WorldWideScience

Sample records for hybrid systems utilizing

  1. Liquid fuel utilization in SOFC hybrid systems

    Energy Technology Data Exchange (ETDEWEB)

    Santin, Marco; Traverso, Alberto; Magistri, Loredana [TPG-DIMSET, University of Genoa, Via Montallegro 1, 16145 Genoa (Italy)

    2009-10-15

    The interest in solid oxide fuel cell systems comes from their capability of converting the chemical energy of traditional fuels into electricity, with high efficiency and low pollutant emissions. In this paper, a study of the design space of solid oxide fuel cell and gas turbine hybrids fed by methanol and kerosene is presented for stationary power generation in isolated areas (or transportation). A 500 kW class hybrid system was analysed using WTEMP original software developed by the Thermochemical Power Group of the University of Genoa. The choice of fuel-processing strategy and the influence of the main design parameters on the thermoeconomic characteristics of hybrid systems were investigated. The low capital and fuel cost of methanol systems make them the most attractive solutions among those investigated here. (author)

  2. Utilization of hybrid systems in Cuba

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez, Mercedes Menendez; Figueredo, Conrado Moreno [Renewable Energy Technologies Study Center (CETER), Marianao (Cuba)

    1996-12-31

    This work deals with the possibility of the wind-photovoltaic hybrid system uses for the electricity generation in Cuba. A design of energy installation is made to satisfy the tourism facilities demands located in Cayo Sabinal, in the north of the province Camaguey. The design is based on the data base of the available wind and solar resources. A group of existing wind-generators in the market is analyzed and the best is selected taking into account a set of energy parameters, the monthly energy supply is function of the turbines numbers and the quantity of necessary solar energy to guarantee the system requirements. An economical evaluation is carried out in order to select the best wind-solar combination and a comparison with other forms of electricity generation (Diesel Plant and a stand alone wind system). In the work is showed the best combination in the critical month is when a 62% of energy is supplied by wind energy and 38% of solar energy. Otherwise in the work is showed hybrid system is more economical than a stand alone wind system and a Diesel Plant. (Author)

  3. Workable male sterility systems for hybrid rice: Genetics, biochemistry, molecular biology, and utilization.

    Science.gov (United States)

    Huang, Jian-Zhong; E, Zhi-Guo; Zhang, Hua-Li; Shu, Qing-Yao

    2014-12-01

    The exploitation of male sterility systems has enabled the commercialization of heterosis in rice, with greatly increased yield and total production of this major staple food crop. Hybrid rice, which was adopted in the 1970s, now covers nearly 13.6 million hectares each year in China alone. Various types of cytoplasmic male sterility (CMS) and environment-conditioned genic male sterility (EGMS) systems have been applied in hybrid rice production. In this paper, recent advances in genetics, biochemistry, and molecular biology are reviewed with an emphasis on major male sterility systems in rice: five CMS systems, i.e., BT-, HL-, WA-, LD- and CW- CMS, and two EGMS systems, i.e., photoperiod- and temperature-sensitive genic male sterility (P/TGMS). The interaction of chimeric mitochondrial genes with nuclear genes causes CMS, which may be restored by restorer of fertility (Rf) genes. The PGMS, on the other hand, is conditioned by a non-coding RNA gene. A survey of the various CMS and EGMS lines used in hybrid rice production over the past three decades shows that the two-line system utilizing EGMS lines is playing a steadily larger role and TGMS lines predominate the current two-line system for hybrid rice production. The findings and experience gained during development and application of, and research on male sterility in rice not only advanced our understanding but also shed light on applications to other crops.

  4. Dynamic Power Management for Portable Hybrid Power-Supply Systems Utilizing Approximate Dynamic Programming

    Directory of Open Access Journals (Sweden)

    Jooyoung Park

    2015-05-01

    Full Text Available Recently, the optimization of power flows in portable hybrid power-supply systems (HPSSs has become an important issue with the advent of a variety of mobile systems and hybrid energy technologies. In this paper, a control strategy is considered for dynamically managing power flows in portable HPSSs employing batteries and supercapacitors. Our dynamic power management strategy utilizes the concept of approximate dynamic programming (ADP. ADP methods are important tools in the fields of stochastic control and machine learning, and the utilization of these tools for practical engineering problems is now an active and promising research field. We propose an ADP-based procedure based on optimization under constraints including the iterated Bellman inequalities, which can be solved by convex optimization carried out offline, to find the optimal power management rules for portable HPSSs. The effectiveness of the proposed procedure is tested through dynamic simulations for smartphone workload scenarios, and simulation results show that the proposed strategy can successfully cope with uncertain workload demands.

  5. Nutrient utilization and oxygen production by Chlorella Vulgaris in a hybrid membrane bioreactor and algal membrane photobioreactor system

    KAUST Repository

    Najm, Yasmeen

    2017-02-17

    This work studied oxygen production and nutrient utilization by Chlorella Vulgaris at different organic/inorganic carbon (OC/IC) and ammonium/nitrate (NH4+-N/NO3--N) ratios to design a hybrid aerobic membrane bioreactor (MBR) and membrane photobioreactor (MPBR) system. Specific oxygen production by C. vulgaris was enough to support the MBR if high growth is accomplished. Nearly 100% removal (or utilization) of PO43--P and IC was achieved under all conditions tested. Optimal growth was achieved at mixotrophic carbon conditions (0.353 d-1) and the highest NH4+-N concentration (0.357 d-1), with preferable NH4+-N utilization rather than NO3--N. The results indicate the potential of alternative process designs to treat domestic wastewater by coupling the hybrid MBR - MPBR systems.

  6. Hybrid utilization of solar energy. Part 2. Performance analyses of heating system with air hybrid collector; Taiyo energy no hybrid riyo ni kansuru kenkyu. 2. Kuki shunetsu hybrid collector wo mochiita danbo system no seino hyoka

    Energy Technology Data Exchange (ETDEWEB)

    Yoshinaga, M.; Okumiya, M. [Nagoya University, Nagoya (Japan)

    1996-10-27

    For the effective utilization of solar energy at houses, a heating system using an air hybrid collector (capable of simultaneously performing heat collection and photovoltaic power generation). As the specimen house, a wooden house of a total floor area of 120m{sup 2} was simulated. Collected air is fanned into a crushed stone heat accumulator (capable of storing one day`s collection) or into a living room. The output of solar cell arrays is put into a heat pump (capable of handling a maximum hourly load of 36,327kJ/h) via an inverter so as to drive the fan (corresponding to average insolation on the heat collecting plate of 10.7MJ/hm{sup 2} and heat collecting efficiency of 40%), and shortage in power if any is supplied from the system interconnection. A hybrid collector, as compared with the conventional air collector, is lower in thermal efficiency but the merit that it exhibits with respect to power generation is far greater than what is needed to counterbalance the demerit. When the hybrid system is in heating operation, there is an ideal heat cycle of collection, accumulation, and radiation when the load is light, but the balance between accumulation and radiation is disturbed when the load is heavy. 4 refs., 8 figs., 3 tabs.

  7. A Self-Powered Hybrid Energy Scavenging System Utilizing RF and Vibration Based Electromagnetic Harvesters

    Science.gov (United States)

    Uluşan, H.; Gharehbaghi, K.; Zorlu, Ö.; Muhtaroğlu, A.; Külah, H.

    2015-12-01

    This study presents a novel hybrid system that combines the power generated simultaneously by a vibration-based Electromagnetic (EM) harvester and a UHF band RF harvester. The novel hybrid scavenger interface uses a power management circuit in 180 nm CMOS technology to step-up and to regulate the combined output. At the first stage of the system, the RF harvester generates positive DC output with a 7-stage threshold compensated rectifier, while the EM harvester generates negative DC output with a self-powered AC/DC negative doubler circuit. At the second stage, the generated voltages are serially added, stepped-up with an on-chip charge pump circuit, and regulated to a typical battery voltage of 3 V. Test results indicate that the hybrid operation enables generation of 9 μW at 3 V output for a wide range of input stimulations, which could not be attained with either harvesting mode by itself. Moreover the hybrid system behaves as a typical battery, and keeps the output voltage stable at 3 V up to 18 μW of output power. The presented system is the first battery-like harvester to our knowledge that generates energy from two independent sources and regulates the output to a stable DC voltage.

  8. A hybrid three-class brain-computer interface system utilizing SSSEPs and transient ERPs

    Science.gov (United States)

    Breitwieser, Christian; Pokorny, Christoph; Müller-Putz, Gernot R.

    2016-12-01

    Objective. This paper investigates the fusion of steady-state somatosensory evoked potentials (SSSEPs) and transient event-related potentials (tERPs), evoked through tactile simulation on the left and right-hand fingertips, in a three-class EEG based hybrid brain-computer interface. It was hypothesized, that fusing the input signals leads to higher classification rates than classifying tERP and SSSEP individually. Approach. Fourteen subjects participated in the studies, consisting of a screening paradigm to determine person dependent resonance-like frequencies and a subsequent online paradigm. The whole setup of the BCI system was based on open interfaces, following suggestions for a common implementation platform. During the online experiment, subjects were instructed to focus their attention on the stimulated fingertips as indicated by a visual cue. The recorded data were classified during runtime using a multi-class shrinkage LDA classifier and the outputs were fused together applying a posterior probability based fusion. Data were further analyzed offline, involving a combined classification of SSSEP and tERP features as a second fusion principle. The final results were tested for statistical significance applying a repeated measures ANOVA. Main results. A significant classification increase was achieved when fusing the results with a combined classification compared to performing an individual classification. Furthermore, the SSSEP classifier was significantly better in detecting a non-control state, whereas the tERP classifier was significantly better in detecting control states. Subjects who had a higher relative band power increase during the screening session also achieved significantly higher classification results than subjects with lower relative band power increase. Significance. It could be shown that utilizing SSSEP and tERP for hBCIs increases the classification accuracy and also that tERP and SSSEP are not classifying control- and non

  9. Hybrid electrical generation system utilizing wind, diesel and hydropower for operation of an underground zinc mine in southern Chile

    Energy Technology Data Exchange (ETDEWEB)

    Gridley, Norman [Minera El Toqui (Chile); Banto, Marcelo [Seawind Chile (Chile)

    2010-07-01

    This paper presents a hybrid electrical generation system used for underground zinc mine operations that utilizes wind, diesel and hydropower. This mine is located in Coyhaique and had a total energy consumption of 32,567 MWh in 2010 which is anticipated to increase by 25% in 2011. Power generation in this mine is independent of the power grid. It consists of four main portals: ventilation, electrical and drainage systems and ramp access to all mining zones. The technical details for all the parts of the mine and the hybrid generation system are given. A tabular form shows the energy consumed every month from 2005-2010 for all three systems involved, namely wind power generation, diesel generation and the hydro generation system. Benefits of this hybrid system include stability and constant power generation under variable loads. This system can also be applied to other mines using a grid. From the study it can be concluded that the hybrid system is environmentally friendly, economical and sustainable.

  10. A High-Capacity Adenoviral Hybrid Vector System Utilizing the Hyperactive Sleeping Beauty Transposase SB100X for Enhanced Integration.

    Science.gov (United States)

    Boehme, Philip; Zhang, Wenli; Solanki, Manish; Ehrke-Schulz, Eric; Ehrhardt, Anja

    2016-07-19

    For efficient delivery of required genetic elements we utilized high-capacity adenoviral vectors in the past allowing high transgene capacities of up to 36 kb. Previously we explored the hyperactive Sleeping Beauty (SB) transposase (HSB5) for somatic integration from the high-capacity adenoviral vectors genome. To further improve this hybrid vector system we hypothesized that the previously described hyperactive SB transposase SB100X will result in significantly improved efficacies after transduction of target cells. Plasmid based delivery of the SB100X system revealed significantly increased integration efficiencies compared with the previously published hyperactive SB transposase HSB5. After optimizing experimental setups for high-capacity adenoviral vectors-based delivery of the SB100X system we observed up to eightfold and 100-fold increased integration efficiencies compared with the previously published hyperactive SB transposase HSB5 and the inactive transposase mSB, respectively. Furthermore, transposon copy numbers per cell were doubled with SB100X compared with HSB5 when using the identical multiplicity of infection. We believe that this improved hybrid vector system represents a valuable tool for achieving stabilized transgene expression in cycling cells and for treatment of numerous genetic disorders. Especially for in vivo approaches this improved adenoviral hybrid vector system will be advantageous because it may potentially allow reduction of the applied viral dose.

  11. Harnessing the hybrid power supply systems of utility grid and photovoltaic panels at retrofit residential single family building in Medan

    Science.gov (United States)

    Pangaribuan, A. B.; Rahmat, R. F.; Lidya, M. S.; Zálešák, M.

    2017-01-01

    The paper describes improvisation mode of energy supply source by collaboration between national utility grid as represented by fossil fuels and PV as independent renewable power resource in order to aim the energy consumptions efficiently in retrofit single family house. In this case, one existing single family house model in Medan, Indonesia was observed for the possibility of future refurbishment. The eco-design version of the house model and prediction analyses regarding nearby potential renewable energy resource (solar system) had been made using Autodesk Revit MEP 2015, Climate Consultant 6.0 and Green Building Studio Analysis. Economical evaluation of using hybrid power supply is discussed as well.

  12. DESIGN & IMPLEMENTATION OF AN INTELLIGENT SOLAR HYBRID INVERTER IN GRID ORIENTED SYSTEM FOR UTILIZING PV ENERGY

    Directory of Open Access Journals (Sweden)

    MASUDUL HAIDER IMTIAZ

    2010-12-01

    Full Text Available This paper demonstrates the implementation of a prototype of IPS (instant power supply system to ensure continuous output current to load in residential application utilizing both Photovoltaic (PV energy and AC Grid. Utility interfacing PWM inverter designed here to operate by both solar energy and storage batteries that highly satisfies the necessity in rural areas where National Grids are hardly available and power cut problem reduces the effectiveness of IPS. Solar energy gets priority here to charge storage battery rather than AC source that may save hundreds of mega watts power every day. To extend the battery lifetime and keep system components hazard-free, it includes exact battery-level sensing, charging- urrent controlling by microcontroller unit (MCU and a cumulative DC/AC MPPT (Maximum Power Point Tracking charging to congregatemaximum PV energy from AC Solar Modules. Investigation on improvement of power-interfacing control and optimization of overall system operation assent to intend usage recommendation in this exposition. Computer simulations and experiment results show the validity of this proposed system to have high power conversion efficiency and low harmonic distortions.

  13. Combined Effect of Nutrient and Pest Managements on Substrate Utilization Pattern of Soil Microbial Population in Hybrid Rice Cropping System

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    A field experiment was conducted to study the combined effect of nutrient and pest managements on soil biomass phospholipid contents, functional biodiversity and substrate utilization patterns of soil microbial populations in hybrid rice cropping system. The mineral N, P and K fertilizers (as urea, calcium superphosphate and KCl respectively) were incorporated at 100, 25, and 100 kg ha-1, respectively, and the various pesticides were applied at the recommended rates. The results of the experiment demonstrated a decline in the microbial abundance and soil microbial biomass phospholipid contents with the advancement of crop growth, and significant changes in substrate utilization pattern of soil microbial population studied were observed with different management practices and at different growth stages. The principal component analysis (PGA) using all 95-carbon sources (BIOLOG plates) gave good differentiation among the treatments, indicating that they have different patterns of carbon utilization under different habitats. The data showed that diversity in microbial community continuously changed with the progression in crop stage, particularly at physiological maturity (PM) stage that was evident from the utilization of different carbon sources at various crop stages.

  14. Analysis of a utility-interactive wind-photovoltaic hybrid system with battery storage using neural network

    Science.gov (United States)

    Giraud, Francois

    1999-10-01

    This dissertation investigates the application of neural network theory to the analysis of a 4-kW Utility-interactive Wind-Photovoltaic System (WPS) with battery storage. The hybrid system comprises a 2.5-kW photovoltaic generator and a 1.5-kW wind turbine. The wind power generator produces power at variable speed and variable frequency (VSVF). The wind energy is converted into dc power by a controlled, tree-phase, full-wave, bridge rectifier. The PV power is maximized by a Maximum Power Point Tracker (MPPT), a dc-to-dc chopper, switching at a frequency of 45 kHz. The whole dc power of both subsystems is stored in the battery bank or conditioned by a single-phase self-commutated inverter to be sold to the utility at a predetermined amount. First, the PV is modeled using Artificial Neural Network (ANN). To reduce model uncertainty, the open-circuit voltage VOC and the short-circuit current ISC of the PV are chosen as model input variables of the ANN. These input variables have the advantage of incorporating the effects of the quantifiable and non-quantifiable environmental variants affecting the PV power. Then, a simplified way to predict accurately the dynamic responses of the grid-linked WPS to gusty winds using a Recurrent Neural Network (RNN) is investigated. The RNN is a single-output feedforward backpropagation network with external feedback, which allows past responses to be fed back to the network input. In the third step, a Radial Basis Functions (RBF) Network is used to analyze the effects of clouds on the Utility-Interactive WPS. Using the irradiance as input signal, the network models the effects of random cloud movement on the output current, the output voltage, the output power of the PV system, as well as the electrical output variables of the grid-linked inverter. Fourthly, using RNN, the combined effects of a random cloud and a wind gusts on the system are analyzed. For short period intervals, the wind speed and the solar radiation are considered as

  15. EVALUATION OF FLAT-PLATE PHOTOVOLTAIC THERMAL HYBRID SYSTEMS FOR SOLAR ENERGY UTILIZATION.

    Energy Technology Data Exchange (ETDEWEB)

    ANDREWS,J.W.

    1981-06-01

    The technical and economic attractiveness of combined photovoltaic/thermal (PV/T) solar energy collectors was evaluated. The study was limited to flat-plate collectors since concentrating photovoltaic collectors require active cooling and thus are inherently PV/T collectors, the only decision being whether to use the thermal energy or to dump it. it was also specified at the outset that reduction in required roof area was not to be used as an argument for combining the collection of thermal and electrical energy into one module. Three tests of economic viability were identified, all of which PV/T must pass if it is to be considered a promising alternative: PV/T must prove to be competitive with photovoltaic-only, thermal-only, and side-by-side photovoltaic-plus-thermal collectors and systems. These three tests were applied to systems using low-temperature (unglazed) collectors and to systems using medium-temperature (glazed) collectors in Los Angeles, New York, and Tampa. For photovoltaics, the 1986 DOE cost goals were assumed to have been realized, and for thermal energy collection two technologies were considered: a current technology based on metal and glass, and a future technology based on thin-film plastics. The study showed that for medium-temperature applications PV/T is not an attractive option in any of the locations studied. For low-temperature applications, PV/T appears to be marginally attractive.

  16. EVALUATION OF FLAT-PLATE PHOTOVOLTAIC THERMAL HYBRID SYSTEMS FOR SOLAR ENERGY UTILIZATION.

    Energy Technology Data Exchange (ETDEWEB)

    ANDREWS,J.W.

    1981-06-01

    The technical and economic attractiveness of combined photovoltaic/thermal (PV/T) solar energy collectors was evaluated. The study was limited to flat-plate collectors since concentrating photovoltaic collectors require active cooling and thus are inherently PV/T collectors, the only decision being whether to use the thermal energy or to dump it. it was also specified at the outset that reduction in required roof area was not to be used as an argument for combining the collection of thermal and electrical energy into one module. Three tests of economic viability were identified, all of which PV/T must pass if it is to be considered a promising alternative: PV/T must prove to be competitive with photovoltaic-only, thermal-only, and side-by-side photovoltaic-plus-thermal collectors and systems. These three tests were applied to systems using low-temperature (unglazed) collectors and to systems using medium-temperature (glazed) collectors in Los Angeles, New York, and Tampa. For photovoltaics, the 1986 DOE cost goals were assumed to have been realized, and for thermal energy collection two technologies were considered: a current technology based on metal and glass, and a future technology based on thin-film plastics. The study showed that for medium-temperature applications PV/T is not an attractive option in any of the locations studied. For low-temperature applications, PV/T appears to be marginally attractive.

  17. Design and Analysis of Electro-mechanical Hybrid Anti-lock Braking System for Hybrid Electric Vehicle Utilizing Motor Regenerative Braking

    Institute of Scientific and Technical Information of China (English)

    ZHANG Jianlong; YIN Chengliang; ZHANG Jianwu

    2009-01-01

    Braking on low adhesion-coefficient roads, hybrid electric vehicle's motor regenerative torque is switched off to safeguard the normal anti-lock braking system (ABS) function. When the ABS control is terminated, the motor regenerative braking is readmitted.Aiming at avoiding permanent cycles from hydraulic anti-lock braking to motor regenerative braking, a novel electro-mechanical hybrid anti-lock braking system using fuzzy logic is designed. Different from the traditional single control structure, this system has a two-layered hierarchical structure. The first layer is responsible for harmonious adjustment or interaction between regenerative system and anti-lock braking system. The second layer is responsible for braking torque distribution and adjustment. The closed-loop simulation model is built. Control strategy and method for coordination between regenerative and anti-lock braking are developed. Simulation braking on low adhesion-coefficient roads with fuzzy logic control and real vehicle braking field test are presented. The results from simulating analysis and experiment show braking performance of the vehicle is perfect, harmonious coordination between regenerative and anti-lock braking function, significant amount of braking energy can be recovered and the proposed control strategy and method are effective.

  18. Printed hybrid systems

    Science.gov (United States)

    Karioja, Pentti; Mäkinen, Jukka-Tapani; Keränen, Kimmo; Aikio, Janne; Alajoki, Teemu; Jaakola, Tuomo; Koponen, Matti; Keränen, Antti; Heikkinen, Mikko; Tuomikoski, Markus; Suhonen, Riikka; Hakalahti, Leena; Kopola, Pälvi; Hast, Jukka; Liedert, Ralf; Hiltunen, Jussi; Masuda, Noriyuki; Kemppainen, Antti; Rönkä, Kari; Korhonen, Raimo

    2012-04-01

    This paper presents research activities carried out at VTT Technical Research Centre of Finland in the field of hybrid integration of optics, electronics and mechanics. Main focus area in our research is the manufacturing of electronic modules and product structures with printed electronics, film-over-molding and polymer sheet lamination technologies and the goal is in the next generation of smart systems utilizing monolithic polymer packages. The combination of manufacturing technologies such as roll-to-roll -printing, injection molding and traditional component assembly is called Printed Hybrid Systems (PHS). Several demonstrator structures have been made, which show the potential of polymer packaging technology. One demonstrator example is a laminated structure with embedded LED chips. Element thickness is only 0.3mm and the flexible stack of foils can be bent in two directions after assembly process and was shaped curved using heat and pressure. The combination of printed flexible circuit boards and injection molding has also been demonstrated with several functional modules. The demonstrators illustrate the potential of origami electronics, which can be cut and folded to 3D shapes. It shows that several manufacturing process steps can be eliminated by Printed Hybrid Systems technology. The main benefits of this combination are small size, ruggedness and conformality. The devices are ideally suited for medical applications as the sensitive electronic components are well protected inside the plastic and the structures can be cleaned easily due to the fact that they have no joints or seams that can accumulate dirt or bacteria.

  19. HYBRID VEHICLE CONTROL SYSTEM

    Directory of Open Access Journals (Sweden)

    V. Dvadnenko

    2016-06-01

    Full Text Available The hybrid vehicle control system includes a start–stop system for an internal combustion engine. The system works in a hybrid mode and normal vehicle operation. To simplify the start–stop system, there were user new possibilities of a hybrid car, which appeared after the conversion. Results of the circuit design of the proposed system of basic blocks are analyzed.

  20. Hybrid Action Systems

    DEFF Research Database (Denmark)

    Ronkko, Mauno; Ravn, Anders P.

    1997-01-01

    a differential action, which allows differential equations as primitive actions. The extension allows us to model hybrid systems with both continuous and discrete behaviour. The main result of this paper is an extension of such a hybrid action system with parallel composition. The extension does not change...... the original meaning of the parallel composition, and therefore also the ordinary action systems can be composed in parallel with the hybrid action systems....

  1. Hybrid intelligent engineering systems

    CERN Document Server

    Jain, L C; Adelaide, Australia University of

    1997-01-01

    This book on hybrid intelligent engineering systems is unique, in the sense that it presents the integration of expert systems, neural networks, fuzzy systems, genetic algorithms, and chaos engineering. It shows that these new techniques enhance the capabilities of one another. A number of hybrid systems for solving engineering problems are presented.

  2. A Novel Method of Utilizing Hybrid Generator as Renewable Source

    Directory of Open Access Journals (Sweden)

    K.Fathima

    2015-12-01

    Full Text Available Energy production and consumption in the future may depend on renewable energy sources and also depends on the efficiency of utilizing it. Here, a hybrid system, a combination of solar cells and thermoelectric generators is controlled by open circuit voltage method which is normally used for linear electrical characteristics. The proposed system is supported by theoretical analysis and simulation. Lead acid battery is used to accumulate the harvested energy. Cuk converters are used here to improve the efficiency and helps in reduction of noises. Hybrid generators are found to be efficient and more stable.

  3. Editorial: Hybrid Systems

    DEFF Research Database (Denmark)

    Olderog, Ernst-Rüdiger; Ravn, Anders Peter

    2007-01-01

    An introduction to three papers in a special issue on Hybrid Systems. These paper were first presented at an IFIP WG 2.2 meeting in Skagen 2005.......An introduction to three papers in a special issue on Hybrid Systems. These paper were first presented at an IFIP WG 2.2 meeting in Skagen 2005....

  4. Prospecting the utility of a PMI/mannose selection system for the recovery of transgenic sugarcane (Saccharum spp. hybrid) plants.

    Science.gov (United States)

    Jain, Mukesh; Chengalrayan, Kudithipudi; Abouzid, Ahmed; Gallo, Maria

    2007-05-01

    For the first time, the phosphomannose isomerase (PMI, EC 5.3.1.8)/mannose-based "positive" selection system has been used to obtain genetically engineered sugarcane (Saccharum spp. hybrid var. CP72-2086) plants. Transgenic lines of sugarcane were obtained following biolistic transformation of embryogenic callus with an untranslatable sugarcane mosaic virus (SCMV) strain E coat protein (CP) gene and the Escherichia coli PMI gene manA, as the selectable marker gene. Postbombardment, transgenic callus was selectively proliferated on modified MS medium containing 13.6 microM 2,4-D, 20 g l(-1) sucrose and 3 g l(-1) mannose. Plant regeneration was obtained on MS basal medium with 2.5 microM TDZ under similar selection conditions, and the regenerants rooted on MS basal medium with 19.7 microM IBA, 20 g l(-1) sucrose, and 1.5 g l(-1) mannose. An increase in mannose concentration from permissive (1.5 g l(-1)) to selective (3 g l(-1)) conditions after 3 weeks improved the overall transformation efficiency by reducing the number of selection escapes. Thirty-four vigorously growing putative transgenic plants were successfully transplanted into the greenhouse. PCR and Southern blot analyses showed that 19 plants were manA-positive and 15 plants were CP-positive, while 13 independent transgenics contained both transgenes. Expression of manA in the transgenic plants was evaluated using a chlorophenol red assay and enzymatic analysis.

  5. Transference and natural gas distribution system analysis utilizing hybrid modelling; Analise de sistemas de transferencia e distribuicao de gas natural utilizando modelagem hibrida

    Energy Technology Data Exchange (ETDEWEB)

    Calvo, Robson A.; Martinkoski, Ricardo [Centro Federal de Educacao Tecnologica do Parana (CEFET), Curitiba, PR (Brazil); Neves Junior, Flavio [Centro Federal de Educacao Tecnologica do Parana (CEFET), Curitiba, PR (Brazil). Programa de Pos-Graduacao em Engenharia Eletrica e Informatica Industrial

    2003-07-01

    The objective of this article is to apply techniques of formal specification in modelling of natural gas transmission and distribution systems. In this case the formal models are characterized by using hybrid automata. Initially the existent components in the net are modeled and represented by independent hybrid automata. The global dynamics is obtained through the product hybrid automata. Languages representing the desirable states of the system are obtained from the hybrid automata, allowing a hybrid control procedure. An automatic tool as SHIFT must be used to modelling and simulation. (author)

  6. Hybrid systems with constraints

    CERN Document Server

    Daafouz, Jamal; Sigalotti, Mario

    2013-01-01

    Control theory is the main subject of this title, in particular analysis and control design for hybrid dynamic systems.The notion of hybrid systems offers a strong theoretical and unified framework to cope with the modeling, analysis and control design of systems where both continuous and discrete dynamics interact. The theory of hybrid systems has been the subject of intensive research over the last decade and a large number of diverse and challenging problems have been investigated. Nevertheless, many important mathematical problems remain open.This book is dedicated mainly to

  7. for hybrid dynamical systems

    Directory of Open Access Journals (Sweden)

    Wassim M. Haddad

    2001-01-01

    Full Text Available In this paper we develop a unified dynamical systems framework for a general class of systems possessing left-continuous flows; that is, left-continuous dynamical systems. These systems are shown to generalize virtually all existing notions of dynamical systems and include hybrid, impulsive, and switching dynamical systems as special cases. Furthermore, we generalize dissipativity, passivity, and nonexpansivity theory to left-continuous dynamical systems. Specifically, the classical concepts of system storage functions and supply rates are extended to left-continuous dynamical systems providing a generalized hybrid system energy interpretation in terms of stored energy, dissipated energy over the continuous-time dynamics, and dissipated energy over the resetting events. Finally, the generalized dissipativity notions are used to develop general stability criteria for feedback interconnections of left-continuous dynamical systems. These results generalize the positivity and small gain theorems to the case of left-continuous, hybrid, and impulsive dynamical systems.

  8. Hybrid Action Systems

    DEFF Research Database (Denmark)

    Rönnkö, M.; Ravn, Anders Peter; Sere, K.

    2003-01-01

    In this paper we investigate the use of action systems with differential actions in the specifcation of hybrid systems. As the main contribution we generalize the definition of a differential action, allowing the use of arbitrary relations over model variables and their time-derivatives in modell......In this paper we investigate the use of action systems with differential actions in the specifcation of hybrid systems. As the main contribution we generalize the definition of a differential action, allowing the use of arbitrary relations over model variables and their time...... parallel composition. Moreover, as the strength of the action system formalism is the support for stepwise development by refinement, we investigate refinement involving a differential action. We show that, due to the predicate transformer semantics, standard action refinement techniques apply also...... to the differential action, thus, allowing stepwise development of hybrid systems Udgivelsesdato: JAN 1...

  9. Advanced propulsion system concept for hybrid vehicles

    Science.gov (United States)

    Bhate, S.; Chen, H.; Dochat, G.

    1980-01-01

    A series hybrid system, utilizing a free piston Stirling engine with a linear alternator, and a parallel hybrid system, incorporating a kinematic Stirling engine, are analyzed for various specified reference missions/vehicles ranging from a small two passenger commuter vehicle to a van. Parametric studies for each configuration, detail tradeoff studies to determine engine, battery and system definition, short term energy storage evaluation, and detail life cycle cost studies were performed. Results indicate that the selection of a parallel Stirling engine/electric, hybrid propulsion system can significantly reduce petroleum consumption by 70 percent over present conventional vehicles.

  10. Wind-solar Hybrid Power System

    OpenAIRE

    Jin, Fei

    2014-01-01

    In the development and utilization of new energy sources, the solar energy and wind energy are paid more attention by various countries, and have become a new field of energy development and utilization of the highest level, the most mature technology, the most widely used and commercial development conditions for new energy. But both the traditional wind power system and solar power system have the characteristic of energy instability. Therefore, wind-solar hybrid power system was proposed i...

  11. Hybridity in Embedded Computing Systems

    Institute of Scientific and Technical Information of China (English)

    虞慧群; 孙永强

    1996-01-01

    An embedded system is a system that computer is used as a component in a larger device.In this paper,we study hybridity in embedded systems and present an interval based temporal logic to express and reason about hybrid properties of such kind of systems.

  12. Hybrid radiator cooling system

    Science.gov (United States)

    France, David M.; Smith, David S.; Yu, Wenhua; Routbort, Jules L.

    2016-03-15

    A method and hybrid radiator-cooling apparatus for implementing enhanced radiator-cooling are provided. The hybrid radiator-cooling apparatus includes an air-side finned surface for air cooling; an elongated vertically extending surface extending outwardly from the air-side finned surface on a downstream air-side of the hybrid radiator; and a water supply for selectively providing evaporative cooling with water flow by gravity on the elongated vertically extending surface.

  13. Chaotic Dynamics in Hybrid Systems

    NARCIS (Netherlands)

    P.J. Collins (Pieter)

    2008-01-01

    htmlabstractIn this paper we give an overview of some aspects of chaotic dynamics in hybrid systems, which comprise different types of behaviour. Hybrid systems may exhibit discontinuous dependence on initial conditions leading to new dynamical phenomena. We indicate how methods from topological

  14. Chaotic dynamics in hybrid systems

    NARCIS (Netherlands)

    P.J. Collins (Pieter)

    2008-01-01

    htmlabstractIn this paper we give an overview of some aspects of chaotic dynamics in hybrid systems, which comprise different types of behaviour. Hybrid systems may exhibit discontinuous dependence on initial conditions leading to new dynamical phenomena. We indicate how methods from topological

  15. Hybrid spread spectrum radio system

    Science.gov (United States)

    Smith, Stephen F [London, TN; Dress, William B [Camas, WA

    2010-02-09

    Systems and methods are described for hybrid spread spectrum radio systems. A method, includes receiving a hybrid spread spectrum signal including: fast frequency hopping demodulating and direct sequence demodulating a direct sequence spread spectrum signal, wherein multiple frequency hops occur within a single data-bit time and each bit is represented by chip transmissions at multiple frequencies.

  16. A Generic Hybrid Encryption System (HES

    Directory of Open Access Journals (Sweden)

    Ijaz Ali Shoukat

    2013-03-01

    Full Text Available This study proposes a Generic Hybrid Encryption System (HES under mutual committee of symmetric and asymmetric cryptosystems. Asymmetric (public key Cryptosystems associates several performance issues like computational incompetence, memory wastages, energy consumptions and employment limitations on bulky data sets but they are quite secure and reliable in key exchange over insecure remote communication channels. Symmetric (private key cryptosystems are 100 times out performed, having no such issues but they cannot fulfill non-repudiation, false modifications in secret key, fake modifications in cipher text and origin authentication of both parties while exchanging information. These contradictory issues can be omitted by utilizing hybrid encryption mechanisms (symmetric+asymmetric to get optimal benefits of both schemes. Several hybrid mechanisms are available with different logics but our logic differs in infrastructural design, simplicity, computational efficiency and security as compared to prior hybrid encryption schemes. Some prior schemes are either diversified in performance aspects, customer satisfaction, memory utilization or energy consumptions and some are vulnerable against forgery and password guessing (session key recovery attacks. We have done some functional and design related changes in existing Public Key Infrastructure (PKI to achieve simplicity, optimal privacy and more customer satisfaction by providing Hybrid Encryption System (HES that is able to fulfill all set of standardized security constraints. No such PKI based generic hybrid encryption scheme persists as we have provided in order to manage all these kinds of discussed issues.

  17. Towards Modelling of Hybrid Systems

    DEFF Research Database (Denmark)

    Wisniewski, Rafal

    2006-01-01

    The article is an attempt to use methods of category theory and topology for analysis of hybrid systems. We use the notion of a directed topological space; it is a topological space together with a set of privileged paths. Dynamical systems are examples of directed topological spaces. A hybrid...... system consists of a number of dynamical systems that are glued together according to information encoded in the discrete part of the system. We develop a definition of a hybrid system as a functor from the category generated by a transition system to the category of directed topological spaces. Its...... directed homotopy colimit (geometric realization) is a single directed topological space. The behavior of hybrid systems can be then understood in terms of the behavior of dynamical systems through the directed homotopy colimit....

  18. Analysis of plug-in hybrid electric vehicle utility factors

    Science.gov (United States)

    Bradley, Thomas H.; Quinn, Casey W.

    Plug-in hybrid electric vehicles (PHEVs) are hybrid electric vehicles that can be fueled from both conventional liquid fuels and grid electricity. To represent the total contribution of both of these fuels to the operation, energy use, and environmental impacts of PHEVs, researchers have developed the concept of the utility factor. As standardized in documents such as SAE J1711 and SAE J2841, the utility factor represents the proportion of vehicle distance travelled that can be allocated to a vehicle test condition so as to represent the real-world driving habits of a vehicle fleet. These standards must be used with care so that the results are understood within the context of the assumptions implicit in the standardized utility factors. This study analyzes and derives alternatives to the standard utility factors from the 2001 National Highway Transportation Survey, so as to understand the sensitivity of PHEV performance to assumptions regarding charging frequency, vehicle characteristics, driver characteristics, and means of defining the utility factor. Through analysis of these alternative utility factors, this study identifies areas where analysis, design, and policy development for PHEVs can be improved by alternative utility factor calculations.

  19. Formal Description of Hybrid Systems

    DEFF Research Database (Denmark)

    Zhou, Chaochen; Ji, Wang; Ravn, Anders P.

    1996-01-01

    A language to describe hybrid systems, i.e. networks of communicating discrete and continuous processes, is proposed. A semantics of the language is given in Extended Duration Calculus, a real-time interval logic with a proof system that allows reasoning in mathematical analysis about continuous ...... processes to be embedded into the logic. The semantics thus provides a secure link to hybrid system models based on a general theory of dynamical systems....

  20. Hybrid spacecraft attitude control system

    Directory of Open Access Journals (Sweden)

    Renuganth Varatharajoo

    2016-02-01

    Full Text Available The hybrid subsystem design could be an attractive approach for futurespacecraft to cope with their demands. The idea of combining theconventional Attitude Control System and the Electrical Power System ispresented in this article. The Combined Energy and Attitude ControlSystem (CEACS consisting of a double counter rotating flywheel assemblyis investigated for small satellites in this article. Another hybrid systemincorporating the conventional Attitude Control System into the ThermalControl System forming the Combined Attitude and Thermal ControlSystem (CATCS consisting of a "fluid wheel" and permanent magnets isalso investigated for small satellites herein. The governing equationsdescribing both these novel hybrid subsystems are presented and theironboard architectures are numerically tested. Both the investigated novelhybrid spacecraft subsystems comply with the reference missionrequirements.The hybrid subsystem design could be an attractive approach for futurespacecraft to cope with their demands. The idea of combining theconventional Attitude Control System and the Electrical Power System ispresented in this article. The Combined Energy and Attitude ControlSystem (CEACS consisting of a double counter rotating flywheel assemblyis investigated for small satellites in this article. Another hybrid systemincorporating the conventional Attitude Control System into the ThermalControl System forming the Combined Attitude and Thermal ControlSystem (CATCS consisting of a "fluid wheel" and permanent magnets isalso investigated for small satellites herein. The governing equationsdescribing both these novel hybrid subsystems are presented and theironboard architectures are numerically tested. Both the investigated novelhybrid spacecraft subsystems comply with the reference missionrequirements.

  1. Optimised Hybrid Integrated Renewable Energy System

    Directory of Open Access Journals (Sweden)

    Dr. Arun Sandilya

    2012-10-01

    Full Text Available A hybrid integrated renewable energy system for an isolated small community, where grid extension is considered uneconomical. This paper proposed cost optimization through dynamic matching between load and proper equipment sizing. The Matlab based computer program developed for determining the most cost effective energy source to supply required load any given time of the day. Integrated system based on green energy utilization and rural electricity development.

  2. Improving the performance of a hybrid electric vehicle by utilization regenerative braking energy of vehicle

    Directory of Open Access Journals (Sweden)

    Mohamed Mourad

    2011-01-01

    Full Text Available Environmentally friendly vehicles with range and performance capabilities surpassing those of conventional ones require a careful balance among competing goals for fuel efficiency, performance and emissions. It can be recuperated the energy of deceleration case of the vehicle to reuse it to recharge the storage energy of hybrid electric vehicle and increase the state of charge of batteries under the new conditions of vehicle operating in braking phase. Hybrid electric vehicle has energy storage which allows decreasing required peak value of power from prime mover, which is the internal combustion engine. The paper investigates the relationships between the driving cycle phases and the recuperation energy to the batteries system of hybrid electric vehicle. This work describes also a methodology for integrating this type of hybrid electric vehicle in a simulation program. A design optimization framework is then used to find the best position that we can utilize the recuperation energy to recharge the storage batteries of hybrid electric vehicle.

  3. Hybrid-Vehicle Transmission System

    Science.gov (United States)

    Lupo, G.; Dotti, G.

    1985-01-01

    Continuously-variable transmission system for hybrid vehicles couples internal-combustion engine and electric motor section, either individually or in parallel, to power vehicle wheels during steering and braking.

  4. Hybrid-Vehicle Transmission System

    Science.gov (United States)

    Lupo, G.; Dotti, G.

    1985-01-01

    Continuously-variable transmission system for hybrid vehicles couples internal-combustion engine and electric motor section, either individually or in parallel, to power vehicle wheels during steering and braking.

  5. Hybrid solar lighting distribution systems and components

    Science.gov (United States)

    Muhs, Jeffrey D.; Earl, Dennis D.; Beshears, David L.; Maxey, Lonnie C.; Jordan, John K.; Lind, Randall F.

    2011-07-05

    A hybrid solar lighting distribution system and components having at least one hybrid solar concentrator, at least one fiber receiver, at least one hybrid luminaire, and a light distribution system operably connected to each hybrid solar concentrator and each hybrid luminaire. A controller operates all components.

  6. Hybrid solar lighting systems and components

    Science.gov (United States)

    Muhs, Jeffrey D.; Earl, Dennis D.; Beshears, David L.; Maxey, Lonnie C.; Jordan, John K.; Lind, Randall F.

    2007-06-12

    A hybrid solar lighting system and components having at least one hybrid solar concentrator, at least one fiber receiver, at least one hybrid luminaire, and a light distribution system operably connected to each hybrid solar concentrator and each hybrid luminaire. A controller operates each component.

  7. Bimode uninterruptible power supply compatibility in renewable hybrid energy systems

    Energy Technology Data Exchange (ETDEWEB)

    Bower, W. (Sandia National Labs., Albuquerque, NM (USA)); O' Sullivan, G. (Abacus Controls, Inc., Somerville, NJ (USA))

    1990-08-01

    Inverters installed in renewable hybrid energy systems are typically used in a stand-alone mode to supply ac power to loads from battery storage when the engine-generator is not being used. Similarities in topology and in the performance requirements of the standby uninterruptible power supply (UPS) system and the hybrid system suggest the UPS could be used in hybrid energy systems. Another alternative to inverters with add-on charging circuits or standby UPS hardware is the Bimode UPS. The bimode UPS uses common circuitry and power components for dc to ac inversion and battery charging. It also provides an automatic and nearly instantaneous ac power transfer function when the engine-generator is started or stopped. The measured operating and transfer characteristics of a bimode UPS in a utility system and in a hybrid system are presented. The applicability of the bimode UPS to hybrid systems and its compatibility in a PV/engine-generator hybrid system are given.

  8. Model Reduction of Hybrid Systems

    DEFF Research Database (Denmark)

    Shaker, Hamid Reza

    systems are derived in this thesis. The results are used for output feedback control of switched nonlinear systems. Model reduction of piecewise affine systems is also studied in this thesis. The proposed method is based on the reduction of linear subsystems inside the polytopes. The methods which......High-Technological solutions of today are characterized by complex dynamical models. A lot of these models have inherent hybrid/switching structure. Hybrid/switched systems are powerful models for distributed embedded systems design where discrete controls are applied to continuous processes...... of hybrid systems, designing controllers and implementations is very high so that the use of these models is limited in applications where the size of the state space is large. To cope with complexity, model reduction is a powerful technique. This thesis presents methods for model reduction and stability...

  9. A hybrid base isolation system

    Energy Technology Data Exchange (ETDEWEB)

    Hart, G.C. [Univ. of California, Los Angeles, CA (United States); Lobo, R.F.; Srinivasan, M. [Hart Consultant Group, Santa Monica, CA (United States); Asher, J.W. [kpff Engineers, Santa Monica, CA (United States)

    1995-12-01

    This paper proposes a new analysis procedure for hybrid base isolation buildings when considering the displacement response of a base isolated building to wind loads. The system is considered hybrid because of the presence of viscous dampers in the building above the isolator level. The proposed analysis approach incorporates a detailed site specific wind study combined with a dynamic nonlinear analysis of the building response.

  10. Ion-atom hybrid systems

    CERN Document Server

    Willitsch, Stefan

    2014-01-01

    The study of interactions between simultaneously trapped cold ions and atoms has emerged as a new research direction in recent years. The development of ion-atom hybrid experiments has paved the way for investigating elastic, inelastic and reactive collisions between these species at very low temperatures, for exploring new cooling mechanisms of ions by atoms and for implementing new hybrid quantum systems. The present lecture reviews experimental methods, recent results and upcoming developments in this emerging field.

  11. Optimization of Renewable Energy Hybrid System for Grid Connected Application

    Directory of Open Access Journals (Sweden)

    Mustaqimah Mustaqimah

    2012-10-01

    Full Text Available ABSTRACT. Hybrid energy systems are pollution free, takes low cost and less gestation period, user and social friendly. Such systems are important sources of energy for shops, schools, and clinics in village communities especially in remote areas. Hybrid systems can provide electricity at a comparatively economic price in many remote areas. This paper presents a method to jointly determine the sizing and operation control of hybrid energy systems. The model, PV wind hydro and biomass hybrid system connects to grid. The system configuration of the hybrid is derived based on a theoretical domestic load at a typical location and local solar radiation, wind and water flow rate data and biomass availability. The hybrid energy system is proposed for 10 of teacher’s houses of Industrial Training Institute, Mersing. It is predicted 10 kW load consumption per house. The hybrid energy system consists of wind, solar, biomass, hydro, and grid power. Approximately energy consumption is 860 kWh/day with a 105 kW peak demand load. The proposed hybrid renewable consists of solar photovoltaic (PV panels, wind turbine, hydro turbine and biomass. Battery and inverter are included as part of back-up and storage system. It provides the economic sensitivity of hybridization and the economic and environmental benefits of using a blend of technologies. It also presents the trade off that is involved in optimizing a hybrid energy system to harness and utilize the available renewable energy resources efficiently.

  12. Artificial Photosynthesis: Hybrid Systems.

    Science.gov (United States)

    Ni, Yan; Hollmann, Frank

    Oxidoreductases are promising catalysts for organic synthesis. To sustain their catalytic cycles they require efficient supply with redox equivalents. Today classical biomimetic approaches utilizing natural electron supply chains prevail but artificial regeneration approaches bear the promise of simpler and more robust reaction schemes. Utilizing visible light can accelerate such artificial electron transport chains and even enable thermodynamically unfeasible reactions such as the use of water as reductant.This contribution critically summarizes the current state of the art in photoredoxbiocatalysis (i.e. light-driven biocatalytic oxidation and reduction reactions).

  13. 32 tesla hybrid magnet system

    Energy Technology Data Exchange (ETDEWEB)

    Leupold, M.J.; Iwasa, Y.; Weggel, R.J. (MIT Cambridge (U.S.A.))

    1984-01-01

    The paper describes the design and construction of a hybrid magnet system to generate 32T with 9MW of electrical power. The system consist of an 11T niobium-titanium superconducting magnet, a 1.8K/4.2K cryostat, and a high-performance, water-cooled Bitter magnet, all of which are discussed in the paper.

  14. Hybrid Systems: Computation and Control.

    Science.gov (United States)

    2007-11-02

    elbow) and a pinned first joint (shoul- der) (see Figure 2); it is termed an underactuated system since it is a mechanical system with fewer...Montreal, PQ, Canada, 1998. [10] M. W. Spong. Partial feedback linearization of underactuated mechanical systems . In Proceedings, IROS󈨢, pages 314-321...control mechanism and search for optimal combinations of control variables. Besides the nonlinear and hybrid nature of powertrain systems , hardware

  15. Advanced Hybrid Computer Systems. Software Technology.

    Science.gov (United States)

    This software technology final report evaluates advances made in Advanced Hybrid Computer System software technology . The report describes what...automatic patching software is available as well as which analog/hybrid programming languages would be most feasible for the Advanced Hybrid Computer...compiler software . The problem of how software would interface with the hybrid system is also presented.

  16. Hybrid Power Management System and Method

    Science.gov (United States)

    Eichenberg, Dennis J. (Inventor)

    2008-01-01

    A system and method for hybrid power management. The system includes photovoltaic cells, ultracapacitors, and pulse generators. In one embodiment, the hybrid power management system is used to provide power for a highway safety flasher.

  17. Dynamical systems revisited : Hybrid systems with Zeno executions

    OpenAIRE

    ZHANG, JUN; Johansson, Karl Henrik; Lygeros, John; Sastry, Shankar

    2000-01-01

    Results from classical dynamical systems are generalized to hybrid dynamical systems. The concept of omega limit set is introduced for hybrid systems and is used to prove new results on invariant sets and stability, where Zeno and non-Zeno hybrid systems can be treated within the same framework. As an example, LaSalle's Invariance Principle is extended to hybrid systems. Zeno hybrid systems are discussed in detail. The omega limit set of a Zeno execution is characterized for classes of hybrid...

  18. Combinatorial Hybrid Systems

    DEFF Research Database (Denmark)

    Larsen, Jesper Abildgaard; Wisniewski, Rafal; Grunnet, Jacob Deleuran

    2008-01-01

    As initially suggested by E. Sontag, it is possible to approximate an arbitrary nonlinear system by a set of piecewise linear systems. In this work we concentrate on how to control a system given by a set of piecewise linear systems defined on simplices. By using the results of L. Habets and J. van...... Schuppen, it is possible to find a controller for the system on each of the simplices thus guaranteeing that the system flow on the simplex only will leave the simplex through a subset of its faces. Motivated by R. Forman, on the triangulated state space we define a combinatorial vector field, which...... indicates for a given face the future simplex. In the suggested definition we allow nondeterminacy in form of splitting and merging of solution trajectories. The combinatorial vector field gives rise to combinatorial counterparts of most concepts from dynamical systems, such as duals to vector fields, flow...

  19. A Dynamical Simulation Facility for Hybrid Systems

    CERN Document Server

    Back, A; Myers, M; Back, Allen; Guckenheimer, John; Myers, Mark

    1993-01-01

    Abstract: This paper establishes a general framework for describing hybrid dynamical systems which is particularly suitable for numerical simulation. In this context, the data structures used to describe the sets and functions which comprise the dynamical system are crucial since they provide the link between a natural mathematical formulation of a problem and the correct application of standard numerical algorithms. We describe a partial implementation of the design methodology and use this simulation tool for a specific control problem in robotics as an illustration of the utility of the approach for practical applications.

  20. Hybrid2 - The hybrid power system simulation model

    Energy Technology Data Exchange (ETDEWEB)

    Baring-Gould, E.I.; Green, H.J.; Dijk, V.A.P. van [National Renewable Energy Lab., Golden, CO (United States); Manwell, J.F. [Univ. of Massachusetts, Amherst, MA (United States)

    1996-12-31

    There is a large-scale need and desire for energy in remote communities, especially in the developing world; however the lack of a user friendly, flexible performance prediction model for hybrid power systems incorporating renewables hindered the analysis of hybrids as options to conventional solutions. A user friendly model was needed with the versatility to simulate the many system locations, widely varying hardware configurations, and differing control options for potential hybrid power systems. To meet these ends, researchers from the National Renewable Energy Laboratory (NREL) and the University of Massachusetts (UMass) developed the Hybrid2 software. This paper provides an overview of the capabilities, features, and functionality of the Hybrid2 code, discusses its validation and future plans. Model availability and technical support provided to Hybrid2 users are also discussed. 12 refs., 3 figs., 4 tabs.

  1. Symbolic Algorithmic Analysis of Rectangular Hybrid Systems

    Institute of Scientific and Technical Information of China (English)

    Hai-Bin Zhang; Zhen-Hua Duan

    2009-01-01

    This paper investigates symbolic algorithmic analysis of rectangular hybrid systems. To deal with the symbolic reachability problem, a restricted constraint system called hybrid zone is formalized for the representation and manipulation of rectangular automata state-spaces. Hybrid zones are proved to be closed over symbolic reachability operations of rectangular hybrid systems. They are also applied to model-checking procedures for verifying some important classes of timed computation tree logic formulas. To represent hybrid zones, a data structure called difference constraint matrix is defined.These enable us to deal with the symbolic algorithmic analysis of rectangular hybrid systems in an efficient way.

  2. Hybrid ventilation systems and high performance buildings

    Energy Technology Data Exchange (ETDEWEB)

    Utzinger, D.M. [Wisconsin Univ., Milwaukee, WI (United States). School of Architecture and Urban Planning

    2009-07-01

    This paper described hybrid ventilation design strategies and their impact on 3 high performance buildings located in southern Wisconsin. The Hybrid ventilation systems combined occupant controlled natural ventilation with mechanical ventilation systems. Natural ventilation was shown to provide adequate ventilation when appropriately designed. Proper control integration of natural ventilation into hybrid systems was shown to reduce energy consumption in high performance buildings. This paper also described the lessons learned from the 3 buildings. The author served as energy consultant on all three projects and had the responsibility of designing and integrating the natural ventilation systems into the HVAC control strategy. A post occupancy evaluation of building energy performance has provided learning material for architecture students. The 3 buildings included the Schlitz Audubon Nature Center completed in 2003; the Urban Ecology Center completed in 2004; and the Aldo Leopold Legacy Center completed in 2007. This paper included the size, measured energy utilization intensity and percentage of energy supplied by renewable solar power and bio-fuels on site for each building. 6 refs., 2 tabs., 6 figs.

  3. Utility of spoken dialog systems

    CSIR Research Space (South Africa)

    Barnard, E

    2008-12-01

    Full Text Available the evolution of poken dialog system research in the developed world, and show that the utility of speech is based on user factors and application factors (among others). After adjusting the factors for the developing world context, and plotting...

  4. A Review of Hybrid Renewable Energy Systems for Electric Power Generation

    OpenAIRE

    Md. Ibrahim; Abul Khair

    2015-01-01

    Integration and combined utilization of renewable energy sources are becoming increasingly attractive. This paper is a review of hybrid renewable energy systems technologies for power generation, important issues and challenges in their design stage. Generation technology selection and unit sizing, System configurations and Energy management and control are discussed. Applications of hybrid energy systems, advantages of hybrid energy systems, issues and problems related to hybrid ...

  5. Fuel cell power system for utility vehicle

    Energy Technology Data Exchange (ETDEWEB)

    Graham, M.; Barbir, F.; Marken, F.; Nadal, M. [Energy Partners, Inc., West Palm Beach, FL (United States)

    1996-12-31

    Based on the experience of designing and building the Green Car, a fuel cell/battery hybrid vehicle, and Genesis, a hydrogen/oxygen fuel cell powered transporter, Energy Partners has developed a fuel cell power system for propulsion of an off-road utility vehicle. A 10 kW hydrogen/air fuel cell stack has been developed as a prototype for future mass production. The main features of this stack are discussed in this paper. Design considerations and selection criteria for the main components of the vehicular fuel cell system, such as traction motor, air compressor and compressor motor, hydrogen storage and delivery, water and heat management, power conditioning, and control and monitoring subsystem are discussed in detail.

