Hybrid modelling of soil-structure interaction for embedded structures
International Nuclear Information System (INIS)
Gupta, S.; Penzien, J.
1981-01-01
The basic methods currently being used for the analysis of soil-structure interaction fail to properly model three-dimensional embedded structures with flexible foundations. A hybrid model for the analysis of soil-structure interaction is developed in this investigation which takes advantage of the desirable features of both the finite element and substructure methods and which minimizes their undesirable features. The hybrid model is obtained by partitioning the total soil-structure system into a nearfield and a far-field with a smooth hemispherical interface. The near-field consists of the structure and a finite region of soil immediately surrounding its base. The entire near-field may be modelled in three-dimensional form using the finite element method; thus, taking advantage of its ability to model irregular geometries, and the non-linear soil behavior in the immediate vicinity of the structure. (orig./WL)
Exploratory Topology Modelling of Form-Active Hybrid Structures
DEFF Research Database (Denmark)
Holden Deleuran, Anders; Pauly, Mark; Tamke, Martin
2016-01-01
The development of novel form-active hybrid structures (FAHS) is impeded by a lack of modelling tools that allow for exploratory topology modelling of shaped assemblies. We present a flexible and real-time computational design modelling pipeline developed for the exploratory modelling of FAHS...... that enables designers and engineers to iteratively construct and manipulate form-active hybrid assembly topology on the fly. The pipeline implements Kangaroo2's projection-based methods for modelling hybrid structures consisting of slender beams and cable networks. A selection of design modelling sketches...
Calibrated and Interactive Modelling of Form-Active Hybrid Structures
DEFF Research Database (Denmark)
Quinn, Gregory; Holden Deleuran, Anders; Piker, Daniel
2016-01-01
Form-active hybrid structures (FAHS) couple two or more different structural elements of low self weight and low or negligible bending flexural stiffness (such as slender beams, cables and membranes) into one structural assembly of high global stiffness. They offer high load-bearing capacity...... software packages which introduce interruptions and data exchange issues in the modelling pipeline. The mechanical precision, stability and open software architecture of Kangaroo has facilitated the development of proof-of-concept modelling pipelines which tackle this challenge and enable powerful...... materially-informed sketching. Making use of a projection-based dynamic relaxation solver for structural analysis, explorative design has proven to be highly effective....
A Structural Model Decomposition Framework for Hybrid Systems Diagnosis
Daigle, Matthew; Bregon, Anibal; Roychoudhury, Indranil
2015-01-01
Nowadays, a large number of practical systems in aerospace and industrial environments are best represented as hybrid systems that consist of discrete modes of behavior, each defined by a set of continuous dynamics. These hybrid dynamics make the on-line fault diagnosis task very challenging. In this work, we present a new modeling and diagnosis framework for hybrid systems. Models are composed from sets of user-defined components using a compositional modeling approach. Submodels for residual generation are then generated for a given mode, and reconfigured efficiently when the mode changes. Efficient reconfiguration is established by exploiting causality information within the hybrid system models. The submodels can then be used for fault diagnosis based on residual generation and analysis. We demonstrate the efficient causality reassignment, submodel reconfiguration, and residual generation for fault diagnosis using an electrical circuit case study.
Hybrid CMS methods with model reduction for assembly of structures
Farhat, Charbel
1991-01-01
Future on-orbit structures will be designed and built in several stages, each with specific control requirements. Therefore there must be a methodology which can predict the dynamic characteristics of the assembled structure, based on the dynamic characteristics of the subassemblies and their interfaces. The methodology developed by CSC to address this issue is Hybrid Component Mode Synthesis (HCMS). HCMS distinguishes itself from standard component mode synthesis algorithms in the following features: (1) it does not require the subcomponents to have displacement compatible models, which makes it ideal for analyzing the deployment of heterogeneous flexible multibody systems, (2) it incorporates a second-level model reduction scheme at the interface, which makes it much faster than other algorithms and therefore suitable for control purposes, and (3) it does answer specific questions such as 'how does the global fundamental frequency vary if I change the physical parameters of substructure k by a specified amount?'. Because it is based on an energy principle rather than displacement compatibility, this methodology can also help the designer to define an assembly process. Current and future efforts are devoted to applying the HCMS method to design and analyze docking and berthing procedures in orbital construction.
The Tower: Modelling, Analysis and Construction of Bending Active Tensile Membrane Hybrid Structures
DEFF Research Database (Denmark)
Holden Deleuran, Anders; Schmeck, Michel; Charles Quinn, Gregory
2015-01-01
The project is the result of an interdisciplinary research collaboration between CITA, KET and Fibrenamics exploring the design of integrated hybrid structures employing bending active elements and tensile membranes with bespoke material properties and detailing. Hybrid structures are defined her...
Qualitative Fault Isolation of Hybrid Systems: A Structural Model Decomposition-Based Approach
Bregon, Anibal; Daigle, Matthew; Roychoudhury, Indranil
2016-01-01
Quick and robust fault diagnosis is critical to ensuring safe operation of complex engineering systems. A large number of techniques are available to provide fault diagnosis in systems with continuous dynamics. However, many systems in aerospace and industrial environments are best represented as hybrid systems that consist of discrete behavioral modes, each with its own continuous dynamics. These hybrid dynamics make the on-line fault diagnosis task computationally more complex due to the large number of possible system modes and the existence of autonomous mode transitions. This paper presents a qualitative fault isolation framework for hybrid systems based on structural model decomposition. The fault isolation is performed by analyzing the qualitative information of the residual deviations. However, in hybrid systems this process becomes complex due to possible existence of observation delays, which can cause observed deviations to be inconsistent with the expected deviations for the current mode in the system. The great advantage of structural model decomposition is that (i) it allows to design residuals that respond to only a subset of the faults, and (ii) every time a mode change occurs, only a subset of the residuals will need to be reconfigured, thus reducing the complexity of the reasoning process for isolation purposes. To demonstrate and test the validity of our approach, we use an electric circuit simulation as the case study.
Hai An; Ling Zhou; Hui Sun
2016-01-01
Aiming to resolve the problems of a variety of uncertainty variables that coexist in the engineering structure reliability analysis, a new hybrid reliability index to evaluate structural hybrid reliability, based on the random–fuzzy–interval model, is proposed in this article. The convergent solving method is also presented. First, the truncated probability reliability model, the fuzzy random reliability model, and the non-probabilistic interval reliability model are introduced. Then, the new...
Vallat, Brinda; Webb, Benjamin; Westbrook, John D; Sali, Andrej; Berman, Helen M
2018-04-09
Essential processes in biology are carried out by large macromolecular assemblies, whose structures are often difficult to determine by traditional methods. Increasingly, researchers combine measured data and computed information from several complementary methods to obtain "hybrid" or "integrative" structural models of macromolecules and their assemblies. These integrative/hybrid (I/H) models are not archived in the PDB because of the absence of standard data representations and processing mechanisms. Here we present the development of data standards and a prototype system for archiving I/H models. The data standards provide the definitions required for representing I/H models that span multiple spatiotemporal scales and conformational states, as well as spatial restraints derived from different experimental techniques. Based on these data definitions, we have built a prototype system called PDB-Dev, which provides the infrastructure necessary to archive I/H structural models. PDB-Dev is now accepting structures and is open to the community for new submissions. Copyright © 2018 Elsevier Ltd. All rights reserved.
Directory of Open Access Journals (Sweden)
Hahnbeom Park
Full Text Available Protein loop modeling is a tool for predicting protein local structures of particular interest, providing opportunities for applications involving protein structure prediction and de novo protein design. Until recently, the majority of loop modeling methods have been developed and tested by reconstructing loops in frameworks of experimentally resolved structures. In many practical applications, however, the protein loops to be modeled are located in inaccurate structural environments. These include loops in model structures, low-resolution experimental structures, or experimental structures of different functional forms. Accordingly, discrepancies in the accuracy of the structural environment assumed in development of the method and that in practical applications present additional challenges to modern loop modeling methods. This study demonstrates a new strategy for employing a hybrid energy function combining physics-based and knowledge-based components to help tackle this challenge. The hybrid energy function is designed to combine the strengths of each energy component, simultaneously maintaining accurate loop structure prediction in a high-resolution framework structure and tolerating minor environmental errors in low-resolution structures. A loop modeling method based on global optimization of this new energy function is tested on loop targets situated in different levels of environmental errors, ranging from experimental structures to structures perturbed in backbone as well as side chains and template-based model structures. The new method performs comparably to force field-based approaches in loop reconstruction in crystal structures and better in loop prediction in inaccurate framework structures. This result suggests that higher-accuracy predictions would be possible for a broader range of applications. The web server for this method is available at http://galaxy.seoklab.org/loop with the PS2 option for the scoring function.
Near-field soil-structure interaction analysis using nonlinear hybrid modeling
International Nuclear Information System (INIS)
Katayama, I.; Chen, C.; Lee, Y.J.; Jean, W.Y.; Penzien, J.
1989-01-01
The hybrid modeling method (Gupta and Penzien 1980) and associated analysis procedure for solving a three-dimensional soil-structure interaction problem was developed by Gupta and Penzien (1981) and Gupta et al.(1982). Subsequently, successive modifications have been made to the original modeling method and analysis procedure allowing more general treatment of the SSI problem (Penzien, 1988). Through many correlation studies of field test data obtained under forced-vibration and earthquake-excitation conditions, it has been shown that the HASSI programs can effectively predict the dynamic response of a soil-structure system, if realistic soil parameters are adopted. In the above, the entire structure-foundation system is considered to respond in a linear fashion. Since the reflected three-dimensional waves at the soil-structure interface decays very rapidly with distance away from the structure (Katayama, 1987 (a)), the response of the soil close to the base of the structure may greatly affect its response; therefore, proper modeling of the non-linear soil behavior characteristic is essential. The nonlinear behavior of near-field soil has been taken into consideration in HASSI-7 by the standard equivalent linearization procedures used in programs SHAKE and FLUSH
Directory of Open Access Journals (Sweden)
Hai An
2016-08-01
Full Text Available Aiming to resolve the problems of a variety of uncertainty variables that coexist in the engineering structure reliability analysis, a new hybrid reliability index to evaluate structural hybrid reliability, based on the random–fuzzy–interval model, is proposed in this article. The convergent solving method is also presented. First, the truncated probability reliability model, the fuzzy random reliability model, and the non-probabilistic interval reliability model are introduced. Then, the new hybrid reliability index definition is presented based on the random–fuzzy–interval model. Furthermore, the calculation flowchart of the hybrid reliability index is presented and it is solved using the modified limit-step length iterative algorithm, which ensures convergence. And the validity of convergent algorithm for the hybrid reliability model is verified through the calculation examples in literature. In the end, a numerical example is demonstrated to show that the hybrid reliability index is applicable for the wear reliability assessment of mechanisms, where truncated random variables, fuzzy random variables, and interval variables coexist. The demonstration also shows the good convergence of the iterative algorithm proposed in this article.
The angular structure of jet quenching within a hybrid strong/weak coupling model
Casalderrey-Solana, Jorge; Gulhan, Doga Can; Milhano, José Guilherme; Pablos, Daniel; Rajagopal, Krishna
2017-08-01
Building upon the hybrid strong/weak coupling model for jet quenching, we incorporate and study the effects of transverse momentum broadening and medium response of the plasma to jets on a variety of observables. For inclusive jet observables, we find little sensitivity to the strength of broadening. To constrain those dynamics, we propose new observables constructed from ratios of differential jet shapes, in which particles are binned in momentum, which are sensitive to the in-medium broadening parameter. We also investigate the effect of the back-reaction of the medium on the angular structure of jets as reconstructed with different cone radii R. Finally we provide results for the so called ;missing-pt;, finding a qualitative agreement between our model calculations and data in many respects, although a quantitative agreement is beyond our simplified treatment of the hadrons originating from the hydrodynamic wake.
A hybrid SEA/modal technique for modeling structural-acoustic interior noise in rotorcraft.
Jayachandran, V; Bonilha, M W
2003-03-01
This paper describes a hybrid technique that combines Statistical Energy Analysis (SEA) predictions for structural vibration with acoustic modal summation techniques to predict interior noise levels in rotorcraft. The method was applied for predicting the sound field inside a mock-up of the interior panel system of the Sikorsky S-92 helicopter. The vibration amplitudes of the frame and panel systems were predicted using a detailed SEA model and these were used as inputs to the model of the interior acoustic space. The spatial distribution of the vibration field on individual panels, and their coupling to the acoustic space were modeled using stochastic techniques. Leakage and nonresonant transmission components were accounted for using space-averaged values obtained from a SEA model of the complete structural-acoustic system. Since the cabin geometry was quite simple, the modeling of the interior acoustic space was performed using a standard modal summation technique. Sound pressure levels predicted by this approach at specific microphone locations were compared with measured data. Agreement within 3 dB in one-third octave bands above 40 Hz was observed. A large discrepancy in the one-third octave band in which the first acoustic mode is resonant (31.5 Hz) was observed. Reasons for such a discrepancy are discussed in the paper. The developed technique provides a method for modeling helicopter cabin interior noise in the frequency mid-range where neither FEA nor SEA is individually effective or accurate.
Directory of Open Access Journals (Sweden)
V. Génot
2009-02-01
Full Text Available Using 5 years of Cluster data, we present a detailed statistical analysis of magnetic fluctuations associated with mirror structures in the magnetosheath. We especially focus on the shape of these fluctuations which, in addition to quasi-sinusoidal forms, also display deep holes and high peaks. The occurrence frequency and the most probable location of the various types of structures is discussed, together with their relation to local plasma parameters. While these properties have previously been correlated to the β of the plasma, we emphasize here the influence of the distance to the linear mirror instability threshold. This enables us to interpret the observations of mirror structures in a stable plasma in terms of bistability and subcritical bifurcation. The data analysis is supplemented by the prediction of a quasi-static anisotropic MHD model and hybrid numerical simulations in an expanding box aimed at mimicking the magnetosheath plasma. This leads us to suggest a scenario for the formation and evolution of mirror structures.
International Nuclear Information System (INIS)
Barbieri, R.A.; Gastal, F.P.S.L.; Filho, A.C.
2005-01-01
Unbounded prestressed concrete has a growing importance all over the world and may be an useful technique for the structures involved in the construction of nuclear facilities. The absence of bonding means no strain compatibility so that equations developed for reinforced concrete are no longer valid. Practical estimates about the ultimate stress in the unbounded tendons may be obtained with empirical or numerical methods only. In order to contribute to the understanding on the behaviour of unbounded prestressed concrete members, a numerical model has been developed using a hybrid type finite element formulation for planar frame structures. Instead of short elements, as in the conventional finite element formulation, long elements may be used, improving computational efficiency. A further advantage is that the curvature variation within the element is obtained with higher accuracy if compared to the traditional formulation. This feature is important for unbounded tendons since its stresses depend on the whole member deformation. Second order effects in the planar frame are considered with either Updated or Partially Updated Lagrangian approaches. Instantaneous and time dependent behaviour as well as cyclic loads are considered too. Comparison with experimental results for prestressed concrete beams shows the adequacy of the proposed model. (authors)
Angular structure of jet quenching within a hybrid strong/weak coupling model
Energy Technology Data Exchange (ETDEWEB)
Casalderrey-Solana, Jorge [Rudolf Peierls Centre for Theoretical Physics, University of Oxford,1 Keble Road, Oxford OX1 3NP (United Kingdom); Departament de Física Quàntica i Astrofísica & Institut de Ciències del Cosmos (ICC),Universitat de Barcelona, Martí i Franquès 1, 08028 Barcelona (Spain); Gulhan, Doga Can [CERN, EP Department,CH-1211 Geneva 23 (Switzerland); Milhano, José Guilherme [CENTRA, Instituto Superior Técnico, Universidade de Lisboa,Av. Rovisco Pais, P-1049-001 Lisboa (Portugal); Laboratório de Instrumentação e Física Experimental de Partículas (LIP),Av. Elias Garcia 14-1, P-1000-149 Lisboa (Portugal); Theoretical Physics Department, CERN,Geneva (Switzerland); Pablos, Daniel [Departament de Física Quàntica i Astrofísica & Institut de Ciències del Cosmos (ICC),Universitat de Barcelona, Martí i Franquès 1, 08028 Barcelona (Spain); Rajagopal, Krishna [Center for Theoretical Physics, Massachusetts Institute of Technology,Cambridge, MA 02139 (United States)
2017-03-27
Within the context of a hybrid strong/weak coupling model of jet quenching, we study the modification of the angular distribution of the energy within jets in heavy ion collisions, as partons within jet showers lose energy and get kicked as they traverse the strongly coupled plasma produced in the collision. To describe the dynamics transverse to the jet axis, we add the effects of transverse momentum broadening into our hybrid construction, introducing a parameter K≡q̂/T{sup 3} that governs its magnitude. We show that, because of the quenching of the energy of partons within a jet, even when K≠0 the jets that survive with some specified energy in the final state are narrower than jets with that energy in proton-proton collisions. For this reason, many standard observables are rather insensitive to K. We propose a new differential jet shape ratio observable in which the effects of transverse momentum broadening are apparent. We also analyze the response of the medium to the passage of the jet through it, noting that the momentum lost by the jet appears as the momentum of a wake in the medium. After freezeout this wake becomes soft particles with a broad angular distribution but with net momentum in the jet direction, meaning that the wake contributes to what is reconstructed as a jet. This effect must therefore be included in any description of the angular structure of the soft component of a jet. We show that the particles coming from the response of the medium to the momentum and energy deposited in it leads to a correlation between the momentum of soft particles well separated from the jet in angle with the direction of the jet momentum, and find qualitative but not quantitative agreement with experimental data on observables designed to extract such a correlation. More generally, by confronting the results that we obtain upon introducing transverse momentum broadening and the response of the medium to the jet with available jet data, we highlight the
Electronic structure modeling of InAs/GaSb superlattices with hybrid density functional theory
Energy Technology Data Exchange (ETDEWEB)
Garwood, Tristan [Univ. of New Mexico, Albuquerque, NM (United States). Center for High Technology Materials; Modine, Normand A. [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Krishna, S. [Univ. of New Mexico, Albuquerque, NM (United States). Center for High Technology Materials
2016-12-18
The application of first-principles calculations holds promise for greatly improving our understanding of semiconductor superlattices. By developing a procedure to accurately predict band gaps using hybrid density functional theory, it lays the groundwork for future studies investigating more nuanced properties of these structures. Our approach allows a priori prediction of the properties of SLS structures using only the band gaps of the constituent materials. Furthermore, it should enable direct investigation of the effects of interface structure, e.g., intermixing or ordering at the interface, on SLS properties. In this paper, we present band gap data for various InAs/GaSb type-II superlattice structures calculated using the generalized Kohn-Sham formulation of density functional theory. A PBE0-type hybrid functional was used, and the portion of the exact exchange was tuned to fit the band gaps of the binary compounds InAs and GaSb with the best agreement to bulk experimental values obtained with 18% of the exact exchange. The heterostructures considered in this study are 6 monolayer (ML) InAs/6 ML GaSb, 8 ML InAs/8 ML GaSb and 10 ML InAs/10 ML GaSb with deviations from the experimental band gaps ranging from 3% to 11%.
