires (AgNWs) to replace ITO. We enhance the transparent electrode performance as a function of optical and mechanical properties with low sheet resistance, by controlling the AgNWs accept ratios, ink composition, and processing conditions. The nanowire network of transparent films agrees with the 2D percolation law. The film transmittance values at 550 nm are coping with a reference ITO film. Sheet resistance and haze values are suitable for flexible electronic applications. We fabricate transparent flexible film using a low-cost processing technique

  3. Silver nanowire based flexible electrodes with improved properties: High conductivity, transparency, adhesion and low haze

    Energy Technology Data Exchange (ETDEWEB)

    Kiran Kumar, A.B.V.; Wan Bae, Chang; Piao, Longhai, E-mail: piaolh@kongju.ac.kr; Kim, Sang-Ho, E-mail: sangho1130@kongju.ac.kr

    2013-08-01

    Graphical abstract: This graphical abstract illustrates the schematic representation of the main drawbacks and rectifications for AgNWs based transparent electrodes. - Highlights: • Films exhibited low sheet resistance and optical properties with R{sub s} ≤ 30 Ω/□ and T ≥ 90%. • We decreased haze to 2% by controlling AgNWs length, diameter, and concentration. • We achieved good adhesion for AgNWs on PET film. • There is no significant change in resistance in the bending angle from 0° to 180°, and on twisting. - Abstract: Recent work has been focusing on solution processable transparent electrodes for various applications including solar cells and displays. As well as, the research aims majorly at silver nanowires (AgNWs) to replace ITO. We enhance the transparent electrode performance as a function of optical and mechanical properties with low sheet resistance, by controlling the AgNWs accept ratios, ink composition, and processing conditions. The nanowire network of transparent films agrees with the 2D percolation law. The film transmittance values at 550 nm are coping with a reference ITO film. Sheet resistance and haze values are suitable for flexible electronic applications. We fabricate transparent flexible film using a low-cost processing technique.

  4. Structural Engineering of Metal-Mesh Structure Applicable for Transparent Electrodes Fabricated by Self-Formable Cracked Template

    Directory of Open Access Journals (Sweden)

    Yeong-gyu Kim

    2017-08-01

    Full Text Available Flexible and transparent conducting electrodes are essential for future electronic devices. In this study, we successfully fabricated a highly-interconnected metal-mesh structure (MMS using a self-formable cracked template. The template—fabricated from colloidal silica—can be easily formed and removed, presenting a simple and cost-effective way to construct a randomly and uniformly networked MMS. The structure of the MMS can be controlled by varying the spin-coating speed during the coating of the template solution or by stacking of metal-mesh layers. Through these techniques, the optical transparency and sheet resistance of the MMS can be designed for a specific purpose. A double-layered Al MMS showed high optical transparency (~80% in the visible region, low sheet resistance (~20 Ω/sq, and good flexibility under bending test compared with a single-layered MMS, because of its highly-interconnected wire structure. Additionally, we identified the applicability of the MMS in the case of practical devices by applying it to electrodes of thin-film transistors (TFTs. The TFTs with MMS electrodes showed comparable electrical characteristics to those with conventional film-type electrodes. The cracked template can be used for the fabrication of a mesh structure consisting of any material, so it can be used for not only transparent electrodes, but also various applications such as solar cells, sensors, etc.

  5. Organic light-emitting diodes using novel embedded al gird transparent electrodes

    Science.gov (United States)

    Peng, Cuiyun; Chen, Changbo; Guo, Kunping; Tian, Zhenghao; Zhu, Wenqing; Xu, Tao; Wei, Bin

    2017-03-01

    This work demonstrates a novel transparent electrode using embedded Al grids fabricated by a simple and cost-effective approach using photolithography and wet etching. The optical and electrical properties of Al grids versus grid geometry have been systematically investigated, it was found that Al grids exhibited a low sheet resistance of 70 Ω □-1 and a light transmission of 69% at 550 nm with advantages in terms of processing conditions and material cost as well as potential to large scale fabrication. Indium Tin Oxide-free green organic light-emitting diodes (OLED) based on Al grids transparent electrodes was demonstrated, yielding a power efficiency >15 lm W-1 and current efficiency >39 cd A-1 at a brightness of 2396 cd m-2. Furthermore, a reduced efficiency roll-off and higher brightness have been achieved compared with ITO-base device.

  6. Biaxially stretchable supercapacitors based on the buckled hybrid fiber electrode array

    Science.gov (United States)

    Zhang, Nan; Zhou, Weiya; Zhang, Qiang; Luan, Pingshan; Cai, Le; Yang, Feng; Zhang, Xiao; Fan, Qingxia; Zhou, Wenbin; Xiao, Zhuojian; Gu, Xiaogang; Chen, Huiliang; Li, Kewei; Xiao, Shiqi; Wang, Yanchun; Liu, Huaping; Xie, Sishen

    2015-07-01

    fibers endow the supercapacitor with 100% stretchability along all directions. In addition, the supercapacitor exhibited good transparency, as well as excellent electrochemical properties and stability after being stretched 5000 times. Electronic supplementary information (ESI) available: SEM images of the twist-first hybrid fiber, TEM images of SWCNT/PEDOT hybrid bundles, Raman spectra and FTIR spectra of the hybrid electrodes, CVs of the pristine, bended and wound supercapacitor, transmittance spectra of the pristine and stretched supercapacitor, demo video of the supercapacitor. See DOI: 10.1039/c5nr03027g

  7. Planar silver nanowire, carbon nanotube and PEDOT:PSS nanocomposite transparent electrodes

    Science.gov (United States)

    Stapleton, Andrew J.; Yambem, Soniya D.; Johns, Ashley H.; Afre, Rakesh A.; Ellis, Amanda V.; Shapter, Joe G.; Andersson, Gunther G.; Quinton, Jamie S.; Burn, Paul L.; Meredith, Paul; Lewis, David A.

    2015-04-01

    Highly conductive, transparent and flexible planar electrodes were fabricated using interwoven silver nanowires and single-walled carbon nanotubes (AgNW:SWCNT) in a PEDOT:PSS matrix via an epoxy transfer method from a silicon template. The planar electrodes achieved a sheet resistance of 6.6 ± 0.0 Ω/□ and an average transmission of 86% between 400 and 800 nm. A high figure of merit of 367 Ω-1 is reported for the electrodes, which is much higher than that measured for indium tin oxide and reported for other AgNW composites. The AgNW:SWCNT:PEDOT:PSS electrode was used to fabricate low temperature (annealing free) devices demonstrating their potential to function with a range of organic semiconducting polymer:fullerene bulk heterojunction blend systems.

  8. Smooth-surface silver nanowire electrode with high conductivity and transparency on functional layer coated flexible film

    Energy Technology Data Exchange (ETDEWEB)

    Lee, So Hee; Lim, Sooman; Kim, Haekyoung, E-mail: hkkim@ynu.ac.kr

    2015-08-31

    Transparent conductive electrode (TCE) with silver nanowires has been widely studied as an alternative of indium tin oxide for flexible electronic or optical devices such as organic light-emitting diodes, and solar cells. However, it has an issue of surface roughness due to nanowire's intrinsic properties. Here, to achieve a smooth electrode with high conductivity and transmittance on polyethylene terephthalate (PET) substrates, a functional layer of poly(N-vinylpyrrolidone) (PVP) is utilized with a mechanical transfer process. The silver nanowire electrode on PVP-coated PET with low surface roughness of 9 nm exhibits the low sheet resistance of 18 Ω □{sup −1} and high transmittance of 87.6%. It is produced by transferring the silver nanowire electrode spin-coated on the glass to PVP-coated PET using a pressure of 10 MPa for 10 min. Silver nanowire electrode on PVP-coated PET demonstrates the stable sheet resistance of 18 Ω □{sup −1} after the mechanical taping test due to strong adhesion between PVP functional layer and silver nanowires. Smooth TCE with silver nanowires could be proposed as a transparent electrode for flexible electronic or optical devices, which consist of thin electrical active layers on TCE. - Highlights: • Silver nanowire (Ag NWs) transparent electrodes were fabricated on flexible film. • Flexible film was coated with poly N-vinylpyrrolidone (PVP). • PVP layer plays roles as an adhesive layer and matrix in electrode. • Ag NWs electrode exhibited with low surface roughness of 9 nm. • Ag NWs electrode has a low resistance (18 Ω ☐{sup −1}) and high transmittance (87.6%)

  9. Smooth-surface silver nanowire electrode with high conductivity and transparency on functional layer coated flexible film

    International Nuclear Information System (INIS)

    Lee, So Hee; Lim, Sooman; Kim, Haekyoung

    2015-01-01

    Transparent conductive electrode (TCE) with silver nanowires has been widely studied as an alternative of indium tin oxide for flexible electronic or optical devices such as organic light-emitting diodes, and solar cells. However, it has an issue of surface roughness due to nanowire's intrinsic properties. Here, to achieve a smooth electrode with high conductivity and transmittance on polyethylene terephthalate (PET) substrates, a functional layer of poly(N-vinylpyrrolidone) (PVP) is utilized with a mechanical transfer process. The silver nanowire electrode on PVP-coated PET with low surface roughness of 9 nm exhibits the low sheet resistance of 18 Ω □ −1 and high transmittance of 87.6%. It is produced by transferring the silver nanowire electrode spin-coated on the glass to PVP-coated PET using a pressure of 10 MPa for 10 min. Silver nanowire electrode on PVP-coated PET demonstrates the stable sheet resistance of 18 Ω □ −1 after the mechanical taping test due to strong adhesion between PVP functional layer and silver nanowires. Smooth TCE with silver nanowires could be proposed as a transparent electrode for flexible electronic or optical devices, which consist of thin electrical active layers on TCE. - Highlights: • Silver nanowire (Ag NWs) transparent electrodes were fabricated on flexible film. • Flexible film was coated with poly N-vinylpyrrolidone (PVP). • PVP layer plays roles as an adhesive layer and matrix in electrode. • Ag NWs electrode exhibited with low surface roughness of 9 nm. • Ag NWs electrode has a low resistance (18 Ω ☐ −1 ) and high transmittance (87.6%)

  10. Preparation of Aluminum Nanomesh Thin Films from an Anodic Aluminum Oxide Template as Transparent Conductive Electrodes

    Science.gov (United States)

    Li, Yiwen; Chen, Yulong; Qiu, Mingxia; Yu, Hongyu; Zhang, Xinhai; Sun, Xiao Wei; Chen, Rui

    2016-02-01

    We have employed anodic aluminum oxide as a template to prepare ultrathin, transparent, and conducting Al films with a unique nanomesh structure for transparent conductive electrodes. The anodic aluminum oxide template is obtained through direct anodization of a sputtered Al layer on a glass substrate, and subsequent wet etching creates the nanomesh metallic film. The optical and conductive properties are greatly influenced by experimental conditions. By tuning the anodizing time, transparent electrodes with appropriate optical transmittance and sheet resistance have been obtained. The results demonstrate that our proposed strategy can serve as a potential method to fabricate low-cost TCEs to replace conventional indium tin oxide materials.

  11. Angle-specific transparent conducting electrodes with metallic gratings

    Energy Technology Data Exchange (ETDEWEB)

    Rivolta, N. X. A., E-mail: nicolas.rivolta@umons.ac.be; Maes, B. [Micro- and Nanophotonic Materials Group, Faculty of Science, University of Mons, Avenue Maistriau 19, B-7000 Mons (Belgium)

    2014-08-07

    Transparent conducting electrodes, which are not made from indium tin oxide, and which display a strong angular dependence are useful for various technologies. Here, we introduce a tilted silver grating that combines a large conductance with a strong and angle-specific transmittance. When the light incidence angle matches the tilt angle of the grating, transmittance is close to the maximum along a very broadband range. We explain the behavior through simulations that show in detail the plasmonic and interference effects at play.

  12. Al-Doped ZnO Monolayer as a Promising Transparent Electrode Material: A First-Principles Study

    Directory of Open Access Journals (Sweden)

    Mingyang Wu

    2017-03-01

    Full Text Available Al-doped ZnO has attracted much attention as a transparent electrode. The graphene-like ZnO monolayer as a two-dimensional nanostructure material shows exceptional properties compared to bulk ZnO. Here, through first-principle calculations, we found that the transparency in the visible light region of Al-doped ZnO monolayer is significantly enhanced compared to the bulk counterpart. In particular, the 12.5 at% Al-doped ZnO monolayer exhibits the highest visible transmittance of above 99%. Further, the electrical conductivity of the ZnO monolayer is enhanced as a result of Al doping, which also occurred in the bulk system. Our results suggest that Al-doped ZnO monolayer is a promising transparent conducting electrode for nanoscale optoelectronic device applications.

  13. Development of highly transparent Pd-coated Ag nanowire electrode for display and catalysis applications

    Energy Technology Data Exchange (ETDEWEB)

    Canlier, Ali, E-mail: ali.canlier@agu.edu.tr [Department of Materials Science and Nanotechnology Engineering, Abdullah Gul University, P.O. Box 38080, Kayseri (Turkey); Ucak, Umit Volkan, E-mail: sirvolkan@gmail.com [Department of Materials Science and Nanotechnology Engineering, Abdullah Gul University, P.O. Box 38080, Kayseri (Turkey); Graduate School of Energy, Environment, Water, and Sustainability (EEWS), Korea Advanced Institute of Science and Technology (KAIST), P.O. Box 305-701, Daejeon (Korea, Republic of); Usta, Hakan, E-mail: husta38@gmail.com [Department of Materials Science and Nanotechnology Engineering, Abdullah Gul University, P.O. Box 38080, Kayseri (Turkey); Cho, Changsoon, E-mail: cscho@kaist.ac.kr [Graduate School of Energy, Environment, Water, and Sustainability (EEWS), Korea Advanced Institute of Science and Technology (KAIST), P.O. Box 305-701, Daejeon (Korea, Republic of); Lee, Jung-Yong, E-mail: jungyong.lee@kaist.ac.kr [Graduate School of Energy, Environment, Water, and Sustainability (EEWS), Korea Advanced Institute of Science and Technology (KAIST), P.O. Box 305-701, Daejeon (Korea, Republic of); Sen, Unal, E-mail: senunal@gmail.com [Department of Mechanical Engineering, Abdullah Gul University, P.O. Box 38080, Kayseri (Turkey); Citir, Murat, E-mail: muratcitir@gmail.com [Department of Chemical Engineering, Abdullah Gul University, P.O. Box 38080, Kayseri (Turkey)

    2015-09-30

    Highlights: • Highly uniform thin-layer coating of Pd onto Ag nanowire surface was accomplished. • A transparent electrode of Pd-coated Ag nanowire was uniformly deposited on flexible substrate. • 95% of optical transmittance and 175 Ω/sq sheet resistance were obtained. • Extremely low haze of 1.9% and high oxidation stability proved an efficient transparent electrode. • This electrode can be used as Pd-catalyst for synthesis reactions and fuel cell electrode applications. - Abstract: Ag nanowire transparent electrode has excellent transmittance (90%) and sheet resistance (20 Ω/sq), yet there are slight drawbacks such as optical haze and chemical instability against aerial oxidation. Chemical stability of Ag nanowires needs to be improved in order for it to be suitable for electrode applications. In our recent article, we demonstrated that coating Ag nanowires with a thin layer of Au through galvanic exchange reactions enhances the chemical stability of Ag nanowire films highly and also helps to obtain lower haze. In this study, coating of a thin Pd layer has been applied successfully onto the surface of Ag nanowires. A mild Pd complex oxidant [Pd(en){sub 2}](NO{sub 3}){sub 2} was prepared in order to oxidize Ag atoms partially on the surface via galvanic displacement. The mild galvanic exchange allowed for a thin layer (1–2 nm) of Pd coating on the Ag nanowires with minimal truncation of the nanowire, where the average length and the diameter were 12.5 μm and 59 nm, respectively. The Pd-coated Ag nanowires were suspended in methanol and then electrostatically sprayed on flexible polycarbonate substrates. It has been revealed that average total transmittance remain around 95% within visible spectrum region (400–800 nm) whereas sheet resistance rises up to 175 Ω/sq. To the best of our knowledge, for the first time in the literature, Pd coating was employed on Ag nanowires in order to design transparent electrodes for high transparency and strong

  14. Evaluation of the hybrid-L24 electrode using microcomputed tomography.

    Science.gov (United States)

    Driscoll, Colin L W; Carlson, Matthew L; Fama, Anthony F; Lane, John I

    2011-07-01

    To compare electrode array position, and depth of insertion of the Cochlear Hybrid-L24 electrode array following traditional cochleostomy and round window (RW) insertion. Prospective cadaveric temporal bone study. Ten cadaveric temporal bones were implanted with the Hybrid-L24 electrode array; half were introduced through a RW approach, whereas the other half were inserted through a traditional scala tympani cochleostomy. A micro-CT scanner was then used to evaluate electrode position, intracochlear trauma, and depth of insertion. All electrodes were inserted into the scala tympani without significant resistance. No electrodes demonstrated tip fold-over or through-fracturing of the osseous spiral lamina, basilar membrane, or spiral ligament. The average angular depth of insertion for all 10 electrodes was 252.4°. Compared to cochleostomy insertions, electrodes inserted through the RW more commonly acquired a proximal perimodiolar orientation, followed a more predictable course, and less commonly contacted critical soft tissue structures. The results of this study demonstrate that the Hybrid-L24 electrode can be successfully inserted using a RW or traditional cochleostomy technique with minimal intracochlear trauma. Our data also suggests that with this model, RW insertions may provide particular advantages with respect to hearing preservation over the traditional cochleostomy approach. Copyright © 2011 The American Laryngological, Rhinological, and Otological Society, Inc.

  15. Transparent lithium-ion batteries

    KAUST Repository

    Yang, Y.

    2011-07-25

    Transparent devices have recently attracted substantial attention. Various applications have been demonstrated, including displays, touch screens, and solar cells; however, transparent batteries, a key component in fully integrated transparent devices, have not yet been reported. As battery electrode materials are not transparent and have to be thick enough to store energy, the traditional approach of using thin films for transparent devices is not suitable. Here we demonstrate a grid-structured electrode to solve this dilemma, which is fabricated by a microfluidics-assisted method. The feature dimension in the electrode is below the resolution limit of human eyes, and, thus, the electrode appears transparent. Moreover, by aligning multiple electrodes together, the amount of energy stored increases readily without sacrificing the transparency. This results in a battery with energy density of 10 Wh/L at a transparency of 60%. The device is also flexible, further broadening their potential applications. The transparent device configuration also allows in situ Raman study of fundamental electrochemical reactions in batteries.

  16. Transparent lithium-ion batteries

    Science.gov (United States)

    Yang, Yuan; Jeong, Sangmoo; Hu, Liangbing; Wu, Hui; Lee, Seok Woo; Cui, Yi

    2011-01-01

    Transparent devices have recently attracted substantial attention. Various applications have been demonstrated, including displays, touch screens, and solar cells; however, transparent batteries, a key component in fully integrated transparent devices, have not yet been reported. As battery electrode materials are not transparent and have to be thick enough to store energy, the traditional approach of using thin films for transparent devices is not suitable. Here we demonstrate a grid-structured electrode to solve this dilemma, which is fabricated by a microfluidics-assisted method. The feature dimension in the electrode is below the resolution limit of human eyes, and, thus, the electrode appears transparent. Moreover, by aligning multiple electrodes together, the amount of energy stored increases readily without sacrificing the transparency. This results in a battery with energy density of 10 Wh/L at a transparency of 60%. The device is also flexible, further broadening their potential applications. The transparent device configuration also allows in situ Raman study of fundamental electrochemical reactions in batteries. PMID:21788483

  17. Large-Area Cross-Aligned Silver Nanowire Electrodes for Flexible, Transparent, and Force-Sensitive Mechanochromic Touch Screens.

    Science.gov (United States)

    Cho, Seungse; Kang, Saewon; Pandya, Ashish; Shanker, Ravi; Khan, Ziyauddin; Lee, Youngsu; Park, Jonghwa; Craig, Stephen L; Ko, Hyunhyub

    2017-04-25

    Silver nanowire (AgNW) networks are considered to be promising structures for use as flexible transparent electrodes for various optoelectronic devices. One important application of AgNW transparent electrodes is the flexible touch screens. However, the performances of flexible touch screens are still limited by the large surface roughness and low electrical to optical conductivity ratio of random network AgNW electrodes. In addition, although the perception of writing force on the touch screen enables a variety of different functions, the current technology still relies on the complicated capacitive force touch sensors. This paper demonstrates a simple and high-throughput bar-coating assembly technique for the fabrication of large-area (>20 × 20 cm 2 ), highly cross-aligned AgNW networks for transparent electrodes with the sheet resistance of 21.0 Ω sq -1 at 95.0% of optical transmittance, which compares favorably with that of random AgNW networks (sheet resistance of 21.0 Ω sq -1 at 90.4% of optical transmittance). As a proof of concept demonstration, we fabricate flexible, transparent, and force-sensitive touch screens using cross-aligned AgNW electrodes integrated with mechanochromic spiropyran-polydimethylsiloxane composite film. Our force-sensitive touch screens enable the precise monitoring of dynamic writings, tracing and drawing of underneath pictures, and perception of handwriting patterns with locally different writing forces. The suggested technique provides a robust and powerful platform for the controllable assembly of nanowires beyond the scale of conventional fabrication techniques, which can find diverse applications in multifunctional flexible electronic and optoelectronic devices.

  18. Hybrid tandem photovoltaic devices with a transparent conductive interconnecting recombination layer

    International Nuclear Information System (INIS)

    Kim, Taehee; Choi, Jin Young; Jeon, Jun Hong; Kim, Youn-Su; Kim, Bong-Soo; Lee, Doh-Kwon; Kim, Honggon; Han, Seunghee; Kim, Kyungkon

    2012-01-01

    Highlights: ► This work enhanced power conversion efficiency of the hybrid tandem solar cell from 1.0% to 2.6%. ► The interfacial series resistance of the tandem solar cell was eliminated by inserting ITO layer. ► This work shows the feasibility of the highly efficient hybrid tandem solar cells. -- Abstract: We demonstrate hybrid tandem photovoltaic devices with a transparent conductive interconnecting recombination layer. The series-connected hybrid tandem photovoltaic devices were developed by combining hydrogenated amorphous silicon (a-Si:H) and polymer-based organic photovoltaics (OPVs). In order to enhance the interfacial connection between the subcells, we employed highly transparent and conductive indium tin oxide (ITO) thin layer. By using the ITO interconnecting layer, the power conversion efficiency of the hybrid tandem solar cell was enhanced from 1.0% (V OC = 1.041 V, J SC = 2.97 mA/cm 2 , FF = 32.3%) to 2.6% (V OC = 1.336 V, J SC = 4.65 mA/cm 2 , FF = 41.98%) due to the eliminated interfacial series resistance.

  19. Roll-to-Roll sputtered ITO/Cu/ITO multilayer electrode for flexible, transparent thin film heaters and electrochromic applications.

    Science.gov (United States)

    Park, Sung-Hyun; Lee, Sang-Mok; Ko, Eun-Hye; Kim, Tae-Ho; Nah, Yoon-Chae; Lee, Sang-Jin; Lee, Jae Heung; Kim, Han-Ki

    2016-09-22

    We fabricate high-performance, flexible, transparent electrochromic (EC) films and thin film heaters (TFHs) on an ITO/Cu/ITO (ICI) multilayer electrode prepared by continuous roll-to-roll (RTR) sputtering of ITO and Cu targets. The RTR-sputtered ICI multilayer on a 700 mm wide PET substrate at room temperature exhibits a sheet resistance of 11.8 Ω/square and optical transmittance of 73.9%, which are acceptable for the fabrication of flexible and transparent EC films and TFHs. The effect of the Cu interlayer thickness on the electrical and optical properties of the ICI multilayer was investigated in detail. The bending and cycling fatigue tests demonstrate that the RTR-sputtered ICI multilayer was more flexible than a single ITO film because of high strain failure of the Cu interlayer. The flexible and transparent EC films and TFHs fabricated on the ICI electrode show better performances than reference EC films and TFHs with a single ITO electrode. Therefore, the RTR-sputtered ICI multilayer is the best substitute for the conventional ITO film electrode in order to realize flexible, transparent, cost-effective and large-area EC devices and TFHs that can be used as flexible and smart windows.

  20. Organometallic-inorganic hybrid electrodes for lithium-ion batteries

    Science.gov (United States)

    Huang, Qian; Lemmon, John P.; Choi, Daiwon; Cosimbescu, Lelia

    2016-09-13

    Disclosed are embodiments of active materials for organometallic and organometallic-inorganic hybrid electrodes and particularly active materials for organometallic and organometallic-inorganic hybrid cathodes for lithium-ion batteries. In certain embodiments the organometallic material comprises a ferrocene polymer.

  1. Solution-processed highly conductive PEDOT:PSS/AgNW/GO transparent film for efficient organic-Si hybrid solar cells.

    Science.gov (United States)

    Xu, Qiaojing; Song, Tao; Cui, Wei; Liu, Yuqiang; Xu, Weidong; Lee, Shuit-Tong; Sun, Baoquan

    2015-02-11

    Hybrid solar cells based on n-Si/poly(3,4-ethylenedioxythiophene):poly(styrene- sulfonate) (PEDOT:PSS) heterojunction promise to be a low cost photovoltaic technology by using simple device structure and easy fabrication process. However, due to the low conductivity of PEDOT:PSS, a metal grid deposited by vacuum evaporation method is still required to enhance the charge collection efficiency, which complicates the device fabrication process. Here, a solution-processed graphene oxide (GO)-welded silver nanowires (AgNWs) transparent conductive electrode (TCE) was employed to replace the vacuum deposited metal grid. A unique "sandwich" structure was developed by embedding an AgNW network between PEDOT:PSS and GO with a figure-of-merit of 8.6×10(-3) Ω(-1), which was even higher than that of sputtered indium tin oxide electrode (6.6×10(-3) Ω(-1)). A champion power conversion efficiency of 13.3% was achieved, because of the decreased series resistance of the TCEs as well as the enhanced built-in potential (Vbi) in the hybrid solar cells. The TCEs were obtained by facile low-temperature solution process method, which was compatible with cost-effective mass production technology.

  2. Features of Random Metal Nanowire Networks with Application in Transparent Conducting Electrodes

    KAUST Repository

    Maloth, Thirupathi

    2017-05-01

    Among the alternatives to conventional Indium Tin Oxide (ITO) used in making transparent conducting electrodes, the random metal nanowire (NW) networks are considered to be superior offering performance at par with ITO. The performance is measured in terms of sheet resistance and optical transmittance. However, as the electrical properties of such random networks are achieved thanks to a percolation network, a minimum size of the electrodes is needed so it actually exceeds the representative volume element (RVE) of the material and the macroscopic electrical properties are achieved. There is not much information about the compatibility of this minimum RVE size with the resolution actually needed in electronic devices. Furthermore, the efficiency of NWs in terms of electrical conduction is overlooked. In this work, we address the above industrially relevant questions - 1) The minimum size of electrodes that can be made based on the dimensions of NWs and the material coverage. For this, we propose a morphology based classification in defining the RVE size and we also compare the same with that is based on macroscopic electrical properties stabilization. 2) The amount of NWs that do not participate in electrical conduction, hence of no practical use. The results presented in this thesis are a design guide to experimentalists to design transparent electrodes with more optimal usage of the material.

  3. Bromination of graphene: a new route to making high performance transparent conducting electrodes with low optical losses

    KAUST Repository

    Mansour, Ahmed

    2015-09-03

    The high optical transmittance, electrical conductivity, flexibility and chemical stability of graphene have triggered great interest in its application as a transparent conducting electrode material and as a potential replacement for indium doped tin oxide. However, currently available large scale production methods such as chemical vapor deposition produce polycrystalline graphene, and require additional transfer process which further introduces defects and impurities resulting in a significant increase in its sheet resistance. Doping of graphene with foreign atoms has been a popular route for reducing its sheet resistance which typically comes at a significant loss in optical transmission. Herein, we report the successful bromine doping of graphene resulting in air-stable transparent conducting electrodes with up to 80% reduction of sheet resistance reaching ~180 Ω/ at the cost of 2-3% loss of optical transmission in case of few layer graphene and 0.8% in case of single layer graphene. The remarkably low tradeoff in optical transparency leads to the highest enhancements in figure of merit reported thus far. Furthermore, our results show a controlled increase in the workfunction up to 0.3 eV with the bromine content. These results should help pave the way for further development of graphene as potentially a highly transparent substitute to other transparent conducting electrodes in optoelectronic devices.

  4. Metal{Polymer Hybrid Materials For Flexible Transparent Conductors

    Science.gov (United States)

    Narayanan, Sudarshan

    The field of organic electronics, till recently a mere research topic, is currently making rapid strides and tremendous progress into entering the mainstream electronics industry with several applications and products such as OLED televisions, curved displays, wearable devices, flexible solar cells, etc. already having been commercialized. A major component in these devices, especially for photovoltaic applications, is a transparent conductor used as one of the electrodes, which in most commercial applications are highly doped wide bandgap semiconducting oxides also called Transparent Conducting Oxides (TCOs). However, TCOs exhibit inherent disadvantages such as limited supply, brittle mechanical properties, expensive processing that present major barriers for the more widespread economic use in applications such as exible transparent conductors, owing to which suitable alternative materials are being sought. In this context we present two approaches in realizing alternative TCs using metal-polymer hybrid materials, with high figures of merit that are easily processable, reasonably inexpensive and mechanically robust as well. In this context, our first approach employs laminated metal-polymer photonic bandgap structures to effectively tune optical and electrical properties by an appropriate design of the material stack, factoring in the effect of the materials involved, the number of layers and layer properties. We have found that in the case of a four-bilayer Au/polystyrene (AujPS) laminate structure, an enhancement in optical transmittance of ˜ 500% in comparison to a monolithic A film of equivalent thickness, can be achieved. The high conductivity (˜ 106 O--1cm--1) of the metallic component, Au in this case, also ensures planar conductivity; metallic inclusions in the dielectric polymer layer can in principle give rise to out-of-plane conductivity as well enabling a fully functional TC. Such materials also have immense potential for several other applications

  5. Optically transparent composite diamond/Ti electrodes

    Czech Academy of Sciences Publication Activity Database

    Ashcheulov, Petr; Taylor, Andrew; More Chevalier, Joris; Kovalenko, A.; Remeš, Zdeněk; Drahokoupil, Jan; Hubík, Pavel; Fekete, Ladislav; Klimša, Ladislav; Kopeček, Jaromír; Remiášová, Jarmila; Kohout, Michal; Frank, Otakar; Kavan, Ladislav; Mortet, Vincent

    2017-01-01

    Roč. 119, Aug (2017), s. 179-189 ISSN 0008-6223 R&D Projects: GA MŠk LO1409; GA MŠk LM2015088; GA ČR GA13-31783S Grant - others:FUNBIO(XE) CZ.2.16/3.1.00/21568; AV ČR(CZ) Fellowship J. E. Purkyně; AV ČR(CZ) MSM100101602 Program:Program na podporu mezinárodní spolupráce začínajících výzkumných pracovníků Institutional support: RVO:68378271 ; RVO:61388955 Keywords : diamond * transparent film * composite electrode * conductive thin film Subject RIV: BM - Solid Matter Physics ; Magnetism; CF - Physical ; Theoretical Chemistry (UFCH-W) OBOR OECD: Condensed matter physics (including formerly solid state physics, supercond.); Physical chemistry (UFCH-W) Impact factor: 6.337, year: 2016

  6. Roll-offset printed transparent conducting electrode for organic solar cells

    International Nuclear Information System (INIS)

    Kim, Inyoung; Kwak, Sun-Woo; Ju, Yeonkyeong; Park, Gun-Young; Lee, Taik-Min; Jang, Yunseok; Choi, Young-Man; Kang, Dongwoo

    2015-01-01

    Transparent conducting electrodes (TCEs) were developed through the roll-offset printing of Ag grid mesh patterns for the application of all-solution processed organic solar cells (OSCs). Due to the remarkable printability of roll-offset printing, the printed TCEs did not show the step coverage problem of subsequent thin layers, which was a chronic problem in other printing techniques. The control of ink cohesion was verified as a critical factor for the high printing quality, which was optimized by adding a polyurethane diol of 2 wt.%. The tensile strength of optimized Ag ink was 322 mN, which led to the clear patterning of Ag nanoparticles. The printed TCEs with different mesh densities of the Ag grid were designed to have a similar property of indium tin oxide (ITO). The measured sheet resistance was 13 Ω/□, and optical transmittance was 86%, including the glass substrate, which was found to be independent of wavelength in the visible spectrum, in contrast with the optical transmittance of ITO. To evaluate the TCE performance as bottom electrodes, all-solution processed OSCs were fabricated on top of the TCEs. The power conversion efficiency (PCE) of the OSCs increased with the increments of the mesh density due to the distinctive increase of the short circuit current density (J sc ), notwithstanding the similar transmittance and sheet resistance of the TCEs. In comparison with ITO, a higher PCE of OSCs was obtained because the printed TCEs with a high mesh density were able to facilitate effective current collection, leading to a significant increase of J sc . - Highlights: • Roll-offset printing provided a remarkable printability of Ag nano-ink. • Control of ink cohesion played a critical role on the patterning of Ag nano-ink. • Printed Ag mesh was used as a transparent conducting electrode. • Transparency and sheet resistance of printed Ag mesh can be designed simply. • Printed Ag mesh was effective for the current collection of organic solar

  7. Roll-offset printed transparent conducting electrode for organic solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Inyoung, E-mail: ikim@kimm.re.kr; Kwak, Sun-Woo; Ju, Yeonkyeong; Park, Gun-Young; Lee, Taik-Min; Jang, Yunseok; Choi, Young-Man; Kang, Dongwoo

    2015-04-01

    Transparent conducting electrodes (TCEs) were developed through the roll-offset printing of Ag grid mesh patterns for the application of all-solution processed organic solar cells (OSCs). Due to the remarkable printability of roll-offset printing, the printed TCEs did not show the step coverage problem of subsequent thin layers, which was a chronic problem in other printing techniques. The control of ink cohesion was verified as a critical factor for the high printing quality, which was optimized by adding a polyurethane diol of 2 wt.%. The tensile strength of optimized Ag ink was 322 mN, which led to the clear patterning of Ag nanoparticles. The printed TCEs with different mesh densities of the Ag grid were designed to have a similar property of indium tin oxide (ITO). The measured sheet resistance was 13 Ω/□, and optical transmittance was 86%, including the glass substrate, which was found to be independent of wavelength in the visible spectrum, in contrast with the optical transmittance of ITO. To evaluate the TCE performance as bottom electrodes, all-solution processed OSCs were fabricated on top of the TCEs. The power conversion efficiency (PCE) of the OSCs increased with the increments of the mesh density due to the distinctive increase of the short circuit current density (J{sub sc}), notwithstanding the similar transmittance and sheet resistance of the TCEs. In comparison with ITO, a higher PCE of OSCs was obtained because the printed TCEs with a high mesh density were able to facilitate effective current collection, leading to a significant increase of J{sub sc}. - Highlights: • Roll-offset printing provided a remarkable printability of Ag nano-ink. • Control of ink cohesion played a critical role on the patterning of Ag nano-ink. • Printed Ag mesh was used as a transparent conducting electrode. • Transparency and sheet resistance of printed Ag mesh can be designed simply. • Printed Ag mesh was effective for the current collection of organic

  8. Graphene as transparent and current spreading electrode in silicon solar cell

    Energy Technology Data Exchange (ETDEWEB)

    Behura, Sanjay K., E-mail: sanjaybehura@gmail.com; Nayak, Sasmita; Jani, Omkar [Solar Energy Research Wing, Gujarat Energy Research and Management Institute - Research, Innovation and Incubation Centre, Gandhinagar 382007, Gujarat (India); Mahala, Pramila [School of Solar Energy, Pandit Deendayal Petroleum University, Gandhinagar 382007, Gujarat (India)

    2014-11-15

    Fabricated bi-layer graphene (BLG) has been studied as transparent and current spreading electrode (TCSE) for silicon solar cell, using TCAD-Silvaco 2D simulation. We have carried out comparative study using both Ag grids and BLG as current spreading electrode (CSE) and TCSE, respectively. Our study reveals that BLG based solar cell shows better efficiency of 24.85% than Ag-based cell (21.44%), in all of the critical aspects, including generation rate, recombination rate, electric field, potential and quantum efficiency. Further BLG based cell exhibits pronounce rectifying behavior, low saturation current, and good turn-on voltage while studying in dark.

  9. Indium tin oxide-rod/single walled carbon nanotube based transparent electrodes for ultraviolet light-emitting diodes

    International Nuclear Information System (INIS)

    Yun, Min Ju; Kim, Hee-Dong; Kim, Kyeong Heon; Sung, Hwan Jun; Park, Sang Young; An, Ho-Myoung; Kim, Tae Geun

    2013-01-01

    In this paper, we report a transparent conductive oxide electrode scheme working for ultraviolet light-emitting diodes based on indium tin oxide (ITO)-rod and a single walled carbon nanotube (SWCNT) layer. We prepared four samples with ITO-rod, SWCNT/ITO-rod, ITO-rod/SWCNT, and SWCNT/ITO-rod/SWCNT structures for comparison. As a result, the sample with SWCNT/ITO-rod/SWCNT structures showed the highest transmittance over 90% at 280 nm and the highest Ohmic behavior (with sheet resistance of 5.33 kΩ/□) in the current–voltage characteristic curves. - Highlights: • Transparent conductive oxide (TCO) electrodes are proposed for UV light-emitting diodes. • These TCO electrodes are based on evaporated indium tin oxide (ITO)-rods. • Single walled carbon nanotube (SWCNT) layers are used as a current spreading layer. • The proposed TCO electrode structures show more than 90% transmittance at 280 nm

  10. Transparent conductive oxides and alternative transparent electrodes for organic photovoltaics and OLEDs; Transparente leitfaehige Elektroden. Oxide und alternative Materialien fuer die organische Photovoltaik und OLEDs

    Energy Technology Data Exchange (ETDEWEB)

    Mueller-Meskamp, Lars; Sachse, Christoph; Kim, Yong Hyun; Furno, Mauro [Technische Univ. Dresden (DE). Inst. fuer Angewandte Photophysik (IAPP); May, Christian [Fraunhofer Institut fuer Photonische Mikrosysteme (IPMS), Dresden (Germany); Leo, Karl [Technische Univ. Dresden (DE). Inst. fuer Angewandte Photophysik (IAPP); Fraunhofer Institut fuer Photonische Mikrosysteme (IPMS), Dresden (Germany)

    2012-08-15

    Organic, photoactive devices, such as OLEDs or organic solar cells, currently use indium tin oxide (ITO) as transparent electrode. Whereas ITO is industry-proven for many years and shows very good electrical and optical properties, its application for low-cost and flexible devices might not be optimal. For such applications innovative technologies such as network-based metal nanowire or carbon nanotube electrodes, graphene, conductive polymers, metal thin-films and alternative transparent conductive oxides emerge. Although some of these technologies are rather experimental and far from application, some of them have the potential to replace ITO in selected applications. (orig.)

  11. Hierarchical porous carbon/MnO2 hybrids as supercapacitor electrodes.

    Science.gov (United States)

    Lee, Min Eui; Yun, Young Soo; Jin, Hyoung-Joon

    2014-12-01

    Hybrid electrodes of hierarchical porous carbon (HPC) and manganese oxide (MnO2) were synthesized using a fast surface redox reaction of potassium permanganate under facile immersion methods. The HPC/MnO2 hybrids had a number of micropores and macropores and the MnO2 nanoparticles acted as a pseudocapacitive material. The synergistic effects of electric double-layer capacitor (EDLC)-induced capacitance and pseudocapacitance brought about a better electrochemical performance of the HPC/MnO2 hybrid electrodes compared to that obtained with a single component. The hybrids showed a specific capacitance of 228 F g(-1) and good cycle stability over 1000 cycles.

  12. Embedded Metal Electrode for Organic-Inorganic Hybrid Nanowire Solar Cells.

    Science.gov (United States)

    Um, Han-Don; Choi, Deokjae; Choi, Ahreum; Seo, Ji Hoon; Seo, Kwanyong

    2017-06-27

    We demonstrate here an embedded metal electrode for highly efficient organic-inorganic hybrid nanowire solar cells. The electrode proposed here is an effective alternative to the conventional bus and finger electrode which leads to a localized short circuit at a direct Si/metal contact and has a poor collection efficiency due to a nonoptimized electrode design. In our design, a Ag/SiO 2 electrode is embedded into a Si substrate while being positioned between Si nanowire arrays underneath poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS), facilitating suppressed recombination at the Si/Ag interface and notable improvements in the fabrication reproducibility. With an optimized microgrid electrode, our 1 cm 2 hybrid solar cells exhibit a power conversion efficiency of up to 16.1% with an open-circuit voltage of 607 mV and a short circuit current density of 34.0 mA/cm 2 . This power conversion efficiency is more than twice as high as that of solar cells using a conventional electrode (8.0%). The microgrid electrode significantly minimizes the optical and electrical losses. This reproducibly yields a superior quantum efficiency of 99% at the main solar spectrum wavelength of 600 nm. In particular, our solar cells exhibit a significant increase in the fill factor of 78.3% compared to that of a conventional electrode (61.4%); this is because of the drastic reduction in the metal/contact resistance of the 1 μm-thick Ag electrode. Hence, the use of our embedded microgrid electrode in the construction of an ideal carrier collection path presents an opportunity in the development of highly efficient organic-inorganic hybrid solar cells.

  13. Chemically fabricated LiFePO{sub 4} thin film electrode for transparent batteries and electrochromic devices

    Energy Technology Data Exchange (ETDEWEB)

    Béléké, Alexis B. [Institut de recherche d’Hydro-Québec, 1800 Boul. Lionel-Boulet, Varennes, QC J3X 1S3 (Canada); Department of Mining and Materials Engineering, McGill University, M.H. Wong Building, 3610 rue University, Montréal, QC H3A 2B2 (Canada); Faure, Cyril [Institut de recherche d’Hydro-Québec, 1800 Boul. Lionel-Boulet, Varennes, QC J3X 1S3 (Canada); Röder, Manuel [Center for Applied Electrochemistry, Fraunhofer Institute for Silicate Research, Neunerplatz 2, 97083 Würzburg (Germany); Hovington, Pierre [Institut de recherche d’Hydro-Québec, 1800 Boul. Lionel-Boulet, Varennes, QC J3X 1S3 (Canada); Posset, Uwe [Center for Applied Electrochemistry, Fraunhofer Institute for Silicate Research, Neunerplatz 2, 97083 Würzburg (Germany); Guerfi, Abdelbast [Institut de recherche d’Hydro-Québec, 1800 Boul. Lionel-Boulet, Varennes, QC J3X 1S3 (Canada); Zaghib, Karim, E-mail: zaghib.karim@ireq.ca [Institut de recherche d’Hydro-Québec, 1800 Boul. Lionel-Boulet, Varennes, QC J3X 1S3 (Canada)

    2016-12-15

    Graphical abstract: Simplified diagram of the novel sol-gel approach of preparation of colorless and transparent LiFePO{sub 4} thin film electrode. - Highlights: • Novel sol-gel synthesis of colorless LFP thin film electrode for transparent Li-ion battery. • High performance of the electrode at various current densities: 5, 10, 20, 50 and 100 μA/cm{sup 2}. • LFP nanoparticles exhibit an excellent electro-activity. • Colorless LFP thin film shows a transmittance above 80% versus FTO. • Higher transmittance of LFP electrode a potential candidate for electrochromic devices. - Abstract: We report a new sol-gel approach of synthesis of LiFePO{sub 4} (LFP) thin film and its application as cathode materials for transparent Li-ion battery in half-cell configuration. LFP thin films were obtained from an alcoholic colloidal suspension of iron acetylacetonate (Fe(AcAc){sub 3}) and aqueous lithium dihydrogen phosphate (LiH{sub 2}PO{sub 4}) deposited on fluorine tin oxide (FTO) glass substrate, followed by heating at 450 °C under nitrogen gas for 1 h. X-ray diffraction (XRD) confirmed that the LFP films have an orthorhombic crystal system with space group Pnma (62). Scanning electron microscopy (SEM) shows spherical LFP nanoparticles aggregates homogenously deposited all over the surface of FTO substrate containing 3-D open pores. The electrochemical behaviors of thin film vs Li/Li{sup +} cell were investigated by cyclic voltammetry and galvanostatic charge-discharge measurements. The cycle life was evaluated by running 1000 cycles of charge-discharge at a current density of 20 μA/cm{sup 2}. The transmission spectra reveal 85–90% of transparency versus FTO as reference, which makes it a potential candidate as a complementary electrode in electrochromic devices (ECDs).

  14. Applications of Silver Nanowires on Transparent Conducting Film and Electrode of Electrochemical Capacitor

    Directory of Open Access Journals (Sweden)

    Yuan-Jun Song

    2014-01-01

    Full Text Available Silver nanowire has potential applications on transparent conducting film and electrode of electrochemical capacitor due to its excellent conductivity. Transparent conducting film (G-film was prepared by coating silver nanowires on glass substrate using Meyer rod method, which exhibited better performance than carbon nanotube and graphene. The conductivity of G-film can be improved by increasing sintering temperature. Electrode of electrochemical capacitor (I-film was fabricated through the same method with G-film on indium tin oxide (ITO. CV curves of I-film under different scanning rates had obvious redox peaks, which indicated that I-film exhibited excellent electrochemical pseudocapacitance performance and good reversibility during charge/discharge process. In addition, the specific capacitance of I-film was measured by galvanostatic charge/discharge experiments, indicating that I-film exhibits high special capacitance and excellent electrochemical stability.

  15. ZnO nanorods for simultaneous light trapping and transparent electrode application in solar cells

    KAUST Repository

    Khan, Yasser

    2011-10-01

    Efficacy of using vertically grown ZnO nanorod array in enhancing electromagnetic field intensity and serving as the top contact layer (transparent electrodes) for solar cells was investigated. © 2011 IEEE.

  16. Highly transparent and durable superhydrophobic hybrid nanoporous coatings fabricated from polysiloxane.

    Science.gov (United States)

    Wang, Ding; Zhang, Zongbo; Li, Yongming; Xu, Caihong

    2014-07-09

    Highly transparent and durable superhydrophobic hybrid nanoporous coatings with different surface roughnesses were fabricated via a simple solidification-induced phase-separation method using a liquid polysiloxane (PSO) containing SiH and SiCH═CH2 groups as precursors and methyl-terminated poly(dimethylsiloxane)s (PDMS) as porogens. Owing to the existence of SiCHn units, the hybrid material is intrinsically hydrophobic without modification with expensive fluorinated reagents. The roughness of the coating can be easily controlled at the nanometer scale by changing the viscosity of PDMS to achieve both superhydrophobicity and high transparency. The influence of surface roughness on the transparency and hydrophobicity of the coatings was investigated. The enhancement from hydrophobic to superhydrophobic with increasing surface roughness can be explained by the transition from the Wenzel state to the Cassie state. The optimum performance coating has an average transmittance higher than 85% in the visible-light range (400-780 nm), a water contact angle of 155°, and a slide angle lower than 1°. The coatings also exhibit good thermal and mechanical stability and durable superhydrophobicity, which paves the way for real applications of highly transparent superhydrophobic coatings.

  17. Degradation studies of transparent conductive electrodes on electroactive poly(vinylidene fluoride for uric acid measurements

    Directory of Open Access Journals (Sweden)

    Vanessa F Cardoso, Pedro Martins, Gabriela Botelho, Luis Rebouta, Senentxu Lanceros-Méndez and Graca Minas

    2010-01-01

    Full Text Available Biochemical analysis of physiological fluids using, for example, lab-on-a-chip devices requires accurate mixing of two or more fluids. This mixing can be assisted by acoustic microagitation using a piezoelectric material, such as the β-phase of poly(vinylidene fluoride (β-PVDF. If the analysis is performed using optical absorption spectroscopy and β-PVDF is located in the optical path, the material and its conductive electrodes must be transparent. Moreover, if, to improve the transmission of the ultrasonic waves to the fluids, the piezoelectric transducer is placed inside the fluidic structures, its degradation must be assessed. In this paper, we report on the degradation properties of transparent conductive oxides, namely, indium tin oxide (ITO and aluminum-doped zinc oxide, when they are used as electrodes for providing acoustic microagitation. The latter promotes mixing of chemicals involved in the measurement of uric acid concentration in physiological fluids. The results are compared with those for aluminum electrodes. We find that β-PVDF samples with ITO electrodes do not degrade either with or without acoustic microagitation.

  18. Degradation studies of transparent conductive electrodes on electroactive poly(vinylidene fluoride) for uric acid measurements

    International Nuclear Information System (INIS)

    Cardoso, Vanessa F; Minas, Graca; Martins, Pedro; Rebouta, Luis; Lanceros-Mendez, Senentxu; Botelho, Gabriela

    2010-01-01

    Biochemical analysis of physiological fluids using, for example, lab-on-a-chip devices requires accurate mixing of two or more fluids. This mixing can be assisted by acoustic microagitation using a piezoelectric material, such as the β-phase of poly(vinylidene fluoride) (β-PVDF). If the analysis is performed using optical absorption spectroscopy and β-PVDF is located in the optical path, the material and its conductive electrodes must be transparent. Moreover, if, to improve the transmission of the ultrasonic waves to the fluids, the piezoelectric transducer is placed inside the fluidic structures, its degradation must be assessed. In this paper, we report on the degradation properties of transparent conductive oxides, namely, indium tin oxide (ITO) and aluminum-doped zinc oxide, when they are used as electrodes for providing acoustic microagitation. The latter promotes mixing of chemicals involved in the measurement of uric acid concentration in physiological fluids. The results are compared with those for aluminum electrodes. We find that β-PVDF samples with ITO electrodes do not degrade either with or without acoustic microagitation.

  19. Nanopatterned Metallic Films for Use As Transparent Conductive Electrodes in Optoelectronic Devices

    KAUST Repository

    Catrysse, Peter B.

    2010-08-11

    We investigate the use of nanopatterned metallic films as transparent conductive electrodes in optoelectronic devices. We find that the physics of nanopatterned electrodes, which are often optically thin metallic films, differs from that of optically thick metallic films. We analyze the optical properties when performing a geometrical transformation that maintains the electrical properties. For one-dimensional patterns of metallic wires, the analysis favors tall and narrow wires. Our design principles remain valid for oblique incidence and readily carry over to two-dimensional patterns. © 2010 American Chemical Society.

  20. Hybrid metal grid-polymer-carbon nanotube electrodes for high luminance organic light emitting diodes

    International Nuclear Information System (INIS)

    Sam, F Laurent M; Dabera, G Dinesha M R; Lai, Khue T; Mills, Christopher A; Rozanski, Lynn J; Silva, S Ravi P

    2014-01-01

    Organic light emitting diodes (OLEDs) incorporating grid transparent conducting electrodes (TCEs) with wide grid line spacing suffer from an inability to transfer charge carriers across the gaps in the grids to promote light emission in these areas. High luminance OLEDs fabricated using a hybrid TCE composed of poly(3,4-ethylenedioxythiophene) poly(styrenesulfonate) (PEDOT:PSS PH1000) or regioregular poly(3-hexylthiophene)-wrapped semiconducting single-walled carbon nanotubes (rrP3HT-SWCNT) in combination with a nanometre thin gold grid are reported here. OLEDs fabricated using the hybrid gold grid/PH1000 TCE have a luminance of 18 000 cd m −2 at 9 V; the same as the reference indium tin oxide (ITO) OLED. The gold grid/rrP3HT-SWCNT OLEDs have a lower luminance of 8260 cd m −2 at 9 V, which is likely due to a rougher rrP3HT-SWCNT surface. These results demonstrate that the hybrid gold grid/PH1000 TCE is a promising replacement for ITO in future plastic electronics applications including OLEDs and organic photovoltaics. For applications where surface roughness is not critical, e.g. electrochromic devices or discharge of static electricity, the gold grid/rrP3HT-SWCNT hybrid TCE can be employed. (paper)

  1. Critical Role of Diels-Adler Adducts to Realise Stretchable Transparent Electrodes Based on Silver Nanowires and Silicone Elastomer

    Science.gov (United States)

    Heo, Gaeun; Pyo, Kyoung-Hee; Lee, Da Hee; Kim, Youngmin; Kim, Jong-Woong

    2016-05-01

    This paper presents the successful fabrication of a transparent electrode comprising a sandwich structure of silicone/Ag nanowires (AgNWs)/silicone equipped with Diels-Alder (DA) adducts as crosslinkers to realise highly stable stretchability. Because of the reversible DA reaction, the crosslinked silicone successfully bonds with the silicone overcoat, which should completely seal the electrode. Thus, any surrounding liquid cannot leak through the interfaces among the constituents. Furthermore, the nanowires are protected by the silicone cover when they are stressed by mechanical loads such as bending, folding, and stretching. After delicate optimisation of the layered silicone/AgNW/silicone sandwich structure, a stretchable transparent electrode which can withstand 1000 cycles of 50% stretching-releasing with an exceptionally high stability and reversibility was fabricated. This structure can be used as a transparent strain sensor; it possesses a strong piezoresistivity with a gauge factor greater than 11.

  2. Embedded Ag Grid Electrodes as Current Collector for Ultraflexible Transparent Solid-State Supercapacitor.

    Science.gov (United States)

    Xu, Jian-Long; Liu, Yan-Hua; Gao, Xu; Sun, Yilin; Shen, Su; Cai, Xinlei; Chen, Linsen; Wang, Sui-Dong

    2017-08-23

    Flexible transparent solid-state supercapacitors have attracted immerse attention for the power supply of next-generation flexible "see-through" or "invisible" electronics. For fabrication of such devices, high-performance flexible transparent current collectors are highly desired. In this paper, the utilization of embedded Ag grid transparent conductive electrodes (TCEs) fabricated by a facile soft ultraviolet imprinting lithography method combined with scrap techniques, as the current collector for flexible transparent solid-state supercapacitors, is demonstrated. The embedded Ag grid TCEs exhibit not only excellent optoelectronic properties (R S ∼ 2.0 Ω sq -1 and T ∼ 89.74%) but also robust mechanical properties, which could meet the conductivity, transparency, and flexibility needs of current collectors for flexible transparent supercapacitors. The obtained supercapacitor exhibits large specific capacitance, long cycling life, high optical transparency (T ∼ 80.58% at 550 nm), high flexibility, and high stability. Owing to the embedded Ag grid TCE structure, the device shows a slight capacitance loss of 2.6% even after 1000 cycles of repetitive bending for a bending radius of up to 2.0 mm. This paves the way for developing high-performance current collectors and thus flexible transparent energy storage devices, and their general applicability opens up opportunities for flexible transparent electronics.

  3. Graphene as transparent and current spreading electrode in silicon solar cell

    Directory of Open Access Journals (Sweden)

    Sanjay K. Behura

    2014-11-01

    Full Text Available Fabricated bi-layer graphene (BLG has been studied as transparent and current spreading electrode (TCSE for silicon solar cell, using TCAD-Silvaco 2D simulation. We have carried out comparative study using both Ag grids and BLG as current spreading electrode (CSE and TCSE, respectively. Our study reveals that BLG based solar cell shows better efficiency of 24.85% than Ag-based cell (21.44%, in all of the critical aspects, including generation rate, recombination rate, electric field, potential and quantum efficiency. Further BLG based cell exhibits pronounce rectifying behavior, low saturation current, and good turn-on voltage while studying in dark.

  4. Bromination of Graphene: A New Route to Making High Performance Transparent Conducting Electrodes with Low Optical Losses

    KAUST Repository

    Mansour, Ahmed

    2015-07-22

    The unique optical and electrical properties of graphene have triggered great interest in its application as a transparent conducting electrode material and significant effort has been invested in achieving high conductivity while maintaining transparency. Doping of graphene has been a popular route for reducing its sheet resistance, but this has typically come at a significant cost in optical transmission. We demonstrate doping of few layers graphene with bromine as a means of enhancing the conductivity via intercalation without major optical losses. Our results demonstrate the encapsulation of bromine leads to air-stable transparent conducting electrodes with five-fold improvement of sheet resistance reaching at the cost of only 2-3% loss of optical transmission. The remarkably low tradeoff in optical transparency leads to the highest enhancements in the figure of merit reported thus far for FLG. Furthermore, we tune the workfunction by up to 0.3 eV by tuning the bromine content. These results should help pave the way for further development of graphene as a potential substitute to transparent conducting polymers and metal oxides used in optoelectronics, photovoltaics and beyond.

  5. Flexible, transparent single-walled carbon nanotube transistors with graphene electrodes

    International Nuclear Information System (INIS)

    Jang, Sukjae; Jang, Houk; Lee, Youngbin; Suh, Daewoo; Baik, Seunghyun; Hong, Byung Hee; Ahn, Jong-Hyun

    2010-01-01

    This paper reports a mechanically flexible, transparent thin film transistor that uses graphene as a conducting electrode and single-walled carbon nanotubes (SWNTs) as a semiconducting channel. These SWNTs and graphene films were printed on flexible plastic substrates using a printing method. The resulting devices exhibited a mobility of ∼ 2 cm 2 V -1 s -1 , On/Off ratio of ∼ 10 2 , transmittance of ∼ 81% and excellent mechanical bendability.

  6. Transparent and Flexible Capacitors with an Ultrathin Structure by Using Graphene as Bottom Electrodes

    Directory of Open Access Journals (Sweden)

    Tao Guo

    2017-11-01

    Full Text Available Ultrathin, transparent and flexible capacitors using graphene as the bottom electrodes were directly fabricated on polyethylene naphthalate (PEN substrates. ZrO2 dielectric films were deposited on the treated surface of graphene by atomic layer deposition (ALD. The deposition process did not introduce any detectible defects in the graphene, as indicated by Raman measurements, guaranteeing the electrical performances of the graphene electrodes. The Aluminum-doped zinc oxide (AZO films were prepared as the top electrodes using the ALD technique. The capacitors presented a high capacitance density (10.3 fF/μm2 at 10 kHz and a relatively low leakage current (5.3 × 10−6 A/cm2 at 1 V. Bending tests revealed that the capacitors were able to work normally at an outward bending radius of 10 mm without any deterioration of electrical properties. The capacitors exhibited an average optical transmittance of close to 70% at visible wavelengths. Thus, it opens the door to practical applications in transparent integrated circuits.

  7. Electrical Neural Stimulation and Simultaneous in Vivo Monitoring with Transparent Graphene Electrode Arrays Implanted in GCaMP6f Mice.

    Science.gov (United States)

    Park, Dong-Wook; Ness, Jared P; Brodnick, Sarah K; Esquibel, Corinne; Novello, Joseph; Atry, Farid; Baek, Dong-Hyun; Kim, Hyungsoo; Bong, Jihye; Swanson, Kyle I; Suminski, Aaron J; Otto, Kevin J; Pashaie, Ramin; Williams, Justin C; Ma, Zhenqiang

    2018-01-23

    Electrical stimulation using implantable electrodes is widely used to treat various neuronal disorders such as Parkinson's disease and epilepsy and is a widely used research tool in neuroscience studies. However, to date, devices that help better understand the mechanisms of electrical stimulation in neural tissues have been limited to opaque neural electrodes. Imaging spatiotemporal neural responses to electrical stimulation with minimal artifact could allow for various studies that are impossible with existing opaque electrodes. Here, we demonstrate electrical brain stimulation and simultaneous optical monitoring of the underlying neural tissues using carbon-based, fully transparent graphene electrodes implanted in GCaMP6f mice. Fluorescence imaging of neural activity for varying electrical stimulation parameters was conducted with minimal image artifact through transparent graphene electrodes. In addition, full-field imaging of electrical stimulation verified more efficient neural activation with cathode leading stimulation compared to anode leading stimulation. We have characterized the charge density limitation of capacitive four-layer graphene electrodes as 116.07-174.10 μC/cm 2 based on electrochemical impedance spectroscopy, cyclic voltammetry, failure bench testing, and in vivo testing. This study demonstrates the transparent ability of graphene neural electrodes and provides a method to further increase understanding and potentially improve therapeutic electrical stimulation in the central and peripheral nervous systems.

  8. Roll-to-Roll Production of Transparent Silver-Nanofiber-Network Electrodes for Flexible Electrochromic Smart Windows.

    Science.gov (United States)

    Lin, Sen; Bai, Xiaopeng; Wang, Haiyang; Wang, Haolun; Song, Jianan; Huang, Kai; Wang, Chang; Wang, Ning; Li, Bo; Lei, Ming; Wu, Hui

    2017-11-01

    Electrochromic smart windows (ECSWs) are considered as the most promising alternative to traditional dimming devices. However, the electrode technology in ECSWs remains stagnant, wherein inflexible indium tin oxide and fluorine-doped tin oxide are the main materials being used. Although various complicated production methods, such as high-temperature calcination and sputtering, have been reported, the mass production of flexible and transparent electrodes remains challenging. Here, a nonheated roll-to-roll process is developed for the continuous production of flexible, extralarge, and transparent silver nanofiber (AgNF) network electrodes. The optical and mechanical properties, as well as the electrical conductivity of these products (i.e., 12 Ω sq -1 at 95% transmittance) are comparable with those AgNF networks produced via high-temperature sintering. Moreover, the as-prepared AgNF network is successfully assembled into an A4-sized ECSW with short switching time, good coloration efficiency, and flexibility. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Laser-Direct Writing of Silver Metal Electrodes on Transparent Flexible Substrates with High-Bonding Strength.

    Science.gov (United States)

    Zhou, Weiping; Bai, Shi; Ma, Ying; Ma, Delong; Hou, Tingxiu; Shi, Xiaomin; Hu, Anming

    2016-09-21

    We demonstrate a novel approach to rapidly fabricate conductive silver electrodes on transparent flexible substrates with high-bonding strength by laser-direct writing. A new type of silver ink composed of silver nitrate, sodium citrate, and polyvinylpyrrolidone (PVP) was prepared in this work. The role of PVP was elucidated for improving the quality of silver electrodes. Silver nanoparticles and sintered microstructures were simultaneously synthesized and patterned on a substrate using a focused 405 nm continuous wave laser. The writing was completed through the transparent flexible substrate with a programmed 2D scanning sample stage. Silver electrodes fabricated by this approach exhibit a remarkable bonding strength, which can withstand an adhesive tape test at least 50 times. After a 1500 time bending test, the resistance only increased 5.2%. With laser-induced in-situ synthesis, sintering, and simultaneous patterning of silver nanoparticles, this technology is promising for the facile fabrication of conducting electronic devices on flexible substrates.

  10. Enhancing light out-coupling of organic light-emitting devices using indium tin oxide-free low-index transparent electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Yi-Hsiang; Lu, Chun-Yang; Tsai, Shang-Ta; Tsai, Yu-Tang; Chen, Chien-Yu; Tsai, Wei-Lung; Lin, Chun-Yu; Chang, Hong-Wei; Lee, Wei-Kai; Jiao, Min; Wu, Chung-Chih, E-mail: wucc@ntu.edu.tw [Department of Electrical Engineering, Graduate Institute of Photonics and Optoelectronics, Graduate Institute of Electronics Engineering, and Innovative Photonics Advanced Research Center (i-PARC), National Taiwan University, Taipei 10617, Taiwan (China)

    2014-05-05

    With its increasing and sufficient conductivity, the conducting polymer poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) has been capable of replacing the widely used but less cost-effective indium tin oxides (ITOs) as alternative transparent electrodes for organic light-emitting devices (OLEDs). Intriguingly, PEDOT:PSS also possesses an optical refractive index significantly lower than those of ITO and typical organic layers in OLEDs and well matching those of typical OLED substrates. Optical simulation reveals that by replacing ITO with such a low-index transparent electrode, the guided modes trapped within the organic/ITO layers in conventional OLEDs can be substantially suppressed, leading to more light coupled into the substrate than the conventional ITO device. By applying light out-coupling structures onto outer surfaces of substrates to effectively extract radiation into substrates, OLEDs using such low-index transparent electrodes achieve enhanced optical out-coupling and external quantum efficiencies in comparison with conventional OLEDs using ITO.

  11. Flexible, transparent single-walled carbon nanotube transistors with graphene electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Jang, Sukjae; Jang, Houk; Lee, Youngbin; Suh, Daewoo; Baik, Seunghyun; Hong, Byung Hee; Ahn, Jong-Hyun, E-mail: ahnj@skku.edu, E-mail: byunghee@skku.edu [SKKU Advanced Institute of Nanotechnology (SAINT) and Center for Human Interface Nano Technology (HINT), Sungkyunkwan University, Suwon 440-746 (Korea, Republic of)

    2010-10-22

    This paper reports a mechanically flexible, transparent thin film transistor that uses graphene as a conducting electrode and single-walled carbon nanotubes (SWNTs) as a semiconducting channel. These SWNTs and graphene films were printed on flexible plastic substrates using a printing method. The resulting devices exhibited a mobility of {approx} 2 cm{sup 2} V{sup -1} s{sup -1}, On/Off ratio of {approx} 10{sup 2}, transmittance of {approx} 81% and excellent mechanical bendability.

  12. Spin coated graphene films as the transparent electrode in organic photovoltaic devices

    International Nuclear Information System (INIS)

    Kymakis, E.; Stratakis, E.; Stylianakis, M.M.; Koudoumas, E.; Fotakis, C.

    2011-01-01

    Many research efforts have been devoted to the replacement of the traditional indium–tin-oxide (ITO) electrode in organic photovoltaics. Solution-based graphene has been identified as a potential replacement, since it has less than two percent absorption per layer, relative high carrier mobility, and it offers the possibility of deposition on large area and flexible substrates, compatible with roll to roll manufacturing methods. In this work, soluble reduced graphene films with high electrical conductivity and transparency were fabricated and incorporated in poly(3-hexylthiophene) [6,6]-phenyl-C 61 -butyric acid methyl ester photovoltaic devices, as the transparent electrode. The graphene films were spin coated on glass from an aqueous dispersion of functionalized graphene, followed by a reduction process combining hydrazine vapor and annealing under argon, in order to reduce the sheet resistance. The photovoltaic devices obtained from the graphene films showed lower performance than the reference devices with ITO, due to the higher sheet resistance (2 kΩ/sq) and the poor hydrophilicity of the spin coated graphene films.

