WorldWideScience

Sample records for hybrid system finally

  1. Analysis of Hybrid Hydrogen Systems: Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Dean, J.; Braun, R.; Munoz, D.; Penev, M.; Kinchin, C.

    2010-01-01

    Report on biomass pathways for hydrogen production and how they can be hybridized to support renewable electricity generation. Two hybrid systems were studied in detail for process feasibility and economic performance. The best-performing system was estimated to produce hydrogen at costs ($1.67/kg) within Department of Energy targets ($2.10/kg) for central biomass-derived hydrogen production while also providing value-added energy services to the electric grid.

  2. Managing hybrid marketing systems.

    Science.gov (United States)

    Moriarty, R T; Moran, U

    1990-01-01

    As competition increases and costs become critical, companies that once went to market only one way are adding new channels and using new methods - creating hybrid marketing systems. These hybrid marketing systems hold the promise of greater coverage and reduced costs. But they are also hard to manage; they inevitably raise questions of conflict and control: conflict because marketing units compete for customers; control because new indirect channels are less subject to management authority. Hard as they are to manage, however, hybrid marketing systems promise to become the dominant design, replacing the "purebred" channel strategy in all kinds of businesses. The trick to managing the hybrid is to analyze tasks and channels within and across a marketing system. A map - the hybrid grid - can help managers make sense of their hybrid system. What the chart reveals is that channels are not the basic building blocks of a marketing system; marketing tasks are. The hybrid grid forces managers to consider various combinations of channels and tasks that will optimize both cost and coverage. Managing conflict is also an important element of a successful hybrid system. Managers should first acknowledge the inevitability of conflict. Then they should move to bound it by creating guidelines that spell out which customers to serve through which methods. Finally, a marketing and sales productivity (MSP) system, consisting of a central marketing database, can act as the central nervous system of a hybrid marketing system, helping managers create customized channels and service for specific customer segments.

  3. Hybrid FRP-concrete bridge deck system final report I : development and system performance validation.

    Science.gov (United States)

    2009-10-01

    In this study, the concept of the hybrid FRP-concrete structural systems was applied to both bridge : superstructure and deck systems. Results from the both experimental and computational analysis for : both the hybrid bridge superstructure and deck ...

  4. Hybrid system concepts

    International Nuclear Information System (INIS)

    Landeyro, P.A.

    1995-01-01

    Hybrid systems studied for fissile material production, were reconsidered for minor actinide and long-lived fission product destruction as alternative to the traditional final disposal of nuclear waste. Now there are attempts to extend the use of the concepts developed for minor actinide incineration to plutonium burning. The most promising hybrid system concept considers fuel and target both as liquids. From the results obtained, the possibility to adopt composite targets seems the most promising solution, but still there remains the problem of Pu production, not acceptable in a burning system. This kind of targets can be mainly used for fissile material production, while for accelerator driven burners it is most convenient to use a liquid lead target. The most suitable solvent is heavy water for minor actinide annihilation in the blanket of a hybrid system. Due to the criticality conditions and the necessity of electric energy production, the blanket using plutonium dissolved in molten salts is the most convenient one. (author)

  5. Combined cycle solar central receiver hybrid power system study. Final technical report. Volume II

    Energy Technology Data Exchange (ETDEWEB)

    None

    1979-11-01

    This study develops the conceptual design for a commercial-scale (nominal 100 MWe) central receiver solar/fossil fuel hybrid power system with combined cycle energy conversion. A near-term, metallic heat pipe receiver and an advanced ceramic tube receiver hybrid system are defined through parametric and market potential analyses. Comparative evaluations of the cost of power generation, the fuel displacement potential, and the technological readiness of these two systems indicate that the near-term hybrid system has better potential for commercialization by 1990. Based on the assessment of the conceptual design, major cost and performance improvements are projected for the near-term system. Constraints preventing wide-spread use were not identified. Energy storage is not required for this system and analyses show no economic advantages with energy storage provisions. It is concluded that the solar hybrid system is a cost effective alternative to conventional gas turbines and combined cycle generating plants, and has potential for intermediate-load market penetration at 15% annual fuel escalation rate. Due to their flexibility, simple solar/nonsolar interfacing, and short startup cycles, these hybrid plants have significant operating advantages. Utility company comments suggest that hybrid power systems will precede stand-alone solar plants.

  6. SOFC/TEG hybrid mCHP system. Final report

    Energy Technology Data Exchange (ETDEWEB)

    2012-03-15

    The starting point for this project have been the challenge has been to develop a cost effective solution with long term stability. This is where a focused effort in a strong consortium covering material research, module development and manufacture as well as device design and optimization can make a real difference. In March 2010 the SOFTEG phase II project was initiated and a cooperation organization was established to implement the project as a development and demonstration project involving the staff from all project partners. The project is now completed with excellent and documented outcome. The final results by Alpcon have been demonstration as a TEG-based mCHP system calls CHP Dual Engine Power System, which will be applicable as both a standalone TEG-CHP hybrid system, but also as an auxiliary power unit and power booster for the SOFC system. However the SOFC system cannot cover the household's heat demand alone so it is necessary to combine a SOFC system together with a water heater/boiler system to cover the peak heat demand of a residential house or a complex building. The SOFTEG project partners achieved significant results that mainly can be outlined as following: 1) University of Aarhus has improved the thermal stability of ZnSb by optimizing the concentration of Nano composite material. 2) The grain size and its influence on the sintering process by spark plasma method are investigated by Aarhus University, but further work seems to be necessary. 3) The TE material is going to commercialization by Aarhus University. 4) Aalborg University has prepared simulation tools for complex thermoelectric simulation in non-steady state condition. 5) The new type DCDC interleaved converter using the MPPT system for optimal power tracing is designed, build and tested by Aalborg University in cooperation with Alpcon. This task is included overall system design, control system implementation and power electronic control design. 6) Full scale practical

  7. The estimation of energy efficiency for hybrid refrigeration system

    International Nuclear Information System (INIS)

    Gazda, Wiesław; Kozioł, Joachim

    2013-01-01

    Highlights: ► We present the experimental setup and the model of the hybrid cooling system. ► We examine impact of the operating parameters of the hybrid cooling system on the energy efficiency indicators. ► A comparison of the final and the primary energy use for a combination of the cooling systems is carried out. ► We explain the relationship between the COP and PER values for the analysed cooling systems. -- Abstract: The concept of the air blast-cryogenic freezing method (ABCF) is based on an innovative hybrid refrigeration system with one common cooling space. The hybrid cooling system consists of a vapor compression refrigeration system and a cryogenic refrigeration system. The prototype experimental setup for this method on the laboratory scale is discussed. The application of the results of experimental investigations and the theoretical–empirical model makes it possible to calculate the cooling capacity as well as the final and primary energy use in the hybrid system. The energetic analysis has been carried out for the operating modes of the refrigerating systems for the required temperatures inside the cooling chamber of −5 °C, −10 °C and −15 °C. For the estimation of the energy efficiency the coefficient of performance COP and the primary energy ratio PER for the hybrid refrigeration system are proposed. A comparison of these coefficients for the vapor compression refrigeration and the cryogenic refrigeration system has also been presented.

  8. Stirling engine electric hybrid vehicle propulsion system conceptual design study. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Dochat, G; Artiles, A; Killough, J; Ray, A; Chen, H S

    1978-08-01

    Results of a six-month study to characterize a series Stirling engine electric hybrid vehicle propulsion system are presented. The Stirling engine was selected as the heat conversion element to exploit the high efficiency (> .36), low pollution, multi-fuel and quiet operation of this machine. A free-piston Stirling engine driving a linear alternator in a hermatically sealed enclosure was chosen to gain the reliability, long life, and maintenance free characteristics of a sealed unit. The study performs trade off evaluations, selection of engine, battery, motor and inverter size, optimization of components, and develops a conceptual design and characterization of the total propulsion system. The conclusion of the study is that a Stirling engine electric hybrid propulsion system can be used successfully to augment the battery storage of a passenger vehicle and will result in significant savings of petroleum energy over present passenger vehicles. The performance and range augmentation of the hybrid design results in significant improvements over an all electric vehicle. The hybrid will be capable of performing 99% of the passenger vehicle annual trip distribution requirements with extremely low fuel usage. (TFD)

  9. Lifetime prognostics of hybrid backup power system

    DEFF Research Database (Denmark)

    Sønderskov, Simon Dyhr; Swierczynski, Maciej Jozef; Munk-Nielsen, Stig

    2017-01-01

    Modern telecommunication power supplies are based on renewable solutions, e.g. fuel cell/battery hybrid systems, for immediate and prolonged load support during grid faults. The high demand for power continuity increases the emphasis on power supply reliability and availability which raises...... the need for monitoring the system condition for timely maintenance and prevention of downtime. Although present on component level, no current literature addresses the condition monitoring from the perspective of a fuel cell/battery hybrid system such as the telecommunication power supply. This paper...... components: fuel cell, battery, and converters, is given. Finally, the paper presents a discussion on the available monitoring techniques from a commercial hybrid system point view....

  10. Evolutionary design of discrete controllers for hybrid mechatronic systems

    DEFF Research Database (Denmark)

    Dupuis, Jean-Francois; Fan, Zhun; Goodman, Erik

    2015-01-01

    This paper investigates the issue of evolutionary design of controllers for hybrid mechatronic systems. Finite State Automaton (FSA) is selected as the representation for a discrete controller due to its interpretability, fast execution speed and natural extension to a statechart, which is very...... popular in industrial applications. A case study of a two-tank system is used to demonstrate that the proposed evolutionary approach can lead to a successful design of an FSA controller for the hybrid mechatronic system, represented by a hybrid bond graph. Generalisation of the evolved FSA controller...... of the evolutionary design of controllers for hybrid mechatronic systems. Finally, some important future research directions are pointed out, leading to the major work of the succeeding part of the research....

  11. Electric energy storage systems for future hybrid vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Kemper, Hans; Huelshorst, Thomas [FEV Motorentechnik GmbH, Aachen (Germany); Sauer, Dirk Uwe [Elektrochemische Energiewandlung und Speichersystemtechnik, ISEA, RWTH Aachen Univ. (Germany)

    2008-07-01

    Electric energy storage systems play a key role in today's and even more in future hybrid and electric vehicles. They enable new additional functionalities like Start/Stop, regenerative braking or electric boost and pure electric drive. This article discusses properties and requirements of battery systems like power provision, energy capacity, life time as a function of the hybrid concepts and the real operating conditions of the today's and future hybrid drivetrains. Battery cell technology, component sizing, system design, operating strategy safety measures and diagnosis, modularity and vehicle integration are important battery development topics. A final assessment will draw the conclusion that future drivetrain concepts with higher degree of electrician will be significantly dependent on the progress of battery technology. (orig.)

  12. Technical and economic assessment of solar hybrid repowering. Final report

    Energy Technology Data Exchange (ETDEWEB)

    None

    1978-09-01

    Public Service Company of New Mexico (PNM) has performed a Technical and Economic Assessment of Solar Hybrid Repowering under funding by the Department of Energy (DOE), the Electric Power Research Institute (EPRI), Western Energy Supply and Transmission (WEST) Associates, and a number of southwestern utilities. Solar hybrid repowering involves placement of solar hardware adjacent to and connected to existing gas- and oil-fueled electric generation units to displace some of or all the fossil fuel normally used during daylight hours. The subject study assesses the technical economic viability of the solar hybrid repowering concept within the southwestern United States and the PNM system. This document is a final report on the study and its results. The study was divided into the six primary tasks to allow a systematic investigation of the concept: (1) market survey and cost/benefit analysis, (2) study unit selection, (3) conceptual design and cost estimates, (4) unit economic analysis, (5) program planning, future phases, and (6) program management. Reeves Station No. 2 at Albuquerque, New Mexico, was selected for repowering with a design goal of 50 percent (25 MWe). The solar system design is based on the 10 MW solar central receiver pilot plant preliminary design for Barstow, California. SAN--1608-4-2 contains the technical drawings. (WHK)

  13. Combined cycle solar central receiver hybrid power system study. Volume III. Appendices. Final technical report

    Energy Technology Data Exchange (ETDEWEB)

    None

    1979-11-01

    A design study for a 100 MW gas turbine/steam turbine combined cycle solar/fossil-fuel hybrid power plant is presented. This volume contains the appendices: (a) preconceptual design data; (b) market potential analysis methodology; (c) parametric analysis methodology; (d) EPGS systems description; (e) commercial-scale solar hybrid power system assessment; and (f) conceptual design data lists. (WHK)

  14. Using hybrid expert system approaches for engineering applications

    Science.gov (United States)

    Allen, R. H.; Boarnet, M. G.; Culbert, C. J.; Savely, R. T.

    1987-01-01

    In this paper, the use of hybrid expert system shells and hybrid (i.e., algorithmic and heuristic) approaches for solving engineering problems is reported. Aspects of various engineering problem domains are reviewed for a number of examples with specific applications made to recently developed prototype expert systems. Based on this prototyping experience, critical evaluations of and comparisons between commercially available tools, and some research tools, in the United States and Australia, and their underlying problem-solving paradigms are made. Characteristics of the implementation tool and the engineering domain are compared and practical software engineering issues are discussed with respect to hybrid tools and approaches. Finally, guidelines are offered with the hope that expert system development will be less time consuming, more effective, and more cost-effective than it has been in the past.

  15. Solar central receiver hybrid power system, Phase I. Volume 3. Appendices. Final technical report, October 1978-August 1979

    Energy Technology Data Exchange (ETDEWEB)

    None

    1979-09-01

    A design study for a central receiver/fossil fuel hybrid power system using molten salts for heat transfer and heat storage is presented. This volume contains the appendices: (A) parametric salt piping data; (B) sample heat exchanger calculations; (C) salt chemistry and salt/materials compatibility evaluation; (D) heliostat field coordinates; (E) data lists; (F) STEAEC program input data; (G) hybrid receiver design drawings; (H) hybrid receiver absorber tube thermal math model; (I) piping stress analysis; (J) 100-MWe 18-hour storage solar central receiver hybrid power system capital cost worksheets; and (K) 500-MWe 18-hour solar central receiver hybrid power system cost breakdown. (WHK)

  16. Hybrid Action Systems

    DEFF Research Database (Denmark)

    Ronkko, Mauno; Ravn, Anders P.

    1997-01-01

    a differential action, which allows differential equations as primitive actions. The extension allows us to model hybrid systems with both continuous and discrete behaviour. The main result of this paper is an extension of such a hybrid action system with parallel composition. The extension does not change...... the original meaning of the parallel composition, and therefore also the ordinary action systems can be composed in parallel with the hybrid action systems....

  17. A Simple Hybrid Synchronization for a Class of Chaotic Financial Systems

    Directory of Open Access Journals (Sweden)

    Jiming Zheng

    2017-01-01

    Full Text Available It is an important to achieve the hybrid synchronization of the chaotic financial system. Chaos synchronization is equivalent to the error system which is asymptotically stable. The hybrid synchronization for a class of finance chaotic systems is discussed. First, a simple single variable controller is obtained to synchronize two identical chaotic financial systems with different initial conditions. Second, a novel algorithm is proposed to determine the variables of the master system that should antisynchronize with corresponding variables of the slave system and use this algorithm to determine the corresponding variables in the chaotic financial systems. The hybrid synchronization of the chaotic financial systems is realized by a simple controller. At the same time, different controllers can implement the chaotic financial system hybrid synchronization. In comparison with the existing results, the obtained controllers in this paper are simpler than those of the existing results. Finally, numerical simulations show the effectiveness of the proposed results.

  18. Hybrid Control System for Greater Resilience Using Multiple Isolation and Building Connection

    Directory of Open Access Journals (Sweden)

    Masaki Taniguchi

    2016-10-01

    Full Text Available An innovative hybrid control building system of multiple isolation and connection is proposed and investigated using both time-history and input energy responses for various types of ground motions together with transfer functions. It is concerned that the seismic displacement response at the base-isolation layer of the existing base-isolated buildings may extremely increase under long-period and long-duration ground motions which are getting great attention recently. In order to enhance the seismic performance of those base-isolated buildings, a novel hybrid system of multiple isolation and building-connection is proposed and compared with other structural systems such as an independent multiple isolation system, a hybrid system of base-isolation and building-connection. Furthermore, the robustness of seismic responses of the proposed hybrid system for various types of ground motion is discussed through the comparison of various structural systems including non-hybrid systems. Finally the optimal connection damper location is investigated using a sensitivity-type optimization approach.

  19. Dynamic Modeling and Simulation on a Hybrid Power System for Electric Vehicle Applications

    Directory of Open Access Journals (Sweden)

    Hong-Wen He

    2010-11-01

    Full Text Available Hybrid power systems, formed by combining high-energy-density batteries and high-power-density ultracapacitors in appropriate ways, provide high-performance and high-efficiency power systems for electric vehicle applications. This paper first establishes dynamic models for the ultracapacitor, the battery and a passive hybrid power system, and then based on the dynamic models a comparative simulation between a battery only power system and the proposed hybrid power system was done under the UDDS (Urban Dynamometer Driving Schedule. The simulation results showed that the hybrid power system could greatly optimize and improve the efficiency of the batteries and their dynamic current was also decreased due to the participation of the ultracapacitors, which would have a good influence on batteries’ cycle life. Finally, the parameter matching for the passive hybrid power system was studied by simulation and comparisons.

  20. HYBRID VEHICLE CONTROL SYSTEM

    Directory of Open Access Journals (Sweden)

    V. Dvadnenko

    2016-06-01

    Full Text Available The hybrid vehicle control system includes a start–stop system for an internal combustion engine. The system works in a hybrid mode and normal vehicle operation. To simplify the start–stop system, there were user new possibilities of a hybrid car, which appeared after the conversion. Results of the circuit design of the proposed system of basic blocks are analyzed.

  1. Hybrid2 - The hybrid power system simulation model

    Energy Technology Data Exchange (ETDEWEB)

    Baring-Gould, E.I.; Green, H.J.; Dijk, V.A.P. van [National Renewable Energy Lab., Golden, CO (United States); Manwell, J.F. [Univ. of Massachusetts, Amherst, MA (United States)

    1996-12-31

    There is a large-scale need and desire for energy in remote communities, especially in the developing world; however the lack of a user friendly, flexible performance prediction model for hybrid power systems incorporating renewables hindered the analysis of hybrids as options to conventional solutions. A user friendly model was needed with the versatility to simulate the many system locations, widely varying hardware configurations, and differing control options for potential hybrid power systems. To meet these ends, researchers from the National Renewable Energy Laboratory (NREL) and the University of Massachusetts (UMass) developed the Hybrid2 software. This paper provides an overview of the capabilities, features, and functionality of the Hybrid2 code, discusses its validation and future plans. Model availability and technical support provided to Hybrid2 users are also discussed. 12 refs., 3 figs., 4 tabs.

  2. New hybrid systems

    International Nuclear Information System (INIS)

    Bernardin, B.

    2001-01-01

    New hybrid systems are made up of a subcritical core, a spallation target and a proton accelerator. The neutrons that are produced in the target by the flux of protons are necessary to maintain the chain reaction of fission. Some parameters that are important for a classical nuclear reactor like doppler coefficient or delayed neutron fraction do not matter in a hybrid system. In a PWR-type reactor or in a fast reactor the concentration of actinides has a bad impact on these 2 parameters, so it is justified to study hybrid systems as actinide transmuters. The hybrid system, because of its external source of neutrons can put aside an important reactivity margin. This reactivity margin can be used to design safer nuclear reactors (particularly in some situations of reactivity accidents) or to irradiate fuel elements containing high concentrations of minor actinides that could not be allowed in a classical reactor. This article reviews various ways of integrating hybrid systems in a population of already existing nuclear reactors in order to manage quantities of plutonium, of minor actinides or of long-life fission products. (A.C.)

  3. Advanced propulsion system for hybrid vehicles

    Science.gov (United States)

    Norrup, L. V.; Lintz, A. T.

    1980-01-01

    A number of hybrid propulsion systems were evaluated for application in several different vehicle sizes. A conceptual design was prepared for the most promising configuration. Various system configurations were parametrically evaluated and compared, design tradeoffs performed, and a conceptual design produced. Fifteen vehicle/propulsion systems concepts were parametrically evaluated to select two systems and one vehicle for detailed design tradeoff studies. A single hybrid propulsion system concept and vehicle (five passenger family sedan)were selected for optimization based on the results of the tradeoff studies. The final propulsion system consists of a 65 kW spark-ignition heat engine, a mechanical continuously variable traction transmission, a 20 kW permanent magnet axial-gap traction motor, a variable frequency inverter, a 386 kg lead-acid improved state-of-the-art battery, and a transaxle. The system was configured with a parallel power path between the heat engine and battery. It has two automatic operational modes: electric mode and heat engine mode. Power is always shared between the heat engine and battery during acceleration periods. In both modes, regenerative braking energy is absorbed by the battery.

  4. Dimensioning and efficiency evaluation of hybrid solar systems for energy production

    Directory of Open Access Journals (Sweden)

    Elia Stefano

    2008-01-01

    Full Text Available Nowadays hybrid panels for joint production of thermal and electrical energy are available on the market. The main contribution of this work is to evaluate the performances of hybrid systems and to determine the field of application. Mathematical models of panels are considered to evaluate thermal and electrical behavior of the problem. A software produced by the authors is shown that calculates the energy production of these devices in several operating situations; a comparison to that of photovoltaic and thermal systems is performed. Moreover, the economic validity of a such investment is evaluated. Finally a simplified criterion has been developed to calculate the best subdivision of the available deployment surface among thermal, photovoltaic, and hybrid panels.

  5. Editorial: Hybrid Systems

    DEFF Research Database (Denmark)

    Olderog, Ernst-Rüdiger; Ravn, Anders Peter

    2007-01-01

    An introduction to three papers in a special issue on Hybrid Systems. These paper were first presented at an IFIP WG 2.2 meeting in Skagen 2005.......An introduction to three papers in a special issue on Hybrid Systems. These paper were first presented at an IFIP WG 2.2 meeting in Skagen 2005....

  6. Hybrid systems with constraints

    CERN Document Server

    Daafouz, Jamal; Sigalotti, Mario

    2013-01-01

    Control theory is the main subject of this title, in particular analysis and control design for hybrid dynamic systems.The notion of hybrid systems offers a strong theoretical and unified framework to cope with the modeling, analysis and control design of systems where both continuous and discrete dynamics interact. The theory of hybrid systems has been the subject of intensive research over the last decade and a large number of diverse and challenging problems have been investigated. Nevertheless, many important mathematical problems remain open.This book is dedicated mainly to

  7. Hybrid intelligent engineering systems

    CERN Document Server

    Jain, L C; Adelaide, Australia University of

    1997-01-01

    This book on hybrid intelligent engineering systems is unique, in the sense that it presents the integration of expert systems, neural networks, fuzzy systems, genetic algorithms, and chaos engineering. It shows that these new techniques enhance the capabilities of one another. A number of hybrid systems for solving engineering problems are presented.

  8. Longevity-conscious dimensioning and power management of the hybrid energy storage system in a fuel cell hybrid electric bus

    International Nuclear Information System (INIS)

    Hu, Xiaosong; Johannesson, Lars; Murgovski, Nikolce; Egardt, Bo

    2015-01-01

    Highlights: • Hybrid energy storage system is optimally sized and controlled for a hybrid bus. • Dynamic battery health model is incorporated in the optimization. • Convex programming is efficient for optimizing hybrid propulsion systems. • Optimal battery replacement strategy is explored. • Comparison to the battery-only option is made in the health-aware optimization. - Abstract: Energy storage systems (ESSs) play an important role in the performance and economy of electrified vehicles. Hybrid energy storage system (HESS) combining both lithium-ion cells and supercapacitors is one of the most promising solutions. This paper discusses the optimal HESS dimensioning and energy management of a fuel cell hybrid electric bus. Three novel contributions are added to the relevant literature. First, efficient convex programming is used to simultaneously optimize the HESS dimension (including sizes of both the lithium-ion battery pack and the supercapacitor stack) and the power allocation between the HESS and the fuel cell system (FCS) of the hybrid bus. In the combined plant/controller optimization problem, a dynamic battery State-of-Health (SOH) model is integrated to quantitatively examine the impact of the battery replacement strategy on both the HESS size and the bus economy. Second, the HESS and the battery-only ESS options are systematically compared in the proposed optimization framework. Finally, the battery-health-perceptive HESS optimization outcome is contrasted to the ideal one neglecting the battery degradation (assuming that the battery is durable over the bus service period without deliberate power regulation)

  9. Compositional Modelling of Stochastic Hybrid Systems

    NARCIS (Netherlands)

    Strubbe, S.N.

    2005-01-01

    In this thesis we present a modelling framework for compositional modelling of stochastic hybrid systems. Hybrid systems consist of a combination of continuous and discrete dynamics. The state space of a hybrid system is hybrid in the sense that it consists of a continuous component and a discrete

  10. Contribution to the study of hybrid ventilation system effectiveness in office and educational buildings; Contribution a l'etude de l'efficacite des systemes de ventilation hybride dans les batiments du secteur tertiaire

    Energy Technology Data Exchange (ETDEWEB)

    Cron, F.

    2004-06-15

    This study is part of the International Energy Agency Annex 35, 'Hybrid Ventilation in New and Retro-fitted Office Buildings', also called the HybVent Project. It presents the numerical analyses of a number of hybrid ventilation systems and their potential for several buildings in relation to local climate characteristics. The first part of this work reviews the state-of-the-art of existing ventilation systems and details the principles, expectations and features of hybrid ventilation systems. This first section also examines some examples of hybrid systems extracted from the collection of Annex 35 case studies. A comprehensive bibliography of numerical tools available for this type of analysis is given in the second section. The numerical models for building simulation and the object-oriented environment used to develop our simulation tool are presented in this section as well. Two single-zone studies undertaken in this project are reported in the third section. The first study concerns an experimental cell simulation. Numerical results are compared to experimental data to validate the use of the simulation tool developed. The second single-zone study predicts the potential of a specific hybrid ventilation system in a typical classroom, given climatic conditions. Finally, the last section presents a more complete study - a multi-zone study of the Tonga school, an Annex 35 case study located in Sweden. Three rooms were modelled initially to compare numerical results to experimental data and then to analyse the performance of the existing hybrid ventilation system and two other systems. This final study was completed for three European cities with very different climates. The overall analysis of the potential of the hybrid ventilation systems considered and the perspective for future work are outlined in the conclusion. (author)

  11. Hybrid systems, optimal control and hybrid vehicles theory, methods and applications

    CERN Document Server

    Böhme, Thomas J

    2017-01-01

    This book assembles new methods showing the automotive engineer for the first time how hybrid vehicle configurations can be modeled as systems with discrete and continuous controls. These hybrid systems describe naturally and compactly the networks of embedded systems which use elements such as integrators, hysteresis, state-machines and logical rules to describe the evolution of continuous and discrete dynamics and arise inevitably when modeling hybrid electric vehicles. They can throw light on systems which may otherwise be too complex or recondite. Hybrid Systems, Optimal Control and Hybrid Vehicles shows the reader how to formulate and solve control problems which satisfy multiple objectives which may be arbitrary and complex with contradictory influences on fuel consumption, emissions and drivability. The text introduces industrial engineers, postgraduates and researchers to the theory of hybrid optimal control problems. A series of novel algorithmic developments provides tools for solving engineering pr...

  12. Fast Response, Load-Matching Hybrid Fuel Cell: Final Technical Progress Report

    Energy Technology Data Exchange (ETDEWEB)

    Key, T. S.; Sitzlar, H. E.; Geist, T. D.

    2003-06-01

    Hybrid DER technologies interconnected with the grid can provide improved performance capabilities compared to a single power source, and, add value, when matched to appropriate applications. For example, in a typical residence, the interconnected hybrid system could provide power during a utility outage, and also could compensate for voltage sags in the utility service. Such a hybrid system would then function as a premium power provider and eliminate the potential need for an uninterruptible power supply. In this research project, a proton exchange membrane (PEM) fuel cell is combined with an asymmetrical ultracapacitor to provide robust power response to changes in system loading. This project also considers the potential of hybrid DER technologies to improve overall power system compatibility and performance. This report includes base year accomplishments of a proposed 3-year-option project.

  13. Hybrid spacecraft attitude control system

    Directory of Open Access Journals (Sweden)

    Renuganth Varatharajoo

    2016-02-01

    Full Text Available The hybrid subsystem design could be an attractive approach for futurespacecraft to cope with their demands. The idea of combining theconventional Attitude Control System and the Electrical Power System ispresented in this article. The Combined Energy and Attitude ControlSystem (CEACS consisting of a double counter rotating flywheel assemblyis investigated for small satellites in this article. Another hybrid systemincorporating the conventional Attitude Control System into the ThermalControl System forming the Combined Attitude and Thermal ControlSystem (CATCS consisting of a "fluid wheel" and permanent magnets isalso investigated for small satellites herein. The governing equationsdescribing both these novel hybrid subsystems are presented and theironboard architectures are numerically tested. Both the investigated novelhybrid spacecraft subsystems comply with the reference missionrequirements.The hybrid subsystem design could be an attractive approach for futurespacecraft to cope with their demands. The idea of combining theconventional Attitude Control System and the Electrical Power System ispresented in this article. The Combined Energy and Attitude ControlSystem (CEACS consisting of a double counter rotating flywheel assemblyis investigated for small satellites in this article. Another hybrid systemincorporating the conventional Attitude Control System into the ThermalControl System forming the Combined Attitude and Thermal ControlSystem (CATCS consisting of a "fluid wheel" and permanent magnets isalso investigated for small satellites herein. The governing equationsdescribing both these novel hybrid subsystems are presented and theironboard architectures are numerically tested. Both the investigated novelhybrid spacecraft subsystems comply with the reference missionrequirements.

  14. Hybrid Propulsion Systems for Remotely Piloted Aircraft Systems

    Directory of Open Access Journals (Sweden)

    Mithun Abdul Sathar Eqbal

    2018-03-01

    Full Text Available The development of more efficient propulsion systems for aerospace vehicles is essential to achieve key objectives. These objectives are to increase efficiency while reducing the amount of carbon-based emissions. Hybrid electric propulsion (HEP is an ideal means to maintain the energy density of hydrocarbon-based fuels and utilize energy-efficient electric machines. A system that integrates different propulsion systems into a single system, with one being electric, is termed an HEP system. HEP systems have been studied previously and introduced into Land, Water, and Aerial Vehicles. This work presents research into the use of HEP systems in Remotely Piloted Aircraft Systems (RPAS. The systems discussed in this paper are Internal Combustion Engine (ICE–Electric Hybrid systems, ICE–Photovoltaic (PV Hybrid systems, and Fuel-Cell Hybrid systems. The improved performance characteristics in terms of fuel consumption and endurance are discussed.

  15. Insight and Evidence Motivating the Simplification of Dual-Analysis Hybrid Systems into Single-Analysis Hybrid Systems

    Science.gov (United States)

    Todling, Ricardo; Diniz, F. L. R.; Takacs, L. L.; Suarez, M. J.

    2018-01-01

    Many hybrid data assimilation systems currently used for NWP employ some form of dual-analysis system approach. Typically a hybrid variational analysis is responsible for creating initial conditions for high-resolution forecasts, and an ensemble analysis system is responsible for creating sample perturbations used to form the flow-dependent part of the background error covariance required in the hybrid analysis component. In many of these, the two analysis components employ different methodologies, e.g., variational and ensemble Kalman filter. In such cases, it is not uncommon to have observations treated rather differently between the two analyses components; recentering of the ensemble analysis around the hybrid analysis is used to compensated for such differences. Furthermore, in many cases, the hybrid variational high-resolution system implements some type of four-dimensional approach, whereas the underlying ensemble system relies on a three-dimensional approach, which again introduces discrepancies in the overall system. Connected to these is the expectation that one can reliably estimate observation impact on forecasts issued from hybrid analyses by using an ensemble approach based on the underlying ensemble strategy of dual-analysis systems. Just the realization that the ensemble analysis makes substantially different use of observations as compared to their hybrid counterpart should serve as enough evidence of the implausibility of such expectation. This presentation assembles numerous anecdotal evidence to illustrate the fact that hybrid dual-analysis systems must, at the very minimum, strive for consistent use of the observations in both analysis sub-components. Simpler than that, this work suggests that hybrid systems can reliably be constructed without the need to employ a dual-analysis approach. In practice, the idea of relying on a single analysis system is appealing from a cost-maintenance perspective. More generally, single-analysis systems avoid

  16. Reconfiguration of photovoltaic panels for reducing the hydrogen consumption in fuel cells of hybrid systems

    Directory of Open Access Journals (Sweden)

    Daniel González-Montoya

    2017-05-01

    Full Text Available Hybrid generation combines advantages from fuel cell systems with non-predictable generation approaches, such as photovoltaic and wind generators. In such hybrid systems, it is desirable to minimize as much as possible the fuel consumption, for the sake of reducing costs and increasing the system autonomy. This paper proposes an optimization algorithm, referred to as population-based incremental learning, in order to maximize the produced power of a photovoltaic generator. This maximization reduces the fuel consumption in the hybrid aggregation. Moreover, the algorithm's speed enables the real-time computation of the best configuration for the photovoltaic system, which also optimizes the fuel consumption in the complementary fuel cell system. Finally, a system experimental validation is presented considering 6 photovoltaic modules and a NEXA 1.2KW fuel cell. Such a validation demonstrates the effectiveness of the proposed algorithm to reduce the hydrogen consumption in these hybrid systems.

  17. In-service performance evaluation and monitoring of a hybrid composite beam bridge system : final report.

    Science.gov (United States)

    2017-10-01

    The hybrid composite beam (HCB) technology has been presented as a system for short and medium span beam bridges as an alternative to traditional materials such as concrete and steel. An HCB consists of a concrete tied arch encased in a fiber reinfor...

  18. Stochastic Reachability Analysis of Hybrid Systems

    CERN Document Server

    Bujorianu, Luminita Manuela

    2012-01-01

    Stochastic reachability analysis (SRA) is a method of analyzing the behavior of control systems which mix discrete and continuous dynamics. For probabilistic discrete systems it has been shown to be a practical verification method but for stochastic hybrid systems it can be rather more. As a verification technique SRA can assess the safety and performance of, for example, autonomous systems, robot and aircraft path planning and multi-agent coordination but it can also be used for the adaptive control of such systems. Stochastic Reachability Analysis of Hybrid Systems is a self-contained and accessible introduction to this novel topic in the analysis and development of stochastic hybrid systems. Beginning with the relevant aspects of Markov models and introducing stochastic hybrid systems, the book then moves on to coverage of reachability analysis for stochastic hybrid systems. Following this build up, the core of the text first formally defines the concept of reachability in the stochastic framework and then...

  19. Hybrid solar lighting distribution systems and components

    Science.gov (United States)

    Muhs, Jeffrey D [Lenoir City, TN; Earl, Dennis D [Knoxville, TN; Beshears, David L [Knoxville, TN; Maxey, Lonnie C [Powell, TN; Jordan, John K [Oak Ridge, TN; Lind, Randall F [Lenoir City, TN

    2011-07-05

    A hybrid solar lighting distribution system and components having at least one hybrid solar concentrator, at least one fiber receiver, at least one hybrid luminaire, and a light distribution system operably connected to each hybrid solar concentrator and each hybrid luminaire. A controller operates all components.

  20. Configurations of hybrid-electric cars propulsion systems

    OpenAIRE

    Cundev, Dobri; Sarac, Vasilija; Stefanov, Goce

    2011-01-01

    Over the last few years, hybrid electric cars have taken significant role in automotive market. There are successful technological solutions of hybrid-electric propulsion systems implemented in commercial passenger cars. Every automobile manufacturer of hybrid vehicles has unique hybrid propulsion system. In this paper, all implemented systems are described, analyzed and compared.

  1. Supermarket Refrigeration System - Benchmark for Hybrid System Control

    DEFF Research Database (Denmark)

    Sloth, Lars Finn; Izadi-Zamanabadi, Roozbeh; Wisniewski, Rafal

    2007-01-01

    This paper presents a supermarket refrigeration system as a benchmark for development of new ideas and a comparison of methods for hybrid systems' modeling and control. The benchmark features switch dynamics and discrete valued input making it a hybrid system, furthermore the outputs are subjected...

  2. Hybrid synchronization of hyperchaotic Lu system

    Indian Academy of Sciences (India)

    In this paper, we study the hybrid synchronization between two identical hyperchaotic Lu systems. Hybrid synchronization of hyperchaotic Lu system is achieved through synchronization of two pairs of states and anti-synchronization of the other two pairs of states. Active controls are designed to achieve hybrid ...

  3. Configuration Synthesis of Novel Series-Parallel Hybrid Transmission Systems with Eight-Bar Mechanisms

    Directory of Open Access Journals (Sweden)

    Ngoc-Tan Hoang

    2017-07-01

    Full Text Available This paper presents a design approach for the configuration synthesis of series-parallel hybrid transmissions with eight-bar mechanisms. The final design consists of 54 mechanisms with eight members and twelve joints including a simple planetary gear train (PGT and a double planet PGT. Then, by using the techniques of power and clutch arrangements, new series-parallel hybrid transmissions are synthesized. The power arrangement process generates 97 clutchless hybrid systems. The clutch arrangement process generates 100 corresponding series-parallel transmissions. To demonstrate the feasibility of the synthesized configurations, a new hybrid transmission is selected as an example to analyze the working principle with operation modes and power flow paths.

  4. Hybrid energy fuel cell based system for household applications in a Mediterranean climate

    International Nuclear Information System (INIS)

    Nižetić, S.; Tolj, I.; Papadopoulos, A.M.

    2015-01-01

    Highlights: • A hybrid energy system was proposed, combining a HT-PEM fuel cell system and a standard split heat pump system with heat recovery for household applications. • The hybrid energy system is able to produce both high and low temperature heat, electricity and cooling capacity. • The system showed high overall energy efficiency and a favorable environmental aspect. • The calculated cost of overall produced energy proved to be competitive in comparison with the average cost of electricity for households. - Abstract: In this paper, a specific hybrid energy system was proposed for household applications. The hybrid energy system was assembled from a HT-PEM fuel cell stack supplied by hydrogen via a steam reformer, where finally the majority of produced electricity is used to drive a modified split heat pump system with heat recovery (that is enabled via standard modified accumulation boilers). The system is able to produce both high and low temperature heat output (in the form of hot water), cooling thermal output and electricity. Performance analysis was conducted and the specific hybrid energy system showed high value for overall energy efficiency, for the specific case examined it reached 250%. Levelized Cost of Energy (LCOE) analysis was also carried out and the proposed hybrid energy system’s cost is expected to be between 0.09 €/kW h and 0.16 €/kW h, which is certainly competitive with the current retail electricity price for households on the EU market. Additionally, the system also has environmental benefits in relation to reduced CO 2 emissions, as estimated CO 2 emissions from the proposed hybrid energy system are expected to be at around 9.0 gCO 2 /kW h or 2.6 times less than the emissions released from the utilization of grid electricity.

  5. Parametric systems analysis for ICF hybrid reactors

    International Nuclear Information System (INIS)

    Berwald, D.H.; Maniscalco, J.A.; Chapin, D.L.

    1981-01-01

    Parametric design and systems analysis for inertial confinement fusion-fission hybrids are presented. These results were generated as part of the Electric Power Research Institute (EPRI) sponsored Feasibility Assessment of Fusion-Fission Hybrids, using an Inertial Confinement Fusion (ICF) hybrid power plant design code developed in conjunction with the feasibility assessment. The SYMECON systems analysis code, developed by Westinghouse, was used to generate economic results for symbiotic electricity generation systems consisting of the hybrid and its client Light Water Reactors (LWRs). These results explore the entire fusion parameter space for uranium fast fission blanket hybrids, thorium fast fission blanket hybrids, and thorium suppressed fission blanket types are discussed, and system sensitivities to design uncertainties are explored

  6. Breaking Dense Structures: Proving Stability of Densely Structured Hybrid Systems

    Directory of Open Access Journals (Sweden)

    Eike Möhlmann

    2015-06-01

    Full Text Available Abstraction and refinement is widely used in software development. Such techniques are valuable since they allow to handle even more complex systems. One key point is the ability to decompose a large system into subsystems, analyze those subsystems and deduce properties of the larger system. As cyber-physical systems tend to become more and more complex, such techniques become more appealing. In 2009, Oehlerking and Theel presented a (de-composition technique for hybrid systems. This technique is graph-based and constructs a Lyapunov function for hybrid systems having a complex discrete state space. The technique consists of (1 decomposing the underlying graph of the hybrid system into subgraphs, (2 computing multiple local Lyapunov functions for the subgraphs, and finally (3 composing the local Lyapunov functions into a piecewise Lyapunov function. A Lyapunov function can serve multiple purposes, e.g., it certifies stability or termination of a system or allows to construct invariant sets, which in turn may be used to certify safety and security. In this paper, we propose an improvement to the decomposing technique, which relaxes the graph structure before applying the decomposition technique. Our relaxation significantly reduces the connectivity of the graph by exploiting super-dense switching. The relaxation makes the decomposition technique more efficient on one hand and on the other allows to decompose a wider range of graph structures.

  7. Constructing decidable hybrid systems with velocity bounds

    NARCIS (Netherlands)

    Belta, C.; Habets, L.C.G.J.M.

    2004-01-01

    In this paper, the question of bi-similarity between hybrid systems and their discrete quotients is studied from a new point of view. We consider two classes of hybrid systems: piecewise affine hybrid systems on simplices and piecewise multi-affine systems on multi-dimensional rectangles. Given a

  8. Robust Power Management Control for Stand-Alone Hybrid Power Generation System

    International Nuclear Information System (INIS)

    Kamal, Elkhatib; Adouane, Lounis; Aitouche, Abdel; Mohammed, Walaa

    2017-01-01

    This paper presents a new robust fuzzy control of energy management strategy for the stand-alone hybrid power systems. It consists of two levels named centralized fuzzy supervisory control which generates the power references for each decentralized robust fuzzy control. Hybrid power systems comprises: a photovoltaic panel and wind turbine as renewable sources, a micro turbine generator and a battery storage system. The proposed control strategy is able to satisfy the load requirements based on a fuzzy supervisor controller and manage power flows between the different energy sources and the storage unit by respecting the state of charge and the variation of wind speed and irradiance. Centralized controller is designed based on If-Then fuzzy rules to manage and optimize the hybrid power system production by generating the reference power for photovoltaic panel and wind turbine. Decentralized controller is based on the Takagi-Sugeno fuzzy model and permits us to stabilize each photovoltaic panel and wind turbine in presence of disturbances and parametric uncertainties and to optimize the tracking reference which is given by the centralized controller level. The sufficient conditions stability are formulated in the format of linear matrix inequalities using the Lyapunov stability theory. The effectiveness of the proposed Strategy is finally demonstrated through a SAHPS (stand-alone hybrid power systems) to illustrate the effectiveness of the overall proposed method. (paper)

  9. Mixed H∞ and passive control for linear switched systems via hybrid control approach

    Science.gov (United States)

    Zheng, Qunxian; Ling, Youzhu; Wei, Lisheng; Zhang, Hongbin

    2018-03-01

    This paper investigates the mixed H∞ and passive control problem for linear switched systems based on a hybrid control strategy. To solve this problem, first, a new performance index is proposed. This performance index can be viewed as the mixed weighted H∞ and passivity performance. Then, the hybrid controllers are used to stabilise the switched systems. The hybrid controllers consist of dynamic output-feedback controllers for every subsystem and state updating controllers at the switching instant. The design of state updating controllers not only depends on the pre-switching subsystem and the post-switching subsystem, but also depends on the measurable output signal. The hybrid controllers proposed in this paper can include some existing ones as special cases. Combine the multiple Lyapunov functions approach with the average dwell time technique, new sufficient conditions are obtained. Under the new conditions, the closed-loop linear switched systems are globally uniformly asymptotically stable with a mixed H∞ and passivity performance index. Moreover, the desired hybrid controllers can be constructed by solving a set of linear matrix inequalities. Finally, a numerical example and a practical example are given.

  10. Hybrid dynamical systems observation and control

    CERN Document Server

    Defoort, Michael

    2015-01-01

    This book is a collection of contributions defining the state of current knowledge and new trends in hybrid systemssystems involving both continuous dynamics and discrete events – as described by the work of several well-known groups of researchers. Hybrid Dynamical Systems presents theoretical advances in such areas as diagnosability, observability and stabilization for various classes of system. Continuous and discrete state estimation and self-triggering control of nonlinear systems are advanced. The text employs various methods, among them, high-order sliding modes, Takagi–Sugeno representation and sampled-data switching to achieve its ends. The many applications of hybrid systems from power converters to computer science are not forgotten; studies of flexible-joint robotic arms and – as representative biological systems – the behaviour of the human heart and vasculature, demonstrate the wide-ranging practical significance of control in hybrid systems. The cross-disciplinary origins of study ...

  11. A Sentiment-Enhanced Hybrid Recommender System for Movie Recommendation: A Big Data Analytics Framework

    Directory of Open Access Journals (Sweden)

    Yibo Wang

    2018-01-01

    Full Text Available Movie recommendation in mobile environment is critically important for mobile users. It carries out comprehensive aggregation of user’s preferences, reviews, and emotions to help them find suitable movies conveniently. However, it requires both accuracy and timeliness. In this paper, a movie recommendation framework based on a hybrid recommendation model and sentiment analysis on Spark platform is proposed to improve the accuracy and timeliness of mobile movie recommender system. In the proposed approach, we first use a hybrid recommendation method to generate a preliminary recommendation list. Then sentiment analysis is employed to optimize the list. Finally, the hybrid recommender system with sentiment analysis is implemented on Spark platform. The hybrid recommendation model with sentiment analysis outperforms the traditional models in terms of various evaluation criteria. Our proposed method makes it convenient and fast for users to obtain useful movie suggestions.

  12. Sustainability assessment of a hybrid energy system

    International Nuclear Information System (INIS)

    Afgan, Nain H.; Carvalho, Maria G.

    2008-01-01

    A hybrid energy system in the form of the Object structure is the pattern for the structure of options in the evaluation of a hybrid system. The Object structure is defined as: Hybrid Energy System {[production (solar, wind, biomass, natural gas)] [utilization(electricity, heat, hydrogen)]}. In the evaluation of hybrid energy systems only several options are selected to demonstrate the sustainability assessment method application in the promotion of the specific quality of the hybrid energy system. In this analysis the following options are taken into a consideration: 1.Solar photo-voltaic power plant (PV PP), wind turbine power plant (WTPP) biomass thermal power plant (ThSTPP) for electricity, heat and hydrogen production. 2.Solar PV PP and wind power plant (WPP) for electricity and hydrogen production. 3.Biomass thermal steam turbine power plant (BThSTPP) and WPP for heat and hydrogen production. 4.Combined cycle gas turbine power plant for electricity and hydrogen production. 5.Cogeneration of electricity and water by the hybrid system. The sustainability assessment method is used for the evaluation of quality of the selected hybrid systems. In this evaluation the following indicators are used: economic indicator, environment indicator and social indicator

  13. Hybrid spacecraft attitude control system

    OpenAIRE

    Renuganth Varatharajoo; Ramly Ajir; Tamizi Ahmad

    2016-01-01

    The hybrid subsystem design could be an attractive approach for futurespacecraft to cope with their demands. The idea of combining theconventional Attitude Control System and the Electrical Power System ispresented in this article. The Combined Energy and Attitude ControlSystem (CEACS) consisting of a double counter rotating flywheel assemblyis investigated for small satellites in this article. Another hybrid systemincorporating the conventional Attitude Control System into the ThermalControl...

  14. Preliminary Assessment of Using Gelled and Hybrid Propellant Propulsion for VTOL/SSTO Launch Systems

    Science.gov (United States)

    Palaszewski, Bryan; OLeary, Robert; Pelaccio, Dennis G.

    1998-01-01

    A novel, reusable, Vertical-Takeoff-and-Vertical-Takeoff-and-Landing, Single-Stage-to-Orbit (VTOL/SSTO) launch system concept, named AUGMENT-SSTO, is presented in this paper to help quantify the advantages of employing gelled and hybrid propellant propulsion system options for such applications. The launch vehicle system concept considered uses a highly coupled, main high performance liquid oxygen/liquid hydrogen (LO2/LH2) propulsion system, that is used only for launch, while a gelled or hybrid propellant propulsion system auxiliary propulsion system is used during final orbit insertion, major orbit maneuvering, and landing propulsive burn phases of flight. Using a gelled or hybrid propellant propulsion system for major orbit maneuver burns and landing has many advantages over conventional VTOL/SSTO concepts that use LO2/LH2 propulsion system(s) burns for all phases of flight. The applicability of three gelled propellant systems, O2/H2/Al, O2/RP-1/Al, and NTO/MMH/Al, and a state-of-the-art (SOA) hybrid propulsion system are examined in this study. Additionally, this paper addresses the applicability of a high performance gelled O2/H2 propulsion system to perform the primary, as well as the auxiliary propulsion system functions of the vehicle.

  15. Stochastic linear hybrid systems: Modeling, estimation, and application

    Science.gov (United States)

    Seah, Chze Eng

    Hybrid systems are dynamical systems which have interacting continuous state and discrete state (or mode). Accurate modeling and state estimation of hybrid systems are important in many applications. We propose a hybrid system model, known as the Stochastic Linear Hybrid System (SLHS), to describe hybrid systems with stochastic linear system dynamics in each mode and stochastic continuous-state-dependent mode transitions. We then develop a hybrid estimation algorithm, called the State-Dependent-Transition Hybrid Estimation (SDTHE) algorithm, to estimate the continuous state and discrete state of the SLHS from noisy measurements. It is shown that the SDTHE algorithm is more accurate or more computationally efficient than existing hybrid estimation algorithms. Next, we develop a performance analysis algorithm to evaluate the performance of the SDTHE algorithm in a given operating scenario. We also investigate sufficient conditions for the stability of the SDTHE algorithm. The proposed SLHS model and SDTHE algorithm are illustrated to be useful in several applications. In Air Traffic Control (ATC), to facilitate implementations of new efficient operational concepts, accurate modeling and estimation of aircraft trajectories are needed. In ATC, an aircraft's trajectory can be divided into a number of flight modes. Furthermore, as the aircraft is required to follow a given flight plan or clearance, its flight mode transitions are dependent of its continuous state. However, the flight mode transitions are also stochastic due to navigation uncertainties or unknown pilot intents. Thus, we develop an aircraft dynamics model in ATC based on the SLHS. The SDTHE algorithm is then used in aircraft tracking applications to estimate the positions/velocities of aircraft and their flight modes accurately. Next, we develop an aircraft conformance monitoring algorithm to detect any deviations of aircraft trajectories in ATC that might compromise safety. In this application, the SLHS

  16. Performance Analysis of a MCFC/MGT Hybrid Power System Bi-Fueled by City Gas and Biogas

    Directory of Open Access Journals (Sweden)

    Hongyu Huang

    2015-06-01

    Full Text Available This study evaluates the performance of a molten carbonate fuel cell and micro gas turbine (MCFC/MGT hybrid power system bi-fueled by city gas and biogas. The performance of the MCFC/MGT hybrid power system and MFCF/MGT hybrid power system response have been investigated experimentally and numerically. Results show that the MCFC, steam reformer, and catalytic combustor models are in agreement with the experimental results of the system fueled by city gas only and the system bi-fueled by city gas and biogas. The MFCF/MGT hybrid power system can have manifest operation with the addition of biogas at a flow rate of up to 150.0 Nm3·h−1, which is about 50% of the overall input heat value. In addition, the MCFC and MGT outputs decrease with the increase in the flow rate of added biogas, with an overall power generation efficiency ranging from 39.0% to 42.0%. Furthermore, the MCFC/MGT hybrid power system can be operated stably both at low amplitude with slow current change and large amplitude with rapid power conditions. Finally, the MCFC/MGT hybrid system bi-fueled by city gas and biogas may be applicable to the energy supply of the micro–grid network.

  17. Hybrid Approach To Steganography System Based On Quantum Encryption And Chaos Algorithms

    Directory of Open Access Journals (Sweden)

    ZAID A. ABOD

    2018-01-01

    Full Text Available A hybrid scheme for secretly embedding image into a dithered multilevel image is presented. This work inputs both a cover image and secret image, which are scrambling and divided into groups to embedded together based on multiple chaos algorithms (Lorenz map, Henon map and Logistic map respectively. Finally, encrypt the embedded images by using one of the quantum cryptography mechanisms, which is quantum one time pad. The experimental results show that the proposed hybrid system successfully embedded images and combine with the quantum cryptography algorithms and gives high efficiency for secure communication.

  18. Functional Abstraction of Stochastic Hybrid Systems

    NARCIS (Netherlands)

    Bujorianu, L.M.; Blom, Henk A.P.; Hermanns, H.

    2006-01-01

    The verification problem for stochastic hybrid systems is quite difficult. One method to verify these systems is stochastic reachability analysis. Concepts of abstractions for stochastic hybrid systems are needed to ease the stochastic reachability analysis. In this paper, we set up different ways

  19. New hybrid systems: strategy and research programs

    International Nuclear Information System (INIS)

    Thomas, J.B.

    2001-01-01

    This short article gives a status of research and experimental programs concerning new hybrid systems. A hybrid system is made up of a subcritical core, a spallation target and of a particle accelerator that delivers a proton beam. The main asset of hybrid systems is to provide a large reactivity margin that would be very valuable to transmute actinide nuclei efficiently. As a consequence hybrid systems could be considered as actinide burner reactors integrated to a large population of classical nuclear reactors dedicated to electricity production. (A.C.)

  20. Optimal Control of Hybrid Systems in Air Traffic Applications

    Science.gov (United States)

    Kamgarpour, Maryam

    Growing concerns over the scalability of air traffic operations, air transportation fuel emissions and prices, as well as the advent of communication and sensing technologies motivate improvements to the air traffic management system. To address such improvements, in this thesis a hybrid dynamical model as an abstraction of the air traffic system is considered. Wind and hazardous weather impacts are included using a stochastic model. This thesis focuses on the design of algorithms for verification and control of hybrid and stochastic dynamical systems and the application of these algorithms to air traffic management problems. In the deterministic setting, a numerically efficient algorithm for optimal control of hybrid systems is proposed based on extensions of classical optimal control techniques. This algorithm is applied to optimize the trajectory of an Airbus 320 aircraft in the presence of wind and storms. In the stochastic setting, the verification problem of reaching a target set while avoiding obstacles (reach-avoid) is formulated as a two-player game to account for external agents' influence on system dynamics. The solution approach is applied to air traffic conflict prediction in the presence of stochastic wind. Due to the uncertainty in forecasts of the hazardous weather, and hence the unsafe regions of airspace for aircraft flight, the reach-avoid framework is extended to account for stochastic target and safe sets. This methodology is used to maximize the probability of the safety of aircraft paths through hazardous weather. Finally, the problem of modeling and optimization of arrival air traffic and runway configuration in dense airspace subject to stochastic weather data is addressed. This problem is formulated as a hybrid optimal control problem and is solved with a hierarchical approach that decouples safety and performance. As illustrated with this problem, the large scale of air traffic operations motivates future work on the efficient

  1. Comments On Clock Models In Hybrid Automata And Hybrid Control Systems

    Directory of Open Access Journals (Sweden)

    Virginia Ecaterina OLTEAN

    2001-12-01

    Full Text Available Hybrid systems have received a lot of attention in the past decade and a number of different models have been proposed in order to establish mathematical framework that is able to handle both continuous and discrete aspects. This contribution is focused on two models: hybrid automata and hybrid control systems with continuous-discrete interface and the importance of clock models is emphasized. Simple and relevant examples, some taken from the literature, accompany the presentation.

  2. Non-destructive assay system for uranium and plutonium in reprocessing input solutions. Hybrid K-edge/XRF Densitometer. JASPAS JC-11 final report

    International Nuclear Information System (INIS)

    Surugaya, N.; Abe, K.; Kurosawa, A.; Ikeda, H.; Kuno, Y.

    1997-05-01

    As a part of JASPAS programme, a non-radioactive assay system for the accountability of uranium and plutonium in input dissolver solutions of a spent fuel reprocessing plant, called Hybrid K-edge/XRF Densitometer, has been developed at the Tokai Reprocessing plant (TRP) since 1991. The instrument is the one of the hybrid type combined K-edge densitometry (KED) and X-ray fluorescence (XRF) analysis. The KED is used to determine the uranium concentration and the XRF is used to determine the U/Pu ratio. These results give the plutonium concentration in consequence. It is considered that the instrument has the capability of timely on-site verification for input accountancy. The instrument had been installed in the analytical hot cell at the TRP and the experiments comparing with Isotope Dilution Mass Spectrometry (IDMS) method have been carried out. As the results of measurements for the actual input solutions in the acceptance and performance tests, it was typically confirmed that the precision for determining uranium concentration by the KED was within 0.2%, whereas the XRF for plutonium performed within 0.7%. This final report summarizes the design information and performance data so as to end the JASPAS programme. (author)

  3. Hybrid spread spectrum radio system

    Science.gov (United States)

    Smith, Stephen F [London, TN; Dress, William B [Camas, WA

    2010-02-09

    Systems and methods are described for hybrid spread spectrum radio systems. A method, includes receiving a hybrid spread spectrum signal including: fast frequency hopping demodulating and direct sequence demodulating a direct sequence spread spectrum signal, wherein multiple frequency hops occur within a single data-bit time and each bit is represented by chip transmissions at multiple frequencies.

  4. Systems for hybrid cars

    Science.gov (United States)

    Bitsche, Otmar; Gutmann, Guenter

    Not only sharp competition but also legislation are pushing development of hybrid drive trains. Based on conventional internal combustion engine (ICE) vehicles, these drive trains offer a wide range of benefits from reduced fuel consumption and emission to multifaceted performance improvements. Hybrid electric drive trains may also facilitate the introduction of fuel cells (FC). The battery is the key component for all hybrid drive trains, as it dominates cost and performance issues. The selection of the right battery technology for the specific automotive application is an important task with an impact on costs of development and use. Safety, power, and high cycle life are a must for all hybrid applications. The greatest pressure to reduce cost is in soft hybrids, where lead-acid embedded in a considerate management presents the cheapest solution, with a considerable improvement in performance needed. From mild to full hybridization, an improvement in specific power makes higher costs more acceptable, provided that the battery's service life is equivalent to the vehicle's lifetime. Today, this is proven for the nickel-metal hydride system. Lithium ion batteries, which make use of a multiple safety concept, and with some development anticipated, provide even better prospects in terms of performance and costs. Also, their scalability permits their application in battery electric vehicles—the basis for better performance and enhanced user acceptance. Development targets for the batteries are discussed with a focus on system aspects such as electrical and thermal management and safety.

  5. Solar central receiver hybrid power system, Phase I. Volume 2. Conceptual design. Final technical report, October 1978-August 1979

    Energy Technology Data Exchange (ETDEWEB)

    None

    1979-09-01

    The objectives of this study were to develop a hybrid power system design that (1) produces minimum cost electric power, (2) minimizes the capital investment and operating cost, (3) permits capacity displacement, (4) and achieves utility acceptance for market penetration. We have met the first three of these objectives and therefore believe that the fourth, utility acceptance, will become a reality. These objectives have been met by utilizing the Martin Marietta concept that combines the alternate central receiver power system design and a high-temperature salt primary heat transfer fluid and thermal storage media system with a fossil-fired nonsolar energy source. Task 1 reviewed the requirements definition document and comments and recommendations were provided to DOE/San Francisco. Task 2 consisted of a market analysis to evaluate the potential market of solar hybrid power plants. Twenty-two utilities were selected within nine regions of the country. Both written and verbal correspondence was used to assess solar hybrid power plants with respect to the utilities' future requirements and plans. The parametric analysis of Task 3 evaluated a wide range of subsystem configurations and sizes. These analyses included subsystems from the solar standalone alternate central receiver power system using high-temperature molten salt and from fossil fuel nonsolar subsystems. Task 4, selection of the preferred commerical system configuration, utilized the parametric analyses developed in Task 3 to select system and subsystem configurations for the commercial plant design. Task 5 developed a conceptual design of the selected commercial plant configuration and assessed the related cost and performance. Task 6 assessed the economics and performance of the selected configuration as well as future potential improvements or limitations of the hybrid power plants.

  6. Fault tolerant control design for hybrid systems

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Hao; Jiang, Bin [Nanjing University of Aeronautics and Astronautics, Nanjing (China); Cocquempot, Vincent [Universite des Sciences et Technologies de Lille, Villeneuve d' Ascq (France)

    2010-07-01

    This book intends to provide the readers a good understanding on how to achieve Fault Tolerant Control goal of Hybrid Systems. The book can be used as a reference for the academic research on Fault Tolerant Control and Hybrid Systems or used in Ph.D. study of control theory and engineering. The knowledge background for this monograph would be some undergraduate and graduate courses on Fault Diagnosis and Fault Tolerant Control theory, linear system theory, nonlinear system theory, Hybrid Systems theory and Discrete Event System theory. (orig.)

  7. Hybrid FRP-concrete bridge deck system final report II : long term performance of hybrid FRP-concrete bridge deck system.

    Science.gov (United States)

    2009-06-01

    This report describes the investigation of the long term structural performance of a : hybrid FRP-concrete (HFRPC) bridge deck on steel girders. The study aimed at : assessing three long term aspects pertaining to the HFRPC bridge deck: (1) creep : c...

  8. Hybrid production planning system in make-to-order company - case study

    Directory of Open Access Journals (Sweden)

    2010-12-01

    Full Text Available This paper presents hybrid production planning and shop floor control system in make-to-order manufacturing of complex products. It presents the general idea of multi-hybrid system and selected practical aspects of its creation and its implementation. The construction of this system is based on the planning and executive levels and main aspects of its integration and its support tools. The research was carried out in HCP S.A. Poznan (Diesel Engines and Generating Sets Factory. HCP S.A. Poznan is the producer of high-power marine engines. The lead-time of the final product manufacturing is between 9 months and 1 year, and takes about 40.000 hours per one engine. The main problems of this production system are high share of the work in progress and long lead-time, which, as a result, causes many expenses. The flow of material streams is extremely complex and represents "A-plant" class, according to V-A-T classification, including significant internal constraints ("bottlenecks".

  9. Process algebras for hybrid systems : comparison and development

    NARCIS (Netherlands)

    Khadim, U.

    2008-01-01

    Our research is about formal speci¯cation and analysis of hybrid systems. The formalism used is process algebra. Hybrid systems are systems that exhibit both discrete and continuous behaviour. An example of a hybrid system is a digital controller controlling a physical device such as present in

  10. Multi-Agent System based Event-Triggered Hybrid Controls for High-Security Hybrid Energy Generation Systems

    DEFF Research Database (Denmark)

    Dou, Chun-Xia; Yue, Dong; Guerrero, Josep M.