Hybrid dynamics for currency modeling
Theodosopoulos, Ted; Trifunovic, Alex
2006-01-01
We present a simple hybrid dynamical model as a tool to investigate behavioral strategies based on trend following. The multiplicative symbolic dynamics are generated using a lognormal diffusion model for the at-the-money implied volatility term structure. Thus, are model exploits information from derivative markets to obtain qualititative properties of the return distribution for the underlier. We apply our model to the JPY-USD exchange rate and the corresponding 1mo., 3mo., 6mo. and 1yr. im...
Hybrid Soft Soil Tire Model (HSSTM). Part 1: Tire Material and Structure Modeling
2015-04-28
Germany. p. 18. 2. Oertel, C., On Modeling Contact and Friction Calculation of Tyre Response on Uneven Roads . Vehicle System Dynamics, 1997. 27(S1): p...touching the ground. This massless tip acts as a sensor point and can be used to detect the tire- road contact . Also, using the direction and value of the...superiority of this model as compared to other lumped parameter models currently available. Keywords: Wheeled Vehicle, Terramechanics, Off- Road
Students' Attitude in a Web-enhanced Hybrid Course: A Structural Equation Modeling Inquiry
Cheng-Chang Sam Pan; Stephen Sivo; James Brophy
2003-01-01
The present study focuses on five latent factors affecting students use of WebCT in a Web-enhanced hybrid undergraduate course at a southeastern university in the United States. An online questionnaire is used to measure a hypothetic model composed of two exogenous variables (i.e., subjective norm and computer self-efficacy), three endogenous variables (i.e., perceived ease of use, perceived usefulness, and attitude toward WebCT use), one dependent variable (i.e., actual system use), and elev...
Directory of Open Access Journals (Sweden)
Jakub Jończyk
Full Text Available The crucial role of G-protein coupled receptors and the significant achievements associated with a better understanding of the spatial structure of known receptors in this family encouraged us to undertake a study on the histamine H3 receptor, whose crystal structure is still unresolved. The latest literature data and availability of different software enabled us to build homology models of higher accuracy than previously published ones. The new models are expected to be closer to crystal structures; and therefore, they are much more helpful in the design of potential ligands. In this article, we describe the generation of homology models with the use of diverse tools and a hybrid assessment. Our study incorporates a hybrid assessment connecting knowledge-based scoring algorithms with a two-step ligand-based docking procedure. Knowledge-based scoring employs probability theory for global energy minimum determination based on information about native amino acid conformation from a dataset of experimentally determined protein structures. For a two-step docking procedure two programs were applied: GOLD was used in the first step and Glide in the second. Hybrid approaches offer advantages by combining various theoretical methods in one modeling algorithm. The biggest advantage of hybrid methods is their intrinsic ability to self-update and self-refine when additional structural data are acquired. Moreover, the diversity of computational methods and structural data used in hybrid approaches for structure prediction limit inaccuracies resulting from theoretical approximations or fuzziness of experimental data. The results of docking to the new H3 receptor model allowed us to analyze ligand-receptor interactions for reference compounds.
Armour, Cherie; Tsai, Jack; Durham, Tory A; Charak, Ruby; Biehn, Tracey L; Elhai, Jon D; Pietrzak, Robert H
2015-02-01
Several revisions to the symptom clusters of posttraumatic stress disorder (PTSD) have been made in the 5th edition of the Diagnostic and Statistical Manual of Mental Disorders (DSM-5). Central to the focus of this study was the revision of PTSD's tripartite structure in DSM-IV into four symptom clusters in DSM-5. Emerging confirmatory factor analytic (CFA) studies have suggested that DSM-5 PTSD symptoms may be best represented by one of two 6-factor models: (1) an Externalizing Behaviors model characterized by a factor which combines the irritability/anger and self-destructive/reckless behavior items; and (2) an Anhedonia model characterized by items of loss of interest, detachment, and restricted affect. The current study conducted CFAs of DSM-5 PTSD symptoms assessed using the PTSD Checklist for DSM-5 (PCL-5) in two independent and diverse trauma-exposed samples of a nationally representative sample of 1484 U.S. veterans and a sample of 497 Midwestern U.S. university undergraduate students. Relative fits of the DSM-5 model, the DSM-5 Dysphoria model, the DSM-5 Dysphoric Arousal model, the two 6-factor models, and a newly proposed 7-factor Hybrid model, which consolidates the two 6-factor models, were evaluated. Results revealed that, in both samples, both 6-factor models provided significantly better fit than the 4-factor DSM-5 model, the DSM-5 Dysphoria model and the DSM-5 Dysphoric Arousal model. Further, the 7-factor Hybrid model, which incorporates key features of both 6-factor models and is comprised of re-experiencing, avoidance, negative affect, anhedonia, externalizing behaviors, and anxious and dysphoric arousal symptom clusters, provided superior fit to the data in both samples. Results are discussed in light of theoretical and empirical support for the latent structure of DSM-5 PTSD symptoms. Copyright © 2014 Elsevier Ltd. All rights reserved.
Students' Attitude in a Web-enhanced Hybrid Course: A Structural Equation Modeling Inquiry
Directory of Open Access Journals (Sweden)
Cheng-Chang Sam Pan
2003-12-01
Full Text Available The present study focuses on five latent factors affecting students use of WebCT in a Web-enhanced hybrid undergraduate course at a southeastern university in the United States. An online questionnaire is used to measure a hypothetic model composed of two exogenous variables (i.e., subjective norm and computer self-efficacy, three endogenous variables (i.e., perceived ease of use, perceived usefulness, and attitude toward WebCT use, one dependent variable (i.e., actual system use, and eleven demographic items. PROC CALIS is used to analyze the data collected. Results suggest the technology acceptance model may not be applicable to the higher education setting. However, student attitude toward WebCT instruction remains a significant determinant to WebCT use on a non-voluntary basis. Educational achievement (i.e., student final grades is regressed on the attitude factor as an outcome variable.Suggestions for practitioners and researchers in the field are mentioned.
Model Reduction of Hybrid Systems
DEFF Research Database (Denmark)
Shaker, Hamid Reza
gramians. Generalized gramians are the solutions to the observability and controllability Lyapunov inequalities. In the first framework the projection matrices are found based on the common generalized gramians. This framework preserves the stability of the original switched system for all switching...... is guaranteed to be preserved for arbitrary switching signal. To compute the common generalized gramians linear matrix inequalities (LMI’s) need to be solved. These LMI’s are not always feasible. In order to solve the problem of conservatism, the second framework is presented. In this method the projection......High-Technological solutions of today are characterized by complex dynamical models. A lot of these models have inherent hybrid/switching structure. Hybrid/switched systems are powerful models for distributed embedded systems design where discrete controls are applied to continuous processes...
Hybrid Simulation of Composite Structures
DEFF Research Database (Denmark)
Høgh, Jacob Herold
experiment. The technique has primarily been used within earthquake engineering but many other fields of engineering have utilized the method with benefit. However, these previous efforts have focused on structures with a simple boundary between the numerical and physical substructure i.e. few degrees...... the transfer system and the control and monitoring techniques in the shared boundary is therefore a key issue in this type of hybrid simulation. During the research, hybrid simulation platforms have been programmed capable of running on different time scales with advanced control and monitoring techniques...
Hybrid Testing of Composite Structures with Single-Axis Control
DEFF Research Database (Denmark)
Waldbjørn, Jacob Paamand; Høgh, Jacob Herold; Stang, Henrik
2013-01-01
Correlation (DIC) is therefore implemented for displacement control of the experimental setup. The hybrid testing setup was verified on a multicomponent structure consisting of a beam loaded in three point bending and a numerical structure of a frame. Furthermore, the stability of the hybrid testing loop......Hybrid testing is a substructuring technique where a structure is emulated by modelling a part of it in a numerical model while testing the remainder experimentally. Previous research in hybrid testing has been performed on multi-component structures e.g. damping fixtures, however in this paper...... a hybrid testing platform is introduced for single-component hybrid testing. In this case, the boundary between the numerical model and experimental setup is defined by multiple Degrees-Of-Freedoms (DOFs) which highly complicate the transferring of response between the two substructures. Digital Image...
Directory of Open Access Journals (Sweden)
Jieqiong Su
2015-04-01
Full Text Available With decreasing water availability as a result of climate change and human activities, analysis of the influential factors and variation trends of chlorophyll a has become important to prevent reservoir eutrophication and ensure water supply safety. In this paper, a structurally simplified hybrid model of the genetic algorithm (GA and the support vector machine (SVM was developed for the prediction of monthly concentration of chlorophyll a in the Miyun Reservoir of northern China over the period from 2000 to 2010. Based on the influence factor analysis, the four most relevant influence factors of chlorophyll a (i.e., total phosphorus, total nitrogen, permanganate index, and reservoir storage were extracted using the method of feature selection with the GA, which simplified the model structure, making it more practical and efficient for environmental management. The results showed that the developed simplified GA-SVM model could solve nonlinear problems of complex system, and was suitable for the simulation and prediction of chlorophyll a with better performance in accuracy and efficiency in the Miyun Reservoir.
Influence of thermodynamically unfavorable secondary structures on DNA hybridization kinetics
Hata, Hiroaki; Kitajima, Tetsuro
2018-01-01
Abstract Nucleic acid secondary structure plays an important role in nucleic acid–nucleic acid recognition/hybridization processes, and is also a vital consideration in DNA nanotechnology. Although the influence of stable secondary structures on hybridization kinetics has been characterized, unstable secondary structures, which show positive ΔG° with self-folding, can also form, and their effects have not been systematically investigated. Such thermodynamically unfavorable secondary structures should not be ignored in DNA hybridization kinetics, especially under isothermal conditions. Here, we report that positive ΔG° secondary structures can change the hybridization rate by two-orders of magnitude, despite the fact that their hybridization obeyed second-order reaction kinetics. The temperature dependence of hybridization rates showed non-Arrhenius behavior; thus, their hybridization is considered to be nucleation limited. We derived a model describing how ΔG° positive secondary structures affect hybridization kinetics in stopped-flow experiments with 47 pairs of oligonucleotides. The calculated hybridization rates, which were based on the model, quantitatively agreed with the experimental rate constant. PMID:29220504
Hybrid computer modelling in plasma physics
International Nuclear Information System (INIS)
Hromadka, J; Ibehej, T; Hrach, R
2016-01-01
Our contribution is devoted to development of hybrid modelling techniques. We investigate sheath structures in the vicinity of solids immersed in low temperature argon plasma of different pressures by means of particle and fluid computer models. We discuss the differences in results obtained by these methods and try to propose a way to improve the results of fluid models in the low pressure area. There is a possibility to employ Chapman-Enskog method to find appropriate closure relations of fluid equations in a case when particle distribution function is not Maxwellian. We try to follow this way to enhance fluid model and to use it in hybrid plasma model further. (paper)
Hybridizing fuzzy control and timed automata for modeling variable structure fuzzy systems
Acampora, G.; Loia, V.; Vitiello, A.
2010-01-01
During the past several years, fuzzy control has emerged as one of the most suitable and efficient methods for designing and developing complex systems in environments characterized by high level of uncertainty and imprecision. Nowadays, this methodology is used to model systems in several
An Electricity Price Forecasting Model by Hybrid Structured Deep Neural Networks
Directory of Open Access Journals (Sweden)
Ping-Huan Kuo
2018-04-01
Full Text Available Electricity price is a key influencer in the electricity market. Electricity market trades by each participant are based on electricity price. The electricity price adjusted with the change in supply and demand relationship can reflect the real value of electricity in the transaction process. However, for the power generating party, bidding strategy determines the level of profit, and the accurate prediction of electricity price could make it possible to determine a more accurate bidding price. This cannot only reduce transaction risk, but also seize opportunities in the electricity market. In order to effectively estimate electricity price, this paper proposes an electricity price forecasting system based on the combination of 2 deep neural networks, the Convolutional Neural Network (CNN and the Long Short Term Memory (LSTM. In order to compare the overall performance of each algorithm, the Mean Absolute Error (MAE and Root-Mean-Square error (RMSE evaluating measures were applied in the experiments of this paper. Experiment results show that compared with other traditional machine learning methods, the prediction performance of the estimating model proposed in this paper is proven to be the best. By combining the CNN and LSTM models, the feasibility and practicality of electricity price prediction is also confirmed in this paper.
Hybrid Method Simulation of Slender Marine Structures
DEFF Research Database (Denmark)
Christiansen, Niels Hørbye
This present thesis consists of an extended summary and five appended papers concerning various aspects of the implementation of a hybrid method which combines classical simulation methods and artificial neural networks. The thesis covers three main topics. Common for all these topics...... only recognize patterns similar to those comprised in the data used to train the network. Fatigue life evaluation of marine structures often considers simulations of more than a hundred different sea states. Hence, in order for this method to be useful, the training data must be arranged so...... that a single neural network can cover all relevant sea states. The applicability and performance of the present hybrid method is demonstrated on a numerical model of a mooring line attached to a floating offshore platform. The second part of the thesis demonstrates how sequential neural networks can be used...
Tunable Mechanical Metamaterials through Hybrid Kirigami Structures.
Hwang, Doh-Gyu; Bartlett, Michael D
2018-02-21
Inspired by the art of paper cutting, kirigami provides intriguing tools to create materials with unconventional mechanical and morphological responses. This behavior is appealing in multiple applications such as stretchable electronics and soft robotics and presents a tractable platform to study structure-property relationships in material systems. However, mechanical response is typically controlled through a single or fractal cut type patterned across an entire kirigami sheet, limiting deformation modes and tunability. Here we show how hybrid patterns of major and minor cuts creates new opportunities to introduce boundary conditions and non-prismatic beams to enable highly tunable mechanical responses. This hybrid approach reduces stiffness by a factor of ~30 while increasing ultimate strain by a factor of 2 (up to 750% strain) relative to single incision patterns. We present analytical models and generate general design criteria that is in excellent agreement with experimental data from nanoscopic to macroscopic systems. These hybrid kirigami materials create new opportunities for multifunctional materials and structures, which we demonstrate with stretchable kirigami conductors with nearly constant electrical resistance up to >400% strain and magnetoactive actuators with extremely rapid response (>10,000% strain s -1 ) and high, repeatable elongation (>300% strain).
Modelling dependable systems using hybrid Bayesian networks
International Nuclear Information System (INIS)
Neil, Martin; Tailor, Manesh; Marquez, David; Fenton, Norman; Hearty, Peter
2008-01-01
A hybrid Bayesian network (BN) is one that incorporates both discrete and continuous nodes. In our extensive applications of BNs for system dependability assessment, the models are invariably hybrid and the need for efficient and accurate computation is paramount. We apply a new iterative algorithm that efficiently combines dynamic discretisation with robust propagation algorithms on junction tree structures to perform inference in hybrid BNs. We illustrate its use in the field of dependability with two example of reliability estimation. Firstly we estimate the reliability of a simple single system and next we implement a hierarchical Bayesian model. In the hierarchical model we compute the reliability of two unknown subsystems from data collected on historically similar subsystems and then input the result into a reliability block model to compute system level reliability. We conclude that dynamic discretisation can be used as an alternative to analytical or Monte Carlo methods with high precision and can be applied to a wide range of dependability problems
Compositional Modelling of Stochastic Hybrid Systems
Strubbe, S.N.
2005-01-01
In this thesis we present a modelling framework for compositional modelling of stochastic hybrid systems. Hybrid systems consist of a combination of continuous and discrete dynamics. The state space of a hybrid system is hybrid in the sense that it consists of a continuous component and a discrete
Variables and equations in hybrid systems with structural changes
Beek, van D.A.
2001-01-01
In many models of physical systems, structural changes are common. Such structural changes may cause a variable to change from a differential variable to an algebraic variable, or to a variable that is not defined by an equation at all. Most hybrid modelling languages either restrict the kind of
Weather forecasting based on hybrid neural model
Saba, Tanzila; Rehman, Amjad; AlGhamdi, Jarallah S.
2017-11-01
Making deductions and expectations about climate has been a challenge all through mankind's history. Challenges with exact meteorological directions assist to foresee and handle problems well in time. Different strategies have been investigated using various machine learning techniques in reported forecasting systems. Current research investigates climate as a major challenge for machine information mining and deduction. Accordingly, this paper presents a hybrid neural model (MLP and RBF) to enhance the accuracy of weather forecasting. Proposed hybrid model ensure precise forecasting due to the specialty of climate anticipating frameworks. The study concentrates on the data representing Saudi Arabia weather forecasting. The main input features employed to train individual and hybrid neural networks that include average dew point, minimum temperature, maximum temperature, mean temperature, average relative moistness, precipitation, normal wind speed, high wind speed and average cloudiness. The output layer composed of two neurons to represent rainy and dry weathers. Moreover, trial and error approach is adopted to select an appropriate number of inputs to the hybrid neural network. Correlation coefficient, RMSE and scatter index are the standard yard sticks adopted for forecast accuracy measurement. On individual standing MLP forecasting results are better than RBF, however, the proposed simplified hybrid neural model comes out with better forecasting accuracy as compared to both individual networks. Additionally, results are better than reported in the state of art, using a simple neural structure that reduces training time and complexity.