  13. Performance enhancement of metal nanowire-based transparent electrodes by electrically driven nanoscale nucleation of metal oxides

    Science.gov (United States)

    Shiau, Yu-Jeng; Chiang, Kai-Ming; Lin, Hao-Wu

    2015-07-01

    Solution-processed silver nanowire (AgNW) electrodes have been considered to be promising materials for next-generation flexible transparent conductive electrodes. Despite the fact that a single AgNW has extremely high conductivities, the high junction resistance between nanowires limits the performance of the AgNW matrix. Therefore, post-treatments are usually required to approach better NW-NW contact. Herein, we report a novel linking method that uses joule heating to accumulate sol-gel ZnO near nanowire junctions. The nanoscale ZnO nucleation successfully restrained the thermal instability of the AgNW under current injection and acted as an efficient tightening medium to realize good NW-NW contacts. A low process temperature (PET and PEN, feasible. The optimized AgNW transparent conductive electrodes (TCE) fabricated using this promising linking method exhibited a low sheet resistance (13 Ω sq-1), a high transmission (92% at 550 nm), a high figure of merit (FOM; up to σDC/σOp = 340) and can be applied to wide range of next-generation flexible optoelectronic devices.Solution-processed silver nanowire (AgNW) electrodes have been considered to be promising materials for next-generation flexible transparent conductive electrodes. Despite the fact that a single AgNW has extremely high conductivities, the high junction resistance between nanowires limits the performance of the AgNW matrix. Therefore, post-treatments are usually required to approach better NW-NW contact. Herein, we report a novel linking method that uses joule heating to accumulate sol-gel ZnO near nanowire junctions. The nanoscale ZnO nucleation successfully restrained the thermal instability of the AgNW under current injection and acted as an efficient tightening medium to realize good NW-NW contacts. A low process temperature (PET and PEN, feasible. The optimized AgNW transparent conductive electrodes (TCE) fabricated using this promising linking method exhibited a low sheet resistance (13 Ω sq

  14. Large-size, high-uniformity, random silver nanowire networks as transparent electrodes for crystalline silicon wafer solar cells.

    Science.gov (United States)

    Xie, Shouyi; Ouyang, Zi; Jia, Baohua; Gu, Min

    2013-05-06

    Metal nanowire networks are emerging as next generation transparent electrodes for photovoltaic devices. We demonstrate the application of random silver nanowire networks as the top electrode on crystalline silicon wafer solar cells. The dependence of transmittance and sheet resistance on the surface coverage is measured. Superior optical and electrical properties are observed due to the large-size, highly-uniform nature of these networks. When applying the nanowire networks on the solar cells with an optimized two-step annealing process, we achieved as large as 19% enhancement on the energy conversion efficiency. The detailed analysis reveals that the enhancement is mainly caused by the improved electrical properties of the solar cells due to the silver nanowire networks. Our result reveals that this technology is a promising alternative transparent electrode technology for crystalline silicon wafer solar cells.

  15. Multilayer Transparent Top Electrode for Solution Processed Perovskite/Cu(In,Ga)(Se,S)2 Four Terminal Tandem Solar Cells.

    Science.gov (United States)

    Yang, Yang Michael; Chen, Qi; Hsieh, Yao-Tsung; Song, Tze-Bin; Marco, Nicholas De; Zhou, Huanping; Yang, Yang

    2015-07-28

    Halide perovskites (PVSK) have attracted much attention in recent years due to their high potential as a next generation solar cell material. To further improve perovskites progress toward a state-of-the-art technology, it is desirable to create a tandem structure in which perovskite may be stacked with a current prevailing solar cell such as silicon (Si) or Cu(In,Ga)(Se,S)2 (CIGS). The transparent top electrode is one of the key components as well as challenges to realize such tandem structure. Herein, we develop a multilayer transparent top electrode for perovskite photovoltaic devices delivering an 11.5% efficiency in top illumination mode. The transparent electrode is based on a dielectric/metal/dielectric structure, featuring an ultrathin gold seeded silver layer. A four terminal tandem solar cell employing solution processed CIGS and perovskite cells is also demonstrated with over 15% efficiency.

  16. Efficient CH3NH3PbI3 perovskite/fullerene planar heterojunction hybrid solar cells with oxidized Ni/Au/Cu transparent electrode

    Science.gov (United States)

    Lai, Wei-Chih; Lin, Kun-Wei; Guo, Tzung-Fang; Chen, Peter; Liao, Yuan-Yu

    2018-02-01

    We demonstrated the performance of inverted CH3NH3PbI3 perovskite-based solar cells (SCs) with a thermally oxidized nickel/gold/copper (Ni/Au/Cu) trilayer transparent electrode. Oxidized Ni/Au/Cu is a high transparent layer and has less resistance than the oxidized Ni/Au layer. Like the oxidized Ni/Au layer, oxidized Ni and Cu in oxidized Ni/Au/Cu could perform as a hole transport layer of the perovskite-based SCs. It leads to improved perovskite SC performance on an open circuit voltage of 1.01 V, a short circuit current density of 14.36 mA/cm2, a fill factor of 76.7%, and a power conversion efficiency (η%) of 11.1%. The η% of perovskite SCs with oxidized Ni (10 nm)/Au (6 nm)/Cu (1 nm) improved by approximately 10% compared with that of perovskite SCs with oxidized Ni/Au.

  17. Graphene/MnO2 hybrid nanosheets as high performance electrode materials for supercapacitors

    International Nuclear Information System (INIS)

    Mondal, Anjon Kumar; Wang, Bei; Su, Dawei; Wang, Ying; Chen, Shuangqiang; Zhang, Xiaogang; Wang, Guoxiu

    2014-01-01

    Graphene/MnO 2 hybrid nanosheets were prepared by incorporating graphene and MnO 2 nanosheets in ethylene glycol. Scanning electron microscopy and transmission electron microscopy analyses confirmed nanosheet morphology of the hybrid materials. Graphene/MnO 2 hybrid nanosheets with different ratios were investigated as electrode materials for supercapacitors by cyclic voltammetry (CV) and galvanostatic charge–discharge in 1 M Na 2 SO 4 electrolyte. We found that the graphene/MnO 2 hybrid nanosheets with a weight ratio of 1:4 (graphene:MnO 2 ) delivered the highest specific capacitance of 320 F g −1 . Graphene/MnO 2 hybrid nanosheets also exhibited good capacitance retention on 2000 cycles. - Highlights: • Graphene/MnO 2 hybrid nanosheets with different ratios were fabricated. • The specific capacitance is strongly dependent on graphene/MnO 2 ratios. • The graphene/MnO 2 hybrid electrode (1:4) exhibited high specific capacitance. • The electrode retained 84% of the initial specific capacitance after 2000 cycles

  18. Fabrication of graphene and ZnO nanocones hybrid structure for transparent field emission device

    Energy Technology Data Exchange (ETDEWEB)

    Zulkifli, Zurita [Department of Frontier Materials, Graduate School of Engineering, Nagoya Institute of Technology (Japan); Faculty of Electrical Engineering, Universiti Teknologi Mara (Malaysia); Shinde, Sachin M.; Suguira, Takatoshi [Department of Frontier Materials, Graduate School of Engineering, Nagoya Institute of Technology (Japan); Kalita, Golap, E-mail: kalita.golap@nitech.ac.jp [Department of Frontier Materials, Graduate School of Engineering, Nagoya Institute of Technology (Japan); Center for Fostering Young and Innovative Researchers, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466-8555 (Japan); Tanemura, Masaki [Department of Frontier Materials, Graduate School of Engineering, Nagoya Institute of Technology (Japan)

    2015-11-30

    Graphical abstract: Fabrication of a transparent field emission device with chemical vapor deposited graphene and zinc oxide nanocones showing low turn-on field due to locally enhance electric field. - Highlights: • Demonstrated transparent field emission device with CVD graphene and ZnO nanocones. • Graphene film was coated on carbon doped ZnO nanocone prepared by ion irradiation. • Low turn-on field for the graphene/C:ZnO nanocones hybrid structure is achieved. • Graphene/C:ZnO heterostructure is promising for transparent field emission devices. - Abstract: Fabrication of a transparent and high performance electron emission device is the key challenge for suitable display applications. Here, we demonstrate fabrication of a transparent and efficient field emission device integrating large-area chemical vapor deposited graphene and carbon doped zinc oxide (C:ZnO) nanocones. The ZnO nanocones were obtained with ion irradiation process at room temperature, over which the graphene film was transferred without destroying nanocone tips. Significant enhancement in field emission properties were observed with the transferred graphene film on C:ZnO nanocones. The threshold field for hybrid and pristine C:ZnO nanocones film at current density of 1 μA/cm{sup 2} was obtained as 4.3 V/μm and 6.5 V/μm, respectively. The enhanced field emission properties with low turn-on field for the graphene/C:ZnO nanocones can be attributed to locally enhance electric field. Our finding shows that a graphene/C:ZnO hybridized structure is very promising to fabricate field emission devices without compromising with high transparency.

  19. Bilayered Oxide thin films for transparent electrode application

    Science.gov (United States)

    Dutta, Titas; Narayan, Jagdish

    2008-10-01

    Ga doped ZnO films with electrical and optical properties comparable to indium tin oxide (ITO) is a promising candidate for transparent conducting oxides (TCOs) because of its superior stability in hydrogen environment, benign nature and relatively inexpensive supply. However, ZnO based TCO films suffer from low work function, which is a critical parameter for device applications. We report here the growth of a novel bilayered structure consisting of very thin (few monolayers) ITO, MoOx layer on Zn0.95Ga0.05O film for transparent electrode applications by using pulsed laser deposition technique at different temperatures and oxygen partial pressure. The characteristics of the ITO film and the heterostructure have been investigated in detail using XRD, TEM, XPS, and electrical and optical property measurements. It is envisaged that the overall transmittance and the resistivity are dictated by the thicker layer of ZnGa0.05O beneath the ITO layer. Hence, this study is aimed to improve the surface characteristics without affecting the overall transmittance and sheet resistance. This will enhance the transport of the carriers across the heterojunction in the device, thus, resulting in the increase in device efficiency.

  20. Highly transparent front electrodes with metal fingers for p-i-n thin-film silicon solar cells

    Directory of Open Access Journals (Sweden)

    Moulin Etienne

    2015-01-01

    Full Text Available The optical and electrical properties of transparent conductive oxides (TCOs, traditionally used in thin-film silicon (TF-Si solar cells as front-electrode materials, are interlinked, such that an increase in TCO transparency is generally achieved at the cost of reduced lateral conductance. Combining a highly transparent TCO front electrode of moderate conductance with metal fingers to support charge collection is a well-established technique in wafer-based technologies or for TF-Si solar cells in the substrate (n-i-p configuration. Here, we extend this concept to TF-Si solar cells in the superstrate (p-i-n configuration. The metal fingers are used in conjunction with a millimeter-scale textured foil, attached to the glass superstrate, which provides an antireflective and retroreflective effect; the latter effect mitigates the shadowing losses induced by the metal fingers. As a result, a substantial increase in power conversion efficiency, from 8.7% to 9.1%, is achieved for 1-μm-thick microcrystalline silicon solar cells deposited on a highly transparent thermally treated aluminum-doped zinc oxide layer combined with silver fingers, compared to cells deposited on a state-of-the-art zinc oxide layer.

  1. Electrocatalytic behaviour of hybrid cobalt–manganese hexacyanoferrate film on glassy carbon electrode

    International Nuclear Information System (INIS)

    Vinu Mohan, A.M.; Rambabu, Gutru; Aswini, K.K.; Biju, V.M.

    2014-01-01

    A thin film of hybrid cobalt–manganese hexacyanoferrate (CoMnHCF), a redox mediator was electrodeposited on a glassy carbon (GC) electrode and was employed as an amperometric sensor towards L-Tryptophan (L-Trp). The hybrid film was characterized by Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction technique (XRD), scanning electron microscope–energy dispersive X-ray spectroscopy (SEM–EDAX), and electrochemical techniques. The atomic absorption spectroscopic analysis provided the stoichiometry of the hybrid film to be K 1.74-y Co y Mn 0.78 [Fe(CN) 6 ], y ≤ 0.68. The electrochemical impedance study revealed the excellent charge transfer properties of GC/CoMnHCF electrode. The voltammetric investigations demonstrated exceptional electrocatalytic properties of the hybrid film modified electrode when compared to that of bare GC, GC/CoHCF and GC/MnHCF electrodes, towards the L-Trp oxidation. The kinetic parameters such as electron transfer coefficient, the electron transfer rate constant, the diffusion coefficient and the catalytic rate constant for the electrooxidation process of L-Trp were investigated. The amperometric detection of L-Trp employing GC/CoMnHCF electrode possessed a good sensitivity of 10 × 10 −2 A M −1 cm −2 in a wide range of detection (2–200 μM) at a reduced overpotential of 680 mV. In addition, the proposed amperometric method was applied to the detection of L-Trp in commercial milk samples with reproducible results. - Highlights: • A hybrid cobalt–manganese hexacyanoferrate film was prepared. • The hybrid film possesses excellent charge transfer properties. • The hybrid film exhibits excellent electrocatalytic properties towards Tryptophan. • Tryptophan detection is possible from commercial milk samples

  2. A new architecture as transparent electrodes for solar and IR applications based on photonic structures via soft lithography

    Energy Technology Data Exchange (ETDEWEB)

    Kuang, Ping [Iowa State Univ., Ames, IA (United States)

    2011-01-01

    Transparent conducting electrodes with the combination of high optical transmission and good electrical conductivity are essential for solar energy harvesting and electric lighting devices. Currently, indium tin oxide (ITO) is used because ITO offers relatively high transparency (>80%) to visible light and low sheet resistance (Rs = 10 ohms/square (Ω /2)) for electrical conduction. However, ITO is costly due to limited indium reserves, and it is brittle. These disadvantages have motivated the search for other conducting electrodes with similar or better properties. There has been research on a variety of electrode structures involving carbon nanotube networks, graphene films, nanowire and nanopatterned meshes and grids. Due to their novel characteristics in light manipulation and collection, photonic crystal structures show promise for further improvement. Here, we report on a new architecture consisting of nanoscale high aspect ratio metallic photonic structures as transparent electrodes fabricated via a combination of processes. For (Au) and silver (Ag) structures, the visible light transmission can reach as high as 80%, and the sheet resistance of the structure can be as low as 3.2Ω /2. The optical transparency of the high aspect ratio metal structures at visible wavelength range is comparable to that of ITO glass, while their sheet resistance is more than 3 times lower, which indicates a much higher electrical conductivity of the metal structures. Furthermore, the high aspect ratio metal structures have very high infrared (IR) reflection (90%) for the transverse magnetic (TM) mode, which can lead to the development of fabrication of metallic structures as IR filters for heat control applications. Investigations of interdigitated structures based on the high aspect ratio metal electrodes are ongoing to study the feasibility in smart window applications in light transmission modulation.

  3. Transparent Conducting Nb-Doped TiO2 Electrodes Activated by Laser Annealing for Inexpensive Flexible Organic Solar Cells

    Science.gov (United States)

    Lee, Jung-Hsiang; Lin, Chia-Chi; Lin, Yi-Chang

    2012-01-01

    A KrF excimer laser (λ= 248 nm) has been adopted for annealing cost-effective Nb-doped TiO2 (NTO) films. Sputtered NTO layers were annealed on SiO2-coated flexible poly(ethylene terephthalate) (PET) substrates. This local laser annealing technique is very useful for the formation of anatase NTO electrodes used in flexible organic solar cells (OSCs). An amorphous NTO film with a high resistivity and a low transparency was transformed significantly into a conductive and transparent anatase NTO electrode by laser irradiation. The 210 nm anatase NTO film shows a sheet resistance of 50 Ω and an average optical transmittance of 83.5% in the wavelength range from 450 to 600 nm after annealing at 0.25 J/cm2. The activation of Nb dopants and the formation of the anatase phase contribute to the high conductivity of the laser-annealed NTO electrode. Nb activation causes an increase in the optical band gap due to the Burstein-Moss effect. The electrical properties are in agreement with the material characteristics determined by X-ray diffraction (XRD) analysis and secondary ion mass spectrometry (SIMS). The irradiation energy for the NTO electrode also affects the performance of the organic solar cell. The laser annealing technique provides good properties of the anatase NTO film used as a transparent electrode for flexible organic solar cells (OSCs) without damage to the PET substrate or layer delamination from the substrate.

  4. Transparent Indium Tin Oxide Electrodes on Muscovite Mica for High-Temperature-Processed Flexible Optoelectronic Devices.

    Science.gov (United States)

    Ke, Shanming; Chen, Chang; Fu, Nianqing; Zhou, Hua; Ye, Mao; Lin, Peng; Yuan, Wenxiang; Zeng, Xierong; Chen, Lang; Huang, Haitao

    2016-10-26

    Sn-doped In 2 O 3 (ITO) electrodes were deposited on transparent and flexible muscovite mica. The use of mica substrate makes a high-temperature annealing process (up to 500 °C) possible. ITO/mica retains its low electric resistivity even after continuous bending of 1000 times on account of the unique layered structure of mica. When used as a transparent flexible heater, ITO/mica shows an extremely fast ramping (solar cells (PSCs) with high efficiency.

  5. Room-temperature solution-processed and metal oxide-free nano-composite for the flexible transparent bottom electrode of perovskite solar cells

    Science.gov (United States)

    Lu, Haifei; Sun, Jingsong; Zhang, Hong; Lu, Shunmian; Choy, Wallace C. H.

    2016-03-01

    The exploration of low-temperature and solution-processed charge transporting and collecting layers can promote the development of low-cost and large-scale perovskite solar cells (PVSCs) through an all solution process. Here, we propose a room-temperature solution-processed and metal oxide-free nano-composite composed of a silver nano-network and graphene oxide (GO) flawless film for the transparent bottom electrode of a PVSC. Our experimental results show that the amount of GO flakes play a critical role in forming the flawless anti-corrosive barrier in the silver nano-network through a self-assembly approach under ambient atmosphere, which can effectively prevent the penetration of liquid or gaseous halides and their corrosion against the silver nano-network underneath. Importantly, we simultaneously achieve good work function alignment and surface wetting properties for a practical bottom electrode by controlling the degree of reduction of GO flakes. Finally, flexible PVSC adopting the room-temperature and solution-processed nano-composite as the flexible transparent bottom electrode has been demonstrated on a polyethylene terephthalate (PET) substrate. As a consequence, the demonstration of our room-temperature solution-processed and metal oxide-free flexible transparent bottom electrode will contribute to the emerging large-area flexible PVSC technologies.The exploration of low-temperature and solution-processed charge transporting and collecting layers can promote the development of low-cost and large-scale perovskite solar cells (PVSCs) through an all solution process. Here, we propose a room-temperature solution-processed and metal oxide-free nano-composite composed of a silver nano-network and graphene oxide (GO) flawless film for the transparent bottom electrode of a PVSC. Our experimental results show that the amount of GO flakes play a critical role in forming the flawless anti-corrosive barrier in the silver nano-network through a self

  6. Spectroscopic and electrochemical characterization of nanostructured optically transparent carbon electrodes.

    Science.gov (United States)

    Benavidez, Tomás E; Garcia, Carlos D

    2013-07-01

    The present paper describes the results related to the optical and electrochemical characterization of thin carbon films fabricated by spin coating and pyrolysis of AZ P4330-RS photoresist. The goal of this paper is to provide comprehensive information allowing for the rational selection of the conditions to fabricate optically transparent carbon electrodes (OTCE) with specific electrooptical properties. According to our results, these electrodes could be appropriate choices as electrochemical transducers to monitor electrophoretic separations. At the core of this manuscript is the development and critical evaluation of a new optical model to calculate the thickness of the OTCE by variable angle spectroscopic ellipsometry. Such data were complemented with topography and roughness (obtained by atomic force microscopy), electrochemical properties (obtained by cyclic voltammetry), electrical properties (obtained by electrochemical impedance spectroscopy), and structural composition (obtained by Raman spectroscopy). Although the described OTCE were used as substrates to investigate the effect of electrode potential on the real-time adsorption of proteins by ellipsometry, these results could enable the development of other biosensors that can be then integrated into various CE platforms. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Activated carbon/manganese dioxide hybrid electrodes for high performance thin film supercapacitors

    Science.gov (United States)

    Jang, Yunseok; Jo, Jeongdai; Jang, Hyunjung; Kim, Inyoung; Kang, Dongwoo; Kim, Kwang-Young

    2014-06-01

    We combine the activated carbon (AC) and the manganese dioxide (MnO2) in a AC/MnO2 hybrid electrode to overcome the low capacitance of activated carbon and MnO2 by exploiting the large surface area of AC and the fast reversible redox reaction of MnO2. An aqueous permanganate (MnO4 -) is converted to MnO2 on the surface of the AC electrode by dipping the AC electrode into an aqueous permanganate solution. The AC/MnO2 hybrid electrode is found to display superior specific capacitance of 290 F/g. This shows that supercapacitors classified as electric double layer capacitors and pseudocapacitors can be combined together.

  8. Nano-honeycomb structured transparent electrode for enhanced light extraction from organic light-emitting diodes

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Xiao-Bo; Qian, Min; Wang, Zhao-Kui, E-mail: zkwang@suda.edu.cn, E-mail: lsliao@suda.edu.cn; Liao, Liang-Sheng, E-mail: zkwang@suda.edu.cn, E-mail: lsliao@suda.edu.cn [Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Institute of Functional Nano and Soft Materials (FUNSOM), and Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, Jiangsu 215123 (China)

    2015-06-01

    A universal nano-sphere lithography method has been developed to fabricate nano-structured transparent electrode, such as indium tin oxide (ITO), for light extraction from organic light-emitting diodes (OLEDs). Perforated SiO{sub 2} film made from a monolayer colloidal crystal of polystyrene spheres and tetraethyl orthosilicate sol-gel is used as a template. Ordered nano-honeycomb pits on the ITO electrode surface are obtained by chemical etching. The proposed method can be utilized to form large-area nano-structured ITO electrode. More than two folds' enhancement in both current efficiency and power efficiency has been achieved in a red phosphorescent OLED which was fabricated on the nano-structured ITO substrate.

  9. Transparent and flexible supercapacitors with single walled carbon nanotube thin film electrodes.

    Science.gov (United States)

    Yuksel, Recep; Sarioba, Zeynep; Cirpan, Ali; Hiralal, Pritesh; Unalan, Husnu Emrah

    2014-09-10

    We describe a simple process for the fabrication of transparent and flexible, solid-state supercapacitors. Symmetric electrodes made up of binder-free single walled carbon nanotube (SWCNT) thin films were deposited onto polydimethylsiloxane substrates by vacuum filtration followed by a stamping method, and solid-state supercapacitor devices were assembled using a gel electrolyte. An optical transmittance of 82% was found for 0.02 mg of SWCNTs, and a specific capacitance of 22.2 F/g was obtained. The power density can reach to 41.5 kW · kg(-1) and shows good capacity retention (94%) upon cycling over 500 times. Fabricated supercapacitors will be relevant for the realization of transparent and flexible devices with energy storage capabilities, displays and touch screens in particular.

  10. Highly Conductive PEDOT:PSS Films with 1,3-Dimethyl-2-Imidazolidinone as Transparent Electrodes for Organic Light-Emitting Diodes.

    Science.gov (United States)

    Kim, Jin Hee; Joo, Chul Woong; Lee, Jonghee; Seo, Yoon Kyung; Han, Joo Won; Oh, Ji Yoon; Kim, Jong Su; Yu, Seunggun; Lee, Jae Hyun; Lee, Jeong-Ik; Yun, Changhun; Choi, Bum Ho; Kim, Yong Hyun

    2016-09-01

    Highly conductive poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) ( PSS) films as transparent electrodes for organic light-emitting diodes (OLEDs) are doped with a new solvent 1,3-dimethyl-2-imidazolidinone (DMI) and are optimized using solvent post-treatment. The DMI doped PSS films show significantly enhanced conductivities up to 812.1 S cm(-1) . The sheet resistance of the PSS films doped with DMI is further reduced by various solvent post-treatment. The effect of solvent post-treatment on DMI doped PSS films is investigated and is shown to reduce insulating PSS in the conductive films. The solvent posttreated PSS films are successfully employed as transparent electrodes in white OLEDs. It is shown that the efficiency of OLEDs with the optimized DMI doped PSS films is higher than that of reference OLEDs doped with a conventional solvent (ethylene glycol). The results present that the optimized PSS films with the new solvent of DMI can be a promising transparent electrode for low-cost, efficient ITO-free white OLEDs. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Au@MnO2 core-shell nanomesh electrodes for transparent flexible supercapacitors.

    Science.gov (United States)

    Qiu, Tengfei; Luo, Bin; Giersig, Michael; Akinoglu, Eser Metin; Hao, Long; Wang, Xiangjun; Shi, Lin; Jin, Meihua; Zhi, Linjie

    2014-10-29

    A novel Au@MnO2 supercapacitor is presented. The sophisticated core-shell architecture combining an Au nanomesh core with a MnO2 shell on a flexible polymeric substrate is demonstrated as an electrode for high performance transparent flexible supercapacitors (TFSCs). Due to their unique structure, high areal/gravimetric capacitance and rate capability for TFSCs are achieved. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Transparent Ferroelectric Capacitors on Glass

    Directory of Open Access Journals (Sweden)

    Daniele Sette

    2017-10-01

    Full Text Available We deposited transparent ferroelectric lead zirconate titanate thin films on fused silica and contacted them via Al-doped zinc oxide (AZO transparent electrodes with an interdigitated electrode (IDE design. These layers, together with a TiO2 buffer layer on the fused silica substrate, are highly transparent (>60% in the visible optical range. Fully crystallized Pb(Zr0.52Ti0.48O3 (PZT films are dielectrically functional and exhibit a typical ferroelectric polarization loop with a remanent polarization of 15 μC/cm2. The permittivity value of 650, obtained with IDE AZO electrodes is equivalent to the one measured with Pt electrodes patterned with the same design, which proves the high quality of the developed transparent structures.

  13. Synergetic Hybrid Aerogels of Vanadia and Graphene as Electrode Materials of Supercapacitors

    Directory of Open Access Journals (Sweden)

    Xuewei Fu

    2016-08-01

    Full Text Available The performance of synergetic hybrid aerogel materials of vanadia and graphene as electrode materials in supercapacitors was evaluated. The hybrid materials were synthesized by two methods. In Method I, premade graphene oxide (GO hydrogel was first chemically reduced by L-ascorbic acid and then soaked in vanadium triisopropoxide solution to obtain V2O5 gel in the pores of the reduced graphene oxide (rGO hydrogel. The gel was supercritically dried to obtain the hybrid aerogel. In Method II, vanadium triisopropoxide was hydrolyzed from a solution in water with GO particles uniformly dispersed to obtain the hybrid gel. The hybrid aerogel was obtained by supercritical drying of the gel followed by thermal reduction of GO. The electrode materials were prepared by mixing 80 wt % hybrid aerogel with 10 wt % carbon black and 10 wt % polyvinylidene fluoride. The hybrid materials in Method II showed higher capacitance due to better interactions between vanadia and graphene oxide particles and more uniform vanadia particle distribution.

  14. Graphene/MnO{sub 2} hybrid nanosheets as high performance electrode materials for supercapacitors

    Energy Technology Data Exchange (ETDEWEB)

    Mondal, Anjon Kumar, E-mail: Anjon.K.Mondal@student.uts.edu.au [Centre for Clean Energy Technology, School of Chemistry and Forensic Science, University of Technology, Sydney, Broadway, Sydney, NSW 2007 (Australia); Wang, Bei; Su, Dawei; Wang, Ying; Chen, Shuangqiang [Centre for Clean Energy Technology, School of Chemistry and Forensic Science, University of Technology, Sydney, Broadway, Sydney, NSW 2007 (Australia); Zhang, Xiaogang [College of Materials Science and Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing (China); Wang, Guoxiu, E-mail: Guoxiu.wang@uts.edu.au [Centre for Clean Energy Technology, School of Chemistry and Forensic Science, University of Technology, Sydney, Broadway, Sydney, NSW 2007 (Australia)

    2014-01-15

    Graphene/MnO{sub 2} hybrid nanosheets were prepared by incorporating graphene and MnO{sub 2} nanosheets in ethylene glycol. Scanning electron microscopy and transmission electron microscopy analyses confirmed nanosheet morphology of the hybrid materials. Graphene/MnO{sub 2} hybrid nanosheets with different ratios were investigated as electrode materials for supercapacitors by cyclic voltammetry (CV) and galvanostatic charge–discharge in 1 M Na{sub 2}SO{sub 4} electrolyte. We found that the graphene/MnO{sub 2} hybrid nanosheets with a weight ratio of 1:4 (graphene:MnO{sub 2}) delivered the highest specific capacitance of 320 F g{sup −1}. Graphene/MnO{sub 2} hybrid nanosheets also exhibited good capacitance retention on 2000 cycles. - Highlights: • Graphene/MnO{sub 2} hybrid nanosheets with different ratios were fabricated. • The specific capacitance is strongly dependent on graphene/MnO{sub 2} ratios. • The graphene/MnO{sub 2} hybrid electrode (1:4) exhibited high specific capacitance. • The electrode retained 84% of the initial specific capacitance after 2000 cycles.

  15. Digital grayscale printing for patterned transparent conducting Ag electrodes and their applications in flexible electronics

    DEFF Research Database (Denmark)

    Gupta, Ritu; Hösel, Markus; Jensen, Jacob

    2014-01-01

    Grayscale (halftone) laser printing is developed as a low-cost and solution processable fabrication method for ITO-free, semi-transparent and conducting Ag electrodes extendable over large area on a flexible substrate. The transmittance and sheet resistance is easily tunable by varying the graysc...

  16. Transparent electrode designs based on optimal nano-patterning of metallic films

    KAUST Repository

    Catrysse, Peter B.

    2010-09-10

    Transparent conductive electrodes are critical to the operation of optoelectronic devices, such as photovoltaic cells and light emitting diodes. Effective electrodes need to combine excellent electrical and optical properties. Metal oxides, such as indium tin oxide, are commonly used. There is substantial interest in replacing them, however, motivated by practical problems and recent discoveries regarding the optics of nano-patterned metals. When designing nano-patterned metallic films for use as electrodes, one needs to account for both optical and electrical properties. In general, it is insufficient to optimize nano-structured films based upon optical properties alone, since structural variations will also affect the electrical properties. In this work, we investigate the need for simultaneous optical and electrical performance by analyzing the optical properties of a class of nano-patterned metallic electrodes that is obtained by a constant-sheet-resistance transformation. Within such a class the electrical and optical properties can be separated, i.e., the sheet resistance can be kept constant and the transmittance can be optimized independently. For simple one-dimensional periodic patterns with constant sheet-resistance, we find a transmission maximum (polarization-averaged) when the metal sections are narrow (< 40 nm, ~ 10% metal fill-factor) and tall (> 100 nm). Our design carries over to more complex two-dimensional (2D) patterns. This is significant as there are no previous reports regarding numerical studies on the optical and electrical properties of 2D nano-patterns in the context of electrode design.

  17. Hard and transparent films formed by nanocellulose-TiO2 nanoparticle hybrids.

    Directory of Open Access Journals (Sweden)

    Christina Schütz

    Full Text Available The formation of hybrids of nanofibrillated cellulose and titania nanoparticles in aqueous media has been studied. Their transparency and mechanical behavior have been assessed by spectrophotometry and nanoindentation. The results show that limiting the titania nanoparticle concentration below 16 vol% yields homogeneous hybrids with a very high Young's modulus and hardness, of up to 44 GPa and 3.4 GPa, respectively, and an optical transmittance above 80%. Electron microscopy shows that higher nanoparticle contents result in agglomeration and an inhomogeneous hybrid nanostructure with a concomitant reduction of hardness and optical transmittance. Infrared spectroscopy suggests that the nanostructure of the hybrids is controlled by electrostatic adsorption of the titania nanoparticles on the negatively charged nanocellulose surfaces.

  18. Hard and Transparent Films Formed by Nanocellulose–TiO2 Nanoparticle Hybrids

    Science.gov (United States)

    Schütz, Christina; Sort, Jordi; Bacsik, Zoltán; Oliynyk, Vitaliy; Pellicer, Eva; Fall, Andreas; Wågberg, Lars; Berglund, Lars; Bergström, Lennart; Salazar-Alvarez, German

    2012-01-01

    The formation of hybrids of nanofibrillated cellulose and titania nanoparticles in aqueous media has been studied. Their transparency and mechanical behavior have been assessed by spectrophotometry and nanoindentation. The results show that limiting the titania nanoparticle concentration below 16 vol% yields homogeneous hybrids with a very high Young’s modulus and hardness, of up to 44 GPa and 3.4 GPa, respectively, and an optical transmittance above 80%. Electron microscopy shows that higher nanoparticle contents result in agglomeration and an inhomogeneous hybrid nanostructure with a concomitant reduction of hardness and optical transmittance. Infrared spectroscopy suggests that the nanostructure of the hybrids is controlled by electrostatic adsorption of the titania nanoparticles on the negatively charged nanocellulose surfaces. PMID:23049689

  19. Hard and transparent hybrid polyurethane coatings using in situ incorporation of calcium carbonate nanoparticles

    International Nuclear Information System (INIS)

    Yao Lu; Yang Jie; Sun Jing; Cai Lifang; He Linghao; Huang Hui; Song Rui; Hao Yongmei

    2011-01-01

    Highlights: → In situ mineralization via gas diffusion was adopted for a good dispersion of calcium carbonate nanoparticles in the polymeric PU matrix. → Hybrid films with high dispersion, transparency, robust and thermal stability can be obtained by controlling the CaCO 3 loading. → The hybrid films display a significant improvement in its water resistance, surface hardness, scratch resistance and flexibility, with the introduction of CaCO 3 , and all coatings exhibited excellent chemical resistance and adhesion. - Abstract: The combination of hardness, scratch resistance, and flexibility is a highly desired feature in many coating applications. The aim of this study is to achieve this goal through the in situ introduction of an unmodified calcium carbonate (CaCO 3 ) into a water-soluble polyurethane (PU) matrix. Smooth and (semi-) transparent films were prepared from both the neat PU and the CaCO 3 -filled composites. As evidenced by the measurements from scanning electron microscopy (SEM), optical microscopy, dynamic mechanical analysis (DMA) and thermogravimetric analysis (TGA), hybrid films with high dispersion, transparency, robustness and thermal stability could be obtained by controlling the CaCO 3 loading. The storage modulus could increase from 441 MPa of neat PU matrix to 1034 MPa of hybrid film containing 2% (w/w) CaCO 3 . In addition, the same hybrid films displayed a significant improvement in its water resistance. In this case, the water-uptake ratio decreased from 41.54% of PU to 2.21% of hybrid film containing 2% (w/w) CaCO 3 . Moreover, with the introduction of CaCO 3 , conventional coating characterization methods demonstrated an increase in the surface hardness, scratch resistance and flexibility, and all coatings exhibited excellent chemical resistance and adhesion.

  20. Bromination of Graphene: A New Route to Making High Performance Transparent Conducting Electrodes with Low Optical Losses

    KAUST Repository

    Mansour, Ahmed; Dey, Sukumar; Amassian, Aram; Tanielian, Minas H.

    2015-01-01

    The unique optical and electrical properties of graphene have triggered great interest in its application as a transparent conducting electrode material and significant effort has been invested in achieving high conductivity while maintaining

  1. Bromination of graphene: a new route to making high performance transparent conducting electrodes with low optical losses

    KAUST Repository

    Mansour, Ahmed; Amassian, Aram; Tanielian, Minas H.

    2015-01-01

    The high optical transmittance, electrical conductivity, flexibility and chemical stability of graphene have triggered great interest in its application as a transparent conducting electrode material and as a potential replacement for indium doped

  2. Transparent conductive electrodes of mixed TiO2−x–indium tin oxide for organic photovoltaics

    KAUST Repository

    Lee, Kyu-Sung; Lim, Jong-Wook; Kim, Han-Ki; Alford, T. L.; Jabbour, Ghassan E.

    2012-01-01

    A transparent conductive electrode of mixed titanium dioxide (TiO2−x)–indium tin oxide (ITO) with an overall reduction in the use of indium metal is demonstrated. When used in organic photovoltaicdevices based on bulk heterojunction photoactive

  3. Catoptric electrodes: transparent metal electrodes using shaped surfaces.

    Science.gov (United States)

    Kik, Pieter G

    2014-09-01

    An optical electrode design is presented that theoretically allows 100% optical transmission through an interdigitated metallic electrode at 50% metal areal coverage. This is achieved by redirection of light incident on embedded metal electrode lines to an angle beyond that required for total internal reflection. Full-field electromagnetic simulations using realistic material parameters demonstrate 84% frequency-averaged transmission for unpolarized illumination across the entire visible spectral range using a silver interdigitated electrode at 50% areal coverage. The redirection is achieved through specular reflection, making it nonresonant and arbitrarily broadband, provided the electrode width exceeds the optical wavelength. These findings could significantly improve the performance of photovoltaic devices and optical detectors that require high-conductivity top contacts.

  4. Indium-free Cu/fluorine doped ZnO composite transparent conductive electrodes with stretchable and flexible performance on poly(ethylene terephthalate) substrate

    Science.gov (United States)

    Han, Jun; Gong, Haibo; Yang, Xiaopeng; Qiu, Zhiwen; Zi, Min; Qiu, Xiaofeng; Wang, Hongqiang; Cao, Bingqiang

    2015-03-01

    Material-abundant ZnO and metal thin film have been proposed as potential alternatives for the most widely commercial indium tin oxide (ITO) transparent and conductive electrode. Yet the deterioration of optical transparency and conductivity for these materials makes them difficult to compete with ITO. In this work, a double-layer structured film-composed of FZO and Cu film is presented at room temperature, which combines the high transparency of FZO and high conductivity of Cu film. We first studied the effect of oxygen pressure on the transparency and conductivity of free-standing FZO layer deposited on poly(ethylene terephthalate) (PET) by PLD method. Also the structural, electrical, and optical properties of bilayers electrode dependence on the Cu layer thickness were optimized in detail. As the Cu layer thickness increases, the resistivity decreases. The lowest resistivity of 6.6 × 10-5 Ω cm with a carrier concentration of 1.11 × 1022 cm-3 and mobility of 8.52 cm2 V-1 s-1 was obtained at the optimum Cu (12 nm) layer thickness. We find that FZO layer have anti-reflection effect for Cu/FZO (250 nm) bilayer in the wavelength range of 650-1000 nm compared with single Cu layer. And we firstly study the stretchable performance for Cu film-based composite electrodes with stretching ratio changing from 0 to 5%. Furthermore, we study excellent mechanical flexibility and stability of composite electrodes by bending test.

  5. All 2D materials as electrodes for high power hybrid energy storage applications

    Science.gov (United States)

    Kato, Keiko; Sayed, Farheen N.; Babu, Ganguli; Ajayan, Pulickel M.

    2018-04-01

    Achieving both high energy and power densities from energy storage devices is a core strategy to meet the increasing demands of high performance portable electronics and electric transportation systems. Li-ion capacitor is a promising hybrid technology that strategically exploits high energy density from a Li-ion battery electrode and high power density from a supercapacitor electrode. However, the performance and safety of hybrid devices are still major concerns due to the use of graphite anodes which form passivation layers with organic electrolytes at lower potentials. Here, we explore 2D nanosheets as both anode and cathode electrodes to build a high power system without compromising energy density. Owing to the high electrical conductivity and multivalent redox activity at higher potentials, the Li-ion intercalation electrode is capable of maintaining large energy density at higher current rates with less safety risk than conventional systems. Hybrid devices consisting of all in all 2D electrodes deliver energy density as high as 121 Wh g-1 (at 240 W kg-1) and retains 29 Wh g-1 at high power density of 3600 W kg-1.

  6. Graphene-Vertically Aligned Carbon Nanotube Hybrid on PDMS as Stretchable Electrodes.

    Science.gov (United States)

    Ding, Junjun; Fu, Shichen; Zhang, Runzhi; Boon, Eric Peter; Lee, Woo; Fisher, Frank T; Yang, Eui-Hyeok

    2017-09-11

    Stretchable electrodes are a critical component for flexible electronics such as displays, energy devices, and wearable sensors. Carbon nanotubes (CNTs) and graphene have been considered for flexible electrode applications, due to their mechanical strength, high carrier mobility, and excellent thermal conductivity. Vertically aligned carbon nanotubes (VACNTs) provide the possibility to serve as interconnects to graphene sheets as stretchable electrodes that could maintain high electrical conductivity under large tensile strain. In this work, a graphene oxide (GO) -VACNT hybrid on a PDMS substrate was demonstrated. Here, 50 μm long VACNTs were grown on a Si/SiO2 wafer substrate via atmospheric pressure chemical vapor deposition (APCVD). VACNTs were directly transferred by delamination from the Si/SiO2 to a semi-cured PDMS substrate, ensuring strong adhesion between VACNTs and PDMS upon full curing of the PDMS. GO ink was then printed on the surface of the VACNT carpet and thermally reduced to reduced graphene oxide (rGO). The sheet resistance of the rGO-VACNT hybrid was measured under uniaxial tensile strains up to 300% applied to the substrate. Under applied strain, the rGO-VACNT hybrid maintained a sheet resistant of 386±55 Ω/sq. Cyclic stretching of the rGO-VACNT hybrid was performed with up to 50 cycles at 100% maximum tensile strain, showing no increase in sheet resistance. These results demonstrate promising performance of the rGO-VACNT hybrid for flexible electronics applications. © 2017 IOP Publishing Ltd.

  7. Graphene—vertically aligned carbon nanotube hybrid on PDMS as stretchable electrodes

    Science.gov (United States)

    Ding, Junjun; Fu, Shichen; Zhang, Runzhi; Boon, Eric; Lee, Woo; Fisher, Frank T.; Yang, Eui-Hyeok

    2017-11-01

    Stretchable electrodes are a critical component for flexible electronics such as displays, energy devices, and wearable sensors. Carbon nanotubes (CNTs) and graphene have been considered for flexible electrode applications, due to their mechanical strength, high carrier mobility, and excellent thermal conductivity. Vertically aligned carbon nanotubes (VACNTs) provide the possibility to serve as interconnects to graphene sheets as stretchable electrodes that could maintain high electrical conductivity under large tensile strain. In this work, a graphene oxide (GO)-VACNT hybrid on a PDMS substrate was demonstrated. Here, 50 μm long VACNTs were grown on a Si/SiO2 wafer substrate via atmospheric pressure chemical vapor deposition. VACNTs were directly transferred by delamination from the Si/SiO2 to a semi-cured PDMS substrate, ensuring strong adhesion between VACNTs and PDMS upon full curing of the PDMS. GO ink was then printed on the surface of the VACNT carpet and thermally reduced to reduced graphene oxide (rGO). The sheet resistance of the rGO-VACNT hybrid was measured under uniaxial tensile strains up to 300% applied to the substrate. Under applied strain, the rGO-VACNT hybrid maintained a sheet resistant of 386 ± 55 Ω/sq. Cyclic stretching of the rGO-VACNT hybrid was performed with up to 50 cycles at 100% maximum tensile strain, showing no increase in sheet resistance. These results demonstrate promising performance of the rGO-VACNT hybrid for flexible electronics applications.

  8. Transparent conductive electrodes of mixed TiO2−x–indium tin oxide for organic photovoltaics

    KAUST Repository

    Lee, Kyu-Sung

    2012-05-22

    A transparent conductive electrode of mixed titanium dioxide (TiO2−x)–indium tin oxide (ITO) with an overall reduction in the use of indium metal is demonstrated. When used in organic photovoltaicdevices based on bulk heterojunction photoactive layer of poly (3-hexylthiophene) and [6,6]-phenyl C61 butyric acid methyl ester, a power conversion efficiency of 3.67% was obtained, a value comparable to devices having sputtered ITO electrode. Surface roughness and optical efficiency are improved when using the mixed TiO2−x–ITO electrode. The consumption of less indium allows for lower fabrication cost of such mixed thin filmelectrode.

  9. Low-Cost Facile Fabrication of Flexible Transparent Copper Electrodes by Nanosecond Laser Ablation

    KAUST Repository

    Paeng, Dongwoo

    2015-03-27

    © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. Low-cost Cu flexible transparent conducting electrodes (FTCEs) are fabricated by facile nanosecond laser ablation. The fabricated Cu FTCEs show excellent opto-electrical properties (transmittance: 83%, sheet resistance: 17.48 Ω sq-1) with outstanding mechanical durability. Successful demonstration of a touch-screen panel confirms the potential applicability of Cu FTCEs to the flexible optoelectronic devices.

  10. Silver nanowires network encapsulated by low temperature sol-gel ZnO for transparent flexible electrodes with ambient stability

    Science.gov (United States)

    Shin, Wonjung; Cho, Wonki; Baik, Seung Jae

    2018-01-01

    As a geometrically engineered realization of transparent electrode, Ag nanowires network is promising for its superior characteristics both on electrical conductivity and optical transmittance. However, for a potential commercialization of Ag nanowires network, further investigations on encapsulation materials are necessary to prevent degradation caused by ambient aging. In addition, the temperature range of the coating process for the encapsulation material needs to be low enough to prevent degradation of polymer substrates during the film coating processes, when considering emerging flexible device application of transparent electrodes. We present experimental results showing that low temperature sol-gel ZnO processed under 130 °C is an effective encapsulation material preventing ambient oxidation of Ag nanowires network without degrading electrical, optical, and mechanical properties.

  11. Improvement of Transparent Conducting Performance on Oxygen-Activated Fluorine-Doped Tin Oxide Electrodes Formed by Horizontal Ultrasonic Spray Pyrolysis Deposition.

    Science.gov (United States)

    Koo, Bon-Ryul; Oh, Dong-Hyeun; Riu, Doh-Hyung; Ahn, Hyo-Jin

    2017-12-27

    In this study, highly transparent conducting fluorine-doped tin oxide (FTO) electrodes were fabricated using the horizontal ultrasonic spray pyrolysis deposition. In order to improve their transparent conducting performances, we carried out oxygen activation by adjusting the ratio of O 2 /(O 2 +N 2 ) in the carrier gas (0%, 20%, and 50%) used during the deposition process. The oxygen activation on the FTO electrodes accelerated the substitution concentration of F (F O • ) into the oxygen sites in the FTO electrode while the oxygen vacancy (V O • • ) concentration was reduced. In addition, due to growth of pyramid-shaped crystallites with (200) preferred orientations, this oxygen activation caused the formation of a uniform surface structure. As a result, compared to others, the FTO electrode prepared at 50% O 2 showed excellent electrical and optical properties (sheet resistance of ∼4.0 ± 0.14 Ω/□, optical transmittance of ∼85.3%, and figure of merit of ∼5.09 ± 0.19 × 10 -2 Ω -1 ). This led to a superb photoconversion efficiency (∼7.03 ± 0.20%) as a result of the improved short-circuit current density. The photovoltaic performance improvement can be defined by the decreased sheet resistance of FTO used as a transparent conducting electrode in dye-sensitized solar cells (DSSCs), which is due to the combined effect of the high carrier concentration by the improved F O • concentration on the FTO electrodes and the fasted Hall mobility by the formation of a uniform FTO surface structure and distortion relaxation on the FTO lattices resulting from the reduced V O • • • concentration.

  12. Hybrid capacitor with activated carbon electrode, Ni(OH) 2 electrode and polymer hydrogel electrolyte

    Science.gov (United States)

    Nohara, Shinji; Asahina, Toshihide; Wada, Hajime; Furukawa, Naoji; Inoue, Hiroshi; Sugoh, Nozomu; Iwasaki, Hideharu; Iwakura, Chiaki

    A new hybrid capacitor (HC) cell was assembled using an activated carbon (AC) negative electrode, an Ni(OH) 2 positive electrode and a polymer hydrogel electrolyte prepared from crosslinked potassium poly(acrylate) (PAAK) and KOH aqueous solution. The HC cell was characterized compared with an electric double layer capacitor (EDLC) using two AC electrodes and the polymer hydrogel electrolyte. It was found that the HC cell successfully worked in the larger voltage range and exhibited ca. 2.4 times higher capacitance than the EDLC cell. High-rate dischargeability of the HC cell was also superior to that of the EDLC cell. These improved characteristics strongly suggest that the HC cell can be a promising system of capacitors with high energy and power densities.

  13. Hybrid graphene electrodes for supercapacitors of high energy density

    Science.gov (United States)

    Zhang, Feifei; Tang, Jie; Shinya, Norio; Qin, Lu-Chang

    2013-10-01

    We describe a process of co-reduction to reduce dispersed graphene oxide (GO) and single-walled carbon nanotubes (SWNTs) simultaneously for preparation of hybrid electrodes for graphene supercapacitors. The SWNTs are in between the inter-layer space of graphene sheets as a spacer to prevent effectively restacking of graphene that often limits seriously the electrochemical performance of graphene supercapacitors. The SWNTs also act as conductive binders to improve the electrical conduction of the electrode. A high specific capacitance of 261 F g-1 for a single electrode and specific energy density of 123 W h kg-1 measured in the two-electrode configuration have been obtained in ionic liquid (EMI-TFSI). For interpretation of color in Fig. 6, the reader is referred to the web version of this article.

  14. Spray-Deposited Large-Area Copper Nanowire Transparent Conductive Electrodes and Their Uses for Touch Screen Applications.

    Science.gov (United States)

    Chu, Hsun-Chen; Chang, Yen-Chen; Lin, Yow; Chang, Shu-Hao; Chang, Wei-Chung; Li, Guo-An; Tuan, Hsing-Yu

    2016-05-25

    Large-area conducting transparent conducting electrodes (TCEs) were prepared by a fast, scalable, and low-cost spray deposition of copper nanowire (CuNW) dispersions. Thin, long, and pure copper nanowires were obtained via the seed-mediated growth in an organic solvent-based synthesis. The mean length and diameter of nanowires are, respectively, 37.7 μm and 46 nm, corresponding to a high-mean-aspect ratio of 790. These wires were spray-deposited onto a glass substrate to form a nanowire conducting network which function as a TCE. CuNW TCEs exhibit high-transparency and high-conductivity since their relatively long lengths are advantageous in lowering in the sheet resistance. For example, a 2 × 2 cm(2) transparent nanowire electrode exhibits transmittance of T = 90% with a sheet resistance as low as 52.7 Ω sq(-1). Large-area sizes (>50 cm(2)) of CuNW TCEs were also prepared by the spray coating method and assembled as resistive touch screens that can be integrated with a variety of devices, including LED lighting array, a computer, electric motors, and audio electronic devices, showing the capability to make diverse sizes and functionalities of CuNW TCEs by the reported method.

  15. Point-of-need simultaneous electrochemical detection of lead and cadmium using low-cost stencil-printed transparency electrodes.

    Science.gov (United States)

    Martín-Yerga, Daniel; Álvarez-Martos, Isabel; Blanco-López, M Carmen; Henry, Charles S; Fernández-Abedul, M Teresa

    2017-08-15

    In this work, we report a simple and yet efficient stencil-printed electrochemical platform that can be integrated into the caps of sample containers and thus, allows in-field quantification of Cd(II) and Pb(II) in river water samples. The device exploits the low-cost features of carbon (as electrode material) and paper/polyester transparency sheets (as substrate). Electrochemical analysis of the working electrodes prepared on different substrates (polyester transparency sheets, chromatographic, tracing and office papers) with hexaammineruthenium(III) showed that their electroactive area and electron transfer kinetics are highly affected by the porosity of the material. Electrodes prepared on transparency substrates showed the best electroanalytical performance for the simultaneous determination of Cd(II) and Pb(II) by square-wave anodic stripping voltammetry. Interestingly, the temperature and time at which the carbon ink was cured had significant effect on the electrochemical response, especially the capacitive current. The amount of Cd and Pb on the electrode surface can be increased about 20% by in situ electrodeposition of bismuth. The electrochemical platform showed a linear range comprised between 1 and 200 μg/L for both metals, sensitivity of analysis of 0.22 and 0.087 μA/ppb and limits of detection of 0.2 and 0.3 μg/L for Cd(II) and Pb(II), respectively. The analysis of river water samples was done directly in the container where the sample was collected, which simplifies the procedure and approaches field analysis. The developed point-of-need detection system allowed simultaneous determination of Cd(II) and Pb(II) in those samples using the standard addition method with precise and accurate results. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Uniformly embedded silver nanomesh as highly bendable transparent conducting electrode

    International Nuclear Information System (INIS)

    Choi, Hak-Jong; Choo, Soyoung; Jung, Pil-Hoon; Shin, Ju-Hyeon; Kim, Yang-Doo; Lee, Heon

    2015-01-01

    Ag-nanomesh-based highly bendable conducting electrodes are developed using a combination of metal nanotransfer printing and embossing for the 6-inch wafer scale. Two Ag nanomeshes, including pitch sizes of 7.5 and 10 μm, are used to obtain highly transparent (approximately 85% transmittance at a wavelength of 550 nm) and electrically conducting properties (below 10 Ω sq −1 ). The Ag nanomeshes are also distinguished according to the fabrication process, which is called transferred or embedded Ag nanomesh on polyethylene terephthalate (PET) substrate, in order to compare their stability against bending stress. Then the enhancement of bending stability when the Ag nanomesh is embedded in the PET substrate is confirmed. (paper)

  17. Uniformly embedded silver nanomesh as highly bendable transparent conducting electrode

    Science.gov (United States)

    Choi, Hak-Jong; Choo, Soyoung; Jung, Pil-Hoon; Shin, Ju-Hyeon; Kim, Yang-Doo; Lee, Heon

    2015-02-01

    Ag-nanomesh-based highly bendable conducting electrodes are developed using a combination of metal nanotransfer printing and embossing for the 6-inch wafer scale. Two Ag nanomeshes, including pitch sizes of 7.5 and 10 μm, are used to obtain highly transparent (approximately 85% transmittance at a wavelength of 550 nm) and electrically conducting properties (below 10 Ω sq-1). The Ag nanomeshes are also distinguished according to the fabrication process, which is called transferred or embedded Ag nanomesh on polyethylene terephthalate (PET) substrate, in order to compare their stability against bending stress. Then the enhancement of bending stability when the Ag nanomesh is embedded in the PET substrate is confirmed.

  18. A study of nitroxide polyradical/activated carbon composite as the positive electrode material for electrochemical hybrid capacitor

    Energy Technology Data Exchange (ETDEWEB)

    Li, Hui-qiao; Zou, Ying; Xia, Yong-yao [Chemistry Department and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200433 (China)

    2007-01-01

    We present a new concept of the hybrid electrochemical capacitor technology in which a poly(2,2,6,6-tetramethylpiperidinyloxy methacrylate) nitroxide polyradical/activated carbon composite (PTMA-AC) is used as the positive electrode material and activated carbon is used as the negative electrode material. On the positive electrode, both reversible reduction and oxidation of nitroxide polyradical and non-faradic ion sorption/de-sorption of activated carbon are involved during charge and discharge process. The capacity of the composite electrode is 30% larger than that of the pure activated carbon electrode. A hybrid capacitor fabricated by the PTMA-AC composite positive electrode and the activated carbon negative electrode shows a good cycling life, it can be charged/discharged for over 1000 cycles with slight capacity loss. The hybrid capacitor also has a good rate capability, it maintains 80% of the initial capacity even at the high discharge current of up to 20C. (author)

  19. High-Quality AZO/Au/AZO Sandwich Film with Ultralow Optical Loss and Resistivity for Transparent Flexible Electrodes.

    Science.gov (United States)

    Zhou, Hua; Xie, Jing; Mai, Manfang; Wang, Jing; Shen, Xiangqian; Wang, Shuying; Zhang, Lihua; Kisslinger, Kim; Wang, Hui-Qiong; Zhang, Jinxing; Li, Yu; Deng, Junhong; Ke, Shanming; Zeng, Xierong

    2018-05-09

    Transparent flexible electrodes are in ever-growing demand for modern stretchable optoelectronic devices, such as display technologies, solar cells, and smart windows. Such sandwich-film-electrodes deposited on polymer substrates are unattainable because of the low quality of the films, inducing a relatively large optical loss and resistivity as well as a difficulty in elucidating the interference behavior of light. In this article, we report a high-quality AZO/Au/AZO sandwich film with excellent optoelectronic performance, e.g., an average transmittance of about 81.7% (including the substrate contribution) over the visible range, a sheet resistance of 5 Ω/sq, and a figure-of-merit (FoM) factor of ∼55.1. These values are well ahead of those previously reported for sandwich-film-electrodes. Additionally, the interference behaviors of light modulated by the coat and metal layers have been explored with the employment of transmittance spectra and numerical simulations. In particular, a heater device based on an AZO/Au/AZO sandwich film exhibits high performance such as short response time (∼5 s) and uniform temperature field. This work provides a deep insight into the improvement of the film quality of the sandwich electrodes and the design of high-performance transparent flexible devices by the application of a flexible substrate with an atomically smooth surface.

  20. Microcavity-Free Broadband Light Outcoupling Enhancement in Flexible Organic Light-Emitting Diodes with Nanostructured Transparent Metal-Dielectric Composite Electrodes.

    Science.gov (United States)

    Xu, Lu-Hai; Ou, Qing-Dong; Li, Yan-Qing; Zhang, Yi-Bo; Zhao, Xin-Dong; Xiang, Heng-Yang; Chen, Jing-De; Zhou, Lei; Lee, Shuit-Tong; Tang, Jian-Xin

    2016-01-26

    Flexible organic light-emitting diodes (OLEDs) hold great promise for future bendable display and curved lighting applications. One key challenge of high-performance flexible OLEDs is to develop new flexible transparent conductive electrodes with superior mechanical, electrical, and optical properties. Herein, an effective nanostructured metal/dielectric composite electrode on a plastic substrate is reported by combining a quasi-random outcoupling structure for broadband and angle-independent light outcoupling of white emission with an ultrathin metal alloy film for optimum optical transparency, electrical conduction, and mechanical flexibility. The microcavity effect and surface plasmonic loss can be remarkably reduced in white flexible OLEDs, resulting in a substantial increase in the external quantum efficiency and power efficiency to 47.2% and 112.4 lm W(-1).

  1. Hybrid capacitor with activated carbon electrode, Ni(OH){sub 2} electrode and polymer hydrogel electrolyte

    Energy Technology Data Exchange (ETDEWEB)

    Nohara, Shinji; Asahina, Toshihide; Wada, Hajime; Furukawa, Naoji; Inoue, Hiroshi; Iwakura, Chiaki [Department of Applied Chemistry, Graduate School of Engineering, Osaka Prefecture University, 1-1 Gakuen-cho, Sakai, Osaka 599-8531 (Japan); Sugoh, Nozomu; Iwasaki, Hideharu [Kurashiki Research Laboratory, Kuraray Co., Ltd., 2045-1 Sakazu, Kurashiki, Okayama 710-8691 (Japan)

    2006-06-19

    A new hybrid capacitor (HC) cell was assembled using an activated carbon (AC) negative electrode, an Ni(OH){sub 2} positive electrode and a polymer hydrogel electrolyte prepared from crosslinked potassium poly(acrylate) (PAAK) and KOH aqueous solution. The HC cell was characterized compared with an electric double layer capacitor (EDLC) using two AC electrodes and the polymer hydrogel electrolyte. It was found that the HC cell successfully worked in the larger voltage range and exhibited ca. 2.4 times higher capacitance than the EDLC cell. High-rate dischargeability of the HC cell was also superior to that of the EDLC cell. These improved characteristics strongly suggest that the HC cell can be a promising system of capacitors with high energy and power densities. (author)

  2. Design of Hydrogen Storage Alloys/Nanoporous Metals Hybrid Electrodes for Nickel-Metal Hydride Batteries

    Science.gov (United States)

    Li, M. M.; Yang, C. C.; Wang, C. C.; Wen, Z.; Zhu, Y. F.; Zhao, M.; Li, J. C.; Zheng, W. T.; Lian, J. S.; Jiang, Q.

    2016-06-01

    Nickel metal hydride (Ni-MH) batteries have demonstrated key technology advantages for applications in new-energy vehicles, which play an important role in reducing greenhouse gas emissions and the world’s dependence on fossil fuels. However, the poor high-rate dischargeability of the negative electrode materials—hydrogen storage alloys (HSAs) limits applications of Ni-MH batteries in high-power fields due to large polarization. Here we design a hybrid electrode by integrating HSAs with a current collector of three-dimensional bicontinuous nanoporous Ni. The electrode shows enhanced high-rate dischargeability with the capacity retention rate reaching 44.6% at a discharge current density of 3000 mA g-1, which is 2.4 times that of bare HSAs (18.8%). Such a unique hybrid architecture not only enhances charge transfer between nanoporous Ni and HSAs, but also facilitates rapid diffusion of hydrogen atoms in HSAs. The developed HSAs/nanoporous metals hybrid structures exhibit great potential to be candidates as electrodes in high-performance Ni-MH batteries towards applications in new-energy vehicles.

  3. Study of the transparent electrode photo-galvano-voltaic cell

    Energy Technology Data Exchange (ETDEWEB)

    Zhi-chu, B.

    1980-01-01

    A simple photo-galvano-voltaic cell has been constructed by using a Nesa glass coated with SnO/sub 2/ on both sides as transparent electrodes, one of which is further coated with a photosensitizing dyestuff, meso-tetraphenylporphrin (TPP), forming the photo-cathode, and using an aqueous solution of thionine and Fe/sup + + +//Fe/sup + +/ redox couple as the electrolytic solution. By adding a surfactant, Na Lauryl sulfate, into the solution the surface resistance of the TPP film is greatly lowered, so that the photocurrent of the cell is markedly enhanced and the light conversion efficiency is increased more than twofold. It has been demonstrated that a multilayer liquid film photo-galvano-voltaic cell with film thickness less than 100 ..mu.. can greatly increase the light conversion efficiency, and the open-circuit voltage of more than two volts can be easily achieved.

  4. Tunnelling conductive hybrid films of gold nanoparticles and cellulose and their applications as electrochemical electrodes

    International Nuclear Information System (INIS)

    Liu, Zhiming; Wang, Xuefeng; Wu, Wenjian; Li, Mei

    2015-01-01

    Conductive hybrid films of metal nanoparticles and polymers have practical applications in the fields of sensing, microelectronics and catalysis, etc. Herein, we present the electrochemical availability of tunnelling conductive hybrid films of gold nanoparticles (GNPs) and cellulose. The hybrid films were provided with stable tunnelling conductive properties with 12 nm GNPs of 12.7% (in weight). For the first time, the conductive hybrid films were used as substrates of electrochemical electrodes to load calmodulin (CaM) proteins for sensing of calcium cations. The electrodes of hybrid films with 20 nm GNPs of 46.7% (in weight) exhibited stable electrochemical properties, and showed significant responses to calcium cations with concentrations as low as 10 −9 M after being loaded with CaM proteins. (paper)

  5. A Compact Closed-Loop Optogenetics System Based on Artifact-Free Transparent Graphene Electrodes

    Directory of Open Access Journals (Sweden)

    Xin Liu

    2018-03-01

    Full Text Available Electrophysiology is a decades-old technique widely used for monitoring activity of individual neurons and local field potentials. Optogenetics has revolutionized neuroscience studies by offering selective and fast control of targeted neurons and neuron populations. The combination of these two techniques is crucial for causal investigation of neural circuits and understanding their functional connectivity. However, electrical artifacts generated by light stimulation interfere with neural recordings and hinder the development of compact closed-loop systems for precise control of neural activity. Here, we demonstrate that transparent graphene micro-electrodes fabricated on a clear polyethylene terephthalate film eliminate the light-induced artifact problem and allow development of a compact battery-powered closed-loop optogenetics system. We extensively investigate light-induced artifacts for graphene electrodes in comparison to metal control electrodes. We then design optical stimulation module using micro-LED chips coupled to optical fibers to deliver light to intended depth for optogenetic stimulation. For artifact-free integration of graphene micro-electrode recordings with optogenetic stimulation, we design and develop a compact closed-loop system and validate it for different frequencies of interest for neural recordings. This compact closed-loop optogenetics system can be used for various applications involving optogenetic stimulation and electrophysiological recordings.

  6. Process development of ITO source/drain electrode for the top-gate indium-gallium-zinc oxide transparent thin-film transistor

    International Nuclear Information System (INIS)

    Cheong, Woo-Seok; Yoon, Young-sun; Shin, Jae-Heon; Hwang, Chi-Sun; Chu, Hye Yong

    2009-01-01

    Indium-tin oxide (ITO) has been widely used as electrodes for LCDs and OLEDs. The applications are expanding to the transparent thin-film transistors (TTFT S ) for the versatile circuits or transparent displays. This paper is related with optimization of ITO source and drain electrode for TTFTs on glass substrates. For example, un-etched ITO remnants, which frequently found in the wet etching process, often originate from unsuitable ITO formation processes. In order to improve them, an ion beam deposition method is introduced, which uses for forming a seed layer before the main ITO deposition. We confirm that ITO films with seed layers are effective to obtain clean and smooth glass surfaces without un-etched ITO remnants, resulting in a good long-run electrical stability of the top-gate indium-gallium-zinc oxide-TTFT.

  7. Electrochemically fabricated polyaniline nanowire-modified electrode for voltammetric detection of DNA hybridization

    International Nuclear Information System (INIS)

    Zhu Ningning; Chang Zhu; He Pingang; Fang Yuzhi

    2006-01-01

    A novel and sensitive electrochemical DNA biosensor based on electrochemically fabricated polyaniline nanowire and methylene blue for DNA hybridization detection is presented. Nanowires of conducting polymers were directly synthesized through a three-step electrochemical deposition procedure in an aniline-containing electrolyte solution, by using the glassy carbon electrode (GCE) as the working electrode. The morphology of the polyaniline films was examined using a field emission scanning electron microscope (SEM). The diameters of the nanowires range from 80 to 100 nm. The polyaniline nanowires-coated electrode exhibited very good electrochemical conductivity. Oligonucleotides with phosphate groups at the 5' end were covalently linked onto the amino groups of polyaniline nanowires on the electrode. The hybridization events were monitored with differential pulse voltammetry (DPV) measurement using methylene blue (MB) as an indicator. The approach described here can effectively discriminate complementary from non-complementary DNA sequence, with a detection limit of 1.0 x 10 -12 mol l -1 of complementary target, suggesting that the polyaniline nanowires hold great promises for sensitive electrochemical biosensor applications

  8. Improved Long-Term Stability of Transparent Conducting Electrodes Based on Double-Laminated Electrosprayed Antimony Tin Oxides and Ag Nanowires

    Directory of Open Access Journals (Sweden)

    Koo B.-R.

    2017-06-01

    Full Text Available We fabricated double-laminated antimony tin oxide/Ag nanowire electrodes by spin-coating and electrospraying. Compared to pure Ag nanowire electrodes and single-laminated antimony tin oxide/Ag nanowire electrodes, the double-laminated antimony tin oxide/Ag nanowire electrodes had superior transparent conducting electrode performances with sheet resistance ~19.8 Ω/□ and optical transmittance ~81.9%; this was due to uniform distribution of the connected Ag nanowires because of double lamination of the metallic Ag nanowires without Ag aggregation despite subsequent microwave heating at 250°C. They also exhibited excellent and superior long-term chemical and thermal stabilities and adhesion to substrate because double-laminated antimony tin oxide thin films act as the protective layers between Ag nanowires, blocking Ag atoms penetration.