  6. Tactical Utility of Tailored Systems

    Science.gov (United States)

    2015-07-10

    www.popsci.com/ cars /article/2011-06/how-first- crowdsourced-military- car -can-remake-future-defense- manufacturing Tactical Utility of Tailored Systems...year lead time to develop a piece of equipment, if we were able to collapse the pace of which that manufacturing takes place, that would save taxpayers...within budget. This paper hopes to explore the idea of combining virtual environments and rapid manufacturing to create tailored materiel specific

  7. System Analysis on Absorption Chiller Utilizing Intermediate Wasted Heat

    Science.gov (United States)

    Yamada, Miki; Suzuki, Hiroshi; Usui, Hiromoto

    A system analysis has been performed for the multi-effect absorption chiller (MEAC) applied as a bottoming system of 30kW class hybrid system including micro gas turbine (MGT) and solid oxide fuel cell (SOFC) hybrid system. In this paper, an intermediate wasted heat utilization (IWHU) system is suggested for lifting up the energy efficiency of the whole system and coefficient of performance (COP) of MEAC. From the results, the suggested IWHU system was found to show the very high energy efficiency compared with a terminal wasted heat utilization (TWHU) system that uses only the heat exhausted from the terminal of MGT/SOFC system. When TWHU system is applied for MEAC, the utilized heat from the MGT/SOFC system is found to remain low because the temperature difference between the high temperature generator and the wasted heat becomes small. Then, the energy efficiency does not become high in spite of high COP of MEAC. On the other hand, the IWHU system could increase the utilized heat for MEAC as performs effectively. The exergy efficiency of IWHU system is also revealed to be higher than that of a direct gas burning system of MEAC, because the wasted heat is effectively utilized in the IWHU system.

  8. IMPULSE CONTROL HYBRID ELECTRICAL SYSTEM

    Directory of Open Access Journals (Sweden)

    A. A. Lobaty

    2016-01-01

    Full Text Available This paper extends the recently introduced approach for modeling and solving the optimal control problem of fixedswitched mode DC-DC power converter. DCDC converters are a class of electric power circuits that used extensively in regulated DC power supplies, DC motor drives of different types, in Photovoltaic Station energy conversion and other applications due to its advantageous features in terms of size, weight and reliable performance. The main problem in controlling this type converters is in their hybrid nature as the switched circuit topology entails different modes of operation, each of it with its own associated linear continuous-time dynamics.This paper analyses the modeling and controller synthesis of the fixed-frequency buck DC-DC converter, in which the transistor switch is operated by a pulse sequence with constant frequency. In this case the regulation of the DC component of the output voltage is via the duty cycle. The optimization of the control system is based on the formation of the control signal at the output.It is proposed to solve the problem of optimal control of a hybrid system based on the formation of the control signal at the output of the controller, which minimizes a given functional integral quality, which is regarded as a linear quadratic Letov-Kalman functional. Search method of optimal control depends on the type of mathematical model of control object. In this case, we consider a linear deterministic model of the control system, which is common for the majority of hybrid electrical systems. For this formulation of the optimal control problem of search is a problem of analytical design of optimal controller, which has the analytical solution.As an example of the hybrid system is considered a step-down switching DC-DC converter, which is widely used in various electrical systems: as an uninterruptible power supply, battery charger for electric vehicles, the inverter in solar photovoltaic power plants.. A

  9. Hybrid slab-microchannel gel electrophoresis system

    Science.gov (United States)

    Balch, Joseph W.; Carrano, Anthony V.; Davidson, James C.; Koo, Jackson C.

    1998-01-01

    A hybrid slab-microchannel gel electrophoresis system. The hybrid system permits the fabrication of isolated microchannels for biomolecule separations without imposing the constraint of a totally sealed system. The hybrid system is reusable and ultimately much simpler and less costly to manufacture than a closed channel plate system. The hybrid system incorporates a microslab portion of the separation medium above the microchannels, thus at least substantially reducing the possibility of non-uniform field distribution and breakdown due to uncontrollable leakage. A microslab of the sieving matrix is built into the system by using plastic spacer materials and is used to uniformly couple the top plate with the bottom microchannel plate.

  10. Quantum technologies with hybrid systems.

    Science.gov (United States)

    Kurizki, Gershon; Bertet, Patrice; Kubo, Yuimaru; Mølmer, Klaus; Petrosyan, David; Rabl, Peter; Schmiedmayer, Jörg

    2015-03-31

    An extensively pursued current direction of research in physics aims at the development of practical technologies that exploit the effects of quantum mechanics. As part of this ongoing effort, devices for quantum information processing, secure communication, and high-precision sensing are being implemented with diverse systems, ranging from photons, atoms, and spins to mesoscopic superconducting and nanomechanical structures. Their physical properties make some of these systems better suited than others for specific tasks; thus, photons are well suited for transmitting quantum information, weakly interacting spins can serve as long-lived quantum memories, and superconducting elements can rapidly process information encoded in their quantum states. A central goal of the envisaged quantum technologies is to develop devices that can simultaneously perform several of these tasks, namely, reliably store, process, and transmit quantum information. Hybrid quantum systems composed of different physical components with complementary functionalities may provide precisely such multitasking capabilities. This article reviews some of the driving theoretical ideas and first experimental realizations of hybrid quantum systems and the opportunities and challenges they present and offers a glance at the near- and long-term perspectives of this fascinating and rapidly expanding field.

  11. Quantum technologies with hybrid systems

    Science.gov (United States)

    Kurizki, Gershon; Bertet, Patrice; Kubo, Yuimaru; Mølmer, Klaus; Petrosyan, David; Rabl, Peter; Schmiedmayer, Jörg

    2015-01-01

    An extensively pursued current direction of research in physics aims at the development of practical technologies that exploit the effects of quantum mechanics. As part of this ongoing effort, devices for quantum information processing, secure communication, and high-precision sensing are being implemented with diverse systems, ranging from photons, atoms, and spins to mesoscopic superconducting and nanomechanical structures. Their physical properties make some of these systems better suited than others for specific tasks; thus, photons are well suited for transmitting quantum information, weakly interacting spins can serve as long-lived quantum memories, and superconducting elements can rapidly process information encoded in their quantum states. A central goal of the envisaged quantum technologies is to develop devices that can simultaneously perform several of these tasks, namely, reliably store, process, and transmit quantum information. Hybrid quantum systems composed of different physical components with complementary functionalities may provide precisely such multitasking capabilities. This article reviews some of the driving theoretical ideas and first experimental realizations of hybrid quantum systems and the opportunities and challenges they present and offers a glance at the near- and long-term perspectives of this fascinating and rapidly expanding field. PMID:25737558

  12. Hybrid synchronization of hyperchaotic Lu system

    Indian Academy of Sciences (India)

    K Sebastian Sudheer; M Sabir

    2009-10-01

    In this paper, we study the hybrid synchronization between two identical hyperchaotic Lu systems. Hybrid synchronization of hyperchaotic Lu system is achieved through synchronization of two pairs of states and anti-synchronization of the other two pairs of states. Active controls are designed to achieve hybrid synchronization between drive and response systems using the sum and difference of relevant variables of the chaotic systems. Numerical simulations are presented to evaluate the analysis and effectiveness of the controllers.

  13. Conceptual Design of Hybrid Safety Features for NPP by Utilizing Solar Updraft Tower

    Energy Technology Data Exchange (ETDEWEB)

    Song, Sub Lee [Handong Global University, Pohang (Korea, Republic of); Choi, Young Jae; Kim, Yong Jin [KAIST, Daejeon (Korea, Republic of); Park, Hyo Chan; Park, Youn Won [BEES, Daejeon (Korea, Republic of)

    2016-05-15

    In this study, hybrid safety features for NPP with solar updraft tower (SUT) is conceptually suggested to cope with loss of ultimate heat sink accident. The hybrid safety features utilizing SUT target NPPs in seashore of Arabian Gulf. Usually NPPs are constructed near seashore to utilize sea water as an ultimate heat sink. Residual heat or decay heat of nuclear reactor will diffuse into the ocean through the condenser. NPPs in Middle East are expected to be placed in seashore of Arabian Gulf. The NPP site of Barakah is an actual example. For NPPs in seashore of Arabian Gulf, an additional safety concern should be considered. Arabian Gulf is the largest oil transporting route in the world. The oil spill risk in Arabian Gulf will be the largest simultaneously. Unfortunately, not like other oceans, Arabian Gulf is a kind of closed ocean which does not have strong ocean currents connected to out of the gulf. If once oil spill is occurred, its influence can be propagated more than our expectation. The spilled oil also can affect to NPPs in seashore by covering surfaces of condenser. It will directly cause loss of ultimate heat sink. The hybrid safety features of SUT system are expected to aid normal operation of safety system and mitigate consequence of severe accident. Detail analysis and technology development is ongoing now.

  14. From hybrid-media system to hybrid-media politicians

    DEFF Research Database (Denmark)

    Eberholst, Mads Kæmsgaard; Ørsten, Mark; Burkal, Rasmus

    2017-01-01

    An increasingly complex hybrid system of social- and traditional-news media surrounds Nordic election campaigns as politically experienced incumbents favour traditional news media, and younger, lesser-known candidates’ social media. Despite little evidence for hybrid-media politicians, politicians......’ media use is changing rapidly; 15%–16% of Danish candidates used Twitter in 2011 but 68% in 2015. In this large-sample content analysis, party leaders have high traditional-news-media and low Twitter presence, and younger candidates visa-versa, but some politicians have high presence in both. Hybrid...

  15. A Review of Hybrid Renewable Energy Systems for Electric Power Generation

    Directory of Open Access Journals (Sweden)

    Md. Ibrahim

    2015-08-01

    Full Text Available Integration and combined utilization of renewable energy sources are becoming increasingly attractive. This paper is a review of hybrid renewable energy systems technologies for power generation, important issues and challenges in their design stage. Generation technology selection and unit sizing, System configurations and Energy management and control are discussed. Applications of hybrid energy systems, advantages of hybrid energy systems, issues and problems related to hybrid energy systems and an overview of energy storage technologies for renewable energy systems are presented. This paper also highlights the future trends of Hybrid energy systems, which represent a promising sustainable solution for power generation.

  16. Control for a class of hybrid systems

    NARCIS (Netherlands)

    J.H. van Schuppen (Jan)

    1997-01-01

    textabstractA hybrid control system is a control theoretic model for a computer controlled engineering system. A definition of a hybrid control system is formulated that consists of a product of a finite state automaton and of a family of continuous control systems. An example of a transportation

  17. Solar-geothermal hybrid system

    Energy Technology Data Exchange (ETDEWEB)

    Lentz, Alvaro; Almanza, Rafael [Instituto de Ingenieria, UNAM, Ciudad Universitaria, Edificio 12, 04510 Mexico DF (Mexico)

    2006-10-15

    The Cerro Prieto Geothermal Power Plant is located in the northwest of Mexico, lat. 32{sup o}39', long. 115{sup o}21' in the northern hemisphere. A solar-geothermal hybrid system is proposed in order to increase the steam flow during the present geothermal cycle, adding a solar field of parabolic trough concentrators. Energy is supplied to the geothermal flow from wells in order to increase the steam generation rate. This configuration will increase the capacity factor of the system by generating additional steam during the peak demand hours. The parabolic trough solar field is evaluated in North-South and East-West orientation collector alignments. A proposal to obtain an increase of 10% in steam flow is evaluated, as the increase in flow is limited by the content of dissolved salts, so as to avoid a liquid phase with high salt concentrations. The size of the parabolic troughs field was obtained. (author)

  18. Consensus of Hybrid Multi-Agent Systems.

    Science.gov (United States)

    Zheng, Yuanshi; Ma, Jingying; Wang, Long

    2017-01-27

    In this brief, we consider the consensus problem of hybrid multiagent systems. First, the hybrid multiagent system is proposed, which is composed of continuous-time and discrete-time dynamic agents. Then, three kinds of consensus protocols are presented for the hybrid multiagent system. The analysis tool developed in this brief is based on the matrix theory and graph theory. With different restrictions of the sampling period, some necessary and sufficient conditions are established for solving the consensus of the hybrid multiagent system. The consensus states are also obtained under different protocols. Finally, simulation examples are provided to demonstrate the effectiveness of our theoretical results.

  19. Hybrid Dynamical Systems Modeling, Stability, and Robustness

    CERN Document Server

    Goebel, Rafal; Teel, Andrew R

    2012-01-01

    Hybrid dynamical systems exhibit continuous and instantaneous changes, having features of continuous-time and discrete-time dynamical systems. Filled with a wealth of examples to illustrate concepts, this book presents a complete theory of robust asymptotic stability for hybrid dynamical systems that is applicable to the design of hybrid control algorithms--algorithms that feature logic, timers, or combinations of digital and analog components. With the tools of modern mathematical analysis, Hybrid Dynamical Systems unifies and generalizes earlier developments in continuous-time and discret

  20. Stochastic Reachability Analysis of Hybrid Systems

    CERN Document Server

    Bujorianu, Luminita Manuela

    2012-01-01

    Stochastic reachability analysis (SRA) is a method of analyzing the behavior of control systems which mix discrete and continuous dynamics. For probabilistic discrete systems it has been shown to be a practical verification method but for stochastic hybrid systems it can be rather more. As a verification technique SRA can assess the safety and performance of, for example, autonomous systems, robot and aircraft path planning and multi-agent coordination but it can also be used for the adaptive control of such systems. Stochastic Reachability Analysis of Hybrid Systems is a self-contained and accessible introduction to this novel topic in the analysis and development of stochastic hybrid systems. Beginning with the relevant aspects of Markov models and introducing stochastic hybrid systems, the book then moves on to coverage of reachability analysis for stochastic hybrid systems. Following this build up, the core of the text first formally defines the concept of reachability in the stochastic framework and then...

  1. Hybrid and Electric Advanced Vehicle Systems Simulation

    Science.gov (United States)

    Beach, R. F.; Hammond, R. A.; Mcgehee, R. K.

    1985-01-01

    Predefined components connected to represent wide variety of propulsion systems. Hybrid and Electric Advanced Vehicle System (HEAVY) computer program is flexible tool for evaluating performance and cost of electric and hybrid vehicle propulsion systems. Allows designer to quickly, conveniently, and economically predict performance of proposed drive train.

  2. Celss nutrition system utilizing snails

    Science.gov (United States)

    Midorikawa, Y.; Fujii, T.; Ohira, A.; Nitta, K.

    At the 40th IAF Congress in Malaga, a nutrition system for a lunar base CELSS was presented. A lunar base with a total of eight crew members was envisaged. In this paper, four species of plants—rice, soybean, lettuce and strawberry—were introduced to the system. These plants were sufficient to satisfy fundamental nutritional needs of the crew members. The supply of nutrition from plants and the human nutritional requirements could almost be balanced. Our study revealed that the necessary plant cultivation area per crew member would be nearly 40 m 3 in the lunar base. The sources of nutrition considered in the study were energy, sugar, fat, amino acids, inorganic salt and vitamins; however, calcium, vitamin B 2, vitamin A and sodium were found to be lacking. Therefore, a subsystem to supply these elements is of considerable value. In this paper, we report on a study for breeding snails and utilizing meat as food. Nutrients supplied from snails are shown to compensate for the abovementioned lacking elements. We evaluate the snail breeder and the associated food supply system as a subsystem of closed ecological life support system.

  3. Wind Solar Hybrid System Rectifier Stage Topology Simulation

    Directory of Open Access Journals (Sweden)

    Anup M. Gakare

    2014-06-01

    Full Text Available This paper presents power-control strategies of a grid-connected hybrid generation system with versatile power transfer. The hybrid system allows maximum utilization of freely available renewable sources like wind and photovoltaic energies. This paper presents a new system configuration of the multi input rectifier stage for a hybrid wind and photovoltaic energy system. This configuration allows the two sources to supply the load simultaneously depending on the availability of the energy sources maximum power from the sun when it is available. An adaptive MPPT algorithm with a standard perturbs and observed method will be used for the Photo Voltaic system. The main advantage of the hybrid system is to give continuous power supply to the load. The gating pulses to the inverter switches are implemented with conventional and fuzzy controller. This hybrid wind-photo voltaic system is modeled in MATLAB/ SIMULINK environment. Simulation circuit is analyzed and results are presented for this hybrid wind and solar energy system.

  4. Nuclear Hybrid Energy Systems FY16 Modeling Efforts at ORNL

    Energy Technology Data Exchange (ETDEWEB)

    Cetiner, Sacit M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Greenwood, Michael Scott [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Harrison, Thomas J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Qualls, A. L. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Guler Yigitoglu, Askin [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Fugate, David W. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2016-09-01

    A nuclear hybrid system uses a nuclear reactor as the basic power generation unit. The power generated by the nuclear reactor is utilized by one or more power customers as either thermal power, electrical power, or both. In general, a nuclear hybrid system will couple the nuclear reactor to at least one thermal power user in addition to the power conversion system. The definition and architecture of a particular nuclear hybrid system is flexible depending on local markets needs and opportunities. For example, locations in need of potable water may be best served by coupling a desalination plant to the nuclear system. Similarly, an area near oil refineries may have a need for emission free hydrogen production. A nuclear hybrid system expands the nuclear power plant from its more familiar central power station role by diversifying its immediately and directly connected customer base. The definition, design, analysis, and optimization work currently performed with respect to the nuclear hybrid systems represents the work of three national laboratories. Idaho National Laboratory (INL) is the lead lab working with Argonne National Laboratory (ANL) and Oak Ridge National Laboratory. Each laboratory is providing modeling and simulation expertise for the integration of the hybrid system.

  5. Research on a New Hybrid System of a Tyre Crane Using Supercapacitors

    Institute of Scientific and Technical Information of China (English)

    XU Li; GAO Xiao-hong; HU Yi

    2008-01-01

    Research on a hybrid system of a crane is a focus which considers environmental protection and energy saving.A new environmental protection and energy saving hybrid system of tyre crane.which utilizes supercapacitors as the energy store device,is presented.Analyzing the pdneiple of supercapacitors,the model of the crane's hybrid system is set up in this paper,and the model of main blocks are established.Through simulation analyzing,the energy saving result of the new hybrid system is obtained,and the good application value of the new hybrid system is explained.

  6. Symmetry reduction for stochastic hybrid systems

    NARCIS (Netherlands)

    Bujorianu, L.M.; Katoen, J.P.

    2009-01-01

    This paper is focused on adapting symmetry reduction, a technique that is highly successful in traditional model checking, to stochastic hybrid systems. We first show that performability analysis of stochastic hybrid systems can be reduced to a stochastic reachability analysis (SRA). Then, we genera

  7. Symmetry Reduction For Stochastic Hybrid Systems

    NARCIS (Netherlands)

    Bujorianu, L.M.; Katoen, J.P.

    2008-01-01

    This paper is focused on adapting symmetry reduction, a technique that is highly successful in traditional model checking, to stochastic hybrid systems. To that end, we first show that performability analysis of stochastic hybrid systems can be reduced to a stochastic reachability analysis (SRA). Th

  8. Hybrid logics with infinitary proof systems

    NARCIS (Netherlands)

    Kooi, Barteld; Renardel de Lavalette, Gerard; Verbrugge, Rineke

    2006-01-01

    We provide a strongly complete infinitary proof system for hybrid logic. This proof system can be extended with countably many sequents. Thus, although these logics may be non-compact, strong completeness proofs are provided for infinitary hybrid versions of non-compact logics like ancestral logic a

  9. Statistical Model Checking for Stochastic Hybrid Systems

    DEFF Research Database (Denmark)

    David, Alexandre; Du, Dehui; Larsen, Kim Guldstrand

    2012-01-01

    This paper presents novel extensions and applications of the UPPAAL-SMC model checker. The extensions allow for statistical model checking of stochastic hybrid systems. We show how our race-based stochastic semantics extends to networks of hybrid systems, and indicate the integration technique ap...

  10. Fault tolerant control design for hybrid systems

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Hao; Jiang, Bin [Nanjing University of Aeronautics and Astronautics, Nanjing (China); Cocquempot, Vincent [Universite des Sciences et Technologies de Lille, Villeneuve d' Ascq (France)

    2010-07-01

    This book intends to provide the readers a good understanding on how to achieve Fault Tolerant Control goal of Hybrid Systems. The book can be used as a reference for the academic research on Fault Tolerant Control and Hybrid Systems or used in Ph.D. study of control theory and engineering. The knowledge background for this monograph would be some undergraduate and graduate courses on Fault Diagnosis and Fault Tolerant Control theory, linear system theory, nonlinear system theory, Hybrid Systems theory and Discrete Event System theory. (orig.)

  11. Design of A Pv/Diesel Stand Alone Hybrid System For A Remote Community in Palestine

    OpenAIRE

    Ismail, M.S.; Moghavvemi, M.; T.M.I. Mahlia

    2012-01-01

    Hybrid system based on photovoltaic is considered an effective option to electrify remote and isolated areas far from grid. This is true for areas that receive high averages of solar radiation annually. Using diesel generator as a standby source will make utilization of hybrid systems more attractive. An economic feasibility study and a complete design of a hybrid system consisting of photovoltaic (PV) panels, a diesel generator as a backup power source and a battery system supplying a small ...

  12. Hybrid dynamical systems observation and control

    CERN Document Server

    Defoort, Michael

    2015-01-01

    This book is a collection of contributions defining the state of current knowledge and new trends in hybrid systemssystems involving both continuous dynamics and discrete events – as described by the work of several well-known groups of researchers. Hybrid Dynamical Systems presents theoretical advances in such areas as diagnosability, observability and stabilization for various classes of system. Continuous and discrete state estimation and self-triggering control of nonlinear systems are advanced. The text employs various methods, among them, high-order sliding modes, Takagi–Sugeno representation and sampled-data switching to achieve its ends. The many applications of hybrid systems from power converters to computer science are not forgotten; studies of flexible-joint robotic arms and – as representative biological systems – the behaviour of the human heart and vasculature, demonstrate the wide-ranging practical significance of control in hybrid systems. The cross-disciplinary origins of study ...

  13. Hybrid robot climbing system design

    Science.gov (United States)

    Purna Irawan, Agustinus; Halim, Agus; Kurniawan, Hengky

    2017-09-01

    This research aims to develop a climbing hybrid robot, especially to design the structure of robot that quite strong and how to build an optimal mechanism for transmitting the motor’s rotation and torque to generate movement up the pole. In this research we use analytical methods using analysis software, simulation, a prototype, and robot trial. The result showed that robot could climb a pole by with maximum velocity 0.33m/s with a 20 kg load. Based on a weight diversity trial between 10 kg and 20 kg we obtained climb up load factor with value 0.970 ± 0.0223 and climb down load factor with value 0.910 ± 0.0163. Displacement of the frame structure was 7.58 mm. To minimize this displacement, the gate system was used so as to optimize the gripper while gripping the pole. The von Misses stress in the roller was 48.49 MPa, with 0.12 mm of displacement. This result could be a reference for robot development in further research.

  14. Safety Verification for Probabilistic Hybrid Systems

    DEFF Research Database (Denmark)

    Zhang, Lijun; She, Zhikun; Ratschan, Stefan;

    2010-01-01

    The interplay of random phenomena and continuous real-time control deserves increased attention for instance in wireless sensing and control applications. Safety verification for such systems thus needs to consider probabilistic variations of systems with hybrid dynamics. In safety verification...... hybrid systems and develop a general abstraction technique for verifying probabilistic safety problems. This gives rise to the first mechanisable technique that can, in practice, formally verify safety properties of non-trivial continuous-time stochastic hybrid systems-without resorting to point...... of classical hybrid systems we are interested in whether a certain set of unsafe system states can be reached from a set of initial states. In the probabilistic setting, we may ask instead whether the probability of reaching unsafe states is below some given threshold. In this paper, we consider probabilistic...

  15. Safety Verification for Probabilistic Hybrid Systems

    DEFF Research Database (Denmark)

    Zhang, Lijun; She, Zhikun; Ratschan, Stefan;

    2012-01-01

    The interplay of random phenomena and continuous dynamics deserves increased attention, especially in the context of wireless sensing and control applications. Safety verification for such systems thus needs to consider probabilistic variants of systems with hybrid dynamics. In safety verification...... hybrid systems and develop a general abstraction technique for verifying probabilistic safety problems. This gives rise to the first mechanisable technique that can, in practice, formally verify safety properties of non-trivial continuous-time stochastic hybrid systems. Moreover, being based...... of classical hybrid systems, we are interested in whether a certain set of unsafe system states can be reached from a set of initial states. In the probabilistic setting, we may ask instead whether the probability of reaching unsafe states is below some given threshold. In this paper, we consider probabilistic...

  16. Statistical Model Checking for Stochastic Hybrid Systems

    DEFF Research Database (Denmark)

    David, Alexandre; Du, Dehui; Larsen, Kim Guldstrand

    2012-01-01

    This paper presents novel extensions and applications of the UPPAAL-SMC model checker. The extensions allow for statistical model checking of stochastic hybrid systems. We show how our race-based stochastic semantics extends to networks of hybrid systems, and indicate the integration technique...... applied for implementing this semantics in the UPPAAL-SMC simulation engine. We report on two applications of the resulting tool-set coming from systems biology and energy aware buildings....

  17. Utilization of MATLAB in Simulation of Linear Hybrid Circuits

    OpenAIRE

    BRANCIK, L.

    2003-01-01

    In the paper a MATLAB-based method for simulating transient phenomena in linear hybrid circuits containing parts with both lumped and distributed parameters is presented. Distributed parts of the circuit are multiconductor transmission lines, which can generally be nonuniform, with frequency-dependent parameters, and under nonzero initial voltage and/or current distributions. In principle a solution is formulated using the modified nodal analysis method in the frequency domain. Subsequently a...

  18. A hybrid stepping motor system with dual CPU

    Institute of Scientific and Technical Information of China (English)

    高晗璎; 赵克; 孙力

    2004-01-01

    An indirect method of measuring the rotor position based on the magnetic reluctance variation is presented in the paper. A single-chip microprocessor 80C196KC is utilized to compensate the phase shift produeed by the process of position signals. At the same time, a DSP (Data Signal Processor) unit is used to realize the speed and current closed-loops of the hybrid stepping motor system. At last, experimental results show the control system has excellent static and dynamic characteristics.

  19. Recent Advances on Hybrid Intelligent Systems

    CERN Document Server

    Melin, Patricia; Kacprzyk, Janusz

    2013-01-01

    This book presents recent advances on hybrid intelligent systems using soft computing techniques for intelligent control and robotics, pattern recognition, time series prediction and optimization of complex problems. Soft Computing (SC) consists of several intelligent computing paradigms, including fuzzy logic, neural networks, and bio-inspired optimization algorithms, which can be used to produce powerful hybrid intelligent systems. The book is organized in five main parts, which contain groups of papers around a similar subject. The first part consists of papers with the main theme of hybrid intelligent systems for control and robotics, which are basically state of the art papers that propose new models and concepts, which can be the basis for achieving intelligent control and mobile robotics. The second part contains papers with the main theme of hybrid intelligent systems for pattern recognition and time series prediction, which are basically papers using nature-inspired techniques, like evolutionary algo...

  20. Analysis of Hybrid Hydrogen Systems: Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Dean, J.; Braun, R.; Munoz, D.; Penev, M.; Kinchin, C.

    2010-01-01

    Report on biomass pathways for hydrogen production and how they can be hybridized to support renewable electricity generation. Two hybrid systems were studied in detail for process feasibility and economic performance. The best-performing system was estimated to produce hydrogen at costs ($1.67/kg) within Department of Energy targets ($2.10/kg) for central biomass-derived hydrogen production while also providing value-added energy services to the electric grid.

  1. Utilization of MATLAB in Simulation of Linear Hybrid Circuits

    Directory of Open Access Journals (Sweden)

    L. Brancik

    2003-12-01

    Full Text Available In the paper a MATLAB-based method for simulating transientphenomena in linear hybrid circuits containing parts with both lumpedand distributed parameters is presented. Distributed parts of thecircuit are multiconductor transmission lines, which can generally benonuniform, with frequency-dependent parameters, and under nonzeroinitial voltage and/or current distributions. In principle a solutionis formulated using the modified nodal analysis method in the frequencydomain. Subsequently an improved fast method of the numerical inversionof Laplace transforms in the vector or matrix form is applied to obtainsolution in the time domain.

  2. The Utility Battery Storage Systems Program Overview

    Energy Technology Data Exchange (ETDEWEB)

    1994-11-01

    Utility battery energy storage allows a utility or customer to store electrical energy for dispatch at a time when its use is more economical, strategic, or efficient. The UBS program sponsors systems analyses, technology development of subsystems and systems integration, laboratory and field evaluation, and industry outreach. Achievements and planned activities in each area are discussed.

  3. Uncertainty Quantification in Hybrid Dynamical Systems

    CERN Document Server

    Sahai, Tuhin

    2011-01-01

    Uncertainty quantification (UQ) techniques are frequently used to ascertain output variability in systems with parametric uncertainty. Traditional algorithms for UQ are either system-agnostic and slow (such as Monte Carlo) or fast with stringent assumptions on smoothness (such as polynomial chaos and Quasi-Monte Carlo). In this work, we develop a fast UQ approach for hybrid dynamical systems by extending the polynomial chaos methodology to these systems. To capture discontinuities, we use a wavelet-based Wiener-Haar expansion. We develop a boundary layer approach to propagate uncertainty through separable reset conditions. We also introduce a transport theory based approach for propagating uncertainty through hybrid dynamical systems. Here the expansion yields a set of hyperbolic equations that are solved by integrating along characteristics. The solution of the partial differential equation along the characteristics allows one to quantify uncertainty in hybrid or switching dynamical systems. The above method...

  4. Uncertainty quantification in hybrid dynamical systems

    Science.gov (United States)

    Sahai, Tuhin; Pasini, José Miguel

    2013-03-01

    Uncertainty quantification (UQ) techniques are frequently used to ascertain output variability in systems with parametric uncertainty. Traditional algorithms for UQ are either system-agnostic and slow (such as Monte Carlo) or fast with stringent assumptions on smoothness (such as polynomial chaos and Quasi-Monte Carlo). In this work, we develop a fast UQ approach for hybrid dynamical systems by extending the polynomial chaos methodology to these systems. To capture discontinuities, we use a wavelet-based Wiener-Haar expansion. We develop a boundary layer approach to propagate uncertainty through separable reset conditions. We also introduce a transport theory based approach for propagating uncertainty through hybrid dynamical systems. Here the expansion yields a set of hyperbolic equations that are solved by integrating along characteristics. The solution of the partial differential equation along the characteristics allows one to quantify uncertainty in hybrid or switching dynamical systems. The above methods are demonstrated on example problems.

  5. Supermarket Refrigeration System - Benchmark for Hybrid System Control

    DEFF Research Database (Denmark)

    Sloth, Lars Finn; Izadi-Zamanabadi, Roozbeh; Wisniewski, Rafal

    2007-01-01

    This paper presents a supermarket refrigeration system as a benchmark for development of new ideas and a comparison of methods for hybrid systems' modeling and control. The benchmark features switch dynamics and discrete valued input making it a hybrid system, furthermore the outputs are subjected...

  6. Hybrid sentiment analysis utilizing multiple indicators to determine temporal shifts of opinion in OSNs

    Science.gov (United States)

    White, Joshua S.; Hall, Robert T.; Fields, Jeremy; White, Holly M.

    2016-05-01

    Utilization of traditional sentiment analysis for predicting the outcome of an event on a social network depends on: precise understanding of what topics relate to the event, selective elimination of trends that don't fit, and in most cases, expert knowledge of major players of the event. Sentiment analysis has traditionally taken one of two approaches to derive a quantitative value from qualitative text. These approaches include the bag of words model", and the usage of "NLP" to attempt a real understanding of the text. Each of these methods yield very similar accuracy results with the exception of some special use cases. To do so, however, they both impose a large computational burden on the analytic system. Newer approaches have this same problem. No matter what approach is used, SA typically caps out around 80% in accuracy. However, accuracy is the result of both polarity and degree of polarity, nothing else. In this paper we present a method for hybridizing traditional SA methods to better determine shifts in opinion over time within social networks. This hybridization process involves augmenting traditional SA measurements with contextual understanding, and knowledge about writers' demographics. Our goal is to not only to improve accuracy, but to do so with minimal impact to computation requirements.

  7. Modular supervisory controller for hybrid power systems

    Energy Technology Data Exchange (ETDEWEB)

    Lemos Pereira, A. de

    2000-06-01

    The power supply of remote places has been commonly provided by thermal power plants, usually diesel generators. Although hybrid power systems may constitute the most economical solution in many applications their widespread application to the electrification schemes of remote areas still depends on improvements in the issues of design and operation control. The main limitations of the present hybrid power systems technology, which are identified in this work, are related to the control and supervision of the power system. Therefore this thesis focuses on the modularity of supervisory controllers in order to design cost-competitive and reliable hybrid power systems. The modular supervisory controller created in this project is considered an important part of a system design approach that aims to overcome the technical difficulties of the current engineering practice and contribute to open the market of hybrid power systems. The term modular refers to a set of design characteristics that allows the use of basically the same supervisory controller in different projects. The modularization and standardisation of the controller include several issues such as interfacing components, communication protocols, modelling, programming and control strategies. The modularity can reduce the highly specialised system engineering related to the integration of components, operation and control. It can also avoid the high costs for installation, service and maintenance. A modular algorithm for supervisory controllers has been developed (a Matlab program called SuperCon) using an object-oriented design and it has been tested through several simulations using different hybrid system configurations and different control strategies. This thesis presents a complete control system design process which can be used as the basis for the development and implementation of intelligent and autonomous supervisory controllers for hybrid power systems with modular characteristics. (au)

  8. Space stations systems and utilization

    CERN Document Server

    Messerschmid, Ernst

    1999-01-01

    The design of space stations like the recently launched ISS is a highly complex and interdisciplinary task. This book describes component technologies, system integration, and the potential usage of space stations in general and of the ISS in particular. It so adresses students and engineers in space technology. Ernst Messerschmid holds the chair of space systems at the University of Stuttgart and was one of the first German astronauts.

  9. PV-hybrid village power systems in Amazonia

    Energy Technology Data Exchange (ETDEWEB)

    Warner, C.L.; Taylor, R.W. [National Renewable Energy Lab., Golden, CO (United States); Ribeiro, C.M. [Centro de Pesquisas de Energie Eletrica (CEPEL), Rio de Janeiro (Brazil)] [and others

    1996-05-01

    The Brazilian Amazon region is an ideal location for isolated mini-grid systems. Hundreds of diesel systems have been installed to supply electricity to this sparsely populated region. However, the availability of renewable energy resources makes the Amazon well-suited to renewable energy systems. This paper describes the technical aspects of two hybrid systems being installed in this region through the cooperative effort of multiple partners: U.S. Department of Energy, through NREL, and Brazilian CEPEL/Eletrobras and state electric utilities.

  10. A "Hybrid" Approach for Synthesizing Optimal Controllers of Hybrid Systems

    DEFF Research Database (Denmark)

    Zhao, Hengjun; Zhan, Naijun; Kapur, Deepak

    2012-01-01

    We propose an approach to reduce the optimal controller synthesis problem of hybrid systems to quantifier elimination; furthermore, we also show how to combine quantifier elimination with numerical computation in order to make it more scalable but at the same time, keep arising errors due...... to discretization manageable and within bounds. A major advantage of our approach is not only that it avoids errors due to numerical computation, but it also gives a better optimal controller. In order to illustrate our approach, we use the real industrial example of an oil pump provided by the German company HYDAC...

  11. Combined photovoltaic and thermal hybrid collector systems

    Energy Technology Data Exchange (ETDEWEB)

    Kern, E.C. Jr.; Russell, M.C.

    1978-01-01

    Solar energy collectors that produce both electric and thermal energy are an attractive alternative to individual thermal and photovoltaic collectors for certain applications and climates. Economic results from a system analysis indicate that hybrid collector systems are attractive in small buildings that have substantial heating loads. Passively cooled photovoltaic panels are best suited for structures located in regions where year-round air conditioning and small, low-grade, thermal energy demands predominate. Hybrid collectors are to be tested according to ASHRAE standards and a full-system experiment incorporating a photovoltaic array installed at the Solar Energy Research Facility of the University of Texas will be conducted by Lincoln Laboratory.

  12. Control system for a hybrid powertrain system

    Energy Technology Data Exchange (ETDEWEB)

    Naqvi, Ali K.; Demirovic, Besim; Gupta, Pinaki; Kaminsky, Lawrence A.

    2014-09-09

    A vehicle includes a powertrain with an engine, first and second torque machines, and a hybrid transmission. A method for operating the vehicle includes operating the engine in an unfueled state, releasing an off-going clutch which when engaged effects operation of the hybrid transmission in a first continuously variable mode, and applying a friction braking torque to a wheel of the vehicle to compensate for an increase in an output torque of the hybrid transmission resulting from releasing the off-going clutch. Subsequent to releasing the off-going clutch, an oncoming clutch which when engaged effects operation of the hybrid transmission in a second continuously variable mode is synchronized. Subsequent to synchronization of the oncoming clutch, the oncoming clutch is engaged.

  13. Hybrid singular systems of differential equations

    Institute of Scientific and Technical Information of China (English)

    殷刚; 张纪峰

    2002-01-01

    This work develops hybrid models for large-scale singular differential system and analyzestheir asymptotic properties. To take into consideration the discrete shifts in regime across whichthe behavior of the corresponding dynamic systems is markedly different, our goals are to develophybrid systems in which continuous dynamics are intertwined with discrete events under random-jumpdisturbances and to reduce complexity of large-scale singular systems via singularly perturbed Markovchains. To reduce the complexity of large-scale hybrid singular systems, two-time scale is used in theformulation. Under general assumptions, limit behavior of the underlying system is examined. Usingweak convergence methods, it is shown that the systems can be approximated by limit systems inwhich the coefficients are averaged out with respect to the quasi-stationary distributions. Since thelimit systems have fewer states, the complexity is much reduced.

  14. Analysis and design of hybrid control systems

    Energy Technology Data Exchange (ETDEWEB)

    Malmborg, J.

    1998-05-01

    Different aspects of hybrid control systems are treated: analysis, simulation, design and implementation. A systematic methodology using extended Lyapunov theory for design of hybrid systems is developed. The methodology is based on conventional control designs in separate regions together with a switching strategy. Dynamics are not well defined if the control design methods lead to fast mode switching. The dynamics depend on the salient features of the implementation of the mode switches. A theorem for the stability of second order switching together with the resulting dynamics is derived. The dynamics on an intersection of two sliding sets are defined for two relays working on different time scales. The current simulation packages have problems modeling and simulating hybrid systems. It is shown how fast mode switches can be found before or during simulation. The necessary analysis work is a very small overhead for a modern simulation tool. To get some experience from practical problems with hybrid control the switching strategy is implemented in two different software environments. In one of them a time-optimal controller is added to an existing PID controller on a commercial control system. Successful experiments with this hybrid controller shows the practical use of the method 78 refs, 51 figs, 2 tabs

  15. Evolved Finite State Controller For Hybrid System

    DEFF Research Database (Denmark)

    Dupuis, Jean-Francois; Fan, Zhun; Goodman, Erik

    2009-01-01

    This paper presents an evolutionary methodology to automatically generate nite state automata (FSA) controllers to control hybrid systems. FSA controllers for a case study of two-tank system have been successfully obtained using the proposed evolutionary approach. Experimental results show...

  16. CPV hybrid system in ISFOC building, first results

    Science.gov (United States)

    Trujillo, Pablo; Alamillo, César; Gil, Eduardo; de la Rubia, Óscar; Martínez, María; Rubio, Francisca; Cadavid, Andros; Navarro, José; Hillenbrand, Sascha; Ballesteros-Sánchez, Isabel; Castillo-Cagigal, Manuel; Masa-Bote, Daniel; Matallanas, Eduardo; Caamaño-Martín, Estefanía; Gutiérrez, Álvaro

    2012-10-01

    PV Off-Grid systems have demonstrated to be a good solution for the electrification of remote areas [1]. A hybrid system is one kind of these systems. The principal characteristic is that it uses PV as the main generator and has a backup power supply, like a diesel generator, for instance, that is used when the CPV generation is not enough to meet demand. To study the use of CPV in these systems, ISFOC has installed a demonstration hybrid system at its headquarters. This hybrid system uses CPV technology as main generator and the utility grid as the backup generator. A group of batteries have been mounted as well to store the remaining energy from the CPV generator when nedeed. The energy flows are managed by a SMA system based on Sunny Island inverters and a Multicluster-Box (figure 1). The Load is the air-conditioning system of the building, as it has a consumption profile higher than the CPV generator and can be controlled by software [2]. The first results of this system, as well as the first chances of improvement, as the need of a bigger CPV generator and a better management of the energy stored in the batteries, are presented in this paper.

  17. Systems Engineering of Electric and Hybrid Vehicles

    Science.gov (United States)

    Kurtz, D. W.; Levin, R. R.

    1986-01-01

    Technical paper notes systems engineering principles applied to development of electric and hybrid vehicles such that system performance requirements support overall program goal of reduced petroleum consumption. Paper discusses iterative design approach dictated by systems analyses. In addition to obvious peformance parameters of range, acceleration rate, and energy consumption, systems engineering also considers such major factors as cost, safety, reliability, comfort, necessary supporting infrastructure, and availability of materials.

  18. Systems Engineering of Electric and Hybrid Vehicles

    Science.gov (United States)

    Kurtz, D. W.; Levin, R. R.

    1986-01-01

    Technical paper notes systems engineering principles applied to development of electric and hybrid vehicles such that system performance requirements support overall program goal of reduced petroleum consumption. Paper discusses iterative design approach dictated by systems analyses. In addition to obvious peformance parameters of range, acceleration rate, and energy consumption, systems engineering also considers such major factors as cost, safety, reliability, comfort, necessary supporting infrastructure, and availability of materials.

  19. Hybrid piezoelectric energy harvesting transducer system

    Science.gov (United States)

    Xu, Tian-Bing (Inventor); Jiang, Xiaoning (Inventor); Su, Ji (Inventor); Rehrig, Paul W. (Inventor); Hackenberger, Wesley S. (Inventor)

    2008-01-01

    A hybrid piezoelectric energy harvesting transducer system includes: (a) first and second symmetric, pre-curved piezoelectric elements mounted separately on a frame so that their concave major surfaces are positioned opposite to each other; and (b) a linear piezoelectric element mounted separately on the frame and positioned between the pre-curved piezoelectric elements. The pre-curved piezoelectric elements and the linear piezoelectric element are spaced from one another and communicate with energy harvesting circuitry having contact points on the frame. The hybrid piezoelectric energy harvesting transducer system has a higher electromechanical energy conversion efficiency than any known piezoelectric transducer.

  20. Knee System Utilizing Personalized Solutions Instrumentation

    Science.gov (United States)

    ATTUNE® Knee System utilizing the TRUMATCH® Personalized Solutions Instrumentation Click Here to view the BroadcastMed, Inc. Privacy Policy and Legal Notice © 2017 BroadcastMed, Inc. All rights reserved.

  1. Hybrid Battery Ultracapacitor System For Human Robotic Systems Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The objective of this proposal is to develop a hybrid battery-ultra capacitor storage system that powers human-robotic systems in space missions. Space missions...

  2. Multiuser hybrid switched-selection diversity systems

    KAUST Repository

    Shaqfeh, Mohammad

    2011-09-01

    A new multiuser scheduling scheme is proposed and analyzed in this paper. The proposed system combines features of conventional full-feedback selection-based diversity systems and reduced-feedback switch-based diversity systems. The new hybrid system provides flexibility in trading-off the channel information feedback overhead with the prospected multiuser diversity gains. The users are clustered into groups, and the users\\' groups are ordered into a sequence. Per-group feedback thresholds are used and optimized to maximize the system overall achievable rate. The proposed hybrid system applies switched diversity criterion to choose one of the groups, and a selection criterion to decide the user to be scheduled from the chosen group. Numerical results demonstrate that the system capacity increases as the number of users per group increases, but at the cost of more required feedback messages. © 2011 IEEE.

  3. Utilization of rotor kinetic energy storage for hybrid vehicles

    Science.gov (United States)

    Hsu, John S.

    2011-05-03

    A power system for a motor vehicle having an internal combustion engine, the power system comprises an electric machine (12) further comprising a first excitation source (47), a permanent magnet rotor (28) and a magnetic coupling rotor (26) spaced from the permanent magnet rotor and at least one second excitation source (43), the magnetic coupling rotor (26) also including a flywheel having an inertial mass to store kinetic energy during an initial acceleration to an operating speed; and wherein the first excitation source is electrically connected to the second excitation source for power cycling such that the flywheel rotor (26) exerts torque on the permanent magnet rotor (28) to assist braking and acceleration of the permanent magnet rotor (28) and consequently, the vehicle. An axial gap machine and a radial gap machine are disclosed and methods of the invention are also disclosed.

  4. Mathematical Modeling of Hybrid Electrical Engineering Systems

    Directory of Open Access Journals (Sweden)

    A. A. Lobaty

    2016-01-01

    Full Text Available A large class of systems that have found application in various industries and households, electrified transportation facilities and energy sector has been classified as electrical engineering systems. Their characteristic feature is a combination of continuous and discontinuous modes of operation, which is reflected in the appearance of a relatively new term “hybrid systems”. A wide class of hybrid systems is pulsed DC converters operating in a pulse width modulation, which are non-linear systems with variable structure. Using various methods for linearization it is possible to obtain linear mathematical models that rather accurately simulate behavior of such systems. However, the presence in the mathematical models of exponential nonlinearities creates considerable difficulties in the implementation of digital hardware. The solution can be found while using an approximation of exponential functions by polynomials of the first order, that, however, violates the rigor accordance of the analytical model with characteristics of a real object. There are two practical approaches to synthesize algorithms for control of hybrid systems. The first approach is based on the representation of the whole system by a discrete model which is described by difference equations that makes it possible to synthesize discrete algorithms. The second approach is based on description of the system by differential equations. The equations describe synthesis of continuous algorithms and their further implementation in a digital computer included in the control loop system. The paper considers modeling of a hybrid electrical engineering system using differential equations. Neglecting the pulse duration, it has been proposed to describe behavior of vector components in phase coordinates of the hybrid system by stochastic differential equations containing generally non-linear differentiable random functions. A stochastic vector-matrix equation describing dynamics of the

  5. Detection of cardiovascular anomalies: Hybrid systems approach

    KAUST Repository

    Ledezma, Fernando

    2012-06-06

    In this paper, we propose a hybrid interpretation of the cardiovascular system. Based on a model proposed by Simaan et al. (2009), we study the problem of detecting cardiovascular anomalies that can be caused by variations in some physiological parameters, using an observerbased approach. We present the first numerical results obtained. © 2012 IFAC.

  6. Hybrid Management in Preparedness: Utilizing Cooperation and Crowdsourcing to Create Joint Performance in the Logistic Society

    Directory of Open Access Journals (Sweden)

    Vesa-Jukka Vornanen

    2016-06-01

    Full Text Available The key challenges in the public sector are to find new ways to operate horizontally between different levels of administration and being prepared sudden changes. The purpose of this paper is merging society in the development of customer-oriented hybrid organization. Methodology is the literature review. Preparedness is a process, which connects logistic society, its public, private and the third sector organizations, and their operations with households and individuals. This paper presents a conceptual model of hybrid management and applies it to the preparedness. The management resulted in preparedness analysis and classification system (PACS, which conduct transformational leadership, hybrid organization, and crowdsourcing to secure the overall value chain. The PACS shed light to local hybridity and crowdsourcing usage in preparedness. Crowdsourcing can be employed to provide resources before the incident, which will speed recovery. Introduced hybrid management is a significant contribution to the logistic society and its preparedness.

  7. Hybrid Energy System Modeling in Modelica

    Energy Technology Data Exchange (ETDEWEB)

    William R. Binder; Christiaan J. J. Paredis; Humberto E. Garcia

    2014-03-01

    In this paper, a Hybrid Energy System (HES) configuration is modeled in Modelica. Hybrid Energy Systems (HES) have as their defining characteristic the use of one or more energy inputs, combined with the potential for multiple energy outputs. Compared to traditional energy systems, HES provide additional operational flexibility so that high variability in both energy production and consumption levels can be absorbed more effectively. This is particularly important when including renewable energy sources, whose output levels are inherently variable, determined by nature. The specific HES configuration modeled in this paper include two energy inputs: a nuclear plant, and a series of wind turbines. In addition, the system produces two energy outputs: electricity and synthetic fuel. The models are verified through simulations of the individual components, and the system as a whole. The simulations are performed for a range of component sizes, operating conditions, and control schemes.

  8. Compact Hybrid Automotive Propulsion System

    Science.gov (United States)

    Lupo, G.

    1986-01-01

    Power train proposed for experimental vehicle powered by internal combustion engine and electric motor. Intended for front-wheel drive automobile, power train mass produced using existing technology. System includes internal-combustion engine, electric motor, continuously variable transmission, torque converter, differential, and control and adjustment systems for electric motor and transmission. Continuously variable transmission integrated into hydraulic system that also handles power steering and power brakes. Batteries for electric motor mounted elsewhere in vehicle.

  9. Maximizing Resource Utilization in Video Streaming Systems

    Science.gov (United States)

    Alsmirat, Mohammad Abdullah

    2013-01-01

    Video streaming has recently grown dramatically in popularity over the Internet, Cable TV, and wire-less networks. Because of the resource demanding nature of video streaming applications, maximizing resource utilization in any video streaming system is a key factor to increase the scalability and decrease the cost of the system. Resources to…

  10. Maximizing Resource Utilization in Video Streaming Systems

    Science.gov (United States)

    Alsmirat, Mohammad Abdullah

    2013-01-01

    Video streaming has recently grown dramatically in popularity over the Internet, Cable TV, and wire-less networks. Because of the resource demanding nature of video streaming applications, maximizing resource utilization in any video streaming system is a key factor to increase the scalability and decrease the cost of the system. Resources to…

  11. Nuclear Hybrid Energy System Model Stability Testing

    Energy Technology Data Exchange (ETDEWEB)

    Greenwood, Michael Scott [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Cetiner, Sacit M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Fugate, David W. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-04-01

    A Nuclear Hybrid Energy System (NHES) uses a nuclear reactor as the basic power generation unit, and the power generated is used by multiple customers as combinations of thermal power or electrical power. The definition and architecture of a particular NHES can be adapted based on the needs and opportunities of different localities and markets. For example, locations in need of potable water may be best served by coupling a desalination plant to the NHES. Similarly, a location near oil refineries may have a need for emission-free hydrogen production. Using the flexible, multi-domain capabilities of Modelica, Argonne National Laboratory, Idaho National Laboratory, and Oak Ridge National Laboratory are investigating the dynamics (e.g., thermal hydraulics and electrical generation/consumption) and cost of a hybrid system. This paper examines the NHES work underway, emphasizing the control system developed for individual subsystems and the overall supervisory control system.

  12. Hybrid system of semiconductor and photosynthetic protein.

    Science.gov (United States)

    Kim, Younghye; Shin, Seon Ae; Lee, Jaehun; Yang, Ki Dong; Nam, Ki Tae

    2014-08-29

    Photosynthetic protein has the potential to be a new attractive material for solar energy absorption and conversion. The development of semiconductor/photosynthetic protein hybrids is an example of recent progress toward efficient, clean and nanostructured photoelectric systems. In the review, two biohybrid systems interacting through different communicating methods are addressed: (1) a photosynthetic protein immobilized semiconductor electrode operating via electron transfer and (2) a hybrid of semiconductor quantum dots and photosynthetic protein operating via energy transfer. The proper selection of materials and functional and structural modification of the components and optimal conjugation between them are the main issues discussed in the review. In conclusion, we propose the direction of future biohybrid systems for solar energy conversion systems, optical biosensors and photoelectric devices.

  13. Analysis of hybrid solar systems

    Science.gov (United States)

    Swisher, J.

    1980-10-01

    The TRNSYS simulation program was used to evaluate the performance of active charge/passive discharge solar systems with water as the working fluid. TRNSYS simulations are used to evaluate the heating performance and cooling augmentation provided by systems in several climates. The results of the simulations are used to develop a simplified analysis tool similar to the F-chart and Phi-bar procedures used for active systems. This tool, currently in a preliminary stage, should provide the designer with quantitative performance estimates for comparison with other passive, active, and nonsolar heating and cooling designs.

  14. New Tools for Hybrid Systems

    Science.gov (United States)

    2007-05-02

    IEEE Transactions on Automatic Control , vol. 48, no. 1, pp. 2-17, January 2003. [4] A. Megretski, "Robustness...34Output stabilizability of discrete-event dynamic systems", IEEE Transactions on Automatic Control , vol. 36, no.8, pp. 925-935, August 1991. [6] K...Passino, A. Michel and P. Antsaklis, "Lyapunov stability of a class of discrete event systems", IEEE Transactions on Automatic Control , vol. 39, no.

  15. Integration profile and safety of an adenovirus hybrid-vector utilizing hyperactive sleeping beauty transposase for somatic integration.

    Directory of Open Access Journals (Sweden)

    Wenli Zhang

    Full Text Available We recently developed adenovirus/transposase hybrid-vectors utilizing the previously described hyperactive Sleeping Beauty (SB transposase HSB5 for somatic integration and we could show stabilized transgene expression in mice and a canine model for hemophilia B. However, the safety profile of these hybrid-vectors with respect to vector dose and genotoxicity remains to be investigated. Herein, we evaluated this hybrid-vector system in C57Bl/6 mice with escalating vector dose settings. We found that in all mice which received the hyperactive SB transposase, transgene expression levels were stabilized in a dose-dependent manner and that the highest vector dose was accompanied by fatalities in mice. To analyze potential genotoxic side-effects due to somatic integration into host chromosomes, we performed a genome-wide integration site analysis using linker-mediated PCR (LM-PCR and linear amplification-mediated PCR (LAM-PCR. Analysis of genomic DNA samples obtained from HSB5 treated female and male mice revealed a total of 1327 unique transposition events. Overall the chromosomal distribution pattern was close-to-random and we observed a random integration profile with respect to integration into gene and non-gene areas. Notably, when using the LM-PCR protocol, 27 extra-chromosomal integration events were identified, most likely caused by transposon excision and subsequent transposition into the delivered adenoviral vector genome. In total, this study provides a careful evaluation of the safety profile of adenovirus/Sleeping Beauty transposase hybrid-vectors. The obtained information will be useful when designing future preclinical studies utilizing hybrid-vectors in small and large animal models.