Zhang, Jian; Yang, Jianyi; Jang, Richard; Zhang, Yang
2015-08-04
Experimental structure determination remains difficult for G protein-coupled receptors (GPCRs). We propose a new hybrid protocol to construct GPCR structure models that integrates experimental mutagenesis data with ab initio transmembrane (TM) helix assembly simulations. The method was tested on 24 known GPCRs where the ab initio TM-helix assembly procedure constructed the correct fold for 20 cases. When combined with weak homology and sparse mutagenesis restraints, the method generated correct folds for all the tested cases with an average Cα root-mean-square deviation 2.4 Å in the TM regions. The new hybrid protocol was applied to model all 1,026 GPCRs in the human genome, where 923 have a high confidence score and are expected to have correct folds; these contain many pharmaceutically important families with no previously solved structures, including Trace amine, Prostanoids, Releasing hormones, Melanocortins, Vasopressin, and Neuropeptide Y receptors. The results demonstrate new progress on genome-wide structure modeling of TM proteins. Copyright © 2015 Elsevier Ltd. All rights reserved.
Hybrid2 - The hybrid power system simulation model
Energy Technology Data Exchange (ETDEWEB)
Baring-Gould, E.I.; Green, H.J.; Dijk, V.A.P. van [National Renewable Energy Lab., Golden, CO (United States); Manwell, J.F. [Univ. of Massachusetts, Amherst, MA (United States)
1996-12-31
There is a large-scale need and desire for energy in remote communities, especially in the developing world; however the lack of a user friendly, flexible performance prediction model for hybrid power systems incorporating renewables hindered the analysis of hybrids as options to conventional solutions. A user friendly model was needed with the versatility to simulate the many system locations, widely varying hardware configurations, and differing control options for potential hybrid power systems. To meet these ends, researchers from the National Renewable Energy Laboratory (NREL) and the University of Massachusetts (UMass) developed the Hybrid2 software. This paper provides an overview of the capabilities, features, and functionality of the Hybrid2 code, discusses its validation and future plans. Model availability and technical support provided to Hybrid2 users are also discussed. 12 refs., 3 figs., 4 tabs.
Energy Technology Data Exchange (ETDEWEB)
Durand, A
1996-10-10
In this thesis, we are interested in the modeling of the compressible Navier-Stokes equations in 2-D moving domains with hybrid meshes. This work, far from being restricted to these equations, could be generalized to any other convection-diffusion system written in conservative vector form. After having described the mathematical equations and elaborated on finite volume (FV) methods, numerical schemes and various meshes, we have selected the Galerkin FV method. This method consists in locating the unknowns at the mesh nodes, then in solving the convective terms by means of VF method - quasi 1-D by edge approximation - and the diffusive terms by means of the finite element (FE) method - P{sub 1} for the triangular and Q{sub 1} for the quadrilateral. The equivalence between the Galerkin FV method and a mass-lumped FE method for temporal terms allows the construction of a new control volume constructed by means of medians. Then, show its interest in comparison to the classical control volume constructed by means of medians. Then first-order in comparison to the classical control volume constructed bu means of medians. Then, the first-order Roe scheme and its extension to second-order by the MUSCL method are detailed Emphasis is laid on two calculations oF the Gradient integral. Numerous numerical tests as well as the comparison with another code validate the approach. In particular, we show that triangular meshes lead to less precise results compared to quadrilateral meshes in certain cases. Afterward, we switch to the dimensionless Navier-Stokes equations and we describe a simplified (Bubnov)-Galerkin FE method in the case of the quadrilaterals. The newly deduced computer code is validated bu the means of a vortex convection-diffusion for different Reynolds numbers. This test shows that only highly viscous flows give rise to equivalent solutions for both meshes. (author)
Euro hybrid materials and structures. Proceedings
Energy Technology Data Exchange (ETDEWEB)
Hausmann, Joachim M.; Siebert, Marc (eds.)
2016-08-01
In order to use the materials as best as possible, several different materials are usually mixed in one component, especially in the field of lightweight design. If these combinations of materials are joined inherently, they are called multi material design products or hybrid structures. These place special requirements on joining technology, design methods and manufacturing and are challenging in other aspects, too. The eight chapters with manuscripts of the presentations are: Chapter 1- Interface: What happens in the interface between the two materials? Chapter 2 - Corrosion and Residual Stresses: How about galvanic corrosion and thermal residual stresses in the contact zone of different materials? Chapter 3 - Characterization: How to characterize and test hybrid materials? Chapter 4 - Design: What is a suitable design and dimensioning method for hybrid structures? Chapter 5 - Machining and Processing: How to machine and process hybrid structures and materials? Chapter 6 - Component Manufacturing: What is a suitable manufacturing route for hybrid structures? Chapter 7 - Non-Destructive Testing and Quality Assurance: How to assure the quality of material and structures? Chapter 8 - Joining: How to join components of different materials?.
Euro hybrid materials and structures. Proceedings
International Nuclear Information System (INIS)
Hausmann, Joachim M.; Siebert, Marc
2016-01-01
In order to use the materials as best as possible, several different materials are usually mixed in one component, especially in the field of lightweight design. If these combinations of materials are joined inherently, they are called multi material design products or hybrid structures. These place special requirements on joining technology, design methods and manufacturing and are challenging in other aspects, too. The eight chapters with manuscripts of the presentations are: Chapter 1- Interface: What happens in the interface between the two materials? Chapter 2 - Corrosion and Residual Stresses: How about galvanic corrosion and thermal residual stresses in the contact zone of different materials? Chapter 3 - Characterization: How to characterize and test hybrid materials? Chapter 4 - Design: What is a suitable design and dimensioning method for hybrid structures? Chapter 5 - Machining and Processing: How to machine and process hybrid structures and materials? Chapter 6 - Component Manufacturing: What is a suitable manufacturing route for hybrid structures? Chapter 7 - Non-Destructive Testing and Quality Assurance: How to assure the quality of material and structures? Chapter 8 - Joining: How to join components of different materials?
Hybrid Laser Welding of Large Steel Structures
DEFF Research Database (Denmark)
Farrokhi, Farhang
Manufacturing of large steel structures requires the processing of thick-section steels. Welding is one of the main processes during the manufacturing of such structures and includes a significant part of the production costs. One of the ways to reduce the production costs is to use the hybrid...... laser welding technology instead of the conventional arc welding methods. However, hybrid laser welding is a complicated process that involves several complex physical phenomena that are highly coupled. Understanding of the process is very important for obtaining quality welds in an efficient way....... This thesis investigates two different challenges related to the hybrid laser welding of thick-section steel plates. Employing empirical and analytical approaches, this thesis attempts to provide further knowledge towards obtaining quality welds in the manufacturing of large steel structures....
Hybrid Model of Content Extraction
DEFF Research Database (Denmark)
Qureshi, Pir Abdul Rasool; Memon, Nasrullah
2012-01-01
We present a hybrid model for content extraction from HTML documents. The model operates on Document Object Model (DOM) tree of the corresponding HTML document. It evaluates each tree node and associated statistical features like link density and text distribution across the node to predict...... significance of the node towards overall content provided by the document. Once significance of the nodes is determined, the formatting characteristics like fonts, styles and the position of the nodes are evaluated to identify the nodes with similar formatting as compared to the significant nodes. The proposed...
Evaporator modeling - A hybrid approach
International Nuclear Information System (INIS)
Ding Xudong; Cai Wenjian; Jia Lei; Wen Changyun
2009-01-01
In this paper, a hybrid modeling approach is proposed to model two-phase flow evaporators. The main procedures for hybrid modeling includes: (1) Based on the energy and material balance, and thermodynamic principles to formulate the process fundamental governing equations; (2) Select input/output (I/O) variables responsible to the system performance which can be measured and controlled; (3) Represent those variables existing in the original equations but are not measurable as simple functions of selected I/Os or constants; (4) Obtaining a single equation which can correlate system inputs and outputs; and (5) Identify unknown parameters by linear or nonlinear least-squares methods. The method takes advantages of both physical and empirical modeling approaches and can accurately predict performance in wide operating range and in real-time, which can significantly reduce the computational burden and increase the prediction accuracy. The model is verified with the experimental data taken from a testing system. The testing results show that the proposed model can predict accurately the performance of the real-time operating evaporator with the maximum error of ±8%. The developed models will have wide applications in operational optimization, performance assessment, fault detection and diagnosis
International Nuclear Information System (INIS)
Rusinowski, Henryk; Stanek, Wojciech
2010-01-01
In the case of big energy boilers energy efficiency is usually determined with the application of the indirect method. Flue gas losses and unburnt combustible losses have a significant influence on the boiler's efficiency. To estimate these losses the knowledge of the operating parameters influence on the flue gases temperature and the content of combustible particles in the solid combustion products is necessary. A hybrid model of a boiler developed with the application of both analytical modelling and artificial intelligence is described. The analytical part of the model includes the balance equations. The empirical models express the dependence of the flue gas temperature and the mass fraction of the unburnt combustibles in solid combustion products on the operating parameters of a boiler. The empirical models have been worked out by means of neural and regression modelling.
Hybrid Tower, Designing Soft Structures
DEFF Research Database (Denmark)
Ramsgaard Thomsen, Mette; Tamke, Martin; Holden Deleuran, Anders
2015-01-01
and constraint solvers and more rigorous Finite Element methods supporting respectively design analysis and form finding and performance evaluation and verification. The second investigation describes the inter-scalar feedback loops between design at the macro scale (overall structural behaviour), meso scale...... (membrane reinforcement strategy) and micro scale (design of bespoke textile membrane). The paper concludes with a post construction analysis. Comparing structural and environmental data, the predicted and the actual performance of tower are evaluated and discussed....
Deriving simulators for hybrid Chi models
Beek, van D.A.; Man, K.L.; Reniers, M.A.; Rooda, J.E.; Schiffelers, R.R.H.
2006-01-01
The hybrid Chi language is formalism for modeling, simulation and verification of hybrid systems. The formal semantics of hybrid Chi allows the definition of provably correct implementations for simulation, verification and realtime control. This paper discusses the principles of deriving an
Mathematical Modeling of Hybrid Electrical Engineering Systems
Directory of Open Access Journals (Sweden)
A. A. Lobaty
2016-01-01
Full Text Available A large class of systems that have found application in various industries and households, electrified transportation facilities and energy sector has been classified as electrical engineering systems. Their characteristic feature is a combination of continuous and discontinuous modes of operation, which is reflected in the appearance of a relatively new term “hybrid systems”. A wide class of hybrid systems is pulsed DC converters operating in a pulse width modulation, which are non-linear systems with variable structure. Using various methods for linearization it is possible to obtain linear mathematical models that rather accurately simulate behavior of such systems. However, the presence in the mathematical models of exponential nonlinearities creates considerable difficulties in the implementation of digital hardware. The solution can be found while using an approximation of exponential functions by polynomials of the first order, that, however, violates the rigor accordance of the analytical model with characteristics of a real object. There are two practical approaches to synthesize algorithms for control of hybrid systems. The first approach is based on the representation of the whole system by a discrete model which is described by difference equations that makes it possible to synthesize discrete algorithms. The second approach is based on description of the system by differential equations. The equations describe synthesis of continuous algorithms and their further implementation in a digital computer included in the control loop system. The paper considers modeling of a hybrid electrical engineering system using differential equations. Neglecting the pulse duration, it has been proposed to describe behavior of vector components in phase coordinates of the hybrid system by stochastic differential equations containing generally non-linear differentiable random functions. A stochastic vector-matrix equation describing dynamics of the
Bryce, Richard A.; Vincent, Mark A.; Malcolm, Nathaniel O. J.; Hillier, Ian H.; Burton, Neil A.
1998-08-01
A new hybrid quantum mechanical/molecular mechanical model of solvation is developed and used to describe the structure and dynamics of small fluoride/water clusters, using an ab initio wave function to model the ion and a fluctuating charge potential to model the waters. Appropriate parameters for the water-water and fluoride-water interactions are derived, with the fluoride anion being described by density functional theory and a large Gaussian basis. The role of solvent polarization in determining the structure and energetics of F(H2O)4- clusters is investigated, predicting a slightly greater stability of the interior compared to the surface structure, in agreement with ab initio studies. An extended Lagrangian treatment of the polarizable water, in which the water atomic charges fluctuate dynamically, is used to study the dynamics of F(H2O)4- cluster. A simulation using a fixed solvent charge distribution indicates principally interior, solvated states for the cluster. However, a preponderance of trisolvated configurations is observed using the polarizable model at 300 K, which involves only three direct fluoride-water hydrogen bonds. Ab initio calculations confirm this trisolvated species as a thermally accessible state at room temperature, in addition to the tetrasolvated interior and surface structures. Extension of this polarizable water model to fluoride clusters with five and six waters gave less satisfactory agreement with experimental energies and with ab initio geometries. However, our results do suggest that a quantitative model of solvent polarization is fundamental for an accurate understanding of the properties of anionic water clusters.
Dissecting the hybridization of oligonucleotides to structured complementary sequences.
Peracchi, Alessio
2016-06-01
When oligonucleotides hybridize to long target molecules, the process is slowed by the secondary structure in the targets. The phenomenon has been analyzed in several previous studies, but many details remain poorly understood. I used a spectrofluorometric strategy, focusing on the formation/breaking of individual base pairs, to study the kinetics of association between a DNA hairpin and >20 complementary oligonucleotides ('antisenses'). Hybridization rates differed by over three orders of magnitude. Association was toehold-mediated, both for antisenses binding to the target's ends and for those designed to interact with the loop. Binding of these latter, besides being consistently slower, was affected to variable, non-uniform extents by the asymmetric loop structure. Divalent metal ions accelerated hybridization, more pronouncedly when nucleation occurred at the loop. Incorporation of locked nucleic acid (LNA) residues in the antisenses substantially improved the kinetics only when LNAs participated to the earliest hybridization steps. The effects of individual LNAs placed along the antisense indicated that the reaction transition state occurred after invading at least the first base pair of the stem. The experimental approach helps dissect hybridization reactions involving structured nucleic acids. Toehold-dependent, nucleation-invasion models appear fully appropriate for describing such reactions. Estimating the stability of nucleation complexes formed at internal toeholds is the major hurdle for the quantitative prediction of hybridization rates. While analyzing the mechanisms of a fundamental biochemical process (hybridization), this work also provides suggestions for the improvement of technologies that rely on such process. Copyright © 2016 Elsevier B.V. All rights reserved.
Bond graph model-based fault diagnosis of hybrid systems
Borutzky, Wolfgang
2015-01-01
This book presents a bond graph model-based approach to fault diagnosis in mechatronic systems appropriately represented by a hybrid model. The book begins by giving a survey of the fundamentals of fault diagnosis and failure prognosis, then recalls state-of-art developments referring to latest publications, and goes on to discuss various bond graph representations of hybrid system models, equations formulation for switched systems, and simulation of their dynamic behavior. The structured text: • focuses on bond graph model-based fault detection and isolation in hybrid systems; • addresses isolation of multiple parametric faults in hybrid systems; • considers system mode identification; • provides a number of elaborated case studies that consider fault scenarios for switched power electronic systems commonly used in a variety of applications; and • indicates that bond graph modelling can also be used for failure prognosis. In order to facilitate the understanding of fault diagnosis and the presented...
High performance hybrid magnetic structure for biotechnology applications
Humphries, David E [El Cerrito, CA; Pollard, Martin J [El Cerrito, CA; Elkin, Christopher J [San Ramon, CA
2009-02-03
The present disclosure provides a high performance hybrid magnetic structure made from a combination of permanent magnets and ferromagnetic pole materials which are assembled in a predetermined array. The hybrid magnetic structure provides means for separation and other biotechnology applications involving holding, manipulation, or separation of magnetic or magnetizable molecular structures and targets. Also disclosed are further improvements to aspects of the hybrid magnetic structure, including additional elements and for adapting the use of the hybrid magnetic structure for use in biotechnology and high throughput processes.
HYbrid Coordinate Ocean Model (HYCOM): Global
National Oceanic and Atmospheric Administration, Department of Commerce — Global HYbrid Coordinate Ocean Model (HYCOM) and U.S. Navy Coupled Ocean Data Assimilation (NCODA) 3-day, daily forecast at approximately 9-km (1/12-degree)...
Travelling Waves in Hybrid Chemotaxis Models
Franz, Benjamin
2013-12-18
Hybrid models of chemotaxis combine agent-based models of cells with partial differential equation models of extracellular chemical signals. In this paper, travelling wave properties of hybrid models of bacterial chemotaxis are investigated. Bacteria are modelled using an agent-based (individual-based) approach with internal dynamics describing signal transduction. In addition to the chemotactic behaviour of the bacteria, the individual-based model also includes cell proliferation and death. Cells consume the extracellular nutrient field (chemoattractant), which is modelled using a partial differential equation. Mesoscopic and macroscopic equations representing the behaviour of the hybrid model are derived and the existence of travelling wave solutions for these models is established. It is shown that cell proliferation is necessary for the existence of non-transient (stationary) travelling waves in hybrid models. Additionally, a numerical comparison between the wave speeds of the continuum models and the hybrid models shows good agreement in the case of weak chemotaxis and qualitative agreement for the strong chemotaxis case. In the case of slow cell adaptation, we detect oscillating behaviour of the wave, which cannot be explained by mean-field approximations. © 2013 Society for Mathematical Biology.
Hybrid Modeling and Optimization of Yogurt Starter Culture Continuous Fermentation
Directory of Open Access Journals (Sweden)
Silviya Popova
2009-10-01
Full Text Available The present paper presents a hybrid model of yogurt starter mixed culture fermentation. The main nonlinearities within a classical structure of continuous process model are replaced by neural networks. The new hybrid model accounts for the dependence of the two microorganisms' kinetics from the on-line measured characteristics of the culture medium - pH. Then the model was used further for calculation of the optimal time profile of pH. The obtained results are with agreement with the experimental once.
Hybrid Modeling Improves Health and Performance Monitoring
2007-01-01
Scientific Monitoring Inc. was awarded a Phase I Small Business Innovation Research (SBIR) project by NASA's Dryden Flight Research Center to create a new, simplified health-monitoring approach for flight vehicles and flight equipment. The project developed a hybrid physical model concept that provided a structured approach to simplifying complex design models for use in health monitoring, allowing the output or performance of the equipment to be compared to what the design models predicted, so that deterioration or impending failure could be detected before there would be an impact on the equipment's operational capability. Based on the original modeling technology, Scientific Monitoring released I-Trend, a commercial health- and performance-monitoring software product named for its intelligent trending, diagnostics, and prognostics capabilities, as part of the company's complete ICEMS (Intelligent Condition-based Equipment Management System) suite of monitoring and advanced alerting software. I-Trend uses the hybrid physical model to better characterize the nature of health or performance alarms that result in "no fault found" false alarms. Additionally, the use of physical principles helps I-Trend identify problems sooner. I-Trend technology is currently in use in several commercial aviation programs, and the U.S. Air Force recently tapped Scientific Monitoring to develop next-generation engine health-management software for monitoring its fleet of jet engines. Scientific Monitoring has continued the original NASA work, this time under a Phase III SBIR contract with a joint NASA-Pratt & Whitney aviation security program on propulsion-controlled aircraft under missile-damaged aircraft conditions.