  9. Novel transparent high-performance AgNWs/ZnO electrodes prepared on unconventional substrates with 3D structured surfaces

    Science.gov (United States)

    Lan, Wei; Yang, Zhiwei; Zhang, Yue; Wei, Yupeng; Wang, Pengxiang; Abas, Asim; Tang, Guomei; Zhang, Xuetao; Wang, Junya; Xie, Erqing

    2018-03-01

    With the development of optoelectronic devices with three-dimensional (3D) structured surfaces, transparent electrodes that can be deposited on non-plane substrates have become increasingly important. In this paper, novel transparent silver nanowire (AgNWs)/ZnO film electrodes were uniformly prepared on treated 3D glass and PET substrates with a combination of spin-coating and heat-welding. The AgNWs/ZnO films show a transmittance of ∼88% and a sheet resistance of ∼10 Ω/sq. They are comparable with commercial ITO films. Furthermore, only a small in-plane resistance variation of ∼1 Ω/sq was measured using four-point probe mapping in films with a 10 cm × 10 cm area. These results confirm that these novel film electrodes are very uniform. Both electrical resistance and optical transmittance of the films remain mostly intact after 1000 bending cycles and tape peeling-tests with 10 cycles. The films show high thermal stability for more than one month at 80 °C. The strategy provides a new route for the design and fabrication of optoelectronic devices with 3D structured surfaces.

  10. Perspectives on State-of-the-Art Carbon Nanotube/Polyaniline and Graphene/Polyaniline Composites for Hybrid Supercapacitor Electrodes.

    Science.gov (United States)

    Srikanth, Vadali V S S; Ramana, Gedela Venkata; Kumar, Puttapati Sampath

    2016-03-01

    Supercapacitors are attractive alternative energy storage sources. They offer high energy/power density with other characteristics like fast discharge/charge time, long operation stability, safety etc. In a supercapacitor, working electrode material is the principal constituent. At present there are numerous electrode materials (with properties) suitable for their use in hybrid type supercapacitors. Carbon/polyaniline (PANi) composites are one class of such electrode materials. Here, perspectives on state-of-the-art carbon/PANi composites namely carbon nanotube/polyaniline and graphene/polyaniline composites expedient as hybrid type supercapacitor electrode materials will be presented.

  11. Nanostructured cobalt sulfide-on-fiber with tunable morphology as electrodes for asymmetric hybrid supercapacitors

    KAUST Repository

    Baby, Rakhi Raghavan; Alhebshi, Nuha; Anjum, Dalaver H.; Alshareef, Husam N.

    2014-01-01

    Porous cobalt sulfide (Co9S8) nanostructures with tunable morphology, but identical crystal phase and composition, have been directly nucleated over carbon fiber and evaluated as electrodes for asymmetric hybrid supercapacitors. As the morphology is changed from two-dimensional (2D) nanoflakes to 3D octahedra, dramatic changes in supercapacitor performance are observed. In three-electrode configuration, the binder-free Co9S82D nanoflake electrodes show a high specific capacitance of 1056 F g-1at 5 mV s-1vs. 88 F g-1for the 3D electrodes. As sulfides are known to have low operating potential, for the first time, asymmetric hybrid supercapacitors are constructed from Co9S8nanostructures and activated carbon (AC), providing an operation potential from 0 to 1.6 V. At a constant current density of 1 A g-1, the 2D Co9S8, nanoflake//AC asymmetric hybrid supercapacitor exhibits a gravimetric cell capacitance of 82.9 F g-1, which is much higher than that of an AC//AC symmetric capacitor (44.8 F g-1). Moreover, the asymmetric hybrid supercapacitor shows an excellent energy density of 31.4 W h kg-1at a power density of 200 W Kg-1and an excellent cycling stability with a capacitance retention of ∼90% after 5000 cycles. This journal is

  12. Nanoporous metal/oxide hybrid electrodes for electrochemical supercapacitors

    Science.gov (United States)

    Lang, Xingyou; Hirata, Akihiko; Fujita, Takeshi; Chen, Mingwei

    2011-04-01

    Electrochemical supercapacitors can deliver high levels of electrical power and offer long operating lifetimes, but their energy storage density is too low for many important applications. Pseudocapacitive transition-metal oxides such as MnO2 could be used to make electrodes in such supercapacitors, because they are predicted to have a high capacitance for storing electrical charge while also being inexpensive and not harmful to the environment. However, the poor conductivity of MnO2 (10-5-10-6 S cm-1) limits the charge/discharge rate for high-power applications. Here, we show that hybrid structures made of nanoporous gold and nanocrystalline MnO2 have enhanced conductivity, resulting in a specific capacitance of the constituent MnO2 (~1,145 F g-1) that is close to the theoretical value. The nanoporous gold allows electron transport through the MnO2, and facilitates fast ion diffusion between the MnO2 and the electrolytes while also acting as a double-layer capacitor. The high specific capacitances and charge/discharge rates offered by such hybrid structures make them promising candidates as electrodes in supercapacitors, combining high-energy storage densities with high levels of power delivery.

  13. ITO with embedded silver grids as transparent conductive electrodes for large area organic solar cells

    DEFF Research Database (Denmark)

    Patil, Bhushan Ramesh; Mirsafaei, Mina; Cielecki, Pawel Piotr

    2017-01-01

    In this work, development of semi-transparent electrodes for efficient large area organic solar cells (OSCs) has been demonstrated. Electron beam evaporated silver grids were embedded in commercially available ITO coatings on glass, through a standard negative photolithography process, in order...... patterns. Solution processed bulk heterojunction OSCs based on PTB7:[70]PCBM were fabricated on top of these electrodes with cell areas of 4.38 cm2, and the performance of these OSCs was compared to reference cells fabricated on pure ITO electrodes. The Fill Factor of the large-scale OSCs fabricated on ITO...... with embedded Ag grids was enhanced by 18 % for the line grids pattern and 30 % for the square grids pattern compared to that of the reference OSCs. The increase in the Fill Factor was directly correlated to the decrease in the series resistance of the OSCs. The maximum power conversion efficiency (PCE...

  14. Fabrication of a Combustion-Reacted High-Performance ZnO Electron Transport Layer with Silver Nanowire Electrodes for Organic Solar Cells.

    Science.gov (United States)

    Park, Minkyu; Lee, Sang-Hoon; Kim, Donghyuk; Kang, Juhoon; Lee, Jung-Yong; Han, Seung Min

    2018-02-28

    Herein, a new methodology for solution-processed ZnO fabrication on Ag nanowire network electrode via combustion reaction is reported, where the amount of heat emitted during combustion was minimized by controlling the reaction temperature to avoid damaging the underlying Ag nanowires. The degree of participation of acetylacetones, which are volatile fuels in the combustion reaction, was found to vary with the reaction temperature, as revealed by thermogravimetric and compositional analyses. An optimized processing temperature of 180 °C was chosen to successfully fabricate a combustion-reacted ZnO and Ag nanowire hybrid electrode with a sheet resistance of 30 Ω/sq and transmittance of 87%. A combustion-reacted ZnO on Ag nanowire hybrid structure was demonstrated as an efficient transparent electrode and electron transport layer for the PTB7-Th-based polymer solar cells. The superior electrical conductivity of combustion-reacted ZnO, compared to that of conventional sol-gel ZnO, increased the external quantum efficiency over the entire absorption range, whereas a unique light scattering effect due to the presence of nanopores in the combustion-derived ZnO further enhanced the external quantum efficiency in the 450-550 nm wavelength range. A power conversion efficiency of 8.48% was demonstrated for the PTB7-Th-based polymer solar cell with the use of a combustion-reacted ZnO/Ag NW hybrid transparent electrode.

  15. Transparent and conductive electrodes by large-scale nano-structuring of noble metal thin-films

    DEFF Research Database (Denmark)

    Linnet, Jes; Runge Walther, Anders; Wolff, Christian

    2018-01-01

    grid, and nano-wire thin-films. The indium and carbon films do not match the chemical stability nor the electrical performance of the noble metals, and many metal films are not uniform in material distribution leading to significant surface roughness and randomized transmission haze. We demonstrate...... solution-processed masks for physical vapor-deposited metal electrodes consisting of hexagonally ordered aperture arrays with scalable aperture-size and spacing in an otherwise homogeneous noble metal thin-film that may exhibit better electrical performance than carbon nanotube-based thin-films...... for equivalent optical transparency. The fabricated electrodes are characterized optically and electrically by measuring transmittance and sheet resistance. The presented methods yield large-scale reproducible results. Experimentally realized thin-films with very low sheet resistance, Rsh = 2.01 ± 0.14 Ω...

  16. Vacuum-Assisted Low-Temperature Synthesis of Reduced Graphene Oxide Thin-Film Electrodes for High-Performance Transparent and Flexible All-Solid-State Supercapacitors.

    Science.gov (United States)

    Aytug, Tolga; Rager, Matthew S; Higgins, Wesley; Brown, Forrest G; Veith, Gabriel M; Rouleau, Christopher M; Wang, Hui; Hood, Zachary D; Mahurin, Shannon M; Mayes, Richard T; Joshi, Pooran C; Kuruganti, Teja

    2018-04-04

    Simple and easily integrated design of flexible and transparent electrode materials affixed to polymer-based substrates hold great promise to have a revolutionary impact on the functionality and performance of energy storage devices for many future consumer electronics. Among these applications are touch sensors, roll-up displays, photovoltaic cells, health monitors, wireless sensors, and wearable communication devices. Here, we report an environmentally friendly, simple, and versatile approach to produce optically transparent and mechanically flexible all-solid-state supercapacitor devices. These supercapacitors were constructed on tin-doped indium oxide coated polyethylene terephthalate substrates by intercalation of a polymer-based gel electrolyte between two reduced graphene oxide (rGO) thin-film electrodes. The rGO electrodes were fabricated simply by drop-casting of graphene oxide (GO) films, followed by a novel low-temperature (≤250 °C) vacuum-assisted annealing approach for the in situ reduction of GO to rGO. A trade-off between the optical transparency and electrochemical performance is determined by the concentration of the GO in the initial dispersion, whereby the highest capacitance (∼650 μF cm -2 ) occurs at a relatively lower optical transmittance (24%). Notably, the all-solid-state supercapacitors demonstrated excellent mechanical flexibility with a capacity retention rate above 90% under various bending angles and cycles. These attributes underscore the potential of the present approach to provide a path toward the realization of thin-film-based supercapacitors as flexible and transparent energy storage devices for a variety of practical applications.

  17. Multiscale transparent electrode architecture for efficient light management and carrier collection in solar cells.

    Science.gov (United States)

    Boccard, Mathieu; Battaglia, Corsin; Hänni, Simon; Söderström, Karin; Escarré, Jordi; Nicolay, Sylvain; Meillaud, Fanny; Despeisse, Matthieu; Ballif, Christophe

    2012-03-14

    The challenge for all photovoltaic technologies is to maximize light absorption, to convert photons with minimal losses into electric charges, and to efficiently extract them to the electrical circuit. For thin-film solar cells, all these tasks rely heavily on the transparent front electrode. Here we present a multiscale electrode architecture that allows us to achieve efficiencies as high as 14.1% with a thin-film silicon tandem solar cell employing only 3 μm of silicon. Our approach combines the versatility of nanoimprint lithography, the unusually high carrier mobility of hydrogenated indium oxide (over 100 cm(2)/V/s), and the unequaled light-scattering properties of self-textured zinc oxide. A multiscale texture provides light trapping over a broad wavelength range while ensuring an optimum morphology for the growth of high-quality silicon layers. A conductive bilayer stack guarantees carrier extraction while minimizing parasitic absorption losses. The tunability accessible through such multiscale electrode architecture offers unprecedented possibilities to address the trade-off between cell optical and electrical performance. © 2012 American Chemical Society

  18. Structural, optical and electrical characterization of ITO, ITO/Ag and ITO/Ni transparent conductive electrodes

    International Nuclear Information System (INIS)

    Ali, Ahmad Hadi; Shuhaimi, Ahmad; Hassan, Zainuriah

    2014-01-01

    We report on the transparent conductive oxides (TCO) characteristics based on the indium tin oxides (ITO) and ITO/metal thin layer as an electrode for optoelectronics device applications. ITO, ITO/Ag and ITO/Ni were deposited on Si and glass substrate by thermal evaporator and radio frequency (RF) magnetron sputtering at room temperature. Post deposition annealing was performed on the samples in air at moderate temperature of 500 °C and 600 °C. The structural, optical and electrical properties of the ITO and ITO/metal were characterized using X-ray diffraction (XRD), UV–Vis spectrophotometer, Hall effect measurement system and atomic force microscope (AFM). The XRD spectrum reveals significant polycrystalline peaks of ITO (2 2 2) and Ag (1 1 1) after post annealing process. The post annealing also improves the visible light transmittance and electrical resistivity of the samples. Figure of merit (FOM) of the ITO, ITO/Ag and ITO/Ni were determined as 5.5 × 10 −3 Ω −1 , 8.4 × 10 −3 Ω −1 and 3.0 × 10 −5 Ω −1 , respectively. The results show that the post annealed ITO with Ag intermediate layer improved the efficiency of the transparent conductive electrodes (TCE) as compared to the ITO and ITO/Ni.

  19. Highly transparent vanadium oxide-graded indium zinc oxide electrodes for flexible organic solar cells

    International Nuclear Information System (INIS)

    Ko, Eun-Hye; Kim, Han-Ki

    2016-01-01

    We investigated characteristics of amorphous V_2O_5-graded InZnO (IZO) films to use as a flexible anode for flexible organic solar cells (FOSCs). Graded sputtering of the V_2O_5 layer on the IZO layer produced V_2O_5-graded IZO anodes (VGIZO) with a sheet resistance of 42.14 Ω/square, a resistivity of 6.32 × 10"−"4 Ω cm, and an optical transmittance of 82.15%, as well as good mechanical flexibility. In addition, the VGIZO electrode showed a greater work function of 5.2 eV than that (4.9 eV) of an IZO anode, which is beneficial for hole extraction from an organic active layer. Due to the higher work function of the VGIZO electrodes, FOSCs fabricated on the flexible VGIZO anode exhibited a higher power conversion efficiency 2.753% than that of FOSCs on the IZO anode. This indicates that the V_2O_5 graded sputtering is a promising technique to increase the work function of the IZO anode without change in sheet resistance and transmittance. - Highlights: • Transparent and flexible V_2O_5 graded IZO (VGIZO) electrodes. • High work function of VGIZO electrodes • The VGIZO film is a promising flexible anode for flexible organic solar cells.

  20. Electrostatic spray deposition of highly transparent silver nanowire electrode on flexible substrate.

    Science.gov (United States)

    Kim, Taegeon; Canlier, Ali; Kim, Geun Hong; Choi, Jaeho; Park, Minkyu; Han, Seung Min

    2013-02-01

    In this work, a modified polyol synthesis by adding KBr and by replacing the AgCl with NaCl seed was used to obtain high quality silver nanowires with long aspect ratios with an average length of 13.5 μm in length and 62.5 nm in diameter. The Ag nanowires suspended in methanol solution after removing any unwanted particles using a glass filter system were then deposited on a flexible polycarbonate substrate using an electrostatic spray system. Transmittance of 92.1% at wavelength of 550 nm with sheet resistance of 20 Ω/sq and haze of 4.9% were measured for the electrostatic sprayed Ag nanowire transparent electrode.

  1. Prussian blue-nitrogen-doped graphene nanocomposite as hybrid electrode for energy storage applications

    International Nuclear Information System (INIS)

    Sookhakian, M.; Basirun, W.J.; Teridi, Mohd Asri Mat; Mahmoudian, M.R.; Azarang, Majid; Zalnezhad, Erfan; Yoon, G.H.; Alias, Y.

    2017-01-01

    Highlights: • Novel and inexpensive Prussian blue-N-graphene composite for hybrid battery- supercapacitor. • Prussian blue leads to a significant increase of the capacity. • Prussian blue leads to enhancement of cycling stability of N-graphene. - Abstract: Water-soluble Prussian blue nanoparticles (PB NPs) supported on nitrogen-doped graphene (N-graphene) with high dispersion was fabricated for high performance energy storage hybrid electrodes. An efficient loading of the PB NPs and nitrogen doping of graphene were achieved. The structure and morphology of the composite was determined by X-ray diffraction, transmission electron microscopy, Raman spectrometry and X-ray photoelectron spectrometry. The energy storage performance was assessed by cyclic voltammetry and galvanostatic charge/discharge techniques. The nanocomposite was fabricated as a hybrid battery-supercapacitor electrode and exhibited excellent performance with the highest capacity of 660 C g −1 at 1 A g −1 , which was higher than pure PB NPs and N-graphene electrodes. Moreover, the synergistic effect of N-graphene and the PB NPs prevented the N-graphene from shrinking and swelling and increased the cycle stability to 84.7% retention after 1500 cycles at 6 A g −1 , compared to the pure N-graphene.

  2. Non-aqueous hybrid supercapacitors fabricated with mesoporous TiO2 microspheres and activated carbon electrodes with superior performance

    Science.gov (United States)

    Cai, Yong; Zhao, Bote; Wang, Jie; Shao, Zongping

    2014-05-01

    Mesoporous TiO2 microspheres, synthesized by a facile template-free solvothermal method and subsequent heat treatment, are exploited as the electrode for hybrid supercapacitors. The effects of the calcination temperature on the phase composition, particulate microstructure and morphology are characterized by XRD, Raman, FE-SEM and N2 adsorption/desorption measurements. Hybrid supercapacitors utilizing the as-prepared TiO2 mesoporous microspheres as the negative electrode and activated carbon (AC) as the positive electrode in a non-aqueous electrolyte are fabricated. The electrochemical performance of these hybrid supercapacitors is studied by galvanostatic charge-discharge and cyclic voltammetry (CV). The hybrid supercapacitor built from TiO2 microspheres calcined at 400 °C shows the best performance, delivering an energy density of 79.3 Wh kg-1 at a power density of 178.1 W kg-1. Even at a power density of 9.45 kW kg-1, an energy density of 31.5 Wh kg-1 is reached. These values are much higher than the AC-AC symmetric supercapacitor. In addition, the hybrid supercapacitor exhibits excellent cycling performance, retaining 98% of the initial energy density after 1000 cycles. Such outstanding electrochemical performance of the hybrid supercapacitor is attributed to the matched reaction kinetics between the two electrodes with different energy storage mechanisms.

  3. ITO-free flexible organic photovoltaics with multilayer MoO3/LiF/MoO3/Ag/MoO3 as the transparent electrode

    International Nuclear Information System (INIS)

    Chen, Shilin; Dai, Yunjie; Zhang, Hongmei; Zhao, Dewei

    2016-01-01

    We present efficient flexible organic photovoltaics (OPVs) with multiple layers of molybdenum oxide (MoO 3 )/LiF/MoO 3 /Ag/MoO 3 as the transparent electrode, where the thin Ag layer yields high conductivity and the dielectric layer MoO 3 /LiF/MoO 3 has high transparency due to optical interference, leading to improved power conversion efficiency compared with indium tin oxide (ITO) based devices. The MoO 3 contacting organic active layer is used as a buffer layer for good hole extraction. Thus, the multilayer MoO 3 /LiF/MoO 3 /Ag/MoO 3 can improve light transmittance and also facilitate charge carrier extraction. Such an electrode shows excellent mechanical bendability with a 9% reduction of efficiency after 1000 cycles of bending due to the ductile nature of the thin metal layer and dielectric layer used. Our results suggest that the MoO 3 /LiF/MoO 3 /Ag/MoO 3 multilayer electrode is a promising alternative to ITO as an electrode in OPVs. (paper)

  4. Non-noble metal graphene oxide-copper (II) ions hybrid electrodes for electrocatalytic hydrogen evolution reaction

    KAUST Repository

    Muralikrishna, S.

    2015-08-25

    Non-noble metal and inexpensive graphene oxide-copper (II) ions (GO-Cu2+) hybrid catalysts have been explored for the hydrogen evolution reaction (HER). We were able to tune the binding abilities of GO toward the Cu2+ ions and hence their catalytic properties by altering the pH. We have utilized the oxygen functional moieties such as carboxylate, epoxide, and hydroxyl groups on the edge and basal planes of the GO for binding the Cu2+ ions through dative bonds. The GO-Cu2+ hybrid materials were characterized by cyclic voltammetry in sodium acetate buffer solution. The morphology of the hybrid GO-Cu2+ was characterized by atomic force microscopy. The GO-Cu2+ hybrid electrodes show good electrocatalytic activity for HER with low overpotential in acidic solution. The Tafel slope for the GO-Cu2+ hybrid electrode implies that the primary discharge step is the rate determining step and HER proceed with Volmer step. © 2015 American Institute of Chemical Engineers Environ Prog.

  5. Structural, optical and electrical characterization of ITO, ITO/Ag and ITO/Ni transparent conductive electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Ali, Ahmad Hadi, E-mail: ahadi@uthm.edu.my [Nano-Optoelectronics Research and Technology Laboratory, School of Physics, Universiti Sains Malaysia, Penang (Malaysia); Science Department, Faculty of Science, Technology and Human Development, Universiti Tun Hussein Onn Malaysia, Johor (Malaysia); Shuhaimi, Ahmad [Low Dimensional Materials Research Centre, Department of Physics, Faculty of Science, Universiti Malaya, Kuala Lumpur (Malaysia); Hassan, Zainuriah [Nano-Optoelectronics Research and Technology Laboratory, School of Physics, Universiti Sains Malaysia, Penang (Malaysia)

    2014-01-01

    We report on the transparent conductive oxides (TCO) characteristics based on the indium tin oxides (ITO) and ITO/metal thin layer as an electrode for optoelectronics device applications. ITO, ITO/Ag and ITO/Ni were deposited on Si and glass substrate by thermal evaporator and radio frequency (RF) magnetron sputtering at room temperature. Post deposition annealing was performed on the samples in air at moderate temperature of 500 °C and 600 °C. The structural, optical and electrical properties of the ITO and ITO/metal were characterized using X-ray diffraction (XRD), UV–Vis spectrophotometer, Hall effect measurement system and atomic force microscope (AFM). The XRD spectrum reveals significant polycrystalline peaks of ITO (2 2 2) and Ag (1 1 1) after post annealing process. The post annealing also improves the visible light transmittance and electrical resistivity of the samples. Figure of merit (FOM) of the ITO, ITO/Ag and ITO/Ni were determined as 5.5 × 10{sup −3} Ω{sup −1}, 8.4 × 10{sup −3} Ω{sup −1} and 3.0 × 10{sup −5} Ω{sup −1}, respectively. The results show that the post annealed ITO with Ag intermediate layer improved the efficiency of the transparent conductive electrodes (TCE) as compared to the ITO and ITO/Ni.

  6. Roll-To-Roll Printing of Meter-Scale Composite Transparent Electrodes with Optimized Mechanical and Optical Properties for Photoelectronics.

    Science.gov (United States)

    Meng, Xiangchuan; Hu, Xiaotian; Yang, Xia; Yin, Jingping; Wang, Qingxia; Huang, Liqiang; Yu, Zoukangning; Hu, Ting; Tan, Licheng; Zhou, Weihua; Chen, Yiwang

    2018-03-14

    Flexible transparent electrodes are an indispensable component for flexible optoelectronic devices. In this work, the meter-scale composite transparent electrodes (CTEs) composed of poly(3,4-ethylenedioxythiophene):polystyrene sulfonate (PEDOT:PSS) and Ag grid/polyethylene terephthalate (PET) with optimized mechanical and optical properties are demonstrated by slot-die roll-to-roll technique with solution printing method under a low cost ($15-20 per square meter), via control of the viscosity and surface energy of PEDOT:PSS ink as well as the printing parameters. The CTEs show excellent flexibility remaining 98% of the pristine value after bending 2000 times under various bending situations, and the square resistance ( R s ) of CTEs can be reduced to 4.5-5.0 Ω/sq with an appropriate transmittance. Moreover, the optical performances, such as haze, extinction coefficient, and refractive index, are investigated, as compared with indium tin oxide/PET, which are potential for the inexpensive optoelectronic flexible devices. The CTEs could be successfully employed in polymer solar cells with different areas, showing a maximal power conversion efficiency of 8.08%.

  7. Tailored silver grid as transparent electrodes directly written by femtosecond laser

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Yuan-Yuan; Ren, Xue-Liang [Laboratory of Organic NanoPhotonics and Laboratory of Bio-Inspired Smart Interface Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, No. 29, Zhongguancun East Road, Beijing 100190 (China); University of Chinese Academy of Sciences, No. 29, Zhongguancun East Road, Beijing 100190 (China); Zheng, Mei-Ling, E-mail: zhengmeiling@mail.ipc.ac.cn, E-mail: xmduan@mail.ipc.ac.cn; Dong, Xian-Zi; Jin, Feng; Liu, Jie; Zhao, Zhen-Sheng [Laboratory of Organic NanoPhotonics and Laboratory of Bio-Inspired Smart Interface Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, No. 29, Zhongguancun East Road, Beijing 100190 (China); Duan, Xuan-Ming, E-mail: zhengmeiling@mail.ipc.ac.cn, E-mail: xmduan@mail.ipc.ac.cn [Laboratory of Organic NanoPhotonics and Laboratory of Bio-Inspired Smart Interface Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, No. 29, Zhongguancun East Road, Beijing 100190 (China); Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, No. 266 Fangzheng Ave., Shuitu Technology Development Zone, Beibei District, Chongqing 400714 (China)

    2016-05-30

    We present the design and realization of silver grid transparent electrodes (SGTEs) easily fabricated by femtosecond laser direct writing of silver aqueous solution. The fabricated SGTEs with a sheet resistance down to 47 Ω/□ and optical transmittance up to 93% are demonstrated. These sheet resistance and transmittance values are comparable to commercially available indium tin oxide. High uniform morphology of the directly written SGTEs results in the ultra-stable tailored performance parameter at electronic and optical fields. The sheet resistance and transmittance can be tailored precisely by manipulating the filling fraction of the uniform SGTEs. This study provides an approach for creating SGTEs in a controllable fashion, and the SGTEs exhibit high transmittance and low sheet resistance, which could open up new avenues towards widespread application in electronics, photovoltaics, and optoelectronics.

  8. Platinum/polyaniline transparent counter electrodes for quasi-solid dye-sensitized solar cells with electrospun PVDF-HFP/TiO2 membrane electrolyte

    International Nuclear Information System (INIS)

    Peng, Shengjie; Li, Linlin; Tan, Huiteng; Srinivasan, Madhavi; Mhaisalkar, Subodh G.; Ramakrishna, Seeram; Yan, Qingyu

    2013-01-01

    Composite films of platinum and polyaniline (Pt/PANI) with different Pt loadings are prepared by chemical reduction and then a spin-coating process on fluorine-doped tin oxide (FTO) substrates. The obtained Pt/PANI transparent counter electrodes are applied in quasi-solid dye-sensitized solar cells (QDSCs) from front and rear light illuminations, using electrospun poly(vinylidenefluoride-co-hexafluoropropylene)/TiO 2 (PVDF-HFP/TiO 2 ) as the electrolyte. The analytical results show that the 1.8-nm sized Pt nanoparticles are distributed uniformly in the Pt/PANI film when the Pt loading is 1.5 μg cm −2 . Electrocatalytic activity of the Pt/PANI electrode with 1.5 μg cm −2 Pt loading for the I 3 − /I − redox reaction is higher than the conventional sputtered Pt electrode. Furthermore, the mean optical transmittance of the Pt/PANI electrodes is above 60% in the wavelength of 400–800 nm. The optimal QDSC composed of Pt/PANI with 1.5 μg cm −2 Pt loading exhibits power conversion efficiencies of 6.34% and 3.85%, when measured using an AM1.5G solar simulator at 100 mW cm −2 under front and rear light illuminations. The efficiencies are both higher than those of the QDSCs employing the conventional sputtered Pt counter electrode with 8.3 μg cm −2 Pt loading. Moreover, the QDSC exhibits superior long-term stability. These promising results make the potential application of Pt/PANI films as cost-effective, transparent counter electrodes

  9. Gas diffusion electrode based on electrospun Pani/CNF nanofibers hybrid for proton exchange membrane fuel cells (PEMFC) applications

    Energy Technology Data Exchange (ETDEWEB)

    Hezarjaribi, M.; Jahanshahi, M., E-mail: mjahan@nit.ac.ir; Rahimpour, A.; Yaldagard, M.

    2014-03-01

    A novel hybrid system has been investigated based on polyaniline/carbon nanofiber (Pani/CNF) electrospun nanofibers for modification of gas diffusion electrode (GDE) in proton exchange membrane fuel cells (PEMFC). Pani/CNF hybrid nanofibers were synthesized directly on carbon paper by electrospinning method. For preparation of catalyst ink, 20 wt.% Pt/C electrocatalyst with a platinum loading of 0.4 mg cm{sup −2} was prepared by polyol technique. SEM studies applied for morphological study of the modified GDE with hybrid nanofibers. This technique indicated that the electrospun nanofibers had a diameter of roughly 100 nm. XRD patterns also showed that the average size of Pt nanoparticles was about 2 nm. Subsequently, comparison of the hybrid electrode electrochemical behavior and 20 wt.% Pt/C commercial one was studied by cyclic voltammetry experiment. The electrochemical data indicated that the hybrid electrode exhibited higher current density (about 15 mA cm{sup −2}) and ESA (160 m{sup 2} gr{sup −1}) than commercial Pt/C with amount of about 10 mA cm{sup −2} and 114 m{sup 2} gr{sup −1}, respectively. The results herein demonstrate that Pani/CNF nanofibers can be used as a good alternative electrode material for PEMFCs.

  10. Transparent Wood Smart Windows: Polymer Electrochromic Devices Based on Poly(3,4-Ethylenedioxythiophene):Poly(Styrene Sulfonate) Electrodes.

    Science.gov (United States)

    Lang, Augustus W; Li, Yuanyuan; De Keersmaecker, Michel; Shen, D Eric; Österholm, Anna M; Berglund, Lars; Reynolds, John R

    2018-03-09

    Transparent wood composites, with their high strength and toughness, thermal insulation, and excellent transmissivity, offer a route to replace glass for diffusely transmitting windows. Here, conjugated-polymer-based electrochromic devices (ECDs) that switch on-demand are demonstrated using transparent wood coated with poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) as a transparent conducting electrode. These ECDs exhibit a vibrant magenta-to-clear color change that results from a remarkably colorless bleached state. Furthermore, they require low energy and power inputs of 3 mWh m -2 at 2 W m -2 to switch due to a high coloration efficiency (590 cm 2  C -1 ) and low driving voltage (0.8 V). Each device component is processed with high-throughput methods, which highlights the opportunity to apply this approach to fabricate mechanically robust, energy-efficient smart windows on a large scale. © 2018 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.

  11. Bifacial dye-sensitized solar cells: A strategy to enhance overall efficiency based on transparent polyaniline electrode

    OpenAIRE

    Wu, Jihuai; Li, Yan; Tang, Qunwei; Yue, Gentian; Lin, Jianming; Huang, Miaoliang; Meng, Lijian

    2014-01-01

    Dye-sensitized solar cell (DSSC) is a promising solution to global energy and environmental problems because of its clean, low-cost, high efficiency, good durability, and easy fabrication. However, enhancing the efficiency of the DSSC still is an important issue. Here we devise a bifacial DSSC based on a transparent polyaniline (PANI) counter electrode (CE). Owing to the sunlight irradiation simultaneously from the front and the rear sides, more dye molecules are excited and more ...

  12. Synthesis of NiMn-LDH Nanosheet@Ni3S2 Nanorod Hybrid Structures for Supercapacitor Electrode Materials with Ultrahigh Specific Capacitance.

    Science.gov (United States)

    Yu, Shuai; Zhang, Yingxi; Lou, Gaobo; Wu, Yatao; Zhu, Xinqiang; Chen, Hao; Shen, Zhehong; Fu, Shenyuan; Bao, Binfu; Wu, Limin

    2018-03-27

    One of the key challenges for pseudocapacitive electrode materials with highly effective capacitance output and future practical applications is how to rationally construct hierarchical and ordered hybrid nanoarchitecture through the simple process. Herein, we design and synthesize a novel NiMn-layered double hydroxide nanosheet@Ni 3 S 2 nanorod hybrid array supported on porous nickel foam via a one-pot hydrothermal method. Benefited from the ultrathin and rough nature, the well-defined porous structure of the hybrid array, as well as the synergetic effect between NiMn-layered double hydroxide nanosheets and Ni 3 S 2 nanorods, the as-fabricated hybrid array-based electrode exhibits an ultrahigh specific capacitance of 2703 F g -1 at 3 A g -1 . Moreover, the asymmetric supercapacitor with this hybrid array as a positive electrode and wood-derived activated carbon as a negative electrode demonstrates high energy density (57 Wh Kg -1 at 738 W Kg -1 ) and very good electrochemical cycling stability.

  13. Fe3O4/carbon hybrid nanoparticle electrodes for high-capacity electrochemical capacitors.

    Science.gov (United States)

    Lee, Jun Seop; Shin, Dong Hoon; Jun, Jaemoon; Lee, Choonghyeon; Jang, Jyongsik

    2014-06-01

    Fe3O4/carbon hybrid nanoparticles (FeCHNPs) were fabricated using dual-nozzle electrospraying, vapor deposition polymerization (VDP), and carbonization. FeOOH nanoneedles decorated with polypyrrole (PPy) nanoparticles (FePNPs) were fabricated by electrospraying pristine PPy mixed with FeCl3 solution, followed by heating stirring reaction. A PPy coating was then formed on the FeOOH nanoneedles through a VDP process. FeCHNPs were produced through carbonization of PPy and FeOOH phase transitions. These hybrid carbon nanoparticles (NPs) were used to build electrodes of electrochemical capacitors. The specific capacitance of the FeCHNPs was 455 F g(-1), which is larger than that of pristine PPy NPs (105 F g(-1)) or other hybrid PPy NPs. Furthermore, the FeCHNP-based capacitors exhibited better cycle stability during charge-discharge cycling than other hybrid NP capacitors. This is because the carbon layer on the Fe3 O4 surface formed a protective coating, preventing damage to the electrode materials during the charge-discharge processes. This fabrication technique is an effective approach for forming stable carbon/metal oxide nanostructures for energy storage applications. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Efficient Semitransparent Perovskite Solar Cells Using a Transparent Silver Electrode and Four-Terminal Perovskite/Silicon Tandem Device Exploration

    Directory of Open Access Journals (Sweden)

    Dazheng Chen

    2018-01-01

    Full Text Available Four-terminal tandem solar cells employing a perovskite top cell and crystalline silicon (Si bottom cell offer a simpler pathway to surpass the efficiency limit of market-leading single-junction silicon solar cells. To obtain cost-effective top cells, it is crucial to develop transparent conductive electrodes with low parasitic absorption and manufacturing cost. The commonly used indium tin oxide (ITO shows some drawbacks, like the increasing prices and high-energy magnetron sputtering process. Transparent metal electrodes are promising candidates owing to the simple evaporation process, facile process conditions, and high conductivity, and the cheaper silver (Ag electrode with lower parasitic absorption than gold may be the better choice. In this work, efficient semitransparent perovskite solar cells (PSCs were firstly developed by adopting the composite cathode of an ultrathin Ag electrode at its percolation threshold thickness (11 nm, a molybdenum oxide optical coupling layer, and a bathocuproine interfacial layer. The resulting power conversion efficiency (PCE is 13.38% when the PSC is illuminated from the ITO side and the PCE is 8.34% from the Ag side, and no obvious current hysteresis can be observed. Furthermore, by stacking an industrial Si bottom cell (PCE = 14.2% to build a four-terminal architecture, the overall PCEs of 17.03% (ITO side and 11.60% (Ag side can be obtained, which are 27% and 39% higher, respectively, than those of the perovskite top cell. Also, the PCE of the tandem cell has exceeded that of the reference Si solar cell by about 20%. This work provides an outlook to fabricate high-performance solar cells via the cost-effective pathway.

  15. Copercolating Networks: An Approach for Realizing High-Performance Transparent Conductors using Multicomponent Nanostructured Networks

    Directory of Open Access Journals (Sweden)

    Das Suprem R.

    2016-06-01

    Full Text Available Although transparent conductive oxides such as indium tin oxide (ITO are widely employed as transparent conducting electrodes (TCEs for applications such as touch screens and displays, new nanostructured TCEs are of interest for future applications, including emerging transparent and flexible electronics. A number of twodimensional networks of nanostructured elements have been reported, including metallic nanowire networks consisting of silver nanowires, metallic carbon nanotubes (m-CNTs, copper nanowires or gold nanowires, and metallic mesh structures. In these single-component systems, it has generally been difficult to achieve sheet resistances that are comparable to ITO at a given broadband optical transparency. A relatively new third category of TCEs consisting of networks of 1D-1D and 1D-2D nanocomposites (such as silver nanowires and CNTs, silver nanowires and polycrystalline graphene, silver nanowires and reduced graphene oxide have demonstrated TCE performance comparable to, or better than, ITO. In such hybrid networks, copercolation between the two components can lead to relatively low sheet resistances at nanowire densities corresponding to high optical transmittance. This review provides an overview of reported hybrid networks, including a comparison of the performance regimes achievable with those of ITO and single-component nanostructured networks. The performance is compared to that expected from bulk thin films and analyzed in terms of the copercolation model. In addition, performance characteristics relevant for flexible and transparent applications are discussed. The new TCEs are promising, but significant work must be done to ensure earth abundance, stability, and reliability so that they can eventually replace traditional ITO-based transparent conductors.

  16. Synthesis and luminescence properties of hybrid organic-inorganic transparent titania thin film activated by in-situ formed lanthanide complexes

    International Nuclear Information System (INIS)

    Wang Yige; Wang Li; Li Huanrong; Liu Peng; Qin Dashan; Liu Binyuan; Zhang Wenjun; Deng Ruiping; Zhang Hongjie

    2008-01-01

    Stable transparent titania thin films were fabricated at room temperature by combining thenoyltrifluoroacetone (TTFA)-modified titanium precursors with amphiphilic triblock poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) (PEO-PPO-PEO, P123) copolymers. The obtained transparent titania thin films were systematically investigated by IR spectroscopy, PL emission and excitation spectroscopy and transmission electron microscopy. IR spectroscopy indicates that TTFA coordinates the titanium center during the process of hydrolysis and condensation. Luminescence spectroscopy confirms the in-situ formation of lanthanide complexes in the transparent titania thin film. TEM image shows that the in-situ formed lanthanide complexes were homogeneously distributed throughout the whole thin film. The quantum yield and the number of water coordinated to lanthanide metal center have been theoretically determined based on the luminescence data. - Graphical abstract: Novel stable luminescent organic-inorganic hybrid titania thin film with high transparency activated by in-situ formed lanthanide complexes have been obtained at room temperature via a simple one-pot synthesis approach by using TTFA-modified titanium precursor with amphiphilic triblock copolymer P123. The obtained hybrid thin film displays bright red (or green), near-monochromatic luminescence due to the in-situ formed lanthanide complex

  17. Discharge amplified photo-emission from ultra-thin films applied to tuning work function of transparent electrodes in organic opto-electronic devices

    International Nuclear Information System (INIS)

    Gentle, A.R.; Smith, G.B.; Watkins, S.E.

    2013-01-01

    A novel photoemission technique utilising localised discharge amplification of photo-yield is reported. It enables fast, accurate measurement of work function and ionisation potential for ultra-thin buffer layers vacuum deposited onto single and multilayer transparent conducting electrodes for organic solar cells and OLED's. Work function in most traditional transparent electrodes has to be raised to maximise charge transfer while high transmittance and high conductance must be retained. Results are presented for a range of metal oxide buffers, which achieve this goal. This compact photo-yield spectroscopy tool with its fast turn-around has been a valuable development aid since ionisation potential can vary significantly as deposition conditions change slightly, and as ultra-thin films grow. It has also been useful in tracking the impact of different post deposition cleaning treatments along with some storage and transport protocols, which can adversely reduce ionisation potential and hence subsequent device performance.

  18. Electro-optical characteristics of a liquid crystal cell with graphene electrodes

    Directory of Open Access Journals (Sweden)

    Nune H. Hakobyan

    2017-12-01

    Full Text Available In liquid crystal devices (LCDs the indium tin oxide (ITO films are traditionally used as transparent and conductive electrodes. However, today, due to the development of multichannel optical communication, the need for flexible LCDs and multilayer structures has grown. For this application ITO films cannot be used in principle. For this problem, graphene (an ultrathin material with unique properties, e.g., high optical transparency, chemical inertness, excellent conductivity is an excellent candidate. In this work, the electro-optical and dynamic characteristics of a liquid crystal (LC cell with graphene and ITO transparent conducting layers are investigated. To insure uniform thickness of the LC layer, as well as the same orientation boundary conditions, a hybrid LC cell containing graphene and ITO conductive layers has been prepared. The characteristics of LC cells with both types of conducting layers were found to be similar, indicating that graphene can be successfully used as a transparent conductive layer in LC devices.

  19. Porous nickel hydroxide-manganese dioxide-reduced graphene oxide ternary hybrid spheres as excellent supercapacitor electrode materials.

    Science.gov (United States)

    Chen, Hao; Zhou, Shuxue; Wu, Limin

    2014-06-11

    This paper reports the first nickel hydroxide-manganese dioxide-reduced graphene oxide (Ni(OH)2-MnO2-RGO) ternary hybrid sphere powders as supercapacitor electrode materials. Due to the abundant porous nanostructure, relatively high specific surface area, well-defined spherical morphology, and the synergetic effect of Ni(OH)2, MnO2, and RGO, the electrodes with the as-obtained Ni(OH)2-MnO2-RGO ternary hybrid spheres as active materials exhibited significantly enhanced specific capacitance (1985 F·g(-1)) and energy density (54.0 Wh·kg(-1)), based on the total mass of active materials. In addition, the Ni(OH)2-MnO2-RGO hybrid spheres-based asymmetric supercapacitor also showed satisfying energy density and electrochemical cycling stability.

  20. Solution-Processable transparent conducting electrodes via the self-assembly of silver nanowires for organic photovoltaic devices.

    Science.gov (United States)

    Tugba Camic, B; Jeong Shin, Hee; Hasan Aslan, M; Basarir, Fevzihan; Choi, Hyosung

    2018-02-15

    Solution-processed transparent conducting electrodes (TCEs) were fabricated via the self-assembly deposition of silver nanowires (Ag NWs). Glass substrates modified with (3-aminopropyl)triethoxysilane (APTES) and (3-mercaptopropyl)trimethoxysilane (MPTES) were coated with Ag NWs for various deposition times, leading to three different Ag NWs samples (APTES-Ag NWs (PVP), MPTES-Ag NWs (PVP), and APTES-Ag NWs (COOH)). Controlling the deposition time produced Ag NWs monolayer thin films with different optical transmittance and sheet resistance. Post-annealing treatment improved their electrical conductivity. The Ag NWs films were successfully characterized using UV-Vis spectroscopy, field emission scanning electron microscopy, optical microscopy and four-point probe. Three Ag NWs films exhibited low sheet resistance of 4-19Ω/sq and high optical transmittance of 65-81% (at 550nm), which are comparable to those of commercial ITO electrode. We fabricated an organic photovoltaic device by using Ag NWs as the anode instead of ITO electrode, and optimized device with Ag NWs exhibited power conversion efficiency of 1.72%. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Silicon/copper dome-patterned electrodes for high-performance hybrid supercapacitors

    Science.gov (United States)

    Liu, Xuyan; Jung, Hun-Gi; Kim, Sang-Ok; Choi, Ho-Suk; Lee, Sangwha; Moon, Jun Hyuk; Lee, Joong Kee

    2013-12-01

    This study proposes a method for manufacturing high-performance electrode materials in which controlling the shape of the current collector and electrode material for a Li-ion capacitor (LIC). In particular, the proposed LIC manufacturing method maintains the high voltage of a cell by using a microdome-patterned electrode material, allowing for reversible reactions between the Li-ion and the active material for an extended period of time. As a result, the LICs exhibit initial capacities of approximately 42 F g-1, even at 60 A g-1. The LICs also exhibit good cycle performance up to approximately 15,000 cycles. In addition, these advancements allow for a considerably higher energy density than other existing capacitor systems. The energy density of the proposed LICs is approximately nine, two, and 1.5 times higher than those of the electrochemical double layer capacitor (EDLC), AC/LiMn2O4 hybrid capacitor, and intrinsic Si/AC LIC, respectively.

  2. Dielectric/metal/dielectric alternative transparent electrode: observations on stability/degradation

    Science.gov (United States)

    Cattin, L.; Jouad, El; Stephant, N.; Louarn, G.; Morsli, M.; Hssein, M.; Mouchaal, Y.; Thouiri, S.; Addou, M.; Khelil, A.; Bernède, J. C.

    2017-09-01

    The use of indium-free transparent conductive electrodes is of great interest for organic optoelectronic devices. Among the possible replacements for ITO, dielectric/metal/dielectric (D/M/D) multilayer structures have already proven to be quite efficient. One issue with organic devices is their lifetime, which depends not only on the organic molecules used but also on the electrodes. Therefore we study the variation, with elapsed time, of the electrical and optical properties of different D/M/D structures, with M  =  Ag or Cu/Ag. Six years after realization, it has been shown that if some structures retained an acceptable conductivity, some others became non-conductive. For a sample which remains conductive, in the case of a PET/MoO3/Ag/MoO3 multilayer structure, the sheet resistance changes from 5 Ω/sq-17 Ω/sq after six years. This evolution can be compared to that of a PET/ITO electrode that varies from 25 Ω/sq-900 Ω/sq after six years. It means that not only are the PET/MoO3/Ag/MoO3 multilayer structures more flexible than PET/ITO, but they can also be more stable. Nevertheless, if some PET/MoO3/Ag/MoO3 multilayer structures are quite stable, some others are not. This possible degradation appears to be caused primarily by the physical agglomeration of Ag, which can result in Ag film disruption. This Ag diffusion seems to be caused by humidity-induced degradation in these Ag-based D/M/D structures. Initially, defects begin to grow at a ‘nucleus’, usually a microscopic particle (or pinhole, etc), and then they spread radially outward to form a nearly circular pattern. For a critical density of such defects, the structure becomes non-conductive. Moreover the effect of humidity promotes Ag electrochemical reactions that produce Ag+ ions and enhances surface diffusivity with AgCl formation.

  3. Dielectric/metal/dielectric alternative transparent electrode: observations on stability/degradation

    International Nuclear Information System (INIS)

    Cattin, L; Stephant, N; Louarn, G; Hssein, M; Jouad, El; Mouchaal, Y; Thouiri, S; Bernède, J C; Morsli, M; Addou, M; Khelil, A

    2017-01-01

    The use of indium-free transparent conductive electrodes is of great interest for organic optoelectronic devices. Among the possible replacements for ITO, dielectric/metal/dielectric (D/M/D) multilayer structures have already proven to be quite efficient. One issue with organic devices is their lifetime, which depends not only on the organic molecules used but also on the electrodes. Therefore we study the variation, with elapsed time, of the electrical and optical properties of different D/M/D structures, with M  =  Ag or Cu/Ag. Six years after realization, it has been shown that if some structures retained an acceptable conductivity, some others became non-conductive. For a sample which remains conductive, in the case of a PET/MoO 3 /Ag/MoO 3 multilayer structure, the sheet resistance changes from 5 Ω/sq–17 Ω/sq after six years. This evolution can be compared to that of a PET/ITO electrode that varies from 25 Ω/sq–900 Ω/sq after six years. It means that not only are the PET/MoO 3 /Ag/MoO 3 multilayer structures more flexible than PET/ITO, but they can also be more stable. Nevertheless, if some PET/MoO 3 /Ag/MoO 3 multilayer structures are quite stable, some others are not. This possible degradation appears to be caused primarily by the physical agglomeration of Ag, which can result in Ag film disruption. This Ag diffusion seems to be caused by humidity-induced degradation in these Ag-based D/M/D structures. Initially, defects begin to grow at a ‘nucleus’, usually a microscopic particle (or pinhole, etc), and then they spread radially outward to form a nearly circular pattern. For a critical density of such defects, the structure becomes non-conductive. Moreover the effect of humidity promotes Ag electrochemical reactions that produce Ag + ions and enhances surface diffusivity with AgCl formation. (paper)

  4. Mixed bi-material electrodes based on LiMn2O4 and activated carbon for hybrid electrochemical energy storage devices

    International Nuclear Information System (INIS)

    Cericola, Dario; Novak, Petr; Wokaun, Alexander; Koetz, Ruediger

    2011-01-01

    Highlights: → Bi-material electrodes for electrochemical hybrid devices were characterized. → Bi-material electrodes have higher specific charge than capacitor electrodes. → Bi-material electrodes have better rate capability than battery electrodes. → Bi-material systems outperform batteries and capacitors in pulsed applications. - Abstract: The performance of mixed bi-material electrodes composed of the battery material, LiMn 2 O 4 , and the electrochemical capacitor material, activated carbon, for hybrid electrochemical energy storage devices is investigated by galvanostatic charge/discharge and pulsed discharge experiments. Both, a high and a low conductivity lithium-containing electrolyte are used. The specific charge of the bi-material electrode is the linear combination of the specific charges of LiMn 2 O 4 and activated carbon according to the electrode composition at low discharge rates. Thus, the specific charge of the bi-material electrode falls between the specific charge of the activated carbon electrode and the LiMn 2 O 4 battery electrode. The bi-material electrodes have better rate capability than the LiMn 2 O 4 battery electrode. For high current pulsed applications the bi-material electrodes typically outperform both the battery and the capacitor electrode.

  5. High performance all-carbon composite transparent electrodes containing uniform carbon nanotube networks

    Energy Technology Data Exchange (ETDEWEB)

    Yun, Hyung Duk; Kwak, Jinsung; Kim, Se-Yang [School of Materials Science and Engineering & Low-Dimensional Carbon Materials Center, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919 (Korea, Republic of); Seo, Han; Bang, In Cheol; Kim, Sung Youb [School of Mechanical and Nuclear Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919 (Korea, Republic of); Kang, Seoktae [Department of Civil and Environmental Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141 (Korea, Republic of); Kwon, Soon-Yong, E-mail: sykwon@unist.ac.kr [School of Materials Science and Engineering & Low-Dimensional Carbon Materials Center, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919 (Korea, Republic of); School of Mechanical and Nuclear Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919 (Korea, Republic of)

    2016-08-05

    Indium tin oxide-free, flexible transparent electrodes (TEs) are crucial for the future commercialization of flexible and wearable electronics. While carbon-based TEs containing carbon nanotube (CNT) networks show promise, they usually exhibit poor dispersion properties, limiting their performance and practicality. In this study, we report a highly efficient and bending durable all-carbon composite TE (ac-TE) that employs uniform CNT networks on a monolayer graphene/polyethylene terephthalate (PET) substrate via a simple air spray deposition method. The air-sprayed CNT/graphene assembly was free-standing on solution, making a polymer-free transfer of carbon composites to target substrates possible. The excellent performance of the ac-TEs was attributed to the uniformly networked CNTs on the polycrystalline graphene with a well-controlled density, effectively bridging the line defects and filling the tears/voids or folds necessarily existing in the as-processed graphene. The sheet resistance of the ac-TEs was increased only 6% from its original value at a bending radius of 2.7 mm, while that of the pristine graphene/PET assembly increased 237%. Mechanical bending of the ac-TEs worsened the electrical performance by only ∼1.7% after 2000 bending cycles at a bending radius of 2.5 mm. Degradation of the performance by the bending was the result of line defects formation in the graphene, demonstrating the potential of the uniform CNT networks to achieve more efficient and flexible carbon-based TEs. Furthermore, the chemically-doped ac-TEs showed commercially suitable electronic and optical properties with much enhanced thermal stability, closer to practical TEs in flexible devices. - Highlights: • Highly efficient and bending durable all-carbon composite transparent electrodes (TEs) are designed. • The performance was strongly dependent on morphology of CNT networks on graphene. • The mechanism relies on the defect reductions in graphene by uniform CNT coating

  6. High performance all-carbon composite transparent electrodes containing uniform carbon nanotube networks

    International Nuclear Information System (INIS)

    Yun, Hyung Duk; Kwak, Jinsung; Kim, Se-Yang; Seo, Han; Bang, In Cheol; Kim, Sung Youb; Kang, Seoktae; Kwon, Soon-Yong

    2016-01-01

    Indium tin oxide-free, flexible transparent electrodes (TEs) are crucial for the future commercialization of flexible and wearable electronics. While carbon-based TEs containing carbon nanotube (CNT) networks show promise, they usually exhibit poor dispersion properties, limiting their performance and practicality. In this study, we report a highly efficient and bending durable all-carbon composite TE (ac-TE) that employs uniform CNT networks on a monolayer graphene/polyethylene terephthalate (PET) substrate via a simple air spray deposition method. The air-sprayed CNT/graphene assembly was free-standing on solution, making a polymer-free transfer of carbon composites to target substrates possible. The excellent performance of the ac-TEs was attributed to the uniformly networked CNTs on the polycrystalline graphene with a well-controlled density, effectively bridging the line defects and filling the tears/voids or folds necessarily existing in the as-processed graphene. The sheet resistance of the ac-TEs was increased only 6% from its original value at a bending radius of 2.7 mm, while that of the pristine graphene/PET assembly increased 237%. Mechanical bending of the ac-TEs worsened the electrical performance by only ∼1.7% after 2000 bending cycles at a bending radius of 2.5 mm. Degradation of the performance by the bending was the result of line defects formation in the graphene, demonstrating the potential of the uniform CNT networks to achieve more efficient and flexible carbon-based TEs. Furthermore, the chemically-doped ac-TEs showed commercially suitable electronic and optical properties with much enhanced thermal stability, closer to practical TEs in flexible devices. - Highlights: • Highly efficient and bending durable all-carbon composite transparent electrodes (TEs) are designed. • The performance was strongly dependent on morphology of CNT networks on graphene. • The mechanism relies on the defect reductions in graphene by uniform CNT coating

  7. On-chip nanostructuring and impedance trimming of transparent and flexible ITO electrodes by laser induced coherent sub-20 nm cuts

    Energy Technology Data Exchange (ETDEWEB)

    Afshar, Maziar, E-mail: m.afshar@lmm.uni-saarland.de [Lab for Micromechanics, Microfluidics, and Microactuators, Saarland University, Saarbrücken D-66123 (Germany); Leber, Moritz [Lab for Micromechanics, Microfluidics, and Microactuators, Saarland University, Saarbrücken D-66123 (Germany); Poppendieck, Wigand [Department of Medical Engineering & Neuroprosthetics, Fraunhofer Institute for Biomedical Engineering, St. Ingbert D-66386 (Germany); König, Karsten [Lab for Biophotonics and Laser Technology, Saarland University, Saarbrücken D-66123 (Germany); Seidel, Helmut; Feili, Dara [Lab for Micromechanics, Microfluidics, and Microactuators, Saarland University, Saarbrücken D-66123 (Germany)

    2016-01-01

    Graphical abstract: - Highlights: • A novel method to make sub-20 nm nanopatterning in ITO thin films by laser writing. • A novel way to functionalize ITO bio-electrodes to yield near-field polarizing feature. • A basic characterization of ITO electrodes was performed by impedance spectroscopy. • Presentation of simulations and possible theoretical approaches to explain the results. - Abstract: In this work, the effect of laser-induced nanostructuring of transparent indium tin oxide (ITO) electrodes on flexible glass is investigated. Multi-electrode arrays (MEA) for electrical and optical characterization of biological cells were fabricated using standard MEMS technologies. Optimal sputter parameters concerning oxygen flow, sputter power and ambient pressure for ITO layers with both good optical and electrical properties were determined. Afterwards, coherent sub-20 nm wide and 150 nm deep nanocuts of many micrometers in length were generated within the ITO electrodes by a sub-15 femtosecond (fs) pulsed laser. The influence of laser processing on the electrical and optical properties of electrodes was investigated. The electrochemical impedance of the manufactured electrodes was measured before and after laser modification using electrochemical impedance spectroscopy. A small reduction in electrode impedance was observed. These nanostructured electrodes show also polarizing effects by the visible spectrum.

  8. Optically Transparent Nano-Patterned Antennas: A Review and Future Directions

    Directory of Open Access Journals (Sweden)

    Seung Yoon Lee

    2018-05-01

    Full Text Available Transparent antennas have been continuously developed for integration with solar cells, vehicular communications, and ultra-high-speed communications such as 5G in recent years. A transparent antenna takes advantage of spatial extensibility more so than all other antennas in terms of wide range of usable area. In addition, the production price of transparent antennas is steadily decreasing due to the development of nano-process technology. This paper reviews published studies of transparent antennas classified by various materials in terms of optical transmittance and electrical, sheet resistance. The transparent electrodes for the transparent antenna are logically classified and the transparent antennas are described according to the characteristics of each electrode. Finally, the contributions transparent antennas can make toward next-generation 5G high-speed communication are discussed.

  9. Fabrication of silver nanowires and metal oxide composite transparent electrodes and their application in UV light-emitting diodes

    Science.gov (United States)

    Yan, Xingzhen; Ma, Jiangang; Xu, Haiyang; Wang, Chunliang; Liu, Yichun

    2016-08-01

    In this paper, we prepared the silver nanowires (AgNWs)/aluminum-doped zinc oxide (AZO) composite transparent conducting electrodes for n-ZnO/p-GaN heterojunction light emitting-diodes (LEDs) by drop casting AgNW networks and subsequent atomic layer deposition (ALD) of AZO at 150 °C. The contact resistances between AgNWs were dramatically reduced by pre-annealing in the vacuum chamber before the ALD of AZO. In this case, AZO works not only as the conformal passivation layer that protects AgNWs from oxidation, but also as the binding material that improves AgNWs adhesion to substrates. Due to the localized surface plasmons (LSPs) of the AgNWs resonant coupling with the ultraviolet (UV) light emission from the LEDs, a higher UV light extracting efficiency is achieved from LEDs with the AgNWs/AZO composite electrodes in comparison with the conventional AZO electrodes. Additionally, the antireflective nature of random AgNW networks in the composite electrodes caused a broad output light angular distribution, which could be of benefit to certain optoelectronic devices like LEDs and solar cells.

  10. Strong and Stable Doping of Carbon Nanotubes and Graphene by MoO x for Transparent Electrodes

    KAUST Repository

    Hellstrom, Sondra L.

    2012-07-11

    MoO x has been used for organic semiconductor doping, but it had been considered an inefficient and/or unstable dopant. We report that MoO x can strongly and stably dope carbon nanotubes and graphene. Thermally annealed MoO x-CNT composites can form durable thin film electrodes with sheet resistances of 100 ω/sq at 85% transmittance plain and 85 ω/sq at 83% transmittance with a PEDOT:PSS adlayer. Sheet resistances change less than 10% over 20 days in ambient and less than 2% with overnight heating to 300 °C in air. The MoO x can be easily deposited either by thermal evaporation or from solution-based precursors. Excellent stability coupled with high conductivity makes MoO x-CNT composites extremely attractive candidates for practical transparent electrodes. © 2012 American Chemical Society.

  11. A transparent nickel selenide counter electrode for high efficient dye-sensitized solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Dong, Jia; Wu, Jihuai, E-mail: jhwu@hqu.edu.cn; Jia, Jinbiao; Ge, Jinhua; Bao, Quanlin; Wang, Chaotao; Fan, Leqing

    2017-04-15

    Highlights: • Ni{sub 0.85}Se was obtained by hydrothermal way and the film was gained by spin-coating. • Ni{sub 0.85}Se film has good conductivity and excellent electrocatalytic activity. • DSSC based on transparent Ni{sub 0.85}Se counter electrode obtains PCE of 8.96%. • The PCE reaches 10.76% when putting a mirror under Ni{sub 0.85}Se counter electrode. - Abstract: Nickel selenide (Ni{sub 0.85}Se) was synthesized by a facile one-step hydrothermal reaction and Ni{sub 0.85}Se film was prepared by spin-coating Ni{sub 0.85}Se ink on FTO and used as counter electrode (CE) in dye-sensitized solar cells (DSSC). The Ni{sub 0.85}Se CEs not only show high transmittance in visible range, but also possess remarkable electrocatalytic activity toward I{sup −}/I{sub 3}{sup −}. The electrocatalytic ability of Ni{sub 0.85}Se films was verified by cyclic voltammetry, electrochemical impedance spectroscopy and Tafel polarization curves. The DSSC using Ni{sub 0.85}Se CE exhibits a power conversion efficiency (PCE) of 8.96%, while the DSSC consisting of sputtered Pt CE only exhibits a PCE of 8.15%. When adding a mirror under Ni{sub 0.85}Se CE, the resultant DSSC exhibits a PCE of 10.76%, which exceeds that of a DSSC based on sputtered Pt CE (8.44%) by 27.49%.

  12. Preparation and characterization of flexible asymmetric supercapacitors based on transition-metal-oxide nanowire/single-walled carbon nanotube hybrid thin-film electrodes.

    Science.gov (United States)

    Chen, Po-Chiang; Shen, Guozhen; Shi, Yi; Chen, Haitian; Zhou, Chongwu

    2010-08-24

    In the work described in this paper, we have successfully fabricated flexible asymmetric supercapacitors (ASCs) based on transition-metal-oxide nanowire/single-walled carbon nanotube (SWNT) hybrid thin-film electrodes. These hybrid nanostructured films, with advantages of mechanical flexibility, uniform layered structures, and mesoporous surface morphology, were produced by using a filtration method. Here, manganese dioxide nanowire/SWNT hybrid films worked as the positive electrode, and indium oxide nanowire/SWNT hybrid films served as the negative electrode in a designed ASC. In our design, charges can be stored not only via electrochemical double-layer capacitance from SWNT films but also through a reversible faradic process from transition-metal-oxide nanowires. In addition, to obtain stable electrochemical behavior during charging/discharging cycles in a 2 V potential window, the mass balance between two electrodes has been optimized. Our optimized hybrid nanostructured ASCs exhibited a superior device performance with specific capacitance of 184 F/g, energy density of 25.5 Wh/kg, and columbic efficiency of approximately 90%. In addition, our ASCs exhibited a power density of 50.3 kW/kg, which is 10-fold higher than obtained in early reported ASC work. The high-performance hybrid nanostructured ASCs can find applications in conformal electrics, portable electronics, and electrical vehicles.

  13. Improved Flexible Transparent Conductive Electrodes based on Silver Nanowire Networks by a Simple Sunlight Illumination Approach

    Science.gov (United States)

    Kou, Pengfei; Yang, Liu; Chang, Cheng; He, Sailing

    2017-01-01

    Silver nanowire (Ag NW) networks have attracted wide attention as transparent electrodes for emerging flexible optoelectronics. However, the sheet resistance is greatly limited by large wire-to-wire contact resistances. Here, we propose a simple sunlight illumination approach to remarkably improve their electrical conductivity without any significant degradation of the light transmittance. Because the power density is extremely low (0.1 W/cm2, 1-Sun), only slight welding between Ag NWs has been observed. Despite this, a sheet resistance of solar concentrations. Due to the reduced resistance, high-performance transparent film heaters as well as efficient defrosters have been demonstrated, which are superior to the previously-reported Ag NW based film heaters. Since the sunlight is environmentally friendly and easily available, sophisticated or expensive facilities are not necessary. Our findings are particularly meaningful and show enormous potential for outdoor applications. PMID:28169343

  14. Transparent, flexible supercapacitors from nano-engineered carbon films

    Science.gov (United States)

    Jung, Hyun Young; Karimi, Majid B.; Hahm, Myung Gwan; Ajayan, Pulickel M.; Jung, Yung Joon

    2012-10-01

    Here we construct mechanically flexible and optically transparent thin film solid state supercapacitors by assembling nano-engineered carbon electrodes, prepared in porous templates, with morphology of interconnected arrays of complex shapes and porosity. The highly textured graphitic films act as electrode and current collector and integrated with solid polymer electrolyte, function as thin film supercapacitors. The nanostructured electrode morphology and the conformal electrolyte packaging provide enough energy and power density for the devices in addition to excellent mechanical flexibility and optical transparency, making it a unique design in various power delivery applications.

  15. Study of hybrid solar cells made of multilayer nanocrystalline titania and poly(3-octylthiophene) or poly-(3-(2-methylhex-2-yl)-oxy-carbonyldithiophene)

    DEFF Research Database (Denmark)

    Antoniadou, Maria; Stathatos, Elias; Boukos, Nikolaos

    2009-01-01

    Hybrid solar cells have been constructed by using nanocrystalline titania and hole-transporting polymers. Titania was deposited on fluorine-doped tin-oxide transparent electrodes in three layers: a blocking layer and two nanostructured layers, giving densely packed or open structures. Open...

  16. ITO with embedded silver grids as transparent conductive electrodes for large area organic solar cells

    Science.gov (United States)

    Patil, Bhushan R.; Mirsafaei, Mina; Piotr Cielecki, Paweł; Fernandes Cauduro, André Luis; Fiutowski, Jacek; Rubahn, Horst-Günter; Madsen, Morten

    2017-10-01

    In this work, development of semi-transparent electrodes for efficient large area organic solar cells (OSCs) has been demonstrated. Electron beam evaporated silver grids were embedded in commercially available ITO coatings on glass, through a standard negative photolithography process, in order to improve the conductivity of planar ITO substrates. The fabricated electrodes with embedded line and square patterned Ag grids reduced the sheet resistance of ITO by 25% and 40%, respectively, showing optical transmittance drops of less than 6% within the complete visible light spectrum for both patterns. Solution processed bulk heterojunction OSCs based on PTB7:[70]PCBM were fabricated on top of these electrodes with cell areas of 4.38 cm2, and the performance of these OSCs was compared to reference cells fabricated on pure ITO electrodes. The Fill Factor (FF) of the large-scale OSCs fabricated on ITO with embedded Ag grids was enhanced by 18% for the line grids pattern and 30% for the square grids pattern compared to that of the reference OSCs. The increase in the FF was directly correlated to the decrease in the series resistance of the OSCs. The maximum power conversion efficiency (PCE) of the OSCs was measured to be 4.34%, which is 23% higher than the PCE of the reference OSCs. As the presented method does not involve high temperature processing, it could be considered a general approach for development of large area organic electronics on solvent resistant, flexible substrates.

  17. Single side Emitting Transparent OLED lamp

    NARCIS (Netherlands)

    Lifka, H.; Verschuren, C.A.; Bruls, D.M.; Tanase, C.

    2011-01-01

    Transparent OLEDs offer great potential for novel applications. Preferably, the light should be emitted from one side only. This can bedone to some extent by modifying electrode thicknesses, but at the cost of reduced transparency. Here, we demonstrate a new approach tomake single side emissive

  18. Metal-electrode-free Window-like Organic Solar Cells with p-Doped Carbon Nanotube Thin-film Electrodes

    Science.gov (United States)

    Jeon, Il; Delacou, Clement; Kaskela, Antti; Kauppinen, Esko I.; Maruyama, Shigeo; Matsuo, Yutaka

    2016-08-01

    Organic solar cells are flexible and inexpensive, and expected to have a wide range of applications. Many transparent organic solar cells have been reported and their success hinges on full transparency and high power conversion efficiency. Recently, carbon nanotubes and graphene, which meet these criteria, have been used in transparent conductive electrodes. However, their use in top electrodes has been limited by mechanical difficulties in fabrication and doping. Here, expensive metal top electrodes were replaced with high-performance, easy-to-transfer, aerosol-synthesized carbon nanotubes to produce transparent organic solar cells. The carbon nanotubes were p-doped by two new methods: HNO3 doping via ‘sandwich transfer’, and MoOx thermal doping via ‘bridge transfer’. Although both of the doping methods improved the performance of the carbon nanotubes and the photovoltaic performance of devices, sandwich transfer, which gave a 4.1% power conversion efficiency, was slightly more effective than bridge transfer, which produced a power conversion efficiency of 3.4%. Applying a thinner carbon nanotube film with 90% transparency decreased the efficiency to 3.7%, which was still high. Overall, the transparent solar cells had an efficiency of around 50% that of non-transparent metal-based solar cells (7.8%).