  16. Analysis of Synchronization for Coupled Hybrid Systems

    DEFF Research Database (Denmark)

    Li, Zheng; Wisniewski, Rafal

    2006-01-01

    In the control systems with coupled multi-subsystem, the subsystems might be synchronized (i.e. all the subsystems have the same operation states), which results in negative influence to the whole system. For example, in the supermarket refrigeration systems, the synchronized switch of each...... subsystem will cause low efficiency, inferior control performance and a high wear on the compressor. This paper takes the supermarket refrigeration systems as an example to analyze the synchronization and its coupling strengths of coupled hybrid systems, which may provide a base for further research...

  17. Brake Performance Analysis of ABS for Eddy Current and Electrohydraulic Hybrid Brake System

    Directory of Open Access Journals (Sweden)

    Ren He

    2013-01-01

    Full Text Available This paper introduces an eddy current and electro-hydraulic hybrid brake system to solve problems such as wear, thermal failure, and slow response of traditional vehicle brake system. Mathematical model was built to calculate the torque of the eddy current brake system and hydraulic brake system and analyze the braking force distribution between two types of brake systems. A fuzzy controller on personal computer based on LabVIEW and Matlab was designed and a set of hardware in the loop system was constructed to validate and analyze the performance of the hybrid brake system. Through lots of experiments on dry and wet asphalt roads, the hybrid brake system achieves perfect performance on the experimental bench, the hybrid system reduces abrasion and temperature of the brake disk, response speed is enhanced obviously, fuzzy controller keeps high utilization coefficient due to the optimal slip ratio regulation, and the total brake time has a smaller decrease than traditional hydraulic brake system.

  18. Biomolecule/nanomaterial hybrid systems for nanobiotechnology.

    Science.gov (United States)

    Tel-Vered, Ran; Yehezkeli, Omer; Willner, Itamar

    2012-01-01

    The integration of biomolecules with metallic or semiconductor nanoparticles or carbon nanotubes yields new hybrid nanostructures of unique features that combine the properties of the biomolecules and of the nano-elements. These unique features of the hybrid biomolecule/nanoparticle systems provide the basis for the rapid development of the area of nanobiotechnology. Recent advances in the implementation of hybrid materials consisting of biomolecules and metallic nanoparticles or semiconductor quantum dots will be discussed. The following topics will be exemplified: (i) The electrical wiring of redox enzymes with electrodes by means of metallic nanoparticles or carbon nanotubes, and the application of the modified electrodes as amperometric biosensors or for the construction of biofuel cells. (ii) The biocatalytic growth of metallic nanoparticles as a means to construct optical or electrical sensors. (iii) The functionalization of semiconductor quantum dots with biomolecules and the application of the hybrid nanostructures for developing different optical sensors, including intracellular sensor systems. (iv) The use of biomolecule-metallic nanoparticle nanostructures as templates for growing metallic nanowires, and the construction of fuel-driven nano-transporters.

  19. Disease processes as hybrid dynamical systems

    Directory of Open Access Journals (Sweden)

    Pietro Liò

    2012-08-01

    Full Text Available We investigate the use of hybrid techniques in complex processes of infectious diseases. Since predictive disease models in biomedicine require a multiscale approach for understanding the molecule-cell-tissue-organ-body interactions, heterogeneous methodologies are often employed for describing the different biological scales. Hybrid models provide effective means for complex disease modelling where the action and dosage of a drug or a therapy could be meaningfully investigated: the infection dynamics can be classically described in a continuous fashion, while the scheduling of multiple treatment discretely. We define an algebraic language for specifying general disease processes and multiple treatments, from which a semantics in terms of hybrid dynamical system can be derived. Then, the application of control-theoretic tools is proposed in order to compute the optimal scheduling of multiple therapies. The potentialities of our approach are shown in the case study of the SIR epidemic model and we discuss its applicability on osteomyelitis, a bacterial infection affecting the bone remodelling system in a specific and multiscale manner. We report that formal languages are helpful in giving a general homogeneous formulation for the different scales involved in a multiscale disease process; and that the combination of hybrid modelling and control theory provides solid grounds for computational medicine.

  20. Universal blind quantum computation for hybrid system

    Science.gov (United States)

    Huang, He-Liang; Bao, Wan-Su; Li, Tan; Li, Feng-Guang; Fu, Xiang-Qun; Zhang, Shuo; Zhang, Hai-Long; Wang, Xiang

    2017-08-01

    As progress on the development of building quantum computer continues to advance, first-generation practical quantum computers will be available for ordinary users in the cloud style similar to IBM's Quantum Experience nowadays. Clients can remotely access the quantum servers using some simple devices. In such a situation, it is of prime importance to keep the security of the client's information. Blind quantum computation protocols enable a client with limited quantum technology to delegate her quantum computation to a quantum server without leaking any privacy. To date, blind quantum computation has been considered only for an individual quantum system. However, practical universal quantum computer is likely to be a hybrid system. Here, we take the first step to construct a framework of blind quantum computation for the hybrid system, which provides a more feasible way for scalable blind quantum computation.

  1. Hybrid compensation arrangement in dispersed generation systems

    DEFF Research Database (Denmark)

    Chen, Zhe; Blaabjerg, Frede; Pedersen, John Kim

    2005-01-01

    This paper presents a hybrid compensation system consisting of an active filter and distributed passive filters. In the system, each individual passive filter is connected to a distortion source and designed to eliminate main harmonics and supply reactive power for the distortion source, while...... are performed for a power system including the dispersed generation units connected into the system through power electronic converters and diode rectifier loads, which produce the distorted waveforms. The simulation results have demonstrated that good compensation effects can be achieved by using the combined...

  2. Viewing hybrid systems as products of control systems and automata

    Science.gov (United States)

    Grossman, R. L.; Larson, R. G.

    1992-01-01

    The purpose of this note is to show how hybrid systems may be modeled as products of nonlinear control systems and finite state automata. By a hybrid system, we mean a network of consisting of continuous, nonlinear control system connected to discrete, finite state automata. Our point of view is that the automata switches between the control systems, and that this switching is a function of the discrete input symbols or letters that it receives. We show how a nonlinear control system may be viewed as a pair consisting of a bialgebra of operators coding the dynamics, and an algebra of observations coding the state space. We also show that a finite automata has a similar representation. A hybrid system is then modeled by taking suitable products of the bialgebras coding the dynamics and the observation algebras coding the state spaces.

  3. A hybrid domain analysis for systems with delays in state and control

    Directory of Open Access Journals (Sweden)

    Razzaghi M.

    2001-01-01

    Full Text Available The solution of time-delay systems is obtained by using a hybrid function. The properties of the hybrid functions consisting of block-pulse functions and Chebyshev polynomials are presented. The method is based upon expanding various time functions in the system as their truncated hybrid functions. The operational matrix of delay is introduced. The operational matrices of integration and delay are utilized to reduce the solution of time-delay systems to the solution of algebraic equations. Illustrative examples are included to demonstrate the validity and applicability of the technique.

  4. Future hybrid systems: solar and hydrogen

    Energy Technology Data Exchange (ETDEWEB)

    Kazmerski, L.L. [National Renewable Energy Lab., Golden, CO (United States); Broussard, K. [National Renewable Energy Lab., Golden, CO (United States)]|[NREL MURA Intern from Southern Univ., Baton Rouge, LA (United States)

    2003-07-01

    Future solar and hydrogen hybrid systems are discussed in terms of the evolving hydrogen economy. The focus is on distributed hydrogen, relying on the same distributed-energy strengths of solar-photovoltaic electricity in the built environment. Solar-hydrogen residences, as well as solar parks, are presented. Landarea issues are evaluated, and the economics and potential of these approaches are examined in terms of roadmap predictions on PV and hydrogen pathways. (orig.)

  5. Spectral Selectivity Applied To Hybrid Concentration Systems

    Science.gov (United States)

    Hamdy, M. A.; Luttmann, F.; Osborn, D. E.; Jacobson, M. R.; MacLeod, H. A.

    1985-12-01

    The efficiency of conversion of concentrated solar energy can be improved by separating the solar spectrum into portions matched to specific photoquantum processes and the balance used for photothermal conversion. The basic approaches of spectrally selective beam splitters are presented. A detailed simulation analysis using TRNSYS is developed for a spectrally selective hybrid photovoltaic/photothermal concentrating system. The analysis shows definite benefits to a spectrally selective approach.

  6. High slot utilization systems for electric machines

    Science.gov (United States)

    Hsu, John S

    2009-06-23

    Two new High Slot Utilization (HSU) Systems for electric machines enable the use of form wound coils that have the highest fill factor and the best use of magnetic materials. The epoxy/resin/curing treatment ensures the mechanical strength of the assembly of teeth, core, and coils. In addition, the first HSU system allows the coil layers to be moved inside the slots for the assembly purpose. The second system uses the slided-in teeth instead of the plugged-in teeth. The power density of the electric machine that uses either system can reach its highest limit.

  7. Hybrid2: The hybrid system simulation model, Version 1.0, user manual

    Energy Technology Data Exchange (ETDEWEB)

    Baring-Gould, E.I.

    1996-06-01

    In light of the large scale desire for energy in remote communities, especially in the developing world, the need for a detailed long term performance prediction model for hybrid power systems was seen. To meet these ends, engineers from the National Renewable Energy Laboratory (NREL) and the University of Massachusetts (UMass) have spent the last three years developing the Hybrid2 software. The Hybrid2 code provides a means to conduct long term, detailed simulations of the performance of a large array of hybrid power systems. This work acts as an introduction and users manual to the Hybrid2 software. The manual describes the Hybrid2 code, what is included with the software and instructs the user on the structure of the code. The manual also describes some of the major features of the Hybrid2 code as well as how to create projects and run hybrid system simulations. The Hybrid2 code test program is also discussed. Although every attempt has been made to make the Hybrid2 code easy to understand and use, this manual will allow many organizations to consider the long term advantages of using hybrid power systems instead of conventional petroleum based systems for remote power generation.

  8. Time-Resolved Nucleic Acid Hybridization Beacons Utilizing Unimolecular and Toehold-Mediated Strand Displacement Designs.

    Science.gov (United States)

    Massey, Melissa; Ancona, Mario G; Medintz, Igor L; Algar, W Russ

    2015-12-01

    Nucleic acid hybridization probes are sought after for numerous assay and imaging applications. These probes are often limited by the properties of fluorescent dyes, prompting the development of new probes where dyes are paired with novel or nontraditional luminescent materials. Luminescent terbium complexes are an example of such a material, and these complexes offer several unique spectroscopic advantages. Here, we demonstrate two nonstem-loop designs for light-up nucleic acid hybridization beacons that utilize time-resolved Förster resonance energy transfer (TR-FRET) between a luminescent Lumi4-Tb cryptate (Tb) donor and a fluorescent reporter dye, where time-resolved emission from the dye provides an analytical signal. Both designs are based on probe oligonucleotides that are labeled at their opposite termini with Tb and a fluorescent reporter dye. In one design, a probe is partially blocked with a quencher dye-labeled oligonucleotide, and target hybridization is signaled through toehold-mediated strand displacement and loss of a competitive FRET pathway. In the other design, the intrinsic folding properties of an unblocked probe are utilized in combination with a temporal mechanism for signaling target hybridization. This temporal mechanism is based on a recently elucidated "sweet spot" for TR-FRET measurements and exploits distance control over FRET efficiencies to shift the Tb lifetime within or outside the time-gated detection window for measurements. Both the blocked and unblocked beacons offer nanomolar (femtomole) detection limits, response times on the order of minutes, multiplexing through the use of different reporter dyes, and detection in complex matrices such as serum and blood. The blocked beacons offer better mismatch selectivity, whereas the unblocked beacons are simpler in design. The temporal mechanism of signaling utilized with the unblocked beacons also plays a significant role with the blocked beacons and represents a new and effective

  9. Quantum materials. Lateral semiconductor nanostructures, hybrid systems and nanocrystals

    Energy Technology Data Exchange (ETDEWEB)

    Heitmann, Detlef (ed.) [Hamburg Univ. (Germany). Inst. fuer Angewandte Physik

    2010-07-01

    Semiconductor nanostructures are ideal systems to tailor the physical properties via quantum effects, utilizing special growth techniques, self-assembling, wet chemical processes or lithographic tools in combination with tuneable external electric and magnetic fields. Such systems are called ''Quantum Materials''.The electronic, photonic, and phononic properties of these systems are governed by size quantization and discrete energy levels. The charging is controlled by the Coulomb blockade. The spin can be manipulated by the geometrical structure, external gates and by integrating hybrid ferromagnetic emitters.This book reviews sophisticated preparation methods for quantum materials based on III-V and II-VI semiconductors and a wide variety of experimental techniques for the investigation of these interesting systems. It highlights selected experiments and theoretical concepts and gives such a state-of-the-art overview about the wide field of physics and chemistry that can be studied in these systems. (orig.)

  10. Advanced propulsion system for hybrid vehicles

    Science.gov (United States)

    Norrup, L. V.; Lintz, A. T.

    1980-01-01

    A number of hybrid propulsion systems were evaluated for application in several different vehicle sizes. A conceptual design was prepared for the most promising configuration. Various system configurations were parametrically evaluated and compared, design tradeoffs performed, and a conceptual design produced. Fifteen vehicle/propulsion systems concepts were parametrically evaluated to select two systems and one vehicle for detailed design tradeoff studies. A single hybrid propulsion system concept and vehicle (five passenger family sedan)were selected for optimization based on the results of the tradeoff studies. The final propulsion system consists of a 65 kW spark-ignition heat engine, a mechanical continuously variable traction transmission, a 20 kW permanent magnet axial-gap traction motor, a variable frequency inverter, a 386 kg lead-acid improved state-of-the-art battery, and a transaxle. The system was configured with a parallel power path between the heat engine and battery. It has two automatic operational modes: electric mode and heat engine mode. Power is always shared between the heat engine and battery during acceleration periods. In both modes, regenerative braking energy is absorbed by the battery.

  11. A general purpose characterization system for rooftop hybrid microconcentrators

    Science.gov (United States)

    Middleton, Robert; Jones, Christopher; Thomsen, Elizabeth; Diez, Vicente Munoz; Harvey, J.; Everett, Vernie; Blakers, Andrew

    2014-09-01

    A versatile characterization system for hybrid thermal and photovoltaic solar receivers is presented and demonstrated. The characterization of the thermal loss and effective area of a novel hybrid receiver is presented.

  12. Cultural Change, the Hybrid Administrative System and Public ...

    African Journals Online (AJOL)

    2013-01-17

    Jan 17, 2013 ... crackdown on corruption, this article explores the view that it is the hybrid .... decentralization and public participation in governance creates new demands. ..... The Hybrid Administrative System and Corporate Culture.

  13. Overview of waste heat utilization systems

    Science.gov (United States)

    Bailey, M. M.

    1984-01-01

    The heavy truck diesel engine rejects a significant fraction of its fuel energy in the form of waste heat. Historically, the Department of Energy has supported technology efforts for utilization of the diesel exhaust heat. Specifically, the Turbocompound and the Organic Rankine Cycle System (ORCS) have demonstrated that meaningful improvements in highway fuel economy can be realized through waste heat utilization. For heat recovery from the high temperature exhaust of future adiabatic diesel engines, the DOE/NASA are investigating a variety of alternatives based on the Rankine, Brayton, and Stirling power cycles. Initial screening results indicate that systems of this type offer a fuel savings advantage over the turbocompound system. Capital and maintenance cost projections, however, indicate that the alternative power cycles are not competitive on an economic payback basis. Plans call for continued analysis in an attempt to identify a cost effective configuration with adequate fuel savings potential.

  14. Hybrid modeling and prediction of dynamical systems

    Science.gov (United States)

    Lloyd, Alun L.; Flores, Kevin B.

    2017-01-01

    Scientific analysis often relies on the ability to make accurate predictions of a system’s dynamics. Mechanistic models, parameterized by a number of unknown parameters, are often used for this purpose. Accurate estimation of the model state and parameters prior to prediction is necessary, but may be complicated by issues such as noisy data and uncertainty in parameters and initial conditions. At the other end of the spectrum exist nonparametric methods, which rely solely on data to build their predictions. While these nonparametric methods do not require a model of the system, their performance is strongly influenced by the amount and noisiness of the data. In this article, we consider a hybrid approach to modeling and prediction which merges recent advancements in nonparametric analysis with standard parametric methods. The general idea is to replace a subset of a mechanistic model’s equations with their corresponding nonparametric representations, resulting in a hybrid modeling and prediction scheme. Overall, we find that this hybrid approach allows for more robust parameter estimation and improved short-term prediction in situations where there is a large uncertainty in model parameters. We demonstrate these advantages in the classical Lorenz-63 chaotic system and in networks of Hindmarsh-Rose neurons before application to experimentally collected structured population data. PMID:28692642

  15. Differential dynamic logics - automated theorem proving for hybrid systems

    OpenAIRE

    Platzer, André

    2008-01-01

    Hybrid systems are models for complex physical systems and are defined as dynamical systems with interacting discrete transitions and continuous evolutions along differential equations. With the goal of developing a theoretical and practical foundation for deductive verification of hybrid systems, we introduce differential dynamic logic as a new logic with which correctness properties of hybrid systems with parameterized system dynamics can be specified and verified naturally. As a verificati...

  16. Advanced hybrid vehicle propulsion system study

    Science.gov (United States)

    Schwarz, R.

    1982-01-01

    Results are presented of a study of an advanced heat engine/electric automotive hybrid propulsion system. The system uses a rotary stratified charge engine and ac motor/controller in a parallel hybrid configuration. The three tasks of the study were (1) parametric studies involving five different vehicle types, (2) design trade-off studies to determine the influence of various vehicle and propulsion system paramaters on system performance fuel economy and cost, and (3) a conceptual design establishing feasibility at the selected approach. Energy consumption for the selected system was .034 1/km (61.3 mpg) for the heat engine and .221 kWh/km (.356 kWh/mi) for the electric power system over a modified J227 a schedule D driving cycle. Life cycle costs were 7.13 cents/km (11.5 cents/mi) at $2/gal gasoline and 7 cents/kWh electricity for 160,000 km (100,000 mi) life.

  17. Hybrid electric vehicle power management system

    Energy Technology Data Exchange (ETDEWEB)

    Bissontz, Jay E.

    2015-08-25

    Level voltage levels/states of charge are maintained among a plurality of high voltage DC electrical storage devices/traction battery packs that are arrayed in series to support operation of a hybrid electric vehicle drive train. Each high voltage DC electrical storage device supports a high voltage power bus, to which at least one controllable load is connected, and at least a first lower voltage level electrical distribution system. The rate of power transfer from the high voltage DC electrical storage devices to the at least first lower voltage electrical distribution system is controlled by DC-DC converters.

  18. Hybrid systems, optimal control and hybrid vehicles theory, methods and applications

    CERN Document Server

    Böhme, Thomas J

    2017-01-01

    This book assembles new methods showing the automotive engineer for the first time how hybrid vehicle configurations can be modeled as systems with discrete and continuous controls. These hybrid systems describe naturally and compactly the networks of embedded systems which use elements such as integrators, hysteresis, state-machines and logical rules to describe the evolution of continuous and discrete dynamics and arise inevitably when modeling hybrid electric vehicles. They can throw light on systems which may otherwise be too complex or recondite. Hybrid Systems, Optimal Control and Hybrid Vehicles shows the reader how to formulate and solve control problems which satisfy multiple objectives which may be arbitrary and complex with contradictory influences on fuel consumption, emissions and drivability. The text introduces industrial engineers, postgraduates and researchers to the theory of hybrid optimal control problems. A series of novel algorithmic developments provides tools for solving engineering pr...

  19. Research of IDSS Architecture Based on Hybrid Systems

    Institute of Scientific and Technical Information of China (English)

    MA Biao; YANG Bao-an

    2005-01-01

    This paper discusses the necessity of building IDSS on hybrid systems, and adopts XML technology to manage isomeric knowledge in hybrid systems. The paper proposes a new architecture of hybrid systems based IDSS whose core system is isomeric knowledge system. The architecture is composed of knowledge component, problems processing system, data component and intelligent user interface. This new architecture aims to enhance the capability of integrating hybrid systems, to improve the supporting effectiveness of decision-making and the intelligent level of IDSS, and tries a new way to elevate the system's ability of handling and learning knowledge.

  20. Multi-agent system-based event-triggered hybrid control scheme for energy internet

    DEFF Research Database (Denmark)

    Dou, Chunxia; Yue, Dong; Han, Qing Long

    2017-01-01

    This paper is concerned with an event-triggered hybrid control for the energy Internet based on a multi-agent system approach with which renewable energy resources can be fully utilized to meet load demand with high security and well dynamical quality. In the design of control, a multi-agent system...... framework is first constructed. Then, to describe fully the hybrid behaviors of all distributed energy resources and logical relationships between them, a differential hybrid Petri-net model is established, which is an original work. The most important contributions based on this model propose four types...

  1. Piezoelectric Multilayer-Stacked Hybrid Actuation/Transduction System

    Science.gov (United States)

    Xu, Tian-Bing (Inventor); Jiang, Xiaoning (Inventor); Su, Ji (Inventor)

    2014-01-01

    A novel full piezoelectric multilayer stacked hybrid actuation/transduction system. The system demonstrates significantly-enhanced electromechanical performance by utilizing the cooperative contributions of the electromechanical responses of multilayer stacked negative and positive strain components. Both experimental and theoretical studies indicate that for this system, the displacement is over three times that of a same-sized conventional flextensional actuator/transducer. The system consists of at least 2 layers which include electromechanically active components. The layers are arranged such that when electric power is applied, one layer contracts in a transverse direction while the second layer expands in a transverse direction which is perpendicular to the transverse direction of the first layer. An alternate embodiment includes a third layer. In this embodiment, the outer two layers contract in parallel transverse directions while the middle layer expands in a transverse direction which is perpendicular to the transverse direction of the outer layers.

  2. A New Hybrid Bathroom System Based on Energy Saving Concept

    Directory of Open Access Journals (Sweden)

    Cui Bo-wen

    2016-01-01

    Full Text Available Based on the characteristics of hot water supply in bathroom, this article proposes a new hybrid energy hot water supply system. The programmable logic controller(PLC as the master controller was adopted in this system, which could automatically detect and storage main thermal physical of the system, such as temperature, water level, solar radiation intensity, power consumption and so on. The active thermal utilization technology of solar energy, air-source heat pump technology, solar energy intensive natural ventilation technology and low temperature hot water floor radiant heating technology were organically integrated in this system, which has the advantages of energy conservation and environment protection, high automation, safe and reliable operation, etc. At the same time, it can make good use of electric power cost between on-peak and off-peak, and promote the optimal allocation of power resources and reduce the cost, which can achieve the goal of intelligent control and energy saving.

  3. Dissipative dynamics of superconducting hybrid qubit systems

    Energy Technology Data Exchange (ETDEWEB)

    Montes, Enrique; Calero, Jesus M; Reina, John H, E-mail: enriquem@univalle.edu.c, E-mail: j.reina-estupinan@physics.ox.ac.u [Departamento de Fisica, Universidad del Valle, A.A. 25360, Cali (Colombia)

    2009-05-01

    We perform a theoretical study of composed superconducting qubit systems for the case of a coupled qubit configuration based on a hybrid qubit circuit made of both charge and phase qubits, which are coupled via a sigma{sub x} x sigma{sub z} interaction. We compute the system's eigen-energies in terms of the qubit transition frequencies and the strength of the inter-qubit coupling, and describe the sensitivity of the energy crossing/anti-crossing features to such coupling. We compute the hybrid system's dissipative dynamics for the cases of i) collective and ii) independent decoherence, whereby the system interacts with one common and two different baths of harmonic oscillators, respectively. The calculations have been performed within the Bloch-Redfield formalism and we report the solutions for the populations and the coherences of the system's reduced density matrix. The dephasing and relaxation rates are explicitly calculated as a function of the heat bath temperature.

  4. Modelling supervisory controller for hybrid power systems

    Energy Technology Data Exchange (ETDEWEB)

    Pereira, A.; Bindner, H.; Lundsager, P. [Risoe National Lab., Roskilde (Denmark); Jannerup, O. [Technical Univ. of Denmark, Dept. of Automation, Lyngby (Denmark)

    1999-03-01

    Supervisory controllers are important to achieve optimal operation of hybrid power systems. The performance and economics of such systems depend mainly on the control strategy for switching on/off components. The modular concept described in this paper is an attempt to design standard supervisory controllers that could be used in different applications, such as village power and telecommunication applications. This paper presents some basic aspects of modelling and design of modular supervisory controllers using the object-oriented modelling technique. The functional abstraction hierarchy technique is used to formulate the control requirements and identify the functions of the control system. The modular algorithm is generic and flexible enough to be used with any system configuration and several goals (different applications). The modularity includes accepting modification of system configuration and goals during operation with minor or no changes in the supervisory controller. (au)

  5. Hybrid holographic non-destructive test system

    Science.gov (United States)

    Kurtz, R. L. (Inventor)

    1978-01-01

    An automatic hybrid holographic non-destructive testing (HNDT) method and system capable of detecting flaws or debonds contained within certain materials are described. This system incorporates the techniques of optical holography, acoustical/optical holography and holographic correlation in determining the structural integrity of a test object. An automatic processing system including a detector and automatic data processor is used in conjunction with the three holographic techniques for correlating and interpreting the information supplied by the non-destructive systems. The automatic system also includes a sensor which directly translates an optical data format produced by the holographic techniques into electrical signals and then transmits this information to a digital computer for indicating the structural properties of the test object. The computer interprets the data gathered and determines whether further testing is necessary as well as the format of this new testing procedure.

  6. Utilizing wind and solar energy as power sources for a hybrid building ventilation device

    Energy Technology Data Exchange (ETDEWEB)

    Shun, Simon; Ahmed, Noor A. [School of Mechanical and Manufacturing Engineering, University of New South Wales, Sydney (Australia)

    2008-06-15

    Wind and solar energy are currently used to power many building ventilation devices. Such devices rely exclusively on either solar or wind energy, which limits their usefulness. A low-cost hybrid ventilation device that utilizes both wind and solar energy as power sources was designed to overcome some of the shortcomings of these devices. Wind tunnel testing conducted at the aerodynamics laboratory of the University of New South Wales revealed that the hybrid device had improved operational and performance benefits compared with conventional commercial roof top ventilators, particularly at zero to low wind speeds. This represents a significant step forward and will have an immediate impact in promoting the use of clean energy for the purposes of building ventilation. (author)

  7. Hybrid quantum systems of atoms and ions

    CERN Document Server

    Zipkes, Christoph; Palzer, Stefan; Sias, Carlo; Köhl, Michael

    2010-01-01

    In recent years, ultracold atoms have emerged as an exceptionally controllable experimental system to investigate fundamental physics, ranging from quantum information science to simulations of condensed matter models. Here we go one step further and explore how cold atoms can be combined with other quantum systems to create new quantum hybrids with tailored properties. Coupling atomic quantum many-body states to an independently controllable single-particle gives access to a wealth of novel physics and to completely new detection and manipulation techniques. We report on recent experiments in which we have for the first time deterministically placed a single ion into an atomic Bose Einstein condensate. A trapped ion, which currently constitutes the most pristine single particle quantum system, can be observed and manipulated at the single particle level. In this single-particle/many-body composite quantum system we show sympathetic cooling of the ion and observe chemical reactions of single particles in situ...

  8. Hybrid quantum systems of atoms and ions

    Energy Technology Data Exchange (ETDEWEB)

    Zipkes, Christoph; Ratschbacher, Lothar; Palzer, Stefan; Sias, Carlo; Koehl, Michael [Cavendish Laboratory, University of Cambridge, JJ Thomson Avenue, Cambridge CB3 0HE (United Kingdom)

    2011-01-10

    In recent years, ultracold atoms have emerged as an exceptionally controllable experimental system to investigate fundamental physics, ranging from quantum information science to simulations of condensed matter models. Here we go one step further and explore how cold atoms can be combined with other quantum systems to create new quantum hybrids with tailored properties. Coupling atomic quantum many-body states to an independently controllable single-particle gives access to a wealth of novel physics and to completely new detection and manipulation techniques. We report on recent experiments in which we have for the first time deterministically placed a single ion into an atomic Bose Einstein condensate. A trapped ion, which currently constitutes the most pristine single particle quantum system, can be observed and manipulated at the single particle level. In this single-particle/many-body composite quantum system we show sympathetic cooling of the ion and observe chemical reactions of single particles in situ.

  9. Hybrid high power femtosecond laser system

    Science.gov (United States)

    Trunov, V. I.; Petrov, V. V.; Pestryakov, E. V.; Kirpichnikov, A. V.

    2006-01-01

    Design of a high-power femtosecond laser system based on hybrid chirped pulse amplification (CPA) technique developed by us is presented. The goal of the hybrid principle is the use of the parametric and laser amplification methods in chirped pulse amplifiers. It makes it possible to amplify the low-cycle pulses with a duration of <= fs to terawatt power with a high contrast and high conversion efficiency of the pump radiation. In a created system the Ti:Sapphire laser with 10 fs pulses at 810 nm and output energy about 1-3 nJ will be used like seed source. The oscillator pulses were stretched to duration of about 500 ps by an all-reflective grating stretcher. Then the stretched pulses are injected into a nondegenerate noncollinear optical parametric amplifier (NOPA) on the two BBO crystals. After amplification in NOPA the residual pump was used in a bow-tie four pass amplifier with hybrid active medium (based on Al II0 3:Ti 3+ and BeAl IIO 4:Ti 3+ crystals). The final stage of the amplification system consists of two channels, namely NIR (820 nm) and short-VIS (410 nm). Numerical simulation has shown that the terawatt level of output power can be achieved also in a short-VIS channel at the pumping of the double-crystal BBO NOPA by the radiation of the fourth harmonic of the Nd:YAG laser at 266 nm. Experimentally parametric amplification in BBO crystals of 30-50 fs pulses were investigated and optimized using SPIDER technique and single-shot autocomelator for the realization of shortest duration 40 fs.

  10. Spontaneously Igniting Hybrid Fuel-Oxidiser Systems

    Directory of Open Access Journals (Sweden)

    S. R. Jain

    1995-01-01

    Full Text Available After briefly outlining the recent developments in hybrid rockets, the work carried out by the author on self-igniting (hypergolic solid fuel-liquid oxidiser systems has been reviewed. A major aspect relates to the solid derivatives of hydrazines, which have been conceived as fuels for hybrid rockets. Many of these N-N bonded compounds ignite readily, with very short ignition delays, on coming into contact with liquid oxidisers, like HNO/sub 3/ and N/sub 2/ O/sub 4/. The ignition characteristics have been examined as a function of the nature of the functional group in the fuel molecule, in an attempt to establish a basis for the hypergolic ignition in terms of chemical reactivity of the fuel-oxidiser combination. Important chemical reactions occurring in the pre-ignition stage have been identified by examining the quenched reaction products. Hybrid systems exhibiting synergistic hypergolicity in the presence of metal powders have investigated. An estimation of the rocket performance parameters, experimental determination of the heats of combustion in HNO/sub 3/, thermal decomposition characteristics, temperature profile by thin film thermometry and product identification by the rapid scan FT-IR, are among the other relevant studies made on these systems. A significant recent development has been the synthesis of new N-N bonded viscous binders, capable of rataining the hypergolicity of the fuel powders embedded therein as well as providing the required mechanical strength to the grain. Several of these resins have been characterised. Metallised fuel composites of these resins having high loading of magnesium are found to have short ignition delays and high performance parameters.

  11. Controlling Chaos of Hybrid Systems by Variable Threshold Values

    Science.gov (United States)

    Ito, Daisuke; Ueta, Tetsushi; Kousaka, Takuji; Imura, Jun'ichi; Aihara, Kazuyuki

    We try to stabilize unstable periodic orbits embedded in a given chaotic hybrid dynamical system by a perturbation of a threshold value. In conventional chaos control methods, a control input is designed by state-feedback, which is proportional to the difference between the target orbit and the current state, and it is applied to a specific system parameter or the state as a small perturbation. During a transition state, the control system consumes a certain control energy given by the integration of such perturbations. In our method, we change the threshold value dynamically to control the chaotic orbit. Unlike the OGY method and the delayed feedback control, no actual control input is added into the system. The state-feedback is utilized only to determine the dynamic threshold value, thus the orbit starting from the current threshold value reaches the next controlled threshold value without any control energy. We obtain the variation of the threshold value from the composite Poincaré map, and the controller is designed by the linear feedback theory with this variation. We demonstrate this method in simple hybrid chaotic systems and show its control performances by evaluating basins of attraction.

  12. Optimization of Hybrid PV/Wind Energy System Using Genetic Algorithm (GA

    Directory of Open Access Journals (Sweden)

    Satish Kumar Ramoji

    2014-01-01

    Full Text Available In this paper, a new approach of optimum design for a Hybrid PV/Wind energy system is presented in order to assist the designers to take into consideration both the economic and ecological aspects. When the stand alone energy system having photovoltaic panels only or wind turbine only are compared with the hybrid PV/wind energy systems, the hybrid systems are more economical and reliable according to climate changes. This paper presents an optimization technique to design the hybrid PV/wind system. The hybrid system consists of photovoltaic panels, wind turbines and storage batteries. Genetic Algorithm (GA optimization technique is utilized to minimize the formulated objective function, i.e. total cost which includes initial costs, yearly replacement cost, yearly operating costs and maintenance costs and salvage value of the proposed hybrid system. A computer program is designed, using MATLAB code to formulate the optimization problem by computing the coefficients of the objective function. The method mentioned in this article is proved to be effective using an example of hybrid energy system. Finally, the optimal solution is achieved by Genetic Algorithm (GA optimization method.

  13. Superconducting qubit-resonator-atom hybrid system

    Science.gov (United States)

    Yu, Deshui; Kwek, Leong Chuan; Amico, Luigi; Dumke, Rainer

    2017-09-01

    We propose a hybrid quantum system where an LC resonator inductively interacts with a flux qubit and is capacitively coupled to a Rydberg atom. Varying the external magnetic flux bias controls the flux qubit flipping and the flux qubit-resonator interface. The atomic spectrum is tuned via an electrostatic field, manipulating the qubit-state transition of atom and the atom-resonator coupling. Different types of entanglement of superconducting, photonic and atomic qubits can be prepared via simply tuning the flux bias and electrostatic field, leading to the implementation of three-qubit Toffoli logic gate.

  14. Adaptable formations utilizing heterogeneous unmanned systems

    Science.gov (United States)

    Barnes, Laura E.; Garcia, Richard; Fields, MaryAnne; Valavanis, Kimon

    2009-05-01

    This paper addresses the problem of controlling and coordinating heterogeneous unmanned systems required to move as a group while maintaining formation. We propose a strategy to coordinate groups of unmanned ground vehicles (UGVs) with one or more unmanned aerial vehicles (UAVs). UAVs can be utilized in one of two ways: (1) as alpha robots to guide the UGVs; and (2) as beta robots to surround the UGVs and adapt accordingly. In the first approach, the UAV guides a swarm of UGVs controlling their overall formation. In the second approach, the UGVs guide the UAVs controlling their formation. The unmanned systems are brought into a formation utilizing artificial potential fields generated from normal and sigmoid functions. These functions control the overall swarm geometry. Nonlinear limiting functions are defined to provide tighter swarm control by modifying and adjusting a set of control variables forcing the swarm to behave according to set constraints. Formations derived are subsets of elliptical curves but can be generalized to any curvilinear shape. Both approaches are demonstrated in simulation and experimentally. To demonstrate the second approach in simulation, a swarm of forty UAVs is utilized in a convoy protection mission. As a convoy of UGVs travels, UAVs dynamically and intelligently adapt their formation in order to protect the convoy of vehicles as it moves. Experimental results are presented to demonstrate the approach using a fully autonomous group of three UGVs and a single UAV helicopter for coordination.

  15. THE USE OF GENETIC ALGORITHM IN DIMENSIONING HYBRID AUTONOMOUS SYSTEMS

    Directory of Open Access Journals (Sweden)

    RUS T.

    2016-03-01

    Full Text Available In this paper is presented the working principle of genetic algorithms used to dimension autonomous hybrid systems. It is presented a study case in which is dimensioned and optimized an autonomous hybrid system for a residential house located in Cluj-Napoca. After the autonomous hybrid system optimization is performed, it is achieved a reduction of the total cost of system investment, a reduction of energy produced in excess and a reduction of CO2 emissions.

  16. Hybrid Dislocated Control and General Hybrid Projective Dislocated Synchronization for Memristor Chaotic Oscillator System

    Directory of Open Access Journals (Sweden)

    Junwei Sun

    2014-01-01

    Full Text Available Some important dynamical properties of the memristor chaotic oscillator system have been studied in the paper. A novel hybrid dislocated control method and a general hybrid projective dislocated synchronization scheme have been realized for memristor chaotic oscillator system. The paper firstly presents hybrid dislocated control method for stabilizing chaos to the unstable equilibrium point. Based on the Lyapunov stability theorem, general hybrid projective dislocated synchronization has been studied for the drive memristor chaotic oscillator system and the same response memristor chaotic oscillator system. For the different dimensions, the memristor chaotic oscillator system and the other chaotic system have realized general hybrid projective dislocated synchronization. Numerical simulations are given to show the effectiveness of these methods.

  17. Renewable Energy Systems: Development and Perspectives of a Hybrid Solar-Wind System

    Directory of Open Access Journals (Sweden)

    C. Shashidhar

    2012-02-01

    Full Text Available Considering the intermittent natural energy resources and the seasonal un-balance, a phtovoltaic-wind hybrid electrical power supply system was developed to accommodate remote locations where a conventional grid connection is inconvenient or expensive. However, the hybrid system can also be applied with grid connection and owners are allowed to sell excessive power back to the electric utility. The proposed set-up consists of a photo-voltaic solar-cell array, a mast mounted wind generator, lead-acid storage batteries, an inverter unit to convert DC to AC, electrical lighting loads, electrical heating loads, several fuse and junction boxes and associated wiring, and test instruments for measuring voltages, currents, power factors, and harmonic contamination data throughout the system. The proposed hybrid solar-wind power generating system can be extensively used to illustrate electrical concepts in hands-on laboratories and also for demonstrations in the Industrial Technology curriculum. This paper describes an analysis of local PV-wind hybrid systems for supplying electricity to a private house, farmhouse or small company with electrical power depending on the site needs. The major system components, work principle and specific working condition are presented.

  18. Nuclear Hybrid Energy Systems: Challenges and Opportunities

    Energy Technology Data Exchange (ETDEWEB)

    P. Sabharwall; S.B. Sitton; S.J. Yoon; C. Stoots

    2014-07-01

    With growing demand of energy and costs of the fossil fuels, coupled with the environmental concerns have resulted in an increased interest in alternative energy sources. Nuclear hybrid energy systems (NHES) are being considered which incorporates renewable energy sources such as solar and wind energy combined with nuclear reactor and energy storage to meet the peak hours demand imposed on the grid, along with providing process heat for other potential industrial applications. This concept could potentially satisfy various energy demands and improve reliability, robustness and resilience for the entire system as a whole, along with economic and net efficiency gains. This paper provides a brief understanding of potential NHES system and architecture along with the challenges

  19. Utility-Interconnected Photovoltaic Systems: Evaluating the Rationale for the Utility-Accessible External Disconnect Switch

    Energy Technology Data Exchange (ETDEWEB)

    Coddington, M.; Margolis, R.M.; Aabakken, J.

    2008-01-01

    The utility-accessible alternating current (AC) external disconnect switch (EDS) for distributed generators, including photovoltaic (PV) systems, is a hardware feature that allows a utility?s employees to manually disconnect a customer-owned generator from the electricity grid. This paper examines the utility-accessible EDS debate in the context of utility-interactive PV systems for residential and small commercial installations. It also evaluates the rationale for EDS requirements.

  20. PEFC stacks as power sources for hybrid propulsion systems

    Energy Technology Data Exchange (ETDEWEB)

    Corbo, P.; Migliardini, F.; Veneri, O. [Istituto Motori of Italian National Research Council, Via Marconi 8, 80125 Napoli (Italy)

    2009-05-15

    In this paper the performance of two polymeric electrolyte fuel cell systems (FCS) for hybrid power trains are presented and discussed. In particular, an experimental analysis was effected on 2.4 and 20 kW stacks with the aim to investigate the energy management issues of the two FCSs for utilization as power sources in electric power trains for scooter and minibus, respectively. The stack characterizations permitted the effect of the main operative variables (temperature, pressure and stoichiometric ratio) on mean power density of cells to be evaluated. The FCS efficiency was evaluated and compared for the two traction systems, individuating the optimal operative conditions for automotive application and specifying the energy losses of the auxiliary components. The efficiency of both fuel cell systems resulted higher than 40% in a wide range of loads (100-600 mA/cm{sup 2}), with maximum values close to 50%. The experimental characterization of the two power trains was carried out on dynamic test benches, able to simulate the behaviour of the two vehicles on the European R40 driving cycle. The characterization of the two propulsion systems on R40 driving cycle evidenced that the overall efficiency was not affected significantly by the hybrid configuration adopted, as the efficiency values ranged from 27 to 29% in the different procedures analyzed. (author)

  1. Genomic analysis by oligonucleotide array Comparative Genomic Hybridization utilizing formalin-fixed, paraffin-embedded tissues.

    Science.gov (United States)

    Savage, Stephanie J; Hostetter, Galen

    2011-01-01

    Formalin fixation has been used to preserve tissues for more than a hundred years, and there are currently more than 300 million archival samples in the United States alone. The application of genomic protocols such as high-density oligonucleotide array Comparative Genomic Hybridization (aCGH) to formalin-fixed, paraffin-embedded (FFPE) tissues, therefore, opens an untapped resource of available tissues for research and facilitates utilization of existing clinical data in a research sample set. However, formalin fixation results in cross-linking of proteins and DNA, typically leading to such a significant degradation of DNA template that little is available for use in molecular applications. Here, we describe a protocol to circumvent formalin fixation artifact by utilizing enzymatic reactions to obtain quality DNA from a wide range of FFPE tissues for successful genome-wide discovery of gene dosage alterations in archival clinical samples.

  2. Exergy and economic comparison between kW-scale hybrid and stand-alone solid oxide fuel cell systems

    Science.gov (United States)

    Whiston, Michael M.; Collinge, William O.; Bilec, Melissa M.; Schaefer, Laura A.

    2017-06-01

    Although hybrid solid oxide fuel cell (SOFC) microturbine systems generate power more efficiently than stand-alone SOFC systems, hybrid systems remain in the demonstration phase. This study compares a hybrid system's exergetic and economic performance with that of a stand-alone system. Both systems meet a university building's kW-scale power demand. The hybrid system operates at 66% exergetic efficiency, and the stand-alone system operates at 59% exergetic efficiency. Increasing the fuel cell's operating voltage increases the systems' exergetic efficiencies, and varying the fuel cell's temperature, pressure, and fuel utilization influences the systems' exergetic performances, though to a lesser extent. This study calculates the systems' life cycle costs. We find that the systems' life cycle costs depend significantly on the systems' operation. During baseline operation, the hybrid system costs less than the stand-alone system. After optimizing the systems during cogeneration operation, the hybrid system costs slightly more than the stand-alone system. Overall, our findings support hybrid systems' continued research and development; it is recommended that future work simulate hybrid and stand-alone systems under a range of thermal-to-electric ratios to reflect different building types and operation.

  3. Hybrid Multi-objective Forecasting of Solar Photovoltaic Output Using Kalman Filter based Interval Type-2 Fuzzy Logic System

    DEFF Research Database (Denmark)

    Hassan, Saima; Ahmadieh Khanesar, Mojtaba; Hajizadeh, Amin

    2017-01-01

    Learning of fuzzy parameters for system modeling using evolutionary algorithms is an interesting topic. In this paper, two optimal design and tuning of Interval type-2 fuzzy logic system are proposed using hybrid learning algorithms. The consequent parameters of the interval type-2 fuzzy logic....../D) in the second hybrid algorithm. Root mean square error and maximum absolute error as the two accuracy objective are utilized to find the Pareto-optimal solution with the MOPSO and MOEA/D respectively. The proposed hybrid multi-objective designs of the interval type-2 fuzzy logic system are utilized...

  4. Intelligent Control Scheme of Engineering Machinery of Cluster Hybrid System

    Institute of Scientific and Technical Information of China (English)

    GAO Qiang; WANG Hongli

    2005-01-01

    In a hybrid system, the subsystems with discrete dynamics play a central role in a hybrid system. In the course of engineering machinery of cluster construction, the discrete control law is hard to obtain because the construction environment is complex and there exist many affecting factors. In this paper, hierarchically intelligent control, expert control and fuzzy control are introduced into the discrete subsystems of engineering machinery of cluster hybrid system, so as to rebuild the hybrid system and make the discrete control law easily and effectively obtained. The structures, reasoning mechanism and arithmetic of intelligent control are replanted to discrete dynamic, conti-nuous process and the interface of the hybrid system. The structures of three types of intelligent hybrid system are presented and the human experiences summarized from engineering machinery of cluster are taken into account.

  5. Automation Comparison Procedure for Verification of Hybrid Systems.

    Science.gov (United States)

    1997-11-01

    Lecture Notes in Computer Science vol. 999, Springer-Verlag, (1995). [2] Bowler, 0., Grotzky, J., Nielson, M., Nilson.S., and Van Buren, J...Remmel, J.B., "Feedback Derivations: Near Optimal Controls for Hybrid Systems", to appear in Hybrid Systems III, Springer Lecture Notes in Computer Science . [6...Grossman, R.L., Nerode, A., Ravn, A. and Rischel, H. eds., Hybrid Systems, Lecture Notes in Computer

  6. Studies on the Utilization Potentiality of the Nucleo-Cytoplasmic Hybrid in Wheat

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    A series of comparative studies was carried out on the genetic effects of 25 alien cytoplasms of wheat on the growth potential, heading stage , fertility, resistance against diseases, important agronomic traits and its heterosis of 125 nuclei-cytoplasmic hybrids of wheat. The results indicated that there were clearly effects of alien cytoplasms on some characteristics, but the nucleus still exerted main effect on other characteristics. The effect of interactions between nucleus and cytoplasm was comparative obvious in some combination. Consequently, when we utilize the effects of alien cytoplasms, we should pay full attention to the facts such as the characteristic to be improved, the effects of cytoplasm ,nucleus, the nucleus-cytoplasm interactions on that characteristics . From the preliminary studies, we believed that the cytoplasmic types of M°, S1, Sv, D2, D and B, and the nucleo-cytoplasmic hybrids of (Ae. sharonensis) -Bl74, (Ae. squarrosa)352-35, (Ae. cylindrica) -352-35, (Ae. cylindrica)-E EN-1, (Ae. cylindrica)- NPFP, and (Ae. speltoides)352-35 would have some utilization potentiality in cultivar improvement.

  7. Modeling and Optimizing Energy Utilization of Steel Production Process: A Hybrid Petri Net Approach

    Directory of Open Access Journals (Sweden)

    Peng Wang

    2013-01-01

    Full Text Available The steel industry is responsible for nearly 9% of anthropogenic energy utilization in the world. It is urgent to reduce the total energy utilization of steel industry under the huge pressures on reducing energy consumption and CO2 emission. Meanwhile, the steel manufacturing is a typical continuous-discrete process with multiprocedures, multiobjects, multiconstraints, and multimachines coupled, which makes energy management rather difficult. In order to study the energy flow within the real steel production process, this paper presents a new modeling and optimization method for the process based on Hybrid Petri Nets (HPN in consideration of the situation above. Firstly, we introduce the detailed description of HPN. Then the real steel production process from one typical integrated steel plant is transformed into Hybrid Petri Net model as a case. Furthermore, we obtain a series of constraints of our optimization model from this model. In consideration of the real process situation, we pick the steel production, energy efficiency and self-made gas surplus as the main optimized goals in this paper. Afterwards, a fuzzy linear programming method is conducted to obtain the multiobjective optimization results. Finally, some measures are suggested to improve this low efficiency and high whole cost process structure.

  8. Evaluation of systems and components for hybrid optical firing sets

    Energy Technology Data Exchange (ETDEWEB)

    Landry, M.J.; Rupert, J.W.; Mittas, A.

    1989-06-01

    High-energy density light appears to be a unique energy form that may be used to enhance the nuclear safety of weapon systems. Hybrid optical firing sets (HOFS) utilize the weak-link/strong-link exclusion region concept for nuclear safety; this method is similar to present systems, but uses light to transmit power across the exclusion region barrier. This report describes the assembling, operating, and testing of fourteen HOFS. These firing sets were required to charge a capacitor-discharge unit to 2.0 and 2.5 kV (100 mJ) in less than 1 s. First, we describe the components, the measurement techniques used to evaluate the components, and the different characteristics of the measured components. Second, we describe the HOFS studied, the setups used for evaluating them, and the resulting characteristics. Third, we make recommendations for improving the overall performance and suggest the best HOFS for packaging. 36 refs., 145 figs., 14 tabs.

  9. DISPATCHING OF HYBRID WINDPHOTOVOLTAIC- MICROTURBINESSTORAGE SYSTEM

    Directory of Open Access Journals (Sweden)

    Dr. BRINI SAOUSSEN

    2012-06-01

    Full Text Available This paper presents model for Economic Environmental Dispatching (EED of Hybrid power system including wind and photovoltaic energies. The model combines the stochastic data of the climate such as the wind speed for wind energy, solar radiation and the temperature for photovoltaic energy. The penetration of wind andphotovoltaic powers into traditional network will cause some implications such as security concerns due to its unpredictable nature. The production systems of renewable energy are generally coupled with the network with energy storage devices and micro sources. In this paper, a bi-objective economic environmental dispatchproblem considering wind and photovoltaic penetration is formulated, which treats economic and environmental impacts as conflicting objectives. It applied multiobjective optimization by approach SPEA to solve (EED problem.

  10. Infectious disease modeling a hybrid system approach

    CERN Document Server

    Liu, Xinzhi

    2017-01-01

    This volume presents infectious diseases modeled mathematically, taking seasonality and changes in population behavior into account, using a switched and hybrid systems framework. The scope of coverage includes background on mathematical epidemiology, including classical formulations and results; a motivation for seasonal effects and changes in population behavior, an investigation into term-time forced epidemic models with switching parameters, and a detailed account of several different control strategies. The main goal is to study these models theoretically and to establish conditions under which eradication or persistence of the disease is guaranteed. In doing so, the long-term behavior of the models is determined through mathematical techniques from switched systems theory. Numerical simulations are also given to augment and illustrate the theoretical results and to help study the efficacy of the control schemes.

  11. A review and design of power electronics converters for fuel cell hybrid system applications

    DEFF Research Database (Denmark)

    Zhang, Zhe; Pittini, Riccardo; Andersen, Michael A. E.

    2012-01-01

    This paper presents an overview of most promising power electronics topologies for a fuel cell hybrid power conversion system which can be utilized in many applications such as hybrid electrical vehicles (HEV), distributed generations (DG) and uninterruptible-power-supply (UPS) systems. Then......, a multiple-input power conversion system including a decoupled dual-input converter and a three-phase neutral-point-clamped (NPC) inverter is proposed. The system can operate in both stand-alone and grid-connected modes. Simulation and experimental results are provided to show the feasibility of the proposed...

  12. Performance analysis of hybrid district heating system

    DEFF Research Database (Denmark)

    Mikulandric, Robert; Krajačić, Goran; Khavin, Gennadii

    2013-01-01

    as problems related to transportation, storage and environmental impacts of biomass and waste utilisation. Implementation of heat storages in district heating systems could contribute to integration of intermittent energy sources. Hybridisation of heat production facility combines two or more different energy...... that combines different energy sources for heat production will be used. The work has been carried out in scope of 4th Generation District Heating Technologies and Systems project.......District heating system could contribute to more efficient heat generation through cogeneration power plants or waste heat utilization facilities and to increase of renewable energy sources share in total energy consumption. In the most developed EU countries, renewable energy sources have been...

  13. Development of Traction Drive Motors for the Toyota Hybrid System

    Science.gov (United States)

    Kamiya, Munehiro

    Toyota Motor Corporation developed in 2005 a new hybrid system for a large SUV. This system included the new development of a high-speed traction drive motor achieving a significant increase in power weight ratio. This paper provides an overview of the hybrid system, discusses the characteristics required of a traction drive motor, and presents the technologies employed in the developed motor.

  14. Limit Cycle Analysis in a Class of Hybrid Systems

    Directory of Open Access Journals (Sweden)

    Antonio Favela-Contreras

    2016-01-01

    Full Text Available Hybrid systems are those that inherently combine discrete and continuous dynamics. This paper considers the hybrid system model to be an extension of the discrete automata associating a continuous evolution with each discrete state. This model is called the hybrid automaton. In this work, we achieve a mathematical formulation of the steady state and we show a way to obtain the initial conditions region to reach a specific limit cycle for a class of uncoupled and coupled continuous-linear hybrid systems. The continuous-linear term is used in the sense of the system theory and, in this sense, continuous-linear hybrid automata will be defined. Thus, some properties and theorems that govern the hybrid automata dynamic behavior to evaluate a limit cycle existence have been established; this content is explained under a theoretical framework.

  15. Combined cycle solar central receiver hybrid power system study. Final technical report. Volume II

    Energy Technology Data Exchange (ETDEWEB)

    None

    1979-11-01

    This study develops the conceptual design for a commercial-scale (nominal 100 MWe) central receiver solar/fossil fuel hybrid power system with combined cycle energy conversion. A near-term, metallic heat pipe receiver and an advanced ceramic tube receiver hybrid system are defined through parametric and market potential analyses. Comparative evaluations of the cost of power generation, the fuel displacement potential, and the technological readiness of these two systems indicate that the near-term hybrid system has better potential for commercialization by 1990. Based on the assessment of the conceptual design, major cost and performance improvements are projected for the near-term system. Constraints preventing wide-spread use were not identified. Energy storage is not required for this system and analyses show no economic advantages with energy storage provisions. It is concluded that the solar hybrid system is a cost effective alternative to conventional gas turbines and combined cycle generating plants, and has potential for intermediate-load market penetration at 15% annual fuel escalation rate. Due to their flexibility, simple solar/nonsolar interfacing, and short startup cycles, these hybrid plants have significant operating advantages. Utility company comments suggest that hybrid power systems will precede stand-alone solar plants.

  16. Efficient Hybrid Propulsion System Development and Integration

    Science.gov (United States)

    2011-08-10

    utilize real measurements and parameters within the simulation model [3,4,5]. Moreover, it is also important to build a single core control model in...ICE, engine disconnect clutch , ISG, 6-speed automatic transmission, differential, final drives at the rear axle; FMOT, 2-speed manual transmission...calculation, torque management, safety limit monitoring and fault tolerance, component/local and system/global efficiency calculations, power split

  17. On a Variational Approach to Optimization of Hybrid Mechanical Systems

    Directory of Open Access Journals (Sweden)

    Vadim Azhmyakov

    2010-01-01

    Full Text Available This paper deals with multiobjective optimization techniques for a class of hybrid optimal control problems in mechanical systems. We deal with general nonlinear hybrid control systems described by boundary-value problems associated with hybrid-type Euler-Lagrange or Hamilton equations. The variational structure of the corresponding solutions makes it possible to reduce the original “mechanical” problem to an auxiliary multiobjective programming reformulation. This approach motivates possible applications of theoretical and computational results from multiobjective optimization related to the original dynamical optimization problem. We consider first order optimality conditions for optimal control problems governed by hybrid mechanical systems and also discuss some conceptual algorithms.