Hybrid rocket engine, theoretical model and experiment
Chelaru, Teodor-Viorel; Mingireanu, Florin
2011-06-01
The purpose of this paper is to build a theoretical model for the hybrid rocket engine/motor and to validate it using experimental results. The work approaches the main problems of the hybrid motor: the scalability, the stability/controllability of the operating parameters and the increasing of the solid fuel regression rate. At first, we focus on theoretical models for hybrid rocket motor and compare the results with already available experimental data from various research groups. A primary computation model is presented together with results from a numerical algorithm based on a computational model. We present theoretical predictions for several commercial hybrid rocket motors, having different scales and compare them with experimental measurements of those hybrid rocket motors. Next the paper focuses on tribrid rocket motor concept, which by supplementary liquid fuel injection can improve the thrust controllability. A complementary computation model is also presented to estimate regression rate increase of solid fuel doped with oxidizer. Finally, the stability of the hybrid rocket motor is investigated using Liapunov theory. Stability coefficients obtained are dependent on burning parameters while the stability and command matrixes are identified. The paper presents thoroughly the input data of the model, which ensures the reproducibility of the numerical results by independent researchers.
Towards Modelling of Hybrid Systems
DEFF Research Database (Denmark)
Wisniewski, Rafal
2006-01-01
system consists of a number of dynamical systems that are glued together according to information encoded in the discrete part of the system. We develop a definition of a hybrid system as a functor from the category generated by a transition system to the category of directed topological spaces. Its...
Breaking Dense Structures: Proving Stability of Densely Structured Hybrid Systems
Directory of Open Access Journals (Sweden)
Eike Möhlmann
2015-06-01
Full Text Available Abstraction and refinement is widely used in software development. Such techniques are valuable since they allow to handle even more complex systems. One key point is the ability to decompose a large system into subsystems, analyze those subsystems and deduce properties of the larger system. As cyber-physical systems tend to become more and more complex, such techniques become more appealing. In 2009, Oehlerking and Theel presented a (de-composition technique for hybrid systems. This technique is graph-based and constructs a Lyapunov function for hybrid systems having a complex discrete state space. The technique consists of (1 decomposing the underlying graph of the hybrid system into subgraphs, (2 computing multiple local Lyapunov functions for the subgraphs, and finally (3 composing the local Lyapunov functions into a piecewise Lyapunov function. A Lyapunov function can serve multiple purposes, e.g., it certifies stability or termination of a system or allows to construct invariant sets, which in turn may be used to certify safety and security. In this paper, we propose an improvement to the decomposing technique, which relaxes the graph structure before applying the decomposition technique. Our relaxation significantly reduces the connectivity of the graph by exploiting super-dense switching. The relaxation makes the decomposition technique more efficient on one hand and on the other allows to decompose a wider range of graph structures.
Reactor systems modeling for ICF hybrids
International Nuclear Information System (INIS)
Berwald, D.H.; Meier, W.R.
1980-10-01
The computational models of ICF reactor subsystems developed by LLNL and TRW are described and a computer program was incorporated for use in the EPRI-sponsored Feasibility Assessment of Fusion-Fission Hybrids. Representative parametric variations have been examined. Many of the ICF subsystem models are very preliminary and more quantitative models need to be developed and included in the code
Proximity effect in normal metal-multiband superconductor hybrid structures
Brinkman, Alexander; Golubov, Alexandre Avraamovitch; Kupriyanov, M. Yu
2004-01-01
A theory of the proximity effect in normal metal¿multiband superconductor hybrid structures is formulated within the quasiclassical Green's function formalism. The quasiclassical boundary conditions for multiband hybrid structures are derived in the dirty limit. It is shown that the existence of
A hybrid mammalian cell cycle model
Directory of Open Access Journals (Sweden)
Vincent Noël
2013-08-01
Full Text Available Hybrid modeling provides an effective solution to cope with multiple time scales dynamics in systems biology. Among the applications of this method, one of the most important is the cell cycle regulation. The machinery of the cell cycle, leading to cell division and proliferation, combines slow growth, spatio-temporal re-organisation of the cell, and rapid changes of regulatory proteins concentrations induced by post-translational modifications. The advancement through the cell cycle comprises a well defined sequence of stages, separated by checkpoint transitions. The combination of continuous and discrete changes justifies hybrid modelling approaches to cell cycle dynamics. We present a piecewise-smooth version of a mammalian cell cycle model, obtained by hybridization from a smooth biochemical model. The approximate hybridization scheme, leading to simplified reaction rates and binary event location functions, is based on learning from a training set of trajectories of the smooth model. We discuss several learning strategies for the parameters of the hybrid model.
A Hybrid 3D Indoor Space Model
Directory of Open Access Journals (Sweden)
A. Jamali
2016-10-01
Full Text Available GIS integrates spatial information and spatial analysis. An important example of such integration is for emergency response which requires route planning inside and outside of a building. Route planning requires detailed information related to indoor and outdoor environment. Indoor navigation network models including Geometric Network Model (GNM, Navigable Space Model, sub-division model and regular-grid model lack indoor data sources and abstraction methods. In this paper, a hybrid indoor space model is proposed. In the proposed method, 3D modeling of indoor navigation network is based on surveying control points and it is less dependent on the 3D geometrical building model. This research proposes a method of indoor space modeling for the buildings which do not have proper 2D/3D geometrical models or they lack semantic or topological information. The proposed hybrid model consists of topological, geometrical and semantical space.
Mechanisms Underlying Mammalian Hybrid Sterility in Two Feline Interspecies Models.
Davis, Brian W; Seabury, Christopher M; Brashear, Wesley A; Li, Gang; Roelke-Parker, Melody; Murphy, William J
2015-10-01
The phenomenon of male sterility in interspecies hybrids has been observed for over a century, however, few genes influencing this recurrent phenotype have been identified. Genetic investigations have been primarily limited to a small number of model organisms, thus limiting our understanding of the underlying molecular basis of this well-documented "rule of speciation." We utilized two interspecies hybrid cat breeds in a genome-wide association study employing the Illumina 63 K single-nucleotide polymorphism array. Collectively, we identified eight autosomal genes/gene regions underlying associations with hybrid male sterility (HMS) involved in the function of the blood-testis barrier, gamete structural development, and transcriptional regulation. We also identified several candidate hybrid sterility regions on the X chromosome, with most residing in close proximity to complex duplicated regions. Differential gene expression analyses revealed significant chromosome-wide upregulation of X chromosome transcripts in testes of sterile hybrids, which were enriched for genes involved in chromatin regulation of gene expression. Our expression results parallel those reported in Mus hybrids, supporting the "Large X-Effect" in mammalian HMS and the potential epigenetic basis for this phenomenon. These results support the value of the interspecies feline model as a powerful tool for comparison to rodent models of HMS, demonstrating unique aspects and potential commonalities that underpin mammalian reproductive isolation. © The Author 2015. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Hybrid simulation models of production networks
Kouikoglou, Vassilis S
2001-01-01
This book is concerned with a most important area of industrial production, that of analysis and optimization of production lines and networks using discrete-event models and simulation. The book introduces a novel approach that combines analytic models and discrete-event simulation. Unlike conventional piece-by-piece simulation, this method observes a reduced number of events between which the evolution of the system is tracked analytically. Using this hybrid approach, several models are developed for the analysis of production lines and networks. The hybrid approach combines speed and accuracy for exceptional analysis of most practical situations. A number of optimization problems, involving buffer design, workforce planning, and production control, are solved through the use of hybrid models.
Static stiffness modeling of a novel hybrid redundant robot machine
International Nuclear Information System (INIS)
Li Ming; Wu Huapeng; Handroos, Heikki
2011-01-01
This paper presents a modeling method to study the stiffness of a hybrid serial-parallel robot IWR (Intersector Welding Robot) for the assembly of ITER vacuum vessel. The stiffness matrix of the basic element in the robot is evaluated using matrix structural analysis (MSA); the stiffness of the parallel mechanism is investigated by taking account of the deformations of both hydraulic limbs and joints; the stiffness of the whole integrated robot is evaluated by employing the virtual joint method and the principle of virtual work. The obtained stiffness model of the hybrid robot is analytical and the deformation results of the robot workspace under certain external load are presented.
Hybrid transfer-matrix FDTD method for layered periodic structures.
Deinega, Alexei; Belousov, Sergei; Valuev, Ilya
2009-03-15
A hybrid transfer-matrix finite-difference time-domain (FDTD) method is proposed for modeling the optical properties of finite-width planar periodic structures. This method can also be applied for calculation of the photonic bands in infinite photonic crystals. We describe the procedure of evaluating the transfer-matrix elements by a special numerical FDTD simulation. The accuracy of the new method is tested by comparing computed transmission spectra of a 32-layered photonic crystal composed of spherical or ellipsoidal scatterers with the results of direct FDTD and layer-multiple-scattering calculations.
Improved hybrid optimization algorithm for 3D protein structure prediction.
Zhou, Changjun; Hou, Caixia; Wei, Xiaopeng; Zhang, Qiang
2014-07-01
A new improved hybrid optimization algorithm - PGATS algorithm, which is based on toy off-lattice model, is presented for dealing with three-dimensional protein structure prediction problems. The algorithm combines the particle swarm optimization (PSO), genetic algorithm (GA), and tabu search (TS) algorithms. Otherwise, we also take some different improved strategies. The factor of stochastic disturbance is joined in the particle swarm optimization to improve the search ability; the operations of crossover and mutation that are in the genetic algorithm are changed to a kind of random liner method; at last tabu search algorithm is improved by appending a mutation operator. Through the combination of a variety of strategies and algorithms, the protein structure prediction (PSP) in a 3D off-lattice model is achieved. The PSP problem is an NP-hard problem, but the problem can be attributed to a global optimization problem of multi-extremum and multi-parameters. This is the theoretical principle of the hybrid optimization algorithm that is proposed in this paper. The algorithm combines local search and global search, which overcomes the shortcoming of a single algorithm, giving full play to the advantage of each algorithm. In the current universal standard sequences, Fibonacci sequences and real protein sequences are certified. Experiments show that the proposed new method outperforms single algorithms on the accuracy of calculating the protein sequence energy value, which is proved to be an effective way to predict the structure of proteins.
Structure and properties of hybrid coatings
International Nuclear Information System (INIS)
Pogrebnjak, A.D.; Vasilyuk, V.V.; Kravchenko, Yu.A.; Tyurin, Yu.N.; Alontseva, D.L.; Ponaryadov, V.V.; Ruzimov, Sh.M.
2004-01-01
Full text: This review report presents both the results obtained by the authors and those of other authors concerning investigations of structure and properties of hybrid coatings. Examples of such coatings as Al 2 O 3 /Cr/TiN/steel, TiC; TiN/Ti-V-Al; NiCr/steel; CrNiBSi/steel and others before and after electron beam irradiation had been considered. In these coatings the thickest layer was deposited using the high-velocity pulsed plasma jet, all others being deposited in vacuum by the vacuum-arc source or implanter. Advantages of the high-velocity pulsed plasma jet in comparison with other technologies had been demonstrated. A wide spectrum of analyzing methods had been applied for analyses: TEM, SEM with EDS, RBS, NRA, SIMS, XRD, tests for corrosion, wear, adhesion and hardness. The works had been funded by the Project 2M/03 54-2003 of the Ministry of Science and Education of Ukraine and STCU Project N3078
Hybrid logic on linear structures: expressivity and complexity
Franceschet, M.; de Rijke, M.; Schlingoff, B.-H.
2003-01-01
We investigate expressivity and complexity of hybrid logics on linear structures. Hybrid logics are an enrichment of modal logics with certain first-order features which are algorithmically well behaved. Therefore, they are well suited for the specification of certain properties of computational
On the structure of K/l-hybrid carrageenans
Velde, F. van de; Peppelman, H.A.; Rollema, H.S.; Tromp, R.H.
2001-01-01
The coil-to-helix transition and temperature dependence of the viscosity of commercial κ/ι-hybrid carrageenans produced by the red algae Sarcothalia crispata, Mazaella laminarioides, and Chondrus crispus were studied using rheometry and optical rotation. The structure of these κ/ι-hybrid
Hybrid quantum teleportation: A theoretical model
Energy Technology Data Exchange (ETDEWEB)
Takeda, Shuntaro; Mizuta, Takahiro; Fuwa, Maria; Yoshikawa, Jun-ichi; Yonezawa, Hidehiro; Furusawa, Akira [Department of Applied Physics, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan)
2014-12-04
Hybrid quantum teleportation – continuous-variable teleportation of qubits – is a promising approach for deterministically teleporting photonic qubits. We propose how to implement it with current technology. Our theoretical model shows that faithful qubit transfer can be achieved for this teleportation by choosing an optimal gain for the teleporter’s classical channel.
Apricot - An Object-Oriented Modeling Language for Hybrid Systems
Fang, Huixing; Zhu, Huibiao; Shi, Jianqi
2013-01-01
We propose Apricot as an object-oriented language for modeling hybrid systems. The language combines the features in domain specific language and object-oriented language, that fills the gap between design and implementation, as a result, we put forward the modeling language with simple and distinct syntax, structure and semantics. In addition, we introduce the concept of design by convention into Apricot.As the characteristic of object-oriented and the component architecture in Apricot, we c...
Hybrid Bridge Structures Made of Frp Composite and Concrete
Rajchel, Mateusz; Siwowski, Tomasz
2017-09-01
Despite many advantages over the conventional construction materials, the contemporary development of FRP composites in bridge engineering is limited due to high initial cost, low stiffness (in case of glass fibers) and sudden composite failure mode. In order to reduce the given limitations, mixed (hybrid) solutions connecting the FRP composites and conventional construction materials, including concrete, have been tested in many countries for 20 years. Shaping the hybrid structures based on the attributes of particular materials, aims to increase stiffness and reduce cost without losing the carrying capacity, lightness and easiness of bridges that includes such hybrid girders, and to avoid the sudden dangerous failure mode. In the following article, the authors described examples of hybrid road bridges made of FRP composite and concrete within the time of 20 years and presented the first Polish hybrid FRP-concrete road bridge. Also, the directions of further research, necessary to spread these innovative, advanced and sustainable bridge structures were indicated.
Eriksson, Anders
2014-03-13
Distinguishing between hybridization and population structure in the ancestral species is a key challenge in our understanding of how permeable species boundaries are to gene flow. The doubly conditioned frequency spectrum (dcfs) has been argued to be a powerful metric to discriminate between these two explanations, and it was used to argue for hybridization between Neandertal and anatomically modern humans. The shape of the observed dcfs for these two species cannot be reproduced by a model that represents ancient population structure in Africa with two populations, while adding hybridization produces realistic shapes. In this letter, we show that this result is a consequence of the spatial coarseness of the demographic model and that a spatially structured stepping stone model can generate realistic dcfs without hybridization. This result highlights how inferences on hybridization between recently diverged species can be strongly affected by the choice of how population structure is represented in the underlying demographic model. We also conclude that the dcfs has limited power in distinguishing between the signals left by hybridization and ancient structure. 2014 The Author.
Eriksson, Anders; Manica, Andrea
2014-01-01
Distinguishing between hybridization and population structure in the ancestral species is a key challenge in our understanding of how permeable species boundaries are to gene flow. The doubly conditioned frequency spectrum (dcfs) has been argued to be a powerful metric to discriminate between these two explanations, and it was used to argue for hybridization between Neandertal and anatomically modern humans. The shape of the observed dcfs for these two species cannot be reproduced by a model that represents ancient population structure in Africa with two populations, while adding hybridization produces realistic shapes. In this letter, we show that this result is a consequence of the spatial coarseness of the demographic model and that a spatially structured stepping stone model can generate realistic dcfs without hybridization. This result highlights how inferences on hybridization between recently diverged species can be strongly affected by the choice of how population structure is represented in the underlying demographic model. We also conclude that the dcfs has limited power in distinguishing between the signals left by hybridization and ancient structure. 2014 The Author.
A Novel Hybrid Similarity Calculation Model
Directory of Open Access Journals (Sweden)
Xiaoping Fan
2017-01-01
Full Text Available This paper addresses the problems of similarity calculation in the traditional recommendation algorithms of nearest neighbor collaborative filtering, especially the failure in describing dynamic user preference. Proceeding from the perspective of solving the problem of user interest drift, a new hybrid similarity calculation model is proposed in this paper. This model consists of two parts, on the one hand the model uses the function fitting to describe users’ rating behaviors and their rating preferences, and on the other hand it employs the Random Forest algorithm to take user attribute features into account. Furthermore, the paper combines the two parts to build a new hybrid similarity calculation model for user recommendation. Experimental results show that, for data sets of different size, the model’s prediction precision is higher than the traditional recommendation algorithms.
Structure of Solvent-Free Nanoparticle−Organic Hybrid Materials
Yu, Hsiu-Yu
2010-11-16
We derive the radial distribution function and the static structure factor for the particles in model nanoparticleorganic hybrid materials composed of nanoparticles and attached oligomeric chains in the absence of an intervening solvent. The assumption that the oligomers form an incompressible fluid of bead-chains attached to the particles that is at equilibrium for a given particle configuration allows us to apply a density functional theory for determining the equilibrium configuration of oligomers as well as the distribution function of the particles. A quasi-analytic solution is facilitated by a regular perturbation analysis valid when the oligomer radius of gyration R g is much greater than the particle radius a. The results show that the constraint that each particle carries its own share of the fluid attached to itself yields a static structure factor that approaches zero as the wavenumber approaches zero. This result indicates that each particle excludes exactly one other particle from its neighborhood. © 2010 American Chemical Society.
Modelling of data uncertainties on hybrid computers
Energy Technology Data Exchange (ETDEWEB)
Schneider, Anke (ed.)