    2017-01-01

    This paper proposes multi-agent system based event- triggered hybrid controls for guaranteeing energy supply of a hybrid energy generation system with high security. First, a mul-ti-agent system is constituted by an upper-level central coordi-nated control agent combined with several lower......-level unit agents. Each lower-level unit agent is responsible for dealing with internal switching control and distributed dynamic regula-tion for its unit system. The upper-level agent implements coor-dinated switching control to guarantee the power supply of over-all system with high security. The internal...

  11. Performance estimation of photovoltaic–thermoelectric hybrid systems

    International Nuclear Information System (INIS)

    Zhang, Jin; Xuan, Yimin; Yang, Lili

    2014-01-01

    A theoretical model for evaluating the efficiency of concentrating PV–TE (photovoltaic–thermoelectric) hybrid system is developed in this paper. Hybrid systems with different photovoltaic cells are studied, including crystalline silicon photovoltaic cell, silicon thin-film photovoltaic cell, polymer photovoltaic cell and copper indium gallium selenide photovoltaic cell. The influence of temperature on the efficiency of photovoltaic cell has been taken into account based on the semiconductor equations, which reveals different efficiency temperature characteristic of polymer photovoltaic cells. It is demonstrated that the polycrystalline silicon thin-film photovoltaic cell is suitable for concentrating PV–TE hybrid system through optimization of the convection heat transfer coefficient and concentrating ratio. The polymer photovoltaic cell is proved to be suitable for non-concentrating PV–TE hybrid system. - Highlights: • Performances of four types of photovoltaic–thermoelectric hybrid systems are studied. • Temperature is one of dominant factors of affecting the conversion efficiency of PV–TE systems. • One can select a proper PV–TE assembly system according to given operating conditions

  12. Recent Advances on Hybrid Intelligent Systems

    CERN Document Server

    Melin, Patricia; Kacprzyk, Janusz

    2013-01-01

    This book presents recent advances on hybrid intelligent systems using soft computing techniques for intelligent control and robotics, pattern recognition, time series prediction and optimization of complex problems. Soft Computing (SC) consists of several intelligent computing paradigms, including fuzzy logic, neural networks, and bio-inspired optimization algorithms, which can be used to produce powerful hybrid intelligent systems. The book is organized in five main parts, which contain groups of papers around a similar subject. The first part consists of papers with the main theme of hybrid intelligent systems for control and robotics, which are basically state of the art papers that propose new models and concepts, which can be the basis for achieving intelligent control and mobile robotics. The second part contains papers with the main theme of hybrid intelligent systems for pattern recognition and time series prediction, which are basically papers using nature-inspired techniques, like evolutionary algo...

  13. An Interactive Personalized Recommendation System Using the Hybrid Algorithm Model

    Directory of Open Access Journals (Sweden)

    Yan Guo

    2017-10-01

    Full Text Available With the rapid development of e-commerce, the contradiction between the disorder of business information and customer demand is increasingly prominent. This study aims to make e-commerce shopping more convenient, and avoid information overload, by an interactive personalized recommendation system using the hybrid algorithm model. The proposed model first uses various recommendation algorithms to get a list of original recommendation results. Combined with the customer’s feedback in an interactive manner, it then establishes the weights of corresponding recommendation algorithms. Finally, the synthetic formula of evidence theory is used to fuse the original results to obtain the final recommendation products. The recommendation performance of the proposed method is compared with that of traditional methods. The results of the experimental study through a Taobao online dress shop clearly show that the proposed method increases the efficiency of data mining in the consumer coverage, the consumer discovery accuracy and the recommendation recall. The hybrid recommendation algorithm complements the advantages of the existing recommendation algorithms in data mining. The interactive assigned-weight method meets consumer demand better and solves the problem of information overload. Meanwhile, our study offers important implications for e-commerce platform providers regarding the design of product recommendation systems.

  14. Advanced Electrical Machines and Machine-Based Systems for Electric and Hybrid Vehicles

    Directory of Open Access Journals (Sweden)

    Ming Cheng

    2015-09-01

    Full Text Available The paper presents a number of advanced solutions on electric machines and machine-based systems for the powertrain of electric vehicles (EVs. Two types of systems are considered, namely the drive systems designated to the EV propulsion and the power split devices utilized in the popular series-parallel hybrid electric vehicle architecture. After reviewing the main requirements for the electric drive systems, the paper illustrates advanced electric machine topologies, including a stator permanent magnet (stator-PM motor, a hybrid-excitation motor, a flux memory motor and a redundant motor structure. Then, it illustrates advanced electric drive systems, such as the magnetic-geared in-wheel drive and the integrated starter generator (ISG. Finally, three machine-based implementations of the power split devices are expounded, built up around the dual-rotor PM machine, the dual-stator PM brushless machine and the magnetic-geared dual-rotor machine. As a conclusion, the development trends in the field of electric machines and machine-based systems for EVs are summarized.

  15. Formal Engineering Hybrid Systems: Semantic Underpinnings

    NARCIS (Netherlands)

    Bujorianu, M.C.; Bujorianu, L.M.

    2008-01-01

    In this work we investigate some issues in applying formal methods to hybrid system development and develop a categorical framework. We study the themes of stochastic reasoning, heterogeneous formal specification and retrenchment. Hybrid systems raise a rich pallets of aspects that need to be

  16. Solar Central Receiver Hybrid Power Systems sodium-cooled receiver concept. Final report. Volume II, Book 2. Conceptual design, Sections 5 and 6

    Energy Technology Data Exchange (ETDEWEB)

    None

    1980-01-01

    The overall, long-term objective of the Solar Central Receiver Hybrid Power System program is to identify, characterize, and ultimately demonstrate the viability and cost effectiveness of solar/fossil, steam Rankine cycle, hybrid power systems that: (1) consist of a combined solar central receiver energy source and a nonsolar energy source at a single, common site, (2) may operate in the base, intermediate, and peaking capacity modes, (3) produce the rated output independent of variations in solar insolation, (4) provide a significant savings (50% or more) in fuel consumption, and (5) produce power at the minimum possible cost in mills/kWh. It is essential that these hybrid concepts be technically feasible and economically competitive with other systems in the near to mid-term time period (1985-1990) on a commercial scale. The program objective for Phase I is to identify and conceptually characterize solar/fossil steam Rankine cycle, commercial-scale, power plant systems that are economically viable and technically feasible. This volume contains the detailed conceptual design and cost/performance estimates and an assessment of the commercial scale solar central receiver hybrid power system. (WHK)

  17. Electromagnetic Properties Analysis on Hybrid-driven System of Electromagnetic Motor

    Science.gov (United States)

    Zhao, Jingbo; Han, Bingyuan; Bei, Shaoyi

    2018-01-01

    The hybrid-driven system made of permanent-and electromagnets applied in the electromagnetic motor was analyzed, equivalent magnetic circuit was used to establish the mathematical models of hybrid-driven system, based on the models of hybrid-driven system, the air gap flux, air-gap magnetic flux density, electromagnetic force was proposed. Taking the air-gap magnetic flux density and electromagnetic force as main research object, the hybrid-driven system was researched. Electromagnetic properties of hybrid-driven system with different working current modes is studied preliminary. The results shown that analysis based on hybrid-driven system can improve the air-gap magnetic flux density and electromagnetic force more effectively and can also guarantee the output stability, the effectiveness and feasibility of the hybrid-driven system are verified, which proved theoretical basis for the design of hybrid-driven system.

  18. Hybrid system power generation'wind-photovoltaic' connected to the ...

    African Journals Online (AJOL)

    Hybrid system power generation'wind-photovoltaic' connected to the ... from Hybrid System, power delivered to or from grid and phase voltage of the inverter leg. ... Renewable Energy, Electrical Network 220 kV, Hybrid System, Solar, MPPT.

  19. Hybrid and Electric Advanced Vehicle Systems Simulation

    Science.gov (United States)

    Beach, R. F.; Hammond, R. A.; Mcgehee, R. K.

    1985-01-01

    Predefined components connected to represent wide variety of propulsion systems. Hybrid and Electric Advanced Vehicle System (HEAVY) computer program is flexible tool for evaluating performance and cost of electric and hybrid vehicle propulsion systems. Allows designer to quickly, conveniently, and economically predict performance of proposed drive train.

  20. Wind Solar Hybrid System Rectifier Stage Topology Simulation

    OpenAIRE

    Anup M. Gakare; Subhash Kamdi

    2014-01-01

    This paper presents power-control strategies of a grid-connected hybrid generation system with versatile power transfer. The hybrid system allows maximum utilization of freely available renewable sources like wind and photovoltaic energies. This paper presents a new system configuration of the multi input rectifier stage for a hybrid wind and photovoltaic energy system. This configuration allows the two sources to supply the load simultaneously depending on the availability of...

  1. Specification and Verification of Hybrid System

    International Nuclear Information System (INIS)

    Widjaja, Belawati H.

    1997-01-01

    Hybrid systems are reactive systems which intermix between two components, discrete components and continuous components. The continuous components are usually called plants, subject to disturbances which cause the state variables of the systems changing continuously by physical laws and/or by the control laws. The discrete components can be digital computers, sensor and actuators controlled by programs. These programs are designed to select, control and supervise the behavior of the continuous components. Specification and verification of hybrid systems has recently become an active area of research in both computer science and control engineering, many papers concerning hybrid system have been published. This paper gives a design methodology for hybrid systems as an example to the specification and verification of hybrid systems. The design methodology is based on the cooperation between two disciplines, control engineering and computer science. The methodology brings into the design of control loops and decision loops. The external behavior of control loops are specified in a notation which is understandable by the two disciplines. The design of control loops which employed theory of differential equation is done by control engineers, and its correctness is also guaranteed analytically or experimentally by control engineers. The decision loops are designed in computing science based on the specifications of control loops. The verification of systems requirements can be done by computing scientists using a formal reasoning mechanism. For illustrating the proposed design, a problem of balancing an inverted pendulum which is a popular experiment device in control theory is considered, and the Mean Value Calculus is chosen as a formal notation for specifying the control loops and designing the decision loops

  2. Advanced propulsion system concept for hybrid vehicles

    Science.gov (United States)

    Bhate, S.; Chen, H.; Dochat, G.

    1980-01-01

    A series hybrid system, utilizing a free piston Stirling engine with a linear alternator, and a parallel hybrid system, incorporating a kinematic Stirling engine, are analyzed for various specified reference missions/vehicles ranging from a small two passenger commuter vehicle to a van. Parametric studies for each configuration, detail tradeoff studies to determine engine, battery and system definition, short term energy storage evaluation, and detail life cycle cost studies were performed. Results indicate that the selection of a parallel Stirling engine/electric, hybrid propulsion system can significantly reduce petroleum consumption by 70 percent over present conventional vehicles.

  3. ANALYSING SOLAR-WIND HYBRID POWER GENERATING SYSTEM

    Directory of Open Access Journals (Sweden)

    Mustafa ENGİN

    2005-02-01

    Full Text Available In this paper, a solar-wind hybrid power generating, system that will be used for security lighting was designed. Hybrid system was installed and solar cells, wind turbine, battery bank, charge regulators and inverter performance values were measured through the whole year. Using measured values of overall system efficiency, reliability, demanded energy cost per kWh were calculated, and percentage of generated energy according to resources were defined. We also include in the paper a discussion of new strategies to improve hybrid power generating system performance and demanded energy cost per kWh.

  4. Modular supervisory controller for hybrid power systems

    Energy Technology Data Exchange (ETDEWEB)

    Lemos Pereira, A. de

    2000-06-01

    The power supply of remote places has been commonly provided by thermal power plants, usually diesel generators. Although hybrid power systems may constitute the most economical solution in many applications their widespread application to the electrification schemes of remote areas still depends on improvements in the issues of design and operation control. The main limitations of the present hybrid power systems technology, which are identified in this work, are related to the control and supervision of the power system. Therefore this thesis focuses on the modularity of supervisory controllers in order to design cost-competitive and reliable hybrid power systems. The modular supervisory controller created in this project is considered an important part of a system design approach that aims to overcome the technical difficulties of the current engineering practice and contribute to open the market of hybrid power systems. The term modular refers to a set of design characteristics that allows the use of basically the same supervisory controller in different projects. The modularization and standardisation of the controller include several issues such as interfacing components, communication protocols, modelling, programming and control strategies. The modularity can reduce the highly specialised system engineering related to the integration of components, operation and control. It can also avoid the high costs for installation, service and maintenance. A modular algorithm for supervisory controllers has been developed (a Matlab program called SuperCon) using an object-oriented design and it has been tested through several simulations using different hybrid system configurations and different control strategies. This thesis presents a complete control system design process which can be used as the basis for the development and implementation of intelligent and autonomous supervisory controllers for hybrid power systems with modular characteristics. (au)

  5. Components and systems for hybrid- and electromobiles; Komponenten und Systeme fuer Hybrid- und Elektrofahrzeuge

    Energy Technology Data Exchange (ETDEWEB)

    Immle, Michael; Burgmayr, Thomas [Panasonic Electric Works Europe AG, Holzkirchen (Germany)

    2010-07-01

    On the Hybrid and Electric Vehicle sector Panasonic Electric Works is working among others on electro-mechanical products, such as contactors for battery disconnection or battery charging, on semi-conductor relays for battery monitoring and on complex systems as battery disconnect units. This paper will show experience on the hybrid vehicle sector. Further on different switching components and their usage will be introduced. As a main topic battery disconnected units will be discussed. Based on an actual example basic development items and system features will be touched and important development stages will be shown. As a general topic a future view on vehicles and batteries, as well as on charging systems and infrastructural necessities will be introduced. (orig.)

  6. Filtering and control of stochastic jump hybrid systems

    CERN Document Server

    Yao, Xiuming; Zheng, Wei Xing

    2016-01-01

    This book presents recent research work on stochastic jump hybrid systems. Specifically, the considered stochastic jump hybrid systems include Markovian jump Ito stochastic systems, Markovian jump linear-parameter-varying (LPV) systems, Markovian jump singular systems, Markovian jump two-dimensional (2-D) systems, and Markovian jump repeated scalar nonlinear systems. Some sufficient conditions are first established respectively for the stability and performances of those kinds of stochastic jump hybrid systems in terms of solution of linear matrix inequalities (LMIs). Based on the derived analysis conditions, the filtering and control problems are addressed. The book presents up-to-date research developments and novel methodologies on stochastic jump hybrid systems. The contents can be divided into two parts: the first part is focused on robust filter design problem, while the second part is put the emphasis on robust control problem. These methodologies provide a framework for stability and performance analy...

  7. Solar Central Receiver Hybrid Power Systems sodium-cooled receiver concept. Final report. Volume II, Book 1. Conceptual design, Sections 1 through 4

    Energy Technology Data Exchange (ETDEWEB)

    None

    1980-01-01

    The overall, long-term objective of the Solar Central Receiver Hybrid Power System program is to identify, characterize, and ultimately demonstrate the viability and cost effectiveness of solar/fossil, steam Rankine cycle, hybrid power systems that: (1) consist of a combined solar central receiver energy source and a nonsolar energy source at a single, common site, (2) may operate in the base, intermediate, and peaking capacity modes, (3) produce the rated output independent of variations in solar insolation, (4) provide a significant savings (50% or more) in fuel consumption, and (5) produce power at the minimum possible cost in mills/kWh. It is essential that these hybrid concepts be technically feasible and economically competitive with other systems in the near to mid-term time period (1985-1990) on a commercial scale. The program objective for Phase I is to identify and conceptually characterize solar/fossil steam Rankine cycle, commercial-scale, power plant systems that are economically viable and technically feasible. This volume presents in detail the market analysis, parametric analysis, and the selection process for the preferred system. (WHK)

  8. Mathematical Modeling of Hybrid Electrical Engineering Systems

    Directory of Open Access Journals (Sweden)

    A. A. Lobaty

    2016-01-01

    Full Text Available A large class of systems that have found application in various industries and households, electrified transportation facilities and energy sector has been classified as electrical engineering systems. Their characteristic feature is a combination of continuous and discontinuous modes of operation, which is reflected in the appearance of a relatively new term “hybrid systems”. A wide class of hybrid systems is pulsed DC converters operating in a pulse width modulation, which are non-linear systems with variable structure. Using various methods for linearization it is possible to obtain linear mathematical models that rather accurately simulate behavior of such systems. However, the presence in the mathematical models of exponential nonlinearities creates considerable difficulties in the implementation of digital hardware. The solution can be found while using an approximation of exponential functions by polynomials of the first order, that, however, violates the rigor accordance of the analytical model with characteristics of a real object. There are two practical approaches to synthesize algorithms for control of hybrid systems. The first approach is based on the representation of the whole system by a discrete model which is described by difference equations that makes it possible to synthesize discrete algorithms. The second approach is based on description of the system by differential equations. The equations describe synthesis of continuous algorithms and their further implementation in a digital computer included in the control loop system. The paper considers modeling of a hybrid electrical engineering system using differential equations. Neglecting the pulse duration, it has been proposed to describe behavior of vector components in phase coordinates of the hybrid system by stochastic differential equations containing generally non-linear differentiable random functions. A stochastic vector-matrix equation describing dynamics of the

  9. Hybrid-Vehicle Transmission System

    Science.gov (United States)

    Lupo, G.; Dotti, G.

    1985-01-01

    Continuously-variable transmission system for hybrid vehicles couples internal-combustion engine and electric motor section, either individually or in parallel, to power vehicle wheels during steering and braking.

  10. Feasibility of a responsive, hybrid propulsion augmented, Vertical-Takeoff-and-Landing, Single-Stage-to-Orbit launch system

    Science.gov (United States)

    Pelaccio, Dennis G.

    1996-03-01

    A novel, reusable, Vertical-Takeoff-and-Landing, Single-Stage-to-Orbit (VTOL/SSTO) launch system concept, named HYP-SSTO, is presented in this paper. This launch vehicle system concept uses a highly coupled, main high performance liquid oxygen/liquid hydrogen (LOX/LH2) propulsion system, that is used only for launch, with a hybrid auxiliary propulsion system which is used during final orbit insertion, major orbit maneuvering, and landing propulsive burn phases of flight. By using a hybrid propulsion system for major orbit maneuver burns and landing, this launch system concept has many advantages over conventional VTOL/SSTO concepts that use LOX/LH2 propulsion system(s) burns for all phases of flight. Because hybrid propulsion systems are relatively simple and inert by their nature, this concept has the potential to support short turnaround times between launches, be economical to develop, and be competitive in terms of overall system life-cycle cost. This paper provides a technical description of the novel, reusable HYP-SSTO launch system concept. Launch capability performance, as well as major design and operational system attributes, are identified and discussed.

  11. Optimization of Renewable Energy Hybrid System for Grid Connected Application

    Directory of Open Access Journals (Sweden)

    Mustaqimah Mustaqimah

    2012-10-01

    Full Text Available ABSTRACT. Hybrid energy systems are pollution free, takes low cost and less gestation period, user and social friendly. Such systems are important sources of energy for shops, schools, and clinics in village communities especially in remote areas. Hybrid systems can provide electricity at a comparatively economic price in many remote areas. This paper presents a method to jointly determine the sizing and operation control of hybrid energy systems. The model, PV wind hydro and biomass hybrid system connects to grid. The system configuration of the hybrid is derived based on a theoretical domestic load at a typical location and local solar radiation, wind and water flow rate data and biomass availability. The hybrid energy system is proposed for 10 of teacher’s houses of Industrial Training Institute, Mersing. It is predicted 10 kW load consumption per house. The hybrid energy system consists of wind, solar, biomass, hydro, and grid power. Approximately energy consumption is 860 kWh/day with a 105 kW peak demand load. The proposed hybrid renewable consists of solar photovoltaic (PV panels, wind turbine, hydro turbine and biomass. Battery and inverter are included as part of back-up and storage system. It provides the economic sensitivity of hybridization and the economic and environmental benefits of using a blend of technologies. It also presents the trade off that is involved in optimizing a hybrid energy system to harness and utilize the available renewable energy resources efficiently.

  12. Solar-Diesel Hybrid Power System Optimization and Experimental Validation

    Science.gov (United States)

    Jacobus, Headley Stewart

    As of 2008 1.46 billion people, or 22 percent of the World's population, were without electricity. Many of these people live in remote areas where decentralized generation is the only method of electrification. Most mini-grids are powered by diesel generators, but new hybrid power systems are becoming a reliable method to incorporate renewable energy while also reducing total system cost. This thesis quantifies the measurable Operational Costs for an experimental hybrid power system in Sierra Leone. Two software programs, Hybrid2 and HOMER, are used during the system design and subsequent analysis. Experimental data from the installed system is used to validate the two programs and to quantify the savings created by each component within the hybrid system. This thesis bridges the gap between design optimization studies that frequently lack subsequent validation and experimental hybrid system performance studies.

  13. Energy Efficient Hybrid Dual Axis Solar Tracking System

    Directory of Open Access Journals (Sweden)

    Rashid Ahammed Ferdaus

    2014-01-01

    Full Text Available This paper describes the design and implementation of an energy efficient solar tracking system from a normal mechanical single axis to a hybrid dual axis. For optimizing the solar tracking mechanism electromechanical systems were evolved through implementation of different evolutional algorithms and methodologies. To present the tracker, a hybrid dual-axis solar tracking system is designed, built, and tested based on both the solar map and light sensor based continuous tracking mechanism. These light sensors also compare the darkness and cloudy and sunny conditions assisting daily tracking. The designed tracker can track sun’s apparent position at different months and seasons; thereby the electrical controlling device requires a real time clock device for guiding the tracking system in seeking solar position for the seasonal motion. So the combination of both of these tracking mechanisms made the designed tracker a hybrid one. The power gain and system power consumption are compared with a static and continuous dual axis solar tracking system. It is found that power gain of hybrid dual axis solar tracking system is almost equal to continuous dual axis solar tracking system, whereas the power saved in system operation by the hybrid tracker is 44.44% compared to the continuous tracking system.

  14. Limit Cycle Analysis in a Class of Hybrid Systems

    Directory of Open Access Journals (Sweden)

    Antonio Favela-Contreras

    2016-01-01

    Full Text Available Hybrid systems are those that inherently combine discrete and continuous dynamics. This paper considers the hybrid system model to be an extension of the discrete automata associating a continuous evolution with each discrete state. This model is called the hybrid automaton. In this work, we achieve a mathematical formulation of the steady state and we show a way to obtain the initial conditions region to reach a specific limit cycle for a class of uncoupled and coupled continuous-linear hybrid systems. The continuous-linear term is used in the sense of the system theory and, in this sense, continuous-linear hybrid automata will be defined. Thus, some properties and theorems that govern the hybrid automata dynamic behavior to evaluate a limit cycle existence have been established; this content is explained under a theoretical framework.

  15. Final report: Mapping Interactions in Hybrid Systems with Active Scanning Probes

    Energy Technology Data Exchange (ETDEWEB)

    Berezovsky, Jesse [Case Western Reserve Univ., Cleveland, OH (United States)

    2017-09-29

    This project aimed to study and map interactions between components of hybrid nanodevices using a novel scanning probe approach. To enable this work, we initially constructed a flexible experimental apparatus allowing for simultaneous scanning probe and confocal optical microscopy measurements. This setup was first used for all-optical measurements of nanostructures, with the focus then shifting to hybrid devices in which single coherent electron spins are coupled to micron-scale ferromagnetic elements, which may prove useful for addressing single spins, enhanced sensing, or spin-wave-mediated coupling of spins for quantum information applications. A significant breakthrough was the realization that it is not necessary to fabricate a magnetic structure on a scanning probe – instead a ferromagnetic vortex core can act as an integrated, solid state, scanning probe. The core of the vortex produces a very strong, localized fringe field which can be used analogously to an MFM tip. Unlike a traditional MFM tip, however, the vortex core is scanned within an integrated device (eliminating drift), and can be moved on vastly faster timescales. This approach allows the detailed investigation of interactions between single spins and complex driven ferromagnetic dynamics.

  16. Model predictive control of an air suspension system with damping multi-mode switching damper based on hybrid model

    Science.gov (United States)

    Sun, Xiaoqiang; Yuan, Chaochun; Cai, Yingfeng; Wang, Shaohua; Chen, Long

    2017-09-01

    This paper presents the hybrid modeling and the model predictive control of an air suspension system with damping multi-mode switching damper. Unlike traditional damper with continuously adjustable damping, in this study, a new damper with four discrete damping modes is applied to vehicle semi-active air suspension. The new damper can achieve different damping modes by just controlling the on-off statuses of two solenoid valves, which makes its damping adjustment more efficient and more reliable. However, since the damping mode switching induces different modes of operation, the air suspension system with the new damper poses challenging hybrid control problem. To model both the continuous/discrete dynamics and the switching between different damping modes, the framework of mixed logical dynamical (MLD) systems is used to establish the system hybrid model. Based on the resulting hybrid dynamical model, the system control problem is recast as a model predictive control (MPC) problem, which allows us to optimize the switching sequences of the damping modes by taking into account the suspension performance requirements. Numerical simulations results demonstrate the efficacy of the proposed control method finally.

  17. Dynamics and control of hybrid mechanical systems

    NARCIS (Netherlands)

    Leonov, G.A.; Nijmeijer, H.; Pogromski, A.Y.; Fradkov, A.L.

    2010-01-01

    The papers in this edited volume aim to provide a better understanding of the dynamics and control of a large class of hybrid dynamical systems that are described by different models in different state space domains. They not only cover important aspects and tools for hybrid systems analysis and

  18. Modular component kit for hybrid drive systems; Modularer Komponentenbaukasten fuer Hybride Antriebssysteme

    Energy Technology Data Exchange (ETDEWEB)

    Riegger, Peter; Schalk, Johannes; Schmalzing, Claus-Oliver [MTU Friedrichshafen GmbH, Friedrichshafen (Germany). Bereich Forschung Technologieentwicklung

    2013-10-15

    By hybrid drives, fuel consumption in off-road applications can be significantly reduced. However, the additional power train components and degrees of freedom required in the design of hybridised systems involve an increase in system variants. To keep the number of variants as low as possible whilst simultaneously ensuring that hybrid drives can serve as wide a spectrum of applications as possible, MTU has developed a modular system of components. This makes it possible to use customer requirements as a basis for creating innovative drive systems for the widest range of applications. (orig.)

  19. Hybrid attacks on model-based social recommender systems

    Science.gov (United States)

    Yu, Junliang; Gao, Min; Rong, Wenge; Li, Wentao; Xiong, Qingyu; Wen, Junhao

    2017-10-01

    With the growing popularity of the online social platform, the social network based approaches to recommendation emerged. However, because of the open nature of rating systems and social networks, the social recommender systems are susceptible to malicious attacks. In this paper, we present a certain novel attack, which inherits characteristics of the rating attack and the relation attack, and term it hybrid attack. Furtherly, we explore the impact of the hybrid attack on model-based social recommender systems in multiple aspects. The experimental results show that, the hybrid attack is more destructive than the rating attack in most cases. In addition, users and items with fewer ratings will be influenced more when attacked. Last but not the least, the findings suggest that spammers do not depend on the feedback links from normal users to become more powerful, the unilateral links can make the hybrid attack effective enough. Since unilateral links are much cheaper, the hybrid attack will be a great threat to model-based social recommender systems.

  20. Application of Hybrid Dynamical Theory to the Cardiovascular System

    KAUST Repository

    Laleg-Kirati, Taous-Meriem

    2014-10-14

    In hybrid dynamical systems, the state evolves in continuous time as well as in discrete modes activated by internal conditions or by external events. In the recent years, hybrid systems modeling has been used to represent the dynamics of biological systems. In such systems, discrete behaviors might originate from unexpected changes in normal performance, e.g., a transition from a healthy to an abnormal condition. Simplifications, model assumptions, and/or modeled (and ignored) nonlinearities can be represented by sudden changes in the state. Modeling cardiovascular system (CVS), one of the most fascinating but most complex human physiological systems, with a hybrid approach, is the focus of this chapter. The hybrid property appears naturally in the CVS thanks to the presence of valves which, depending on their state (closed or open), divide the cardiac cycle into four phases. This chapter shows how hybrid models can be used for modeling the CVS. In addition, it describes a preliminary study on the detection of some cardiac anomalies based on the hybrid model and using the standard observer-based approach.

  1. Assume-Guarantee Abstraction Refinement Meets Hybrid Systems

    Science.gov (United States)

    Bogomolov, Sergiy; Frehse, Goran; Greitschus, Marius; Grosu, Radu; Pasareanu, Corina S.; Podelski, Andreas; Strump, Thomas

    2014-01-01

    Compositional verification techniques in the assume- guarantee style have been successfully applied to transition systems to efficiently reduce the search space by leveraging the compositional nature of the systems under consideration. We adapt these techniques to the domain of hybrid systems with affine dynamics. To build assumptions we introduce an abstraction based on location merging. We integrate the assume-guarantee style analysis with automatic abstraction refinement. We have implemented our approach in the symbolic hybrid model checker SpaceEx. The evaluation shows its practical potential. To the best of our knowledge, this is the first work combining assume-guarantee reasoning with automatic abstraction-refinement in the context of hybrid automata.

  2. Hybrid energy system evaluation in water supply system energy production: neural network approach

    Energy Technology Data Exchange (ETDEWEB)

    Goncalves, Fabio V.; Ramos, Helena M. [Civil Engineering Department, Instituto Superior Tecnico, Technical University of Lisbon, Av. Rovisco Pais, 1049-001, Lisbon (Portugal); Reis, Luisa Fernanda R. [Universidade de Sao Paulo, EESC/USP, Departamento de Hidraulica e Saneamento., Avenida do Trabalhador Saocarlense, 400, Sao Carlos-SP (Brazil)

    2010-07-01

    Water supply systems are large consumers of energy and the use of hybrid systems for green energy production is this new proposal. This work presents a computational model based on neural networks to determine the best configuration of a hybrid system to generate energy in water supply systems. In this study the energy sources to make this hybrid system can be the national power grid, micro-hydro and wind turbines. The artificial neural network is composed of six layers, trained to use data generated by a model of hybrid configuration and an economic simulator - CES. The reason for the development of an advanced model of forecasting based on neural networks is to allow rapid simulation and proper interaction with hydraulic and power model simulator - HPS. The results show that this computational model is useful as advanced decision support system in the design of configurations of hybrid power systems applied to water supply systems, improving the solutions in the development of its global energy efficiency.

  3. Analysis on a hybrid desiccant air-conditioning system

    International Nuclear Information System (INIS)

    Jia, C.X.; Dai, Y.J.; Wu, J.Y.; Wang, R.Z.

    2006-01-01

    Hybrid desiccant-assisted preconditioner and split cooling coil system, which combines the merits of moisture removal by desiccant and cooling coil for sensible heat removal, is a potential alternative to conventional vapor compression cooling systems. In this paper, experiments on a hybrid desiccant air-conditioning system, which is actually an integration of a rotary solid desiccant dehumidification and a vapor compression air-conditioning unit, had been carried out. It is found that, compared with the conventional VC (vapor compression) system, the hybrid desiccant cooling system economizes 37.5% electricity powers when the process air temperature and relative humidity are maintained at 30 o C, and 55% respectively. The reason why the hybrid desiccant cooling system features better performance relative to the VC system lies in the improvement brought about in the performance of the evaporator in VC unit due to desiccant dehumidification. A thermodynamic model of the hybrid desiccant system with R-22 as the refrigerant has been developed and the impact of operating parameters on the sensible heat ratio of the evaporator and the electric power saving rate has been analyzed. It is found that a majority of evaporators can operate in the dry condition even if the regeneration temperature is lower (i.e. 80 o C)

  4. Polymer-lipid hybrid nanoparticles as enhanced indomethacin delivery systems.

    Science.gov (United States)

    Dalmoro, Annalisa; Bochicchio, Sabrina; Nasibullin, Shamil F; Bertoncin, Paolo; Lamberti, Gaetano; Barba, Anna Angela; Moustafine, Rouslan I

    2018-05-17

    Non-steroidal anti-inflammatory drugs (NSAIDs), i.e. indomethacin used for rheumatoid arthritis and non-rheumatoid inflammatory diseases, are known for their injurious actions on the gastrointestinal (GI) tract. Mucosal damage can be avoided by using nanoscale systems composed by a combination of liposomes and biodegradable natural polymer, i.e. chitosan, for enhancing drug activity. Aim of this study was to prepare chitosan-lipid hybrid delivery systems for indomethacin dosage through a novel continuous method based on microfluidic principles. The drop-wise conventional method was also applied in order to investigate the effect of the two polymeric coverage processes on the nanostructures features and their interactions with indomethacin. Thermal-physical properties, mucoadhesiveness, drug entrapment efficiency, in vitro release behavior in simulated GI fluids and stability in stocking conditions were assayed and compared, respectively, for the uncoated and chitosan-coated nanoliposomes prepared by the two introduced methods. The prepared chitosan-lipid hybrid structures, with nanometric size, have shown high indomethacin loading (about 10%) and drug encapsulation efficiency up to 99%. TEM investigation has highlighted that the developed novel simil-microfluidic method is able to put a polymeric layer, surrounding indomethacin loaded nanoliposomes, thicker and smoother than that achievable by the drop-wise method, improving their storage stability. Finally, double pH tests have confirmed that the chitosan-lipid hybrid nanostructures have a gastro retentive behavior in simulated gastric and intestinal fluids thus can be used as delivery systems for the oral-controlled release of indomethacin. Based on the present results, the simil-microfluidic method, working with large volumes, in a rapid manner, without the use of drastic conditions and with a precise control over the covering process, seems to be the most promising method for the production of suitable

  5. Analysis and design of hybrid control systems

    Energy Technology Data Exchange (ETDEWEB)

    Malmborg, J.

    1998-05-01

    Different aspects of hybrid control systems are treated: analysis, simulation, design and implementation. A systematic methodology using extended Lyapunov theory for design of hybrid systems is developed. The methodology is based on conventional control designs in separate regions together with a switching strategy. Dynamics are not well defined if the control design methods lead to fast mode switching. The dynamics depend on the salient features of the implementation of the mode switches. A theorem for the stability of second order switching together with the resulting dynamics is derived. The dynamics on an intersection of two sliding sets are defined for two relays working on different time scales. The current simulation packages have problems modeling and simulating hybrid systems. It is shown how fast mode switches can be found before or during simulation. The necessary analysis work is a very small overhead for a modern simulation tool. To get some experience from practical problems with hybrid control the switching strategy is implemented in two different software environments. In one of them a time-optimal controller is added to an existing PID controller on a commercial control system. Successful experiments with this hybrid controller shows the practical use of the method 78 refs, 51 figs, 2 tabs

  6. Towards Modelling of Hybrid Systems

    DEFF Research Database (Denmark)

    Wisniewski, Rafal

    2006-01-01

    system consists of a number of dynamical systems that are glued together according to information encoded in the discrete part of the system. We develop a definition of a hybrid system as a functor from the category generated by a transition system to the category of directed topological spaces. Its...

  7. Analysis of a Hybrid Mechanical Regenerative Braking System

    Directory of Open Access Journals (Sweden)

    Toh Xiang Wen Matthew

    2018-01-01

    Full Text Available Regenerative braking systems for conventional vehicles are gaining attention as fossil fuels continue to be depleted. The major forms of regenerative braking systems include electrical and mechanical systems, with the former being more widely adopted at present. However mechanical systems are still feasible, including the possible hybrid systems of two mechanical energy recovery systems. A literature study was made to compare the various mechanical energy recovery systems. These systems were compared based on their advantages and disadvantages with regards to energy storage, usage, and maintenance. Based on the comparison, the most promising concept appeared to be one that combined the flywheel and the pneumatic energy recovery systems. A CAD model of this hybrid system was produced to better visualise the design. This was followed by analytical modelling of the energy recovery systems. The analysis indicated that the angular velocity had an extremely significant impact on the power loss and energy efficiency. The results showed that the hybrid system can provide better efficiency but only when operating within certain parameters. Future work is required to further improve the efficiency of this hybrid system.

  8. Optimization of Wind-Marine Hybrid Power System Configuration Based on Genetic Algorithm

    Institute of Scientific and Technical Information of China (English)

    SHI Hongda; LI Linna; ZHAO Chenyu

    2017-01-01

    Multi-energy power systems can use energy generated from various sources to improve power generation reliability.This paper presents a cost-power generation model of a wind-tide-wave energy hybrid power system for use on a remote island,where the configuration is optimized using a genetic algorithm.A mixed integer programming model is used and a novel object function,including cost and power generation,is proposed to solve the boundary problem caused by existence of two goals.Using this model,the final optimized result is found to have a good fit with local resources.

  9. Design, analysis and modeling of a novel hybrid powertrain system based on hybridized automated manual transmission

    Science.gov (United States)

    Wu, Guang; Dong, Zuomin

    2017-09-01

    Hybrid electric vehicles are widely accepted as a promising short to mid-term technical solution due to noticeably improved efficiency and lower emissions at competitive costs. In recent years, various hybrid powertrain systems were proposed and implemented based on different types of conventional transmission. Power-split system, including Toyota Hybrid System and Ford Hybrid System, are well-known examples. However, their relatively low torque capacity, and the drive of alternative and more advanced designs encouraged other innovative hybrid system designs. In this work, a new type of hybrid powertrain system based hybridized automated manual transmission (HAMT) is proposed. By using the concept of torque gap filler (TGF), this new hybrid powertrain type has the potential to overcome issue of torque gap during gearshift. The HAMT design (patent pending) is described in details, from gear layout and design of gear ratios (EV mode and HEV mode) to torque paths at different gears. As an analytical tool, mutli-body model of vehicle equipped with this HAMT was built to analyze powertrain dynamics at various steady and transient modes. A gearshift was decomposed and analyzed based basic modes. Furthermore, a Simulink-SimDriveline hybrid vehicle model was built for the new transmission, driveline and vehicle modular. Control strategy has also been built to harmonically coordinate different powertrain components to realize TGF function. A vehicle launch simulation test has been completed under 30% of accelerator pedal position to reveal details during gearshift. Simulation results showed that this HAMT can eliminate most torque gap that has been persistent issue of traditional AMT, improving both drivability and performance. This work demonstrated a new type of transmission that features high torque capacity, high efficiency and improved drivability.

  10. Final Technical Report for Terabit-scale hybrid networking project.

    Energy Technology Data Exchange (ETDEWEB)

    Veeraraghavan, Malathi [Univ. of Virginia, Charlottesville, VA (United States)

    2015-12-12

    This report describes our accomplishments and activities for the project titled Terabit-Scale Hybrid Networking. The key accomplishment is that we developed, tested and deployed an Alpha Flow Characterization System (AFCS) in ESnet. It is being run in production mode since Sept. 2015. Also, a new QoS class was added to ESnet5 to support alpha flows.

  11. Event tree analysis for the system of hybrid reactor

    International Nuclear Information System (INIS)

    Yang Yongwei; Qiu Lijian

    1993-01-01

    The application of probabilistic risk assessment for fusion-fission hybrid reactor is introduced. A hybrid reactor system has been analysed using event trees. According to the character of the conceptual design of Hefei Fusion-fission Experimental Hybrid Breeding Reactor, the probabilities of the event tree series induced by 4 typical initiating events were calculated. The results showed that the conceptual design is safe and reasonable. through this paper, the safety character of hybrid reactor system has been understood more deeply. Some suggestions valuable to safety design for hybrid reactor have been proposed

  12. A hybrid reconfigurable solar and wind energy system

    Science.gov (United States)

    Gadkari, Sagar A.

    We study the feasibility of a novel hybrid solar-wind hybrid system that shares most of its infrastructure and components. During periods of clear sunny days the system will generate electricity from the sun using a parabolic concentrator. The concentrator is formed by individual mirror elements and focuses the light onto high intensity vertical multi-junction (VMJ) cells. During periods of high wind speeds and at night, the same concentrator setup will be reconfigured to channel the wind into a wind turbine which will be used to harness wind energy. In this study we report on the feasibility of this type of solar/wind hybrid energy system. The key mechanisms; optics, cooling mechanism of VMJ cells and air flow through the system were investigated using simulation tools. The results from these simulations, along with a simple economic analysis giving the levelized cost of energy for such a system are presented. An iterative method of design refinement based on the simulation results was used to work towards a prototype design. The levelized cost of the system achieved in the economic analysis shows the system to be a good alternative for a grid isolated site and could be used as a standalone system in regions of lower demand. The new approach to solar wind hybrid system reported herein will pave way for newer generation of hybrid systems that share common infrastructure in addition to the storage and distribution of energy.

  13. Weighted hybrid technique for recommender system

    Science.gov (United States)

    Suriati, S.; Dwiastuti, Meisyarah; Tulus, T.

    2017-12-01

    Recommender system becomes very popular and has important role in an information system or webpages nowadays. A recommender system tries to make a prediction of which item a user may like based on his activity on the system. There are some familiar techniques to build a recommender system, such as content-based filtering and collaborative filtering. Content-based filtering does not involve opinions from human to make the prediction, while collaborative filtering does, so collaborative filtering can predict more accurately. However, collaborative filtering cannot give prediction to items which have never been rated by any user. In order to cover the drawbacks of each approach with the advantages of other approach, both approaches can be combined with an approach known as hybrid technique. Hybrid technique used in this work is weighted technique in which the prediction score is combination linear of scores gained by techniques that are combined.The purpose of this work is to show how an approach of weighted hybrid technique combining content-based filtering and item-based collaborative filtering can work in a movie recommender system and to show the performance comparison when both approachare combined and when each approach works alone. There are three experiments done in this work, combining both techniques with different parameters. The result shows that the weighted hybrid technique that is done in this work does not really boost the performance up, but it helps to give prediction score for unrated movies that are impossible to be recommended by only using collaborative filtering.

  14. Powertrain system for a hybrid electric vehicle

    Science.gov (United States)

    Reed, Jr., Richard G.; Boberg, Evan S.; Lawrie, Robert E.; Castaing, Francois J.

    1999-08-31

    A hybrid electric powertrain system is provided including an electric motor/generator drivingly engaged with the drive shaft of a transmission. The electric is utilized for synchronizing the rotation of the drive shaft with the driven shaft during gear shift operations. In addition, a mild hybrid concept is provided which utilizes a smaller electric motor than typical hybrid powertrain systems. Because the electric motor is drivingly engaged with the drive shaft of the transmission, the electric motor/generator is driven at high speed even when the vehicle speed is low so that the electric motor/generator provides more efficient regeneration.

  15. Powertrain system for a hybrid electric vehicle

    Science.gov (United States)

    Reed, R.G. Jr.; Boberg, E.S.; Lawrie, R.E.; Castaing, F.J.

    1999-08-31

    A hybrid electric powertrain system is provided including an electric motor/generator drivingly engaged with the drive shaft of a transmission. The electric is utilized for synchronizing the rotation of the drive shaft with the driven shaft during gear shift operations. In addition, a mild hybrid concept is provided which utilizes a smaller electric motor than typical hybrid powertrain systems. Because the electric motor is drivingly engaged with the drive shaft of the transmission, the electric motor/generator is driven at high speed even when the vehicle speed is low so that the electric motor/generator provides more efficient regeneration. 34 figs.

  16. FPGA implementation of a hybrid on-line process monitoring in PC based real-time systems

    Directory of Open Access Journals (Sweden)

    Jovanović Bojan

    2011-01-01

    Full Text Available This paper presents one way of FPGA implementation of hybrid (hardware-software based on-line process monitoring in Real-Time systems (RTS. The reasons for RTS monitoring are presented at the beginning. The summary of different RTS monitoring approaches along with its advantages and drawbacks are also exposed. Finally, monitoring module is described in details. Also, FPGA implementation results and some useful monitoring system applications are mentioned.

  17. Eighteen-Month Final Evaluation of UPS Second Generation Diesel Hybrid-Electric Delivery Vans

    Energy Technology Data Exchange (ETDEWEB)

    Lammert, M.; Walkowicz, K.

    2012-09-01

    A parallel hybrid-electric diesel delivery van propulsion system was evaluated at a UPS facility in Minneapolis using on-vehicle data logging, fueling, and maintenance records. Route and drive cycle analysis showed different duty cycles for hybrid vs. conventional delivery vans; routes were switched between the study groups to provide a valid comparison. The hybrids demonstrated greater advantage on the more urban routes; the initial conventional vans' routes had less dense delivery zones. The fuel economy of the hybrids on the original conventional group?s routes was 10.4 mpg vs. 9.2 mpg for the conventional group on those routes a year earlier. The hybrid group's fuel economy on the original hybrid route assignments was 9.4 mpg vs. 7.9 mpg for the conventional group on those routes a year later. There was no statistically significant difference in total maintenance cost per mile or for the vehicle total cost of operation per mile. Propulsion-related maintenance cost per mile was 77% higher for the hybrids, but only 52% more on a cost-per-delivery-day basis. Laboratory dynamometer testing demonstrated 13%-36% hybrid fuel economy improvement, depending on duty cycle, and up to a 45% improvement in ton-mi/gal. NOx emissions increased 21%-49% for the hybrids in laboratory testing.

  18. The jet 10-MW lower hybrid current drive system

    International Nuclear Information System (INIS)

    Gormezano, C.; Bosia, G.; Brinkschulte, H.; David, C.; Dobbing, J.A.; Kaye, A.S.; Jacquinot, J.; Lloyd, B.; Knowlton, S.; Moreau, D.

    1987-01-01

    A Lower Hybrid system to control the plasma current profile is being prepared so that a higher central electron temperature can be obtained. The proposed system is designed to launch 10 MW of power at f = 3.7 GHz through a single port in JET, producing between 1 and 2 MA of RF driven current at an average density of 5 x 10 19 m -3 . Current drive efficiency is maximized by using a low value of the parallel wave number spectrum (N// - 1.3 - 2.3). The final launcher will be made of 48 multijunctions fed by 24 klystrons with the proper phasing. Dynamic matching of the launcher will be optimized by moving the launcher in real time during the pulse. A first stage (2 MW) is presently under construction. The full system is being designed to be in operation in 1990

  19. Hybrid disposal systems and nitrogen removal in individual sewage disposal systems

    Energy Technology Data Exchange (ETDEWEB)

    Franks, A.L.

    1993-06-01

    The use of individual disposal systems in ground-water basins that have adverse salt balance conditions and/or geologically unsuitable locations, has become a major problem in many areas of the world. There has been much research in design of systems for disposal of domestic sewage. This research includes both hybrid systems for disposal of domestic sewage. This research includes both hybrid systems for disposal of the treated waste in areas with adverse geologic conditions and systems for the removal of nitrogen and phosphorus prior to percolation to the ground water. This paper outlines the history of development and rationale for design and construction of individual sewage disposal systems and describes the designs and limitations of the hybrid and denitrification units. The disposal systems described include Mounds, Evapotranspiration and Evapotranspiration/Infiltration systems. The denitrification units include those using methanol, sulfur and limestone, gray water and secondary treated wastewater for energy sources.

  20. Hybrid Intrusion Detection System for DDoS Attacks

    Directory of Open Access Journals (Sweden)

    Özge Cepheli

    2016-01-01

    Full Text Available Distributed denial-of-service (DDoS attacks are one of the major threats and possibly the hardest security problem for today’s Internet. In this paper we propose a hybrid detection system, referred to as hybrid intrusion detection system (H-IDS, for detection of DDoS attacks. Our proposed detection system makes use of both anomaly-based and signature-based detection methods separately but in an integrated fashion and combines the outcomes of both detectors to enhance the overall detection accuracy. We apply two distinct datasets to our proposed system in order to test the detection performance of H-IDS and conclude that the proposed hybrid system gives better results than the systems based on nonhybrid detection.

  1. A reconfigurable hybrid supervisory system for process control

    International Nuclear Information System (INIS)

    Garcia, H.E.; Ray, A.; Edwards, R.M.

    1994-01-01

    This paper presents a reconfigurable approach to decision and control systems for complex dynamic processes. The proposed supervisory control system is a reconfigurable hybrid architecture structured into three functional levels of hierarchy, namely, execution, supervision, and coordination. While the bottom execution level is constituted by either reconfigurable continuously varying or discrete event systems, the top two levels are necessarily governed by reconfigurable sets of discrete event decision and control systems. Based on the process status, the set of active control and supervisory algorithm is chosen. The reconfigurable hybrid system is briefly described along with a discussion on its implementation at the Experimental Breeder Reactor II of Argonne National Laboratory. A process control application of this hybrid system is presented and evaluated in an in-plant experiment

  2. A reconfigurable hybrid supervisory system for process control

    International Nuclear Information System (INIS)

    Garcia, H.E.; Ray, A.; Edwards, R.M.

    1994-01-01

    This paper presents a reconfigurable approach to decision and control systems for complex dynamic processes. The proposed supervisory control system is a reconfigurable hybrid architecture structured into three functional levels of hierarchy, namely, execution, supervision, and coordination. While, the bottom execution level is constituted by either reconfigurable continuously varying or discrete event systems, the top two levels are necessarily governed by reconfigurable sets of discrete event decision and control systems. Based on the process status, the set of active control and supervisory algorithm is chosen. The reconfigurable hybrid system is briefly described along with a discussion on its implementation at the Experimental Breeder Reactor 2 of Argonne National Laboratory. A process control application of this hybrid system is presented and evaluated in an in-plant experiment

  3. Hybrid rocket propulsion systems for outer planet exploration missions

    Science.gov (United States)

    Jens, Elizabeth T.; Cantwell, Brian J.; Hubbard, G. Scott

    2016-11-01

    Outer planet exploration missions require significant propulsive capability, particularly to achieve orbit insertion. Missions to explore the moons of outer planets place even more demanding requirements on propulsion systems, since they involve multiple large ΔV maneuvers. Hybrid rockets present a favorable alternative to conventional propulsion systems for many of these missions. They typically enjoy higher specific impulse than solids, can be throttled, stopped/restarted, and have more flexibility in their packaging configuration. Hybrids are more compact and easier to throttle than liquids and have similar performance levels. In order to investigate the suitability of these propulsion systems for exploration missions, this paper presents novel hybrid motor designs for two interplanetary missions. Hybrid propulsion systems for missions to Europa and Uranus are presented and compared to conventional in-space propulsion systems. The hybrid motor design for each of these missions is optimized across a range of parameters, including propellant selection, O/F ratio, nozzle area ratio, and chamber pressure. Details of the design process are described in order to provide guidance for researchers wishing to evaluate hybrid rocket motor designs for other missions and applications.

  4. Battery control system for hybrid vehicle and method for controlling a hybrid vehicle battery

    Science.gov (United States)

    Bockelmann, Thomas R [Battle Creek, MI; Hope, Mark E [Marshall, MI; Zou, Zhanjiang [Battle Creek, MI; Kang, Xiaosong [Battle Creek, MI

    2009-02-10

    A battery control system for hybrid vehicle includes a hybrid powertrain battery, a vehicle accessory battery, and a prime mover driven generator adapted to charge the vehicle accessory battery. A detecting arrangement is configured to monitor the vehicle accessory battery's state of charge. A controller is configured to activate the prime mover to drive the generator and recharge the vehicle accessory battery in response to the vehicle accessory battery's state of charge falling below a first predetermined level, or transfer electrical power from the hybrid powertrain battery to the vehicle accessory battery in response to the vehicle accessory battery's state of charge falling below a second predetermined level. The invention further includes a method for controlling a hybrid vehicle powertrain system.

  5. IMPULSE CONTROL HYBRID ELECTRICAL SYSTEM

    Directory of Open Access Journals (Sweden)

    A. A. Lobaty

    2016-01-01

    Full Text Available This paper extends the recently introduced approach for modeling and solving the optimal control problem of fixedswitched mode DC-DC power converter. DCDC converters are a class of electric power circuits that used extensively in regulated DC power supplies, DC motor drives of different types, in Photovoltaic Station energy conversion and other applications due to its advantageous features in terms of size, weight and reliable performance. The main problem in controlling this type converters is in their hybrid nature as the switched circuit topology entails different modes of operation, each of it with its own associated linear continuous-time dynamics.This paper analyses the modeling and controller synthesis of the fixed-frequency buck DC-DC converter, in which the transistor switch is operated by a pulse sequence with constant frequency. In this case the regulation of the DC component of the output voltage is via the duty cycle. The optimization of the control system is based on the formation of the control signal at the output.It is proposed to solve the problem of optimal control of a hybrid system based on the formation of the control signal at the output of the controller, which minimizes a given functional integral quality, which is regarded as a linear quadratic Letov-Kalman functional. Search method of optimal control depends on the type of mathematical model of control object. In this case, we consider a linear deterministic model of the control system, which is common for the majority of hybrid electrical systems. For this formulation of the optimal control problem of search is a problem of analytical design of optimal controller, which has the analytical solution.As an example of the hybrid system is considered a step-down switching DC-DC converter, which is widely used in various electrical systems: as an uninterruptible power supply, battery charger for electric vehicles, the inverter in solar photovoltaic power plants.. A

  6. Performance analysis of a photovoltaic-thermochemical hybrid system prototype

    International Nuclear Information System (INIS)

    Li, Wenjia; Ling, Yunyi; Liu, Xiangxin; Hao, Yong

    2017-01-01

    Highlights: •A modular photovoltaic-thermochemical hybrid system prototype is proposed. •Net solar-electric efficiency up to 41% is achievable. •Stable solar power supply is achievable via convenient energy storage. •The modular design facilitates the scalability of the hybrid system. -- Abstract: A solar photovoltaic (PV) thermochemical hybrid system consisting of a point-focus Fresnel concentrator, a PV cell and a methanol thermochemical reactor is proposed. In particular, a reactor capable of operating under high solar concentration is designed, manufactured and tested. Studies on both kinetic and thermodynamic characteristics of the reactor and the system are performed. Analysis of numerical and experimental results shows that with cascaded solar energy utilization and synergy among different forms of energy, the hybrid system has the advantages of high net solar-electric efficiency (up to 41%), stable solar energy power supply, solar energy storage (via syngas) and flexibility in application scale. The hybrid system proposed in this work provides a potential solution to some key challenges of current solar energy utilization technologies.

  7. Model Reduction of Hybrid Systems

    DEFF Research Database (Denmark)

    Shaker, Hamid Reza

    gramians. Generalized gramians are the solutions to the observability and controllability Lyapunov inequalities. In the first framework the projection matrices are found based on the common generalized gramians. This framework preserves the stability of the original switched system for all switching...... is guaranteed to be preserved for arbitrary switching signal. To compute the common generalized gramians linear matrix inequalities (LMI’s) need to be solved. These LMI’s are not always feasible. In order to solve the problem of conservatism, the second framework is presented. In this method the projection......High-Technological solutions of today are characterized by complex dynamical models. A lot of these models have inherent hybrid/switching structure. Hybrid/switched systems are powerful models for distributed embedded systems design where discrete controls are applied to continuous processes...

  8. The under-critical reactors physics for the hybrid systems; La physique des reacteurs sous-critiques des systemes hybrides

    Energy Technology Data Exchange (ETDEWEB)

    Schapira, J P [Institut de Physique Nucleaire, IN2P3/CNRS 91 - Orsay (France); Vergnes, J [Electricite de France, EDF, Direction des Etudes et Recherches, 75 - Paris (France); Zaetta, A [CEA/Saclay, Direction des Reacteurs Nucleaires, DRN, 91 - Gif-sur-Yvette (France); and others

    1998-03-12

    This day, organized by the SFEN, took place at Paris the 12 march 1998. Nine papers were presented. They take stock on the hybrid systems and more specifically the under-critical reactors. One of the major current preoccupation of nuclear industry is the problems of the increase of radioactive wastes produced in the plants and the destruction of the present stocks. To solve these problems a solution is the utilisation of hybrid systems: the coupling of a particle acceleration to an under-critical reactor. Historical aspects, advantages and performances of such hybrid reactors are presented in general papers. More technical papers are devoted to the spallation, the MUSE and the TARC experiments. (A.L.B.)

  9. HyLTL: a temporal logic for model checking hybrid systems

    Directory of Open Access Journals (Sweden)

    Davide Bresolin

    2013-08-01

    Full Text Available The model-checking problem for hybrid systems is a well known challenge in the scientific community. Most of the existing approaches and tools are limited to safety properties only, or operates by transforming the hybrid system to be verified into a discrete one, thus loosing information on the continuous dynamics of the system. In this paper we present a logic for specifying complex properties of hybrid systems called HyLTL, and we show how it is possible to solve the model checking problem by translating the formula into an equivalent hybrid automaton. In this way the problem is reduced to a reachability problem on hybrid automata that can be solved by using existing tools.

  10. Comprehensive Benefit Evaluation of the Wind-PV-ES and Transmission Hybrid Power System Consideration of System Functionality and Proportionality

    Directory of Open Access Journals (Sweden)

    Huizheng Ji

    2017-01-01

    Full Text Available In the background of decreasing fossil fuels and increasing environmental pollution, the wind-photovoltaic energy storage and transmission hybrid power system (or called the wind-PV-ES and transmission hybrid system has become a strategic choice to achieve energy sustainability. However, the comprehensive benefit evaluation of such a combined power system is in a relatively blank state in China, which will hinder the reasonable and orderly development of this station. Four parts, the technical performance, economic benefit, ecological impact and social benefit, are considered in this paper, and a multi-angle evaluation index system of the wind-PV-ES and transmission system is designed. The projection pursuit model is used to evaluated system functionality conventionally; relative entropy theory is used to evaluate the system functionality simultaneously; and a comprehensive benefit evaluation model of the technique for order preference by similar to ideal solution (TOPSIS considering both system functionality and proportionality is constructed. Finally, the national demonstration station of the wind-PV-ES-transmission system is taken as an example to testify to the practicability and validity of the evaluation index system and model.

  11. Hybrid quantum systems of ions and atoms

    OpenAIRE

    Sias, Carlo; Köhl, Michael

    2014-01-01

    In this chapter we review the progress in experiments with hybrid systems of trapped ions and ultracold neutral atoms. We give a theoretical overview over the atom-ion interactions in the cold regime and give a summary of the most important experimental results. We conclude with an overview of remaining open challenges and possible applications in hybrid quantum systems of ions and neutral atoms.

  12. Simulation of hybrid renewable microgeneration systems for variable electricity prices

    International Nuclear Information System (INIS)

    Brandoni, C.; Renzi, M.; Caresana, F.; Polonara, F.

    2014-01-01

    This paper addresses a hybrid renewable system that consists of a micro-Combined Cooling Heat and Power (CCHP) unit and a solar energy conversion device. In addition to a traditional PV system, a High Concentrator Photovoltaic (HCPV) device, the design of which is suitable for building integration application, was also modelled and embedded in the hybrid system. The work identifies the optimal management strategies for the hybrid renewable system in an effort to minimise the primary energy usage, the carbon dioxide emissions and the operational costs for variable electricity prices that result from the day-ahead electricity market. An “ad hoc” model describes the performance of the HCPV module, PV and Internal Combustion Engine, whilst the other units were simulated based on their main characteristic parameters. The developed algorithm was applied to three different building typologies. The results indicate that the best configuration is the hybrid renewable system with PV, which can provide a yearly primary energy reduction of between 20% and 30% compared to separate production. The hybrid renewable system with HCPV becomes competitive with the PV technology when the level of solar radiation is high. - Highlights: • The paper addresses a hybrid renewable system that consists of a micro-CCHP unit and a solar energy conversion device. • Both PV and High Concentrator Photovoltaic (HCPV) systems have been modelled and embedded in the hybrid system. • The work identifies the optimal management strategies for variable electricity prices. • Hybrid renewable systems provide a yearly primary energy reduction of between 20% and 30% compared to separate production. • When the level of solar radiation is high, HCPV becomes competitive with the PV technology

  13. Study of potential of nuclear waste transmutation and safety characteristics of an hybrid system: sub critical accelerator reactor; Etude du potentiel de transmutation et des caracteristiques de surete d`un systeme hybride: accelerateur reacteur sous critique

    Energy Technology Data Exchange (ETDEWEB)

    Tchistiakov, A

    1998-04-01

    The study of potential of nuclear waste transmutation for the new reactor systems - hybrid reactors - was the object of this work. Global review of different projects is presented. The basic physical parameters definitions, as neutron surplus and relative importance of external source neutrons, are introduced and explained. For these parameters, numerical values are obtained. The advantage in neutron surplus of fast system is noted. Equilibrium model and corresponding toxicities of different isotopes nd nuclear cycles are presented. Numerical analysis for equilibrium model converge validation are performed also. The study of neutron consumption by `transmutable` Long-Lived Fission Products (Tc, I and Cs) show the possibility of their incineration in dedicated fast hybrid reactors. Equilibrium model shown the influence of reprocessing losses level to cycle toxicity level. Relations between specific fuel inventories (mass normalised by power unit) for thermal and fast spectra are examined. The differences are relatively small. Finally, few hybrid reactor concepts with different objects were analysed. These studies confirm that in frameworks of certain Nuclear Energy scenarios the fast hybrid systems can reduce significantly the radio-toxicity of fuel cycle. Preliminary analyses of sub-critical reactor behaviour show big potential of this reactor type in `Transient of Power` kind of accident, even if more detailed study is necessary. (author)

  14. Formal Description of Hybrid Systems

    DEFF Research Database (Denmark)

    Zhou, Chaochen; Ji, Wang; Ravn, Anders P.

    1996-01-01

    A language to describe hybrid systems, i.e. networks of communicating discrete and continuous processes, is proposed. A semantics of the language is given in Extended Duration Calculus, a real-time interval logic with a proof system that allows reasoning in mathematical analysis about continuous ...

  15. Multiuser hybrid switched-selection diversity systems

    KAUST Repository

    Shaqfeh, Mohammad

    2011-09-01

    A new multiuser scheduling scheme is proposed and analyzed in this paper. The proposed system combines features of conventional full-feedback selection-based diversity systems and reduced-feedback switch-based diversity systems. The new hybrid system provides flexibility in trading-off the channel information feedback overhead with the prospected multiuser diversity gains. The users are clustered into groups, and the users\\' groups are ordered into a sequence. Per-group feedback thresholds are used and optimized to maximize the system overall achievable rate. The proposed hybrid system applies switched diversity criterion to choose one of the groups, and a selection criterion to decide the user to be scheduled from the chosen group. Numerical results demonstrate that the system capacity increases as the number of users per group increases, but at the cost of more required feedback messages. © 2011 IEEE.

  16. Model predictive control of hybrid systems : stability and robustness

    NARCIS (Netherlands)

    Lazar, M.