  18. The Gwaii Haanas PV hybrid system : analysis of system operation

    Energy Technology Data Exchange (ETDEWEB)

    Ross, M. [GPCo Inc., Varennes, PQ (Canada); Turcotte, D.; Sheriff, F. [Natural Resources Canada, Varennes, PQ (Canada). CANMET Energy Technology Centre

    2003-05-01

    The operation of the photovoltaic/battery/genset hybrid power system at the Gwaii Haanas National Park Reserve warden station in British Columbia has been monitored since July 2001 as part of the Canada Centre for Mineral and Energy Technology (CANMET) Energy Technology Centre-Varennes Photovoltaic Hybrid Power Systems Program. The data collected has been used to validate hybrid system simulation tools being developed under the sponsorship of the Program. The analyzed data, along with the simulation tools, provided insight into the operation of the Gwaii Haanas power system. It also assisted in identifying the strengths and weaknesses of the system. Data indicates that the system functions well and is appropriately dimensioned and configured. The modules are arranged in two sub-arrays, with modules connected in parallel, showing remarkable tolerance to shading of part of the array. Almost complete discharge of the batteries occurs during the winter, when the Park residence is unoccupied. During the summer, users should keep track of the battery state-of-charge. Some recommendations were made to prolong the battery life. 1 ref., 1 tab., 16 figs.

  19. A Probability-Based Hybrid User Model for Recommendation System

    Directory of Open Access Journals (Sweden)

    Jia Hao

    2016-01-01

    Full Text Available With the rapid development of information communication technology, the available information or knowledge is exponentially increased, and this causes the well-known information overload phenomenon. This problem is more serious in product design corporations because over half of the valuable design time is consumed in knowledge acquisition, which highly extends the design cycle and weakens the competitiveness. Therefore, the recommender systems become very important in the domain of product domain. This research presents a probability-based hybrid user model, which is a combination of collaborative filtering and content-based filtering. This hybrid model utilizes user ratings and item topics or classes, which are available in the domain of product design, to predict the knowledge requirement. The comprehensive analysis of the experimental results shows that the proposed method gains better performance in most of the parameter settings. This work contributes a probability-based method to the community for implement recommender system when only user ratings and item topics are available.

  20. Site characterization for hybrid system construction

    Energy Technology Data Exchange (ETDEWEB)

    Saldana, R.; Miranda, U.; Medrano, M. C. [Instituto de Investigaciones Electricas, Cuernavaca (Mexico)

    1997-12-31

    The basic reason to use alternative systems for electricity generation, in most cases, is the lack of electricity services, such as isolated rural communities which are located far away from the electric distribution line, and the cost of its extension is too expensive, while decentralized power systems can be an economic and appropriate solution to providing these services. Up to now there are several technological options for rural electrification using PV modules, wind plants, water-power plants, anaerobic digesters, or a combination of some of them, according to the availability of energetic resources. The applications include centralized or decentralized systems, autonomous or hybrid systems, isolated or interconnected to the electric line, etc. A particular hybrid system design can be done considering two general aspects, first it is necessary to know the electric consumption that will be supplied, taking into account present and future necessities and how local energetic resources are present in a selected site. Finally, also it is necessary to carry out an economic analysis to determine the cost of kilowatt-hour generated using local energetic resources and compare it with the cost of electricity produced by conventional power systems. [Espanol] La razon principal para el uso de sistemas alternativos de generacion de electricidad, en la mayoria de los casos, es la falta de servicios de electricidad, tal como en las comunidades rurales aisladas localizadas lejos de linea de distribucion electrica, donde el costo de su extension es demasiado caro, mientras que los sistemas descentralizados de energia pueden ser una solucion economica y adecuada para proporcionar estos servicios. Hasta ahora existen varias opciones tecnologicas para la electrificacion rural usando modulos fotovoltaicos, aerogeneradores, plantas hidroelectricas, digestores anaerobicos o una combinacion de algunos de ellos, de acuerdo con la disponibilidad de los recursos energeticos. Las

  1. Optimization of CNC End Milling using Hybrid Taguchi Method using Principal Components Analysis and Utility Theory

    Directory of Open Access Journals (Sweden)

    Anish Nair

    2013-08-01

    Full Text Available In order to improve the quality and productivity the present study highlights the optimization of CNC end milling process parameters to provide a good surface finish. Surface finish has been identified as one of the main quality attributes and is directly related to the productivity of a machine. In this paper an attempt has been made to optimize the process such that the best surface roughness value can be obtained in a process. Hence a multi objective optimization problem has been obtained which can be solved by the hybrid Taguchi method comprising of principal components analysis as well as by utility theory. In this work, Individual response correlation has been eliminated first by mean of Principal Component Analysis (PCA to meet the basic assumption of Taguchi method. Correlated responses have been transformed into uncorrelated quality indices called as principal components. Quality loss estimates have been calculated from the principal components and the utility values are found out for the same. Then the overall utility index has been calculated. Finally, Taguchi method has been used to solve the optimization problem.

  2. Dynamic Simulation of Carbonate Fuel Cell-Gas Turbine Hybrid Systems

    Energy Technology Data Exchange (ETDEWEB)

    Roberts, R.A. (U. of California, Irvine, CA); Brouwer, J. (U. of California, Irvine, CA); Liese, E.A.; Gemmen, R.S.

    2006-04-01

    Hybrid fuel cell/gas turbine systems provide an efficient means of producing electricity from fossil fuels with ultra low emissions. However, there are many significant challenges involved in integrating the fuel cell with the gas turbine and other components of this type of system. The fuel cell and the gas turbine must maintain efficient operation and electricity production while protecting equipment during perturbations that may occur when the system is connected to the utility grid or in stand-alone mode. This paper presents recent dynamic simulation results from two laboratories focused on developing tools to aid in the design and dynamic analyses of hybrid fuel cell systems. The simulation results present the response of a carbonate fuel cell/gas turbine, or molten carbonate fuel cell/gas turbine, (MCFC/GT) hybrid system to a load demand perturbation. Initial results suggest that creative control strategies will be needed to ensure a flexible system with wide turndown and robust dynamic operation.

  3. Parallel Hybrid Vehicle Optimal Storage System

    Science.gov (United States)

    Bloomfield, Aaron P.

    2009-01-01

    A paper reports the results of a Hybrid Diesel Vehicle Project focused on a parallel hybrid configuration suitable for diesel-powered, medium-sized, commercial vehicles commonly used for parcel delivery and shuttle buses, as the missions of these types of vehicles require frequent stops. During these stops, electric hybridization can effectively recover the vehicle's kinetic energy during the deceleration, store it onboard, and then use that energy to assist in the subsequent acceleration.

  4. A Future with Hybrid Electric Propulsion Systems: A NASA Perspective

    Science.gov (United States)

    DelRosario, Ruben

    2014-01-01

    The presentation highlights a NASA perspective on Hybrid Electric Propulsion Systems for aeronautical applications. Discussed are results from NASA Advance Concepts Study for Aircraft Entering service in 2030 and beyond and the potential use of hybrid electric propulsion systems as a potential solution to the requirements for energy efficiency and environmental compatibility. Current progress and notional potential NASA research plans are presented.

  5. HOPIS: hybrid omnidirectional and perspective imaging system for mobile robots.

    Science.gov (United States)

    Lin, Huei-Yung; Wang, Min-Liang

    2014-09-04

    In this paper, we present a framework for the hybrid omnidirectional and perspective robot vision system. Based on the hybrid imaging geometry, a generalized stereo approach is developed via the construction of virtual cameras. It is then used to rectify the hybrid image pair using the perspective projection model. The proposed method not only simplifies the computation of epipolar geometry for the hybrid imaging system, but also facilitates the stereo matching between the heterogeneous image formation. Experimental results for both the synthetic data and real scene images have demonstrated the feasibility of our approach.

  6. Design, analysis and modeling of a novel hybrid powertrain system based on hybridized automated manual transmission

    Science.gov (United States)

    Wu, Guang; Dong, Zuomin

    2017-09-01

    Hybrid electric vehicles are widely accepted as a promising short to mid-term technical solution due to noticeably improved efficiency and lower emissions at competitive costs. In recent years, various hybrid powertrain systems were proposed and implemented based on different types of conventional transmission. Power-split system, including Toyota Hybrid System and Ford Hybrid System, are well-known examples. However, their relatively low torque capacity, and the drive of alternative and more advanced designs encouraged other innovative hybrid system designs. In this work, a new type of hybrid powertrain system based hybridized automated manual transmission (HAMT) is proposed. By using the concept of torque gap filler (TGF), this new hybrid powertrain type has the potential to overcome issue of torque gap during gearshift. The HAMT design (patent pending) is described in details, from gear layout and design of gear ratios (EV mode and HEV mode) to torque paths at different gears. As an analytical tool, mutli-body model of vehicle equipped with this HAMT was built to analyze powertrain dynamics at various steady and transient modes. A gearshift was decomposed and analyzed based basic modes. Furthermore, a Simulink-SimDriveline hybrid vehicle model was built for the new transmission, driveline and vehicle modular. Control strategy has also been built to harmonically coordinate different powertrain components to realize TGF function. A vehicle launch simulation test has been completed under 30% of accelerator pedal position to reveal details during gearshift. Simulation results showed that this HAMT can eliminate most torque gap that has been persistent issue of traditional AMT, improving both drivability and performance. This work demonstrated a new type of transmission that features high torque capacity, high efficiency and improved drivability.

  7. Integrating Solar PV in Utility System Operations

    Energy Technology Data Exchange (ETDEWEB)

    Mills, A.; Botterud, A.; Wu, J.; Zhou, Z.; Hodge, B-M.; Heany, M.

    2013-10-31

    This study develops a systematic framework for estimating the increase in operating costs due to uncertainty and variability in renewable resources, uses the framework to quantify the integration costs associated with sub-hourly solar power variability and uncertainty, and shows how changes in system operations may affect these costs. Toward this end, we present a statistical method for estimating the required balancing reserves to maintain system reliability along with a model for commitment and dispatch of the portfolio of thermal and renewable resources at different stages of system operations. We estimate the costs of sub-hourly solar variability, short-term forecast errors, and day-ahead (DA) forecast errors as the difference in production costs between a case with “realistic” PV (i.e., subhourly solar variability and uncertainty are fully included in the modeling) and a case with “well behaved” PV (i.e., PV is assumed to have no sub-hourly variability and can be perfectly forecasted). In addition, we highlight current practices that allow utilities to compensate for the issues encountered at the sub-hourly time frame with increased levels of PV penetration. In this analysis we use the analytical framework to simulate utility operations with increasing deployment of PV in a case study of Arizona Public Service Company (APS), a utility in the southwestern United States. In our analysis, we focus on three processes that are important in understanding the management of PV variability and uncertainty in power system operations. First, we represent the decisions made the day before the operating day through a DA commitment model that relies on imperfect DA forecasts of load and wind as well as PV generation. Second, we represent the decisions made by schedulers in the operating day through hour-ahead (HA) scheduling. Peaking units can be committed or decommitted in the HA schedules and online units can be redispatched using forecasts that are improved

  8. Integrating Solar PV in Utility System Operations

    Energy Technology Data Exchange (ETDEWEB)

    Mills, A.; Botterud, A.; Wu, J.; Zhou, Z.; Hodge, B-M.; Heany, M.

    2013-10-31

    This study develops a systematic framework for estimating the increase in operating costs due to uncertainty and variability in renewable resources, uses the framework to quantify the integration costs associated with sub-hourly solar power variability and uncertainty, and shows how changes in system operations may affect these costs. Toward this end, we present a statistical method for estimating the required balancing reserves to maintain system reliability along with a model for commitment and dispatch of the portfolio of thermal and renewable resources at different stages of system operations. We estimate the costs of sub-hourly solar variability, short-term forecast errors, and day-ahead (DA) forecast errors as the difference in production costs between a case with “realistic” PV (i.e., subhourly solar variability and uncertainty are fully included in the modeling) and a case with “well behaved” PV (i.e., PV is assumed to have no sub-hourly variability and can be perfectly forecasted). In addition, we highlight current practices that allow utilities to compensate for the issues encountered at the sub-hourly time frame with increased levels of PV penetration. In this analysis we use the analytical framework to simulate utility operations with increasing deployment of PV in a case study of Arizona Public Service Company (APS), a utility in the southwestern United States. In our analysis, we focus on three processes that are important in understanding the management of PV variability and uncertainty in power system operations. First, we represent the decisions made the day before the operating day through a DA commitment model that relies on imperfect DA forecasts of load and wind as well as PV generation. Second, we represent the decisions made by schedulers in the operating day through hour-ahead (HA) scheduling. Peaking units can be committed or decommitted in the HA schedules and online units can be redispatched using forecasts that are improved

  9. Hybrid dislocated control and general hybrid projective dislocated synchronization for the modified Lue chaotic system

    Energy Technology Data Exchange (ETDEWEB)

    Xu Yuhua [College of Information Science and Technology, Donghua University, Shanghai 201620 (China) and Department of Maths, Yunyang Teacher' s College, Hubei 442000 (China)], E-mail: yuhuaxu2004@163.com; Zhou Wuneng [College of Information Science and Technology, Donghua University, Shanghai 201620 (China)], E-mail: wnzhou@163.com; Fang Jianan [College of Information Science and Technology, Donghua University, Shanghai 201620 (China)

    2009-11-15

    This paper introduces a modified Lue chaotic system, and some basic dynamical properties are studied. Based on these properties, we present hybrid dislocated control method for stabilizing chaos to unstable equilibrium and limit cycle. In addition, based on the Lyapunov stability theorem, general hybrid projective dislocated synchronization (GHPDS) is proposed, which includes complete dislocated synchronization, dislocated anti-synchronization and projective dislocated synchronization as its special item. The drive and response systems discussed in this paper can be strictly different dynamical systems (including different dimensional systems). As examples, the modified Lue chaotic system, Chen chaotic system and hyperchaotic Chen system are discussed. Numerical simulations are given to show the effectiveness of these methods.

  10. Filtering and control of stochastic jump hybrid systems

    CERN Document Server

    Yao, Xiuming; Zheng, Wei Xing

    2016-01-01

    This book presents recent research work on stochastic jump hybrid systems. Specifically, the considered stochastic jump hybrid systems include Markovian jump Ito stochastic systems, Markovian jump linear-parameter-varying (LPV) systems, Markovian jump singular systems, Markovian jump two-dimensional (2-D) systems, and Markovian jump repeated scalar nonlinear systems. Some sufficient conditions are first established respectively for the stability and performances of those kinds of stochastic jump hybrid systems in terms of solution of linear matrix inequalities (LMIs). Based on the derived analysis conditions, the filtering and control problems are addressed. The book presents up-to-date research developments and novel methodologies on stochastic jump hybrid systems. The contents can be divided into two parts: the first part is focused on robust filter design problem, while the second part is put the emphasis on robust control problem. These methodologies provide a framework for stability and performance analy...

  11. Development of Hybrid Product Breakdown Structure for NASA Ground Systems

    Science.gov (United States)

    Monaghan, Mark W.; Henry, Robert J.

    2013-01-01

    The Product Breakdown Structure is traditionally a method of identification of the products of a project in a tree structure. It is a tool used to assess, plan, document, and display the equipment requirements for a project. It is part of a product based planning technique, and attempts to break down all components of a project in as much detail as possible, so that nothing is overlooked. The PBS for ground systems at the Kennedy Space Center is being developed to encompass the traditional requirements including the alignment of facility, systems, and components to the organizational hierarchy. The Ground Operations Product Breakdown Structure is a hybrid in nature in that some aspects of a work breakdown structure will be incorporated and merged with the Architecture Concept of Operations, Master Subsystem List, customer interface, and assigned management responsibility. The Ground Operations Product Breakdown Structure needs to be able to identify the flexibility of support differing customers (internal and external) usage of ground support equipment within the Kennedy Space Center launch and processing complex. The development of the Product Breakdown Structure is an iterative activity Initially documenting the organization hierarchy structure and relationships. The Product Breakdown Structure identifies the linkage between the customer program requirements, allocation of system resources, development of design goals, and identification logistics products. As the Product Breakdown Structure progresses the incorporation of the results of requirement planning for the customer occurs identifying facility needs and systems. The mature Product Breakdown Structure is baselined with a hierarchical drawing, the Product Breakdown Structure database, and an associated document identifying the verification of the data through the life cycle of the program/product line. This paper will document, demonstrate, and identify key aspects of the life cycle of a Hybrid Product

  12. Nuclear Hybrid energy Systems: Molten Salt Energy Storage

    Energy Technology Data Exchange (ETDEWEB)

    Green, M.; Sabharwall, P.; Yoon, S. J.; Bragg-Sitton, S. B.; Stoot, C.

    2014-07-01

    Without growing concerns in reliable energy supply, the next generation in reliable power generation via hybrid energy systems is being developed. A hybrid energy system incorporates multiple energy input source sand multiple energy outputs. The vitality and efficiency of these combined systems resides in the energy storage application. Energy storage is necessary for grid stabilization because stored excess energy is used later to meet peak energy demands. With high thermal energy production the primary nuclear heat generation source, molten salt energy storage is an intriguing option because of its distinct thermal properties. This paper discusses the criteria for efficient energy storage and molten salt energy storage system options for hybrid systems. (Author)

  13. Modeling and Analysis of Hybrid Dynamic Systems Using Hybrid Petri Nets

    OpenAIRE

    GHOMRI Latefa; Alla, Hassane

    2008-01-01

    Some extensions of PNs permitting HDS modeling were presented here. The first models to be presented are continuous PNs. This model may be used for modeling either a continuous system or a discrete system. In this case, it is an approximation that is often satisfactory. Hybrid PNs combine in the same formalism a discrete PN and a continuous PN. Two hybrid PN models were considered in this chapter. The first, called the hybrid PN, has a deterministic behavior; this means that we can predict th...

  14. Advantages of Hybrid Global Navigation Satellite Systems

    Directory of Open Access Journals (Sweden)

    Asim Bilajbegović

    2007-05-01

    Full Text Available In a decision-making situation, what kind of GPS equipment to purchase, one always has a dilemma, tobuy hybrid (GPS+GLONASS or only GPS receivers? In the case of completeness of the GLONASS satellite system, this dilemma probably would not have existed. The answer to this dilemma is given in the present paper, but for the constellation of the GLONASS satellites in summer 2006 (14 satellites operational. Due to the short operational period of these satellites (for example GLONASS-M, 5 years, and not launching new ones, at this moment (February 25, 2007, only 10 satellites are operational. For the sake of research and giving answers to these questions, about 252 RTK measurements have been done using (GPS and GNSS receivers, on points with different obstructions of horizon. Besides that, initialisation time has been investigated for both systems from about 480 measurements, using rover's antenna with metal cover, during a time interval of 0.5, 2 and 5 seconds. Moreover, accuracy, firmware declared accuracy and redundancy of GPS and GNSS RTK measurements have been investigating.  

  15. Review of hybrid laminar flow control systems

    Science.gov (United States)

    Krishnan, K. S. G.; Bertram, O.; Seibel, O.

    2017-08-01

    The aeronautic community always strived for fuel efficient aircraft and presently, the need for ecofriendly aircraft is even more, especially with the tremendous growth of air traffic and growing environmental concerns. Some of the important drivers for such interests include high fuel prices, less emissions requirements, need for more environment friendly aircraft to lessen the global warming effects. Hybrid laminar flow control (HLFC) technology is promising and offers possibility to achieve these goals. This technology was researched for decades for its application in transport aircraft, and it has achieved a new level of maturity towards integration and safety and maintenance aspects. This paper aims to give an overview of HLFC systems research and associated flight tests in the past years both in the US and in Europe. The review makes it possible to distinguish between the successful approaches and the less successful or outdated approaches in HLFC research. Furthermore, the technology status shall try to produce first estimations regarding the mass, power consumption and performance of HLFC systems as well as estimations regarding maintenance requirements and possible subsystem definitions.

  16. Electric and Hybrid Vehicle System Research and Development Project: Hybrid Vehicle Potential Assessment. Volume 1. Summary

    Energy Technology Data Exchange (ETDEWEB)

    Surber, F.T.

    1979-09-30

    The results of investigations conducted under Ce Hybrid Vehicle Potential Assessment Task are reported in 10 volumes. This volume contains an overview of the study and its results. The purpose of the overall study was to determine if the petroleum fuel savings achievable through the use of hybrid electric vehicles is worth the R and D expenditures needed to develop the hybrid vehicles and to determine R and D priorities. It was concluded that by the year 2010 hybrid vehicles could replace 80% of the automotive power that would otherwise be produced from petroleum fuels; the public should not suffer any mobility loss through the use of hybrid vehicles; high initial and life-cycle costs are a limiting factor; and R and D funds should be spent for systems design and the development of low-cost batteries and controllers. (LCL)

  17. Analysis of the Hybrid Power System for High-Altitude Unmanned Aircraft

    Directory of Open Access Journals (Sweden)

    Kangwen Sun

    2015-01-01

    Full Text Available The application of single solar array on high-altitude unmanned aircraft will waste energy because of its low conversion efficiency. Furthermore, since its energy utilization is limited, the surface temperature of solar array will rise to 70°C due to the waste solar energy, thus reducing the electrical performance of the solar array. In order to reuse the energy converted into heat by solar array, a hybrid power system is presented in this paper. In the hybrid power system, a new electricity-generating method is adopted to spread the photovoltaic cell on the wing surface and arrange photothermal power in the wing box section. Because the temperature on the back of photovoltaic cell is high, it can be used as the high-temperature heat source. The lower wing surface can be a low-temperature cold source. A high-altitude unmanned aircraft was used to analyze the performances of pure solar-powered aircraft and hybrid powered aircraft. The analysis result showed that the hybrid system could reduce the area of wing by 19% and that high-altitude unmanned aircraft with a 35 m or less wingspan could raise the utilization rate of solar energy per unit area after adopting the hybrid power system.

  18. Improving Diagnosability of Hybrid Systems through Active Diagnosis

    Data.gov (United States)

    National Aeronautics and Space Administration — Fault diagnosis is key to ensuring system safety through fault-adaptive control. This task is diffcult in hybrid systems with combined continuous and discrete...

  19. Comparison of metallization systems for thin film hybrid microcircuits

    Energy Technology Data Exchange (ETDEWEB)

    Hines, R.A.; Raut, M.K.

    1980-08-01

    Five metallization systems were evaluated for fabricating thin film hybrid microcircuits. The titanium/palladium/electroplated gold system proved superior in terms of thermocompression bondability, corrosion resistance, and solderability.

  20. Research Update: Hybrid energy devices combining nanogenerators and energy storage systems for self-charging capability

    Science.gov (United States)

    Kim, Jeonghun; Lee, Ju-Hyuck; Lee, Jaewoo; Yamauchi, Yusuke; Choi, Chang Ho; Kim, Jung Ho

    2017-07-01

    The past decade has been especially creative for nanogenerators as energy harvesting devices utilizing both piezoelectric and triboelectric properties. Most recently, self-charging power units using both nanogenerators and energy storage systems have begun to be investigated for portable and wearable electronics to be used in our daily lives. This review focuses on these hybrid devices with self-charging combined with energy harvesting storage systems based on the most recent reports. In this research update, we will describe the materials, device structures, integration, applications, and research progress up to the present on hybrid devices.

  1. Nuclear Hybrid Energy System Modeling: RELAP5 Dynamic Coupling Capabilities

    Energy Technology Data Exchange (ETDEWEB)

    Piyush Sabharwall; Nolan Anderson; Haihua Zhao; Shannon Bragg-Sitton; George Mesina

    2012-09-01

    The nuclear hybrid energy systems (NHES) research team is currently developing a dynamic simulation of an integrated hybrid energy system. A detailed simulation of proposed NHES architectures will allow initial computational demonstration of a tightly coupled NHES to identify key reactor subsystem requirements, identify candidate reactor technologies for a hybrid system, and identify key challenges to operation of the coupled system. This work will provide a baseline for later coupling of design-specific reactor models through industry collaboration. The modeling capability addressed in this report focuses on the reactor subsystem simulation.

  2. Bond graph model-based fault diagnosis of hybrid systems

    CERN Document Server

    Borutzky, Wolfgang

    2015-01-01

    This book presents a bond graph model-based approach to fault diagnosis in mechatronic systems appropriately represented by a hybrid model. The book begins by giving a survey of the fundamentals of fault diagnosis and failure prognosis, then recalls state-of-art developments referring to latest publications, and goes on to discuss various bond graph representations of hybrid system models, equations formulation for switched systems, and simulation of their dynamic behavior. The structured text: • focuses on bond graph model-based fault detection and isolation in hybrid systems; • addresses isolation of multiple parametric faults in hybrid systems; • considers system mode identification; • provides a number of elaborated case studies that consider fault scenarios for switched power electronic systems commonly used in a variety of applications; and • indicates that bond graph modelling can also be used for failure prognosis. In order to facilitate the understanding of fault diagnosis and the presented...

  3. Hybrid Recommender System for Joining Virtual Communities

    Directory of Open Access Journals (Sweden)

    Leila Esmaeili

    2012-03-01

    Full Text Available The variety of social networks and virtual communities has created problematic for users of different ages and preferences; in addition, since the true nature of groups is not clearly outlined, users are uncertain about joining various virtual groups and usually face the trouble of joining the undesired ones. As a solution, in this study, we introduced the hybrid community recommender system which offers customized recommendations based on user preferences. Although techniques such as content based filtering and collaborative filtering methods are available, these techniques are not enough efficient and in some cases make problems and bring limitations to users. Our method is based on a combination of content based filtering and collaborative filtering methods. It is created by selecting related features of users based on supervised entropy as well as using association rules and classification method. Supposing users in each community or group share similar characteristics, by hierarchical clustering, heterogeneous members are identified and removed. Unlike other methods, this is also applicable for users who have just joined the social network where they do not have any connections or group memberships. In such situations, this method could still offer recommendations.

  4. Polymer hybrid materials for planar optronic systems

    Science.gov (United States)

    Körner, Martin; Prucker, Oswald; Rühe, Jürgen

    2015-09-01

    Planar optronic systems made entirely from polymeric functional materials on polymeric foils are interesting architectures for monitoring and sensing applications. Key components in this regard are polymer hybrid materials with adjustable optical properties. These materials can then be processed into optical components such as waveguides for example by using embossing techniques. However, the resulting microstructures have often low mechanical or thermal stability which quickly leads to a degradation of the microstructures accompanied often by a complete loss of function. A simple and versatile way to increase the thermal and mechanical stability of polymers is to connect the individual chains to a polymer network by using thermally or photochemically reactive groups. Upon excitation, these groups form reactive intermediates such as radicals or nitrenes which then crosslink with adjacent C-H-groups through a C,H insertion reaction (CHic = C,H insertion based crosslinking). To generate waveguide structures a PDMS stamp is filled with the waveguide core material e.g. poly(methylmethacrylate) (PMMA), which is modified with a few mol% of the thermal crosslinker and hot embossed onto a foil substrate e.g. PMMA. In this one-step hot embossing process polymer ridge waveguides are formed and simultaneously the polymer becomes crosslinked. Due to the reaction across the boundary between waveguide and substrate it is also possible to combine initially incompatible polymers for the waveguide and the substrate foil. The thermomechanical properties of the obtained materials are studied.

  5. Battery control system for hybrid vehicle and method for controlling a hybrid vehicle battery

    Science.gov (United States)

    Bockelmann, Thomas R [Battle Creek, MI; Hope, Mark E [Marshall, MI; Zou, Zhanjiang [Battle Creek, MI; Kang, Xiaosong [Battle Creek, MI

    2009-02-10

    A battery control system for hybrid vehicle includes a hybrid powertrain battery, a vehicle accessory battery, and a prime mover driven generator adapted to charge the vehicle accessory battery. A detecting arrangement is configured to monitor the vehicle accessory battery's state of charge. A controller is configured to activate the prime mover to drive the generator and recharge the vehicle accessory battery in response to the vehicle accessory battery's state of charge falling below a first predetermined level, or transfer electrical power from the hybrid powertrain battery to the vehicle accessory battery in response to the vehicle accessory battery's state of charge falling below a second predetermined level. The invention further includes a method for controlling a hybrid vehicle powertrain system.

  6. Control of second-life hybrid battery energy storage system based on modular boost-multilevel buck converter

    OpenAIRE

    Mukherjee, Nilanjan; Strickland, Dani

    2015-01-01

    To fully utilize second-life batteries on the grid system, a hybrid battery scheme needs to be considered for several reasons: the uncertainty over using a single source supply chain for second-life batteries, the differences in evolving battery chemistry and battery configuration by different suppliers to strive for greater power levels, and the uncertainty of degradation within a second-life battery. Therefore, these hybrid battery systems could have widely different module voltage, capacit...

  7. Investigation of the photovoltaic cell/ thermoelectric element hybrid system performance

    Science.gov (United States)

    Cotfas, D. T.; Cotfas, P. A.; Machidon, O. M.; Ciobanu, D.

    2016-06-01

    The PV/TEG hybrid system, consisting of the photovoltaic cells and thermoelectric element, is presented in the paper. The dependence of the PV/TEG hybrid system parameters on the illumination levels and the temperature is analysed. The maxim power values of the photovoltaic cell, of the thermoelectric element and of the PV/TEG system are calculated and a comparison between them is presented and analysed. An economic analysis is also presented.

  8. A simulation approach to sizing hybrid photovoltaic and wind systems

    Science.gov (United States)

    Anderson, L. A.

    1983-12-01

    A simulation approach to sizing hybrid photovoltaic and wind systems provides a combination of components to realize zero downtime and minimum initial or life-cycle cost. Using Dayton, OH as a test site for weather data, cost advantages in the neighborhood of four are predicted for a hybrid system with battery storage when compared to a wind-energy-only system for the same electrical load.

  9. Sizing and Simulation of PV-Wind Hybrid Power System

    OpenAIRE

    Mustafa Engin

    2013-01-01

    A sizing procedure is developed for hybrid system with the aid of mathematical models for photovoltaic cell, wind turbine, and battery that are readily present in the literature. This sizing procedure can simulate the annual performance of different kinds of photovoltaic-wind hybrid power system structures for an identified set of renewable resources, which fulfills technical limitations with the lowest energy cost. The output of the program will display the performance of the system during t...

  10. Dynamic modeling of hybrid energy storage systems coupled to photovoltaic generation in residential applications

    Science.gov (United States)

    Maclay, James D.; Brouwer, Jacob; Samuelsen, G. Scott

    A model of a photovoltaic (PV) powered residence in stand-alone configuration was developed and evaluated. The model assesses the sizing, capital costs, control strategies, and efficiencies of reversible fuel cells (RFC), batteries, and ultra-capacitors (UC) both individually, and in combination, as hybrid energy storage devices. The choice of control strategy for a hybrid energy storage system is found to have a significant impact on system efficiency, hydrogen production and component utilization. A hybrid energy storage system comprised of batteries and RFC has the advantage of reduced cost (compared to using a RFC as the sole energy storage device), high system efficiency and hydrogen energy production capacity. A control strategy that preferentially used the RFC before the battery in meeting load demand allows both grid independent operation and better RFC utilization compared to a system that preferentially used the battery before the RFC. Ultra-capacitors coupled with a RFC in a hybrid energy storage system contain insufficient energy density to meet dynamic power demands typical of residential applications.

  11. Stability analysis for impulsive fractional hybrid systems via variational Lyapunov method

    Science.gov (United States)

    Yang, Ying; He, Yong; Wang, Yong; Wu, Min

    2017-04-01

    This paper investigates the stability properties for a class of impulsive Caputo fractional-order hybrid systems with impulse effects at fixed moments. By utilizing the variational Lyapunov method, a fractional variational comparison principle is established. Some stability and instability criteria in terms of two measures are obtained. These results generalize the known ones, extending the corresponding theory of impulsive fractional differential systems. An example is given to demonstrate their effectiveness.

  12. Renewable energy systems in Mexico: Installation of a hybrid system

    Science.gov (United States)

    Pate, Ronald C.

    1993-05-01

    Sandia has been providing technical leadership on behalf of DOE and CORECT on a working level cooperative program with Mexico on renewable energy (PROCER). As part of this effort, the Sandia Design Assistance Center (DAC) and the solar energy program staff at Instituto de Investigaciones Electricas (IIE) in Cuernavaca, Mexico, recently reached agreement on a framework for mutually beneficial technical collaboration on the monitoring and field evaluation of renewable energy systems in Mexico, particularly village-scale hybrid systems. This trip was made for the purpose of planning the details for the joint installation of a data acquisition system (DAS) on a recently completed PV/Wind/Diesel hybrid system in the village of Xcalac on the Southeast coast of the state of Quintana Roo, Mexico. The DAS installation will be made during the week of March 15, 1993. While in Mexico, discussions were also held with personnel from.the National Autonomous University of Mexico (UNAM) Solar Energy Laboratory and several private sector companies with regard to renewable energy project activities and technical and educational support needs in Mexico.

  13. Exact Verification of Hybrid Systems Based on Bilinear SOS Representation

    CERN Document Server

    Yang, Zhengfeng; Lin, Wang

    2012-01-01

    In this paper, we address the problem of safety verification of nonlinear hybrid systems and stability analysis of nonlinear autonomous systems. A hybrid symbolic-numeric method is presented to compute exact inequality invariants of hybrid systems and exact estimates of regions of attraction of autonomous systems efficiently. Some numerical invariants of a hybrid system or an estimate of region of attraction can be obtained by solving a bilinear SOS program via PENBMI solver or iterative method, then the modified Newton refinement and rational vector recovery techniques are applied to obtain exact polynomial invariants and estimates of regions of attraction with rational coefficients. Experiments on some benchmarks are given to illustrate the efficiency of our algorithm.

  14. Fuel cell-gas turbine hybrid system design part II: Dynamics and control

    Science.gov (United States)

    McLarty, Dustin; Brouwer, Jack; Samuelsen, Scott

    2014-05-01

    Fuel cell gas turbine hybrid systems have achieved ultra-high efficiency and ultra-low emissions at small scales, but have yet to demonstrate effective dynamic responsiveness or base-load cost savings. Fuel cell systems and hybrid prototypes have not utilized controls to address thermal cycling during load following operation, and have thus been relegated to the less valuable base-load and peak shaving power market. Additionally, pressurized hybrid topping cycles have exhibited increased stall/surge characteristics particularly during off-design operation. This paper evaluates additional control actuators with simple control methods capable of mitigating spatial temperature variation and stall/surge risk during load following operation of hybrid fuel cell systems. The novel use of detailed, spatially resolved, physical fuel cell and turbine models in an integrated system simulation enables the development and evaluation of these additional control methods. It is shown that the hybrid system can achieve greater dynamic response over a larger operating envelope than either individual sub-system; the fuel cell or gas turbine. Results indicate that a combined feed-forward, P-I and cascade control strategy is capable of handling moderate perturbations and achieving a 2:1 (MCFC) or 4:1 (SOFC) turndown ratio while retaining >65% fuel-to-electricity efficiency, while maintaining an acceptable stack temperature profile and stall/surge margin.

  15. Direct hydrogen fuel cell systems for hybrid vehicles

    Science.gov (United States)

    Ahluwalia, Rajesh K.; Wang, X.

    Hybridizing a fuel cell system with an energy storage system offers an opportunity to improve the fuel economy of the vehicle through regenerative braking and possibly to increase the specific power and decrease the cost of the combined energy conversion and storage systems. Even in a hybrid configuration it is advantageous to operate the fuel cell system in a load-following mode and use the power from the energy storage system when the fuel cell alone cannot meet the power demand. This paper discusses an approach for designing load-following fuel cell systems for hybrid vehicles and illustrates it by applying it to pressurized, direct hydrogen, polymer-electrolyte fuel cell (PEFC) systems for a mid-size family sedan. The vehicle level requirements relative to traction power, response time, start-up time and energy conversion efficiency are used to select the important parameters for the PEFC stack, air management system, heat rejection system and the water management system.

  16. Value analysis of wind energy systems to electric utilities

    Energy Technology Data Exchange (ETDEWEB)

    Percival, D.; Harper, J.

    1981-01-01

    A method has been developed for determining the value of utility-operated wind energy systems to electric utilities. The analysis is performed by a package of computer models that interface with most conventional utility planning models. Weather data are converted to wind turbine output powers, which are used to modify the utility load representation. Execution of the utility planning models with both the original and modified load representation yields the gross and marginal value ($/rated kW/) of the added wind energy systems. This value is then compared with cost estimates to determine if for economic reasons the wind energy system should be included in future generation plans.

  17. Sensitivity Analysis of Hybrid Propulsion Transportation System for Human Mars Expeditions

    Science.gov (United States)

    Chai, Patrick R.; Joyce, Ryan T.; Kessler, Paul D.; Merrill, Raymond G.; Qu, Min

    2017-01-01

    The National Aeronautics and Space Administration continues to develop and refine various transportation options to successfully field a human Mars campaign. One of these transportation options is the Hybrid Transportation System which utilizes both solar electric propulsion and chemical propulsion. The Hybrid propulsion system utilizes chemical propulsion to perform high thrust maneuvers, where the delta-V is most optimal when ap- plied to save time and to leverage the Oberth effect. It then utilizes solar electric propulsion to augment the chemical burns throughout the interplanetary trajectory. This eliminates the need for the development of two separate vehicles for crew and cargo missions. Previous studies considered single point designs of the architecture, with fixed payload mass and propulsion system performance parameters. As the architecture matures, it is inevitable that the payload mass and the performance of the propulsion system will change. It is desirable to understand how these changes will impact the in-space transportation system's mass and power requirements. This study presents an in-depth sensitivity analysis of the Hybrid crew transportation system to payload mass growth and solar electric propulsion performance. This analysis is used to identify the breakpoints of the current architecture and to inform future architecture and campaign design decisions.

  18. Design of Magnetic Flux Feedback Controller in Hybrid Suspension System

    Directory of Open Access Journals (Sweden)

    Wenqing Zhang

    2013-01-01

    Full Text Available Hybrid suspension system with permanent magnet and electromagnet consumes little power consumption and can realize larger suspension gap. But realizing stable suspension of hybrid magnet is a tricky problem in the suspension control sphere. Considering from this point, we take magnetic flux signal as a state variable and put this signal back to suspension control system. So we can get the hybrid suspension mathematical model based on magnetic flux signal feedback. By application of MIMO feedback linearization theory, we can further realize linearization of the hybrid suspension system. And then proportion, integral, differentiation, magnetic flux density B (PIDB controller is designed. Some hybrid suspension experiments have been done on CMS04 magnetic suspension bogie of National University of Defense Technology (NUDT in China. The experiments denote that the new hybrid suspension control algorithm based on magnetic flux signal feedback designed in this paper has more advantages than traditional position-current double cascade control algorithm. Obviously, the robustness and stability of hybrid suspension system have been enhanced.

  19. Performance Assessment of a Hybrid Solar-Geothermal Air Conditioning System for Residential Application: Energy, Exergy, and Sustainability Analysis

    Directory of Open Access Journals (Sweden)

    Yasser Abbasi

    2016-01-01

    Full Text Available This paper investigates the performance of a ground source heat pump that is coupled with a photovoltaic system to provide cooling and heating demands of a zero-energy residential building. Exergy and sustainability analyses have been conducted to evaluate the exergy destruction rate and SI of different compartments of the hybrid system. The effects of monthly thermal load variations on the performance of the hybrid system are investigated. The hybrid system consists of a vertical ground source heat exchanger, rooftop photovoltaic panels, and a heat pump cycle. Exergetic efficiency of the solar-geothermal heat pump system does not exceed 10 percent, and most exergy destruction takes place in photovoltaic panel, condenser, and evaporator. Although SI of PV system remains constant during a year, SI of GSHP varies depending on cooling and heating mode. The results also show that utilization of this hybrid system can reduce CO2 emissions by almost 70 tons per year.

  20. A Structural Model Decomposition Framework for Hybrid Systems Diagnosis

    Science.gov (United States)

    Daigle, Matthew; Bregon, Anibal; Roychoudhury, Indranil

    2015-01-01

    Nowadays, a large number of practical systems in aerospace and industrial environments are best represented as hybrid systems that consist of discrete modes of behavior, each defined by a set of continuous dynamics. These hybrid dynamics make the on-line fault diagnosis task very challenging. In this work, we present a new modeling and diagnosis framework for hybrid systems. Models are composed from sets of user-defined components using a compositional modeling approach. Submodels for residual generation are then generated for a given mode, and reconfigured efficiently when the mode changes. Efficient reconfiguration is established by exploiting causality information within the hybrid system models. The submodels can then be used for fault diagnosis based on residual generation and analysis. We demonstrate the efficient causality reassignment, submodel reconfiguration, and residual generation for fault diagnosis using an electrical circuit case study.

  1. DESIGNING A HYBRID INTELLIGENT MINING SYSTEM FOR CREDIT RISK EVALUATION

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    In this study,a novel hybrid intelligent mining system integrating rough sets theory and support vector machines is developed to extract efficiently association rules from original information table for credit risk evaluation and analysis.In the proposed hybrid intelligent system,support vector machines are used as a tool to extract typical features and filter its noise,which are different from the previous studies where rough sets were only used as a preprocessor for support vector machines.Such an approach could reduce the information table and generate the final knowledge from the reduced information table by rough sets.Therefore,the proposed hybrid intelligent system overcomes the diffi-culty of extracting rules from a trained support vector machine classifier and possesses the robustness which is lacking for rough-set-based approaches.In addition,the effectiveness of the proposed hybrid intelligent system is illustrated with two real-world credit datasets.

  2. Asymptotic Stabilizability of a Class of Stochastic Nonlinear Hybrid Systems

    Directory of Open Access Journals (Sweden)

    Ewelina Seroka

    2015-01-01

    Full Text Available The problem of the asymptotic stabilizability in probability of a class of stochastic nonlinear control hybrid systems (with a linear dependence of the control with state dependent, Markovian, and any switching rule is considered in the paper. To solve the issue, the Lyapunov technique, including a common, single, and multiple Lyapunov function, the hybrid control theory, and some results for stochastic nonhybrid systems are used. Sufficient conditions for the asymptotic stabilizability in probability for a considered class of hybrid systems are formulated. Also the stabilizing control in a feedback form is considered. Furthermore, in the case of hybrid systems with the state dependent switching rule, a method for a construction of stabilizing switching rules is proposed. Obtained results are illustrated by examples and numerical simulations.

  3. Evolutionary design of discrete controllers for hybrid mechatronic systems

    DEFF Research Database (Denmark)

    Dupuis, Jean-Francois; Fan, Zhun; Goodman, Erik

    2015-01-01

    This paper investigates the issue of evolutionary design of controllers for hybrid mechatronic systems. Finite State Automaton (FSA) is selected as the representation for a discrete controller due to its interpretability, fast execution speed and natural extension to a statechart, which is very...... popular in industrial applications. A case study of a two-tank system is used to demonstrate that the proposed evolutionary approach can lead to a successful design of an FSA controller for the hybrid mechatronic system, represented by a hybrid bond graph. Generalisation of the evolved FSA controller...... of the evolutionary design of controllers for hybrid mechatronic systems. Finally, some important future research directions are pointed out, leading to the major work of the succeeding part of the research....

  4. A Novel Single Phase Hybrid Switched Reluctance Motor Drive System

    DEFF Research Database (Denmark)

    Liang, Jianing; Xu, Guoqing; Jian, Linni

    2011-01-01

    In this paper, a novel single phase hybrid switched reluctance motor(SRM) drive system is proposed. It integrated a single phase hybrid SRM and a novel single phase boost converter. This motor can reduce the number of phase switch. And the permanent magnet which is used in the motor can improve t...... SRM reduce the negative torque before zero-crossing point of torque curve, and build desired phase current to generate more power. Some experimental results are done to verify the performance of proposed hybrid SRM drive system....

  5. Hybrid synchronization of two independent chaotic systems on complex network

    Indian Academy of Sciences (India)

    NIAN FUZHONG; LIU WEILONG

    2016-06-01

    The real network nodes are always interfered by other messages. So, how to realize the hybrid synchronization of two independent chaotic systems based on the complex network is very important. To solve this problem, two other problems should be considered. One is how the same network node of the complex network was affected by different information sources. Another is how to achieve hybrid synchronization on the network. In this paper, the theoretical analysis andnumerical simulation on various complex networks are implemented. The results indicate that the hybrid synchronization of two independent chaotic systems is feasible.

  6. User-interfaces for hybrid systems: Analysis and design through hybrid reachability

    Science.gov (United States)

    Oishi, Meeko Mitsuko Karen

    Hybrid systems combine discrete state dynamics, which model mode switching, with continuous state dynamics, which model the physical processes themselves. Applications of hybrid system theory to automated systems have traditionally assumed that the controller itself is an automaton which runs in parallel with the system under control. We model human interaction with hybrid systems, which involves the user; the automation's discrete mode-logic, and the underlying continuous dynamics of the physical system. Often in safety-critical systems, user-interfaces display a reduced set of information about the entire system, however must still provide adequate information and must not confuse the user. We present (1) a method of designing a discrete event system abstraction of the hybrid system, in order to verify or design user-interfaces for hybrid human-automation systems, and (2) the relationship between user-interfaces and discrete observability properties. Using a hybrid computational tool for reachability, we find the largest region in which the system can always remain---this is the safe region of operation. By implementing a controller which arises from this computation, we mathematically guarantee that this safe region is invariant. Assigning discrete states to the computed invariant regions, we create a discrete event system from this hybrid system with safety restrictions. This abstraction can then be used in existing interface verification and design methods. A user-interface, modeled as a discrete system, must, not only be reduced (extraneous information has been eliminated), but also "immediately observable". We derive conditions for immediate observability, in which the current state can be constructed from the current output and last occurring event. Based on finite state machine state-reduction techniques, we synthesize an output for remote user-interfaces which fulfills this property. Aircraft are prime examples of complex, safety-critical systems. In

  7. ON THE STABILIZATION OF THE LINEAR HYBRID SYSTEM STRUCTURE

    Directory of Open Access Journals (Sweden)

    Kirillov

    2014-11-01

    Full Text Available The linear control hybrid system, consisting of a fi- nite set of subsystems (modes having different dimensions, is considered. The moments of reset time are determined by some complementary function – evolutionary time. This function satisfies the special complementary ordinary differential equation. The mode stabilization problem is solved for some class of piecewise linear controls. The method of stabilization relies on the set of invariant planes, the existence of which is due to the special form of the hybrid system.

  8. Hybrid architecture active wavefront sensing and control system, and method

    Science.gov (United States)

    Feinberg, Lee D. (Inventor); Dean, Bruce H. (Inventor); Hyde, Tristram T. (Inventor)

    2011-01-01

    According to various embodiments, provided herein is an optical system and method that can be configured to perform image analysis. The optical system can comprise a telescope assembly and one or more hybrid instruments. The one or more hybrid instruments can be configured to receive image data from the telescope assembly and perform a fine guidance operation and a wavefront sensing operation, simultaneously, on the image data received from the telescope assembly.

  9. EXPONENTIAL ESTIMATES FOR STOCHASTIC DELAY HYBRID SYSTEMS WITH MARKOVIAN SWITCHING

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    This paper deals with the problem of norm bounds for the solutions of stochastic hybrid systems with Markovian switching and time delay. Based on Lyapunov-Krasovskii theory for functional differential equations and the linear matrix inequality (LMI) approach, mean square exponential estimates for the solutions of this class of linear stochastic hybrid systems are derived. Finally, An example is illustrated to show the applicability and effectiveness of our method.

  10. Modeling a Hybrid Microgrid Using Probabilistic Reconfiguration under System Uncertainties

    Directory of Open Access Journals (Sweden)

    Hadis Moradi

    2017-09-01

    Full Text Available A novel method for a day-ahead optimal operation of a hybrid microgrid system including fuel cells, photovoltaic arrays, a microturbine, and battery energy storage in order to fulfill the required load demand is presented in this paper. In the proposed system, the microgrid has access to the main utility grid in order to exchange power when required. Available municipal waste is utilized to produce the hydrogen required for running the fuel cells, and natural gas will be used as the backup source. In the proposed method, an energy scheduling is introduced to optimize the generating unit power outputs for the next day, as well as the power flow with the main grid, in order to minimize the operational costs and produced greenhouse gases emissions. The nature of renewable energies and electric power consumption is both intermittent and unpredictable, and the uncertainty related to the PV array power generation and power consumption has been considered in the next-day energy scheduling. In order to model uncertainties, some scenarios are produced according to Monte Carlo (MC simulations, and microgrid optimal energy scheduling is analyzed under the generated scenarios. In addition, various scenarios created by MC simulations are applied in order to solve unit commitment (UC problems. The microgrid’s day-ahead operation and emission costs are considered as the objective functions, and the particle swarm optimization algorithm is employed to solve the optimization problem. Overall, the proposed model is capable of minimizing the system costs, as well as the unfavorable influence of uncertainties on the microgrid’s profit, by generating different scenarios.

  11. Nutrient utilization with and without recycling within farming systems

    OpenAIRE

    Seuri, Pentti

    2002-01-01

    Nutrient balances are used as a measure of nutrient utilization. It is, however, difficult to compare the nutrient utilization between farms, especially if their production systems are different. New analytical tools and methods of interpreting nutrient utilization based on nutrient balances are introduced.

  12. Utility battery storage systems program report for FY 94

    Energy Technology Data Exchange (ETDEWEB)

    Butler, P.C.

    1995-03-01

    Sandia National Laboratories, New Mexico, conducts the Utility Battery Storage Systems Program, which is sponsored by the US Department of Energy`s Office of Energy Management. The goal of this program is to assist industry in developing cost-effective battery systems as a utility resource option by 2000. Sandia is responsible for the engineering analyses, contracted development, and testing of rechargeable batteries and systems for utility energy storage applications. This report details the technical achievements realized during fiscal year 1994.

  13. Specific systems studies of battery energy storage for electric utilities

    Energy Technology Data Exchange (ETDEWEB)

    Akhil, A.A.; Lachenmeyer, L. [Sandia National Labs., Albuquerque, NM (United States); Jabbour, S.J. [Decision Focus, Inc., Mountain View, CA (United States); Clark, H.K. [Power Technologies, Inc., Roseville, CA (United States)

    1993-08-01

    Sandia National Laboratories, New Mexico, conducts the Utility Battery Storage Systems Program, which is sponsored by the US Department of Energy`s Office of Energy Management. As a part of this program, four utility-specific systems studies were conducted to identify potential battery energy storage applications within each utility network and estimate the related benefits. This report contains the results of these systems studies.

  14. Utility battery storage systems program report for FY 94

    Energy Technology Data Exchange (ETDEWEB)

    Butler, P.C.

    1995-03-01

    Sandia National Laboratories, New Mexico, conducts the Utility Battery Storage Systems Program, which is sponsored by the US Department of Energy`s Office of Energy Management. The goal of this program is to assist industry in developing cost-effective battery systems as a utility resource option by 2000. Sandia is responsible for the engineering analyses, contracted development, and testing of rechargeable batteries and systems for utility energy storage applications. This report details the technical achievements realized during fiscal year 1994.

  15. Application of Hybrid Dynamical Theory to the Cardiovascular System

    KAUST Repository

    Laleg-Kirati, Taous-Meriem

    2014-10-14

    In hybrid dynamical systems, the state evolves in continuous time as well as in discrete modes activated by internal conditions or by external events. In the recent years, hybrid systems modeling has been used to represent the dynamics of biological systems. In such systems, discrete behaviors might originate from unexpected changes in normal performance, e.g., a transition from a healthy to an abnormal condition. Simplifications, model assumptions, and/or modeled (and ignored) nonlinearities can be represented by sudden changes in the state. Modeling cardiovascular system (CVS), one of the most fascinating but most complex human physiological systems, with a hybrid approach, is the focus of this chapter. The hybrid property appears naturally in the CVS thanks to the presence of valves which, depending on their state (closed or open), divide the cardiac cycle into four phases. This chapter shows how hybrid models can be used for modeling the CVS. In addition, it describes a preliminary study on the detection of some cardiac anomalies based on the hybrid model and using the standard observer-based approach.

  16. Note on the Lax Pair of a Coupled Hybrid System

    Institute of Scientific and Technical Information of China (English)

    LIU Ping; FU Pei-Kai

    2012-01-01

    The hybrid lattice,known as a discrete Korteweg-de Vries (KdV) equation,is found to be a discrete modified Korteweg-de Vries (mKdV) equation.The coupled hybrid lattice,which is pointed out to be a discrete coupled KdV system,is also found to be a discrete form of a coupled mKdV system.New lax pairs for the single and coupled discrete hybrid systems are proposed as a different study from previous ones.%The hybrid lattice, known as a discrete Korteweg-de Vries (KdV) equation, is found to be a discrete modified Korteweg-de Vries (mKdV) equation. The coupled hybrid lattice, which is pointed out to be a discrete coupled KdV system, is also found to be a discrete form of a coupled mKdV system. New lax pairs for the single and coupled discrete hybrid systems are proposed as a different study from previous ones.

  17. Sizing Analysis for Aircraft Utilizing Hybrid-Electric Propulsion Systems

    Science.gov (United States)

    2011-03-18

    20  Figure 3: Experimental Torque Measurements [28] ......................................................... 20  Figure 4: Flight...off during loiter operation it could be restarted by powering the motor with the clutch engaged. The torque necessary to do this was substantial and...design the team tested the clutch configuration. It was discovered for this experiment that the clutch could withstand the torque , but the motor was

  18. 42 CFR 457.490 - Delivery and utilization control systems.

    Science.gov (United States)

    2010-10-01

    ... 42 Public Health 4 2010-10-01 2010-10-01 false Delivery and utilization control systems. 457.490... State Plan Requirements: Coverage and Benefits § 457.490 Delivery and utilization control systems. A... control systems. A State must— (a) Describe the methods of delivery of child health assistance...