  19. Plasma assisted fabrication of multi-layer graphene/nickel hybrid film as enhanced micro-supercapacitor electrodes

    Science.gov (United States)

    Ding, Q.; Li, W. L.; Zhao, W. L.; Wang, J. Y.; Xing, Y. P.; Li, X.; Xue, T.; Qi, W.; Zhang, K. L.; Yang, Z. C.; Zhao, J. S.

    2017-03-01

    A facile synthesis strategy has been developed for fabricating multi-layer graphene/nickel hybrid film as micro-supercapacitor electrodes by using plasma enhanced chemical vapor deposition. The as-presented method is advantageous for rapid graphene growth at relatively low temperature of 650 °C. In addition, after pre-treating for the as-deposited nickel film by using argon plasma bombardment, the surface-to-volume ratio of graphene film on the treated nickel substrate is effectively increased by the increasing of surface roughness. This is demonstrated by the characterization results from transmission electron microscopy, scanning electron microscope and atomic force microscopy. Moreover, the electrochemical performance of the resultant graphene/nickel hybrid film as micro-supercapacitor working electrode was investigated by cyclic voltammetry and galvanostatic charge/discharge measurements. It was found that the increase of the surface-to-volume ratio of graphene/nickel hybrid film improved the specific capacitance of 10 times as the working electrode of micro-supercapacitor. Finally, by using comb columnar shadow mask pattern, the micro-supercapacitor full cell device was fabricated. The electrochemical performance measurements of the micro-supercapacitor devices indicate that the method presented in this study provides an effective way to fabricate micro-supercapacitor device with enhanced energy storage property.

  20. Textile electrodes woven by carbon nanotube-graphene hybrid fibers for flexible electrochemical capacitors.

    Science.gov (United States)

    Cheng, Huhu; Dong, Zelin; Hu, Chuangang; Zhao, Yang; Hu, Yue; Qu, Liangti; Chen, Nan; Dai, Liming

    2013-04-21

    Functional graphene-based fibers are promising as new types of flexible building blocks for the construction of wearable architectures and devices. Unique one-dimensional (1D) carbon nanotubes (CNTs) and 2D graphene (CNT/G) hybrid fibers with a large surface area and high electrical conductivity have been achieved by pre-intercalating graphene fibers with Fe3O4 nanoparticles for subsequent CVD growth of CNTs. The CNT/G hybrid fibers can be further woven into textile electrodes for the construction of flexible supercapacitors with a high tolerance to the repeated bending cycles. Various other applications, such as catalysis, separation, and adsorption, can be envisioned for the CNT/G hybrid fibers.

  1. Solution processed zinc oxide nanopyramid/silver nanowire transparent network films with highly tunable light scattering properties

    KAUST Repository

    Mehra, Saahil

    2013-01-01

    Metal nanowire transparent networks are promising replacements to indium tin oxide (ITO) transparent electrodes for optoelectronic devices. While the transparency and sheet resistance are key metrics for transparent electrode performance, independent control of the film light scattering properties is important to developing multifunctional electrodes for improved photovoltaic absorption. Here we show that controlled incorporation of ZnO nanopyramids into a metal nanowire network film affords independent, highly tunable control of the scattering properties (haze) with minimal effects on the transparency and sheet resistance. Varying the zinc oxide/silver nanostructure ratios prior to spray deposition results in sheet resistances, transmission (600 nm), and haze (600 nm) of 6-30 Ω □-1, 68-86%, and 34-66%, respectively. Incorporation of zinc oxide nanopyramid scattering agents into the conducting nanowire mesh has a negligible effect on mesh connectivity, providing a straightforward method of controlling electrode scattering properties. The decoupling of the film scattering power and electrical characteristics makes these films promising candidates for highly scattering transparent electrodes in optoelectronic devices and can be generalized to other metal nanowire films as well as carbon nanotube transparent electrodes. © 2013 The Royal Society of Chemistry.

  2. Optimizing the operation of an electrostatic precipitator by developing a multipoint electrode supplied by a hybrid generator

    International Nuclear Information System (INIS)

    Silvestre de Ferron, A; Reess, T; Pecastaing, L; Pignolet, P; Lemont, F

    2009-01-01

    The authors investigated and improved the filtration efficiency of an electrostatic precipitator (ESP). A laboratory-scale pilot unit was developed to allow experimentation under conditions approaching those of the industrial ESPs used by the CEA at Marcoule (France). After elucidating the electrical phenomena and optically analysing the physical processes occurring inside the precipitator, a specific electrode was developed for use with a hybrid power supply. The experiments were based on analysing the variation over time of the electric charge injected into the particle separator, the particle mass collected at the ground electrode and the charges quantity measured on a grid in the airstream after the electrode unit. Photos were also taken under different electrical discharge conditions. The results show that combining a multipoint electrode and a hybrid generator (30 kV dc and 30 kV, 1 kHz) improves the process efficiency and significantly extends the time frame (more than 10 h) during which the process operates at optimum efficiency.

  3. Optimizing the operation of an electrostatic precipitator by developing a multipoint electrode supplied by a hybrid generator

    Energy Technology Data Exchange (ETDEWEB)

    Silvestre de Ferron, A; Reess, T; Pecastaing, L; Pignolet, P [LGE, Universite de Pau, 2 avenue Angot, 64000 Pau (France); Lemont, F [CEA Marcoule, Centre de la Vallee du Rhone, 30200 Bagnols-sur-Ceze (France)

    2009-05-21

    The authors investigated and improved the filtration efficiency of an electrostatic precipitator (ESP). A laboratory-scale pilot unit was developed to allow experimentation under conditions approaching those of the industrial ESPs used by the CEA at Marcoule (France). After elucidating the electrical phenomena and optically analysing the physical processes occurring inside the precipitator, a specific electrode was developed for use with a hybrid power supply. The experiments were based on analysing the variation over time of the electric charge injected into the particle separator, the particle mass collected at the ground electrode and the charges quantity measured on a grid in the airstream after the electrode unit. Photos were also taken under different electrical discharge conditions. The results show that combining a multipoint electrode and a hybrid generator (30 kV dc and 30 kV, 1 kHz) improves the process efficiency and significantly extends the time frame (more than 10 h) during which the process operates at optimum efficiency.

  4. IrOx-carbon nanotube hybrids: a nanostructured material for electrodes with increased charge capacity in neural systems.

    Science.gov (United States)

    Carretero, Nina M; Lichtenstein, Mathieu P; Pérez, Estela; Cabana, Laura; Suñol, Cristina; Casañ-Pastor, Nieves

    2014-10-01

    Nanostructured iridium oxide-carbon nanotube hybrids (IrOx-CNT) deposited as thin films by dynamic electrochemical methods are suggested as novel materials for neural electrodes. Single-walled carbon nanotubes (SWCNT) serve as scaffolds for growing the oxide, yielding a tridimensional structure with improved physical, chemical and electrical properties, in addition to high biocompatibility. In biological environments, SWCNT encapsulation by IrOx makes more resistant electrodes and prevents the nanotube release to the media, preventing cellular toxicity. Chemical, electrochemical, structural and surface characterization of the hybrids has been accomplished. The high performance of the material in electrochemical measurements and the significant increase in cathodal charge storage capacity obtained for the hybrid in comparison with bare IrOx represent a significant advance in electric field application in biosystems, while its cyclability is also an order of magnitude greater than pure IrOx. Moreover, experiments using in vitro neuronal cultures suggest high biocompatibility for IrOx-CNT coatings and full functionality of neurons, validating this material for use in neural electrodes. Copyright © 2014 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  5. ITO nanoparticles reused from ITO scraps and their applications to sputtering target for transparent conductive electrode layer

    OpenAIRE

    Hong, Sung-Jei; Song, Sang-Hyun; Kim, Byeong Jun; Lee, Jae-Yong; Kim, Young-Sung

    2017-01-01

    In this study, ITO nanoparticles (ITO-NPs) were reused from ITO target scraps to synthesize low cost ITO-NPs and to apply to make sputtering target for transparent conductive electrodes (TCEs). By controlling heat-treatment temperature as 980??C, we achieved reused ITO-NPs having Brunauer, Emmett and Teller specific surface area (BET SSA) and average particle size 8.05?m2/g and 103.8?nm, respectively. The BET SSA decreases along with increasing heat-treatment temperature. The ITO-NPs were gro...

  6. Effect of deposition temperature on the properties of Al-doped ZnO films prepared by pulsed DC magnetron sputtering for transparent electrodes in thin-film solar cells

    Science.gov (United States)

    Kim, Doo-Soo; Park, Ji-Hyeon; Shin, Beom-Ki; Moon, Kyeong-Ju; Son, Myoungwoo; Ham, Moon-Ho; Lee, Woong; Myoung, Jae-Min

    2012-10-01

    A simple but scalable approach to the production of surface-textured Al-doped ZnO(AZO) films for low-cost transparent electrode applications in thin-film solar cells is introduced in this study by combining pulsed dc magnetron sputtering (PDMS) with wet etching in sequence. First, structural, electrical, and optical properties of the AZO films prepared by a PDMS were investigated as functions of deposition temperature to obtain transparent electrode films that can be used as indium-free alternative to ITO electrodes. Increase in the deposition temperature to 230 °C accompanied the improvement in crystalline quality and doping efficiency, which enabled the lowest electrical resistivity of 4.16 × 10-4 Ω cm with the carrier concentration of 1.65 × 1021 cm-3 and Hall mobility of 11.3 cm2/V s. The wet etching of the films in a diluted HCl solution resulted in surface roughening via the formation of crater-like structures without significant degradation in the electrical properties, which is responsible for the enhanced light scattering capability required for anti-reflective electrodes in thin film solar cells.

  7. Hybrid simulation of electrode plasmas in high-power diodes

    International Nuclear Information System (INIS)

    Welch, Dale R.; Rose, David V.; Bruner, Nichelle; Clark, Robert E.; Oliver, Bryan V.; Hahn, Kelly D.; Johnston, Mark D.

    2009-01-01

    New numerical techniques for simulating the formation and evolution of cathode and anode plasmas have been successfully implemented in a hybrid code. The dynamics of expanding electrode plasmas has long been recognized as a limiting factor in the impedance lifetimes of high-power vacuum diodes and magnetically insulated transmission lines. Realistic modeling of such plasmas is being pursued to aid in understanding the operating characteristics of these devices as well as establishing scaling relations for reliable extrapolation to higher voltages. Here, in addition to kinetic and fluid modeling, a hybrid particle-in-cell technique is described that models high density, thermal plasmas as an inertial fluid which transitions to kinetic electron or ion macroparticles above a prescribed energy. The hybrid technique is computationally efficient and does not require resolution of the Debye length. These techniques are first tested on a simple planar diode then applied to the evolution of both cathode and anode plasmas in a high-power self-magnetic pinch diode. The impact of an intense electron flux on the anode surface leads to rapid heating of contaminant material and diode impedance loss.

  8. Water based, solution-processable, transparent and flexible graphene oxide composite as electrodes in organic solar cell application

    International Nuclear Information System (INIS)

    Lima, L F; Matos, C F; Gonçalves, L C; Roman, L S; Salvatierra, R V; Zarbin, A J G; Cava, C E

    2016-01-01

    In this work we propose an easy method to achieve a conductive, transparent and flexible graphene oxide (GO)-based composite thin film from an aqueous dispersion. We investigated the blend ratio between GO and the conjugated polymer poly(3,4–ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) by comparing the thin film optical transmittance, sheet resistance, morphology and mechanical stability. It was found that reasonable values of transmittance and resistivity coupled with its excellent flexibility – the conductivity remains almost the same even after 1000 bends cycles – make this composite very attracting for flexible optoelectronic applications. Thus, these films were used as transparent electrodes in a bilayer structured organic solar cell and the device architecture PET/GO:PEDOT/F8T2/C 60 /Al could reach a power conversion efficiency around 1.10%. This result presents a better performance compared with pristine PEDOT produced with similar parameters. (paper)

  9. Evaluating conducting network based transparent electrodes from geometrical considerations

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Ankush [Chemistry and Physics of Materials Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, 560064 Bangalore (India); Kulkarni, G. U., E-mail: guk@cens.res.in [Centre for Nano and Soft Matter Sciences, 560013 Bangalore (India)

    2016-01-07

    Conducting nanowire networks have been developed as viable alternative to existing indium tin oxide based transparent electrode (TE). The nature of electrical conduction and process optimization for electrodes have gained much from the theoretical models based on percolation transport using Monte Carlo approach and applying Kirchhoff's law on individual junctions and loops. While most of the literature work pertaining to theoretical analysis is focussed on networks obtained from conducting rods (mostly considering only junction resistance), hardly any attention has been paid to those made using template based methods, wherein the structure of network is neither similar to network obtained from conducting rods nor similar to well periodic geometry. Here, we have attempted an analytical treatment based on geometrical arguments and applied image analysis on practical networks to gain deeper insight into conducting networked structure particularly in relation to sheet resistance and transmittance. Many literature examples reporting networks with straight or curvilinear wires with distributions in wire width and length have been analysed by treating the networks as two dimensional graphs and evaluating the sheet resistance based on wire density and wire width. The sheet resistance values from our analysis compare well with the experimental values. Our analysis on various examples has revealed that low sheet resistance is achieved with high wire density and compactness with straight rather than curvilinear wires and with narrower wire width distribution. Similarly, higher transmittance for given sheet resistance is possible with narrower wire width but of higher thickness, minimal curvilinearity, and maximum connectivity. For the purpose of evaluating active fraction of the network, the algorithm was made to distinguish and quantify current carrying backbone regions as against regions containing only dangling or isolated wires. The treatment can be helpful in

  10. Evaluating conducting network based transparent electrodes from geometrical considerations

    International Nuclear Information System (INIS)

    Kumar, Ankush; Kulkarni, G. U.

    2016-01-01

    Conducting nanowire networks have been developed as viable alternative to existing indium tin oxide based transparent electrode (TE). The nature of electrical conduction and process optimization for electrodes have gained much from the theoretical models based on percolation transport using Monte Carlo approach and applying Kirchhoff's law on individual junctions and loops. While most of the literature work pertaining to theoretical analysis is focussed on networks obtained from conducting rods (mostly considering only junction resistance), hardly any attention has been paid to those made using template based methods, wherein the structure of network is neither similar to network obtained from conducting rods nor similar to well periodic geometry. Here, we have attempted an analytical treatment based on geometrical arguments and applied image analysis on practical networks to gain deeper insight into conducting networked structure particularly in relation to sheet resistance and transmittance. Many literature examples reporting networks with straight or curvilinear wires with distributions in wire width and length have been analysed by treating the networks as two dimensional graphs and evaluating the sheet resistance based on wire density and wire width. The sheet resistance values from our analysis compare well with the experimental values. Our analysis on various examples has revealed that low sheet resistance is achieved with high wire density and compactness with straight rather than curvilinear wires and with narrower wire width distribution. Similarly, higher transmittance for given sheet resistance is possible with narrower wire width but of higher thickness, minimal curvilinearity, and maximum connectivity. For the purpose of evaluating active fraction of the network, the algorithm was made to distinguish and quantify current carrying backbone regions as against regions containing only dangling or isolated wires. The treatment can be helpful in

  11. Development of the α-IGZO/Ag/α-IGZO Triple-Layer Structure Films for the Application of Transparent Electrode.

    Science.gov (United States)

    Chen, Kun-Neng; Yang, Cheng-Fu; Wu, Chia-Ching; Chen, Yu-Hsin

    2017-02-24

    We investigated the structural, optical, and electrical properties of amorphous IGZO/silver/amorphous IGZO (α-IGZO/Ag/α-IGZO) triple-layer structures that were deposited at room temperature on Eagle XG glass and flexible polyethylene terephthalate substrates through the sputtering method. Thin Ag layers with different thicknesses were inserted between two IGZO layers to form a triple-layer structure. Ag was used because of its lower absorption and resistivity. Field emission scanning electron microscopy measurements of the triple-layer structures revealed that the thicknesses of the Ag layers ranged from 13 to 41 nm. The thickness of the Ag layer had a large effect on the electrical and optical properties of the electrodes. The optimum thickness of the Ag metal thin film could be evaluated according to the optical transmittance, electrical conductivity, and figure of merit of the electrode. This study demonstrates that the α-IGZO/Ag/α-IGZO triple-layer transparent electrode can be fabricated with low sheet resistance (4.2 Ω/□) and high optical transmittance (88.1%) at room temperature without postannealing processing on the deposited thin films.

  12. Preparation, characterization and electrocatalytic behavior of zinc oxide/zinchexacyanoferrate and ruthenium oxide hexacyanoferrate hybrid film-modified electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Chu, H.-W.; Thangamuthu, R. [Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, No. 1, Section 3, Chung-Hsiao East Road, Taipei 106, Taiwan (China); Chen, S.-M. [Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, No. 1, Section 3, Chung-Hsiao East Road, Taipei 106, Taiwan (China)], E-mail: smchen78@ms15.hinet.net

    2008-02-15

    Polynuclear mixed-valent hybrid films of zinc oxide/zinchexacyanoferrate and ruthenium oxide hexacyanoferrate (ZnO/ZnHCF-RuOHCF) have been deposited on electrode surfaces from H{sub 2}SO{sub 4} solution containing Zn(NO{sub 3}){sub 2}, RuCl{sub 3} and K{sub 3}[Fe(CN){sub 6}] by potentiodynamic cycling method. Simultaneous cyclic voltammetry and electrochemical quartz crystal microbalance (EQCM) measurements demonstrate the steady growth of hybrid film. Surface morphology of hybrid film was investigated using scanning electron microscopy (SEM). Energy dispersive spectrometer (EDS) data confirm existence of zinc oxide and ruthenium oxide hexacyanoferrate (RuOHCF) in the hybrid film. The effect of type of monovalent cations on the redox behavior of hybrid film was investigated. In pure supporting electrolyte, electrochemical responses of Ru{sup II/III} redox transition occurring at negative potential region resemble with that of a surface immobilized redox couple. The electrocatalytic activity of ZnO/ZnHCF-RuOHCF hybrid film was investigated towards oxidation of epinephrine, dopamine and L-cysteine, and reduction of S{sub 2}O{sub 8}{sup 2-} and SO{sub 5}{sup 2-} as well as IO{sub 3}{sup -} using cyclic voltammetry and rotating ring disc electrode (RRDE) techniques.

  13. EIT image reconstruction based on a hybrid FE-EFG forward method and the complete-electrode model.

    Science.gov (United States)

    Hadinia, M; Jafari, R; Soleimani, M

    2016-06-01

    This paper presents the application of the hybrid finite element-element free Galerkin (FE-EFG) method for the forward and inverse problems of electrical impedance tomography (EIT). The proposed method is based on the complete electrode model. Finite element (FE) and element-free Galerkin (EFG) methods are accurate numerical techniques. However, the FE technique has meshing task problems and the EFG method is computationally expensive. In this paper, the hybrid FE-EFG method is applied to take both advantages of FE and EFG methods, the complete electrode model of the forward problem is solved, and an iterative regularized Gauss-Newton method is adopted to solve the inverse problem. The proposed method is applied to compute Jacobian in the inverse problem. Utilizing 2D circular homogenous models, the numerical results are validated with analytical and experimental results and the performance of the hybrid FE-EFG method compared with the FE method is illustrated. Results of image reconstruction are presented for a human chest experimental phantom.

  14. Free-standing 3D polyaniline-CNT/Ni-fiber hybrid electrodes for high-performance supercapacitors

    Science.gov (United States)

    Li, Yuan; Fang, Yuzhu; Liu, Hong; Wu, Xiaoming; Lu, Yong

    2012-04-01

    Free-standing 3D macroscopic polyaniline (PANi)-carbon nanotube (CNT)-nickel fiber hybrids have been developed, and they deliver high specific capacitance (725 F g-1 at 0.5 A g-1) and high energy density at high rates (~22 W h kg-1 at 2000 W kg-1, based on total electrode mass) with good cyclability.Free-standing 3D macroscopic polyaniline (PANi)-carbon nanotube (CNT)-nickel fiber hybrids have been developed, and they deliver high specific capacitance (725 F g-1 at 0.5 A g-1) and high energy density at high rates (~22 W h kg-1 at 2000 W kg-1, based on total electrode mass) with good cyclability. Electronic supplementary information (ESI) available: Experimental details on preparation, characterization, and electrochemical testing; Fig. S1-S8, Schemes S1 and S2. See DOI: 10.1039/c2nr30252g

  15. Effect of the Mesh Transparency on the Electrical Characteristics of DC Pseudo Discharge

    International Nuclear Information System (INIS)

    Al-Halim, M. A. Abd; Abu-Hashem, A.; Moubarak, D. I.

    2015-01-01

    A DC pseudo discharge for air has been studied. Air pressure is used in the range between 0.7 Torr and 12 Torr. The breakdown occurs between a plane cathode and a mesh anode at transparencies of 19%, 46%, and 65%. The current-voltage characteristic curves of the discharge, which are measured at different pressures, distances, and mesh transparences, take effect in the region of abnormal glow. The discharge voltage decreases as the air pressure increases, while more voltage is needed to maintain the discharge when either the mesh transparency or the inter-electrode distance is increased. An increment of mesh transparency causes high negative potential behind the mesh due to the high concentration of electrons, which accumulate and collide with neutral atoms. Paschen curves deviate from the expected regular one. The left side of Paschen curves appears at inter-electrode distance of 1 mm, whereas the right side appears at inter-electrode distance of 5 mm. The intermediate region is observed only at 3 mm distance between the two electrodes. For the transparency range used in this work, it is found that the decrement of the breakdown voltage, on the right side, depends on the mesh transparency. For different electrode separations, the measured Paschen curves are coincident and deviate from the standard ones of Paschen's law. (paper)

  16. Nanostructured Metal Oxide Coatings for Electrochemical Energy Conversion and Storage Electrodes

    Science.gov (United States)

    Cordova, Isvar Abraxas

    performance results obtained for this Cu/Ni(OH)2 transparent electrode demonstrates that it has significant potential as a hybrid supercapacitor electrode for integration into cutting edge flexible and transparent electronic devices.

  17. Characterization of modified SiC@SiO2 nanocables/MnO2 and their potential application as hybrid electrodes for supercapacitors.

    Science.gov (United States)

    Zhang, Yujie; Chen, Junhong; Fan, Huili; Chou, Kuo-Chih; Hou, Xinmei

    2015-12-14

    In this research, we demonstrate a simple route for preparing SiC@SiO2 core-shell nanocables and furthermore obtain SiC@SiO2 nanocables/MnO2 as hybrid electrodes for supercapacitors using various modified methods. The modified procedure consists of mild modifications using sodium hydroxide as well as UV light irradiation and deposition of MnO2. The morphology and microstructural characteristics of the composites are investigated using XRD, XPS, FE-SEM with EDS and TEM. The results indicate that the surfaces of modified SiC@SiO2 nanocables are uniformly coated with a MnO2 thin layer. The electrochemical behaviors of the hybrid electrodes are systematically measured in a three-electrode system using cyclic voltammetry, galvanostatic charge/discharge and electrochemical impedance spectroscopy. The resultant electrode presents a superb charge storage characteristic with a large specific capacitance of 276.3 F g(-1) at the current density of 0.2 A g(-1). Moreover, the hybrid electrode also displays a long cycle life with a good capacitance retention (∼92.0%) after 1000 CV cycles, exhibiting a promising potential for supercapacitors.

  18. Glucose aided preparation of tungsten sulfide/multi-wall carbon nanotube hybrid and use as counter electrode in dye-sensitized solar cells.

    Science.gov (United States)

    Wu, Jihuai; Yue, Gentian; Xiao, Yaoming; Huang, Miaoliang; Lin, Jianming; Fan, Leqing; Lan, Zhang; Lin, Jeng-Yu

    2012-12-01

    The tungsten sulfide/multi-wall carbon nanotube (WS(2)/MWCNT) hybrid was prepared in the presence of glucose by the hydrothermal route. The hybrid materials were used as counter electrode in the dye-sensitized solar cell (DSSC). The results of cyclic voltammetry measurement and electrochemical impedance spectroscopy indicated that the glucose aided prepared (G-A) WS(2)/MWCNT electrode had low charge-transfer resistance (R(ct)) and high electrocatalytic activity for triiodide reduction. The excellent electrochemical properties for (G-A) WS(2)/MWCNT electrode is due to the synergistic effects of WS(2) and MWCNTs, as well as amorphous carbon introduced by glucose. The DSSC based on the G-A WS(2)/MWCNT counter electrode achieved a high power conversion efficiency of 7.36%, which is comparable with the performance of the DSSC using Pt counter electrode (7.54%).

  19. Large-area self-assembled reduced graphene oxide/electrochemically exfoliated graphene hybrid films for transparent electrothermal heaters

    Science.gov (United States)

    Sun, Hongyan; Chen, Ding; Ye, Chen; Li, Xinming; Dai, Dan; Yuan, Qilong; Chee, Kuan W. A.; Zhao, Pei; Jiang, Nan; Lin, Cheng-Te

    2018-03-01

    Graphene shows great promise as a high-efficiency electrothermal film for flexible transparent defoggers/defrosters. However, it remains a great challenge to achieve a good balance between the production cost and the properties of graphene films. Here, we proposed a cost-effective self-assembly method to fabricate high-performance, large-area graphene oxide/electrochemically exfoliated graphene hybrid films for heater applications. The self-assembled graphene hybrid films with the area of 20 × 20 cm2 could be transferred onto arbitrary substrates with nonplanar surfaces and simply patterned with the hard mask. After reduction by hydrogen iodide vapor followed by 800 °C thermal treatment, the hybrid films with the transmittance of 76.2% exhibit good heating characteristics and defogging performance, which reach a saturation temperature of up to 127.5 °C when 40 V was applied for 60 s.

  20. Hybrid nanomaterial of α-Co(OH)2 nanosheets and few-layer graphene as an enhanced electrode material for supercapacitors.

    Science.gov (United States)

    Cheng, J P; Liu, L; Ma, K Y; Wang, X; Li, Q Q; Wu, J S; Liu, F

    2017-01-15

    Supercapacitor with metal hydroxide nanosheets as electrode can have high capacitance. However, the cycling stability and high rate capacity is low due to the low electrical conductivity. Here, the exfoliated α-Co(OH) 2 nanosheets with high capacitance has been assembled on few-layer graphene with high electric conductivity by a facile yet effective and scalable solution method. Exfoliated hydrotalcite-like α-Co(OH) 2 nanosheets and few-layer graphene suspensions were prepared by a simple ultrasonication in formamide and N-methyl-2-pyrrolidone, respectively. Subsequently, a hybrid was made by self-assembly of α-Co(OH) 2 and few-layer graphene when the two dispersions were mixed at room temperature. The hybrid material provided a high specific capacitance of 567.1F/g at 1A/g, while a better rate capability and better stability were achieved compared to that mad of pristine and single exfoliated α-Co(OH) 2 . When the hybrid nanocomposite was used as a positive electrode and activated carbon was applied as negative electrode to assembly an asymmetric capacitor, an energy density of 21.2Wh/kg at a power density of 0.41kW/kg within a potential of 1.65V was delivered. The high electrochemical performance and facile solution-based synthesis method suggested that the hybrid of exfoliated α-Co(OH) 2 /few-layer graphene could be a potential electrode material for electrochemical capacitor. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. Transparent Conducting Graphene Hybrid Films To Improve Electromagnetic Interference (EMI) Shielding Performance of Graphene.

    Science.gov (United States)

    Ma, Limin; Lu, Zhengang; Tan, Jiubin; Liu, Jian; Ding, Xuemei; Black, Nicola; Li, Tianyi; Gallop, John; Hao, Ling

    2017-10-04

    Conducting graphene-based hybrids have attracted considerable attention in recent years for their scientific and technological significance in many applications. In this work, conductive graphene hybrid films, consisting of a metallic network fully encapsulated between monolayer graphene and quartz-glass substrate, were fabricated and characterized for their electromagnetic interference shielding capabilities. Experimental results show that by integration with a metallic network the sheet resistance of graphene was significantly suppressed from 813.27 to 5.53 Ω/sq with an optical transmittance at 91%. Consequently, the microwave shielding effectiveness (SE) exceeded 23.60 dB at the K u -band and 13.48 dB at the K a -band. The maximum SE value was 28.91 dB at 12 GHz. Compared with the SE of pristine monolayer graphene (3.46 dB), the SE of graphene hybrid film was enhanced by 25.45 dB (99.7% energy attenuation). At 94% optical transmittance, the sheet resistance was 20.67 Ω/sq and the maximum SE value was 20.86 dB at 12 GHz. Our results show that hybrid graphene films incorporate both high conductivity and superior electromagnetic shielding comparable to existing ITO shielding modalities. The combination of high conductivity and shielding along with the materials' earth-abundant nature, and facile large-scale fabrication, make these graphene hybrid films highly attractive for transparent EMI shielding.

  2. Interfacial layers and semi-transparent electrodes for large area flexible organic photovoltaics

    DEFF Research Database (Denmark)

    Patil, Bhushan Ramesh

    the exciton recombination and charge carrier losses in the devices. I report on the implementation of a novel exciton blocking layer of an intrinsic organic material, ‘N,N'-di-1-naphthalenyl-N,N'-diphenyl [1,1':4',1'':4'',1‴-quaterphenyl]-4,4‴-diamine (4P-NPD)’, in organic small molecule-based OPVs. Using...... this interlayer, the efficiency of OPV devices increased by approx. 24 % compared to reference devices. I also report on the use the use of electron transport layer of organic material ‘2,9-Dimethyl-4,7-diphenyl-1,10-phenanthroline (Bathocuproine, BCP)’ for inverted small molecule-based lab-scale and up......-scaled OPVs. The pronounced clustering of the BCP layer lead to increasing discrepancies in the device performance with the increase in the device size, which disqualifies it for use of in the inverted large area OPVs. The second section deals with up-scaling of highly conductive semi-transparent electrodes...

  3. Semi-transparent perovskite solar cells for tandems with silicon and CIGS

    KAUST Repository

    Bailie, Colin D.; Christoforo, M. Greyson; Mailoa, Jonathan P.; Bowring, Andrea R.; Unger, Eva L.; Nguyen, William H.; Burschka, Julian; Pellet, Norman; Lee, Jungwoo Z.; Grä tzel, Michael; Noufi, Rommel; Buonassisi, Tonio; Salleo, Alberto; McGehee, Michael D.

    2015-01-01

    solar cell. We use a transparent silver nanowire electrode on perovskite solar cells to achieve a semi-transparent device. We place the semi-transparent cell in a mechanically-stacked tandem configuration onto copper indium gallium diselenide (CIGS

  4. Surface Modifier-Free Organic-Inorganic Hybridization To Produce Optically Transparent and Highly Refractive Bulk Materials Composed of Epoxy Resins and ZrO2 Nanoparticles.

    Science.gov (United States)

    Enomoto, Kazushi; Kikuchi, Moriya; Narumi, Atsushi; Kawaguchi, Seigou

    2018-04-25

    Surface modifier-free hybridization of ZrO 2 nanoparticles (NPs) with epoxy-based polymers is demonstrated for the first time to afford highly transparent and refractive bulk materials. This is achieved by a unique and versatile hybridization via the one-pot direct phase transfer of ZrO 2 NPs from water to epoxy monomers without any aggregation followed by curing with anhydride. Three types of representative epoxy monomers, bisphenol A diglycidyl ether (BADGE), 3,4-epoxycyclohexylmethyl-3',4'-epoxycyclohexane carboxylate (CEL), and 1,3,5-tris(3-(oxiran-2-yl)propyl)-1,3,5-triazinane-2,4,6-trione (TEPIC), are used to produce transparent viscous dispersions. The resulting ZrO 2 NPs are thoroughly characterized using dynamic light scattering (DLS), transmission electron microscopy (TEM), Fourier transform infrared (FT-IR), and solid-state 13 C CP/MAS NMR measurements. The results from DLS and TEM analyses indicate nanodispersion of ZrO 2 into epoxy monomers as a continuous medium. A surface modification mechanism and the binding fashion during phase transfer are proposed based on the FT-IR and solid-state 13 C CP/MAS NMR measurements. Epoxy-based hybrid materials with high transparency and refractive index are successfully fabricated by heat curing or polymerizing a mixture of monomers containing epoxy-functionalized ZrO 2 NPs and methylhexahydrophthalic anhydride in the presence of a phosphoric catalyst. The TEM and small-angle X-ray scattering measurements of the hybrids show a nanodispersion of ZrO 2 in the epoxy networks. The refractive index at 594 nm ( n 594 ) increases up to 1.765 for BADGE-based hybrids, 1.667 for CEL-based hybrids, and 1.693 for TEPIC-based hybrids. Their refractive indices and Abbe's numbers are quantitatively described by the Lorentz-Lorenz effective medium expansion theory. Their transmissivity is also reasonably explained using Fresnel refraction, Rayleigh scattering, and the Lambert-Beer theories. This surface modifier-free hybridization

  5. Multiple electromechanically-induced-transparency windows and Fano resonances in hybrid nano-electro-optomechanics

    Science.gov (United States)

    Ullah, Kamran; Jing, Hui; Saif, Farhan

    2018-03-01

    We show multiple electromechanically-induced transparency (EMIT) windows in a hybrid nano-electro-optomechanical system in the presence of two-level atoms coupled to a single-mode cavity field. The multiple EMIT-window profile can be observed by controlling the atom field coupling as well as Coulomb coupling between the two charged mechanical resonators. We derive the analytical expression of the multiple-EMIT-windows profile and describe the splitting of multiple EMIT windows as a function of optomechanical coupling, atom-field coupling, and Coulomb coupling. In particular, we discuss the robustness of the system against the cavity decay rate. We compare the results of identical mechanical resonators to different mechanical resonators. We further show how the hybrid nano-electro-optomechanics coupled system can lead to the splitting of the multiple Fano resonances (MFR). The Fano resonances are very sensitive to decay terms in such systems, i.e., atoms, cavities, and the mechanical resonators.

  6. Pseudocapacitive organic catechol derivative-functionalized three-dimensional graphene aerogel hybrid electrodes for high-performance supercapacitors

    Science.gov (United States)

    Choi, Jaewon; Yang, MinHo; Kim, Sung-Kon

    2017-11-01

    Bio-inspired and environmentally friendly chemical functionalization is a successful way to a new class of hybrid electrode materials for applications in energy storage. Quinone (Q)-hydroquinone (QH2) couples, a prototypical example of organic redox systems, provide fast and reversible proton-coupled electron-transfer reactions which lead to increased capacity. To achieve high capacitance and rate performance, constructing three-dimensional (3D) continuous porous structure is highly desirable. Here we report the hybrid electrodes (GA-C) consisting of 3D graphene aerogel (GA) functionalized with organic redox-active material, catechol derivative, for application to high-performance supercapacitors. The catechol derivative is adsorbed on the surface of GA through non-covalent interactions and promotes fast and reversible Q/QH2 faradaic reactions, providing large specific capacitance of 188 F g-1 at a current of 1 A g-1 and a specific energy of ∼25 Wh kg-1 at a specific power of ∼18,000 W kg-1. 3D continuous porous structure of GA electrode facilitates ion and electron transports, resulting in high rate performance (∼140 F g-1 at a current of 10 A g-1).

  7. Lipase immobilized on nanostructured cerium oxide thin film coated on transparent conducting oxide electrode for butyrin sensing

    International Nuclear Information System (INIS)

    Panky, Sreedevi; Thandavan, Kavitha; Sivalingam, Durgajanani; Sethuraman, Swaminathan; Krishnan, Uma Maheswari; Jeyaprakash, Beri Gopalakrishnan; Rayappan, John Bosco Balaguru

    2013-01-01

    Nanostructured cerium oxide (CeO 2 ) thin films were deposited on transparent conducting oxide (TCO) substrate using spray pyrolysis technique with cerium nitrate salt, Ce(NO 3 ) 3 ·6H 2 O as precursor. Fluorine doped cadmium oxide (CdO:F) thin film prepared using spray pyrolysis technique acts as the TCO film and hence the bare electrode. The structural, morphological and elemental characterizations of the films were carried out using X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM) and energy dispersive X-ray analysis (EDX) respectively. The diffraction peak positions in XRD confirmed the formation of highly crystalline ceria with cubic structure and FE-SEM images showed uniform adherent films with granular morphology. The band gaps of CeO 2 and TCO were found to be 3.2 eV and 2.6 eV respectively. Lipase enzyme was physisorbed on the surface of CeO 2 /TCO film to form the lipase/nano-CeO 2 /TCO bioelectrode. Sensing studies were carried out using cyclic voltammetry and amperometry, with lipase/nano-CeO 2 /TCO as working electrode and tributyrin as substrate. The mediator-free biosensor with nanointerface exhibited excellent linearity (0.33–1.98 mM) with a lowest detection limit of 2 μM with sharp response time of 5 s and a shelf life of about 6 weeks. -- Graphical abstract: Nanostructured cerium oxide thin films were deposited on transparent conducting oxide (TCO) substrate using spray pyrolysis technique. Fluorine doped cadmium oxide (CdO:F) thin film acts as the TCO film and hence the working electrode. Lipase enzyme was physisorbed on the surface of CeO 2 /TCO film and hence the lipase/nano-CeO 2 /TCO bioelectrode has been fabricated. Sensing studies were carried out using cyclic voltammetry and amperometry with tributyrin as substrate. The mediator-free biosensor with nanointerface exhibited excellent linearity (0.33–1.98 mM) with a lowest detection limit of 2 μM with sharp response time of 5 s and a shelf life of about 6

  8. High Performance of PEDOT:PSS/n-Si Solar Cells Based on Textured Surface with AgNWs Electrodes

    Science.gov (United States)

    Jiang, Xiangyu; Zhang, Pengbo; Zhang, Juan; Wang, Jilei; Li, Gaofei; Fang, Xiaohong; Yang, Liyou; Chen, Xiaoyuan

    2018-02-01

    Hybrid heterojunction solar cells (HHSCs) have gained extensive research and attention due to simple device structure and low-cost technological processes. Here, HHSCs are presented based on a highly transparent conductive polymer poly(3,4ethylenedioxythiophene):poly(styrenesulfonate)(PEDOT:PSS) directly spin-coated on an n-type crystalline silicon with microscale surface textures, which are prepared by traditional chemical etching. We have studied interface properties between PEDOT:PSS and textured n-Si by varying coating conditions. Final power conversion efficiency (PCE) could arrive at 8.54% by these simple solution-based fabrication processes. The high conversion efficiency is attributed to the fully conformal contact between PEDOT:PSS film and textured silicon. Furthermore, the reflectance of the PEDOT:PSS layer on textured surface is analyzed by changing film thickness. In order to improve the performance of the device, silver nanowires were employed as electrodes because of its better optical transmittance and electrical conductivity. The highest PCE of 11.07% was achieved which displayed a 29.6% enhancement compared with traditional silver electrodes. These findings imply that the combination of PEDOT:PSS film and silver nanowire transparent electrodes pave a promising way for realizing high-efficiency and low-cost solar cells.

  9. Rapid synthesis of ultra-long silver nanowires for tailor-made transparent conductive electrodes: proof of concept in organic solar cells

    International Nuclear Information System (INIS)

    José Andrés, Luis; Fe Menéndez, María; Gómez, David; Luisa Martínez, Ana; Menéndez, Armando; Bristow, Noel; Paul Kettle, Jeffrey; Ruiz, Bernardino

    2015-01-01

    Rapid synthesis of ultralong silver nanowires (AgNWs) has been obtained using a one-pot polyol-mediated synthetic procedure. The AgNWs have been prepared from the base materials in less than one hour with nanowire lengths reaching 195 μm, which represents the quickest synthesis and one of the highest reported aspect ratios to date. These results have been achieved through a joint analysis of all reaction parameters, which represents a clear progress beyond the state of the art. Dispersions of the AgNWs have been used to prepare thin, flexible, transparent and conducting films using spray coating. Due to the higher aspect ratio, an improved electrical percolation network is observed. This allows a low sheet resistance (R_S = 20.2 Ω/sq), whilst maintaining high optical film transparency (T = 94.7%), driving to the highest reported figure-of-merit (FoM = 338). Owing to the light-scattering influence of the AgNWs, the density of the AgNW network can also be varied to enable controllability of the optical haze through the sample. Based on the identification of the optimal haze value, organic photovoltaics (OPVs) have been fabricated using the AgNWs as the transparent electrode and have been benchmarked against indium tin oxide (ITO) electrodes. Overall, the performance of OPVs made using AgNWs sees a small decrease in power conversion efficiency (PCE), primarily due to a fall in open-circuit voltage (50 mV). This work indicates that AgNWs can provide a low cost, rapid and roll-to-roll compatible alternative to ITO in OPVs, with only a small compromise in PCE needed. (paper)

  10. Rapid synthesis of ultra-long silver nanowires for tailor-made transparent conductive electrodes: proof of concept in organic solar cells

    Science.gov (United States)

    José Andrés, Luis; Menéndez, María Fe; Gómez, David; Martínez, Ana Luisa; Bristow, Noel; Kettle, Jeffrey Paul; Menéndez, Armando; Ruiz, Bernardino

    2015-07-01

    Rapid synthesis of ultralong silver nanowires (AgNWs) has been obtained using a one-pot polyol-mediated synthetic procedure. The AgNWs have been prepared from the base materials in less than one hour with nanowire lengths reaching 195 μm, which represents the quickest synthesis and one of the highest reported aspect ratios to date. These results have been achieved through a joint analysis of all reaction parameters, which represents a clear progress beyond the state of the art. Dispersions of the AgNWs have been used to prepare thin, flexible, transparent and conducting films using spray coating. Due to the higher aspect ratio, an improved electrical percolation network is observed. This allows a low sheet resistance (RS = 20.2 Ω/sq), whilst maintaining high optical film transparency (T = 94.7%), driving to the highest reported figure-of-merit (FoM = 338). Owing to the light-scattering influence of the AgNWs, the density of the AgNW network can also be varied to enable controllability of the optical haze through the sample. Based on the identification of the optimal haze value, organic photovoltaics (OPVs) have been fabricated using the AgNWs as the transparent electrode and have been benchmarked against indium tin oxide (ITO) electrodes. Overall, the performance of OPVs made using AgNWs sees a small decrease in power conversion efficiency (PCE), primarily due to a fall in open-circuit voltage (50 mV). This work indicates that AgNWs can provide a low cost, rapid and roll-to-roll compatible alternative to ITO in OPVs, with only a small compromise in PCE needed.

  11. Three-Dimensional Tubular MoS2/PANI Hybrid Electrode for High Rate Performance Supercapacitor.

    Science.gov (United States)

    Ren, Lijun; Zhang, Gaini; Yan, Zhe; Kang, Liping; Xu, Hua; Shi, Feng; Lei, Zhibin; Liu, Zong-Huai

    2015-12-30

    By using three-dimensional (3D) tubular molybdenum disulfide (MoS2) as both an active material in electrochemical reaction and a framework to provide more paths for insertion and extraction of ions, PANI nanowire arrays with a diameter of 10-20 nm can be controllably grown on both the external and internal surface of 3D tubular MoS2 by in situ oxidative polymerization of aniline monomers and 3D tubular MoS2/PANI hybrid materials with different amounts of PANI are prepared. A controllable growth of PANI nanowire arrays on the tubular MoS2 surface provides an opportunity to optimize the capacitive performance of the obtained electrodes. When the loading amount of PANI is 60%, the obtained MoS2/PANI-60 hybrid electrode not only shows a high specific capacitance of 552 F/g at a current density of 0.5 A/g, but also gives excellent rate capability of 82% from 0.5 to 30 A/g. The remarkable rate performance can be mainly attributed to the architecture with synergistic effect between 3D tubular MoS2 and PANI nanowire arrays. Moreover, the MoS2/PANI-60 based symmetric supercapacitor also exhibits the excellent rate performance and good cycling stability. The specific capacitance based on the total mass of the two electrodes is 124 F/g at a current density of 1 A/g and 79% of its initial capacitance is remained after 6000 cycles. The 3D tubular structure provides a good and favorable method for improving the capacitance retention of PANI electrode.

  12. Development of the α-IGZO/Ag/α-IGZO Triple-Layer Structure Films for the Application of Transparent Electrode

    Directory of Open Access Journals (Sweden)

    Kun-Neng Chen

    2017-02-01

    Full Text Available We investigated the structural, optical, and electrical properties of amorphous IGZO/silver/amorphous IGZO (α-IGZO/Ag/α-IGZO triple-layer structures that were deposited at room temperature on Eagle XG glass and flexible polyethylene terephthalate substrates through the sputtering method. Thin Ag layers with different thicknesses were inserted between two IGZO layers to form a triple-layer structure. Ag was used because of its lower absorption and resistivity. Field emission scanning electron microscopy measurements of the triple-layer structures revealed that the thicknesses of the Ag layers ranged from 13 to 41 nm. The thickness of the Ag layer had a large effect on the electrical and optical properties of the electrodes. The optimum thickness of the Ag metal thin film could be evaluated according to the optical transmittance, electrical conductivity, and figure of merit of the electrode. This study demonstrates that the α-IGZO/Ag/α-IGZO triple-layer transparent electrode can be fabricated with low sheet resistance (4.2 Ω/□ and high optical transmittance (88.1% at room temperature without postannealing processing on the deposited thin films.

  13. Generation of Transparent Oxygen Evolution Electrode Consisting of Regularly Ordered Nanoparticles from Self-Assembly Cobalt Phthalocyanine as a Template

    KAUST Repository

    Ziani, Ahmed

    2016-11-04

    The decoration of (photo)electrodes for efficient photoresponse requires the use of electrocatalysts with good dispersion and high transparency for efficient light absorption by the photoelectrode. As a result of the ease of thermal evaporation and particulate self-assembly growth, the phthalocyanine molecular species can be uniformly deposited layer-by-layer on the surface of substrates. This structure can be used as a template to achieve a tunable amount of catalysts, high dispersion of the nanoparticles, and transparency of the catalysts. In this study, we present a systematic study of the structural and optical properties, surface morphologies, and electrochemical oxygen evolution reaction (OER) performance of cobalt oxide prepared from a phthalocyanine metal precursor. Cobalt phthalocyanine (CoPc) films with different thicknesses were deposited by thermal evaporation on different substrates. The films were annealed at 400 °C in air to form a material with the cobalt oxide phase. The final Co oxide catalysts exhibit high transparency after thermal treatment. Their OER measurements demonstrate well expected mass activity for OER. Thermally evaporated and treated transition metal oxide nanoparticles are attractive for the functionalization of (photo)anodes for water oxidation.

  14. Atomic-Layer-Deposited SnO2 as Gate Electrode for Indium-Free Transparent Electronics

    KAUST Repository

    Alshammari, Fwzah Hamud

    2017-08-04

    Atomic-layer-deposited SnO2 is used as a gate electrode to replace indium tin oxide (ITO) in thin-film transistors and circuits for the first time. The SnO2 films deposited at 200 °C show low electrical resistivity of ≈3.1 × 10−3 Ω cm with ≈93% transparency in most of the visible range of the electromagnetic spectrum. Thin-film transistors fabricated with SnO2 gates show excellent transistor properties including saturation mobility of 15.3 cm2 V−1 s−1, a low subthreshold swing of ≈130 mV dec−1, a high on/off ratio of ≈109, and an excellent electrical stability under constant-voltage stressing conditions to the gate terminal. Moreover, the SnO2-gated thin-film transistors show excellent electrical characteristics when used in electronic circuits such as negative channel metal oxide semiconductor (NMOS) inverters and ring oscillators. The NMOS inverters exhibit a low propagation stage delay of ≈150 ns with high DC voltage gain of ≈382. A high oscillation frequency of ≈303 kHz is obtained from the output sinusoidal signal of the 11-stage NMOS inverter-based ring oscillators. These results show that SnO2 can effectively replace ITO in transparent electronics and sensor applications.

  15. Highly transparent conductive electrode with ultra-low HAZE by grain boundary modification of aqueous solution fabricated alumina-doped zinc oxide nanocrystals

    Energy Technology Data Exchange (ETDEWEB)

    Nian, Qiong; Cheng, Gary J. [Birck Nanotechnology Center and School of Industrial Engineering, Purdue University, West Lafayette, Indiana 47906 (United States); Callahan, Michael; Bailey, John [Greentech Solutions, Inc., Hanson, Massachusetts 02341 (United States); Look, David [Semiconductor Research Center, Wright State University, Dayton, Ohio 45435 (United States); Efstathiadis, Harry [College of Nanoscale Science and Engineering (CNSE), University of Albany, Albany, New York 12203 (United States)

    2015-06-01

    Commercial production of transparent conducting oxide (TCO) polycrystalline films requires high electrical conductivity with minimal degradation in optical transparency. Aqueous solution deposited TCO films would reduce production costs of TCO films but suffer from low electrical mobility, which severely degrades both electrical conductivity and optical transparency in the visible spectrum. Here, we demonstrated that grain boundary modification by ultra-violet laser crystallization (UVLC) of solution deposited aluminium-doped zinc oxide (AZO) nanocrystals results in high Hall mobility, with a corresponding dramatic improvement in AZO electrical conductance. The AZO films after laser irradiation exhibit electrical mobility up to 18.1 cm{sup 2} V{sup −1} s{sup −1} with corresponding electrical resistivity and sheet resistances as low as 1 × 10{sup −3} Ω cm and 75 Ω/sq, respectively. The high mobility also enabled a high transmittance (T) of 88%-96% at 550 nm for the UVLC films. In addition, HAZE measurement shows AZO film scattering transmittance as low as 1.8%, which is superior over most other solution deposited transparent electrode alternatives such as silver nanowires. Thus, AZO films produced by the UVLC technique have a combined figure of merit for electrical conductivity, optical transparency, and optical HAZE higher than other solution based deposition techniques and comparable to vacuumed based deposition methods.

  16. Emerging Novel Metal Electrodes for Photovoltaic Applications.

    Science.gov (United States)

    Lu, Haifei; Ren, Xingang; Ouyang, Dan; Choy, Wallace C H

    2018-04-01

    Emerging novel metal electrodes not only serve as the collector of free charge carriers, but also function as light trapping designs in photovoltaics. As a potential alternative to commercial indium tin oxide, transparent electrodes composed of metal nanowire, metal mesh, and ultrathin metal film are intensively investigated and developed for achieving high optical transmittance and electrical conductivity. Moreover, light trapping designs via patterning of the back thick metal electrode into different nanostructures, which can deliver a considerable efficiency improvement of photovoltaic devices, contribute by the plasmon-enhanced light-mattering interactions. Therefore, here the recent works of metal-based transparent electrodes and patterned back electrodes in photovoltaics are reviewed, which may push the future development of this exciting field. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Realization of ultrathin silver layers in highly conductive and transparent zinc tin oxide/silver/zinc tin oxide multilayer electrodes deposited at room temperature for transparent organic devices

    Energy Technology Data Exchange (ETDEWEB)

    Winkler, Thomas; Schmidt, Hans; Fluegge, Harald; Nikolayzik, Fabian; Baumann, Ihno; Schmale, Stephan; Johannes, Hans-Hermann; Rabe, Torsten [Institut fuer Hochfrequenztechnik, Technische Universitaet Braunschweig, Schleinitzstr. 22, 38106 Braunschweig (Germany); Hamwi, Sami, E-mail: sami.hamwi@ihf.tu-bs.de [Institut fuer Hochfrequenztechnik, Technische Universitaet Braunschweig, Schleinitzstr. 22, 38106 Braunschweig (Germany); Riedl, Thomas [Institute of Electronic Devices, Bergische Universitaet Wuppertal, Rainer-Gruenter Str. 21, 42119 Wuppertal (Germany); Kowalsky, Wolfgang [Institut fuer Hochfrequenztechnik, Technische Universitaet Braunschweig, Schleinitzstr. 22, 38106 Braunschweig (Germany)

    2012-05-01

    We report on transparent and highly conductive multilayer electrodes prepared at room temperature by RF sputtering of zinc tin oxide (ZTO) and thermal evaporation of ultrathin silver (Ag) as top contact for transparent organic light emitting diodes (TOLED). Specifically, we study the morphological, electrical and optical properties of the multilayer structure in particular of the thin Ag film. The tendency of Ag to form agglomerates over time on top of ZTO is shown by atomic force microscopy. From the optical constants derived from ellipsometric measurements we evidenced a bulk like behavior of an Ag film with a thickness of 8 nm embedded in ZTO leading to a low sheet resistance of 9 {Omega}/sq. Furthermore we verify the optical constants by simulation of an optimized ZTO/Ag/ZTO structure. As an application we present a highly efficient TOLED providing a device transmittance of > 82% in the visible part of the spectrum. The TOLED shows no damage caused by sputtering on a lighting area of 80 mm{sup 2} and exhibits efficiencies of 43 cd/A and 36 lm/W.

  18. Hierarchically structured transparent hybrid membranes by in situ growth of mesostructured organosilica in host polymer

    Science.gov (United States)

    Vallé, Karine; Belleville, Philippe; Pereira, Franck; Sanchez, Clément

    2006-02-01

    The elaborate performances characterizing natural materials result from functional hierarchical constructions at scales ranging from nanometres to millimetres, each construction allowing the material to fit the physical or chemical demands occurring at these different levels. Hierarchically structured materials start to demonstrate a high input in numerous promising applied domains such as sensors, catalysis, optics, fuel cells, smart biologic and cosmetic vectors. In particular, hierarchical hybrid materials permit the accommodation of a maximum of elementary functions in a small volume, thereby optimizing complementary possibilities and properties between inorganic and organic components. The reported strategies combine sol-gel chemistry, self-assembly routes using templates that tune the material's architecture and texture with the use of larger inorganic, organic or biological templates such as latex, organogelator-derived fibres, nanolithographic techniques or controlled phase separation. We propose an approach to forming transparent hierarchical hybrid functionalized membranes using in situ generation of mesostructured hybrid phases inside a non-porogenic hydrophobic polymeric host matrix. We demonstrate that the control of the multiple affinities existing between organic and inorganic components allows us to design the length-scale partitioning of hybrid nanomaterials with tuned functionalities and desirable size organization from ångström to centimetre. After functionalization of the mesoporous hybrid silica component, the resulting membranes have good ionic conductivity offering interesting perspectives for the design of solid electrolytes, fuel cells and other ion-transport microdevices.

  19. Flexible electroluminescent device with inkjet-printed carbon nanotube electrodes

    Science.gov (United States)

    Azoubel, Suzanna; Shemesh, Shay; Magdassi, Shlomo

    2012-08-01

    Carbon nanotube (CNTs) inks may provide an effective route for producing flexible electronic devices by digital printing. In this paper we report on the formulation of highly concentrated aqueous CNT inks and demonstrate the fabrication of flexible electroluminescent (EL) devices by inkjet printing combined with wet coating. We also report, for the first time, on the formation of flexible EL devices in which all the electrodes are formed by inkjet printing of low-cost multi-walled carbon nanotubes (MWCNTs). Several flexible EL devices were fabricated by using different materials for the production of back and counter electrodes: ITO/MWCNT and MWCNT/MWCNT. Transparent electrodes were obtained either by coating a thin layer of the CNTs or by inkjet printing a grid which is composed of empty cells surrounded by MWCNTs. It was found that the conductivity and transparency of the electrodes are mainly controlled by the MWCNT film thickness, and that the dominant factor in the luminance intensity is the transparency of the electrode.

  20. Harnessing light energy with a planar transparent hybrid of graphene/single wall carbon nanotube/n-type silicon heterojunction solar cell

    DEFF Research Database (Denmark)

    Chen, Leifeng; Yu, Hua; Zhong, Jiasong

    2015-01-01

    The photovoltaic conversion efficiency of a solar cell fabricated by a simple electrophoretic method with a planar transparent hybrid of graphenes (GPs) and single wall carbon nanotubes (SCNTs)/n-type silicon heterojunction was significantly increased compared to GPs/n-Si and SCNTs/n-Si solar cells...

  1. Triboelectric-Nanogenerator-Based Soft Energy-Harvesting Skin Enabled by Toughly Bonded Elastomer/Hydrogel Hybrids.

    Science.gov (United States)

    Liu, Ting; Liu, Mengmeng; Dou, Su; Sun, Jiangman; Cong, Zifeng; Jiang, Chunyan; Du, Chunhua; Pu, Xiong; Hu, Weiguo; Wang, Zhong Lin

    2018-03-27

    A major challenge accompanying the booming next-generation soft electronics is providing correspondingly soft and sustainable power sources for driving such devices. Here, we report stretchable triboelectric nanogenerators (TENG) with dual working modes based on the soft hydrogel-elastomer hybrid as energy skins for harvesting biomechanical energies. The tough interfacial bonding between the hydrophilic hydrogel and hydrophobic elastomer, achieved by the interface modification, ensures the stable mechanical and electrical performances of the TENGs. Furthermore, the dehydration of this toughly bonded hydrogel-elastomer hybrid is significantly inhibited (the average dehydration decreases by over 73%). With PDMS as the electrification layer and hydrogel as the electrode, a stretchable, transparent (90% transmittance), and ultrathin (380 μm) single-electrode TENG was fabricated to conformally attach on human skin and deform as the body moves. The two-electrode mode TENG is capable of harvesting energy from arbitrary human motions (press, stretch, bend, and twist) to drive the self-powered electronics. This work provides a feasible technology to design soft power sources, which could potentially solve the energy issues of soft electronics.

  2. An impedimetric study of DNA hybridization on paper-supported inkjet-printed gold electrodes

    International Nuclear Information System (INIS)

    Ihalainen, Petri; Määttänen, Anni; Peltonen, Jouko; Pettersson, Fredrik; Pesonen, Markus; Österbacka, Ronald; Viitala, Tapani

    2014-01-01

    In this study, two different supramolecular recognition architectures for impedimetric detection of DNA hybridization have been formed on disposable paper-supported inkjet-printed gold electrodes. The gold electrodes were fabricated using a gold nanoparticle based ink. The first recognition architecture consists of subsequent layers of biotinylated self-assembly monolayer (SAM), streptavidin and biotinylated DNA probe. The other recognition architecture is constructed by immobilization of thiol-functionalized DNA probe (HS-DNA) and subsequent backfill with 11-mercapto-1-undecanol (MUOH) SAM. The binding capacity and selectivity of the recognition architectures were examined by surface plasmon resonance (SPR) measurements. SPR results showed that the HS-DNA/MUOH system had a higher binding capacity for the complementary DNA target. Electrochemical impedance spectroscopy (EIS) measurements showed that the hybridization can be detected with impedimetric spectroscopy in picomol range for both systems. EIS signal indicated a good selectivity for both recognition architectures, whereas SPR showed very high unspecific binding for the HS-DNA/MUOH system. The factors affecting the impedance signal were interpreted in terms of the complexity of the supramolecular architecture. The more complex architecture acts as a less ideal capacitive sensor and the impedance signal is dominated by the resistive elements. (paper)

  3. Prediction of transmittance spectra for transparent composite electrodes with ultra-thin metal layers

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Zhao; Alford, T. L., E-mail: TA@asu.edu [School for Engineering of Matter, Transport, and Energy, Arizona State University, Tempe, Arizona 85287 (United States); Khorasani, Arash Elhami [ON Semiconductor Corp., Phoenix, Arizona 85005 (United States); Theodore, N. D. [CHD-Fab, Freescale Semiconductor Inc., Tempe, Arizona 85224 (United States); Dhar, A. [Intel Corp., 2501 NW 229th Ave, Hillsboro, Oregon 97124 (United States)

    2015-11-28

    Recent interest in indium-free transparent composite-electrodes (TCEs) has motivated theoretical and experimental efforts to better understand and enhance their electrical and optical properties. Various tools have been developed to calculate the optical transmittance of multilayer thin-film structures based on the transfer-matrix method. However, the factors that affect the accuracy of these calculations have not been investigated very much. In this study, two sets of TCEs, TiO{sub 2}/Au/TiO{sub 2} and TiO{sub 2}/Ag/TiO{sub 2}, were fabricated to study the factors that affect the accuracy of transmittance predictions. We found that the predicted transmittance can deviate significantly from measured transmittance for TCEs that have ultra-thin plasmonic metal layers. The ultrathin metal layer in the TCE is typically discontinuous. When light interacts with the metallic islands in this discontinuous layer, localized surface plasmons are generated. This causes extra light absorption, which then leads to the actual transmittance being lower than the predicted transmittance.

  4. A transparent conductive oxide electrode with highly enhanced flexibility achieved by controlled crystallinity by incorporating Ag nanoparticles on substrates

    Energy Technology Data Exchange (ETDEWEB)

    Triambulo, Ross E.; Cheong, Hahn-Gil [Department of Materials Science and Engineering, Yonsei University, Seoul (Korea, Republic of); Lee, Gun-Hwan [Advanced Thin Film Research Group, Korea Institute of Materials Science (KIMS), Changwon (Korea, Republic of); Yi, In-Sook [R and D Center, InkTec Co., Ltd., Ansan (Korea, Republic of); Park, Jin-Woo, E-mail: jwpark09@yonsei.ac.kr [Department of Materials Science and Engineering, Yonsei University, Seoul (Korea, Republic of)

    2015-01-25

    Highlights: • We developed a composite transparent electrode with Ag nanoparticles and indium-tin-oxide. • Transmittance of AgNPs was improved by formation of oxide layers by O{sub 2} plasma treatment. • Ag nanoparticles became crystalline seeds to grow strong ITO with a uniform growth orientation. • The hybrid electrode is highly more conductive and stable under bending than ITO. - Abstract: We report the synthesis of highly flexible indium tin oxide (ITO) on a polymer substrate whose surface was engineered by oxide-coated Ag nanoparticles (AgNPs) smaller than 20 nm in diameter. Polyimide (PI) substrates were spin coated with Ag ion ink and were subsequently heat treated to form AgNP coatings. The Ag oxide was formed by O{sub 2} plasma treatment to reduce the light absorbance by AgNPs. ITO was dc magnetron sputter-deposited atop the AgNPs. The ITO on the AgNPs was crystalline grown primarily with (2 2 2) growth orientation. This contrasts to the typical microstructure of ITO grown on the polymer, which is that growing c-ITO nucleates are embedded in an amorphous ITO (a-ITO) matrix like a particulate composite. The surface roughness of ITO on AgNPs was as small as the ITO on PI without AgNPs. The crystalline nature of the ITO on the AgNP-coated polymer resulted in the decrease of electric resistivity (ρ) by 65% compared to that of ITO on the bare PI. Furthermore, an electric resistivity change (Δρ) of the ITO on the AgNPs was only 8% at a bending radius (r{sub b}) down to 4 mm, whereas the ITO on the non-coated polymer became almost insulating at an r{sub b} of 10 mm, owing to a drastic increase in the number of cracks. To validate the potential application in the displays, flexible organic light emitting diodes (f-OLEDs) were fabricated on the ITO on AgNPs and the performances was compared with the f-OLED on ITO on the bare PI.

  5. A transparent conductive oxide electrode with highly enhanced flexibility achieved by controlled crystallinity by incorporating Ag nanoparticles on substrates

    International Nuclear Information System (INIS)

    Triambulo, Ross E.; Cheong, Hahn-Gil; Lee, Gun-Hwan; Yi, In-Sook; Park, Jin-Woo

    2015-01-01

    Highlights: • We developed a composite transparent electrode with Ag nanoparticles and indium-tin-oxide. • Transmittance of AgNPs was improved by formation of oxide layers by O 2 plasma treatment. • Ag nanoparticles became crystalline seeds to grow strong ITO with a uniform growth orientation. • The hybrid electrode is highly more conductive and stable under bending than ITO. - Abstract: We report the synthesis of highly flexible indium tin oxide (ITO) on a polymer substrate whose surface was engineered by oxide-coated Ag nanoparticles (AgNPs) smaller than 20 nm in diameter. Polyimide (PI) substrates were spin coated with Ag ion ink and were subsequently heat treated to form AgNP coatings. The Ag oxide was formed by O 2 plasma treatment to reduce the light absorbance by AgNPs. ITO was dc magnetron sputter-deposited atop the AgNPs. The ITO on the AgNPs was crystalline grown primarily with (2 2 2) growth orientation. This contrasts to the typical microstructure of ITO grown on the polymer, which is that growing c-ITO nucleates are embedded in an amorphous ITO (a-ITO) matrix like a particulate composite. The surface roughness of ITO on AgNPs was as small as the ITO on PI without AgNPs. The crystalline nature of the ITO on the AgNP-coated polymer resulted in the decrease of electric resistivity (ρ) by 65% compared to that of ITO on the bare PI. Furthermore, an electric resistivity change (Δρ) of the ITO on the AgNPs was only 8% at a bending radius (r b ) down to 4 mm, whereas the ITO on the non-coated polymer became almost insulating at an r b of 10 mm, owing to a drastic increase in the number of cracks. To validate the potential application in the displays, flexible organic light emitting diodes (f-OLEDs) were fabricated on the ITO on AgNPs and the performances was compared with the f-OLED on ITO on the bare PI

  6. Carbon nanotube-polyamidoamine dendrimer hybrid-modified electrodes for highly sensitive electrochemical detection of microRNA24.

    Science.gov (United States)

    Li, Fengye; Peng, Jing; Zheng, Qiong; Guo, Xiang; Tang, Hao; Yao, Shouzhuo

    2015-01-01

    A simple and ultrasensitive microRNA (miRNA) electrochemical biosensor employing multiwalled carbon nanotube (MWCNT)-polyamidoamine (PAMAM) dendrimer and methylene blue (MB) redox indicator is reported in this work. The assay utilizes a glass carbon (GC) electrode modified with MWCNT-PAMAM, on which the oligonucleotide capture probes are immobilized. The electrochemical detection of miRNAs is completed by measuring the reduction signal change of MB before and after the probe hybridization with target miRNA (miRNA24 is used as a model case). The MWCNT-PAMAM/GC electrode shows greatly enhanced signal to MB reduction in contrast to bare GC electrode. The functionalization of MWCNT with PAMAM maintains the electrochemical property of MWCNT to MB reduction but minimizes the undesired adsorption of MB on the MWCNT surface. The effect of experimental variables on the miRNA detection is investigated and optimized. A detection limit of 0.5 fM and a linear peak current density-concentration relationship up to 100 nM are obtained following 60 min hybridization. The proposed assay is successfully used to detect miRNA24 in total RNA sample extracted from HeLa cells.

  7. Transparent conductive oxides for thin-film silicon solar cells

    NARCIS (Netherlands)

    Löffler, J.