    2006-01-01

    This thesis considers the stabilization and the robust stabilization of certain classes of hybrid systems using model predictive control. Hybrid systems represent a broad class of dynamical systems in which discrete behavior (usually described by a finite state machine) and continuous behavior

  17. Probabilistic modelling and analysis of stand-alone hybrid power systems

    International Nuclear Information System (INIS)

    Lujano-Rojas, Juan M.; Dufo-López, Rodolfo; Bernal-Agustín, José L.

    2013-01-01

    As a part of the Hybrid Intelligent Algorithm, a model based on an ANN (artificial neural network) has been proposed in this paper to represent hybrid system behaviour considering the uncertainty related to wind speed and solar radiation, battery bank lifetime, and fuel prices. The Hybrid Intelligent Algorithm suggests a combination of probabilistic analysis based on a Monte Carlo simulation approach and artificial neural network training embedded in a genetic algorithm optimisation model. The installation of a typical hybrid system was analysed. Probabilistic analysis was used to generate an input–output dataset of 519 samples that was later used to train the ANNs to reduce the computational effort required. The generalisation ability of the ANNs was measured in terms of RMSE (Root Mean Square Error), MBE (Mean Bias Error), MAE (Mean Absolute Error), and R-squared estimators using another data group of 200 samples. The results obtained from the estimation of the expected energy not supplied, the probability of a determined reliability level, and the estimation of expected value of net present cost show that the presented model is able to represent the main characteristics of a typical hybrid power system under uncertain operating conditions. - Highlights: • This paper presents a probabilistic model for stand-alone hybrid power system. • The model considers the main sources of uncertainty related to renewable resources. • The Hybrid Intelligent Algorithm has been applied to represent hybrid system behaviour. • The installation of a typical hybrid system was analysed. • The results obtained from the study case validate the presented model

  18. Bond graph model-based fault diagnosis of hybrid systems

    CERN Document Server

    Borutzky, Wolfgang

    2015-01-01

    This book presents a bond graph model-based approach to fault diagnosis in mechatronic systems appropriately represented by a hybrid model. The book begins by giving a survey of the fundamentals of fault diagnosis and failure prognosis, then recalls state-of-art developments referring to latest publications, and goes on to discuss various bond graph representations of hybrid system models, equations formulation for switched systems, and simulation of their dynamic behavior. The structured text: • focuses on bond graph model-based fault detection and isolation in hybrid systems; • addresses isolation of multiple parametric faults in hybrid systems; • considers system mode identification; • provides a number of elaborated case studies that consider fault scenarios for switched power electronic systems commonly used in a variety of applications; and • indicates that bond graph modelling can also be used for failure prognosis. In order to facilitate the understanding of fault diagnosis and the presented...

  19. Analysis of Synchronization for Coupled Hybrid Systems

    DEFF Research Database (Denmark)

    Li, Zheng; Wisniewski, Rafal

    2006-01-01

    In the control systems with coupled multi-subsystem, the subsystems might be synchronized (i.e. all the subsystems have the same operation states), which results in negative influence to the whole system. For example, in the supermarket refrigeration systems, the synchronized switch of each...... subsystem will cause low efficiency, inferior control performance and a high wear on the compressor. This paper takes the supermarket refrigeration systems as an example to analyze the synchronization and its coupling strengths of coupled hybrid systems, which may provide a base for further research...... of control strategies. This paper combines topology and section mapping theories together to show a new way of analyzing hybrid systems...

  20. A hybrid solar chemical looping combustion system with a high solar share

    International Nuclear Information System (INIS)

    Jafarian, Mehdi; Arjomandi, Maziar; Nathan, Graham J.

    2014-01-01

    Highlights: • A novel hybrid solar chemical looping combustion system is presented. • This hybrid CLC system integrates a CLC plant with a solar thermal energy plant. • The oxygen carrier particles are used for chemical and sensible thermal energy storage. • A solar cavity reactor is proposed for fuel reactor. • The calculations show a total solar share of around 60% can be achieved. - Abstract: A novel hybrid solar chemical looping combustion (Hy-Sol-CLC) is presented, in which the oxygen carrier particles in a CLC system are employed to provide thermal energy storage for concentrated solar thermal energy. This hybrid aims to take advantage of key features of a chemical looping combustion (CLC) system that are desirable for solar energy systems, notably their inherent chemical and sensible energy storage systems, the relatively low temperature of the “fuel” reactor (to which the concentrated solar thermal energy is added in a hybrid) relative to that of the final temperature of the product gas and the potential to operate the fuel reactor at a different pressure to the heated gas stream. By this approach, it is aimed to achieve high efficiency of the solar energy, infrastructure sharing, economic synergy, base load power generation and a high solar fraction of the total energy. In the proposed Hy-Sol-CLC system, a cavity solar receiver has been chosen for fuel reactor while for the storage of the oxygen carrier particles two reservoirs have been added to a conventional CLC. A heat exchanger is also proposed to provide independent control of the temperatures of the storage reservoirs from those of solar fuel and air reactors. The system is simulated using Aspen Plus software for the average diurnal profile of normal irradiance for Port Augusta, South Australia. The operating temperature of the fuel reactor, solar absorption efficiency, solar share, fraction of the solar thermal energy stored within the solar reactor, the fractions of sensible and

  1. Direct hydrogen fuel cell systems for hybrid vehicles

    Science.gov (United States)

    Ahluwalia, Rajesh K.; Wang, X.

    Hybridizing a fuel cell system with an energy storage system offers an opportunity to improve the fuel economy of the vehicle through regenerative braking and possibly to increase the specific power and decrease the cost of the combined energy conversion and storage systems. Even in a hybrid configuration it is advantageous to operate the fuel cell system in a load-following mode and use the power from the energy storage system when the fuel cell alone cannot meet the power demand. This paper discusses an approach for designing load-following fuel cell systems for hybrid vehicles and illustrates it by applying it to pressurized, direct hydrogen, polymer-electrolyte fuel cell (PEFC) systems for a mid-size family sedan. The vehicle level requirements relative to traction power, response time, start-up time and energy conversion efficiency are used to select the important parameters for the PEFC stack, air management system, heat rejection system and the water management system.

  2. CHAOS THEORY, GLOBAL SYSTEMIC CHANGE, AND HYBRID WARS

    Directory of Open Access Journals (Sweden)

    A. Korybko

    2016-01-01

    Full Text Available The global system is being rocked by the dueling ambitions of two competing blocs, with the US and its allies fighting to reinforce their unipolar system while Russia and its partners struggle to forge a multipolar future. The rapidity and scope with which events are unfolding makes it overwhelming for the casual observer to make sense of all of the complex processes currently at play, and truth be told, it’s understandable that all of this can appear confusing. In an attempt to clarify the present state of global affairs and forecast the direction that it’s all headed in, the article begins by explaining the nature of chaos theory and describing how it’s applicable to conceptualizing contemporary international relations. Afterwards, the idea of “chaos sequencing” is proposed, which in essence is a model that can be used in understanding the process of chaotic change. Following that, the article addresses the topic of global systemic change and includes the most relevant examples for how this relates to the present day. Next, the research combines these two aforementioned elements (chaos theory and global systemic change and presents a forward-looking geopolitical analysis that incorporates cutting-edge Hybrid War theory and aims to put the New Cold War into its proper perspective. Finally, the article ends on a suggestive note in encouraging analysts to study the authors’ conceptualization of Hybrid War in order to better prepare themselves for understanding and responding to forthcoming international events.

  3. Original Framework for Optimizing Hybrid Energy Supply

    Directory of Open Access Journals (Sweden)

    Amevi Acakpovi

    2016-01-01

    Full Text Available This paper proposes an original framework for optimizing hybrid energy systems. The recent growth of hybrid energy systems in remote areas across the world added to the increasing cost of renewable energy has triggered the inevitable development of hybrid energy systems. Hybrid energy systems always pose a problem of optimization of cost which has been approached with different perspectives in the recent past. This paper proposes a framework to guide the techniques of optimizing hybrid energy systems in general. The proposed framework comprises four stages including identification of input variables for energy generation, establishment of models of energy generation by individual sources, development of artificial intelligence, and finally summation of selected sources. A case study of a solar, wind, and hydro hybrid system was undertaken with a linear programming approach. Substantial results were obtained with regard to how load requests were constantly satisfied while minimizing the cost of electricity. The developed framework gained its originality from the fact that it has included models of individual sources of energy that even make the optimization problem more complex. This paper also has impacts on the development of policies which will encourage the integration and development of renewable energies.

  4. Final Report. Novel Behavior of Ferromagnet/Superconductor Hybrid Systems

    International Nuclear Information System (INIS)

    Birge, Norman

    2016-01-01

    Final report for grant DE-FG02-06ER46341. This work has produced a most convincing experimental demonstration that spin-triplet supercurrent can appear in Josephson junctions containing ferromagnetic materials, even when the superconducting electrodes are conventional, spin-singlet superconductors.

  5. Final Report. Novel Behavior of Ferromagnet/Superconductor Hybrid Systems

    Energy Technology Data Exchange (ETDEWEB)

    Birge, Norman [Michigan State Univ., East Lansing, MI (United States)

    2016-09-26

    Final report for grant DE-FG02-06ER46341. This work has produced a most convincing experimental demonstration that spin-triplet supercurrent can appear in Josephson junctions containing ferromagnetic materials, even when the superconducting electrodes are conventional, spin-singlet superconductors.

  6. Hydrogen atom as a quantum-classical hybrid system

    International Nuclear Information System (INIS)

    Zhan, Fei; Wu, Biao

    2013-01-01

    Hydrogen atom is studied as a quantum-classical hybrid system, where the proton is treated as a classical object while the electron is regarded as a quantum object. We use a well known mean-field approach to describe this hybrid hydrogen atom; the resulting dynamics for the electron and the proton is compared to their full quantum dynamics. The electron dynamics in the hybrid description is found to be only marginally different from its full quantum counterpart. The situation is very different for the proton: in the hybrid description, the proton behaves like a free particle; in the fully quantum description, the wave packet center of the proton orbits around the center of mass. Furthermore, we find that the failure to describe the proton dynamics properly can be regarded as a manifestation of the fact that there is no conservation of momentum in the mean-field hybrid approach. We expect that such a failure is a common feature for all existing approaches for quantum-classical hybrid systems of Born-Oppenheimer type.

  7. DIAGNOSIS WINDOWS PROBLEMS BASED ON HYBRID INTELLIGENCE SYSTEMS

    Directory of Open Access Journals (Sweden)

    SAFWAN O. HASOON

    2013-10-01

    Full Text Available This paper describes the artificial intelligence technologies by integrating Radial Basis Function networks with expert systems to construct a robust hybrid system. The purpose of building the hybrid system is to give recommendations to repair the operating system (Windows problems and troubleshoot the problems that can be repaired. The neural network has unique characteristics which it can complete the uncompleted data, the expert system can't deal with data that is incomplete, but using the neural network individually has some disadvantages which it can't give explanations and recommendations to the problems. The expert system has the ability to explain and give recommendations by using the rules and the human expert in some conditions. Therefore, we have combined the two technologies. The paper will explain the integration methods between the two technologies and which method is suitable to be used in the proposed hybrid system.

  8. A Game-Theoretic approach to Fault Diagnosis of Hybrid Systems

    Directory of Open Access Journals (Sweden)

    Davide Bresolin

    2011-06-01

    Full Text Available Physical systems can fail. For this reason the problem of identifying and reacting to faults has received a large attention in the control and computer science communities. In this paper we study the fault diagnosis problem for hybrid systems from a game-theoretical point of view. A hybrid system is a system mixing continuous and discrete behaviours that cannot be faithfully modeled neither by using a formalism with continuous dynamics only nor by a formalism including only discrete dynamics. We use the well known framework of hybrid automata for modeling hybrid systems, and we define a Fault Diagnosis Game on them, using two players: the environment and the diagnoser. The environment controls the evolution of the system and chooses whether and when a fault occurs. The diagnoser observes the external behaviour of the system and announces whether a fault has occurred or not. Existence of a winning strategy for the diagnoser implies that faults can be detected correctly, while computing such a winning strategy corresponds to implement a diagnoser for the system. We will show how to determine the existence of a winning strategy, and how to compute it, for some decidable classes of hybrid automata like o-minimal hybrid automata.

  9. Nuclear Hybrid Energy Systems FY16 Modeling Efforts at ORNL

    Energy Technology Data Exchange (ETDEWEB)

    Cetiner, Sacit M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Greenwood, Michael Scott [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Harrison, Thomas J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Qualls, A. L. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Guler Yigitoglu, Askin [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Fugate, David W. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2016-09-01

    A nuclear hybrid system uses a nuclear reactor as the basic power generation unit. The power generated by the nuclear reactor is utilized by one or more power customers as either thermal power, electrical power, or both. In general, a nuclear hybrid system will couple the nuclear reactor to at least one thermal power user in addition to the power conversion system. The definition and architecture of a particular nuclear hybrid system is flexible depending on local markets needs and opportunities. For example, locations in need of potable water may be best served by coupling a desalination plant to the nuclear system. Similarly, an area near oil refineries may have a need for emission-free hydrogen production. A nuclear hybrid system expands the nuclear power plant from its more familiar central power station role by diversifying its immediately and directly connected customer base. The definition, design, analysis, and optimization work currently performed with respect to the nuclear hybrid systems represents the work of three national laboratories. Idaho National Laboratory (INL) is the lead lab working with Argonne National Laboratory (ANL) and Oak Ridge National Laboratory. Each laboratory is providing modeling and simulation expertise for the integration of the hybrid system.

  10. Characterization of Hybrid Systems for Rural Electrification with Renewable Energies Using Geographic Information Systems (GIS)

    Energy Technology Data Exchange (ETDEWEB)

    Borda Angel, J. P.; Dominguez, J.; Amador, J.; Arribas, L.; Pinedo Pascua, I.

    2011-07-01

    The objective of this project is to redefine the algorithm of wind-diesel hybrid system implemented in IntiGIS. This methodology was developed by CIEMAT for the evaluation of rural electrification projects, comparing different renewable and conventional technologies based on their LEC or equivalent electrification cost. The analysis considers the social and geographical particularities of the study area. The core of the new model is the definition of renewable fraction in the wind-diesel hybrid system. To this end, it was assumed that the fraction of renewable will depend, first of all, of the wind speed. In this case, the objectives were to find a relationship between the renewable fraction and wind speed, expressed as a function, and also trying to demonstrate the influence of other parameters such as fuel price and consumption. The methodology used to achieve these objectives was to use HOMER to simulate technology and size of system components in order to obtain the optimal fraction renewable scenarios. Next, we examined how it varied with wind speed; we assessed the influence of other parameters and, finally, it is represented as a function of wind speed. After the redefinition of the algorithm, the changes were planned for inclusion in IntiGIS and tests were performed to validate the new model. (Author)

  11. Evaluation of a Compact Hybrid Brain-Computer Interface System

    Directory of Open Access Journals (Sweden)

    Jaeyoung Shin

    2017-01-01

    Full Text Available We realized a compact hybrid brain-computer interface (BCI system by integrating a portable near-infrared spectroscopy (NIRS device with an economical electroencephalography (EEG system. The NIRS array was located on the subjects’ forehead, covering the prefrontal area. The EEG electrodes were distributed over the frontal, motor/temporal, and parietal areas. The experimental paradigm involved a Stroop word-picture matching test in combination with mental arithmetic (MA and baseline (BL tasks, in which the subjects were asked to perform either MA or BL in response to congruent or incongruent conditions, respectively. We compared the classification accuracies of each of the modalities (NIRS or EEG with that of the hybrid system. We showed that the hybrid system outperforms the unimodal EEG and NIRS systems by 6.2% and 2.5%, respectively. Since the proposed hybrid system is based on portable platforms, it is not confined to a laboratory environment and has the potential to be used in real-life situations, such as in neurorehabilitation.

  12. Hybrid Chaos Synchronization of Four-Scroll Systems via Active Control

    Science.gov (United States)

    Karthikeyan, Rajagopal; Sundarapandian, Vaidyanathan

    2014-03-01

    This paper investigates the hybrid chaos synchronization of identical Wang four-scroll systems (Wang, 2009), identical Liu-Chen four-scroll systems (Liu and Chen, 2004) and non-identical Wang and Liu-Chen four-scroll systems. Active control method is the method adopted to achieve the hybrid chaos synchronization of the four-scroll chaotic systems addressed in this paper and our synchronization results are established using Lyapunov stability theory. Since the Lyapunov exponents are not required for these calculations, the active control method is effective and convenient to hybrid synchronize identical and different Wang and Liu-Chen four-scroll chaotic systems. Numerical simulations are also shown to illustrate and validate the hybrid synchronization results derived in this paper.

  13. Applying the Taguchi Method for Investigating the Phase-Locked Loop Dynamics Affected by Hybrid Storage System Parameters

    Directory of Open Access Journals (Sweden)

    Mostafa Ahmadzadeh

    2018-01-01

    Full Text Available Storage systems play an important role in performance of micro-grids. Storage systems may decrease fluctuations caused by periodic and unpredictable nature of distributed generation resource. Some micro-grids are connected to the network via a grid-interface converter. The phase-locked loop (PLL is a commonly technique for the grid synchronization of network-connected converters. Various parameters affect the stability of PLL (including the network-side and microgrid-side parameters. The effect of the micro-grid-side parameters on the stability of the PLL has not been studied so far. In this paper, the stability of PLL influenced by microgrid-side parameters has been evaluated after a detailed analytical modeling of micro-grid components (including the production power fluctuations, energy storage system, microgrid-side loads, controller parameters etc.. This paper proposes two new stability analysis criteria for PLL affected by micro-grid and hybrid storage system parameters. Using proposed criteria for stability of PLL, optimized rate of micro-grid and hybrid storage system parameters are obtained using statistical methods (Taguchi approach. Finally, behavior of PLL affected by hybrid storage system is investigated. The simulation results and eigenvalues analysis confirm the theoretical analysis and proposed criteria.

  14. Review of the Optimal Design on a Hybrid Renewable Energy System

    Directory of Open Access Journals (Sweden)

    Wu Yuan-Kang

    2016-01-01

    Full Text Available Hybrid renewable energy systems, combining various kinds of technologies, have shown relatively high capabilities to solve reliability problems and have reduced cost challenges. The use of hybrid electricity generation/storage technologies is reasonable to overcome related shortcomings. While the hybrid renewable energy system is attractive, its design, specifically the determination of the size of PV, wind, and diesel power generators and the size of energy storage system in each power station, is very challenging. Therefore, this paper will focus on the system planning and operation of hybrid generation systems, and several corresponding topics and papers by using intelligent computing methods will be reviewed. They include typical case studies, modeling and system simulation, control and management, reliability and economic studies, and optimal design on a reliable hybrid generation system.

  15. Feasibility Study and Optimization of An Hybrid System (Eolian ...

    African Journals Online (AJOL)

    Feasibility Study and Optimization of An Hybrid System (Eolian- Photovoltaic - Diesel) With Provision of Electric Energy Completely Independent. ... reducing emissions of greenhouse gas (CO2 rate = 16086 kg / year for a system using only the generator diesel and is 599 kg / year for the stand alone hybrid system studied).

  16. Study of a SOFC-PEM hybrid system

    International Nuclear Information System (INIS)

    Fillman, B.; Bjornbom, P.; Sylwan, C.

    2004-01-01

    'Full text:' In the present project a system study of a SOFC-PEM hybrid system is in progress. Positive synergy effects are expected when combining a SOFC system with a PEM system. By combining the advantages of each fuel cell type it is promising that the hybrid system has higher overall efficiency than a SOFC-only system or a reformer-PEM system. A SOFC stack produces electricity and a reformate gas that can be further processed to hydrogen by the shift reaction. The produced hydrogen can be used by PEM stack in order to produce further electricity. In the PEM system case the complex fuel reformer processing could be eliminated. The simulations were performed with the flowsheeting simulation software Aspen Plus. (author)

  17. A Structural Model Decomposition Framework for Hybrid Systems Diagnosis

    Science.gov (United States)

    Daigle, Matthew; Bregon, Anibal; Roychoudhury, Indranil

    2015-01-01

    Nowadays, a large number of practical systems in aerospace and industrial environments are best represented as hybrid systems that consist of discrete modes of behavior, each defined by a set of continuous dynamics. These hybrid dynamics make the on-line fault diagnosis task very challenging. In this work, we present a new modeling and diagnosis framework for hybrid systems. Models are composed from sets of user-defined components using a compositional modeling approach. Submodels for residual generation are then generated for a given mode, and reconfigured efficiently when the mode changes. Efficient reconfiguration is established by exploiting causality information within the hybrid system models. The submodels can then be used for fault diagnosis based on residual generation and analysis. We demonstrate the efficient causality reassignment, submodel reconfiguration, and residual generation for fault diagnosis using an electrical circuit case study.

  18. Renewable Energy Systems: Development and Perspectives of a Hybrid Solar-Wind System

    Directory of Open Access Journals (Sweden)

    C. Shashidhar

    2012-02-01

    Full Text Available Considering the intermittent natural energy resources and the seasonal un-balance, a phtovoltaic-wind hybrid electrical power supply system was developed to accommodate remote locations where a conventional grid connection is inconvenient or expensive. However, the hybrid system can also be applied with grid connection and owners are allowed to sell excessive power back to the electric utility. The proposed set-up consists of a photo-voltaic solar-cell array, a mast mounted wind generator, lead-acid storage batteries, an inverter unit to convert DC to AC, electrical lighting loads, electrical heating loads, several fuse and junction boxes and associated wiring, and test instruments for measuring voltages, currents, power factors, and harmonic contamination data throughout the system. The proposed hybrid solar-wind power generating system can be extensively used to illustrate electrical concepts in hands-on laboratories and also for demonstrations in the Industrial Technology curriculum. This paper describes an analysis of local PV-wind hybrid systems for supplying electricity to a private house, farmhouse or small company with electrical power depending on the site needs. The major system components, work principle and specific working condition are presented.

  19. Specification of real-time automation systems with HybridUML; Spezifikation von Echtzeit-Automatisierungssystemen mit HybridUML

    Energy Technology Data Exchange (ETDEWEB)

    Berkenkoetter, K.; Bisanz, S.; Hannemann, U.; Peleska, J. [Univ. Bremen (Germany)

    2004-07-01

    Complex automation systems require specification formalisms supporting the description of real-time requirements with respect to both discrete and time-continuous observables. For this purpose, the authors have designed the HybridUML specification language. Discrete events, communication, and variable assignments are specified by state machines, timers, and invariant conditions. The time-continuous aspects of system behaviour are described by associating differential equations or time-dependent algebraic conditions with system states. The complexity of large systems is controlled by decomposing the specification into parallel components and hierarchical state machines. Instead of inventing a new language syntax, HybridUML is represented as a profile of the Unified Modeling Language UML 2.0. This allows to re-use the syntactic framework of well-accepted graphical UML constructs and development support provided by various UML case tools. The profile is associated with a precise language semantics linking unambiguous meaning to all HybridUML specifications. As a consequence, HybridUML specifications can be compiled into executable code which is suitable for execution in hard realtime on multi-processor computers. This serves both for the development of automation systems and for specification-based testing in real-time. This paper contains an introduction to HybridUML which is illustrated by an example from the field of automated train control. (orig.)

  20. Hybrid Action Systems

    DEFF Research Database (Denmark)

    Rönnkö, M.; Ravn, Anders Peter; Sere, K.

    2003-01-01

    In this paper we investigate the use of action systems with differential actions in the specifcation of hybrid systems. As the main contribution we generalize the definition of a differential action, allowing the use of arbitrary relations over model variables and their time......-derivatives in modelling continuous-time dynamics. The generalized differential action has an intuitively appealing predicate transformer semantics, which we show to be both conjunctive and monotonic. In addition, we show that differential actions blend smoothly with conventional actions in action systems, even under...... parallel composition. Moreover, as the strength of the action system formalism is the support for stepwise development by refinement, we investigate refinement involving a differential action. We show that, due to the predicate transformer semantics, standard action refinement techniques apply also...

  1. Modelling and Verifying Communication Failure of Hybrid Systems in HCSP

    DEFF Research Database (Denmark)

    Wang, Shuling; Nielson, Flemming; Nielson, Hanne Riis

    2016-01-01

    Hybrid systems are dynamic systems with interacting discrete computation and continuous physical processes. They have become ubiquitous in our daily life, e.g. automotive, aerospace and medical systems, and in particular, many of them are safety-critical. For a safety-critical hybrid system......, in the presence of communication failure, the expected control from the controller will get lost and as a consequence the physical process cannot behave as expected. In this paper, we mainly consider the communication failure caused by the non-engagement of one party in communication action, i.......e. the communication itself fails to occur. To address this issue, this paper proposes a formal framework by extending HCSP, a formal modeling language for hybrid systems, for modeling and verifying hybrid systems in the absence of receiving messages due to communication failure. We present two inference systems...

  2. A hybrid energy efficient building ventilation system

    International Nuclear Information System (INIS)

    Calay, Rajnish Kaur; Wang, Wen Chung

    2013-01-01

    The present paper presents a high performance cooling/heating ventilation system using a rotary heat exchanger (RHE), together with a reverse-cycle heat pump (RCHP) that can be integrated with various heat sources. Energy consumption in the building sector is largely dominated by the energy consumed in maintaining comfortable conditions indoors. For example in many developed countries the building heating, ventilation and air conditioning (HVAC) systems consume up to 50% of the total energy consumed in buildings. Therefore energy efficient HVAC solutions in buildings are critical for realising CO 2 targets at local and global level. There are many heating/cooling concepts that rely upon renewable energy sources and/or use natural low temperature heat sources in the winter and heat sinks in the summer. In the proposed system, waste energy from the exhaust air stream is used to precondition the outdoor air before it is supplied into the building. The hybrid system provides heating in the winter and cooling in the summer without any need for additional heating or cooling devices as required in conventional systems. Its performance is better than a typical reheat or air conditioning system in providing the same indoor air quality (IAQ) levels. It is shown that an energy saving up to 60% (heat energy) is achieved by using the proposed hybrid system in building ventilation applications. -- Highlights: • Hybrid ventilation system: the hybrid ventilation system uses a rotating regenerator and a reversible heat pump. • Heat recovery: heat recovery from exhaust air stream by rotary wheel type heat exchanger. • Reversible cycle heat pump (RCHP): additional heating or cooling of the supply air is provided by the RCHP. • Energy efficiency: energy savings of up to 60% using the proposed system are achievable

  3. Coca-Cola Refreshments Class 8 Diesel Electric Hybrid Tractor Evaluation: 13-Month Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Walkowicz, K.; Lammert, M.; Curran, P.

    2012-08-01

    This 13-month evaluation used five Kenworth T370 hybrid tractors and five Freightliner M2106 standard diesel tractors at a Coca Cola Refreshments facility in Miami, Florida. The primary objective was to evaluate the fuel economy, emissions, and operational field performance of hybrid electric vehicles when compared to similar-use conventional diesel vehicles. A random dispatch system ensures the vehicles are used in a similar manner. GPS logging, fueling, and maintenance records and laboratory dynamometer testing are used to evaluate the performance of these hybrid tractors. Both groups drive similar duty cycles with similar kinetic intensity (0.95 vs. 0.69), average speed (20.6 vs. 24.3 mph), and stops per mile (1.9 vs. 1.5). The study demonstrated the hybrid group had a 13.7% fuel economy improvement over the diesel group. Laboratory fuel economy and field fuel economy study showed similar trends along the range of KI and stops per mile. Hybrid maintenance costs were 51% lower per mile; hybrid fuel costs per mile were 12% less than for the diesels; and hybrid vehicle total cost of operation per mile was 24% less than the cost of operation for the diesel group.

  4. San Juanico Hybrid System Technical and Institutional Assessment: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Corbus, D.; Newcomb, C.; Yewdall, Z.

    2004-07-01

    San Juanico is a fishing village of approximately 120 homes in the Municipality of Comondu, Baja California. In April, 1999, a hybrid power system was installed in San Juanico to provide 24-hour power, which was not previously available. Before the installation of the hybrid power system, a field study was conducted to characterize the electrical usage and institutional and social framework of San Juanico. One year after the installation of the hybrid power system a''post-electrification'' study was performed to document the changes that had occurred after the installation. In December of 2003, NREL visited the site to conduct a technical assessment of the system.

  5. Photovoltaic solar panel for a hybrid PV/thermal system

    Energy Technology Data Exchange (ETDEWEB)

    Zakharchenko, R.; Licea-Jimenez, L.; Perez-Garcia, S.A.; Perez-Robles, J.F.; Gonzalez-Hernandez, J.; Vorobiev, Y. [CINVESTAV-Queretaro, (Mexico); Vorobiev, P. [Universidad Autonoma de Queretaro, (Mexico). Facultad de Ingenieria; Dehesa-Carrasco, U. [Instituto Tec. Del Istmo, Oaxaco (Mexico). Dep. de Ingenieria Electromecanica

    2004-05-01

    The hybrid PV-thermal system was studied, with the photovoltaic panel (PVP) area much smaller than that of the solar collector. Performance of the different panels in the system was investigated, in particular, those made of crystalline (c-) Si, {alpha}-Si and CuInSe{sub 2} as well as different materials and constructions for the thermal contact between the panel and the collector. Our conclusion is that the PVP for application in a hybrid system needs a special design providing efficient heat extraction from it. PVP was designed and made. Its study has shown that this design provides the high electrical and thermal efficiency of the hybrid system. (author)

  6. Disease processes as hybrid dynamical systems

    Directory of Open Access Journals (Sweden)

    Pietro Liò

    2012-08-01

    Full Text Available We investigate the use of hybrid techniques in complex processes of infectious diseases. Since predictive disease models in biomedicine require a multiscale approach for understanding the molecule-cell-tissue-organ-body interactions, heterogeneous methodologies are often employed for describing the different biological scales. Hybrid models provide effective means for complex disease modelling where the action and dosage of a drug or a therapy could be meaningfully investigated: the infection dynamics can be classically described in a continuous fashion, while the scheduling of multiple treatment discretely. We define an algebraic language for specifying general disease processes and multiple treatments, from which a semantics in terms of hybrid dynamical system can be derived. Then, the application of control-theoretic tools is proposed in order to compute the optimal scheduling of multiple therapies. The potentialities of our approach are shown in the case study of the SIR epidemic model and we discuss its applicability on osteomyelitis, a bacterial infection affecting the bone remodelling system in a specific and multiscale manner. We report that formal languages are helpful in giving a general homogeneous formulation for the different scales involved in a multiscale disease process; and that the combination of hybrid modelling and control theory provides solid grounds for computational medicine.

  7. Case for the fusion hybrid

    International Nuclear Information System (INIS)

    Rose, R.P.

    1981-01-01

    The use of nuclear fusion to produce fuel for nuclear fission power stations is discussed in the context of a crucial need for future energy options. The fusion hybrid is first considered as an element in the future of nuclear fission power to provide long term assurance of adequate fuel supplies for both breeder and convertor reactors. Generic differences in neutronic characteristics lead to a fuel production potential of fusion-fission hybrid systems which is significantly greater than that obtainable with fission systems alone. Furthermore, cost benefit studies show a variety of scenarios in which the hybrid offers sufficient potential to justify development costs ranging in the tens of billions of dollars. The hybrid is then considered as an element in the ultimate development of fusion electric power. The hybrid offers a near term application of fusion where experience with the requisite technologies can be derived as a vital step in mapping a credible route to eventual commercial feasibility of pure fusion systems. Finally, the criteria for assessment of future energy options are discussed with prime emphasis on the need for rational comparision of alternatives

  8. Development of hybrid 3-D hydrological modeling for the NCAR Community Earth System Model (CESM)

    Energy Technology Data Exchange (ETDEWEB)

    Zeng, Xubin [Univ. of Arizona, Tucson, AZ (United States); Troch, Peter [Univ. of Arizona, Tucson, AZ (United States); Pelletier, Jon [Univ. of Arizona, Tucson, AZ (United States); Niu, Guo-Yue [Univ. of Arizona, Tucson, AZ (United States); Gochis, David [NCAR Research Applications Lab., Boulder, CO (United States)

    2015-11-15

    This is the Final Report of our four-year (3-year plus one-year no cost extension) collaborative project between the University of Arizona (UA) and the National Center for Atmospheric Research (NCAR). The overall objective of our project is to develop and evaluate the first hybrid 3-D hydrological model with a horizontal grid spacing of 1 km for the NCAR Community Earth System Model (CESM).

  9. Local analysis of hybrid systems on polyhedral sets with state-dependent switching

    Directory of Open Access Journals (Sweden)

    Leth John

    2014-06-01

    Full Text Available This paper deals with stability analysis of hybrid systems. Various stability concepts related to hybrid systems are introduced. The paper advocates a local analysis. It involves the equivalence relation generated by reset maps of a hybrid system. To establish a tangible method for stability analysis, we introduce the notion of a chart, which locally reduces the complexity of the hybrid system. In a chart, a hybrid system is particularly simple and can be analyzed with the use of methods borrowed from the theory of differential inclusions. Thus, the main contribution of this paper is to show how stability of a hybrid system can be reduced to a specialization of the well established stability theory of differential inclusions. A number of examples illustrate the concepts introduced in the paper.

  10. Hybrid Energy System Modeling in Modelica

    Energy Technology Data Exchange (ETDEWEB)

    William R. Binder; Christiaan J. J. Paredis; Humberto E. Garcia

    2014-03-01

    In this paper, a Hybrid Energy System (HES) configuration is modeled in Modelica. Hybrid Energy Systems (HES) have as their defining characteristic the use of one or more energy inputs, combined with the potential for multiple energy outputs. Compared to traditional energy systems, HES provide additional operational flexibility so that high variability in both energy production and consumption levels can be absorbed more effectively. This is particularly important when including renewable energy sources, whose output levels are inherently variable, determined by nature. The specific HES configuration modeled in this paper include two energy inputs: a nuclear plant, and a series of wind turbines. In addition, the system produces two energy outputs: electricity and synthetic fuel. The models are verified through simulations of the individual components, and the system as a whole. The simulations are performed for a range of component sizes, operating conditions, and control schemes.

  11. Advanced hybrid vehicle propulsion system study

    Science.gov (United States)

    Schwarz, R.

    1982-01-01

    Results are presented of a study of an advanced heat engine/electric automotive hybrid propulsion system. The system uses a rotary stratified charge engine and ac motor/controller in a parallel hybrid configuration. The three tasks of the study were (1) parametric studies involving five different vehicle types, (2) design trade-off studies to determine the influence of various vehicle and propulsion system paramaters on system performance fuel economy and cost, and (3) a conceptual design establishing feasibility at the selected approach. Energy consumption for the selected system was .034 1/km (61.3 mpg) for the heat engine and .221 kWh/km (.356 kWh/mi) for the electric power system over a modified J227 a schedule D driving cycle. Life cycle costs were 7.13 cents/km (11.5 cents/mi) at $2/gal gasoline and 7 cents/kWh electricity for 160,000 km (100,000 mi) life.

  12. Hybrid wind–photovoltaic–diesel–battery system sizing tool development using empirical approach, life-cycle cost and performance analysis: A case study in Scotland

    International Nuclear Information System (INIS)

    Gan, Leong Kit; Shek, Jonathan K.H.; Mueller, Markus A.

    2015-01-01

    Highlights: • Methods of sizing a hybrid wind–photovoltaic–diesel–battery system is described. • The hybrid system components are modelled using empirical data. • Twenty years lifecycle cost of the hybrid system is considered. • The trade-offs between battery storage capacity and diesel fuel usage is studied. • A hybrid system sizing tool has been developed as a graphical user interface (GUI). - Abstract: The concept of off-grid hybrid wind energy system is financially attractive and more reliable than stand-alone power systems since it is based on more than one electricity generation source. One of the most expensive components in a stand-alone wind-power system is the energy storage system as very often it is oversized to increase system autonomy. In this work, we consider a hybrid system which consists of wind turbines, photovoltaic panels, diesel generator and battery storage. One of the main challenges experienced by project managers is the sizing of components for different sites. This challenge is due to the variability of the renewable energy resource and the load demand for different sites. This paper introduces a sizing model that has been developed and implemented as a graphical user interface, which predicts the optimum configuration of a hybrid system. In particular, this paper focuses on seeking the optimal size of the batteries and the diesel generator usage. Both of these components are seen to be trade-offs from each other. The model simulates real time operation of the hybrid system, using the annual measured hourly wind speed and solar irradiation. The benefit of using time series approach is that it reflects a more realistic situation; here, the peaks and troughs of the renewable energy resource are a central part of the sizing model. Finally, load sensitivity and hybrid system performance analysis are demonstrated.

  13. Performance analysis of hybrid photovoltaic/diesel energy system under Malaysian conditions

    International Nuclear Information System (INIS)

    Lau, K.Y.; Yousof, M.F.M.; Arshad, S.N.M.; Anwari, M.; Yatim, A.H.M.

    2010-01-01

    Standalone diesel generating system utilized in remote areas has long been practiced in Malaysia. Due to highly fluctuating diesel price, such a system is seemed to be uneconomical, especially in the long run if the supply of electricity for rural areas solely depends on such diesel generating system. This paper would analyze the potential use of hybrid photovoltaic (PV)/diesel energy system in remote locations. National Renewable Energy Laboratory's (NREL) HOMER software was used to perform the techno-economic feasibility of hybrid PV/diesel energy system. The investigation demonstrated the impact of PV penetration and battery storage on energy production, cost of energy and number of operational hours of diesel generators for the given hybrid configurations. Emphasis has also been placed on percentage fuel savings and reduction in carbon emissions of different hybrid systems. At the end of this paper, suitability of utilizing hybrid PV/diesel energy system over standalone diesel system would be discussed mainly based on different solar irradiances and diesel prices. (author)

  14. Modelling dependable systems using hybrid Bayesian networks

    International Nuclear Information System (INIS)

    Neil, Martin; Tailor, Manesh; Marquez, David; Fenton, Norman; Hearty, Peter

    2008-01-01

    A hybrid Bayesian network (BN) is one that incorporates both discrete and continuous nodes. In our extensive applications of BNs for system dependability assessment, the models are invariably hybrid and the need for efficient and accurate computation is paramount. We apply a new iterative algorithm that efficiently combines dynamic discretisation with robust propagation algorithms on junction tree structures to perform inference in hybrid BNs. We illustrate its use in the field of dependability with two example of reliability estimation. Firstly we estimate the reliability of a simple single system and next we implement a hierarchical Bayesian model. In the hierarchical model we compute the reliability of two unknown subsystems from data collected on historically similar subsystems and then input the result into a reliability block model to compute system level reliability. We conclude that dynamic discretisation can be used as an alternative to analytical or Monte Carlo methods with high precision and can be applied to a wide range of dependability problems

  15. Behind the Final Grade in Hybrid v. Traditional Courses: Comparing Student Performance by Assessment Type, Core Competency, and Course Objective

    Science.gov (United States)

    Bain, Lisa Z.

    2012-01-01

    There are many different delivery methods used by institutions of higher education. These include traditional, hybrid, and online course offerings. The comparisons of these typically use final grade as the measure of student performance. This research study looks behind the final grade and compares student performance by assessment type, core…

  16. Hybrid two fuel system nozzle with a bypass connecting the two fuel systems

    Science.gov (United States)

    Varatharajan, Balachandar [Cincinnati, OH; Ziminsky, Willy Steve [Simpsonville, SC; Yilmaz, Ertan [Albany, NY; Lacy, Benjamin [Greer, SC; Zuo, Baifang [Simpsonville, SC; York, William David [Greer, SC

    2012-05-29

    A hybrid fuel combustion nozzle for use with natural gas, syngas, or other types of fuels. The hybrid fuel combustion nozzle may include a natural gas system with a number of swozzle vanes and a syngas system with a number of co-annular fuel tubes.

  17. Thermal resistance analysis and optimization of photovoltaic-thermoelectric hybrid system

    International Nuclear Information System (INIS)

    Yin, Ershuai; Li, Qiang; Xuan, Yimin

    2017-01-01

    Highlights: • A detailed thermal resistance analysis of the PV-TE hybrid system is proposed. • c-Si PV and p-Si PV cells are proved to be inapplicable for the PV-TE hybrid system. • Some criteria for selecting coupling devices and optimal design are obtained. • A detailed process of designing the practical PV-TE hybrid system is provided. - Abstract: The thermal resistance theory is introduced into the theoretical model of the photovoltaic-thermoelectric (PV-TE) hybrid system. A detailed thermal resistance analysis is proposed to optimize the design of the coupled system in terms of optimal total conversion efficiency. Systems using four types of photovoltaic cells are investigated, including monocrystalline silicon photovoltaic cell, polycrystalline silicon photovoltaic cell, amorphous silicon photovoltaic cell and polymer photovoltaic cell. Three cooling methods, including natural cooling, forced air cooling and water cooling, are compared, which demonstrates a significant superiority of water cooling for the concentrating photovoltaic-thermoelectric hybrid system. Influences of the optical concentrating ratio and velocity of water are studied together and the optimal values are revealed. The impacts of the thermal resistances of the contact surface, TE generator and the upper heat loss thermal resistance on the property of the coupled system are investigated, respectively. The results indicate that amorphous silicon PV cell and polymer PV cell are more appropriate for the concentrating hybrid system. Enlarging the thermal resistance of the thermoelectric generator can significantly increase the performance of the coupled system using amorphous silicon PV cell or polymer PV cell.

  18. Performance assessment of a novel hybrid district energy system

    International Nuclear Information System (INIS)

    Coskun, C.; Oktay, Z.; Dincer, I.

    2012-01-01

    In this paper, a new hybrid system for improving the efficiency of geothermal district heating systems (GDHSs) is proposed. This hybrid system consists of biogas based electricity production and a water-to-water geothermal heat pump unit (GHPU), which uses the waste heat for both heating and domestic hot water purposes. Electricity generated by the biogas plant (BP) is utilized to drive the GDHS's pumps, BP systems and the heat pump units. Both the biogas reactor heating unit and the heat pump unit utilize the waste heat from the GDHS and use the system as a heat source. The feasibility of utilizing a hybrid system in order to increase the overall system (GDHS + BP + GHPU) efficiency is then investigated for possible efficiency improvements. The Edremit GDHS in Turkey, which is selected for investigation in this case study, reinjects 16.8 MW of thermal power into the river at a low temperature; namely at 40 °C. Such a temperature is ideal for mesophilic bacterial growth in the digestion process during biogas production. 1.45 MW of biogas based electricity production potential is obtainable from the waste heat output of the Edremit GDHS. The average overall system efficiencies through the utilization of this kind of hybridized system approach are increased by 7.5% energetically and 13% for exergetically. - Highlights: ► A new hybrid system is proposed for improving the efficiency of geothermal district heating systems (GDHSs). ► The average overall system efficiencies are increased by 7.5% for energy and 13% for exergy, respectively. ► Various energetic and exergetic parameters are studied.

  19. Site characterization for hybrid system construction

    Energy Technology Data Exchange (ETDEWEB)

    Saldana, R.; Miranda, U.; Medrano, M. C. [Instituto de Investigaciones Electricas, Cuernavaca (Mexico)

    1997-12-31

    The basic reason to use alternative systems for electricity generation, in most cases, is the lack of electricity services, such as isolated rural communities which are located far away from the electric distribution line, and the cost of its extension is too expensive, while decentralized power systems can be an economic and appropriate solution to providing these services. Up to now there are several technological options for rural electrification using PV modules, wind plants, water-power plants, anaerobic digesters, or a combination of some of them, according to the availability of energetic resources. The applications include centralized or decentralized systems, autonomous or hybrid systems, isolated or interconnected to the electric line, etc. A particular hybrid system design can be done considering two general aspects, first it is necessary to know the electric consumption that will be supplied, taking into account present and future necessities and how local energetic resources are present in a selected site. Finally, also it is necessary to carry out an economic analysis to determine the cost of kilowatt-hour generated using local energetic resources and compare it with the cost of electricity produced by conventional power systems. [Espanol] La razon principal para el uso de sistemas alternativos de generacion de electricidad, en la mayoria de los casos, es la falta de servicios de electricidad, tal como en las comunidades rurales aisladas localizadas lejos de linea de distribucion electrica, donde el costo de su extension es demasiado caro, mientras que los sistemas descentralizados de energia pueden ser una solucion economica y adecuada para proporcionar estos servicios. Hasta ahora existen varias opciones tecnologicas para la electrificacion rural usando modulos fotovoltaicos, aerogeneradores, plantas hidroelectricas, digestores anaerobicos o una combinacion de algunos de ellos, de acuerdo con la disponibilidad de los recursos energeticos. Las

  20. Site characterization for hybrid system construction

    Energy Technology Data Exchange (ETDEWEB)

    Saldana, R; Miranda, U; Medrano, M C [Instituto de Investigaciones Electricas, Cuernavaca (Mexico)

    1998-12-31

    The basic reason to use alternative systems for electricity generation, in most cases, is the lack of electricity services, such as isolated rural communities which are located far away from the electric distribution line, and the cost of its extension is too expensive, while decentralized power systems can be an economic and appropriate solution to providing these services. Up to now there are several technological options for rural electrification using PV modules, wind plants, water-power plants, anaerobic digesters, or a combination of some of them, according to the availability of energetic resources. The applications include centralized or decentralized systems, autonomous or hybrid systems, isolated or interconnected to the electric line, etc. A particular hybrid system design can be done considering two general aspects, first it is necessary to know the electric consumption that will be supplied, taking into account present and future necessities and how local energetic resources are present in a selected site. Finally, also it is necessary to carry out an economic analysis to determine the cost of kilowatt-hour generated using local energetic resources and compare it with the cost of electricity produced by conventional power systems. [Espanol] La razon principal para el uso de sistemas alternativos de generacion de electricidad, en la mayoria de los casos, es la falta de servicios de electricidad, tal como en las comunidades rurales aisladas localizadas lejos de linea de distribucion electrica, donde el costo de su extension es demasiado caro, mientras que los sistemas descentralizados de energia pueden ser una solucion economica y adecuada para proporcionar estos servicios. Hasta ahora existen varias opciones tecnologicas para la electrificacion rural usando modulos fotovoltaicos, aerogeneradores, plantas hidroelectricas, digestores anaerobicos o una combinacion de algunos de ellos, de acuerdo con la disponibilidad de los recursos energeticos. Las

  1. Nuclear Hybrid Energy System Modeling: RELAP5 Dynamic Coupling Capabilities

    Energy Technology Data Exchange (ETDEWEB)

    Piyush Sabharwall; Nolan Anderson; Haihua Zhao; Shannon Bragg-Sitton; George Mesina

    2012-09-01

    The nuclear hybrid energy systems (NHES) research team is currently developing a dynamic simulation of an integrated hybrid energy system. A detailed simulation of proposed NHES architectures will allow initial computational demonstration of a tightly coupled NHES to identify key reactor subsystem requirements, identify candidate reactor technologies for a hybrid system, and identify key challenges to operation of the coupled system. This work will provide a baseline for later coupling of design-specific reactor models through industry collaboration. The modeling capability addressed in this report focuses on the reactor subsystem simulation.

  2. Neural-network hybrid control for antilock braking systems.

    Science.gov (United States)

    Lin, Chih-Min; Hsu, C F

    2003-01-01

    The antilock braking systems are designed to maximize wheel traction by preventing the wheels from locking during braking, while also maintaining adequate vehicle steerability; however, the performance is often degraded under harsh road conditions. In this paper, a hybrid control system with a recurrent neural network (RNN) observer is developed for antilock braking systems. This hybrid control system is comprised of an ideal controller and a compensation controller. The ideal controller, containing an RNN uncertainty observer, is the principal controller; and the compensation controller is a compensator for the difference between the system uncertainty and the estimated uncertainty. Since for dynamic response the RNN has capabilities superior to the feedforward NN, it is utilized for the uncertainty observer. The Taylor linearization technique is employed to increase the learning ability of the RNN. In addition, the on-line parameter adaptation laws are derived based on a Lyapunov function, so the stability of the system can be guaranteed. Simulations are performed to demonstrate the effectiveness of the proposed NN hybrid control system for antilock braking control under various road conditions.

  3. User acceptance of diesel/PV hybrid system in an island community

    International Nuclear Information System (INIS)

    Phuangpornpitak, N.; Kumar, S.

    2011-01-01

    This paper presents the results of a study conducted at a rural (island) community to understand the role of PV hybrid system installed on an island. Until 2004, most islanders had installed diesel generators in their homes to generate electricity, which was directly supplied to appliances or stored in the batteries for later use. A field survey was carried out to study the user satisfaction of the PV hybrid system in the island community. The attitude of islanders to the PV hybrid system was mostly positive. The islanders can use more electricity, the supply of which can meet the demand. A comparison of pollutions before and after installation of the PV hybrid system was made along with the interviews with the users. The data show that the users are highly satisfied with the PV hybrid system which can reduce environmental impact, especially air and noise pollutions. New opportunities as a result of access to electric service include studying and reading at night that were not possible earlier. All the islanders use the PV hybrid system and more importantly, no one found that the system made their life worse as compared to the earlier state of affairs. (author)

  4. Control of hybrid fuel cell/energy storage distributed generation system against voltage sag

    Energy Technology Data Exchange (ETDEWEB)

    Hajizadeh, Amin; Golkar, Masoud Aliakbar [Electrical Engineering Department, K.N. Toosi University of Technology, Seyedkhandan, Dr. Shariati Ave, P.O. Box 16315-1355, Tehran (Iran)

    2010-06-15

    Fuel cell (FC) and energy storage (ES) based hybrid distributed power generation systems appear to be very promising for satisfying high energy and high power requirements of power quality problems in distributed generation (DG) systems. In this study, design of control strategy for hybrid fuel cell/energy storage distributed power generation system during voltage sag has been presented. The proposed control strategy allows hybrid distributed generation system works properly when a voltage disturbance occurs in distribution system and hybrid system stays connected to the main grid. Hence, modeling, controller design, and simulation study of a hybrid distributed generation system are investigated. The physical model of the fuel cell stack, energy storage and the models of power conditioning units are described. Then the control design methodology for each component of the hybrid system is proposed. Simulation results are given to show the overall system performance including active power control and voltage sag ride-through capability of the hybrid distributed generation system. (author)

  5. Voith hybrid systems - parallel hybrid for rail vehicles; Voith Hybridsysteme - Parallelhybrid fuer Schienenfahrzeuge

    Energy Technology Data Exchange (ETDEWEB)

    Groezinger, Thomas; Berger, Juergen; Discher, Andreas; Bartosch, Stephan [Voith Turbo GmbH und Co. KG (Germany)

    2010-03-15

    The article presents a variety of ways help to save fuel, reduce noise and minimize harmful emissions for rail vehicles. These ECO components can be used separately or in combination with drive systems for various types of hybrid concepts. For example, via a hydrostatic or electric hybrid system can recuperate and store braking energy and utilize it for powering the vehicle or driving auxiliary systems. Another system converts lost heat from the drive motor into mechanical or electrical energy. With EcoConsult, Voith Turbo also offers a ''toolbox'' comprising software, hardware and consultancy which allows identifying the exact operating conditions and a reliable calculation of the life cycle cost (LCC) for a variety of vehicle categories and operating profiles. (orig.)

  6. Flexible CP-ABE Based Access Control on Encrypted Data for Mobile Users in Hybrid Cloud System

    Institute of Scientific and Technical Information of China (English)

    Wen-Min Li; Xue-Lei Li; Qiao-Yan Wen; Shuo Zhang; Hua Zhang

    2017-01-01

    In hybrid cloud computing, encrypted data access control can provide a fine-grained access method for orga-nizations to enact policies closer to organizational policies. This paper presents an improved CP-ABE (ciphertext-policy attribute-based encryption) scheme to construct an encrypted data access control solution that is suitable for mobile users in hybrid cloud system. In our improvement, we split the original decryption keys into a control key, a secret key and a set of transformation keys. The private cloud managed by the organization administrator takes charge of updating the transformation keys using the control key. It helps to handle the situation of flexible access management and attribute alteration. Meanwhile, the mobile user's single secret key remains unchanged as well as the ciphertext even if the data user's attribute has been revoked. In addition, we modify the access control list through adding the attributes with corresponding control key and transformation keys so as to manage user privileges depending upon the system version. Finally, the analysis shows that our scheme is secure, flexible and efficient to be applied in mobile hybrid cloud computing.

  7. Split-gene system for hybrid wheat seed production.

    Science.gov (United States)

    Kempe, Katja; Rubtsova, Myroslava; Gils, Mario

    2014-06-24

    Hybrid wheat plants are superior in yield and growth characteristics compared with their homozygous parents. The commercial production of wheat hybrids is difficult because of the inbreeding nature of wheat and the lack of a practical fertility control that enforces outcrossing. We describe a hybrid wheat system that relies on the expression of a phytotoxic barnase and provides for male sterility. The barnase coding information is divided and distributed at two loci that are located on allelic positions of the host chromosome and are therefore "linked in repulsion." Functional complementation of the loci is achieved through coexpression of the barnase fragments and intein-mediated ligation of the barnase protein fragments. This system allows for growth and maintenance of male-sterile female crossing partners, whereas the hybrids are fertile. The technology does not require fertility restorers and is based solely on the genetic modification of the female crossing partner.

  8. Outage Performance of Hybrid FSO/RF System with Low-Complexity Power Adaptation

    KAUST Repository

    Rakia, Tamer

    2016-02-26

    Hybrid free-space optical (FSO) / radio-frequency (RF) systems have emerged as a promising solution for high data- rate wireless communication systems. We consider truncated channel inversion based power adaptation strategy for coherent and non- coherent hybrid FSO/RF systems, employing an adaptive combining scheme. Specifically, we activate the RF link along with the FSO link when FSO link quality is unacceptable, and adaptively set RF transmission power to ensure constant combined signal-to-noise ratio at receiver terminal. Analytical expressions for the outage probability of the hybrid system with and without power adaptation are derived. Numerical examples show that, the hybrid FSO/RF systems with power adaptation achieve considerable outage performance improvement over conventional hybrid FSO/RF systems without power adaptation. © 2015 IEEE.

  9. The possibility of developing hybrid PV/T solar system

    Science.gov (United States)

    Dobrnjac, M.; Zivkovic, P.; Babic, V.

    2017-05-01

    An alternative and cost-effective solution to developing integrated PV system is to use hybrid photovoltaic/thermal (PV/T) solar system. The temperature of PV modules increases due to the absorbed solar radiation that is not converted into electricity, causing a decrease in their efficiency. In hybrid PV/T solar systems the reduction of PV module temperature can be combined with a useful fluid heating. In this paper we present the possibility of developing a new hybrid PV/T solar system. Hybrid PV/T system can provide electrical and thermal energy, thus achieving a higher energy conversion rate of the absorbed solar radiation. We developed PV/T prototype consisted of commercial PV module and thermal panel with our original solution of aluminium absorber with special geometric shapes. The main advantages of our combined PV/T system are: removing of heat from the PV panel; extending the lifetime of photovoltaic cells; excess of the removing heat from PV part is used to heat the fluid in the thermal part of the panel; the possibility of using on the roof and facade constructions because less weight.

  10. Profit Allocation of Hybrid Power System Planning in Energy Internet: A Cooperative Game Study

    Directory of Open Access Journals (Sweden)

    Jicheng Liu

    2018-02-01

    Full Text Available The rapid development of Energy Internet (EI has prompted numbers of generators to participate, leading to a hybrid power system. Hence, how to plan the hybrid power system and allocate its profit becomes necessary. In this paper, the cooperative game theory is introduced to discuss this problem. We first design the basic structure of EI, and point out the object of this study—coal power plant-wind farm-photovoltaic power station-energy storage provider (CWPE alliance. Subsequently, average allocation strategy (AAS, capacity-based allocation strategy (CAS and Shapley value allocation strategy (SAS are proposed, and then the modified disruption propensity (MDP index is constructed to judge the advantages and disadvantages of the three schemes. Thirdly, taking a certain area of A Province as an example, the profits of CWPE under three strategies are calculated respectively. Finally, by analyzing individual rationality and collective rationality of cooperative game and the MDP index of the three profit allocation schemes, we find that SAS is the most stable.

  11. Event-triggered hybrid control based on multi-Agent systems for Microgrids

    DEFF Research Database (Denmark)

    Dou, Chun-xia; Liu, Bin; Guerrero, Josep M.

    2014-01-01

    This paper is focused on a multi-agent system based event-triggered hybrid control for intelligently restructuring the operating mode of an microgrid (MG) to ensure the energy supply with high security, stability and cost effectiveness. Due to the microgrid is composed of different types...... of distributed energy resources, thus it is typical hybrid dynamic network. Considering the complex hybrid behaviors, a hierarchical decentralized coordinated control scheme is firstly constructed based on multi-agent sys-tem, then, the hybrid model of the microgrid is built by using differential hybrid Petri...

  12. In Pipe Robot with Hybrid Locomotion System

    Directory of Open Access Journals (Sweden)

    Cristian Miclauş

    2015-06-01

    Full Text Available The first part of the paper covers aspects concerning in pipe robots and their components, such as hybrid locomotion systems and the adapting mechanisms used. The second part describes the inspection robot that was developed, which combines tracked and wheeled locomotion (hybrid locomotion. The end of the paper presents the advantages and disadvantages of the proposed robot.

  13. Joint Adaptive Modulation and Combining for Hybrid FSO/RF Systems

    KAUST Repository

    Rakia, Tamer

    2015-11-12

    In this paper, we present and analyze a new transmission scheme for hybrid FSO/RF communication system based on joint adaptive modulation and adaptive combining. Specifically, the data rate on the FSO link is adjusted in discrete manner according to the FSO link\\'s instantaneous received signal-to-noise-ratio (SNR). If the FSO link\\'s quality is too poor to maintain the target bit-error-rate, the system activates the RF link along with the FSO link. When the RF link is activated, simultaneous transmission of the same modulated data takes place on both links, where the received signals from both links are combined using maximal ratio combining scheme. In this case, the data rate of the system is adjusted according to the instantaneous combined SNRs. Novel analytical expression for the cumulative distribution function (CDF) of the received SNR for the proposed adaptive hybrid system is obtained. This CDF expression is used to study the spectral and outage performances of the proposed adaptive hybrid FSO/RF system. Numerical examples are presented to compare the performance of the proposed adaptive hybrid FSO/RF system with that of switch-over hybrid FSO/RF and FSO-only systems employing the same adaptive modulation schemes. © 2015 IEEE.

  14. The use of multi criteria analysis to compare the operating scenarios of the hybrid generation system of wind turbines, photovoltaic modules and a fuel cell

    Science.gov (United States)

    Ceran, Bartosz

    2017-11-01

    The paper presents the results of the use of multi-criteria analysis to compare hybrid power generation system collaboration scenarios (HSW) consisting of wind turbines, solar panels and energy storage electrolyzer - PEM type fuel cell with electricity system. The following scenarios were examined: the base S-I-hybrid system powers the off-grid mode receiver, S-II, S-III, S-IV scenarios-electricity system covers 25%, 50%, 75% of energy demand by the recipient. The effect of weights of the above-mentioned criteria on the final result of the multi-criteria analysis was examined.

  15. Hybrid Ventilation with Innovative Heat Recovery—A System Analysis

    Directory of Open Access Journals (Sweden)

    Bengt Hellström

    2013-02-01

    Full Text Available One of the most important factors when low energy houses are built is to have good heat recovery on the ventilation system. However, standard ventilation units use a considerable amount of electricity. This article discusses the consequences on a system level of using hybrid ventilation with heat recovery. The simulation program TRNSYS was used in order to investigate a ventilation system with heat recovery. The system also includes a ground source storage and waste water heat recovery system. The result of the analysis shows that the annual energy gain from ground source storage is limited. However, this is partly a consequence of the fact that the well functioning hybrid ventilation system leaves little room for improvements. The analysis shows that the hybrid ventilation system has potential to be an attractive solution for low energy buildings with a very low need for electrical energy.

  16. An Energy Management System of a Fuel Cell/Battery Hybrid Boat

    Directory of Open Access Journals (Sweden)

    Jingang Han

    2014-04-01

    Full Text Available All-electric ships are now a standard offering for energy/propulsion systems in boats. In this context, integrating fuel cells (FCs as power sources in hybrid energy systems can be an interesting solution because of their high efficiency and low emission. The energy management strategy for different power sources has a great influence on the fuel consumption, dynamic performance and service life of these power sources. This paper presents a hybrid FC/battery power system for a low power boat. The hybrid system consists of the association of a proton exchange membrane fuel cell (PEMFC and battery bank. The mathematical models for the components of the hybrid system are presented. These models are implemented in Matlab/Simulink environment. Simulations allow analyzing the dynamic performance and power allocation according to a typical driving cycle. In this system, an efficient energy management system (EMS based on operation states is proposed. This EMS strategy determines the operating point of each component of the system in order to maximize the system efficiency. Simulation results validate the adequacy of the hybrid power system and the proposed EMS for real ship driving cycles.