  19. Mars Hybrid Propulsion System Trajectory Analysis. Part II; Cargo Missions

    Science.gov (United States)

    Chai, Patrick R.; Merrill, Raymond G.; Qu, Min

    2015-01-01

    NASA's Human Spaceflight Architecture Team is developing a reusable hybrid transportation architecture in which both chemical and electric propulsion systems are used to send crew and cargo to Mars destinations such as Phobos, Deimos, the surface of Mars, and other orbits around Mars. By combining chemical and electrical propulsion into a single spaceship and applying each where it is more effective, the hybrid architecture enables a series of Mars trajectories that are more fuel-efficient than an all chemical architecture without significant increases in flight times. This paper shows the feasibility of the hybrid transportation architecture to pre-deploy cargo to Mars and Phobos in support of the Evolvable Mars Campaign crew missions. The analysis shows that the hybrid propulsion stage is able to deliver all of the current manifested payload to Phobos and Mars through the first three crew missions. The conjunction class trajectory also allows the hybrid propulsion stage to return to Earth in a timely fashion so it can be reused for additional cargo deployment. The 1,100 days total trip time allows the hybrid propulsion stage to deliver cargo to Mars every other Earth-Mars transit opportunity. For the first two Mars surface mission in the Evolvable Mars Campaign, the short trip time allows the hybrid propulsion stage to be reused for three round-trip journeys to Mars, which matches the hybrid propulsion stage's designed lifetime for three round-trip crew missions to the Martian sphere of influence.

  20. Optimization of hybrid power system composed of SMES and flywheel MG for large pulsed load

    Science.gov (United States)

    Niiyama, K.; Yagai, T.; Tsuda, M.; Hamajima, T.

    2008-09-01

    A superconducting magnetic storage system (SMES) has some advantages such as rapid large power response and high storage efficiency which are superior to other energy storage systems. A flywheel motor generator (FWMG) has large scaled capacity and high reliability, and hence is broadly utilized for a large pulsed load, while it has comparatively low storage efficiency due to high mechanical loss compared with SMES. A fusion power plant such as International Thermo-Nuclear Experimental Reactor (ITER) requires a large and long pulsed load which causes a frequency deviation in a utility power system. In order to keep the frequency within an allowable deviation, we propose a hybrid power system for the pulsed load, which equips the SMES and the FWMG with the utility power system. We evaluate installation cost and frequency control performance of three power systems combined with energy storage devices; (i) SMES with the utility power, (ii) FWMG with the utility power, (iii) both SMES and FWMG with the utility power. The first power system has excellent frequency power control performance but its installation cost is high. The second system has inferior frequency control performance but its installation cost is the lowest. The third system has good frequency control performance and its installation cost is attained lower than the first power system by adjusting the ratio between SMES and FWMG.

  1. Reachability computation for hybrid systems with Ariadne

    NARCIS (Netherlands)

    L. Benvenuti; D. Bresolin; A. Casagrande; P.J. Collins (Pieter); A. Ferrari; E. Mazzi; T. Villa; A. Sangiovanni-Vincentelli

    2008-01-01

    htmlabstractAriadne is an in-progress open environment to design algorithms for computing with hybrid automata, that relies on a rigorous computable analysis theory to represent geometric objects, in order to achieve provable approximation bounds along the computations. In this paper we discuss the

  2. A hybrid reconfigurable solar and wind energy system

    Science.gov (United States)

    Gadkari, Sagar A.

    We study the feasibility of a novel hybrid solar-wind hybrid system that shares most of its infrastructure and components. During periods of clear sunny days the system will generate electricity from the sun using a parabolic concentrator. The concentrator is formed by individual mirror elements and focuses the light onto high intensity vertical multi-junction (VMJ) cells. During periods of high wind speeds and at night, the same concentrator setup will be reconfigured to channel the wind into a wind turbine which will be used to harness wind energy. In this study we report on the feasibility of this type of solar/wind hybrid energy system. The key mechanisms; optics, cooling mechanism of VMJ cells and air flow through the system were investigated using simulation tools. The results from these simulations, along with a simple economic analysis giving the levelized cost of energy for such a system are presented. An iterative method of design refinement based on the simulation results was used to work towards a prototype design. The levelized cost of the system achieved in the economic analysis shows the system to be a good alternative for a grid isolated site and could be used as a standalone system in regions of lower demand. The new approach to solar wind hybrid system reported herein will pave way for newer generation of hybrid systems that share common infrastructure in addition to the storage and distribution of energy.

  3. Energy Efficient Hybrid Dual Axis Solar Tracking System

    Directory of Open Access Journals (Sweden)

    Rashid Ahammed Ferdaus

    2014-01-01

    Full Text Available This paper describes the design and implementation of an energy efficient solar tracking system from a normal mechanical single axis to a hybrid dual axis. For optimizing the solar tracking mechanism electromechanical systems were evolved through implementation of different evolutional algorithms and methodologies. To present the tracker, a hybrid dual-axis solar tracking system is designed, built, and tested based on both the solar map and light sensor based continuous tracking mechanism. These light sensors also compare the darkness and cloudy and sunny conditions assisting daily tracking. The designed tracker can track sun’s apparent position at different months and seasons; thereby the electrical controlling device requires a real time clock device for guiding the tracking system in seeking solar position for the seasonal motion. So the combination of both of these tracking mechanisms made the designed tracker a hybrid one. The power gain and system power consumption are compared with a static and continuous dual axis solar tracking system. It is found that power gain of hybrid dual axis solar tracking system is almost equal to continuous dual axis solar tracking system, whereas the power saved in system operation by the hybrid tracker is 44.44% compared to the continuous tracking system.

  4. Reliability impact of solar electric generation upon electric utility systems

    Science.gov (United States)

    Day, J. T.; Hobbs, W. J.

    1982-08-01

    The introduction of solar electric systems into an electric utility grid brings new considerations in the assessment of the utility's power supply reliability. This paper summarizes a methodology for estimating the reliability impact of solar electric technologies upon electric utilities for value assessment and planning purposes. Utility expansion and operating impacts are considered. Sample results from photovoltaic analysis show that solar electric plants can increase the reliable load-carrying capability of a utility system. However, the load-carrying capability of the incremental power tends to decrease, particularly at significant capacity penetration levels. Other factors influencing reliability impact are identified.

  5. Hybrid Ventilation with Innovative Heat Recovery—A System Analysis

    Directory of Open Access Journals (Sweden)

    Bengt Hellström

    2013-02-01

    Full Text Available One of the most important factors when low energy houses are built is to have good heat recovery on the ventilation system. However, standard ventilation units use a considerable amount of electricity. This article discusses the consequences on a system level of using hybrid ventilation with heat recovery. The simulation program TRNSYS was used in order to investigate a ventilation system with heat recovery. The system also includes a ground source storage and waste water heat recovery system. The result of the analysis shows that the annual energy gain from ground source storage is limited. However, this is partly a consequence of the fact that the well functioning hybrid ventilation system leaves little room for improvements. The analysis shows that the hybrid ventilation system has potential to be an attractive solution for low energy buildings with a very low need for electrical energy.

  6. DIAGNOSIS WINDOWS PROBLEMS BASED ON HYBRID INTELLIGENCE SYSTEMS

    Directory of Open Access Journals (Sweden)

    SAFWAN O. HASOON

    2013-10-01

    Full Text Available This paper describes the artificial intelligence technologies by integrating Radial Basis Function networks with expert systems to construct a robust hybrid system. The purpose of building the hybrid system is to give recommendations to repair the operating system (Windows problems and troubleshoot the problems that can be repaired. The neural network has unique characteristics which it can complete the uncompleted data, the expert system can't deal with data that is incomplete, but using the neural network individually has some disadvantages which it can't give explanations and recommendations to the problems. The expert system has the ability to explain and give recommendations by using the rules and the human expert in some conditions. Therefore, we have combined the two technologies. The paper will explain the integration methods between the two technologies and which method is suitable to be used in the proposed hybrid system.

  7. Hybrid rocket propulsion systems for outer planet exploration missions

    Science.gov (United States)

    Jens, Elizabeth T.; Cantwell, Brian J.; Hubbard, G. Scott

    2016-11-01

    Outer planet exploration missions require significant propulsive capability, particularly to achieve orbit insertion. Missions to explore the moons of outer planets place even more demanding requirements on propulsion systems, since they involve multiple large ΔV maneuvers. Hybrid rockets present a favorable alternative to conventional propulsion systems for many of these missions. They typically enjoy higher specific impulse than solids, can be throttled, stopped/restarted, and have more flexibility in their packaging configuration. Hybrids are more compact and easier to throttle than liquids and have similar performance levels. In order to investigate the suitability of these propulsion systems for exploration missions, this paper presents novel hybrid motor designs for two interplanetary missions. Hybrid propulsion systems for missions to Europa and Uranus are presented and compared to conventional in-space propulsion systems. The hybrid motor design for each of these missions is optimized across a range of parameters, including propellant selection, O/F ratio, nozzle area ratio, and chamber pressure. Details of the design process are described in order to provide guidance for researchers wishing to evaluate hybrid rocket motor designs for other missions and applications.

  8. Thermal simulation of a cooling system of hybrid commercial vehicles; Thermalsimulation eine Hybrid-LKW-Kuehlsystems

    Energy Technology Data Exchange (ETDEWEB)

    Stroh, Christoph; Schnoerch, Stefan; Rathberger, Christian [Magna Powertrain Engineering Center Steyr GmbH und Co. KG, St. Valentin (Austria)

    2012-11-01

    In the past few years hybrid vehicles have been in the center of automotive engineering efforts, in particular in the field of passenger cars. But hybrid powertrains will also be important for commercial trucks. This focus on hybrid vehicles leads to high demands on thermal management since the additional components in a hybrid vehicle need appropriate cooling or even heating. In the given paper the simulation of a complete cooling system of a hybrid commercial vehicle will be explained. For this virtual examination the commercial 1D thermal management software KULI will be used, a co-simulation with several programs will not be done deliberately. Yet all aspects which are relevant for a global assessment of the thermal management are considered. The main focus is put on the investigation of appropriate concepts for the fluid circuits, including low and high temperature circuits, electric water pumps, etc. Moreover, also a refrigerant circuit with a chiller for active battery cooling will be used, the appropriate control strategy is implemented as well. For simulating transient profiles a simple driving simulation model is included, using road profile, ambient conditions, and various vehicle parameters as input. In addition an engine model is included which enables the investigation of fuel consumption potentials. This simulation model shows how the thermal management of a hybrid vehicle can be investigated with a single program and with reasonable effort. (orig.)

  9. A Frequency Control Approach for Hybrid Power System Using Multi-Objective Optimization

    Directory of Open Access Journals (Sweden)

    Mohammed Elsayed Lotfy

    2017-01-01

    Full Text Available A hybrid power system uses many wind turbine generators (WTG and solar photovoltaics (PV in isolated small areas. However, the output power of these renewable sources is not constant and can diverge quickly, which has a serious effect on system frequency and the continuity of demand supply. In order to solve this problem, this paper presents a new frequency control scheme for a hybrid power system to ensure supplying a high-quality power in isolated areas. The proposed power system consists of a WTG, PV, aqua-electrolyzer (AE, fuel cell (FC, battery energy storage system (BESS, flywheel (FW and diesel engine generator (DEG. Furthermore, plug-in hybrid electric vehicles (EVs are implemented at the customer side. A full-order observer is utilized to estimate the supply error. Then, the estimated supply error is considered in a frequency domain. The high-frequency component is reduced by BESS and FW; while the low-frequency component of supply error is mitigated using FC, EV and DEG. Two PI controllers are implemented in the proposed system to control the system frequency and reduce the supply error. The epsilon multi-objective genetic algorithm ( ε -MOGA is applied to optimize the controllers’ parameters. The performance of the proposed control scheme is compared with that of recent well-established techniques, such as a PID controller tuned by the quasi-oppositional harmony search algorithm (QOHSA. The effectiveness and robustness of the hybrid power system are investigated under various operating conditions.

  10. Analysis of advanced solar hybrid desiccant cooling systems for buildings

    Energy Technology Data Exchange (ETDEWEB)

    Schlepp, D.; Schultz, K.

    1984-10-01

    This report describes an assessment of the energy savings possible from developing hybrid desiccant/vapor-compression air conditioning systems. Recent advances in dehumidifier design for solar desiccant cooling systems have resulted in a dehumidifier with a low pressure drop and high efficiency in heat and mass transfer. A recent study on hybrid desiccant/vapor compression systems showed a 30%-80% savings in resource energy when compared with the best conventional systems with vapor compression. A system consisting of a dehumidifier with vapor compression subsystems in series was found to be the simplest and best overall performer.

  11. Analysis on potential approaches to utilize genic male sterility in plant hybrid breeding

    Institute of Scientific and Technical Information of China (English)

    Li Xinqi; Yuan Longping; Xiao Jinhua; Xie fangming

    2005-01-01

    @@ The exploitation of plant heterosis is an effective approach to increasing the food production. The heterotic hybrid varieties in major crops such as rice,cotton, and wheat can show more than 20% yield advantage over best conventional ones under the same cultivation conditions. The difficulties in breeding elite male sterile lines and the inconveniences for commercial hybrid seed production are hampering the development of hybrid crops breeding.

  12. A PRODUCT HYBRID GMRES ALGORITHM FOR NONSYMMETRIC LINEAR SYSTEMS

    Institute of Scientific and Technical Information of China (English)

    Bao-jiang Zhong

    2005-01-01

    It has been observed that the residual polynomials resulted from successive restarting cycles of GMRES(m) may differ from one another meaningfully. In this paper, it is further shown that the polynomials can complement one another harmoniously in reducing the iterative residual. This characterization of GMRES(m) is exploited to formulate an efficient hybrid iterative scheme, which can be widely applied to existing hybrid algorithms for solving large nonsymmetric systems of linear equations. In particular, a variant of the hybrid GMRES algorithm of Nachtigal, Reichel and Trefethen (1992) is presented. It is described how the new algorithm may offer significant performance improvements over the original one.

  13. Utility Battery Storage Systems Program plan: FY 1994--FY 1998

    Energy Technology Data Exchange (ETDEWEB)

    1994-02-01

    The Utility Battery Storage Systems Program, sponsored by the US Department of Energy (DOE), is addressing needed improvements so that the full benefits of these systems can be realized. A key element of the Program is the quantification of the benefits of batteries used in utility applications. The analyses of the applications and benefits are ongoing, but preliminary results indicate that the widespread introduction of battery storage by utilities could benefit the US economy by more than $26 billion by 2010 and create thousands of new jobs. Other critical elements of the DOE Program focus on improving the batteries, power electronics, and control subsystems and reducing their costs. These subsystems are then integrated and the systems undergo field evaluation. Finally, the most important element of the Program is the communication of the capabilities and benefits of battery systems to utility companies. Justifiably conservative, utilities must have proven, reliable equipment that is economical before they can adopt new technologies. While several utilities are leading the industry by demonstrating battery systems, a key task of the DOE program is to inform the entire industry of the value, characteristics, and availability of utility battery systems so that knowledgeable decisions can be made regarding future investments. This program plan for the DOE Utility Battery Storage Systems Program describes the technical and programmatic activities needed to bring about the widespread use of batteries by utilities. By following this plan, the DOE anticipates that many of the significant national benefits from battery storage will be achieved in the near future.

  14. Hybrid Shipboard Microgrids: System Architectures and Energy Management Aspects

    DEFF Research Database (Denmark)

    Othman @ Marzuki, Muzaidi Bin; Anvari-Moghaddam, Amjad; Guerrero, Josep M.

    2017-01-01

    such as renewables (e.g., solar PV, wind power) and conventionals (e.g., diesel engines) as well as energy storage systems (ESSs) such as batteries, fuel cells and flywheels. To optimally manage different energy sources in a shipboard microgrid while meeting different technical/environmental constraints......Strict regulation on emissions of air pollutants imposed by the maritime authorities has led to the introduction of hybrid microgrids to the shipboard power systems (SPSs) which acts toward energy efficient ships with less pollution. A hybrid energy system can include different means of generation......, it is necessary to set up an energy management system. This paper provides an overview of hybrid shipboard microgrids and discusses different methods of power and energy management in such systems which are essential for control, monitoring and optimizing the overall system performance in various mission profiles....

  15. Hybrid Intrusion Detection System for DDoS Attacks

    Directory of Open Access Journals (Sweden)

    Özge Cepheli

    2016-01-01

    Full Text Available Distributed denial-of-service (DDoS attacks are one of the major threats and possibly the hardest security problem for today’s Internet. In this paper we propose a hybrid detection system, referred to as hybrid intrusion detection system (H-IDS, for detection of DDoS attacks. Our proposed detection system makes use of both anomaly-based and signature-based detection methods separately but in an integrated fashion and combines the outcomes of both detectors to enhance the overall detection accuracy. We apply two distinct datasets to our proposed system in order to test the detection performance of H-IDS and conclude that the proposed hybrid system gives better results than the systems based on nonhybrid detection.

  16. Energy-Efficient Building HVAC Control Using Hybrid System LBMPC

    CERN Document Server

    Aswani, Anil; Taneja, Jay; Krioukov, Andrew; Culler, David; Tomlin, Claire

    2012-01-01

    Improving the energy-efficiency of heating, ventilation, and air-conditioning (HVAC) systems has the potential to realize large economic and societal benefits. This paper concerns the system identification of a hybrid system model of a building-wide HVAC system and its subsequent control using a hybrid system formulation of learning-based model predictive control (LBMPC). Here, the learning refers to model updates to the hybrid system model that incorporate the heating effects due to occupancy, solar effects, outside air temperature (OAT), and equipment, in addition to integrator dynamics inherently present in low-level control. Though we make significant modeling simplifications, our corresponding controller that uses this model is able to experimentally achieve a large reduction in energy usage without any degradations in occupant comfort. It is in this way that we justify the modeling simplifications that we have made. We conclude by presenting results from experiments on our building HVAC testbed, which s...

  17. Use of hybrid renewable energy systems for small communities

    Directory of Open Access Journals (Sweden)

    Bandoc Georgeta

    2016-01-01

    Full Text Available The purpose of this article is to present how the sizing of a hybrid renewable energy system is done for a community of three hundred and five households located in a Delta, starting from the optimization of hybrid energy system for a single household. The methodology used in solving this problem is based on multiple options. The first option consists in determined energy needs, maximum power consumption in cold season and in adapting the solution for the production of electricity by a hybrid plant. The second option consists of energy needs resulted in average consumption of electricity in warm season and in adapting the solution for the production of electricity from a hybrid plant. In conjunction with the demand for electricity for the entire community one will get energy demand by aggregating household level (kWh/household. The novelty of this approach lies in the method used by these hybrid systems for obtaining electricity in small communities, isolated from this case study. Based on the results obtained the method can be expanded the implementation of these projects that use hybrid renewable energy systems.

  18. Utility battery storage systems. Program report for FY95

    Energy Technology Data Exchange (ETDEWEB)

    Butler, P.C.

    1996-03-01

    Sandia National Laboratories, New Mexico, conducts the Utility Battery Storage Systems Program, which is sponsored by the U.S. Department of Energy`s Office of Utility Technologies. The goal of this program is to assist industry in developing cost-effective battery systems as a utility resource option by 2000. Sandia is responsible for the engineering analyses, contracted development, and testing of rechargeable batteries and systems for utility energy storage applications. This report details the technical achievements realized during fiscal year 1995.

  19. Split-gene system for hybrid wheat seed production.

    Science.gov (United States)

    Kempe, Katja; Rubtsova, Myroslava; Gils, Mario

    2014-06-24

    Hybrid wheat plants are superior in yield and growth characteristics compared with their homozygous parents. The commercial production of wheat hybrids is difficult because of the inbreeding nature of wheat and the lack of a practical fertility control that enforces outcrossing. We describe a hybrid wheat system that relies on the expression of a phytotoxic barnase and provides for male sterility. The barnase coding information is divided and distributed at two loci that are located on allelic positions of the host chromosome and are therefore "linked in repulsion." Functional complementation of the loci is achieved through coexpression of the barnase fragments and intein-mediated ligation of the barnase protein fragments. This system allows for growth and maintenance of male-sterile female crossing partners, whereas the hybrids are fertile. The technology does not require fertility restorers and is based solely on the genetic modification of the female crossing partner.

  20. Hybrid Communication System Based on OFDM

    Directory of Open Access Journals (Sweden)

    2013-11-01

    Full Text Available A Hybrid architecture between terrestrial and satellite networks based on Orthogonal Frequency Division Multiplexing (OFDM is employed here. In hybrid architecture, the users will be able to avail the services through the terrestrial networks as well as the satellite networks. The users located in urban areas will be served by the existing terrestrial mobile networks and similarly the one located in rural areas will be provided services through the satellite networks. The technique which is used to achieve this objective is called Pre-FFT adaptive beamforming also called time domain beamforming. When the data is received at the satellite end, the Pre-FFT adaptive beamforming extracts the desired user data from the interferer user by applying the complex weights to the received symbol. The weight for the next symbol is then updated by Least Mean Square (LMS algorithm and then is applied to it. This process is carried out till all the desired user data is extracted.

  1. Geothermal energy systems. Exploration, development, and utilization

    Energy Technology Data Exchange (ETDEWEB)

    Huenges, Ernst (ed.) [GeoForschungsZentrum Potsdam (Germany)

    2010-07-01

    Presenting boundary conditions for the economic and environmental utilization of geothermal technology, this is the first book to provide basic knowledge on the topic in such detail. The editor is the coordinator of the European Geothermic Research Initiative, while the authors are experts for the various geological situations in Europe with high temperature reservoirs in shallow and deep horizons. With its perspectives for R and D in geothermic technology concluding each chapter, this ready reference will be of great value to scientists and decision-makers in research and politics, as well as those giving courses in petroleum engineering, for example. (orig.)

  2. Analysis of Hybrid-Electric Propulsion System Designs for Small Unmanned Aircraft Systems

    Science.gov (United States)

    2010-03-01

    arrival of the Insight, nearly every major automotive manufacturer has released its own hybrid model. The Toyota Prius , released to the US in 2001, has...dominated the hybrid marketplace with US sales topping 1,000,000 in March 2009.17 The Prius features a power-split hybrid system enabling use of an

  3. Rapid Global Calibration Technology for Hybrid Visual Inspection System.

    Science.gov (United States)

    Liu, Tao; Yin, Shibin; Guo, Yin; Zhu, Jigui

    2017-06-19

    Vision-based methods for product quality inspection are playing an increasingly important role in modern industries for their good performance and high efficiency. A hybrid visual inspection system, which consists of an industrial robot with a flexible sensor and several stationary sensors, has been widely applied in mass production, especially in automobile manufacturing. In this paper, a rapid global calibration method for the hybrid visual inspection system is proposed. Global calibration of a flexible sensor is performed first based on the robot kinematic. Then, with the aid of the calibrated flexible sensor, stationary sensors are calibrated globally one by one based on homography. Only a standard sphere and an auxiliary target with a 2D planar pattern are applied during the system global calibration, and the calibration process can be easily re-performed during the system's periodical maintenance. An error compensation method is proposed for the hybrid inspection system, and the final accuracy of the hybrid system is evaluated with the deviation and correlation coefficient between the measured results of the hybrid system and Coordinate Measuring Machine (CMM). An accuracy verification experiment shows that deviation of over 95% of featured points are less than ±0.3 mm, and the correlation coefficients of over 85% of points are larger than 0.7.

  4. Towards a General Theory of Stochastic Hybrid Systems

    OpenAIRE

    Bujorianu, L.M.; Lygeros, J.; Bujorianu, M. C.

    2008-01-01

    In this paper we set up a mathematical structure, called Markov string, to obtaining a very general class of models for stochastic hybrid systems. Markov Strings are, in fact, a class of Markov processes, obtained by a mixing mechanism of stochastic processes, introduced by Meyer. We prove that Markov strings are strong Markov processes with the cadlag property. We then show how a very general class of stochastic hybrid processes can be embedded in the framework of Markov strings. This class,...

  5. Hybrid Recommendation System Memanfaatkan Penggalian Frequent Itemset dan Perbandingan Keyword

    OpenAIRE

    Suka Parwita, Wayan Gede; Winarko, Edi

    2015-01-01

    AbstrakRecommendation system sering dibangun dengan memanfaatkan data peringkat item dan data identitas pengguna. Data peringkat item merupakan data yang langka pada sistem yang baru dibangun. Sedangkan, pemberian data identitas pada recommendation system dapat menimbulkan kekhawatiran penyalahgunaan data identitas.Hybrid recommendation system memanfaatkan algoritma penggalian frequent itemset dan perbandingan keyword dapat memberikan daftar rekomendasi tanpa menggunakan data identitas penggu...

  6. Hybrid systems: a real-time interface to control engineering

    DEFF Research Database (Denmark)

    Eriksen, Thomas Juul; Heilmann, Søren; Holdgaard, Michael

    1996-01-01

    are usually investigated by control engineers that base their work on the theory of dynamic systems. The mathematical tool for this work is thus mathematical analysis, in particular the theory of differential equations. The paper gives an introduction to a general hybrid systems model for definition of system...

  7. Generalization of Dielectric-Dependent Hybrid Functionals to Finite Systems

    Science.gov (United States)

    Brawand, Nicholas P.; Vörös, Márton; Govoni, Marco; Galli, Giulia

    2016-10-01

    The accurate prediction of electronic and optical properties of molecules and solids is a persistent challenge for methods based on density functional theory. We propose a generalization of dielectric-dependent hybrid functionals to finite systems where the definition of the mixing fraction of exact and semilocal exchange is physically motivated, nonempirical, and system dependent. The proposed functional yields ionization potentials, and fundamental and optical gaps of many, diverse molecular systems in excellent agreement with experiments, including organic and inorganic molecules and semiconducting nanocrystals. We further demonstrate that this hybrid functional gives the correct alignment between energy levels of the exemplary TTF-TCNQ donor-acceptor system.

  8. Impulsive and hybrid dynamical systems stability, dissipativity, and control

    CERN Document Server

    Haddad, Wassim M; Nersesov, Sergey G

    2014-01-01

    This book develops a general analysis and synthesis framework for impulsive and hybrid dynamical systems. Such a framework is imperative for modern complex engineering systems that involve interacting continuous-time and discrete-time dynamics with multiple modes of operation that place stringent demands on controller design and require implementation of increasing complexity--whether advanced high-performance tactical fighter aircraft and space vehicles, variable-cycle gas turbine engines, or air and ground transportation systems. Impulsive and Hybrid Dynamical Systems goes beyond similar

  9. Utility Battery Storage Systems Program report for FY93

    Energy Technology Data Exchange (ETDEWEB)

    Butler, P.C.

    1994-02-01

    Sandia National Laboratories, New Mexico, conducts the Utility Battery Storage Systems Program, which is sponsored by the US Department of Energy`s Office of Energy Management. In this capacity, Sandia is responsible for the engineering analyses, contract development, and testing of rechargeable batteries and systems for utility-energy-storage applications. This report details the technical achievements realized during fiscal year 1993.

  10. Hybrid active vibration control of rotorbearing systems using piezoelectric actuators

    Science.gov (United States)

    Palazzolo, A. B.; Jagannathan, S.; Kascak, A. F.; Montague, G. T.; Kiraly, L. J.

    1993-01-01

    The vibrations of a flexible rotor are controlled using piezoelectric actuators. The controller includes active analog components and a hybrid interface with a digital computer. The computer utilizes a grid search algorithm to select feedback gains that minimize a vibration norm at a specific operating speed. These gains are then downloaded as active stillnesses and dampings with a linear fit throughout the operating speed range to obtain a very effective vibration control.

  11. Rapid Global Calibration Technology for Hybrid Visual Inspection System

    Directory of Open Access Journals (Sweden)

    Tao Liu

    2017-06-01

    Full Text Available Vision-based methods for product quality inspection are playing an increasingly important role in modern industries for their good performance and high efficiency. A hybrid visual inspection system, which consists of an industrial robot with a flexible sensor and several stationary sensors, has been widely applied in mass production, especially in automobile manufacturing. In this paper, a rapid global calibration method for the hybrid visual inspection system is proposed. Global calibration of a flexible sensor is performed first based on the robot kinematic. Then, with the aid of the calibrated flexible sensor, stationary sensors are calibrated globally one by one based on homography. Only a standard sphere and an auxiliary target with a 2D planar pattern are applied during the system global calibration, and the calibration process can be easily re-performed during the system’s periodical maintenance. An error compensation method is proposed for the hybrid inspection system, and the final accuracy of the hybrid system is evaluated with the deviation and correlation coefficient between the measured results of the hybrid system and Coordinate Measuring Machine (CMM. An accuracy verification experiment shows that deviation of over 95% of featured points are less than ±0.3 mm, and the correlation coefficients of over 85% of points are larger than 0.7.

  12. Performance evaluation and parametric optimization of a proton exchange membrane fuel cell/heat-driven heat pump hybrid system

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, X.; Chen, J. [Department of Physics, Xiamen University, Xiamen 361005 (China)

    2012-06-15

    With the help of the current models of proton exchange membrane (PEM) fuel cells and three-heat-source heat pumps, a generic model of a PEM fuel cell/heat-driven heat pump hybrid system is established, so that the waste heat produced in the PEM fuel cell may be availably utilized. Based on the theory of electrochemistry and non-equilibrium thermodynamics, expressions for the efficiency and power output of the PEM fuel cell, the coefficient of performance and rate of pumping heat of the heat-driven heat pump, and the equivalent efficiency and power output of the hybrid system are derived. The curves of the equivalent efficiency and power output of the hybrid system varying with the electric current density and the equivalent power output versus efficiency curves are represented through numerical calculation. The general performance characteristics of the hybrid system are analyzed. The optimally operating regions of some important parameters of the hybrid system are determined. The influence of some main irreversible losses on the performance of the hybrid system is discussed in detail. The advantages of the hybrid system are revealed. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  13. Multi-Agent System based Event-Triggered Hybrid Controls for High-Security Hybrid Energy Generation Systems

    DEFF Research Database (Denmark)

    Dou, Chun-Xia; Yue, Dong; Guerrero, Josep M.

    2017-01-01

    This paper proposes multi-agent system based event- triggered hybrid controls for guaranteeing energy supply of a hybrid energy generation system with high security. First, a mul-ti-agent system is constituted by an upper-level central coordi-nated control agent combined with several lower...... switching control, distributed dynamic regulation and coordinated switching con-trol are designed fully dependent on the hybrid behaviors of all distributed energy resources and the logical relationships be-tween them, and interact with each other by means of the mul-ti-agent system to form hierarchical......-level unit agents. Each lower-level unit agent is responsible for dealing with internal switching control and distributed dynamic regula-tion for its unit system. The upper-level agent implements coor-dinated switching control to guarantee the power supply of over-all system with high security. The internal...

  14. Backstepping fuzzy-neural-network control design for hybrid maglev transportation system.

    Science.gov (United States)

    Wai, Rong-Jong; Yao, Jing-Xiang; Lee, Jeng-Dao

    2015-02-01

    This paper focuses on the design of a backstepping fuzzy-neural-network control (BFNNC) for the online levitated balancing and propulsive positioning of a hybrid magnetic levitation (maglev) transportation system. The dynamic model of the hybrid maglev transportation system including levitated hybrid electromagnets to reduce the suspension power loss and the friction force during linear movement and a propulsive linear induction motor based on the concepts of mechanical geometry and motion dynamics is first constructed. The ultimate goal is to design an online fuzzy neural network (FNN) control methodology to cope with the problem of the complicated control transformation and the chattering control effort in backstepping control (BSC) design, and to directly ensure the stability of the controlled system without the requirement of strict constraints, detailed system information, and auxiliary compensated controllers despite the existence of uncertainties. In the proposed BFNNC scheme, an FNN control is utilized to be the major control role by imitating the BSC strategy, and adaptation laws for network parameters are derived in the sense of projection algorithm and Lyapunov stability theorem to ensure the network convergence as well as stable control performance. The effectiveness of the proposed control strategy for the hybrid maglev transportation system is verified by experimental results, and the superiority of the BFNNC scheme is indicated in comparison with the BSC strategy and the backstepping particle-swarm-optimization control system in previous research.

  15. Isolation of plant transcription factors using a modified yeast one-hybrid system

    Directory of Open Access Journals (Sweden)

    Shirley Neil

    2006-02-01

    Full Text Available Abstract Background The preparation of expressional cDNA libraries for use in the yeast two-hybrid system is quick and efficient when using the dedicated Clontech™ product, the MATCHMAKER Library Construction and Screening Kit 3. This kit employs SMART technology for the amplification of full-length cDNAs, in combination with cloning using homologous recombination. Unfortunately, such cDNA libraries prepared directly in yeast can not be used for the efficient recovery of purified plasmids and thus are incompatible with existing yeast one-hybrid systems, which use yeast transformation for the library screen. Results Here we propose an adaptation of the yeast one-hybrid system for identification and cloning of transcription factors using a MATCHMAKER cDNA library. The procedure is demonstrated using a cDNA library prepared from the liquid part of the multinucleate coenocyte of wheat endosperm. The method is a modification of a standard one-hybrid screening protocol, utilising a mating step to introduce the library construct and reporter construct into the same cell. Several novel full length transcription factors from the homeodomain, AP2 domain and E2F families of transcription factors were identified and isolated. Conclusion In this paper we propose a method to extend the compatibility of MATCHMAKER cDNA libraries from yeast two-hybrid screens to one-hybrid screens. The utility of the new yeast one-hybrid technology is demonstrated by the successful cloning from wheat of full-length cDNAs encoding several transcription factors from three different families.

  16. Enhanced Utility Accrual Scheduling Algorithms for Adaptive Real Time System

    Directory of Open Access Journals (Sweden)

    Idawaty Ahmad

    2009-01-01

    Full Text Available Problem statement: This study proposed two utility accrual real time scheduling algorithms named as Preemptive Utility Accrual Scheduling (PUAS and Non-preemptive Utility Accrual Scheduling (NUAS algorithms. These algorithms addressed the unnecessary abortion problem that was identified in the existing algorithm known as General Utility Scheduling (GUS. It is observed that GUS is inefficient for independent task model because it simply aborts any task that currently executing a resource with lower utility when a new task with higher utility requests the resource. The scheduling optimality criteria are based on maximizing accrued utility accumulated from execution of all tasks in the system. These criteria are named as Utility Accrual (UA. The UA scheduling algorithms are design for adaptive real time system environment where deadline misses are tolerable and do not have great consequences to the system. Approach: We eliminated the scheduling decision to abort a task in GUS and proposed to preempt a task instead of being aborted if the task is preemptive able. We compared the performances of these algorithms by using discrete event simulation. Results: The proposed PUAS algorithm achieved the highest accrued utility for the entire load range. This is followed by the NUAS and GUS algorithms. Conclusion: Simulation results revealed that the proposed algorithms were more efficient than the existing algorithm, producing with higher accrued utility ratio and less abortion ratio making it more suitable and efficient for real time application domain.

  17. Modelling and analysis of real-time and hybrid systems

    Energy Technology Data Exchange (ETDEWEB)

    Olivero, A.

    1994-09-29

    This work deals with the modelling and analysis of real-time and hybrid systems. We first present the timed-graphs as model for the real-time systems and we recall the basic notions of the analysis of real-time systems. We describe the temporal properties on the timed-graphs using TCTL formulas. We consider two methods for property verification: in one hand we study the symbolic model-checking (based on backward analysis) and in the other hand we propose a verification method derived of the construction of the simulation graph (based on forward analysis). Both methods have been implemented within the KRONOS verification tool. Their application for the automatic verification on several real-time systems confirms the practical interest of our approach. In a second part we study the hybrid systems, systems combining discrete components with continuous ones. As in the general case the analysis of this king of systems is not decidable, we identify two sub-classes of hybrid systems and we give a construction based method for the generation of a timed-graph from an element into the sub-classes. We prove that in one case the timed-graph obtained is bi-similar with the considered system and that there exists a simulation in the other case. These relationships allow the application of the described technics on the hybrid systems into the defined sub-classes. (authors). 60 refs., 43 figs., 8 tabs., 2 annexes.

  18. Integrated Baseline System (IBS) Version 1.03: Utilities guide

    Energy Technology Data Exchange (ETDEWEB)

    Burford, M.J.; Downing, T.R.; Pottier, M.C.; Schrank, E.E.; Williams, J.R.

    1993-01-01

    The Integrated Baseline System (IBS) is an emergency management planning and analysis tool that was developed under the direction of the Federal Emergency Management Agency (FEMA). This Utilities Guide explains how to operate utility programs that are supplied as a part of the IBS. These utility programs are chiefly for managing and manipulating various kinds of IBS data and system administration files. Many of the utilities are for creating, editing, converting, or displaying map data and other data that are related to geographic location.

  19. Utilization of arbuscular mycorrhiza by system management

    OpenAIRE

    Kahiluoto, Helena; Vestberg, Mauritz

    2000-01-01

    Mycorrhiza is an ecosystem service which can be relied on and favoured, but also impaired or irreversibly lost depending on the production system. Arbuscular mycorrhiza (AM) deserves to be considered in development of sustainable farming systems as well as in breeding and soil quality assessment programmes serving sustainable agriculture. AM effectiveness in field soils can be assessed using a standardized bioassay.

  20. INEXPENSIVE, OFF THE SHELF HYBRID MICROWAVE SYSTEM

    Energy Technology Data Exchange (ETDEWEB)

    Walters, T; Paul Burket, P; John Scogin, J

    2007-06-21

    A hybrid-heating microwave oven provides the energy to heat small 10-gram samples of spent metal tritide storage bed material to release tenaciously held decay product {sup 3}He. Complete mass balance procedures require direct measurement of added or produced gases on a tritide bed, and over 1100 C is necessary to release deep trapped {sup 3}He. The decomposition of non-radioactive CaCO{sub 3} and the quantitative measurement of CO{sub 2} within 3% of stoichiometry demonstrate the capabilities of the apparatus to capture generated (released) gases.

  1. Hybrid simulation theory for a classical nonlinear dynamical system

    Science.gov (United States)

    Drazin, Paul L.; Govindjee, Sanjay

    2017-03-01

    Hybrid simulation is an experimental and computational technique which allows one to study the time evolution of a system by physically testing a subset of it while the remainder is represented by a numerical model that is attached to the physical portion via sensors and actuators. The technique allows one to study large or complicated mechanical systems while only requiring a subset of the complete system to be present in the laboratory. This results in vast cost savings as well as the ability to study systems that simply can not be tested due to scale. However, the errors that arise from splitting the system in two requires careful attention, if a valid simulation is to be guaranteed. To date, efforts to understand the theoretical limitations of hybrid simulation have been restricted to linear dynamical systems. In this work we consider the behavior of hybrid simulation when applied to nonlinear dynamical systems. As a model problem, we focus on the damped, harmonically-driven nonlinear pendulum. This system offers complex nonlinear characteristics, in particular periodic and chaotic motions. We are able to show that the application of hybrid simulation to nonlinear systems requires a careful understanding of what one expects from such an experiment. In particular, when system response is chaotic we advocate the need for the use of multiple metrics to characterize the difference between two chaotic systems via Lyapunov exponents and Lyapunov dimensions, as well as correlation exponents. When system response is periodic we advocate the use of L2 norms. Further, we are able to show that hybrid simulation can falsely predict chaotic or periodic response when the true system has the opposite characteristic. In certain cases, we are able to show that control system parameters can mitigate this issue.

  2. Viability of Hybrid Systems A Controllability Operator Approach

    CERN Document Server

    Labinaz, G

    2012-01-01

    The problem of viability of hybrid systems is considered in this work. A model for a hybrid system is developed including a means of including three forms of uncertainty: transition dynamics, structural uncertainty, and parametric uncertainty. A computational basis for viability of hybrid systems is developed and applied to three control law classes. An approach is developed for robust viability based on two extensions of the controllability operator. The three-tank example is examined for both the viability problem and robust viability problem. The theory is applied through simulation to an active magnetic bearing system and to a batch polymerization process showing that viability can be satisfied in practice. The problem of viable attainability is examined based on the controllability operator approach introduced by Nerode and colleagues. Lastly, properties of the controllability operator are presented.

  3. Hybrid energy system cost analysis: San Nicolas Island, California

    Energy Technology Data Exchange (ETDEWEB)

    Olsen, T.L.; McKenna, E.

    1996-07-01

    This report analyzes the local wind resource and evaluates the costs and benefits of supplementing the current diesel-powered energy system on San Nicolas Island, California (SNI), with wind turbines. In Section 2.0 the SNI site, naval operations, and current energy system are described, as are the data collection and analysis procedures. Section 3.0 summarizes the wind resource data and analyses that were presented in NREL/TP 442-20231. Sections 4.0 and 5.0 present the conceptual design and cost analysis of a hybrid wind and diesel energy system on SNI, with conclusions following in Section 6. Appendix A presents summary pages of the hybrid system spreadsheet model, and Appendix B contains input and output files for the HYBRID2 program.

  4. Solid Oxide Fuel Cell Hybrid System for Distributed Power Generation

    Energy Technology Data Exchange (ETDEWEB)

    Faress Rahman; Nguyen Minh

    2004-01-04

    This report summarizes the work performed by Hybrid Power Generation Systems, LLC (HPGS) during the July 2003 to December 2003 reporting period under Cooperative Agreement DE-FC26-01NT40779 for the U. S. Department of Energy, National Energy Technology Laboratory (DOE/NETL) entitled ''Solid Oxide Fuel Cell Hybrid System for Distributed Power Generation''. The main objective of this project is to develop and demonstrate the feasibility of a highly efficient hybrid system integrating a planar Solid Oxide Fuel Cell (SOFC) and a micro-turbine. In addition, an activity included in this program focuses on the development of an integrated coal gasification fuel cell system concept based on planar SOFC technology. Also, another activity included in this program focuses on the development of SOFC scale up strategies.

  5. Potential Evaluation of Solar Heat Assisted Desiccant Hybrid Air Conditioning System

    Science.gov (United States)

    Tran, Thien Nha; Hamamoto, Yoshinori; Akisawa, Atsushi; Kashiwagi, Takao

    The solar thermal driven desiccant dehumidification-absorption cooling hybrid system has superior advantage in hot-humid climate regions. The reasonable air processing of desiccant hybrid air conditioning system and the utility of clean and free energy make the system environment friendly and energy efficient. The study investigates the performance of the desiccant dehumidification air conditioning systems with solar thermal assistant. The investigation is performed for three cases which are combinations of solar thermal and absorption cooling systems with different heat supply temperature levels. Two solar thermal systems are used in the study: the flat plate collector (FPC) and the vacuum tube with compound parabolic concentrator (CPC). The single-effect and high energy efficient double-, triple-effect LiBr-water absorption cooling cycles are considered for cooling systems. COP of desiccant hybrid air conditioning systems are determined. The evaluation of these systems is subsequently performed. The single effect absorption cooling cycle combined with the flat plate collector solar system is found to be the most energy efficient air conditioning system.

  6. A hybrid continuous-wave terahertz imaging system

    Energy Technology Data Exchange (ETDEWEB)

    Dolganova, Irina N., E-mail: in.dolganova@gmail.com; Zaytsev, Kirill I., E-mail: kirzay@gmail.ru; Metelkina, Anna A.; Karasik, Valeriy E.; Yurchenko, Stanislav O., E-mail: st.yurchenko@mail.ru [Bauman Moscow State Technical University, 2nd Baumanskaya str. 5, Moscow 105005 (Russian Federation)

    2015-11-15

    A hybrid (active-passive mode) terahertz (THz) imaging system and an algorithm for imaging synthesis are proposed to enhance the THz image quality. The concept of image contrast is used to compare active and passive THz imaging. Combining the measurement of the self-emitted radiation of the object with the back-scattered source radiation measurement, it becomes possible to use the THz image to retrieve maximum information about the object. The experimental results confirm the advantages of hybrid THz imaging systems, which can be generalized for a wide range of applications in the material sciences, chemical physics, bio-systems, etc.

  7. Benefits of solar/fossil hybrid gas turbine systems

    Science.gov (United States)

    Bloomfield, H. S.

    1979-01-01

    The potential benefits of solar/fossil hybrid gas turbine power systems were assessed. Both retrofit and new systems were considered from the aspects of cost of electricity, fuel conservation, operational mode, technology requirements, and fuels flexibility. Hybrid retrofit (repowering) of existing combustion (simple Brayton cycle) turbines can provide near-term fuel savings and solar experience, while new and advanced recuperated or combined cycle systems may be an attractive fuel saving and economically competitive vehicle to transition from today's gas and oil-fired powerplants to other more abundant fuels.

  8. 15th International conference on Hybrid Intelligent Systems

    CERN Document Server

    Han, Sang; Al-Sharhan, Salah; Liu, Hongbo

    2016-01-01

    This book is devoted to the hybridization of intelligent systems which is a promising research field of modern computational intelligence concerned with the development of the next generation of intelligent systems. This Volume contains the papers presented in the Fifteenth International conference on Hybrid Intelligent Systems (HIS 2015) held in Seoul, South Korea during November 16-18, 2015. The 26 papers presented in this Volume were carefully reviewed and selected from 90 paper submissions. The Volume will be a valuable reference to researchers, students and practitioners in the computational intelligence field.

  9. Hybrid Collaborative Stereo Vision System for Mobile Robots Formation

    Directory of Open Access Journals (Sweden)

    Flavio Roberti

    2010-02-01

    Full Text Available This paper presents the use of a hybrid collaborative stereo vision system (3D-distributed visual sensing using different kinds of vision cameras for the autonomous navigation of a wheeled robot team. It is proposed a triangulation-based method for the 3D-posture computation of an unknown object by considering the collaborative hybrid stereo vision system, and this way to steer the robot team to a desired position relative to such object while maintaining a desired robot formation. Experimental results with real mobile robots are included to validate the proposed vision system.

  10. Data readout system utilizing photonic integrated circuit

    Energy Technology Data Exchange (ETDEWEB)

    Stopiński, S., E-mail: S.Stopinski@tue.nl [COBRA Research Institute, Eindhoven University of Technology (Netherlands); Institute of Microelectronics and Optoelectronics, Warsaw University of Technology (Poland); Malinowski, M.; Piramidowicz, R. [Institute of Microelectronics and Optoelectronics, Warsaw University of Technology (Poland); Smit, M.K.; Leijtens, X.J.M. [COBRA Research Institute, Eindhoven University of Technology (Netherlands)

    2013-10-11

    We describe a novel optical solution for data readout systems. The core of the system is an Indium-Phosphide photonic integrated circuit performing as a front-end readout unit. It functions as an optical serializer in which the serialization of the input signal is provided by means of on-chip optical delay lines. The circuit employs electro-optic phase shifters to build amplitude modulators, power splitters for signal distribution, semiconductor optical amplifiers for signal amplification as well as on-chip reflectors. We present the concept of the system, the design and first characterization results of the devices that were fabricated in a multi-project wafer run.

  11. Techno-economic analysis of a hybrid mini-grid system for Fiji islands

    Energy Technology Data Exchange (ETDEWEB)

    Lal, Sandeep; Raturi, Atul [Univ. of South Pacific, Suva (Fiji). School of Engineering and Physics

    2012-07-01

    The Pacific Island Countries constantly struggle with the challenges of high petroleum dependence for their electricity production and lack of adequate energy services. It is possible to alleviate the energy poverty by utilizing abundant renewable energy resources available in the region. The objective of this work is to investigate the feasibility of a wind/solar photovoltaic/diesel generator-based hybrid power system in a remote location in Fiji islands. We used the Hybrid Optimisation Model for Electric Renewables (HOMER) software to simulate the system and perform system optimisation analysis. The system characteristics were studied in terms of optimal configuration, net present cost and the cost of energy. An entirely renewable energy-based configuration is feasible if 10% annual capacity shortage is allowed, while for a scenario with no capacity shortage, addition of a diesel generator is necessary. The addition of renewable energy components results in greenhouse gas reduction which could be used for carbon trading. (orig.)

  12. Downstream resource utilization following hybrid cardiac imaging with an integrated cadmium-zinc-telluride/64-slice CT device

    Energy Technology Data Exchange (ETDEWEB)

    Fiechter, Michael; Kaufmann, Philipp A. [University Hospital Zurich, Department of Radiology, Cardiac Imaging, Zurich (Switzerland); University of Zurich, Zurich Center for Integrative Human Physiology (ZIHP), Zurich (Switzerland); Ghadri, Jelena R.; Wolfrum, Mathias; Kuest, Silke M.; Pazhenkottil, Aju P.; Nkoulou, Rene N.; Herzog, Bernhard A.; Gebhard, Catherine; Fuchs, Tobias A.; Gaemperli, Oliver [University Hospital Zurich, Department of Radiology, Cardiac Imaging, Zurich (Switzerland)

    2012-03-15

    Low yield of invasive coronary angiography and unnecessary coronary interventions have been identified as key cost drivers in cardiology for evaluation of coronary artery disease (CAD). This has fuelled the search for noninvasive techniques providing comprehensive functional and anatomical information on coronary lesions. We have evaluated the impact of implementation of a novel hybrid cadmium-zinc-telluride (CZT)/64-slice CT camera into the daily clinical routine on downstream resource utilization. Sixty-two patients with known or suspected CAD were referred for same-day single-session hybrid evaluation with CZT myocardial perfusion imaging (MPI) and coronary CT angiography (CCTA). Hybrid MPI/CCTA images from the integrated CZT/CT camera served for decision-making towards conservative versus invasive management. Based on the hybrid images patients were classified into those with and those without matched findings. Matched findings were defined as the combination of MPI defect with a stenosis by CCTA in the coronary artery subtending the respective territory. All patients with normal MPI and CCTA as well as those with isolated MPI or CCTA finding or combined but unmatched findings were categorized as ''no match''. All 23 patients with a matched finding underwent invasive coronary angiography and 21 (91%) were revascularized. Of the 39 patients with no match, 5 (13%, p < 0.001 vs matched) underwent catheterization and 3 (8%, p < 0.001 vs matched) were revascularized. Cardiac hybrid imaging in CAD evaluation has a profound impact on patient management and may contribute to optimal downstream resource utilization. (orig.)

  13. Load flow computations in hybrid transmission - distributed power systems

    NARCIS (Netherlands)

    Wobbes, E.D.; Lahaye, D.J.P.

    2013-01-01

    We interconnect transmission and distribution power systems and perform load flow computations in the hybrid network. In the largest example we managed to build, fifty copies of a distribution network consisting of fifteen nodes is connected to the UCTE study model, resulting in a system consisting

  14. Study of optimal control problems for hybrid dynamical systems

    Institute of Scientific and Technical Information of China (English)

    Gao Rui; Wang Lei; Wang Yuzhen

    2006-01-01

    From the viewpoint of continuous systems, optimal control problem is proposed for a class of controlled Hybrid dynamical systems. Then a mathematical method- HDS minimum principle is put forward, which can solve the above problem. The HDS minimum principle is proved by means of Ekeland's variational principle.

  15. Cost analysis of energy storage systems for electric utility applications

    Energy Technology Data Exchange (ETDEWEB)

    Akhil, A. [Sandia National Lab., Albuquerque, NM (United States); Swaminathan, S.; Sen, R.K. [R.K. Sen & Associates, Inc., Bethesda, MD (United States)

    1997-02-01

    Under the sponsorship of the Department of Energy, Office of Utility Technologies, the Energy Storage System Analysis and Development Department at Sandia National Laboratories (SNL) conducted a cost analysis of energy storage systems for electric utility applications. The scope of the study included the analysis of costs for existing and planned battery, SMES, and flywheel energy storage systems. The analysis also identified the potential for cost reduction of key components.

  16. Dimension Reduction Near Periodic Orbits of Hybrid Systems

    CERN Document Server

    Burden, Samuel; Sastry, S Shankar

    2011-01-01

    When the Poincar\\'{e} map associated with a periodic orbit of a hybrid dynamical system has constant-rank iterates, we demonstrate the existence of a constant-dimensional invariant subsystem near the orbit which attracts all nearby trajectories in finite time. This result shows that the long-term behavior of a hybrid model with a large number of degrees-of-freedom may be governed by a low-dimensional smooth dynamical system. The appearance of such simplified models enables the translation of analytical tools from smooth systems-such as Floquet theory-to the hybrid setting and provides a bridge between the efforts of biologists and engineers studying legged locomotion.

  17. Space Storable Hybrid Rockets for Orbit Insertion or In Situ Resource Utilization Applications Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Goals:1. Continue development of a flexible facility capable of small scale hybrid propulsion tests. The facility will be able to adapt to new research objectives as...

  18. Utilizing JUSUR in an Information Systems Course

    Science.gov (United States)

    Zouhair, Jalila

    2010-01-01

    The aims of this paper are to report the perceptions of both faculty and students when JUSUR, a web based Learning Management System, is used to supplement the teaching inside and outside the classroom during one academic subject; and to compare the experience of the instructor who had previously taught the same course using a course website to…

  19. Valve Health Monitoring System Utilizing Smart Instrumentation

    Science.gov (United States)

    Jensen, Scott L.; Drouant, George J.

    2006-01-01

    The valve monitoring system is a stand alone unit with network capabilities for integration into a higher level health management system. The system is designed for aiding in failure predictions of high-geared ball valves and linearly actuated valves. It performs data tracking and archiving for identifying degraded performance. The data collection types are cryogenic cycles, total cycles, inlet temperature, body temperature torsional strain, linear bonnet strain, preload position, total travel and total directional changes. Events are recorded and time stamped in accordance with the IRIG B True Time. The monitoring system is designed for use in a Class 1 Division II explosive environment. The basic configuration consists of several instrumentation sensor units and a base station. The sensor units are self contained microprocessor controlled and remotely mountable in three by three by two inches. Each unit is potted in a fire retardant substance without any cavities and limited to low operating power for maintaining safe operation in a hydrogen environment. The units are temperature monitored to safeguard against operation outside temperature limitations. Each contains 902-928 MHz band digital transmitters which meet Federal Communication Commission's requirements and are limited to a 35 foot transmission radius for preserving data security. The base-station controller correlates data from the sensor units and generates data event logs on a compact flash memory module for database uploading. The entries are also broadcast over an Ethernet network. Nitrogen purged National Electrical Manufactures Association (NEMA) Class 4 enclosures are used to house the base-station

  20. Hierarchical modeling and control of hybrid systems with two layers; Hierarchische Modellierung und Regelung hybrider Systeme auf zwei Ebenen

    Energy Technology Data Exchange (ETDEWEB)

    Stursberg, Olaf; Paschedag, Tina; Rungger, Matthias; Ding, Hao [Kassel Univ. (Germany). Fachgebiet Regelungs- und Systemtheorie

    2010-08-15

    While hybrid dynamic models are, to a certain degree, established for modeling systems with heterogeneous dynamics, most approaches for design and analysis of hybrid systems are restricted to monolithic models without hierarchy. This contribution first shows, how modular hybrid systems with two layers of decision, as appropriate for representing manufacturing systems for example, can be modeled systematically. The second part proposes a technique for fixing discrete inputs (for coordinating control) and continuous inputs (for embedded continuous controllers) in combination. The method uses a graph-based search on the upper decision layer, while principles of predictive control are used on the lower layer. The procedure of modeling and control is illustrated for a manufacturing process. (orig.)

  1. Photovoltaic/diesel hybrid systems: The design process

    Science.gov (United States)

    Jones, G. J.; Chapman, R. N.