2016-06-15
The codes d{sup 3}f and r{sup 3}t are well established for modelling density-driven flow and nuclide transport in the far field of repositories for hazardous material in deep geological formations. They are applicable in porous media as well as in fractured rock or mudstone, for modelling salt- and heat transport as well as a free groundwater surface. Development of the basic framework of d{sup 3}f and r{sup 3}t had begun more than 20 years ago. Since that time significant advancements took place in the requirements for safety assessment as well as for computer hardware development. The period of safety assessment for a repository of high-level radioactive waste was extended to 1 million years, and the complexity of the models is steadily growing. Concurrently, the demands on accuracy increase. Additionally, model and parameter uncertainties become more and more important for an increased understanding of prediction reliability. All this leads to a growing demand for computational power that requires a considerable software speed-up. An effective way to achieve this is the use of modern, hybrid computer architectures which requires basically the set-up of new data structures and a corresponding code revision but offers a potential speed-up by several orders of magnitude. The original codes d{sup 3}f and r{sup 3}t were applications of the software platform UG /BAS 94/ whose development had begun in the early nineteennineties. However, UG had recently been advanced to the C++ based, substantially revised version UG4 /VOG 13/. To benefit also in the future from state-of-the-art numerical algorithms and to use hybrid computer architectures, the codes d{sup 3}f and r{sup 3}t were transferred to this new code platform. Making use of the fact that coupling between different sets of equations is natively supported in UG4, d{sup 3}f and r{sup 3}t were combined to one conjoint code d{sup 3}f++. A direct estimation of uncertainties for complex groundwater flow models with the
Control-relevant modeling and simulation of a SOFC-GT hybrid system
Directory of Open Access Journals (Sweden)
Rambabu Kandepu
2006-07-01
Full Text Available In this paper, control-relevant models of the most important components in a SOFC-GT hybrid system are described. Dynamic simulations are performed on the overall hybrid system. The model is used to develop a simple control structure, but the simulations show that more elaborate control is needed.
Control-relevant modeling and simulation of a SOFC-GT hybrid system
Rambabu Kandepu; Lars Imsland; Christoph Stiller; Bjarne A. Foss; Vinay Kariwala
2006-01-01
In this paper, control-relevant models of the most important components in a SOFC-GT hybrid system are described. Dynamic simulations are performed on the overall hybrid system. The model is used to develop a simple control structure, but the simulations show that more elaborate control is needed.
Hybrid Energy System Modeling in Modelica
Energy Technology Data Exchange (ETDEWEB)
William R. Binder; Christiaan J. J. Paredis; Humberto E. Garcia
2014-03-01
In this paper, a Hybrid Energy System (HES) configuration is modeled in Modelica. Hybrid Energy Systems (HES) have as their defining characteristic the use of one or more energy inputs, combined with the potential for multiple energy outputs. Compared to traditional energy systems, HES provide additional operational flexibility so that high variability in both energy production and consumption levels can be absorbed more effectively. This is particularly important when including renewable energy sources, whose output levels are inherently variable, determined by nature. The specific HES configuration modeled in this paper include two energy inputs: a nuclear plant, and a series of wind turbines. In addition, the system produces two energy outputs: electricity and synthetic fuel. The models are verified through simulations of the individual components, and the system as a whole. The simulations are performed for a range of component sizes, operating conditions, and control schemes.
Hybrid carrageenans: isolation, chemical structure, and gel properties.
Hilliou, Loic
2014-01-01
Hybrid carrageenan is a special class of carrageenan with niche application in food industry. This polysaccharide is extracted from specific species of seaweeds belonging to the Gigartinales order. This chapter focuses on hybrid carrageenan showing the ability to form gels in water, which is known in the food industry as weak kappa or kappa-2 carrageenan. After introducing the general chemical structure defining hybrid carrageenan, the isolation of the polysaccharide will be discussed focusing on the interplay between seaweed species, extraction parameters, and the hybrid carrageenan chemistry. Then, the rheological experiments used to determine the small and large deformation behavior of gels will be detailed before reviewing the relationships between gel properties and hybrid carrageenan chemistry. © 2014 Elsevier Inc. All rights reserved.
Optimization of hybrid model on hajj travel
Cahyandari, R.; Ariany, R. L.; Sukono
2018-03-01
Hajj travel insurance is an insurance product offered by the insurance company in preparing funds to perform the pilgrimage. This insurance product helps would-be pilgrims to set aside a fund of saving hajj with regularly, but also provides funds of profit sharing (mudharabah) and insurance protection. Scheme of insurance product fund management is largely using the hybrid model, which is the fund from would-be pilgrims will be divided into three account management, that is personal account, tabarru’, and ujrah. Scheme of hybrid model on hajj travel insurance was already discussed at the earlier paper with titled “The Hybrid Model Algorithm on Sharia Insurance”, taking the example case of Mitra Mabrur Plus product from Bumiputera company. On these advanced paper, will be made the previous optimization model design, with partition of benefit the tabarru’ account. Benefits such as compensation for 40 critical illness which initially only for participants of insurance only, on optimization is intended for participants of the insurance and his heir, also to benefit the hospital bills. Meanwhile, the benefits of death benefit is given if the participant is fixed die.
A Novel of Hybrid Maintenance Management Models for Industrial Applications
Tahir, Zulkifli
2010-01-01
It is observed through empirical studies that the effectiveness of industrial process have been increased by a well organized of machines maintenance structure. In current research, a novel of maintenance concept has been designed by hybrid several maintenance management models with Decision Making Grid (DMG), Analytic Hierarchy Process (AHP) and Fuzzy Logic. The concept is designed for maintenance personnel to evaluate and benchmark the maintenance operations and to reveal important maintena...
Gravitational waves in hybrid quintessential inflationary models
Energy Technology Data Exchange (ETDEWEB)
Sa, Paulo M [Departamento de Fisica, Faculdade de Ciencias e Tecnologia, Universidade do Algarve, Campus de Gambelas, 8005-139 Faro (Portugal); Henriques, Alfredo B, E-mail: pmsa@ualg.pt, E-mail: alfredo.henriques@ist.utl.pt [Centro Multidisciplinar de Astrofisica - CENTRA and Departamento de Fisica, Instituto Superior Tecnico, UTL, Av. Rovisco Pais, 1049-001 Lisboa (Portugal)
2011-09-22
The generation of primordial gravitational waves is investigated within the hybrid quintessential inflationary model. Using the method of continuous Bogoliubov coefficients, we calculate the full gravitational-wave energy spectrum. The post-inflationary kination period, characteristic of quintessential inflationary models, leaves a clear signature on the spectrum, namely, a sharp rise of the gravitational-wave spectral energy density {Omega}{sub GW} at high frequencies. For appropriate values of the parameters of the model, {Omega}{sub GW} can be as high as 10{sup -12} in the MHz-GHz range of frequencies.
Gravitational waves in hybrid quintessential inflationary models
International Nuclear Information System (INIS)
Sa, Paulo M; Henriques, Alfredo B
2011-01-01
The generation of primordial gravitational waves is investigated within the hybrid quintessential inflationary model. Using the method of continuous Bogoliubov coefficients, we calculate the full gravitational-wave energy spectrum. The post-inflationary kination period, characteristic of quintessential inflationary models, leaves a clear signature on the spectrum, namely, a sharp rise of the gravitational-wave spectral energy density Ω GW at high frequencies. For appropriate values of the parameters of the model, Ω GW can be as high as 10 -12 in the MHz-GHz range of frequencies.
Modelling Chemical Preservation of Plantain Hybrid Fruits
Directory of Open Access Journals (Sweden)
Ogueri Nwaiwu
2017-08-01
Full Text Available New plantain hybrids plants have been developed but not much has been done on the post-harvest keeping quality of the fruits and how they are affected by microbial colonization. Hence fruits from a tetraploid hybrid PITA 2 (TMPx 548-9 obtained by crossing plantain varieties Obino l’Ewai and Calcutta 4 (AA and two local triploid (AAB plantain landraces Agbagba and Obino l’Ewai were subjected to various concentrations of acetic, sorbic and propionic acid to determine the impact of chemical concentration, chemical type and plantain variety on ripening and weight loss of plantain fruits. Analysis of titratable acidity, moisture content and total soluble solids showed that there were no significant differences between fruits of hybrid and local varieties. The longest time to ripening from harvest (24 days was achieved with fruits of Agbagba treated with 3% propionic acid. However, fruits of PITA 2 hybrid treated with propionic and sorbic acid at 3% showed the longest green life which indicated that the chemicals may work better at higher concentrations. The Obino l’Ewai cultivar had the highest weight loss for all chemical types used. Modelling data obtained showed that plantain variety had the most significant effect on ripening and indicates that ripening of the fruits may depend on the plantain variety. It appears that weight loss of fruits from the plantain hybrid and local cultivars was not affected by the plantain variety, chemical type. The chemicals at higher concentrations may have an effect on ripening of the fruits and will need further investigation.
Comments On Clock Models In Hybrid Automata And Hybrid Control Systems
Directory of Open Access Journals (Sweden)
Virginia Ecaterina OLTEAN
2001-12-01
Full Text Available Hybrid systems have received a lot of attention in the past decade and a number of different models have been proposed in order to establish mathematical framework that is able to handle both continuous and discrete aspects. This contribution is focused on two models: hybrid automata and hybrid control systems with continuous-discrete interface and the importance of clock models is emphasized. Simple and relevant examples, some taken from the literature, accompany the presentation.
Nafion–clay hybrids with a network structure
Burgaz, Engin; Lian, Huiqin; Alonso, Rafael Herrera; Estevez, Luis; Kelarakis, Antonios; Giannelis, Emmanuel P.
2009-01-01
Nafion-clay hybrid membranes with a unique microstructure were synthesized using a fundamentally new approach. The new approach is based on depletion aggregation of suspended particles - a well-known phenomenon in colloids. For certain concentrations of clay and polymer, addition of Nafion solution to clay suspensions in water leads to a gel. Using Cryo-TEM we show that the clay particles in the hybrid gels form a network structure with an average cell size in the order of 500 nm. The hybrid gels are subsequently cast to produce hybrid Nafion-clay membranes. Compared to pure Nafion the swelling of the hybrid membranes in water and methanol is dramatically reduced while their selectivity (ratio of conductivity over permeability) increases. The small decrease of ionic conductivity for the hybrid membranes is more than compensated by the large decrease in methanol permeability. Lastly the hybrid membranes are much stiffer and can withstand higher temperatures compared to pure Nafion. Both of these characteristics are highly desirable for use in fuel cell applications, since a) they will allow the use of a thinner membrane circumventing problems associated with the membrane resistance and b) enable high temperature applications. © 2009 Elsevier Ltd. All rights reserved.
Nafion–clay hybrids with a network structure
Burgaz, Engin
2009-05-01
Nafion-clay hybrid membranes with a unique microstructure were synthesized using a fundamentally new approach. The new approach is based on depletion aggregation of suspended particles - a well-known phenomenon in colloids. For certain concentrations of clay and polymer, addition of Nafion solution to clay suspensions in water leads to a gel. Using Cryo-TEM we show that the clay particles in the hybrid gels form a network structure with an average cell size in the order of 500 nm. The hybrid gels are subsequently cast to produce hybrid Nafion-clay membranes. Compared to pure Nafion the swelling of the hybrid membranes in water and methanol is dramatically reduced while their selectivity (ratio of conductivity over permeability) increases. The small decrease of ionic conductivity for the hybrid membranes is more than compensated by the large decrease in methanol permeability. Lastly the hybrid membranes are much stiffer and can withstand higher temperatures compared to pure Nafion. Both of these characteristics are highly desirable for use in fuel cell applications, since a) they will allow the use of a thinner membrane circumventing problems associated with the membrane resistance and b) enable high temperature applications. © 2009 Elsevier Ltd. All rights reserved.
Energy Technology Data Exchange (ETDEWEB)
MacDonald, Margaret G.; Palmer, Michael R.; Suchomel, Matthew R.; Berrie, Barbara H. (NGA); (Bordeaux)
2016-09-23
To investigate soap formation in drying oils in historic paints, the reaction between metal acetates (K^{+}, Zn^{2+}, Pb^{2+}) and ethyl linoleate (EL) was studied using optical microscopy, X-ray powder diffraction, and electron microscopy. Pb(II) and Zn(II) react rapidly with EL to form highly structured, spherulitic, luminescent crystallites that aggregate. Evidence from Fourier transform infrared (FTIR) and scanning electron microscopy/energy dispersive X-ray analysis and high-resolution synchrotron powder X-ray diffraction indicates that these are organic–inorganic hybrid complexes or coordination polymers. FTIR absorbance peaks at ca. 1540 cm^{–1} for Pb(II) and ca. 1580 cm^{–1} for Zn(II) are consistent with the formation of carboxylate complexes. The complexes formed offer insight into the degradation processes observed in oil paint films, suggesting that soap formation is rapid when metal ions are solubilized and can occur with unsaturated fatty acids that are present in fresh oils. These complexes may account for the atypical luminescence observed in lead-containing cured oil paint films.
Fahimi, Farzad; Yaseen, Zaher Mundher; El-shafie, Ahmed
2017-05-01
Since the middle of the twentieth century, artificial intelligence (AI) models have been used widely in engineering and science problems. Water resource variable modeling and prediction are the most challenging issues in water engineering. Artificial neural network (ANN) is a common approach used to tackle this problem by using viable and efficient models. Numerous ANN models have been successfully developed to achieve more accurate results. In the current review, different ANN models in water resource applications and hydrological variable predictions are reviewed and outlined. In addition, recent hybrid models and their structures, input preprocessing, and optimization techniques are discussed and the results are compared with similar previous studies. Moreover, to achieve a comprehensive view of the literature, many articles that applied ANN models together with other techniques are included. Consequently, coupling procedure, model evaluation, and performance comparison of hybrid models with conventional ANN models are assessed, as well as, taxonomy and hybrid ANN models structures. Finally, current challenges and recommendations for future researches are indicated and new hybrid approaches are proposed.
Design of Xen Hybrid Multiple Police Model
Sun, Lei; Lin, Renhao; Zhu, Xianwei
2017-10-01
Virtualization Technology has attracted more and more attention. As a popular open-source virtualization tools, XEN is used more and more frequently. Xsm, XEN security model, has also been widespread concern. The safety status classification has not been established in the XSM, and it uses the virtual machine as a managed object to make Dom0 a unique administrative domain that does not meet the minimum privilege. According to these questions, we design a Hybrid multiple police model named SV_HMPMD that organically integrates multiple single security policy models include DTE,RBAC,BLP. It can fullfill the requirement of confidentiality and integrity for security model and use different particle size to different domain. In order to improve BLP’s practicability, the model introduce multi-level security labels. In order to divide the privilege in detail, we combine DTE with RBAC. In order to oversize privilege, we limit the privilege of domain0.
Engineering hybrid Co-picene structures with variable spin coupling
Energy Technology Data Exchange (ETDEWEB)
Zhou, Chunsheng [Hefei National Laboratory for Physical Sciences at the Microscale and Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026 (China); Department of Physics, University of Science and Technology of China, Hefei, Anhui 230026 (China); Shan, Huan; Li, Bin, E-mail: libin@mail.ustc.edu.cn, E-mail: adzhao@ustc.edu.cn; Zhao, Aidi, E-mail: libin@mail.ustc.edu.cn, E-mail: adzhao@ustc.edu.cn; Wang, Bing [Hefei National Laboratory for Physical Sciences at the Microscale and Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026 (China)
2016-04-25
We report on the in situ engineering of hybrid Co-picene magnetic structures with variable spin coupling using a low-temperature scanning tunneling microscope. Single picene molecules adsorbed on Au(111) are manipulated to accommodate individual Co atoms one by one, forming stable artificial hybrid structures with magnetism introduced by the Co atoms. By monitoring the evolution of the Kondo effect at each site of Co atom, we found that the picene molecule plays an important role in tuning the spin coupling between individual Co atoms, which is confirmed by theoretical calculations based on the density-functional theory. Our findings indicate that the hybrid metal-molecule structures with variable spin coupling on surfaces can be artificially constructed in a controlled manner.
Dynamic Model of Islamic Hybrid Securities: Empirical Evidence From Malaysia Islamic Capital Market
Directory of Open Access Journals (Sweden)
Jaafar Pyeman
2016-12-01
Full Text Available Capital structure selection is fundamentally important in corporate financial management as it influence on mutually return and risk to stakeholders. Despite of Malaysia’s position as one of the major players of Islamic Financial Market, there are still lack of studies has been conducted on the capital structure of shariah compliant firms especially related to hybrid securities. The objective of this study is to determine the hybrid securities issuance model among the shariah compliant firms in Malaysia. As such, this study is to expand the literature review by providing comprehensive analysis on the hybrid capital structure and to develop dynamic Islamic hybrid securities model for shariah compliant firms. We use panel data of 50 companies that have been issuing the hybrid securities from the year of 2004- 2012. The outcomes of the studies are based on the dynamic model GMM estimation for the determinants of hybrid securities. Based on our model, risk and growth are considered as the most determinant factors for issuing convertible bond and loan stock. These results suggest that, the firms that have high risk but having good growth prospect will choose hybrid securities of convertible bond. The model also support the backdoor equity listing hypothesis by Stein (1992 where the hybrid securities enable the profitable firms to venture into positive NPV project by issuing convertible bond as it offer lower coupon rate as compare to the normal debt rate
The Gaia hybrid catalog: a leverage to find Galactic structures
Fouesneau, M.; Bailer-Jones, C. A. L.
2014-07-01
of the WISE filters, one can select the Oxygen-rich Asymptotic Giant Branch (AGBs) stars to find spatial substructures with particular interstellar medium properties. Breaking through the distance-extinction degeneracies will also help finding large scale structures in the disk such as streams or spiral arms, especially when combined with age or metallicity selections for instance. Second, we presented one aspect of the hybrid catalogs dedicated to support the analysis of star clusters. Star clusters are not only calibrators of stellar evolution models but also references to study star formation in general. We presented one future outcome of the hybrid catalogs, in which we provide for known star clusters, an assessment of stellar memberships based on a combination of phase-space, and colormagnitude distribution fitting. In this application, the assumption that a cluster is a "simple" population provides a significant advantage when deriving individual star properties. Eventually one can imagine this application can be extended to stellar streams. Hybrid catalogs are meant to be provided along with the Gaia data releases, and will offer a tremendous source of validation for the Gaia Data Processing.