  17. Hybrid system of semiconductor and photosynthetic protein

    International Nuclear Information System (INIS)

    Kim, Younghye; Shin, Seon Ae; Lee, Jaehun; Yang, Ki Dong; Nam, Ki Tae

    2014-01-01

    Photosynthetic protein has the potential to be a new attractive material for solar energy absorption and conversion. The development of semiconductor/photosynthetic protein hybrids is an example of recent progress toward efficient, clean and nanostructured photoelectric systems. In the review, two biohybrid systems interacting through different communicating methods are addressed: (1) a photosynthetic protein immobilized semiconductor electrode operating via electron transfer and (2) a hybrid of semiconductor quantum dots and photosynthetic protein operating via energy transfer. The proper selection of materials and functional and structural modification of the components and optimal conjugation between them are the main issues discussed in the review. In conclusion, we propose the direction of future biohybrid systems for solar energy conversion systems, optical biosensors and photoelectric devices. (topical reviews)

  18. Energy savings potential of a hybrid desiccant dehumidification air conditioning system in Beirut

    International Nuclear Information System (INIS)

    Ghali, Kamel

    2008-01-01

    In this work, the transient performance of a hybrid desiccant vapor compression air conditioning system is numerically simulated for the ambient conditions of Beirut. The main feature of this hybrid system is that the regenerative heat needed by the desiccant wheel is partly supplied by the condenser dissipated heat while the rest is supplied by an auxiliary gas heater. The hybrid air conditioning system of the present study replaces a 23 kW vapor compression unit for a typical office in Beirut characterized by a high latent load. The vapor compression subsystem size in the hybrid air conditioning system is reduced to 15 kW at the peak load when the regeneration temperature was fixed at 75 deg. C. Also the sensible heat ratio of the combined hybrid system increased from 0.47 to 0.73. Based on hour by hour simulation studies for a wide range of recorded ambient conditions of Beirut city, this paper predicts the annual energy consumption of the hybrid system in comparison with the conventional vapor compression system for the entire cooling season. The annual running costs savings for the hybrid system is 418.39 USD for a gas cost price of 0.141 USD/kg. The pay back period of the hybrid system is less than five years when the initial cost of the hybrid air conditioning system priced an additional 1712.00 USD. Hence, for a 20-year life cycle, the life cycle savings of the hybrid air conditioning system are 4295.19 USD

  19. New Burnup Calculation System for Fusion-Fission Hybrid System

    International Nuclear Information System (INIS)

    Isao Murata; Shoichi Shido; Masayuki Matsunaka; Keitaro Kondo; Hiroyuki Miyamaru

    2006-01-01

    Investigation of nuclear waste incineration has positively been carried out worldwide from the standpoint of environmental issues. Some candidates such as ADS, FBR are under discussion for possible incineration technology. Fusion reactor is one of such technologies, because it supplies a neutron-rich and volumetric irradiation field, and in addition the energy is higher than nuclear reactor. However, it is still hard to realize fusion reactor right now, as well known. An idea of combination of fusion and fission concepts, so-called fusion-fission hybrid system, was thus proposed for the nuclear waste incineration. Even for a relatively lower plasma condition, neutrons can be well multiplied by fission in the nuclear fuel, tritium is thus bred so as to attain its self-sufficiency, enough energy multiplication is then expected and moreover nuclear waste incineration is possible. In the present study, to realize it as soon as possible with the presently proven technology, i.e., using ITER model with the achieved plasma condition of JT60 in JAEA, Japan, a new calculation system for fusion-fission hybrid reactor including transport by MCNP and burnup by ORIGEN has been developed for the precise prediction of the neutronics performance. The author's group already has such a calculation system developed by them. But it had a problem that the cross section libraries in ORIGEN did not have a cross section library, which is suitable specifically for fusion-fission hybrid reactors. So far, those for FBR were approximately used instead in the analysis. In the present study, exact derivation of the collapsed cross section for ORIGEN has been investigated, which means it is directly evaluated from calculated track length by MCNP and point-wise nuclear data in the evaluated nuclear data file like JENDL-3.3. The system realizes several-cycle calculation one time, each of which consists of MCNP criticality calculation, MCNP fixed source calculation with a 3-dimensional precise

  20. Quantum technologies with hybrid systems

    Science.gov (United States)

    Kurizki, Gershon; Bertet, Patrice; Kubo, Yuimaru; Mølmer, Klaus; Petrosyan, David; Rabl, Peter; Schmiedmayer, Jörg

    2015-01-01

    An extensively pursued current direction of research in physics aims at the development of practical technologies that exploit the effects of quantum mechanics. As part of this ongoing effort, devices for quantum information processing, secure communication, and high-precision sensing are being implemented with diverse systems, ranging from photons, atoms, and spins to mesoscopic superconducting and nanomechanical structures. Their physical properties make some of these systems better suited than others for specific tasks; thus, photons are well suited for transmitting quantum information, weakly interacting spins can serve as long-lived quantum memories, and superconducting elements can rapidly process information encoded in their quantum states. A central goal of the envisaged quantum technologies is to develop devices that can simultaneously perform several of these tasks, namely, reliably store, process, and transmit quantum information. Hybrid quantum systems composed of different physical components with complementary functionalities may provide precisely such multitasking capabilities. This article reviews some of the driving theoretical ideas and first experimental realizations of hybrid quantum systems and the opportunities and challenges they present and offers a glance at the near- and long-term perspectives of this fascinating and rapidly expanding field. PMID:25737558

  1. Quantum technologies with hybrid systems.

    Science.gov (United States)

    Kurizki, Gershon; Bertet, Patrice; Kubo, Yuimaru; Mølmer, Klaus; Petrosyan, David; Rabl, Peter; Schmiedmayer, Jörg

    2015-03-31

    An extensively pursued current direction of research in physics aims at the development of practical technologies that exploit the effects of quantum mechanics. As part of this ongoing effort, devices for quantum information processing, secure communication, and high-precision sensing are being implemented with diverse systems, ranging from photons, atoms, and spins to mesoscopic superconducting and nanomechanical structures. Their physical properties make some of these systems better suited than others for specific tasks; thus, photons are well suited for transmitting quantum information, weakly interacting spins can serve as long-lived quantum memories, and superconducting elements can rapidly process information encoded in their quantum states. A central goal of the envisaged quantum technologies is to develop devices that can simultaneously perform several of these tasks, namely, reliably store, process, and transmit quantum information. Hybrid quantum systems composed of different physical components with complementary functionalities may provide precisely such multitasking capabilities. This article reviews some of the driving theoretical ideas and first experimental realizations of hybrid quantum systems and the opportunities and challenges they present and offers a glance at the near- and long-term perspectives of this fascinating and rapidly expanding field.

  2. Quantum technologies with hybrid systems

    Science.gov (United States)

    Kurizki, Gershon; Bertet, Patrice; Kubo, Yuimaru; Mølmer, Klaus; Petrosyan, David; Rabl, Peter; Schmiedmayer, Jörg

    2015-03-01

    An extensively pursued current direction of research in physics aims at the development of practical technologies that exploit the effects of quantum mechanics. As part of this ongoing effort, devices for quantum information processing, secure communication, and high-precision sensing are being implemented with diverse systems, ranging from photons, atoms, and spins to mesoscopic superconducting and nanomechanical structures. Their physical properties make some of these systems better suited than others for specific tasks; thus, photons are well suited for transmitting quantum information, weakly interacting spins can serve as long-lived quantum memories, and superconducting elements can rapidly process information encoded in their quantum states. A central goal of the envisaged quantum technologies is to develop devices that can simultaneously perform several of these tasks, namely, reliably store, process, and transmit quantum information. Hybrid quantum systems composed of different physical components with complementary functionalities may provide precisely such multitasking capabilities. This article reviews some of the driving theoretical ideas and first experimental realizations of hybrid quantum systems and the opportunities and challenges they present and offers a glance at the near- and long-term perspectives of this fascinating and rapidly expanding field.

  3. Hybrid context aware recommender systems

    Science.gov (United States)

    Jain, Rajshree; Tyagi, Jaya; Singh, Sandeep Kumar; Alam, Taj

    2017-10-01

    Recommender systems and context awareness is currently a vital field of research. Most hybrid recommendation systems implement content based and collaborative filtering techniques whereas this work combines context and collaborative filtering. The paper presents a hybrid context aware recommender system for books and movies that gives recommendations based on the user context as well as user or item similarity. It also addresses the issue of dimensionality reduction using weighted pre filtering based on dynamically entered user context and preference of context. This unique step helps to reduce the size of dataset for collaborative filtering. Bias subtracted collaborative filtering is used so as to consider the relative rating of a particular user and not the absolute values. Cosine similarity is used as a metric to determine the similarity between users or items. The unknown ratings are calculated and evaluated using MSE (Mean Squared Error) in test and train datasets. The overall process of recommendation has helped to personalize recommendations and give more accurate results with reduced complexity in collaborative filtering.

  4. Full and part load exergetic analysis of a hybrid micro gas turbine fuel cell system based on existing components

    International Nuclear Information System (INIS)

    Bakalis, Diamantis P.; Stamatis, Anastassios G.

    2012-01-01

    Highlights: ► Hybrid SOFC/GT system based on existing components. ► Exergy analysis using AspenPlus™ software. ► Greenhouse gases emission is significantly affected by SOFC stack temperature. ► Comparison with a conventional GT of similar power. ► SOFC/GT is almost twice efficient in terms of second low efficiency and CO 2 emission. - Abstract: The paper deals with the examination of a hybrid system consisting of a pre-commercially available high temperature solid oxide fuel cell and an existing recuperated microturbine. The irreversibilities and thermodynamic inefficiencies of the system are evaluated after examining the full and partial load exergetic performance and estimating the amount of exergy destruction and the efficiency of each hybrid system component. At full load operation the system achieves an exergetic efficiency of 59.8%, which increases during the partial load operation, as a variable speed control method is utilized. Furthermore, the effects of the various performance parameters such as fuel cell stack temperature and fuel utilization factor are assessed. The results showed that the components in which chemical reactions occur have the higher exergy destruction rates. The exergetic performance of the system is affected significantly by the stack temperature. Based on the exergetic analysis, suggestions are given for reducing the overall system irreversibility. Finally, the environmental impact of the operation of the hybrid system is evaluated and compared with a similarly rated conventional gas turbine plant. From the comparison it is apparent that the hybrid system obtains nearly double exergetic efficiency and about half the amount of greenhouse gas emissions compared with the conventional plant.

  5. Optimal Photovoltaic System Sizing of a Hybrid Diesel/PV System

    Directory of Open Access Journals (Sweden)

    Ahmed Belhamadia

    2017-03-01

    Full Text Available This paper presents a cost analysis study of a hybrid diesel and Photovoltaic (PV system in Kuala Terengganu, Malaysia. It first presents the climate conditions of the city followed by the load profile of a 2MVA network; the system was evaluated as a standalone system. Diesel generator rating was considered such that it follows ISO 8528. The maximum size of the PV system was selected such that its penetration would not exceed 25%. Several sizes were considered but the 400kWp system was found to be the most cost efficient. Cost estimation was done using Hybrid Optimization Model for Electric Renewable (HOMER. Based on the simulation results, the climate conditions and the NEC 960, the numbers of the maximum and minimum series modules were suggested as well as the maximum number of the parallel strings.

  6. Hybrid dislocated control and general hybrid projective dislocated synchronization for the modified Lue chaotic system

    International Nuclear Information System (INIS)

    Xu Yuhua; Zhou Wuneng; Fang Jianan

    2009-01-01

    This paper introduces a modified Lue chaotic system, and some basic dynamical properties are studied. Based on these properties, we present hybrid dislocated control method for stabilizing chaos to unstable equilibrium and limit cycle. In addition, based on the Lyapunov stability theorem, general hybrid projective dislocated synchronization (GHPDS) is proposed, which includes complete dislocated synchronization, dislocated anti-synchronization and projective dislocated synchronization as its special item. The drive and response systems discussed in this paper can be strictly different dynamical systems (including different dimensional systems). As examples, the modified Lue chaotic system, Chen chaotic system and hyperchaotic Chen system are discussed. Numerical simulations are given to show the effectiveness of these methods.

  7. Hybrid dislocated control and general hybrid projective dislocated synchronization for the modified Lue chaotic system

    Energy Technology Data Exchange (ETDEWEB)

    Xu Yuhua [College of Information Science and Technology, Donghua University, Shanghai 201620 (China) and Department of Maths, Yunyang Teacher' s College, Hubei 442000 (China)], E-mail: yuhuaxu2004@163.com; Zhou Wuneng [College of Information Science and Technology, Donghua University, Shanghai 201620 (China)], E-mail: wnzhou@163.com; Fang Jianan [College of Information Science and Technology, Donghua University, Shanghai 201620 (China)

    2009-11-15

    This paper introduces a modified Lue chaotic system, and some basic dynamical properties are studied. Based on these properties, we present hybrid dislocated control method for stabilizing chaos to unstable equilibrium and limit cycle. In addition, based on the Lyapunov stability theorem, general hybrid projective dislocated synchronization (GHPDS) is proposed, which includes complete dislocated synchronization, dislocated anti-synchronization and projective dislocated synchronization as its special item. The drive and response systems discussed in this paper can be strictly different dynamical systems (including different dimensional systems). As examples, the modified Lue chaotic system, Chen chaotic system and hyperchaotic Chen system are discussed. Numerical simulations are given to show the effectiveness of these methods.

  8. Stochastic hybrid systems with renewal transitions

    NARCIS (Netherlands)

    Guerreiro Tome Antunes, D.J.; Hespanha, J.P.; Silvestre, C.J.

    2010-01-01

    We consider Stochastic Hybrid Systems (SHSs) for which the lengths of times that the system stays in each mode are independent random variables with given distributions. We propose an analysis framework based on a set of Volterra renewal-type equations, which allows us to compute any statistical

  9. 15th International conference on Hybrid Intelligent Systems

    CERN Document Server

    Han, Sang; Al-Sharhan, Salah; Liu, Hongbo

    2016-01-01

    This book is devoted to the hybridization of intelligent systems which is a promising research field of modern computational intelligence concerned with the development of the next generation of intelligent systems. This Volume contains the papers presented in the Fifteenth International conference on Hybrid Intelligent Systems (HIS 2015) held in Seoul, South Korea during November 16-18, 2015. The 26 papers presented in this Volume were carefully reviewed and selected from 90 paper submissions. The Volume will be a valuable reference to researchers, students and practitioners in the computational intelligence field.

  10. Sizing PV-wind hybrid energy system for lighting

    Directory of Open Access Journals (Sweden)

    Mustafa Engin

    2012-09-01

    Full Text Available Sizing of wind and photovoltaic generators ensures lower operational costs and therefore, is considered as an important issue. An approach for sizing along with a best management technique for a PV-wind hybrid system with batteries is proposed in this paper, in which the best size for every component of the system could be optimized according to the weather conditions and the load profile. The average hourly values for wind speed and solar radiation for Izmir, Turkey has been used in the design of the systems, along with expected load profile. A hybrid power model is also developed for battery operation according to the power balance between generators and loads used in the software, to anticipate performances for the different systems according to the different weather conditions. The output of the program will display the performance of the system during the year, the total cost of the system, and the best size for the PV-generator, wind generator, and battery capacity. Using proposed procedure, a 1.2 kWp PV-wind hybrid system was designed for Izmir, and simulated and measured results are presented.

  11. Hybrid Type II fuzzy system & data mining approach for surface finish

    Directory of Open Access Journals (Sweden)

    Tzu-Liang (Bill Tseng

    2015-07-01

    Full Text Available In this study, a new methodology in predicting a system output has been investigated by applying a data mining technique and a hybrid type II fuzzy system in CNC turning operations. The purpose was to generate a supplemental control function under the dynamic machining environment, where unforeseeable changes may occur frequently. Two different types of membership functions were developed for the fuzzy logic systems and also by combining the two types, a hybrid system was generated. Genetic algorithm was used for fuzzy adaptation in the control system. Fuzzy rules are automatically modified in the process of genetic algorithm training. The computational results showed that the hybrid system with a genetic adaptation generated a far better accuracy. The hybrid fuzzy system with genetic algorithm training demonstrated more effective prediction capability and a strong potential for the implementation into existing control functions.

  12. A Review of Hybrid Brain-Computer Interface Systems

    Directory of Open Access Journals (Sweden)

    Setare Amiri

    2013-01-01

    Full Text Available Increasing number of research activities and different types of studies in brain-computer interface (BCI systems show potential in this young research area. Research teams have studied features of different data acquisition techniques, brain activity patterns, feature extraction techniques, methods of classifications, and many other aspects of a BCI system. However, conventional BCIs have not become totally applicable, due to the lack of high accuracy, reliability, low information transfer rate, and user acceptability. A new approach to create a more reliable BCI that takes advantage of each system is to combine two or more BCI systems with different brain activity patterns or different input signal sources. This type of BCI, called hybrid BCI, may reduce disadvantages of each conventional BCI system. In addition, hybrid BCIs may create more applications and possibly increase the accuracy and the information transfer rate. However, the type of BCIs and their combinations should be considered carefully. In this paper, after introducing several types of BCIs and their combinations, we review and discuss hybrid BCIs, different possibilities to combine them, and their advantages and disadvantages.

  13. Optimised operation of an off-grid hybrid wind-diesel-battery system using genetic algorithm

    International Nuclear Information System (INIS)

    Gan, Leong Kit; Shek, Jonathan K.H.; Mueller, Markus A.

    2016-01-01

    and mechanical (Simscape) physical characteristics into the simulation, which are often neglected by other authors when performing such study. Therefore, hybrid system simulation models are built according to the system proposed in the work. Finally, sensitivity analyses are performed as a mean of testing the designed hybrid system’s robustness against wind and load forecast errors.

  14. End-to-End Trajectory for Conjunction Class Mars Missions Using Hybrid Solar-Electric/Chemical Transportation System

    Science.gov (United States)

    Chai, Patrick R.; Merrill, Raymond G.; Qu, Min

    2016-01-01

    NASA's Human Spaceflight Architecture Team is developing a reusable hybrid transportation architecture in which both chemical and solar-electric propulsion systems are used to deliver crew and cargo to exploration destinations. By combining chemical and solar-electric propulsion into a single spacecraft and applying each where it is most effective, the hybrid architecture enables a series of Mars trajectories that are more fuel efficient than an all chemical propulsion architecture without significant increases to trip time. The architecture calls for the aggregation of exploration assets in cislunar space prior to departure for Mars and utilizes high energy lunar-distant high Earth orbits for the final staging prior to departure. This paper presents the detailed analysis of various cislunar operations for the EMC Hybrid architecture as well as the result of the higher fidelity end-to-end trajectory analysis to understand the implications of the design choices on the Mars exploration campaign.

  15. Parallel Hybrid Gas-Electric Geared Turbofan Engine Conceptual Design and Benefits Analysis

    Science.gov (United States)

    Lents, Charles; Hardin, Larry; Rheaume, Jonathan; Kohlman, Lee

    2016-01-01

    The conceptual design of a parallel gas-electric hybrid propulsion system for a conventional single aisle twin engine tube and wing vehicle has been developed. The study baseline vehicle and engine technology are discussed, followed by results of the hybrid propulsion system sizing and performance analysis. The weights analysis for the electric energy storage & conversion system and thermal management system is described. Finally, the potential system benefits are assessed.

  16. Harmonic Resonance Damping with a Hybrid Compensation System in Power Systems with Dispersed Generation

    DEFF Research Database (Denmark)

    Chen, Zhe; Pedersen, John Kim; Blaabjerg, Frede

    2004-01-01

    A hybrid compensation system consisting of an active filter and a group of distributed passive filters has been studied previously. The passive filters are used for each distorting load or Dispersed Generation (DG) unit to remove major harmonics and provide reactive power compensation. The active...... filter is connected in parallel with the distributed passive filters and loads/DGs to correct the system unbalance and remove the remaining harmonic components. The effectiveness of the presented compensation system has also been demonstrated. This paper studies the performance of the hybrid compensation...... demonstrated that the harmonic resonance can be damped effectively. The hybrid filter system is an effective compensation system for dispersed generation systems. In the compensation system, the passive filters are mainly responsible for main harmonic and reactive power compensation of each individual load/ DG...

  17. Generalised Computability and Applications to Hybrid Systems

    DEFF Research Database (Denmark)

    Korovina, Margarita V.; Kudinov, Oleg V.

    2001-01-01

    We investigate the concept of generalised computability of operators and functionals defined on the set of continuous functions, firstly introduced in [9]. By working in the reals, with equality and without equality, we study properties of generalised computable operators and functionals. Also we...... propose an interesting application to formalisation of hybrid systems. We obtain some class of hybrid systems, which trajectories are computable in the sense of computable analysis. This research was supported in part by the RFBR (grants N 99-01-00485, N 00-01- 00810) and by the Siberian Branch of RAS (a...... grant for young researchers, 2000)...

  18. Economics of hybrid photovoltaic power plants

    Energy Technology Data Exchange (ETDEWEB)

    Breyer, Christian

    2012-08-16

    plants, wind power, solar thermal power (STEG) and hydro power plants. For the 2010s, detailed global demand curves are derived for hybrid PV-Fossil power plants on a per power plant, per country and per fuel type basis. The fundamental technical and economic potentials for hybrid PV-STEG, hybrid PV-Wind and hybrid PV-Hydro power plants are considered. The global resource availability for PV and wind power plants is excellent, thus knowing the competitive or complementary characteristic of hybrid PV-Wind power plants on a local basis is identified as being of utmost relevance. The complementarity of hybrid PV-Wind power plants is confirmed. As a result of that almost no reduction of the global economic PV market potential need to be expected and more complex power system designs on basis of hybrid PV-Wind power plants are feasible. The final target of implementing renewable power technologies into the global power system is a nearly 100% renewable power supply. Besides balancing facilities, storage options are needed, in particular for seasonal power storage. Renewable power methane (RPM) offers respective options. A comprehensive global and local analysis is performed for analysing a hybrid PV-Wind-RPM combined cycle gas turbine power system. Such a power system design might be competitive and could offer solutions for nearly all current energy system constraints including the heating and transportation sector and even the chemical industry. Summing up, hybrid PV power plants become very attractive and PV power systems will very likely evolve together with wind power to the major and final source of energy for mankind.

  19. Economics of hybrid photovoltaic power plants

    Energy Technology Data Exchange (ETDEWEB)

    Breyer, Christian

    2012-08-16

    coal fired power plants, wind power, solar thermal power (STEG) and hydro power plants. For the 2010s, detailed global demand curves are derived for hybrid PV-Fossil power plants on a per power plant, per country and per fuel type basis. The fundamental technical and economic potentials for hybrid PV-STEG, hybrid PV-Wind and hybrid PV-Hydro power plants are considered. The global resource availability for PV and wind power plants is excellent, thus knowing the competitive or complementary characteristic of hybrid PV-Wind power plants on a local basis is identified as being of utmost relevance. The complementarity of hybrid PV-Wind power plants is confirmed. As a result of that almost no reduction of the global economic PV market potential need to be expected and more complex power system designs on basis of hybrid PV-Wind power plants are feasible. The final target of implementing renewable power technologies into the global power system is a nearly 100% renewable power supply. Besides balancing facilities, storage options are needed, in particular for seasonal power storage. Renewable power methane (RPM) offers respective options. A comprehensive global and local analysis is performed for analysing a hybrid PV-Wind-RPM combined cycle gas turbine power system. Such a power system design might be competitive and could offer solutions for nearly all current energy system constraints including the heating and transportation sector and even the chemical industry. Summing up, hybrid PV power plants become very attractive and PV power systems will very likely evolve together with wind power to the major and final source of energy for mankind.

  20. Analysis of hybrid energy systems for application in southern Ghana

    International Nuclear Information System (INIS)

    Adaramola, Muyiwa S.; Agelin-Chaab, Martin; Paul, Samuel S.

    2014-01-01

    Highlights: • The option of using hybrid energy for electricity in remote areas of Ghana is examined. • The cost of electricity produced by the hybrid system is found to be $0.281/kW h. • The levelized cost of electricity increase by 9% when the PV price is increased from $3000/kW to $7500/kW. - Abstract: Due to advances in renewable energy technologies and increase in oil price, hybrid renewable energy systems are becoming increasingly attractive for power generation applications in remote areas. This paper presents an economic analysis of the feasibility of utilizing a hybrid energy system consisting of solar, wind and diesel generators for application in remote areas of southern Ghana using levelized cost of electricity (LCOE) and net present cost of the system. The annual daily average solar global radiation at the selected site is 5.4 kW h/m 2 /day and the annual mean wind speed is 5.11 m/s. The National Renewable Energy Laboratory’s Hybrid Optimization Model for Electric Renewable (HOMER) software was employed to carry out the present study. Both wind data and the actual load data have been used in the simulation model. It was found that a PV array of 80 kW, a 100 kW wind turbine, two generators with combined capacity of 100 kW, a 60 kW converter/inverter and a 60 Surrette 4KS25P battery produced a mix of 791.1 MW h of electricity annually. The cost of electricity for this hybrid system is found to be $0.281/kW h. Sensitivity analysis on the effect of changes in wind speed, solar global radiation and diesel price on the optimal energy was investigated and the impact of solar PV price on the LCOE for a selected hybrid energy system was also presented

  1. Hybrid electronic/optical synchronized chaos communication system.

    Science.gov (United States)

    Toomey, J P; Kane, D M; Davidović, A; Huntington, E H

    2009-04-27

    A hybrid electronic/optical system for synchronizing a chaotic receiver to a chaotic transmitter has been demonstrated. The chaotic signal is generated electronically and injected, in addition to a constant bias current, to a semiconductor laser to produce an optical carrier for transmission. The optical chaotic carrier is photodetected to regenerate an electronic signal for synchronization in a matched electronic receiver The system has been successfully used for the transmission and recovery of a chaos masked message that is added to the chaotic optical carrier. Past demonstrations of synchronized chaos based, secure communication systems have used either an electronic chaotic carrier or an optical chaotic carrier (such as the chaotic output of various nonlinear laser systems). This is the first electronic/optical hybrid system to be demonstrated. We call this generation of a chaotic optical carrier by electronic injection.

  2. Hybrid daylight/light-emitting diode illumination system for indoor lighting.

    Science.gov (United States)

    Ge, Aiming; Qiu, Peng; Cai, Jinlin; Wang, Wei; Wang, Junwei

    2014-03-20

    A hybrid illumination method using both daylight and light-emitting diodes (LEDs) for indoor lighting is presented in this study. The daylight can be introduced into the indoor space by a panel-integration system. The daylight part and LEDs are combined within a specific luminaire that can provide uniform illumination. The LEDs can be turned on and dimmed through closed-loop control when the daylight illuminance is inadequate. We simulated the illumination and calculated the indoor lighting efficiency of our hybrid daylight and LED lighting system, and compared this with that of LED and fluorescent lighting systems. Simulation results show that the efficiency of the hybrid daylight/LED illumination method is better than that of LED and traditional lighting systems, under the same lighting conditions and lighting time; the method has hybrid lighting average energy savings of T5 66.28%, and that of the LEDs is 41.62%.

  3. PV Horizon : Proceedings of the Workshop on Photovoltaic Hybrid Systems. CD ed.

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-07-01

    The aim of this workshop was to share information on current photovoltaic (PV) and hybrid system technology, and to present information on international experience and trends in research and development. It brought together 70 experts from Canada, the United States, several European countries, Japan and Australia. Currently, PV hybrid systems are used for stand-alone projects in telecommunication applications, remote housing, and leisure lodges. The applications for these sectors are well known and the technology is cost effective. Other applications are for micro-grid applications such as small remote islands, village power and tourist resorts. The costs for these types of applications can also be effective as long as the power demand is relatively low. A keynote presentation which highlighted the current application of PV hybrid systems, was followed by three sessions dealing with international experience with hybrid systems, the research and development opportunities for hybrid systems, and visual presentations on a range of subjects dealing with PV hybrid systems, their components, system integration, standards, guidelines, and control system issues. It was noted that the future for renewables looks bright, particularly for developing countries. Their use will also reduce the environmental footprint of remote power solutions. refs., tabs., figs.

  4. Modelling and analysis of real-time and hybrid systems

    Energy Technology Data Exchange (ETDEWEB)

    Olivero, A

    1994-09-29

    This work deals with the modelling and analysis of real-time and hybrid systems. We first present the timed-graphs as model for the real-time systems and we recall the basic notions of the analysis of real-time systems. We describe the temporal properties on the timed-graphs using TCTL formulas. We consider two methods for property verification: in one hand we study the symbolic model-checking (based on backward analysis) and in the other hand we propose a verification method derived of the construction of the simulation graph (based on forward analysis). Both methods have been implemented within the KRONOS verification tool. Their application for the automatic verification on several real-time systems confirms the practical interest of our approach. In a second part we study the hybrid systems, systems combining discrete components with continuous ones. As in the general case the analysis of this king of systems is not decidable, we identify two sub-classes of hybrid systems and we give a construction based method for the generation of a timed-graph from an element into the sub-classes. We prove that in one case the timed-graph obtained is bi-similar with the considered system and that there exists a simulation in the other case. These relationships allow the application of the described technics on the hybrid systems into the defined sub-classes. (authors). 60 refs., 43 figs., 8 tabs., 2 annexes.

  5. A Hybrid Model through the Fusion of Type-2 Fuzzy Logic Systems and Sensitivity-Based Linear Learning Method for Modeling PVT Properties of Crude Oil Systems

    Directory of Open Access Journals (Sweden)

    Ali Selamat

    2012-01-01

    Full Text Available Sensitivity-based linear learning method (SBLLM has recently been used as a predictive tool due to its unique characteristics and performance, particularly its high stability and consistency during predictions. However, the generalisation capability of SBLLM is sometimes limited depending on the nature of the dataset, particularly on whether uncertainty is present in the dataset or not. Since it made use of sensitivity analysis in relation to the data sets used, it is surely very prone to being affected by the nature of the dataset. In order to reduce the effects of uncertainties in SBLLM prediction and improve its generalisation ability, this paper proposes a hybrid system through the unique combination of type-2 fuzzy logic systems (type-2 FLSs and SBLLM; thereafter the hybrid system was used to model PVT properties of crude oil systems. Type-2 FLS has been choosen in order to better handle uncertainties existing in datasets beyond the capability of type-1 fuzzy logic systems. In the proposed hybrid, the type-2 FLS is used to handle uncertainties in reservoir data so that the cleaned data from type-2 FLS is then passed to the SBLLM for training and then final prediction using testing dataset follows. Comparative studies have been carried out to compare the performance of the newly proposed T2-SBLLM hybrid system with each of the constituent type-2 FLS and SBLLM. Empirical results from simulation show that the proposed T2-SBLLM hybrid system has greatly improved upon the performance of SBLLM, while also maintaining a better performance above that of the type-2 FLS.

  6. Quantum state engineering in hybrid open quantum systems

    Science.gov (United States)

    Joshi, Chaitanya; Larson, Jonas; Spiller, Timothy P.

    2016-04-01

    We investigate a possibility to generate nonclassical states in light-matter coupled noisy quantum systems, namely, the anisotropic Rabi and Dicke models. In these hybrid quantum systems, a competing influence of coherent internal dynamics and environment-induced dissipation drives the system into nonequilibrium steady states (NESSs). Explicitly, for the anisotropic Rabi model, the steady state is given by an incoherent mixture of two states of opposite parities, but as each parity state displays light-matter entanglement, we also find that the full state is entangled. Furthermore, as a natural extension of the anisotropic Rabi model to an infinite spin subsystem, we next explored the NESS of the anisotropic Dicke model. The NESS of this linearized Dicke model is also an inseparable state of light and matter. With an aim to enrich the dynamics beyond the sustainable entanglement found for the NESS of these hybrid quantum systems, we also propose to combine an all-optical feedback strategy for quantum state protection and for establishing quantum control in these systems. Our present work further elucidates the relevance of such hybrid open quantum systems for potential applications in quantum architectures.

  7. Design and management of energy-efficient hybrid electrical energy storage systems

    CERN Document Server

    Kim, Younghyun

    2014-01-01

    This book covers system-level design optimization and implementation of hybrid energy storage systems. The author introduces various techniques to improve the performance of hybrid energy storage systems, in the context of design optimization and automation. Various energy storage techniques are discussed, each with its own advantages and drawbacks, offering viable, hybrid approaches to building a high performance, low cost energy storage system. Novel design optimization techniques and energy-efficient operation schemes are introduced. The author also describes the technical details of an act

  8. The rural areas electrification with a hybrid photovoltaic systems

    International Nuclear Information System (INIS)

    Kocev, Kiril I.; Dimitrov, Dimitar; Tudzharov, Gjorgji

    2001-01-01

    Depending on a daily load demand, distance from the utility grid and the available solar energy, the rural villages electrification with a hybrid photovoltaic (PV) system can be a cheaper solution than the classic electrification, by connecting them to the utility grid. Besides PV generator, the considered hybrid system is consisted of a battery and a diesel gen set. For the concrete case - rural village with estimated daily load demand of 15.5 kWh/day, with the computer program PVFORM, which is modified for such hybrid system, were simulated a few hundreds PV systems, with different sizes of the PV generator and of the battery capacity. Analyzing the obtained results, it can be foreseen the influence of the component size on the system functionality. From the mass of possible system combinations, it is chosen one that has 42 % lower initial investment, than the initial investment for connection of the village to the utility grid. (Original)

  9. Hybrid Membrane System for Industrial Water Reuse

    Energy Technology Data Exchange (ETDEWEB)

    None

    2016-08-01

    This factsheet describes a project that developed and demonstrated a new hybrid system for industrial wastewater treatment that synergistically combines a forward osmosis system with a membrane distillation technology and is powered by waste heat.

  10. Hybrid Recurrent Laguerre-Orthogonal-Polynomial NN Control System Applied in V-Belt Continuously Variable Transmission System Using Particle Swarm Optimization

    Directory of Open Access Journals (Sweden)

    Chih-Hong Lin

    2015-01-01

    Full Text Available Because the V-belt continuously variable transmission (CVT system driven by permanent magnet synchronous motor (PMSM has much unknown nonlinear and time-varying characteristics, the better control performance design for the linear control design is a time consuming procedure. In order to overcome difficulties for design of the linear controllers, the hybrid recurrent Laguerre-orthogonal-polynomial neural network (NN control system which has online learning ability to respond to the system’s nonlinear and time-varying behaviors is proposed to control PMSM servo-driven V-belt CVT system under the occurrence of the lumped nonlinear load disturbances. The hybrid recurrent Laguerre-orthogonal-polynomial NN control system consists of an inspector control, a recurrent Laguerre-orthogonal-polynomial NN control with adaptive law, and a recouped control with estimated law. Moreover, the adaptive law of online parameters in the recurrent Laguerre-orthogonal-polynomial NN is derived using the Lyapunov stability theorem. Furthermore, the optimal learning rate of the parameters by means of modified particle swarm optimization (PSO is proposed to achieve fast convergence. Finally, to show the effectiveness of the proposed control scheme, comparative studies are demonstrated by experimental results.

  11. 4f-5d hybridization in a high k dielectric

    International Nuclear Information System (INIS)

    Losovyj, Ya.B.; Tang, Jinke; Wang, Wendong; Hong Yuanjia; Palshin, Vadim; Tittsworth, Roland

    2006-01-01

    While intra-atomic f-d hybridization is expected, experimental confirmation of f-d hybridization in the photoemission final state leading to 4f band structure has been limited to 5f systems and compound systems with very shallow 4f levels. We demonstrate that core 4f states can contribute to the valence band structure in a wide band gap dielectric, in this case HfO 2 in the photoemission final state. In spite of the complications of sample charging, we find evidence of symmetry in the shallow 4f levels and wave vector dependent band dispersion, the latter consistent with the crystal structure of HfO 2

  12. Automatic generation of smart earthquake-resistant building system: Hybrid system of base-isolation and building-connection

    Directory of Open Access Journals (Sweden)

    M. Kasagi

    2016-02-01

    Full Text Available A base-isolated building may sometimes exhibit an undesirable large response to a long-duration, long-period earthquake ground motion and a connected building system without base-isolation may show a large response to a near-fault (rather high-frequency earthquake ground motion. To overcome both deficiencies, a new hybrid control system of base-isolation and building-connection is proposed and investigated. In this new hybrid building system, a base-isolated building is connected to a stiffer free wall with oil dampers. It has been demonstrated in a preliminary research that the proposed hybrid system is effective both for near-fault (rather high-frequency and long-duration, long-period earthquake ground motions and has sufficient redundancy and robustness for a broad range of earthquake ground motions.An automatic generation algorithm of this kind of smart structures of base-isolation and building-connection hybrid systems is presented in this paper. It is shown that, while the proposed algorithm does not work well in a building without the connecting-damper system, it works well in the proposed smart hybrid system with the connecting damper system.

  13. An insight on advantage of hybrid sun–wind-tracking over sun-tracking PV system

    International Nuclear Information System (INIS)

    Rahimi, Masoud; Banybayat, Meisam; Tagheie, Yaghoub; Valeh-e-Sheyda, Peyvand

    2015-01-01

    Graphical abstract: Real photograph of hybrid sun–wind-tracking system. - Highlights: • Novel hybrid sun–wind-tracking system proposed to enhance PV cell performance. • The wind tracker can cool down the PV cell as sun-tracking system work. • The hybrid tracker achieved 7.4% increase in energy gain over the sun tracker. • The overall daily output energy gain was increased by 49.83% by using this system. - Abstract: This paper introduces the design and application of a novel hybrid sun–wind-tracking system. This hybrid system employs cooling effect of wind, besides the advantages of tracking sun for enhancing power output from examined hybrid photovoltaic cell. The principal experiment focuses on comparison between dual-axes sun-tracking and hybrid sun–wind-tracking photovoltaic (PV) panels. The deductions based on the research tests confirm that the overall daily output energy gain was increased by 49.83% compared with that of a fixed system. Moreover, an overall increase of about 7.4% in the output power was found for the hybrid sun–wind-tracking over the two-axis sun tracking system.

  14. Safety Verification for Probabilistic Hybrid Systems

    DEFF Research Database (Denmark)

    Zhang, Lijun; She, Zhikun; Ratschan, Stefan

    2010-01-01

    The interplay of random phenomena and continuous real-time control deserves increased attention for instance in wireless sensing and control applications. Safety verification for such systems thus needs to consider probabilistic variations of systems with hybrid dynamics. In safety verification o...... on a number of case studies, tackled using a prototypical implementation....

  15. Severe Slugging in Air-Water Hybrid Riser System

    Directory of Open Access Journals (Sweden)

    Jing Gong

    2014-11-01

    Full Text Available In the subsea pipeline gathering system, severe slugging flow is prone to occur. Severe slugging flow brings major threat to production and flow assurance in oil and gas industry due to periodical pressure oscillation and large liquid volume. Currently many researchers pay much more attention on L-shaped riser, catenaries, and S-shaped riser; little research has been made on hybrid riser, which is applied in the Africa West and Gulf of Mexico oil fields. Flow characteristics simulation for hybrid riser is made in this paper, using the one-dimensional and quasi-equilibrium model to simulate not only the riser-base pressure, severe slugging period, and the liquid slug length of the whole system but also base-pressure in the flexible pipe section. The calculated results match well with the experiment data. Besides, the influence of flexible pipe to the severe slugging characteristics of hybrid riser system is analyzed, which are significant for the determination of riser structure.

  16. Renewable Energy Systems: Development and Perspectives of a Hybrid Solar-Wind System

    OpenAIRE

    C. Shashidhar; K. Bhanupriya; P. Alluvada; Bandana; J. B. V. Subrahmanyam

    2012-01-01

    Considering the intermittent natural energy resources and the seasonal un-balance, a phtovoltaic-wind hybrid electrical power supply system was developed to accommodate remote locations where a conventional grid connection is inconvenient or expensive. However, the hybrid system can also be applied with grid connection and owners are allowed to sell excessive power back to the electric utility. The proposed set-up consists of a photo-voltaic solar-cell array, a mast mounted wind generator, le...

  17. Village power hybrid systems development in the United States

    Energy Technology Data Exchange (ETDEWEB)

    Flowers, L.; Green, J. [National Renewable Energy Lab., Golden, CO (United States); Bergey, M. [Bergey Windpower Co., Norman, OK (United States); Lilley, A. [Westinghouse Electric Corp., Pittsburgh, PA (United States); Mott, L. [Northern Power Systems, Moretown, VT (United States)

    1994-11-01

    The energy demand in developing countries is growing at a rate seven times that of the OECD countries, even though there are still 2 billion people living in developing countries without electricity. Many developing countries have social and economic development programs aimed at stemming the massive migration from the rural communities to the overcrowded, environmentally problematic, unemployment-bound urban centers. To address the issue of providing social, educational, health, and economic benefits to the rural communities of the developing world, a number of government and nongovernment agencies are sponsoring pilot programs to install and evaluate renewable energy systems as alternatives to line extension, diesels, kerosene, and batteries. The use of renewables in remote villages has yielded mixed results over the last 20 years. However, recently, photovoltaics, small wind turbines, and microhydro system shave gained increasing recognition as reliable, cost-effective alternatives to grid extension and diesel gensets for village-electricity applications. At the same time, hybrid systems based on combinations of PV/wind/batteries/diesel gensets have proven reliable and economic for remote international telecommunications markets. With the growing emphasis on environmentally and economically sustainable development of international rural communities, the US hybrid industry is responding with the development and demonstration of hybrid systems and architectures that will directly compete with conventional alternatives for village electrification. Assisting the US industry in this development, the National Renewable Energy Laboratory (NREL) has embarked on a program of collaborative technology development and technical assistance in the area of hybrid systems for village power. Following a brief review of village-power hybrid systems application and design issues, this paper presents the present industry development activities of three US suppliers and the NREL.

  18. Performance Analysis of a Hybrid Power Cutting System for Roadheader

    Directory of Open Access Journals (Sweden)

    Yang Yang

    2017-01-01

    Full Text Available An electrohydraulic hybrid power cutting transmission system for roadheader under specific working condition was proposed in this paper. The overall model for the new system composed of an electric motor model, a hydraulic pump-motor model, a torsional planetary set model, and a hybrid power train model was established. The working mode characteristics were simulated under the conditions of taking the effect of cutting picks into account. The advantages of new hybrid power cutting system about the dynamic response under shock load were investigated compared with the traditional cutting system. The results illustrated that the hybrid power system had an obvious cushioning in terms of the dynamic load of cutting electric motor and planetary gear set. Besides, the hydraulic motor could provide an auxiliary power to improve the performance of the electric motor. With further analysis, a dynamic load was found to have a high relation to the stiffness and damping of coupling in the transmission train. The results could be a useful guide for the design of cutting transmission of roadheader.

  19. A hybrid press system: Motion design and inverse kinematics issues

    Directory of Open Access Journals (Sweden)

    M. Erkan Kütük

    2016-06-01

    Full Text Available A hybrid machine (HM is a system integrating two types of motor; servo and constant velocity with a mechanism. The purpose is to make use of the energy in the system efficiently with a flexible system having more than one degree of freedom (DOF. A review is included on hybrid press systems. This study is included as a part of an industrial project used for metal forming. The system given here includes a 7 link mechanism, one of link is driven by a constant velocity motor (CV and the other is driven by a servo motor (SM. Kinematics analysis of the hybrid driven mechanism is presented here as inverse kinematics analysis. Motion design is very crucial step when using a hybrid machine. So motion design procedure is given with motion curve examples needed. Curve Fitting Toolbox (CFT in Matlab® is offered as an auxiliary method which can be successfully applied. Motion characteristics are chosen by looking at requirements taken from metal forming industry. Results are then presented herein.

  20. Optimization of hybrid system (wind-solar energy) for pumping water ...

    African Journals Online (AJOL)

    This paper presents an optimization method for a hybrid (wind-solar) autonomous system designed for pumping water. This method is based on mathematical models demonstrated for the analysis and control of the performance of the various components of the hybrid system. These models provide an estimate of ...

  1. Development of Traction Drive Motors for the Toyota Hybrid System

    Science.gov (United States)

    Kamiya, Munehiro

    Toyota Motor Corporation developed in 2005 a new hybrid system for a large SUV. This system included the new development of a high-speed traction drive motor achieving a significant increase in power weight ratio. This paper provides an overview of the hybrid system, discusses the characteristics required of a traction drive motor, and presents the technologies employed in the developed motor.

  2. Simulation of hybrid propulsion system using LSRG and single cylinder engine

    Science.gov (United States)

    Han, C.; Ohyama, K.; Wang, W. Q.

    2017-11-01

    Nowadays, more and more people are beginning to use hybrid vehicles (HVs). The drive system of HVs needs to produce the electric energy with the electric generator and gearbox powered by an engine. Therefore, the structure becomes complex and the cost is high. To solve this issue, this research proposes a new drive system design that combines the engine and a linear switched reluctance generator (LSRG). When the engine is operating, the LSRG can simultaneously assist the engine’s mechanical output or can generate power to charge the battery. In this research, three research steps are executed. In the first step, the LSRG is designed according to the size of normal engine. Then, finite element analysis is used to get the data of flux linkage and calculate the inductance and translator force. Finally, Simulink models of control system are constructed to verify the performance of LSRG.

  3. Demonstrative study for the wind and solar hybrid power system. 2; Furyoku taiyoko hybrid hatsuden system ni kansuru jissho kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    Kimura, Y; Sakuma, H; Ushiyama, I [Ashikaga Institute of Technology, Tochigi (Japan)

    1996-10-27

    In order to verify the complementary relationship between wind and solar energy, the long-term field test of the hybrid power system was conducted at the natural energy square of Ashikaga Institute of Technology. The solar cell blade windmill composed of a Savonius windmill and flexible solar cells applied to swept buckets was also prepared. As a result, the wind power generation was promising mainly in the winter period including the late fall and early spring, while solar one was stable all the year through although it was slightly poor in winter. Stable power generation was thus achieved by combining wind energy with solar energy. As the whole data of other wind and solar power generation systems at the square were analyzed for every month, the same conclusion as the solar cell blade windmill was obtained as follows: the wind power generation in Ashikaga area is promising in Nov.-March from the field test result for 16 months, solar power generation is stable all the year through, the hybrid power system is effective in Nov.-April, and the solar cell blade windmill is equivalent to the hybrid power system. 3 refs., 5 figs.

  4. Quantum dot-dye hybrid systems for energy transfer applications

    International Nuclear Information System (INIS)

    Ren, Ting

    2010-01-01

    In this thesis, we focus on the preparation of energy transfer-based quantum dot (QD)-dye hybrid systems. Two kinds of QD-dye hybrid systems have been successfully synthesized: QD-silica-dye and QD-dye hybrid systems. In the QD-silica-dye hybrid system, multishell CdSe/CdS/ZnS QDs were adsorbed onto monodisperse Stoeber silica particles with an outer silica shell of thickness 2-24 nm containing organic dye molecules (Texas Red). The thickness of this dye layer has a strong effect on the total sensitized acceptor emission, which is explained by the increase in the number of dye molecules homogeneously distributed within the silica shell, in combination with an enhanced surface adsorption of QDs with increasing dye amount. Our conclusions were underlined by comparison of the experimental results with Monte-Carlo simulations, and by control experiments confirming attractive interactions between QDs and Texas Red freely dissolved in solution. New QD-dye hybrid system consisting of multishell QDs and organic perylene dyes have been synthesized. We developed a versatile approach to assemble extraordinarily stable QD-dye hybrids, which uses dicarboxylate anchors to bind rylene dyes to QD. This system yields a good basis to study the energy transfer between QD and dye because of its simple and compact design: there is no third kind of molecule linking QD and dye; no spacer; and the affinity of the functional group to the QD surface is strong. The FRET signal was measured for these complexes as a function of both dye to QD ratio and center-to-center distance between QD and dye by controlling number of covered ZnS layers. Data showed that fluorescence resonance energy transfer (FRET) was the dominant mechanism of the energy transfer in our QD-dye hybrid system. FRET efficiency can be controlled by not only adjusting the number of dyes on the QD surface or the QD to dye distance, but also properly choosing different dye and QD components. Due to the strong stability, our QD

  5. Quantum dot-dye hybrid systems for energy transfer applications

    Energy Technology Data Exchange (ETDEWEB)

    Ren, Ting

    2010-07-01

    In this thesis, we focus on the preparation of energy transfer-based quantum dot (QD)-dye hybrid systems. Two kinds of QD-dye hybrid systems have been successfully synthesized: QD-silica-dye and QD-dye hybrid systems. In the QD-silica-dye hybrid system, multishell CdSe/CdS/ZnS QDs were adsorbed onto monodisperse Stoeber silica particles with an outer silica shell of thickness 2-24 nm containing organic dye molecules (Texas Red). The thickness of this dye layer has a strong effect on the total sensitized acceptor emission, which is explained by the increase in the number of dye molecules homogeneously distributed within the silica shell, in combination with an enhanced surface adsorption of QDs with increasing dye amount. Our conclusions were underlined by comparison of the experimental results with Monte-Carlo simulations, and by control experiments confirming attractive interactions between QDs and Texas Red freely dissolved in solution. New QD-dye hybrid system consisting of multishell QDs and organic perylene dyes have been synthesized. We developed a versatile approach to assemble extraordinarily stable QD-dye hybrids, which uses dicarboxylate anchors to bind rylene dyes to QD. This system yields a good basis to study the energy transfer between QD and dye because of its simple and compact design: there is no third kind of molecule linking QD and dye; no spacer; and the affinity of the functional group to the QD surface is strong. The FRET signal was measured for these complexes as a function of both dye to QD ratio and center-to-center distance between QD and dye by controlling number of covered ZnS layers. Data showed that fluorescence resonance energy transfer (FRET) was the dominant mechanism of the energy transfer in our QD-dye hybrid system. FRET efficiency can be controlled by not only adjusting the number of dyes on the QD surface or the QD to dye distance, but also properly choosing different dye and QD components. Due to the strong stability, our QD

  6. 4D Trajectory Estimation for Air Traffic Control Automation System Based on Hybrid System Theory

    Directory of Open Access Journals (Sweden)

    Xin-Min Tang

    2012-03-01

    Full Text Available To resolve the problem of future airspace management under great traffic flow and high density condition, 4D trajectory estimation has become one of the core technologies of the next new generation air traffic control automation system. According to the flight profile and the dynamics models of different aircraft types under different flight conditions, a hybrid system model that switches the aircraft from one flight stage to another with aircraft state changing continuously in one state is constructed. Additionally, air temperature and wind speed are used to modify aircraft true airspeed as well as ground speed, and the hybrid system evolution simulation is used to estimate aircraft 4D trajectory. The case study proves that 4D trajectory estimated through hybrid system model can image the flight dynamic states of aircraft and satisfy the needs of the planned flight altitude profile.KEY WORDSair traffic management, 4D trajectory estimation, hybrid system model, aircraft dynamic model

  7. Electric and hydraulic hybrid actuator. Competing and complementary systems?; Elektrische und hydraulische Hybridantriebe. Konkurrierende oder komplementaere Systeme?

    Energy Technology Data Exchange (ETDEWEB)

    Dehnert, Klaus [Eaton Corporation, Rastatt (Germany)

    2011-07-01

    Hybrid drives for commercial vehicles and for mobile processing machines are evolving rapidly to a future-oriented technology. Hybrid drives significantly affect issues such as fuel efficiency, emissions, productivity and life cycle cost. For recovery and storage of kinetic energy, different technologies are used. Under this aspect, the author of the contribution under consideration reports on the key distinguishing features of some currently available hybrid concepts and their appropriate application. In the selection of suitable hydraulic hybrid drive systems, the essential features of different hybrid systems have to be considered.

  8. Analysis of a hybrid renewable energy system on the Mures valley using Homer

    Directory of Open Access Journals (Sweden)

    Dumitru Cristian Dragoş

    2011-12-01

    Full Text Available Renewable energy technologies offer the promise of clean, abundant energy gathered from self-renewing resources such as the sun, wind, earth, and plants. Virtually all regions of the world have renewable resources of one type or another. This paper deals with the modeling and analysis of a hybrid system based on renewable energy resources, located on the Mureş valley, using a dedicated software named HOMER. Different types and topologies of renewable resources for the energy supply are analyzed; a small consumer situated on the Mureş Valley is modeled based on a load curve. Finally, the energy flows between the renewable energy system and the local supplying network are analyzed.

  9. Outage Analysis of Practical FSO/RF Hybrid System With Adaptive Combining

    KAUST Repository

    Rakia, Tamer

    2015-08-01

    Hybrid free-space optical (FSO)/radio-frequency (RF) systems have emerged as a promising solution for high-data-rate wireless transmission. We present and analyze a transmission scheme for the hybrid FSO/RF communication system based on adaptive combining. Specifically, only FSO link is active as long as the instantaneous signal-to-noise ratio (SNR) at the FSO receiver is above a certain threshold level. When it falls below this threshold level, the RF link is activated along with the FSO link and the signals from the two links are combined at the receiver using a dual-branch maximal ratio combiner. Novel analytical expression for the cumulative distribution function (CDF) of the received SNR for the proposed hybrid system is obtained. This CDF expression is used to study the system outage performance. Numerical examples are presented to compare the outage performance of the proposed hybrid FSO/RF system with that of the FSO-only and RF-only systems. © 1997-2012 IEEE.

  10. Development of a solar-hydrogen hybrid energy system

    International Nuclear Information System (INIS)

    Sebastian, P.J.; Gamboa, S.A.; Vejar, Set; Campos, J.

    2009-01-01

    Full text: The details of the development of a PV-hydrogen hybrid energy system is presented. An arrangement of photovoltaic modules (125 W/module) was established to provide 9 kW installed power in a three-phase configuration at 127 Vrms/phase. A 5 kW fuel cell system (hydrogen/oxygen) operate as a dynamic backup of the photovoltaic system. The autonomous operation of the hybrid power system implies the production of hydrogen by electrolysis. The hydrogen is produced by water electrolysis using an electrolyzer of 1 kW power. The electrical energy used to produce hydrogen is supplied from solar panels by using 1kW of photovoltaic modules. The photovoltaic modules are installed in a sun-tracker arrangement for increasing the energy conversion efficiency. The hydrogen is stored in solar to electric commercial metal hydride based containers and supplied to the fuel cell. The hybrid system is monitored by internet and some dynamic characteristics such as demanding power, energy and power factor could be analyzed independently from the system. Some energy saving recommendations has been implemented as a pilot program at CIE-UNAM to improve the efficient use of clean energy in normal operating conditions in offices and laboratories. (author)

  11. Modelling and Optimising the Value of a Hybrid Solar-Wind System

    Science.gov (United States)

    Nair, Arjun; Murali, Kartik; Anbuudayasankar, S. P.; Arjunan, C. V.

    2017-05-01

    In this paper, a net present value (NPV) approach for a solar hybrid system has been presented. The system, in question aims at supporting an investor by assessing an investment in solar-wind hybrid system in a given area. The approach follow a combined process of modelling the system, with optimization of major investment-related variables to maximize the financial yield of the investment. The consideration of solar wind hybrid supply presents significant potential for cost reduction. The investment variables concern the location of solar wind plant, and its sizing. The system demand driven, meaning that its primary aim is to fully satisfy the energy demand of the customers. Therefore, the model is a practical tool in the hands of investor to assess and optimize in financial terms an investment aiming at covering real energy demand. Optimization is performed by taking various technical, logical constraints. The relation between the maximum power obtained between individual system and the hybrid system as a whole in par with the net present value of the system has been highlighted.

  12. Existence of Periodic Orbits with Zeno Behavior in Completed Lagrangian Hybrid Systems

    OpenAIRE

    Or, Yizhar; Ames, Aaron D.

    2009-01-01

    In this paper, we consider hybrid models of mechanical systems undergoing impacts, Lagrangian hybrid systems, and study their periodic orbits in the presence of Zeno behavior-an infinite number of impacts occurring in finite time. The main result of this paper is explicit conditions under which the existence of stable periodic orbits for a Lagrangian hybrid system with perfectly plastic impacts implies the existence of periodic orbits in the same system with non-plastic impacts. Such periodic...

  13. Dissipative dynamics of superconducting hybrid qubit systems

    International Nuclear Information System (INIS)

    Montes, Enrique; Calero, Jesus M; Reina, John H

    2009-01-01

    We perform a theoretical study of composed superconducting qubit systems for the case of a coupled qubit configuration based on a hybrid qubit circuit made of both charge and phase qubits, which are coupled via a σ x x σ z interaction. We compute the system's eigen-energies in terms of the qubit transition frequencies and the strength of the inter-qubit coupling, and describe the sensitivity of the energy crossing/anti-crossing features to such coupling. We compute the hybrid system's dissipative dynamics for the cases of i) collective and ii) independent decoherence, whereby the system interacts with one common and two different baths of harmonic oscillators, respectively. The calculations have been performed within the Bloch-Redfield formalism and we report the solutions for the populations and the coherences of the system's reduced density matrix. The dephasing and relaxation rates are explicitly calculated as a function of the heat bath temperature.

  14. Dissipative dynamics of superconducting hybrid qubit systems

    Energy Technology Data Exchange (ETDEWEB)

    Montes, Enrique; Calero, Jesus M; Reina, John H, E-mail: enriquem@univalle.edu.c, E-mail: j.reina-estupinan@physics.ox.ac.u [Departamento de Fisica, Universidad del Valle, A.A. 25360, Cali (Colombia)

    2009-05-01

    We perform a theoretical study of composed superconducting qubit systems for the case of a coupled qubit configuration based on a hybrid qubit circuit made of both charge and phase qubits, which are coupled via a sigma{sub x} x sigma{sub z} interaction. We compute the system's eigen-energies in terms of the qubit transition frequencies and the strength of the inter-qubit coupling, and describe the sensitivity of the energy crossing/anti-crossing features to such coupling. We compute the hybrid system's dissipative dynamics for the cases of i) collective and ii) independent decoherence, whereby the system interacts with one common and two different baths of harmonic oscillators, respectively. The calculations have been performed within the Bloch-Redfield formalism and we report the solutions for the populations and the coherences of the system's reduced density matrix. The dephasing and relaxation rates are explicitly calculated as a function of the heat bath temperature.

  15. The under-critical reactors physics for the hybrid systems

    International Nuclear Information System (INIS)

    Schapira, J.P.; Vergnes, J.; Zaetta, A.

    1998-01-01

    This day, organized by the SFEN, took place at Paris the 12 march 1998. Nine papers were presented. They take stock on the hybrid systems and more specifically the under-critical reactors. One of the major current preoccupation of nuclear industry is the problems of the increase of radioactive wastes produced in the plants and the destruction of the present stocks. To solve these problems a solution is the utilisation of hybrid systems: the coupling of a particle acceleration to an under-critical reactor. Historical aspects, advantages and performances of such hybrid reactors are presented in general papers. More technical papers are devoted to the spallation, the MUSE and the TARC experiments. (A.L.B.)

  16. SOLID OXIDE FUEL CELL HYBRID SYSTEM FOR DISTRIBUTED POWER GENERATION

    Energy Technology Data Exchange (ETDEWEB)

    Faress Rahman; Nguyen Minh

    2003-07-01

    This report summarizes the work performed by Hybrid Power Generation Systems, LLC during the January 2003 to June 2003 reporting period under Cooperative Agreement DE-FC26-01NT40779 for the U. S. Department of Energy, National Energy Technology Laboratory (DOE/NETL) entitled ''Solid Oxide Fuel Cell Hybrid System for Distributed Power Generation''. The main objective of this project is to develop and demonstrate the feasibility of a highly efficient hybrid system integrating a planar Solid Oxide Fuel Cell (SOFC) and a micro-turbine. In addition, an activity included in this program focuses on the development of an integrated coal gasification fuel cell system concept based on planar SOFC technology. This report summarizes the results obtained to date on: System performance analysis and model optimization; Reliability and cost model development; System control including dynamic model development; Heat exchanger material tests and life analysis; Pressurized SOFC evaluation; and Pre-baseline system definition for coal gasification fuel cell system concept.

  17. PV-wind hybrid system performance. A new approach and a case study

    International Nuclear Information System (INIS)

    Arribas, Luis; Cano, Luis; Cruz, Ignacio; Mata, Montserrat; Llobet, Ermen

    2010-01-01

    Until now, there is no internationally accepted guideline for the measurement, data exchange and analysis of PV-Wind Hybrid Systems. As there is a need for such a tool, so as to overcome the barrier that the lack of confidence due to the absence of reliability means for the development of the market of Hybrid Systems, an effort has been made to suggest one tool for PV-Wind Hybrid Systems. The suggested guidelines presented in this work are based on the existing guidelines for PV Systems, as a PV-Wind Hybrid system can be roughly thought of as a PV System to which wind generation has been added. So, the guidelines for PV Systems are valid for the PV-Wind System, and only the part referred to wind generation should be included. This has been the process followed in this work. The proposed method is applied to a case study, the CICLOPS Project, a 5 kW PV, 7.5 kW Wind Hybrid system installed at the Isolated Wind Systems Test Site that CIEMAT owns in CEDER (Soria, Spain). This system has been fully monitored through a year and the results of the monitoring activity, characterizing the long-term performance of the system are shown in this work. (author)

  18. PV-wind hybrid system performance. A new approach and a case study

    Energy Technology Data Exchange (ETDEWEB)

    Arribas, Luis; Cano, Luis; Cruz, Ignacio [Departamento de Energias Renovables, CIEMAT, Avda. Complutense 22, 28040 Madrid (Spain); Mata, Montserrat; Llobet, Ermen [Ecotecnia, Roc Boronat 78, 08005 Barcelona (Spain)

    2010-01-15

    Until now, there is no internationally accepted guideline for the measurement, data exchange and analysis of PV-Wind Hybrid Systems. As there is a need for such a tool, so as to overcome the barrier that the lack of confidence due to the absence of reliability means for the development of the market of Hybrid Systems, an effort has been made to suggest one tool for PV-Wind Hybrid Systems. The suggested guidelines presented in this work are based on the existing guidelines for PV Systems, as a PV-Wind Hybrid system can be roughly thought of as a PV System to which wind generation has been added. So, the guidelines for PV Systems are valid for the PV-Wind System, and only the part referred to wind generation should be included. This has been the process followed in this work. The proposed method is applied to a case study, the CICLOPS Project, a 5 kW PV, 7.5 kW Wind Hybrid system installed at the Isolated Wind Systems Test Site that CIEMAT owns in CEDER (Soria, Spain). This system has been fully monitored through a year and the results of the monitoring activity, characterizing the long-term performance of the system are shown in this work. (author)

  19. Hybrid synchronization of two independent chaotic systems on ...

    Indian Academy of Sciences (India)

    Keywords. Hybrid synchronization; complex network; information source; chaotic system. ... encryption and decryption through synchronization. However, the ... Certainly, if the two systems are different, the security would be improved. How.

  20. Nuclear Hybrid Energy System Model Stability Testing

    Energy Technology Data Exchange (ETDEWEB)

    Greenwood, Michael Scott [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Cetiner, Sacit M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Fugate, David W. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-04-01

    A Nuclear Hybrid Energy System (NHES) uses a nuclear reactor as the basic power generation unit, and the power generated is used by multiple customers as combinations of thermal power or electrical power. The definition and architecture of a particular NHES can be adapted based on the needs and opportunities of different localities and markets. For example, locations in need of potable water may be best served by coupling a desalination plant to the NHES. Similarly, a location near oil refineries may have a need for emission-free hydrogen production. Using the flexible, multi-domain capabilities of Modelica, Argonne National Laboratory, Idaho National Laboratory, and Oak Ridge National Laboratory are investigating the dynamics (e.g., thermal hydraulics and electrical generation/consumption) and cost of a hybrid system. This paper examines the NHES work underway, emphasizing the control system developed for individual subsystems and the overall supervisory control system.

  1. Continual Energy Management System of Proton Exchange Membrane Fuel Cell Hybrid Power Electric Vehicles

    Directory of Open Access Journals (Sweden)

    Ren Yuan

    2016-01-01

    Full Text Available Current research status in energy management of Proton Exchange Membrane (PEM fuel cell hybrid power electric vehicles are first described in this paper, and then build the PEMFC/ lithium-ion battery/ ultra-capacitor hybrid system model. The paper analysis the key factors of the continuous power available in PEM fuel cell hybrid power electric vehicle and hybrid power system working status under different driving modes. In the end this paper gives the working flow chart of the hybrid power system and concludes the three items of the system performance analysis.