    2005-01-01

    This thesis describes research on thin-film silicon solar cells with focus on the transparent conductive oxide (TCO) for such devices. In addition to the formation of a transparent and electrically conductive front electrode for the solar cell allowing photocurrent collection with low ohmic losses,

  8. Doped graphene electrodes for organic solar cells

    International Nuclear Information System (INIS)

    Park, Hyesung; Kim, Ki Kang; Bulovic, Vladimir; Kong, Jing; Rowehl, Jill A

    2010-01-01

    In this work graphene sheets grown by chemical vapor deposition (CVD) with controlled numbers of layers were used as transparent electrodes in organic photovoltaic (OPV) devices. It was found that for devices with pristine graphene electrodes, the power conversion efficiency (PCE) is comparable to their counterparts with indium tin oxide (ITO) electrodes. Nevertheless, the chances for failure in OPVs with pristine graphene electrodes are higher than for those with ITO electrodes, due to the surface wetting challenge between the hole-transporting layer and the graphene electrodes. Various alternative routes were investigated and it was found that AuCl 3 doping on graphene can alter the graphene surface wetting properties such that a uniform coating of the hole-transporting layer can be achieved and device success rate can be increased. Furthermore, the doping both improves the conductivity and shifts the work function of the graphene electrode, resulting in improved overall PCE performance of the OPV devices. This work brings us one step further toward the future use of graphene transparent electrodes as a replacement for ITO.

  9. Efficient organic photovoltaic cells on a single layer graphene transparent conductive electrode using MoOx as an interfacial layer.

    Science.gov (United States)

    Du, J H; Jin, H; Zhang, Z K; Zhang, D D; Jia, S; Ma, L P; Ren, W C; Cheng, H M; Burn, P L

    2017-01-07

    The large surface roughness, low work function and high cost of transparent electrodes using multilayer graphene films can limit their application in organic photovoltaic (OPV) cells. Here, we develop single layer graphene (SLG) films as transparent anodes for OPV cells that contain light-absorbing layers comprised of the evaporable molecular organic semiconductor materials, zinc phthalocyanine (ZnPc)/fullerene (C60), as well as a molybdenum oxide (MoO x ) interfacial layer. In addition to an increase in the optical transmittance, the SLG anodes had a significant decrease in surface roughness compared to two and four layer graphene (TLG and FLG) anodes fabricated by multiple transfer and stacking of SLGs. Importantly, the introduction of a MoO x interfacial layer not only reduced the energy barrier between the graphene anode and the active layer, but also decreased the resistance of the SLG by nearly ten times. The OPV cells with the structure of polyethylene terephthalate/SLG/MoO x /CuI/ZnPc/C60/bathocuproine/Al were flexible, and had a power conversion efficiency of up to 0.84%, which was only 17.6% lower than the devices with an equivalent structure but prepared on commercial indium tin oxide anodes. Furthermore, the devices with the SLG anode were 50% and 86.7% higher in efficiency than the cells with the TLG and FLG anodes. These results show the potential of SLG electrodes for flexible and wearable OPV cells as well as other organic optoelectronic devices.

  10. Lipase immobilized on nanostructured cerium oxide thin film coated on transparent conducting oxide electrode for butyrin sensing

    Energy Technology Data Exchange (ETDEWEB)

    Panky, Sreedevi; Thandavan, Kavitha [Centre for Nanotechnology and Advanced Biomaterials (CeNTAB), SASTRA University, Thanjavur 613 401, Tamil Nadu (India); School of Chemical and Biotechnology, SASTRA University, Thanjavur 613 401, Tamil Nadu (India); Sivalingam, Durgajanani [Centre for Nanotechnology and Advanced Biomaterials (CeNTAB), SASTRA University, Thanjavur 613 401, Tamil Nadu (India); School of Electrical and Electronics Engineering, SASTRA University, Thanjavur 613 401, Tamil Nadu (India); Sethuraman, Swaminathan; Krishnan, Uma Maheswari [Centre for Nanotechnology and Advanced Biomaterials (CeNTAB), SASTRA University, Thanjavur 613 401, Tamil Nadu (India); School of Chemical and Biotechnology, SASTRA University, Thanjavur 613 401, Tamil Nadu (India); Jeyaprakash, Beri Gopalakrishnan [Centre for Nanotechnology and Advanced Biomaterials (CeNTAB), SASTRA University, Thanjavur 613 401, Tamil Nadu (India); School of Electrical and Electronics Engineering, SASTRA University, Thanjavur 613 401, Tamil Nadu (India); Rayappan, John Bosco Balaguru, E-mail: rjbosco@ece.sastra.edu [Centre for Nanotechnology and Advanced Biomaterials (CeNTAB), SASTRA University, Thanjavur 613 401, Tamil Nadu (India); School of Electrical and Electronics Engineering, SASTRA University, Thanjavur 613 401, Tamil Nadu (India)

    2013-01-15

    Nanostructured cerium oxide (CeO{sub 2}) thin films were deposited on transparent conducting oxide (TCO) substrate using spray pyrolysis technique with cerium nitrate salt, Ce(NO{sub 3}){sub 3}{center_dot}6H{sub 2}O as precursor. Fluorine doped cadmium oxide (CdO:F) thin film prepared using spray pyrolysis technique acts as the TCO film and hence the bare electrode. The structural, morphological and elemental characterizations of the films were carried out using X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM) and energy dispersive X-ray analysis (EDX) respectively. The diffraction peak positions in XRD confirmed the formation of highly crystalline ceria with cubic structure and FE-SEM images showed uniform adherent films with granular morphology. The band gaps of CeO{sub 2} and TCO were found to be 3.2 eV and 2.6 eV respectively. Lipase enzyme was physisorbed on the surface of CeO{sub 2}/TCO film to form the lipase/nano-CeO{sub 2}/TCO bioelectrode. Sensing studies were carried out using cyclic voltammetry and amperometry, with lipase/nano-CeO{sub 2}/TCO as working electrode and tributyrin as substrate. The mediator-free biosensor with nanointerface exhibited excellent linearity (0.33-1.98 mM) with a lowest detection limit of 2 {mu}M with sharp response time of 5 s and a shelf life of about 6 weeks. -- Graphical abstract: Nanostructured cerium oxide thin films were deposited on transparent conducting oxide (TCO) substrate using spray pyrolysis technique. Fluorine doped cadmium oxide (CdO:F) thin film acts as the TCO film and hence the working electrode. Lipase enzyme was physisorbed on the surface of CeO{sub 2}/TCO film and hence the lipase/nano-CeO{sub 2}/TCO bioelectrode has been fabricated. Sensing studies were carried out using cyclic voltammetry and amperometry with tributyrin as substrate. The mediator-free biosensor with nanointerface exhibited excellent linearity (0.33-1.98 mM) with a lowest detection limit of 2 {mu}M with sharp

  11. Inorganic-organic hybrid polyoxometalate containing supramolecular helical chains: Preparation, characterization and application in chemically bulk-modified electrode

    International Nuclear Information System (INIS)

    Han Zhangang; Zhao Yulong; Peng Jun; Liu Qun; Wang Enbo

    2005-01-01

    An inorganic-organic hybrid polyoxometalate (POM) (Hbpy) 4 [SiMo 12 O 40 ] (1) (bpy = 2,4-bipyridine), has been prepared and characterized. X-ray diffraction study reveals that compound 1 contains interesting organic double helical chains. The hybrid nanoparticles was used as a solid bulkmodifier to fabricate a three-dimensional chemically modified carbon paste electrode (1-CPE) by direct mixing. The electrochemical behavior and electrocatalysis of 1-CPE has been studied in detail. The results indicate that 1-CPE has a good electrocatalytic activity toward the reduction of nitrite in 1 M H 2 SO 4 aqueous solution. 1-CPE shows remarkable stability that can be ascribed to the interactions existed between POM anions and organic double helical bpy chains, which are very important for practical applications in electrode modification

  12. Clean graphene electrodes on organic thin-film devices via orthogonal fluorinated chemistry.

    Science.gov (United States)

    Beck, Jonathan H; Barton, Robert A; Cox, Marshall P; Alexandrou, Konstantinos; Petrone, Nicholas; Olivieri, Giorgia; Yang, Shyuan; Hone, James; Kymissis, Ioannis

    2015-04-08

    Graphene is a promising flexible, highly transparent, and elementally abundant electrode for organic electronics. Typical methods utilized to transfer large-area films of graphene synthesized by chemical vapor deposition on metal catalysts are not compatible with organic thin-films, limiting the integration of graphene into organic optoelectronic devices. This article describes a graphene transfer process onto chemically sensitive organic semiconductor thin-films. The process incorporates an elastomeric stamp with a fluorinated polymer release layer that can be removed, post-transfer, via a fluorinated solvent; neither fluorinated material adversely affects the organic semiconductor materials. We used Raman spectroscopy, atomic force microscopy, and scanning electron microscopy to show that chemical vapor deposition graphene can be successfully transferred without inducing defects in the graphene film. To demonstrate our transfer method's compatibility with organic semiconductors, we fabricate three classes of organic thin-film devices: graphene field effect transistors without additional cleaning processes, transparent organic light-emitting diodes, and transparent small-molecule organic photovoltaic devices. These experiments demonstrate the potential of hybrid graphene/organic devices in which graphene is deposited directly onto underlying organic thin-film structures.

  13. Hybrid Graphene-Polyoxometalates Nanofluids as Liquid Electrodes for Dual Energy Storage in Novel Flow Cells.

    Science.gov (United States)

    Dubal, Deepak P; Rueda-Garcia, Daniel; Marchante, Carlos; Benages, Raul; Gomez-Romero, Pedro

    2018-02-22

    Solid Hybrid materials abound. But flowing versions of them are new actors in the materials science landscape and in particular for energy applications. This paper presents a new way to deliver nanostructured hybrid materials for energy storage, namely, in the form of nanofluids. We present here the first example of a hybrid electroactive nanofluid (HENFs) combining capacitive and faradaic energy storage mechanisms in a single fluid material. This liquid electrode is composed of reduced graphene oxide and polyoxometalates (rGO-POMs) forming a stable nanocomposite for electrochemical energy storage in novel Nanofluid Flow Cells. Two graphene based hybrid materials (rGO-phosphomolybdate, rGO-PMo 12 and rGO-phosphotungstate, rGO-PW 12 ) were synthesized and dispersed with the aid of a surfactant in 1 M H 2 SO 4 aqueous electrolyte to yield highly stable hybrid electroactive nanofluids (HENFs) of low viscosity which were tested in a home-made flow cell under static and continuous flowing conditions. Remarkably, even low concentration rGO-POMs HENFs (0.025 wt%) exhibited high specific capacitances of 273 F/g(rGO-PW 12 ) and 305 F/g(rGO-PMo 12 ) with high specific energy and specific power. Moreover, rGO-POM HENFs show excellent cycling stability (∼95 %) as well as Coulombic efficiency (∼77-79 %) after 2000 cycles. Thus, rGO-POM HENFs effectively behave as real liquid electrodes with excellent properties, demonstrating the possible future application of HENFs for dual energy storage in a new generation of Nanofluid Flow Cells. © 2018 The Chemical Society of Japan & Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Zinc oxide modified with benzylphosphonic acids as transparent electrodes in regular and inverted organic solar cell structures

    Energy Technology Data Exchange (ETDEWEB)

    Lange, Ilja; Reiter, Sina; Kniepert, Juliane; Piersimoni, Fortunato; Brenner, Thomas; Neher, Dieter, E-mail: neher@uni-potsdam.de [Institute of Physics and Astronomy, University of Potsdam, Karl-Liebknecht-Strasse 24-25, 14476 Potsdam (Germany); Pätzel, Michael; Hildebrandt, Jana; Hecht, Stefan [Department of Chemistry and IRIS Adlershof, Humboldt-Universität zu Berlin, Brook-Taylor-Str. 2, 12489 Berlin (Germany)

    2015-03-16

    An approach is presented to modify the work function of solution-processed sol-gel derived zinc oxide (ZnO) over an exceptionally wide range of more than 2.3 eV. This approach relies on the formation of dense and homogeneous self-assembled monolayers based on phosphonic acids with different dipole moments. This allows us to apply ZnO as charge selective bottom electrodes in either regular or inverted solar cell structures, using poly(3-hexylthiophene):phenyl-C71-butyric acid methyl ester as the active layer. These devices compete with or even surpass the performance of the reference on indium tin oxide/poly(3,4-ethylenedioxythiophene) polystyrene sulfonate. Our findings highlight the potential of properly modified ZnO as electron or hole extracting electrodes in hybrid optoelectronic devices.

  15. Laser welding of nanoparticulate TiO2 and transparent conducting oxide electrodes for highly efficient dye-sensitized solar cell

    International Nuclear Information System (INIS)

    Kim, Jinsoo; Kim, Jonghyun; Lee, Myeongkyu

    2010-01-01

    Poor interfacial contact is often encountered in nanoparticulate film-based devices. The dye-sensitized solar cell (DSSC) is a representative case in which a nanoporous TiO 2 electrode needs to be prepared on the transparent conducting oxide (TCO)-coated glass substrate. In this study, we demonstrate that the inter-electrode contact resistance accounts for a considerable portion of the total resistance of a DSSC and its efficiency can be greatly enhanced by welding the interface with a laser. TiO 2 films formed on the TCO-coated glass substrate were irradiated with a pulsed ultraviolet laser beam at 355 nm; this transmits through the TCO and glass but is strongly absorbed by TiO 2 . Electron microscopy analysis and impedance measurements showed that a thin continuous TiO 2 layer is formed at the interface as a result of the local melting of TiO 2 nanoparticles and this layer completely bridges the gap between the two electrodes, improving the current flow with a reduced contact resistance. We were able to improve the efficiency by 35-65% with this process. DSSCs fabricated using a homemade TiO 2 paste revealed an efficiency improvement from η = 3.3% to 5.4%, and an increase from 8.2% to 11.2% was achieved with the TiO 2 electrodes made from a commercial paste.

  16. Alternative transparent electrodes for organic light emitting diodes

    Energy Technology Data Exchange (ETDEWEB)

    Tomita, Yuto

    2008-07-01

    In this work, two types of alternative transparent electrodes, ZnO:Al and PEDOT, were studied for OLEDs. The ZnO:Al films were fabricated with a conventional DC magnetron sputtering. Optimised ZnO:Al with low resistivity was obtained by a high carrier concentration supplied mainly from the oxygen vacancies and Al impurity, and a high mobility by the improvement of crystallinity. The film thickness of the ZnO:Al was altered to achieve good optoelectronic characteristics. With a thickness of approximately 190nm, it reached a low sheet resistance of 22 {proportional_to} 60 {omega}/sq and an average transmittance in visible range of >90%. Moreover, important parameters for the OLED application such as very smooth surface roughness and low refractive index were simultaneously obtained. The ZnO:Al films were structured for OLEDs use with a standard photolithography process. As another candidate, PEDOT:PSS Baytron {sup registered} PH510 with 5 wt% of DMSO was investigated. The 100 nm thick PEDOT films were prepared with the spin-coating method, obtaining a high transmittance of 92.7% in the visible range. The high resistivity (200 {omega}/sq) was overcome using a highly conductive metal grid, which resulted in similar current injection to ITO. The OLEDs on the PEDOT anode showed a high rectification ratio even without a cleaning process prior to the OLED deposition. White OLEDs on the 5 x 5 cm{sup 2} PEDOT substrate achieved more than 10 lm/W of power efficiency using an optical scattering foil. Finally, 10 x 10 cm{sup 2} PEDOT substrates were prepared for OLEDs. First results showed low luminance homogeneity and low efficiencies. A new type of layout was given, which was designed in terms of luminance homogeneity and efficiency using the simulation. (orig.)

  17. Low-temperature self-assembled vertically aligned carbon nanofibers as counter-electrode material for dye-sensitized solar cells

    International Nuclear Information System (INIS)

    Mahpeykar, S M; Tabatabaei, M K; Ghafoori-fard, H; Habibiyan, H; Koohsorkhi, J

    2013-01-01

    Low-temperature AC–DC PECVD is employed for direct growth of vertically aligned carbon nanofibers (VACNFs) on ordinary transparent conductive glass as counter-electrode material for dye-sensitized solar cells (DSSCs). To the best of our knowledge, this is the first report on utilization of VACNFs grown directly on ordinary FTO-coated glass as a cost-effective catalyst material in DSSCs. According to the FESEM images, the as-grown arrays are well aligned and dense, and offer uniform coverage on the surface of the substrate. In-plane and out-of-plane conductivity measurements reveal their good electrical conductivity, and Raman spectroscopy suggests a high number of electrocatalytic active sites, favoring charge transport at the electrolyte/electrode interface. Hybrid VACNF/Pt electrodes are also fabricated for performance comparison with Pt and VACNF electrodes. X-ray diffraction results verify the crystallization of Pt in hybrid electrodes and further confirm the vertical alignment of carbon nanofibers. Electrochemical characterization indicates that VACNFs provide both high catalytic and good charge transfer capability, which can be attributed to their high surface area, defect-rich and one-dimensional structure, vertical alignment and low contact resistance. As a result, VACNF cells can achieve a comparable performance (∼5.6%) to that of the reference Pt cells (∼6.5%). Moreover, by combination of the excellent charge transport and catalytic ability of VACNFs and the high conductivity of Pt nanoparticles, hybrid VACNF/Pt cells can deliver a performance superior to that of the Pt cells (∼7.2%), despite having a much smaller amount of Pt loading, which raises hopes for low-cost large-scale production of DSSCs in the future. (paper)

  18. High performance sponge-like cobalt sulfide/reduced graphene oxide hybrid counter electrode for dye-sensitized solar cells

    Science.gov (United States)

    Huo, Jinghao; Wu, Jihuai; Zheng, Min; Tu, Yongguang; Lan, Zhang

    2015-10-01

    A sponge-like cobalt sulfide/reduced graphene oxide (CoS/rGO) hybrid film is deposited on fluorine doped SnO2 (FTO) glass by electrophoretic deposition and ion exchange deposition, following by sodium borohydride and sulfuric acid solution treatment. The film is used as the counter electrode of dye-sensitized solar cells (DSSCs), and is characterized by field emission scanning electron microscopy, Raman spectroscopy, cyclic voltammetry, electrochemical impedance spectroscopy and Tafel measurements. The results show that the CoS counter electrode has a sponge structure with large specific surface area, small charge-transfer resistance at the electrode/electrolyte interface. The addition of rGO further improves the electrocatalytic activity for I3- reduction, which results in the better electrocatalytic property of CoS/rGO counter electrodes than that of Pt counter electrode. Using CoS/rGO0.2 as counter electrode, the DSSC achieves a power conversion efficiency of 9.39%; which is increased by 27.93% compared with the DSSC with Pt counter electrode (7.34%).

  19. Direct electrochemistry with enhanced electrocatalytic activity of hemoglobin in hybrid modified electrodes composed of graphene and multi-walled carbon nanotubes.

    Science.gov (United States)

    Sun, Wei; Cao, Lili; Deng, Ying; Gong, Shixing; Shi, Fan; Li, Gaonan; Sun, Zhenfan

    2013-06-05

    A graphene (GR) and multi-walled carbon nanotubes (MWCNT) hybrid was prepared and modified on a 1-hexylpyridinium hexafluorophosphate based carbon ionic liquid electrode (CILE). Hemoglobin (Hb) was immobilized on GR-MWCNT/CILE surface with Nafion as the film forming material and the modified electrode was denoted as Nafion/Hb-GR-MWCNT/CILE. Spectroscopic results revealed that Hb molecules retained its native structure in the GR-MWCNT hybird. Electrochemical behaviors of Hb were carefully investigated by cyclic voltammetry with a pair of well-defined redox peaks obtained, which indicated that direct electron transfer of Hb was realized in the hybrid modified electrode. The result could be attributed to the synergistic effects of GR-MWCNT hybrid with enlarged surface area and improved conductivity through the formation of a three-dimensional network. Electrochemical parameters of the immobilized Hb on the electrode surface were further calculated with the results of the electron transfer number (n) as 1.03, the charge transfer coefficient (a) as 0.58 and the electron-transfer rate constant (ks) as 0.97 s(-1). The Hb modified electrode showed good electrocatalytic ability toward the reduction of different substrates such as trichloroacetic acid in the concentration range from 0.05 to 38.0 mmol L(-1) with a detection limit of 0.0153 mmol L(-1) (3σ), H2O2 in the concentration range from 0.1 to 516.0 mmol L(-1) with a detection limit of 34.9 nmol/L (3σ) and NaNO2 in the concentration range from 0.5 to 650.0 mmol L(-1) with a detection limit of 0.282 μmol L(-1) (3σ). So the proposed electrode had the potential application in the third-generation electrochemical biosensors without mediator. Copyright © 2013 Elsevier B.V. All rights reserved.

  20. Voltammetry of osmium-modified DNA at a mercury film electrode application in detecting DNA hybridization

    Czech Academy of Sciences Publication Activity Database

    Kostečka, Pavel; Havran, Luděk; Pivoňková, Hana; Fojta, Miroslav

    2004-01-01

    Roč. 63, 1-2 (2004), s. 245-248 ISSN 1567-5394 R&D Projects: GA AV ČR IAA4004108; GA AV ČR KJB4004302 Institutional research plan: CEZ:AV0Z5004920 Keywords : osmium * DNA hybridization * mercury film electrode Subject RIV: BO - Biophysics Impact factor: 2.261, year: 2004

  1. Invisible metal-grid transparent electrode prepared by electrohydrodynamic (EHD) jet printing

    International Nuclear Information System (INIS)

    Jang, Yonghee; Byun, Doyoung; Kim, Jihoon

    2013-01-01

    Invisible Ag-grid transparent electrodes (TEs) were prepared by electrohydrodynamic (EHD) jet printing using Ag nano-particle inks. Ag-grid width less than 10 µm was achieved by the EHD jet printing, which was invisible to the naked eye. The Ag-grid line-to-line distance (pitch) was modulated in order to investigate the electrical and optical properties of the EHD jet-printed Ag-grid TEs. The decrease in the sheet resistance at the expense of the transmittance was observed as the Ag-grid pitch decreased. The figure of merit of Ag-grid TEs with various Ag-grid pitches was investigated in order to determine the optimum pitch condition for both electrical and optical properties. With the 150 µm Ag-grid pitch, the EHD jet-printed Ag-grid TE has the sheet resistance of 4.87 Ω sq −1 and the transmittance of 81.75% after annealing at 200 °C under near-infrared. Ag filling factor (FF) was defined to predict the electrical and optical properties of Ag-grid TEs. It was found that the measured electrical and optical properties were well simulated by the theoretical equations incorporating FF. The EHD jet-printed invisible Ag-grid TE with good electrical and optical properties implies its promising application to the printed optoelectronic devices. (paper)

  2. Ultrathin and stable Nickel films as transparent conductive electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Grilli, M.L., E-mail: marialuisa.grilli@enea.it [ENEA, Materials Technology Unit, Via Anguillarese 301, 00123 Rome (Italy); Di Sarcina, I. [ENEA, Materials Technology Unit, Via Anguillarese 301, 00123 Rome (Italy); Bossi, S. [ENEA, Robotics Laboratory, Via Anguillarese 301, 00123 Rome (Italy); The Biorobotics Institute, Scuola Superiore Sant' Anna, Viale Rinaldo Piaggio 34, 56025 Pontedera, Pisa (Italy); Rinaldi, A.; Pilloni, L.; Piegari, A. [ENEA, Materials Technology Unit, Via Anguillarese 301, 00123 Rome (Italy)

    2015-11-02

    Ultrathin stable transparent conductive nickel films were deposited on quartz substrates by radio frequency sputtering at room temperature. Such films showed visible transmittance up to 80% and conductivity up to 1.8 × 10{sup 4} S/cm, further increased to 2,3 × 10{sup 5} S/cm by incorporation of a micrometric silver grid. Atomic force microscopy and scanning electron microscopy revealed quite compact, smooth and low surface roughness films. Excellent film stability, ease, fast and low cost process fabrication make these films highly competitive compared to indium tin oxide alternative transparent conductors. Films were characterized regarding their morphological, optical and electrical properties. - Highlights: • Indium-free transparent conductors are proposed. • Ultrathin Ni films are fabricated with a very fast process at room temperature. • Films have conductivity values up to 1.8 × 10{sup 4} S/cm. • Ni ultrathin films are good candidates for UV and NIR optoelectronic applications.

  3. Mediated Electron Transfer at Vertically Aligned Single-Walled Carbon Nanotube Electrodes During Detection of DNA Hybridization

    Science.gov (United States)

    Wallen, Rachel; Gokarn, Nirmal; Bercea, Priscila; Grzincic, Elissa; Bandyopadhyay, Krisanu

    2015-06-01

    Vertically aligned single-walled carbon nanotube (VASWCNT) assemblies are generated on cysteamine and 2-mercaptoethanol (2-ME)-functionalized gold surfaces through amide bond formation between carboxylic groups generated at the end of acid-shortened single-walled carbon nanotubes (SWCNTs) and amine groups present on the gold surfaces. Atomic force microscopy (AFM) imaging confirms the vertical alignment mode of SWCNT attachment through significant changes in surface roughness compared to bare gold surfaces and the lack of any horizontally aligned SWCNTs present. These SWCNT assemblies are further modified with an amine-terminated single-stranded probe-DNA. Subsequent hybridization of the surface-bound probe-DNA in the presence of complementary strands in solution is followed using impedance measurements in the presence of Fe(CN)6 3-/4- as the redox probe in solution, which show changes in the interfacial electrochemical properties, specifically the charge-transfer resistance, due to hybridization. In addition, hybridization of the probe-DNA is also compared when it is attached directly to the gold surfaces without any intermediary SWCNTs. Contrary to our expectations, impedance measurements show a decrease in charge-transfer resistance with time due to hybridization with 300 nM complementary DNA in solution with the probe-DNA attached to SWCNTs. In contrast, an increase in charge-transfer resistance is observed with time during hybridization when the probe-DNA is attached directly to the gold surfaces. The decrease in charge-transfer resistance during hybridization in the presence of VASWCNTs indicates an enhancement in the electron transfer process of the redox probe at the VASWCNT-modified electrode. The results suggest that VASWCNTs are acting as mediators of electron transfer, which facilitate the charge transfer of the redox probe at the electrode-solution interface.

  4. Electrochemical fabrication of TiO2 nanoparticles/[BMIM]BF4 ionic liquid hybrid film electrode and its application in determination of p-acetaminophen

    International Nuclear Information System (INIS)

    Wang, Bin; Li, Yuan; Qin, Xianjing; Zhan, Guoqing; Ma, Ming; Li, Chunya

    2012-01-01

    A water soluble ionic liquid, 1‐butyl‐3‐methylimidazolium tetrafluoroborate ([BMIM]BF 4 ), was incorporated into TiO 2 nanoparticles to fabricate a hybrid film modified glassy carbon electrode (nano‐TiO 2 /[BMIM]BF 4 /GCE) through electrochemical deposition in a tetrabutyltitanate sol solution containing [BMIM]BF 4 . The obtained nano‐TiO 2 /[BMIM]BF 4 /GCEs were characterized scanning electronic microscopy (SEM) and X‐ray photoelectron spectroscopy (XPS). Electrochemical behaviors of p‐acetaminophen at the nano‐TiO 2 /[BMIM]BF 4 /GCEs were thoroughly investigated. Compared to the redox reaction of p‐acetaminophen using an unmodified electrode under the same conditions, a new reduction peak was observed clearly at 0.26 V with the modified electrode. In addition, the peak potential for the oxidation of p‐acetaminophen was found to shift negatively about 90 mV and the current response increased significantly. These changes indicate that the nano‐TiO 2 /[BMIM]BF 4 hybrid film can improve the redox reactions of p‐acetaminophen in aqueous medium. Under optimum conditions, a linear relationship was obtained for the p‐acetaminophen solutions with concentration in the range from 5.0 × 10 −8 to 5.0 × 10 −5 M. The estimated detection limit was 1.0 × 10 −8 M (S/N = 3). The newly developed method was applied for the determination of p-acetaminophen in urine samples. - Highlights: ► Nano-TiO 2 /[BMIM]BF 4 hybrid film electrode was fabricated with electrodeposition. ► Voltammetric behavior of p-acetaminophen at the obtained electrode was investigated. ► The hybrid film electrode shows good electrocatalytic response to p-acetaminophen. ► p-acetaminophen in urine samples was successfully determined.

  5. Study on the optical and electrical properties of tetracyanoethylene doped bilayer graphene stack for transparent conducting electrodes

    International Nuclear Information System (INIS)

    Limbu, Tej B.; Barrionuevo, Danilo; Katiyar, Ram S.; Morell, Gerardo; Mendoza, Frank; Carpena, Jennifer; Maruyama, Benji; Weiner, Brad R.

    2016-01-01

    We report the optical and electrical properties of chemically-doped bilayer graphene stack by tetracyanoethylene, a strong electron acceptor. The Tetracyanoethylene doping on the bilayer graphene via charge transfer was confirmed by Raman spectroscopy and Infrared Fourier transform spectroscopy. Doped graphene shows a significant increase in the sheet carrier concentration of up to 1.520 × 10"1"3 cm"−"2 with a concomitant reduction of the sheet resistance down to 414.1 Ω/sq. The high optical transmittance (ca. 84%) in the visible region in combination with the low sheet resistance of the Tetracyanoethylene-doped bilayer graphene stack opens up the possibility of making transparent conducting electrodes for practical applications.

  6. Effect of swift heavy ion (SHI) irradiation on transparent conducting oxide electrodes for dye-sensitized solar cell applications

    International Nuclear Information System (INIS)

    Singh, Hemant Kr.; Avasthi, D.K.; Aggarwal, Shruti

    2015-01-01

    Highlights: •The objective is to study the effect of swift heavy ion (SHI) irradiation on photoanode of DSSC for better efficiency. •This work presents the effect of SHI irradiation on various Transparent conducting oxides (TCOs). •Effects are studied in terms of conductivity and transmittance of TCOs. •ITO-PET gives best results in comparison to ITO and FTO for DSSC application under SHI irradiation. -- Abstract: Transparent conducting oxides (TCOs) are used as electrodes in dye-sensitized solar cells (DSSCs) because of their properties such as high transmittance and low resistivity. In the present work, the effects of swift heavy ion (SHI) irradiation on various types of TCOs are presented. The objective of this study is to investigate the effect of SHI on TCOs. For the present study, three different types of TCOs are considered, namely, (a) FTO (fluorine-doped tin oxide, SnO 2 :F) on a Nippon glass substrate, (b) ITO (indium tin oxide, In 2 O 3 :Sn) coated on polyethylene terephthalate (PET) on a Corning glass substrate, and (c) ITO on a Corning glass substrate. These films are irradiated with 120 MeV Ag +9 ions at fluences ranging from 3.0 × 10 11 ions/cm 2 to 3.0 × 10 13 ions/cm 2 . The structural, morphological, optical and electrical properties are studied via X-ray diffraction (XRD), atomic force microscopy (AFM), UV–Vis absorption spectroscopy and four-probe resistivity measurements, respectively. The ITO-PET electrode is found to exhibit superior conductivity and transmittance properties in comparison with the others after irradiation and, therefore, to be the most suitable for solar cell applications

  7. Highly Enhanced Electromechanical Stability of Large-Area Graphene with Increased Interfacial Adhesion Energy by Electrothermal-Direct Transfer for Transparent Electrodes.

    Science.gov (United States)

    Kim, Jangheon; Kim, Gi Gyu; Kim, Soohyun; Jung, Wonsuk

    2016-09-07

    Graphene, a two-dimensional sheet of carbon atoms in a hexagonal lattice structure, has been extensively investigated for research and industrial applications as a promising material with outstanding electrical, mechanical, and chemical properties. To fabricate graphene-based devices, graphene transfer to the target substrate with a clean and minimally defective surface is the first step. However, graphene transfer technologies require improvement in terms of uniform transfer with a clean, nonfolded and nontorn area, amount of defects, and electromechanical reliability of the transferred graphene. More specifically, uniform transfer of a large area is a key challenge when graphene is repetitively transferred onto pretransferred layers because the adhesion energy between graphene layers is too low to ensure uniform transfer, although uniform multilayers of graphene have exhibited enhanced electrical and optical properties. In this work, we developed a newly suggested electrothermal-direct (ETD) transfer method for large-area high quality monolayer graphene with less defects and an absence of folding or tearing of the area at the surface. This method delivers uniform multilayer transfer of graphene by repetitive monolayer transfer steps based on high adhesion energy between graphene layers and the target substrate. To investigate the highly enhanced electromechanical stability, we conducted mechanical elastic bending experiments and reliability tests in a highly humid environment. This ETD-transferred graphene is expected to replace commercial transparent electrodes with ETD graphene-based transparent electrodes and devices such as a touch panels with outstanding electromechanical stability.

  8. Stretchable and semitransparent conductive hybrid hydrogels for flexible supercapacitors.

    Science.gov (United States)

    Hao, Guang-Ping; Hippauf, Felix; Oschatz, Martin; Wisser, Florian M; Leifert, Annika; Nickel, Winfried; Mohamed-Noriega, Nasser; Zheng, Zhikun; Kaskel, Stefan

    2014-07-22

    Conductive polymers showing stretchable and transparent properties have received extensive attention due to their enormous potential in flexible electronic devices. Here, we demonstrate a facile and smart strategy for the preparation of structurally stretchable, electrically conductive, and optically semitransparent polyaniline-containing hybrid hydrogel networks as electrode, which show high-performances in supercapacitor application. Remarkably, the stability can extend up to 35,000 cycles at a high current density of 8 A/g, because of the combined structural advantages in terms of flexible polymer chains, highly interconnected pores, and excellent contact between the host and guest functional polymer phase.

  9. Ag-Pd-Cu alloy inserted transparent indium tin oxide electrodes for organic solar cells

    International Nuclear Information System (INIS)

    Kim, Hyo-Joong; Seo, Ki-Won; Kim, Han-Ki; Noh, Yong-Jin; Na, Seok-In

    2014-01-01

    The authors report on the characteristics of Ag-Pd-Cu (APC) alloy-inserted indium tin oxide (ITO) films sputtered on a glass substrate at room temperature for application as transparent anodes in organic solar cells (OSCs). The effect of the APC interlayer thickness on the electrical, optical, structural, and morphological properties of the ITO/APC/ITO multilayer were investigated and compared to those of ITO/Ag/ITO multilayer electrodes. At the optimized APC thickness of 8 nm, the ITO/APC/ITO multilayer exhibited a resistivity of 8.55 × 10 −5 Ω cm, an optical transmittance of 82.63%, and a figure-of-merit value of 13.54 × 10 −3 Ω −1 , comparable to those of the ITO/Ag/ITO multilayer. Unlike the ITO/Ag/ITO multilayer, agglomeration of the metal interlayer was effectively relieved with APC interlayer due to existence of Pd and Cu elements in the thin region of the APC interlayer. The OSCs fabricated on the ITO/APC/ITO multilayer showed higher power conversion efficiency than that of OSCs prepared on the ITO/Ag/ITO multilayer below 10 nm due to the flatness of the APC layer. The improved performance of the OSCs with ITO/APC/ITO multilayer electrodes indicates that the APC alloy interlayer prevents the agglomeration of the Ag-based metal interlayer and can decrease the thickness of the metal interlayer in the oxide-metal-oxide multilayer of high-performance OSCs

  10. Liquid-phase exfoliation of chemical vapor deposition-grown single layer graphene and its application in solution-processed transparent electrodes for flexible organic light-emitting devices

    International Nuclear Information System (INIS)

    Wu, Chaoxing; Li, Fushan; Wu, Wei; Chen, Wei; Guo, Tailiang

    2014-01-01

    Efficient and low-cost methods for obtaining high performance flexible transparent electrodes based on chemical vapor deposition (CVD)-grown graphene are highly desirable. In this work, the graphene grown on copper foil was exfoliated into micron-size sheets through controllable ultrasonication. We developed a clean technique by blending the exfoliated single layer graphene sheets with conducting polymer to form graphene-based composite solution, which can be spin-coated on flexible substrate, forming flexible transparent conducting film with high conductivity (∼8 Ω/□), high transmittance (∼81% at 550 nm), and excellent mechanical robustness. In addition, CVD-grown-graphene-based polymer light emitting diodes with excellent bendable performances were demonstrated

  11. Flexible, Transparent, Thickness-Controllable SWCNT/PEDOT:PSS Hybrid Films Based on Coffee-Ring Lithography for Functional Noncontact Sensing Device

    KAUST Repository

    Tai, Yanlong

    2015-12-08

    Flexible transparent conductive films (FTCFs) as the essential components of the next generation of functional circuits and devices are presently attracting more attention. Here, a new strategy has been demonstrated to fabricate thickness-controllable FTCFs through coffee ring lithography (CRL) of single-wall carbon nanotube (SWCNT)/poly(3,4-ethylenedioxythiophene)-polystyrenesulfonate (PEDOT:PSS) hybrid ink. The influence of ink concentration and volume on the thickness and size of hybrid film has been investigated systematically. Results show that the final FTCFs present a high performance, including a homogeneous thickness of 60-65 nm, a sheet resistance of 1.8 kohm/sq, a visible/infrared-range transmittance (79%, PET = 90%), and a dynamic mechanical property (>1000 cycle, much better than ITO film), respectively, when SWCNT concentration is 0.2 mg/mL, ink volume is 0.4 μL, drying at room temperature. Moreover, the benefits of these kinds of FTCFs have been verified through a full transparent, flexible noncontact sensing panel (3 × 4 sensing pixels) and a flexible battery-free wireless sensor based on a humidity sensing mechanism, showing excellent human/machine interaction with high sensitivity, good stability, and fast response/recovery ability. © 2015 American Chemical Society.

  12. Flexible, Transparent, Thickness-Controllable SWCNT/PEDOT:PSS Hybrid Films Based on Coffee-Ring Lithography for Functional Noncontact Sensing Device

    KAUST Repository

    Tai, Yanlong; Yang, Zhen Guo

    2015-01-01

    Flexible transparent conductive films (FTCFs) as the essential components of the next generation of functional circuits and devices are presently attracting more attention. Here, a new strategy has been demonstrated to fabricate thickness-controllable FTCFs through coffee ring lithography (CRL) of single-wall carbon nanotube (SWCNT)/poly(3,4-ethylenedioxythiophene)-polystyrenesulfonate (PEDOT:PSS) hybrid ink. The influence of ink concentration and volume on the thickness and size of hybrid film has been investigated systematically. Results show that the final FTCFs present a high performance, including a homogeneous thickness of 60-65 nm, a sheet resistance of 1.8 kohm/sq, a visible/infrared-range transmittance (79%, PET = 90%), and a dynamic mechanical property (>1000 cycle, much better than ITO film), respectively, when SWCNT concentration is 0.2 mg/mL, ink volume is 0.4 μL, drying at room temperature. Moreover, the benefits of these kinds of FTCFs have been verified through a full transparent, flexible noncontact sensing panel (3 × 4 sensing pixels) and a flexible battery-free wireless sensor based on a humidity sensing mechanism, showing excellent human/machine interaction with high sensitivity, good stability, and fast response/recovery ability. © 2015 American Chemical Society.

  13. Effect of deposition temperature on the properties of Al-doped ZnO films prepared by pulsed DC magnetron sputtering for transparent electrodes in thin-film solar cells

    International Nuclear Information System (INIS)

    Kim, Doo-Soo; Park, Ji-Hyeon; Shin, Beom-Ki; Moon, Kyeong-Ju; Son, Myoungwoo; Ham, Moon-Ho; Lee, Woong; Myoung, Jae-Min

    2012-01-01

    Highlights: ► Surface-textured AZO films were achieved by combining PDMS method with wet etching. ► The AZO film deposited at 230 °C by PDMS exhibited the best performance. ► It is due to the higher plasma density supplied from PDMS system. ► Wet etching of the films produces a crater-like rough surface morphology. - Abstract: A simple but scalable approach to the production of surface-textured Al-doped ZnO(AZO) films for low-cost transparent electrode applications in thin-film solar cells is introduced in this study by combining pulsed dc magnetron sputtering (PDMS) with wet etching in sequence. First, structural, electrical, and optical properties of the AZO films prepared by a PDMS were investigated as functions of deposition temperature to obtain transparent electrode films that can be used as indium-free alternative to ITO electrodes. Increase in the deposition temperature to 230 °C accompanied the improvement in crystalline quality and doping efficiency, which enabled the lowest electrical resistivity of 4.16 × 10 −4 Ω cm with the carrier concentration of 1.65 × 10 21 cm −3 and Hall mobility of 11.3 cm 2 /V s. The wet etching of the films in a diluted HCl solution resulted in surface roughening via the formation of crater-like structures without significant degradation in the electrical properties, which is responsible for the enhanced light scattering capability required for anti-reflective electrodes in thin film solar cells.

  14. Ag@Ni core-shell nanowire network for robust transparent electrodes against oxidation and sulfurization.

    Science.gov (United States)

    Eom, Hyeonjin; Lee, Jaemin; Pichitpajongkit, Aekachan; Amjadi, Morteza; Jeong, Jun-Ho; Lee, Eungsug; Lee, Jung-Yong; Park, Inkyu

    2014-10-29

    Silver nanowire (Ag NW) based transparent electrodes are inherently unstable to moist and chemically reactive environment. A remarkable stability improvement of the Ag NW network film against oxidizing and sulfurizing environment by local electrodeposition of Ni along Ag NWs is reported. The optical transmittance and electrical resistance of the Ni deposited Ag NW network film can be easily controlled by adjusting the morphology and thickness of the Ni shell layer. The electrical conductivity of the Ag NW network film is increased by the Ni coating via welding between Ag NWs as well as additional conductive area for the electron transport by electrodeposited Ni layer. Moreover, the chemical resistance of Ag NWs against oxidation and sulfurization can be dramatically enhanced by the Ni shell layer electrodeposited along the Ag NWs, which provides the physical barrier against chemical reaction and diffusion as well as the cathodic protection from galvanic corrosion. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Fabrication and characterization of a CuO/ITO heterojunction with a graphene transparent electrode

    Science.gov (United States)

    Mageshwari, K.; Han, Sanghoo; Park, Jinsub

    2016-05-01

    In this paper, we investigate the electrical properties of a CuO-ITO heterojunction diode with the use of a graphene transparent electrode by current-voltage (I-V) characteristics. CuO thin films were deposited onto an ITO substrate by a simple sol-gel spin coating method and annealed at 500 °C. The x-ray diffraction pattern of the CuO thin films revealed the polycrystalline nature of CuO and exhibited a monoclinic crystal structure. FESEM images showed a uniform and densely packed particulate morphology. The optical band gap of CuO thin films estimated using UV-vis absorption spectra was found to be 2.50 eV. The I-V characteristics of the fabricated CuO-ITO heterojunction showed a well-defined rectifying behavior with improved electrical properties after the insertion of graphene. The electronic parameters of the heterostructure such as barrier height, ideality factor and series resistance were determined from the I-V measurements, and the possible current transport mechanism was discussed.

  16. Direct electrochemistry with enhanced electrocatalytic activity of hemoglobin in hybrid modified electrodes composed of graphene and multi-walled carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Wei, E-mail: swyy26@hotmail.com [College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158 China (China); College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042 (China); Cao, Lili; Deng, Ying; Gong, Shixing [College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042 (China); Shi, Fan; Li, Gaonan; Sun, Zhenfan [College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158 China (China)

    2013-06-05

    Graphical abstract: -- Highlights: •A graphene and multi-walled carbon nanotubes nanocomposite was prepared. •Hemoglobin and nanocomposite modified carbon ionic liquid electrode was fabricated. •Direct electrochemistry of hemoglobin was realized on the modified electrode. •Bioelectrocatalysis towards the reduction of different substrates was enhanced. -- Abstract: A graphene (GR) and multi-walled carbon nanotubes (MWCNT) hybrid was prepared and modified on a 1-hexylpyridinium hexafluorophosphate based carbon ionic liquid electrode (CILE). Hemoglobin (Hb) was immobilized on GR-MWCNT/CILE surface with Nafion as the film forming material and the modified electrode was denoted as Nafion/Hb-GR-MWCNT/CILE. Spectroscopic results revealed that Hb molecules retained its native structure in the GR-MWCNT hybird. Electrochemical behaviors of Hb were carefully investigated by cyclic voltammetry with a pair of well-defined redox peaks obtained, which indicated that direct electron transfer of Hb was realized in the hybrid modified electrode. The result could be attributed to the synergistic effects of GR-MWCNT hybrid with enlarged surface area and improved conductivity through the formation of a three-dimensional network. Electrochemical parameters of the immobilized Hb on the electrode surface were further calculated with the results of the electron transfer number (n) as 1.03, the charge transfer coefficient (a) as 0.58 and the electron-transfer rate constant (k{sub s}) as 0.97 s{sup −1}. The Hb modified electrode showed good electrocatalytic ability toward the reduction of different substrates such as trichloroacetic acid in the concentration range from 0.05 to 38.0 mmol L{sup −1} with a detection limit of 0.0153 mmol L{sup −1} (3σ), H{sub 2}O{sub 2} in the concentration range from 0.1 to 516.0 mmol L{sup −1} with a detection limit of 34.9 nmol/L (3σ) and NaNO{sub 2} in the concentration range from 0.5 to 650.0 mmol L{sup −1} with a detection limit of 0

  17. Direct electrochemistry with enhanced electrocatalytic activity of hemoglobin in hybrid modified electrodes composed of graphene and multi-walled carbon nanotubes

    International Nuclear Information System (INIS)

    Sun, Wei; Cao, Lili; Deng, Ying; Gong, Shixing; Shi, Fan; Li, Gaonan; Sun, Zhenfan

    2013-01-01

    Graphical abstract: -- Highlights: •A graphene and multi-walled carbon nanotubes nanocomposite was prepared. •Hemoglobin and nanocomposite modified carbon ionic liquid electrode was fabricated. •Direct electrochemistry of hemoglobin was realized on the modified electrode. •Bioelectrocatalysis towards the reduction of different substrates was enhanced. -- Abstract: A graphene (GR) and multi-walled carbon nanotubes (MWCNT) hybrid was prepared and modified on a 1-hexylpyridinium hexafluorophosphate based carbon ionic liquid electrode (CILE). Hemoglobin (Hb) was immobilized on GR-MWCNT/CILE surface with Nafion as the film forming material and the modified electrode was denoted as Nafion/Hb-GR-MWCNT/CILE. Spectroscopic results revealed that Hb molecules retained its native structure in the GR-MWCNT hybird. Electrochemical behaviors of Hb were carefully investigated by cyclic voltammetry with a pair of well-defined redox peaks obtained, which indicated that direct electron transfer of Hb was realized in the hybrid modified electrode. The result could be attributed to the synergistic effects of GR-MWCNT hybrid with enlarged surface area and improved conductivity through the formation of a three-dimensional network. Electrochemical parameters of the immobilized Hb on the electrode surface were further calculated with the results of the electron transfer number (n) as 1.03, the charge transfer coefficient (a) as 0.58 and the electron-transfer rate constant (k s ) as 0.97 s −1 . The Hb modified electrode showed good electrocatalytic ability toward the reduction of different substrates such as trichloroacetic acid in the concentration range from 0.05 to 38.0 mmol L −1 with a detection limit of 0.0153 mmol L −1 (3σ), H 2 O 2 in the concentration range from 0.1 to 516.0 mmol L −1 with a detection limit of 34.9 nmol/L (3σ) and NaNO 2 in the concentration range from 0.5 to 650.0 mmol L −1 with a detection limit of 0.282 μmol L −1 (3σ). So the proposed

  18. Spatiotemporal electrochemical measurements across an electric double layer capacitor electrode with application to aqueous sodium hybrid batteries

    Science.gov (United States)

    Tully, Katherine C.; Whitacre, Jay F.; Litster, Shawn

    2014-02-01

    This paper presents in-situ spatiotemporal measurements of the electrolyte phase potential within an electric double layer capacitor (EDLC) negative electrode as envisaged for use in an aqueous hybrid battery for grid-scale energy storage. The ultra-thick electrodes used in these batteries to reduce non-functional material costs require sufficiently fast through-plane mass and charge transport to attain suitable charging and discharging rates. To better evaluate the through-plane transport, we have developed an electrode scaffold (ES) for making in situ electrolyte potential distribution measurements at discrete known distances across the thickness of an uninterrupted EDLC negative electrode. Using finite difference methods, we calculate local current, volumetric charging current and charge storage distributions from the spatiotemporal electrolyte potential measurements. These potential distributions provide insight into complex phenomena that cannot be directly observed using other existing methods. Herein, we use the distributions to identify areas of the electrode that are underutilized, assess the effects of various parameters on the cumulative charge storage distribution, and evaluate an effectiveness factor for charge storage in EDLC electrodes.

  19. Laser welding of nanoparticulate TiO{sub 2} and transparent conducting oxide electrodes for highly efficient dye-sensitized solar cell

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jinsoo; Kim, Jonghyun; Lee, Myeongkyu, E-mail: myeong@yonsei.ac.kr [Department of Materials Science and Engineering, Yonsei University, Seoul 120-749 (Korea, Republic of)

    2010-08-27

    Poor interfacial contact is often encountered in nanoparticulate film-based devices. The dye-sensitized solar cell (DSSC) is a representative case in which a nanoporous TiO{sub 2} electrode needs to be prepared on the transparent conducting oxide (TCO)-coated glass substrate. In this study, we demonstrate that the inter-electrode contact resistance accounts for a considerable portion of the total resistance of a DSSC and its efficiency can be greatly enhanced by welding the interface with a laser. TiO{sub 2} films formed on the TCO-coated glass substrate were irradiated with a pulsed ultraviolet laser beam at 355 nm; this transmits through the TCO and glass but is strongly absorbed by TiO{sub 2}. Electron microscopy analysis and impedance measurements showed that a thin continuous TiO{sub 2} layer is formed at the interface as a result of the local melting of TiO{sub 2} nanoparticles and this layer completely bridges the gap between the two electrodes, improving the current flow with a reduced contact resistance. We were able to improve the efficiency by 35-65% with this process. DSSCs fabricated using a homemade TiO{sub 2} paste revealed an efficiency improvement from {eta} = 3.3% to 5.4%, and an increase from 8.2% to 11.2% was achieved with the TiO{sub 2} electrodes made from a commercial paste.

  20. Fast and stable redox reactions of MnO2/CNT hybrid electrodes for dynamically stretchable pseudocapacitors

    Science.gov (United States)

    Gu, Taoli; Wei, Bingqing

    2015-07-01

    Pseudocapacitors, which are energy storage devices that take advantage of redox reactions to store electricity, have a different charge storage mechanism compared to lithium-ion batteries (LIBs) and electric double-layer capacitors (EDLCs), and they could realize further gains if they were used as stretchable power sources. The realization of dynamically stretchable pseudocapacitors and understanding of the underlying fundamentals of their mechanical-electrochemical relationship have become indispensable. We report herein the electrochemical performance of dynamically stretchable pseudocapacitors using buckled MnO2/CNT hybrid electrodes. The extremely small relaxation time constant of less than 0.15 s indicates a fast redox reaction at the MnO2/CNT hybrid electrodes, securing a stable electrochemical performance for the dynamically stretchable pseudocapacitors. This finding and the fundamental understanding gained from the pseudo-capacitive behavior coupled with mechanical deformation under a dynamic stretching mode would provide guidance to further improve their overall performance including a higher power density than LIBs, a higher energy density than EDLCs, and a long-life cycling stability. Most importantly, these results will potentially accelerate the applications of stretchable pseudocapacitors for flexible and biomedical electronics.Pseudocapacitors, which are energy storage devices that take advantage of redox reactions to store electricity, have a different charge storage mechanism compared to lithium-ion batteries (LIBs) and electric double-layer capacitors (EDLCs), and they could realize further gains if they were used as stretchable power sources. The realization of dynamically stretchable pseudocapacitors and understanding of the underlying fundamentals of their mechanical-electrochemical relationship have become indispensable. We report herein the electrochemical performance of dynamically stretchable pseudocapacitors using buckled MnO2/CNT hybrid

  1. Construction of a photovoltaic cell based on the photoelectrochemistry of organic dyes at transparent semi-conducting electrodes. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Nasielski, J; Kirsch-De Mesmaeker, A

    1982-01-01

    It is shown that the study of the photoelectrochemical mechanisms of different dye-reductant systems at transparent semi-conducting bubbling gas electrodes, coupled with a detailed analysis of the photovoltammetric curves, allows: a deeper insight into the operation principles of the corresponding dye photogalvanic cells; prediction of the parameters important for optimizing the cell operation; and working out of strategies for improving the cell output. In order to compare the behaviors of an adsorbed type dye (rhodamine-hydroquinone) with a solution type dye in a photogalvanic cell, the thionine-Fe/sup 2 +/ system was examined, including a detailed kinetic analysis of the photocurrents at the bubbling gas electrode as a function of several parameters. Photoelectrochemical mechanisms related to the sensitization and supersensitization in this system have thus been determined. Photoelectrochemical methods were applied to analyze other dye-reductant systems. The photoelectrochemisty of three triphenyl-methanes, methyl violet, crystal violet, and malachite green were examined at the bubbling gas electrode. These dyes produce photocurrents originating from the adsorbed molecules and behave very much like rhodamine. The photoelectrochemical behavior of the erythrosine-hydroquinone couple is also examined. For constructing photogalvanic cells, the CdS-on-SnO/sub 2/-cysteine system is found promising. (LEW)

  2. Optimization of TiO2/Cu/TiO2 multilayers as a transparent composite electrode deposited by electron-beam evaporation at room temperature

    Science.gov (United States)

    Sun, Hong-Tao; Wang, Xiao-Ping; Kou, Zhi-Qi; Wang, Li-Jun; Wang, Jin-Ye; Sun, Yi-Qing

    2015-04-01

    Highly transparent indium-free composite electrodes of TiO2/Cu/TiO2 are deposited by electron-beam evaporation at room temperature. The effects of Cu thickness and annealing temperature on the electrical and optical properties of the multilayer film are investigated. The critical thickness of Cu mid-layer to form a continuous conducting layer is found to be 11 nm. The multilayer with a mid-Cu thickness of 11 nm is optimized to obtain a resistivity of 7.4×10-5 Ω·cm and an average optical transmittance of 86% in the visible spectral range. The figure of merit of the TiO2/Cu(11 nm)/TiO2 multilayer annealed at 150 °C reaches a minimum resistivity of 5.9×10-5 Ω·cm and an average optical transmittance of 88% in the visible spectral range. The experimental results indicate that TiO2/Cu/TiO2 multilayers can be used as a transparent electrode for solar cell and other display applications. Project supported by the Research Innovation Key Project of Education Committee of Shanghai, China (Grant No. 14ZZ137) and the National Cultivation Fund from University of Shanghai for Science and Technology (Grant No. 14XPM04).

  3. Experimental Study on Fabrication of AZO Transparent Electrode for Organic Solar Cell Using Selective Low-Temperature Atomic Layer Deposition

    International Nuclear Information System (INIS)

    Kim, Kicheol; Song, Gensoo; Kim, Hyungtae; Yoo, Kyunghoon; Kang, Jeongjin; Hwang, Junyoung; Lee, Sangho; Kang, Kyungtae; Kang, Heuiseok; Cho, Youngjune

    2013-01-01

    AZO (aluminum-doped zinc oxide) is one of the best candidate materials to replace Into (indium tin oxide) for TKOs (transparent conductive oxides) used in flat panel displays, organic light-emitting diodes (OLDS), and organic solar cells (OCSS). In the present study, to apply an AZO thin film to the transparent electrode of an organic solar cell, a low temperature selective atomic layer deposition (ALD) process was adopted to deposit an AZO thin film on a flexible polyethylene-naphthanate (Pen) substrate. The reactive gases for the ALD process were di-ethyl-zinc (De) and tri-methylaluminum (Tma) as precursors and H 2 O as an oxidant. The structural, electrical, and optical characteristics of the AZO thin film were evaluated. From the measured results of the electrical and optical characteristics of the AZO thin films deposited on the Pen substrates by Ald, it was shown that the Azo thin film appeared to be comparable to a commercially used Into thin film, which confirmed the feasibility of AZO as a TCO for flexible organic solar cells in the near future

  4. Transparent indium zinc oxide thin films used in photovoltaic cells based on polymer blends

    International Nuclear Information System (INIS)

    Besleaga, Cristina; Ion, L.; Ghenescu, Veta; Socol, G.; Radu, A.; Arghir, Iulia; Florica, Camelia; Antohe, S.

    2012-01-01

    Indium zinc oxide (IZO) thin films were obtained using pulsed laser deposition. The samples were prepared by ablation of targets with In concentrations, In/(In + Zn), of 80 at.%, at low substrate temperatures under reactive atmosphere. IZO films were used as transparent electrodes in polymer-based – poly(3-hexylthiophene) and 1-(3-methoxycarbonyl)-propyl-1-phenyl-(6,6)C61 1:1 blend – photovoltaic cells. The action spectra measurements revealed that IZO-based photovoltaic structures have performances comparable with those using indium–tin–oxide as transparent electrode. - Highlights: ► Indium zinc oxide films were grown by pulsed laser deposition at room temperature. ► The films had large free carrier density and reasonably high mobility. ► These films fit for transparent electrodes in polymer-based photovoltaic cells.

  5. CuCo_2O_4 flowers/Ni-foam architecture as a battery type positive electrode for high performance hybrid supercapacitor applications

    International Nuclear Information System (INIS)

    Vijayakumar, Subbukalai; Nagamuthu, Sadayappan; Ryu, Kwang-Sun

    2017-01-01

    Graphical abstract: The Ni- foam supported CuCo_2O_4 flowers exhibits a high specific capacity with superior long term cyclic stability. - Highlights: • This paper reports the hydrothermal preparation of CuCo_2O_4 flowers on Ni-foam. • The CuCo_2O_4 flowers exhibits maximum specific capacity of 645.1C g"−"1. • After 2000 cycles, 109% of the initial specific capacity was retained. - Abstract: The battery type CuCo_2O_4 electrode was evaluated as a positive electrode material for its hybrid supercapacitor applications. CuCo_2O_4 flowers were prepared on Ni-foam through a simple hydrothermal process and post calcination treatment. The structure and morphology of the CuCo_2O_4 flowers/Ni-foam was characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM) and high resolution transmission electron microscopy. FESEM clearly revealed the flower-like morphology, which was composed of large number of petals. The length and width of the petals ranged from approximately 5–8 μm and approximately 50–150 nm, respectively. The CuCo_2O_4 flowers/Ni-foam electrode was employed for electrochemical characterization for hybrid supercapacitor applications. The specific capacity of the CuCo_2O_4 flower-like electrode was 692.4C g"−"1 (192.3 mA h g"−"1) at a scan rate of 5 mV s"−"1. The flower-like CuCo_2O_4 electrode exhibited a maximum specific capacity of 645.1C g"−"1 (179.2 mA h g"−"1) at a specific current of 1 A g"−"1 and good long term cyclic stability. The high specific capacity, good cyclic stability, and low internal and charge transfer resistance of the CuCo_2O_4 flowers/Ni-foam electrode confirmed the suitability of the prepared material as a positive electrode for hybrid supercapacitor applications.

  6. Layered Ni(OH)2-Co(OH)2 films prepared by electrodeposition as charge storage electrodes for hybrid supercapacitors.

    Science.gov (United States)

    Nguyen, Tuyen; Boudard, Michel; Carmezim, M João; Montemor, M Fátima

    2017-01-04

    Consecutive layers of Ni(OH) 2 and Co(OH) 2 were electrodeposited on stainless steel current collectors for preparing charge storage electrodes of high specific capacity with potential application in hybrid supercapacitors. Different electrodes were prepared consisting on films of Ni(OH) 2 , Co(OH) 2 , Ni 1/2 Co 1/2 (OH) 2 and layered films of Ni(OH) 2 on Co(OH) 2 and Co(OH) 2 on Ni(OH) 2 to highlight the advantages of the new architecture. The microscopy studies revealed the formation of nanosheets in the Co(OH) 2 films and of particles agglomerates in the Ni(OH) 2 films. Important morphological changes were observed in the double hydroxides films and layered films. Film growth by electrodeposition was governed by instantaneous nucleation mechanism. The new architecture composed of Ni(OH) 2 on Co(OH) 2 displayed a redox response characterized by the presence of two peaks in the cyclic voltammograms, arising from redox reactions of the metallic species present in the layered film. These electrodes revealed a specific capacity of 762 C g -1 at the specific current of 1 A g -1 . The hybrid cell using Ni(OH) 2 on Co(OH) 2 as positive electrode and carbon nanofoam paper as negative electrode display specific energies of 101.3 W h g -1 and 37.8 W h g -1 at specific powers of 0.2 W g -1 and 2.45 W g -1 , respectively.

  7. Battery‐Supercapacitor Hybrid Devices: Recent Progress and Future Prospects

    Science.gov (United States)

    Zuo, Wenhua; Li, Ruizhi; Zhou, Cheng; Xia, Jianlong

    2017-01-01

    Design and fabrication of electrochemical energy storage systems with both high energy and power densities as well as long cycling life is of great importance. As one of these systems, Battery‐supercapacitor hybrid device (BSH) is typically constructed with a high‐capacity battery‐type electrode and a high‐rate capacitive electrode, which has attracted enormous attention due to its potential applications in future electric vehicles, smart electric grids, and even miniaturized electronic/optoelectronic devices, etc. With proper design, BSH will provide unique advantages such as high performance, cheapness, safety, and environmental friendliness. This review first addresses the fundamental scientific principle, structure, and possible classification of BSHs, and then reviews the recent advances on various existing and emerging BSHs such as Li‐/Na‐ion BSHs, acidic/alkaline BSHs, BSH with redox electrolytes, and BSH with pseudocapacitive electrode, with the focus on materials and electrochemical performances. Furthermore, recent progresses in BSH devices with specific functionalities of flexibility and transparency, etc. will be highlighted. Finally, the future developing trends and directions as well as the challenges will also be discussed; especially, two conceptual BSHs with aqueous high voltage window and integrated 3D electrode/electrolyte architecture will be proposed. PMID:28725528

  8. Effect of swift heavy ion (SHI) irradiation on transparent conducting oxide electrodes for dye-sensitized solar cell applications

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Hemant Kr. [University School of Basic and Applied Sciences, Guru Gobind Singh Indraprastha University, New Delhi (India); Avasthi, D.K. [Inter University Accelerator Center, Post Box 10502, New Delhi (India); Aggarwal, Shruti, E-mail: shruti.al@gmail.com [University School of Basic and Applied Sciences, Guru Gobind Singh Indraprastha University, New Delhi (India)

    2015-06-15

    Highlights: •The objective is to study the effect of swift heavy ion (SHI) irradiation on photoanode of DSSC for better efficiency. •This work presents the effect of SHI irradiation on various Transparent conducting oxides (TCOs). •Effects are studied in terms of conductivity and transmittance of TCOs. •ITO-PET gives best results in comparison to ITO and FTO for DSSC application under SHI irradiation. -- Abstract: Transparent conducting oxides (TCOs) are used as electrodes in dye-sensitized solar cells (DSSCs) because of their properties such as high transmittance and low resistivity. In the present work, the effects of swift heavy ion (SHI) irradiation on various types of TCOs are presented. The objective of this study is to investigate the effect of SHI on TCOs. For the present study, three different types of TCOs are considered, namely, (a) FTO (fluorine-doped tin oxide, SnO{sub 2}:F) on a Nippon glass substrate, (b) ITO (indium tin oxide, In{sub 2}O{sub 3}:Sn) coated on polyethylene terephthalate (PET) on a Corning glass substrate, and (c) ITO on a Corning glass substrate. These films are irradiated with 120 MeV Ag{sup +9} ions at fluences ranging from 3.0 × 10{sup 11} ions/cm{sup 2} to 3.0 × 10{sup 13} ions/cm{sup 2}. The structural, morphological, optical and electrical properties are studied via X-ray diffraction (XRD), atomic force microscopy (AFM), UV–Vis absorption spectroscopy and four-probe resistivity measurements, respectively. The ITO-PET electrode is found to exhibit superior conductivity and transmittance properties in comparison with the others after irradiation and, therefore, to be the most suitable for solar cell applications.

  9. The fabrication and analysis of a PbS nanocrystal:C{sub 60} bilayer hybrid photovoltaic system

    Energy Technology Data Exchange (ETDEWEB)

    Dissanayake, D M N M [Solid State Electronics Laboratory, University of Michigan, Ann Arbor, MI 48109-2122 (United States); Hatton, R A [Department of Chemistry, University of Warwick, Coventry CV4 7AL (United Kingdom); Lutz, T [Department of Chemistry, Imperial College, London SW7 2AY (United Kingdom); Curry, R J; Silva, S R P [Advanced Technology Institute, University of Surrey, Guildford GU2 7XH (United Kingdom)], E-mail: ndissa@umich.edu

    2009-06-17

    A near-infrared sensitive hybrid photovoltaic system between PbS nanocrystals (PbS-NCs) and C{sub 60} is demonstrated. Up to 0.44% power conversion efficiency is obtained under AM1.5G with a short circuit current density (J{sub sc}) of 5 mA cm{sup -2} when the PbS-NC layer is treated in anhydrous methanol. The observed J{sub sc} is found be approximately one-third of the maximum expected from this hybrid configuration, indicating the potential for further optimization. Crucial for device operation, a smooth film of nanocrystals is seen to form on the hole transporting poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) layer deposited on the transparent electrode, facilitated through an ionic interaction between nanocrystal capping ligands and the PEDOT:PSS. The formation of the open circuit voltage in this system is seen to be influenced by an interfacial dipole formed at the hole-extracting electrode, providing insights for further optimization.

  10. Effect of deposition temperature on the properties of Al-doped ZnO films prepared by pulsed DC magnetron sputtering for transparent electrodes in thin-film solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Doo-Soo; Park, Ji-Hyeon; Shin, Beom-Ki; Moon, Kyeong-Ju [Information and Electronic Materials Research Laboratory, Department of Materials Science and Engineering, Yonsei University, 134 Shinchon-dong, Seodaemun-gu, Seoul 120-749 (Korea, Republic of); Son, Myoungwoo [Department of Nanobio Materials and Electronics, Gwangju Institute of Science and Technology, Gwangju 500-712 (Korea, Republic of); Ham, Moon-Ho [Department of Nanobio Materials and Electronics, Gwangju Institute of Science and Technology, Gwangju 500-712 (Korea, Republic of); School of Materials Science and Engineering, Gwangju Institute of Science and Technology, Gwangju 500-712 (Korea, Republic of); Lee, Woong [School of Nano and Advanced Materials Engineering, Changwon National University, 9 Sarim-Dong, Changwon, Gyeongnam 641-773 (Korea, Republic of); Myoung, Jae-Min, E-mail: jmmyoung@yonsei.ac.kr [Information and Electronic Materials Research Laboratory, Department of Materials Science and Engineering, Yonsei University, 134 Shinchon-dong, Seodaemun-gu, Seoul 120-749 (Korea, Republic of)

    2012-10-15

    Highlights: Black-Right-Pointing-Pointer Surface-textured AZO films were achieved by combining PDMS method with wet etching. Black-Right-Pointing-Pointer The AZO film deposited at 230 Degree-Sign C by PDMS exhibited the best performance. Black-Right-Pointing-Pointer It is due to the higher plasma density supplied from PDMS system. Black-Right-Pointing-Pointer Wet etching of the films produces a crater-like rough surface morphology. - Abstract: A simple but scalable approach to the production of surface-textured Al-doped ZnO(AZO) films for low-cost transparent electrode applications in thin-film solar cells is introduced in this study by combining pulsed dc magnetron sputtering (PDMS) with wet etching in sequence. First, structural, electrical, and optical properties of the AZO films prepared by a PDMS were investigated as functions of deposition temperature to obtain transparent electrode films that can be used as indium-free alternative to ITO electrodes. Increase in the deposition temperature to 230 Degree-Sign C accompanied the improvement in crystalline quality and doping efficiency, which enabled the lowest electrical resistivity of 4.16 Multiplication-Sign 10{sup -4} {Omega} cm with the carrier concentration of 1.65 Multiplication-Sign 10{sup 21} cm{sup -3} and Hall mobility of 11.3 cm{sup 2}/V s. The wet etching of the films in a diluted HCl solution resulted in surface roughening via the formation of crater-like structures without significant degradation in the electrical properties, which is responsible for the enhanced light scattering capability required for anti-reflective electrodes in thin film solar cells.