Infectious disease modeling a hybrid system approach
Liu, Xinzhi
2017-01-01
This volume presents infectious diseases modeled mathematically, taking seasonality and changes in population behavior into account, using a switched and hybrid systems framework. The scope of coverage includes background on mathematical epidemiology, including classical formulations and results; a motivation for seasonal effects and changes in population behavior, an investigation into term-time forced epidemic models with switching parameters, and a detailed account of several different control strategies. The main goal is to study these models theoretically and to establish conditions under which eradication or persistence of the disease is guaranteed. In doing so, the long-term behavior of the models is determined through mathematical techniques from switched systems theory. Numerical simulations are also given to augment and illustrate the theoretical results and to help study the efficacy of the control schemes.
A novel structure of permanent-magnet-biased radial hybrid magnetic bearing
International Nuclear Information System (INIS)
Sun Jinji; Fang Jiancheng
2011-01-01
The paper proposes a novel structure for a permanent-magnet-biased radial hybrid magnetic bearing. Based on the air gap between the rotor and stator of traditional radial hybrid magnetic bearings, a subsidiary air gap is first constructed between the permanent magnets and the inner magnetic parts. Radial magnetic bearing makes X and Y magnetic fields independent of each other with separate stator poles, and the subsidiary air gap makes control flux to a close loop. As a result, magnetic field coupling of the X and Y channels is decreased significantly by the radial hybrid magnetic bearing and makes it easier to design control systems. Then an external rotor structure is designed into the radial hybrid magnetic bearing. The working principle of the radial hybrid magnetic bearing and its mathematical model is discussed. Finally, a non-linear magnetic network method is proposed to analyze the radial hybrid magnetic bearing. Simulation results indicate that magnetic fields in the two channels of the proposed radial hybrid magnetic bearing decouple well from each other.
A novel structure of permanent-magnet-biased radial hybrid magnetic bearing
Energy Technology Data Exchange (ETDEWEB)
Sun Jinji, E-mail: sunjinji@aspe.buaa.edu.c [Key Laboratory of Fundamental Science for National Defense, Novel Inertial Instrument and Navigation System Technology, School of Instrument Science and Opto-electronics Engineering, Beijing University of Aeronautics and Astronautics, 100191 (China); Fang Jiancheng [Key Laboratory of Fundamental Science for National Defense, Novel Inertial Instrument and Navigation System Technology, School of Instrument Science and Opto-electronics Engineering, Beijing University of Aeronautics and Astronautics, 100191 (China)
2011-01-15
The paper proposes a novel structure for a permanent-magnet-biased radial hybrid magnetic bearing. Based on the air gap between the rotor and stator of traditional radial hybrid magnetic bearings, a subsidiary air gap is first constructed between the permanent magnets and the inner magnetic parts. Radial magnetic bearing makes X and Y magnetic fields independent of each other with separate stator poles, and the subsidiary air gap makes control flux to a close loop. As a result, magnetic field coupling of the X and Y channels is decreased significantly by the radial hybrid magnetic bearing and makes it easier to design control systems. Then an external rotor structure is designed into the radial hybrid magnetic bearing. The working principle of the radial hybrid magnetic bearing and its mathematical model is discussed. Finally, a non-linear magnetic network method is proposed to analyze the radial hybrid magnetic bearing. Simulation results indicate that magnetic fields in the two channels of the proposed radial hybrid magnetic bearing decouple well from each other.
Warren, Kerryn A; Ritzman, Terrence B; Humphreys, Robyn A; Percival, Christopher J; Hallgrímsson, Benedikt; Ackermann, Rebecca Rogers
2018-03-01
Hybridization occurs in a number of mammalian lineages, including among primate taxa. Analyses of ancient genomes have shown that hybridization between our lineage and other archaic hominins in Eurasia occurred numerous times in the past. However, we still have limited empirical data on what a hybrid skeleton looks like, or how to spot patterns of hybridization among fossils for which there are no genetic data. Here we use experimental mouse models to supplement previous studies of primates. We characterize size and shape variation in the cranium and mandible of three wild-derived inbred mouse strains and their first generation (F 1 ) hybrids. The three parent taxa in our analysis represent lineages that diverged over approximately the same period as the human/Neanderthal/Denisovan lineages and their hybrids are variably successful in the wild. Comparisons of body size, as quantified by long bone measurements, are also presented to determine whether the identified phenotypic effects of hybridization are localized to the cranium or represent overall body size changes. The results indicate that hybrid cranial and mandibular sizes, as well as limb length, exceed that of the parent taxa in all cases. All three F 1 hybrid crosses display similar patterns of size and form variation. These results are generally consistent with earlier studies on primates and other mammals, suggesting that the effects of hybridization may be similar across very different scenarios of hybridization, including different levels of hybrid fitness. This paper serves to supplement previous studies aimed at identifying F 1 hybrids in the fossil record and to introduce further research that will explore hybrid morphologies using mice as a proxy for better understanding hybridization in the hominin fossil record. Copyright © 2017 Elsevier Ltd. All rights reserved.
Hybridized plasmon in an asymmetric cut-wire-pair structure
Energy Technology Data Exchange (ETDEWEB)
Tung, Nguyen Thanh [Vietnamese Military Academy of Science and Technology, Hanoi (Viet Nam); Hanyang University, Seoul (Korea, Republic of); Rhee, Joo Yull [Sungkyunkwan University, Suwon (Korea, Republic of); Park, Jin Woo; Lee, Young Pak [Hanyang University, Seoul (Korea, Republic of)
2010-12-15
In this report, we discuss an electromagnetic analog of the molecular-orbital theory for metamaterial structures. We show that the electromagnetic responses of a metamagnetic structure consisting of paired cut-wires can be well understood by using the plasmon-hybridization mechanism. The simulated transmission spectra of the asymmetric cut-wire-pair structure, which were obtained utilizing the transfer-matrix method, strongly support our suggestion.
A hybrid modeling approach for option pricing
Hajizadeh, Ehsan; Seifi, Abbas
2011-11-01
The complexity of option pricing has led many researchers to develop sophisticated models for such purposes. The commonly used Black-Scholes model suffers from a number of limitations. One of these limitations is the assumption that the underlying probability distribution is lognormal and this is so controversial. We propose a couple of hybrid models to reduce these limitations and enhance the ability of option pricing. The key input to option pricing model is volatility. In this paper, we use three popular GARCH type model for estimating volatility. Then, we develop two non-parametric models based on neural networks and neuro-fuzzy networks to price call options for S&P 500 index. We compare the results with those of Black-Scholes model and show that both neural network and neuro-fuzzy network models outperform Black-Scholes model. Furthermore, comparing the neural network and neuro-fuzzy approaches, we observe that for at-the-money options, neural network model performs better and for both in-the-money and an out-of-the money option, neuro-fuzzy model provides better results.
Enhanced non-radiative energy transfer in hybrid III-nitride structures
International Nuclear Information System (INIS)
Smith, R. M.; Athanasiou, M.; Bai, J.; Liu, B.; Wang, T.
2015-01-01
The effect of surface states has been investigated in hybrid organic/inorganic white light emitting structures that employ high efficiency, nearfield non-radiative energy transfer (NRET) coupling. The structures utilize blue emitting InGaN/GaN multiple quantum well (MQW) nanorod arrays to minimize the separation with a yellow emitting F8BT coating. Surface states due to the exposed III-nitride surfaces of the nanostructures are found to reduce the NRET coupling rate. The surface states are passivated by deposition of a silicon nitride layer on the III-nitride nanorod surface leading to reduced surface recombination. A low thickness surface passivation is shown to increase the NRET coupling rate by 4 times compared to an un-passivated hybrid structure. A model is proposed to explain the increased NRET rate for the passivated hybrid structures based on the reduction in surface electron depletion of the passivated InGaN/GaN MQW nanorods surfaces
Fluid and hybrid models for streamers
Bonaventura, Zdeněk
2016-09-01
Streamers are contracted ionizing waves with self-generated field enhancement that propagate into a low-ionized medium exposed to high electric field leaving filamentary trails of plasma behind. The widely used model to study streamer dynamics is based on drift-diffusion equations for electrons and ions, assuming local field approximation, coupled with Poisson's equation. For problems where presence of energetic electrons become important a fluid approach needs to be extended by a particle model, accompanied also with Monte Carlo Collision technique, that takes care of motion of these electrons. A combined fluid-particle approach is used to study an influence of surface emission processes on a fast-pulsed dielectric barrier discharge in air at atmospheric pressure. It is found that fluid-only model predicts substantially faster reignition dynamics compared to coupled fluid-particle model. Furthermore, a hybrid model can be created in which the population of electrons is divided in the energy space into two distinct groups: (1) low energy `bulk' electrons that are treated with fluid model, and (2) high energy `beam' electrons, followed as particles. The hybrid model is then capable not only to deal with streamer discharges in laboratory conditions, but also allows us to study electron acceleration in streamer zone of lighting leaders. There, the production of fast electrons from streamers is investigated, since these (runaway) electrons act as seeds for the relativistic runaway electron avalanche (RREA) mechanism, important for high-energy atmospheric physics phenomena. Results suggest that high energy electrons effect the streamer propagation, namely the velocity, the peak electric field, and thus also the production rate of runaway electrons. This work has been supported by the Czech Science Foundation research project 15-04023S.
Structural properties of maize hybrids established by infrared spectra
Directory of Open Access Journals (Sweden)
Radenović Čedomir N.
2015-01-01
Full Text Available This paper discusses the application of the infrared (IR spectroscopy method for determination of structural properties of maize hybrid grains. The IR spectrum of maize grain has been registered in the following hybrids: ZP 341, ZP 434 and ZP 505. The existence of spectral bands varying in both number and intensity, as well as their shape, frequency and kinetics have been determined. They have been determined by valence oscillations and deformation oscillations of the following organic compounds: alkanes, alkenes, alkynes, amides, alcohols, ethers, carboxylic acids, esters and aldehydes and ketones, characteristic for biogenic compounds such as carbohydrates, proteins and lipids. In this way, possible changes in the grain structure of observed maize hybrids could be detected.
Hopping mixed hybrid excitations in multiple composite quantum wire structures
International Nuclear Information System (INIS)
Nguyen Ba An; Tran Thai Hoa
1995-10-01
A structure consisting of N pairs of inorganic semiconductor and organic quantum wires is considered theoretically. In such an isolated pair of wires, while the intrawire coupling forms Wannier-Mott exciton in an inorganic semiconductor quantum wire and Frenkel exciton in an organic one, the interwire coupling gives rise to hybrid excitons residing within the pair. When N pairs of wires are packed together 2N new mixed hybrid modes appear that are the true elementary excitations and can hop throughout the whole structure. Energies and wave functions of such hopping mixed hybrid excitations are derived analytically in detail accounting for the global interwire coupling and the different polarization configurations. (author). 19 refs
Modeling of renewable hybrid energy sources
Directory of Open Access Journals (Sweden)
Dumitru Cristian Dragos
2009-12-01
Full Text Available Recent developments and trends in the electric power consumption indicate an increasing use of renewable energy. Renewable energy technologies offer the promise of clean, abundant energy gathered from self-renewing resources such as the sun, wind, earth and plants. Virtually all regions of the world have renewable resources of one type or another. By this point of view studies on renewable energies focuses more and more attention. The present paper intends to present different mathematical models related to different types of renewable energy sources such as: solar energy and wind energy. It is also presented the validation and adaptation of such models to hybrid systems working in geographical and meteorological conditions specific to central part of Transylvania region. The conclusions based on validation of such models are also shown.
A hybrid dielectric and iris loaded periodic accelerating structure
International Nuclear Information System (INIS)
Zou, P.; Xiao, L.; Sun, X.; Gai, W.
2001-01-01
One disadvantage of conventional iris-loaded accelerating structures is the high ratio of the peak surface electric field to the peak axial electric field useful for accelerating a beam. Typically this ratio E s /E a ≥ 2. The high surface electric field relative to the accelerating gradient may prove to be a limitation for realizing technologies for very high gradient accelerators. In this paper, we present a scheme that uses a hybrid dielectric and iris loaded periodic structure to reduce E s /E a to near unity, while the shunt impedance per unit length r and the quality factor Q compare favorably with conventional metallic structures. The analysis based on MAFIA simulations of such structures shows that we can lower the peak surface electric field close to the accelerating gradient while maintaining high acceleration efficiency as measured by r/Q. Numerical examples of X-band hybrid accelerating structures are given
Hybrid Models of Alternative Current Filter for Hvdc
Directory of Open Access Journals (Sweden)
Ufa Ruslan A.
2017-01-01
Full Text Available Based on a hybrid simulation concept of HVDC, the developed hybrid AC filter models, providing the sufficiently full and adequate modeling of all single continuous spectrum of quasi-steady-state and transient processes in the filter, are presented. The obtained results suggest that usage of the hybrid simulation approach is carried out a methodically accurate with guaranteed instrumental error solution of differential equation systems of mathematical models of HVDC.
Giant Magnetic Field Enhancement in Hybridized MIM Structures
Alrasheed, Salma; Di Fabrizio, Enzo M.
2017-01-01
We propose numerically an approach to narrow the plasmon linewidth and enhance the magnetic near field intensity at a magnetic hot spot in a hybridized metal-insulatormetal (MIM) structure. First we insert in part of the dielectric layer of the MIM
Analysis of chromosome aberration data by hybrid-scale models
International Nuclear Information System (INIS)
Indrawati, Iwiq; Kumazawa, Shigeru
2000-02-01
This paper presents a new methodology for analyzing data of chromosome aberrations, which is useful to understand the characteristics of dose-response relationships and to construct the calibration curves for the biological dosimetry. The hybrid scale of linear and logarithmic scales brings a particular plotting paper, where the normal section paper, two types of semi-log papers and the log-log paper are continuously connected. The hybrid-hybrid plotting paper may contain nine kinds of linear relationships, and these are conveniently called hybrid scale models. One can systematically select the best-fit model among the nine models by among the conditions for a straight line of data points. A biological interpretation is possible with some hybrid-scale models. In this report, the hybrid scale models were applied to separately reported data on chromosome aberrations in human lymphocytes as well as on chromosome breaks in Tradescantia. The results proved that the proposed models fit the data better than the linear-quadratic model, despite the demerit of the increased number of model parameters. We showed that the hybrid-hybrid model (both variables of dose and response using the hybrid scale) provides the best-fit straight lines to be used as the reliable and readable calibration curves of chromosome aberrations. (author)
Structural Interplay - Tuning Mechanics in Peptide-Polyurea Hybrids
Korley, Lashanda
Utilizing cues from natural materials, we have been inspired to explore the hierarchical arrangement critical to energy absorption and mechanical enhancement in synthetic systems. Of particular interest is the soft domain ordering proposed as a contributing element to the observed toughness in spider silk. Multiblock copolymers, are ideal and dynamic systems in which to explore this approach via variations in secondary structure of nature's building blocks - peptides. We have designed a new class of polyurea hybrids that incorporate peptidic copolymers as the soft segment. The impact of hierarchical ordering on the thermal, mechanical, and morphological behavior of these bio-inspired polyurethanes with a siloxane-based, peptide soft segment was investigated. These peptide-polyurethane/urea hybrids were microphase segregated, and the beta-sheet secondary structure of the soft segment was preserved during polymerization and film casting. Toughness enhancement at low strains was achieved, but the overall extensibility of the peptide-incorporated systems was reduced due to the unique hard domain organization. To decouple the secondary structure influence in the siloxane-peptide soft segment from mechanics dominated by the hard domain, we also developed non-chain extended peptide-polyurea hybrids in which the secondary structure (beta sheet vs. alpha helix) was tuned via choice of peptide and peptide length. It was shown that this structural approach allowed tailoring of extensibility, toughness, and modulus. The sheet-dominant hybrid materials were typically tougher and more elastic due to intermolecular H-bonding facilitating load distribution, while the helical-prevalent systems generally exhibited higher stiffness. Recently, we have explored the impact of a molecular design strategy that overlays a covalent and physically crosslinked architecture in these peptide-polyurea hybrids, demonstrating that physical constraints in the network hybrids influences peptide
A hybrid model for electricity spot prices
International Nuclear Information System (INIS)
Anderson, C.L.D.
2004-01-01
Electricity prices were highly regulated prior to the deregulation of the electric power industry. Prices were predictable, allowing generators and wholesalers to calculate their production costs and revenues. With deregulation, electricity has become the most volatile of all commodities. Electricity must be consumed as soon as it is generated due to the inability to store it in any sufficient quantity. Economic uncertainty exists because the supply of electricity cannot shift as quickly as the demand, which is highly variable. When demand increases quickly, the price must respond. Therefore, price spikes occur that are orders of magnitude higher than the base electricity price. This paper presents a robust and realistic model for spot market electricity prices used to manage risk in volatile markets. The model is a hybrid of a top down data driven method commonly used for financial applications, and a bottom up system driven method commonly used in regulated electricity markets. The advantage of the model is that it incorporates primary system drivers and demonstrates their effects on final prices. The 4 primary modules of the model are: (1) a model for forced outages, (2) a model for maintenance outages, (3) an electrical load model, and (4) a price model which combines the results of the previous 3 models. The performance of each model was tested. The forced outage model is the first of its kind to simulate the system on an aggregate basis using Weibull distributions. The overall spot price model was calibrated to, and tested with, data from the electricity market in Pennsylvania, New Jersey and Maryland. The model performed well in simulated market prices and adapted readily to changing system conditions and new electricity markets. This study examined the pricing of derivative contracts on electrical power. It also compared a range of portfolio scenarios using a Cash Flow at Risk approach
A hybrid model for electricity spot prices
Energy Technology Data Exchange (ETDEWEB)
Anderson, C.L.D.