  2. Hybrid Ground-Source Heat Pump Installations: Experiences, Improvements, and Tools

    Energy Technology Data Exchange (ETDEWEB)

    Scott Hackel; Amanda Pertzborn

    2011-06-30

    One innovation to ground-source heat pump (GSHP, or GHP) systems is the hybrid GSHP (HyGSHP) system, which can dramatically decrease the first cost of GSHP systems by using conventional technology (such as a cooling tower or a boiler) to meet a portion of the peak heating or cooling load. This work uses three case studies (two cooling-dominated, one heating-dominated) to demonstrate the performance of the hybrid approach. Three buildings were studied for a year; the measured data was used to validate models of each system. The models were used to analyze further improvements to the hybrid approach, and establish that this approach has positive impacts, both economically and environmentally. Lessons learned by those who design and operate the systems are also documented, including discussions of equipment sizing, pump operation, and cooling tower control. Finally, the measured data sets and models that were created during this work are described; these materials have been made freely available for further study of hybrid systems.

  3. Modeling and optimization of batteryless hybrid PV (photovoltaic)/Diesel systems for off-grid applications

    International Nuclear Information System (INIS)

    Tsuanyo, David; Azoumah, Yao; Aussel, Didier; Neveu, Pierre

    2015-01-01

    This paper presents a new model and optimization procedure for off-grid hybrid PV (photovoltaic)/Diesel systems operating without battery storage. The proposed technico-economic model takes into account the variability of both the solar irradiation and the electrical loads. It allows optimizing the design and the operation of the hybrid systems by searching their lowest LCOE (Levelized Cost of Electricity). Two cases have been investigated: identical Diesel generators and Diesel generators with different sizes, and both are compared to conventional standalone Diesel generator systems. For the same load profile, the optimization results show that the LCOE of the optimized batteryless hybrid solar PV/Diesel (0.289 €/kWh for the hybrid system with identical Diesel generators and 0.284 €/kWh for the hybrid system with different sizes of Diesel generators) is lower than the LCOE obtained with standalone Diesel generators (0.32 €/kWh for the both cases). The obtained results are then confirmed by HOMER (Hybrid Optimization Model for Electric Renewables) software. - Highlights: • A technico-economic model for optimal design and operation management of batteryless hybrid systems is developed. • The model allows optimizing design and operation of hybrid systems by ensuring their lowest LCOE. • The model was validated by HOMER. • Batteryless hybrid system are suitable for off-grid applications

  4. Intelligent Power Management of hybrid Wind/ Fuel Cell/ Energy Storage Power Generation System

    OpenAIRE

    A. Hajizadeh; F. Hassanzadeh

    2013-01-01

    This paper presents an intelligent power management strategy for hybrid wind/ fuel cell/ energy storage power generation system. The dynamic models of wind turbine, fuel cell and energy storage have been used for simulation of hybrid power system. In order to design power flow control strategy, a fuzzy logic control has been implemented to manage the power between power sources. The optimal operation of the hybrid power system is a main goal of designing power management strategy. The hybrid ...

  5. Environmental and economic impacts of fertilizer drawn forward osmosis and nanofiltration hybrid system

    KAUST Repository

    Kim, Jung Eun; Phuntsho, Sherub; Chekli, Laura; Hong, Seungkwan; Ghaffour, NorEddine; Leiknes, TorOve; Choi, Joon Yong; Shon, Ho Kyong

    2017-01-01

    Environmental and economic impacts of the fertilizer drawn forward osmosis (FDFO) and nanofiltration (NF) hybrid system were conducted and compared with conventional reverse osmosis (RO) hybrid scenarios using microfiltration (MF) or ultrafiltration (UF) as a pre-treatment process. The results showed that the FDFO-NF hybrid system using thin film composite forward osmosis (TFC) FO membrane has less environmental impact than conventional RO hybrid systems due to lower consumption of energy and cleaning chemicals. The energy requirement for the treatment of mine impaired water by the FDFO-NF hybrid system was 1.08 kWh/m, which is 13.6% less energy than an MF-RO and 21% less than UF-RO under similar initial feed solution. In a closed-loop system, the FDFO-NF hybrid system using a TFC FO membrane with an optimum NF recovery rate of 84% had the lowest unit operating expenditure of AUD $0.41/m. Besides, given the current relatively high price and low flux performance of the cellulose triacetate and TFC FO membranes, the FDFO-NF hybrid system still holds opportunities to reduce operating expenditure further. Optimizing NF recovery rates and improving the water flux of the membrane would decrease the unit OPEX costs, although the TFC FO membrane would be less sensitive to this effect.

  6. Environmental and economic impacts of fertilizer drawn forward osmosis and nanofiltration hybrid system

    KAUST Repository

    Kim, Jung Eun

    2017-05-08

    Environmental and economic impacts of the fertilizer drawn forward osmosis (FDFO) and nanofiltration (NF) hybrid system were conducted and compared with conventional reverse osmosis (RO) hybrid scenarios using microfiltration (MF) or ultrafiltration (UF) as a pre-treatment process. The results showed that the FDFO-NF hybrid system using thin film composite forward osmosis (TFC) FO membrane has less environmental impact than conventional RO hybrid systems due to lower consumption of energy and cleaning chemicals. The energy requirement for the treatment of mine impaired water by the FDFO-NF hybrid system was 1.08 kWh/m, which is 13.6% less energy than an MF-RO and 21% less than UF-RO under similar initial feed solution. In a closed-loop system, the FDFO-NF hybrid system using a TFC FO membrane with an optimum NF recovery rate of 84% had the lowest unit operating expenditure of AUD $0.41/m. Besides, given the current relatively high price and low flux performance of the cellulose triacetate and TFC FO membranes, the FDFO-NF hybrid system still holds opportunities to reduce operating expenditure further. Optimizing NF recovery rates and improving the water flux of the membrane would decrease the unit OPEX costs, although the TFC FO membrane would be less sensitive to this effect.

  7. Modeling and performance analysis of a concentrated photovoltaic–thermoelectric hybrid power generation system

    International Nuclear Information System (INIS)

    Lamba, Ravita; Kaushik, S.C.

    2016-01-01

    Highlights: • Thermodynamic model of concentrated photovoltaic–thermoelectric system is analysed. • Thomson effect reduces the power output of PV, TE and hybrid PV–TEG system. • Effect of thermocouple number, irradiance, PV and TE current have been studied. • The optimum concentration ratio for maximum power output has been found out. • The overall efficiency and power output of hybrid PV–TEG system has been improved. - Abstract: In this study, a thermodynamic model for analysing the performance of a concentrated photovoltaic–thermoelectric generator (CPV–TEG) hybrid system including Thomson effect in conjunction with Seebeck, Joule and Fourier heat conduction effects has been developed and simulated in MATALB environment. The expressions for calculating the temperature of photovoltaic (PV) module, hot and cold sides of thermoelectric (TE) module are derived analytically as well. The effect of concentration ratio, number of thermocouples in TE module, solar irradiance, PV module current and TE module current on power output and efficiency of the PV, TEG and hybrid PV–TEG system have been studied. The optimum concentration ratio corresponding to maximum power output of the hybrid system has been found out. It has been observed that by considering Thomson effect in TEG module, the power output of the PV, TE and hybrid PV–TEG systems decreases and at C = 1 and 5, it reduces the power output of hybrid system by 0.7% and 4.78% respectively. The results of this study may provide basis for performance optimization of a practical irreversible CPV–TEG hybrid system.

  8. Hybrid robotic systems for upper limb rehabilitation after stroke: A review.

    Science.gov (United States)

    Resquín, Francisco; Cuesta Gómez, Alicia; Gonzalez-Vargas, Jose; Brunetti, Fernando; Torricelli, Diego; Molina Rueda, Francisco; Cano de la Cuerda, Roberto; Miangolarra, Juan Carlos; Pons, José Luis

    2016-11-01

    In recent years the combined use of functional electrical stimulation (FES) and robotic devices, called hybrid robotic rehabilitation systems, has emerged as a promising approach for rehabilitation of lower and upper limb motor functions. This paper presents a review of the state of the art of current hybrid robotic solutions for upper limb rehabilitation after stroke. For this aim, studies have been selected through a search using web databases: IEEE-Xplore, Scopus and PubMed. A total of 10 different hybrid robotic systems were identified, and they are presented in this paper. Selected systems are critically compared considering their technological components and aspects that form part of the hybrid robotic solution, the proposed control strategies that have been implemented, as well as the current technological challenges in this topic. Additionally, we will present and discuss the corresponding evidences on the effectiveness of these hybrid robotic therapies. The review also discusses the future trends in this field. Copyright © 2016 IPEM. Published by Elsevier Ltd. All rights reserved.

  9. Measurement and Analysis of Power in Hybrid System

    Directory of Open Access Journals (Sweden)

    Vartika Keshri

    2016-12-01

    Full Text Available Application with renewable energy  sources  such   as solar cell array, wind turbines, or fuel cells have increased significantly during the past decade. To obtain the clean energy, we are using the hybrid solar-wind power generation. Consumers prefer quality power from suppliers. The quality of power can be measured by using parameters such as voltage sag, harmonic and power factor.   To   obtain   quality   power   we   have different topologies. In our paper we present a new possible topology which improves power quality. This paper presents modeling analysis and design of a pulse width modulation voltage source inverter (PWM-VSI to be connected between sources, which supplies energy from a hybrid solar wind energy system to the ac grid. The objective of this paper is to show that, with an adequate control, the converter not only can transfer the dc from hybrid solar wind energy system, but also can improve the power factor and quality power of electrical system. Whenever a disturbance occurs on load side, this disturbance can be minimized using open loop and closed loop control systems.

  10. Automated Controller Synthesis for non-Deterministic Piecewise-Affine Hybrid Systems

    DEFF Research Database (Denmark)

    Grunnet, Jacob Deleuran

    formations. This thesis uses a hybrid systems model of a satellite formation with possible actuator faults as a motivating example for developing an automated control synthesis method for non-deterministic piecewise-affine hybrid systems (PAHS). The method does not only open an avenue for further research...... in fault tolerant satellite formation control, but can be used to synthesise controllers for a wide range of systems where external events can alter the system dynamics. The synthesis method relies on abstracting the hybrid system into a discrete game, finding a winning strategy for the game meeting...... game and linear optimisation solvers for controller refinement. To illustrate the efficacy of the method a reoccurring satellite formation example including actuator faults has been used. The end result is the application of PAHSCTRL on the example showing synthesis and simulation of a fault tolerant...

  11. Hybrid Intrusion Forecasting Framework for Early Warning System

    Science.gov (United States)

    Kim, Sehun; Shin, Seong-Jun; Kim, Hyunwoo; Kwon, Ki Hoon; Han, Younggoo

    Recently, cyber attacks have become a serious hindrance to the stability of Internet. These attacks exploit interconnectivity of networks, propagate in an instant, and have become more sophisticated and evolutionary. Traditional Internet security systems such as firewalls, IDS and IPS are limited in terms of detecting recent cyber attacks in advance as these systems respond to Internet attacks only after the attacks inflict serious damage. In this paper, we propose a hybrid intrusion forecasting system framework for an early warning system. The proposed system utilizes three types of forecasting methods: time-series analysis, probabilistic modeling, and data mining method. By combining these methods, it is possible to take advantage of the forecasting technique of each while overcoming their drawbacks. Experimental results show that the hybrid intrusion forecasting method outperforms each of three forecasting methods.

  12. Analysis of fixed tilt and sun tracking photovoltaic–micro wind based hybrid power systems

    International Nuclear Information System (INIS)

    Sinha, Sunanda; Chandel, S.S.

    2016-01-01

    Graphical abstract: 6 kW_p photovoltaic–micro wind based hybrid power system analysis in a Indian Western Himalayan location. - Highlights: • Power generation by a roof mounted photovoltaic–micro wind hybrid system is explored. • Optimum hybrid configurations using fixed and sun tracking photovoltaic systems are determined. • Analysis of hybrid systems with optimally tilted and different sun tracking systems is presented. • Two axis sun tracking systems are found to generate 4.88–26.29% more energy than fixed tilt system. • Hybrid system installed at optimum tilt angle is found to be cost effective than a sun tracking system. - Abstract: In this study fixed tilt and sun tracking photovoltaic based micro wind hybrid power systems are analyzed along with determining the optimum configurations for a 6 kW_p roof mounted micro wind based hybrid system using fixed and tracking photovoltaic systems to enhance the power generation potential in a low windy Indian hilly terrain with good solar resource. The main objective of the study is to enhance power generation by focusing on photovoltaic component of the hybrid system. A comparative power generation analysis of different configurations of hybrid systems with fixed tilt, monthly optimum tilt, yearly optimum tilt and 6 different sun tracking photovoltaic systems is carried out using Hybrid Optimization Model for Electric Renewables. Monthly and seasonal optimum tilt angles determined for the location vary between 0° and 60° with annual optimum tilt angle as 29.25°. The optimum configurations for all sun tracking systems except for the two axis tracking system is found to be 7 kW_p photovoltaic system, one 5 kW_p wind turbine, 10 batteries and a 2 kW_p inverter. The optimum configuration for two axis tracking system and two types of fixed tilt systems, is found to be a 8 kW_p photovoltaic system, one 5 kW_p wind turbine, 10 batteries and a 2 kW_p inverter. The results show that horizontal axis with

  13. Theory of strong hybridization-induced relaxation in uranium systems

    International Nuclear Information System (INIS)

    Hu, G.; Cooper, B.R.

    1988-01-01

    Commonly, for metallic uranium systems, sharp magnetic excitations are not observed in neutron inelastic scattering experiments, but rather there is a continuous spectrum of magnetic response. By extending our earlier theory for partially delocalized cerium systems, we can understand this behavior. The band-f hybridization is transformed to resonant scattering in our theory, where the exchange part of the scattering gives both a two-ion interaction (physically corresponding to cooperative hybridization, giving anisotropic magnetic ordering with unusual excitation dispersion for cerium systems) and a hybridization coupling of each ion to the band sea (giving relaxation and strong energy renormalization of the excitations for cerium systems). For uranium the f delocalization (and hence the hybridization) is much stronger than for cerium. The two-ion interaction (giving quasi-ionic energy level splitting) grows by an order of magnitude or more, as evidenced by greatly increased magnetic ordering temperatures. On the other hand, the single-site hybridization strength parameter J-script characterizing the f-to-band-bath coupling grows more moderately as the f levels move toward the Fermi energy, because of the renormalizing effect of the direct scattering which broadens the f levels. The increased energy scale of the quasi-ionic level splitting for uranium as compared to cerium or plutonium is the major contributor to the greatly increased width of magnetic scattering distributions, while the moderate increase in coupling of each uranium quasi-ion to the band sea gives a lesser contribution. We apply this theory to UP and UAs and compare our results with experiment

  14. Research on efficiency evaluation model of integrated energy system based on hybrid multi-attribute decision-making.

    Science.gov (United States)

    Li, Yan

    2017-05-25

    The efficiency evaluation model of integrated energy system, involving many influencing factors, and the attribute values are heterogeneous and non-deterministic, usually cannot give specific numerical or accurate probability distribution characteristics, making the final evaluation result deviation. According to the characteristics of the integrated energy system, a hybrid multi-attribute decision-making model is constructed. The evaluation model considers the decision maker's risk preference. In the evaluation of the efficiency of the integrated energy system, the evaluation value of some evaluation indexes is linguistic value, or the evaluation value of the evaluation experts is not consistent. These reasons lead to ambiguity in the decision information, usually in the form of uncertain linguistic values and numerical interval values. In this paper, the risk preference of decision maker is considered when constructing the evaluation model. Interval-valued multiple-attribute decision-making method and fuzzy linguistic multiple-attribute decision-making model are proposed. Finally, the mathematical model of efficiency evaluation of integrated energy system is constructed.

  15. System for cooling hybrid vehicle electronics, method for cooling hybrid vehicle electronics

    Science.gov (United States)

    France, David M.; Yu, Wenhua; Singh, Dileep; Zhao, Weihuan

    2017-11-21

    The invention provides a single radiator cooling system for use in hybrid electric vehicles, the system comprising a surface in thermal communication with electronics, and subcooled boiling fluid contacting the surface. The invention also provides a single radiator method for simultaneously cooling electronics and an internal combustion engine in a hybrid electric vehicle, the method comprising separating a coolant fluid into a first portion and a second portion; directing the first portion to the electronics and the second portion to the internal combustion engine for a time sufficient to maintain the temperature of the electronics at or below 175.degree. C.; combining the first and second portion to reestablish the coolant fluid; and treating the reestablished coolant fluid to the single radiator for a time sufficient to decrease the temperature of the reestablished coolant fluid to the temperature it had before separation.

  16. Hybrid intelligent monironing systems for thermal power plant trips

    Science.gov (United States)

    Barsoum, Nader; Ismail, Firas Basim

    2012-11-01

    Steam boiler is one of the main equipment in thermal power plants. If the steam boiler trips it may lead to entire shutdown of the plant, which is economically burdensome. Early boiler trips monitoring is crucial to maintain normal and safe operational conditions. In the present work two artificial intelligent monitoring systems specialized in boiler trips have been proposed and coded within the MATLAB environment. The training and validation of the two systems has been performed using real operational data captured from the plant control system of selected power plant. An integrated plant data preparation framework for seven boiler trips with related operational variables has been proposed for IMSs data analysis. The first IMS represents the use of pure Artificial Neural Network system for boiler trip detection. All seven boiler trips under consideration have been detected by IMSs before or at the same time of the plant control system. The second IMS represents the use of Genetic Algorithms and Artificial Neural Networks as a hybrid intelligent system. A slightly lower root mean square error was observed in the second system which reveals that the hybrid intelligent system performed better than the pure neural network system. Also, the optimal selection of the most influencing variables performed successfully by the hybrid intelligent system.

  17. Solid Oxide Fuel Cell Hybrid System for Distributed Power Generation

    Energy Technology Data Exchange (ETDEWEB)

    Faress Rahman; Nguyen Minh

    2004-01-04

    This report summarizes the work performed by Hybrid Power Generation Systems, LLC (HPGS) during the July 2003 to December 2003 reporting period under Cooperative Agreement DE-FC26-01NT40779 for the U. S. Department of Energy, National Energy Technology Laboratory (DOE/NETL) entitled ''Solid Oxide Fuel Cell Hybrid System for Distributed Power Generation''. The main objective of this project is to develop and demonstrate the feasibility of a highly efficient hybrid system integrating a planar Solid Oxide Fuel Cell (SOFC) and a micro-turbine. In addition, an activity included in this program focuses on the development of an integrated coal gasification fuel cell system concept based on planar SOFC technology. Also, another activity included in this program focuses on the development of SOFC scale up strategies.

  18. Vibration control of bridges and buildings hybrid system. Kyoryoter dot tatemono no shindo seigyo hybrid hoshiki

    Energy Technology Data Exchange (ETDEWEB)

    Tanida, K. (Ishikawajima-Harima Heavy Industries Co. Ltd., Tokyo (Japan))

    1991-11-15

    Multistory buildings, suspension bridges, and cable stayed bridges tend to become huge, and technology of controlling their vibration caused by strong winds and earthquakes is becoming an important subject for study. A description is made on a hybrid system which is a combination of the conventional passive system and active system, having merits of both of the systems. Verification test made using a model and an example of application to an actual bridge are introduced. This hybrid control system has been applied to the main tower of the cable stayed bridge on Route 12 of the Tokyo expressway. It is installed and in operation on the top of the tower to improve the workability, and can decrease the vibration of the tower caused by vortical excitation produced during the construction of the main tower. With the hybrid system, the actuator capacity can be reduced to about 1/5 for the similar damping performance to that of the active system with the same mass ratio. In addition, the weight of the equipment can be nearly halved in comparison with the passive system. Moreover, it has such a high safety characteristic as being used as a passive system when power supply is cut off because the controlling force of the system is smaller as compared with the active system. 2 refs., 11 figs.

  19. Free chattering hybrid sliding mode control for a class of non-linear systems

    DEFF Research Database (Denmark)

    Khooban, Mohammad Hassan; Niknam, Taher; Blaabjerg, Frede

    2016-01-01

    In current study, in order to find the control of general uncertain nonlinear systems, a new optimal hybrid control approach called Optimal General Type II Fuzzy Sliding Mode (OGT2FSM) is presented. In order to estimate unknown nonlinear activities in monitoring dynamic uncertainties, the benefits...... on the same topic, which are an Adaptive Interval Type-2 Fuzzy Logic Controller (AGT2FLC) and Conventional Sliding Mode Controller (CSMC), to assess the efficiency of the suggested controller. The suggested control scheme is finally used to the Electric Vehicles type as a case study. Results of simulation...

  20. Hybrid algorithm for rotor angle security assessment in power systems

    Directory of Open Access Journals (Sweden)

    D. Prasad Wadduwage

    2015-08-01

    Full Text Available Transient rotor angle stability assessment and oscillatory rotor angle stability assessment subsequent to a contingency are integral components of dynamic security assessment (DSA in power systems. This study proposes a hybrid algorithm to determine whether the post-fault power system is secure due to both transient rotor angle stability and oscillatory rotor angle stability subsequent to a set of known contingencies. The hybrid algorithm first uses a new security measure developed based on the concept of Lyapunov exponents (LEs to determine the transient security of the post-fault power system. Later, the transient secure power swing curves are analysed using an improved Prony algorithm which extracts the dominant oscillatory modes and estimates their damping ratios. The damping ratio is a security measure about the oscillatory security of the post-fault power system subsequent to the contingency. The suitability of the proposed hybrid algorithm for DSA in power systems is illustrated using different contingencies of a 16-generator 68-bus test system and a 50-generator 470-bus test system. The accuracy of the stability conclusions and the acceptable computational burden indicate that the proposed hybrid algorithm is suitable for real-time security assessment with respect to both transient rotor angle stability and oscillatory rotor angle stability under multiple contingencies of the power system.

  1. Performance and energy management of a novel full hybrid electric powertrain system

    International Nuclear Information System (INIS)

    Chung, Cheng-Ta; Hung, Yi-Hsuan

    2015-01-01

    This study compared the performance and energy management between a novel full hybrid electric powertrain and a traditional power-split hybrid system. The developed planetary gearset and dual clutch configuration provides five operation modes. Equations for the torque and speed of power sources for the planetary gearset and dual clutch system and the Toyota Hybrid System are firstly derived. By giving vehicle performance of gradability, maximal speeds in hybrid and pure electric modes, the power sources of the 210 kg target vehicle are: a 125 cc engine and two 1.8 kW motor and generator. The optimal tank-to-wheel efficiencies, ratios of circulating power, and operation points at specific vehicle speeds and out loads are calculated. Simulation results show that the dual-motor electric vehicle mode offers superior performance regarding electric drive; the low capacity of the battery is conducive to reducing manufacturing and maintenance costs; the tank-to-wheel efficiency is mainly operated above 20% while the power split electronic-continuously-variable-transmission mode is the major operation mode, and a maximum of 17% fuel economy improvement is achieved compared with the Toyota Hybrid System in most of the vehicle speed ranges. The outstanding performance warrants further real-system development, especially regarding the implementation in plug-in and sport hybrid powertrain designs. - Highlights: • An innovative power split hybrid powertrain was designed. • Dual-motor electric-vehicle mode highlighted for plug-in function. • Power circulation ratios and five driving modes were analyzed. • Global search method utilized for optimal energy management. • Maximal 17+% fuel improvement compared to Toyota Hybrid System

  2. Hybrid-organic photodetectors for radiography. Final report

    International Nuclear Information System (INIS)

    Schmidt, Oliver; Bonrad, Klaus; Adam, Jens; Kraus, Tobias; Gimmler, Christoph

    2016-02-01

    HOP-X aimed to combine the advantages of nanotechnology and organic electronics for application in medical X-ray imaging in order to enable more cost-effective imaging at lower dose. Solution-processing of organic semiconductors enables easy hybridization with X-ray absorbers and processing on large areas. In this project, nano-sized scintillators and quantum dots have been synthesized and characterized as X-ray absorbers. Organic semiconductor materials have been identified which allow charge carrier extraction from layers with a thickness of up to 200 μm. Hybrid-organic photodiodes have been processed and the ideal mixture of organic semiconductor and inorganic X-ray absorber was determined. This mixture provide a high X-ray absorption and an efficient charge carrier extraction at the same time. Photodiodes have been integrated on TFT-matrix backplanes in order to demonstrate the concept in X-ray imagers.

  3. Hybrid Multicriteria Group Decision Making Method for Information System Project Selection Based on Intuitionistic Fuzzy Theory

    Directory of Open Access Journals (Sweden)

    Jian Guo

    2013-01-01

    Full Text Available Information system (IS project selection is of critical importance to every organization in dynamic competing environment. The aim of this paper is to develop a hybrid multicriteria group decision making approach based on intuitionistic fuzzy theory for IS project selection. The decision makers’ assessment information can be expressed in the form of real numbers, interval-valued numbers, linguistic variables, and intuitionistic fuzzy numbers (IFNs. All these evaluation pieces of information can be transformed to the form of IFNs. Intuitionistic fuzzy weighted averaging (IFWA operator is utilized to aggregate individual opinions of decision makers into a group opinion. Intuitionistic fuzzy entropy is used to obtain the entropy weights of the criteria. TOPSIS method combined with intuitionistic fuzzy set is proposed to select appropriate IS project in group decision making environment. Finally, a numerical example for information system projects selection is given to illustrate application of hybrid multi-criteria group decision making (MCGDM method based on intuitionistic fuzzy theory and TOPSIS method.

  4. Scheduled power tracking control of the wind-storage hybrid system based on the reinforcement learning theory

    Science.gov (United States)

    Li, Ze

    2017-09-01

    In allusion to the intermittency and uncertainty of the wind electricity, energy storage and wind generator are combined into a hybrid system to improve the controllability of the output power. A scheduled power tracking control method is proposed based on the reinforcement learning theory and Q-learning algorithm. In this method, the state space of the environment is formed with two key factors, i.e. the state of charge of the energy storage and the difference value between the actual wind power and scheduled power, the feasible action is the output power of the energy storage, and the corresponding immediate rewarding function is designed to reflect the rationality of the control action. By interacting with the environment and learning from the immediate reward, the optimal control strategy is gradually formed. After that, it could be applied to the scheduled power tracking control of the hybrid system. Finally, the rationality and validity of the method are verified through simulation examples.

  5. Universal blind quantum computation for hybrid system

    Science.gov (United States)

    Huang, He-Liang; Bao, Wan-Su; Li, Tan; Li, Feng-Guang; Fu, Xiang-Qun; Zhang, Shuo; Zhang, Hai-Long; Wang, Xiang

    2017-08-01

    As progress on the development of building quantum computer continues to advance, first-generation practical quantum computers will be available for ordinary users in the cloud style similar to IBM's Quantum Experience nowadays. Clients can remotely access the quantum servers using some simple devices. In such a situation, it is of prime importance to keep the security of the client's information. Blind quantum computation protocols enable a client with limited quantum technology to delegate her quantum computation to a quantum server without leaking any privacy. To date, blind quantum computation has been considered only for an individual quantum system. However, practical universal quantum computer is likely to be a hybrid system. Here, we take the first step to construct a framework of blind quantum computation for the hybrid system, which provides a more feasible way for scalable blind quantum computation.

  6. Evolutionary Design of Both Topologies and Parameters of a Hybrid Dynamical System

    DEFF Research Database (Denmark)

    Dupuis, Jean-Francois; Fan, Zhun; Goodman, Erik

    2012-01-01

    This paper investigates the issue of evolutionary design of open-ended plants for hybrid dynamical systems--i.e. both their topologies and parameters. Hybrid bond graphs are used to represent dynamical systems involving both continuous and discrete system dynamics. Genetic programming, with some...... of hybrid dynamical systems that fulfill predefined design specifications. A comprehensive investigation of a case study of DC-DC converter design demonstrates the feasibility and effectiveness of the HBGGP approach. Important characteristics of the approach are also discussed, with some future research...

  7. Field Test and Performance Verification: Integrated Active Desiccant Rooftop Hybrid System Installed in a School - Final Report: Phase 4A

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, J

    2005-12-21

    This report summarizes the results of a field verification pilot site investigation that involved the installation of a hybrid integrated active desiccant/vapor-compression rooftop heating, ventilation, and air-conditioning (HVAC) unit at an elementary school in the Atlanta Georgia area. For years, the school had experienced serious humidity and indoor air quality (IAQ) problems that had resulted in occupant complaints and microbial (mold) remediation. The outdoor air louvers of the original HVAC units had been closed in an attempt to improve humidity control within the space. The existing vapor compression variable air volume system was replaced by the integrated active desiccant rooftop (IADR) system that was described in detail in an Oak Ridge National Laboratory (ORNL) report published in 2004 (Fischer and Sand 2004). The IADR system and all space conditions have been monitored remotely for more than a year. The hybrid system was able to maintain both the space temperature and humidity as desired while delivering the outdoor air ventilation rate required by American Society of Heating, Refrigerating and Air-Conditioning Engineers Standard 62. The performance level of the IADR unit and the overall system energy efficiency was measured and found to be very high. A comprehensive IAQ investigation was completed by the Georgia Tech Research Institute before and after the system retrofit. Before-and-after data resulting from this investigation confirmed a significant improvement in IAQ, humidity control, and occupant comfort. These observations were reported by building occupants and are echoed in a letter to ORNL from the school district energy manager. The IADR system was easily retrofitted in place of the original rooftop system using a custom curb adapter. All work was completed in-house by the school's maintenance staff over one weekend. A subsequent cost analysis completed for the school district by the design engineer of record concluded that the IADR

  8. Bounded Model Checking and Inductive Verification of Hybrid Discrete-Continuous Systems

    DEFF Research Database (Denmark)

    Becker, Bernd; Behle, Markus; Eisenbrand, Fritz

    2004-01-01

    We present a concept to signicantly advance the state of the art for bounded model checking (BMC) and inductive verication (IV) of hybrid discrete-continuous systems. Our approach combines the expertise of partners coming from dierent domains, like hybrid systems modeling and digital circuit veri...

  9. Conceptual design of a commercial tokamak hybrid reactor fueling system

    Energy Technology Data Exchange (ETDEWEB)

    Matney, K.D.; Donnert, H.J.; Yang, T.F.

    1979-12-01

    A conceptual design of a fuel injection system for CTHR (Commercial Tokamak Hybrid Reactor) is discussed. Initially, relative merits of the cold-fueling concept are compared with those of the hot-fueling concept; that is, fueling where the electron is below 1 eV is compared with fueling where the electron temperature exceeds 100 eV. It is concluded that cold fueling seems to be somewhat more free of drawbacks than hot fueling. Possible implementation of the cold-fueling concept is exploited via frozen-pellet injection. Several methods of achieving frozen-pellet injection are discussed and the light-gas-gun approach is chosen from these possibilities. A modified version of the ORNL Neutral Gas Shielding Model is used to simulate the pellet injection process. From this simulation, the penetration-depth dependent velocity requirement is determined. Finally, with the velocity requirement known, a gas-pressure requirement for the proposed conceptual design is established. The cryogenic fuel-injection and fuel-handling systems are discussed. A possible way to implement the conceptual device is examined along with the attendant effects on the total system.

  10. Conceptual design of a commercial tokamak hybrid reactor fueling system

    International Nuclear Information System (INIS)

    Matney, K.D.; Donnert, H.J.; Yang, T.F.

    1979-12-01

    A conceptual design of a fuel injection system for CTHR (Commercial Tokamak Hybrid Reactor) is discussed. Initially, relative merits of the cold-fueling concept are compared with those of the hot-fueling concept; that is, fueling where the electron is below 1 eV is compared with fueling where the electron temperature exceeds 100 eV. It is concluded that cold fueling seems to be somewhat more free of drawbacks than hot fueling. Possible implementation of the cold-fueling concept is exploited via frozen-pellet injection. Several methods of achieving frozen-pellet injection are discussed and the light-gas-gun approach is chosen from these possibilities. A modified version of the ORNL Neutral Gas Shielding Model is used to simulate the pellet injection process. From this simulation, the penetration-depth dependent velocity requirement is determined. Finally, with the velocity requirement known, a gas-pressure requirement for the proposed conceptual design is established. The cryogenic fuel-injection and fuel-handling systems are discussed. A possible way to implement the conceptual device is examined along with the attendant effects on the total system

  11. Conceptual design of a commercial tokamak hybrid reactor fueling system

    International Nuclear Information System (INIS)

    Matney, K.D.; Donnert, H.J.; Yang, T.F.

    1979-12-01

    A conceptual design of a fuel injection system for CTHR (Commercial Tokamak Hybrid Reactor) is discussed. Initially, relative merits of the cold-fueling concept are compared with those of the hot-fueling concept; that is, fueling where the electron temperature is below 1 eV is compared with fueling where the electron temperature exceeds 100 eV. It is concluded that cold fueling seems to be somewhat more free of drawbacks than hot fueling. Possible implementation of the cold-fueling concept is exploited via frozen-pellet injection. Several methods of achieving frozen-pellet injection are discussed and the light-gas-gun approach is chosen from these possibilities. A modified version of the ORNL Neutral Gas Shielding Model is used to simulate the pellet injection process. From this simulation, the penetration-depth dependent velocity requirement is determined. Finally, with the velocity requirement known, a gas-pressure requirement for the proposed conceptual design is established. The cryogenic fuel-injection and fuel-handling systems are discussed. A possible way to implement the conceptual device is examined along with the attendant effects on the total system

  12. Hybrid Metaheuristic Approach for Nonlocal Optimization of Molecular Systems.

    Science.gov (United States)

    Dresselhaus, Thomas; Yang, Jack; Kumbhar, Sadhana; Waller, Mark P

    2013-04-09

    Accurate modeling of molecular systems requires a good knowledge of the structure; therefore, conformation searching/optimization is a routine necessity in computational chemistry. Here we present a hybrid metaheuristic optimization (HMO) algorithm, which combines ant colony optimization (ACO) and particle swarm optimization (PSO) for the optimization of molecular systems. The HMO implementation meta-optimizes the parameters of the ACO algorithm on-the-fly by the coupled PSO algorithm. The ACO parameters were optimized on a set of small difluorinated polyenes where the parameters exhibited small variance as the size of the molecule increased. The HMO algorithm was validated by searching for the closed form of around 100 molecular balances. Compared to the gradient-based optimized molecular balance structures, the HMO algorithm was able to find low-energy conformations with a 87% success rate. Finally, the computational effort for generating low-energy conformation(s) for the phenylalanyl-glycyl-glycine tripeptide was approximately 60 CPU hours with the ACO algorithm, in comparison to 4 CPU years required for an exhaustive brute-force calculation.

  13. Hybrid radiator cooling system

    Science.gov (United States)

    France, David M.; Smith, David S.; Yu, Wenhua; Routbort, Jules L.

    2016-03-15

    A method and hybrid radiator-cooling apparatus for implementing enhanced radiator-cooling are provided. The hybrid radiator-cooling apparatus includes an air-side finned surface for air cooling; an elongated vertically extending surface extending outwardly from the air-side finned surface on a downstream air-side of the hybrid radiator; and a water supply for selectively providing evaporative cooling with water flow by gravity on the elongated vertically extending surface.

  14. A Future with Hybrid Electric Propulsion Systems: A NASA Perspective

    Science.gov (United States)

    DelRosario, Ruben

    2014-01-01

    The presentation highlights a NASA perspective on Hybrid Electric Propulsion Systems for aeronautical applications. Discussed are results from NASA Advance Concepts Study for Aircraft Entering service in 2030 and beyond and the potential use of hybrid electric propulsion systems as a potential solution to the requirements for energy efficiency and environmental compatibility. Current progress and notional potential NASA research plans are presented.

  15. Evaluation of hybrid power system alternatives: a case study

    International Nuclear Information System (INIS)

    Rosenthal, Andrew L.

    1999-01-01

    Pursuant to executive and statutory policies, the National Park Service (NPS) has been evaluating the use of photovoltaic (PV) hybrid power systems, for many of its remote, off-grid areas. This paper reports the results of a detailed technical and economic evaluation for one such area: the Needles District of Canyonlands National Park. The study evaluates the presented power systems and five alternative power generation configurations, four of which utilise PV. Projections are provided for the generator run-time and fuel use associated with each configuration as well as all initial and future costs. Included in the study are specific recommendations for energy efficiency improvements at the site. Results show that the generation systems presently in use, two full-time diesel generators, has the lowest conventional 20-year life cycle costs (LCC) of the six systems evaluated. However, when emissions costs are included (per NPS guidelines), several of the PV hybrid alternatives attain a lower LCC than the diesel-only systems. General discussion of the effects of initial versus future costs of PV hybrids as they compare with engine generator system is presented. (Author)

  16. Harmonic analysis and suppression in hybrid wind & PV solar system

    Science.gov (United States)

    Gupta, Tripti; Namekar, Swapnil

    2018-04-01

    The growing demand of electricity has led to produce power through non-conventional source of energy such as solar energy, wind energy, hydro power, energy through biogas and biomass etc. Hybrid system is taken to complement the shortcoming of either sources of energy. The proposed system is grid connected hybrid wind and solar system. A 2.1 MW Doubly fed Induction Generator (DFIG) has been taken for analysis of wind farm whose rotor part is connected to two back-to-back converters. A 250 KW Photovoltaic (PV) array taken to analyze solar farm where inverter is required to convert power from DC to AC since electricity generated through solar PV is in the form of DC. Stability and reliability of the system is very important when the system is grid connected. Harmonics is the major Power quality issue which degrades the quality of power at load side. Harmonics in hybrid system arise through the use of power conversion unit. The other causes of harmonics are fluctuation in wind speed and solar irradiance. The power delivered to grid must be free from harmonics and within the limits specified by Indian grid codes. In proposed work, harmonic analysis of the hybrid system is performed in Electrical Transient Analysis program (ETAP) and single tuned harmonic filter is designed to maintain the utility grid harmonics within limits.

  17. Optimization of operating parameters in a hybrid wind–hydrogen system using energy and exergy analysis: Modeling and case study

    International Nuclear Information System (INIS)

    Fakehi, Amir Hossein; Ahmadi, Somayeh; Mirghaed, Mohammad Rezaie

    2015-01-01

    Highlights: • The exergy analysis of a hybrid system of a wind turbine and PEM electrolyzer/fuel-cell has been performed. • Effects of various operating parameters on the exergy efficiency have been investigated. • The exergy and energy efficiency in each of hybrid system’s components have been compared. - Abstract: In this study, hybrid renewable energy system based on wind/electrolyzer/PEM fuel cell are conceptually modeled, and also, exergy and energy analysis are performed. The energy and exergy flows are investigated by the proposed model for Khaf region-Iran with high average wind speed and monsoon. Exergy and energy analysis framework is made based on thermodynamic, electro-chemical and mechanical model of the different component of hybrid system. Also, the effects of various operating parameters in exergy efficiency are calculated. The results show an optimum wind speed where the exergy efficiency and power coefficient is at maximum level, and also, when the ambient temperature start to be increased in wind turbine, the efficiencies decrease by a great deal for constant wind speeds. Also, the optimum temperature is calculated by exergy analysis in electrolyzer and fuel cell as 353 and the exergy efficiency of electrolyzer decreases by increasing the membrane thickness. Furthermore, pressure changes affect exergy and energy efficiency in PEM fuel cell. Finally, the electrolyzer and fuel cell efficiencies are calculated as 68.5% and 47% respectively.

  18. Multiphysics of bio-hybrid systems: shape control and electro-induced motion

    Science.gov (United States)

    Lucantonio, Alessandro; Nardinocchi, Paola; Pezzulla, Matteo; Teresi, Luciano

    2014-04-01

    We discuss the control of the bending pattern of a bio-hybrid system made using the muscular thin film technique. We study the medusoid presented in Nawroth et al (2012 Nature Biotechnol. 30 792-7) as a prototypical bio-hybrid system. Specifically, we evaluate the contraction field within the biological layer that is necessary to produce a target curvature of the system, and determine an admissible range of the design parameters that correspond to the same bending solution. We also propose an electromechanical model of the bio-hybrid system and study the propagation of the action potential. Our results compare well with the experimental data reported in Nawroth et al (2012 Nature Biotechnol. 30 792-7).

  19. Graphene hybridization for energy storage applications.

    Science.gov (United States)

    Li, Xianglong; Zhi, Linjie

    2018-05-08

    Graphene has attracted considerable attention due to its unique two-dimensional structure, high electronic mobility, exceptional thermal conductivity, excellent optical transmittance, good mechanical strength, and ultrahigh surface area. To meet the ever increasing demand for portable electronic products, electric vehicles, smart grids, and renewable energy integrations, hybridizing graphene with various functions and components has been demonstrated to be a versatile and powerful strategy to significantly enhance the performance of various energy storage systems such as lithium-ion batteries, supercapacitors and beyond, because such hybridization can result in synergistic effects that combine the best merits of involved components and confer new functions and properties, thereby improving the charge/discharge efficiencies and capabilities, energy/power densities, and cycle life of these energy storage systems. This review will focus on diverse graphene hybridization principles and strategies for energy storage applications, and the proposed outline is as follows. First, graphene and its fundamental properties, followed by graphene hybrids and related hybridization motivation, are introduced. Second, the developed hybridization formulas of using graphene for lithium-ion batteries are systematically categorized from the viewpoint of material structure design, bulk electrode construction, and material/electrode collaborative engineering; the latest representative progress on anodes and cathodes of lithium-ion batteries will be reviewed following such classifications. Third, similar hybridization formulas for graphene-based supercapacitor electrodes will be summarized and discussed as well. Fourth, the recently emerging hybridization formulas for other graphene-based energy storage devices will be briefed in combination with typical examples. Finally, future prospects and directions on the exploration of graphene hybridization toward the design and construction of

  20. Status and modeling improvements of hybrid wind/PV/diesel power systems for Brazilian applications

    Energy Technology Data Exchange (ETDEWEB)

    McGowan, J.G.; Manwell, J.F.; Avelar, C. [Univ. of Massachusetts, Amherst, MA (United States); Taylor, R. [National Renewable Energy Lab., Golden, CO (United States)

    1997-12-31

    This paper present a summary of the ongoing work on the modeling and system design of hybrid wind/PV/diesel systems for two different sites in the Amazonia region of Brazil. The work incorporates the latest resource data and is based on the use of the Hybrid2 simulation code developed by the University of Massachusetts and NREL. Details of the baseline operating hybrid systems are reviewed, and the results of the latest detailed hybrid system evaluation for each site are summarized. Based on the system modeling results, separate recommendations for system modification and improvements are made.

  1. Design and implementation of a hybrid electric motorcycle management system

    International Nuclear Information System (INIS)

    Hsu, Yuan-Yong; Lu, Shao-Yuan

    2010-01-01

    This paper presents a successful design and implement of a shunt-winding hybrid electric motorcycle management system which utilizes an electronic control unit (ECU) to integrate two major subsystems together, one being the traditional system of 125 c.c. internal combustion engine and the other an electric power motor. The hybrid electric motorcycle is assembled together robustly by these two major subsystems and eventually leads to successful road tests. The hybrid power system thus implemented can recharge its own batteries with electricity provided by the electrical recharge system and thus increasing the cruising mileages largely. The testing results obtained by using the proposed experimental platform indicate that lead-acid cells can boost their state of charge (SOC) by approximately 4% when it is operated under the hybrid mode for four driving cycles (about 1600 s) with the recharger on in a standard ECE-40 testing procedure. The results of road tests also clearly show that the pollutant emissions of the engine can be reduced at a lower speed or idling condition, and the problem of insufficient cruising range for electric motorcycles can also be greatly enhanced.

  2. Renewable energy technology for off-grid power generation solar hybrid system

    International Nuclear Information System (INIS)

    Mohd Azhar Abd Rahman

    2006-01-01

    Off-grid power generation is meant to supply remote or rural area, where grid connection is almost impossible in terms of cost and geography, such as island, aborigine's villages, and areas where nature preservation is concern. Harnessing an abundance renewable energy sources using versatile hybrid power systems can offer the best, least-cost alternative solution for extending modern energy services to remote and isolated communities. The conventional method for off-grid power generation is using diesel generator with a renewable energy (RE) technology utilizing solar photovoltaic, wind, biomass, biogas and/or mini/micro hydro. A hybrid technology is a combination of multiple source of energy; such as RE and diesel generator and may also include energy storage such as battery. In our design, the concept of solar hybrid system is a combination of solar with diesel genset and battery as an energy storage. The main objective of the system are to reduce the cost of operation and maintenance, cost of logistic and carbon dioxide (CO 2 ) emission. The operational concept of solar hybrid system is that solar will be the first choice of supplying load and excess energy produced will be stored in battery. Genset will be a secondary source of energy. The system is controlled by a microprocessor-based controlled to manage the energy supplied and load demand. The solar hybrid system consists of one or two diesel generator with electronic control system, lead-acid battery system, solar PV, inverter module and system controller with remote monitoring capability. The benefits of solar hybrid system are: Improved reliability, Improved energy services, reduced emissions and pollution, provide continuous power supply, increased operational life, reduced cost, and more efficient use of power. Currently, such system has been installed at Middle and Top Station of Langkawi Cable Car, Langkawi and Aborigines Village Kg Denai, Rompin, Pahang. The technology is considered new in Malaysia

  3. Hybrid Spectral Micro-CT: System Design, Implementation, and Preliminary Results

    CERN Document Server

    Bennett, James R; Xu, Qiong; Yu, Hengyong; Walsh, Michael; Butler, Anthony; Butler, Phillip; Cao, Guohua; Mohs, Aaron; Wang, Ge

    2014-01-01

    Spectral CT has proven an important development in biomedical imaging, and there have been several publications in the past years demonstrating its merits in pre-clinical and clinical applications. In 2012, Xu et al. reported that near-term implementation of spectral micro-CT could be enhanced by a hybrid architecture: a narrow-beam spectral "interior" imaging chain integrated with a traditional wide-beam "global" imaging chain. This hybrid integration coupled with compressive sensing (CS)-based interior tomography demonstrated promising results for improved contrast resolution, and decreased system cost and radiation dose. The motivation for the current study is implementation and evaluation of the hybrid architecture with a first-of-its-kind hybrid spectral micro-CT system. Preliminary results confirm improvements in both contrast and spatial resolution. This technology is shown to merit further investigation and potential application in future spectral CT scanner design.

  4. Strategy and gaps for modeling, simulation, and control of hybrid systems

    Energy Technology Data Exchange (ETDEWEB)

    Rabiti, Cristian [Idaho National Lab. (INL), Idaho Falls, ID (United States); Garcia, Humberto E. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Hovsapian, Rob [Idaho National Lab. (INL), Idaho Falls, ID (United States); Kinoshita, Robert [Idaho National Lab. (INL), Idaho Falls, ID (United States); Mesina, George L. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Bragg-Sitton, Shannon M. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Boardman, Richard D. [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-04-01

    The purpose of this report is to establish a strategy for modeling and simulation of candidate hybrid energy systems. Modeling and simulation is necessary to design, evaluate, and optimize the system technical and economic performance. Accordingly, this report first establishes the simulation requirements to analysis candidate hybrid systems. Simulation fidelity levels are established based on the temporal scale, real and synthetic data availability or needs, solution accuracy, and output parameters needed to evaluate case-specific figures of merit. Accordingly, the associated computational and co-simulation resources needed are established; including physical models when needed, code assembly and integrated solutions platforms, mathematical solvers, and data processing. This report first attempts to describe the figures of merit, systems requirements, and constraints that are necessary and sufficient to characterize the grid and hybrid systems behavior and market interactions. Loss of Load Probability (LOLP) and effective cost of Effective Cost of Energy (ECE), as opposed to the standard Levelized Cost of Electricty (LCOE), are introduced as technical and economical indices for integrated energy system evaluations. Financial assessment methods are subsequently introduced for evaluation of non-traditional, hybrid energy systems. Algorithms for coupled and iterative evaluation of the technical and economic performance are subsequently discussed. This report further defines modeling objectives, computational tools, solution approaches, and real-time data collection and processing (in some cases using real test units) that will be required to model, co-simulate, and optimize; (a) an energy system components (e.g., power generation unit, chemical process, electricity management unit), (b) system domains (e.g., thermal, electrical or chemical energy generation, conversion, and transport), and (c) systems control modules. Co-simulation of complex, tightly coupled

  5. ON THE STABILIZATION OF THE LINEAR HYBRID SYSTEM STRUCTURE

    Directory of Open Access Journals (Sweden)

    Kirillov

    2014-11-01

    Full Text Available The linear control hybrid system, consisting of a fi- nite set of subsystems (modes having different dimensions, is considered. The moments of reset time are determined by some complementary function – evolutionary time. This function satisfies the special complementary ordinary differential equation. The mode stabilization problem is solved for some class of piecewise linear controls. The method of stabilization relies on the set of invariant planes, the existence of which is due to the special form of the hybrid system.

  6. Analysis and design of permanent magnet biased magnetic bearing based on hybrid factor

    Directory of Open Access Journals (Sweden)

    Jinji Sun

    2016-03-01

    Full Text Available In this article, hybrid factor is proposed for hybrid magnetic bearing. The hybrid factor is defined as the ratio of the force produced by the permanent magnet and the forces produced by the permanent magnet and current in hybrid magnetic bearing. It is deduced from a certain radial hybrid magnetic bearing using its important parameters such as the current stiffness and displacement stiffness at first and then the dynamic model of magnetically suspended rotor system is established. The relationship between structural parameters and control system parameters is analyzed based on the hybrid factor. Some influencing factors of hybrid factor in hybrid magnetic bearing, such as the size of the permanent magnet, length of air gap, and area of the stator poles, are analyzed in this article. It can be concluded that larger hybrid factor can be caused by the smaller power loss according to the definition of hybrid factor mentioned above. Meanwhile, the hybrid factor has a maximum value, which is related to control system parameters such as proportional factor expect for structural parameters. Finally, the design steps of parameters of hybrid magnetic bearing can be concluded.

  7. Evaluating the impact of adding energy storage on the performance of a hybrid power system

    International Nuclear Information System (INIS)

    Jacobus, Headley; Lin, Baochuan; Jimmy, David Henry; Ansumana, Rashid; Malanoski, Anthony P.; Stenger, David

    2011-01-01

    Research highlights: → A photovoltaic-diesel hybrid power system is compared to a diesel-only system. → The efficiency, cost, generator runtime, and fuel consumption are calculated. → Overall efficiency of two systems is very similar. → Reduced operation and maintenance costs for hybrid system gave bigger cost savings. → The hybrid system is more advantageous in serving the same load. -- Abstract: Hybrid power systems have the capability to incorporate significant renewable energy penetration for a small autonomous system while still maintaining reliable grid stability. While there are many papers covering the optimization of component size and dispatch strategy, far fewer papers contain experimental performance data from hybrid systems. Mercy Hospital in Bo, Sierra Leone is converting their power system into a photovoltaic (PV)-diesel hybrid system, thus providing an opportunity to examine the change in system performance before, during, and after the conversion. Due to the seasonal availability of electric power in Sierra Leone, two datasets representing two distinct load profiles are analyzed: Wet Season and Dry Season. The difference in generation efficiency, cost per kW h, generator runtime, and fuel consumption are calculated between a diesel-only generation baseline and the recorded hybrid system performance. The results indicated that the hybrid system significantly reduces operation costs; approximately 37% less during Dry Season and 64% reduction in the Wet Season than a diesel-only generator serving the same load.

  8. Control-relevant modeling and simulation of a SOFC-GT hybrid system

    OpenAIRE

    Rambabu Kandepu; Lars Imsland; Christoph Stiller; Bjarne A. Foss; Vinay Kariwala

    2006-01-01

    In this paper, control-relevant models of the most important components in a SOFC-GT hybrid system are described. Dynamic simulations are performed on the overall hybrid system. The model is used to develop a simple control structure, but the simulations show that more elaborate control is needed.

  9. Hybrid power system (hydro, solar and wind) for rural electricity generation

    International Nuclear Information System (INIS)

    Mahinda Kurukulasuriya

    2000-01-01

    Generation of affordable cheap electric energy for rural development by a hybrid power system (10-50 kW) of hydropower, solar and wind energies on self determining basis and computer application to determine its performance. In this paper the following topics were discussed, design of hybrid power system, its justification and economic analysis, manufacturing and installation of the system. (Author)

  10. A hybrid method for forecasting the energy output of photovoltaic systems

    International Nuclear Information System (INIS)

    Ramsami, Pamela; Oree, Vishwamitra

    2015-01-01

    Highlights: • We propose a novel hybrid technique for predicting the daily PV energy output. • Multiple linear regression, FFNN and GRNN artificial neural networks are used. • Stepwise regression is used to select the most relevant meteorological parameters. • SR-FFNN reduces the average dispersion and overall bias in prediction errors. • Accuracy metrics of hybrid models are better than those of single-stage models. - Abstract: The intermittent nature of solar energy poses many challenges to renewable energy system operators in terms of operational planning and scheduling. Predicting the output of photovoltaic systems is therefore essential for managing the operation and assessing the economic performance of power systems. This paper presents a new technique for forecasting the 24-h ahead stochastic energy output of photovoltaic systems based on the daily weather forecasts. A comparison of the performances of the hybrid technique with conventional linear regression and artificial neural network models has also been reported. Initially, three single-stage models were designed, namely the generalized regression neural network, feedforward neural network and multiple linear regression. Subsequently, a hybrid-modeling approach was adopted by applying stepwise regression to select input variables of greater importance. These variables were then fed to the single-stage models resulting in three hybrid models. They were then validated by comparing the forecasts of the models with measured dataset from an operational photovoltaic system. The accuracy of the each model was evaluated based on the correlation coefficient, mean absolute error, mean bias error and root mean square error values. Simulation results revealed that the hybrid models perform better than their corresponding single-stage models. Stepwise regression-feedforward neural network hybrid model outperformed the other models with root mean square error, mean absolute error, mean bias error and

  11. A Hybrid Approach to the Optimization of Multiechelon Systems

    Directory of Open Access Journals (Sweden)

    Paweł Sitek

    2015-01-01

    Full Text Available In freight transportation there are two main distribution strategies: direct shipping and multiechelon distribution. In the direct shipping, vehicles, starting from a depot, bring their freight directly to the destination, while in the multiechelon systems, freight is delivered from the depot to the customers through an intermediate points. Multiechelon systems are particularly useful for logistic issues in a competitive environment. The paper presents a concept and application of a hybrid approach to modeling and optimization of the Multi-Echelon Capacitated Vehicle Routing Problem. Two ways of mathematical programming (MP and constraint logic programming (CLP are integrated in one environment. The strengths of MP and CLP in which constraints are treated in a different way and different methods are implemented and combined to use the strengths of both. The proposed approach is particularly important for the discrete decision models with an objective function and many discrete decision variables added up in multiple constraints. An implementation of hybrid approach in the ECLiPSe system using Eplex library is presented. The Two-Echelon Capacitated Vehicle Routing Problem (2E-CVRP and its variants are shown as an illustrative example of the hybrid approach. The presented hybrid approach will be compared with classical mathematical programming on the same benchmark data sets.

  12. Techno-economical analysis of off-grid hybrid systems at Kutubdia Island, Bangladesh

    International Nuclear Information System (INIS)

    Kumar Nandi, Sanjoy; Ranjan Ghosh, Himangshu

    2010-01-01

    Kutubdia is an island in the southern coast of Bangladesh where mainland grid electricity is not present or would not feasible in near future. Presently, electricity is generated using a diesel generator by Bangladesh Power Development Board (BPDB) for a limited time and location. Due to its remote location, the fuel cost in Kutubdia is very expensive. In the present study one-year recorded wind by Bangladesh Centre of Advanced Studies (BCAS) location and other three potential locations for hybrid system analysis is discussed. The system configuration of the hybrid is achieved based on a theoretical domestic load at the island. The sizing of the hybrid power systems is discussed with 0% and 5% annual capacity of shortage. This feasibility study indicates that wind-PV-diesel system is feasible with 0% capacity of shortage and wind-diesel system is feasible with 5% annual capacity of shortage at all locations. As 5% annual capacity of shortage can be considered, the wind-diesel hybrid system will reduce net present cost as well as cost of energy to about 20% and the diesel consumption on the island can be reduced to about 50% of its present annual consumption. Such a hybrid system will reduce about 44% green house gases (GHG) from the local atmosphere.

  13. Summary Report of the INL-JISEA Workshop on Nuclear Hybrid Energy Systems

    Energy Technology Data Exchange (ETDEWEB)

    Antkowiak, M.; Ruth, M.; Boardman, R.; Bragg-Sitton, S.; Cherry, R.; Shunn, L.

    2012-07-01

    The Institute for Nuclear Energy Science and Technology (INEST) and the Joint Institute for Strategic Energy Analysis (JISEA) co-sponsored an international workshop to identify research topics important in advancing the potential use of hybrid systems with a specific focus on nuclear-renewable hybrid systems. The workshop included presentations ranging from energy challenges and research and development directions being pursued by nations to multiple options for hybrid systems. Those options include one that is being commercialized to other opportunities and analysis results quantifying them. The workshop also involved two breakout sessions--one focused on thermal energy management issues especially at unit-operation scale and the second focused on system operations issues including system controls, regulatory issues, technical and economic analysis, and market challenges. A discussion involving the full group focused on more general issues such as societal involvement and participation. Key criteria for selecting hybrid energy system projects and metrics for comparing them were also identified by the full group.

  14. FEASIBILITY STUDY AND OPTIMIZATION OF AN HYBRID SYSTEM ...

    African Journals Online (AJOL)

    30 juin 2010 ... preliminary or comparative studies, both during development (design) and normal ... year for a system using only the generator diesel and is 599 kg / year for the ... Keywords: Hybrid system- Wind- Photovoltaic-Diesel- storage ...

  15. Renewable energy systems in Mexico: Installation of a hybrid system

    Science.gov (United States)

    Pate, Ronald C.

    1993-05-01

    Sandia has been providing technical leadership on behalf of DOE and CORECT on a working level cooperative program with Mexico on renewable energy (PROCER). As part of this effort, the Sandia Design Assistance Center (DAC) and the solar energy program staff at Instituto de Investigaciones Electricas (IIE) in Cuernavaca, Mexico, recently reached agreement on a framework for mutually beneficial technical collaboration on the monitoring and field evaluation of renewable energy systems in Mexico, particularly village-scale hybrid systems. This trip was made for the purpose of planning the details for the joint installation of a data acquisition system (DAS) on a recently completed PV/Wind/Diesel hybrid system in the village of Xcalac on the Southeast coast of the state of Quintana Roo, Mexico. The DAS installation will be made during the week of March 15, 1993. While in Mexico, discussions were also held with personnel from.the National Autonomous University of Mexico (UNAM) Solar Energy Laboratory and several private sector companies with regard to renewable energy project activities and technical and educational support needs in Mexico.

  16. Control-relevant modeling and simulation of a SOFC-GT hybrid system

    Directory of Open Access Journals (Sweden)

    Rambabu Kandepu

    2006-07-01

    Full Text Available In this paper, control-relevant models of the most important components in a SOFC-GT hybrid system are described. Dynamic simulations are performed on the overall hybrid system. The model is used to develop a simple control structure, but the simulations show that more elaborate control is needed.

  17. Performance assessment of hybrid power generation systems: Economic and environmental impacts

    International Nuclear Information System (INIS)

    Al-Sharafi, Abdullah; Yilbas, Bekir S.; Sahin, Ahmet Z.; Ayar, T.

    2017-01-01

    Highlights: • A double-step optimization tool for hybrid power generation systems is introduced. • Economical aspects and the impact of the system on the environment are considered. • A hybrid system comprises PV array-wind turbine-battery-diesel engine is considered. • Real time analysis of the system for full year simulation is carried out. • System optimum configuration at point where total performance index is maximized. - Abstract: This article aims to introduce a double-step performance assessment tool for the hybrid power generation systems. As a case study, a hybrid system comprising PV array, wind-turbine, battery bank and diesel engine is incorporated in hourly based simulations to meet power demand of a residence unit at Dhahran area, Kingdom of Saudi Arabia. Different indicators related to economical and environmental performance assessments of the hybrid system have been considered. In the economic related assessment case, cost of electricity, energy excess percentage, and operating life cycle indicators have been considered and combined to develop the first overall performance index. Renewable contribution, renewable source availability and environmental impact indicators have been considered for the environmental assessment case and they are combined in the second performance index. For either economical or environmental cases, the optimum configuration of the system is achieved by maximizing the first and second overall performance indicators. This innovative optimization tools gives the designer the freedom to assign suitable weights associated with economical aspect, environmental impact, governmental regulations and social impact, for the first and second overall performance indicators, and combine them in the total performance index. The optimum system configuration is at the point where the total performance index is maximized.

  18. Neutron analysis of a hybrid system fusion-fission

    International Nuclear Information System (INIS)

    Dorantes C, J. J.; Francois L, J. L.

    2011-11-01

    The use of energy at world level implies the decrease of natural resources, reduction of fossil fuels, in particular, and a high environmental impact. In view of this problem, an alternative is the energy production for nuclear means, because up to now is one of the less polluting energy; however, the nuclear fuel wastes continue being even a problem without being solved. For the above mentioned this work intends the creation of a device that incorporates the combined technologies of fission and nuclear fusion, called Nuclear Hybrid Reactor Fusion-Fission (HRFF). The HRFF has been designed theoretically with base in experimental fusion reactors in different parts of the world like: United States, Russia, Japan, China and United Kingdom, mainly. The hybrid reactor model here studied corresponds at the Compact Nuclear Facility Source (CNFS). The importance of the CNFS resides in its feasibility, simple design, minor size and low cost; uses deuterium-tritium like main source of neutrons, and as fuel can use the spent fuel of conventional nuclear reactors, such as the current light water reactors. Due to the high costs of experimental research, this work consists on simulating in computer a proposed model of CNFS under normal conditions of operation, to modify the arrangement of the used fuel: MOX and IMF, to analyze the obtained results and to give final conclusions. In conclusion, the HRFF can be a versatile system for the management of spent fuel of light water reactors, so much for the possibility of actinides destruction, like for the breeding of fissile material. (Author)

  19. Systems Engineering of Electric and Hybrid Vehicles

    Science.gov (United States)

    Kurtz, D. W.; Levin, R. R.

    1986-01-01

    Technical paper notes systems engineering principles applied to development of electric and hybrid vehicles such that system performance requirements support overall program goal of reduced petroleum consumption. Paper discusses iterative design approach dictated by systems analyses. In addition to obvious peformance parameters of range, acceleration rate, and energy consumption, systems engineering also considers such major factors as cost, safety, reliability, comfort, necessary supporting infrastructure, and availability of materials.