    A photovoltaic/storage system by itself may be uneconomical for stand-alone applications with large energy demands. However, by combining the PV system with a back-up energy source, such as a diesel, gasoline, or propane/thermoelectric generator, system economics can be improved. Such PV/fossil hybrid systems are being used, but their design has required detailed modeling to determine the optimal mix of photovoltaics and back-up energy. Recent data on diesel field reliability and a new design technique for stand-alone systems have overcome this problem. The approach provides the means for sizing the photovoltaic system to obtain a near optimal hybrid system, with about a 90% savings in back-up fuel costs. System economics are determined by comparing PV capital cost to the present value of the displaced diesel operation and maintenance costs.

  2. Utilization of aromatic rice in improving grain quality of hybrid rice(Ⅱ)

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    Xiangxiang 2A has an evident drawback, i.e., instability in male sterility under higher temperature conditionsresulting from the existence of minor restoring genes in it, which greatly hampered the extension of its elite hybrid Xiangyou63 with both high yield and fine quality in commercial production.To improve Xiangxiang 2A, the hybridization of Xiangxiang 2B with V20 B was made again in 1990. A new aromaticCMS line Xinxiang A was successfully developed in 1994. It not only retains the favorable characteristics of Xiangxiang 2Ain grain quality and combining ability, but also expresses complete and stable male sterility and high seed production yieldpotential. Up to now, by using it as female parent, a series of quasi-aromatic hybrids have been developed. Some of themhave been released to farmers. Because such hybrids can not only yield higher or as high as but also possess a bettergrain quality than the current common high-yielding hybrid rice varieties, so that they are preferred and well welcome bythe farmers in China. The planting area under these hybrids is increasing rapidly in China.

  3. Diagnosing Hybrid Systems: a Bayesian Model Selection Approach

    Science.gov (United States)

    McIlraith, Sheila A.

    2005-01-01

    In this paper we examine the problem of monitoring and diagnosing noisy complex dynamical systems that are modeled as hybrid systems-models of continuous behavior, interleaved by discrete transitions. In particular, we examine continuous systems with embedded supervisory controllers that experience abrupt, partial or full failure of component devices. Building on our previous work in this area (MBCG99;MBCG00), our specific focus in this paper ins on the mathematical formulation of the hybrid monitoring and diagnosis task as a Bayesian model tracking algorithm. The nonlinear dynamics of many hybrid systems present challenges to probabilistic tracking. Further, probabilistic tracking of a system for the purposes of diagnosis is problematic because the models of the system corresponding to failure modes are numerous and generally very unlikely. To focus tracking on these unlikely models and to reduce the number of potential models under consideration, we exploit logic-based techniques for qualitative model-based diagnosis to conjecture a limited initial set of consistent candidate models. In this paper we discuss alternative tracking techniques that are relevant to different classes of hybrid systems, focusing specifically on a method for tracking multiple models of nonlinear behavior simultaneously using factored sampling and conditional density propagation. To illustrate and motivate the approach described in this paper we examine the problem of monitoring and diganosing NASA's Sprint AERCam, a small spherical robotic camera unit with 12 thrusters that enable both linear and rotational motion.

  4. Adaptive and Reliable Control Algorithm for Hybrid System Architecture

    Directory of Open Access Journals (Sweden)

    Osama Abdel Hakeem Abdel Sattar

    2012-01-01

    Full Text Available A stand-alone system is defined as an autonomous system that supplies electricity without being connected to the electric grid. Hybrid systems combined renewable energy source, that are never depleted (such solar (photovoltaic (PV, wind, hydroelectric, etc. , With other sources of energy, like Diesel. If these hybrid systems are optimally designed, they can be more cost effective and reliable than single systems. However, the design of hybrid systems is complex because of the uncertain renewable energy supplies, load demands and the non-linear characteristics of some components, so the design problem cannot be solved easily by classical optimisation methods. The use of heuristic techniques, such as the genetic algorithms, can give better results than classical methods. This paper presents to a hybrid system control algorithm and also dispatches strategy design in which wind is the primary energy resource with photovoltaic cells. The dimension of the design (max. load is 2000 kW and the sources is implemented as flow 1500 kw from wind, 500 kw from solar and diesel 2000 kw. The main task of the preposed algorithm is to take full advantage of the wind energy and solar energy when it is available and to minimize diesel fuel consumption.

  5. Hybrid Atom Electrostatic System for Satellite Geodesy

    Science.gov (United States)

    Zahzam, Nassim; Bidel, Yannick; Bresson, Alexandre; Huynh, Phuong-Anh; Liorzou, Françoise; Lebat, Vincent; Foulon, Bernard; Christophe, Bruno

    2017-04-01

    The subject of this poster comes within the framework of new concepts identification and development for future satellite gravity missions, in continuation of previously launched space missions CHAMP, GRACE, GOCE and ongoing and prospective studies like NGGM, GRACE 2 or E-GRASP. We were here more focused on the inertial sensors that complete the payload of such satellites. The clearly identified instruments for space accelerometry are based on the electrostatic technology developed for many years by ONERA and that offer a high level of performance and a high degree of maturity for space applications. On the other hand, a new generation of sensors based on cold atom interferometry (AI) is emerging and seems very promising in this context. These atomic instruments have already demonstrated on ground impressive results, especially with the development of state-of-the-art gravimeters, and should reach their full potential only in space, where the microgravity environment allows long interaction times. Each of these two types of instruments presents their own advantages which are, for the electrostatic sensors (ES), their demonstrated short term sensitivity and their high TRL, and for AI, amongst others, the absolute nature of the measurement and therefore no need for calibration processes. These two technologies seem in some aspects very complementary and a hybrid sensor bringing together all their assets could be the opportunity to take a big step in this context of gravity space missions. We present here the first experimental association on ground of an electrostatic accelerometer and an atomic accelerometer and underline the interest of calibrating the ES instrument with the AI. Some technical methods using the ES proof-mass as the Raman Mirror seem very promising to remove rotation effects of the satellite on the AI signal. We propose a roadmap to explore further in details and more rigorously this attractive hybridization scheme in order to assess its potential

  6. Reflections on Improvement of Utility Model System in China

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Even since 1985 when the Patent Law was launched in China, the utility model patent has been playing a very important role. Over the two decades, the utility model system has played an active part in encouraging invention-creations, and promoting the progress and development of science and technology.

  7. Remote Medical Diagnosis System (RMDS) Utilization Study.

    Science.gov (United States)

    1981-08-18

    able to determine that amputation of the finger at the third joint was 10. Telemedicine in Alaska, the ATS-6 Satellite Biomedical Demonstration, by D...physician then instructed the corpsman in the technique for performing the amputation . The physician stated in his report that the RMDS was beneficial to...involving ECGs, plastic surgery (burns), dermatology, physiotherapy , microscope slides, and dentistry. The use of the systems for the continuing medical

  8. Comparison between hybrid renewable energy systems in Saudi Arabia

    Directory of Open Access Journals (Sweden)

    Hisham El Khashab

    2015-05-01

    This paper investigates RE sources applications at Yanbu, Saudi Arabia, besides a simulation using HOMER software to three proposed systems newly erected in Yanbu Industrial College Renewable Energy (RE lab. The lab represents a hybrid system, composed of PV, wind turbine, and Fuel cell systems. The cost of energy is compared in the three systems to have an actual estimation for RE in developing countries. The climatic variations at Yanbu that is located on the west coast of Saudi Arabia are considered.

  9. Optical-digital hybrid image search system in cloud environment

    Science.gov (United States)

    Ikeda, Kanami; Kodate, Kashiko; Watanabe, Eriko

    2016-09-01

    To improve the versatility and usability of optical correlators, we developed an optical-digital hybrid image search system consisting of digital servers and an optical correlator that can be used to perform image searches in the cloud environment via a web browser. This hybrid system employs a simple method to obtain correlation signals and has a distributed network design. The correlation signals are acquired by using an encoder timing signal generated by a rotating disk, and the distributed network design facilitates the replacement and combination of the digital correlation server and the optical correlator.

  10. Engine-driven hybrid air-conditioning system

    Institute of Scientific and Technical Information of China (English)

    Chaokui QIN; Hongmei LU; Xiong LIU; Gerhard SCHMITZ

    2009-01-01

    A hybrid air-conditioning system that com-bines an engine-driven chiller with desiccant dehumidifi-cation was configured and experimentally tested to provide reliable data for energy consumption and operation cost. The engine performance and the desiccant wheel perfor-mance were measured and a numeric model previously set up for dehumidification capacity prediction was validated. For a reference building, the results based upon measured data show that under present electricity/gas price ratio, more than 40% of operation cost can be saved by the hybrid system.

  11. Overview of PV Wind hybrid system activities in Germany

    Energy Technology Data Exchange (ETDEWEB)

    Bopp, G.; Gabler, H.; Kiefer, K.; Preiser, K.; Wiemken, E. [Fraunhofer Institute for Solar Energy Systems ISE, Freiburg (Germany)

    1997-12-31

    Photovoltaic solar generators combined with diesel engines, in some cases additionally with wind energy converters, and battery energy storage are powering isolated mountain lodges, information centers in nature parks, isolated farms or dwellings all over Europe. A total of 300,000 buildings in Europe are estimated to be not connected to the public grid. This represents a major market potential for photovoltaic, as often photovoltaic power generation is less expensive than a connection to the electric utility. The Fraunhofer Institute for Solar Energy Systems ISE has planned, realized and monitored about 30 hybrid remote energy supply systems with PV generators typically around 5 kW for loads typically around 20 kWh per day. More than one hundred years of operational experience accumulated so far, are a sound foundation on which to draw an interim balance over problems solved and technical questions still under development. Room for further technical development is seen in the domain of system reliability and the reduction of operating costs as well as in the optimization of the utilization of the electric energy produced by the PV generator. [Espanol] Para la electrificacion en toda Europa de casas de campo en la montana, centros de informacion, parques naturales, granjas aisladas o conjuntos habitacionales, se estan usando generadores fotovoltaicos combinados con maquinas diesel, en algunos casos adicionalmente con convertidores de energia del viento y baterias para el almacenamiento de energia. Se estima que en Europa un total de 300,000 edificios no estan conectados a la red publica. Esto representa un gran mercado potencial para los sistemas fotovoltaicos, ya que a menudo la generacion fotovoltaica es menos costosa que una conexion a la empresa electrica. El Instituto Fraunhofer para Sistemas de Energia Solar ISE ha planeado, llevado a cabo y monitoreado alrededor de 30 sistemas hibridos remotos de suministro de energia con generadores fotovoltaicos

  12. Heavy Duty Diesel Truck and Bus Hybrid Powertrain Study

    Science.gov (United States)

    2012-03-01

    include utility boom trucks and beverage haulers. Eaton Corp. manufactures a parallel hybrid-electric drivetrain that is used by many of the truck...Original Equipment Manufacturers (OEMs). Most of the hybrid buses use series hybrid-electric drivetrains , and key manufacturers are BAE Systems, ISE...Competing Alternatives to Diesel-Electric Hybrid Powertrains ............................................ 153 6.1 Hydraulic Hybrid Drivetrains

  13. Photovoltaic/thermal solar hybrid system with bifacial PV module and transparent plane collector

    Energy Technology Data Exchange (ETDEWEB)

    Robles-Ocampo, B. [Instituto Tecnologico de Celaya, Celaya 11111, Guanajuato (Mexico); CINVESTAV-Queretaro, Libramiento Norponiente 2000, Unidad Queretaro, Fracc. Real de Juriquilla, Queretaro, 76230, QRO (Mexico); Ruiz-Vasquez, E.; Canseco-Sanchez, H. [Instituto Tecnologico de Oaxaca, Oaxaca 68030, Oaxaca (Mexico); CINVESTAV-Queretaro, Libramiento Norponiente 2000, Unidad Queretaro, Fracc. Real de Juriquilla, Queretaro, 76230, QRO (Mexico); Cornejo-Meza, R.C. [Instituto Tecnologico de Tepic, av. Tecnologico 2595, Tepic 63175, Nayarit (Mexico); CINVESTAV-Queretaro, Libramiento Norponiente 2000, Unidad Queretaro, Fracc. Real de Juriquilla, Queretaro, 76230, QRO (Mexico); Trapaga-Martinez, G.; Vorobiev, Y.V. [CINVESTAV-Queretaro, Libramiento Norponiente 2000, Unidad Queretaro, Fracc. Real de Juriquilla, Queretaro, 76230, QRO (Mexico); Garcia-Rodriguez, F.J. [Instituto Tecnologico de Celaya, Celaya 11111, Guanajuato (Mexico); Gonzalez-Hernandez, J. [CIMAV, Miguel de Cervantes 120, Chihuahua 31109, Chihuahua (Mexico)

    2007-12-14

    Electric energy production with photovoltaic (PV)/thermal solar hybrid systems can be enhanced with the employment of a bifacial PV module. Experimental model of a PV/thermal hybrid system with such a module was constructed and studied. To make use of both active surfaces of the bifacial PV module, we designed and made an original water-heating planar collector and a set of reflecting planes. The heat collector was transparent in the visible and near-infrared spectral regions, which makes it compatible with the PV module made of crystalline Si. The estimated overall solar energy utilization efficiency for the system related to the direct radiation flux is of the order of 60%, with an electric efficiency of 16.4%. (author)

  14. Evaluation of a Compact Hybrid Brain-Computer Interface System

    Directory of Open Access Journals (Sweden)

    Jaeyoung Shin

    2017-01-01

    Full Text Available We realized a compact hybrid brain-computer interface (BCI system by integrating a portable near-infrared spectroscopy (NIRS device with an economical electroencephalography (EEG system. The NIRS array was located on the subjects’ forehead, covering the prefrontal area. The EEG electrodes were distributed over the frontal, motor/temporal, and parietal areas. The experimental paradigm involved a Stroop word-picture matching test in combination with mental arithmetic (MA and baseline (BL tasks, in which the subjects were asked to perform either MA or BL in response to congruent or incongruent conditions, respectively. We compared the classification accuracies of each of the modalities (NIRS or EEG with that of the hybrid system. We showed that the hybrid system outperforms the unimodal EEG and NIRS systems by 6.2% and 2.5%, respectively. Since the proposed hybrid system is based on portable platforms, it is not confined to a laboratory environment and has the potential to be used in real-life situations, such as in neurorehabilitation.

  15. The possibility of developing hybrid PV/T solar system

    Science.gov (United States)

    Dobrnjac, M.; Zivkovic, P.; Babic, V.

    2017-05-01

    An alternative and cost-effective solution to developing integrated PV system is to use hybrid photovoltaic/thermal (PV/T) solar system. The temperature of PV modules increases due to the absorbed solar radiation that is not converted into electricity, causing a decrease in their efficiency. In hybrid PV/T solar systems the reduction of PV module temperature can be combined with a useful fluid heating. In this paper we present the possibility of developing a new hybrid PV/T solar system. Hybrid PV/T system can provide electrical and thermal energy, thus achieving a higher energy conversion rate of the absorbed solar radiation. We developed PV/T prototype consisted of commercial PV module and thermal panel with our original solution of aluminium absorber with special geometric shapes. The main advantages of our combined PV/T system are: removing of heat from the PV panel; extending the lifetime of photovoltaic cells; excess of the removing heat from PV part is used to heat the fluid in the thermal part of the panel; the possibility of using on the roof and facade constructions because less weight.

  16. Development of Parametric Mass and Volume Models for an Aerospace SOFC/Gas Turbine Hybrid System

    Science.gov (United States)

    Tornabene, Robert; Wang, Xiao-yen; Steffen, Christopher J., Jr.; Freeh, Joshua E.

    2005-01-01

    In aerospace power systems, mass and volume are key considerations to produce a viable design. The utilization of fuel cells is being studied for a commercial aircraft electrical power unit. Based on preliminary analyses, a SOFC/gas turbine system may be a potential solution. This paper describes the parametric mass and volume models that are used to assess an aerospace hybrid system design. The design tool utilizes input from the thermodynamic system model and produces component sizing, performance, and mass estimates. The software is designed such that the thermodynamic model is linked to the mass and volume model to provide immediate feedback during the design process. It allows for automating an optimization process that accounts for mass and volume in its figure of merit. Each component in the system is modeled with a combination of theoretical and empirical approaches. A description of the assumptions and design analyses is presented.

  17. Design, control and power management of a battery/ultra-capacitor hybrid system for small electric vehicles

    DEFF Research Database (Denmark)

    Li, Zhihao; Onar, Omer; Khaligh, Alireza

    2009-01-01

    This paper introduces design, control, and power management of a battery/ultra-capacitor hybrid system, utilized for small electric vehicles (EV). The batteries are designed and controlled to work as the main energy storage source of the vehicle, supplying average power to the load; and the ultra-capacitors...

  18. Design, control and power management of a battery/ultra-capacitor hybrid system for small electric vehicles

    DEFF Research Database (Denmark)

    Li, Zhihao; Onar, Omer; Khaligh, Alireza

    2009-01-01

    This paper introduces design, control, and power management of a battery/ultra-capacitor hybrid system, utilized for small electric vehicles (EV). The batteries are designed and controlled to work as the main energy storage source of the vehicle, supplying average power to the load; and the ultra...

  19. Optimization and field demonstration of hybrid hydrogen generator/high efficiency furnace system

    Energy Technology Data Exchange (ETDEWEB)

    Entchev, E.; Coyle, I.; Szadkowski, F. [CANMET Energy Technology Centre, 1 Haanel Dr., Ottawa, Ontario K1A-1M1 (Canada); Manning, M.; Swinton, M. [National Research Council Ottawa, Ontario (Canada); Graydon, J.; Kirk, D. [University of Toronto, Toronto, Ontario (Canada)

    2009-05-15

    Hydrogen is seen as an energy carrier of the future and significant research on hydrogen generation, storage and utilization is accomplished around the world. However, an appropriate intermediate step before wide hydrogen introduction will be blending conventional fuels such as natural gas, oil or diesel with hydrogen and follow up combustion through conventional means. Due to changes in the combustion and flame characteristics of the system additional research is needed to access the limits and the impact of the fuel mix on the combustion systems performance. The hybrid system consists of a 5 kW{sub el} electrolyzer and a residential 15 kW{sub th} high efficiency gas fired furnace. The electrolyzer was integrated with the furnace gas supply and setup to replace 5-25% of the furnace natural gas flow with hydrogen. A mean for proper mixing of hydrogen with natural gas was provided and a control system for safe system operation was developed. Prior to the start of the field trial the hybrid system was investigated in laboratory environment. It was subjected to a variety of steady state and cycling conditions and a detailed performance and optimization analysis was performed with a range of hydrogen/natural gas mixtures. The optimized system was then installed at the Canadian Centre for Housing Technologies (CCHT) Experimental research house. The energy performance of the hybrid system was compared to the energy performance of an identical high efficiency furnace in the Control research house next door. (author)

  20. Accelerated Degradation for Hardware in the Loop Simulation of Fuel Cell-Gas Turbine Hybrid System

    DEFF Research Database (Denmark)

    Abreu-Sepulveda, Maria A.; Harun, Nor Farida; Hackett, Gregory

    2015-01-01

    The U.S. Department of Energy (DOE)-National Energy Technology Laboratory (NETL) in Morgantown, WV has developed the hybrid performance (HyPer) project in which a solid oxide fuel cell (SOFC) one-dimensional (1D), real-time operating model is coupled to a gas turbine hardware system by utilizing...... hardware-in-the-loop simulation. To assess the long-term stability of the SOFC part of the system, electrochemical degradation due to operating conditions such as current density and fuel utilization have been incorporated into the SOFC model and successfully recreated in real time. The mathematical...... expression for degradation rate was obtained through the analysis of empirical voltage versus time plots for different current densities and fuel utilizations....

  1. Utility-scale system preventive and failure-related maintenance

    Energy Technology Data Exchange (ETDEWEB)

    Jennings, C.; Hutchinson, P.

    1995-11-01

    This paper describes the design and performance background on PVUSA utility-scale systems at Davis and Kerman, California, and reports on a preventative and failure-related maintenance approach and costs.

  2. Optimization strategy for element sizing in hybrid power systems

    Science.gov (United States)

    del Real, Alejandro J.; Arce, Alicia; Bordons, Carlos

    This paper presents a procedure to evaluate the optimal element sizing of hybrid power systems. In order to generalize the problem, this work exploits the "energy hub" formulation previously presented in the literature, defining an energy hub as an interface among energy producers, consumers and the transportation infrastructure. The resulting optimization minimizes an objective function which is based on costs and efficiencies of the system elements, while taking into account the hub model, energy and power constraints and estimated operational conditions, such as energy prices, input power flow availability and output energy demand. The resulting optimal architecture also constitutes a framework for further real-time control designs. Moreover, an example of a hybrid storage system is considered. In particular, the architecture of a hybrid plant incorporating a wind generator, batteries and intermediate hydrogen storage is optimized, based on real wind data and averaged residential demands, also taking into account possible estimation errors. The hydrogen system integrates an electrolyzer, a fuel cell stack and hydrogen tanks. The resulting optimal cost of such hybrid power plant is compared with the equivalent hydrogen-only and battery-only systems, showing improvements in investment costs of almost 30% in the worst case.

  3. Optimization strategy for element sizing in hybrid power systems

    Energy Technology Data Exchange (ETDEWEB)

    del Real, Alejandro J.; Arce, Alicia; Bordons, Carlos [Departamento de Ingenieria de Sistemas y Automatica, Universidad de Sevilla, 41092 Sevilla (Spain)

    2009-08-01

    This paper presents a procedure to evaluate the optimal element sizing of hybrid power systems. In order to generalize the problem, this work exploits the ''energy hub'' formulation previously presented in the literature, defining an energy hub as an interface among energy producers, consumers and the transportation infrastructure. The resulting optimization minimizes an objective function which is based on costs and efficiencies of the system elements, while taking into account the hub model, energy and power constraints and estimated operational conditions, such as energy prices, input power flow availability and output energy demand. The resulting optimal architecture also constitutes a framework for further real-time control designs. Moreover, an example of a hybrid storage system is considered. In particular, the architecture of a hybrid plant incorporating a wind generator, batteries and intermediate hydrogen storage is optimized, based on real wind data and averaged residential demands, also taking into account possible estimation errors. The hydrogen system integrates an electrolyzer, a fuel cell stack and hydrogen tanks. The resulting optimal cost of such hybrid power plant is compared with the equivalent hydrogen-only and battery-only systems, showing improvements in investment costs of almost 30% in the worst case. (author)

  4. Performance Analysis of a Hybrid Power Cutting System for Roadheader

    Directory of Open Access Journals (Sweden)

    Yang Yang

    2017-01-01

    Full Text Available An electrohydraulic hybrid power cutting transmission system for roadheader under specific working condition was proposed in this paper. The overall model for the new system composed of an electric motor model, a hydraulic pump-motor model, a torsional planetary set model, and a hybrid power train model was established. The working mode characteristics were simulated under the conditions of taking the effect of cutting picks into account. The advantages of new hybrid power cutting system about the dynamic response under shock load were investigated compared with the traditional cutting system. The results illustrated that the hybrid power system had an obvious cushioning in terms of the dynamic load of cutting electric motor and planetary gear set. Besides, the hydraulic motor could provide an auxiliary power to improve the performance of the electric motor. With further analysis, a dynamic load was found to have a high relation to the stiffness and damping of coupling in the transmission train. The results could be a useful guide for the design of cutting transmission of roadheader.

  5. Stand-alone hybrid wind-photovoltaic power generation systems optimal sizing

    Science.gov (United States)

    Crǎciunescu, Aurelian; Popescu, Claudia; Popescu, Mihai; Florea, Leonard Marin

    2013-10-01

    Wind and photovoltaic energy resources have attracted energy sectors to generate power on a large scale. A drawback, common to these options, is their unpredictable nature and dependence on day time and meteorological conditions. Fortunately, the problems caused by the variable nature of these resources can be partially overcome by integrating the two resources in proper combination, using the strengths of one source to overcome the weakness of the other. The hybrid systems that combine wind and solar generating units with battery backup can attenuate their individual fluctuations and can match with the power requirements of the beneficiaries. In order to efficiently and economically utilize the hybrid energy system, one optimum match design sizing method is necessary. In this way, literature offers a variety of methods for multi-objective optimal designing of hybrid wind/photovoltaic (WG/PV) generating systems, one of the last being genetic algorithms (GA) and particle swarm optimization (PSO). In this paper, mathematical models of hybrid WG/PV components and a short description of the last proposed multi-objective optimization algorithms are given.

  6. Integrated Baseline System (IBS) Version 2.0: Utilities Guide

    Energy Technology Data Exchange (ETDEWEB)

    Burford, M.J.; Downing, T.R.; Williams, J.R. [Pacific Northwest Lab., Richland, WA (United States); Bower, J.C. [Bower Software Services, Kennewick, WA (United States)

    1994-03-01

    The Integrated Baseline System (IBS) is an emergency management planning and analysis tool being developed under the direction of the US Army Nuclear and Chemical Agency. This Utilities Guide explains how you can use the IBS utility programs to manage and manipulate various kinds of IBS data. These programs include utilities for creating, editing, and displaying maps and other data that are referenced to geographic location. The intended audience for this document are chiefly data managers but also system managers and some emergency management planners and analysts.

  7. Hybrid intelligent monironing systems for thermal power plant trips

    Science.gov (United States)

    Barsoum, Nader; Ismail, Firas Basim

    2012-11-01

    Steam boiler is one of the main equipment in thermal power plants. If the steam boiler trips it may lead to entire shutdown of the plant, which is economically burdensome. Early boiler trips monitoring is crucial to maintain normal and safe operational conditions. In the present work two artificial intelligent monitoring systems specialized in boiler trips have been proposed and coded within the MATLAB environment. The training and validation of the two systems has been performed using real operational data captured from the plant control system of selected power plant. An integrated plant data preparation framework for seven boiler trips with related operational variables has been proposed for IMSs data analysis. The first IMS represents the use of pure Artificial Neural Network system for boiler trip detection. All seven boiler trips under consideration have been detected by IMSs before or at the same time of the plant control system. The second IMS represents the use of Genetic Algorithms and Artificial Neural Networks as a hybrid intelligent system. A slightly lower root mean square error was observed in the second system which reveals that the hybrid intelligent system performed better than the pure neural network system. Also, the optimal selection of the most influencing variables performed successfully by the hybrid intelligent system.

  8. An optimal control strategy for standalone PV system with Battery-Supercapacitor Hybrid Energy Storage System

    Science.gov (United States)

    Chong, Lee Wai; Wong, Yee Wan; Rajkumar, Rajprasad Kumar; Isa, Dino

    2016-11-01

    This paper proposes an optimal control strategy for a standalone PV system with Battery-Supercapacitor Hybrid Energy Storage System to prolong battery lifespan by reducing the dynamic stress and peak current demand of the battery. Unlike the conventional methods which only use either filtration based controller (FBC) or fuzzy logic controller (FLC), the proposed control strategy comprises of a low-pass filter (LPF) and FLC. Firstly, LPF removes the high dynamic components from the battery demand. FLC minimizes the battery peak current demand while constantly considering the state-of-charge of the supercapacitor. Particle swarm optimization (PSO) algorithm optimizes the membership functions of the FLC to achieve optimal battery peak current reduction. The proposed system is compared to the conventional system with battery-only storage and the systems with conventional control strategies (Rule Based Controller and FBC). The proposed system reduces the battery peak current, battery peak power, maximum absolute value of the rate of change of power and average absolute value of the rate of change of power by 16.05%, 15.19%, 77.01%, and 95.59%, respectively as compared to the conventional system with battery-only storage. Moreover, he proposed system increases the level of supercapacitor utilization up to 687.122% in comparison to the conventional control strategies.

  9. Advanced polymer-inorganic hybrid hard coatings utilizing in situ polymerization method.

    Science.gov (United States)

    Takaki, Toshihiko; Nishiura, Katsunori; Mizuta, Yasushi; Itou, Yuichi

    2006-12-01

    Hard coatings are frequently used to give plastics high scratch resistance. Coating hardness and adhesion to the substrate are considered to be key factors influencing scratch resistance, but it is difficult to produce coatings that have both properties. Hybridization of polymers and inorganic materials is a promising approach for solving this problem. We prepared polymer-silica hybrid coatings by using in situ polymerization to carry out radical polymerization of vinyl monomers in a sol-gel solution of alkoxysilanes, and measured the abrasion resistance of the coatings. However, the expected properties were not obtained because the sol-gel reaction did not perfectly proceed on the surface of the coatings under the N2 conditions. We found that curing the hybrid coatings by UV irradiation in air promoted the sol-gel reaction on the surface, resulting in coatings having excellent abrasion resistance.

  10. Electric and hybrid electric vehicle study utilizing a time-stepping simulation

    Science.gov (United States)

    Schreiber, Jeffrey G.; Shaltens, Richard K.; Beremand, Donald G.

    1992-01-01

    The applicability of NASA's advanced power technologies to electric and hybrid vehicles was assessed using a time-stepping computer simulation to model electric and hybrid vehicles operating over the Federal Urban Driving Schedule (FUDS). Both the energy and power demands of the FUDS were taken into account and vehicle economy, range, and performance were addressed simultaneously. Results indicate that a hybrid electric vehicle (HEV) configured with a flywheel buffer energy storage device and a free-piston Stirling convertor fulfills the emissions, fuel economy, range, and performance requirements that would make it acceptable to the consumer. It is noted that an assessment to determine which of the candidate technologies are suited for the HEV application has yet to be made. A proper assessment should take into account the fuel economy and range, along with the driveability and total emissions produced.

  11. Study of a class of hybrid-time systems

    Energy Technology Data Exchange (ETDEWEB)

    Cervantes, I. [Seccion de Estudios de Posgrado e Investigacion, Escuela Superior de Ingenieria Mecanica y Electrica-Culhuacan-IPN, Av. San Ana 1000 Col. San Fco. Culhuacan, Mexico D.F. 04430 (Mexico) and Insituto Potosino de Investigacion Cientifica y Tecnologica (IPICyT), Departamento de Matematicas Aplicadas y Sistemas Computacionales, Camino a la Presa San Jose 2055, Col. Lomas 4a, seccion C.P. 78216, San Luis Potosi, San Luis Potosi (Mexico)]. E-mail: ilse@calmecac.esimecu.ipn.mx; Femat, R. [Insituto Potosino de Investigacion Cientifica y Tecnologica (IPICyT), Departamento de Matematicas Aplicadas y Sistemas Computacionales, Camino a la Presa San Jose 2055, Col. Lomas 4a, seccion C.P. 78216, San Luis Potosi, San Luis Potosi (Mexico); Leyva-Ramos, J. [Insituto Potosino de Investigacion Cientifica y Tecnologica (IPICyT), Departamento de Matematicas Aplicadas y Sistemas Computacionales, Camino a la Presa San Jose 2055, Col. Lomas 4a, seccion C.P. 78216, San Luis Potosi, San Luis Potosi (Mexico)

    2007-05-15

    The aim of this paper is to study the dynamic behavior of a class of hybrid-time systems. In particular, we concern about switched systems constituted by two linear second order systems with a time varying (sinusoidal type) translation term. By means of numerical simulations, system behavior and its relation to system parameters are studied. It is shown that system eigenvalues play a crucial role in the time evolution of the system leading either to regular behavior, oscillatory patterns or intermittent erratic-periodic behavior. Furthermore, it is shown that under certain conditions, presumable fractal structures can be obtained.

  12. Chaotic attractor transforming control of hybrid Lorenz-Chen system

    Institute of Scientific and Technical Information of China (English)

    Qi Dong-Lian; Wang Qiao; Gu Hong

    2008-01-01

    Based on passive theory, this paper studies a hybrid chaotic dynamical system from the mathematics perspective to implement the control of system stabilization.According to the Jacobian matrix of the nonlinear system, the stabilization control region is gotten.The controller is designed to stabilize fast the minimum phase Lorenz-Chen chaotic system after equivalently transforming from chaotic system to passive system. The simulation results show that the system not only can be controlled at the different equilibria, but also can be transformed between the different chaotic attractors.

  13. Active diagnosis of hybrid systems - A model predictive approach

    OpenAIRE

    2009-01-01

    A method for active diagnosis of hybrid systems is proposed. The main idea is to predict the future output of both normal and faulty model of the system; then at each time step an optimization problem is solved with the objective of maximizing the difference between the predicted normal and faulty outputs constrained by tolerable performance requirements. As in standard model predictive control, the first element of the optimal input is applied to the system and the whole procedure is repeate...

  14. ENERGY MANAGEMENT OF WIND/PV AND BATTERY HYBRID SYSTEM

    OpenAIRE

    M. F. Almi; M. Arrouf; H.Belmili; S. Boulouma; Bendib, B

    2014-01-01

    This paper deals with power control of a wind and solar hybrid generation system for interconnection operation with electric distribution system. Power control strategy is to extract the maximum energy available from varying condition of wind speed and solar irradiance while maintaining power quality at a satisfactory level. In order to capture the maximum power, variable speed control is employed for wind turbine and maximum power point tracking is applied for photovoltaic system. The grid i...

  15. A Hybrid Architecture for Web-based Expert Systems

    OpenAIRE

    Neil Dunstan

    2012-01-01

    A recent technique is to represent the knowledge base of an expert system in XML format. XML parsers are then used to convert XML data into expert system language code. The code is executed or interpreted when providing responses to user queries. Web-based expert system (WBES) architectures may be characterized according to where the application knowledge base resides. Applications of both client and server-sided WBES architectures appear in the literature. A hybrid architecture is proposed w...

  16. THERMOELECTRIC AND MICROBATTERY HYBRID SYSTEM WITH ITS POWER MANAGEMENT

    OpenAIRE

    2006-01-01

    Submitted on behalf of EDA Publishing Association (http://irevues.inist.fr/handle/2042/5920); International audience; Integration of a power source with a MEMS to obtain an autonomous or remote system is a very challenging task. Such a device is currently being developed. It consists in hybriding an energy storage system (thin film solid state battery) with a scavenging energy system (thermogenerator) in a very small volume. It requires also power management to both control charge of the batt...

  17. Switches and Jumps in Hybrid Action Systems

    DEFF Research Database (Denmark)

    Rönnkö, Mauno; Ravn, Anders P.

    1998-01-01

    An action system framework is a predicate transformer based method for modelling and analysing distributed and reactive systems. The actions are statements in Dijkstra's guarded command language, and their semantics is given by predicate transformers. We extend conventional action systems with a ...

  18. Optimal Wonderful Life Utility Functions in Multi-Agent Systems

    Science.gov (United States)

    Wolpert, David H.; Tumer, Kagan; Swanson, Keith (Technical Monitor)

    2000-01-01

    The mathematics of Collective Intelligence (COINs) is concerned with the design of multi-agent systems so as to optimize an overall global utility function when those systems lack centralized communication and control. Typically in COINs each agent runs a distinct Reinforcement Learning (RL) algorithm, so that much of the design problem reduces to how best to initialize/update each agent's private utility function, as far as the ensuing value of the global utility is concerned. Traditional team game solutions to this problem assign to each agent the global utility as its private utility function. In previous work we used the COIN framework to derive the alternative Wonderful Life Utility (WLU), and experimentally established that having the agents use it induces global utility performance up to orders of magnitude superior to that induced by use of the team game utility. The WLU has a free parameter (the clamping parameter) which we simply set to zero in that previous work. Here we derive the optimal value of the clamping parameter, and demonstrate experimentally that using that optimal value can result in significantly improved performance over that of clamping to zero, over and above the improvement beyond traditional approaches.

  19. Hybrid two fuel system nozzle with a bypass connecting the two fuel systems

    Science.gov (United States)

    Varatharajan, Balachandar [Cincinnati, OH; Ziminsky, Willy Steve [Simpsonville, SC; Yilmaz, Ertan [Albany, NY; Lacy, Benjamin [Greer, SC; Zuo, Baifang [Simpsonville, SC; York, William David [Greer, SC

    2012-05-29

    A hybrid fuel combustion nozzle for use with natural gas, syngas, or other types of fuels. The hybrid fuel combustion nozzle may include a natural gas system with a number of swozzle vanes and a syngas system with a number of co-annular fuel tubes.

  20. Nuclear-Renewable Hybrid System Economic Basis for Electricity, Fuel, and Hydrogen

    Energy Technology Data Exchange (ETDEWEB)

    Charles Forsberg; Steven Aumeier

    2014-04-01

    Concerns about climate change and altering the ocean chemistry are likely to limit the use of fossil fuels. That implies a transition to a low-carbon nuclear-renewable electricity grid. Historically variable electricity demand was met using fossil plants with low capital costs, high operating costs, and substantial greenhouse gas emissions. However, the most easily scalable very-low-emissions generating options, nuclear and non-dispatchable renewables (solar and wind), are capital-intensive technologies with low operating costs that should operate at full capacities to minimize costs. No combination of fully-utilized nuclear and renewables can meet the variable electricity demand. This implies large quantities of expensive excess generating capacity much of the time. In a free market this results in near-zero electricity prices at times of high nuclear renewables output and low electricity demand with electricity revenue collapse. Capital deployment efficiency—the economic benefit derived from energy systems capital investment at a societal level—strongly favors high utilization of these capital-intensive systems, especially if low-carbon nuclear renewables are to replace fossil fuels. Hybrid energy systems are one option for better utilization of these systems that consumes excess energy at times of low prices to make some useful product.The economic basis for development of hybrid energy systems is described for a low-carbon nuclear renewable world where much of the time there are massivequantities of excess energy available from the electric sector.Examples include (1) high-temperature electrolysis to generate hydrogen for non-fossil liquid fuels, direct use as a transport fuel, metal reduction, etc. and (2) biorefineries.Nuclear energy with its concentrated constant heat output may become the enabling technology for economically-viable low-carbon electricity grids because hybrid nuclear systems may provide an economic way to produce dispatachable variable

  1. Towards a General Theory of Stochastic Hybrid Systems

    NARCIS (Netherlands)

    Bujorianu, L.M.; Lygeros, J.; Bujorianu, M.C.

    2008-01-01

    In this paper we set up a mathematical structure, called Markov string, to obtaining a very general class of models for stochastic hybrid systems. Markov Strings are, in fact, a class of Markov processes, obtained by a mixing mechanism of stochastic processes, introduced by Meyer. We prove that Mark

  2. Toward a General Theory of Stochastic Hybrid Systems

    NARCIS (Netherlands)

    Bujorianu, L.M.; Lygeros, J.; Blom, H.A.P.; Lygeros, J.

    2006-01-01

    In this chapter we set up a mathematical structure, called Markov string, to obtaining a very general class of models for stochastic hybrid systems. Markov Strings are, in fact, a class of Markov processes, obtained by a mixing mechanism of stochastic processes, introduced by Meyer. We prove that Ma

  3. Efficient Proof Engines for Bounded Model Checking of Hybrid Systems

    DEFF Research Database (Denmark)

    Fränzle, Martin; Herde, Christian

    2005-01-01

    In this paper we present HySat, a new bounded model checker for linear hybrid systems, incorporating a tight integration of a DPLL-based pseudo-Boolean SAT solver and a linear programming routine as core engine. In contrast to related tools like MathSAT, ICS, or CVC, our tool exploits all...

  4. Spontaneous emission control in a tunable hybrid photonic system

    NARCIS (Netherlands)

    Frimmer, M.; Koenderink, A.F.

    2013-01-01

    We experimentally demonstrate control of the rate of spontaneous emission in a tunable hybrid photonic system that consists of two canonical building blocks for spontaneous emission control, an optical antenna and a mirror, each providing a modification of the local density of optical states (LDOS).

  5. Nuclear-Renewable Hybrid Energy System Market Analysis Plans

    Energy Technology Data Exchange (ETDEWEB)

    Ruth, Mark

    2016-06-09

    This presentation describes nuclear-renewable hybrid energy systems (N-R HESs), states their potential benefits, provides figures for the four tightly coupled N-R HESs that NREL is currently analyzing, and outlines the analysis process that is underway.

  6. Extending a Hybrid Tag-Based Recommender System with Personalization

    DEFF Research Database (Denmark)

    Durao, Frederico; Dolog, Peter

    2010-01-01

    extension for a hybrid tag-based recommender system, which suggests similar Web pages based on the similarity of their tags. The semantic extension aims at discovering tag relations which are not considered in basic syntax similarity. With the goal of generating more semantically grounded recommendations...

  7. Model-based health monitoring of hybrid systems

    CERN Document Server

    Wang, Danwei; Low, Chang Boon; Arogeti, Shai

    2013-01-01

    Offers in-depth comprehensive study on health monitoring for hybrid systems Includes new concepts, such as GARR, mode tracking and multiple failure prognosis Contains many examples, making the developed techniques easily understandable and accessible Introduces state-of-the-art algorithms and methodologies from experienced researchers

  8. Solid Oxide Fuel Cell Hybrid System for Distributed Power Generation

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen Minh

    2005-12-01

    This report summarizes the work performed by Hybrid Power Generation Systems, LLC (HPGS) under Cooperative Agreement DE-FC2601NT40779 for the US Department of Energy, National Energy Technology Laboratory (DoE/NETL) entitled ''Solid Oxide Fuel Cell Hybrid System for Distributed Power Generation''. The main objective of this project is to develop and demonstrate the feasibility of a highly efficient hybrid system integrating a planar Solid Oxide Fuel Cell (SOFC) and a gas turbine. A conceptual hybrid system design was selected for analysis and evaluation. The selected system is estimated to have over 65% system efficiency, a first cost of approximately $650/kW, and a cost of electricity of 8.4 cents/kW-hr. A control strategy and conceptual control design have been developed for the system. A number of SOFC module tests have been completed to evaluate the pressure impact to performance stability. The results show that the operating pressure accelerates the performance degradation. Several experiments were conducted to explore the effects of pressure on carbon formation. Experimental observations on a functioning cell have verified that carbon deposition does not occur in the cell at steam-to-carbon ratios lower than the steady-state design point for hybrid systems. Heat exchanger design, fabrication and performance testing as well as oxidation testing to support heat exchanger life analysis were also conducted. Performance tests of the prototype heat exchanger yielded heat transfer and pressure drop characteristics consistent with the heat exchanger specification. Multicell stacks have been tested and performance maps were obtained under hybrid operating conditions. Successful and repeatable fabrication of large (>12-inch diameter) planar SOFC cells was demonstrated using the tape calendering process. A number of large area cells and stacks were successfully performance tested at ambient and pressurized conditions. A 25 MW plant configuration was

  9. The under-critical reactors physics for the hybrid systems; La physique des reacteurs sous-critiques des systemes hybrides

    Energy Technology Data Exchange (ETDEWEB)

    Schapira, J.P. [Institut de Physique Nucleaire, IN2P3/CNRS 91 - Orsay (France); Vergnes, J. [Electricite de France, EDF, Direction des Etudes et Recherches, 75 - Paris (France); Zaetta, A. [CEA/Saclay, Direction des Reacteurs Nucleaires, DRN, 91 - Gif-sur-Yvette (France)] [and others

    1998-03-12

    This day, organized by the SFEN, took place at Paris the 12 march 1998. Nine papers were presented. They take stock on the hybrid systems and more specifically the under-critical reactors. One of the major current preoccupation of nuclear industry is the problems of the increase of radioactive wastes produced in the plants and the destruction of the present stocks. To solve these problems a solution is the utilisation of hybrid systems: the coupling of a particle acceleration to an under-critical reactor. Historical aspects, advantages and performances of such hybrid reactors are presented in general papers. More technical papers are devoted to the spallation, the MUSE and the TARC experiments. (A.L.B.)

  10. Hybrid control of the distributed refrigeration system

    DEFF Research Database (Denmark)

    Chen, L.; Wisniewski, R.

    2010-01-01

    The supermarket refrigeration system typically has a distributed control structure, which neglects interactions between its subsystems. These interactions from time to time lead to a synchronization operation of the display-cases which causes an inferior control performance and increased energy...... or a chaotic behavior, the system is considered away from the synchronization. Therefore, the paper proposes a concept that the system may be de-synchronized by making it chaotic. A de-synchronization scheme is developed. It includes a synchronization-early-monitoring detector by calculating the maximum...... consumption. The paper focuses on synchronization dynamics of the refrigeration system modeled as a piecewise-affine switched system. System behaviors are analyzed using chaos theory. The synchronization phenomenon is interpreted as a stable low-period orbit; if the system has a high-order periodic orbit...

  11. Hybrid Systems for Knowledge Representation in Artificial Intelligence

    Directory of Open Access Journals (Sweden)

    Rajeswari P.V N

    2012-11-01

    Full Text Available There are few knowledge representation (KR techniques available for efficiently representing knowledge. However, with the increase in complexity, better methods are needed. Some researchers came up with hybrid mechanisms by combining two or more methods. In an effort to construct an intelligent computer system, a primary consideration is to represent large amounts of knowledge in a way that allows effective use and efficiently organizing information to facilitate making the recommended inferences. There are merits and demerits of combinations, and standardized method of KR is needed. In this paper, various hybrid schemes of KR were explored at length and details presented.

  12. A Novel Single Phase Hybrid Switched Reluctance Motor Drive System

    DEFF Research Database (Denmark)

    Liang, Jianing; Xu, Guoqing; Jian, Linni;

    2011-01-01

    phase boost converter is applied to improve the performance of this motor. It is easy to generate a double dclink voltage and dc-link voltage and switch both of them. The voltage of boost capacitor is self balance, so the protective circuit is not need to consider. The fast excitation mode helps hybrid...... SRM reduce the negative torque before zero-crossing point of torque curve, and build desired phase current to generate more power. Some experimental results are done to verify the performance of proposed hybrid SRM drive system....

  13. Advanced hybrid and electric vehicles system optimization and vehicle integration

    CERN Document Server

    2016-01-01

    This contributed volume contains the results of the research program “Agreement for Hybrid and Electric Vehicles”, funded by the International Energy Agency. The topical focus lies on technology options for the system optimization of hybrid and electric vehicle components and drive train configurations which enhance the energy efficiency of the vehicle. The approach to the topic is genuinely interdisciplinary, covering insights from fields. The target audience primarily comprises researchers and industry experts in the field of automotive engineering, but the book may also be beneficial for graduate students.

  14. Quantum dot-dye hybrid systems for energy transfer applications

    Energy Technology Data Exchange (ETDEWEB)

    Ren, Ting

    2010-07-01

    In this thesis, we focus on the preparation of energy transfer-based quantum dot (QD)-dye hybrid systems. Two kinds of QD-dye hybrid systems have been successfully synthesized: QD-silica-dye and QD-dye hybrid systems. In the QD-silica-dye hybrid system, multishell CdSe/CdS/ZnS QDs were adsorbed onto monodisperse Stoeber silica particles with an outer silica shell of thickness 2-24 nm containing organic dye molecules (Texas Red). The thickness of this dye layer has a strong effect on the total sensitized acceptor emission, which is explained by the increase in the number of dye molecules homogeneously distributed within the silica shell, in combination with an enhanced surface adsorption of QDs with increasing dye amount. Our conclusions were underlined by comparison of the experimental results with Monte-Carlo simulations, and by control experiments confirming attractive interactions between QDs and Texas Red freely dissolved in solution. New QD-dye hybrid system consisting of multishell QDs and organic perylene dyes have been synthesized. We developed a versatile approach to assemble extraordinarily stable QD-dye hybrids, which uses dicarboxylate anchors to bind rylene dyes to QD. This system yields a good basis to study the energy transfer between QD and dye because of its simple and compact design: there is no third kind of molecule linking QD and dye; no spacer; and the affinity of the functional group to the QD surface is strong. The FRET signal was measured for these complexes as a function of both dye to QD ratio and center-to-center distance between QD and dye by controlling number of covered ZnS layers. Data showed that fluorescence resonance energy transfer (FRET) was the dominant mechanism of the energy transfer in our QD-dye hybrid system. FRET efficiency can be controlled by not only adjusting the number of dyes on the QD surface or the QD to dye distance, but also properly choosing different dye and QD components. Due to the strong stability, our QD

  15. Review of Recommender Systems Algorithms Utilized in Social Networks based e-Learning Systems & Neutrosophic System

    Directory of Open Access Journals (Sweden)

    A. A. Salama

    2015-03-01

    Full Text Available In this paper, we present a review of different recommender system algorithms that are utilized in social networks based e-Learning systems. Future research will include our proposed our e-Learning system that utilizes Recommender System and Social Network. Since the world is full of indeterminacy, the neutrosophics found their place into contemporary research. The fundamental concepts of neutrosophic set, introduced by Smarandache in [21, 22, 23] and Salama et al. in [24-66].The purpose of this paper is to utilize a neutrosophic set to analyze social networks data conducted through learning activities.

  16. Improving an Hybrid Literary Book Recommendation System through Author Ranking

    CERN Document Server

    Vaz, Paula Cristina; Martins, Bruno; Calado, Pavel

    2012-01-01

    Literary reading is an important activity for individuals and choosing to read a book can be a long time commitment, making book choice an important task for book lovers and public library users. In this paper we present an hybrid recommendation system to help readers decide which book to read next. We study book and author recommendation in an hybrid recommendation setting and test our approach in the LitRec data set. Our hybrid book recommendation approach purposed combines two item-based collaborative filtering algorithms to predict books and authors that the user will like. Author predictions are expanded in to a book list that is subsequently aggregated with the former list generated through the initial collaborative recommender. Finally, the resulting book list is used to yield the top-n book recommendations. By means of various experiments, we demonstrate that author recommendation can improve overall book recommendation.

  17. Breaking Dense Structures: Proving Stability of Densely Structured Hybrid Systems

    Directory of Open Access Journals (Sweden)

    Eike Möhlmann

    2015-06-01

    Full Text Available Abstraction and refinement is widely used in software development. Such techniques are valuable since they allow to handle even more complex systems. One key point is the ability to decompose a large system into subsystems, analyze those subsystems and deduce properties of the larger system. As cyber-physical systems tend to become more and more complex, such techniques become more appealing. In 2009, Oehlerking and Theel presented a (de-composition technique for hybrid systems. This technique is graph-based and constructs a Lyapunov function for hybrid systems having a complex discrete state space. The technique consists of (1 decomposing the underlying graph of the hybrid system into subgraphs, (2 computing multiple local Lyapunov functions for the subgraphs, and finally (3 composing the local Lyapunov functions into a piecewise Lyapunov function. A Lyapunov function can serve multiple purposes, e.g., it certifies stability or termination of a system or allows to construct invariant sets, which in turn may be used to certify safety and security. In this paper, we propose an improvement to the decomposing technique, which relaxes the graph structure before applying the decomposition technique. Our relaxation significantly reduces the connectivity of the graph by exploiting super-dense switching. The relaxation makes the decomposition technique more efficient on one hand and on the other allows to decompose a wider range of graph structures.

  18. Development of Hybrid Courses Utilizing Modules as an Objective in ATE Projects

    Science.gov (United States)

    Payne, James E.; Murphy, Richard M.; Payne, Linda L.

    2017-01-01

    Orangeburg-Calhoun Technical College (OCtech) has been awarded two National Science Foundation Advanced Technological Education (NSF-ATE) grants since 2011 that have the development of module-based hybrid courses in Engineering Technology and Mechatronics as objectives. In this article, the advantages and challenges associated with module-based…

  19. The impact of array genomic hybridization on mental retardation research: a review of current technologies and their clinical utility.

    Science.gov (United States)

    Zahir, F; Friedman, J M

    2007-10-01

    Our understanding of the causes of mental retardation is benefiting greatly from whole-genome scans to detect submicroscopic pathogenic copy number variants (CNVs) that are undetectable by conventional cytogenetic analysis. The current method of choice for performing whole-genome scans for CNVs is array genomic hybridization (AGH). Several platforms are available for AGH, each with its own strengths and limitations. This review discusses considerations that are relevant to the clinical use of whole-genome AGH platforms for the diagnosis of pathogenic CNVs in children with mental retardation. Whole-genome AGH studies are a maturing technology, but their high diagnostic utility assures their increasing use in clinical genetics.

  20. Utilization of Aromatic Rice in Improving Grain Quality of Hybrid Rice

    Institute of Scientific and Technical Information of China (English)

    周坤炉; 廖伏明

    2004-01-01

    To improve grain quality of the high-yielding hybrid rice in China, we introduced the aromatic rice MR365. an improve Indian cultivar with aroma and other desirable grain quality characters such as long grain and low chalkiness, from IRRI in 1984 and began to transfer its aroma and good quality characters into the existing maintainer lines with good combining ability but poor grain quality.In the meantime,we also conducted the research on the inheritance of aroma for incerasing the breeding efficiency. Through years of research and breeding practices, two cytoplasmic male sterile(CMS)lines Xiangxiang2 A and Xingxiang A and a series of quasi-aromatic hybrids mated from these aromatic CMS lines have been developed and released for commercial production in China. It was found that the inheritance of aroma in MR365 and its dervatives including Xiangxiang2 A,XinxiangA and Xiang2B S was controlled by one pair of recessive major genes based on the identification of aroma by the KOH-soaking method. We also found that there existed disparity in aroma degree among different grains of F2 generation,and different aromatic CMS lines derived from the same aromatic donor such as Xiangxing2 A and Xinxiang A had also a little difference in the degree of aroma,which implies that,besides the major genes,aroma may also be affected by the genetic backgrounds or minor genes.Xiangxiang 2 A,developed from the cross of V20A//V20B/MR365,is the first aromatic CMS line bred in China. It is not only aromatic but has good grain quality and combining ability. Using it as female parent,Xiangyou 63(Xiangxiang 2A/Minghui 63),the first quasi-aromatic hybrid rice combination in China,was developed and approved to release to farmers in 1995.Xiangyou63 is characteristic of quasi-aromatic or partially aromatic(because only a portion of or NOT ALL grains are aromatic),good grain quality,high-yielding ability, good blast resistance and wide adaptability.However,Xiangiang2 A has an evident drawback

  1. Economic assessment of the utilization of lead-acid batteries in electric utility systems. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, A.C.; Hynds, J.A.; Nevius, D.R.; Nunan, G.A.; Sweetman, N.

    1977-04-01

    Specific applications in which lead--acid batteries might be economically competitive on an electric utility system are identified. Particular attention is given to searching the Public Service Electric and Gas Company (PSE and G) system for installations of batteries which could defer or cancel costly transmission and/or distribution projects. Although the transmission and distribution data are based on specific applications on the PSE and G system, the generation data are based on a national reference system. The report analyzes and summarizes all costs and savings attributable to lead--acid batteries. 40 figures, 78 tables. (RWR)

  2. Complex Dynamical Behavior in Hybrid Systems

    Science.gov (United States)

    2012-09-29

    2010. J15. T. Hu, T. Thibodeau , A.R. Teel, ``A Unified Lyapunov Approach to Analysis of Oscillations and Stability for Systems With Piecewise...Hu, T. Thibodeau , A.R. Teel, ``Analysis of oscillation and stability for systems with piecewise linear components via saturation functions

  3. Overview of a Hybrid Underwater Camera System

    Science.gov (United States)

    2014-07-01

    integrated HUC system. As part of the HUC system, the Navigator display is also transmitted to a monocular display installed on a diver’s helmet. An...feet in length, 6.5 feet in width with a maximum depth of 8 feet. Pumps are used to generate a current in the flume. The water holds particulate matter

  4. Hybrid Photovoltaic-Hydrogen Power Conditioning System

    Science.gov (United States)

    Garrigos, A.; Blanes, J. M.; Carrasco, J. A.; Maset, E.; Ejea, J. B.; Ferreres, A.; Sanchis, E.