2004-07-01
Electricity prices were highly regulated prior to the deregulation of the electric power industry. Prices were predictable, allowing generators and wholesalers to calculate their production costs and revenues. With deregulation, electricity has become the most volatile of all commodities. Electricity must be consumed as soon as it is generated due to the inability to store it in any sufficient quantity. Economic uncertainty exists because the supply of electricity cannot shift as quickly as the demand, which is highly variable. When demand increases quickly, the price must respond. Therefore, price spikes occur that are orders of magnitude higher than the base electricity price. This paper presents a robust and realistic model for spot market electricity prices used to manage risk in volatile markets. The model is a hybrid of a top down data driven method commonly used for financial applications, and a bottom up system driven method commonly used in regulated electricity markets. The advantage of the model is that it incorporates primary system drivers and demonstrates their effects on final prices. The 4 primary modules of the model are: (1) a model for forced outages, (2) a model for maintenance outages, (3) an electrical load model, and (4) a price model which combines the results of the previous 3 models. The performance of each model was tested. The forced outage model is the first of its kind to simulate the system on an aggregate basis using Weibull distributions. The overall spot price model was calibrated to, and tested with, data from the electricity market in Pennsylvania, New Jersey and Maryland. The model performed well in simulated market prices and adapted readily to changing system conditions and new electricity markets. This study examined the pricing of derivative contracts on electrical power. It also compared a range of portfolio scenarios using a Cash Flow at Risk approach.
A Hybrid Teaching and Learning Model
Juhary, Jowati Binti
This paper aims at analysing the needs for a specific teaching and learning model for the National Defence University of Malaysia (NDUM). The main argument is that whether there are differences between teaching and learning for academic component versus military component at the university. It is further argued that in order to achieve excellence, there should be one teaching and learning culture. Data were collected through interviews with military cadets. It is found that there are variations of teaching and learning strategies for academic courses, in comparison to a dominant teaching and learning style for military courses. Thus, in the interest of delivering quality education and training for students at the university, the paper argues that possibly a hybrid model for teaching and learning is fundamental in order to generate a one culture of academic and military excellence for the NDUM.
Modelling supervisory controller for hybrid power systems
Energy Technology Data Exchange (ETDEWEB)
Pereira, A; Bindner, H; Lundsager, P [Risoe National Lab., Roskilde (Denmark); Jannerup, O [Technical Univ. of Denmark, Dept. of Automation, Lyngby (Denmark)
1999-03-01
Supervisory controllers are important to achieve optimal operation of hybrid power systems. The performance and economics of such systems depend mainly on the control strategy for switching on/off components. The modular concept described in this paper is an attempt to design standard supervisory controllers that could be used in different applications, such as village power and telecommunication applications. This paper presents some basic aspects of modelling and design of modular supervisory controllers using the object-oriented modelling technique. The functional abstraction hierarchy technique is used to formulate the control requirements and identify the functions of the control system. The modular algorithm is generic and flexible enough to be used with any system configuration and several goals (different applications). The modularity includes accepting modification of system configuration and goals during operation with minor or no changes in the supervisory controller. (au)
Designing CNC Knit for Hybrid Membrane And Bending Active Structures
DEFF Research Database (Denmark)
Tamke, Martin; Holden Deleuran, Anders; Gengnagel, Christoph
2015-01-01
specific properties and detailing. CNC knitting with high tenacity yarn enables this practice and offers an alternative to current woven membranes. The design and fabrication of an 8m high fabric tower through an interdisciplinary team of architects, structural and textile engineers, allowed to investigate...... means to design, specify, make and test CNC knit as material for hybrid structures in architectural scale. This paper shares the developed process, identifies challenges, potentials and future work...
Hybrid isolation of structure-borne sound
Beijers, C.A.J.; de Boer, Andries; Gardonio, Paolo; Rafaely, Boaz
2002-01-01
Interior noise problems become more important due to the tendency to construct lighter vehicles. An important source for interior noise in a vehicle is the engine. The structural vibrations induced by the engine will transmit through the vehicle and will finally result in interior noise elsewhere in
A Hybrid Tsunami Risk Model for Japan
Haseemkunju, A. V.; Smith, D. F.; Khater, M.; Khemici, O.; Betov, B.; Scott, J.
2014-12-01
Around the margins of the Pacific Ocean, denser oceanic plates slipping under continental plates cause subduction earthquakes generating large tsunami waves. The subducting Pacific and Philippine Sea plates create damaging interplate earthquakes followed by huge tsunami waves. It was a rupture of the Japan Trench subduction zone (JTSZ) and the resultant M9.0 Tohoku-Oki earthquake that caused the unprecedented tsunami along the Pacific coast of Japan on March 11, 2011. EQECAT's Japan Earthquake model is a fully probabilistic model which includes a seismo-tectonic model describing the geometries, magnitudes, and frequencies of all potential earthquake events; a ground motion model; and a tsunami model. Within the much larger set of all modeled earthquake events, fault rupture parameters for about 24000 stochastic and 25 historical tsunamigenic earthquake events are defined to simulate tsunami footprints using the numerical tsunami model COMCOT. A hybrid approach using COMCOT simulated tsunami waves is used to generate inundation footprints, including the impact of tides and flood defenses. Modeled tsunami waves of major historical events are validated against observed data. Modeled tsunami flood depths on 30 m grids together with tsunami vulnerability and financial models are then used to estimate insured loss in Japan from the 2011 tsunami. The primary direct report of damage from the 2011 tsunami is in terms of the number of buildings damaged by municipality in the tsunami affected area. Modeled loss in Japan from the 2011 tsunami is proportional to the number of buildings damaged. A 1000-year return period map of tsunami waves shows high hazard along the west coast of southern Honshu, on the Pacific coast of Shikoku, and on the east coast of Kyushu, primarily associated with major earthquake events on the Nankai Trough subduction zone (NTSZ). The highest tsunami hazard of more than 20m is seen on the Sanriku coast in northern Honshu, associated with the JTSZ.
Photonic structures based on hybrid nanocomposites
Husaini, Saima
In this thesis, photonic structures embedded with two types of nanomaterials, (i) quantum dots and (ii) metal nanoparticles are studied. Both of these exhibit optical and electronic properties different from their bulk counterpart due to their nanoscale physical structure. By integrating these nanomaterials into photonic structures, in which the electromagnetic field can be confined and controlled via modification of geometry and composition, we can enhance their linear and nonlinear optical properties to realize functional photonic structures. Before embedding quantum dots into photonic structures, we study the effect of various host matrices and fabrication techniques on the optical properties of the colloidal quantum dots. The two host matrices of interest are SU8 and PMMA. It is shown that the emission properties of the quantum dots are significantly altered in these host matrices (especially SU8) and this is attributed to a high rate of nonradiative quenching of the dots. Furthermore, the effects of fabrication techniques on the optical properties of quantum dots are also investigated. Finally a microdisk resonator embedded with quantum dots is fabricated using soft lithography and luminescence from the quantum dots in the disk is observed. We investigate the absorption and effective index properties of silver nanocomposite films. It is shown that by varying the fill factor of the metal nanoparticles and fabrication parameters such as heating time, we can manipulate the optical properties of the metal nanocomposite. Optimizing these parameters, a silver nanocomposite film with a 7% fill factor is prepared. A one-dimensional photonic crystal consisting of alternating layers of the silver nanocomposite and a polymer (Polymethyl methacrylate) is fabricated using spin coating and its linear and nonlinear optical properties are investigated. Using reflectivity measurements we demonstrate that the one-dimensional silver-nanocomposite-dielectric photonic crystal
Robustness of Topological Superconductivity in Solid State Hybrid Structures
Sitthison, Piyapong
The non-Abelian statistics of Majorana fermions (MFs) makes them an ideal platform for implementing topological quantum computation. In addition to the fascinating fundamental physics underlying the emergence of MFs, this potential for applications makes the study of these quasiparticles an extremely popular subject in condensed matter physics. The commonly called `Majorana fermions' are zero-energy bound states that emerge near boundaries and defects in topological superconducting phases, which can be engineered, for example, by proximity coupling strong spin-orbit coupling semiconductor nanowires and ordinary s-wave superconductors. The stability of these bound states is determined by the stability of the underlying topological superconducting phase. Hence, understanding their stability (which is critical for quantum computation), involves studying the robustness of the engineered topological superconductors. This work addresses this important problem in the context of two types of hybrid structures that have been proposed for realizing topological superconductivity: topological insulator - superconductor (TI-SC) and semiconductor - superconductor (SM-SC) nanostructures. In both structures, electrostatic effects due to applied external potentials and interface-induced potentials are significant. This work focuses on developing a theoretical framework for understanding these effects, to facilitate the optimization of the nanostructures studied in the laboratory. The approach presented in this thesis is based on describing the low-energy physics of the hybrid structure using effective tight-binding models that explicitly incorporate the proximity effects emerging at interfaces. Generically, as a result of the proximity coupling to the superconductor, an induced gap emerges in the semiconductor (topological insulator) sub-system. The strength of the proximity-induced gap is determined by the transparency of the interface and by the amplitude of the low- energy SM
Calculation of hybrid joints used in modern aerospace structures
Directory of Open Access Journals (Sweden)
Marcel STERE
2011-12-01
Full Text Available The state – of - the art of aeronautical structures show that parts are manufactured and subsequently assembled with the use of fasteners and/ or bonding. Adhesive bonding is a key technology to low weight, high fatigue resistance, robustness and an attractive design for cost structures.The paper results resolve significant problems for two groups of end-users:1 for the aerospace design office: a robust procedure for the design of the hybrid joint structural components;2 for the aeronautical repair centres: a useful procedure for structural design and analysis with significant cost savings.
A muscle model for hybrid muscle activation
Directory of Open Access Journals (Sweden)
Klauer Christian
2015-09-01
Full Text Available To develop model-based control strategies for Functional Electrical Stimulation (FES in order to support weak voluntary muscle contractions, a hybrid model for describing joint motions induced by concurrent voluntary-and FES induced muscle activation is proposed. It is based on a Hammerstein model – as commonly used in feedback controlled FES – and exemplarily applied to describe the shoulder abduction joint angle. Main component of a Hammerstein muscle model is usually a static input nonlinearity depending on the stimulation intensity. To additionally incorporate voluntary contributions, we extended the static non-linearity by a second input describing the intensity of the voluntary contribution that is estimated by electromyography (EMG measurements – even during active FES. An Artificial Neural Network (ANN is used to describe the static input non-linearity. The output of the ANN drives a second-order linear dynamical system that describes the combined muscle activation and joint angle dynamics. The tunable parameters are adapted to the individual subject by a system identification approach using previously recorded I/O-data. The model has been validated in two healthy subjects yielding RMS values for the joint angle error of 3.56° and 3.44°, respectively.
Trust, Contracting, and Adaptation in Agri-Food Hybrid Structures
Directory of Open Access Journals (Sweden)
Gaetano Martino
2011-02-01
Full Text Available The paper considers the relationship between trust and governance structure from a Transaction Cost Economics perspective. The role of trust in the coordinating decisions is variously conceptualized according to the theoretical view adopted by the scholars. The present study adopt the three-level schema introduced by Williamson (1996 and suggest that determinants of trust may operate both at institutional and governance structure level. The analytical framework depicted maintains that trust may determine a reduction of ex post transaction cost in the adaptation of hybrid structure. As a consequence trust appears to be able to extend the range of existence of the hybrids. The empirical part of the study is dedicated to a case study which illustrates the emerging of conditional trust (Fritz et al., 2008 and the role of trust in the adaptation process.
Storing in carbon nano structures for hybrid systems solar hydrogen
International Nuclear Information System (INIS)
Marazzi, R.; Zini, G.; Tartarini, P.
2009-01-01
We have developed a hybrid energy system for converting energy from renewable sources and its storage in the form of hydrogen. The storage uses activated carbon and the methodology was modelled mathematically and simulated in numerical software. The results show that storage compression is cheaper storage for liquefaction. [it
Hybrid discrete choice models: Gained insights versus increasing effort
International Nuclear Information System (INIS)
Mariel, Petr; Meyerhoff, Jürgen
2016-01-01
Hybrid choice models expand the standard models in discrete choice modelling by incorporating psychological factors as latent variables. They could therefore provide further insights into choice processes and underlying taste heterogeneity but the costs of estimating these models often significantly increase. This paper aims at comparing the results from a hybrid choice model and a classical random parameter logit. Point of departure for this analysis is whether researchers and practitioners should add hybrid choice models to their suite of models routinely estimated. Our comparison reveals, in line with the few prior studies, that hybrid models gain in efficiency by the inclusion of additional information. The use of one of the two proposed approaches, however, depends on the objective of the analysis. If disentangling preference heterogeneity is most important, hybrid model seems to be preferable. If the focus is on predictive power, a standard random parameter logit model might be the better choice. Finally, we give recommendations for an adequate use of hybrid choice models based on known principles of elementary scientific inference. - Highlights: • The paper compares performance of a Hybrid Choice Model (HCM) and a classical Random Parameter Logit (RPL) model. • The HCM indeed provides insights regarding preference heterogeneity not gained from the RPL. • The RPL has similar predictive power as the HCM in our data. • The costs of estimating HCM seem to be justified when learning more on taste heterogeneity is a major study objective.
Hybrid discrete choice models: Gained insights versus increasing effort
Energy Technology Data Exchange (ETDEWEB)
Mariel, Petr, E-mail: petr.mariel@ehu.es [UPV/EHU, Economía Aplicada III, Avda. Lehendakari Aguire, 83, 48015 Bilbao (Spain); Meyerhoff, Jürgen [Institute for Landscape Architecture and Environmental Planning, Technical University of Berlin, D-10623 Berlin, Germany and The Kiel Institute for the World Economy, Duesternbrooker Weg 120, 24105 Kiel (Germany)
2016-10-15
Hybrid choice models expand the standard models in discrete choice modelling by incorporating psychological factors as latent variables. They could therefore provide further insights into choice processes and underlying taste heterogeneity but the costs of estimating these models often significantly increase. This paper aims at comparing the results from a hybrid choice model and a classical random parameter logit. Point of departure for this analysis is whether researchers and practitioners should add hybrid choice models to their suite of models routinely estimated. Our comparison reveals, in line with the few prior studies, that hybrid models gain in efficiency by the inclusion of additional information. The use of one of the two proposed approaches, however, depends on the objective of the analysis. If disentangling preference heterogeneity is most important, hybrid model seems to be preferable. If the focus is on predictive power, a standard random parameter logit model might be the better choice. Finally, we give recommendations for an adequate use of hybrid choice models based on known principles of elementary scientific inference. - Highlights: • The paper compares performance of a Hybrid Choice Model (HCM) and a classical Random Parameter Logit (RPL) model. • The HCM indeed provides insights regarding preference heterogeneity not gained from the RPL. • The RPL has similar predictive power as the HCM in our data. • The costs of estimating HCM seem to be justified when learning more on taste heterogeneity is a major study objective.
A Novel Hybrid Nano Scale MOSFET Structure for Low Leak Application
Directory of Open Access Journals (Sweden)
A. Rana
2011-06-01
Full Text Available In this paper, novel hybrid MOSFET(HMOS structure has been proposed to reduce the gate leakage current drastically. This novel hybrid MOSFET (HMOS uses source/drain-to-gate non-overlap region in combination with high-K layer/interfacial oxide as gate stack. The extended S/D in the non-overlap region is induced by fringing gate electric field through the high-k dielectric spacer. The gate leakage behaviour of HMOS has been investigated with the help of compact analytical model and Sentaurus Simulation. The results so obtained show good agreement between model and simulation data. It is found that HMOS structure has reduced the gate leakage current to great extent as compared to conventional overlapped MOSFET structure. Further, the proposed structure had demonstrated improved on current, off current, subthreshold slope and DIBL characteristic.
Tunneling conductance in semiconductor-superconductor hybrid structures
Stenger, John; Stanescu, Tudor D.
2017-12-01
We study the differential conductance for charge tunneling into a semiconductor wire-superconductor hybrid structure, which is actively investigated as a possible scheme for realizing topological superconductivity and Majorana zero modes. The calculations are done based on a tight-binding model of the heterostructure using both a Blonder-Tinkham-Klapwijk approach and a Keldysh nonequilibrium Green's function method. The dependence of various tunneling conductance features on the coupling strength between the semiconductor and the superconductor, the tunnel barrier height, and temperature is systematically investigated. We find that treating the parent superconductor as an active component of the system, rather than a passive source of Cooper pairs, has qualitative consequences regarding the low-energy behavior of the differential conductance. In particular, the presence of subgap states in the parent superconductor, due to disorder and finite magnetic fields, leads to characteristic particle-hole asymmetric features and to the breakdown of the quantization of the zero-bias peak associated with the presence of Majorana zero modes localized at the ends of the wire. The implications of these findings for the effort toward the realization of Majorana bound states with true non-Abelian properties are discussed.
Directory of Open Access Journals (Sweden)
Kecheng Yang
Full Text Available Sampling enrichment toward a target state, an analogue of the improvement of sampling efficiency (SE, is critical in both the refinement of protein structures and the generation of near-native structure ensembles for the exploration of structure-function relationships. We developed a hybrid molecular dynamics (MD-Monte Carlo (MC approach to enrich the sampling toward the target structures. In this approach, the higher SE is achieved by perturbing the conventional MD simulations with a MC structure-acceptance judgment, which is based on the coincidence degree of small angle x-ray scattering (SAXS intensity profiles between the simulation structures and the target structure. We found that the hybrid simulations could significantly improve SE by making the top-ranked models much closer to the target structures both in the secondary and tertiary structures. Specifically, for the 20 mono-residue peptides, when the initial structures had the root-mean-squared deviation (RMSD from the target structure smaller than 7 Å, the hybrid MD-MC simulations afforded, on average, 0.83 Å and 1.73 Å in RMSD closer to the target than the parallel MD simulations at 310K and 370K, respectively. Meanwhile, the average SE values are also increased by 13.2% and 15.7%. The enrichment of sampling becomes more significant when the target states are gradually detectable in the MD-MC simulations in comparison with the parallel MD simulations, and provide >200% improvement in SE. We also performed a test of the hybrid MD-MC approach in the real protein system, the results showed that the SE for 3 out of 5 real proteins are improved. Overall, this work presents an efficient way of utilizing solution SAXS to improve protein structure prediction and refinement, as well as the generation of near native structures for function annotation.