  20. Study on optimal configuration of the grid-connected wind-solar-battery hybrid power system

    Science.gov (United States)

    Ma, Gang; Xu, Guchao; Ju, Rong; Wu, Tiantian

    2017-08-01

    The capacity allocation of each energy unit in the grid-connected wind-solar-battery hybrid power system is a significant segment in system design. In this paper, taking power grid dispatching into account, the research priorities are as follows: (1) We establish the mathematic models of each energy unit in the hybrid power system. (2) Based on dispatching of the power grid, energy surplus rate, system energy volatility and total cost, we establish the evaluation system for the wind-solar-battery power system and use a number of different devices as the constraint condition. (3) Based on an improved Genetic algorithm, we put forward a multi-objective optimisation algorithm to solve the optimal configuration problem in the hybrid power system, so we can achieve the high efficiency and economy of the grid-connected hybrid power system. The simulation result shows that the grid-connected wind-solar-battery hybrid power system has a higher comprehensive performance; the method of optimal configuration in this paper is useful and reasonable.

  1. Uniqueness of solutions of relay systems, Special Issue on Hybrid Systems

    NARCIS (Netherlands)

    Lootsma, Y.J.; van der Schaft, Arjan; Camlıbel, M.K.

    1999-01-01

    Conditions are given for uniqueness of solutions of linear time-invariant systems under relay feedback. From a hybrid dynamical point of view this entails the deterministic specification of the discrete transition rules. The results are based on the formulation of relay systems as complementarity

  2. Analysis of the Hybrid Power System for High-Altitude Unmanned Aircraft

    Directory of Open Access Journals (Sweden)

    Kangwen Sun

    2015-01-01

    Full Text Available The application of single solar array on high-altitude unmanned aircraft will waste energy because of its low conversion efficiency. Furthermore, since its energy utilization is limited, the surface temperature of solar array will rise to 70°C due to the waste solar energy, thus reducing the electrical performance of the solar array. In order to reuse the energy converted into heat by solar array, a hybrid power system is presented in this paper. In the hybrid power system, a new electricity-generating method is adopted to spread the photovoltaic cell on the wing surface and arrange photothermal power in the wing box section. Because the temperature on the back of photovoltaic cell is high, it can be used as the high-temperature heat source. The lower wing surface can be a low-temperature cold source. A high-altitude unmanned aircraft was used to analyze the performances of pure solar-powered aircraft and hybrid powered aircraft. The analysis result showed that the hybrid system could reduce the area of wing by 19% and that high-altitude unmanned aircraft with a 35 m or less wingspan could raise the utilization rate of solar energy per unit area after adopting the hybrid power system.

  3. Optimal energy management of HEVs with hybrid storage system

    International Nuclear Information System (INIS)

    Vinot, E.; Trigui, R.

    2013-01-01

    Highlights: • A battery and ultra-capacitor system for parallel hybrid vehicle is considered. • Optimal management using Pontryagin’s minimum principle is developed. • Battery stress limitation is taken into account by means of RMS current. • Rule based management approaching the optimal control is proposed. • Comparison between rule based and optimal management are proposed using Pareto front. - Abstract: Energy storage systems are a key point in the design and development of electric and hybrid vehicles. In order to reduce the battery size and its current stress, a hybrid storage system, where a battery is coupled with an electrical double-layer capacitor (EDLC) is considered in this paper. The energy management of such a configuration is not obvious and the optimal operation concerning the energy consumption and battery RMS current has to be identified. Most of the past work on the optimal energy management of HEVs only considered one additional power source. In this paper, the control of a hybrid vehicle with a hybrid storage system (HSS), where two additional power sources are used, is presented. Applying the Pontryagin’s minimum principle, an optimal energy management strategy is found and compared to a rule-based parameterized control strategy. Simulation results are shown and discussed. Applied on a small compact car, optimal and ruled-based methods show that gains of fuel consumption and/or a battery RMS current higher than 15% may be obtained. The paper also proves that a well tuned rule-based algorithm presents rather good performances when compared to the optimal strategy and remains relevant for different driving cycles. This rule-based algorithm may easily be implemented in a vehicle prototype or in an HIL test bench

  4. Brake Performance Analysis of ABS for Eddy Current and Electrohydraulic Hybrid Brake System

    Directory of Open Access Journals (Sweden)

    Ren He

    2013-01-01

    Full Text Available This paper introduces an eddy current and electro-hydraulic hybrid brake system to solve problems such as wear, thermal failure, and slow response of traditional vehicle brake system. Mathematical model was built to calculate the torque of the eddy current brake system and hydraulic brake system and analyze the braking force distribution between two types of brake systems. A fuzzy controller on personal computer based on LabVIEW and Matlab was designed and a set of hardware in the loop system was constructed to validate and analyze the performance of the hybrid brake system. Through lots of experiments on dry and wet asphalt roads, the hybrid brake system achieves perfect performance on the experimental bench, the hybrid system reduces abrasion and temperature of the brake disk, response speed is enhanced obviously, fuzzy controller keeps high utilization coefficient due to the optimal slip ratio regulation, and the total brake time has a smaller decrease than traditional hydraulic brake system.

  5. Fabrication and performance analysis of concentrated hybrid photovoltaic system

    Directory of Open Access Journals (Sweden)

    Murthy Krishna

    2018-01-01

    Full Text Available Sun is the most important source of renewable source of energy. During the past few decades there has been an ever-increasing interest in Photovoltaic (PV cells as it directly converts solar radiation into electricity. This paper involves the performance study of photovoltaic system under concentrated solar radiation. The main problem with the concentration solar energy is the drastic increase in temperature of the photovoltaic module resulting in a decrease in performance efficiency of the system. This problem of overheating of the system can be overcome by providing cooling which would ensure operation of the module in the optimal temperature range. Hence, the setup would function as a hybrid model serving the dual purpose of power generation while also utilizing the waste heat for water heating applications. The experimental set up consist of a novel arrangement of concentrator and reflector and the cooling system. The Hybrid Photovoltaic System was repeatedly tested under real time conditions on several days. A comparison was drawn between the results obtained from direct exposure of a standard photovoltaic module to that obtained from the hybrid system in order to better understand the improvement in performance parameters. The study shown a significant improvement of output of standard photovoltaic module under the concentrated solar radiation.

  6. Genetic algorithm based optimization on modeling and design of hybrid renewable energy systems

    International Nuclear Information System (INIS)

    Ismail, M.S.; Moghavvemi, M.; Mahlia, T.M.I.

    2014-01-01

    Highlights: • Solar data was analyzed in the location under consideration. • A program was developed to simulate operation of the PV hybrid system. • Genetic algorithm was used to optimize the sizes of the hybrid system components. • The costs of the pollutant emissions were considered in the optimization. • It is cost effective to power houses in remote areas with such hybrid systems. - Abstract: A sizing optimization of a hybrid system consisting of photovoltaic (PV) panels, a backup source (microturbine or diesel), and a battery system minimizes the cost of energy production (COE), and a complete design of this optimized system supplying a small community with power in the Palestinian Territories is presented in this paper. A scenario that depends on a standalone PV, and another one that depends on a backup source alone were analyzed in this study. The optimization was achieved via the usage of genetic algorithm. The objective function minimizes the COE while covering the load demand with a specified value for the loss of load probability (LLP). The global warming emissions costs have been taken into account in this optimization analysis. Solar radiation data is firstly analyzed, and the tilt angle of the PV panels is then optimized. It was discovered that powering a small rural community using this hybrid system is cost-effective and extremely beneficial when compared to extending the utility grid to supply these remote areas, or just using conventional sources for this purpose. This hybrid system decreases both operating costs and the emission of pollutants. The hybrid system that realized these optimization purposes is the one constructed from a combination of these sources

  7. A modeling method for hybrid energy behaviors in flexible machining systems

    International Nuclear Information System (INIS)

    Li, Yufeng; He, Yan; Wang, Yan; Wang, Yulin; Yan, Ping; Lin, Shenlong

    2015-01-01

    Increasingly environmental and economic pressures have led to great concerns regarding the energy consumption of machining systems. Understanding energy behaviors of flexible machining systems is a prerequisite for improving energy efficiency of these systems. This paper proposes a modeling method to predict energy behaviors in flexible machining systems. The hybrid energy behaviors not only depend on the technical specification related of machine tools and workpieces, but are significantly affected by individual production scenarios. In the method, hybrid energy behaviors are decomposed into Structure-related energy behaviors, State-related energy behaviors, Process-related energy behaviors and Assignment-related energy behaviors. The modeling method for the hybrid energy behaviors is proposed based on Colored Timed Object-oriented Petri Net (CTOPN). The former two types of energy behaviors are modeled by constructing the structure of CTOPN, whist the latter two types of behaviors are simulated by applying colored tokens and associated attributes. Machining on two workpieces in the experimental workshop were undertaken to verify the proposed modeling method. The results showed that the method can provide multi-perspective transparency on energy consumption related to machine tools, workpieces as well as production management, and is particularly suitable for flexible manufacturing system when frequent changes in machining systems are often encountered. - Highlights: • Energy behaviors in flexible machining systems are modeled in this paper. • Hybrid characteristics of energy behaviors are examined from multiple viewpoints. • Flexible modeling method CTOPN is used to predict the hybrid energy behaviors. • This work offers a multi-perspective transparency on energy consumption

  8. Fuel cell-gas turbine hybrid system design part II: Dynamics and control

    Science.gov (United States)

    McLarty, Dustin; Brouwer, Jack; Samuelsen, Scott

    2014-05-01

    Fuel cell gas turbine hybrid systems have achieved ultra-high efficiency and ultra-low emissions at small scales, but have yet to demonstrate effective dynamic responsiveness or base-load cost savings. Fuel cell systems and hybrid prototypes have not utilized controls to address thermal cycling during load following operation, and have thus been relegated to the less valuable base-load and peak shaving power market. Additionally, pressurized hybrid topping cycles have exhibited increased stall/surge characteristics particularly during off-design operation. This paper evaluates additional control actuators with simple control methods capable of mitigating spatial temperature variation and stall/surge risk during load following operation of hybrid fuel cell systems. The novel use of detailed, spatially resolved, physical fuel cell and turbine models in an integrated system simulation enables the development and evaluation of these additional control methods. It is shown that the hybrid system can achieve greater dynamic response over a larger operating envelope than either individual sub-system; the fuel cell or gas turbine. Results indicate that a combined feed-forward, P-I and cascade control strategy is capable of handling moderate perturbations and achieving a 2:1 (MCFC) or 4:1 (SOFC) turndown ratio while retaining >65% fuel-to-electricity efficiency, while maintaining an acceptable stack temperature profile and stall/surge margin.

  9. Hybrid PV/Wind Power Systems Incorporating Battery Storage and Considering the Stochastic Nature of Renewable Resources

    Science.gov (United States)

    Barnawi, Abdulwasa Bakr

    Hybrid power generation system and distributed generation technology are attracting more investments due to the growing demand for energy nowadays and the increasing awareness regarding emissions and their environmental impacts such as global warming and pollution. The price fluctuation of crude oil is an additional reason for the leading oil producing countries to consider renewable resources as an alternative. Saudi Arabia as the top oil exporter country in the word announced the "Saudi Arabia Vision 2030" which is targeting to generate 9.5 GW of electricity from renewable resources. Two of the most promising renewable technologies are wind turbines (WT) and photovoltaic cells (PV). The integration or hybridization of photovoltaics and wind turbines with battery storage leads to higher adequacy and redundancy for both autonomous and grid connected systems. This study presents a method for optimal generation unit planning by installing a proper number of solar cells, wind turbines, and batteries in such a way that the net present value (NPV) is minimized while the overall system redundancy and adequacy is maximized. A new renewable fraction technique (RFT) is used to perform the generation unit planning. RFT was tested and validated with particle swarm optimization and HOMER Pro under the same conditions and environment. Renewable resources and load randomness and uncertainties are considered. Both autonomous and grid-connected system designs were adopted in the optimal generation units planning process. An uncertainty factor was designed and incorporated in both autonomous and grid connected system designs. In the autonomous hybrid system design model, the strategy including an additional amount of operation reserve as a percent of the hourly load was considered to deal with resource uncertainty since the battery storage system is the only backup. While in the grid-connected hybrid system design model, demand response was incorporated to overcome the impact of

  10. Design and Research of the Movable Hybrid Photovoltaic-Thermal (PVT System

    Directory of Open Access Journals (Sweden)

    Lian Zhang

    2017-04-01

    Full Text Available In recent years, with the development of photovoltaic system and photo-thermal system technology, hybrid photovoltaic-thermal (PVT technology has been a breakthrough in many aspects. This paper describes the movable hybrid PVT system from the aspects of appearance structure, energy flow, and control circuit. The system is equipped with rolling wheels and the simulated light sources also can be removed so that the system can be used in the outdoor conditions. The movable system is also suitable for the PVT system and its related applications without any external power supply. This system combines two technologies: photovoltaic power generation and photo-thermal utilization. The first part of the power supply is for the systems own output power supply, and the second part is for generating thermal energy. The two separate parts can be controlled and monitored respectively through the control circuits and the touch screens. The experimental results show that the system can generate 691 kWh electric energy and 3047.8 kWh thermal energy each year under normal working conditions. The efficiency of the proposed movable hybrid PVT system is calculated to be approximately 42.82% using the revised equations that are proposed in this paper. Therefore, the movable hybrid PVT system can meet the daily demands of hot water and electricity power in remote areas or islands and other non-grid areas. It also can be used to conduct experiment tests for the PVT system.

  11. Hybrid wide-angle viewing-endoscopic vitrectomy using a 3D visualization system

    Directory of Open Access Journals (Sweden)

    Kita M

    2018-02-01

    Full Text Available Mihori Kita, Yuki Mori, Sachiyo Hama Department of Ophthalmology, National Organization Kyoto Medical Center, Kyoto, Japan Purpose: To introduce a hybrid wide-angle viewing-endoscopic vitrectomy, which we have reported, using a 3D visualization system developed recently. Subjects and methods: We report a single center, retrospective, consecutive surgical case series of 113 eyes that underwent 25 G vitrectomy (rhegmatogenous retinal detachment or proliferative vitreoretinopathy, 49 eyes; epiretinal membrane, 18 eyes; proliferative diabetic retinopathy, 17 eyes; vitreous opacity or vitreous hemorrhage, 11 eyes; macular hole, 11 eyes; vitreomacular traction syndrome, 4 eyes; and luxation of intraocular lens, 3 eyes. Results: This system was successfully used to perform hybrid vitrectomy in the difficult cases, such as proliferative vitreoretinopathy and proliferative diabetic retinopathy. Conclusion: Hybrid wide-angle viewing-endoscopic vitrectomy using a 3D visualization system appears to be a valuable and promising method for managing various types of vitreoretinal disease. Keywords: 25 G vitrectomy, endoscope, wide-angle viewing system, 3D visualization system, hybrid

  12. Elements de conception d'un systeme geothermique hybride par optimisation financiere

    Science.gov (United States)

    Henault, Benjamin

    The choice of design parameters for a hybrid geothermal system is usually based on current practices or questionable assumptions. In fact, the main purpose of a hybrid geothermal system is to maximize the energy savings associated with heating and cooling requirements while minimizing the costs of operation and installation. This thesis presents a strategy to maximize the net present value of a hybrid geothermal system. This objective is expressed by a series of equations that lead to a global objective function. Iteratively, the algorithm converges to an optimal solution by using an optimization method: the conjugate gradient combined with a combinatorial method. The objective function presented in this paper makes use of a simulation algorithm for predicting the fluid temperature of a hybrid geothermal system on an hourly basis. Thus, the optimization method selects six variables iteratively, continuous and integer type, affecting project costs and energy savings. These variables are the limit temperature at the entry of the heat pump (geothermal side), the number of heat pumps, the number of geothermal wells and the distance in X and Y between the geothermal wells. Generally, these variables have a direct impact on the cost of the installation, on the entering water temperature at the heat pumps, the cost of equipment, the thermal interference between boreholes, the total capacity of geothermal system, on system performance, etc. On the other hand, the arrangement of geothermal wells is variable and is often irregular depending on the number of selected boreholes by the algorithm. Removal or addition of one or more borehole is guided by a predefined order dicted by the designer. This feature of irregular arrangement represents an innovation in the field and is necessary for the operation of this algorithm. Indeed, this ensures continuity between the number of boreholes allowing the use of the conjugate gradient method. The proposed method provides as outputs the

  13. Modeling, control, and simulation of grid connected intelligent hybrid battery/photovoltaic system using new hybrid fuzzy-neural method.

    Science.gov (United States)

    Rezvani, Alireza; Khalili, Abbas; Mazareie, Alireza; Gandomkar, Majid

    2016-07-01

    Nowadays, photovoltaic (PV) generation is growing increasingly fast as a renewable energy source. Nevertheless, the drawback of the PV system is its dependence on weather conditions. Therefore, battery energy storage (BES) can be considered to assist for a stable and reliable output from PV generation system for loads and improve the dynamic performance of the whole generation system in grid connected mode. In this paper, a novel topology of intelligent hybrid generation systems with PV and BES in a DC-coupled structure is presented. Each photovoltaic cell has a specific point named maximum power point on its operational curve (i.e. current-voltage or power-voltage curve) in which it can generate maximum power. Irradiance and temperature changes affect these operational curves. Therefore, the nonlinear characteristic of maximum power point to environment has caused to development of different maximum power point tracking techniques. In order to capture the maximum power point (MPP), a hybrid fuzzy-neural maximum power point tracking (MPPT) method is applied in the PV system. Obtained results represent the effectiveness and superiority of the proposed method, and the average tracking efficiency of the hybrid fuzzy-neural is incremented by approximately two percentage points in comparison to the conventional methods. It has the advantages of robustness, fast response and good performance. A detailed mathematical model and a control approach of a three-phase grid-connected intelligent hybrid system have been proposed using Matlab/Simulink. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.

  14. Sodium Hydroxide and Calcium Hydroxide Hybrid Oxygen Bleaching with System

    Science.gov (United States)

    Doelle, K.; Bajrami, B.

    2018-01-01

    This study investigates the replacement of sodium hydroxide in the oxygen bleaching stage using a hybrid system consisting of sodium hydroxide calcium hydroxide. Commercial Kraft pulping was studied using yellow pine Kraft pulp obtained from a company in the US. The impact of sodium hydroxide, calcium hydroxide hybrid system in regard to concentration, reaction time and temperature for Kraft pulp was evaluated. The sodium hydroxide and calcium hydroxide dosage was varied between 0% and 15% based on oven dry fiber content. The bleaching reaction time was varied between 0 and 180 minutes whereas the bleaching temperature ranged between 70 °C and 110 °C. The ability to bleach pulp was measured by determining the Kappa number. Optimum bleaching results for the hybrid system were achieved with 4% sodium hydroxide and 2% calcium hydroxide content. Beyond this, the ability to bleach pulp decreased.

  15. Hybrid cognitive engine for radio systems adaptation

    KAUST Repository

    Alqerm, Ismail; Shihada, Basem

    2017-01-01

    of our hybrid engine is validated using software defined radios implementation and simulation in multi-carrier environment. The system throughput, signal to noise and interference ratio, and packet error rate are obtained and compared with other schemes

  16. Research on Hybrid Isolation System for Micro-Nano-Fabrication Platform

    Directory of Open Access Journals (Sweden)

    Jie Fu

    2014-06-01

    Full Text Available In order to obtain better vibration suppression effect, this paper designs a semiactive/fully active hybrid isolator by using magnetorheological elastomer (MRE and piezoelectric material. Combined with multimode control scheme, full frequency vibration suppression is achieved. Firstly, series type structure is determined for the hybrid isolator, and the structure of hybrid isolator is designed. Next, the dynamic model of hybrid isolator is derived, the dynamic characteristics measurement for MRE isolator and piezoelectric stack actuator (PSA is established, and parameters such as voltage-displacement coefficient, stiffness and damping constant are identified from the experimental results, respectively. Meanwhile, the switch frequency is determined by experimental results of PSA and MRE isolator. Lastly, influence of the stiffness of MRE, control voltage of PSA, and intermediate mass on hybrid isolator system is analyzed by simulations, and the results show that the hybrid isolator proposed is effective.

  17. Potential Evaluation of Solar Heat Assisted Desiccant Hybrid Air Conditioning System

    Science.gov (United States)

    Tran, Thien Nha; Hamamoto, Yoshinori; Akisawa, Atsushi; Kashiwagi, Takao

    The solar thermal driven desiccant dehumidification-absorption cooling hybrid system has superior advantage in hot-humid climate regions. The reasonable air processing of desiccant hybrid air conditioning system and the utility of clean and free energy make the system environment friendly and energy efficient. The study investigates the performance of the desiccant dehumidification air conditioning systems with solar thermal assistant. The investigation is performed for three cases which are combinations of solar thermal and absorption cooling systems with different heat supply temperature levels. Two solar thermal systems are used in the study: the flat plate collector (FPC) and the vacuum tube with compound parabolic concentrator (CPC). The single-effect and high energy efficient double-, triple-effect LiBr-water absorption cooling cycles are considered for cooling systems. COP of desiccant hybrid air conditioning systems are determined. The evaluation of these systems is subsequently performed. The single effect absorption cooling cycle combined with the flat plate collector solar system is found to be the most energy efficient air conditioning system.

  18. Hybrid renewable energy systems for the supply of services in rural settlements of mediterranean partner countries. The HYRESS project - the case study of the hybrid system - microgrid in Egypt

    Energy Technology Data Exchange (ETDEWEB)

    Papadakis, G.; Mohamed, E.S.; Kyriakarakos, G. [Agricultural Univ. of Athens (Greece); Kassem, A.W.S. [Alexandria Univ., El Chatbi (Egypt). Dept. of Agricultural Engineering

    2010-07-01

    Hybrid renewable energy systems is one of the most promising application of renewable energy technologies in remote areas, where the cost of grid extension is prohibitive and the price of fossil fuels increase drastically with the remoteness of the location. Applications of hybrid systems range from small power supplies for remote households providing electricity for lighting or water pumping and water supply to village electrification for remote communities. The strategic objective of the HYRESS project is to remove the knowledge barriers against the installation of Renewable Energy Systems and creation of micro grids. In order to fulfill this objective, three different modular hybrid systems with the generating technologies connected to the AC side were designet, installed and evaluated in three selected remote sites far away from the grid in Egypt, Morocco and Tunisia. This paper describes the hybrid system installed in Egypt as a case study and presents first operation results. (orig.)

  19. Electrically heated particulate filter regeneration methods and systems for hybrid vehicles

    Science.gov (United States)

    Gonze, Eugene V.; Paratore, Jr., Michael J.

    2010-10-12

    A control system for controlling regeneration of a particulate filter for a hybrid vehicle is provided. The system generally includes a regeneration module that controls current to the particulate filter to initiate regeneration. An engine control module controls operation of an engine of the hybrid vehicle based on the control of the current to the particulate filter.

  20. Hybrid quantum information processing

    Energy Technology Data Exchange (ETDEWEB)

    Furusawa, Akira [Department of Applied Physics, School of Engineering, The University of Tokyo (Japan)

    2014-12-04

    I will briefly explain the definition and advantage of hybrid quantum information processing, which is hybridization of qubit and continuous-variable technologies. The final goal would be realization of universal gate sets both for qubit and continuous-variable quantum information processing with the hybrid technologies. For that purpose, qubit teleportation with a continuousvariable teleporter is one of the most important ingredients.

  1. Development of a test facility for PV-Wind hybrid energy systems

    Energy Technology Data Exchange (ETDEWEB)

    Engin, Mustafa [Ege Univ., Izmir (Turkey). Ege Tech., Electronics Technolgy; Ege Univ., Izmir (Turkey). Solar Energy Inst.

    2010-07-01

    To quantify the potential for performance improvements of photovoltaic-wind hybrid energy systems, a test facility has been installed at the Solar Energy Institute, Ege University. Hybrid system consist of a wind turbine, PV array, battery, AC and DC loads, inverters, charge regulators and a data logging and control unit. The collected data are first conditioned using precision electronic circuits and then interfaced to a PC using a data logging unit. The LABVIEW program is used to further process, display and store the collected data in the PC disk. The proposed data logging and control unit permits the rapid system development and has the advantage of flexibility in the case of changes, while it can be easily extended for controlling the of photovoltaic-wind hybrid energy system operation. (orig.)

  2. Sizing and Simulation of PV-Wind Hybrid Power System

    Directory of Open Access Journals (Sweden)

    Mustafa Engin

    2013-01-01

    Full Text Available A sizing procedure is developed for hybrid system with the aid of mathematical models for photovoltaic cell, wind turbine, and battery that are readily present in the literature. This sizing procedure can simulate the annual performance of different kinds of photovoltaic-wind hybrid power system structures for an identified set of renewable resources, which fulfills technical limitations with the lowest energy cost. The output of the program will display the performance of the system during the year, the total cost of the system, and the best size for the PV-generator, wind generator, and battery capacity. Security lightning application is selected, whereas system performance data and environmental operating conditions are measured and stored. This hybrid system, which includes a PV, wind turbine, inverter, and a battery, was installed to supply energy to 24 W lamps, considering that the renewable energy resources of this site where the system was installed were 1700 Wh/m2/day solar radiation and 3.43 m/s yearly average wind speed. Using the measured variables, the inverter and charge regulator efficiencies were calculated as 90% and 98%, respectively, and the overall system’s electrical efficiency is calculated as 72%. Life cycle costs per kWh are found to be $0.89 and LLP = 0.0428.

  3. Thermal simulation of a cooling system of hybrid commercial vehicles; Thermalsimulation eine Hybrid-LKW-Kuehlsystems

    Energy Technology Data Exchange (ETDEWEB)

    Stroh, Christoph; Schnoerch, Stefan; Rathberger, Christian [Magna Powertrain Engineering Center Steyr GmbH und Co. KG, St. Valentin (Austria)

    2012-11-01

    In the past few years hybrid vehicles have been in the center of automotive engineering efforts, in particular in the field of passenger cars. But hybrid powertrains will also be important for commercial trucks. This focus on hybrid vehicles leads to high demands on thermal management since the additional components in a hybrid vehicle need appropriate cooling or even heating. In the given paper the simulation of a complete cooling system of a hybrid commercial vehicle will be explained. For this virtual examination the commercial 1D thermal management software KULI will be used, a co-simulation with several programs will not be done deliberately. Yet all aspects which are relevant for a global assessment of the thermal management are considered. The main focus is put on the investigation of appropriate concepts for the fluid circuits, including low and high temperature circuits, electric water pumps, etc. Moreover, also a refrigerant circuit with a chiller for active battery cooling will be used, the appropriate control strategy is implemented as well. For simulating transient profiles a simple driving simulation model is included, using road profile, ambient conditions, and various vehicle parameters as input. In addition an engine model is included which enables the investigation of fuel consumption potentials. This simulation model shows how the thermal management of a hybrid vehicle can be investigated with a single program and with reasonable effort. (orig.)

  4. Household preferences of hybrid home heating systems – A choice experiment application

    International Nuclear Information System (INIS)

    Ruokamo, Enni

    2016-01-01

    The residential heating sector presents considerable energy savings potential, as numerous heating solutions for reducing electricity consumption and utilizing renewable energy sources are available in the market. The aim of this paper is to examine determinants of household heating system choices and to use this information for policy planning purposes. This paper investigates residential homeowner attitudes regarding innovative hybrid home heating systems (HHHS) with choice experiment. Heating system scenarios are designed to represent the most relevant primary and supplementary heating alternatives currently available in Finland. The choice sets include six main heating alternatives (district heat, solid wood, wood pellet, electric storage heating, ground heat pump and exhaust air heat pump) that are described by five attributes (supplementary heating systems, investment costs, operating costs, comfort of use and environmental friendliness). The results imply that HHHSs generally appear to be accepted among households; however, several factors affect perceptions of these technologies. The results reveal differing household attitudes toward the main heating alternatives and show that such views are affected by socio-demographic characteristics (age, living environment, education, etc.). The results suggest that households view supplementary heating systems (especially solar-based) favorably. The other attributes studied also play a significant role in decision making. - Highlights: •Study of hybrid heating where supplementary and main heating systems are combined. •Choice experiment is applied to study the determinants of hybrid heating adoption. •Hybrid heating appears to be generally accepted among households. •Households exhibit differing attitudes toward hybrid heating. •Policy makers should not underestimate the potential of hybrid heating.

  5. The newly developed Toyota plug-in hybrid system

    Energy Technology Data Exchange (ETDEWEB)

    Takaoka, Toshifumi; Ichinose, Hiroki [Toyota Motor Corporation (Japan)

    2010-07-01

    Toyota has been introducing several hybrid vehicles (HV) as a countermeasure to the automobile's concerns, like CO2 reduction, energy security, and emission reduction in urban areas. A next step towards an even more effective solution for these concerns is a plug-in hybrid vehicle (PHV). This vehicle combines the advantages of electric vehicles (EV), which use clean electric energy, and HV, with it's high environmental potential and user- friendliness comparable to conventional vehicles, such as a long cruising range. This paper describes a newly developed plug-in hybrid system and its vehicle performance. This system uses a Li-ion battery with high energy density and has an affordable EV range without sacrificing cabin space. The vehicle achieves a CO2 emission of 59g/km and meets the most stringent emission regulations in the world. The new PHV is a forerunner of the large-scale mass production PHV two years later. PHVs have the potential to become popular as a realistic solution towards sustainable mobility by renewable electricity usage in the future. (orig.)

  6. Mars Hybrid Propulsion System Trajectory Analysis. Part I; Crew Missions

    Science.gov (United States)

    Chai, Patrick R.; Merrill, Raymond G.; Qu, Min

    2015-01-01

    NASAs Human spaceflight Architecture team is developing a reusable hybrid transportation architecture in which both chemical and electric propulsion systems are used to send crew and cargo to Mars destinations such as Phobos, Deimos, the surface of Mars, and other orbits around Mars. By combining chemical and electrical propulsion into a single space- ship and applying each where it is more effective, the hybrid architecture enables a series of Mars trajectories that are more fuel-efficient than an all chemical architecture without significant increases in flight times. This paper provides the analysis of the interplanetary segments of the three Evolvable Mars Campaign crew missions to Mars using the hybrid transportation architecture. The trajectory analysis provides departure and arrival dates and propellant needs for the three crew missions that are used by the campaign analysis team for campaign build-up and logistics aggregation analysis. Sensitivity analyses were performed to investigate the impact of mass growth, departure window, and propulsion system performance on the hybrid transportation architecture. The results and system analysis from this paper contribute to analyses of the other human spaceflight architecture team tasks and feed into the definition of the Evolvable Mars Campaign.

  7. Input/output routines for a hybrid computer

    International Nuclear Information System (INIS)

    Izume, Akitada; Yodo, Terutaka; Sakama, Iwao; Sakamoto, Akira; Miyake, Osamu

    1976-05-01

    This report is concerned with data processing programs for a hybrid computer system. Especially pre-data processing of magnetic tapes which are recorded during the dynamic experiment by FACOM 270/25 data logging system in the 50 MW steam generator test facility is described in detail. The magnetic tape is a most effective recording medium for data logging, but recording formats of the magnetic tape are different between data logging systems. In our section, the final data analyses are performed by data in the disk of EAI-690 hybrid computer system, and to transfer all required information in magnetic tapes to the disk, the magnetic tape editing and data transit are necessary by sub-computer NEAC-3200 system. This report is written for users as a manual and reference hand book of pre-data processing between different type computers. (auth.)

  8. Detection of cardiovascular anomalies: Hybrid systems approach

    KAUST Repository

    Ledezma, Fernando; Laleg-Kirati, Taous-Meriem

    2012-01-01

    In this paper, we propose a hybrid interpretation of the cardiovascular system. Based on a model proposed by Simaan et al. (2009), we study the problem of detecting cardiovascular anomalies that can be caused by variations in some physiological

  9. Final Focus Systems in Linear Colliders

    International Nuclear Information System (INIS)

    Raubenheimer, Tor

    1998-01-01

    In colliding beam facilities, the ''final focus system'' must demagnify the beams to attain the very small spot sizes required at the interaction points. The first final focus system with local chromatic correction was developed for the Stanford Linear Collider where very large demagnifications were desired. This same conceptual design has been adopted by all the future linear collider designs as well as the SuperConducting Supercollider, the Stanford and KEK B-Factories, and the proposed Muon Collider. In this paper, the over-all layout, physics constraints, and optimization techniques relevant to the design of final focus systems for high-energy electron-positron linear colliders are reviewed. Finally, advanced concepts to avoid some of the limitations of these systems are discussed

  10. Special Issue: New trends and applications on hybrid artificial intelligence systems

    OpenAIRE

    Corchado Rodríguez, Emilio; Graña Romay, Manuel; Woźniak, MichaŁ

    2017-01-01

    This Special Issue is an outgrowth of the HAIS'10, the 5th International Conference on Hybrid Artificial Intelligence Systems, which was held in San Sebastián, Spain, 23–25 June 2010. The HAIS conference series is devoted to the presentation of innovative techniques involving the hybridization of emerging and active topics in data mining and decision support systems, information fusion, evolutionary computation, visualization techniques, ensemble models, intelligent agent-based systems (compl...

  11. Design and evaluation of hybrid wind/PV/diesel power systems for Brazilian applications

    Energy Technology Data Exchange (ETDEWEB)

    McGowan, J.G.; Manwell, J.F.; Avelar, C. [Univ. of Massachusetts, Amherst, MA (United States); Warner, C. [National Renewable Energy Lab., Golden, CO (United States)

    1996-12-31

    This paper presents a summary of a study centered on the design and evaluation of hybrid wind/PV/diesel systems for remote locations in Brazil. The objective of this work was to evaluate high reliability hybrid power systems that have been designed for the lowest life cycle costs. The technical and economic analysis of the hybrid wind/PV/diesel systems was carried out using HYBRID2, a computational code developed at the University of Massachusetts in conjunction with the National Renewable Energy Laboratory (NREL). After a summary of a generalized design procedure for such systems based on the use of this code, a systematic parametric evaluation of a representative design case for a village power system in Brazil is presented. As summarized in the paper, the performance and economic effects of key design parameters are illustrated. 8 refs., 10 figs.

  12. Design and RF Test of Broadband Coaxial Hybrid Splitter for ITER ICRF System

    Energy Technology Data Exchange (ETDEWEB)

    Kim, H. J.; Wang, S. J.; Park, B. H.; Yang, H. L.; Kwak, J. G. [National Fusion Research Institute, Daejeon (Korea, Republic of); Choi, J. J. [Kwangwoon Univ., Seoul (Korea, Republic of)

    2013-10-15

    The ICRF system of the ITER is required to couple 20 MW to the plasma in the 40∼55 MHz frequency band for RF heating and current drive operation. The corresponding matching system of ICRF antenna must be load-resilient for a wide range of antenna load variations due to mode transitions or edge localized modes. Indeed the use of hybrid splitters ensures that no reflections occur at the generator when the reflections on the adjacent lines are equal both in magnitude and in phase, in which case all reflected power will not be seen by the generators and will be returned to the dummy loads. Most 3 dB coaxial hybrid circuits installed and implemented on the ICRF system is single section coupler providing best performance at the design frequency with narrow bandwidth. The bandwidth of such a single-section 3 dB hybrid coupler is limited to less than 20% due to the quarter wavelength transmission line requirement. The amplitude balance becomes rapidly degraded away from the center frequency. We designed, fabricated and tested a high power, ultra-wideband two-section 3 dB coaxial hybrid coupler over all frequencies from 40 MHz to 55 MHz for ITER ICRF system by configuring asymmetric impedance matching. We have designed, fabricated, and tested a 3-dB wideband hybrid coupler for stable and load resilient operation of the ITER ICRF system. The wideband two section 3-dB coaxial hybrid coupler was well designed by configuring asymmetric impedance matching using HFSS. In the rf measurements, we found that wideband hybrid splitter has an amplitude imbalance of 0.1 dB over all frequencies from 40 MHz to 55 MHz. We expect that wideband hybrid splitter will be applicable to ITER ICRF matching system for load resilient operation at fusion plasmas.

  13. Hybrid hydrogen-battery systems for renewable off-grid telecom power

    OpenAIRE

    Scamman, D.; Newborough, M.; Bustamante, H.

    2015-01-01

    Off-grid hybrid systems, based on the integration of hydrogen technologies (electrolysers, hydrogen stores and fuel cells) with battery and wind/solar power technologies, are proposed for satisfying the continuous power demands of telecom remote base stations. A model was developed to investigate the preferred role for electrolytic hydrogen within a hybrid system; the analysis focused on powering a 1 kW telecom load in three locations of distinct wind and solar resource availability. When com...

  14. Methodology for the hybrid solution of systems of differential equations

    International Nuclear Information System (INIS)

    Larrinaga, E.F.; Lopez, M.A.

    1993-01-01

    This work shows a general methodology of solution to systems of differential equations in hybrid computers. Taking into account this methodology, a mathematical model was elaborated. It offers wide possibilities of recording and handling the results on the basis of using the hybrid system IBM-VIDAC 1224 which the ISCTN has. It also presents the results gained when simulating a simple model of a nuclear reactor, which was used in the validation of the results of the computational model

  15. Control system for a hybrid powertrain system

    Science.gov (United States)

    Naqvi, Ali K.; Demirovic, Besim; Gupta, Pinaki; Kaminsky, Lawrence A.

    2014-09-09

    A vehicle includes a powertrain with an engine, first and second torque machines, and a hybrid transmission. A method for operating the vehicle includes operating the engine in an unfueled state, releasing an off-going clutch which when engaged effects operation of the hybrid transmission in a first continuously variable mode, and applying a friction braking torque to a wheel of the vehicle to compensate for an increase in an output torque of the hybrid transmission resulting from releasing the off-going clutch. Subsequent to releasing the off-going clutch, an oncoming clutch which when engaged effects operation of the hybrid transmission in a second continuously variable mode is synchronized. Subsequent to synchronization of the oncoming clutch, the oncoming clutch is engaged.

  16. Performance analysis of a solar photovoltaic hybrid system for electricity generation and simultaneous water disinfection of wild bacteria strains

    International Nuclear Information System (INIS)

    Pichel, N.; Vivar, M.; Fuentes, M.

    2016-01-01

    Highlights: • A new hybrid solar water disinfection and energy generation system was designed and tested. • SOLWAT comprises a water disinfection reactor and a PV module fully integrated into a single unit. • Natural water with wild strains of E. coli, Enterococcus spp. and C. perfringens were studied. • The water disinfection reactor located above the PV module did not affect the final energy output. • The SOLWAT disinfection results were always higher than conventional PET bottles. - Abstract: A hybrid solar water disinfection and energy generation system for meeting the needs of safe drinking water and electricity was designed and tested in Alcalá de Henares (Spain) under summer climatic conditions to demonstrate the feasibility of the concept. Natural water sources with wild strains of Escherichia coli, total coliforms, Enterococcus spp. and Clostridium perfringens (including spores) were studied. Results showed that SOLWAT disinfection efficiency was higher than conventional PET bottles and that the water disinfection reactor located above the PV module did not affect the total energy output produced by the hybrid system in comparison to the single PV module, achieving the same power losses over the 6 h of sun exposure in relation to their power at standard test conditions (STC).

  17. Hybrid fuzzy logic control of laser surface heat treatments

    International Nuclear Information System (INIS)

    Perez, Jose Antonio; Ocana, Jose Luis; Molpeceres, Carlos

    2007-01-01

    This paper presents an advanced hybrid fuzzy logic control system for laser surface heat treatments, which allows to increase significantly the uniformity and final quality of the obtained product, reducing the rejection rate and increasing the productivity and efficiency of the treatment. Basically, the proposed hybrid control structure combines a fuzzy logic controller, with a pure integral action, both fully decoupled, improving the performances of the process with a reasonable design cost, since the system nonlinearities are fully compensated by the fuzzy component of the controller, while the integral action contributes to eliminate the steady-state error

  18. Energy Optimization for a Weak Hybrid Power System of an Automobile Exhaust Thermoelectric Generator

    Science.gov (United States)

    Fang, Wei; Quan, Shuhai; Xie, Changjun; Tang, Xinfeng; Ran, Bin; Jiao, Yatian

    2017-11-01

    An integrated starter generator (ISG)-type hybrid electric vehicle (HEV) scheme is proposed based on the automobile exhaust thermoelectric generator (AETEG). An eddy current dynamometer is used to simulate the vehicle's dynamic cycle. A weak ISG hybrid bench test system is constructed to test the 48 V output from the power supply system, which is based on engine exhaust-based heat power generation. The thermoelectric power generation-based system must ultimately be tested when integrated into the ISG weak hybrid mixed power system. The test process is divided into two steps: comprehensive simulation and vehicle-based testing. The system's dynamic process is simulated for both conventional and thermoelectric powers, and the dynamic running process comprises four stages: starting, acceleration, cruising and braking. The quantity of fuel available and battery pack energy, which are used as target vehicle energy functions for comparison with conventional systems, are simplified into a single energy target function, and the battery pack's output current is used as the control variable in the thermoelectric hybrid energy optimization model. The system's optimal battery pack output current function is resolved when its dynamic operating process is considered as part of the hybrid thermoelectric power generation system. In the experiments, the system bench is tested using conventional power and hybrid thermoelectric power for the four dynamic operation stages. The optimal battery pack curve is calculated by functional analysis. In the vehicle, a power control unit is used to control the battery pack's output current and minimize energy consumption. Data analysis shows that the fuel economy of the hybrid power system under European Driving Cycle conditions is improved by 14.7% when compared with conventional systems.

  19. Performance evaluation and parametric optimum design of a molten carbonate fuel cell-thermophotovoltaic cell hybrid system

    International Nuclear Information System (INIS)

    Yang, Zhimin; Liao, Tianjun; Zhou, Yinghui; Lin, Guoxing; Chen, Jincan

    2016-01-01

    Highlights: • A molten carbonate fuel cell-thermophotovoltaic cell hybrid system is established. • The performance characteristics of the hybrid system are systematically evaluated. • The optimal regions of the power output density and efficiency are determined. • The values of key parameters at the maximum power output density are calculated. • The proposed system is proved to have advantages over other hybrid systems. - Abstract: A new model of the hybrid system composed of a molten carbonate fuel cell (MCFC) and a thermophotovoltaic cell (TPVC) is proposed to recovery the waste heat produced by the MCFC. Expressions for the power output and the efficiency of the hybrid system are analytically derived. The performance characteristics of the hybrid system are evaluated. It is found that when the current density of the MCFC, voltage output of the TPVC, electrode area ratio of the MCFC to the TPVC, and energy gap of the material in the photovoltaic cell are optimally chosen, the maximum power output density of the hybrid system is obviously larger than that of the single MCFC. Moreover, the improved percentages of the maximum power output density of the proposed model relative to that of the single MCFC are calculated for differently operating temperatures of the MCFC and are compared with those of some MCFC-based hybrid systems reported in the literature, and consequently, the advantages of the MCFC-TPVC hybrid system are revealed.

  20. 21 CFR 866.4700 - Automated fluorescence in situ hybridization (FISH) enumeration systems.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Automated fluorescence in situ hybridization (FISH... Laboratory Equipment and Reagents § 866.4700 Automated fluorescence in situ hybridization (FISH) enumeration... Hybridization (FISH) Enumeration Systems.” See § 866.1(e) for the availability of this guidance document. [70 FR...

  1. The Vulcan Advanced Hybrid Manufacturing System, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Made In Space is developing the The Vulcan Advanced Hybrid Manufacturing System (VULCAN) to address NASA's requirement to produce high-strength, high-precision...

  2. Method and apparatus for controlling hybrid powertrain system in response to engine temperature

    Science.gov (United States)

    Martini, Ryan D; Spohn, Brian L; Lehmen, Allen J; Cerbolles, Teresa L

    2014-10-07

    A method for controlling a hybrid powertrain system including an internal combustion engine includes controlling operation of the hybrid powertrain system in response to a preferred minimum coolant temperature trajectory for the internal combustion engine.

  3. Parametric systems analysis for tandem mirror hybrids

    International Nuclear Information System (INIS)

    Lee, J.D.; Chapin, D.L.; Chi, J.W.H.

    1980-09-01

    Fusion fission systems, consisting of fissile producing fusion hybrids combining a tandem mirror fusion driver with various blanket types and net fissile consuming LWR's, have been modeled and analyzed parametrically. Analysis to date indicates that hybrids can be competitive with mined uranium when U 3 O 8 cost is about 100 $/lb., adding less than 25% to present day cost of power from LWR's. Of the three blanket types considered, uranium fast fission (UFF), thorium fast fission (ThFF), and thorium fission supressed (ThFS), the ThFS blanket has a modest economic advantage under most conditions but has higher support ratios and potential safety advantages under all conditions

  4. Safety Verification for Probabilistic Hybrid Systems

    Czech Academy of Sciences Publication Activity Database

    Zhang, J.; She, Z.; Ratschan, Stefan; Hermanns, H.; Hahn, E.M.

    2012-01-01

    Roč. 18, č. 6 (2012), s. 572-587 ISSN 0947-3580 R&D Projects: GA MŠk OC10048; GA ČR GC201/08/J020 Institutional research plan: CEZ:AV0Z10300504 Keywords : model checking * hybrid system s * formal verification Subject RIV: IN - Informatics, Computer Science Impact factor: 1.250, year: 2012

  5. Optimal Sizing of a Stand-Alone Hybrid Power System Based on Battery/Hydrogen with an Improved Ant Colony Optimization

    Directory of Open Access Journals (Sweden)

    Weiqiang Dong

    2016-09-01

    Full Text Available A distributed power system with renewable energy sources is very popular in recent years due to the rapid depletion of conventional sources of energy. Reasonable sizing for such power systems could improve the power supply reliability and reduce the annual system cost. The goal of this work is to optimize the size of a stand-alone hybrid photovoltaic (PV/wind turbine (WT/battery (B/hydrogen system (a hybrid system based on battery and hydrogen (HS-BH for reliable and economic supply. Two objectives that take the minimum annual system cost and maximum system reliability described as the loss of power supply probability (LPSP have been addressed for sizing HS-BH from a more comprehensive perspective, considering the basic demand of load, the profit from hydrogen, which is produced by HS-BH, and an effective energy storage strategy. An improved ant colony optimization (ACO algorithm has been presented to solve the sizing problem of HS-BH. Finally, a simulation experiment has been done to demonstrate the developed results, in which some comparisons have been done to emphasize the advantage of HS-BH with the aid of data from an island of Zhejiang, China.

  6. Final focus system for TLC

    International Nuclear Information System (INIS)

    Oide, K.

    1988-11-01

    A limit of the chromaticity correction for the final focus system of a TeV Linear Collider (TLC) is investigated. As the result, it becomes possible to increase the aperture of the final doublet with a small increase of the horizontal β function. The new optics design uses a final doublet of 0.5 mm half-aperture and 1.4 T pole-tip field. The length of the system is reduced from 400 m to 200 m by several optics changes. Tolerances for various machine errors with this optics are also studied. 5 refs., 7 figs., 2 tabs

  7. Characterization of Alternative Hybrid Solar Thermal Electric Systems

    International Nuclear Information System (INIS)

    Williams, T.A.

    1999-01-01

    Hybrid power towers offer a number of advantages over solar-only power tower systems for early commercial deployment of the technology. These advantages include enhanced modularity, reduced financial and technical risks, and lower energy costs. With the changes in the domestic and world markets for bulk power, hybrid power towers are likely to have the best opportunities for power projects. This paper discusses issues that are likely to be important to the deployment of hybrid power towers in the near future. A large number of alternative designs are possible, and it is likely that there is no single approach that can be considered best or optimal for all project opportunities. The preferred design will depend on the application, as well as the unique objectives and perspectives of the person evaluating the design

  8. PV-hybrid village power systems in Amazonia

    Energy Technology Data Exchange (ETDEWEB)

    Warner, C.L.; Taylor, R.W. [National Renewable Energy Lab., Golden, CO (United States); Ribeiro, C.M. [Centro de Pesquisas de Energie Eletrica (CEPEL), Rio de Janeiro (Brazil)] [and others

    1996-05-01

    The Brazilian Amazon region is an ideal location for isolated mini-grid systems. Hundreds of diesel systems have been installed to supply electricity to this sparsely populated region. However, the availability of renewable energy resources makes the Amazon well-suited to renewable energy systems. This paper describes the technical aspects of two hybrid systems being installed in this region through the cooperative effort of multiple partners: U.S. Department of Energy, through NREL, and Brazilian CEPEL/Eletrobras and state electric utilities.

  9. Study and design of a hybrid wind-diesel-compressed air energy storage system for remote areas

    International Nuclear Information System (INIS)

    Ibrahim, H.; Younes, R.; Ilinca, A.; Dimitrova, M.; Perron, J.

    2010-01-01

    Remote areas around the world predominantly rely on diesel-powered generators for their electricity supply, a relatively expensive and inefficient technology that is responsible for the emission of 1.2 million tons of greenhouse gas (GHG) annually, only in Canada . Wind-diesel hybrid systems (WDS) with various penetration rates have been experimented to reduce diesel consumption of the generators. After having experimented wind-diesel hybrid systems (WDS) that used various penetration rates, we turned our focus to that the re-engineering of existing diesel power plants can be achieved most efficiently, in terms of cost and diesel consumption, through the introduction of high penetration wind systems combined with compressed air energy storage (CAES). This article compares the available technical alternatives to supercharge the diesel that was used in this high penetration wind-diesel system with compressed air storage (WDCAS), in order to identify the one that optimizes its cost and performances. The technical characteristics and performances of the best candidate technology are subsequently assessed at different working regimes in order to evaluate the varying effects on the system. Finally, a specific WDCAS system with diesel engine downsizing is explored. This proposed design, that requires the repowering of existing facilities, leads to heightened diesel power output, increased engine lifetime and efficiency and to the reduction of fuel consumption and GHG emissions, in addition to savings on maintenance and replacement cost.

  10. Short-Term Planning of Hybrid Power System

    Science.gov (United States)

    Knežević, Goran; Baus, Zoran; Nikolovski, Srete

    2016-07-01

    In this paper short-term planning algorithm for hybrid power system consist of different types of cascade hydropower plants (run-of-the river, pumped storage, conventional), thermal power plants (coal-fired power plants, combined cycle gas-fired power plants) and wind farms is presented. The optimization process provides a joint bid of the hybrid system, and thus making the operation schedule of hydro and thermal power plants, the operation condition of pumped-storage hydropower plants with the aim of maximizing profits on day ahead market, according to expected hourly electricity prices, the expected local water inflow in certain hydropower plants, and the expected production of electrical energy from the wind farm, taking into account previously contracted bilateral agreement for electricity generation. Optimization process is formulated as hourly-discretized mixed integer linear optimization problem. Optimization model is applied on the case study in order to show general features of the developed model.

  11. Configuration Analysis of Plug-in Hybrid Systems using Global Optimization

    OpenAIRE

    Kim, Insup; Kim, Hyunsup

    2013-01-01

    The purpose of the study is to analyze the configurations of Plug-in Hybrid Electric Vehicles (PHEV) with respect to fuel economy. Existing studies mostly focus on hybrid systems or few PHEV systems by only considering power split ratio and component efficiency. This paper adds original contribution to these literatures. First of all, this study compares and analyzes “series + α” PHEV – Input split, Series-output split and Series-parallel, which is consisted of a single Planetary gear or spur...

  12. Energy Management and Simulation of Photovoltaic/Hydrogen /Battery Hybrid Power System

    Directory of Open Access Journals (Sweden)

    Tariq Kamal

    2016-06-01

    Full Text Available This manuscript focuses on a hybrid power system combining a solar photovoltaic array and energy storage system based on hydrogen technology (fuel cell, hydrogen tank and electrolyzer and battery. The complete architecture is connected to the national grid through power converters to increase the continuity of power. The proposed a hybrid power system is designed to work under classical-based energy management algorithm. According to the proposed algorithm, the PV has the priority in meeting the load demands. The hydrogen technology is utilized to ensure long-term energy balance. The battery is used as a backup and/or high power device to take care of the load following problems of hydrogen technology during transient. The dynamic performance of a hybrid power system is tested under different solar radiation, temperature and load conditions for the simulation of 24 Hrs. The effectiveness of the proposed system in terms of power sharing, grid stability, power quality and voltage regulation is verified by Matlab simulation results.

  13. Backstepping fuzzy-neural-network control design for hybrid maglev transportation system.

    Science.gov (United States)

    Wai, Rong-Jong; Yao, Jing-Xiang; Lee, Jeng-Dao

    2015-02-01

    This paper focuses on the design of a backstepping fuzzy-neural-network control (BFNNC) for the online levitated balancing and propulsive positioning of a hybrid magnetic levitation (maglev) transportation system. The dynamic model of the hybrid maglev transportation system including levitated hybrid electromagnets to reduce the suspension power loss and the friction force during linear movement and a propulsive linear induction motor based on the concepts of mechanical geometry and motion dynamics is first constructed. The ultimate goal is to design an online fuzzy neural network (FNN) control methodology to cope with the problem of the complicated control transformation and the chattering control effort in backstepping control (BSC) design, and to directly ensure the stability of the controlled system without the requirement of strict constraints, detailed system information, and auxiliary compensated controllers despite the existence of uncertainties. In the proposed BFNNC scheme, an FNN control is utilized to be the major control role by imitating the BSC strategy, and adaptation laws for network parameters are derived in the sense of projection algorithm and Lyapunov stability theorem to ensure the network convergence as well as stable control performance. The effectiveness of the proposed control strategy for the hybrid maglev transportation system is verified by experimental results, and the superiority of the BFNNC scheme is indicated in comparison with the BSC strategy and the backstepping particle-swarm-optimization control system in previous research.

  14. Small-scale hybrid plant integrated with municipal energy supply system

    International Nuclear Information System (INIS)

    Bakken, B.H.; Fossum, M.; Belsnes, M.M.

    2001-01-01

    This paper describes a research program started in 2001 to optimize environmental impact and cost of a small-scale hybrid plant based on candidate resources, transportation technologies and conversion efficiency, including integration with existing energy distribution systems. Special attention is given to a novel hybrid energy concept fuelled by municipal solid waste. The commercial interest for the model is expected to be more pronounced in remote communities and villages, including communities subject to growing prosperity. To enable optimization of complex energy distribution systems with multiple energy sources and carriers a flexible and robust methodology must be developed. This will enable energy companies and consultants to carry out comprehensive feasibility studies prior to investment, including technological, economic and environmental aspects. Governmental and municipal bodies will be able to pursue scenario studies involving energy systems and their impact on the environment, and measure the consequences of possible regulation regimes on environmental questions. This paper describes the hybrid concept for conversion of municipal solid waste in terms of energy supply, as well as the methodology for optimizing such integrated energy systems. (author)

  15. Hybrid Plasma Reactor/Filter for Transportable Collective Protection Systems

    Energy Technology Data Exchange (ETDEWEB)

    Josephson, Gary B.; Tonkyn, Russell G.; Frye, J. G.; Riley, Brian J.; Rappe, Kenneth G.

    2011-04-06

    Pacific Northwest National Laboratory (PNNL) has performed an assessment of a Hybrid Plasma/Filter system as an alternative to conventional methods for collective protection. The key premise of the hybrid system is to couple a nonthermal plasma (NTP) reactor with reactive adsorption to provide a broader envelope of protection than can be provided through a single-solution approach. The first step uses highly reactive species (e.g. oxygen radicals, hydroxyl radicals, etc.) created in a nonthermal plasma (NTP) reactor to destroy the majority (~75% - 90%) of an incoming threat. Following the NTP reactor an O3 reactor/filter uses the O3 created in the NTP reactor to further destroy the remaining organic materials. This report summarizes the laboratory development of the Hybrid Plasma Reactor/Filter to protect against a ‘worst-case’ simulant, methyl bromide (CH3Br), and presents a preliminary engineering assessment of the technology to Joint Expeditionary Collective Protection performance specifications for chemical vapor air purification technologies.

  16. Organic Removal Efficiency of the Nanofiltration and Adsorption Hybrid System in High Strength Wastewater

    Directory of Open Access Journals (Sweden)

    Amir Hessam Hassani

    2011-03-01

    Full Text Available Surface and groundwater resources are increasingly jeopardized by discharges from pharmaceutical, chemical, and detergent plants. The high pollutant load of the effluents from these industries requires specific treatments. The objective of this research was to study and compare the nanofiltration and adsorption hybrid system with the plain nanofiltration system in wastewater treatment.For this purpose, a pilot nanofiltration system with a capacity of 7.6 m3/d using 1 and 5 micron filters and a FILMTEC NF90-4040 membrane was used in the first phase of the study. In the second phase, granular activated carbon cartridges were used. Inluent and effluent discharges as well as the COD removal were measured in both systems under variable times and organic load conditions. The results showed that COD removal efficiency was higher in the hybrid system than in the plain naonofiltration one. In the hybrid system, the Maximum in the hybrid system, the COD removal efficiencies achieved for organic loads of 1000, 2000, and 3000 mg/L were 99%, 95.86%, and 92.93%, respectively. The same values for the plain nanofiltration system were 87.34%, 50%, and 29.41%, respectively. It was found that polarization and membrane fouling decreased both the effluent flow and the COD removal efficiency with time. Fouling of the membrane was, however, lower in the hybrid system compared to the plain nanofiltration; thus, the hybrid system was associated with higher values of COD removal and delayed membrane fouling.

  17. Economic Evaluation of a Hybrid Desalination System Combining Forward and Reverse Osmosis

    Science.gov (United States)

    Choi, Yongjun; Cho, Hyeongrak; Shin, Yonghyun; Jang, Yongsun; Lee, Sangho

    2015-01-01

    This study seeks to evaluate the performance and economic feasibility of the forward osmosis (FO)–reverse osmosis (RO) hybrid process; to propose a guideline by which this hybrid process might be more price-competitive in the field. A solution-diffusion model modified with film theory was applied to analyze the effects of concentration polarization, water, and salt transport coefficient on flux, recovery, seawater concentration, and treated wastewater of the FO process of an FO-RO hybrid system. A simple cost model was applied to analyze the effects of flux; recovery of the FO process; energy; and membrane cost on the FO-RO hybrid process. The simulation results showed that the water transport coefficient and internal concentration polarization resistance are very important factors that affect performance in the FO process; however; the effect of the salt transport coefficient does not seem to be large. It was also found that the flux and recovery of the FO process, the FO membrane, and the electricity cost are very important factors that influence the water cost of an FO-RO hybrid system. This hybrid system can be price-competitive with RO systems when its recovery rate is very high, the flux and the membrane cost of the FO are similar to those of the RO, and the electricity cost is expensive. The most important thing in commercializing the FO process is enhancing performance (e.g.; flux and the recovery of FO membranes). PMID:26729176

  18. The GMAO Hybrid Ensemble-Variational Atmospheric Data Assimilation System: Version 2.0

    Science.gov (United States)

    Todling, Ricardo; El Akkraoui, Amal

    2018-01-01

    This document describes the implementation and usage of the Goddard Earth Observing System (GEOS) Hybrid Ensemble-Variational Atmospheric Data Assimilation System (Hybrid EVADAS). Its aim is to provide comprehensive guidance to users of GEOS ADAS interested in experimenting with its hybrid functionalities. The document is also aimed at providing a short summary of the state-of-science in this release of the hybrid system. As explained here, the ensemble data assimilation system (EnADAS) mechanism added to GEOS ADAS to enable hybrid data assimilation applications has been introduced to the pre-existing machinery of GEOS in the most non-intrusive possible way. Only very minor changes have been made to the original scripts controlling GEOS ADAS with the objective of facilitating its usage by both researchers and the GMAO's near-real-time Forward Processing applications. In a hybrid scenario two data assimilation systems run concurrently in a two-way feedback mode such that: the ensemble provides background ensemble perturbations required by the ADAS deterministic (typically high resolution) hybrid analysis; and the deterministic ADAS provides analysis information for recentering of the EnADAS analyses and information necessary to ensure that observation bias correction procedures are consistent between both the deterministic ADAS and the EnADAS. The nonintrusive approach to introducing hybrid capability to GEOS ADAS means, in particular, that previously existing features continue to be available. Thus, not only is this upgraded version of GEOS ADAS capable of supporting new applications such as Hybrid 3D-Var, 3D-EnVar, 4D-EnVar and Hybrid 4D-EnVar, it remains possible to use GEOS ADAS in its traditional 3D-Var mode which has been used in both MERRA and MERRA-2. Furthermore, as described in this document, GEOS ADAS also supports a configuration for exercising a purely ensemble-based assimilation strategy which can be fully decoupled from its variational component. We

  19. A feasibility study of a stand-alone hybrid solar–wind–battery system for a remote island

    International Nuclear Information System (INIS)

    Ma, Tao; Yang, Hongxing; Lu, Lin

    2014-01-01

    Highlights: • A feasibility study of a hybrid solar–wind–battery system is carried out. • Techno-economic evaluation is conducted for this proposed system. • Thousands of cases are simulated to achieve an optimal system configuration. • The performance of the proposed system is analyzed in detail. • A sensitivity analysis on its load and renewable energy resource is performed. - Abstract: This paper presents a detailed feasibility study and techno-economic evaluation of a standalone hybrid solar–wind system with battery energy storage for a remote island. The solar radiation and wind data on this island in 2009 was recorded for this study. The HOMER software was employed to do the simulations and perform the techno-economic evaluation. Thousands of cases have been carried out to achieve an optimal autonomous system configuration, in terms of system net present cost (NPC) and cost of energy (COE). A detailed analysis, description and expected performance of the proposed system were presented. Moreover, the effects of the PV panel sizing, wind turbine sizing and battery bank capacity on the system’s reliability and economic performance were examined. Finally, a sensitivity analysis on its load consumption and renewable energy resource was performed to evaluate the robustness of economic analysis and identify which variable has the greatest impact on the results. The results demonstrate the techno-economic feasibility of implementing the solar–wind–battery system to supply power to this island

  20. Synthetic wind speed scenarios generation for probabilistic analysis of hybrid energy systems

    International Nuclear Information System (INIS)

    Chen, Jun; Rabiti, Cristian

    2017-01-01

    Hybrid energy systems consisting of multiple energy inputs and multiple energy outputs have been proposed to be an effective element to enable ever increasing penetration of clean energy. In order to better understand the dynamic and probabilistic behavior of hybrid energy systems, this paper proposes a model combining Fourier series and autoregressive moving average (ARMA) to characterize historical weather measurements and to generate synthetic weather (e.g., wind speed) data. In particular, Fourier series is used to characterize the seasonal trend in historical data, while ARMA is applied to capture the autocorrelation in residue time series (e.g., measurements with seasonal trends subtracted). The generated synthetic wind speed data is then utilized to perform probabilistic analysis of a particular hybrid energy system configuration, which consists of nuclear power plant, wind farm, battery storage, natural gas boiler, and chemical plant. Requirements on component ramping rate, economic and environmental impacts of hybrid energy systems, and the effects of deploying different sizes of batteries in smoothing renewable variability, are all investigated. - Highlights: • Computational model to synthesize artificial wind speed data with consistent characteristics with database. • Fourier series to capture seasonal trends in the database. • Monte Carlo simulation and probabilistic analysis of hybrid energy systems. • Investigation of the effect of battery in smoothing variability of wind power generation.