    2011-10-01

    This paper explores a power conditioning unit for photovoltaic/hydrogen based energy systems. Similar power conversion techniques, compared to traditional space power systems, are applied. An S4R regulator is devised with an unregulated battery bus as primary output and a secondary path to feed and electrolyser. A modular fuel cell converter completes the system and it operates when photovoltaic energy is not available or load demand exceeds solar power, i. e. like a traditional BDR. An ancillary battery keeps the unregulated bus voltage distributed in the system and it also aids the fuel cell during transients or start-up due to its limited speed. A 1kW breadboard has been designed and implemented to corroborate the proposed system.

  5. A Hybrid Approach to the Optimization of Multiechelon Systems

    Directory of Open Access Journals (Sweden)

    Paweł Sitek

    2015-01-01

    Full Text Available In freight transportation there are two main distribution strategies: direct shipping and multiechelon distribution. In the direct shipping, vehicles, starting from a depot, bring their freight directly to the destination, while in the multiechelon systems, freight is delivered from the depot to the customers through an intermediate points. Multiechelon systems are particularly useful for logistic issues in a competitive environment. The paper presents a concept and application of a hybrid approach to modeling and optimization of the Multi-Echelon Capacitated Vehicle Routing Problem. Two ways of mathematical programming (MP and constraint logic programming (CLP are integrated in one environment. The strengths of MP and CLP in which constraints are treated in a different way and different methods are implemented and combined to use the strengths of both. The proposed approach is particularly important for the discrete decision models with an objective function and many discrete decision variables added up in multiple constraints. An implementation of hybrid approach in the ECLiPSe system using Eplex library is presented. The Two-Echelon Capacitated Vehicle Routing Problem (2E-CVRP and its variants are shown as an illustrative example of the hybrid approach. The presented hybrid approach will be compared with classical mathematical programming on the same benchmark data sets.

  6. HYBRID SHEARWALL SYSTEM — SHEAR STRENGTH AT THE INTERFACE CONNECTION

    Directory of Open Access Journals (Sweden)

    Ulrich Wirth

    2013-12-01

    Full Text Available Based on a series of alternating, displacement-controlled load tests on ten one-third scale models, to study the behaviour of the interface of a hybrid shear wall system, it was proved that the concept of hybrid construction in earthquake prone regions is feasible. The hybrid shear-wall system consists of typical reinforced concrete shear walls with composite edge members or flanges. Ten different anchorage bar arrangements were developed and tested to evaluate the column-shearwall interface behaviour under cyclic shear forces acting along the interface between column and wall panel. Finite element models of the test specimens were developed that were capable of capturing the integrated concrete and reinforcing steel behaviour in the wall panels. Special models were  developed to capture the interface behaviour between the edge columns and the shear wall. A comparison between the experimental results and the numerical results shows excellent agreement, and clearly supports the validity of the model developed for predicting the non-linear response of the hybrid wall system under various load conditions.

  7. Mars Hybrid Propulsion System Trajectory Analysis. Part I; Crew Missions

    Science.gov (United States)

    Chai, Patrick R.; Merrill, Raymond G.; Qu, Min

    2015-01-01

    NASAs Human spaceflight Architecture team is developing a reusable hybrid transportation architecture in which both chemical and electric propulsion systems are used to send crew and cargo to Mars destinations such as Phobos, Deimos, the surface of Mars, and other orbits around Mars. By combining chemical and electrical propulsion into a single space- ship and applying each where it is more effective, the hybrid architecture enables a series of Mars trajectories that are more fuel-efficient than an all chemical architecture without significant increases in flight times. This paper provides the analysis of the interplanetary segments of the three Evolvable Mars Campaign crew missions to Mars using the hybrid transportation architecture. The trajectory analysis provides departure and arrival dates and propellant needs for the three crew missions that are used by the campaign analysis team for campaign build-up and logistics aggregation analysis. Sensitivity analyses were performed to investigate the impact of mass growth, departure window, and propulsion system performance on the hybrid transportation architecture. The results and system analysis from this paper contribute to analyses of the other human spaceflight architecture team tasks and feed into the definition of the Evolvable Mars Campaign.

  8. Integrated energy systems based on cascade utilization of energy

    Institute of Scientific and Technical Information of China (English)

    JIN Hongguang; LI Bingyu; FENG Zhibing; GAO Lin; HAN Wei

    2007-01-01

    Focusing on the traditional principle of physical energy utilization,new integration concepts for combined cooling,heating and power (CCHP) system were identified,and corresponding systems were investigated.Furthermore,the principle of cascade utilization of both chemical and physical energy in energy systems with the integration of chemical processes and thermal cycles was introduced,along with a general equation describing the interrelationship among energy levels of substance,Gibbs free energy of chemical reaction and physical energy.On the basis of this principle,a polygeneration system for power and liquid fuel (methanol)production has been presented and investigated.This system innovatively integrates a fresh gas preparation subsystem without composition adjustment process (NA) and a methanol synthesis subsystem with partial-recycle scheme (PR).Meanwhile,a multi-functional energy system (MES) that consumes coal and natural gas as fuels simultaneously,and co-generates methanol and power,has been presented.In the MES,coal and natural gas are utilized synthetically based on the method of dual-fuel reforming,which integrates methane/steam reforming and coal combustion.Compared with conventional energy systems that do not consider cascade utilization of chemical energy,both of these systems provide superior performance,whose energy saving ratio can be as high as 10%-15%.With special attention paid to chemical energy utilization,the integration features of these two systems have been revealed,and the important role that the principle of cascade utilization of both chemical and physical energy plays in system integration has been identified.

  9. Solar central receiver hybrid power system, Phase I. Volume 2. Conceptual design. Final technical report, October 1978-August 1979

    Energy Technology Data Exchange (ETDEWEB)

    None

    1979-09-01

    The objectives of this study were to develop a hybrid power system design that (1) produces minimum cost electric power, (2) minimizes the capital investment and operating cost, (3) permits capacity displacement, (4) and achieves utility acceptance for market penetration. We have met the first three of these objectives and therefore believe that the fourth, utility acceptance, will become a reality. These objectives have been met by utilizing the Martin Marietta concept that combines the alternate central receiver power system design and a high-temperature salt primary heat transfer fluid and thermal storage media system with a fossil-fired nonsolar energy source. Task 1 reviewed the requirements definition document and comments and recommendations were provided to DOE/San Francisco. Task 2 consisted of a market analysis to evaluate the potential market of solar hybrid power plants. Twenty-two utilities were selected within nine regions of the country. Both written and verbal correspondence was used to assess solar hybrid power plants with respect to the utilities' future requirements and plans. The parametric analysis of Task 3 evaluated a wide range of subsystem configurations and sizes. These analyses included subsystems from the solar standalone alternate central receiver power system using high-temperature molten salt and from fossil fuel nonsolar subsystems. Task 4, selection of the preferred commerical system configuration, utilized the parametric analyses developed in Task 3 to select system and subsystem configurations for the commercial plant design. Task 5 developed a conceptual design of the selected commercial plant configuration and assessed the related cost and performance. Task 6 assessed the economics and performance of the selected configuration as well as future potential improvements or limitations of the hybrid power plants.

  10. Event-triggered hybrid control based on multi-Agent systems for Microgrids

    DEFF Research Database (Denmark)

    Dou, Chun-xia; Liu, Bin; Guerrero, Josep M.

    2014-01-01

    of distributed energy resources, thus it is typical hybrid dynamic network. Considering the complex hybrid behaviors, a hierarchical decentralized coordinated control scheme is firstly constructed based on multi-agent sys-tem, then, the hybrid model of the microgrid is built by using differential hybrid Petri...

  11. Sizing PV-wind hybrid energy system for lighting

    Directory of Open Access Journals (Sweden)

    Mustafa Engin

    2012-09-01

    Full Text Available Sizing of wind and photovoltaic generators ensures lower operational costs and therefore, is considered as an important issue. An approach for sizing along with a best management technique for a PV-wind hybrid system with batteries is proposed in this paper, in which the best size for every component of the system could be optimized according to the weather conditions and the load profile. The average hourly values for wind speed and solar radiation for Izmir, Turkey has been used in the design of the systems, along with expected load profile. A hybrid power model is also developed for battery operation according to the power balance between generators and loads used in the software, to anticipate performances for the different systems according to the different weather conditions. The output of the program will display the performance of the system during the year, the total cost of the system, and the best size for the PV-generator, wind generator, and battery capacity. Using proposed procedure, a 1.2 kWp PV-wind hybrid system was designed for Izmir, and simulated and measured results are presented.

  12. A Review of Hybrid Solar PV and Wind Energy System

    Directory of Open Access Journals (Sweden)

    Rashid Al Badwawi

    2015-07-01

    Full Text Available Due to the fact that solar and wind power is intermittent and unpredictable in nature, higher penetration of their types in existing power system could cause and create high technical challenges especially to weak grids or stand-alone systems without proper and enough storage capacity. By integrating the two renewable resources into an optimum combination, the impact of the variable nature of solar and wind resources can be partially resolved and the overall system becomes more reliable and economical to run. This paper provides a review of challenges and opportunities / solutions of hybrid solar PV and wind energy integration systems. Voltage and frequency fluctuation, and harmonics are major power quality issues for both grid-connected and stand-alone systems with bigger impact in case of weak grid. This can be resolved to a large extent by having proper design, advanced fast response control facilities, and good optimization of the hybrid systems. The paper gives a review of the main research work reported in the literature with regard to optimal sizing design, power electronics topologies and control. The paper presents a review of the state of the art of both grid-connected and stand-alone hybrid solar and wind systems.

  13. Solid Oxide Fuel Cell Hybrid System for Distributed Power Generation

    Energy Technology Data Exchange (ETDEWEB)

    David Deangelis; Rich Depuy; Debashis Dey; Georgia Karvountzi; Nguyen Minh; Max Peter; Faress Rahman; Pavel Sokolov; Deliang Yang

    2004-09-30

    This report summarizes the work performed by Hybrid Power Generation Systems, LLC (HPGS) during the April to October 2004 reporting period in Task 2.3 (SOFC Scaleup for Hybrid and Fuel Cell Systems) under Cooperative Agreement DE-FC26-01NT40779 for the U. S. Department of Energy, National Energy Technology Laboratory (DOE/NETL), entitled ''Solid Oxide Fuel Cell Hybrid System for Distributed Power Generation''. This study analyzes the performance and economics of power generation systems for central power generation application based on Solid Oxide Fuel Cell (SOFC) technology and fueled by natural gas. The main objective of this task is to develop credible scale up strategies for large solid oxide fuel cell-gas turbine systems. System concepts that integrate a SOFC with a gas turbine were developed and analyzed for plant sizes in excess of 20 MW. A 25 MW plant configuration was selected with projected system efficiency of over 65% and a factory cost of under $400/kW. The plant design is modular and can be scaled to both higher and lower plant power ratings. Technology gaps and required engineering development efforts were identified and evaluated.

  14. Sizing and Simulation of PV-Wind Hybrid Power System

    Directory of Open Access Journals (Sweden)

    Mustafa Engin

    2013-01-01

    Full Text Available A sizing procedure is developed for hybrid system with the aid of mathematical models for photovoltaic cell, wind turbine, and battery that are readily present in the literature. This sizing procedure can simulate the annual performance of different kinds of photovoltaic-wind hybrid power system structures for an identified set of renewable resources, which fulfills technical limitations with the lowest energy cost. The output of the program will display the performance of the system during the year, the total cost of the system, and the best size for the PV-generator, wind generator, and battery capacity. Security lightning application is selected, whereas system performance data and environmental operating conditions are measured and stored. This hybrid system, which includes a PV, wind turbine, inverter, and a battery, was installed to supply energy to 24 W lamps, considering that the renewable energy resources of this site where the system was installed were 1700 Wh/m2/day solar radiation and 3.43 m/s yearly average wind speed. Using the measured variables, the inverter and charge regulator efficiencies were calculated as 90% and 98%, respectively, and the overall system’s electrical efficiency is calculated as 72%. Life cycle costs per kWh are found to be $0.89 and LLP = 0.0428.

  15. Wind hybrid electrical supply system: behaviour simulation and sizing optimization

    Science.gov (United States)

    Notton, G.; Cristofari, C.; Poggi, P.; Muselli, M.

    2001-04-01

    Using a global approach, a wind hybrid system operation is simulated and the evolution of several parameters is analysed, such as the wasted energy, the fuel consumption and the role of the wind turbine subsystem in the global production. This analysis shows that all the energies which take part in the system operation are more dependent on the wind turbine size than on the battery storage capacity. A storage of 2 or 3 days is sufficient, because an increase in storage beyond these values does not have a notable impact on the performance of the wind hybrid system. Finally, a cost study is performed to determine the optimal configuration of the system conducive to the lowest cost of electricity production.

  16. H∞ Controller Design for Asynchronous Hybrid Systems with Multiple Delays

    Directory of Open Access Journals (Sweden)

    Xiaoqiang Sun

    2016-01-01

    Full Text Available Solutions for the H∞ synthesis problems of asynchronous hybrid systems with input-output delays are proposed. The continuous-time lifting approach of sampled-data systems is extended to a hybrid system with multiple delays, and some feasible formulas to calculate the operators of the equivalent discrete-time (DT system are given. Different from the existing methods derived from symplectic pair theory or by state augmentation, a Lyapunov-Krasovskii functional to solve the synthesis problem is explicitly constructed. The delay-dependent stability conditions we obtained can be described in terms of nonstrict linear matrix inequalities (LMIs, which are much more convenient to be solved by LMI tools.

  17. Nuclear Hybrid Energy Systems: Molten Salt Energy Storage

    Energy Technology Data Exchange (ETDEWEB)

    P. Sabharwall; M. Green; S.J. Yoon; S.M. Bragg-Sitton; C. Stoots

    2014-07-01

    With growing concerns in the production of reliable energy sources, the next generation in reliable power generation, hybrid energy systems, are being developed to stabilize these growing energy needs. The hybrid energy system incorporates multiple inputs and multiple outputs. The vitality and efficiency of these systems resides in the energy storage application. Energy storage is necessary for grid stabilizing and storing the overproduction of energy to meet peak demands of energy at the time of need. With high thermal energy production of the primary nuclear heat generation source, molten salt energy storage is an intriguing option because of its distinct properties. This paper will discuss the different energy storage options with the criteria for efficient energy storage set forth, and will primarily focus on different molten salt energy storage system options through a thermodynamic analysis

  18. Photovoltaic-wind hybrid system for permanent magnet DC motor

    Science.gov (United States)

    Nasir, M. N. M.; Lada, M. Y.; Baharom, M. F.; Jaafar, H. I.; Ramani, A. N.; Sulaima, M. F.

    2015-05-01

    Hybrid system of Photovoltaic (PV) - Wind turbine (WT) generation has more advantages and reliable compared to PV or wind turbine system alone. The aim of this paper is to model and design hybrid system of PV-WT supplying 100W permanent-magnet dc motor. To achieve the objective, both of PV and WT are connected to converter in order to get the same source of DC supply. Then both sources were combined and straightly connected to 100W permanent magnet dc motor. All the works in this paper is only applied in circuit simulator by using Matlab Simulink. The output produced from each converter is expected to be suit to the motor specification. The output produced from each renewable energy system is as expected to be high as it can support the motor if one of them is breakdown

  19. Hybrid Expert Systems In Image Analysis

    Science.gov (United States)

    Dixon, Mark J.; Gregory, Paul J.

    1987-04-01

    Vision systems capable of inspecting industrial components and assemblies have a large potential market if they can be easily programmed and produced quickly. Currently, vision application software written in conventional high-level languages such as C or Pascal are produced by experts in program design, image analysis, and process control. Applications written this way are difficult to maintain and modify. Unless other similar inspection problems can be found, the final program is essentially one-off redundant code. A general-purpose vision system targeted for the Visual Machines Ltd. C-VAS 3000 image processing workstation, is described which will make writing image analysis software accessible to the non-expert both in programming computers and image analysis. A significant reduction in the effort required to produce vision systems, will be gained through a graphically-driven interactive application generator. Finally, an Expert System will be layered on top to guide the naive user through the process of generating an application.

  20. Optimal channel utilization and service protection in cellular communication systems

    DEFF Research Database (Denmark)

    Iversen, Villy Bæk

    1997-01-01

    In mobile communications an efficient utilization of the channels is of great importance.In this paper we consider the basic principles for obtaining the maximum utilization, and we study strategies for obtaining these limits.In general a high degree of sharing is efficient, but requires service...... protection mechanisms for protecting services and subscriber groups.We study cellular systems with overlaid cells, and the effect of overlapping cells, and we show that by dynamic channel allocation we obtain a high utilization.The models are generalizations of the Erlang-B formula, and can be evaluated...

  1. Service Level Agreement (SLA) in Utility Computing Systems

    CERN Document Server

    Wu, Linlin

    2010-01-01

    In recent years, extensive research has been conducted in the area of Service Level Agreement (SLA) for utility computing systems. An SLA is a formal contract used to guarantee that consumers' service quality expectation can be achieved. In utility computing systems, the level of customer satisfaction is crucial, making SLAs significantly important in these environments. Fundamental issue is the management of SLAs, including SLA autonomy management or trade off among multiple Quality of Service (QoS) parameters. Many SLA languages and frameworks have been developed as solutions; however, there is no overall classification for these extensive works. Therefore, the aim of this chapter is to present a comprehensive survey of how SLAs are created, managed and used in utility computing environment. We discuss existing use cases from Grid and Cloud computing systems to identify the level of SLA realization in state-of-art systems and emerging challenges for future research.

  2. Three Sides Billboard Wind-Solar Hybrid System Design

    Directory of Open Access Journals (Sweden)

    Bai Xuefeng

    2015-01-01

    Full Text Available With the high development of world economy, the demand of energy is increasing all the time, As energy shortage and environment problem are increasing outstanding, Renewable energy has been attracting more and more attention. A kind of three sides billboard supply by wind-Solar hybrid system has been designed in this paper, the overall structure of the system, components, working principle and control strategy has been analyzed from the system perspective. The software and hardware of the system are debugged together and the result is acquired. System function is better and has achieved the expected results.

  3. ARTIFICIAL NEURAL NETWORKS BASED GEARS MATERIAL SELECTION HYBRID INTELLIGENT SYSTEM

    Institute of Scientific and Technical Information of China (English)

    X.C. Li; W.X. Zhu; G. Chen; D.S. Mei; J. Zhang; K.M. Chen

    2003-01-01

    An artificial neural networks(ANNs) based gear material selection hybrid intelligent system is established by analyzing the individual advantages and weakness of expert system (ES) and ANNs and the applications in material select of them. The system mainly consists of tow parts: ES and ANNs. By being trained with much data samples,the back propagation (BP) ANN gets the knowledge of gear materials selection, and is able to inference according to user input. The system realizes the complementing of ANNs and ES. Using this system, engineers without materials selection experience can conveniently deal with gear materials selection.

  4. Modified Grid-Connected CSI for Hybrid PV/Wind Power Generation System

    Directory of Open Access Journals (Sweden)

    D. Amorndechaphon

    2012-01-01

    Full Text Available The principle of a power conditioning unit for hybrid PV/wind power generation system is proposed. The proposed power conditioner is based on the current source inverter (CSI topology. All energy sources are connected in parallel with a DC-bus through the modified wave-shaping circuits. To achieve the unity power factor at the utility grid, the DC-link current can be controlled via the wave-shaping circuits with the sinusoidal PWM scheme. In this work, the carrier-based PWM scheme is also proposed to minimize the utility current THD. The power rating of the proposed system can be increased by connecting more PV/wind modules through their wave-shaping circuits in parallel with the other modules. The details of the operating principles, the system configurations, and the design considerations are described. The effectiveness of the proposed CSI is demonstrated by simulation results.

  5. Hierarchical Fault Diagnosis for a Hybrid System Based on a Multidomain Model

    Directory of Open Access Journals (Sweden)

    Jiming Ma

    2015-01-01

    Full Text Available The diagnosis procedure is performed by integrating three steps: multidomain modeling, event identification, and failure event classification. Multidomain model can describe the normal and fault behaviors of hybrid systems efficiently and can meet the diagnosis requirements of hybrid systems. Then the multidomain model is used to simulate and obtain responses under different failure events; the responses are further utilized as a priori information when training the event identification library. Finally, a brushless DC motor is selected as the study case. The experimental result indicates that the proposed method could identify the known and unknown failure events of the studied system. In particular, for a system with less response information under a failure event, the accuracy of diagnosis seems to be higher. The presented method integrates the advantages of current quantitative and qualitative diagnostic procedures and can distinguish between failures caused by parametric and abrupt structure faults. Another advantage of our method is that it can remember unknown failure types and automatically extend the adaptive resonance theory neural network library, which is extremely useful for complex hybrid systems.

  6. Hybrid HVAC systems with chemical dehumidification for supermarket applications

    Energy Technology Data Exchange (ETDEWEB)

    Capozzoli, Alfonso; Mazzei, Pietro; Minichiello, Francesco; Palma, Daniele [DETEC, University of Naples Federico II, P.le Tecchio, 80, 80125 Naples (Italy)

    2006-06-15

    HVAC systems in supermarkets must assure both thermal comfort for occupants and suitable climatic conditions for refrigerated cases, which operate better with low ambient relative humidity (40-45%). Since open display cases substantially reduce sensible load and moderately reduce latent load, ambient sensible/total heat load ratio is less than usual. Thus, if dehumidification is carried out with a traditional cooling coil, over-sizing of the coil and re-heating of the treated air are necessary, with energy and economic waste. To offset these disadvantages, hybrid HVAC systems with chemical dehumidification may be employed. In this paper a case study is presented in which a traditional HVAC system is compared to hybrid systems with chemical dehumidification. Dynamic simulation codes (DOE and DesiCalc{sup (}TM)) and test reference year data (TRY), opportunely elaborated, have been used. Annual operating costs have been estimated and large savings have been obtained with hybrid systems. Considerable reduction of electric energy demand as well as better control of thermal-hygrometric conditions were noted. A simple payback of about 1 year has been obtained. Finally, a virtual retrofitting operation on 30% of the existing HVAC systems in Italian supermarkets has shown significant operating cost savings. [Author].

  7. Quantum state engineering in hybrid open quantum systems

    Science.gov (United States)

    Joshi, Chaitanya; Larson, Jonas; Spiller, Timothy P.

    2016-04-01

    We investigate a possibility to generate nonclassical states in light-matter coupled noisy quantum systems, namely, the anisotropic Rabi and Dicke models. In these hybrid quantum systems, a competing influence of coherent internal dynamics and environment-induced dissipation drives the system into nonequilibrium steady states (NESSs). Explicitly, for the anisotropic Rabi model, the steady state is given by an incoherent mixture of two states of opposite parities, but as each parity state displays light-matter entanglement, we also find that the full state is entangled. Furthermore, as a natural extension of the anisotropic Rabi model to an infinite spin subsystem, we next explored the NESS of the anisotropic Dicke model. The NESS of this linearized Dicke model is also an inseparable state of light and matter. With an aim to enrich the dynamics beyond the sustainable entanglement found for the NESS of these hybrid quantum systems, we also propose to combine an all-optical feedback strategy for quantum state protection and for establishing quantum control in these systems. Our present work further elucidates the relevance of such hybrid open quantum systems for potential applications in quantum architectures.

  8. Cross-layer utility-based system optimization

    NARCIS (Netherlands)

    Ditzel, M.; Kester, L.J.H.M.; Broek, S.P. van den; Rijn, M. van

    2013-01-01

    Multilevel fusion systems need provisions to optimally schedule scarce processing and communication resources. To this end, we explore the idea of using utility-based metrics to optimize the run-time operation of a computation and communication constrained multilevel system, including automatic deci

  9. Field emission arrays fabricated utilizing conjugated ZnO quantum dot/carbon nanotube hybrid nanocomposite

    Energy Technology Data Exchange (ETDEWEB)

    Wu Chaoxing [Institute of Optoelectronic Display, Fuzhou University, Fuzhou 350002 (China); Li Fushan, E-mail: fushanli@hotmail.com [Institute of Optoelectronic Display, Fuzhou University, Fuzhou 350002 (China); Zhang Yongai [Institute of Optoelectronic Display, Fuzhou University, Fuzhou 350002 (China); Guo Tailiang, E-mail: gtl@fzu.edu.cn [Institute of Optoelectronic Display, Fuzhou University, Fuzhou 350002 (China); Qu Bo; Chen Zhijian [State Key Laboratory for Mesoscopic Physics, Peking University, Beijing 100871 (China)

    2011-02-15

    In situ growth of ZnO quantum dots (QDs) on the surface of multiwalled carbon nanotube (MWCNTs) was realized via a mild solution-process method, and their application in field emission device was demonstrated. High resolution transmission electron microscopy observation revealed the conjugation between ZnO QDs and MWCNTs. Field emission arrays based on ZnO QD/MWCNT hybrid nanocomposite exhibited significantly improved luminance intensity and emitting dot density when compared with the MWCNT-only arrays. It is proposed that the introduction of the ZnO QDs on the sidewall of MWCNTs can enhance the tunnelling probability, and result in the improved field emission property for the hybrid emitters.

  10. Experiences from the Roadrunner petascale hybrid systems

    Energy Technology Data Exchange (ETDEWEB)

    Kerbyson, Darren J [Los Alamos National Laboratory; Pakin, Scott [Los Alamos National Laboratory; Lang, Mike [Los Alamos National Laboratory; Sancho Pitarch, Jose C [Los Alamos National Laboratory; Davis, Kei [Los Alamos National Laboratory; Barker, Kevin J [Los Alamos National Laboratory; Peraza, Josh [Los Alamos National Laboratory

    2010-01-01

    The combination of flexible microprocessors (AMD Opterons) with high-performing accelerators (IBM PowerXCell 8i) resulted in the extremely powerful Roadrunner system. Many challenges in both hardware and software were overcome to achieve its goals. In this talk we detail some of the experiences in achieving performance on the Roadrunner system. In particular we examine several implementations of the kernel application, Sweep3D, using a work-queue approach, a more portable Thread-building-blocks approach, and an MPI on the accelerator approach.

  11. Performance analysis of hybrid district heating system

    DEFF Research Database (Denmark)

    Mikulandric, Robert; Krajačić, Goran; Khavin, Gennadii

    2013-01-01

    as problems related to transportation, storage and environmental impacts of biomass and waste utilisation. Implementation of heat storages in district heating systems could contribute to integration of intermittent energy sources. Hybridisation of heat production facility combines two or more different energy...... more extensively used in district heating systems either separately or as a supplement to traditional fossil fuels in order to achieve national energy policy objectives. However, they are still facing problems such as high intermittences, high energy production costs and low load factors as well...

  12. Hybrid Management in Preparedness: Utilizing Cooperation and Crowdsourcing to Create Joint Performance in the Logistic Society

    OpenAIRE

    Vesa-Jukka Vornanen; Ari Sivula; Josu Takala

    2016-01-01

    The key challenges in the public sector are to find new ways to operate horizontally between different levels of administration and being prepared sudden changes. The purpose of this paper is merging society in the development of customer-oriented hybrid organization. Methodology is the literature review. Preparedness is a process, which connects logistic society, its public, private and the third sector organizations, and their operations with households and individuals....

  13. User Controllability in a Hybrid Recommender System

    Science.gov (United States)

    Parra Santander, Denis Alejandro

    2013-01-01

    Since the introduction of Tapestry in 1990, research on recommender systems has traditionally focused on the development of algorithms whose goal is to increase the accuracy of predicting users' taste based on historical data. In the last decade, this research has diversified, with "human factors" being one area that has received…

  14. Study of utilizing differential gear train to achieve hybrid mechanism of mechanical press

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The problems of hybrid input of mechanical press are studied in this paper, with differential gear train as transmission mechanism. It is proposed that “adjust-able-speed amplitude” or “differential-speed ratio” is the important parameters for the hybrid input mechanism. It not only defines the amplitude of the adjustable speed, but also determines the ratio of the power of the servomotor to the power of the conventional motor. The calculating equations of the ratio of transmission in all axes, the power of two motors, and the working load distribution are deduced. The two kinds of driving schemes are put forward that the servomotor and the conven-tional motor simultaneously drive and the servomotor and the conventional motor separately drive. The calculating results demonstrate that the latter scheme can use much lower power of the servomotor, so this scheme makes manufacture and use cost much lower. The latter scheme proposes a feasible way to apply the hybrid mechanism of mechanical press in practice engineering.

  15. Study of utilizing differential gear train to achieve hybrid mechanism of mechanical press

    Institute of Scientific and Technical Information of China (English)

    HE YuPeng; ZHAO ShengDun; ZOU Jun; ZHANG ZhiYuan

    2007-01-01

    The problems of hybrid input of mechanical press are studied in this paper, with differential gear train as transmission mechanism. It is proposed that "adjustable-speed amplitude" or "differential-speed ratio" is the important parameters for the hybrid input mechanism. It not only defines the amplitude of the adjustable speed, but also determines the ratio of the power of the servomotor to the power of the conventional motor. The calculating equations of the ratio of transmission in all axes, the power of two motors, and the working load distribution are deduced. The two kinds of driving schemes are put forward that the servomotor and the conventional motor simultaneously drive and the servomotor and the conventional motor separately drive. The calculating results demonstrate that the latter scheme can use much lower power of the servomotor, so this scheme makes manufacture and use cost much lower. The latter scheme proposes a feasible way to apply the hybrid mechanism of mechanical press in practice engineering.

  16. Nuclear Hybrid Energy Systems Regional Studies: West Texas & Northeastern Arizona

    Energy Technology Data Exchange (ETDEWEB)

    Garcia, Humberto E. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Chen, Jun [Idaho National Lab. (INL), Idaho Falls, ID (United States); Kim, Jong Suk [Idaho National Lab. (INL), Idaho Falls, ID (United States); McKellar, Michael George [Idaho National Lab. (INL), Idaho Falls, ID (United States); Deason, Wesley R [Idaho National Lab. (INL), Idaho Falls, ID (United States); Vilim, Richard B. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Bragg-Sitton, Shannon M. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Boardman, Richard D. [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-04-01

    The primary objective of this study is to conduct a preliminary dynamic analysis of two realistic hybrid energy systems (HES) including a nuclear reactor as the main baseload heat generator (denoted as nuclear HES or nuclear hybrid energy systems [[NHES]) and to assess the local (e.g., HES owners) and system (e.g., the electric grid) benefits attainable by the application of NHES in scenarios with multiple commodity production and high penetration of renewable energy. It is performed for regional cases not generic examples based on available resources, existing infrastructure, and markets within the selected regions. This study also briefly addresses the computational capabilities developed to conduct such analyses, reviews technical gaps, and suggests some research paths forward.

  17. Recent advances on hybrid approaches for designing intelligent systems

    CERN Document Server

    Melin, Patricia; Pedrycz, Witold; Kacprzyk, Janusz

    2014-01-01

    This book describes recent advances on hybrid intelligent systems using soft computing techniques for diverse areas of application, such as intelligent control and robotics, pattern recognition, time series prediction and optimization complex problems. Soft Computing (SC) consists of several intelligent computing paradigms, including fuzzy logic, neural networks, and bio-inspired optimization algorithms, which can be used to produce powerful hybrid intelligent systems. The book is organized in five main parts, which contain a group of papers around a similar subject. The first part consists of papers with the main theme of type-2 fuzzy logic, which basically consists of papers that propose new models and applications for type-2 fuzzy systems. The second part contains papers with the main theme of bio-inspired optimization algorithms, which are basically papers using nature-inspired techniques to achieve optimization of complex optimization problems in diverse areas of application. The third part contains pape...

  18. A conceptual demonstration of freeze desalination-membrane distillation (FD-MD) hybrid desalination process utilizing liquefied natural gas (LNG) cold energy.

    Science.gov (United States)

    Wang, Peng; Chung, Tai-Shung

    2012-09-01

    The severe global water scarcity and record-high fossil oil price have greatly stimulated the research interests on new desalination technologies which can be driven by renewable energy or waste energy. In this study, a hybrid desalination process comprising freeze desalination and membrane distillation (FD-MD) processes was developed and explored in an attempt to utilize the waste cold energy released from re-gasification of liquefied natural gas (LNG). The concept of this technology was demonstrated using indirect-contact freeze desalination (ICFD) and direct-contact membrane distillation (DCMD) configurations. By optimizing the ICFD operation parameters, namely, the usage of nucleate seeds, operation duration and feed concentration, high quality drinkable water with a low salinity ∼0.144 g/L was produced in the ICFD process. At the same time, using the optimized hollow fiber module length and packing density in the DCMD process, ultra pure water with a low salinity of 0.062 g/L was attained at a condition of high energy efficiency (EE). Overall, by combining FD and MD processes and adopting the optimized operation parameters, the hybrid FD-MD system has been successfully demonstrated. A high total water recovery of 71.5% was achieved, and the water quality obtained met the standard for drinkable water. In addition, with results from specific energy calculation, it was proven that the hybrid process is an energy-saving process and utilization of LNG cold energy could greatly reduce the total energy consumption. Copyright © 2012 Elsevier Ltd. All rights reserved.

  19. A Review of Hybrid Brain-Computer Interface Systems

    Directory of Open Access Journals (Sweden)

    Setare Amiri

    2013-01-01

    Full Text Available Increasing number of research activities and different types of studies in brain-computer interface (BCI systems show potential in this young research area. Research teams have studied features of different data acquisition techniques, brain activity patterns, feature extraction techniques, methods of classifications, and many other aspects of a BCI system. However, conventional BCIs have not become totally applicable, due to the lack of high accuracy, reliability, low information transfer rate, and user acceptability. A new approach to create a more reliable BCI that takes advantage of each system is to combine two or more BCI systems with different brain activity patterns or different input signal sources. This type of BCI, called hybrid BCI, may reduce disadvantages of each conventional BCI system. In addition, hybrid BCIs may create more applications and possibly increase the accuracy and the information transfer rate. However, the type of BCIs and their combinations should be considered carefully. In this paper, after introducing several types of BCIs and their combinations, we review and discuss hybrid BCIs, different possibilities to combine them, and their advantages and disadvantages.

  20. Hybrid illumination systems for a brigth future

    DEFF Research Database (Denmark)

    Bjarklev, Araceli

    Problem to be adressed: Even with the implementation of the Eco-design directive (2005/32/EC) it is projected that the 20% energy reduction goal will not be reached in 2020. as a matter of fact, the electricity consumption in the illumination sector will not be changed from the levels of cosnsump......Problem to be adressed: Even with the implementation of the Eco-design directive (2005/32/EC) it is projected that the 20% energy reduction goal will not be reached in 2020. as a matter of fact, the electricity consumption in the illumination sector will not be changed from the levels...... of cosnsumption of 1990. To really get some savings, further improvements have to be done in the area of illumination systems. Our current research is aiming on fiinding- from an eco-designg perspective- precisly those alternative technological systems. Expected results: Withthe cooperation...

  1. Analysis of Linear Hybrid Systems in CLP

    DEFF Research Database (Denmark)

    Banda, Gourinath; Gallagher, John Patrick

    2009-01-01

    notation for specifying real-time systems. The main contributions are (i) a technique for capturing the reachable states of the continuously changing state variables of the LHA as CLP constraints; (ii) a way of representing events in the LHA as constraints in CLP, along with a product construction...... and argue that we contribute to the general field of using static analysis tools for verification...

  2. A Hybrid Neuromechanical Ambulatory Assist System

    Science.gov (United States)

    2016-08-01

    testing and production of the technical components of the untethered HNP2 prototype and new wireless communication and control system. Any human test...reduce resistance to flow and to create a cleaner appearance. Potential manifold solutions and their advantages and disadvantages were presented in our...Quinn RD, Triolo RJ. Improving stand-to-sit maneuver for individuals with spinal cord injury. Journal of NeuroEngineering and Rehabilitation. 13:27

  3. Lower Hybrid System upgrade on Tore Supra

    Science.gov (United States)

    Beaumont, B.; Beunas, A.; Bibet, P.; Kazarian, F.

    2003-12-01

    An upgrade of the heating systems is in progress on Tore Supra. It is focused on the manufacturing of a new coupler, using the PAM concept as foreseen for ITER launcher, and the upgrade of the existing transmitter by replacing the 16 existing 500 kW, 210 s klystrons with new 750 kW, 1000s klystrons. Main features of the launcher and klystron are presented.

  4. Hybrid Recommender System based on Autoencoders

    OpenAIRE

    Strub, Florian; Gaudel, Romaric; Mary, Jérémie

    2016-01-01

    International audience; A standard model for Recommender Systems is the Matrix Completion setting: given partially known matrix of ratings given by users (rows) to items (columns), infer the unknown ratings. In the last decades, few attempts where done to handle that objective with Neural Networks, but recently an architecture based on Autoencoders proved to be a promising approach. In current paper, we enhanced that architecture (i) by using a loss function adapted to input data with missing...

  5. Photovoltaic-wind hybrid autonomous generation systems in Mongolia

    Energy Technology Data Exchange (ETDEWEB)

    Dei, Tsutomu; Ushiyama, Izumi

    2005-01-01

    Two hybrid stand-alone (autonomous) power systems, each with wind and PV generation, were studied as installed at health clinics in semi-desert and mountainous region in Mongolia. Meteorological and system operation parameters, including power output and the consumption of the system, were generally monitored by sophisticated monitoring. However, where wind and solar site information was lacking, justifiable estimates were made. The results show that there is a seasonal complementary relationship between wind and solar irradiation in Tarot Sum. The users understood the necessity of Demand Side Management of isolated wind-PV generation system through technology transfer seminars and actually executed DSM at both sites. (author)

  6. Electric and hybrid vehicle system R/D

    Science.gov (United States)

    Schwartz, H. J.

    1980-01-01

    The work being done to characterize the level of current propulsion technology through component testing is described. Important interactions between the battery and the propulsion system will be discussed. Component development work, involving traction motors, motor controllers and transmissions are described and current results are presented. Studies of advanced electric and hybrid propulsion system studies are summarized and the status of propulsion system development work supported by the project is described. A strategy for fostering joint industry/government projects for commercialization of propulsion components and systems is described briefly.

  7. OPTIMIZATION AND SIZING OF A GRID-CONNECTED HYBRID PV-WIND ENERGY SYSTEM

    Directory of Open Access Journals (Sweden)

    C.S. SUPRIYA,

    2011-05-01

    Full Text Available Renewable energy resources such as solar and wind energies are highly advantageous compared to the conventional sources of power in many ways that they clean and available infinitely. But the onlydrawback is that their outputs depend upon the climatic conditions. Wind-Photovoltaic Hybrid System (WPHS utilization is becoming popular due to increasing energy costs and decreasing prices of turbines and Photo-Voltaic (PV panels. However, prior to construction of a renewable generation station, it is necessary to determine the optimum number of PV panels and wind turbines for minimal cost during continuity of generated energy to meet the desired consumption. The aim of this project is to determine the optimal design of a hybrid wind-solar power system for either autonomous or grid-linked applications. The proposed analysis employs quadratic programming techniques to minimize the cost while meeting the load requirements in a reliable manner. Using this procedure, optimum number of PV modules and wind turbines subject to minimum cost can be obtained with good accuracy. Results show that the hybrid systems have considerable reductions in carbon emission and cost of the system.

  8. Simulation of Hybrid Photovoltaic Solar Assisted Loop Heat Pipe/Heat Pump System

    Directory of Open Access Journals (Sweden)

    Nannan Dai

    2017-02-01

    Full Text Available A hybrid photovoltaic solar assisted loop heat pipe/heat pump (PV-SALHP/HP water heater system has been developed and numerically studied. The system is the combination of loop heat pipe (LHP mode and heat pump (HP mode, and the two modes can be run separately or compositely according to the weather conditions. The performances of independent heat pump (HP mode and hybrid loop heat pipe/heat pump (LHP/HP mode were simulated and compared. Simulation results showed that on typical sunny days in spring or autumn, using LHP/HP mode could save 40.6% power consumption than HP mode. In addition, the optimal switchover from LHP mode to HP mode was analyzed in different weather conditions for energy saving and the all-year round operating performances of the system were also simulated. The simulation results showed that hybrid LHP/HP mode should be utilized to save electricity on sunny days from March to November and the system can rely on LHP mode alone without any power consumption in July and August. When solar radiation and ambient temperature are low in winter, HP mode should be used

  9. A Novel Hybrid-Fuel Storage System of Compressed Air Energy for China

    Directory of Open Access Journals (Sweden)

    Wenyi Liu

    2014-08-01

    Full Text Available Compressed air energy storage (CAES is a large-scale technology that provides long-duration energy storage. It is promising for balancing the large-scale penetration of intermittent and dispersed sources of power, such as wind and solar power, into electric grids. The existing CAES plants utilize natural gas (NG as fuel. However, China is rich in coal but is deficient in NG; therefore, a hybrid-fuel CAES is proposed and analyzed in this study. Based on the existing CAES plants, the hybrid-fuel CAES incorporates an external combustion heater into the power generation subsystem to heat the air from the recuperator and the air from the high-pressure air turbine. Coal is the fuel for the external combustion heater. The overall efficiency and exergy efficiency of the hybrid-fuel CAES are 61.18% and 59.84%, respectively. Given the same parameters, the cost of electricity (COE of the hybrid-fuel CAES, which requires less NG, is $5.48/MW∙h less than that of the gas-fuel CAES. Although the proposed CAES requires a relatively high investment in the current electricity system in North China, the proposed CAES will be likely to become competitive in the market, provided that the energy supplies are improved and the large scale grid-connection of wind power is realized.

  10. SDN Controlled mmWave Massive MIMO Hybrid Precoding for 5G Heterogeneous Mobile Systems

    Directory of Open Access Journals (Sweden)

    Na Chen

    2016-01-01

    Full Text Available In 5G mobile network, millimeter wave (mmWave and heterogeneous networks (Hetnets are significant techniques to sustain coverage and spectral efficiency. In this paper, we utilize the hybrid precoding to overcome hardware constraints on the analog-only beamforming in mmWave systems. Particularly, we identify the complicated antenna coordination and vast spatial domain information as the outstanding challenges in mmWave Hetnets. In our work, we employ software defined network (SDN to accomplish radio resource management (RRM and achieve flexible spacial coordination in mmWave Hetnets. In our proposed scheme, SDN controller is responsible for collecting the user channel state information (CSI and applying hybrid precoding based on the calculated null-space of victim users. Simulation results show that our design can effectively reduce the interference to victim users and support high quality of service.

  11. Fast Algorithms for Hybrid Control System Design

    Science.gov (United States)

    2007-11-02

    Controls for Petri Nets with Unobservable Transitions", Proceedings of the 1997 American Control Conference, pp. 2354- 2358, Albuquerque, New Mexico , June...Automation Conference, April 20-25, 1997, 1997, Albuquerque New Mexico . - Invited Speaker at special session on "Intelligent Control Systems" at the 3rd...0 (11) Moreover, if either (hence, both) of these statements hold, then one controller that renders iVa (Ji(P, K)) < 7 is ffiven by A + B2J- aYaC2

  12. Hybrid Power System for Remote Communications Stations

    Science.gov (United States)

    1993-09-01

    2 ft ft ft -. .0 .0 IA .0 VINO ft Vt VI VI I............... ILl *VI - I Vt - 8* VI I Vt VI Vt Vt Vi ft ft ft ft - 4 I 0 a -.m WILl .4 I-C II) I ft...Electrical Code, New Mexico University, Las Cruces, November 1992. 35. Sandia Laboratories, Maintenance and Operation of Stand- Alone Photovoltaic Systems...Albuquerque, New Mexico , December 1991. 36. Palz, W., Solar Electricity, Chapel River Press, Andover, England, 1980. 37. Boes, E.C., "Photovoltaic

  13. Consulting report on the NASA technology utilization network system

    Science.gov (United States)

    Hlava, Marjorie M. K.

    1992-01-01

    The purposes of this consulting effort are: (1) to evaluate the existing management and production procedures and workflow as they each relate to the successful development, utilization, and implementation of the NASA Technology Utilization Network System (TUNS) database; (2) to identify, as requested by the NASA Project Monitor, the strengths, weaknesses, areas of bottlenecking, and previously unaddressed problem areas affecting TUNS; (3) to recommend changes or modifications of existing procedures as necessary in order to effect corrections for the overall benefit of NASA TUNS database production, implementation, and utilization; and (4) to recommend the addition of alternative procedures, routines, and activities that will consolidate and facilitate the production, implementation, and utilization of the NASA TUNS database.

  14. Hybrid ventilation systems. Principles, design and calculation, case studies. Final report; Hybride Lueftungssysteme. Prinzipien, Planung und Berechnung, Beispiele. Schlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Grundmann, R.; Roloff, J. [and others

    2003-09-01

    This report contains the most important information achieved within the IEA-ECBCS project Annex 35 of the national and international level. The first chapters are a translation of the main parts of the international final report 'Principles of Hybrid Ventilation' (ed. Per Heiselberg). The international report including a CD-ROM is enclosed in this report. Based on a definition of hybrid ventilation it is motivated why to deal with hybrid ventilation. The explanations are underlined by precise data of the investigated case studies. The variety of solutions with hybrid ventilation is large, but there are three main principles, natural and mechanical ventilation, fan-assisted natural ventilation, stack- and wind-assisted mechanical ventilation. A hybrid ventilation systems is most suitable to implement if this idea is taken into account in the early design phases. Therefore decision tools are compiled to make it clear whether a hybrid ventilation concept could be successful under the given conditions or not. Moreover, important aspects of control strategies are summarized, which are crucial for an optimal operation of a hybrid ventilation system. If there is an option for installing a hybrid ventilation system it is necessary to carry out calculations and evaluations during the design phases. The available tools are presented and classified. Beside the substantial data of the case studies of the international project partners the national studies are presented in detail. These are the investigation of an existing hybrid ventilation system in the school building 'Bertolt-Brecht-Gymnasium', Dresden and the development of an innovative hybrid ventilation system at the Fraunhofer-Institute of Building Physics in Holzkirchen. (orig.)

  15. Utilizing Robot Operating System (ROS) in Robot Vision and Control

    Science.gov (United States)

    2015-09-01

    OPERATING SYSTEM (ROS) IN ROBOT VISION AND CONTROL by Joshua S. Lum September 2015 Thesis Advisor: Xiaoping Yun Co-Advisor: Zac Staples...Master’s Thesis 4. TITLE AND SUBTITLE UTILIZING ROBOT OPERATING SYSTEM (ROS) IN ROBOT VISION AND CONTROL 5. FUNDING NUMBERS 6. AUTHOR(S) Lum, Joshua S...DISTRIBUTION CODE 13. ABSTRACT (maximum 200 words) The Robot Operating System (ROS) is an open-source framework that allows robot developers to create

  16. A 6-DOF vibration isolation system for hydraulic hybrid vehicles

    Science.gov (United States)

    Nguyen, The; Elahinia, Mohammad; Olson, Walter W.; Fontaine, Paul

    2006-03-01

    This paper presents the results of vibration isolation analysis for the pump/motor component of hydraulic hybrid vehicles (HHVs). The HHVs are designed to combine gasoline/diesel engine and hydraulic power in order to improve the fuel efficiency and reduce the pollution. Electric hybrid technology is being applied to passenger cars with small and medium engines to improve the fuel economy. However, for heavy duty vehicles such as large SUVs, trucks, and buses, which require more power, the hydraulic hybridization is a more efficient choice. In function, the hydraulic hybrid subsystem improves the fuel efficiency of the vehicle by recovering some of the energy that is otherwise wasted in friction brakes. Since the operation of the main component of HHVs involves with rotating parts and moving fluid, noise and vibration are an issue that affects both passengers (ride comfort) as well as surrounding people (drive-by noise). This study looks into the possibility of reducing the transmitted noise and vibration from the hydraulic subsystem to the vehicle's chassis by using magnetorheological (MR) fluid mounts. To this end, the hydraulic subsystem is modeled as a six degree of freedom (6-DOF) rigid body. A 6-DOF isolation system, consisting of five mounts connected to the pump/motor at five different locations, is modeled and simulated. The mounts are designed by combining regular elastomer components with MR fluids. In the simulation, the real loading and working conditions of the hydraulic subsystem are considered and the effects of both shock and vibration are analyzed. The transmissibility of the isolation system is monitored in a wide range of frequencies. The geometry of the isolation system is considered in order to sustain the weight of the hydraulic system without affecting the design of the chassis and the effectiveness of the vibration isolating ability. The simulation results shows reduction in the transmitted vibration force for different working cycles of

  17. Design Principles for Hybrid Ventilation

    DEFF Research Database (Denmark)

    Heiselberg, Per

    For many years mechanical and natural ventilation systems have developed separately. Naturally, the next step in this development is the development of ventilation concepts that utilize and combine the best features from each system to create a new type of ventilation system -Hybrid Ventilation....... The hybrid ventilation concepts, design challenges and - principles are discussed and illustrated by four building examples....

  18. Hybrid system- a promising way solving future energy problems

    Institute of Scientific and Technical Information of China (English)

    Dieter Bohn

    2007-01-01

    With the increasing demand for electricity,an efficiency improvement and thereby reduced CO2 emissions of the power plants are expected in order to reach the goals set in the Kyoto protocol.In comparison to conventional systems,the hybrid-systems with the use of synergetic effects offer the possibility to provide a substantial contribution to spare our natural resources and protect our environment.Combined Cycle Power Plants belongs innately hybrid system in the centralized energy market.They can provide large amounts of power and have a quick start-up time.The MGT/FC hybrid system is quite promising in the decentralized energy market.It is widely used in stand-alone applications.Furthermore,the combination of fossil and renewable power plant technologies contains a large synergy potential to increase the efficiency of processes for power plants.New materials,innovative cooling technology,new combustion concepts and optimized production methods are needed to make the potential of these new technologies accessible for a quantum leap in the efficiency.For this it needs considerable research work and good coordinated research projects between the state,industry,research laboratories and universities.

  19. Superconducting and hybrid systems for magnetic field shielding

    Science.gov (United States)

    Gozzelino, L.; Gerbaldo, R.; Ghigo, G.; Laviano, F.; Truccato, M.; Agostino, A.

    2016-03-01

    In this paper we investigate and compare the shielding properties of superconducting and hybrid superconducting/ferromagnetic systems, consisting of cylindrical cups with an aspect ratio of height/radius close to unity. First, we reproduced, by finite-element calculations, the induction magnetic field values measured along the symmetry axis in a superconducting (MgB2) and in a hybrid configuration (MgB2/Fe) as a function of the applied magnetic field and of the position. The calculations are carried out using the vector potential formalism, taking into account simultaneously the non-linear properties of both the superconducting and the ferromagnetic material. On the basis of the good agreement between the experimental and the computed data we apply the same model to study the influence of the geometric parameters of the ferromagnetic cup as well as of the thickness of the lateral gap between the two cups on the shielding properties of the superconducting cup. The results show that in the considered non-ideal geometry, where the edge effect in the flux penetration cannot be disregarded, the superconducting shield is always the most efficient solution at low magnetic fields. However, a partial recovery of the shielding capability of the hybrid configuration occurs if a mismatch in the open edges of the two cups is considered. In contrast, at high magnetic fields the hybrid configurations are always the most effective. In particular, the highest shielding factor was found for solutions with the ferromagnetic cup protruding over the superconducting one.

  20. Power quality analysis of hybrid renewable energy system

    Directory of Open Access Journals (Sweden)

    Rinchin W. Mosobi

    2015-12-01

    Full Text Available An hybrid renewable energy sources consisting of solar photovoltaic, wind energy system, and a microhydro system is proposed in this paper. This system is suitable for supplying electricity to isolated locations or remote villages far from the grid supply. The solar photovoltaic system is modeled with two power converters, the first one being a DC-DC converter along with an maximum power point tracking to achieve a regulated DC output voltage and the second one being a DC-AC converter to obtain AC output. The wind energy system is modeled with a wind-turbine prime mover with varying wind speed and fixed pitch angle to drive an self excited induction generator (SEIG. Owing to inherent drooping characteristics of the SEIG, a closed loop turbine input system is incorporated. The microhydro system is modeled with a constant input power to drive an SEIG. The three different sources are integrated through an AC bus and the proposed hybrid system is supplied to R, R-L, and induction motor loads. A static compensator is proposed to improve the load voltage and current profiles; it also mitigates the harmonic contents of the voltage and current. The static synchronous compensator is realized by means of a three-phase IGBT-based current-controlled voltage source inverter with a self-supporting DC bus. The complete system is modeled and simulated using Matlab/Simulink. The simulation results obtained illustrate the feasibility of the proposed system and are found to be satisfactory.

  1. Synthesis, Characterization and Utility of Carbon Nanotube Based Hybrid Sensors in Bioanalytical Applications

    Science.gov (United States)

    Badhulika, Sushmee

    The detection of gaseous analytes and biological molecules is of prime importance in the fields of environmental pollution control, food and water - safety and analysis; and medical diagnostics. This necessitates the development of advanced and improved technology that is reliable, inexpensive and suitable for high volume production. The conventional sensors are often thin film based which lack sensitivity due to the phenomena of current shunting across the charge depleted region when an analyte binds with them. One dimensional (1-D) nanostructures provide a better alternative for sensing applications by eliminating the issue of current shunting due to their 1-D geometries and facilitating device miniaturization and low power operations. Carbon nanotubes (CNTs) are 1-D nanostructures that possess small size, high mechanical strength, high electrical and thermal conductivity and high specific area that have resulted in their wide spread applications in sensor technology. To overcome the issue of low sensitivity of pristine CNTs and to widen their scope, hybrid devices have been fabricated that combine the synergistic properties of CNTs along with materials like metals and conducting polymers (CPs). CPs exhibit electronic, magnetic and optical properties of metals and semiconductors while retaining the processing advantages of polymers. Their high chemical sensitivity, room temperature operation and tunable charge transport properties has made them ideal for use as transducing elements in chemical sensors. In this dissertation, various CNT based hybrid devices such as CNT-conducting polymer and graphene-CNT-metal nanoparticles based sensors have been developed and demonstrated towards bioanalytical applications such as detection of volatile organic compounds (VOCs) and saccharides. Electrochemical polymerization enabled the synthesis of CPs and metal nanoparticles in a simple, cost effective and controlled way on the surface of CNT based platforms thus resulting in

  2. Optimal Battery Utilization Over Lifetime for Parallel Hybrid Electric Vehicle to Maximize Fuel Economy

    Energy Technology Data Exchange (ETDEWEB)

    Patil, Chinmaya; Naghshtabrizi, Payam; Verma, Rajeev; Tang, Zhijun; Smith, Kandler; Shi, Ying

    2016-08-01

    This paper presents a control strategy to maximize fuel economy of a parallel hybrid electric vehicle over a target life of the battery. Many approaches to maximizing fuel economy of parallel hybrid electric vehicle do not consider the effect of control strategy on the life of the battery. This leads to an oversized and underutilized battery. There is a trade-off between how aggressively to use and 'consume' the battery versus to use the engine and consume fuel. The proposed approach addresses this trade-off by exploiting the differences in the fast dynamics of vehicle power management and slow dynamics of battery aging. The control strategy is separated into two parts, (1) Predictive Battery Management (PBM), and (2) Predictive Power Management (PPM). PBM is the higher level control with slow update rate, e.g. once per month, responsible for generating optimal set points for PPM. The considered set points in this paper are the battery power limits and State Of Charge (SOC). The problem of finding the optimal set points over the target battery life that minimize engine fuel consumption is solved using dynamic programming. PPM is the lower level control with high update rate, e.g. a second, responsible for generating the optimal HEV energy management controls and is implemented using model predictive control approach. The PPM objective is to find the engine and battery power commands to achieve the best fuel economy given the battery power and SOC constraints imposed by PBM. Simulation results with a medium duty commercial hybrid electric vehicle and the proposed two-level hierarchical control strategy show that the HEV fuel economy is maximized while meeting a specified target battery life. On the other hand, the optimal unconstrained control strategy achieves marginally higher fuel economy, but fails to meet the target battery life.