  11. Novel Flexible Transparent Conductive Films with Enhanced Chemical and Electromechanical Sustainability: TiO2 Nanosheet-Ag Nanowire Hybrid.

    Science.gov (United States)

    Sohn, Hiesang; Kim, Seyun; Shin, Weonho; Lee, Jong Min; Lee, Hyangsook; Yun, Dong-Jin; Moon, Kyoung-Seok; Han, In Taek; Kwak, Chan; Hwang, Seong-Ju

    2018-01-24

    Flexible transparent conductive films (TCFs) of TiO 2 nanosheet (TiO 2 NS) and silver nanowire (Ag NW) network hybrid were prepared through a simple and scalable solution-based process. The as-formed TiO 2 NS-Ag NW hybrid TCF shows a high optical transmittance (TT: 97% (90.2% including plastic substrate)) and low sheet resistance (R s : 40 Ω/sq). In addition, the TiO 2 NS-Ag NW hybrid TCF exhibits a long-time chemical/aging and electromechanical stability. As for the chemical/aging stability, the hybrid TCF of Ag NW and TiO 2 NS reveals a retained initial conductivity (ΔR s /R s 4000%) or RuO 2 NS-Ag NW hybrid (ΔR s /R s > 200%). As corroborated by the density functional theory simulation, the superb chemical stability of TiO 2 NS-Ag NW hybrid is attributable to the unique role of TiO 2 NS as a barrier, which prevents Ag NW's chemical corrosion via the attenuated adsorption of sulfidation molecules (H 2 S) on TiO 2 NS. With respect to the electromechanical stability, in contrast to Ag NWs (ΔR/R 0 ∼ 152.9%), our hybrid TCF shows a limited increment of fractional resistivity (ΔR/R 0 ∼ 14.4%) after 200 000 cycles of the 1R bending test (strain: 6.7%) owing to mechanically welded Ag NW networks by TiO 2 NS. Overall, our unique hybrid of TiO 2 NS and Ag NW exhibits excellent electrical/optical properties and reliable chemical/electromechanical stabilities.

  12. Hybrid zinc oxide/graphene electrodes for depleted heterojunction colloidal quantum-dot solar cells.

    Science.gov (United States)

    Tavakoli, Mohammad Mahdi; Aashuri, Hossein; Simchi, Abdolreza; Fan, Zhiyong

    2015-10-07

    Recently, hybrid nanocomposites consisting of graphene/nanomaterial heterostructures have emerged as promising candidates for the fabrication of optoelectronic devices. In this work, we have employed a facile and in situ solution-based process to prepare zinc oxide/graphene quantum dots (ZnO/G QDs) in a hybrid structure. The prepared hybrid dots are composed of a ZnO core, with an average size of 5 nm, warped with graphene nanosheets. Spectroscopic studies show that the graphene shell quenches the photoluminescence intensity of the ZnO nanocrystals by about 72%, primarily due to charge transfer reactions and static quenching. A red shift in the absorption peak is also observed. Raman spectroscopy determines G-band splitting of the graphene shell into two separated sub-bands (G(+), G(-)) caused by the strain induced symmetry breaking. It is shown that the hybrid ZnO/G QDs can be used as a counter-electrode for heterojunction colloidal quantum-dot solar cells for efficient charge-carrier collection, as evidenced by the external quantum efficiency measurement. Under the solar simulated spectrum (AM 1.5G), we report enhanced power conversion efficiency (35%) with higher short current circuit (80%) for lead sulfide-based solar cells as compared to devices prepared by pristine ZnO nanocrystals.

  13. Electrochemical detection of avian influenza virus H5N1 gene sequence using a DNA aptamer immobilized onto a hybrid nanomaterial-modified electrode

    International Nuclear Information System (INIS)

    Liu Xianggang; Cheng Ziqiang; Fan Hai; Ai Shiyun; Han Ruixia

    2011-01-01

    Highlights: → A sensitive electrochemical biosensor for the detection of gene sequence was developed. → The biosensor was assembled by MWNT, polypyrrole nanowires and gold nanoparticles. → The hybrid nanomaterials could provide a porous structure with good properties. → The biosensor has highly selectivity and sensitivity. → The design strategy is expected to have extensive applications in other biosensors - Abstract: A sensitive electrochemical method for the detection of avian influenza virus (AIV) H5N1 gene sequence using a DNA aptamer immobilized onto a hybrid nanomaterial-modified electrode was developed. To enhance the selectivity and sensitivity, the modified electrode was assembled with multi-wall carbon nanotubes (MWNT), polypyrrole nanowires (PPNWs) and gold nanoparticles (GNPs). This electrode offered a porous structure with a large effective surface area, highly electrocatalytic activities and electronic conductivity. Therefore, the amount of DNA aptamer immobilized onto the electrode was increased while the accessibility of the detection target was maintained. The biosensor is based on the hybridization and preferred orientation of a DNA aptamer immobilized onto a modified electrode surface with its target (H5N1 specific sequence) present in solution. It is selective for the H5N1 specific sequence, and the signal of the indicator was approximately linear to log(concentration) of the H5N1 specific sequence from 5.0 x 10 -12 to 1.0 x 10 -9 M (R = 0.9863) with a detection limit of 4.3 x 10 -13 M. These studies showed that the new hybrid nanomaterial (MWNT/PPNWs/GNPs) and the DNA aptamer could be used to fabricate an electrochemical biosensor for gene sequence detection. Furthermore, this design strategy is expected to have extensive applications in other biosensors.

  14. Electrochemical detection of avian influenza virus H5N1 gene sequence using a DNA aptamer immobilized onto a hybrid nanomaterial-modified electrode

    Energy Technology Data Exchange (ETDEWEB)

    Liu Xianggang [College of Chemistry and Material Science, Shandong Agricultural University, Taian 271018, Shandong (China); Cheng Ziqiang, E-mail: czqsd@126.com [College of Animal Science and Technology, Shandong Agricultural University, Taian 271018, Shandong (China); Fan Hai [College of Chemistry and Material Science, Shandong Agricultural University, Taian 271018, Shandong (China); Ai Shiyun, E-mail: ashy@sdau.edu.cn [College of Chemistry and Material Science, Shandong Agricultural University, Taian 271018, Shandong (China); Han Ruixia [College of Chemistry and Material Science, Shandong Agricultural University, Taian 271018, Shandong (China)

    2011-07-15

    Highlights: > A sensitive electrochemical biosensor for the detection of gene sequence was developed. > The biosensor was assembled by MWNT, polypyrrole nanowires and gold nanoparticles. > The hybrid nanomaterials could provide a porous structure with good properties. > The biosensor has highly selectivity and sensitivity. > The design strategy is expected to have extensive applications in other biosensors - Abstract: A sensitive electrochemical method for the detection of avian influenza virus (AIV) H5N1 gene sequence using a DNA aptamer immobilized onto a hybrid nanomaterial-modified electrode was developed. To enhance the selectivity and sensitivity, the modified electrode was assembled with multi-wall carbon nanotubes (MWNT), polypyrrole nanowires (PPNWs) and gold nanoparticles (GNPs). This electrode offered a porous structure with a large effective surface area, highly electrocatalytic activities and electronic conductivity. Therefore, the amount of DNA aptamer immobilized onto the electrode was increased while the accessibility of the detection target was maintained. The biosensor is based on the hybridization and preferred orientation of a DNA aptamer immobilized onto a modified electrode surface with its target (H5N1 specific sequence) present in solution. It is selective for the H5N1 specific sequence, and the signal of the indicator was approximately linear to log(concentration) of the H5N1 specific sequence from 5.0 x 10{sup -12} to 1.0 x 10{sup -9} M (R = 0.9863) with a detection limit of 4.3 x 10{sup -13} M. These studies showed that the new hybrid nanomaterial (MWNT/PPNWs/GNPs) and the DNA aptamer could be used to fabricate an electrochemical biosensor for gene sequence detection. Furthermore, this design strategy is expected to have extensive applications in other biosensors.

  15. Transparent resistive switching memory using aluminum oxide on a flexible substrate

    International Nuclear Information System (INIS)

    Yeom, Seung-Won; Kim, Tan-Young; Ha, Hyeon Jun; Ju, Byeong-Kwon; Shin, Sang-Chul; Shim, Jae Won; Lee, Yun-Hi

    2016-01-01

    Resistive switching memory (ReRAM) has attracted much attention in recent times owing to its fast switching, simple structure, and non-volatility. Flexible and transparent electronic devices have also attracted considerable attention. We therefore fabricated an Al 2 O 3 -based ReRAM with transparent indium-zinc-oxide (IZO) electrodes on a flexible substrate. The device transmittance was found to be higher than 80% in the visible region (400–800 nm). Bended states (radius = 10 mm) of the device also did not affect the memory performance because of the flexibility of the two transparent IZO electrodes and the thin Al 2 O 3 layer. The conduction mechanism of the resistive switching of our device was explained by ohmic conduction and a Poole–Frenkel emission model. The conduction mechanism was proved by oxygen vacancies in the Al 2 O 3 layer, as analyzed by x-ray photoelectron spectroscopy analysis. These results encourage the application of ReRAM in flexible and transparent electronic devices. (letter)

  16. Transparent resistive switching memory using aluminum oxide on a flexible substrate

    Science.gov (United States)

    Yeom, Seung-Won; Shin, Sang-Chul; Kim, Tan-Young; Ha, Hyeon Jun; Lee, Yun-Hi; Shim, Jae Won; Ju, Byeong-Kwon

    2016-02-01

    Resistive switching memory (ReRAM) has attracted much attention in recent times owing to its fast switching, simple structure, and non-volatility. Flexible and transparent electronic devices have also attracted considerable attention. We therefore fabricated an Al2O3-based ReRAM with transparent indium-zinc-oxide (IZO) electrodes on a flexible substrate. The device transmittance was found to be higher than 80% in the visible region (400-800 nm). Bended states (radius = 10 mm) of the device also did not affect the memory performance because of the flexibility of the two transparent IZO electrodes and the thin Al2O3 layer. The conduction mechanism of the resistive switching of our device was explained by ohmic conduction and a Poole-Frenkel emission model. The conduction mechanism was proved by oxygen vacancies in the Al2O3 layer, as analyzed by x-ray photoelectron spectroscopy analysis. These results encourage the application of ReRAM in flexible and transparent electronic devices.

  17. Nanocarbon-copper thin film as transparent electrode

    International Nuclear Information System (INIS)

    Isaacs, R. A.; Zhu, H.; Preston, Colin; LeMieux, M.; Jaim, H. M. Iftekhar; Hu, L.; Salamanca-Riba, L. G.; Mansour, A.; Zavalij, P. Y.; Rabin, O.

    2015-01-01

    Researchers seeking to enhance the properties of metals have long pursued incorporating carbon in the metallic host lattice in order to combine the strongly bonded electrons in the metal lattice that yield high ampacity and the free electrons available in carbon nanostructures that give rise to high conductivity. The incorporation of carbon nanostructures into the copper lattice has the potential to improve the current density of copper to meet the ever-increasing demands of nanoelectronic devices. We report on the structure and properties of carbon incorporated in concentrations up to 5 wt. % (∼22 at. %) into the crystal structure of copper. Carbon nanoparticles of 5 nm–200 nm in diameter in an interconnecting carbon matrix are formed within the bulk Cu samples. The carbon does not phase separate after subsequent melting and re-solidification despite the absence of a predicted solid solution at such concentrations in the C-Cu binary phase diagram. This material, so-called, Cu covetic, makes deposition of Cu films containing carbon with similar microstructure to the metal possible. Copper covetic films exhibit greater transparency, higher conductivity, and resistance to oxidation than pure copper films of the same thickness, making them a suitable choice for transparent conductors

  18. Nanocarbon-copper thin film as transparent electrode

    Energy Technology Data Exchange (ETDEWEB)

    Isaacs, R. A.; Zhu, H.; Preston, Colin; LeMieux, M.; Jaim, H. M. Iftekhar; Hu, L., E-mail: binghu@umd.edu; Salamanca-Riba, L. G., E-mail: riba@umd.edu [Materials Science and Engineering Department, University of Maryland, College Park, Maryland 20742 (United States); Mansour, A. [Carderock Division, Naval Surface Warfare Center, West Bethesda, Maryland 20817 (United States); Zavalij, P. Y. [Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742 (United States); Rabin, O. [Materials Science and Engineering Department, University of Maryland, College Park, Maryland 20742 (United States); Institute for Research in Electronics and Applied Physics, University of Maryland, College Park, Maryland 20742 (United States)

    2015-05-11

    Researchers seeking to enhance the properties of metals have long pursued incorporating carbon in the metallic host lattice in order to combine the strongly bonded electrons in the metal lattice that yield high ampacity and the free electrons available in carbon nanostructures that give rise to high conductivity. The incorporation of carbon nanostructures into the copper lattice has the potential to improve the current density of copper to meet the ever-increasing demands of nanoelectronic devices. We report on the structure and properties of carbon incorporated in concentrations up to 5 wt. % (∼22 at. %) into the crystal structure of copper. Carbon nanoparticles of 5 nm–200 nm in diameter in an interconnecting carbon matrix are formed within the bulk Cu samples. The carbon does not phase separate after subsequent melting and re-solidification despite the absence of a predicted solid solution at such concentrations in the C-Cu binary phase diagram. This material, so-called, Cu covetic, makes deposition of Cu films containing carbon with similar microstructure to the metal possible. Copper covetic films exhibit greater transparency, higher conductivity, and resistance to oxidation than pure copper films of the same thickness, making them a suitable choice for transparent conductors.

  19. High-efficiency supercapacitor electrodes of CVD-grown graphenes hybridized with multiwalled carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Kalam, Amir Abul; Bae, Joon Ho [Dept. of Nano-physics, Gachon University, Seongnam (Korea, Republic of); Park, Soo Bin; Seo, Yong Ho [Nanotechnology and Advanced Material Engineering, HMC, and GRI, Sejong University, Seoul (Korea, Republic of)

    2015-08-15

    We demonstrate, for the first time, high-efficiency supercapacitors by utilizing chemical vapor deposition (CVD)-grown graphenes hybridized with multiwalled carbon nanotubes (CNTs). A single-layer graphene was grown by simple CVD growth method, and transferred to polyethylene terephthalate substrates. The bare graphenes were further hybridized with multiwalled CNTs by drop-coating CNTs on graphenes. The supercapacitors using bare graphenes and graphenes with CNTs revealed that graphenes with CNTs resulted in enhanced supercapacitor performances of 2.2- (the mass-specific capacitance) and 4.4-fold (the area-specific capacitance) of those of bare graphenes. Our strategy to improve electrochemical performance of CVD-grown graphenes is advantageous for large-scale graphene electrodes due to high electrical conductivity of CVD-grown graphenes and cost-effectiveness of using multiwalled CNTs as compared to conventional employment of single-walled CNTs.

  20. High-efficiency supercapacitor electrodes of CVD-grown graphenes hybridized with multiwalled carbon nanotubes

    International Nuclear Information System (INIS)

    Kalam, Amir Abul; Bae, Joon Ho; Park, Soo Bin; Seo, Yong Ho

    2015-01-01

    We demonstrate, for the first time, high-efficiency supercapacitors by utilizing chemical vapor deposition (CVD)-grown graphenes hybridized with multiwalled carbon nanotubes (CNTs). A single-layer graphene was grown by simple CVD growth method, and transferred to polyethylene terephthalate substrates. The bare graphenes were further hybridized with multiwalled CNTs by drop-coating CNTs on graphenes. The supercapacitors using bare graphenes and graphenes with CNTs revealed that graphenes with CNTs resulted in enhanced supercapacitor performances of 2.2- (the mass-specific capacitance) and 4.4-fold (the area-specific capacitance) of those of bare graphenes. Our strategy to improve electrochemical performance of CVD-grown graphenes is advantageous for large-scale graphene electrodes due to high electrical conductivity of CVD-grown graphenes and cost-effectiveness of using multiwalled CNTs as compared to conventional employment of single-walled CNTs

  1. Nickel oxide electrode interlayer in CH3 NH3 PbI3 perovskite/PCBM planar-heterojunction hybrid solar cells.

    Science.gov (United States)

    Jeng, Jun-Yuan; Chen, Kuo-Cheng; Chiang, Tsung-Yu; Lin, Pei-Ying; Tsai, Tzung-Da; Chang, Yun-Chorng; Guo, Tzung-Fang; Chen, Peter; Wen, Ten-Chin; Hsu, Yao-Jane

    2014-06-25

    This study successfully demonstrates the application of inorganic p-type nickel oxide (NiOx ) as electrode interlayer for the fabrication of NiOx /CH3 NH3 PbI3 perovskite/PCBM PHJ hybrid solar cells with a respectable solar-to-electrical PCE of 7.8%. The better energy level alignment and improved wetting of the NiOx electrode interlayer significantly enhance the overall photovoltaic performance. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Pseudocapacitive Transparent/Flexible Supercapacitor based on Graphene wrapped Ni(OH)2 Nanosheet Transparent Film Produced using Scalable Bio-inspired Methods

    International Nuclear Information System (INIS)

    Li, Na; Huang, Xuankai; Li, Ruijian; Chen, Yiming; Li, Yunyong; Shi, Zhicong; Zhang, Haiyan

    2016-01-01

    High specific-capacity pseudocapacitive transition-metal-hydroxide (TMH) materials are desirable for future high performance transparent supercapacitors, but have been rarely reported previously. The successful synthesis of TMH materials with desired nanostructures is a key factor for their transparency. Here, Ni(OH) 2 nanosheet transparent film (NNS-TF) was developed simply through a gas-liquid diffusion method. The nanostructures were enwrapped in graphene shells (NNS@Gr-TF) for using as transparent electrodes. The unique encapsulation structures build up rapid three-dimensional electron and ion transport pathways together with the underlying ITO layer. The specific areal capacitance (18.9 mF/cm 2 at 0.1 mA/cm 2 ) was greatly improved, at least a thousand times higher than the reported value for transparent devices based on planer CVD graphene, and ten times as that for 3D micro-structured graphene membrane.

  3. Continuous, Highly Flexible, and Transparent Graphene Films by Chemical Vapor Deposition for Organic Photovoltaics

    KAUST Repository

    Gomez De Arco, Lewis; Zhang, Yi; Schlenker, Cody W.; Ryu, Koungmin; Thompson, Mark E.; Zhou, Chongwu

    2010-01-01

    We report the implementation of continuous, highly flexible, and transparent graphene films obtained by chemical vapor deposition (CVD) as transparent conductive electrodes (TCE) in organic photovoltaic cells. Graphene films were synthesized by CVD

  4. An optically transparent, flexible, patterned and conductive silk biopolymer film (Conference Presentation)

    Science.gov (United States)

    Umar, Muhammad; Min, Kyungtaek; Kim, Sunghwan

    2017-02-01

    Transparent, flexible, and conducting films are of great interest for wearable electronics. For better biotic/abiotic interface, the films to integrate the electronics components requires the patterned surface conductors with optical transparency, smoothness, good electrical conductivity, along with the biofriendly traits of films. We focus on silk fibroin, a natural biopolymer extracted from the Bombyx mori cocoons, for this bioelectronics applications. Here we report an optically transparent, flexible, and patterned surface conductor on a silk film by burying a silver nanowires (AgNW) network below the surface of the silk film. The conducting silk film reveals high optical transparency of 80% and the excellent electronic conductivity of 15 Ω/sq, along with smooth surface. The integration of light emitting diode (LED) chip on the patterned electrodes confirms that the current can flow through the transparent and patterned electrodes on the silk film, and this result shows an application for integration of functional electronic/opto-electronic devices. Additionally, we fabricate a transparent and flexible radio frequency (RF) antenna and resistor on a silk film and apply these as a food sensor by monitoring the increasing resistance by the flow of gases from the spoiled food.

  5. High-performance PbS quantum dot vertical field-effect phototransistor using graphene as a transparent electrode

    Science.gov (United States)

    Che, Yongli; Zhang, Yating; Cao, Xiaolong; Song, Xiaoxian; Zhang, Haiting; Cao, Mingxuan; Dai, Haitao; Yang, Junbo; Zhang, Guizhong; Yao, Jianquan

    2016-12-01

    Solution processed photoactive PbS quantum dots (QDs) were used as channel in high-performance near-infrared vertical field-effect phototransistor (VFEpT) where monolayer graphene embedded as transparent electrode. In this vertical architecture, the PbS QD channel was sandwiched and naturally protected between the drain and source electrodes, which made the device ultrashort channel length (110 nm) simply the thickness of the channel layer. The VFEpT exhibited ambipolar operation with high mobilities of μe = 3.5 cm2/V s in n-channel operation and μh = 3.3 cm2/V s in p-channel operation at low operation voltages. By using the photoactive PbS QDs as channel material, the VFEpT exhibited good photoresponse properties with a responsivity of 4.2 × 102 A/W, an external quantum efficiency of 6.4 × 104% and a photodetectivity of 2.1 × 109 Jones at the light irradiance of 36 mW/cm2. Additionally, the VFEpT showed excellent on/off switching with good stability and reproducibility and fast response speed with a short rise time of 12 ms in n-channel operation and 10.6 ms in p-channel operation. These high mobilities, good photoresponse properties and simplistic fabrication of our VFEpTs provided a facile route to the high-performance inorganic photodetectors.

  6. Freestanding mesoporous VN/CNT hybrid electrodes for flexible all-solid-state supercapacitors.

    Science.gov (United States)

    Xiao, Xu; Peng, Xiang; Jin, Huanyu; Li, Tianqi; Zhang, Chengcheng; Gao, Biao; Hu, Bin; Huo, Kaifu; Zhou, Jun

    2013-09-25

    High-performance all-solid-state supercapacitors (SCs) are fabricated based on thin, lightweight, and flexible freestanding MVNN/CNT hybrid electrodes. The device shows a high volume capacitance of 7.9 F/cm(3) , volume energy and power density of 0.54 mWh/cm(3) and 0.4 W/cm(3) at a current density of 0.025 A/cm(3) . By being highly flexible, environmentally friendly, and easily connectable in series and parallel, the all-solid-state SCs promise potential applications in portable/wearable electronics. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. High-performance metal mesh/graphene hybrid films using prime-location and metal-doped graphene.

    Science.gov (United States)

    Min, Jung-Hong; Jeong, Woo-Lim; Kwak, Hoe-Min; Lee, Dong-Seon

    2017-08-31

    We introduce high-performance metal mesh/graphene hybrid transparent conductive layers (TCLs) using prime-location and metal-doped graphene in near-ultraviolet light-emitting diodes (NUV LEDs). Despite the transparency and sheet resistance values being similar for hybrid TCLs, there were huge differences in the NUV LEDs' electrical and optical properties depending on the location of the graphene layer. We achieved better physical stability and current spreading when the graphene layer was located beneath the metal mesh, in direct contact with the p-GaN layer. We further improved the contact properties by adding a very thin Au mesh between the thick Ag mesh and the graphene layer to produce a dual-layered metal mesh. The Au mesh effectively doped the graphene layer to create a p-type electrode. Using Raman spectra, work function variations, and the transfer length method (TLM), we verified the effect of doping the graphene layer after depositing a very thin metal layer on the graphene layers. From our results, we suggest that the nature of the contact is an important criterion for improving the electrical and optical performance of hybrid TCLs, and the method of doping graphene layers provides new opportunities for solving contact issues in other semiconductor devices.

  8. Light stability of ITO-free semi-transparent and opaque organic photovoltaic devices

    NARCIS (Netherlands)

    Voroshazi, E.; Yaala, M.B.; Uytterhoeven, G.; Tait, J.G.; Andriessen, R.H.A.J.M.; Galagan, Y.; Cheyns, D.

    2015-01-01

    Intrinsic light stability of transparent MoO3/Ag/TiO2 electrode is studied in four different polymer:fullerene solar cell configurations. We demonstrate that this stack can successfully replace ITO both in superstrate and substrate configurations required for non-transparent carriers. Although we

  9. Original Conductive Nano-Co3O4 Investigated as Electrode Material for Hybrid Supercapacitors

    OpenAIRE

    Godillot, Gérôme; Guerlou-Demourgues, Liliane; Taberna, Pierre-Louis; Simon, Patrice; Delmas, Claude

    2011-01-01

    Cobalt oxides have been extensively used as conductive additives for Ni-MH batteries. We report in this paper the performances of an original nanometric cobalt oxide, close to Co3O4, as electrode material for hybrid supercapacitors. This spinel type phase contains hydrogen, lithium, cobalt vacancies, and especially Co4þ ions within the structure, leading to a high electronic conductivity. Cyclic voltammetry and impedance spectroscopy measurements show interesting capacitance (320 F/g in 8M-KO...

  10. Fabrication of transparent conductive tri-composite film for electrochromic application

    Science.gov (United States)

    Choi, Dahyun; Lee, Minji; Kim, Hyungsub; Chu, Won-shik; Chun, Doo-man; Ahn, Sung-Hoon; Lee, Caroline Sunyong

    2017-12-01

    A transparent conductive electrode (TCE) based on poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) was developed using a dry deposition method for application as an electrochromic (EC) device. To improve its electrical conductivity and stable EC performance, AgNW and TiO2 nanoparticles were included in the TCE film. The resulting TiO2/AgNW/PEDOT:PSS hybrid film showed electrical sheet resistivity of 23 Ω/sq., similar to that of a commercial TCE film. When +2.0 V was applied to the hybrid film, the response current was stable, maintaining a value of 2.0 mA. We found that the hybrid film could be used as an EC device, without using commercial TCE film. Antimony-doped tin oxide on indium-doped tin oxide-glass as an ion-storage layer was combined with the hybrid film, with 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide (EMIM-TFSI) injected into the EC device as an ionic liquid electrolyte. The optical transmittance difference between the colored and bleached states was 23% at 630 nm; under applied voltages of -2.0 V and +2.0 V, the coloration efficiency was 127.83 cm2/C. Moreover, cyclic transmittance with switching voltage for 3 h showed stable optical transmittance of 31% at 630 nm. Cyclic voltammetry measurements indicated stable behavior over 50 cycles. Thus, the proposed TCE configuration (TiO2/AgNW/PEDOT:PSS) shows great potential as a substitute for commercial TCEs, the cost of which depends on the availability of rare-earth materials.

  11. Convenient preparation of ITO nanoparticles inks for transparent conductive thin films

    International Nuclear Information System (INIS)

    Ito, Daisuke; Masuko, Keiichiro; Weintraub, Benjamin A.; McKenzie, Lallie C.; Hutchison, James E.

    2012-01-01

    Tin-doped indium oxide (ITO) nanoparticles are useful precursors to transparent electrodes in a variety of technologically important applications. We synthesized ITO nanoparticles from indium and tin acetylacetonates in oleyl alcohol using a novel temperature ramp profile. The monodispersed ITO nanoparticles have an average diameter of 8.6 nm and form dense, flat films by simple spin coating. The thickness of the film can be controlled by varying the number of additional depositions. The resulting ITO film is transparent and has a resistivity of 7 × 10 −3 Ω cm after sintering at 300 °C. Using a suitable solvent, it is possible to coat high-aspect-ratio structures with ITO nanoparticles. This approach to ITO coatings is greener and offers a number of advantages for transparent electrodes because it is highly versatile, easily scalable, and supports low-cost manufacturing.

  12. Formation of ultralong copper nanowires by hydrothermal growth for transparent conducting applications

    Science.gov (United States)

    Balela, Mary Donnabelle L.; Tan, Michael

    2017-07-01

    Transparent conducting electrodes are key components of optoelectronic devices, such as touch screens, organic light emitting diodes (OLEDs) and solar cells. Recent market surveys have shown that the demands for these devices are rapidly growing at a tremendous rate. Semiconducting oxides, in particular indium tin oxide (ITO) are the material of choice for transparent conducting electrodes. However, these conventional oxides are typically brittle, which limits their applicability in flexible electronics. Metal nanowires, e.g. copper (Cu) nanowires, are considered as the best candidate as substitute for ITO due to their excellent mechanical and electrical properties. In this paper, ultralong copper (Cu) nanowires with were successfully prepared by hydrothermal growth at 50-80°C for 1 h. Ethylenediamine was employed as the structure-directing agents, while hydrazine was used as the reductant. In situ mixed potential measurement was also carried out to monitor Cu deposition. Higher temperature shifted the mixed potential negatively, leading to thicker Cu nanowires. Transparent conducting electrode, with a sheet resistance of 197 Ω sq-1 at an optical transmittance of around 61 %, was fabricated with the Cu nanowire ink.

  13. Hybrid capacitors utilizing halogen-based redox reactions at interface between carbon positive electrode and aqueous electrolytes

    Science.gov (United States)

    Yamazaki, Shigeaki; Ito, Tatsuya; Murakumo, Yuka; Naitou, Masashi; Shimooka, Toshiharu; Yamagata, Masaki; Ishikawa, Masashi

    2016-09-01

    We propose novel hybrid capacitors (HCs) with electrolyte-involved redox reactions of bromide or iodide species by pretreatment of an activated carbon positive electrode. The treatment is simple; impregnation of pores at an activated carbon fiber cloth (ACFC) as a positive electrode with bromine- or iodine-containing water before cell assembly. The treated positive electrode is applied to a HC cell with a non-treated negative electrode of ACFC and its electrochemical performance is investigated by galvanostatic cycling and leakage current tests. Few studies on such "electrolytic" charge storage systems have provided acceptable capacitor performance because of inevitable self-discharge caused by diffusion of charged species form an electrode to the other one through an electrolyte. Nevertheless, our electrolyte-redox-based HCs show excellent performance without undesirable diffusion of charged species. Moreover, the present HC utilizing a bromide redox system fulfills a practical cell voltage of 1.8 V in spite of an aqueous electrolyte system. This high voltage provides excellent energy density, which is 5 times higher than that in a conventional aqueous electric double-layer capacitor (EDLC), and 1.2 times higher even than that in a 2.7 V-class non-aqueous EDLC, while keeping high charge-discharge rate capability.

  14. Transparent electrode requirements for thin film solar cell modules

    KAUST Repository

    Rowell, Michael W.; McGehee, Michael D.

    2011-01-01

    The transparent conductor (TC) layer in thin film solar cell modules has a significant impact on the power conversion efficiency. Reflection, absorption, resistive losses and lost active area either from the scribed interconnect region in monolithically integrated modules or from the shadow losses of a metal grid in standard modules typically reduce the efficiency by 10-25%. Here, we perform calculations to show that a competitive TC must have a transparency of at least 90% at a sheet resistance of less than 10 Ω/sq (conductivity/absorptivity ≥ 1 Ω -1) for monolithically integrated modules. For standard modules, losses are much lower and the performance of alternative lower cost TC materials may already be sufficient to replace conducting oxides in this geometry. © 2011 The Royal Society of Chemistry.

  15. Gold-modified indium tin oxide as a transparent window in optoelectronic diagnostics of electrochemically active biofilms.

    Science.gov (United States)

    Schmidt, Igor; Gad, Alaaeldin; Scholz, Gregor; Boht, Heidi; Martens, Michael; Schilling, Meinhard; Suryo Wasisto, Hutomo; Waag, Andreas; Schröder, Uwe

    2017-08-15

    Microbial electrochemical technologies (METs) are one of the emerging green bioenergy domains that are utilizing microorganisms for wastewater treatment or electrosynthesis. Real-time monitoring of bioprocess during operation is a prerequisite for understanding and further improving bioenergy harvesting. Optical methods are powerful tools for this, but require transparent, highly conductive and biocompatible electrodes. Whereas indium tin oxide (ITO) is a well-known transparent conductive oxide, it is a non-ideal platform for biofilm growth. Here, a straightforward approach of surface modification of ITO anodes with gold (Au) is demonstrated, to enhance direct microbial biofilm cultivation on their surface and to improve the produced current densities. The trade-off between the electrode transmittance (critical for the underlying integrated sensors) and the enhanced growth of biofilms (crucial for direct monitoring) is studied. Au-modified ITO electrodes show a faster and reproducible biofilm growth with three times higher maximum current densities and about 6.9 times thicker biofilms compared to their unmodified ITO counterparts. The electrochemical analysis confirms the enhanced performance and the reversibility of the ITO/Au electrodes. The catalytic effect of Au on the ITO surface seems to be the key factor of the observed performance improvement since the changes in the electrode conductivity and their surface wettability are relatively small and in the range of ITO. An integrated platform for the ITO/Au transparent electrode with light-emitting diodes was fabricated and its feasibility for optical biofilm thickness monitoring is demonstrated. Such transparent electrodes with embedded catalytic metals can serve as multifunctional windows for biofilm diagnostic microchips. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Graphene electrodes for stimulation of neuronal cells

    International Nuclear Information System (INIS)

    Koerbitzer, Berit; Nick, Christoph; Thielemann, Christiane; Krauss, Peter; Yadav, Sandeep; Schneider, Joerg J

    2016-01-01

    Graphene has the ability to improve the electrical interface between neuronal cells and electrodes used for recording and stimulation purposes. It provides a biocompatible coating for common electrode materials such as gold and improves the electrode properties. Graphene electrodes are also prepared on SiO 2 substrate to benefit from its optical properties like transparency. We perform electrochemical and Raman characterization of gold electrodes with graphene coating and compare them with graphene on SiO 2 substrate. It was found that the substrate plays an important role in the performance of graphene and show that graphene on SiO 2 substrate is a very promising material combination for stimulation electrodes. (paper)

  17. Nanoscale current spreading analysis in solution-processed graphene oxide/silver nanowire transparent electrodes via conductive atomic force microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Shaw, Joseph E.; Perumal, Ajay; Bradley, Donal D. C.; Stavrinou, Paul N.; Anthopoulos, Thomas D., E-mail: t.anthopoulos@ic.ac.uk [Department of Physics and Centre for Plastic Electronics, Blackett Laboratory, Imperial College London, London SW7 2AZ (United Kingdom)

    2016-05-21

    We use conductive atomic force microscopy (CAFM) to study the origin of long-range conductivity in model transparent conductive electrodes composed of networks of reduced graphene oxide (rGO{sub X}) and silver nanowires (AgNWs), with nanoscale spatial resolution. Pristine networks of rGO{sub X} (1–3 monolayers-thick) and AgNWs exhibit sheet resistances of ∼100–1000 kΩ/□ and 100–900 Ω/□, respectively. When the materials are deposited sequentially to form bilayer rGO{sub X}/AgNW electrodes and thermally annealed at 200 °C, the sheet resistance reduces by up to 36% as compared to pristine AgNW networks. CAFM was used to analyze the current spreading in both systems in order to identify the nanoscale phenomena responsible for this effect. For rGO{sub X} networks, the low intra-flake conductivity and the inter-flake contact resistance is found to dominate the macroscopic sheet resistance, while for AgNW networks the latter is determined by the density of the inter-AgNW junctions and their associated resistance. In the case of the bilayer rGO{sub X}/AgNWs' networks, rGO{sub X} flakes are found to form conductive “bridges” between AgNWs. We show that these additional nanoscopic electrical connections are responsible for the enhanced macroscopic conductivity of the bilayer rGO{sub X}/AgNW electrodes. Finally, the critical role of thermal annealing on the formation of these nanoscopic connections is discussed.

  18. All-Carbon Electrodes for Flexible Solar Cells

    OpenAIRE

    Zexia Zhang; Ruitao Lv; Yi Jia; Xin Gan; Hongwei Zhu; Feiyu Kang

    2018-01-01

    Transparent electrodes based on carbon nanomaterials have recently emerged as new alternatives to indium tin oxide (ITO) or noble metal in organic photovoltaics (OPVs) due to their attractive advantages, such as long-term stability, environmental friendliness, high conductivity, and low cost. However, it is still a challenge to apply all-carbon electrodes in OPVs. Here, we report our efforts to develop all-carbon electrodes in organic solar cells fabricated with different carbon-based materia...

  19. Hybrid Electrodes by In-Situ Integration of Graphene and Carbon-Nanotubes in Polypyrrole for Supercapacitors

    Science.gov (United States)

    Aphale, Ashish; Maisuria, Krushangi; Mahapatra, Manoj K.; Santiago, Angela; Singh, Prabhakar; Patra, Prabir

    2015-09-01

    Supercapacitors also known as electrochemical capacitors, that store energy via either Faradaic or non-Faradaic processes, have recently grown popularity mainly because they complement, and can even replace, conventional energy storage systems in variety of applications. Supercapacitor performance can be improved significantly by developing new nanocomposite electrodes which utilizes both the energy storage processes simultaneously. Here we report, fabrication of the freestanding hybrid electrodes, by incorporating graphene and carbon nanotubes (CNT) in pyrrole monomer via its in-situ polymerization. At the scan rate of 5 mV s-1, the specific capacitance of the polypyrrole-CNT-graphene (PCG) electrode film was 453 F g-1 with ultrahigh energy and power density of 62.96 W h kg-1 and 566.66 W kg-1 respectively, as shown in the Ragone plot. A nanofibrous membrane was electrospun and effectively used as a separator in the supercapacitor. Four supercapacitors were assembled in series to demonstrate the device performance by lighting a 2.2 V LED.

  20. Hybrid Electrodes by In-Situ Integration of Graphene and Carbon-Nanotubes in Polypyrrole for Supercapacitors.

    Science.gov (United States)

    Aphale, Ashish; Maisuria, Krushangi; Mahapatra, Manoj K; Santiago, Angela; Singh, Prabhakar; Patra, Prabir

    2015-09-23

    Supercapacitors also known as electrochemical capacitors, that store energy via either Faradaic or non-Faradaic processes, have recently grown popularity mainly because they complement, and can even replace, conventional energy storage systems in variety of applications. Supercapacitor performance can be improved significantly by developing new nanocomposite electrodes which utilizes both the energy storage processes simultaneously. Here we report, fabrication of the freestanding hybrid electrodes, by incorporating graphene and carbon nanotubes (CNT) in pyrrole monomer via its in-situ polymerization. At the scan rate of 5 mV s(-1), the specific capacitance of the polypyrrole-CNT-graphene (PCG) electrode film was 453 F g(-1) with ultrahigh energy and power density of 62.96 W h kg(-1) and 566.66 W kg(-1) respectively, as shown in the Ragone plot. A nanofibrous membrane was electrospun and effectively used as a separator in the supercapacitor. Four supercapacitors were assembled in series to demonstrate the device performance by lighting a 2.2 V LED.

  1. Amorphous Mn oxide-ordered mesoporous carbon hybrids as a high performance electrode material for supercapacitors.

    Science.gov (United States)

    Nam, Inho; Kim, Nam Dong; Kim, Gil-Pyo; Park, Junsu; Yi, Jongheop

    2012-07-01

    A supercapacitor has the advantages of both the conventional capacitors and the rechargeable batteries. Mn oxide is generally recognized one of the potential materials that can be used for a supercapacitor, but its low conductivity is a limiting factor for electrode materials. In this study, a hybrid of amorphous Mn oxide (AMO) and ordered mesoporous carbon (OMC) was prepared and characterized using X-ray diffraction, transmission electron microscopy, N2/77 K sorption techniques, and electrochemical analyses. The findings indicate that the electrochemical activities of Mn oxide were facilitated when it was in the hybrid state because OMC acted as a pathway for both the electrolyte ions and the electrons due to the characteristics of the ordered mesoporous structure. The ordered mesoporous structure of OMC was well maintained even after hybridization with amorphous Mn oxide. The electrochemical-activity tests revealed that the AMO/OMC hybrid had a higher specific capacitance and conductivity than pure Mn oxide. In the case where the Mn/C weight ratio was 0.75, the composite showed a high capacitance of 153 F/g, which was much higher than that for pure Mn oxide, due to the structural effects of OMC.

  2. Layer-by-layer self-assembled active electrodes for hybrid photovoltaic cells

    Energy Technology Data Exchange (ETDEWEB)

    Kniprath, Rolf

    2008-11-18

    Solar cells based on thin organic/inorganic heterofilms are currently in the focus of research, since they represent promising candidates for cost-efficient photovoltaic energy conversion. In this type of cells, charges are separated at a heterointerface between dissimilar electrode materials. These materials either absorb light themselves, or they are sensitized by an additional absorber layer at the interface. The present work investigates photovoltaic cells which are composed of nanoporous TiO{sub 2} combined with conjugated polymers and semiconductor quantum dots (QDs). The method of layer-by-layer self-assembly of oppositely charged nanoparticles and polymers is used for the fabrication of such devices. This method allows to fabricate nanoporous films with controlled thicknesses in the range of a few hundred nanometers to several micrometers. Investigations with scanning electron (SEM) and atomic force microscopy (AFM) reveal that the surface morphology of the films depends only on the chemical structure of the polyions used in the production process, and not on their molecular weight or conformation. From dye adsorption at the internal surface of the electrodes one can estimate that the internal surface area of a 1 {mu}m thick film is up to 120 times larger than the projection plane. X-ray photoelectron spectroscopy (XPS) is used to demonstrate that during the layer-by-layer self-assembly at least 40% of the TiO{sub 2} surface is covered with polymers. This feature allows to incorporate polythiophene derivatives into the films and to use them as sensitizers for TiO{sub 2}. Further, electrodes containing CdSe or CdTe quantum dots (QDs) as sensitizers are fabricated. For the fabrication of photovoltaic cells the layer-by-layer grown films are coated with an additional polymer layer, and Au back electrodes are evaporated on top. The cells are illuminated through transparent doped SnO{sub 2} front electrodes. The I/V curves of all fabricated cells show diode

  3. Properties of transparent and conductive Al:ZnO/Au/Al:ZnO multilayers on flexible PET substrates

    International Nuclear Information System (INIS)

    Dimopoulos, T.; Bauch, M.; Wibowo, R.A.; Bansal, N.; Hamid, R.; Auer, M.; Jäger, M.; List-Kratochvil, E.J.W.

    2015-01-01

    Highlights: • Transparent, low resistive AZO/Au/AZO layers were sputtered on PET substrates. • AZO/Au/AZO has higher figure of merit than ITO for specific Au thicknesses. • The resistance of AZO/Au/AZO is stable against repetitive substrate bending. • AZO/Au/AZO electrode performance is comparable to ITO in light emitting diodes. - Abstract: We investigate the structural, electrical and optical properties of transparent electrodes, consisting of Al-doped ZnO (AZO) and ultrathin Au layers, sputtered on polyethylene terephthalate (PET). These electrodes are relevant for optoelectronic devices and thin film photovoltaics. When deposited on AZO, Au films as thin as 3 nm form electrically conductive, meandering structures, whereas uniform Au films are obtained from a thickness of 5 nm. The sheet resistance decreases with Au thickness, reaching 7 Ω for 11 nm-thick Au. AZO/Au/AZO trilayers combine lowest resistance with highest transparency, while their resistance stability against bending fatigue is superior to the Sn-doped In 2 O 3 (ITO) electrode. The figure of merit of AZO/Au/AZO is larger than of ITO for Au thickness equal to or larger than 9 nm. To demonstrate the applicability of the AZO/Au/AZO transparent electrode, simple organic light emitting diodes were fabricated and tested in comparison to PET/ITO standard substrates

  4. Properties of transparent and conductive Al:ZnO/Au/Al:ZnO multilayers on flexible PET substrates

    Energy Technology Data Exchange (ETDEWEB)

    Dimopoulos, T., E-mail: theodoros.dimopoulos@ait.ac.at [AIT-Austrian Institute of Technology, Energy Department, Photovoltaic Systems, Giefinggasse 2, 1210, Vienna (Austria); Bauch, M.; Wibowo, R.A.; Bansal, N. [AIT-Austrian Institute of Technology, Energy Department, Photovoltaic Systems, Giefinggasse 2, 1210, Vienna (Austria); Hamid, R. [AIT-Austrian Institute of Technology, Mobility Department, Electric Drive Technologies, Giefinggasse 2, 1210, Vienna (Austria); Auer, M.; Jäger, M. [NanoTecCenter Weiz Forschungsgesellschaft mbH, Franz-Pichler Straße 32, A-8160 Weiz (Austria); List-Kratochvil, E.J.W. [NanoTecCenter Weiz Forschungsgesellschaft mbH, Franz-Pichler Straße 32, A-8160 Weiz (Austria); Institute of Solid State Physics, Graz University of Technology, Petersgasse 16, A-8010 Graz (Austria)

    2015-10-15

    Highlights: • Transparent, low resistive AZO/Au/AZO layers were sputtered on PET substrates. • AZO/Au/AZO has higher figure of merit than ITO for specific Au thicknesses. • The resistance of AZO/Au/AZO is stable against repetitive substrate bending. • AZO/Au/AZO electrode performance is comparable to ITO in light emitting diodes. - Abstract: We investigate the structural, electrical and optical properties of transparent electrodes, consisting of Al-doped ZnO (AZO) and ultrathin Au layers, sputtered on polyethylene terephthalate (PET). These electrodes are relevant for optoelectronic devices and thin film photovoltaics. When deposited on AZO, Au films as thin as 3 nm form electrically conductive, meandering structures, whereas uniform Au films are obtained from a thickness of 5 nm. The sheet resistance decreases with Au thickness, reaching 7 Ω for 11 nm-thick Au. AZO/Au/AZO trilayers combine lowest resistance with highest transparency, while their resistance stability against bending fatigue is superior to the Sn-doped In{sub 2}O{sub 3} (ITO) electrode. The figure of merit of AZO/Au/AZO is larger than of ITO for Au thickness equal to or larger than 9 nm. To demonstrate the applicability of the AZO/Au/AZO transparent electrode, simple organic light emitting diodes were fabricated and tested in comparison to PET/ITO standard substrates.

  5. Solution-processed assembly of ultrathin transparent conductive cellulose nanopaper embedding AgNWs

    Science.gov (United States)

    Song, Yuanyuan; Jiang, Yaoquan; Shi, Liyi; Cao, Shaomei; Feng, Xin; Miao, Miao; Fang, Jianhui

    2015-08-01

    Natural biomass based cellulose nanopaper is becoming a promising transparent substrate to supersede traditional petroleum based polymer films in realizing future flexible paper-electronics. Here, ultrathin, highly transparent, outstanding conductive hybrid nanopaper with excellent mechanical flexibility was synthesized by the assembly of nanofibrillated cellulose (NFC) and silver nanowires (AgNWs) using a pressured extrusion paper-making technique. The hybrid nanopaper with a thickness of 4.5 μm has a good combination of transparent conductive performance and mechanical stability using bamboo/hemp NFC and AgNWs cross-linked by hydroxypropylmethyl cellulose (HPMC). The heterogeneous fibrous structure of BNFC/HNFC/AgNWs endows a uniform distribution and an enhanced forward light scattering, resulting in high electrical conductivity and optical transmittance. The hybrid nanopaper with an optimal weight ratio of BNFC/HNFC to AgNWs shows outstanding synergistic properties with a transmittance of 86.41% at 550 nm and a sheet resistance of 1.90 ohm sq-1, equal to the electronic conductivity, which is about 500 S cm-1. The BNFC/HNFC/AgNW hybrid nanopaper maintains a stable electrical conductivity after the peeling test and bending at 135° for 1000 cycles, indicating remarkably strong adhesion and mechanical flexibility. Of importance here is that the high-performance and low-cost hybrid nanopaper shows promising potential for electronics application in solar cells, flexible displays and other high-technology products.Natural biomass based cellulose nanopaper is becoming a promising transparent substrate to supersede traditional petroleum based polymer films in realizing future flexible paper-electronics. Here, ultrathin, highly transparent, outstanding conductive hybrid nanopaper with excellent mechanical flexibility was synthesized by the assembly of nanofibrillated cellulose (NFC) and silver nanowires (AgNWs) using a pressured extrusion paper-making technique. The

  6. A Novel Type of Battery-Supercapacitor Hybrid Device with Highly Switchable Dual Performances Based on a Carbon Skeleton/Mg2Ni Free-Standing Hydrogen Storage Electrode.

    Science.gov (United States)

    Li, Na; Du, Yi; Feng, Qing-Ping; Huang, Gui-Wen; Xiao, Hong-Mei; Fu, Shao-Yun

    2017-12-27

    The sharp proliferation of high power electronics and electrical vehicles has promoted growing demands for power sources with both high energy and power densities. Under these circumstances, battery-supercapacitor hybrid devices are attracting considerable attention as they combine the advantages of both batteries and supercapacitors. Here, a novel type of hybrid device based on a carbon skeleton/Mg 2 Ni free-standing electrode without the traditional nickel foam current collector is reported, which has been designed and fabricated through a dispersing-freeze-drying method by employing reduced graphene oxide (rGO) and multiwalled carbon nanotubes (MWCNTs) as a hybrid skeleton. As a result, the Mg 2 Ni alloy is able to deliver a high discharge capacity of 644 mAh g -1 and, more importantly, a high cycling stability with a retention of over 78% after 50 charge/discharge cycles have been achieved, which exceeds almost all the results ever reported on the Mg 2 Ni alloy. Simultaneously, the electrode could also exhibit excellent supercapacitor performances including high specific capacities (296 F g -1 ) and outstanding cycling stability (100% retention after 100 cycles). Moreover, the hybrid device can switch between battery and supercapacitor modes immediately as needed during application. These features make the C skeleton/alloy electrode a highly promising candidate for battery-supercapacitor hybrid devices with high power/energy density and favorable cycling stability.

  7. Effect of swift heavy ion (SHI) irradiation on transparent conducting oxide electrodes for dye-sensitized solar cell applications

    Science.gov (United States)

    Singh, Hemant Kr.; Avasthi, D. K.; Aggarwal, Shruti

    2015-06-01

    Transparent conducting oxides (TCOs) are used as electrodes in dye-sensitized solar cells (DSSCs) because of their properties such as high transmittance and low resistivity. In the present work, the effects of swift heavy ion (SHI) irradiation on various types of TCOs are presented. The objective of this study is to investigate the effect of SHI on TCOs. For the present study, three different types of TCOs are considered, namely, (a) FTO (fluorine-doped tin oxide, SnO2:F) on a Nippon glass substrate, (b) ITO (indium tin oxide, In2O3:Sn) coated on polyethylene terephthalate (PET) on a Corning glass substrate, and (c) ITO on a Corning glass substrate. These films are irradiated with 120 MeV Ag+9 ions at fluences ranging from 3.0 × 1011 ions/cm2 to 3.0 × 1013 ions/cm2. The structural, morphological, optical and electrical properties are studied via X-ray diffraction (XRD), atomic force microscopy (AFM), UV-Vis absorption spectroscopy and four-probe resistivity measurements, respectively. The ITO-PET electrode is found to exhibit superior conductivity and transmittance properties in comparison with the others after irradiation and, therefore, to be the most suitable for solar cell applications.

  8. 18.4%-Efficient Heterojunction Si Solar Cells Using Optimized ITO/Top Electrode.

    Science.gov (United States)

    Kim, Namwoo; Um, Han-Don; Choi, Inwoo; Kim, Ka-Hyun; Seo, Kwanyong

    2016-05-11

    We optimize the thickness of a transparent conducting oxide (TCO) layer, and apply a microscale mesh-pattern metal electrode for high-efficiency a-Si/c-Si heterojunction solar cells. A solar cell equipped with the proposed microgrid metal electrode demonstrates a high short-circuit current density (JSC) of 40.1 mA/cm(2), and achieves a high efficiency of 18.4% with an open-circuit voltage (VOC) of 618 mV and a fill factor (FF) of 74.1% as result of the shortened carrier path length and the decreased electrode area of the microgrid metal electrode. Furthermore, by optimizing the process sequence for electrode formation, we are able to effectively restore the reduction in VOC that occurs during the microgrid metal electrode formation process. This work is expected to become a fundamental study that can effectively improve current loss in a-Si/c-Si heterojunction solar cells through the optimization of transparent and metal electrodes.

  9. Electrochemical Sensing toward Trace As(III) Based on Mesoporous MnFe₂O₄/Au Hybrid Nanospheres Modified Glass Carbon Electrode.

    Science.gov (United States)

    Zhou, Shaofeng; Han, Xiaojuan; Fan, Honglei; Liu, Yaqing

    2016-06-22

    Au nanoparticles decorated mesoporous MnFe₂O₄ nanocrystal clusters (MnFe₂O₄/Au hybrid nanospheres) were used for the electrochemical sensing of As(III) by square wave anodic stripping voltammetry (SWASV). Modified on a cheap glass carbon electrode, these MnFe₂O₄/Au hybrid nanospheres show favorable sensitivity (0.315 μA/ppb) and limit of detection (LOD) (3.37 ppb) toward As(III) under the optimized conditions in 0.1 M NaAc-HAc (pH 5.0) by depositing for 150 s at the deposition potential of -0.9 V. No obvious interference from Cd(II) and Hg(II) was recognized during the detection of As(III). Additionally, the developed electrode displayed good reproducibility, stability, and repeatability, and offered potential practical applicability for electrochemical detection of As(III) in real water samples. The present work provides a potential method for the design of new and cheap sensors in the application of electrochemical determination toward trace As(III) and other toxic metal ions.

  10. Photothermally Activated Pyroelectric Polymer Films for Harvesting of Solar Heat with a Hybrid Energy Cell Structure.

    Science.gov (United States)

    Park, Teahoon; Na, Jongbeom; Kim, Byeonggwan; Kim, Younghoon; Shin, Haijin; Kim, Eunkyoung

    2015-12-22

    Photothermal effects in poly(3,4-ethylenedioxythiophene)s (PEDOTs) were explored for pyroelectric conversion. A poled ferroelectric film was coated on both sides with PEDOT via solution casting polymerization of EDOT, to give highly conductive and effective photothermal thin films of PEDOT. The PEDOT films not only provided heat source upon light exposure but worked as electrodes for the output energy from the pyroelectric layer in an energy harvester hybridized with a thermoelectric layer. Compared to a bare thermoelectric system under NIR irradiation, the photothermal-pyro-thermoelectric device showed more than 6 times higher thermoelectric output with the additional pyroelectric output. The photothermally driven pyroelectric harvesting film provided a very fast electric output with a high voltage output (Vout) of 15 V. The pyroelectric effect was significant due to the transparent and high photothermal PEDOT film, which could also work as an electrode. A hybrid energy harvester was assembled to enhance photoconversion efficiency (PCE) of a solar cell with a thermoelectric device operated by the photothermally generated heat. The PCE was increased more than 20% under sunlight irradiation (AM 1.5G) utilizing the transmitted light through the photovoltaic cell as a heat source that was converted into pyroelectric and thermoelectric output simultaneously from the high photothermal PEDOT electrodes. Overall, this work provides a dynamic and static hybrid energy cell to harvest solar energy in full spectral range and thermal energy, to allow solar powered switching of an electrochromic display.

  11. Development of Ionic Liquid Modified Disposable Graphite Electrodes for Label-Free Electrochemical Detection of DNA Hybridization Related to Microcystis spp.

    Directory of Open Access Journals (Sweden)

    Ceren Sengiz

    2015-09-01

    Full Text Available In this present study, ionic liquid (1-butyl-3-methylimidazolium hexafluorophosphate (IL modified pencil graphite electrode (IL-PGEs was developed for electrochemical monitoring of DNA hybridization related to Microcystis spp. (MYC. The characterization of IL-PGEs was performed using microscopic and electrochemical techniques. DNA hybridization related to MYC was then explored at the surface of IL-PGEs using differential pulse voltammetry (DPV technique. After the experimental parameters were optimized, the sequence-selective DNA hybridization related to MYC was performed in the case of hybridization between MYC probe and its complementary DNA target, noncomplementary (NC or mismatched DNA sequence (MM, or and in the presence of mixture of DNA target: NC (1:1 and DNA target: MM (1:1.

  12. Control of thickness uniformity and grain size in graphene films for transparent conductive electrodes

    International Nuclear Information System (INIS)

    Wu Wei; Yu Qingkai; Pei, Shin-Shem; Peng Peng; Bao Jiming; Liu Zhihong

    2012-01-01

    Large-scale and transferable graphene films grown on metal substrates by chemical vapor deposition (CVD) still hold great promise for future nanotechnology. To realize the promise, one of the key issues is to further improve the quality of graphene, e.g., uniform thickness, large grain size, and low defects. Here we grow graphene films on Cu foils by CVD at ambient pressure, and study the graphene nucleation and growth processes under different concentrations of carbon precursor. On the basis of the results, we develop a two-step ambient pressure CVD process to synthesize continuous single-layer graphene films with large grain size (up to hundreds of square micrometers). Scanning electron microscopy and Raman spectroscopy characterizations confirm the film thickness and uniformity. The transferred graphene films on cover glass slips show high electrical conductivity and high optical transmittance that make them suitable as transparent conductive electrodes. The growth mechanism of CVD graphene on Cu is also discussed, and a growth model has been proposed. Our results provide important guidance toward the synthesis of high quality uniform graphene films, and could offer a great driving force for graphene based applications. (paper)

  13. A hybrid nanostructure of platinum-nanoparticles/graphitic-nanofibers as a three-dimensional counter electrode in dye-sensitized solar cells.

    Science.gov (United States)

    Hsieh, Chien-Kuo; Tsai, Ming-Chi; Su, Ching-Yuan; Wei, Sung-Yen; Yen, Ming-Yu; Ma, Chen-Chi M; Chen, Fu-Rong; Tsai, Chuen-Horng

    2011-11-07

    We directly synthesized a platinum-nanoparticles/graphitic-nanofibers (PtNPs/GNFs) hybrid nanostructure on FTO glass. We applied this structure as a three-dimensional counter electrode in dye-sensitized solar cells (DSSCs), and investigated the cells' photoconversion performance. This journal is © The Royal Society of Chemistry 2011

  14. Fabrication of lithium titanate/graphene composites with high rate capability as electrode materials for hybrid electrochemical supercapacitors

    International Nuclear Information System (INIS)

    Xue, Rong; Yan, Jingwang; Jiang, Liang; Yi, Baolian

    2015-01-01

    A lithium titanate (Li 4 Ti 5 O 12 )/graphene composite (LTO/graphene) is fabricated with a one-pot sol–gel method. Graphite oxide is dispersed in an aqueous solution of lithium acetate and tetrabutyl titanate followed by heat treatment in H 2 /Ar. The LTO/graphene composite with reduced aggregation and improved homogeneity is investigated as an anode material for electrochemical capacitors. Electron transport is improved by the conductive graphene network in the insulating Li 4 Ti 5 O 12 particles. The charge transfer resistance at the particle/electrolyte interface is reduced from 83.1 Ω to 55.4 Ω. The specific capacity of LTO/graphene composite is 126 mAh g −1 at 20C. The energy density and power density of a hybrid electrochemical supercapacitor with a LTO/graphene negative electrode and an activated carbon positive electrode are 120.8 Wh kg −1 and 1.5 kW kg −1 , respectively, which is comparable to that of conventional electrochemical double layer capacitors (EDLCs). The LTO/graphene composite fabricated by the one-pot sol–gel method is a promising anode material for hybrid electrochemical supercapacitors. - Highlights: • A Li 4 Ti 5 O 12 /graphene composite was fabricated with a one-pot sol–gel method. • The Li 4 Ti 5 O 12 /graphene composite showed a reduced aggregation and an improved homogeneity. • The Li 4 Ti 5 O 12 /graphene based hybrid supercapacitor exhibited higher energy and power densities

  15. Organic against inorganic electrodes grown onto polymer substrates for flexible organic electronics applications

    International Nuclear Information System (INIS)

    Logothetidis, S.; Laskarakis, A.

    2009-01-01

    One of the most challenging topics in the area of organic electronic devices is the growth of transparent electrodes onto flexible polymeric substrates that will be characterized by enhanced conductivity in combination with high optical transparency. An essential aspect for these materials is their synthesis and/or microstructure which define the transparency, the stability and the interfacial chemistry which in turn determine the performance and stability of the organic electronic devices, such as organic light emitting diodes, organic photovoltaics, etc. In this work, we will discuss the latest advances in the growth of organic (e.g. PEDOT:PSS) and inorganic (e.g. zinc oxide-ZnO, indium tin oxide-ITO) conductive materials and their deposition onto flexible polymeric substrates. We will compare the optical, structural, nano-mechanical and nano-topographical properties of the inorganic and organic materials and we investigate the effect of their structure on their properties and functionality. In the case of the organic conductive materials, we will discuss the effects of PEDOT:PSS weight ratios and the various spin speeds on their optical and electrical properties. Furthermore, in the case of ZnO the growth mechanisms, interface phenomena, crystallinity and optical properties of ZnO thin films grown onto polymer and hybrid (inorganic-organic) flexible substrates will be also discussed.

  16. Development of Annealing-Free, Solution-Processable Inverted Organic Solar Cells with N-Doped Graphene Electrodes using Zinc Oxide Nanoparticles.

    Science.gov (United States)

    Jung, Seungon; Lee, Junghyun; Seo, Jihyung; Kim, Ungsoo; Choi, Yunseong; Park, Hyesung

    2018-02-14

    An annealing-free process is considered as a technological advancement for the development of flexible (or wearable) organic electronic devices, which can prevent the distortion of substrates and damage to the active components of the device and simplify the overall fabrication process to increase the industrial applications. Owing to its outstanding electrical, optical, and mechanical properties, graphene is seen as a promising material that could act as a transparent conductive electrode for flexible optoelectronic devices. Owing to their high transparency and electron mobility, zinc oxide nanoparticles (ZnO-NP) are attractive and promising for their application as charge transporting materials for low-temperature processes in organic solar cells (OSCs), particularly because most charge transporting materials require annealing treatments at elevated temperatures. In this study, graphene/annealing-free ZnO-NP hybrid materials were developed for inverted OSC by successfully integrating ZnO-NP on the hydrophobic surface of graphene, thus aiming to enhance the applicability of graphene as a transparent electrode in flexible OSC systems. Chemical, optical, electrical, and morphological analyses of ZnO-NPs showed that the annealing-free process generates similar results to those provided by the conventional annealing process. The approach was effectively applied to graphene-based inverted OSCs with notable power conversion efficiencies of 8.16% and 7.41% on the solid and flexible substrates, respectively, which promises the great feasibility of graphene for emerging optoelectronic device applications.

  17. Ethanedithiol-treated manganese oxide nanoparticles for rapidly responsive and transparent supercapacitors

    Science.gov (United States)

    Ryu, Ilhwan; Kim, Green; Park, Dasom; Yim, Sanggyu

    2015-11-01

    Metal oxide nanoparticles (NPs) provide a large surface area and short diffusion pathways for ions in supercapacitor electrode materials. However, binders and conductive additives used for tight connections with current collectors and improved conductivity hamper these benefits. In this work, we successfully fix manganese oxide (Mn3O4) NPs onto ITO current collectors by a simple 1,2-ethanedithiol (EDT) treatment without using any binders or conductive additives. As compared to the electrode fabricated using binder-mixed Mn3O4 NPs, the EDT-treated electrode shows significantly improved specific capacitance of 403 F g-1 at a scan rate of 10 mV s-1. The EDT-treatment is more effective at higher scan rates. The specific capacitances, 278 F g-1 at 100 mV s-1 and 202 F g-1 at 200 mV s-1, are larger than those reported so far at scan rates ≥100 mV s-1. The deconvolution of capacitive elements indicates that these improved capacitive properties are attributed to large insertion elements of the binder-free NP electrodes. Furthermore, this additive-free electrode is highly transparent and can be easily fabricated by simple spray-coating on various substrates including polymer films, implying that this new method is promising for the fabrication of large-area, transparent and flexible electrodes for next-generation supercapacitors.

  18. Determination of carbohydrates in honey and milk by capillary electrophoresis in combination with graphene-cobalt microsphere hybrid paste electrodes.

    Science.gov (United States)

    Liang, Peipei; Sun, Motao; He, Peimin; Zhang, Luyan; Chen, Gang

    2016-01-01

    A graphene-cobalt microsphere (CoMS) hybrid paste electrode was developed for the determination of carbohydrates in honey and milk in combination with capillary electrophoresis (CE). The performance of the electrodes was demonstrated by detecting mannitol, sucrose, lactose, glucose, and fructose after CE separation. The five analytes were well separated within 9 min in a 40 cm long capillary at a separation voltage of 12 kV. The electrodes exhibited pronounced electrocatalytic activity, lower detection potentials, enhanced signal-to-noise characteristics, and higher reproducibility. The relation between peak current and analyte concentration was linear over about three orders of magnitude. The proposed method had been employed to determine lactose in bovine milk and glucose and fructose in honey with satisfactory results. Because only electroactive substances in the samples could be detected on the paste electrode, the electropherograms of both food samples were simplified to some extent. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Unconventional supercapacitors from nanocarbon-based electrode materials to device configurations.

    Science.gov (United States)

    Liu, Lili; Niu, Zhiqiang; Chen, Jun

    2016-07-25

    As energy storage devices, supercapacitors that are also called electrochemical capacitors possess high power density, excellent reversibility and long cycle life. The recent boom in electronic devices with different functions in transparent LED displays, stretchable electronic systems and artificial skin has increased the demand for supercapacitors to move towards light, thin, integrated macro- and micro-devices with transparent, flexible, stretchable, compressible and/or wearable abilities. The successful fabrication of such supercapacitors depends mainly on the preparation of innovative electrode materials and the design of unconventional supercapacitor configurations. Tremendous research efforts have been recently made to design and construct innovative nanocarbon-based electrode materials and supercapacitors with unconventional configurations. We review here recent developments in supercapacitors from nanocarbon-based electrode materials to device configurations. The advances in nanocarbon-based electrode materials mainly include the assembly technologies of macroscopic nanostructured electrodes with different dimensions of carbon nanotubes/nanofibers, graphene, mesoporous carbon, activated carbon, and their composites. The electrodes with macroscopic nanostructured carbon-based materials overcome the issues of low conductivity, poor mechanical properties, and limited dimensions that are faced by conventional methods. The configurational design of advanced supercapacitor devices is presented with six types of unconventional supercapacitor devices: flexible, micro-, stretchable, compressible, transparent and fiber supercapacitors. Such supercapacitors display unique configurations and excellent electrochemical performance at different states such as bending, stretching, compressing and/or folding. For example, all-solid-state simplified supercapacitors that are based on nanostructured graphene composite paper are able to maintain 95% of the original capacity at

  20. Hybrid anodes for redox flow batteries

    Science.gov (United States)

    Wang, Wei; Xiao, Jie; Wei, Xiaoliang; Liu, Jun; Sprenkle, Vincent L.