  1. A Review of Hybrid Solar PV and Wind Energy System

    Directory of Open Access Journals (Sweden)

    Rashid Al Badwawi

    2015-07-01

    Full Text Available Due to the fact that solar and wind power is intermittent and unpredictable in nature, higher penetration of their types in existing power system could cause and create high technical challenges especially to weak grids or stand-alone systems without proper and enough storage capacity. By integrating the two renewable resources into an optimum combination, the impact of the variable nature of solar and wind resources can be partially resolved and the overall system becomes more reliable and economical to run. This paper provides a review of challenges and opportunities / solutions of hybrid solar PV and wind energy integration systems. Voltage and frequency fluctuation, and harmonics are major power quality issues for both grid-connected and stand-alone systems with bigger impact in case of weak grid. This can be resolved to a large extent by having proper design, advanced fast response control facilities, and good optimization of the hybrid systems. The paper gives a review of the main research work reported in the literature with regard to optimal sizing design, power electronics topologies and control. The paper presents a review of the state of the art of both grid-connected and stand-alone hybrid solar and wind systems.

  2. Optimum capacity determination of stand-alone hybrid generation system considering cost and reliability

    International Nuclear Information System (INIS)

    Chen, Hung-Cheng

    2013-01-01

    Highlights: ► This paper presents a methodology for the installation capacity optimization. ► Hybrid generation system is optimized by application of adaptive genetic algorithm. ► A cost investigation is made under various conditions and component characteristics. ► The optimization scheme is validated to meet the annual power load demand. -- Abstract: The aim of this work is to present an optimization methodology for the installation capacity of a stand-alone hybrid generation system, taking into consideration the cost and reliability. Firstly, on the basis of derived steady state models of a wind generator (WG), a photovoltaic array (PV), a battery and an inverter, the hybrid generation system is modeled for the purpose of capacity optimization. Secondly, the power system is analyzed for determining both the system structure and the operation control strategy. Thirdly, according to hourly weather database of wind speed, temperature and solar irradiation, annual power generation capacity is estimated for the system match design in order that an annual power load demand can be met. The capacity determination of a hybrid generation system becomes complicated as a result of the uncertainty in the renewable energy together with load demand and the nonlinearity of system components. Aimed at the power system reliability and the cost minimization, the capacity of a hybrid generation system is optimized by application of an adaptive genetic algorithm (AGA) to individual power generation units. A total cost investigation is made under various conditions, such as wind generator power curves, battery discharge depth and the loss of load probability (LOLP). At the end of this work, the capacity of a hybrid generation system is optimized at two installation sites, namely the offshore Orchid Island and Wuchi in Taiwan. The optimization scheme is validated to optimize power capacities of a photovoltaic array, a battery and a wind turbine generator with a relative

  3. Final focus systems for linear colliders

    International Nuclear Information System (INIS)

    Erickson, R.A.

    1987-11-01

    The final focus system of a linear collider must perform two primary functions, it must focus the two opposing beams so that their transverse dimensions at the interaction point are small enough to yield acceptable luminosity, and it must steer the beams together to maintain collisions. In addition, the final focus system must transport the outgoing beams to a location where they can be recycled or safely dumped. Elementary optical considerations for linear collider final focus systems are discussed, followed by chromatic aberrations. The design of the final focus system of the SLAC Linear Collider (SLC) is described. Tuning and diagnostics and steering to collision are discussed. Most of the examples illustrating the concepts covered are drawn from the SLC, but the principles and conclusions are said to be generally applicable to other linear collider designs as well. 26 refs., 17 figs

  4. Performance analysis of hybrid ground-coupled heat pump system with multi-functions

    International Nuclear Information System (INIS)

    You, Tian; Wang, Baolong; Wu, Wei; Shi, Wenxing; Li, Xianting

    2015-01-01

    Highlights: • The hybrid GCHP system with multi-functions is proposed. • The system maintains the soil temperature and heating reliability steady. • The multi-functional operation of HCUT can save more energy of the system. - Abstract: Underground thermal imbalance is a significant problem for ground-coupled heat pump (GCHP) systems that serve predominately heated buildings in cold regions, which extract more heat from the ground and inject less heat, especially in buildings requiring domestic hot water (DHW). To solve this problem, a previously developed heat compensation unit with thermosyphon (HCUT) is integrated with a GCHP unit to build a hybrid GCHP system. To improve the energy savings of this hybrid GCHP system, the HCUT unit is set to have multiple functions (heat compensation, direct DHW and direct space heating) in this paper. To analyze the improved system performance, a hotel requiring air-conditioning and DHW is selected and simulated in three typical cold cities using the dynamic software DeST and TRNSYS. The results indicate that the hybrid GCHP system can maintain the underground thermal balance while keeping the indoor air temperature within the design range. Furthermore, the HCUT unit efficiently reduces the energy consumption via its multi-functional operations. Compared to the previous system that only used HCUT for heat compensation, adding the direct DHW function further saves 7.5–11.0% energy in heat compensation (HC) and DHW (i.e., 3.6–4.8% of the whole system). Simultaneously adding the direct DHW and space heating functions to the HCUT can save 9.8–12.9% energy in HC and DHW (i.e., 5.1–6.0% of the whole system). The hybrid GCHP system with a multi-functional HCUT provides more energy savings while maintaining the underground thermal balance in cold regions that demand both air-conditioning and DHW

  5. Hybrid Energy System Design of Micro Hydro-PV-biogas Based Micro-grid

    Science.gov (United States)

    Nishrina; Abdullah, A. G.; Risdiyanto, A.; Nandiyanto, ABD

    2017-03-01

    Hybrid renewable energy system is an arrangement of one or more sources of renewable energy and also conventional energy. This paper describes a simulation results of hybrid renewable power system based on the available potential in an educational institution in Indonesia. HOMER software was used to simulate and analyse both in terms of optimization and economic terms. This software was developed through 3 main principles; simulation, optimization, and sensitivity analysis. Generally, the presented results show that the software can demonstrate a feasible hybrid power system as well to be realized. The entire demand in case study area can be supplied by the system configuration and can be met by ¾ of electricity production. So, there are ¼ of generated energy became an excess electricity.

  6. Optimisation Sizing of Hybrid Wind-Diesel Systems using Linear Programming Technique

    OpenAIRE

    Gan, Leong Kit; Shek, Jonathan; Mueller, Markus

    2014-01-01

    Despite the great potential of hybrid wind-diesel system in supplying energy to remote or island communities, sizing the system components have been a challenging problem for many project managers due to the reliance on various factors. This work considers utilising a fixed speed wind turbine (induction generator) in the hybrid system. It requires energy for start-up operation and this work takes into account for sizing the battery storage. In addition, the trade-off between the number of bat...

  7. Study on emergency power control strategy for AC/DC hybrid power system containing VSC-HVDC

    Science.gov (United States)

    Liu, Lin; Hu, Zhenda; Ye, Rong; Lin, Zhangsui; Yang, Xiaodong; Yi, Yang

    2018-04-01

    This paper presents a comprehensive emergency power control strategy for AC/DC hybrid power systems containing VSC-HVDC. Firstly, the paper analyzes the power support of the VSC-HVDC to the AC lines using the Power Transferring Relativity Factor (PTRF). Then the power adjustment of the VSC-HVDC in several different circumstances are calculated. Finally, the online power control strategies of VSC-HVDC are designed, which could rapidly control the power of the VSC-HVDC, keeping the power flow of AC lines below the upper limit. Furthermore, the strategy is proven to be effective by the simulations with EMTDC/PSCAD.

  8. A Hybrid System for Subjectivity Analysis

    Directory of Open Access Journals (Sweden)

    Samir Rustamov

    2018-01-01

    Full Text Available We suggested different structured hybrid systems for the sentence-level subjectivity analysis based on three supervised machine learning algorithms, namely, Hidden Markov Model, Fuzzy Control System, and Adaptive Neuro-Fuzzy Inference System. The suggested feature extraction algorithm in our experiment computes a feature vector using statistical textual terms frequencies in a training dataset not having the use of any lexical knowledge except tokenization. Taking into consideration this fact, the above-mentioned methods may be employed in other languages as these methods do not utilize the morphological, syntactical, and lexical analysis in the classification problems.

  9. Hybrid PV/wind system with quinary asymmetric inverter without increasing DC-link number

    Directory of Open Access Journals (Sweden)

    Aida Baghbany Oskouei

    2016-06-01

    Full Text Available This paper suggests quinary asymmetric inverter with coupled inductors and transformer, and uses it in hybrid system including photovoltaic (PV and wind. This inverter produces twenty-five-level voltage in addition to merits of multilevel inverter, has only one DC source. Then, it is adequate for hybrid systems, which prevents increasing DC-link and makes control of system easy. Proposed structure also provides isolation in the system and the switch numbers are reduced in this topology compared with other multilevel structures. In this system, battery is used as backup, where PV and wind have complementary nature. The performance of proposed inverter and hybrid system is validated with simulation results using MATLAB/SIMULINK software and experimental results based PCI-1716 data acquisition system.

  10. GIS-based site selection methodology for hybrid renewable energy systems: A case study from western Turkey

    International Nuclear Information System (INIS)

    Aydin, Nazli Yonca; Kentel, Elcin; Sebnem Duzgun, H.

    2013-01-01

    separately for wind and solar energy systems by using Geographic Information System (GIS) and finally associated maps are overlaid to obtain the most feasible locations for hybrid wind solar–PV systems

  11. Robotic digital subtraction angiography systems within the hybrid operating room.

    Science.gov (United States)

    Murayama, Yuichi; Irie, Koreaki; Saguchi, Takayuki; Ishibashi, Toshihiro; Ebara, Masaki; Nagashima, Hiroyasu; Isoshima, Akira; Arakawa, Hideki; Takao, Hiroyuki; Ohashi, Hiroki; Joki, Tatsuhiro; Kato, Masataka; Tani, Satoshi; Ikeuchi, Satoshi; Abe, Toshiaki

    2011-05-01

    Fully equipped high-end digital subtraction angiography (DSA) within the operating room (OR) environment has emerged as a new trend in the fields of neurosurgery and vascular surgery. To describe initial clinical experience with a robotic DSA system in the hybrid OR. A newly designed robotic DSA system (Artis zeego; Siemens AG, Forchheim, Germany) was installed in the hybrid OR. The system consists of a multiaxis robotic C arm and surgical OR table. In addition to conventional neuroendovascular procedures, the system was used as an intraoperative imaging tool for various neurosurgical procedures such as aneurysm clipping and spine instrumentation. Five hundred one neurosurgical procedures were successfully conducted in the hybrid OR with the robotic DSA. During surgical procedures such as aneurysm clipping and arteriovenous fistula treatment, intraoperative 2-/3-dimensional angiography and C-arm-based computed tomographic images (DynaCT) were easily performed without moving the OR table. Newly developed virtual navigation software (syngo iGuide; Siemens AG) can be used in frameless navigation and in access to deep-seated intracranial lesions or needle placement. This newly developed robotic DSA system provides safe and precise treatment in the fields of endovascular treatment and neurosurgery.

  12. Optimal scheduling for distributed hybrid system with pumped hydro storage

    International Nuclear Information System (INIS)

    Kusakana, Kanzumba

    2016-01-01

    Highlights: • Pumped hydro storage is proposed for isolated hybrid PV–Wind–Diesel systems. • Optimal control is developed to dispatch power flow economically. • A case study is conducted using the model for an isolated load. • Effects of seasons on the system’s optimal scheduling are examined through simulation. - Abstract: Photovoltaic and wind power generations are currently seen as sustainable options of in rural electrification, particularly in standalone applications. However the variable character of solar and wind resources as well as the variable load demand prevent these generation systems from being totally reliable without suitable energy storage system. Several research works have been conducted on the use of photovoltaic and wind systems in rural electrification; however most of these works have not considered other ways of storing energy except for conventional battery storage systems. In this paper, an energy dispatch model that satisfies the load demand, taking into account the intermittent nature of the solar and wind energy sources and variations in demand, is presented for a hybrid system consisting of a photovoltaic unit, a wind unit, a pumped hydro storage system and a diesel generator. The main purpose of the developed model is to minimize the hybrid system’s operation cost while optimizing the system’s power flow considering the different component’s operational constraints. The simulations have been performed using “fmincon” implemented in Matlab. The model have been applied to two test examples; the simulation results are analyzed and compared to the case where the diesel generator is used alone to supply the given load demand. The results show that using the developed control model for the proposed hybrid system, fuel saving can be achieved compared to the case where the diesel is used alone to supply the same load patters.

  13. Development of a PET/Cerenkov-light hybrid imaging system

    International Nuclear Information System (INIS)

    Yamamoto, Seiichi; Hamamura, Fuka; Kato, Katsuhiko; Ogata, Yoshimune; Watabe, Tadashi; Ikeda, Hayato; Kanai, Yasukazu; Hatazawa, Jun; Watabe, Hiroshi

    2014-01-01

    Purpose: Cerenkov-light imaging is a new molecular imaging technology that detects visible photons from high-speed electrons using a high sensitivity optical camera. However, the merit of Cerenkov-light imaging remains unclear. If a PET/Cerenkov-light hybrid imaging system were developed, the merit of Cerenkov-light imaging would be clarified by directly comparing these two imaging modalities. Methods: The authors developed and tested a PET/Cerenkov-light hybrid imaging system that consists of a dual-head PET system, a reflection mirror located above the subject, and a high sensitivity charge coupled device (CCD) camera. The authors installed these systems inside a black box for imaging the Cerenkov-light. The dual-head PET system employed a 1.2 × 1.2 × 10 mm 3 GSO arranged in a 33 × 33 matrix that was optically coupled to a position sensitive photomultiplier tube to form a GSO block detector. The authors arranged two GSO block detectors 10 cm apart and positioned the subject between them. The Cerenkov-light above the subject is reflected by the mirror and changes its direction to the side of the PET system and is imaged by the high sensitivity CCD camera. Results: The dual-head PET system had a spatial resolution of ∼1.2 mm FWHM and sensitivity of ∼0.31% at the center of the FOV. The Cerenkov-light imaging system's spatial resolution was ∼275μm for a 22 Na point source. Using the combined PET/Cerenkov-light hybrid imaging system, the authors successfully obtained fused images from simultaneously acquired images. The image distributions are sometimes different due to the light transmission and absorption in the body of the subject in the Cerenkov-light images. In simultaneous imaging of rat, the authors found that 18 F-FDG accumulation was observed mainly in the Harderian gland on the PET image, while the distribution of Cerenkov-light was observed in the eyes. Conclusions: The authors conclude that their developed PET/Cerenkov-light hybrid imaging

  14. A hydraulic hybrid propulsion method for automobiles with self-adaptive system

    International Nuclear Information System (INIS)

    Wu, Wei; Hu, Jibin; Yuan, Shihua; Di, Chongfeng

    2016-01-01

    A hydraulic hybrid vehicle with the self-adaptive system is proposed. The mode-switching between the driving mode and the hydraulic regenerative braking mode is realised by the pressure cross-feedback control. Extensive simulated and tested results are presented. The control parameters are reduced and the energy efficiency can be increased by the self-adaptive system. The mode-switching response is fast. The response time can be adjusted by changing the controlling spool diameter of the hydraulic operated check valve in the self-adaptive system. The closing of the valve becomes faster with a smaller controlling spool diameter. The hydraulic regenerative braking mode can be achieved by changing the hydraulic transformer controlled angle. Compared with the convention electric-hydraulic system, the self-adaptive system for the hydraulic hybrid vehicle mode-switching has a higher reliability and a lower cost. The efficiency of the hydraulic regenerative braking is also increased. - Highlights: • A new hybrid system with a self-adaptive system for automobiles is presented. • The mode-switching is realised by the pressure cross-feedback control. • The energy efficiency can be increased with the self-adaptive system. • The control parameters are reduced with the self-adaptive system.

  15. Research on Fuel Consumption of Hybrid Bulldozer under Typical Duty Cycle

    Science.gov (United States)

    Song, Qiang; Wang, Wen-Jun; Jia, Chao; Yao, You-Liang; Wang, Sheng-Bo

    The hybrid drive bulldozer adopts a dual-motor independent drive system with engine-generator assembly as its power source. The mathematical model of the whole system is constructed on the software platform of MATLAB/Simulink. And then according to the velocity data gained from a real test experiment, a typical duty cycle is build up. Finally the fuel consumption of the bulldozer is calculated under this duty-cycle. Simulation results show that, compared with the traditional mechanical one, the hybrid electric drive system can save fuel up to 16% and therefore indicates great potential for lifting up fuel economy.

  16. A Decoupling Control Method for Shunt Hybrid Active Power Filter Based on Generalized Inverse System

    Directory of Open Access Journals (Sweden)

    Xin Li

    2017-01-01

    Full Text Available In this paper, a novel decoupling control method based on generalized inverse system is presented to solve the problem of SHAPF (Shunt Hybrid Active Power Filter possessing the characteristics of 2-input-2-output nonlinearity and strong coupling. Based on the analysis of operation principle, the mathematical model of SHAPF is firstly built, which is verified to be invertible using interactor algorithm; then the generalized inverse system of SHAPF is obtained to connect in series with the original system so that the composite system is decoupled under the generalized inverse system theory. The PI additional controller is finally designed to control the decoupled 1-order pseudolinear system to make it possible to adjust the performance of the subsystem. The simulation results demonstrated by MATLAB show that the presented generalized inverse system strategy can realise the dynamic decoupling of SHAPF. And the control system has fine dynamic and static performance.

  17. Hybrid wireless-over-fiber transmission system based on multiple injection-locked FP LDs.

    Science.gov (United States)

    Li, Chung-Yi; Lu, Hai-Han; Chu, Chien-An; Ying, Cheng-Ling; Lu, Ting-Chien; Peng, Peng-Chun

    2015-07-27

    A hybrid wireless-over-fiber (WoF) transmission system based on multiple injection-locked Fabry-Perot laser diodes (FP LDs) is proposed and experimentally demonstrated. Unlike the traditional hybrid WoF transmission systems that require multiple distributed feedback (DFB) LDs to support different kinds of services, the proposed system employs multiple injection-locked FP LDs to provide different kinds of applications. Such a hybrid WoF transmission system delivers downstream intensity-modulated 20-GHz microwave (MW)/60-GHz millimeter-wave (MMW)/550-MHz cable television (CATV) signals and upstream phase-remodulated 20-GHz MW signal. Excellent bit error rate (BER), carrier-to-noise ratio (CNR), composite second-order (CSO), and composite triple-beat (CTB) are observed over a 40-km single-mode fiber (SMF) and a 4-m radio frequency (RF) wireless transport. Such a hybrid WoF transmission system has practical applications for fiber-wireless convergence to provide broadband integrated services, including telecommunication, data communication, and CATV services.

  18. Identification of chaotic systems by neural network with hybrid learning algorithm

    International Nuclear Information System (INIS)

    Pan, S.-T.; Lai, C.-C.

    2008-01-01

    Based on the genetic algorithm (GA) and steepest descent method (SDM), this paper proposes a hybrid algorithm for the learning of neural networks to identify chaotic systems. The systems in question are the logistic map and the Duffing equation. Different identification schemes are used to identify both the logistic map and the Duffing equation, respectively. Simulation results show that our hybrid algorithm is more efficient than that of other methods

  19. Hybrid Cooling System for Industrial Application | Ezekwe | Nigerian ...

    African Journals Online (AJOL)

    Hybrid Cooling System for Industrial Application. ... PROMOTING ACCESS TO AFRICAN RESEARCH ... more than five times over that achieved by using the gas (air) phase alone. ... EMAIL FREE FULL TEXT EMAIL FREE FULL TEXT

  20. Implementation of hybrid parallel kanban-CONWIP system: A case study

    Directory of Open Access Journals (Sweden)

    Joshua Prakash

    2014-12-01

    Full Text Available The most common form of production control strategy in lean management is the pull system. One emerging form of pull system uses kanban and CONWIP systems to handle products with different demand patterns. Case studies have protractedly depicted the actual implementation of pull systems; however, the use of hybrid systems is rare. This paper examines the procedures involved in implementing a hybrid system in a low variety/low volume shop floor. This paper presents discussions on shop floor constraints in the proposed system and how the simplicity of a pull system is able to reduce work-in-process inventory by 23%. Guidelines for the replication of the system for similar production environments are also provided. The case study proves that pull systems can be successfully implemented in production environments that do not conform to the typical prerequisites of the kanban system.

  1. Integration of plug-in hybrid cars in the promotion of intelligent distribution networks; Integration von Plug-in-Hybrid Cars zur Foerderung intelligenter Verteilnetzstrukturen (Vorstudie) - Schlussbericht / 2 2008

    Energy Technology Data Exchange (ETDEWEB)

    Horbaty, R.; Rigassi, R.

    2008-08-15

    This final report for the Swiss Federal Office of Energy (SFOE) reviews work done as part of a preliminary study concerning the use of plug-in hybrid cars as part of a system for the regulation of energy in electricity supply grids. The 'Vehicle to Grid' concept is discussed. This involves hybrid vehicles with higher accumulator capacities, reversible charger units as well as appropriate connector technologies and communication systems. This 'smart grid' concept is looked at and the players involved are introduced. The advantages and disadvantages of such a system are discussed.

  2. Model-based health monitoring of hybrid systems

    CERN Document Server

    Wang, Danwei; Low, Chang Boon; Arogeti, Shai

    2013-01-01

    Offers in-depth comprehensive study on health monitoring for hybrid systems Includes new concepts, such as GARR, mode tracking and multiple failure prognosis Contains many examples, making the developed techniques easily understandable and accessible Introduces state-of-the-art algorithms and methodologies from experienced researchers

  3. Borazine-boron nitride hybrid hydrogen storage system

    Science.gov (United States)

    Narula, Chaitanya K [Knoxville, TN; Simonson, J Michael [Knoxville, TN; Maya, Leon [Knoxville, TN; Paine, Robert T [Albuquerque, NM

    2008-04-22

    A hybrid hydrogen storage composition includes a first phase and a second phase adsorbed on the first phase, the first phase including BN for storing hydrogen by physisorption and the second phase including a borazane-borazine system for storing hydrogen in combined form as a hydride.

  4. Photovoltaic-wind hybrid system for permanent magnet DC motor

    Science.gov (United States)

    Nasir, M. N. M.; Lada, M. Y.; Baharom, M. F.; Jaafar, H. I.; Ramani, A. N.; Sulaima, M. F.

    2015-05-01

    Hybrid system of Photovoltaic (PV) - Wind turbine (WT) generation has more advantages and reliable compared to PV or wind turbine system alone. The aim of this paper is to model and design hybrid system of PV-WT supplying 100W permanent-magnet dc motor. To achieve the objective, both of PV and WT are connected to converter in order to get the same source of DC supply. Then both sources were combined and straightly connected to 100W permanent magnet dc motor. All the works in this paper is only applied in circuit simulator by using Matlab Simulink. The output produced from each converter is expected to be suit to the motor specification. The output produced from each renewable energy system is as expected to be high as it can support the motor if one of them is breakdown

  5. Feasibility study of a hybrid plants (photovoltaic–LPG generator system for rural electrification

    Directory of Open Access Journals (Sweden)

    Adouane Mabrouk

    2016-01-01

    Full Text Available The present study investigates the possibility of using a stand-alone photovoltaic/LPG (liquid petroleum gas generator hybrid power system for low-cost electricity production which can satisfy the energy load requirements of a typical remote and isolated rural area. In this context, the optimal dimensions to improve the technical and economical performances of the hybrid system are determined according to the load energy requirements. The proposed system's installation and operating costs are simulated using the Hybrid Optimization Model for Electric Renewable (HOMER, the solar radiation and the system components costs as inputs; and then compared with those of other supply options such as diesel generation.

  6. Hybrid compensation arrangement in dispersed generation systems

    DEFF Research Database (Denmark)

    Chen, Zhe; Blaabjerg, Frede; Pedersen, John Kim

    2005-01-01

    This paper presents a hybrid compensation system consisting of an active filter and distributed passive filters. In the system, each individual passive filter is connected to a distortion source and designed to eliminate main harmonics and supply reactive power for the distortion source, while...... filter system consisting of distributed passive filters and an active filter....... the active filter is responsible for the correction of the system unbalance and the cancellation of the remaining harmonics. The paper also analyzes the effects of the circuit configuration on the system impedance characteristics and consequently the effectiveness of the filter system. Simulation studies...

  7. A hybrid electrical power system for aircraft application.

    Science.gov (United States)

    Lee, C. H.; Chin, C. Y.

    1971-01-01

    Possible improvements to present aircraft electrical power systems for use in future advanced types of aircraft have been investigated. The conventional power system is examined, the characteristics of electric loads are reviewed, and various methods of power generation and distribution are appraised. It is shown that a hybrid system, with variable-frequency generation and high-voltage dc distribution, could overcome some of the limitations of the conventional system.

  8. Modeling and Simulation of Renewable Hybrid Power System using Matlab Simulink Environment

    Directory of Open Access Journals (Sweden)

    Cristian Dragoş Dumitru

    2010-12-01

    Full Text Available The paper presents the modeling of a solar-wind-hydroelectric hybrid system in Matlab/Simulink environment. The application is useful for analysis and simulation of a real hybrid solar-wind-hydroelectric system connected to a public grid. Application is built on modular architecture to facilitate easy study of each component module influence. Blocks like wind model, solar model, hydroelectric model, energy conversion and load are implemented and the results of simulation are also presented. As an example, one of the most important studies is the behavior of hybrid system which allows employing renewable and variable in time energy sources while providing a continuous supply. Application represents a useful tool in research activity and also in teaching

  9. A hybrid desalination system using humidification-dehumidification and solar stills integrated with evacuated solar water heater

    International Nuclear Information System (INIS)

    Sharshir, S.W.; Peng, Guilong; Yang, Nuo; Eltawil, Mohamed A.; Ali, Mohamed Kamal Ahmed; Kabeel, A.E.

    2016-01-01

    Highlights: • Evacuated solar water heater integrated with humidification-dehumidification system. • Reuse of warm water drained from humidification-dehumidification to feed solar stills. • The thermal performance of hybrid system is increased by 50% and maximum yield is 63.3 kg/day. • The estimated price of the freshwater produced from the hybrid system is $0.034/L. - Abstract: This paper offers a hybrid solar desalination system comprising a humidification-dehumidification and four solar stills. The developed hybrid desalination system reuses the drain warm water from humidification-dehumidification to feed solar stills to stop the massive warm water loss during desalination. Reusing the drain warm water increases the gain output ratio of the system by 50% and also increased the efficiency of single solar still to about 90%. Furthermore, the production of a single solar still as a part of the hybrid system was more than that of the conventional one by approximately 200%. The daily water production of the conventional one, single solar still, four solar still, humidification- dehumidification and hybrid system were 3.2, 10.5, 42, 24.3 and 66.3 kg/day, respectively. Furthermore, the cost per unit liter of distillate from conventional one, humidification- dehumidification and hybrid system were around $0.049, $0.058 and $0.034, respectively.

  10. Hybrid systems: a real-time interface to control engineering

    DEFF Research Database (Denmark)

    Eriksen, Thomas Juul; Heilmann, Søren; Holdgaard, Michael

    1996-01-01

    are usually investigated by control engineers that base their work on the theory of dynamic systems. The mathematical tool for this work is thus mathematical analysis, in particular the theory of differential equations. The paper gives an introduction to a general hybrid systems model for definition of system...

  11. Hybrid Societies: Challenges and Perspectives in the Design of Collective Behavior in Self-organizing Systems

    Directory of Open Access Journals (Sweden)

    Heiko eHamann

    2016-04-01

    Full Text Available Hybrid societies are self-organizing, collective systems composed of different components, for example, natural and artificial parts (bio-hybrid or human beings interacting with and through technical systems (socio-technical. Many different disciplines investigate methods and systems closely related to the design of hybrid societies. A~stronger collaboration between these disciplines could allow for re-use of methods and create significant synergies. We identify three main areas of challenges in the design of self-organizing hybrid societies. First, we identify the formalization challenge. There is an urgent need for a generic model that allows a description and comparison of collective hybrid societies. Second, we identify the system design challenge. Starting from the formal specification of the system, we need to develop an integrated design process. Third, we identify the challenge of interdisciplinarity. Current research on self-organizing hybrid societies stretches over many different fields and hence requires the re-use and synthesis of methods at intersections between disciplines. We then conclude by presenting our perspective for future approaches with high potential in this area.

  12. Electric and hybrid vehicle system R/D

    Science.gov (United States)

    Schwartz, H. J.

    1980-01-01

    The work being done to characterize the level of current propulsion technology through component testing is described. Important interactions between the battery and the propulsion system will be discussed. Component development work, involving traction motors, motor controllers and transmissions are described and current results are presented. Studies of advanced electric and hybrid propulsion system studies are summarized and the status of propulsion system development work supported by the project is described. A strategy for fostering joint industry/government projects for commercialization of propulsion components and systems is described briefly.

  13. Model-on-Demand Predictive Control for Nonlinear Hybrid Systems With Application to Adaptive Behavioral Interventions

    Science.gov (United States)

    Nandola, Naresh N.; Rivera, Daniel E.

    2011-01-01

    This paper presents a data-centric modeling and predictive control approach for nonlinear hybrid systems. System identification of hybrid systems represents a challenging problem because model parameters depend on the mode or operating point of the system. The proposed algorithm applies Model-on-Demand (MoD) estimation to generate a local linear approximation of the nonlinear hybrid system at each time step, using a small subset of data selected by an adaptive bandwidth selector. The appeal of the MoD approach lies in the fact that model parameters are estimated based on a current operating point; hence estimation of locations or modes governed by autonomous discrete events is achieved automatically. The local MoD model is then converted into a mixed logical dynamical (MLD) system representation which can be used directly in a model predictive control (MPC) law for hybrid systems using multiple-degree-of-freedom tuning. The effectiveness of the proposed MoD predictive control algorithm for nonlinear hybrid systems is demonstrated on a hypothetical adaptive behavioral intervention problem inspired by Fast Track, a real-life preventive intervention for improving parental function and reducing conduct disorder in at-risk children. Simulation results demonstrate that the proposed algorithm can be useful for adaptive intervention problems exhibiting both nonlinear and hybrid character. PMID:21874087

  14. Combustion flame-plasma hybrid reactor systems, and chemical reactant sources

    Science.gov (United States)

    Kong, Peter C

    2013-11-26

    Combustion flame-plasma hybrid reactor systems, chemical reactant sources, and related methods are disclosed. In one embodiment, a combustion flame-plasma hybrid reactor system comprising a reaction chamber, a combustion torch positioned to direct a flame into the reaction chamber, and one or more reactant feed assemblies configured to electrically energize at least one electrically conductive solid reactant structure to form a plasma and feed each electrically conductive solid reactant structure into the plasma to form at least one product is disclosed. In an additional embodiment, a chemical reactant source for a combustion flame-plasma hybrid reactor comprising an elongated electrically conductive reactant structure consisting essentially of at least one chemical reactant is disclosed. In further embodiments, methods of forming a chemical reactant source and methods of chemically converting at least one reactant into at least one product are disclosed.

  15. Parallel and Efficient Sensitivity Analysis of Microscopy Image Segmentation Workflows in Hybrid Systems.

    Science.gov (United States)

    Barreiros, Willian; Teodoro, George; Kurc, Tahsin; Kong, Jun; Melo, Alba C M A; Saltz, Joel

    2017-09-01

    We investigate efficient sensitivity analysis (SA) of algorithms that segment and classify image features in a large dataset of high-resolution images. Algorithm SA is the process of evaluating variations of methods and parameter values to quantify differences in the output. A SA can be very compute demanding because it requires re-processing the input dataset several times with different parameters to assess variations in output. In this work, we introduce strategies to efficiently speed up SA via runtime optimizations targeting distributed hybrid systems and reuse of computations from runs with different parameters. We evaluate our approach using a cancer image analysis workflow on a hybrid cluster with 256 nodes, each with an Intel Phi and a dual socket CPU. The SA attained a parallel efficiency of over 90% on 256 nodes. The cooperative execution using the CPUs and the Phi available in each node with smart task assignment strategies resulted in an additional speedup of about 2×. Finally, multi-level computation reuse lead to an additional speedup of up to 2.46× on the parallel version. The level of performance attained with the proposed optimizations will allow the use of SA in large-scale studies.

  16. A hybrid optimization model of biomass trigeneration system combined with pit thermal energy storage

    International Nuclear Information System (INIS)

    Dominković, D.F.; Ćosić, B.; Bačelić Medić, Z.; Duić, N.

    2015-01-01

    Highlights: • Hybrid optimization model of biomass trigeneration system with PTES is developed. • Influence of premium feed-in tariffs on trigeneration systems is assessed. • Influence of total system efficiency on biomass trigeneration system with PTES is assessed. • Influence of energy savings on project economy is assessed. - Abstract: This paper provides a solution for managing excess heat production in trigeneration and thus, increases the power plant yearly efficiency. An optimization model for combining biomass trigeneration energy system and pit thermal energy storage has been developed. Furthermore, double piping district heating and cooling network in the residential area without industry consumers was assumed, thus allowing simultaneous flow of the heating and cooling energy. As a consequence, the model is easy to adopt in different regions. Degree-hour method was used for calculation of hourly heating and cooling energy demand. The system covers all the yearly heating and cooling energy needs, while it is assumed that all the electricity can be transferred to the grid due to its renewable origin. The system was modeled in Matlab© on hourly basis and hybrid optimization model was used to maximize the net present value (NPV), which was the objective function of the optimization. Economic figures become favorable if the economy-of-scale of both power plant and pit thermal energy storage can be utilized. The results show that the pit thermal energy storage was an excellent option for storing energy and shaving peaks in energy demand. Finally, possible switch from feed-in tariffs to feed-in premiums was assessed and possible subsidy savings have been calculated. The savings are potentially large and can be used for supporting other renewable energy projects

  17. Qualitative Fault Isolation of Hybrid Systems: A Structural Model Decomposition-Based Approach

    Science.gov (United States)

    Bregon, Anibal; Daigle, Matthew; Roychoudhury, Indranil

    2016-01-01

    Quick and robust fault diagnosis is critical to ensuring safe operation of complex engineering systems. A large number of techniques are available to provide fault diagnosis in systems with continuous dynamics. However, many systems in aerospace and industrial environments are best represented as hybrid systems that consist of discrete behavioral modes, each with its own continuous dynamics. These hybrid dynamics make the on-line fault diagnosis task computationally more complex due to the large number of possible system modes and the existence of autonomous mode transitions. This paper presents a qualitative fault isolation framework for hybrid systems based on structural model decomposition. The fault isolation is performed by analyzing the qualitative information of the residual deviations. However, in hybrid systems this process becomes complex due to possible existence of observation delays, which can cause observed deviations to be inconsistent with the expected deviations for the current mode in the system. The great advantage of structural model decomposition is that (i) it allows to design residuals that respond to only a subset of the faults, and (ii) every time a mode change occurs, only a subset of the residuals will need to be reconfigured, thus reducing the complexity of the reasoning process for isolation purposes. To demonstrate and test the validity of our approach, we use an electric circuit simulation as the case study.

  18. Membrane/distillation hybrid process research and development. Final report, phase II

    Energy Technology Data Exchange (ETDEWEB)

    Mazanec, T.J.

    1997-07-01

    This report covers work conducted under the grant awarded to BP by DOE in late 1991 entitled {open_quotes}Membrane/Distillation Hybrid Process Research and Development.{close_quotes} The program was directed towards development and commercialization of the BP process for separation of vapor phase olefins from non-olefins via facilitated transport using an aqueous facilitator. The program has come to a very successful conclusion, with formation of a partnership between BP and Stone and Webster Engineering Corporation (SWEC) to market and commercialize the technology. The focus of this report is the final portion of the program, during which engineering re-design, facilitator optimization, economic analysis, and marketing have been the primary activities. At the end of Phase II BP was looking to partner with an engineering firm to advance the selective olefin recovery (SOR) technology from the lab/demo stage to full commercialization. In August 1995 BP and SWEC reached an agreement to advance the technology by completing additional Phase III work with DOE and beginning marketing activities.

  19. Hierarchical models and iterative optimization of hybrid systems

    Energy Technology Data Exchange (ETDEWEB)

    Rasina, Irina V. [Ailamazyan Program Systems Institute, Russian Academy of Sciences, Peter One str. 4a, Pereslavl-Zalessky, 152021 (Russian Federation); Baturina, Olga V. [Trapeznikov Control Sciences Institute, Russian Academy of Sciences, Profsoyuznaya str. 65, 117997, Moscow (Russian Federation); Nasatueva, Soelma N. [Buryat State University, Smolina str.24a, Ulan-Ude, 670000 (Russian Federation)

    2016-06-08

    A class of hybrid control systems on the base of two-level discrete-continuous model is considered. The concept of this model was proposed and developed in preceding works as a concretization of the general multi-step system with related optimality conditions. A new iterative optimization procedure for such systems is developed on the base of localization of the global optimality conditions via contraction the control set.

  20. 1978 source book for fusion--fission hybrid systems. Executive summary

    International Nuclear Information System (INIS)

    Crowley, J.H.; Pavlenco, G.F.; Kaminski, R.S.

    1978-12-01

    The 1978 Source Book for Fusion--Fission Hybrid Systems was prepared by United Engineers and Constructors Inc. for the U.S. Department of Energy and the Electric Power Research Institute. It reviews the current status of fusion--fission hybrid reactors, and presents the prevailing views of members of the fusion community on the RD and D timetable required for the development and commercialization of fusion--fission hybrids. The results presented are based on a review of related references as well as interviews with recognized experts in the field. Contributors from the academic and industrial communities are listed

  1. Trimode optimizes hybrid power plants. Final report: Phase 2

    Energy Technology Data Exchange (ETDEWEB)

    O`Sullivan, G.A.; O`Sullivan, J.A. [Abacus Controls, Inc., Somerville, NJ (United States)

    1998-07-01

    In the Phase 2 project, Abacus Controls Inc. did research and development of hybrid systems that combine the energy sources from photovoltaics, batteries, and diesel-generators and demonstrated that they are economically feasible for small power plants in many parts of the world. The Trimode Power Processor reduces the fuel consumption of the diesel-generator to its minimum by presenting itself as the perfect electrical load to the generator. A 30-kW three-phase unit was tested at Sandia National Laboratories to prove its worthiness in actual field conditions. The use of photovoltaics at remote locations where reliability of supply requires a diesel-generator will lower costs to operate by reducing the run time of the diesel generator. The numerous benefits include longer times between maintenance for the diesel engine and better power quality from the generator. 32 figs.

  2. Environmental and exergy benefit of nanofluid-based hybrid PV/T systems

    International Nuclear Information System (INIS)

    Hassani, Samir; Saidur, R.; Mekhilef, Saad; Taylor, Robert A.

    2016-01-01

    Highlights: • Environmental and ExPBT analysis of different PV/T configurations is presented. • The exergy payback time of nanofluid-based hybrid PV/T system is about 2 years. • Nanofluid-based hybrid PV/T system is a reliable solution for pollution prevention. • Nanofluid-based hybrid PV/T system is highly recommended at high solar concentration. - Abstract: Photovoltaic/thermal (PV/T) solar systems, which produce both electrical and thermal energy simultaneously, represent a method to achieve very high conversion rates of sunlight into useful energy. In recent years, nanofluids have been proposed as efficient coolants and optical filter for PV/T systems. Aim of this paper is to theoretically analyze the life cycle exergy of three different configurations of nanofluids-based PV/T hybrid systems, and compare their performance to a standard PV and PV/T system. Electrical and thermal performance of the analyzed solar collectors was investigated numerically. The life cycle exergy analysis revealed that the nanofluids-based PV/T system showed the best performance compared to a standard PV and PV/T systems. At the optimum value of solar concentration C, nanofluid-based PV/T configuration with optimized optical and thermal properties produces ∼1.3 MW h/m 2 of high-grade exergy annually with the lowest exergy payback time of 2 years, whereas these are ∼0.36, ∼0.79 MW h/m 2 and 3.48, 2.55 years for standard PV and PV/T systems, respectively. In addition, the nanofluids-based PV/T system can prevent the emissions of about 448 kg CO 2 eq m −2 yr −1 . Overall, it was found that the nanofluids-based PV/T with optimized optical and thermal properties has potential for further development in a high-concentration solar system.

  3. Dueco Plug-In Hybrid Engines

    Energy Technology Data Exchange (ETDEWEB)

    Phillip Eidler

    2011-09-30

    Dueco, a final stage manufacture of utility trucks, was awarded a congressionally directed cost shared contract to develop, test, validate, and deploy several PHEV utility trucks. Odyne will be the primary subcontractor responsible for all aspects of the hybrid system including its design and installation on a truck chassis. Key objectives in this program include developing a better understanding of the storage device and system capability; improve aspects of the existing design, optimization of system and power train components, and prototype evaluation. This two year project will culminate in the delivery of at least five vehicles for field evaluation.

  4. Energy Management Strategy for a Fuel Cell/ Ultracapasitor/ Battery Hybrid System for Portable Applications

    International Nuclear Information System (INIS)

    Siti Afiqah Abd Hamid; Ros Emilia Rosli; Edy Herianto Majlan; Wan Ramli Wan Daud; Ramizi Mohamed; Ramli Sitanggang

    2016-01-01

    A proton exchange membrane (PEM) fuel cells (FCs) with ultracapacitor (UC) and battery (BT) hybrid system has fast transient response compare to stand alone FCs. This hybrid system is promising candidates for environmentally friendly alternative energy sources. An energy management system design and control strategy was introduced in this study. The energy management strategy FC/ UC/ BT hybrid system model has been developed and the control strategy was programmed in the LabVIEWTM environment and implemented using National Instrument (NI) devices. The energy management strategy is able to manage the energy flow between the main power source (FCs) and auxiliary sources (UC and BT). To control the hybrid system and achieved proper performance, a controller circuit was developed with the three energy sources aligned in parallel to deliver the requested power. The developed model demonstrates the proportion power from the FC, UC and BT under various load demand. Experimental results demonstrate that FC/ UC/ BT hybrid system operated automatically with the varying load condition. The experimental results are presented; showing that the proposed strategy utilized the characteristic of both energy storage devices thus satisfies the load requirement. (author)

  5. Optimal sizing of grid-independent hybrid photovoltaic–battery power systems for household sector

    International Nuclear Information System (INIS)

    Bianchi, M.; Branchini, L.; Ferrari, C.; Melino, F.

    2014-01-01

    Highlights: • A feasibility study on a stand-alone solar–battery power generation system is carried out. • An in-house developed calculation code able to estimate photovoltaic panels behaviour is described. • The feasibility of replacing grid electricity with hybrid system is examined. • Guidelines for optimal photovoltaic design are given. • Guidelines for optimal storage sizing in terms of batteries number and capacity are given. - Abstract: The penetration of renewable sources into the grid, particularly wind and solar, have been increasing in recent years. As a consequence, there have been serious concerns over reliable and safety operation of power systems. One possible solution, to improve grid stability, is to integrate energy storage devices into power system network: storing energy produced in periods of low demand to later use, ensuring full exploitation of intermittent available sources. Focusing on stand-alone photovoltaic (PV) energy system, energy storage is needed with the purpose of ensuring continuous power flow, to minimize or, if anything, to neglect electrical grid supply. A comprehensive study on a hybrid stand-alone photovoltaic power system using two different energy storage technologies has been performed. The study examines the feasibility of replacing electricity provided by the grid with hybrid system to meet household demand. In particular, this paper presents first results for photovoltaic (PV)/battery (B) hybrid configuration. The main objective of this paper is focused on PV/B system, to recommend hybrid system optimal design in terms of PV module number, PV module tilt, number and capacity of batteries to minimize or, if possible, to neglect grid supply. This paper is the early stage of a theoretical and experimental study in which two different hybrid power system configurations will be evaluated and compared: (i) PV/B system and (ii) PV/B/fuel cell (FC) system. The aim of the overall study will be the definition of the

  6. Comparison of completely knotless and hybrid double-row fixation systems: a biomechanical study.

    Science.gov (United States)

    Chu, Thomas; McDonald, Erik; Tufaga, Michael; Kandemir, Utku; Buckley, Jenni; Ma, C Benjamin

    2011-04-01

    The purpose of this study was to compare the biomechanical performance of a completely knotless double-row repair system (SutureCross Knotless Anatomic Fixation System; KFx Medical, Carlsbad, CA) with 2 commonly used hybrid double-row repair (medial knot-tying, lateral knotless) systems (Bio-Corkscrew/PushLock [Arthrex, Naples, FL] and Spiralok/Versalok [DePuy Mitek, Raynham, MA]). Fourteen pairs of fresh-frozen cadaveric shoulders were harvested, the supraspinatus tendons were isolated, and full-thickness supraspinatus tears were created. One of each pair was repaired with the completely knotless system, and the contralateral side was repaired with either of the hybrid systems. The repairs were then subjected to cyclic loading followed by load to failure. Conditioning elongation, peak-to-peak elongation, ultimate load, and mechanism of failure were recorded and compared by use of paired t tests. Seven additional shoulders were tested to determine the effect of refrigeration storage on the completely knotless system by use of the same mechanical testing protocol. For the completely knotless repair group, 11 of 14 paired specimens failed during the cyclic loading period. Only 1 of 14 hybrid repair systems had failures during cyclic loading, and both hybrid repair systems had statistically lower conditioning elongation than the completely knotless repair group. The mean ultimate load of the SutureCross group was 166 ± 87 N, which was significantly lower than that in the Corkscrew/PushLock (310 ± 82 N) and Spiralok/Versalok (337 ± 44 N) groups. There was an effect of refrigeration storage on the peak-to-peak elongation and stiffness of the SutureCross group; however, there was no difference in ultimate tensile load or conditioning elongation. The completely knotless repair system has lower time-zero biomechanical properties than the other 2 hybrid systems. The SutureCross system has lower time-zero biomechanical properties when compared with other hybrid repair

  7. Fiscal 2000 report on the international joint verification of photovoltaic power generation system. Verification of hybrid system comprising photovoltaic power generation system and micro-hydroelectric power generation systems; 2000 nendo taiyoko hatsuden system kokusai kyodo jissho kaihatsu hokokusho. Taiyoko micro suiryoku hybrid system jissho kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-06-01

    Research was conducted in Vietnam for the development of a hybrid system comprising a photovoltaic power generation system and a micro-hydroelectric power generation system. In verification test operation, data measurement had been under way for approximately 18 months since it was started in September 1999. The rate of days on which effective data were obtained throughout this period was 93.4%. Power generated by the micro-hydroelectric power generation system was 19.4kWh/d with so small a capacity factor of 3.2%. The capacity factor of the photovoltaic power generation system was again very small at 4.5% since the amount consumed by the load was as small as 131.0kWh/d. Weather data of solar radiation and precipitation were being collected smoothly. In the study of hybrid system optimization, the effect of inductor generator activation upon the inverter was taken up. In the study of capacity balance optimization between the constituent elements of the hybrid system, methodology was established and verified, and calculations were carried out. (NEDO)

  8. Thermodynamic evaluation of a novel solar-biomass hybrid power generation system

    International Nuclear Information System (INIS)

    Bai, Zhang; Liu, Qibin; Lei, Jing; Wang, Xiaohe; Sun, Jie; Jin, Hongguang

    2017-01-01

    Highlights: • A solar-biomass hybrid power system with zero carbon dioxide emission is proposed. • The internal mechanisms of the solar-biomass utilization are discussed. • The on-design and off-design properties of the system are numerically investigated. • The configurations of the proposed system are optimized. - Abstract: A solar-biomass hybrid power generation system, which integrates a solar thermal energy collection subsystem, a biomass steam boiler and a steam turbine power generation block, is developed for efficiently utilizing renewable energies. The solar thermal energy is concentrated by parabolic trough collectors and is used to heat the feed-water to the superheated steam of 371 °C, then the generated solar steam is further heated to a higher temperature level of 540 °C via a second-stage heating process in a biomass boiler, the system power generation capacity is about 50 MW. The hybrid process of the solar energy and biomass contributes to ameliorating the system thermodynamic performances and reducing of the exergy loss within the steam generation process. The off-design evaluation results indicate that the annual net solar-to-electric efficiency of the hybrid power system is improved to 18.13%, which is higher than that of the typical parabolic trough solar power system as 15.79%. The levelized cost of energy drops to 0.077 $/(kW h) from 0.192 $/(kW h). The annual biomass consumption rate is reduced by 22.53% in comparison with typical biomass power systems. The research findings provide a promising approach for the efficient utilization of the abundant renewable energies resources and the reduction of carbon dioxide emission.

  9. Hybrid adsorption compression for industrial applications. HYACINT. Public final report; Hybride Adsorptie Compressie voor Industriele Toepassingen. HYACINT. Openbare eindrapportage

    Energy Technology Data Exchange (ETDEWEB)

    Van der Pal, M. [ECN Biomass and Energy Efficiency, Petten (Netherlands)

    2013-06-15

    Heat driven heat transformers can upgrade heat from about 100-120 degrees Celsius to 180-200C. However, most of the waste heat is below 100C. The hybrid adsorption compression technology offers the possibility to upgrade by at least 50C. The hybrid concept combines a heat-driven heat transformer with a power-driven compression heat pump. As part of the HYACINT project it has been examined which components of the two heat pump technologies are the most suitable for application in a hybrid heat transformer. This is done through a literature survey, sociological research, model calculations and measurements of components [Dutch] Warmtegedreven warmtetransformatoren kunnen warmte vanaf ongeveer 100 a 120C opwaarderen tot warmte van 180 tot 200C. Het merendeel van de restwarmte bevindt zich echter onder 100C. De hybride adsorptie compressie technologie biedt de mogelijkheid om ook deze warmte met tenminste 50C te kunnen verhogen. Het hybride concept combineert een warmtegedreven warmtetransformator met een arbeid aangedreven compressie warmtepomp. Binnen het HYACINT project is onderzocht welke componenten van beide warmtepomp technologieen het meest geschikt zijn voor toepassing in een hybride warmtetransformator. Dit is gedaan door middel van literatuurstudie, sociaalwetenschappelijk onderzoek, toepassingspotentieelonderzoek, modelberekeningen en metingen aan componenten.

  10. Parametric Linear Hybrid Automata for Complex Environmental Systems Modeling

    Directory of Open Access Journals (Sweden)

    Samar Hayat Khan Tareen

    2015-07-01

    Full Text Available Environmental systems, whether they be weather patterns or predator-prey relationships, are dependent on a number of different variables, each directly or indirectly affecting the system at large. Since not all of these factors are known, these systems take on non-linear dynamics, making it difficult to accurately predict meaningful behavioral trends far into the future. However, such dynamics do not warrant complete ignorance of different efforts to understand and model close approximations of these systems. Towards this end, we have applied a logical modeling approach to model and analyze the behavioral trends and systematic trajectories that these systems exhibit without delving into their quantification. This approach, formalized by René Thomas for discrete logical modeling of Biological Regulatory Networks (BRNs and further extended in our previous studies as parametric biological linear hybrid automata (Bio-LHA, has been previously employed for the analyses of different molecular regulatory interactions occurring across various cells and microbial species. As relationships between different interacting components of a system can be simplified as positive or negative influences, we can employ the Bio-LHA framework to represent different components of the environmental system as positive or negative feedbacks. In the present study, we highlight the benefits of hybrid (discrete/continuous modeling which lead to refinements among the fore-casted behaviors in order to find out which ones are actually possible. We have taken two case studies: an interaction of three microbial species in a freshwater pond, and a more complex atmospheric system, to show the applications of the Bio-LHA methodology for the timed hybrid modeling of environmental systems. Results show that the approach using the Bio-LHA is a viable method for behavioral modeling of complex environmental systems by finding timing constraints while keeping the complexity of the model

  11. Electrification of the Prudencio community through a hybrid system wind photovoltaic

    International Nuclear Information System (INIS)

    Hernandez Egurrola, Dayerling Lisbet

    2011-01-01

    Paraguana Peninsula is located in the northernmost part of Venezuela, have average wind speeds above 7 m / s and solar radiation is between 5 to 6 kW -h/m2-dia without significant variation in the annual cycle. Taking into account the favorable conditions for the realization of this potential solar wind and pose the goal of designing a hybrid generation system (solar PV - wind) that supplies electricity to the coastal community of Prudencio made up of 26 families engaged mainly in fishing and not have the power supply by conventional means by be located far from the grid of the national grid. Project development began with a study that among other things includes: geographic location, topography, climate, social and economical. Subsequently determines the demand for housing and community in general to determine the requirements of the load. Finally sized autonomous electrical network formed by 2 2.0 kW wind turbines and a photovoltaic system consists of 18 panels 205 W, which supply electricity to 110 VAC single phase by using 2 inverters 4.0 kW interconnected to a whole battery bank dimensioning system according to the requirements of the load. (full text)

  12. Electrical production for domestic and industrial applications using hybrid PV-wind system

    International Nuclear Information System (INIS)

    Essalaimeh, S.; Al-Salaymeh, A.; Abdullat, Y.

    2013-01-01

    Highlights: ► Modeling and building hybrid system of PV and wind turbine. ► Investigation of the electrical generation under Amman–Jordan’s climate. ► Configuration of theoretical and actual characteristics of the hybrid system. ► Testing effects of dust, inclination and load on the electrical generation. ► Financial analysis for various applications. - Abstract: The present work shows an experimental investigation of using a combination of solar and wind energies as hybrid system for electrical generation under the Jordanian climate conditions. The generated electricity has been utilized for different types of applications and mainly for space heating and cooling. The system has also integration with grid connection to have more reliable system. Measurements included the solar radiation intensity, the ambient temperature, the wind speed and the output power from the solar PV panels and wind turbine. The performance characteristic of the PV panels has been obtained by varying the load value through a variable resistance. Some major factors have been studied and practically measured; one of them is the dust effect on electrical production efficiency for photovoltaic panels. Another factor is the inclination of the PV panels, where varying the angle of inclination has a seasonal importance for gathering the maximum solar intensity. Through mathematical calculation and the collected and measured data, a simple payback period has been calculated of the hybrid system in order to study the economical aspects of installing such a system under Jordanian climate conditions and for different usages and local tariffs including domestic, industrial and commercial applications. It was found through this work that the generated electricity of hybrid system and under Jordanian climate conditions can be utilized for electrical heating and cooling through split units and resistive heaters.

  13. Hybrid utilization of solar energy. Part 2. Performance analyses of heating system with air hybrid collector; Taiyo energy no hybrid riyo ni kansuru kenkyu. 2. Kuki shunetsu hybrid collector wo mochiita danbo system no seino hyoka

    Energy Technology Data Exchange (ETDEWEB)

    Yoshinaga, M; Okumiya, M [Nagoya University, Nagoya (Japan)

    1996-10-27

    For the effective utilization of solar energy at houses, a heating system using an air hybrid collector (capable of simultaneously performing heat collection and photovoltaic power generation). As the specimen house, a wooden house of a total floor area of 120m{sup 2} was simulated. Collected air is fanned into a crushed stone heat accumulator (capable of storing one day`s collection) or into a living room. The output of solar cell arrays is put into a heat pump (capable of handling a maximum hourly load of 36,327kJ/h) via an inverter so as to drive the fan (corresponding to average insolation on the heat collecting plate of 10.7MJ/hm{sup 2} and heat collecting efficiency of 40%), and shortage in power if any is supplied from the system interconnection. A hybrid collector, as compared with the conventional air collector, is lower in thermal efficiency but the merit that it exhibits with respect to power generation is far greater than what is needed to counterbalance the demerit. When the hybrid system is in heating operation, there is an ideal heat cycle of collection, accumulation, and radiation when the load is light, but the balance between accumulation and radiation is disturbed when the load is heavy. 4 refs., 8 figs., 3 tabs.

  14. Nuclear-Renewable Hybrid Energy System Market Analysis Plans

    Energy Technology Data Exchange (ETDEWEB)

    Ruth, Mark

    2016-06-09

    This presentation describes nuclear-renewable hybrid energy systems (N-R HESs), states their potential benefits, provides figures for the four tightly coupled N-R HESs that NREL is currently analyzing, and outlines the analysis process that is underway.

  15. Environmental and economic assessment of hybrid FO-RO/NF system with selected inorganic draw solutes for the treatment of mine impaired water

    KAUST Repository

    Kim, Jung Eun

    2018-01-01

    A hybrid forward osmosis (FO) and reverse osmosis (RO)/nanofiltration (NF) system in a closed-loop operation with selected draw solutes was evaluated to treat coal mine impaired water. This study provides an insight of selecting the most suitable draw solution (DS) by conducting environmental and economic life cycle assessment (LCA). Baseline environmental LCA showed that the dominant components to energy use and global warming are the DS recovery processes (i.e. RO or NF processes) and FO membrane materials, respectively. When considering the DS replenishment in FO, the contribution of chemical use to the overall global warming impact was significant for all hybrid systems. Furthermore, from an environmental perspective, the FO-NF hybrid system with Na2SO4 shows the lowest energy consumption and global warming with additional considerations of final product water quality and FO brine disposal. From an economic perspective, the FO-NF with Na2SO4 showed the lowest total operating cost due to its lower DS loss and relatively low solute cost. In a closed-loop system, FO-NF with NaCl and Na2SO4 had the lowest total water cost at optimum NF recovery rates of 90 and 95%, respectively. FO-NF with Na2SO4 had the lowest environmental and economic impacts. Overall, draw solute performances and cost in FO and recovery rate in RO/NF play a crucial role in determining the total water cost and environmental impact of FO hybrid systems in a closed-loop operation.

  16. Nonimaging optics maximizing exergy for hybrid solar system

    Science.gov (United States)

    Winston, Roland; Jiang, Lun; Abdelhamid, Mahmoud; Widyolar, Bennett K.; Ferry, Jonathan; Cygan, David; Abbasi, Hamid; Kozlov, Alexandr; Kirk, Alexander; Elarde, Victor; Osowski, Mark

    2016-09-01

    The project team of University of California at Merced (UC-Merced), Gas Technology Institute (GTI) and MicroLink Devices Inc. (MicroLink) are developing a hybrid solar system using a nonimaging compound parabolic concentrator (CPC) that maximizes the exergy by delivering direct electricity and on-demand heat. The hybrid solar system technology uses secondary optics in a solar receiver to achieve high efficiency at high temperature, collects heat in particles and uses reflective liftoff cooled double junction (2J) InGaP/GaAs solar cells with backside infrared (IR) reflectors on the secondary optical element to raise exergy efficiency. The nonimaging optics provides additional concentration towards the high temperature thermal stream and enables it to operate efficiently at 650 °C while the solar cell is maintained at 40 °C to operate as efficiently as possible.

  17. A methodology for optimal sizing of autonomous hybrid PV/wind system

    International Nuclear Information System (INIS)

    Diaf, S.; Diaf, D.; Belhamel, M.; Haddadi, M.; Louche, A.

    2007-01-01

    The present paper presents a methodology to perform the optimal sizing of an autonomous hybrid PV/wind system. The methodology aims at finding the configuration, among a set of systems components, which meets the desired system reliability requirements, with the lowest value of levelized cost of energy. Modelling a hybrid PV/wind system is considered as the first step in the optimal sizing procedure. In this paper, more accurate mathematical models for characterizing PV module, wind generator and battery are proposed. The second step consists to optimize the sizing of a system according to the loss of power supply probability (LPSP) and the levelized cost of energy (LCE) concepts. Considering various types and capacities of system devices, the configurations, which can meet the desired system reliability, are obtained by changing the type and size of the devices systems. The configuration with the lowest LCE gives the optimal choice. Applying this method to an assumed PV/wind hybrid system to be installed at Corsica Island, the simulation results show that the optimal configuration, which meet the desired system reliability requirements (LPSP=0) with the lowest LCE, is obtained for a system comprising a 125 W photovoltaic module, one wind generator (600 W) and storage batteries (using 253 Ah). On the other hand, the device system choice plays an important role in cost reduction as well as in energy production

  18. Mars Hybrid Propulsion System Trajectory Analysis. Part II; Cargo Missions

    Science.gov (United States)

    Chai, Patrick R.; Merrill, Raymond G.; Qu, Min

    2015-01-01

    NASA's Human Spaceflight Architecture Team is developing a reusable hybrid transportation architecture in which both chemical and electric propulsion systems are used to send crew and cargo to Mars destinations such as Phobos, Deimos, the surface of Mars, and other orbits around Mars. By combining chemical and electrical propulsion into a single spaceship and applying each where it is more effective, the hybrid architecture enables a series of Mars trajectories that are more fuel-efficient than an all chemical architecture without significant increases in flight times. This paper shows the feasibility of the hybrid transportation architecture to pre-deploy cargo to Mars and Phobos in support of the Evolvable Mars Campaign crew missions. The analysis shows that the hybrid propulsion stage is able to deliver all of the current manifested payload to Phobos and Mars through the first three crew missions. The conjunction class trajectory also allows the hybrid propulsion stage to return to Earth in a timely fashion so it can be reused for additional cargo deployment. The 1,100 days total trip time allows the hybrid propulsion stage to deliver cargo to Mars every other Earth-Mars transit opportunity. For the first two Mars surface mission in the Evolvable Mars Campaign, the short trip time allows the hybrid propulsion stage to be reused for three round-trip journeys to Mars, which matches the hybrid propulsion stage's designed lifetime for three round-trip crew missions to the Martian sphere of influence.

  19. Game-based Abstraction and Controller Synthesis for Probabilistic Hybrid Systems

    DEFF Research Database (Denmark)

    Hahn, Ernst Moritz; Norman, Gethin; Parker, David

    2011-01-01

    We consider a class of hybrid systems that involve random phenomena, in addition to discrete and continuous behaviour. Examples of such systems include wireless sensing and control applications. We propose and compare two abstraction techniques for this class of models, which yield lower and upper...... bounds on the optimal probability of reaching a particular class of states. We also demonstrate the applicability of these abstraction techniques to the computation of long-run average reward properties and the synthesis of controllers. The first of the two abstractions yields more precise information......, while the second is easier to construct. For the latter, we demonstrate how existing solvers for hybrid systems can be leveraged to perform the computation....