  3. A New Control Method to Mitigate Power Fluctuations for Grid Integrated PV/Wind Hybrid Power System Using Ultracapacitors

    Science.gov (United States)

    Jayalakshmi, N. S.; Gaonkar, D. N.

    2016-08-01

    The output power obtained from solar-wind hybrid system fluctuates with changes in weather conditions. These power fluctuations cause adverse effects on the voltage, frequency and transient stability of the utility grid. In this paper, a control method is presented for power smoothing of grid integrated PV/wind hybrid system using ultracapacitors in a DC coupled structure. The power fluctuations of hybrid system are mitigated and smoothed power is supplied to the utility grid. In this work both photovoltaic (PV) panels and the wind generator are controlled to operate at their maximum power point. The grid side inverter control strategy presented in this paper maintains DC link voltage constant while injecting power to the grid at unity power factor considering different operating conditions. Actual solar irradiation and wind speed data are used in this study to evaluate the performance of the developed system using MATLAB/Simulink software. The simulation results show that output power fluctuations of solar-wind hybrid system can be significantly mitigated using the ultracapacitor based storage system.

  4. Short-Term Planning of Hybrid Power System

    Science.gov (United States)

    Knežević, Goran; Baus, Zoran; Nikolovski, Srete

    2016-07-01

    In this paper short-term planning algorithm for hybrid power system consist of different types of cascade hydropower plants (run-of-the river, pumped storage, conventional), thermal power plants (coal-fired power plants, combined cycle gas-fired power plants) and wind farms is presented. The optimization process provides a joint bid of the hybrid system, and thus making the operation schedule of hydro and thermal power plants, the operation condition of pumped-storage hydropower plants with the aim of maximizing profits on day ahead market, according to expected hourly electricity prices, the expected local water inflow in certain hydropower plants, and the expected production of electrical energy from the wind farm, taking into account previously contracted bilateral agreement for electricity generation. Optimization process is formulated as hourly-discretized mixed integer linear optimization problem. Optimization model is applied on the case study in order to show general features of the developed model.

  5. Hybrid Palliation for Ductal-Dependent Systemic Circulation.

    Science.gov (United States)

    Evans, William N; Galindo, Alvaro; Rothman, Abraham; Ciccolo, Michael L; Carrillo, Sergio A; Acherman, Ruben J; Mayman, Gary A; Cass, Kathleen A; Kip, Katrinka T; Luna, Carlos F; Ludwick, Joseph M; Rollins, Robert C; Castillo, William J; Alexander, John A; Restrepo, Humberto

    2016-06-01

    We reviewed our hybrid palliation experience for 91 neonates, with ductal-dependent systemic circulation, born between August 2007 and October 2015. For analysis, we stratified the 91 patients by a risk factor (RF) score and divided them into three groups: (1) high-risk two-functional ventricles (2V) median RF score of 3 (N = 20); (2) low-risk one-functional ventricle (1V) RF score 0-1 (N = 32); and (3) high-risk 1V RF score ≥2 (N = 39). Midterm survival (median 4 years) by group was: (1) 95 %, (2) 91 %, and (3) 15 %, (p = 0.001). In conclusion, hybrid palliation was associated with excellent midterm results for high-risk 2V and low-risk 1V patients with ductal-dependent systemic circulation. In contrast, high-risk 1V patients had significantly worse outcomes.

  6. Hybrid Heuristic-Based Artificial Immune System for Task Scheduling

    CERN Document Server

    sanei, Masoomeh

    2011-01-01

    Task scheduling problem in heterogeneous systems is the process of allocating tasks of an application to heterogeneous processors interconnected by high-speed networks, so that minimizing the finishing time of application as much as possible. Tasks are processing units of application and have precedenceconstrained, communication and also, are presented by Directed Acyclic Graphs (DAGs). Evolutionary algorithms are well suited for solving task scheduling problem in heterogeneous environment. In this paper, we propose a hybrid heuristic-based Artificial Immune System (AIS) algorithm for solving the scheduling problem. In this regard, AIS with some heuristics and Single Neighbourhood Search (SNS) technique are hybridized. Clonning and immune-remove operators of AIS provide diversity, while heuristics and SNS provide convergence of algorithm into good solutions, that is balancing between exploration and exploitation. We have compared our method with some state-of-the art algorithms. The results of the experiments...

  7. Hybrid Systems in Foil (HySiF) exploiting ultra-thin flexible chips

    Science.gov (United States)

    Harendt, Christine; Kostelnik, Jan; Kugler, Andreas; Lorenz, Enno; Saller, Stefan; Schreivogel, Alina; Yu, Zili; Burghartz, Joachim N.

    2015-11-01

    Electronics embedded in foil is an enabling technology for flexible electronics and for special form factors of electronic components. In contrast to strictly printed electronics, Hybrid Systems-in-Foil (HySiF), comprising thin flexible, embedded chips and large-area thin-film electronic elements, feature a versatile and reliable technological solution for industrial applications of flexible electronics. This paper provides a comprehensive overview of HySiF technology, including aspects of thin-chip fabrication, reliability and assembly. Also presented is an industrial demonstrator utilizing such a HySiF component.

  8. 40-Gb/s all-optical processing systems using hybrid photonic integration technology

    DEFF Research Database (Denmark)

    Kehayas, E.; Tsiokos, D.I.; Bakopoulos, P.;

    2006-01-01

    This paper presents an experimental performance characterization of all-optical subsystems at 40 Gb/s using interconnected hybrid integrated all-optical semiconductor optical amplifier (SOA) Mach-Zehnder interferometer (MZI) gates and flip-flop prototypes. It was shown that optical gates can...... the potential that all-optical technology can find application in future data-centric networks with efficient and dynamic bandwidth utilization. This paper also reports on the latest photonic integration breakthroughs as a potential migration path for reducing fabrication cost by developing photonic systems...

  9. A hybrid electromagnetic shock absorber for active vehicle suspension systems

    Science.gov (United States)

    Ebrahimi, Babak; Bolandhemmat, Hamidreza; Behrad Khamesee, Mir; Golnaraghi, Farid

    2011-02-01

    The use of electromagnetic dampers (ED) in vehicle active suspension systems has drawn considerable attention in the past few years, attributed to the fact that active suspension systems have shown superior performance in improving ride comfort and road handling of terrain vehicles, compared with their passive and semi-active counterparts. Although demonstrating superb performance, active suspensions still have some shortcomings that must be overcome. They have high energy consumption, weight, and cost and are not fail-safe in case of a power breakdown. The novel hybrid ED, which is proposed in this paper, is a potential solution to the above-mentioned drawbacks of conventional active suspension systems. The proposed hybrid ED is designed to inherit the high-performance characteristics of an active ED with the reliability of a passive damper in a single package. The eddy current damping effect is utilised as a source of the passive damping. First, a prototype ED is designed and fabricated. The prototype ED is then utilised to experimentally establish the design requirements for a real-size active ED. This is accomplished by comparing its vibration isolation performance in a 1-DOF quarter-car test rig with that of a same-class semi-active damper. Then, after a real-size active ED is designed, the concept of hybrid damper is introduced to the damper design to address the drawbacks of the active ED. Finally, the finite-element method is used to accurately model and analyse the designed hybrid damper. It is demonstrated that by introducing the eddy current damping effect to the active part, a passive damping of approximately 1570 Ns/m is achieved. This amount of passive damping guarantees that the damper is fail-safe and reduces the power consumption more than 70%, compared with an active ED in an automotive active suspension system.

  10. Delta-Complete Analysis for Bounded Reachability of Hybrid Systems

    Science.gov (United States)

    2014-07-16

    can occur in realistic hybrid sys- tems, such as polynomials, trigonometric functions , and solutions of Lipschitz-continuous ODEs. The goal of this...systems are Type 2 computable, such as polynomials, exponentiation, logarithm, trigonometric functions , and solution functions of Lipschitz-continuous...comes from the need of solving logic formulas over the real numbers with nonlinear functions , which is notoriously hard. Recently, we have defined the δ

  11. Dynamical control of quantum state transfer within hybrid open systems

    CERN Document Server

    Escher, B M; Clausen, J; Kurizki, G; Davidovich, L

    2010-01-01

    We analyze quantum state-transfer optimization within hybrid open systems, from a "noisy" (write-in) qubit to its "quiet" counterpart (storage qubit). Intriguing interplay is revealed between our ability to avoid bath-induced errors that profoundly depend on the bath-memory time and the limitations imposed by leakage out of the operational subspace. Counterintuitively, under no circumstances is the fastest transfer optimal (for a given transfer energy).

  12. Controllability in hybrid kinetic equations modeling nonequilibrium multicellular systems.

    Science.gov (United States)

    Bianca, Carlo

    2013-01-01

    This paper is concerned with the derivation of hybrid kinetic partial integrodifferential equations that can be proposed for the mathematical modeling of multicellular systems subjected to external force fields and characterized by nonconservative interactions. In order to prevent an uncontrolled time evolution of the moments of the solution, a control operator is introduced which is based on the Gaussian thermostat. Specifically, the analysis shows that the moments are solution of a Riccati-type differential equation.

  13. Operations Optimization of Hybrid Energy Systems under Variable Markets

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Jun; Garcia, Humberto E.

    2016-07-01

    Hybrid energy systems (HES) have been proposed to be an important element to enable increasing penetration of clean energy. This paper investigates the operations flexibility of HES, and develops a methodology for operations optimization to maximize its economic value based on predicted renewable generation and market information. The proposed operations optimizer allows systematic control of energy conversion for maximal economic value, and is illustrated by numerical results.

  14. Hybrid Multiagent System for Automatic Object Learning Classification

    Science.gov (United States)

    Gil, Ana; de La Prieta, Fernando; López, Vivian F.

    The rapid evolution within the context of e-learning is closely linked to international efforts on the standardization of learning object metadata, which provides learners in a web-based educational system with ubiquitous access to multiple distributed repositories. This article presents a hybrid agent-based architecture that enables the recovery of learning objects tagged in Learning Object Metadata (LOM) and provides individualized help with selecting learning materials to make the most suitable choice among many alternatives.

  15. Hybrid Recommender System Based on Personal Behavior Mining

    OpenAIRE

    Fang, Zhiyuan; Zhang, Lingqi; Chen, Kun

    2016-01-01

    Recommender systems are mostly well known for their applications in e-commerce sites and are mostly static models. Classical personalized recommender algorithm includes item-based collaborative filtering method applied in Amazon, matrix factorization based collaborative filtering algorithm from Netflix, etc. In this article, we hope to combine traditional model with behavior pattern extraction method. We use desensitized mobile transaction record provided by T-mall, Alibaba to build a hybrid ...

  16. Catalog of components for electric and hybrid vehicle propulsion systems

    Science.gov (United States)

    Eissler, H. C.

    1981-01-01

    This catalog of commercially available electric and hybrid vehicle propulsion system components is intended for designers and builders of these vehicles and contains 50 categories of components. These categories include those components used between the battery terminals and the output axle hub, as well as some auxiliary equipment. An index of the components and a listing of the suppliers and their addresses and phone numbers are included.

  17. 4D Trajectory Estimation for Air Traffic Control Automation System Based on Hybrid System Theory

    Directory of Open Access Journals (Sweden)

    Xin-Min Tang

    2012-03-01

    Full Text Available To resolve the problem of future airspace management under great traffic flow and high density condition, 4D trajectory estimation has become one of the core technologies of the next new generation air traffic control automation system. According to the flight profile and the dynamics models of different aircraft types under different flight conditions, a hybrid system model that switches the aircraft from one flight stage to another with aircraft state changing continuously in one state is constructed. Additionally, air temperature and wind speed are used to modify aircraft true airspeed as well as ground speed, and the hybrid system evolution simulation is used to estimate aircraft 4D trajectory. The case study proves that 4D trajectory estimated through hybrid system model can image the flight dynamic states of aircraft and satisfy the needs of the planned flight altitude profile.KEY WORDSair traffic management, 4D trajectory estimation, hybrid system model, aircraft dynamic model

  18. Concepts leading to the IMAGE-100 hybrid interactive system

    Science.gov (United States)

    Mackin, T. F.; Sulester, J. M. (Principal Investigator)

    1979-01-01

    As LACIE Procedure 1 evolved from the Classification and Mensuration Subsystem smallfields procedures, it became evident that two computational systems would have merit-the LACIE/Earth Resources Interactive Processing System based on a large IBM-360 computer oriented for operational use with high computational throughput, and a smaller, highly interactive system based on a PDP 11-45 minicomputer and its display system, the IMAGE-100. The latter had advantages for certain phases; notably, interactive spectral aids could be implemented quite rapidly. This would allow testing and development of Procedure 1 before its implementation on the LACIE/Earth Resources Interactive Processing System. The resulting minicomputer system, called the Classification and Mensuration Subsystem IMAGE-100 Hybrid System, allowed Procedure-1 operations to be performed interactively, except for clustering, classification, and automatic selection of best acquisitions, which were offloaded to the LACIE/Earth Resources Interactive Processing System.

  19. A novel energy recovery system for parallel hybrid hydraulic excavator.

    Science.gov (United States)

    Li, Wei; Cao, Baoyu; Zhu, Zhencai; Chen, Guoan

    2014-01-01

    Hydraulic excavator energy saving is important to relieve source shortage and protect environment. This paper mainly discusses the energy saving for the hybrid hydraulic excavator. By analyzing the excess energy of three hydraulic cylinders in the conventional hydraulic excavator, a new boom potential energy recovery system is proposed. The mathematical models of the main components including boom cylinder, hydraulic motor, and hydraulic accumulator are built. The natural frequency of the proposed energy recovery system is calculated based on the mathematical models. Meanwhile, the simulation models of the proposed system and a conventional energy recovery system are built by AMESim software. The results show that the proposed system is more effective than the conventional energy saving system. At last, the main components of the proposed energy recovery system including accumulator and hydraulic motor are analyzed for improving the energy recovery efficiency. The measures to improve the energy recovery efficiency of the proposed system are presented.

  20. Abstraction of Continuous Dynamical Systems Utilizing Lyapunov Functions

    DEFF Research Database (Denmark)

    Sloth, Christoffer; Wisniewski, Rafal

    2010-01-01

    This paper considers the development of a method for abstracting continuous dynamical systems by timed automata. The method is based on partitioning the state space of dynamical systems with invariant sets, which form cells representing locations of the timed automata. To enable verification...... of the dynamical system based on the abstraction, conditions for obtaining sound, complete, and refinable abstractions are set up. It is proposed to partition the state space utilizing sub-level sets of Lyapunov functions, since they are positive invariant sets. The existence of sound abstractions for Morse......-Smale systems and complete and refinable abstractions for linear systems are shown....

  1. IMPLICIT REPRESENTATION FOR THE MODELLING OF HYBRID DYNAMIC SYSTEMS

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Hybrid systems can be represented by a discrete event model interacting with a continuous model, and the interface by ideal switching components which modify the topology of a system at the switching time. This paper deals with the modelling of such systems using the bond graph approach. The paper shows the interest of the implicit representation: to derive a unique state equation with jumping parameters, to derive the implicit state equation with index of nilpotency one corresponding to each configuration, to analyze the properties of those models and to compute the discontinuity.

  2. Active diagnosis of hybrid systems - A model predictive approach

    DEFF Research Database (Denmark)

    Tabatabaeipour, Seyed Mojtaba; Ravn, Anders P.; Izadi-Zamanabadi, Roozbeh;

    2009-01-01

    A method for active diagnosis of hybrid systems is proposed. The main idea is to predict the future output of both normal and faulty model of the system; then at each time step an optimization problem is solved with the objective of maximizing the difference between the predicted normal and faulty...... outputs constrained by tolerable performance requirements. As in standard model predictive control, the first element of the optimal input is applied to the system and the whole procedure is repeated until the fault is detected by a passive diagnoser. It is demonstrated how the generated excitation signal...

  3. Optimizing Hybrid Wind/Diesel Generator System Using BAT Algorithm

    Directory of Open Access Journals (Sweden)

    Sudhir Sharma,

    2016-01-01

    Full Text Available Hybrid system comprising of Wind/Diesel generation system for a practical standalone application considers Wind turbine generators and diesel generator as primary power sources for generating electricity. Battery banks are considered as a backup power source. The total value of cost is reduced by meeting energy demand required by the customers. Bat optimization technique is implemented to optimize wind and battery modules. Wind and battery banks are considered as primary sources and diesel generator as a secondary power source for the system

  4. Hybrid and electric advanced vehicle systems (heavy) simulation

    Science.gov (United States)

    Hammond, R. A.; Mcgehee, R. K.

    1981-01-01

    A computer program to simulate hybrid and electric advanced vehicle systems (HEAVY) is described. It is intended for use early in the design process: concept evaluation, alternative comparison, preliminary design, control and management strategy development, component sizing, and sensitivity studies. It allows the designer to quickly, conveniently, and economically predict the performance of a proposed drive train. The user defines the system to be simulated using a library of predefined component models that may be connected to represent a wide variety of propulsion systems. The development of three models are discussed as examples.

  5. Optimisation and Integration of Hybrid Renewable Energy Storage Systems

    Science.gov (United States)

    Eriksson, E. L. V.; MacA Gray, E.

    2017-07-01

    This paper discusses renewable energy system concepts and integration techniques, and reviews modelling and optimization techniques for hybrid renewable energy systems for electricity provision. A proposal to use design criteria that are not limited to performance- and cost-related factors is introduced and forms a background to the following discussion. Optimization techniques in relation to constraints, reliability analysis and algorithms are discussed as well as software tools available for modelling/simulation, component sizing and optimization. The focus is on systems incorporating hydrogen, but the ideas presented have general relevance.

  6. Heart Disease Diagnosis Utilizing Hybrid Fuzzy Wavelet Neural Network and Teaching Learning Based Optimization Algorithm

    Directory of Open Access Journals (Sweden)

    Jamal Salahaldeen Majeed Alneamy

    2014-01-01

    Full Text Available Among the various diseases that threaten human life is heart disease. This disease is considered to be one of the leading causes of death in the world. Actually, the medical diagnosis of heart disease is a complex task and must be made in an accurate manner. Therefore, a software has been developed based on advanced computer technologies to assist doctors in the diagnostic process. This paper intends to use the hybrid teaching learning based optimization (TLBO algorithm and fuzzy wavelet neural network (FWNN for heart disease diagnosis. The TLBO algorithm is applied to enhance performance of the FWNN. The hybrid TLBO algorithm with FWNN is used to classify the Cleveland heart disease dataset obtained from the University of California at Irvine (UCI machine learning repository. The performance of the proposed method (TLBO_FWNN is estimated using K-fold cross validation based on mean square error (MSE, classification accuracy, and the execution time. The experimental results show that TLBO_FWNN has an effective performance for diagnosing heart disease with 90.29% accuracy and superior performance compared to other methods in the literature.

  7. Utilization of Aromatic Rice in Improving Grain Quality of Hybrid Rice (Ⅰ)

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    To improve grain quality of the high-yielding hybrid rice in China, we introduced the aromatic rice MR365, an improved Indian cultivar, from IRRI in 1984 and began to transfer its aroma and good quality characters into the existing maintainer lines. In the meantime, the research on the inheritance of aroma for increasing the breeding efficiency was also conducted.It was found that the inheritance of aroma in MR 365 and its derivatives was controlled by one pair of recessive major genes based on the KOH-soaking method. There existed disparity in aroma degree among different grains of F2 generation, and different aromatic CMS lines derived from the same aromatic donor had also a little difference in the degree of aroma, which implies that, besides the major genes, aroma may also be affected by the genetic backgrounds or minor genes.Xiangxiang 2A, developed from the cross of V20A//V20B/MR365, is the first aromatic CMS line bred in China. It is not only aromatic but also has good grain quality and combining ability. Using it as female parent, Xiangyou 63 (Xiangxiang 2A / Minghui 63), the first quasi-aromatic hybrid rice combination in China, was developed, and released to farmers in 1995. Xiangyou 63 is characteristic of quasi-aromatic or partially aromatic (because only a portion of or not all grains are aromatic), good grain quality, high-yielding ability, good blast resistance and wide adaptability.

  8. Comparative genomic hybridization array study and its utility in detection of constitutional and acquired anomalies.

    Science.gov (United States)

    Andrieux, Joris; Sheth, Frenny

    2009-10-01

    The last decade has witnessed an upsurge in the knowledge of cytogenetic disorders and putting the old technology in a new basket with molecular genetics. As conventional cytogenetic can detect the genetic alteration of 10-15 Mb, many of the micro-deletions and micro-duplications are missed. However, with the advent of technology of fluorescence in situ hybridization (FISH), the resolution of genetic aberrations can reach to 3-5 Mb, nonetheless the anomalies smaller than the above, need further precision which has been achieved using comparative genomic hybridization array (CGH-array). Introduction of array-CGH has brought higher sensitivity with automated DNA fragment analyzer and DNA chip for submicroscopic chromosomal anomalies that are missed till date in many of the acquired and constitutional genetic disorders. The resolution of the technology varies from several Kb to 1 Mb depending upon the type of array selected. With the recent improvement in the array-CGH technology, a link between cytogenetic and molecular biology has been established without replacing conventional cytogenetic technique. The wider accessibility of the technology shall certainly provide a clue to the many unidentified/unexplained genetic disorders which shall prove to be a boon to the clinicians.

  9. Why do multi-attribute utility instruments produce different utilities: the relative importance of the descriptive systems, scale and 'micro-utility' effects.

    Science.gov (United States)

    Richardson, Jeff; Iezzi, Angelo; Khan, Munir A

    2015-08-01

    Health state utilities measured by the major multi-attribute utility instruments differ. Understanding the reasons for this is important for the choice of instrument and for research designed to reconcile these differences. This paper investigates these reasons by explaining pairwise differences between utilities derived from six multi-attribute utility instruments in terms of (1) their implicit measurement scales; (2) the structure of their descriptive systems; and (3) 'micro-utility effects', scale-adjusted differences attributable to their utility formula. The EQ-5D-5L, SF-6D, HUI 3, 15D and AQoL-8D were administered to 8,019 individuals. Utilities and unweighted values were calculated using each instrument. Scale effects were determined by the linear relationship between utilities, the effect of the descriptive system by comparison of scale-adjusted values and 'micro-utility effects' by the unexplained difference between utilities and values. Overall, 66 % of the differences between utilities was attributable to the descriptive systems, 30.3 % to scale effects and 3.7 % to micro-utility effects. Results imply that the revision of utility algorithms will not reconcile differences between instruments. The dominating importance of the descriptive system highlights the need for researchers to select the instrument most capable of describing the health states relevant for a study. Reconciliation of inconsistent utilities produced by different instruments must focus primarily upon the content of the descriptive system. Utility weights primarily determine the measurement scale. Other differences, attributable to utility formula, are comparatively unimportant.

  10. Demonstrative study for the wind and solar hybrid power system. 2; Furyoku taiyoko hybrid hatsuden system ni kansuru jissho kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    Kimura, Y.; Sakuma, H.; Ushiyama, I. [Ashikaga Institute of Technology, Tochigi (Japan)

    1996-10-27

    In order to verify the complementary relationship between wind and solar energy, the long-term field test of the hybrid power system was conducted at the natural energy square of Ashikaga Institute of Technology. The solar cell blade windmill composed of a Savonius windmill and flexible solar cells applied to swept buckets was also prepared. As a result, the wind power generation was promising mainly in the winter period including the late fall and early spring, while solar one was stable all the year through although it was slightly poor in winter. Stable power generation was thus achieved by combining wind energy with solar energy. As the whole data of other wind and solar power generation systems at the square were analyzed for every month, the same conclusion as the solar cell blade windmill was obtained as follows: the wind power generation in Ashikaga area is promising in Nov.-March from the field test result for 16 months, solar power generation is stable all the year through, the hybrid power system is effective in Nov.-April, and the solar cell blade windmill is equivalent to the hybrid power system. 3 refs., 5 figs.

  11. Electric utility applications of hydrogen energy storage systems

    Energy Technology Data Exchange (ETDEWEB)

    Swaminathan, S.; Sen, R.K.

    1997-10-15

    This report examines the capital cost associated with various energy storage systems that have been installed for electric utility application. The storage systems considered in this study are Battery Energy Storage (BES), Superconducting Magnetic Energy Storage (SMES) and Flywheel Energy Storage (FES). The report also projects the cost reductions that may be anticipated as these technologies come down the learning curve. This data will serve as a base-line for comparing the cost-effectiveness of hydrogen energy storage (HES) systems in the electric utility sector. Since pumped hydro or compressed air energy storage (CAES) is not particularly suitable for distributed storage, they are not considered in this report. There are no comparable HES systems in existence in the electric utility sector. However, there are numerous studies that have assessed the current and projected cost of hydrogen energy storage system. This report uses such data to compare the cost of HES systems with that of other storage systems in order to draw some conclusions as to the applications and the cost-effectiveness of hydrogen as a electricity storage alternative.

  12. OPTIMIZATION OF SPECTRUM UTILIZATION IN COGNITIVE RADIO SYSTEM

    Institute of Scientific and Technical Information of China (English)

    Li Hongjiang; Zhu Qi

    2011-01-01

    In Cognitive Radio (CR) networks,CR user has to detect the spectrum channel periodically to make sure that the channel is idle during data transmission frame in order to avoid the collisions to the primary users.Hence recent research has been focused on the interference avoidance problem.Quality of Service (QoS) requirement of CR user will affect the time of data transmission in each frame.In this paper,in order to solve the interference avoidance and spectrum utilization problems without cooperation among CR users,a new scheme to obtain the optimal duration of data transmission frame is proposed to maximize the spectrum utilization and guarantee the protection to the primary users.The main advantages of our proposed scheme include the followings:(1) QoS requirement of CR user is concerned; (2) p-persistent Media Access Control (MAC) random access is used to avoid the collisions among CR users; (3) CR network system capacity is considered.We develop a Markov chain of the primary spectrum channel states and an exponential distribution of the CR user's traffic model to analyze the performance of our proposed scheme.Computer simulation shows that there is an optimal data transmission time to maximize the spectrum utilization.However,the regulatory constraint of the collision rate to the primary users has to be satisfied at the expense of spectrum utilization.And also the tradeoff between the spectrum utilization and the capacity of the CR system is taken into account.

  13. Small Hybrid Systems and Applications Testing at NREL's Outdoor Test Facility

    Energy Technology Data Exchange (ETDEWEB)

    Roybal, L.

    2005-01-01

    The PV International Program at the National Renewable Energy Laboratory recently installed a small hybrid solar and wind energy system that could produce enough electricity to power a cabin or provide electricity in a remote village, without being connected to a utility grid. The solar system can provide 1,400 watts of power, and the wind turbine is rated at 900 watts when the wind is blowing at 28 miles per hour. The 48-volt system has eight batteries for storage. When the batteries are fully charged, the control system slows down the wind turbine so as not to overcharge the batteries. The turbine is mounted on a tilt-down, guyless, 30-foot tower that allows one person to easily lower and raise the machine for maintenance. A data acquisition system is being designed to monitor the individual outputs from the solar system and the wind system. The small hybrid system is housed in an insulated shed, the PV International Program's Test Building (ITB). The ITB contains electrical loads found in the average home, including a refrigerator, lights, heaters, air coolers, computers, and a radio.

  14. A Novel Hybrid Statistical Particle Swarm Optimization for Multimodal Functions and Frequency Control of Hybrid Wind-Solar System

    Science.gov (United States)

    Verma, Harish Kumar; Jain, Cheshta

    2016-09-01

    In this article, a hybrid algorithm of particle swarm optimization (PSO) with statistical parameter (HSPSO) is proposed. Basic PSO for shifted multimodal problems have low searching precision due to falling into a number of local minima. The proposed approach uses statistical characteristics to update the velocity of the particle to avoid local minima and help particles to search global optimum with improved convergence. The performance of the newly developed algorithm is verified using various standard multimodal, multivariable, shifted hybrid composition benchmark problems. Further, the comparative analysis of HSPSO with variants of PSO is tested to control frequency of hybrid renewable energy system which comprises solar system, wind system, diesel generator, aqua electrolyzer and ultra capacitor. A significant improvement in convergence characteristic of HSPSO algorithm over other variants of PSO is observed in solving benchmark optimization and renewable hybrid system problems.

  15. Utilization of design principles for hybrid learning configurations by interprofessional design teams

    NARCIS (Netherlands)

    Cremers, Petra H.M.; Wals, Arjen E.J.; Wesselink, Renate; Mulder, Martin

    2017-01-01

    Educational design research yields design knowledge, often in the form of design principles or guidelines that provide the rationale or ‘know-why’ for the design of educational interventions. As such, design principles can be utilized by designers in contexts other than the research context in which

  16. Utilization of Design Principles for Hybrid Learning Configurations by Interprofessional Design Teams

    Science.gov (United States)

    Cremers, Petra H. M.; Wals, Arjen E. J.; Wesselink, Renate; Mulder, Martin

    2017-01-01

    Educational design research yields design knowledge, often in the form of design principles or guidelines that provide the rationale or "know-why" for the design of educational interventions. As such, design principles can be utilized by designers in contexts other than the research context in which they were generated. Although research…

  17. Performance Analysis of a Hybrid District Heating System

    DEFF Research Database (Denmark)

    Mikulandric, Robert; Krajačić, Goran; Duic, Neven

    2015-01-01

    Hybridisation of district heating systems can contribute to more efficient heat generation through cogeneration power plants or through the share increase of renewable energy sources in total energy consumption while reducing negative aspects of particular energy source utilisation. In this work......, the performance of a hybrid district energy system for a small town in Croatia has been analysed. Mathematical model for process analysis and optimisation algorithm for optimal system configuration has been developed and described. The main goal of the system optimisation is to reduce heat production costs....... Several energy sources for heat production have been considered in 8 different simulation cases. Simulation results show that the heat production costs could be reduced with introduction of different energy systems into an existing district heating system. Renewable energy based district heating systems...

  18. Development of dual-source hybrid heat pump system using groundwater and air

    Energy Technology Data Exchange (ETDEWEB)

    Nam, Yujin; Ooka, Ryozo [Cw403 Institute of Industry Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505 (Japan); Shiba, Yoshiro [Zeneral Heatpump Industry Co., Ltd., Nagoya 459-8001 (Japan)

    2010-06-15

    To achieve high heat pump efficiency, groundwater heat pump (GWHP) system uses groundwater, which is relatively stable AT temperature compared with outdoor air, as a heat source. However, it is difficult to meet annual heating and cooling loads using only groundwater as a heat source. In order to optimize the operation method of GWHP systems, it is necessary to develop a system utilizing both groundwater and air sources according to the building load conditions. Furthermore, during intermediate seasons (such as spring and autumn) with reduced heating and cooling loads, GWHP system is less efficient than air source heat pump (ASHP) system according to temperature conditions. In order to more efficiently use GWHP systems, it is necessary to develop a system which utilizes both groundwater and air sources according to temperature conditions and building loads. This research has developed a GWHP system that employs a hybrid heat pump system with groundwater wells using dual groundwater and air heat sources. In this paper, the annual performance of the developed system has been calculated, and several case studies have been conducted on the effect of introduction location, refrigerant and pumping rate. Furthermore, the coefficient of system performance and the effects on underground environments have been evaluated by real-scale experiment using two wells. (author)

  19. Development of a PET/Cerenkov-light hybrid imaging system

    Energy Technology Data Exchange (ETDEWEB)

    Yamamoto, Seiichi, E-mail: s-yama@met.nagoya-u.ac.jp; Hamamura, Fuka; Kato, Katsuhiko; Ogata, Yoshimune [Radiological and Medical Laboratory Sciences, Nagoya University Graduate School of Medicine, Aichi 461-8673 (Japan); Watabe, Tadashi; Ikeda, Hayato; Kanai, Yasukazu; Hatazawa, Jun [Department of Molecular Imaging in Medicine, Osaka University Graduate School of Medicine, Osaka 565-0871 (Japan); Watabe, Hiroshi [CYRIC, Tohoku University, Miyagi 980-8578 (Japan)

    2014-09-15

    Purpose: Cerenkov-light imaging is a new molecular imaging technology that detects visible photons from high-speed electrons using a high sensitivity optical camera. However, the merit of Cerenkov-light imaging remains unclear. If a PET/Cerenkov-light hybrid imaging system were developed, the merit of Cerenkov-light imaging would be clarified by directly comparing these two imaging modalities. Methods: The authors developed and tested a PET/Cerenkov-light hybrid imaging system that consists of a dual-head PET system, a reflection mirror located above the subject, and a high sensitivity charge coupled device (CCD) camera. The authors installed these systems inside a black box for imaging the Cerenkov-light. The dual-head PET system employed a 1.2 × 1.2 × 10 mm{sup 3} GSO arranged in a 33 × 33 matrix that was optically coupled to a position sensitive photomultiplier tube to form a GSO block detector. The authors arranged two GSO block detectors 10 cm apart and positioned the subject between them. The Cerenkov-light above the subject is reflected by the mirror and changes its direction to the side of the PET system and is imaged by the high sensitivity CCD camera. Results: The dual-head PET system had a spatial resolution of ∼1.2 mm FWHM and sensitivity of ∼0.31% at the center of the FOV. The Cerenkov-light imaging system's spatial resolution was ∼275μm for a {sup 22}Na point source. Using the combined PET/Cerenkov-light hybrid imaging system, the authors successfully obtained fused images from simultaneously acquired images. The image distributions are sometimes different due to the light transmission and absorption in the body of the subject in the Cerenkov-light images. In simultaneous imaging of rat, the authors found that {sup 18}F-FDG accumulation was observed mainly in the Harderian gland on the PET image, while the distribution of Cerenkov-light was observed in the eyes. Conclusions: The authors conclude that their developed PET

  20. An online hybrid BCI system based on SSVEP and EMG

    Science.gov (United States)

    Lin, Ke; Cinetto, Andrea; Wang, Yijun; Chen, Xiaogang; Gao, Shangkai; Gao, Xiaorong

    2016-04-01

    Objective. A hybrid brain-computer interface (BCI) is a device combined with at least one other communication system that takes advantage of both parts to build a link between humans and machines. To increase the number of targets and the information transfer rate (ITR), electromyogram (EMG) and steady-state visual evoked potential (SSVEP) were combined to implement a hybrid BCI. A multi-choice selection method based on EMG was developed to enhance the system performance. Approach. A 60-target hybrid BCI speller was built in this study. A single trial was divided into two stages: a stimulation stage and an output selection stage. In the stimulation stage, SSVEP and EMG were used together. Every stimulus flickered at its given frequency to elicit SSVEP. All of the stimuli were divided equally into four sections with the same frequency set. The frequency of each stimulus in a section was different. SSVEPs were used to discriminate targets in the same section. Different sections were classified using EMG signals from the forearm. Subjects were asked to make different number of fists according to the target section. Canonical Correlation Analysis (CCA) and mean filtering was used to classify SSVEP and EMG separately. In the output selection stage, the top two optimal choices were given. The first choice with the highest probability of an accurate classification was the default output of the system. Subjects were required to make a fist to select the second choice only if the second choice was correct. Main results. The online results obtained from ten subjects showed that the mean accurate classification rate and ITR were 81.0% and 83.6 bits min-1 respectively only using the first choice selection. The ITR of the hybrid system was significantly higher than the ITR of any of the two single modalities (EMG: 30.7 bits min-1, SSVEP: 60.2 bits min-1). After the addition of the second choice selection and the correction task, the accurate classification rate and ITR was

  1. Hybrid TS fuzzy modelling and simulation for chaotic Lorenz system

    Institute of Scientific and Technical Information of China (English)

    Li De-Quan

    2006-01-01

    The projection of the chaotic attractor observed from the Lorenz system in the X-Z plane is like a butterfly, hence the classical Lorenz system is widely known as the butterfly attractor, and has served as a prototype model for studying chaotic behaviour since it was coined. In this work we take one step further to investigate some fundamental dynamic behaviours of a novel hybrid Takagi-Sugeno (TS) fuzzy Lorenz-type system, which is essentially derived from the delta-operator-based TS fuzzy modelling for complex nonlinear systems, and contains the original Lorenz system of continuous-time TS fuzzy form as a special case. By simply and appropriately tuning the additional parametric perturbations in the two-rule hybrid TS fuzzy Lorenz-type system, complex (two-wing) butterfly attractors observed from this system in the three dimensional (3D) X-Y-Z space are created, which have not yet been reported in the literature, and the forming mechanism of the compound structures have been numerically investigated.

  2. Concentrating PV/T Hybrid System for Simultaneous Electricity and Usable Heat Generation: A Review

    Directory of Open Access Journals (Sweden)

    Longzhou Zhang

    2012-01-01

    Full Text Available Photovoltaic (PV power generation is one of the attractive choices for efficient utilization of solar energy. Considering that the efficiency and cost of PV cells cannot be significantly improved in near future, a relatively cheap concentrator to replace part of the expensive solar cells could be used. The photovoltaic thermal hybrid system (PV/T, combining active cooling with thermal electricity and providing both electricity and usable heat, can enhance the total efficiency of the system with reduced cell area. The effect of nonuniform light distribution and the heat dissipation on the performance of concentrating PV/T was discussed. Total utilization of solar light by spectral beam splitting technology was also introduced. In the last part, we proposed an integrated compound parabolic collector (CPC plate with low precision solar tracking, ensuring effective collection of solar light with a significantly lowered cost. With the combination of beam splitting of solar spectrum, use of film solar cell, and active liquid cooling, efficient and full spectrum conversion of solar light to electricity and heat, in a low cost way, might be realized. The paper may offer a general guide to those who are interested in the development of low cost concentrating PV/T hybrid system.

  3. Utilization of hybrid plasmonic modes to investigate surface interactions between nanocubes and polymer substrates

    Science.gov (United States)

    Bushell, Michael; Bottomley, Adam; Ianoul, Anatoli

    2017-02-01

    Silver nanocube monolayers deposited on polymer films were heated past the glass transition temperature of the polymer. Surface interactions between the cubes and substrate dictate the depth and rate of incorporation into the polymer. Silver nanocubes support hybrid plasmonic modes that are spatially separated when there is anisotropy in the local refractive index. Using this measure, it becomes possible to monitor the position of the cubes relative to the surface and tune spectral features in the visible spectrum. These spatially resolved plasmonic modes were used to probe the local glass transition temperature of polystyrene (PS), polymethylmethacrylate (PMMA) and polyvinyl chloride (PVC), the glass transition temperature of PS, PMMA, PVC were 103 ± 2, 122 ± 12, 81 ± 2 °C, respectively.

  4. Hybrid Plasma Reactor/Filter for Transportable Collective Protection Systems

    Energy Technology Data Exchange (ETDEWEB)

    Josephson, Gary B.; Tonkyn, Russell G.; Frye, J. G.; Riley, Brian J.; Rappe, Kenneth G.

    2011-04-06

    Pacific Northwest National Laboratory (PNNL) has performed an assessment of a Hybrid Plasma/Filter system as an alternative to conventional methods for collective protection. The key premise of the hybrid system is to couple a nonthermal plasma (NTP) reactor with reactive adsorption to provide a broader envelope of protection than can be provided through a single-solution approach. The first step uses highly reactive species (e.g. oxygen radicals, hydroxyl radicals, etc.) created in a nonthermal plasma (NTP) reactor to destroy the majority (~75% - 90%) of an incoming threat. Following the NTP reactor an O3 reactor/filter uses the O3 created in the NTP reactor to further destroy the remaining organic materials. This report summarizes the laboratory development of the Hybrid Plasma Reactor/Filter to protect against a ‘worst-case’ simulant, methyl bromide (CH3Br), and presents a preliminary engineering assessment of the technology to Joint Expeditionary Collective Protection performance specifications for chemical vapor air purification technologies.

  5. Utility interface issues for grid-connected photovoltaic systems

    Science.gov (United States)

    Chu, D.; Key, T.; Fitzer, J.

    Photovoltaic (PV) balance-of-system research and development has focused on interconnection with the utility grid as the most promising future application for photovoltaic energy production. These sysems must be compatible with the existing utility grid to be accepted. Compatibility encompasses many technical, economic and institutional issues, from lineman safety to revenue metering and power quality. This paper reviews DOE/PV sponsored research for two of the technical interconnection issues: harmonic injection, and power factor control. Explanations and rationale behind these two issues will be reviewed, and the status of current research and plans for required future work will be presented.

  6. Investigation of a hybrid PVT air collector system

    Science.gov (United States)

    Haddad, S.; Touafek, K.; Mordjaoui, M.; Khelifa, A.; Tabet, I.

    2017-02-01

    The photovoltaic thermal hybrid (PVT) collectors, which simultaneously produce electricity and heat, are an alternative to photovoltaic modules and thermal collectors installed separately. Indeed, the heat extracted from the solar cell is used to heat water or air, thereby cooling the cell, and thus increasing its energy efficiency. This paper deals with a hybrid PVT air collector in which a new design has been proposed and tested. Its principle is based on the return of the preheating air to a second heating. The air thus passes twice under the solar cells before being evacuated to the outside of the collector (for space heating). The system is modular and expandable to cover large spaces to be heated. The experimental results of this novel design are presented and discussed under both normal and forced circulation. This technique of air return shows favorable results in terms of the quality of the heated air and electric power generation.

  7. Hybridizing Gravitationl Waveforms of Inspiralling Binary Neutron Star Systems

    Science.gov (United States)

    Cullen, Torrey; LIGO Collaboration

    2016-03-01

    Gravitational waves are ripples in space and time and were predicted to be produced by astrophysical systems such as binary neutron stars by Albert Einstein. These are key targets for Laser Interferometer and Gravitational Wave Observatory (LIGO), which uses template waveforms to find weak signals. The simplified template models are known to break down at high frequency, so I wrote code that constructs hybrid waveforms from numerical simulations to accurately cover a large range of frequencies. These hybrid waveforms use Post Newtonian template models at low frequencies and numerical data from simulations at high frequencies. They are constructed by reading in existing Post Newtonian models with the same masses as simulated stars, reading in the numerical data from simulations, and finding the ideal frequency and alignment to ``stitch'' these waveforms together.

  8. Utilizing Climate Forecasts for Improving Water and Power Systems Coordination

    Science.gov (United States)

    Arumugam, S.; Queiroz, A.; Patskoski, J.; Mahinthakumar, K.; DeCarolis, J.

    2016-12-01

    Climate forecasts, typically monthly-to-seasonal precipitation forecasts, are commonly used to develop streamflow forecasts for improving reservoir management. Irrespective of their high skill in forecasting, temperature forecasts in developing power demand forecasts are not often considered along with streamflow forecasts for improving water and power systems coordination. In this study, we consider a prototype system to analyze the utility of climate forecasts, both precipitation and temperature, for improving water and power systems coordination. The prototype system, a unit-commitment model that schedules power generation from various sources, is considered and its performance is compared with an energy system model having an equivalent reservoir representation. Different skill sets of streamflow forecasts and power demand forecasts are forced on both water and power systems representations for understanding the level of model complexity required for utilizing monthly-to-seasonal climate forecasts to improve coordination between these two systems. The analyses also identify various decision-making strategies - forward purchasing of fuel stocks, scheduled maintenance of various power systems and tradeoff on water appropriation between hydropower and other uses - in the context of various water and power systems configurations. Potential application of such analyses for integrating large power systems with multiple river basins is also discussed.

  9. Control strategy of hybrid fuel cell/battery distributed generation system for grid-connected operation

    Institute of Scientific and Technical Information of China (English)

    Masoud Aliakbar GOLKAR; Amin HAJIZADEH

    2009-01-01

    This paper presents a control strategy of a hybrid fuel cell/battery distributed generation (HDG) system in distribution systems. The overall structure of the HDG system is given, dynamic models for the solid oxide fuel cell (SOFC) power plant,battery bank and its power electronic interfacing are briefly described, and controller design methodologies for the power conditioning units and fuel cell to control the power flow from the hybrid power plant to the utility grid are presented. To distribute the power between the fuel cell power plant and the battery energy storage, a neuro-fuzzy controller has been developed. Also, for controlling the active and reactive power independently in distribution systems, the current control strategy based on two fuzzy logic controllers has been presented. A Matlab/Simulink simulation model is developed for the HDG system by combining the individual component models and their controllers. Simulation results show the overall system performance including load-following and power management of the HDG system.

  10. The interconnection of photovoltaic power systems with the utility grid: An overview for utility engineers

    Energy Technology Data Exchange (ETDEWEB)

    Wills, R.H. [Solar Design Associates, Harvard, MA (United States)

    1994-06-01

    Utility-interactive (UI) photovoltaic power systems mounted on residences and commercial buildings are likely to become a small, but important source of electric generation in the next century. This is a new concept in utility power production--a change from large-scale central generation to small-scale dispersed generation. As such, it requires a re-examination of many existing standards and practices to enable the technology to develop and emerge into the marketplace. Much work has been done over the last 20 years to identify and solve the potential problems associated with dispersed power generation systems. This report gives an overview of these issues and also provides a guide to applicable codes, standards and other related documents. The main conclusion that can be drawn from this work is that there are no major technical barriers to the implementation of dispersed PV generating systems. While more technical research is needed in some specific areas, the remaining barriers are fundamentally price and policy.

  11. Stability of simultaneously triangularizable switched systems on hybrid domains

    Directory of Open Access Journals (Sweden)

    Geoffrey Eisenbarth

    2014-03-01

    Full Text Available In this paper, we extend the results of [8, 15, 22], which provide sufficient conditions for the global exponential stability of switched systems under arbitrary switching via the existence of a common quadratic Lyapunov function. In particular, we extend the Lie algebraic results in [15] to switched systems with hybrid non-uniform discrete and continuous domains, a direct unifying generalization of switched systems on R and Z, and extend the results in [8, 22] to a larger class of switched systems, namely those whose subsystem matrices are simultaneously triangularizable. In addition, we explore an easily checkable characterization of our required hypotheses for the theorems. Finally, conditions are provided under which there exists a stabilizing switching pattern for a collection of (not necessarily stable linear systems that are simultaneously triangularizable and separate criteria are formed which imply the stability of the system under a given switching pattern given a priori.

  12. A NEW HYBRID ALGORITHM FOR BUSINESS INTELLIGENCE RECOMMENDER SYSTEM

    Directory of Open Access Journals (Sweden)

    P.Prabhu

    2014-03-01

    Full Text Available Business Intelligence is a set of methods, process and technologies that transform raw data into meaningful and useful information. Recommender system is one of business intelligence system that is used to obtain knowledge to the active user for better decision making. Recommender systems apply data mining techniques to the problem of making personalized recommendations for information. Due to the growth in the number of information and the users in recent years offers challenges in recommender systems. Collaborative, content, demographic and knowledge-based are four different types of recommendations systems. In this paper, a new hybrid algorithm is proposed for recommender system which combines knowledge based, profile of the users and most frequent item mining technique to obtain intelligence.

  13. System Modeling and Diagnostics for Liquefying-Fuel Hybrid Rockets

    Science.gov (United States)

    Poll, Scott; Iverson, David; Ou, Jeremy; Sanderfer, Dwight; Patterson-Hine, Ann

    2003-01-01

    A Hybrid Combustion Facility (HCF) was recently built at NASA Ames Research Center to study the combustion properties of a new fuel formulation that burns approximately three times faster than conventional hybrid fuels. Researchers at Ames working in the area of Integrated Vehicle Health Management recognized a good opportunity to apply IVHM techniques to a candidate technology for next generation launch systems. Five tools were selected to examine various IVHM techniques for the HCF. Three of the tools, TEAMS (Testability Engineering and Maintenance System), L2 (Livingstone2), and RODON, are model-based reasoning (or diagnostic) systems. Two other tools in this study, ICS (Interval Constraint Simulator) and IMS (Inductive Monitoring System) do not attempt to isolate the cause of the failure but may be used for fault detection. Models of varying scope and completeness were created, both qualitative and quantitative. In each of the models, the structure and behavior of the physical system are captured. In the qualitative models, the temporal aspects of the system behavior and the abstraction of sensor data are handled outside of the model and require the development of additional code. In the quantitative model, less extensive processing code is also necessary. Examples of fault diagnoses are given.

  14. Analysis of a Hybrid Solar-Assisted Trigeneration System

    Directory of Open Access Journals (Sweden)

    Elisa Marrasso

    2016-09-01

    Full Text Available A hybrid solar-assisted trigeneration system is analyzed in this paper. The system is composed of a 20 m2 solar field of evacuated tube collectors, a natural gas fired micro combined heat and power system delivering 12.5 kW of thermal power, an absorption heat pump (AHP with a nominal cooling power of 17.6 kW, two storage tanks (hot and cold and an electric auxiliary heater (AH. The plant satisfies the energy demand of an office building located in Naples (Southern Italy. The electric energy of the cogenerator is used to meet the load and auxiliaries electric demand; the interactions with the grid are considered in cases of excess or over requests. This hybrid solution is interesting for buildings located in cities or historical centers with limited usable roof surface to install a conventional solar heating and cooling (SHC system able to achieve high solar fraction (SF. The results of dynamic simulation show that a tilt angle of 30° maximizes the SF of the system on annual basis achieving about 53.5%. The influence on the performance of proposed system of the hot water storage tank (HST characteristics (volume, insulation is also studied. It is highlighted that the SF improves when better insulated and bigger HSTs are considered. A maximum SF of about 58.2% is obtained with a 2000 L storage, whereas the lower thermal losses take place with a better insulated 1000 L tank.

  15. Solar Cooling System Using Solar-Driven Hybrid Chiller

    OpenAIRE

    Hirai, Akira

    2012-01-01

    We developed an appropriate Absorption chiller to "Solar cooling system" in 2010. In addition, we added the improvement to the machine. "Solar cooling system" can be easily constructed with the machine. and, we constructed the demonstration plant, and verified the utility

  16. Continual Energy Management System of Proton Exchange Membrane Fuel Cell Hybrid Power Electric Vehicles

    Directory of Open Access Journals (Sweden)

    Ren Yuan

    2016-01-01

    Full Text Available Current research status in energy management of Proton Exchange Membrane (PEM fuel cell hybrid power electric vehicles are first described in this paper, and then build the PEMFC/ lithium-ion battery/ ultra-capacitor hybrid system model. The paper analysis the key factors of the continuous power available in PEM fuel cell hybrid power electric vehicle and hybrid power system working status under different driving modes. In the end this paper gives the working flow chart of the hybrid power system and concludes the three items of the system performance analysis.

  17. Hybrid Networks and Risk Management in a System Perspective

    DEFF Research Database (Denmark)

    Nørgaard, Katrine

    new possibilities and new types of risk, as well as legal and ethical concerns. At the same time, the rapid acceleration and hybridization of the battlespace challenges the classical military bureaucracies and its legal-rational decision-making processes. This paper will address some of the legal...... intelligent, autonomous systems and human operators in multi-domain Battle Management Networks, (i.e Command, Control, Communications, Computer and Intelligence (C4I) networks/sensor grids). However, the incorporation of intelligent and autonomous weapon systems in complex military operations introduces both...

  18. Eastern Cape hybrid mini-grid systems - a case study

    CSIR Research Space (South Africa)

    Szewczuk, S

    2010-05-01

    Full Text Available -GRID SYSTEMS A CASE STUDY WIND POWER AFRICA 2010 S Szewczuk CSIR May 2010 PRESENTATION OUTLINE • Rationale for Projects • Renewable Energy for Rural Electrification in E Cape • Integrated Energy/Economic Framework • Hybrid mini-grid energy systems... • Impact of research work RATIONALE FOR OFF-GRID PROJECTS • Poverty Reduction: • Sustainable economic and social benefits • Meeting of Millennium Development Goals • Appropriate technology choice: • 500 million African people without access to modern...

  19. A Novel Image Encryption Scheme Based on Multi-orbit Hybrid of Discrete Dynamical System

    Directory of Open Access Journals (Sweden)

    Ruisong Ye

    2014-10-01

    Full Text Available A multi-orbit hybrid image encryption scheme based on discrete chaotic dynamical systems is proposed. One generalized Arnold map is adopted to generate three orbits for three initial conditions. Another chaotic dynamical system, tent map, is applied to generate one pseudo-random sequence to determine the hybrid orbit points from which one of the three orbits of generalized Arnold map. The hybrid orbit sequence is then utilized to shuffle the pixels' positions of plain-image so as to get one permuted image. To enhance the encryption security, two rounds of pixel gray values' diffusion is employed as well. The proposed encryption scheme is simple and easy to manipulate. The security and performance of the proposed image encryption have been analyzed, including histograms, correlation coefficients, information entropy, key sensitivity analysis, key space analysis, differential analysis, etc. All the experimental results suggest that the proposed image encryption scheme is robust and secure and can be used for secure image and video communication applications.

  20. Hybrid Modified K-Means with C4.5 for Intrusion Detection Systems in Multiagent Systems.

    Science.gov (United States)

    Laftah Al-Yaseen, Wathiq; Ali Othman, Zulaiha; Ahmad Nazri, Mohd Zakree

    2015-01-01

    Presently, the processing time and performance of intrusion detection systems are of great importance due to the increased speed of traffic data networks and a growing number of attacks on networks and computers. Several approaches have been proposed to address this issue, including hybridizing with several algorithms. However, this paper aims at proposing a hybrid of modified K-means with C4.5 intrusion detection system in a multiagent system (MAS-IDS). The MAS-IDS consists of three agents, namely, coordinator, analysis, and communication agent. The basic concept underpinning the utilized MAS is dividing the large captured network dataset into a number of subsets and distributing these to a number of agents depending on the data network size and core CPU availability. KDD Cup 1999 dataset is used for evaluation. The proposed hybrid modified K-means with C4.5 classification in MAS is developed in JADE platform. The results show that compared to the current methods, the MAS-IDS reduces the IDS processing time by up to 70%, while improving the detection accuracy.