    2015-12-15

    RFBs having solid hybrid electrodes can address at least the problems of active material consumption, electrode passivation, and metal electrode dendrite growth that can be characteristic of traditional batteries, especially those operating at high current densities. The RFBs each have a first half cell containing a first redox couple dissolved in a solution or contained in a suspension. The solution or suspension can flow from a reservoir to the first half cell. A second half cell contains the solid hybrid electrode, which has a first electrode connected to a second electrode, thereby resulting in an equipotential between the first and second electrodes. The first and second half cells are separated by a separator or membrane.

  1. Synergistic tungsten oxide/organic framework hybrid nanofibers for electrochromic device application

    Science.gov (United States)

    Dulgerbaki, Cigdem; Komur, Ali Ihsan; Nohut Maslakci, Neslihan; Kuralay, Filiz; Uygun Oksuz, Aysegul

    2017-08-01

    We report the first successful applications of tungsten oxide/conducting polymer hybrid nanofiber assemblies in electrochromic devices. Poly(3,4-ethylenedioxythiophene)/tungsten oxide (PEDOT/WO3) and polypyrrole/tungsten oxide (PPy/WO3) composites were prepared by an in situ chemical oxidative polymerization of monomers in different ionic liquids; 1-butyl-3-methylimidazolium tetrafluoroborate (BMIMBF4), 1-butyl-3-methylimidazolium hexafluorophosphate (BMIMPF6), 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl) imide (BMIMTFSI) and 1-butyl-1-methylpyrrolidinium bis(trifluoromethylsulfonyl) imide (BMPTFSI). Electrospinning process was used to form hybrid nanofibers from chemically synthesized nanostructures. The electrospun hybrid samples were compared from both morphological and electrochemical perspectives. Importantly, deposition of nanofibers from chemically synthesized hybrids can be achieved homogenously, on nanoscale dimensions. The morphologies of these assemblies were evaluated by SEM, whereas their electroactivity was characterized by cyclic voltammetry. Electrochromic devices made from hybrid nanofiber electrodes exhibited highest chromatic contrast of 37.66% for PEDOT/WO3/BMIMPF6, 40.42% for PPy/WO3/BMIMBF4 and show a strong electrochromic color change from transparent to light brown. Furthermore, the nanofiber devices exhibit outstanding stability when color switching proceeds, which may ensure a versatile platform for color displays, rear-view mirrors and smart windows.

  2. Advantages of using Ti-mesh type electrodes for flexible dye-sensitized solar cells

    International Nuclear Information System (INIS)

    He Weizhen; Kim, Hyung-Kook; Hwang, Yoon-Hwae; Qiu Jijun; Zhuge Fuwei; Li Xiaomin; Lee, Jae-Ho; Kim, Yang-Do

    2012-01-01

    We used Ti meshes for both the photoanodes and counter electrodes of dye-sensitized solar cells (DSSCs) to improve the flexibility and conductivity of the electrodes. These mesh type electrodes showed good transparency and high bendability when subjected to an external force. We demonstrated the advantages of cells using such electrodes compared to traditional transparent conducting oxide based electrodes and back side illuminated DSSCs, such as low sheet resistance, elevated photo-induced current and enhanced sunlight utilization. Nanotube layers of different thicknesses were investigated to determine their effect on the photovoltaic parameters of the cell. The overall efficiency of the best cells was approximately 5.3% under standard air mass 1.5 global (AM 1.5 G) solar conditions. Furthermore, the DSSCs showed an efficiency of approximately 3.15% due to the all Ti-mesh type electrodes even after illumination from the back side. (paper)

  3. High performance and transparent multilayer MoS2 transistors: Tuning Schottky barrier characteristics

    Directory of Open Access Journals (Sweden)

    Young Ki Hong

    2016-05-01

    Full Text Available Various strategies and mechanisms have been suggested for investigating a Schottky contact behavior in molybdenum disulfide (MoS2 thin-film transistor (TFT, which are still in much debate and controversy. As one of promising breakthrough for transparent electronics with a high device performance, we have realized MoS2 TFTs with source/drain electrodes consisting of transparent bi-layers of a conducting oxide over a thin film of low work function metal. Intercalation of a low work function metal layer, such as aluminum, between MoS2 and transparent source/drain electrodes makes it possible to optimize the Schottky contact characteristics, resulting in about 24-fold and 3 orders of magnitude enhancement of the field-effect mobility and on-off current ratio, respectively, as well as transmittance of 87.4 % in the visible wavelength range.

  4. Functionalized Graphene–Polyoxometalate Nanodots Assembly as “Organic–Inorganic” Hybrid Supercapacitors and Insights into Electrode/Electrolyte Interfacial Processes

    Directory of Open Access Journals (Sweden)

    Sanju Gupta

    2017-07-01

    Full Text Available The stable high-performance electrochemical electrodes consisting of supercapacitive reduced graphene oxide (rGO nanosheets decorated with pseudocapacitive polyoxometalates (phosphomolybdate acid-H3PMo12O40 (POM and phosphotungstic acid-H3PW12O40 (POW nanodots/nanoclusters are hydrothermally synthesized. The interactions between rGO and POM (and POW components create emergent “organic–inorganic” hybrids with desirable physicochemical properties (specific surface area, mechanical strength, diffusion, facile electron and ion transport enabled by molecularly bridged (covalently and electrostatically tailored interfaces for electrical energy storage. The synergistic hybridization between two electrochemical energy storage mechanisms, electrochemical double-layer from rGO and redox activity (faradaic of nanoscale POM (and POW nanodots, and the superior operating voltage due to high overpotential yielded converge yielding a significantly improved electrochemical performance. They include increase in specific capacitance from 70 F·g−1 for rGO to 350 F·g−1 for hybrid material with aqueous electrolyte (0.4 M sodium sulfate, higher current carrying capacity (>10 A·g−1 and excellent retention (94% resulting higher specific energy and specific power density. We performed scanning electrochemical microscopy to gain insights into physicochemical processes and quantitatively determine associated parameters (diffusion coefficient (D and heterogeneous electron transfer rate (kET at electrode/electrolyte interface besides mapping electrochemical (reactivity and electro-active site distribution. The experimental findings are attributed to: (1 mesoporous network and topologically multiplexed conductive pathways; (2 higher density of graphene edge plane sites; and (3 localized pockets of re-hybridized orbital engineered modulated band structure provided by polyoxometalates anchored chemically on functionalized graphene nanosheets, contribute toward

  5. TiN nanoparticles on CNT-graphene hybrid support as noble-metal-free counter electrode for quantum-dot-sensitized solar cells.

    Science.gov (United States)

    Youn, Duck Hyun; Seol, Minsu; Kim, Jae Young; Jang, Ji-Wook; Choi, Youngwoo; Yong, Kijung; Lee, Jae Sung

    2013-02-01

    The development of an efficient noble-metal-free counter electrode is crucial for possible applications of quantum-dot-sensitized solar cells (QDSSCs). Herein, we present TiN nanoparticles on a carbon nanotube (CNT)-graphene hybrid support as a noble-metal-free counter electrode for QDSSCs employing a polysulfide electrolyte. The resulting TiN/CNT-graphene possesses an extremely high surface roughness, a good metal-support interaction, and less aggregation relative to unsupported TiN; it also has superior solar power conversion efficiency (4.13 %) when applying a metal mask, which is much higher than that of the state-of-the-art Au electrode (3.35 %). Based on electrochemical impedance spectroscopy measurements, the enhancement is ascribed to a synergistic effect between TiN nanoparticles and the CNT-graphene hybrid, the roles of which are to provide active sites for the reduction of polysulfide ions and electron pathways to TiN nanoparticles, respectively. The combination of graphene and CNTs leads to a favorable morphology that prevents stacking of graphene or bundling of CNTs, which maximizes the contact of the support with TiN nanoparticles and improves electron-transfer capability relative to either carbon material alone. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Transparent Conductive Ink for Additive Manufacturing

    Science.gov (United States)

    Patlan, X. J.; Rolin, T. D.

    2017-01-01

    NASA analyzes, tests, packages, and fabricates electrical, electronic, and electromechanical (EEE) parts. Nanotechnology is listed in NASA's Technology Roadmap as a key area to invest for further development.1 This research project focused on using nanotechnology to improve electroluminescent lighting in terms of additive manufacturing and to increase energy efficiency. Specifically, this project's goal was to produce a conductive but transparent printable ink that can be sprayed on any surface for use as one of the electrodes in electroluminescent device design. This innovative work is known as thick film dielectric electroluminescent (TDEL) technology. TDEL devices are used for "backlighting, illumination, and identification due to their tunable color output, scalability, and efficiency" (I.K. Small, T.D. Rolin, and A.D. Shields, "3D Printed Electroluminescent Light Panels," NASA Fiscal Year 2017 Center Innovation Fund Proposal, unpublished data, 2017). These devices use a 'front-to-back' printing method, where the substrate is the transparent layer, and the dielectric and phosphor are layered on top. This project is a first step in the process of creating a 3D printable 'back-to-front' electroluminescent device. Back-to-front 3D-printed devices are beneficial because they can be printed onto different substrates and embedded in different surfaces, and the substrate is not required to be transparent, all because the light is emitted from the top surface through the transparent conductor. Advances in this area will help further development of printing TDEL devices on an array of different surfaces. Figure 1 demonstrates the layering of the two electrodes that are aligned in a parallel plate capacitor structure (I.K. Small, T.D. Rolin, and A.D. Shields, "3D Printed Electroluminescent Light Panels," NASA Fiscal Year 2017 Center Innovation Fund Proposal, unpublished data, 2017). Voltage is applied across the device, and the subsequent electron excitation results in

  7. EDITORIAL: On display with transparent conducting films On display with transparent conducting films

    Science.gov (United States)

    Demming, Anna

    2012-03-01

    by a researcher in the early 1930s, 'It is obvious that if the dyes used for selective staining in ordinary microscopical work are supplemented by substances which cause a particular detail of the structure to fluoresce with a specific colour in ultraviolet light, then many strings will be added to the bow of the practical microscopist' [3]. More recently, emphasis on the role of plasmons—collective oscillations of electrons in nanoscale metal structures—has received considerable research attention. Plasmons enhance the local electromagnetic field and can lead to increased fluorescence rates from nearby fluorophores depending on the efficiency of the counteracting process, non-radiative transfer [4]. Flat ITO films have been used extensively in photovoltaic studies as transparent electrodes [5]. Over the past few years, nanowire structures have recently been used to increase the surface area of the interface between dye and oxide in dye-sensitized solar cells [6]. A collaboration of researchers in China and Australia has recently extended the innovation of the nanowire structure to the ITO electrode [7]. Using cyclic voltammetry the researchers confirmed that using a 3D ITO-nanowire electrode significantly enhanced the reaction current. Despite its attractive properties, alternatives to ITO are now in high demand. The rise in devices requiring flat electronic displays has begun to overwhelm the legitimacy of using such a rare element as indium for transparent conducting films. ITO is also brittle, causing problems for flexible displays. Films of carbon nanotubes have been proposed for transparent conducting films but improvements to the sheet resistance are needed before they can compete with the performance of ITO. The effects of HNO3 treatment on the resistivity of carbon nanotube films has attracted some debate in the community, and stimulated the work of Ji-Beom Yoo and colleagues in Korea [8]. Their results suggest that p-type doping has a larger effect on

  8. Self-Healable, Stretchable, Transparent Triboelectric Nanogenerators as Soft Power Sources.

    Science.gov (United States)

    Sun, Jiangman; Pu, Xiong; Liu, Mengmeng; Yu, Aifang; Du, Chunhua; Zhai, Junyi; Hu, Weiguo; Wang, Zhong Lin

    2018-06-04

    Despite the rapid advancements of soft electronics, developing compatible energy devices will be the next challenge for their viable applications. Here, we report an energy-harnessing triboelectric nanogenerator (TENG) as a soft electrical power source, which is simultaneously self-healable, stretchable, and transparent. The nanogenerator features a thin-film configuration with buckled Ag nanowires/poly(3,4-ethylenedioxythiophene) composite electrode sandwiched in room-temperature self-healable poly(dimethylsiloxane) (PDMS) elastomers. Dynamic imine bonds are introduced in PDMS networks for repairing mechanical damages (94% efficiency), while the mechanical recovery of the elastomer is imparted to the buckled electrode for electrical healing. By adjusting the buckling wavelength of the electrode, the stretchability and transparency of the soft TENG can be tuned. A TENG (∼50% stretchabitliy, ∼73% transmittance) can recover the electricity genearation (100% healing efficiency) even after accidental cutting. Finally, the conversion of biomechanical energies into electricity (∼100 V, 327 mW/m 2 ) is demonstrated by a skin-like soft TENG. Considering all these merits, this work suggests a potentially promising approach for next-generation soft power sources.

  9. Optical and electrical properties of structured multilayer with tunable transparency rate

    International Nuclear Information System (INIS)

    Bou, Adrien; Torchio, Philippe; Barakel, Damien; Guillou, Aurélie; Thoulon, Pierre-Yves; Ricci, Marc; Ayachi, Boubakeur

    2015-01-01

    An experimental study has been carried out on structured multilayer with tunable transparency rate. In this paper, we present the optical and electrical characterization of an oxide | metal | oxide structured electrode manufactured by e-beam deposition and patterned by a lift-off process. The obtained samples are made of grids with different geometrical parameters that lead to varying surface coverage rate on glass. The electrical and optical parameters of SnO x |Ag|SnO x grids are investigated to determine the efficiency, sustainability and limitations of such structures. A linear relationship between the transmittance of the electrodes and the increase of the surface coverage rate is obtained. Coupled to an optimization process, we are able to define a high transparency in a chosen spectral range. Electrical results show a relative stability of the resistivity from 2.9   ×   10   −  4  Ω.cm for an as-grown electrode to 5.6   ×   10   −  4  Ω.cm for a structured electrode with a surface coverage rate of 59%. (paper)

  10. ITO nanoparticles reused from ITO scraps and their applications to sputtering target for transparent conductive electrode layer.

    Science.gov (United States)

    Hong, Sung-Jei; Song, Sang-Hyun; Kim, Byeong Jun; Lee, Jae-Yong; Kim, Young-Sung

    2017-01-01

    In this study, ITO nanoparticles (ITO-NPs) were reused from ITO target scraps to synthesize low cost ITO-NPs and to apply to make sputtering target for transparent conductive electrodes (TCEs). By controlling heat-treatment temperature as 980 °C, we achieved reused ITO-NPs having Brunauer, Emmett and Teller specific surface area (BET SSA) and average particle size 8.05 m 2 /g and 103.8 nm, respectively. The BET SSA decreases along with increasing heat-treatment temperature. The ITO-NPs were grown as round mound shape, and highly crystallized to (222) preferred orientations. Also, applying the reused ITO-NPs, we achieved an ITO target of which density was 99.6%. Using the ITO target, we achieved high quality TCE layer of which sheet resistance and optical transmittance at 550 nm were 29.5 Ω/sq. and 82.3%. Thus, it was confirmed that the reused ITO-NPs was feasible to sputtering target for TCEs layer.

  11. ITO nanoparticles reused from ITO scraps and their applications to sputtering target for transparent conductive electrode layer

    Science.gov (United States)

    Hong, Sung-Jei; Song, Sang-Hyun; Kim, Byeong Jun; Lee, Jae-Yong; Kim, Young-Sung

    2017-09-01

    In this study, ITO nanoparticles (ITO-NPs) were reused from ITO target scraps to synthesize low cost ITO-NPs and to apply to make sputtering target for transparent conductive electrodes (TCEs). By controlling heat-treatment temperature as 980 °C, we achieved reused ITO-NPs having Brunauer, Emmett and Teller specific surface area (BET SSA) and average particle size 8.05 m2/g and 103.8 nm, respectively. The BET SSA decreases along with increasing heat-treatment temperature. The ITO-NPs were grown as round mound shape, and highly crystallized to (222) preferred orientations. Also, applying the reused ITO-NPs, we achieved an ITO target of which density was 99.6%. Using the ITO target, we achieved high quality TCE layer of which sheet resistance and optical transmittance at 550 nm were 29.5 Ω/sq. and 82.3%. Thus, it was confirmed that the reused ITO-NPs was feasible to sputtering target for TCEs layer.

  12. Voltammetric behavior of osmium-labeled DNA at mercury meniscus-modified solid amalgam electrodes. Detecting DNA hybridization

    Czech Academy of Sciences Publication Activity Database

    Josypčuk, Bohdan; Fojta, Miroslav; Havran, Luděk; Heyrovský, Michael; Paleček, Emil

    2006-01-01

    Roč. 18, č. 2 (2006), s. 186-194 ISSN 1040-0397 R&D Projects: GA MPO 1H-PK/42; GA AV ČR IAA4004402; GA AV ČR KJB4004302; GA AV ČR IBS5004355 Institutional research plan: CEZ:AV0Z40400503; CEZ:AV0Z50040507 Keywords : voltammetry * solid amalgam electrodes * DNA-osmium complex * hybridization * catalytic hydrogen evolution Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 2.444, year: 2006

  13. Sensitive electrochemiluminescence biosensor based on Au-ITO hybrid bipolar electrode amplification system for cell surface protein detection.

    Science.gov (United States)

    Wu, Mei-Sheng; Yuan, Da-Jing; Xu, Jing-Juan; Chen, Hong-Yuan

    2013-12-17

    Here we developed a novel hybrid bipolar electrode (BPE)-electrochemiluminescence (ECL) biosensor based on hybrid bipolar electrode (BPE) for the measurement of cancer cell surface protein using ferrocence (Fc) labeled aptamer as signal recognition and amplification probe. According to the electric neutrality of BPE, the cathode of U-shaped ITO BPE was electrochemically deposited by Au nanoparticles (NPs) to enhance its conductivity and surface area, decrease the overpotential of O2 reduction, which would correspondingly increase the oxidation current of Ru(bpy)3(2+)/tripropylamine (TPA) on the anode of BPE and resulting a ∼4-fold enhancement of ECL intensity. Then a signal amplification strategy was designed by introducing Fc modified aptamer on the anode surface of BPE through hybridization for detecting the amount of mucin-1 on MCF-7 cells. The presence of Fc could not only inhibit the oxidation of Ru(bpy)3(2+) because of its lower oxidation potential, its oxidation product Fc(+) could also quench the ECL of Ru(bpy)3(2+)/TPA by efficient energy-transfer from the excited-state Ru(bpy)3(2+)* to Fc(+), making the ECL intensity greatly quenched. On the basis of the cathodic Au NPs induced ECL enhancing coupled with anodic Fc induced signal quenching amplification, the approach allowed detection of mucin-1 aptamer at a concentration down to 0.5 fM and was capable of detecting a minimum of 20 MCF-7 cells. Besides, the amount of mucin-1 on MCF-7 cells was calculated to be 9041 ± 388 molecules/cell. This approach therefore shows great promise in bioanalysis.

  14. Integrated fast assembly of free-standing lithium titanate/carbon nanotube/cellulose nanofiber hybrid network film as flexible paper-electrode for lithium-ion batteries.

    Science.gov (United States)

    Cao, Shaomei; Feng, Xin; Song, Yuanyuan; Xue, Xin; Liu, Hongjiang; Miao, Miao; Fang, Jianhui; Shi, Liyi

    2015-05-27

    A free-standing lithium titanate (Li4Ti5O12)/carbon nanotube/cellulose nanofiber hybrid network film is successfully assembled by using a pressure-controlled aqueous extrusion process, which is highly efficient and easily to scale up from the perspective of disposable and recyclable device production. This hybrid network film used as a lithium-ion battery (LIB) electrode has a dual-layer structure consisting of Li4Ti5O12/carbon nanotube/cellulose nanofiber composites (hereinafter referred to as LTO/CNT/CNF), and carbon nanotube/cellulose nanofiber composites (hereinafter referred to as CNT/CNF). In the heterogeneous fibrous network of the hybrid film, CNF serves simultaneously as building skeleton and a biosourced binder, which substitutes traditional toxic solvents and synthetic polymer binders. Of importance here is that the CNT/CNF layer is used as a lightweight current collector to replace traditional heavy metal foils, which therefore reduces the total mass of the electrode while keeping the same areal loading of active materials. The free-standing network film with high flexibility is easy to handle, and has extremely good conductivity, up to 15.0 S cm(-1). The flexible paper-electrode for LIBs shows very good high rate cycling performance, and the specific charge/discharge capacity values are up to 142 mAh g(-1) even at a current rate of 10 C. On the basis of the mild condition and fast assembly process, a CNF template fulfills multiple functions in the fabrication of paper-electrode for LIBs, which would offer an ever increasing potential for high energy density, low cost, and environmentally friendly flexible electronics.

  15. Printable inorganic nanomaterials for flexible transparent electrodes: from synthesis to application

    Science.gov (United States)

    Wang, Dingrun; Mei, Yongfeng; Huang, Gaoshan

    2018-01-01

    Printed and flexible electronics are definitely promising cutting-edge electronic technologies of the future. They offer a wide-variety of applications such as flexible circuits, flexible displays, flexible solar cells, skin-like pressure sensors, and radio frequency identification tags in our daily life. As the most-fundamental component of electronics, electrodes are made of conductive materials that play a key role in flexible and printed electronic devices. In this review, various inorganic conductive materials and strategies for obtaining highly conductive and uniform electrodes are demonstrated. Applications of printed electrodes fabricated via these strategies are also described. Nevertheless, there are a number of challenges yet to overcome to optimize the processing and performance of printed electrodes. Project supported by the National Natural Science Foundation of China (Nos. 51475093, U1632115), the Science and Technology Commission of Shanghai Municipality (No. 14JC1400200), the National Key Technologies R&D Program of China (No. 2015ZX02102-003), and the Changjiang Young Scholars Programme of China.

  16. All-Nonvacuum-Processed CIGS Solar Cells Using Scalable Ag NWs/AZO-Based Transparent Electrodes.

    Science.gov (United States)

    Wang, Mingqing; Choy, Kwang-Leong

    2016-07-06

    With record cell efficiency of 21.7%, CIGS solar cells have demonstrated to be a very promising photovoltaic (PV) technology. However, their market penetration has been limited due to the inherent high cost of the cells. In this work, to lower the cost of CIGS solar cells, all nonvacuum-processed CIGS solar cells were designed and developed. CIGS absorber was prepared by the annealing of electrodeposited metallic layers in a chalcogen atmosphere. Nonvacuum-deposited Ag nanowires (NWs)/AZO transparent electrodes (TEs) with good transmittance (92.0% at 550 nm) and high conductivity (sheet resistance of 20 Ω/□) were used to replace the vacuum-sputtered window layer. Additional thermal treatment after device preparation was conducted at 220 °C for a few of minutes to improve both the value and the uniformity of the efficiency of CIGS pixel cell on 5 × 5 cm substrate. The best performance of the all-nonvacuum-fabricated CIGS solar cells showed an efficiency of 14.05% with Jsc of 34.82 mA/cm(2), Voc of 0.58 V, and FF of 69.60%, respectively, which is comparable with the efficiency of 14.45% of a reference cell using a sputtered window layer.

  17. Electrografting of N’,N’-dimethylphenothiazin-5-ium-3,7-diamine (Azure A) diazonium salt forming electrocatalytic organic films on gold or graphene oxide gold hybrid electrodes

    International Nuclear Information System (INIS)

    Gómez-Anquela, C.; Revenga-Parra, M.; Abad, J.M.; Marín, A. García; Pau, J.L.; Pariente, F.; Piqueras, J.; Lorenzo, E.

    2014-01-01

    Electroactive films containing redox active phenothiazine moieties are covalently bound onto gold and graphene oxide gold hybrid electrodes, using reductive redox grafting of N’,N’-dimethylphenothiazin-5-ium-3,7-diamine (Azure A) diazonium salt. The grafting procedure is based on continuous voltammetric potential sweep of solutions containing the phenothiazine diazonium salt previously generated in situ. Control of the film thickness, electroactivity and stability can easily be exerted through appropriate choice of the concentration and number of potential scans performed. Cyclic Voltammetry, Electrochemical Quartz Crystal Microbalance (EQCM) and Spectroscopic Ellipsometry are used to characterize the growth process as well as the viscoelastic properties of the resulting stable electrografted films. The electron transfer reactions through the films are mediated by the presence of the Azure A redox moieties, which show a quasi-reversible electrochemical response and exhibit a potent electrocatalytic effect toward the oxidation of NADH. This electrocatalytic model has been used to compare the properties of Azure A electrografted films generated on gold electrodes with those obtained on hybrid electrodes composed by graphene oxide modified gold electrodes

  18. Continuous, Highly Flexible, and Transparent Graphene Films by Chemical Vapor Deposition for Organic Photovoltaics

    KAUST Repository

    Gomez De Arco, Lewis

    2010-05-25

    We report the implementation of continuous, highly flexible, and transparent graphene films obtained by chemical vapor deposition (CVD) as transparent conductive electrodes (TCE) in organic photovoltaic cells. Graphene films were synthesized by CVD, transferred to transparent substrates, and evaluated in organic solar cell heterojunctions (TCE/poly-3,4- ethylenedioxythiophene:poly styrenesulfonate (PEDOT:PSS)/copper phthalocyanine/fullerene/bathocuproine/aluminum). Key to our success is the continuous nature of the CVD graphene films, which led to minimal surface roughness (∼ 0.9 nm) and offered sheet resistance down to 230 Ω/sq (at 72% transparency), much lower than stacked graphene flakes at similar transparency. In addition, solar cells with CVD graphene and indium tin oxide (ITO) electrodes were fabricated side-by-side on flexible polyethylene terephthalate (PET) substrates and were confirmed to offer comparable performance, with power conversion efficiencies (η) of 1.18 and 1.27%, respectively. Furthermore, CVD graphene solar cells demonstrated outstanding capability to operate under bending conditions up to 138°, whereas the ITO-based devices displayed cracks and irreversible failure under bending of 60°. Our work indicates the great potential of CVD graphene films for flexible photovoltaic applications. © 2010 American Chemical Society.

  19. Continuous, highly flexible, and transparent graphene films by chemical vapor deposition for organic photovoltaics.

    Science.gov (United States)

    Gomez De Arco, Lewis; Zhang, Yi; Schlenker, Cody W; Ryu, Koungmin; Thompson, Mark E; Zhou, Chongwu

    2010-05-25

    We report the implementation of continuous, highly flexible, and transparent graphene films obtained by chemical vapor deposition (CVD) as transparent conductive electrodes (TCE) in organic photovoltaic cells. Graphene films were synthesized by CVD, transferred to transparent substrates, and evaluated in organic solar cell heterojunctions (TCE/poly-3,4-ethylenedioxythiophene:poly styrenesulfonate (PEDOT:PSS)/copper phthalocyanine/fullerene/bathocuproine/aluminum). Key to our success is the continuous nature of the CVD graphene films, which led to minimal surface roughness ( approximately 0.9 nm) and offered sheet resistance down to 230 Omega/sq (at 72% transparency), much lower than stacked graphene flakes at similar transparency. In addition, solar cells with CVD graphene and indium tin oxide (ITO) electrodes were fabricated side-by-side on flexible polyethylene terephthalate (PET) substrates and were confirmed to offer comparable performance, with power conversion efficiencies (eta) of 1.18 and 1.27%, respectively. Furthermore, CVD graphene solar cells demonstrated outstanding capability to operate under bending conditions up to 138 degrees , whereas the ITO-based devices displayed cracks and irreversible failure under bending of 60 degrees . Our work indicates the great potential of CVD graphene films for flexible photovoltaic applications.

  20. Roll-to-roll-compatible, flexible, transparent electrodes based on self-nanoembedded Cu nanowires using intense pulsed light irradiation

    Science.gov (United States)

    Zhong, Zhaoyang; Woo, Kyoohee; Kim, Inhyuk; Hwang, Hyewon; Kwon, Sin; Choi, Young-Man; Lee, Youngu; Lee, Taik-Min; Kim, Kwangyoung; Moon, Jooho

    2016-04-01

    Copper nanowire (Cu NW)-based flexible transparent conductive electrodes (FTCEs) have been investigated in detail for use in various applications such as flexible touch screens, organic photovoltaics and organic light-emitting diodes. In this study, hexadecylamine (HDA) adsorbed onto the surface of NWs is changed into polyvinylpyrrolidone (PVP) via a ligand exchange process; the high-molecular-weight PVP enables high dispersion stability. Intense pulsed light (IPL) irradiation is used to remove organic species present on the surface of the NWs and to form direct connections between the NWs rapidly without any atmospheric control. NWs are self-nanoembedded into a plastic substrate after IPL irradiation, which results in a smooth surface, strong NW/substrate adhesion, excellent mechanical flexibility and enhanced oxidation stability. Moreover, Cu NW FTCEs with high uniformities are successfully fabricated on a large area (150 mm × 200 mm) via successive IPL irradiation that is synchronized with the motion of the sample stage. This study demonstrates the possibility of roll-to-roll-based, large-scale production of low-cost, high-performance Cu NW-based FTCEs.Copper nanowire (Cu NW)-based flexible transparent conductive electrodes (FTCEs) have been investigated in detail for use in various applications such as flexible touch screens, organic photovoltaics and organic light-emitting diodes. In this study, hexadecylamine (HDA) adsorbed onto the surface of NWs is changed into polyvinylpyrrolidone (PVP) via a ligand exchange process; the high-molecular-weight PVP enables high dispersion stability. Intense pulsed light (IPL) irradiation is used to remove organic species present on the surface of the NWs and to form direct connections between the NWs rapidly without any atmospheric control. NWs are self-nanoembedded into a plastic substrate after IPL irradiation, which results in a smooth surface, strong NW/substrate adhesion, excellent mechanical flexibility and enhanced

  1. High performance, transparent a-IGZO TFTs on a flexible thin glass substrate

    International Nuclear Information System (INIS)

    Lee, Gwang Jun; Jang, Jae Eun; Kim, Joonwoo; Kim, Jung-Hye; Jeong, Soon Moon; Jeong, Jaewook

    2014-01-01

    We investigated electrical properties of transparent amorphous indium gallium zinc oxide (a-IGZO) thin-film transistors (TFTs) with amorphous indium zinc oxide (a-IZO) transparent electrodes on a flexble thin glass substrate. The TFTs show a high field-effect mobility, a good subthreshold slope and a high on/off ratio owing to the high temperature thermal annealing process which cannot be applied to typical transparent polymer-based flexible substrates. Bias stress instability tests applying tensile stress concurrently with the bending radius of up to 40 mm indicated that mechanically and electrically stable a-IGZO TFTs can be fabricated on the transparent thin glass substrate. (paper)

  2. Highly flexible transparent thin film heaters based on silver nanowires and aluminum zinc oxides

    Energy Technology Data Exchange (ETDEWEB)

    Cheong, Hahn-Gil; Kim, Jin-Hoon; Song, Jun-Hyuk; Jeong, Unyong; Park, Jin-Woo, E-mail: jwpark09@yonsei.ac.kr

    2015-08-31

    In this work, we developed highly flexible transparent film heaters (f-TFHs) composed of Ag nanowire networks (AgNWs) and aluminum zinc oxide (AZO). Uniform AgNWs were roll-to-roll coated on polyethylene terephthalate (PET) substrates using the Mayer rod method, and AZO was sputter-deposited atop the AgNWs at room temperature. The sheet resistance (R{sub s}) and transparency (T{sub opt}) of the AZO-coated AgNWs changed only slightly compared with the uncoated AgNWs. AZO is thermally less conductive than the heat pipes, but increases the thermal efficiency of the heaters blocking the heat convection through the air. Based on Joule heating, a higher average film temperature (T{sub ave}) is attained at a fixed electric potential drop between electrodes (ϕ) as the R{sub s} of the film decreases. Our experimental results revealed that T{sub ave} of the hybrid f-TFH is higher than AgNWs when the ratio of the area coverage of AgNWs to AZO is over a certain value. When a ϕ as low as 3 V/cm was applied to 5 cm × 5 cm f-TFHs, the maximum temperature of the hybrid film was over 100 °C, which is greater than that of AgNWs by more than 30 °C. Furthermore, uniform heating throughout the surfaces is achieved in the hybrid films while heating begins in small areas where densities of the nanowires (NWs) are the highest in the bare network. The non-uniform heating decreases the lifetime of f-TFHs by forming hot spots. Cyclic bending test results indicated that the hybrid films were as flexible as the AgNWs, and the R{sub s} of the hybrid films changes only slightly until 5000 cycles. Combined with the high-throughput coating technology presented here, the hybrid films will provide a robust and scalable strategy for large-area f-TFHs with highly enhanced performance. - Highlights: • We developed highly efficient flexible thin film heaters based on Ag nanowires and AZO composites. • In the composite, AZO plays an important role as an insulation blanket to block heat loss to

  3. Graphene and PbS quantum dot hybrid vertical phototransistor

    Science.gov (United States)

    Song, Xiaoxian; Zhang, Yating; Zhang, Haiting; Yu, Yu; Cao, Mingxuan; Che, Yongli; Dai, Haitao; Yang, Junbo; Ding, Xin; Yao, Jianquan

    2017-04-01

    A field-effect phototransistor based on a graphene and lead sulfide quantum dot (PbS QD) hybrid in which PbS QDs are embedded in a graphene matrix has been fabricated with a vertical architecture through a solution process. The n-type Si/SiO2 substrate (gate), Au/Ag nanowire transparent source electrode, active layer and Au drain electrode are vertically stacked in the device, which has a downscaled channel length of 250 nm. Photoinduced electrons in the PbS QDs leap into the conduction band and fill in the trap states, while the photoinduced holes left in the valence band transfer to the graphene and form the photocurrent under biases from which the photoconductive gain is evaluated. The graphene/QD-based vertical phototransistor shows a photoresponsivity of 2 × 103 A W-1, and specific detectivity up to 7 × 1012 Jones under 808 nm laser illumination with a light irradiance of 12 mW cm-2. The solution-processed vertical phototransistor provides a new facile method for optoelectronic device applications.

  4. High performance and transparent multilayer MoS{sub 2} transistors: Tuning Schottky barrier characteristics

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Young Ki; Kwon, Junyeon; Hong, Seongin; Song, Won Geun; Liu, Na; Omkaram, Inturu; Kim, Sunkook, E-mail: kimskcnt@gmail.com, E-mail: ohms@keti.re.kr [Multi-Functional Bio/Nano Lab., Kyung Hee University, Gyeonggi 446-701 (Korea, Republic of); Yoo, Geonwook; Yoo, Byungwook; Oh, Min Suk, E-mail: kimskcnt@gmail.com, E-mail: ohms@keti.re.kr [Display Convergence Research Center, Korea Electronics Technology Institute, Gyeonggi 463-816 (Korea, Republic of); Ju, Sanghyun [Department of Physics, Kyonggi University, Suwon, Gyeonggi-Do 443-760 (Korea, Republic of)

    2016-05-15

    Various strategies and mechanisms have been suggested for investigating a Schottky contact behavior in molybdenum disulfide (MoS{sub 2}) thin-film transistor (TFT), which are still in much debate and controversy. As one of promising breakthrough for transparent electronics with a high device performance, we have realized MoS{sub 2} TFTs with source/drain electrodes consisting of transparent bi-layers of a conducting oxide over a thin film of low work function metal. Intercalation of a low work function metal layer, such as aluminum, between MoS{sub 2} and transparent source/drain electrodes makes it possible to optimize the Schottky contact characteristics, resulting in about 24-fold and 3 orders of magnitude enhancement of the field-effect mobility and on-off current ratio, respectively, as well as transmittance of 87.4 % in the visible wavelength range.

  5. Synthesis of silver nanowires using hydrothermal technique for flexible transparent electrode application

    Energy Technology Data Exchange (ETDEWEB)

    Vijila, C. V. Mary; Rahman, K. K. Arsina; Parvathy, N. S.; Jayaraj, M. K., E-mail: mkj@cusat.ac.in [Nanophotonic and Optoelectronic Division, Dept. of Physics, Cochin University of Science and Technology, Kochi, Kerala (India)

    2016-05-23

    Transparent conducting films are becoming increasingly interesting because of their applications in electronics industry such as their use in solar energy applications. In this work silver nanowires were synthesized using solvothermal method by reducing silver nitrate and adding sodium chloride for assembling silver into nanowires. Absorption spectra of nanowires in the form of a dispersion in deionized water, AFM and SEM images confirm the nanowire formation. Solution of nanowire was coated over PET films to obtain transparent conducting films.

  6. Amperometric sensing of NADH and ethanol using a hybrid film electrode modified with electrochemically fabricated zirconia nanotubes and poly (acid fuchsin)

    International Nuclear Information System (INIS)

    Liu, X.; Li, B.; Zhan, G.; Liu, C.; Li, C.; Ma, M.

    2012-01-01

    We report on a glassy carbon electrode (GCE) modified with a film of chitosin containing acid fuchsin (AF) adsorbed onto zirconia nanotubes. The mixture was polymerized by cyclic voltammetric scannings in the potential range from - 0. 8 V to +1. 3 V in buffer solution to produce a hybrid film electrode (nano-ZrO 2 /PAF/GCE). The morphology of the hybrid film electrode surface was characterized by scanning electron microscopy. Its electrochemical properties were studied via electrochemical impedance spectroscopy. The electrochemical response of nicotinamide adenine dinucleotide (NADH) was investigated by differential pulse voltammetry and amperometry. The results indicated that the nano-ZrO 2 /PAF/GCE possesses well synergistic catalytic activity towards NADH. Compared to an unmodified GCE, the oxidation overpotential is negatively shifted by 224 mV, and the oxidation current is significantly increased. Under optimal conditions, the amperometric response is linearly proportional to the concentration of NADH in the 1. 0 - 100. 0 μM concentration range. Ethanol also can be determined by amperometry if alcohol dehydrogenase and NADH are added to the sample. Two linear relationships between current and alcohol concentration were obtained. They cover the range from 0. 03 to 1. 0 mM, and from 1. 0 to 12. 0 mM. (author)

  7. Meso-pores carbon nano-tubes (CNTs) tissues-perfluorocarbons (PFCs) hybrid air-electrodes for Li-O2 battery

    Science.gov (United States)

    Balaish, Moran; Ein-Eli, Yair

    2018-03-01

    Adding immiscible perfluorocarbons (PFCs), possessing superior oxygen solubility and diffusivity, to a free-standing (metal-free and binder-free) CNTs air-electrode tissues with a meso-pore structure, fully maximized the advantages of PFCs as oxygenated-species' channels-providers. The discharge behavior of hybrid PFCs-CNT Li-O2 systems demonstrated a drastic increase in cell capacity at high current density (0.2 mA cm-2), where oxygen transport limitations are best illustrated. The results of this research revealed several key factors affecting PFCs-Li-O2 systems. The incorporation of PFCs with higher superoxide solubility and oxygen diffusivity, but more importantly higher PFCs/electrolyte miscibility, in a meso-pore air-electrode enabled better exploitation of PFCs potential. Consequently, the utilization of the air-electrode' surface area was enhanced via the formation of artificial three phase reaction zones with additional oxygen transportation routes, leading to uniform and intimate Li2O2 deposit at areas further away from the oxygen reservoir. Associated mechanisms are discussed along with insights into an improved Li-O2 battery system.

  8. Towards colorless transparent organic transistors: potential of benzothieno[3,2-b]benzothiophene-based wide-gap semiconductors.

    Science.gov (United States)

    Moon, Hanul; Cho, Hyunsu; Kim, Mincheol; Takimiya, Kazuo; Yoo, Seunghyup

    2014-05-21

    Colorless, highly transparent organic thin-film transistors (TOTFTs) with high performance are realized based on benzothieno[3,2-b]benzothiophene (BTBT) derivatives that simultaneously exhibit a wide energy gap and high transport properties. Multilayer transparent source/drain electrodes maintain the transparency, and ultrathin fluoropolymer dielectric layers enable stable, low-voltage operation of the proposed TOTFTs. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Electrochemical DNA biosensor based on the BDD nanograss array electrode.

    Science.gov (United States)

    Jin, Huali; Wei, Min; Wang, Jinshui

    2013-04-10

    The development of DNA biosensor has attracted considerable attention due to their potential applications, including gene analysis, clinical diagnostics, forensic study and more medical applications. Using electroactive daunomycin as an indicator, the hybridization detection was measured by differential pulse voltammetry in this study. Electrochemical DNA biosensor was developed based on the BDD film electrode (fBDD) and BDD nanograss array electrode (nBDD). In comparison with fBDD and AuNPs/CA/fBDD electrode, the lower semicircle diameter of electrochemical impedance spectroscopy obtained on nBDD and AuNPs/CA/nBDD electrode indicated that the presence of nanograss array improved the reactive site, reduced the interfacial resistance, and made the electron transfer easier. Using electroactive daunomycin as an indicator, the hybridization detection was measured by differential pulse voltammetry. The experimental results demonstrated that the prepared AuNPs/CA/nBDD electrode was suitable for DNA hybridization with favorable performance of faster response, higher sensitivity, lower detection limit and satisfactory selectivity, reproducibility and stability.

  10. Improvement of the electrochromic response of a low-temperature sintered dye-modified porous electrode using low-resistivity indium tin oxide nanoparticles

    International Nuclear Information System (INIS)

    Watanabe, Yuichi; Suemori, Kouji; Hoshino, Satoshi

    2016-01-01

    An indium tin oxide (ITO) nanoparticle-based porous electrode sintered at low temperatures was investigated as a transparent electrode for electrochromic displays (ECDs). The electrochromic (EC) response of the dye-modified ITO porous electrode sintered at 150 °C, which exhibited a generally low resistivity, was markedly superior to that of a conventional dye-modified TiO 2 porous electrode sintered at the same temperature. Moreover, the EC characteristics of the dye-modified ITO porous electrode sintered at 150 °C were better than those of the high-temperature (450 °C) sintered conventional dye-modified TiO 2 porous electrode. These improvements in the EC characteristics of the dye-modified ITO porous electrode are attributed to its lower resistivity than that of the TiO 2 porous electrodes. In addition to its sufficiently low resistivity attained under the sintering conditions required for flexible ECD applications, the ITO porous film had superior visible-light transparency and dye adsorption capabilities. We conclude that the process temperature, resistivity, optical transmittance, and dye adsorption capability of the ITO porous electrode make it a promising transparent porous electrode for flexible ECD applications.

  11. Electrokinetic acceleration of DNA hybridization in microsystems.

    Science.gov (United States)

    Lei, Kin Fong; Wang, Yun-Hsiang; Chen, Huai-Yi; Sun, Jia-Hong; Cheng, Ji-Yen

    2015-06-01

    In this work, electrokinetic acceleration of DNA hybridization was investigated by different combinations of frequencies and amplitudes of actuating electric signals. Because the frequencies from low to high can induce different kinds of electrokinetic forces, i.e., electroosmotic to electrothermal forces, this work provides an in-depth investigation of electrokinetic enhanced hybridization. Concentric circular Cr/Au microelectrodes of 350 µm in diameter were fabricated on a glass substrate and probe DNA was immobilized on the electrode surface. Target DNA labeled with fluorescent dyes suspending in solution was then applied to the electrode. Different electrokinetic forces were induced by the application of different electric signals to the circular microelectrodes. Local microfluidic vortexes were generated to increase the collision efficiency between the target DNA suspending in solution and probe DNA immobilized on the electrode surface. DNA hybridization on the electrode surface could be accelerated by the electrokinetic forces. The level of hybridization was represented by the fluorescent signal intensity ratio. Results revealed that such 5-min dynamic hybridization increased 4.5 fold of signal intensity ratio as compared to a 1-h static hybridization. Moreover, dynamic hybridization was found to have better differentiation ability between specific and non-specific target DNA. This study provides a strategy to accelerate DNA hybridization in microsystems. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Electro-catalytic biodiesel production from canola oil in methanolic and ethanolic solutions with low cost stainless steel and hybrid ion-exchange resin grafted electrodes

    Science.gov (United States)

    Allioux, Francois-Marie; Holland, Brendan J.; Kong, Lingxue; Dumée, Ludovic F.

    2017-07-01

    Biodiesel is a growing alternative to petroleum fuels and is produced by the catalysed transesterification of fats in presence of an alcohol base. Transesterification processes using homogeneous catalysts are considered to be amongst the most efficient methods but rely on the feedstock quality and low water content in order to avoid undesirable saponification reactions. In this work, the electro-catalytic conversion of canola oil to biodiesel in a 1% aqueous methanolic and ethanolic reaction mixture was performed without the addition of external catalyst or co-solvent. An inexpensive stainless steel electrode and a hybrid stainless steel electrode coated with an ion-exchange resin catalyst were used as cathode materials while the anode was composed of a plain carbon paper. The cell voltages were varied from 10 to 40 V and the reaction temperature maintained at 20 or 40°C. The canola oil conversion rates were found to be superior at 40°C without saponification reactions for cell voltages below 30 V. The conversion rates were as high as 87% for the hybrid electrode and 81% for the plain stainless steel electrode. This work could inspire new process development for the conversion of high water content feedstock for the production of second-generation biodiesel.

  13. Electro-Catalytic Biodiesel Production from Canola Oil in Methanolic and Ethanolic Solutions with Low-Cost Stainless Steel and Hybrid Ion-Exchange Resin Grafted Electrodes

    Directory of Open Access Journals (Sweden)

    Francois-Marie Allioux

    2017-07-01

    Full Text Available Biodiesel is a growing alternative to petroleum fuels and is produced by the catalyzed transesterification of fats in presence of an alcohol base. Transesterification processes using homogeneous catalysts are considered to be among the most efficient methods but rely on the feedstock quality and low water content in order to avoid undesirable saponification reactions. In this work, the electro-catalytic conversion of canola oil to biodiesel in a 1% aqueous methanolic and ethanolic reaction mixture was performed without the addition of external catalyst or cosolvent. An inexpensive stainless steel (SS electrode and a hybrid SS electrode coated with an ion-exchange resin catalyst were used as cathode materials while the anode was composed of a plain carbon paper. The cell voltages were varied from 10 to 40 V and the reaction temperature maintained at 20 or 40°C. The canola oil conversion rates were found to be superior at 40°C without saponification reactions for cell voltages below 30 V. The conversion rates were as high as 87% for the hybrid electrode and 81% for the plain SS electrode. This work could inspire new process development for the conversion of high water content feedstock for the production of second-generation biodiesel.

  14. Transparent Oxide Semiconductors for Emerging Electronics

    KAUST Repository

    Caraveo-Frescas, Jesus Alfonso

    2013-11-01

    Transparent oxide electronics have emerged as promising materials to shape the future of electronics. While several n-type oxides have been already studied and demonstrated feasibility to be used as active materials in thin film transistors, high performance p-type oxides have remained elusive. This dissertation is devoted to the study of transparent p-type oxide semiconductor tin monoxide and its use in the fabrication of field effect devices. A complete study on the deposition of tin monoxide thin films by direct current reactive magnetron sputtering is performed. Carrier density, carrier mobility and conductivity are studied over a set of deposition conditions where p-type conduction is observed. Density functional theory simulations are performed in order to elucidate the effect of native defects on carrier mobility. The findings on the electrical properties of SnO thin films are then translated to the fabrication of thin films transistors. The low processing temperature of tin monoxide thin films below 200 oC is shown advantageous for the fabrication of fully transparent and flexible thin film transistors. After careful device engineering, including post deposition annealing temperature, gate dielectric material, semiconductor thickness and source and drain electrodes material, thin film transistors with record device performance are demonstrated, achieving a field effect mobility >6.7 cm2V-1s-1. Device performance is further improved to reach a field effect mobility of 10.8 cm2V-1s-1 in SnO nanowire field effect transistors fabricated from the sputtered SnO thin films and patterned by electron beam lithography. Downscaling device dimension to nano scale is shown beneficial for SnO field effect devices not only by achieving a higher hole mobility but enhancing the overall device performance including better threshold voltage, subthreshold swing and lower number of interfacial defects. Use of p-type semiconductors in nonvolatile memory applications is then

  15. Transparent biocompatible sensor patches for touch sensitive prosthetic limbs

    KAUST Repository

    Nag, Anindya

    2016-12-26

    The paper presents the fabrication of transparent, flexible sensor patches developed using a casting technique with polydimethylsiloxane (PDMS) as substrate and a nanocomposite of carbon nanotubes (CNTs) and PDMS as interdigital electrodes. The electrodes act as strain sensitive capacitor. The prototypes were used as touch sensitive sensors attached to the limbs. Experiments results show the sensitivity of the patches towards tactile sensing. The results are very promising and can play a key role in the development of a cost efficient sensing system attached to prosthetic limbs.

  16. Transparent biocompatible sensor patches for touch sensitive prosthetic limbs

    KAUST Repository

    Nag, Anindya; Mukhopadhyay, Subhas; Kosel, Jü rgen

    2016-01-01

    The paper presents the fabrication of transparent, flexible sensor patches developed using a casting technique with polydimethylsiloxane (PDMS) as substrate and a nanocomposite of carbon nanotubes (CNTs) and PDMS as interdigital electrodes. The electrodes act as strain sensitive capacitor. The prototypes were used as touch sensitive sensors attached to the limbs. Experiments results show the sensitivity of the patches towards tactile sensing. The results are very promising and can play a key role in the development of a cost efficient sensing system attached to prosthetic limbs.

  17. PDMS-based triboelectric and transparent nanogenerators with ZnO nanorod arrays.

    Science.gov (United States)

    Ko, Yeong Hwan; Nagaraju, Goli; Lee, Soo Hyun; Yu, Jae Su

    2014-05-14

    Vertically-grown ZnO nanorod arrays (NRAs) on indium tin oxide (ITO)-coated polyethylene terephthalate (PET), as a top electrode of nanogenerators, were investigated for the antireflective property as well as an efficient contact surface in bare polydimethysiloxane (PDMS)-based triboelectric nanogenerators. Compared to conventional ITO-coated PET (i.e., ITO/PET), the ZnO NRAs considerably suppressed the reflectance from 20 to 9.7% at wavelengths of 300-1100 nm, creating a highly transparent top electrode, as demonstrated by theoretical analysis. Also, the interval time between the peaks of generated output voltage under external pushing forces was significantly decreased from 1.84 to 0.19 s because the reduced contact area of the PDMS by discrete surfaces of the ZnO NRAs on ITO/PET causes a rapid sequence for triboelectric charge generation process including rubbing and separating. Therefore, the use of this top electrode enabled to operate the transparent PDMS-based triboelectric nanogenerator at high frequency of external pushing force. Under different external forces of 0.3-10 kgf, the output voltage and current were also characterized.

  18. Fabrication of lithium titanate/graphene composites with high rate capability as electrode materials for hybrid electrochemical supercapacitors

    Energy Technology Data Exchange (ETDEWEB)

    Xue, Rong, E-mail: xuerongsmile@qq.com; Yan, Jingwang, E-mail: yanjw@dicp.ac.cn; Jiang, Liang, E-mail: jiangliang@dicp.ac.cn; Yi, Baolian, E-mail: blyi@dicp.ac.cn

    2015-06-15

    A lithium titanate (Li{sub 4}Ti{sub 5}O{sub 12})/graphene composite (LTO/graphene) is fabricated with a one-pot sol–gel method. Graphite oxide is dispersed in an aqueous solution of lithium acetate and tetrabutyl titanate followed by heat treatment in H{sub 2}/Ar. The LTO/graphene composite with reduced aggregation and improved homogeneity is investigated as an anode material for electrochemical capacitors. Electron transport is improved by the conductive graphene network in the insulating Li{sub 4}Ti{sub 5}O{sub 12} particles. The charge transfer resistance at the particle/electrolyte interface is reduced from 83.1 Ω to 55.4 Ω. The specific capacity of LTO/graphene composite is 126 mAh g{sup −1} at 20C. The energy density and power density of a hybrid electrochemical supercapacitor with a LTO/graphene negative electrode and an activated carbon positive electrode are 120.8 Wh kg{sup −1} and 1.5 kW kg{sup −1}, respectively, which is comparable to that of conventional electrochemical double layer capacitors (EDLCs). The LTO/graphene composite fabricated by the one-pot sol–gel method is a promising anode material for hybrid electrochemical supercapacitors. - Highlights: • A Li{sub 4}Ti{sub 5}O{sub 12}/graphene composite was fabricated with a one-pot sol–gel method. • The Li{sub 4}Ti{sub 5}O{sub 12}/graphene composite showed a reduced aggregation and an improved homogeneity. • The Li{sub 4}Ti{sub 5}O{sub 12}/graphene based hybrid supercapacitor exhibited higher energy and power densities.

  19. Flexible transparent conducting films with embedded silver networks composed of bimodal-sized nanoparticles for heater application

    Science.gov (United States)

    Park, Ji Sun; Song, Yookyung; Park, Daseul; Kim, Yeon-Won; Kim, Yoon Jin

    2018-06-01

    A facile one-pot synthetic method for preparing the Ag nanoparticle inks with a bimodal size distribution was newly devised and they were successfully employed as a conducting filler to form the metal-mesh type transparent conducting electrodes on the flexible substrate. Bimodal-sized Ag nanoparticles were synthesized through the polyol process, and their size variation was occurred via finely tuned composition ratio between Ag+ ions and polymeric capping agents. The prepared bimodal-sized Ag nanoparticles exhibited the form of well-dispersed Ag nanoparticle inks without adding any dispersants and dispersion process. By filling the patterned micro-channels engraved on the flexible polymer substrate using a bimodal-sized Ag nanoparticle ink, a metal-mesh type transparent electrode (transmittance: 90% at 550 nm, haze: 1.5, area: 8 × 8 cm2) was fabricated. By applying DC voltage to the mesh type electrode, a flexible transparent joule heater was successfully achieved with a performance of 4.5 °C s‑1 heat-up rate at a low input power density.

  20. A Novel Activated-Charcoal-Doped Multiwalled Carbon Nanotube Hybrid for Quasi-Solid-State Dye-Sensitized Solar Cell Outperforming Pt Electrode.

    Science.gov (United States)

    Arbab, Alvira Ayoub; Sun, Kyung Chul; Sahito, Iftikhar Ali; Qadir, Muhammad Bilal; Choi, Yun Seon; Jeong, Sung Hoon

    2016-03-23

    Highly conductive mesoporous carbon structures based on multiwalled carbon nanotubes (MWCNTs) and activated charcoal (AC) were synthesized by an enzymatic dispersion method. The synthesized carbon configuration consists of synchronized structures of highly conductive MWCNT and porous activated charcoal morphology. The proposed carbon structure was used as counter electrode (CE) for quasi-solid-state dye-sensitized solar cells (DSSCs). The AC-doped MWCNT hybrid showed much enhanced electrocatalytic activity (ECA) toward polymer gel electrolyte and revealed a charge transfer resistance (RCT) of 0.60 Ω, demonstrating a fast electron transport mechanism. The exceptional electrocatalytic activity and high conductivity of the AC-doped MWCNT hybrid CE are associated with its synchronized features of high surface area and electronic conductivity, which produces higher interfacial reaction with the quasi-solid electrolyte. Morphological studies confirm the forms of amorphous and conductive 3D carbon structure with high density of CNT colloid. The excessive oxygen surface groups and defect-rich structure can entrap an excessive volume of quasi-solid electrolyte and locate multiple sites for iodide/triiodide catalytic reaction. The resultant D719 DSSC composed of this novel hybrid CE fabricated with polymer gel electrolyte demonstrated an efficiency of 10.05% with a high fill factor (83%), outperforming the Pt electrode. Such facile synthesis of CE together with low cost and sustainability supports the proposed DSSCs' structure to stand out as an efficient next-generation photovoltaic device.

  1. Metal–organic frameworks-derived honeycomb-like Co3O4/three-dimensional graphene networks/Ni foam hybrid as a binder-free electrode for supercapacitors

    DEFF Research Database (Denmark)

    Deng, Xiaoyang; Li, Jiajun; Zhu, Shan

    2017-01-01

    . The Co3O4/three-dimensional graphene networks/Ni foam (Co3O4/3DGN/NF) hybrid as the electrode for supercapacitor can deliver high specific capacitance (321 F g−1 at 1 A g−1) and excellent long-cycling stability (88% of the maximum capacitance after 2000 charge-discharge cycles). Furthermore, the Co3O4....../3DGN/NF hybrid exhibits the maximum energy density of 7.5 W h kg−1 with the power density of 794 W kg−1 and remain 4.1 W h kg−1 with the power density of 15 kW kg−1 in the two-electrode system. The enhanced electrochemical properties can be attributed to the unique nanostructure of Co3O4 with admirable...

  2. Monitoring of morphology and physical properties of cultured cells using a micro camera and a quartz crystal with transparent indium tin oxide electrodes after injections of glutaraldehyde and trypsin

    International Nuclear Information System (INIS)

    Kang, Hyen-Wook; Ida, Kazumi; Yamamoto, Yuji; Muramatsu, Hiroshi

    2008-01-01

    For investigating the effects of chemical stimulation to cultured cells, we have developed a quartz crystal sensor system with a micro charge-coupled device (CCD) camera that enables microphotograph imaging simultaneously with quartz crystal measurement. Human hepatoma cell line (HepG2) cells were cultured on the quartz crystal through a collagen film. The electrode of the quartz crystal was made of indium tin oxide (ITO) transparent electrodes that enable to obtain a transparent mode photograph. Glutaraldehyde and trypsin were injected to the chamber of the cells, respectively. The response of the quartz crystal was monitored and microphotographs were recorded, and the resonance frequency and resonance resistance were analyzed with an F-R diagram that plotted the resonance frequency and resonance resistance. In the case of the glutaraldehyde injection, the cells responded in two steps that included the fast response of the cross-linking reaction and the successive internal change in the cells. In the case of the trypsin injection, the responses included two processes. In the first step, cell adhesion factors were cleaved and the cell structure became round, and in the next step, the cells were deposited on the quartz crystal surface and the surface of the cells was directly in contact with the quartz crystal surface

  3. Doped polymer electrodes for high performance ferroelectric capacitors on plastic substrates

    KAUST Repository

    Khan, M. A.

    2012-10-03

    Flexible ferroelectric capacitors with doped polymer electrodes have been fabricated on plastic substrates with performance as good as metal electrodes. The effect of doping on the morphology of polymer electrodes and its impact on device performance have been studied. Improved fatigue characteristics using doped and undoped poly (3,4-ethylenedioxythiophene)-poly(styrenesulfonate) (PEDOT:PSS) electrodes versus metal electrodes are observed. It is shown that the polymer electrodes follow classical ferroelectric and dielectric responses, including series resistance effects. The improved device characteristics obtained using highly conducting doped PEDOT:PSS suggest that it may be used both as an electrode and as global interconnect for all-polymer transparent circuits on flexible substrates.

  4. Concealed, Unobtrusive Ear-Centered EEG Acquisition: cEEGrids for Transparent EEG

    Science.gov (United States)

    Bleichner, Martin G.; Debener, Stefan

    2017-01-01

    Electroencephalography (EEG) is an important clinical tool and frequently used to study the brain-behavior relationship in humans noninvasively. Traditionally, EEG signals are recorded by positioning electrodes on the scalp and keeping them in place with glue, rubber bands, or elastic caps. This setup provides good coverage of the head, but is impractical for EEG acquisition in natural daily-life situations. Here, we propose the transparent EEG concept. Transparent EEG aims for motion tolerant, highly portable, unobtrusive, and near invisible data acquisition with minimum disturbance of a user's daily activities. In recent years several ear-centered EEG solutions that are compatible with the transparent EEG concept have been presented. We discuss work showing that miniature electrodes placed in and around the human ear are a feasible solution, as they are sensitive enough to pick up electrical signals stemming from various brain and non-brain sources. We also describe the cEEGrid flex-printed sensor array, which enables unobtrusive multi-channel EEG acquisition from around the ear. In a number of validation studies we found that the cEEGrid enables the recording of meaningful continuous EEG, event-related potentials and neural oscillations. Here, we explain the rationale underlying the cEEGrid ear-EEG solution, present possible use cases and identify open issues that need to be solved on the way toward transparent EEG. PMID:28439233

  5. Improved optoelectronics properties of ITO-based transparent conductive electrodes with the insertion of Ag/Ni under-layer

    Science.gov (United States)

    Ali, Ahmad Hadi; Abu Bakar, Ahmad Shuhaimi; Hassan, Zainuriah

    2014-10-01

    ITO-based transparent conductive electrodes (TCE) with Ag/Ni thin metal under-layer were deposited on Si and glass substrates by thermal evaporator and RF magnetron sputtering system. Ceramic ITO with purity of 99.99% and In2O3:SnO2 weight ratio of 90:10 was used as a target at room temperature. Post-deposition annealing was performed on the TCE at moderate temperature of 500 °C, 600 °C and 700 °C under N2 ambient. It was observed that the structural properties, optical transmittance, electrical characteristics and surface morphology were improved significantly after the post-annealing process. Post-annealed ITO/Ag/Ni at 600 °C shows the best quality of TCE with figure-of-merit (FOM) of 1.5 × 10-2 Ω-1 and high optical transmittance of 83% at 470 nm as well as very low electrical resistivity of 4.3 × 10-5 Ω-cm. The crystalline quality and surface morphological plays an important role in determining the quality of the TCE multilayer thin films properties.

  6. Fabrication and characterization of all-polymer, transparent ferroelectric capacitors on flexible substrates

    KAUST Repository

    Khan, Yasser

    2011-12-01

    All-polymer, transparent ferroelectric devices, based on the functional polymer poly(vinylidene fluoride trifluoroethylene) [P(VDF-TrFE)], have been fabricated on flexible substrates. The performance of the all-polymer devices was studied and compared to devices with metal electrodes. Specifically, poly(3,4-ethylenedioxythiophene):poly(styrene sulfonic acid) [PEDOT:PSS] and platinum (Pt) electrode effects on the morphology, crystallinity and orientation of P(VDF-TrFE) films were investigated. The devices with PEDOT:PSS electrodes showed similar hysteresis and switching current response compared to Pt electrodes but with tremendously improved fatigue performance. Further, the devices with PEDOT:PSS electrodes showed lower coercive field and better fatigue performance than values reported for other polymer electrodes used with P(VDF-TrFE) on flexible substrates. © 2011 Elsevier B.V. All rights reserved.

  7. FDTD simulation of transmittance characteristics of one-dimensional conducting electrodes.

    Science.gov (United States)

    Lee, Kilbock; Song, Seok Ho; Ahn, Jinho

    2014-03-24

    We investigated transparent conducting electrodes consisting of periodic one-dimensional Ag or Al grids with widths from 25 nm to 5 μm via the finite-difference time-domain method. To retain high transmittance, two grid configurations with opening ratios of 90% and 95% were simulated. Polarization-dependent characteristics of the transmission spectra revealed that the overall transmittance of micron-scale grid electrodes may be estimated by the sum of light power passing through the uncovered area and the light power penetrating the covered metal layer. However, several dominant physical phenomena significantly affect the transmission spectra of the nanoscale grids: Rayleigh anomaly, transmission decay in TE polarized mode, and localized surface plasmon resonance. We conclude that, for applications of transparent electrodes, the critical feature sizes of conducting 1D grids should not be less than the wavelength scale in order to maintain uniform and predictable transmission spectra and low electrical resistivity.

  8. Fuel Cell Electrodes Based on Carbon Nanotube/Metallic Nanoparticles Hybrids Formed on Porous Stainless Steel Pellets

    Directory of Open Access Journals (Sweden)

    S. M. Khantimerov

    2013-01-01

    Full Text Available The preparation of carbon nanotube/metallic particle hybrids using pressed porous stainless steel pellets as a substrate is described. The catalytic growth of carbon nanotubes was carried out by CVD on a nickel catalyst obtained by impregnation of pellets with a highly dispersive colloidal solution of nickel acetate tetrahydrate in ethanol. Granular polyethylene was used as the carbon source. Metallic particles were deposited by thermal evaporation of Pt and Ag using pellets with grown carbon nanotubes as a base. The use of such composites as fuel cell electrodes is discussed.

  9. Living electrode as a long-lived photoconverter for biophotolysis of water

    Energy Technology Data Exchange (ETDEWEB)

    Ochiai, H.; Shibata, H.; Sawa, Y.; Katoh, T.

    1980-05-01

    Living blue-green algae (Mastigocladus laminosus), immobilized on an SnO/sub 2/ optically transparent electrode with calcium alginate, functioned as an anodic photo electrode on continuous illumination for periods of time adequate for use in a conventional electrochemical cell. This living electrode shows promise of use as a long-lived photoconverter of solar radiant energy to electric energy and as a suitable replacement for unstable chloroplast systems.

  10. Transparent and Stretchable High-Performance Supercapacitors Based on Wrinkled Graphene Electrodes

    Science.gov (United States)

    2013-12-18

    2, 870–875. 38. Chen, T.; Dai, L. Carbon Nanomaterials for High- Performance Supercapacitors . Mater. Today 2013, 16, 272–280. 39. Stoller, M. D...High-Performance Supercapacitors Based onWrinkledGraphene Electrodes Tao Chen,† Yuhua Xue,† Ajit K. Roy,‡ and Liming Dai†,* †Center of Advanced Science...electrodes and the associated supercapacitor cells cannot be both trans- parent and stretchable.1318 It is highly desirable to integrate the

  11. Silver-Nanowire-Embedded Transparent Metal-Oxide Heterojunction Schottky Photodetector.

    Science.gov (United States)

    Abbas, Sohail; Kumar, Mohit; Kim, Hong-Sik; Kim, Joondong; Lee, Jung-Ho

    2018-05-02

    We report a self-biased and transparent Cu 4 O 3 /TiO 2 heterojunction for ultraviolet photodetection. The dynamic photoresponse improved 8.5 × 10 4 % by adding silver nanowires (AgNWs) Schottky contact and maintaining 39% transparency. The current density-voltage characteristics revealed a strong interfacial electric field, responsible for zero-bias operation. In addition, the dynamic photoresponse measurement endorsed the effective holes collection by embedded-AgNWs network, leading to fast rise and fall time of 0.439 and 0.423 ms, respectively. Similarly, a drastic improvement in responsivity and detectivity of 187.5 mAW -1 and of 5.13 × 10 9 Jones, is observed, respectively. The AgNWs employed as contact electrode can ensure high-performance for transparent and flexible optoelectronic applications.

  12. "One-for-All" Strategy in Fast Energy Storage: Production of Pillared MOF Nanorod-Templated Positive/Negative Electrodes for the Application of High-Performance Hybrid Supercapacitor.