  20. Nuclear Hybrid Energy Systems Regional Studies: West Texas & Northeastern Arizona

    Energy Technology Data Exchange (ETDEWEB)

    Garcia, Humberto E. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Chen, Jun [Idaho National Lab. (INL), Idaho Falls, ID (United States); Kim, Jong Suk [Idaho National Lab. (INL), Idaho Falls, ID (United States); McKellar, Michael George [Idaho National Lab. (INL), Idaho Falls, ID (United States); Deason, Wesley R [Idaho National Lab. (INL), Idaho Falls, ID (United States); Vilim, Richard B. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Bragg-Sitton, Shannon M. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Boardman, Richard D. [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-04-01

    The primary objective of this study is to conduct a preliminary dynamic analysis of two realistic hybrid energy systems (HES) including a nuclear reactor as the main baseload heat generator (denoted as nuclear HES or nuclear hybrid energy systems [[NHES]) and to assess the local (e.g., HES owners) and system (e.g., the electric grid) benefits attainable by the application of NHES in scenarios with multiple commodity production and high penetration of renewable energy. It is performed for regional cases not generic examples based on available resources, existing infrastructure, and markets within the selected regions. This study also briefly addresses the computational capabilities developed to conduct such analyses, reviews technical gaps, and suggests some research paths forward.

  1. Combinatorial Hybrid Systems

    DEFF Research Database (Denmark)

    Larsen, Jesper Abildgaard; Wisniewski, Rafal; Grunnet, Jacob Deleuran

    2008-01-01

    indicates for a given face the future simplex. In the suggested definition we allow nondeterminacy in form of splitting and merging of solution trajectories. The combinatorial vector field gives rise to combinatorial counterparts of most concepts from dynamical systems, such as duals to vector fields, flow......, flow lines, fixed points and Lyapunov functions. Finally it will be shown how this theory extends to switched dynamical systems and an algorithmic overview of how to do supervisory control will be shown towards the end....

  2. Chip Integrated, Hybrid EHD/Capillary Driven Thermal Management System

    Data.gov (United States)

    National Aeronautics and Space Administration — Chip-Integrated, Hybrid EHD/Capillary-Driven Thermal Management System is a two year that will leverage independently attained yet related prototype hardware...

  3. A compact readout system for multi-pixel hybrid photodiodes

    International Nuclear Information System (INIS)

    Datema, C.P.; Meng, L.J.; Ramsden, D.

    1999-01-01

    Although the first Multi-pixel Hybrid Photodiode (M-HPD) was developed in the early 1990s by Delft Electronic Products, the main obstacle to its application has been the lack of availability of a compact read-out system. A fast, parallel readout system has been constructed for use with the earlier 25-pixel tube with High-energy Physics applications in mind. The excellent properties of the recently developed multi-pixel hybrid photodiodes (M-HPD) will be easier to exploit following the development of the new hybrid read-out circuits described in this paper. This system will enable all of the required read-out functions to be accommodate on a single board into which the M-HPD is plugged. The design and performance of a versatile system is described in which a trigger-signal, derived from the common-side of the silicon anode in the M-HPD, is used to trigger the readout of the 60-anode pixels in the M-HPD. The multi-channel amplifier section is based on the use of a new, commercial VLSI chip, whilst the read-out sequencer uses a chip of its own design. The common anode signal is processed by a fast amplifier and discriminator to provide a trigger signal when a single event is detected. In the prototype version, the serial analogue output data-stream is processed using a PC-mounted, high speed ADC. Results obtained using the new read-out system in a compact gamma-camera and with a small muon tracking-chamber demonstrate the low-noise performance of the system. The application of this read-out system in other position-sensitive or multi-anode photomultiplier tube applications are also described

  4. A Frequency Control Approach for Hybrid Power System Using Multi-Objective Optimization

    Directory of Open Access Journals (Sweden)

    Mohammed Elsayed Lotfy

    2017-01-01

    Full Text Available A hybrid power system uses many wind turbine generators (WTG and solar photovoltaics (PV in isolated small areas. However, the output power of these renewable sources is not constant and can diverge quickly, which has a serious effect on system frequency and the continuity of demand supply. In order to solve this problem, this paper presents a new frequency control scheme for a hybrid power system to ensure supplying a high-quality power in isolated areas. The proposed power system consists of a WTG, PV, aqua-electrolyzer (AE, fuel cell (FC, battery energy storage system (BESS, flywheel (FW and diesel engine generator (DEG. Furthermore, plug-in hybrid electric vehicles (EVs are implemented at the customer side. A full-order observer is utilized to estimate the supply error. Then, the estimated supply error is considered in a frequency domain. The high-frequency component is reduced by BESS and FW; while the low-frequency component of supply error is mitigated using FC, EV and DEG. Two PI controllers are implemented in the proposed system to control the system frequency and reduce the supply error. The epsilon multi-objective genetic algorithm ( ε -MOGA is applied to optimize the controllers’ parameters. The performance of the proposed control scheme is compared with that of recent well-established techniques, such as a PID controller tuned by the quasi-oppositional harmony search algorithm (QOHSA. The effectiveness and robustness of the hybrid power system are investigated under various operating conditions.

  5. Architectural elements of hybrid navigation systems for future space transportation

    Science.gov (United States)

    Trigo, Guilherme F.; Theil, Stephan

    2017-12-01

    The fundamental limitations of inertial navigation, currently employed by most launchers, have raised interest for GNSS-aided solutions. Combination of inertial measurements and GNSS outputs allows inertial calibration online, solving the issue of inertial drift. However, many challenges and design options unfold. In this work we analyse several architectural elements and design aspects of a hybrid GNSS/INS navigation system conceived for space transportation. The most fundamental architectural features such as coupling depth, modularity between filter and inertial propagation, and open-/closed-loop nature of the configuration, are discussed in the light of the envisaged application. Importance of the inertial propagation algorithm and sensor class in the overall system are investigated, being the handling of sensor errors and uncertainties that arise with lower grade sensory also considered. In terms of GNSS outputs we consider receiver solutions (position and velocity) and raw measurements (pseudorange, pseudorange-rate and time-difference carrier phase). Receiver clock error handling options and atmospheric error correction schemes for these measurements are analysed under flight conditions. System performance with different GNSS measurements is estimated through covariance analysis, being the differences between loose and tight coupling emphasized through partial outage simulation. Finally, we discuss options for filter algorithm robustness against non-linearities and system/measurement errors. A possible scheme for fault detection, isolation and recovery is also proposed.

  6. Architectural elements of hybrid navigation systems for future space transportation

    Science.gov (United States)

    Trigo, Guilherme F.; Theil, Stephan

    2018-06-01

    The fundamental limitations of inertial navigation, currently employed by most launchers, have raised interest for GNSS-aided solutions. Combination of inertial measurements and GNSS outputs allows inertial calibration online, solving the issue of inertial drift. However, many challenges and design options unfold. In this work we analyse several architectural elements and design aspects of a hybrid GNSS/INS navigation system conceived for space transportation. The most fundamental architectural features such as coupling depth, modularity between filter and inertial propagation, and open-/closed-loop nature of the configuration, are discussed in the light of the envisaged application. Importance of the inertial propagation algorithm and sensor class in the overall system are investigated, being the handling of sensor errors and uncertainties that arise with lower grade sensory also considered. In terms of GNSS outputs we consider receiver solutions (position and velocity) and raw measurements (pseudorange, pseudorange-rate and time-difference carrier phase). Receiver clock error handling options and atmospheric error correction schemes for these measurements are analysed under flight conditions. System performance with different GNSS measurements is estimated through covariance analysis, being the differences between loose and tight coupling emphasized through partial outage simulation. Finally, we discuss options for filter algorithm robustness against non-linearities and system/measurement errors. A possible scheme for fault detection, isolation and recovery is also proposed.

  7. A study on the control of a hybrid MTDC system supplying a passive network

    DEFF Research Database (Denmark)

    Kotb, Omar; Ghandhari, Mehrdad; Eriksson, Robert

    2014-01-01

    A hybrid Multi-Terminal DC (MTDC) system can combine the benefits of both Line Commutated Converter (LCC) and Voltage Source Converter (VSC) technologies in the form of reduced losses and flexibility to connect to weak and passive grids. In this paper, an analysis of control strategies used...... in a hybrid MTDC system is presented. A case study of a four terminal hybrid MTDC system supplying a passive AC network was considered for simulation study. A control scheme based on voltage margin was developed to cope with the condition of main DC voltage controlling station tripping. Two various control...... scenarios for controlling the VSCs connected to the passive network were presented and compared. The system performance was studied through EMTP-RV simulations under different disturbances. The results show the ability of selected converter control modes and proposed control schemes to operate the hybrid...

  8. Hybrid-organic photodetectors for radiography. Final report; Hybrid organische Photodetektoren fuer die Radiographie. Abschlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt, Oliver [Siemens Healthcare GmbH, Erlangen (Germany); Bonrad, Klaus [Merck KGaA, Darmstadt (Germany); Adam, Jens; Kraus, Tobias [INM - Leibniz-Institut fuer Neue Materialien gGmbH, Saarbruecken (Germany); Gimmler, Christoph [CAN GmbH, Hamburg (Germany)

    2016-02-15

    HOP-X aimed to combine the advantages of nanotechnology and organic electronics for application in medical X-ray imaging in order to enable more cost-effective imaging at lower dose. Solution-processing of organic semiconductors enables easy hybridization with X-ray absorbers and processing on large areas. In this project, nano-sized scintillators and quantum dots have been synthesized and characterized as X-ray absorbers. Organic semiconductor materials have been identified which allow charge carrier extraction from layers with a thickness of up to 200 μm. Hybrid-organic photodiodes have been processed and the ideal mixture of organic semiconductor and inorganic X-ray absorber was determined. This mixture provide a high X-ray absorption and an efficient charge carrier extraction at the same time. Photodiodes have been integrated on TFT-matrix backplanes in order to demonstrate the concept in X-ray imagers.

  9. A study on maintenance reliability allocation of urban transit brake system using hybrid neuro-genetic technique

    International Nuclear Information System (INIS)

    Bae, Chul Ho; Kim, Hyun Jun; Lee, Jung Hwan; Suh, Myung Won; Chu, Yul

    2007-01-01

    For reasonable establishing of maintenance strategies, safety security and cost limitation must be considered at the same time. In this paper, the concept of system reliability introduces and optimizes as the key of reasonable maintenance strategies. This study aims at optimizing component's reliability that satisfies the target reliability of brake system in the urban transit. First of all, constructed reliability evaluation system is used to predict and analyze reliability. This data is used for the optimization. To identify component reliability in a system, a method is presented in this paper which uses hybrid neuro-genetic technique. Feed-forward multi-layer neural networks trained by back propagation are used to find out the relationship between component reliability (input) and system reliability (output) of a structural system. The inverse problem can be formulated by using neural network. Genetic algorithm is used to find the minimum square error. Finally, this paper presents reasonable maintenance cycle of urban transit brake system by using optimal system reliability

  10. A hybrid system using a regenerative electrochemical cycle to harvest waste heat from the proton exchange membrane fuel cell

    International Nuclear Information System (INIS)

    Long, Rui; Li, Baode; Liu, Zhichun; Liu, Wei

    2015-01-01

    A new hybrid system consisting of a PEMFC (proton exchange membrane fuel cell) subsystem and a TREC (thermally regenerative electrochemical cycle) subsystem is proposed to convert the waste heat produced by the PEMFC system into electricity. The performance of the hybrid system and its corresponding subsystems is analyzed. Results reveal that there exists optimal current densities of the PEMFC and TREC systems leading to the maximum power output of the hybrid system. With the maximum power output as the objective function, an optimization of the hybrid system based on genetic algorithm method is conducted under different operating temperatures of the PEMFC subsystem. The power output of the hybrid system is 6.85%–20.59% larger than that of the PEMFC subsystem. And the total electrical efficiency is improved by 2.74%–8.27%. The corresponding electrical efficiency of the TREC is 4.56%–13.81%. The hybrid system proposed in this paper could contribute to utilizing the fuel energy more efficiently and sufficiently. - Highlights: • A hybrid power system consisting of a PEMFC and a TREC subsystems is proposed. • Parameters' impacts on performance of the hybrid system have been analyzed. • The maximum power output of the hybrid system is investigated based on genetic algorithm. • Total power output of the hybrid system is 7.63%–18.84% larger than that of the PEMFC subsystem.

  11. Hybrid vehicle powertrain system with power take-off driven vehicle accessory

    Science.gov (United States)

    Beaty, Kevin D.; Bockelmann, Thomas R.; Zou, Zhanijang; Hope, Mark E.; Kang, Xiaosong; Carpenter, Jeffrey L.

    2006-09-12

    A hybrid vehicle powertrain system includes a first prime mover, a first prime mover driven power transmission mechanism having a power take-off adapted to drive a vehicle accessory, and a second prime mover. The second prime mover is operable to drive the power transmission mechanism alone or in combination with the first prime mover to provide power to the power take-off through the power transmission mechanism. The invention further includes methods for operating a hybrid vehicle powertrain system.

  12. Feasibility study of applying the passive safety system concept to fusion–fission hybrid reactor

    International Nuclear Information System (INIS)

    Yu, Zhang-cheng; Xie, Heng

    2014-01-01

    The fusion–fission hybrid reactor can produce energy, breed nuclear fuel, and handle the nuclear waste, etc., with the fusion neutron source striking the subcritical blanket. The passive safety system consists of passive residual heat removal system, passive safety injection system and automatic depressurization system was adopted into the fusion–fission hybrid reactor in this paper. Modeling and nodalization of primary loop, partial secondary loop and passive core cooling system for the fusion–fission hybrid reactor using relap5 were conducted and small break LOCA on cold leg was analyzed. The results of key transient parameters indicated that the actuation of passive safety system could mitigate the accidental consequence of the 4-inch cold leg small break LOCA on cold leg in the early time effectively. It is feasible to apply the passive safety system concept to fusion–fission hybrid reactor. The minimum collapsed liquid level had great increase if doubling the volume of CMTs to increase its coolant injection and had no increase if doubling the volume of ACCs

  13. Detection of cardiovascular anomalies: Hybrid systems approach

    KAUST Repository

    Ledezma, Fernando

    2012-06-06

    In this paper, we propose a hybrid interpretation of the cardiovascular system. Based on a model proposed by Simaan et al. (2009), we study the problem of detecting cardiovascular anomalies that can be caused by variations in some physiological parameters, using an observerbased approach. We present the first numerical results obtained. © 2012 IFAC.

  14. Hybrid electric vehicle power management system

    Science.gov (United States)

    Bissontz, Jay E.

    2015-08-25

    Level voltage levels/states of charge are maintained among a plurality of high voltage DC electrical storage devices/traction battery packs that are arrayed in series to support operation of a hybrid electric vehicle drive train. Each high voltage DC electrical storage device supports a high voltage power bus, to which at least one controllable load is connected, and at least a first lower voltage level electrical distribution system. The rate of power transfer from the high voltage DC electrical storage devices to the at least first lower voltage electrical distribution system is controlled by DC-DC converters.

  15. Preparation and Physicochemical Properties of Functionalized Silica/Octamethacryl-Silsesquioxane Hybrid Systems

    Directory of Open Access Journals (Sweden)

    Karolina Szwarc-Rzepka

    2013-01-01

    Full Text Available Alkoxysilane-grafted silica/polyhedral oligomeric silsesquioxane with methacryl substituents (SiO2/silane/POSS hybrid material was synthesized according to hydrolyzation and condensation reactions in the so-called “bifunctionalization process.” It is a new attractive system because of its physicochemical, especially thermal and structural, properties. This innovative method of preparation as well as specific physicochemical and useful properties determine the potential applications of such products in many industries. The structure and physicochemical parameters of obtained hybrid systems were characterized using infrared spectroscopy (FTIR, 13C and 29Si solid-state nuclear magnetic resonance (CP MAS NMR, and thermal analysis. The mechanism of bifunctionalization reaction was proposed. The chemical immobilization of silane coupling agent and Methacryl POSS onto silica support surface was noted during the study. Those changes caused a significant increase in the hydrophobic character of fillers obtained. Moreover, changes in thermal stability of SiO2/silane/POSS hybrid systems in comparison to pure POSS modifier were also observed.

  16. Quantum state engineering in hybrid open quantum systems

    OpenAIRE

    Joshi, Chaitanya; Larson, Jonas; Spiller, Timothy P.

    2015-01-01

    We investigate a possibility to generate nonclassical states in light-matter coupled noisy quantum systems, namely, the anisotropic Rabi and Dicke models. In these hybrid quantum systems, a competing influence of coherent internal dynamics and environment-induced dissipation drives the system into nonequilibrium steady states (NESSs). Explicitly, for the anisotropic Rabi model, the steady state is given by an incoherent mixture of two states of opposite parities, but as each parity state disp...

  17. Dependence of the productivity of maize and soybean intercropping systems on hybrid type and plant arrangement pattern

    Directory of Open Access Journals (Sweden)

    Dolijanović Željko

    2013-01-01

    Full Text Available Intercropping systems could improve utilization of the most important resources (soil, water and nutrients, provide a better control of weeds, pests and diseases, and finally higher productivity, especially under rain-fed growing conditions. This study aimed to determine the effects of three maize (Zea mays L. prolific hybrids (FAO 500, 600 and 700 and the spatial intercrop patterns on the above-ground biomass and grain yields of maize and soybean (Glycine max L. Merrill, on chernozem soil type at Zemun Polje, Belgrade, in 2003, 2004 and 2005. The experimental design was a complete randomized block with four replications and three treatments: 3 rows of maize and 3 rows of soybean in strips for each maize hybrid (three variants, 3 rows of maize and 3 rows of soybean in alternate rows for each hybrid (another three variants and monocrops of both maize and soybeans. To optimize the ecological and economic benefits of maize/soybean intercrop in terms of yield, variety selection and compatibility of the component crops should be made using established agronomic management practices involving the two crops. Suitable maize varieties for maize/soybean intercrop systems are varieties that have less dense canopy. These varieties would therefore have lesser shading effect to the understory beans. However, establishment of an appropriate spatial arrangement of the component crops would be essential to alleviate negative effects especially on the less competitive crop. The intercropping system in alternate rows showed significantly higher above-ground biomass and grain yields in comparation with both the strip intercropping system and maize monocrops in 2004. Soybean gave significantly lower above-ground biomass and grain yield in intercrops than in monocrops. Maize prolific hybrid growing in intercropping with soybean as legume crop, increased productivity of cropping system, especially in favourable agroecological conditions. Maize and soybean yields

  18. The role of meiotic drive in hybrid male sterility.

    Science.gov (United States)

    McDermott, Shannon R; Noor, Mohamed A F

    2010-04-27

    Meiotic drive causes the distortion of allelic segregation away from Mendelian expected ratios, often also reducing fecundity and favouring the evolution of drive suppressors. If different species evolve distinct drive-suppressor systems, then hybrid progeny may be sterile as a result of negative interactions of these systems' components. Although the hypothesis that meiotic drive may contribute to hybrid sterility, and thus species formation, fell out of favour early in the 1990s, recent results showing an association between drive and sterility have resurrected this previously controversial idea. Here, we review the different forms of meiotic drive and their possible roles in speciation. We discuss the recent empirical evidence for a link between drive and hybrid male sterility, also suggesting a possible mechanistic explanation for this link in the context of chromatin remodelling. Finally, we revisit the population genetics of drive that allow it to contribute to speciation.

  19. 1978 source book for fusion--fission hybrid systems

    International Nuclear Information System (INIS)

    Crowley, J.H.; Pavlenco, G.F.; Kaminski, R.S.

    1978-12-01

    This study summarizes the promise and timing of the hybrid concept and culminates in a generic R and D timetable. This document emphasizes the meaningfulness of the concept to tomorrow's energy needs and energy production systems rather than strict analysis of technical feasibility

  20. Analysis of hybrid systems: An ounce of realism can save an infinity of states

    DEFF Research Database (Denmark)

    Fränzle, Martin

    1999-01-01

    Hybrid automata have been introduced in both control engineering and computer science as a formal model for the dynamics of hybrid discrete-continuous systems. In the case of so-called linear hybrid automata this formalization supports semi-decision procedures for state reachability, yet no decis...

  1. A review and design of power electronics converters for fuel cell hybrid system applications

    DEFF Research Database (Denmark)

    Zhang, Zhe; Pittini, Riccardo; Andersen, Michael A. E.

    2012-01-01

    This paper presents an overview of most promising power electronics topologies for a fuel cell hybrid power conversion system which can be utilized in many applications such as hybrid electrical vehicles (HEV), distributed generations (DG) and uninterruptible-power-supply (UPS) systems. Then...

  2. A flocking algorithm for multi-agent systems with connectivity preservation under hybrid metric-topological interactions.

    Science.gov (United States)

    He, Chenlong; Feng, Zuren; Ren, Zhigang

    2018-01-01

    In this paper, we propose a connectivity-preserving flocking algorithm for multi-agent systems in which the neighbor set of each agent is determined by the hybrid metric-topological distance so that the interaction topology can be represented as the range-limited Delaunay graph, which combines the properties of the commonly used disk graph and Delaunay graph. As a result, the proposed flocking algorithm has the following advantages over the existing ones. First, range-limited Delaunay graph is sparser than the disk graph so that the information exchange among agents is reduced significantly. Second, some links irrelevant to the connectivity can be dynamically deleted during the evolution of the system. Thus, the proposed flocking algorithm is more flexible than existing algorithms, where links are not allowed to be disconnected once they are created. Finally, the multi-agent system spontaneously generates a regular quasi-lattice formation without imposing the constraint on the ratio of the sensing range of the agent to the desired distance between two adjacent agents. With the interaction topology induced by the hybrid distance, the proposed flocking algorithm can still be implemented in a distributed manner. We prove that the proposed flocking algorithm can steer the multi-agent system to a stable flocking motion, provided the initial interaction topology of multi-agent systems is connected and the hysteresis in link addition is smaller than a derived upper bound. The correctness and effectiveness of the proposed algorithm are verified by extensive numerical simulations, where the flocking algorithms based on the disk and Delaunay graph are compared.

  3. A flocking algorithm for multi-agent systems with connectivity preservation under hybrid metric-topological interactions.

    Directory of Open Access Journals (Sweden)

    Chenlong He

    Full Text Available In this paper, we propose a connectivity-preserving flocking algorithm for multi-agent systems in which the neighbor set of each agent is determined by the hybrid metric-topological distance so that the interaction topology can be represented as the range-limited Delaunay graph, which combines the properties of the commonly used disk graph and Delaunay graph. As a result, the proposed flocking algorithm has the following advantages over the existing ones. First, range-limited Delaunay graph is sparser than the disk graph so that the information exchange among agents is reduced significantly. Second, some links irrelevant to the connectivity can be dynamically deleted during the evolution of the system. Thus, the proposed flocking algorithm is more flexible than existing algorithms, where links are not allowed to be disconnected once they are created. Finally, the multi-agent system spontaneously generates a regular quasi-lattice formation without imposing the constraint on the ratio of the sensing range of the agent to the desired distance between two adjacent agents. With the interaction topology induced by the hybrid distance, the proposed flocking algorithm can still be implemented in a distributed manner. We prove that the proposed flocking algorithm can steer the multi-agent system to a stable flocking motion, provided the initial interaction topology of multi-agent systems is connected and the hysteresis in link addition is smaller than a derived upper bound. The correctness and effectiveness of the proposed algorithm are verified by extensive numerical simulations, where the flocking algorithms based on the disk and Delaunay graph are compared.

  4. Feasibility study and energy conversion analysis of stand-alone hybrid renewable energy system

    International Nuclear Information System (INIS)

    Baghdadi, Fazia; Mohammedi, Kamal; Diaf, Said; Behar, Omar

    2015-01-01

    Highlights: • Hybrid stand-alone wind–solar–fossil power system is analyzed. • Measurement data are used to evaluate system performance. • The proposed system can generate about 70% from renewables. • Such a hybrid plant is very promising for remote regions in Algeria. - Abstract: There is a great interest in the development of renewable power technologies in Algeria, and more particularly hybrid concept. The present paper has investigated the performance of hybrid PV–Wind–Diesel–Battery configuration based on hourly measurements of Adrar climate (southern Algeria). Data of global solar radiation, ambient temperature and wind speed for a period of one year have been used. Firstly, the proposed hybrid system has been optimized by means of HOMER software. The optimization process has been carried out taking into account renewable resources potential and energy demand; while maximizing renewable electricity use and fuel saving are the purpose. In the second step, a mathematical model has been developed to ensure efficient energy management on the basis of various operation strategies. The analysis has shown that renewable energy system (PV–Wind) is able to supply about 70% of the demand. Wind power has ranked first with 43% of the annual total electricity production followed by diesel generator (with 31%) while the remaining fraction is being to PV panels. In this context, 69% of the fossil fuel can be saved when using the proposed hybrid configuration instead of the diesel generators that are currently installed in most remote regions in Algeria. Such a concept is very promising to meet the focus of renewable energy program announced in 2011.

  5. Environmental and economic impacts of fertilizer drawn forward osmosis and nanofiltration hybrid system

    KAUST Repository

    Kim, Jung Eun; Phuntsho, Sherub; Chekli, Laura; Hong, Seungkwan; Ghaffour, NorEddine; Leiknes, TorOve; Choi, Joon Yong; Shon, Ho Kyong

    2017-01-01

    Environmental and economic impacts of the fertilizer drawn forward osmosis (FDFO) and nanofiltration (NF) hybrid system were conducted and compared with conventional reverse osmosis (RO) hybrid scenarios using microfiltration (MF) or ultrafiltration

  6. Power quality analysis of hybrid renewable energy system

    Directory of Open Access Journals (Sweden)

    Rinchin W. Mosobi

    2015-12-01

    Full Text Available An hybrid renewable energy sources consisting of solar photovoltaic, wind energy system, and a microhydro system is proposed in this paper. This system is suitable for supplying electricity to isolated locations or remote villages far from the grid supply. The solar photovoltaic system is modeled with two power converters, the first one being a DC-DC converter along with an maximum power point tracking to achieve a regulated DC output voltage and the second one being a DC-AC converter to obtain AC output. The wind energy system is modeled with a wind-turbine prime mover with varying wind speed and fixed pitch angle to drive an self excited induction generator (SEIG. Owing to inherent drooping characteristics of the SEIG, a closed loop turbine input system is incorporated. The microhydro system is modeled with a constant input power to drive an SEIG. The three different sources are integrated through an AC bus and the proposed hybrid system is supplied to R, R-L, and induction motor loads. A static compensator is proposed to improve the load voltage and current profiles; it also mitigates the harmonic contents of the voltage and current. The static synchronous compensator is realized by means of a three-phase IGBT-based current-controlled voltage source inverter with a self-supporting DC bus. The complete system is modeled and simulated using Matlab/Simulink. The simulation results obtained illustrate the feasibility of the proposed system and are found to be satisfactory.

  7. Performance characteristic of hybrid cooling system based on cooling pad and evaporator

    Science.gov (United States)

    Yoon, J. I.; Son, C. H.; Choi, K. H.; Kim, Y. B.; Sung, Y. H.; Roh, S. J.; Kim, Y. M.; Seol, S. H.

    2018-01-01

    In South Korea, most of domestic animals such as pigs and chickens might die due to thermal diseases if they are exposed to the high temperature consistently. In order to save them from the heat wave, numerous efforts have been carried out: installing a shade net, adjusting time of feeding, spraying mist and setting up a circulation fan. However, these methods have not shown significant improvements. Thus, this study proposes a hybrid cooling system combining evaporative cooler and air-conditioner in order to resolve the conventional problems caused by the high temperature in the livestock industry. The problem of cooling systems using evaporative cooling pads is that they are not effective for eliminating huge heat load due to their limited capacity. And, temperature of the supplied air cannot be low enough compared to conventional air-conditioning systems. On the other hand, conventional air-conditioning systems require relatively expensive installation cost, and high operating cost compared to evaporative cooling system. The hybrid cooling system makes up for the lack of cooling capacity of the evaporative cooler by employing the conventional air-conditioner. Additionally, temperature of supplied air can be lowered enough. In the hybrid cooling system, induced air by a fan is cooled by the evaporation of water in the cooling pad, and it is cooled again by an evaporator in the air-conditioner. Therefore, the more economical operation is possible due to additionally obtained cooling capacity from the cooling pads. Major results of experimental analysis of hybrid cooling system are as follows. The compressor power consumption of the hybrid cooling system is about 23% lower, and its COP is 17% higher than that of the conventional air-conditioners. Regarding the condition of changing ambient temperature, the total power consumption decreased by about 5% as the ambient temperature changed from 28.7°C to 31.7°C. Cooling capacity and COP also presented about 3% and 1

  8. Fundamentals of automotive and engine technology standard drives, hybrid drives, brakes, safety systems

    CERN Document Server

    2014-01-01

    Hybrid drives and the operation of hybrid vehicles are characteristic of contemporary automotive technology. Together with the electronic driver assistant systems, hybrid technology is of the greatest importance and both cannot be ignored by today’s car drivers. This technical reference book provides the reader with a firsthand comprehensive description of significant components of automotive technology. All texts are complemented by numerous detailed illustrations. Contents History of the automobile.- History of the Diesel engine.- Areas of use for Diesel engines.- Basic principles of the Diesel engine.- Basic principles of Diesel fuel-injection.- Basic principles of the gasoline engine.- Inductive ignition system.- Transmissions for motor vehicles.- Motor vehicle safety.- Basic principles of vehicle dynamics.- Car braking systems.- Vehicle electrical systems.- Overview of electrical and electronic systems in the vehicle.- Control of gasoline engines.- Control of Diesel engines.- Lighting technology.- Elec...

  9. Experimental and simulation study on the plate absorber for hybrid heat pump system

    Energy Technology Data Exchange (ETDEWEB)

    An, Seung Sun; Jung, Chung Woo; Kang, Yong Tae [Kyung Hee University, Yongin (Korea, Republic of); Kim, Min Sung; Park, Seong Ryong [KIER, Daejeon (Korea, Republic of); Kang, Chae Dong [Chonbuk National University, Jeonju (Korea, Republic of)

    2013-12-15

    This research conducts an experiment for a hybrid heat pump system, using ammonia-water as a working fluid, to obtain a hot water of about 80 .deg. C. The hybrid heat pump system is the combination of vapor compression cycle and absorption cycle to improve the performance of the heat pump system. The hybrid heat pump system uses a low temperature heat source of about 50 .deg. C from the industrial waste heat. The system consists of absorber, desorber, solution heat exchanger, oil heat exchanger, rectifier, compressor and a solution pump. Parametric analysis is carried out experimentally and numerically for the key parameters such as the capacity of the absorber, the internal pressure change. From the present experimental study, it is found that the maximum hot water temperature is obtained to be 79.33 .deg. C.

  10. A Study on Control Strategy of Regenerative Braking in the Hydraulic Hybrid Vehicle Based on ECE Regulations

    OpenAIRE

    Liu, Tao; Zheng, Jincheng; Su, Yongmao; Zhao, Jinghui

    2013-01-01

    This paper establishes a mathematic model of composite braking in the hydraulic hybrid vehicle and analyzes the constraint condition of parallel regenerative braking control algorithm. Based on regenerative braking system character and ECE (Economic Commission of Europe) regulations, it introduces the control strategy of regenerative braking in parallel hydraulic hybrid vehicle (PHHV). Finally, the paper establishes the backward simulation model of the hydraulic hybrid vehicle in Matlab/simul...

  11. Hybrid powertrain system

    Science.gov (United States)

    Grillo, Ricardo C.; O'Neil, Walter K.; Preston, David M.

    2005-09-20

    A hybrid powertrain system is provided that includes a first prime mover having a rotational output, a second prime mover having a rotational output, and a transmission having a main shaft supporting at least two main shaft gears thereon. The transmission includes a first independent countershaft drivingly connected to the first prime mover and including at least one ratio gear supported thereon that meshes with a respective main shaft gear. A second independent countershaft is drivingly connected to the second prime mover and includes at least one ratio gear supported thereon that meshes with a respective main shaft gear. The ratio gears on the first and second countershafts cooperate with the main shaft gears to provide at least one gear ratio between the first and second countershafts and the main shaft. A shift control mechanism selectively engages and disengages the first and second countershafts for rotation with the main shaft.

  12. Optimization of diesel engine performances for a hybrid wind-diesel system with compressed air energy storage

    International Nuclear Information System (INIS)

    Ibrahim, H.; Younes, R.; Basbous, T.; Ilinca, A.; Dimitrova, M.

    2011-01-01

    Electricity supply in remote areas around the world is mostly guaranteed by diesel generators. This relatively inefficient and expensive method is responsible for 1.2 million tons of greenhouse gas (GHG) emission in Canada annually. Some low- and high-penetration wind-diesel hybrid systems (WDS) have been experimented in order to reduce the diesel consumption. We explore the re-engineering of current diesel power plants with the introduction of high-penetration wind systems together with compressed air energy storage (CAES). This is a viable alternative to major the overall percentage of renewable energy and reduce the cost of electricity. In this paper, we present the operative principle of this hybrid system, its economic benefits and advantages and we finally propose a numerical model of each of its components. Moreover, we are demonstrating the energy efficiency of the system, particularly in terms of the increase of the engine performance and the reduction of its fuel consumption illustrated and supported by a village in northern Quebec. -- Highlights: → The Wind-Diesel-Compressed Air Storage System (WDCAS) has a very important commercial potential for remote areas. → The WDCAS is conceived like the adaptation of the existing engines at the level of the intake system. → A wind turbine and an air compression and storage system are added on the diesel plant. → This study demonstrates the potential of WDCAS to reduce fuel consumption and increase the efficiency of the diesel engine. → This study demonstrates that we can expect savings which can reach 50%.

  13. Dynamic Modeling and Simulation of an Isolated Hybrid Power System in a Rural Area of China

    Directory of Open Access Journals (Sweden)

    Bojian Jiang

    2018-01-01

    Full Text Available In some rural areas in the northwest of China, people are suffering from not only the voltage drop due to long distance transmission but also the power outages due to remoteness and poorly maintained grid. In recent few years, the price of solar energy has been reduced drastically every year in China due to the government policy on renewable energy. In the near future, isolated hybrid power systems for home use could be affordable and used by residences in these rural areas. Thus, it is necessary to design a hybrid power system based on local load and weather condition to check system feasibility and expected performance. It includes load simulation, system sizing, and dynamic system modeling and simulation. This paper firstly introduces current development of renewable energy in China and then goes through the sizing, modeling, and simulation of the system design for a typical remote home in China and finally discusses the system’s availability based on the simulation results. In this paper, the NASA website is the source for weather data, and BEopt is used to generate load data. During system modeling, the MPPT algorithm is much simpler designed than the complex incremental method. A soft starter is adopted with the diesel generator for stability. The charge controller of the battery storage provides external command to the MPPT and diesel PID controller to prevent the battery storage from overcharging. The rms value of the fundamental load voltage is used in the voltage control loop of the inverter.

  14. Dynamic performance analysis of two regional Nuclear Hybrid Energy Systems

    International Nuclear Information System (INIS)

    Garcia, Humberto E.; Chen, Jun; Kim, Jong S.; Vilim, Richard B.; Binder, William R.; Bragg Sitton, Shannon M.; Boardman, Richard D.; McKellar, Michael G.; Paredis, Christiaan J.J.

    2016-01-01

    In support of more efficient utilization of clean energy generation sources, including renewable and nuclear options, HES (hybrid energy systems) can be designed and operated as FER (flexible energy resources) to meet both electrical and thermal energy needs in the electric grid and industrial sectors. These conceptual systems could effectively and economically be utilized, for example, to manage the increasing levels of dynamic variability and uncertainty introduced by VER (variable energy resources) such as renewable sources (e.g., wind, solar), distributed energy resources, demand response schemes, and modern energy demands (e.g., electric vehicles) with their ever changing usage patterns. HES typically integrate multiple energy inputs (e.g., nuclear and renewable generation) and multiple energy outputs (e.g., electricity, gasoline, fresh water) using complementary energy conversion processes. This paper reports a dynamic analysis of two realistic HES including a nuclear reactor as the main baseload heat generator and to assess the local (e.g., HES owners) and system (e.g., the electric grid) benefits attainable by their application in scenarios with multiple commodity production and high renewable penetration. It is performed for regional cases – not generic examples – based on available resources, existing infrastructure, and markets within the selected regions. This study also briefly addresses the computational capabilities developed to conduct such analyses. - Highlights: • Hybrids including renewables can operate as dispatchable flexible energy resources. • Nuclear energy can address high variability and uncertainty in energy systems. • Nuclear hybrids can reliably provide grid services over various time horizons. • Nuclear energy can provide operating reserves and grid inertia under high renewables. • Nuclear hybrids can greatly reduce GHG emissions and support grid and industry needs.

  15. Hybrid Modified K-Means with C4.5 for Intrusion Detection Systems in Multiagent Systems.

    Science.gov (United States)

    Laftah Al-Yaseen, Wathiq; Ali Othman, Zulaiha; Ahmad Nazri, Mohd Zakree

    2015-01-01

    Presently, the processing time and performance of intrusion detection systems are of great importance due to the increased speed of traffic data networks and a growing number of attacks on networks and computers. Several approaches have been proposed to address this issue, including hybridizing with several algorithms. However, this paper aims at proposing a hybrid of modified K-means with C4.5 intrusion detection system in a multiagent system (MAS-IDS). The MAS-IDS consists of three agents, namely, coordinator, analysis, and communication agent. The basic concept underpinning the utilized MAS is dividing the large captured network dataset into a number of subsets and distributing these to a number of agents depending on the data network size and core CPU availability. KDD Cup 1999 dataset is used for evaluation. The proposed hybrid modified K-means with C4.5 classification in MAS is developed in JADE platform. The results show that compared to the current methods, the MAS-IDS reduces the IDS processing time by up to 70%, while improving the detection accuracy.

  16. Battery control system for hybrid vehicle and method for controlling a hybrid vehicle battery

    Science.gov (United States)

    Bockelmann, Thomas R [Battle Creek, MI; Beaty, Kevin D [Kalamazoo, MI; Zou, Zhanijang [Battle Creek, MI; Kang, Xiaosong [Battle Creek, MI

    2009-07-21

    A battery control system for controlling a state of charge of a hybrid vehicle battery includes a detecting arrangement for determining a vehicle operating state or an intended vehicle operating state and a controller for setting a target state of charge level of the battery based on the vehicle operating state or the intended vehicle operating state. The controller is operable to set a target state of charge level at a first level during a mobile vehicle operating state and at a second level during a stationary vehicle operating state or in anticipation of the vehicle operating in the stationary vehicle operating state. The invention further includes a method for controlling a state of charge of a hybrid vehicle battery.

  17. A hybrid power system for unmanned aerial vehicle electromagnetic launcher

    Science.gov (United States)

    Wang, Zhiren; Wu, Jun; Huang, Shengjun

    2018-06-01

    According to the UAV electromagnetic catapult with fixed timing, a hybrid energy storage system consist with battery and super capacitor is designed, in order to reduce the volume and weight of the energy storage system. The battery is regarded as the energy storage device and the super capacitor as power release device. Firstly, the battery charges the super capacitor, and then the super capacitor supplies power to electromagnetic catapult separately. The strategy is using the Buck circuit to charge the super capacitor with constant current and using the Boost circuit to make super capacitor provide a stable voltage circuit for electromagnetic catapult. The Simulink simulation results show that the designed hybrid energy storage system can meet the requirements of electromagnetic catapult. Compared with the system powered by the battery alone, the proposed scheme can reduce the number of batteries, and greatly reduce the volume and weight of the energy storage system.

  18. Results of KEPCO HTS cable system tests and design of hybrid cryogenic system

    International Nuclear Information System (INIS)

    Lim, J.H.; Sohn, S.H.; Yang, H.S.; Hwang, S.D.; Kim, D.L.; Ryoo, H.S.; Choi, H.O.

    2010-01-01

    In order to investigate the compatibility as a power utility facility, Korea Electric Power Corporation (KEPCO) had installed a 22.9 kV, 1250 A, 100 m long high temperature superconducting (HTS) power cable system. Using the HTS cable, various tests have been performed to investigate electrical and thermo-mechanical properties. Since 2005, a series of thermal cycle tests between liquid nitrogen (LN 2 ) and ambient temperatures have been conducted using a vacuum-pump driven open-loop cryogenic system with a capacity of 3 kW. In the tests, although the open-loop cryogenic system was reliable to operate the HTS cable system, it was not effective in economic view point because LN 2 consumption was larger than expected. In order to secure against unexpected emergencies and solve the problem of LN 2 consumption, a hybrid cryogenic system was designed and installed. A stirling cryocooler was employed and combined with the open-loop cryogenic system. Considering the average heat load at rated condition, the cooling capacity of the cryocooler was determined to 4 kW at 77 K. In this paper, results of performance tests and the design of the hybrid cooling system are presented.

  19. Lower hybrid heating system for an ignition tokamak

    International Nuclear Information System (INIS)

    Brooks, J.; Harkness, S.; Jung, J.; Misra, B.; Moretti, A.; Norem, J.; Stevens, H.

    1978-01-01

    We have attempted to design a complete Lower Hybrid Resonance Heating System (LHRH) that could be used for TFTR, TNS, EPR, or a reactor. In addition to plasma physics constraints, we have considered those imposed by neutron radiation, surface heating of waveguides, sputtering, multipactoring, vacuum systems, materials, window design, engineering, maintenance and assembly. The system uses a Lallia--Brambilla grill which is fed by a number of waveguides entering the reactor by means of a labyrinth

  20. Study of a class of hybrid-time systems

    Energy Technology Data Exchange (ETDEWEB)

    Cervantes, I. [Seccion de Estudios de Posgrado e Investigacion, Escuela Superior de Ingenieria Mecanica y Electrica-Culhuacan-IPN, Av. San Ana 1000 Col. San Fco. Culhuacan, Mexico D.F. 04430 (Mexico) and Insituto Potosino de Investigacion Cientifica y Tecnologica (IPICyT), Departamento de Matematicas Aplicadas y Sistemas Computacionales, Camino a la Presa San Jose 2055, Col. Lomas 4a, seccion C.P. 78216, San Luis Potosi, San Luis Potosi (Mexico)]. E-mail: ilse@calmecac.esimecu.ipn.mx; Femat, R. [Insituto Potosino de Investigacion Cientifica y Tecnologica (IPICyT), Departamento de Matematicas Aplicadas y Sistemas Computacionales, Camino a la Presa San Jose 2055, Col. Lomas 4a, seccion C.P. 78216, San Luis Potosi, San Luis Potosi (Mexico); Leyva-Ramos, J. [Insituto Potosino de Investigacion Cientifica y Tecnologica (IPICyT), Departamento de Matematicas Aplicadas y Sistemas Computacionales, Camino a la Presa San Jose 2055, Col. Lomas 4a, seccion C.P. 78216, San Luis Potosi, San Luis Potosi (Mexico)

    2007-05-15

    The aim of this paper is to study the dynamic behavior of a class of hybrid-time systems. In particular, we concern about switched systems constituted by two linear second order systems with a time varying (sinusoidal type) translation term. By means of numerical simulations, system behavior and its relation to system parameters are studied. It is shown that system eigenvalues play a crucial role in the time evolution of the system leading either to regular behavior, oscillatory patterns or intermittent erratic-periodic behavior. Furthermore, it is shown that under certain conditions, presumable fractal structures can be obtained.

  1. Study of a class of hybrid-time systems

    International Nuclear Information System (INIS)

    Cervantes, I.; Femat, R.; Leyva-Ramos, J.

    2007-01-01

    The aim of this paper is to study the dynamic behavior of a class of hybrid-time systems. In particular, we concern about switched systems constituted by two linear second order systems with a time varying (sinusoidal type) translation term. By means of numerical simulations, system behavior and its relation to system parameters are studied. It is shown that system eigenvalues play a crucial role in the time evolution of the system leading either to regular behavior, oscillatory patterns or intermittent erratic-periodic behavior. Furthermore, it is shown that under certain conditions, presumable fractal structures can be obtained

  2. Modelling of hybrid energy system - Part I: Problem formulation and model development

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, Ajai; Saini, R.P.; Sharma, M.P. [Alternate Hydro Energy Centre, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand 247667 (India)

    2011-02-15

    A well designed hybrid energy system can be cost effective, has a high reliability and can improve the quality of life in remote rural areas. The economic constraints can be met, if these systems are fundamentally well designed, use appropriate technology and make use effective dispatch control techniques. The first paper of this tri-series paper, presents the analysis and design of a mixed integer linear mathematical programming model (time series) to determine the optimal operation and cost optimization for a hybrid energy generation system consisting of a photovoltaic array, biomass (fuelwood), biogas, small/micro-hydro, a battery bank and a fossil fuel generator. The optimization is aimed at minimizing the cost function based on demand and potential constraints. Further, mathematical models of all other components of hybrid energy system are also developed. This is the generation mix of the remote rural of India; it may be applied to other rural areas also. (author)

  3. A hybrid NIRS-EEG system for self-paced brain computer interface with online motor imagery.

    Science.gov (United States)

    Koo, Bonkon; Lee, Hwan-Gon; Nam, Yunjun; Kang, Hyohyeong; Koh, Chin Su; Shin, Hyung-Cheul; Choi, Seungjin

    2015-04-15

    For a self-paced motor imagery based brain-computer interface (BCI), the system should be able to recognize the occurrence of a motor imagery, as well as the type of the motor imagery. However, because of the difficulty of detecting the occurrence of a motor imagery, general motor imagery based BCI studies have been focusing on the cued motor imagery paradigm. In this paper, we present a novel hybrid BCI system that uses near infrared spectroscopy (NIRS) and electroencephalography (EEG) systems together to achieve online self-paced motor imagery based BCI. We designed a unique sensor frame that records NIRS and EEG simultaneously for the realization of our system. Based on this hybrid system, we proposed a novel analysis method that detects the occurrence of a motor imagery with the NIRS system, and classifies its type with the EEG system. An online experiment demonstrated that our hybrid system had a true positive rate of about 88%, a false positive rate of 7% with an average response time of 10.36 s. As far as we know, there is no report that explored hemodynamic brain switch for self-paced motor imagery based BCI with hybrid EEG and NIRS system. From our experimental results, our hybrid system showed enough reliability for using in a practical self-paced motor imagery based BCI. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. An automotive thermoelectric-photovoltaic hybrid energy system using maximum power point tracking

    International Nuclear Information System (INIS)

    Zhang Xiaodong; Chau, K.T.

    2011-01-01

    In recent years, there has been active research on exhaust gas waste heat energy recovery for automobiles. Meanwhile, the use of solar energy is also proposed to promote on-board renewable energy and hence to improve their fuel economy. In this paper, a new thermoelectric-photovoltaic (TE-PV) hybrid energy system is proposed and implemented for automobiles. The key is to newly develop the power conditioning circuit using maximum power point tracking so that the output power of the proposed TE-PV hybrid energy system can be maximized. An experimental system is prototyped and tested to verify the validity of the proposed system.

  5. DC Linked Hybrid Generation System with an Energy Storage Device including a Photo-Voltaic Generation and a Gas Engine Cogeneration for Residential Houses

    Science.gov (United States)

    Lung, Chienru; Miyake, Shota; Kakigano, Hiroaki; Miura, Yushi; Ise, Toshifumi; Momose, Toshinari; Hayakawa, Hideki

    For the past few years, a hybrid generation system including solar panel and gas cogeneration is being used for residential houses. Solar panels can generate electronic power at daytime; meanwhile, it cannot generate electronic power at night time. But the power consumption of residential houses usually peaks in the evening. The gas engine cogeneration system can generate electronic power without such a restriction, and it also can generate heat power to warm up house or to produce hot water. In this paper, we propose the solar panel and gas engine co-generation hybrid system with an energy storage device that is combined by dc bus. If a black out occurs, the system still can supply electronic power for special house loads. We propose the control scheme for the system which are related with the charging level of the energy storage device, the voltage of the utility grid which can be applied both grid connected and stand alone operation. Finally, we carried out some experiments to demonstrate the system operation and calculation for loss estimation.

  6. An analysis of hybrid power generation systems for a residential load

    Directory of Open Access Journals (Sweden)

    Ceran Bartosz

    2017-01-01

    Full Text Available This paper presents the results of an energetic and economical analysis of a hybrid power generation system (HPGS which utilises photovoltaic modules, wind turbines, fuel cells and an electrolyzer with hydrogen tank working as the energy storage. The analysis was carried out for three different residential loads, local solar radiation and local wind speed, based on the real measurement values. The analysis shows the optimal solution and the limits of the investment costs required for the system construction. The presented results confirm the effectiveness of the proposed approach, which could be assumed as a very useful tool in the design and analysis of a hybrid power generation system.

  7. Dynamic Performance Comparison for MPPT-PV Systems using Hybrid Pspice/Matlab Simulation

    Science.gov (United States)

    Aouchiche, N.; Becherif, M.; HadjArab, A.; Aitcheikh, M. S.; Ramadan, H. S.; Cheknane, A.

    2016-10-01

    The power generated by solar photovoltaic (PV) module depends on the surrounding irradiance and temperature. This paper presents a hybrid Matlab™/Pspice™ simulation model of PV system, combined with Cadence software SLPS. The hybridization is performed in order to gain the advantages of both simulation tools such as accuracy and efficiency in both Pspice electronic circuit and Matlab™ mathematical modelling respectively. For this purpose, the PV panel and the boost converter are developed using Pspice™ and hybridized with the mathematical Matlab™ model of maximum power point method controller (MPPT) through SLPS. The main objective is verify the significance of using the proposed hybrid simulation techniques in comparing the different MPPT algorithms such as the perturbation and observation (P&O), incremental of conductance (Inc-Cond) and counter reaction voltage using pilot cell (Pilot-Cell). Various simulations are performed under different atmospheric conditions in order to evaluate the dynamic behaviour for the system under study in terms of stability, efficiency and rapidity.

  8. Hybrid Intelligent Warning System for Boiler tube Leak Trips

    Directory of Open Access Journals (Sweden)

    Singh Deshvin

    2017-01-01

    Full Text Available Repeated boiler tube leak trips in coal fired power plants can increase operating cost significantly. An early detection and diagnosis of boiler trips is essential for continuous safe operations in the plant. In this study two artificial intelligent monitoring systems specialized in boiler tube leak trips have been proposed. The first intelligent warning system (IWS-1 represents the use of pure artificial neural network system whereas the second intelligent warning system (IWS-2 represents merging of genetic algorithms and artificial neural networks as a hybrid intelligent system. The Extreme Learning Machine (ELM methodology was also adopted in IWS-1 and compared with traditional training algorithms. Genetic algorithm (GA was adopted in IWS-2 to optimize the ANN topology and the boiler parameters. An integrated data preparation framework was established for 3 real cases of boiler tube leak trip based on a thermal power plant in Malaysia. Both the IWSs were developed using MATLAB coding for training and validation. The hybrid IWS-2 performed better than IWS-1.The developed system was validated to be able to predict trips before the plant monitoring system. The proposed artificial intelligent system could be adopted as a reliable monitoring system of the thermal power plant boilers.

  9. Regenerative Braking System for Series Hybrid Electric City Bus

    OpenAIRE

    Zhang, Junzhi; Lu, Xin; Xue, Junliang; Li, Bos

    2008-01-01

    Regenerative Braking Systems (RBS) provide an efficient method to assist hybrid electric buses achieve better fuel economy while lowering exhaust emissions. This paper describes the design and testing of three regenerative braking systems, one of which is a series regenerative braking system and two of which are parallel regenerative braking systems. The existing friction based Adjustable Braking System (ABS) on the bus is integrated with each of the new braking systems in order to ensure bus...

  10. Hybrid platform. Economical hybrid drive for commercial vehicles; Hybrid Plattform. Wirtschaftlicher Hybridantrieb fuer Nutzfahrzeuge

    Energy Technology Data Exchange (ETDEWEB)

    Wallner, S.; Lamke, M.; Mohr, M.; Sedlacek, M.; Speck, F.D. [ZF Friedrichshafen AG, Friedrichshafen (Germany)

    2011-07-01

    Up to now, hybrid systems have been adapted to their specific requirements in the various applications for trucks, buses as well as mobile and building machines. From a technical point of view, this does indeed result in optimized hybrid drives for each single vehicle application, but due to small volumes, such single developments are critical from a business point of view. ZF Friedrichshafen AG is providing a solution to the technical and economical requirements of the cost-sensitive CV segment in the form of a modular CV parallel hybrid platform composed of a hybrid module system, an inverter, a battery system, and a hybrid software integrated into the overall vehicle. Thanks to the intelligent combination of assemblies and the use of as many identical parts as possible, platforms are realized which cover power ranges between 60 and 120 kW, voltage ranges between 350 and 650 V, and battery capacities between 2 and 4 kWh. The dimensions of the platform elements are such that integration into the diverse commercial vehicle applications is made easy. The hybrid software required for the vehicle-specific functions is also configurable for the mentioned CV applications. (orig.)

  11. Modelling and simulation of a hybrid solar heating system for greenhouse applications using Matlab/Simulink

    International Nuclear Information System (INIS)

    Kıyan, Metin; Bingöl, Ekin; Melikoğlu, Mehmet; Albostan, Ayhan

    2013-01-01

    Highlights: • Matlab/Simulink modelling of a solar hybrid greenhouse. • Estimation of greenhouse gas emission reductions. • Feasibility and cost analysis of the system. - Abstract: Solar energy is a major renewable energy source and hybrid solar systems are gaining increased academic and industrial attention due to the unique advantages they offer. In this paper, a mathematical model has been developed to investigate the thermal behavior of a greenhouse heated by a hybrid solar collector system. This hybrid system contains an evacuated tube solar heat collector unit, an auxiliary fossil fuel heating unit, a hot water storage unit, control and piping units. A Matlab/Simulink based model and software has been developed to predict the storage water temperature, greenhouse indoor temperature and the amount of auxiliary fuel, as a function of various design parameters of the greenhouse such as location, dimensions, and meteorological data of the region. As a case study, a greenhouse located in Şanlıurfa/Turkey has been simulated based on recent meteorological data and aforementioned hybrid system. The results of simulations performed on an annual basis indicate that revising the existing fossil fuel system with the proposed hybrid system, is economically feasible for most cases, however it requires a slightly longer payback period than expected. On the other hand, by reducing the greenhouse gas emissions significantly, it has a considerable positive environmental impact. The developed dynamic simulation method can be further used for designing heating systems for various solar greenhouses and optimizing the solar collector and thermal storage sizes

  12. Hybrid computer optimization of systems with random parameters

    Science.gov (United States)

    White, R. C., Jr.

    1972-01-01

    A hybrid computer Monte Carlo technique for the simulation and optimization of systems with random parameters is presented. The method is applied to the simultaneous optimization of the means and variances of two parameters in the radar-homing missile problem treated by McGhee and Levine.

  13. Extending a Hybrid Tag-Based Recommender System with Personalization

    DEFF Research Database (Denmark)

    Durao, Frederico; Dolog, Peter

    2010-01-01

    extension for a hybrid tag-based recommender system, which suggests similar Web pages based on the similarity of their tags. The semantic extension aims at discovering tag relations which are not considered in basic syntax similarity. With the goal of generating more semantically grounded recommendations......, the proposal extends a hybrid tag-based recommender system with a semantic factor, which looks for tag relations in different semantic sources. In order to evaluate the benefits acquired with the semantic extension, we have compared the new findings with results from a previous experiment involving 38 people......Tagging activity has been recently identified as a potential source of knowledge about personal interests, preferences, goals, and other attributes known from user models. Tags themselves can be therefore used for finding personalized recommendations of items. This paper proposes a semantic...

  14. Analysis and Assessment of Operation Risk for Hybrid AC/DC Power System based on the Monte Carlo Method

    Science.gov (United States)

    Hu, Xiaojing; Li, Qiang; Zhang, Hao; Guo, Ziming; Zhao, Kun; Li, Xinpeng

    2018-06-01

    Based on the Monte Carlo method, an improved risk assessment method for hybrid AC/DC power system with VSC station considering the operation status of generators, converter stations, AC lines and DC lines is proposed. According to the sequential AC/DC power flow algorithm, node voltage and line active power are solved, and then the operation risk indices of node voltage over-limit and line active power over-limit are calculated. Finally, an improved two-area IEEE RTS-96 system is taken as a case to analyze and assessment its operation risk. The results show that the proposed model and method can intuitively and directly reflect the weak nodes and weak lines of the system, which can provide some reference for the dispatching department.

  15. Analysis and Assessment of Operation Risk for Hybrid AC/DC Power System based on the Monte Carlo Method

    Directory of Open Access Journals (Sweden)

    Hu Xiaojing

    2018-01-01

    Full Text Available Based on the Monte Carlo method, an improved risk assessment method for hybrid AC/DC power system with VSC station considering the operation status of generators, converter stations, AC lines and DC lines is proposed. According to the sequential AC/DC power flow algorithm, node voltage and line active power are solved, and then the operation risk indices of node voltage over-limit and line active power over-limit are calculated. Finally, an improved two-area IEEE RTS-96 system is taken as a case to analyze and assessment its operation risk. The results show that the proposed model and method can intuitively and directly reflect the weak nodes and weak lines of the system, which can provide some reference for the dispatching department.

  16. Modeling, design and analysis of a stand-alone hybrid power generation system using solar/urine

    International Nuclear Information System (INIS)

    Wu, Wei; Zhou, Ya-Yan; Lin, Mu-Hsuan; Hwang, Jenn-Jiang

    2013-01-01

    Highlights: • The stand-alone hybrid power system is presented. • The urine-to-hydrogen processor is proposed. • Scenario analysis of the hybrid power dispatching and the urine/solar demands is investigated. • The design, modeling and optimization of the hybrid power system is addressed by Aspen Plus and Matlab. - Abstract: The urine turned to hydrogen as an energy conversion process is integrated into a stand-alone hybrid (PV/FC/battery) power generation system. The optimization and simulation of a new urine-to-hydrogen processor is evaluated in Aspen Plus environment. In our approach, the PV generator aims to reduce urine consumption and the lithium-ion battery can compensate the power gap due to the fuel processing delay. Based on prescribed patterns of solar irradiation and the daily load demand of a 30-persons classroom, scenario analyses of the hybrid power dispatching and operational feasibility is addressed

  17. On-line identification of hybrid systems using an adaptive growing and pruning RBF neural network

    DEFF Research Database (Denmark)

    Alizadeh, Tohid

    2008-01-01

    This paper introduces an adaptive growing and pruning radial basis function (GAP-RBF) neural network for on-line identification of hybrid systems. The main idea is to identify a global nonlinear model that can predict the continuous outputs of hybrid systems. In the proposed approach, GAP......-RBF neural network uses a modified unscented kalman filter (UKF) with forgetting factor scheme as the required on-line learning algorithm. The effectiveness of the resulting identification approach is tested and evaluated on a simulated benchmark hybrid system....

  18. Control Systems for a Dynamic Multi-Physics Model of a Nuclear Hybrid Energy System

    Energy Technology Data Exchange (ETDEWEB)

    Greenwood, Michael Scott [ORNL; Fugate, David W [ORNL; Cetiner, Sacit M [ORNL

    2017-01-01

    A Nuclear Hybrid Energy System (NHES) uses a nuclear reactor as the basic power generation unit, and the power generated is used by multiple customers as either thermal power, electrical power, or both. The definition and architecture of a particular NHES can be adapted based on the needs and opportunities of different local markets. For example, locations in need of potable water may be best served by coupling a desalination plant to the NHES. Similarly, a location near oil refineries may have a need for emission-free hydrogen production. Using the flexible, multi-domain capabilities of Modelica, Argonne National Laboratory, Idaho National Laboratory, and Oak Ridge National Laboratory are investigating the dynamics (e.g., thermal hydraulics and electrical generation/consumption) and cost of a hybrid system. This paper examines the NHES work underway, emphasizing the control system developed for individual subsystems and the overall supervisory control system.

  19. Issues regarding the modelling and simulation of hybrid micro grid systems

    Science.gov (United States)

    Szeidert, I.; Filip, I.; Prostean, O.

    2016-02-01

    The main followed objectives within control strategies dedicated to hybrid micro grid systems (wind/hydro/solar), that operate based on maximum power point tracking (MPPT) techniques are to improve the conversion systems efficiency and to maintain the quality of the produced electrical energy (the voltage and power factor control). One of the main goals of maximum power point tracking strategy is to achieve the harvesting of the maximal possible energy within a pre-set time period. In order to implement the control strategies for micro grid systems that operate at time variable parameter, there are usually required specific transducers (anemometer for wind speed measurement, optical rotational transducers, taco generators, etc.). In the technical literature there are presented several variants of the MPPT techniques, which are particularized at several applications (wind energy conversion systems, solar systems, hydro plants and micro grid hybrid systems). The maximum power point tracking implementations are mainly based on two-level architecture. The inferior level controls the primary variables, while the superior level represents the MPPT control structure. In the paper, authors present some micro grid structures proposed at Politehnica University Timisoara within the frame of a research grant. The paper is focused on the application of MPPT strategies on hybrid micro grid systems. There are presented several structures and control strategies and are highlighted their advantages and disadvantages, together with practical implementation guidelines.

  20. Recovery act. Development of design and simulation tool for hybrid geothermal heat pump system

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Shaojie [ClimateMaster, Inc., Oklahoma City, OK (United States); Ellis, Dan [ClimateMaster, Inc., Oklahoma City, OK (United States)

    2014-05-29

    The ground source heat pump (GSHP) system is one of the most energy efficient HVAC technologies in the current market. However, the heat imbalance may degrade the ability of the ground loop heat exchanger (GLHX) to absorb or reject heat. The hybrid GSHP system, which combines a geothermal well field with a supplemental boiler or cooling tower, can balance the loads imposed on the ground loop heat exchangers to minimize its size while retaining superior energy efficiency. This paper presents a recent simulation-based study with an intention to compare multiple common control strategies used in hybrid GSHP systems, including fixed setpoint, outside air reset, load reset, and wetbulb reset. A small office in Oklahoma City conditioned by a hybrid GSHP system was simulated with the latest version of eQUEST 3.7[1]. The simulation results reveal that the hybrid GSHP system has the excellent capability to meet the cooling and heating setpoints during the occupied hours, balance thermal loads on the ground loop, as well as improve the thermal comfort of the occupants with the undersized well field.