    Science.gov (United States)

    Qu, Chong; Liang, Zibin; Jiao, Yang; Zhao, Bote; Zhu, Bingjun; Dang, Dai; Dai, Shuge; Chen, Yu; Zou, Ruqiang; Liu, Meilin

    2018-05-02

    Currently, metal-organic frameworks (MOFs) are intensively studied as active materials for electrochemical energy storage applications due to their tunable structure and exceptional porosities. Among them, water stable pillared MOFs with dual ligands have been reported to exhibit high supercapacitor (SC) performance. Herein, the "One-for-All" strategy is applied to synthesize both positive and negative electrodes of a hybrid SC (HSC) from a single pillared MOF. Specifically, Ni-DMOF-TM ([Ni(TMBDC)(DABCO) 0.5 ], TMBDC: 2,3,5,6-tetramethyl-1,4-benzenedicarboxylic acid, DABCO: 1,4-diazabicyclo[2.2.2]-octane) nanorods are directly grown on carbon fiber paper (CFP) (denoted as CFP@TM-nanorods) with the help of triethylamine and function as the positive electrode of HSC under alkaline electrolyte. Meanwhile, calcinated N-doped hierarchical porous carbon nanorods (CFP@TM-NPCs) are produced and utilized as the negative counter-electrode from a one-step heat treatment of CFP@TM-nanorods. After assembling these two electrodes together to make a hybrid device, the TM-nanorods//TM-NPCs exhibit a wide voltage window of 1.5 V with a high sloping discharge plateau between 1-1.2 V, indicating its great potential for practical applications. This as-described "One-for-All" strategy is widely applicable and highly reproducible in producing MOF-based electrode materials for HSC applications, which shortens the gap between experimental synthesis and practical application of MOFs in fast energy storage. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Electrochemical Sensing toward Trace As(III Based on Mesoporous MnFe2O4/Au Hybrid Nanospheres Modified Glass Carbon Electrode

    Directory of Open Access Journals (Sweden)

    Shaofeng Zhou

    2016-06-01

    Full Text Available Au nanoparticles decorated mesoporous MnFe2O4 nanocrystal clusters (MnFe2O4/Au hybrid nanospheres were used for the electrochemical sensing of As(III by square wave anodic stripping voltammetry (SWASV. Modified on a cheap glass carbon electrode, these MnFe2O4/Au hybrid nanospheres show favorable sensitivity (0.315 μA/ppb and limit of detection (LOD (3.37 ppb toward As(III under the optimized conditions in 0.1 M NaAc-HAc (pH 5.0 by depositing for 150 s at the deposition potential of −0.9 V. No obvious interference from Cd(II and Hg(II was recognized during the detection of As(III. Additionally, the developed electrode displayed good reproducibility, stability, and repeatability, and offered potential practical applicability for electrochemical detection of As(III in real water samples. The present work provides a potential method for the design of new and cheap sensors in the application of electrochemical determination toward trace As(III and other toxic metal ions.

  14. Graphene hybridization for energy storage applications.

    Science.gov (United States)

    Li, Xianglong; Zhi, Linjie

    2018-05-08

    Graphene has attracted considerable attention due to its unique two-dimensional structure, high electronic mobility, exceptional thermal conductivity, excellent optical transmittance, good mechanical strength, and ultrahigh surface area. To meet the ever increasing demand for portable electronic products, electric vehicles, smart grids, and renewable energy integrations, hybridizing graphene with various functions and components has been demonstrated to be a versatile and powerful strategy to significantly enhance the performance of various energy storage systems such as lithium-ion batteries, supercapacitors and beyond, because such hybridization can result in synergistic effects that combine the best merits of involved components and confer new functions and properties, thereby improving the charge/discharge efficiencies and capabilities, energy/power densities, and cycle life of these energy storage systems. This review will focus on diverse graphene hybridization principles and strategies for energy storage applications, and the proposed outline is as follows. First, graphene and its fundamental properties, followed by graphene hybrids and related hybridization motivation, are introduced. Second, the developed hybridization formulas of using graphene for lithium-ion batteries are systematically categorized from the viewpoint of material structure design, bulk electrode construction, and material/electrode collaborative engineering; the latest representative progress on anodes and cathodes of lithium-ion batteries will be reviewed following such classifications. Third, similar hybridization formulas for graphene-based supercapacitor electrodes will be summarized and discussed as well. Fourth, the recently emerging hybridization formulas for other graphene-based energy storage devices will be briefed in combination with typical examples. Finally, future prospects and directions on the exploration of graphene hybridization toward the design and construction of

  15. Graphene-based hybrid structures combined with functional materials of ferroelectrics and semiconductors.

    Science.gov (United States)

    Jie, Wenjing; Hao, Jianhua

    2014-06-21

    Fundamental studies and applications of 2-dimensional (2D) graphene may be deepened and broadened via combining graphene sheets with various functional materials, which have been extended from the traditional insulator of SiO2 to a versatile range of dielectrics, semiconductors and metals, as well as organic compounds. Among them, ferroelectric materials have received much attention due to their unique ferroelectric polarization. As a result, many attractive characteristics can be shown in graphene/ferroelectric hybrid systems. On the other hand, graphene can be integrated with conventional semiconductors and some newly-discovered 2D layered materials to form distinct Schottky junctions, yielding fascinating behaviours and exhibiting the potential for various applications in future functional devices. This review article is an attempt to illustrate the most recent progress in the fabrication, operation principle, characterization, and promising applications of graphene-based hybrid structures combined with various functional materials, ranging from ferroelectrics to semiconductors. We focus on mechanically exfoliated and chemical-vapor-deposited graphene sheets integrated in numerous advanced devices. Some typical hybrid structures have been highlighted, aiming at potential applications in non-volatile memories, transparent flexible electrodes, solar cells, photodetectors, and so on.

  16. Origin of high photoconductive gain in fully transparent heterojunction nanocrystalline oxide image sensors and interconnects.

    Science.gov (United States)

    Jeon, Sanghun; Song, Ihun; Lee, Sungsik; Ryu, Byungki; Ahn, Seung-Eon; Lee, Eunha; Kim, Young; Nathan, Arokia; Robertson, John; Chung, U-In

    2014-11-05

    A technique for invisible image capture using a photosensor array based on transparent conducting oxide semiconductor thin-film transistors and transparent interconnection technologies is presented. A transparent conducting layer is employed for the sensor electrodes as well as interconnection in the array, providing about 80% transmittance at visible-light wavelengths. The phototransistor is a Hf-In-Zn-O/In-Zn-O heterostructure yielding a high quantum-efficiency in the visible range. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Electrochemical biosensing based on polypyrrole/titania nanotube hybrid

    Energy Technology Data Exchange (ETDEWEB)

    Xie, Yibing, E-mail: ybxie@seu.edu.cn; Zhao, Ye

    2013-12-01

    The glucose oxidase (GOD) modified polypyrrole/titania nanotube enzyme electrode is fabricated for electrochemical biosensing application. The titania nanotube array is grown directly on a titanium substrate through an anodic oxidation process. A thin film of polypyrrole is coated onto titania nanotube array to form polypyrrole/titania nanotube hybrid through a normal pulse voltammetry process. GOD-polypyrrole/titania nanotube enzyme electrode is prepared by the covalent immobilization of GOD onto polypyrrole/titania nanotube hybrid via the cross-linker of glutaraldehyde. The morphology and microstructure of nanotube electrodes are characterized by field emission scanning electron microscopy and Fourier transform infrared analysis. The biosensing properties of this nanotube enzyme electrode have been investigated by means of cyclic voltammetry and chronoamperometry. The hydrophilic polypyrrole/titania nanotube hybrid provides highly accessible nanochannels for GOD encapsulation, presenting good enzymatic affinity. As-formed GOD-polypyrrole/titania nanotube enzyme electrode well conducts bioelectrocatalytic oxidation of glucose, exhibiting a good biosensing performance with a high sensitivity, low detection limit and wide linear detection range. - Graphical abstract: The schematic diagram presents the fabrication of glucose oxidase modified polypyrrole/titania (GOD-PPy/TiO{sub 2}) nanotube enzyme electrode for biosensing application. - Highlights: • Hydrophilic polypyrrole/titania nanotube hybrid is well used as biosensing substrate. • Polypyrrole promotes GOD immobilization on titania nanotubes via glutaraldehyde. • GOD-polypyrrole/titania enzyme electrode shows good bioelectrocatalytic reactivity.

  18. Electrochemical biosensing based on polypyrrole/titania nanotube hybrid

    International Nuclear Information System (INIS)

    Xie, Yibing; Zhao, Ye

    2013-01-01

    The glucose oxidase (GOD) modified polypyrrole/titania nanotube enzyme electrode is fabricated for electrochemical biosensing application. The titania nanotube array is grown directly on a titanium substrate through an anodic oxidation process. A thin film of polypyrrole is coated onto titania nanotube array to form polypyrrole/titania nanotube hybrid through a normal pulse voltammetry process. GOD-polypyrrole/titania nanotube enzyme electrode is prepared by the covalent immobilization of GOD onto polypyrrole/titania nanotube hybrid via the cross-linker of glutaraldehyde. The morphology and microstructure of nanotube electrodes are characterized by field emission scanning electron microscopy and Fourier transform infrared analysis. The biosensing properties of this nanotube enzyme electrode have been investigated by means of cyclic voltammetry and chronoamperometry. The hydrophilic polypyrrole/titania nanotube hybrid provides highly accessible nanochannels for GOD encapsulation, presenting good enzymatic affinity. As-formed GOD-polypyrrole/titania nanotube enzyme electrode well conducts bioelectrocatalytic oxidation of glucose, exhibiting a good biosensing performance with a high sensitivity, low detection limit and wide linear detection range. - Graphical abstract: The schematic diagram presents the fabrication of glucose oxidase modified polypyrrole/titania (GOD-PPy/TiO 2 ) nanotube enzyme electrode for biosensing application. - Highlights: • Hydrophilic polypyrrole/titania nanotube hybrid is well used as biosensing substrate. • Polypyrrole promotes GOD immobilization on titania nanotubes via glutaraldehyde. • GOD-polypyrrole/titania enzyme electrode shows good bioelectrocatalytic reactivity

  19. Fully solution-processing route toward highly transparent polymer solar cells.

    Science.gov (United States)

    Guo, Fei; Kubis, Peter; Stubhan, Tobias; Li, Ning; Baran, Derya; Przybilla, Thomas; Spiecker, Erdmann; Forberich, Karen; Brabec, Christoph J

    2014-10-22

    We report highly transparent polymer solar cells using metallic silver nanowires (AgNWs) as both the electron- and hole-collecting electrodes. The entire stack of the devices is processed from solution using a doctor blading technique. A thin layer of zinc oxide nanoparticles is introduced between photoactive layer and top AgNW electrode which plays decisive roles in device functionality: it serves as a mechanical foundation which allows the solution-deposition of top AgNWs, and more importantly it facilitates charge carriers extraction due to the better energy level alignment and the formation of ohmic contacts between the active layer/ZnO and ZnO/AgNWs. The resulting semitransparent polymer:fullerene solar cells showed a power conversion efficiency of 2.9%, which is 72% of the efficiency of an opaque reference device. Moreover, an average transmittance of 41% in the wavelength range of 400-800 nm is achieved, which is of particular interest for applications in transparent architectures.

  20. Development of transparent thin film transistors on PES polymer substrates

    International Nuclear Information System (INIS)

    Yun, Eui-Jung; Jung, Jin-Woo; Ko, Kyung-Nam; Song, Young-Wook; Nam, Hyoung; Cho, Nam-Ihn

    2010-01-01

    In this study, we demonstrate ZnO-based transparent thin film transistors (TTFT's) implemented on polyethersulfone (PES) polymer substrates. For the developed TTFT's, radio-frequency magnetron sputter techniques were used to deposit Al-doped ZnO (AZO) at zero oxygen partial pressures for the source, the drain, and the gate-contact electrodes, undoped ZnO at low oxygen partial pressures for the active p-type layer, and SiO 2 for the gate dielectric. The TTFT's were processed at room temperature (RT), except for a 100 .deg. C sputtering step to deposit the AZO source, drain, and gate-contact electrodes. The devices have bottom-gate structures with top contacts, are optically transparent, and operate in an enhancement mode with a threshold voltage of +13 V, a mobility of 0.1 cm 2 /Vs, an on-off ratio of about 0.5 x 10 3 and, a sub-threshold slope of 4.1 V/decade.

  1. Low-Temperature Fabrication of Robust, Transparent, and Flexible Thin-Film Transistors with a Nanolaminated Insulator.

    Science.gov (United States)

    Kwon, Jeong Hyun; Park, Junhong; Lee, Myung Keun; Park, Jeong Woo; Jeon, Yongmin; Shin, Jeong Bin; Nam, Minwoo; Kim, Choong-Ki; Choi, Yang-Kyu; Choi, Kyung Cheol

    2018-05-09

    The lack of reliable, transparent, and flexible electrodes and insulators for applications in thin-film transistors (TFTs) makes it difficult to commercialize transparent, flexible TFTs (TF-TFTs). More specifically, conventional high process temperatures and the brittleness of these elements have been hurdles in developing flexible substrates vulnerable to heat. Here, we propose electrode and insulator fabrication techniques considering process temperature, transmittance, flexibility, and environmental stability. A transparent and flexible indium tin oxide (ITO)/Ag/ITO (IAI) electrode and an Al 2 O 3 /MgO (AM)-laminated insulator were optimized at the low temperature of 70 °C for the fabrication of TF-TFTs on a polyethylene terephthalate (PET) substrate. The optimized IAI electrode with a sheet resistance of 7 Ω/sq exhibited the luminous transmittance of 85.17% and maintained its electrical conductivity after exposure to damp heat conditions because of an environmentally stable ITO capping layer. In addition, the electrical conductivity of IAI was maintained after 10 000 bending cycles with a tensile strain of 3% because of the ductile Ag film. In the metal/insulator/metal structure, the insulating and mechanical properties of the optimized AM-laminated film deposited at 70 °C were significantly improved because of the highly dense nanolaminate system, compared to those of the Al 2 O 3 film deposited at 70 °C. In addition, the amorphous indium-gallium-zinc oxide (a-IGZO) was used as the active channel for TF-TFTs because of its excellent chemical stability. In the environmental stability test, the ITO, a-IGZO, and AM-laminated films showed the excellent environmental stability. Therefore, our IGZO-based TFT with IAI electrodes and the 70 °C AM-laminated insulator was fabricated to evaluate robustness, transparency, flexibility, and process temperature, resulting in transfer characteristics comparable to those of an IGZO-based TFT with a 150 °C Al 2 O 3

  2. Semi-transparent perovskite solar cells for tandems with silicon and CIGS

    KAUST Repository

    Bailie, Colin D.

    2015-01-01

    © 2015 The Royal Society of Chemistry. A promising approach for upgrading the performance of an established low-bandgap solar technology without adding much cost is to deposit a high bandgap polycrystalline semiconductor on top to make a tandem solar cell. We use a transparent silver nanowire electrode on perovskite solar cells to achieve a semi-transparent device. We place the semi-transparent cell in a mechanically-stacked tandem configuration onto copper indium gallium diselenide (CIGS) and low-quality multicrystalline silicon (Si) to achieve solid-state polycrystalline tandem solar cells with a net improvement in efficiency over the bottom cell alone. This work paves the way for integrating perovskites into a low-cost and high-efficiency (>25%) tandem cell.

  3. Micro-CAT with redundant electrodes (CATER)

    International Nuclear Information System (INIS)

    Berg, F.D. van den; Eijk, C.W.E. van; Hollander, R.W.; Sarro, P.M.

    2000-01-01

    High-rate X-ray or neutron counting introduces the problem of hit multiplicity when 2D position reconstruction is demanded. Implementation of a third readout electrode having a different angle than the anode or cathode allows to eliminate multiplicity problems. We present experimental results of a new type of gas-filled micro-patterned radiation detector, called 'Compteur a Trous a Electrodes Redondantes (CATER)', that disposes of such an extra readout channel in the form of a ring-shaped electrode that is positioned between the anode and the cathode. The ionic signal is shared between the ring-electrode and the cathode strip in a way that can be controlled by their potential difference. We observe a strong signal dependence on the drift field, which can be understood by the reduced transparency for the primary charge at high drift fields

  4. ZnO-Based Transparent Conductive Thin Films: Doping, Performance, and Processing

    International Nuclear Information System (INIS)

    Liu, Y.; Li, Y.; Zeng, H.

    2013-01-01

    ZnO-based transparent conductive thin films have attracted much attention as a promising substitute material to the currently used indium-tin-oxide thin films in transparent electrode applications. However, the detailed function of the dopants, acting on the electrical and optical properties of ZnO-based transparent conductive thin films, is not clear yet, which has limited the development and practical applications of ZnO transparent conductive thin films. Growth conditions such as substrate type, growth temperature, and ambient atmosphere all play important roles in structural, electrical, and optical properties of films. This paper takes a panoramic view on properties of ZnO thin films and reviews the very recent works on new, efficient, low-temperature, and high-speed deposition technologies. In addition, we highlighted the methods of producing ZnO-based transparent conductive film on flexible substrate, one of the most promising and rapidly emerging research areas. As optimum-processing-parameter conditions are being obtained and their influencing mechanism is becoming clear, we can see that there will be a promising future for ZnO-based transparent conductive films.

  5. Colloidal nanocrystal ZnO- and TiO2-modified electrodes sensitized with chlorophyll a and carotenoids: a photoelectrochemical study

    International Nuclear Information System (INIS)

    Petrella, Andrea; Cosma, Pinalysa; Lucia Curri, M.; Rochira, Sergio; Agostiano, Angela

    2011-01-01

    Heterostructures formed of films of organic-capped ZnO and TiO 2 nanocrystals (both with the size of ca. 6 nm) and photosynthetic pigments were prepared and characterized. The surface of optically transparent electrodes (Indium Tin Oxide) was modified with nanocrystals and prepared by colloidal synthetic routes. The nanostructured electrodes were sensitized by a mixture of chlorophyll a and carotenoids. The characterization of the hybrid structures, carried out by means of steady-state optical measurements, demonstrated such class of dyes able to extend the photoresponse of the large band-gap semiconductors. The charge-transfer processes between the components of the heterojunction were investigated, and photoelectrochemical measurements taken on the sensitized ZnO and TiO 2 nanocrystals electrodes elucidated the photoactivity of the heterojunctions as a function of the dyes and of the red–ox mediator used in solution. The effect of methyl viologen as different red–ox mediator was also evaluated in order to show its effect on the heterojunction photoactivity. The overall results contributed to describe the photoelectrochemical potential of the investigated heterojunctions, highlighting a higher response of the dye-sensitized ZnO nanocrystals, and then provided the TiO 2 -modified counterparts.

  6. Semi-transparent a-IGZO thin-film transistors with polymeric gate dielectric.

    Science.gov (United States)

    Hyung, Gun Woo; Wang, Jian-Xun; Li, Zhao-Hui; Koo, Ja-Ryong; Kwon, Sang Jik; Cho, Eou-Sik; Kim, Young Kwan

    2013-06-01

    We report the fabrication of semi-transparent a-IGZO-based thin-film transistors (TFTs) with crosslinked poly-4-vinylphenol (PVP) gate dielectric layers on PET substrate and thermally-evaporated Al/Ag/Al source and drain (S&D) electrodes, which showed a transmittance of 64% at a 500-nm wavelength and sheet resistance of 16.8 omega/square. The semi-transparent a-IGZO TFTs with a PVP layer exhibited decent saturation mobilities (maximum approximately 5.8 cm2Ns) and on/off current ratios of approximately 10(6).

  7. Enhanced electrocatalytic activity of graphene-gold nanoparticles hybrids for peroxynitrite electrochemical detection on hemin-based electrode.

    Science.gov (United States)

    Wang, Beibei; Ji, Xueping; Ren, Jujie; Ni, Ruixing; Wang, Lin

    2017-12-01

    A simple, ultrasensitive peroxynitrite anion (ONOO - ) electrochemical sensing platform was developed by immobilizing hemin on a density controllable electrochemically reduced graphene oxide-Au nanoparticles (ERGO-AuNPs) nanohybrids. The ERGO-AuNPs in situ nanohybrids were produced onto a glass carbon electrode (GCE) by one-step electrodeposition, the density of which could be easily controlled by electrodeposited time. The morphology of ERGO-AuNPs nanohybrids was characterized by a scanning electron microscope (SEM). The ERGO-AuNPs nanohybrids showed a high electrocatalytic activity for immobilized-hemin, because the nanostructures hybrids could effectively promote electron transfer rate between hemin and the electrode. Due to nanohybrids-enhanced catalytic effect for hemin, they were firstly selected for use as a highly sensitive electrochemical platform for ONOO - detection. The resulted sensor showed a high electrocatalytic activity toward ONOO - oxidation, being free from the electroactive interferents, including nitrite, nitrate, dopamine and uric acid at an applied potential of 0.7V. The sensor exhibited a high sensitivity of 123.1nAμM -1 and a lower detection limit of 0.1μM, and a wide linear range of 2.4×10 -6 to 5.5×10 -5 M, which could be attributed to the synergy between ERGO and AuNPs in hybrids. The nanohybrids in situ preparation and ONOO - detection methods would be beneficial to developing other sensing interface and have promising applications in biological molecules analysis and clinical diagnostic. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Flexible Nb2O5 nanowires/graphene film electrode for high-performance hybrid Li-ion supercapacitors

    Science.gov (United States)

    Song, Hao; Fu, Jijiang; Ding, Kang; Huang, Chao; Wu, Kai; Zhang, Xuming; Gao, Biao; Huo, Kaifu; Peng, Xiang; Chu, Paul K.

    2016-10-01

    The hybrid Li-ion electrochemical supercapacitor (Li-HSC) combining the battery-like anode with capacitive cathode is a promising energy storage device boasting large energy and power densities. Orthorhombic Nb2O5 is a good anode material in Li-HSCs because of its large pseudocapacitive Li-ion intercalation capacity. Herein, we report a high-performance, binder-free and flexible anode consisting of long Nb2O5 nanowires and graphene (L-Nb2O5 NWs/rGO). The paper-like L-Nb2O5 NWs/rGO film electrode has a large mass loading of Nb2O5 of 93.5 wt% as well as short solid-state ion diffusion length, and enhanced conductivity (5.1 S cm-1). The hybrid L-Nb2O5 NWs/rGO paper electrode shows a high reversible specific capacity of 160 mA h g-1 at a current density of 0.2 A g-1, superior rate capability with capacitance retention of 60% when the current density increases from 0.2 to 5 A g-1, as well as excellent cycle stability. The Li-HSC device based on the L-Nb2O5/rGO anode and the cathode of biomass-derived carbon nanosheets delivers an energy density of 106 Wh kg-1 at 580 W kg-1 and 32 Wh kg-1 at a large power density of 14 kW kg-1. Moreover, the Li-HSC device exhibits excellent cycling performance without obvious capacitance decay after 1000 cycles.

  9. Hybrid nanostructure heterojunction solar cells fabricated using vertically aligned ZnO nanotubes grown on reduced graphene oxide.

    Science.gov (United States)

    Yang, Kaikun; Xu, Congkang; Huang, Liwei; Zou, Lianfeng; Wang, Howard

    2011-10-07

    Using reduced graphene oxide (rGO) films as the transparent conductive coating, inorganic/organic hybrid nanostructure heterojunction photovoltaic devices have been fabricated through hydrothermal synthesis of vertically aligned ZnO nanorods (ZnO-NRs) and nanotubes (ZnO-NTs) on rGO films followed by the spin casting of a poly(3-hexylthiophene) (P3HT) film. The data show that larger interfacial area in ZnO-NT/P3HT composites improves the exciton dissociation and the higher electrode conductance of rGO films helps the power output. This study offers an alternative to manufacturing nanostructure heterojunction solar cells at low temperatures using potentially low cost materials.

  10. Large-area functionalized CVD graphene for work function matched transparent electrodes

    Science.gov (United States)

    Bointon, Thomas H.; Jones, Gareth F.; de Sanctis, Adolfo; Hill-Pearce, Ruth; Craciun, Monica F.; Russo, Saverio

    2015-11-01

    The efficiency of flexible photovoltaic and organic light emitting devices is heavily dependent on the availability of flexible and transparent conductors with at least a similar workfunction to that of Indium Tin Oxide. Here we present the first study of the work function of large area (up to 9 cm2) FeCl3 intercalated graphene grown by chemical vapour deposition on Nickel, and demonstrate values as large as 5.1 eV. Upon intercalation, a charge density per graphene layer of 5 ṡ 1013 ± 5 ṡ 1012 cm-2 is attained, making this material an attractive platform for the study of plasmonic excitations in the infrared wavelength spectrum of interest to the telecommunication industry. Finally, we demonstrate the potential of this material for flexible electronics in a transparent circuit on a polyethylene naphthalate substrate.

  11. Hierarchically structured self-supported latex films for flexible and semi-transparent electronics

    International Nuclear Information System (INIS)

    Määttänen, Anni; Ihalainen, Petri; Törngren, Björn; Rosqvist, Emil; Pesonen, Markus; Peltonen, Jouko

    2016-01-01

    Graphical abstract: - Highlights: • Transparent self-supported latex films were fabricated by a peel-off process. • Various template substrates were used for creating e.g. hierarchically structured latex films. • Ultra-thin and semi-transparent conductive gold electrodes were evaporated on the latex films.Electrochemical experiments were carried out to verify the applicability of the electrodes. - Abstract: Different length scale alterations in topography, surface texture, and symmetry are known to evoke diverse cell behavior, including adhesion, orientation, motility, cytoskeletal condensation, and modulation of intracellular signaling pathways. In this work, self-supported latex films with well-defined isotropic/anisotropic surface features and hierarchical morphologies were fabricated by a peel-off process from different template surfaces. In addition, the latex films were used as substrates for evaporated ultrathin gold films with nominal thicknesses of 10 and 20 nm. Optical properties and topography of the samples were characterized using UV–vis spectroscopy and Atomic Force Microscopy (AFM) measurements, respectively. The latex films showed high-level transmittance of visible light, enabling the fabrication of semi-transparent gold electrodes. Electrochemical impedance spectroscopy (EIS) measurements were carried out for a number of days to investigate the long-term stability of the electrodes. The effect of 1-octadecanethiol (ODT) and HS(CH_2)_1_1OH (MuOH) thiolation and protein (human serum albumin, HSA) adsorption on the impedance and capacitance was studied. In addition, cyclic voltammetry (CV) measurements were carried out to determine active medicinal components, i.e., caffeic acid with interesting biological activities and poorly water-soluble anti-inflammatory drug, piroxicam. The results show that the fabrication procedure presented in this study enables the formation of platforms with hierarchical morphologies for multimodal (optical and

  12. Hierarchically structured self-supported latex films for flexible and semi-transparent electronics

    Energy Technology Data Exchange (ETDEWEB)

    Määttänen, Anni, E-mail: anni.maattanen@abo.fi [Laboratory of Physical Chemistry, Faculty of Science and Engineering, Center for Functional Materials, Åbo Akademi University, Porthaninkatu 3, 20500, Turku (Finland); Ihalainen, Petri, E-mail: petri.ihalainen@abo.fi [Laboratory of Physical Chemistry, Faculty of Science and Engineering, Center for Functional Materials, Åbo Akademi University, Porthaninkatu 3, 20500, Turku (Finland); Törngren, Björn, E-mail: bjorn.torngren@abo.fi [Laboratory of Physical Chemistry, Faculty of Science and Engineering, Center for Functional Materials, Åbo Akademi University, Porthaninkatu 3, 20500, Turku (Finland); Rosqvist, Emil, E-mail: emil.rosqvist@abo.fi [Laboratory of Physical Chemistry, Faculty of Science and Engineering, Center for Functional Materials, Åbo Akademi University, Porthaninkatu 3, 20500, Turku (Finland); Pesonen, Markus, E-mail: markus.pesonen@abo.fi [Physics, Faculty of Science and Engineering, Center for Functional Materials, Åbo Akademi University, Porthaninkatu 3, 20500, Turku (Finland); Peltonen, Jouko, E-mail: jouko.peltonen@abo.fi [Laboratory of Physical Chemistry, Faculty of Science and Engineering, Center for Functional Materials, Åbo Akademi University, Porthaninkatu 3, 20500, Turku (Finland)

    2016-02-28

    Graphical abstract: - Highlights: • Transparent self-supported latex films were fabricated by a peel-off process. • Various template substrates were used for creating e.g. hierarchically structured latex films. • Ultra-thin and semi-transparent conductive gold electrodes were evaporated on the latex films.Electrochemical experiments were carried out to verify the applicability of the electrodes. - Abstract: Different length scale alterations in topography, surface texture, and symmetry are known to evoke diverse cell behavior, including adhesion, orientation, motility, cytoskeletal condensation, and modulation of intracellular signaling pathways. In this work, self-supported latex films with well-defined isotropic/anisotropic surface features and hierarchical morphologies were fabricated by a peel-off process from different template surfaces. In addition, the latex films were used as substrates for evaporated ultrathin gold films with nominal thicknesses of 10 and 20 nm. Optical properties and topography of the samples were characterized using UV–vis spectroscopy and Atomic Force Microscopy (AFM) measurements, respectively. The latex films showed high-level transmittance of visible light, enabling the fabrication of semi-transparent gold electrodes. Electrochemical impedance spectroscopy (EIS) measurements were carried out for a number of days to investigate the long-term stability of the electrodes. The effect of 1-octadecanethiol (ODT) and HS(CH{sub 2}){sub 11}OH (MuOH) thiolation and protein (human serum albumin, HSA) adsorption on the impedance and capacitance was studied. In addition, cyclic voltammetry (CV) measurements were carried out to determine active medicinal components, i.e., caffeic acid with interesting biological activities and poorly water-soluble anti-inflammatory drug, piroxicam. The results show that the fabrication procedure presented in this study enables the formation of platforms with hierarchical morphologies for multimodal

  13. Au-embedded ZnO/NiO hybrid with excellent electrochemical performance as advanced electrode materials for supercapacitor.

    Science.gov (United States)

    Zheng, Xin; Yan, Xiaoqin; Sun, Yihui; Bai, Zhiming; Zhang, Guangjie; Shen, Yanwei; Liang, Qijie; Zhang, Yue

    2015-02-04

    Here we design a nanostructure by embedding Au nanoparticles into ZnO/NiO core-shell composites as supercapacitors electrodes materials. This optimized hybrid electrodes exhibited an excellent electrochemical performance including a long-term cycling stability and a maximum specific areal capacitance of 4.1 F/cm(2) at a current density of 5 mA/cm(2), which is much higher than that of ZnO/NiO hierarchical materials (0.5 F/cm(2)). Such an enhanced property is attributed to the increased electro-electrolyte interfaces, short electron diffusion pathways and good electrical conductivity. Apart from this, electrons can be temporarily trapped and accumulated at the Fermi level (EF') because of the localized schottky barrier at Au/NiO interface in charge process until fill the gap between ZnO and NiO, so that additional electrons can be released during discharge. These results demonstrate that suitable interface engineering may open up new opportunities in the development of high-performance supercapacitors.

  14. Review of flexible and transparent thin-film transistors based on zinc oxide and related materials

    International Nuclear Information System (INIS)

    Zhang Yong-Hui; Mei Zeng-Xia; Liang Hui-Li; Du Xiao-Long

    2017-01-01

    Flexible and transparent electronics enters into a new era of electronic technologies. Ubiquitous applications involve wearable electronics, biosensors, flexible transparent displays, radio-frequency identifications (RFIDs), etc. Zinc oxide (ZnO) and relevant materials are the most commonly used inorganic semiconductors in flexible and transparent devices, owing to their high electrical performances, together with low processing temperatures and good optical transparencies. In this paper, we review recent advances in flexible and transparent thin-film transistors (TFTs) based on ZnO and relevant materials. After a brief introduction, the main progress of the preparation of each component (substrate, electrodes, channel and dielectrics) is summarized and discussed. Then, the effect of mechanical bending on electrical performance is highlighted. Finally, we suggest the challenges and opportunities in future investigations. (paper)

  15. Structure and Modification of Electrode Materials for Protein Electrochemistry.

    Science.gov (United States)

    Jeuken, Lars J C

    The interactions between proteins and electrode surfaces are of fundamental importance in bioelectrochemistry, including photobioelectrochemistry. In order to optimise the interaction between electrode and redox protein, either the electrode or the protein can be engineered, with the former being the most adopted approach. This tutorial review provides a basic description of the most commonly used electrode materials in bioelectrochemistry and discusses approaches to modify these surfaces. Carbon, gold and transparent electrodes (e.g. indium tin oxide) are covered, while approaches to form meso- and macroporous structured electrodes are also described. Electrode modifications include the chemical modification with (self-assembled) monolayers and the use of conducting polymers in which the protein is imbedded. The proteins themselves can either be in solution, electrostatically adsorbed on the surface or covalently bound to the electrode. Drawbacks and benefits of each material and its modifications are discussed. Where examples exist of applications in photobioelectrochemistry, these are highlighted.

  16. Transparent Large-Area MoS2 Phototransistors with Inkjet-Printed Components on Flexible Platforms.

    Science.gov (United States)

    Kim, Tae-Young; Ha, Jewook; Cho, Kyungjune; Pak, Jinsu; Seo, Jiseok; Park, Jongjang; Kim, Jae-Keun; Chung, Seungjun; Hong, Yongtaek; Lee, Takhee

    2017-10-24

    Two-dimensional (2D) transition-metal dichalcogenides (TMDCs) have gained considerable attention as an emerging semiconductor due to their promising atomically thin film characteristics with good field-effect mobility and a tunable band gap energy. However, their electronic applications have been generally realized with conventional inorganic electrodes and dielectrics implemented using conventional photolithography or transferring processes that are not compatible with large-area and flexible device applications. To facilitate the advantages of 2D TMDCs in practical applications, strategies for realizing flexible and transparent 2D electronics using low-temperature, large-area, and low-cost processes should be developed. Motivated by this challenge, we report fully printed transparent chemical vapor deposition (CVD)-synthesized monolayer molybdenum disulfide (MoS 2 ) phototransistor arrays on flexible polymer substrates. All the electronic components, including dielectric and electrodes, were directly deposited with mechanically tolerable organic materials by inkjet-printing technology onto transferred monolayer MoS 2 , and their annealing temperature of printed MoS 2 phototransistors exhibit excellent transparency and mechanically stable operation.

  17. Fully patterned and low temperature transparent ZnO-based inverters

    Energy Technology Data Exchange (ETDEWEB)

    Gutierrez-Heredia, G. [Centro de Investigación en Materiales Avanzados, Unidad Monterrey, México (Mexico); Department of Materials Science and Engineering, University of Texas at Dallas (United States); Mejia, I.; Rivas-Aguilar, M.E.; Hernandez-Como, N. [Department of Materials Science and Engineering, University of Texas at Dallas (United States); Martinez-Landeros, V.H. [Centro de Investigación en Materiales Avanzados, Unidad Monterrey, México (Mexico); Department of Materials Science and Engineering, University of Texas at Dallas (United States); Aguirre-Tostado, F.S. [Centro de Investigación en Materiales Avanzados, Unidad Monterrey, México (Mexico); Quevedo-Lopez, M.A., E-mail: mquevedo@utdallas.edu [Department of Materials Science and Engineering, University of Texas at Dallas (United States)

    2013-10-31

    The fabrication and characterization of transparent logic inverters based on zinc oxide (ZnO) thin film transistors (TFTs) is reported. The inverters are fabricated using standard photolithographic techniques on glass substrates, and the entire fabrication process temperature is maintained < 100 °C, which render the devices suitable for flexible and transparent electronics applications. Pulsed laser deposition is used to deposit aluminum-doped zinc oxide and ZnO as electrode and active semiconductor materials, respectively. Electrical characterization for individual TFTs demonstrate mobilities of ∼ 10 cm{sup 2}/V-s, threshold voltages of 6 V, sub-threshold slopes of 630 mV/decade and I{sub ON}/I{sub OFF} ratios of 5 × 10{sup 6}. Films characterized by UV-Vis showed optical transmission > 80% in the visible spectrum. The inverters are analyzed with AC input signals at frequencies of 100 and 500 Hz. The AC response shows an average rise and fall time transitions of 0.65 and 0.44 ms, respectively. Measured inverters delay is in the order of 0.21 ms. - Highlights: • Logic inverters based on zinc oxide thin film transistors. • Inverters fabricated using temperatures below 100 °C and standard photolithography. • Transparent aluminum-doped zinc oxide as gate, drain and source electrodes. • Devices with total transmittance in the visible range above 80%. • AC inverter response up to 500 Hz.

  18. Fully patterned and low temperature transparent ZnO-based inverters

    International Nuclear Information System (INIS)

    Gutierrez-Heredia, G.; Mejia, I.; Rivas-Aguilar, M.E.; Hernandez-Como, N.; Martinez-Landeros, V.H.; Aguirre-Tostado, F.S.; Quevedo-Lopez, M.A.

    2013-01-01

    The fabrication and characterization of transparent logic inverters based on zinc oxide (ZnO) thin film transistors (TFTs) is reported. The inverters are fabricated using standard photolithographic techniques on glass substrates, and the entire fabrication process temperature is maintained < 100 °C, which render the devices suitable for flexible and transparent electronics applications. Pulsed laser deposition is used to deposit aluminum-doped zinc oxide and ZnO as electrode and active semiconductor materials, respectively. Electrical characterization for individual TFTs demonstrate mobilities of ∼ 10 cm 2 /V-s, threshold voltages of 6 V, sub-threshold slopes of 630 mV/decade and I ON /I OFF ratios of 5 × 10 6 . Films characterized by UV-Vis showed optical transmission > 80% in the visible spectrum. The inverters are analyzed with AC input signals at frequencies of 100 and 500 Hz. The AC response shows an average rise and fall time transitions of 0.65 and 0.44 ms, respectively. Measured inverters delay is in the order of 0.21 ms. - Highlights: • Logic inverters based on zinc oxide thin film transistors. • Inverters fabricated using temperatures below 100 °C and standard photolithography. • Transparent aluminum-doped zinc oxide as gate, drain and source electrodes. • Devices with total transmittance in the visible range above 80%. • AC inverter response up to 500 Hz

  19. Two – step approach of fabrication of three – dimensional reduced graphene oxide – carbon nanotubes – nickel foams hybrid as a binder – free supercapacitor electrode

    International Nuclear Information System (INIS)

    Xiong, Chuanyin; Li, Tiehu; Zhao, Tingkai; Shang, Yudong; Dang, Alei; Ji, Xianglin; Li, Hao; Wang, Jungao

    2016-01-01

    Highlights: • 3D rGO-CNTs-NF electrode is fabricated by combination of EPD and FCCVD. • EPD with excellent uniformity is an economical processing technique. • FCCVD is beneficial to obtain more compact and uniform VACNTs. • The hybrid shows a high specific capacitance of 236.18 F g −1 and a high energy density of 19.24 Wh kg −1 . • This work provides various assumptions for designing hierarchical rGO-based architecture. - Abstract: A facile method is designed to prepare 3D reduced graphene oxide (rGO) - carbon nanotubes (CNTs) - nickel foams (NF). In this research, the 3D rGO-CNTs-NF electrode is fabricated by combination of electrophoretic deposition and floating catalyst chemical vapor deposition. The vertically-aligned CNTs forests not only effectively prevent stacking of rGO sheets but also facilitate the electron transfer during the charge/discharge process and contribute to the whole capacitance. Moreover, the 3D rGO-CNTs-NF hybrid can be used directly as electrodes of supercapacitor without binder. Additionally, the hybrid shows a specific capacitance of 236.18 F g −1 which is much higher than that of the rGO - NF electrode (100.23 F g −1 ). Importantly, the energy density and power density of 3D rGO-CNTs-NF are respectively as high as 19.24 Wh kg −1 and 5398 W kg −1 , indicating that our work provides a way to design hierarchical rGO-based architecture composed of rGO, CNTs and various electroactive materials for high-performance energy storage devices.

  20. Fibrous flexible solid-type dye-sensitized solar cells without transparent conducting oxide

    International Nuclear Information System (INIS)

    Fan Xing; Chu Zengze; Chen Lin; Zhang Chao; Wang Fuzhi; Tang Yanwei; Sun Jianliang; Zou Dechun

    2008-01-01

    We have explored a type of all-solid fibrous flexible dye-sensitized solar cells without transparent conducting oxide based on a CuI electrolyte. The working electrode's substrate is a metal wire. Cu wire counterelectrode is twisted with the dye-sensitized and CuI-coated working electrode. The cell's apparent diameter is about 150 μm. The cell's current-voltage output depends little on the incident angle of light. A 4-cm-long fibrous cell's open-circuit voltage and short-circuit current generate 304 mV and 0.032 mA, respectively. The interfacial interaction between the two electrodes has a significant influence on the inner charge transfer of the cell

  1. Optical cavity-assisted broadband optical transparency of a plasmonic metal film

    International Nuclear Information System (INIS)

    Liu, Zhengqi; Nie, Yiyou; Yuan, Wen; Liu, Xiaoshan; Huang, Shan; Gao, Huogui; Gu, Gang; Liu, Guiqiang; Chen, Jing

    2015-01-01

    We theoretically present a powerful method to achieve a continuous metal film structure with broadband optical transparency via introducing a dielectric Fabry–Pérot (FP) cavity. An incident optical field could be efficiently coupled and confined with the strong localized plasmons by the non-close-packed plasmonic crystal at the input part and could then become re-radiated output via the transmission channel supported by the dielectric cavity. The formed photonic-plasmonic system could therefore make the seamless metal film structure have a superior near-unity transparency (up to 97%) response and a broadband transparent spectrum with bandwidth >245 nm (with transmittance >90%) in the optical regime. The observed optical properties of the proposed structure can be highly tuned via varying the structural parameters. Based on the colloidal assembly method, the proposed plasmonic crystal can be fabricated in a large area. In addition, the achieved optical transparency can be retained in the extremely roughed metal film structure. Thereby, the findings could offer a feasible way to achieve a broadband transparent metal film structure and hold potential applications in transparent electrodes, touch screens and interactive electronics. (paper)

  2. Carbon Nanotubes as Counter Electrodes for Gratzel Solar Cells

    Science.gov (United States)

    Shodive, Hasan; Aliev, Ali; Zhang, Mei; Lee, Sergey; Baughman, Ray; Zakhidov, Anvar

    2006-03-01

    The role of interfaces is very critical for solar cell devices which use nanostructured materials. Dye Sensitized Solar Cells (DSSC) are devices which parts are interfacial in character and physico --chemical processes occur at the interface of two distinct media. DSSC are of great interest due to combination of their high efficiency and relatively low cost. An effective counterelectrode with high electrochemical activity is an important component of DSSC to enhance its practical utility. Presently used Pt coated ITO counterelectrode can not be applied in flexible DSSC architectures, while there is a growing need for flexible anodes which are transparent and have desired interface characteristics. In this work in order to search for such materials for counter electrode in dye sensitized solar cells, newly developed strong and transparent and modified carbon nanotube sheets [1] are used in interfacial counter electrode. To increase the electrochemical activity of the anode the CNT sheets are coated with highly conductive SWCNT and compared with pure multiwall CNT sheets. We show that the transparent sheets of SWCNT/MWCNT perform as a flexible anode and as electrochemical catalyst and also can be used in tandems of dye sensitized solar cells as transparent charge recombination or interconnect layers. [1] M. Zhang, S.Fang, A.Zakhidov, S.B.Lee, A.Aliev et.al., Science, 309,(2005) 1215

  3. Improved open-circuit voltage in Cu(In,Ga)Se2 solar cells with high work function transparent electrodes

    International Nuclear Information System (INIS)

    Jäger, Timo; Romanyuk, Yaroslav E.; Bissig, Benjamin; Pianezzi, Fabian; Nishiwaki, Shiro; Reinhard, Patrick; Steinhauser, Jérôme; Tiwari, Ayodhya N.; Schwenk, Johannes

    2015-01-01

    Hydrogenated indium oxide (IOH) is implemented as transparent front contact in Cu(In,Ga)Se 2 (CIGS) solar cells, leading to an open circuit voltage V OC enhanced by ∼20 mV as compared to reference devices with ZnO:Al (AZO) electrodes. This effect is reproducible in a wide range of contact sheet resistances corresponding to various IOH thicknesses. We present the detailed electrical characterization of glass/Mo/CIGS/CdS/intrinsic ZnO (i-ZnO)/transparent conductive oxide (TCO) with different IOH/AZO ratios in the front TCO contact in order to identify possible reasons for the enhanced V OC . Temperature and illumination intensity-dependent current-voltage measurements indicate that the dominant recombination path does not change when AZO is replaced by IOH, and it is mainly limited to recombination in the space charge region and at the junction interface of the solar cell. The main finding is that the introduction of even a 5 nm-thin IOH layer at the i-ZnO/TCO interface already results in a step-like increase in V OC . Two possible explanations are proposed and verified by one-dimensional simulations using the SCAPS software. First, a higher work function of IOH as compared to AZO is simulated to yield an V OC increase by 21 mV. Second, a lower defect density in the i-ZnO layer as a result of the reduced sputter damage during milder sputter-deposition of IOH can also add to a maximum enhanced V OC of 25 mV. Our results demonstrate that the proper choice of the front TCO contact can reduce the parasitic recombination and boost the efficiency of CIGS cells with improved corrosion stability

  4. Transparent organic light-emitting diodes with balanced white emission by minimizing waveguide and surface plasmonic loss.

    Science.gov (United States)

    Zhang, Yi-Bo; Ou, Qing-Dong; Li, Yan-Qing; Chen, Jing-De; Zhao, Xin-Dong; Wei, Jian; Xie, Zhong-Zhi; Tang, Jian-Xin

    2017-07-10

    It is challenging in realizing high-performance transparent organic light-emitting diodes (OLEDs) with symmetrical light emission to both sides. Herein, an efficient transparent OLED with highly balanced white emission to both sides is demonstrated by integrating quasi-periodic nanostructures into the organic emitter and the metal-dielectric composite top electrode, which can simultaneously suppressing waveguide and surface plasmonic loss. The power efficiency and external quantum efficiency are raised to 83.5 lm W -1 and 38.8%, respectively, along with a bi-directional luminance ratio of 1.26. The proposed scheme provides a facile route for extending application scope of transparent OLEDs for future transparent displays and lightings.

  5. Synthesis of biocompatible hydrophobic silica-gelatin nano-hybrid by sol-gel process.

    Science.gov (United States)

    Smitha, S; Shajesh, P; Mukundan, P; Nair, T D R; Warrier, K G K

    2007-03-15

    Silica-biopolymer hybrid has been synthesised using colloidal silica as the precursor for silica and gelatin as the biopolymer counterpart. The surface modification of the hybrid material has been done with methyltrimethoxysilane leading to the formation of biocompatible hydrophobic silica-gelatin hybrid. Here we are reporting hydrophobic silica-gelatin hybrid and coating precursor for the first time. The hybrid gel has been evaluated for chemical modification, thermal degradation, hydrophobicity, particle size, transparency under the UV-visible region and morphology. FTIR spectroscopy has been used to verify the presence of CH(3) groups which introduce hydrophobicity to the SiO2-MTMS-gelatin hybrids. The hydrophobic property has also been tailored by varying the concentration of methyltrimethoxysilane. Contact angle by Wilhelmy plate method of transparent hydrophobic silica-gelatin coatings has been found to be as high as approximately 95 degrees . Oxidation of the organic group which induces the hydrophobic character occurs at 530 degrees C which indicates that the surface hydrophobicity is retained up to that temperature. Optical transmittance of SiO2-MTMS-gelatin hybrid coatings on glass substrates has been found to be close to 100% which will enable the hybrid for possible optical applications and also for preparation of transparent biocompatible hydrophobic coatings on biological substrates such as leather.

  6. Spontaneous and Selective Nanowelding of Silver Nanowires by Electrochemical Ostwald Ripening and High Electrostatic Potential at the Junctions for High-Performance Stretchable Transparent Electrodes.

    Science.gov (United States)

    Lee, Hyo-Ju; Oh, Semi; Cho, Ki-Yeop; Jeong, Woo-Lim; Lee, Dong-Seon; Park, Seong-Ju

    2018-04-25

    Metal nanowires have been gaining increasing attention as the most promising stretchable transparent electrodes for emerging field of stretchable optoelectronic devices. Nanowelding technology is a major challenge in the fabrication of metal nanowire networks because the optoelectronic performances of metal nanowire networks are mostly limited by the high junction resistance between nanowires. We demonstrate the spontaneous and selective welding of Ag nanowires (AgNWs) by Ag solders via an electrochemical Ostwald ripening process and high electrostatic potential at the junctions of AgNWs. The AgNWs were welded by depositing Ag nanoparticles (AgNPs) on the conducting substrate and then exposing them to water at room temperature. The AgNPs were spontaneously dissolved in water to form Ag + ions, which were then reduced to single-crystal Ag solders selectively at the junctions of the AgNWs. Hence, the welded AgNWs showed higher optoelectronic and stretchable performance compared to that of as-formed AgNWs. These results indicate that electrochemical Ostwald ripening-based welding can be used as a promising method for high-performance metal nanowire electrodes in various next-generation devices such as stretchable solar cells, stretchable displays, organic light-emitting diodes, and skin sensors.

  7. Carbon nanotube aerogel-CoS2 hybrid catalytic counter electrodes for enhanced photovoltaic performance dye-sensitized solar cells.

    Science.gov (United States)

    Liu, Tao; Mai, Xianmin; Chen, Haijun; Ren, Jing; Liu, Zheting; Li, Yingxiang; Gao, Lina; Wang, Ning; Zhang, Jiaoxia; He, Hongcai; Guo, Zhanhu

    2018-03-01

    The carbon nanotube aerogel (CNA) with an ultra-low density, three-dimensional network nanostructure, superior electronic conductivity and large surface area is being widely employed as a catalytic electrode and catalytic support. Impressively, dye-sensitized solar cells (DSSCs) assembled with a CNA counter electrode (CE) achieved a maximum power conversion efficiency (PCE) of 8.28%, which exceeded that of the conventional platinum (Pt)-based DSSC (7.20%) under the same conditions. Furthermore, highly dispersed CoS 2 nanoparticles endowed with excellent intrinsic catalytic activity were hydrothermally incorporated to form a CNA-supported CoS 2 (CNA-CoS 2 ) CE, which was due to the large number of catalytically active sites and sufficient connections between CoS 2 and the CNA. The electrocatalytic ability and stability were systematically evaluated by cyclic voltammetry (CV), electrochemical impedance spectra (EIS) and Tafel polarization, which confirmed that the resultant CNA-CoS 2 hybrid CE exhibited a remarkably higher electrocatalytic activity toward I 3 - reduction, and faster ion diffusion and electron transfer than the pure CNA CE. Such cost-effective DSSCs assembled with an optimized CNA-CoS 2 CE yielded an enhanced PCE of 8.92%, comparable to that of the cell fabricated with the CNA-Pt hybrid CE reported in our published literature (9.04%). These results indicate that the CNA-CoS 2 CE can be considered as a promising candidate for Pt-free CEs used in low-cost and high-performance DSSCs.

  8. Atom-membrane cooling and entanglement using cavity electromagnetically induced transparency

    DEFF Research Database (Denmark)

    Genes, Claudiu; Ritsch, Helmut; Drewsen, Michael

    2011-01-01

    We investigate a hybrid optomechanical system composed of a micromechanical oscillator as a movable membrane and an atomic three-level ensemble within an optical cavity. We show that a suitably tailored cavity field response via electromagnetically induced transparency (EIT) in the atomic medium...

  9. Zinc deposition and dissolution in methanesulfonic acid onto a carbon composite electrode as the negative electrode reactions in a hybrid redox flow battery

    International Nuclear Information System (INIS)

    Leung, P.K.; Ponce-de-Leon, C.; Low, C.T.J.; Walsh, F.C.

    2011-01-01

    Highlights: → Use methanesulfonic acid to avoid dendrite formation during a long (>4 h) zinc electrodeposition. → Electrochemical characterization of Zn(II) deposition and its morphology using methanesulfonic acid solutions. → Use of additives to improve the efficiency of zinc deposition and dissolution as the half cell reaction of a redox flow battery. - Abstract: Electrodeposition and dissolution of zinc in methanesulfonic acid were studied as the negative electrode reactions in a hybrid redox flow battery. Cyclic voltammetry at a rotating disk electrode was used to characterize the electrochemistry and the effect of process conditions on the deposition and dissolution rate of zinc in aqueous methanesulfonic acid. At a sufficiently high current density, the deposition process became a mass transport controlled reaction. The diffusion coefficient of Zn 2+ ions was 7.5 x 10 -6 cm 2 s -1 . The performance of the zinc negative electrode in a parallel plate flow cell was also studied as a function of Zn 2+ ion concentration, methanesulfonic acid concentration, current density, electrolyte flow rate, operating temperature and the addition of electrolytic additives, including potassium sodium tartarate, tetrabutylammonium hydroxide, and indium oxide. The current-, voltage- and energy efficiencies of the zinc-half cell reaction and the morphologies of the zinc deposits are also discussed. The energy efficiency improved from 62% in the absence of additives to 73% upon the addition of 2 x 10 -3 mol dm -3 of indium oxide as a hydrogen suppressant. In aqueous methanesulfonic acid with or without additives, there was no significant dendrite formation after zinc electrodeposition for 4 h at 50 mA cm -2 .

  10. Versatile and Tunable Transparent Conducting Electrodes Based on Doped Graphene

    KAUST Repository

    Mansour, Ahmed E.

    2016-11-25

    The continued growth of the optoelectronics industry and the emergence of wearable and flexible electronics will continue to place an ever increasing pressure on replacing ITO, the most widely used transparent conducting electrode (TCE). Among the various candidates, graphene shows the highest optical transmittance in addition to promising electrical transport properties. The currently available large-scale synthesis routes of graphene result in polycrystalline samples rife with grain boundaries and other defects which limit its transport properties. Chemical doping of graphene is a viable route towards increasing its conductivity and tuning its work function. However, dopants are typically present at the surface of the graphene sheet, making them highly susceptible to degradation in environmental conditions. Few-layers graphene (FLG) is a more resilient form of graphene exhibiting higher conductivity and performance stability under stretching and bending as contrasted to single-layer graphene. In addition FLG presents the advantage of being amenable bulk doping by intercalation. Herein, we explore non-covalent doping routes of CVD FLG, such as surface doping, intercalation and combination thereof, through in-depth and systematic characterization of the electrical transport properties and energy levels shifts. The intercalation of FLG with Br2 and FeCl3 is demonstrated, showing the highest improvements of the figure of merit of TCEs of any doping scheme, which results from up to a five-fold increase in conductivity while maintaining the transmittance within 3% of that for the pristine value. Importantly the intercalation yields TCEs that are air-stable, due to encapsulation of the intercalant in the bulk of FLG. Surface doping with novel solution-processed metal-organic molecular species (n- and p-type) is demonstrated with an unprecedented range of work function modulation, resulting from electron transfer and the formation of molecular surface dipoles. However

  11. Atomic Layer-Deposited Molybdenum Oxide/Carbon Nanotube Hybrid Electrodes: The Influence of Crystal Structure on Lithium-Ion Capacitor Performance.

    Science.gov (United States)

    Fleischmann, Simon; Zeiger, Marco; Quade, Antje; Kruth, Angela; Presser, Volker

    2018-05-25

    Merging of supercapacitors and batteries promises the creation of electrochemical energy storage devices that combine high specific energy, power, and cycling stability. For that purpose, lithium-ion capacitors (LICs) that store energy by lithiation reactions at the negative electrode and double-layer formation at the positive electrode are currently investigated. In this study, we explore the suitability of molybdenum oxide as a negative electrode material in LICs for the first time. Molybdenum oxide-carbon nanotube hybrid materials were synthesized via atomic layer deposition, and different crystal structures and morphologies were obtained by post-deposition annealing. These model materials are first structurally characterized and electrochemically evaluated in half-cells. Benchmarking in LIC full-cells revealed the influences of crystal structure, half-cell capacity, and rate handling on the actual device level performance metrics. The energy efficiency, specific energy, and power are mainly influenced by the overpotential and kinetics of the lithiation reaction during charging. Optimized LIC cells show a maximum specific energy of about 70 W·h·kg -1 and a high specific power of 4 kW·kg -1 at 34 W·h·kg -1 . The longevity of the LIC cells is drastically increased without significantly reducing the energy by preventing a deep cell discharge, hindering the negative electrode from crossing its anodic potential limit.

  12. Radio-frequency transparent demodulation for broadband hybrid wireless-optical links

    DEFF Research Database (Denmark)

    Zibar, Darko; Sambaraju, Rakesh; Alemany, Ruben

    2010-01-01

    A novel demodulation technique which is transparent to radio-frequency (RF) carrier frequency is presented and experimentally demonstrated for multigigabit wireless signals. The presented demodulation technique employs optical single-sideband filtering, coherent detection, and baseband digital si...

  13. Three-terminal resistive switching memory in a transparent vertical-configuration device

    International Nuclear Information System (INIS)

    Ungureanu, Mariana; Llopis, Roger; Casanova, Fèlix; Hueso, Luis E.

    2014-01-01

    The resistive switching phenomenon has attracted much attention recently for memory applications. It describes the reversible change in the resistance of a dielectric between two non-volatile states by the application of electrical pulses. Typical resistive switching memories are two-terminal devices formed by an oxide layer placed between two metal electrodes. Here, we report on the fabrication and operation of a three-terminal resistive switching memory that works as a reconfigurable logic component and offers an increased logic density on chip. The three-terminal memory device we present is transparent and could be further incorporated in transparent computing electronic technologies

  14. A study of the electrochemical behaviour of electrodes in operating solid-state supercapacitors

    International Nuclear Information System (INIS)

    Staiti, P.; Lufrano, F.

    2007-01-01

    The electrochemical behaviour of electrodes and of complete solid-state supercapacitors has been studied by cyclic voltammetry (CV) and galvanostatic charge/discharge (CD) measurements using two independent electrochemical equipments. The first one controlled the execution of the test and recorded the voltage and current values of the complete supercapacitor while the other one recorded the potential changes of the single electrodes. In this work, two different types of capacitors were studied: (a) a symmetric supercapacitor using carbon electrodes, and (b) a hybrid (asymmetric) supercapacitor with ruthenium oxide/carbon in the positive electrode and carbon in the negative electrode. The studies evidenced that in the symmetric capacitors the positive electrode controlled the capacitive performance and an optimal mass ratio from 1.2:1 to 1.3:1 between the positive and the negative electrodes was found in the investigated conditions. For the hybrid supercapacitor it was observed that the ruthenium-based positive electrode influenced the capacitive performance of carbon-based negative electrode and that an accurate balance of carbon loading in the negative electrode was necessary

  15. AZO/Au/AZO tri-layer thin films for the very low resistivity transparent electrode applications

    Energy Technology Data Exchange (ETDEWEB)

    Chu, Chien-Hsun [Department of Materials Science and Engineering, National Cheng Kung University, Tainan 70101, Taiwan (China); Wu, Hung-Wei, E-mail: hwwu@mail.ksu.edu.tw [Department of Computer and Communication, Kun Shan University, Tainan 71003, Taiwan (China); Huang, Jow-Lay [Department of Materials Science and Engineering, National Cheng Kung University, Tainan 70101, Taiwan (China); Department of Chemical and Materials Engineering, National University of Kaohsiung, Kaohsiung 81148, Taiwan (China); Research Center for Energy Technology and Strategy, National Cheng Kung University, Tainan 70101, Taiwan (China)

    2014-08-01

    Highlights: • High-quality Al-doped ZnO (AZO)/Au/AZO transparent conducting oxide films. • AZO films (30 nm) made by RF sputtering; ion sputtering for Au film (5–20 nm). • Effects of Au thickness on optical and electrical properties were analyzed. • The resistivity of 9 × 10{sup −5} Ω cm and the transmittance of 86.2% of the multilayer films were obtained in this study. - Abstract: Aluminum-doped ZnO (AZO)/gold/AZO tri-layer structures with very low resistivity and high transmittance are prepared by simultaneous RF magnetron sputtering (for AZO) and ion sputtering (for Au). The properties of the tri-layer films are investigated at different Au layer thicknesses (5–20 nm). The effects of Au layer thickness and the role of Au on the transmission properties of the tri-layer films were investigated. The very low resistivity of 1.01 × 10{sup −5} Ω cm, mobility of 27.665 cm{sup 2} V{sup −1} s{sup −1}, and carrier concentration of 4.563 × 10{sup 22} cm{sup −3} were obtained at an Au layer thickness of 20 nm. The peak transmittance of 86.18% at 650-nm wavelength was obtained at an Au layer thickness of 8 nm. These results show the films to be a good candidate for high-quality electrode scheme in various display applications.

  16. Ag/Au/Polypyrrole Core-shell Nanowire Network for Transparent, Stretchable and Flexible Supercapacitor in Wearable Energy Devices

    Science.gov (United States)

    Moon, Hyunjin; Lee, Habeom; Kwon, Jinhyeong; Suh, Young Duk; Kim, Dong Kwan; Ha, Inho; Yeo, Junyeob; Hong, Sukjoon; Ko, Seung Hwan

    2017-02-01

    Transparent and stretchable energy storage devices have attracted significant interest due to their potential to be applied to biocompatible and wearable electronics. Supercapacitors that use the reversible faradaic redox reaction of conducting polymer have a higher specific capacitance as compared with electrical double-layer capacitors. Typically, the conducting polymer electrode is fabricated through direct electropolymerization on the current collector. However, no research have been conducted on metal nanowires as current collectors for the direct electropolymerization, even though the metal nanowire network structure has proven to be superior as a transparent, flexible, and stretchable electrode platform because the conducting polymer’s redox potential for polymerization is higher than that of widely studied metal nanowires such as silver and copper. In this study, we demonstrated a highly transparent and stretchable supercapacitor by developing Ag/Au/Polypyrrole core-shell nanowire networks as electrode by coating the surface of Ag NWs with a thin layer of gold, which provide higher redox potential than the electropolymerizable monomer. The Ag/Au/Polypyrrole core-shell nanowire networks demonstrated superior mechanical stability under various mechanical bending and stretching. In addition, proposed supercapacitors showed fine optical transmittance together with fivefold improved areal capacitance compared to pristine Ag/Au core-shell nanowire mesh-based supercapacitors.

  17. Optically transparent boron-doped nanocrystalline diamond films for spectroelectrochemical measurements on different substrates

    International Nuclear Information System (INIS)

    Sobaszek, M.; Bogdanowicz, R.; Pluciński, J.; Siuzdak, K.; Skowroński, Ł.

    2016-01-01

    Fabrication process of optically transparent boron nanocrystalline diamond (B- NCD) electrode on silicon and quartz substrate was shown. The B-NCD films were deposited on the substrates using Microwave Plasma Assisted Chemical Vapor Deposition (MWPACVD) at glass substrate temperature of 475 °C. A homogenous, continuous and polycrystalline surface morphology with high sp 3 content in B-NCD films and film thickness depending from substrate in the range of 60-300 nm was obtained. The high refraction index and transparency in visible (VIS) wavelength range was achieved. Moreover, cyclic voltammograms (CV) were recorded to determine reaction reversibility at the B-NCD electrode. CV measurements in aqueous media consisting of 1 mM K 3 [Fe(CN) 6 ] in 0.5 M Na 2 SO 4 demonstrated relatively fast kinetics expressed by a redox peak splitting below 503 mV for B-NCD/silicon and 110 mv for B-NCD/quartz

  18. Toward transparent nanocomposites based on polystyrene matrix and PMMA-grafted CeO2 nanoparticles.

    Science.gov (United States)

    Parlak, Onur; Demir, Mustafa M

    2011-11-01

    The association of transparent polymer and nanosized pigment particles offers attractive optical materials for various potential and existing applications. However, the particles embedded into polymers scatter light due to refractive index (RI) mismatch and reduce transparency of the resulting composite material. In this study, optical composites based on polystyrene (PS) matrix and poly(methyl methacrylate) (PMMA)-grafted CeO(2) hybrid particles were prepared. CeO(2) nanoparticles with an average diameter of 18 ± 8 nm were precipitated by treating Ce(NO(3))·6H(2)O with urea in the presence of a polymerizable surfactant, 3-methacyloxypropyltrimethoxy silane. PMMA chains were grafted on the surface of the nanoparticles upon free radical in situ solution polymerization. While blending of unmodified CeO(2) particles with PS resulted in opaque films, the transparency of the composite films was remarkably enhanced when prepared by PMMA-grafted CeO(2) hybrid particles, particularly those having a PMMA thickness of 9 nm. The improvement in transparency is presumably due to the reduction in RI mismatch between CeO(2) particles and the PS matrix when using PMMA chains at the interface.

  19. Materials Science of Electrodes and Interfaces for High-Performance Organic Photovoltaics

    Energy Technology Data Exchange (ETDEWEB)

    Marks, Tobin [Northwestern Univ., Evanston, IL (United States)

    2016-11-18

    The science of organic photovoltaic (OPV) cells has made dramatic advances over the past three years with power conversion efficiencies (PCEs) now reaching ~12%. The upper PCE limit of light-to-electrical power conversion for single-junction OPVs as predicted by theory is ~23%. With further basic research, the vision of such devices, composed of non-toxic, earth-abundant, readily easily processed materials replacing/supplementing current-generation inorganic solar cells may become a reality. Organic cells offer potentially low-cost, roll-to-roll manufacturable, and durable solar power for diverse in-door and out-door applications. Importantly, further gains in efficiency and durability, to that competitive with inorganic PVs, will require fundamental, understanding-based advances in transparent electrode and interfacial materials science and engineering. This team-science research effort brought together an experienced and highly collaborative interdisciplinary group with expertise in hard and soft matter materials chemistry, materials electronic structure theory, solar cell fabrication and characterization, microstructure characterization, and low temperature materials processing. We addressed in unconventional ways critical electrode-interfacial issues underlying OPV performance -- controlling band offsets between transparent electrodes and organic active-materials, addressing current loss/leakage phenomena at interfaces, and new techniques in cost-effective low temperature and large area cell fabrication. The research foci were: 1) Theory-guided design and synthesis of advanced crystalline and amorphous transparent conducting oxide (TCO) layers which test our basic understanding of TCO structure-transport property relationships, and have high conductivity, transparency, and tunable work functions but without (or minimizing) the dependence on indium. 2) Development of theory-based understanding of optimum configurations for the interfaces between oxide electrodes

  20. Fully transparent conformal organic thin-film transistor array and its application as LED front driving.

    Science.gov (United States)

    Cui, Nan; Ren, Hang; Tang, Qingxin; Zhao, Xiaoli; Tong, Yanhong; Hu, Wenping; Liu, Yichun

    2018-02-22

    A fully transparent conformal organic thin-film field-effect transistor array is demonstrated based on a photolithography-compatible ultrathin metallic grid gate electrode and a solution-processed C 8 -BTBT film. The resulting organic field-effect transistor array exhibits a high optical transparency of >80% over the visible spectrum, mobility up to 2 cm 2 V -1 s -1 , on/off ratio of 10 5 -10 6 , switching current of >0.1 mA, and excellent light stability. The transparent conformal transistor array is demonstrated to adhere well to flat and curved LEDs as front driving. These results present promising applications of the solution-processed wide-bandgap organic semiconductor thin films in future large-scale transparent conformal active-matrix displays.