Cullingham, Catherine I; James, Patrick M A; Cooke, Janice E K; Coltman, David W
2012-12-01
Understanding the physical and genetic structure of hybrid zones can illuminate factors affecting their formation and stability. In north-central Alberta, lodgepole pine (Pinus contorta Dougl. ex Loud. var. latifolia) and jack pine (Pinus banksiana Lamb) form a complex and poorly defined hybrid zone. Better knowledge of this zone is relevant, given the recent host expansion of mountain pine beetle into jack pine. We characterized the zone by genotyping 1998 lodgepole, jack pine, and hybrids from British Columbia, Alberta, Saskatchewan, Ontario, and Minnesota at 11 microsatellites. Using Bayesian algorithms, we calculated genetic ancestry and used this to model the relationship between species occurrence and environment. In addition, we analyzed the ancestry of hybrids to calculate the genetic contribution of lodgepole and jack pine. Finally, we measured the amount of gene flow between the pure species. We found the distribution of the pine classes is explained by environmental variables, and these distributions differ from classic distribution maps. Hybrid ancestry was biased toward lodgepole pine; however, gene flow between the two species was equal. The results of this study suggest that the hybrid zone is complex and influenced by environmental constraints. As a result of this analysis, range limits should be redefined.
Ultrafast Dynamic Pressure Sensors Based on Graphene Hybrid Structure.
Liu, Shanbiao; Wu, Xing; Zhang, Dongdong; Guo, Congwei; Wang, Peng; Hu, Weida; Li, Xinming; Zhou, Xiaofeng; Xu, Hejun; Luo, Chen; Zhang, Jian; Chu, Junhao
2017-07-19
Mechanical flexible electronic skin has been focused on sensing various physical parameters, such as pressure and temperature. The studies of material design and array-accessible devices are the building blocks of strain sensors for subtle pressure sensing. Here, we report a new and facile preparation of a graphene hybrid structure with an ultrafast dynamic pressure response. Graphene oxide nanosheets are used as a surfactant to prevent graphene restacking in aqueous solution. This graphene hybrid structure exhibits a frequency-independent pressure resistive sensing property. Exceeding natural skin, such pressure sensors, can provide transient responses from static up to 10 000 Hz dynamic frequencies. Integrated by the controlling system, the array-accessible sensors can manipulate a robot arm and self-rectify the temperature of a heating blanket. This may pave a path toward the future application of graphene-based wearable electronics.
In Situ Production of Graphene-Fiber Hybrid Structures
DEFF Research Database (Denmark)
Akia, Mandana; Cremar, Lee; Chipara, Mircea
2017-01-01
We report a scalable method to obtain a new material where large graphene sheets form webs linking carbon fibers. Film-fiber hybrid nonwoven mats are formed during fiber processing and converted to carbon structures after a simple thermal treatment. This contrasts with multistep methods...... that attempt to mix previously prepared graphene and fibers, or require complicated and costly processes for deposition of graphene over carbon fibers. The developed graphene-fiber hybrid structures have seamless connections between graphene and fibers, and in fact the graphene "veils" extend directly from one...... a capillarity effect that promoted the formation of thin veils, which become graphene sheets upon dehydration by sulfuric acid vapor followed by carbonization (at relatively low temperatures, below 800 °C). These veils extend over several micrometers within the pores of the fiber network, and consist...
Hybrid Optimization in the Design of Reciprocal Structures
DEFF Research Database (Denmark)
Parigi, Dario; Kirkegaard, Poul Henning; Sassone, Mario
2012-01-01
that explore the global domain of solutions as genetic algorithms (GAs). The benchmark tests show that when the control on the topology is required the best result is obtained by a hybrid approach that combines the global search of the GA with the local search of a GB algorithm. The optimization method......The paper presents a method to generate the geometry of reciprocal structures by means of a hybrid optimization procedure. The geometry of reciprocal structures where elements are sitting on the top or in the bottom of each other is extremely difficult to predict because of the non....... In this paper it is shown that the geometrically compatible position of the elements could be determined by local search algorithm gradient-based (GB). However the control on which bar sit on the top or in the bottom at each connection can be regarded as a topological problem and require the use of algorithms...
Hybrid competitive strategies, organizational structure, and firm performance
Pertusa Ortega, Eva María
2008-01-01
Comunicación presentada en SMS 28th Annual International Conference, Cologne, Germany, October 12-15, 2008. This paper analyzes the internal characteristics of organizational structure which have an influence on the development of hybrid competitive strategies and their link to firm performance. The study examines a sample of large Spanish firms belonging to different sectors by means of the Partial Least Squares (PLS) technique, using formative dimensions for competitive strategy and orga...
Novel Damage Detection Techniques for Structural Health Monitoring Using a Hybrid Sensor
Directory of Open Access Journals (Sweden)
Dengjiang Wang
2016-01-01
Full Text Available This study presents a technique for detecting fatigue cracks based on a hybrid sensor monitoring system consisting of a combination of intelligent coating monitoring (ICM and piezoelectric transducer (PZT sensors. An experimental procedure using this hybrid sensor system was designed to monitor the cracks generated by fatigue testing in plate structures. A probability of detection (POD model that quantifies the reliability of damage detection for a specific sensor or the nondestructive testing (NDT method was used to evaluate the weight factor for the ICM and PZT sensors. To estimate the uncertainty of model parameters in this study, the Bayesian method was employed. Realistic data from fatigue testing was used to validate the overall method, and the results show that the novel damage detection technique using a hybrid sensor can quantify fatigue cracks more accurately than results obtained by conventional sensor methods.
Efficient Vaccine Distribution Based on a Hybrid Compartmental Model.
Directory of Open Access Journals (Sweden)
Zhiwen Yu
Full Text Available To effectively and efficiently reduce the morbidity and mortality that may be caused by outbreaks of emerging infectious diseases, it is very important for public health agencies to make informed decisions for controlling the spread of the disease. Such decisions must incorporate various kinds of intervention strategies, such as vaccinations, school closures and border restrictions. Recently, researchers have paid increased attention to searching for effective vaccine distribution strategies for reducing the effects of pandemic outbreaks when resources are limited. Most of the existing research work has been focused on how to design an effective age-structured epidemic model and to select a suitable vaccine distribution strategy to prevent the propagation of an infectious virus. Models that evaluate age structure effects are common, but models that additionally evaluate geographical effects are less common. In this paper, we propose a new SEIR (susceptible-exposed-infectious šC recovered model, named the hybrid SEIR-V model (HSEIR-V, which considers not only the dynamics of infection prevalence in several age-specific host populations, but also seeks to characterize the dynamics by which a virus spreads in various geographic districts. Several vaccination strategies such as different kinds of vaccine coverage, different vaccine releasing times and different vaccine deployment methods are incorporated into the HSEIR-V compartmental model. We also design four hybrid vaccination distribution strategies (based on population size, contact pattern matrix, infection rate and infectious risk for controlling the spread of viral infections. Based on data from the 2009-2010 H1N1 influenza epidemic, we evaluate the effectiveness of our proposed HSEIR-V model and study the effects of different types of human behaviour in responding to epidemics.
Development of Hybrid Product Breakdown Structure for NASA Ground Systems
Monaghan, Mark W.; Henry, Robert J.
2013-01-01
The Product Breakdown Structure is traditionally a method of identification of the products of a project in a tree structure. It is a tool used to assess, plan, document, and display the equipment requirements for a project. It is part of a product based planning technique, and attempts to break down all components of a project in as much detail as possible, so that nothing is overlooked. The PBS for ground systems at the Kennedy Space Center is being developed to encompass the traditional requirements including the alignment of facility, systems, and components to the organizational hierarchy. The Ground Operations Product Breakdown Structure is a hybrid in nature in that some aspects of a work breakdown structure will be incorporated and merged with the Architecture Concept of Operations, Master Subsystem List, customer interface, and assigned management responsibility. The Ground Operations Product Breakdown Structure needs to be able to identify the flexibility of support differing customers (internal and external) usage of ground support equipment within the Kennedy Space Center launch and processing complex. The development of the Product Breakdown Structure is an iterative activity Initially documenting the organization hierarchy structure and relationships. The Product Breakdown Structure identifies the linkage between the customer program requirements, allocation of system resources, development of design goals, and identification logistics products. As the Product Breakdown Structure progresses the incorporation of the results of requirement planning for the customer occurs identifying facility needs and systems. The mature Product Breakdown Structure is baselined with a hierarchical drawing, the Product Breakdown Structure database, and an associated document identifying the verification of the data through the life cycle of the program/product line. This paper will document, demonstrate, and identify key aspects of the life cycle of a Hybrid Product
Model predictive control of hybrid systems : stability and robustness
Lazar, M.
2006-01-01
This thesis considers the stabilization and the robust stabilization of certain classes of hybrid systems using model predictive control. Hybrid systems represent a broad class of dynamical systems in which discrete behavior (usually described by a finite state machine) and continuous behavior
Transient Model of Hybrid Concentrated Photovoltaic with Thermoelectric Generator
DEFF Research Database (Denmark)
Mahmoudi Nezhad, Sajjad; Qing, Shaowei; Rezaniakolaei, Alireza
2017-01-01
Transient performance of a concentrated photovoltaic thermoelectric (CPV-TEG) hybrid system is modeled and investigated. A heat sink with water, as the working fluid has been implemented as the cold reservoir of the hybrid system to harvest the heat loss from CPV cell and to increase the efficiency...
Hybrid CFD/CAA Modeling for Liftoff Acoustic Predictions
Strutzenberg, Louise L.; Liever, Peter A.
2011-01-01
This paper presents development efforts at the NASA Marshall Space flight Center to establish a hybrid Computational Fluid Dynamics and Computational Aero-Acoustics (CFD/CAA) simulation system for launch vehicle liftoff acoustics environment analysis. Acoustic prediction engineering tools based on empirical jet acoustic strength and directivity models or scaled historical measurements are of limited value in efforts to proactively design and optimize launch vehicles and launch facility configurations for liftoff acoustics. CFD based modeling approaches are now able to capture the important details of vehicle specific plume flow environment, identifY the noise generation sources, and allow assessment of the influence of launch pad geometric details and sound mitigation measures such as water injection. However, CFD methodologies are numerically too dissipative to accurately capture the propagation of the acoustic waves in the large CFD models. The hybrid CFD/CAA approach combines the high-fidelity CFD analysis capable of identifYing the acoustic sources with a fast and efficient Boundary Element Method (BEM) that accurately propagates the acoustic field from the source locations. The BEM approach was chosen for its ability to properly account for reflections and scattering of acoustic waves from launch pad structures. The paper will present an overview of the technology components of the CFD/CAA framework and discuss plans for demonstration and validation against test data.
A hybrid spatiotemporal drought forecasting model for operational use
Vasiliades, L.; Loukas, A.
2010-09-01
Drought forecasting plays an important role in the planning and management of natural resources and water resource systems in a river basin. Early and timelines forecasting of a drought event can help to take proactive measures and set out drought mitigation strategies to alleviate the impacts of drought. Spatiotemporal data mining is the extraction of unknown and implicit knowledge, structures, spatiotemporal relationships, or patterns not explicitly stored in spatiotemporal databases. As one of data mining techniques, forecasting is widely used to predict the unknown future based upon the patterns hidden in the current and past data. This study develops a hybrid spatiotemporal scheme for integrated spatial and temporal forecasting. Temporal forecasting is achieved using feed-forward neural networks and the temporal forecasts are extended to the spatial dimension using a spatial recurrent neural network model. The methodology is demonstrated for an operational meteorological drought index the Standardized Precipitation Index (SPI) calculated at multiple timescales. 48 precipitation stations and 18 independent precipitation stations, located at Pinios river basin in Thessaly region, Greece, were used for the development and spatiotemporal validation of the hybrid spatiotemporal scheme. Several quantitative temporal and spatial statistical indices were considered for the performance evaluation of the models. Furthermore, qualitative statistical criteria based on contingency tables between observed and forecasted drought episodes were calculated. The results show that the lead time of forecasting for operational use depends on the SPI timescale. The hybrid spatiotemporal drought forecasting model could be operationally used for forecasting up to three months ahead for SPI short timescales (e.g. 3-6 months) up to six months ahead for large SPI timescales (e.g. 24 months). The above findings could be useful in developing a drought preparedness plan in the region.
Extraordinary Magnetoresistance Effect in Semiconductor/Metal Hybrid Structure
Sun, Jian
2013-06-27
In this dissertation, the extraordinary magnetoresistance (EMR) effect in semiconductor/metal hybrid structures is studied to improve the performance in sensing applications. Using two-dimensional finite element simulations, the geometric dependence of the output sensitivity, which is a more relevant parameter for EMR sensors than the magnetoresistance (MR), is studied. The results show that the optimal geometry in this case is different from the geometry reported before, where the MR ratio was optimized. A device consisting of a semiconductor bar with length/width ratio of 5~10 and having only 2 contacts is found to exhibit the highest sensitivity. A newly developed three-dimensional finite element model is employed to investigate parameters that have been neglected with the two dimensional simulations utilized so far, i.e., thickness of metal shunt and arbitrary semiconductor/metal interface. The simulations show the influence of those parameters on the sensitivity is up to 10 %. The model also enables exploring the EMR effect in planar magnetic fields. In case of a bar device, the sensitivity to planar fields is about 15 % to 20 % of the one to perpendicular fields. 5 A “top-contacted” structure is proposed to reduce the complexity of fabrication, where neither patterning of the semiconductor nor precise alignment is required. A comparison of the new structure with a conventionally fabricated device shows that a similar magnetic field resolution of 24 nT/√Hz is obtained. A new 3-contact device is developed improving the poor low-field sensitivity observed in conventional EMR devices, resulting from its parabolic magnetoresistance response. The 3-contact device provides a considerable boost of the low field response by combining the Hall effect with the EMR effect, resulting in an increase of the output sensitivity by 5 times at 0.01 T compared to a 2-contact device. The results of this dissertation provide new insights into the optimization of EMR devices
Hybrid FDTD Analysis for Periodic On-Chip Terahertz (THZ) Structures
Energy Technology Data Exchange (ETDEWEB)
Hussein, Yasser A.; Spencer, James E.; /SLAC
2005-06-07
We present electromagnetic analysis and radiation efficiency calculations for on-chip terahertz (THz) structures based on a hybrid, finite-difference, time-domain (HFDTD) technique. The method employs the FDTD technique to calculate S-parameters for one cell of a periodic structure. The transmission ABCD matrix is then estimated and multiplied by itself n times to obtain the n-cell periodic structure ABCD parameters that are then converted back to S-parameters. Validation of the method is carried out by comparing the results of the hybrid technique with FDTD calculations of the entire periodic structure as well as with HFSS which all agree quite well. This procedure reduces the CPU-time and allows efficient design and optimization of periodic THz radiation sources. Future research will involve coupling of Maxwell's equations with a more detailed, physics-based transport model for higher-order effects.
The Role of Structural Enthalpy in Spherical Nucleic Acid Hybridization.
Fong, Lam-Kiu; Wang, Ziwei; Schatz, George C; Luijten, Erik; Mirkin, Chad A
2018-05-23
DNA hybridization onto DNA-functionalized nanoparticle surfaces (e.g., in the form of a spherical nucleic acid (SNA)) is known to be enhanced relative to hybridization free in solution. Surprisingly, via isothermal titration calorimetry, we reveal that this enhancement is enthalpically, as opposed to entropically, dominated by ∼20 kcal/mol. Coarse-grained molecular dynamics simulations suggest that the observed enthalpic enhancement results from structurally confining the DNA on the nanoparticle surface and preventing it from adopting enthalpically unfavorable conformations like those observed in the solution case. The idea that structural confinement leads to the formation of energetically more stable duplexes is evaluated by decreasing the degree of confinement a duplex experiences on the nanoparticle surface. Both experiment and simulation confirm that when the surface-bound duplex is less confined, i.e., at lower DNA surface density or at greater distance from the nanoparticle surface, its enthalpy of formation approaches the less favorable enthalpy of duplex formation for the linear strand in solution. This work provides insight into one of the most important and enabling properties of SNAs and will inform the design of materials that rely on the thermodynamics of hybridization onto DNA-functionalized surfaces, including diagnostic probes and therapeutic agents.
Wu, Guang; Dong, Zuomin
2017-09-01
Hybrid electric vehicles are widely accepted as a promising short to mid-term technical solution due to noticeably improved efficiency and lower emissions at competitive costs. In recent years, various hybrid powertrain systems were proposed and implemented based on different types of conventional transmission. Power-split system, including Toyota Hybrid System and Ford Hybrid System, are well-known examples. However, their relatively low torque capacity, and the drive of alternative and more advanced designs encouraged other innovative hybrid system designs. In this work, a new type of hybrid powertrain system based hybridized automated manual transmission (HAMT) is proposed. By using the concept of torque gap filler (TGF), this new hybrid powertrain type has the potential to overcome issue of torque gap during gearshift. The HAMT design (patent pending) is described in details, from gear layout and design of gear ratios (EV mode and HEV mode) to torque paths at different gears. As an analytical tool, mutli-body model of vehicle equipped with this HAMT was built to analyze powertrain dynamics at various steady and transient modes. A gearshift was decomposed and analyzed based basic modes. Furthermore, a Simulink-SimDriveline hybrid vehicle model was built for the new transmission, driveline and vehicle modular. Control strategy has also been built to harmonically coordinate different powertrain components to realize TGF function. A vehicle launch simulation test has been completed under 30% of accelerator pedal position to reveal details during gearshift. Simulation results showed that this HAMT can eliminate most torque gap that has been persistent issue of traditional AMT, improving both drivability and performance. This work demonstrated a new type of transmission that features high torque capacity, high efficiency and improved drivability.
DEFF Research Database (Denmark)
Andreasen, Martin Møller; Meldrum, Andrew
This paper studies whether dynamic term structure models for US nominal bond yields should enforce the zero lower bound by a quadratic policy rate or a shadow rate specification. We address the question by estimating quadratic term structure models (QTSMs) and shadow rate models with at most four...
Hybrid model for simulation of plasma jet injection in tokamak
Galkin, Sergei A.; Bogatu, I. N.
2016-10-01
Hybrid kinetic model of plasma treats the ions as kinetic particles and the electrons as charge neutralizing massless fluid. The model is essentially applicable when most of the energy is concentrated in the ions rather than in the electrons, i.e. it is well suited for the high-density hyper-velocity C60 plasma jet. The hybrid model separates the slower ion time scale from the faster electron time scale, which becomes disregardable. That is why hybrid codes consistently outperform the traditional PIC codes in computational efficiency, still resolving kinetic ions effects. We discuss 2D hybrid model and code with exact energy conservation numerical algorithm and present some results of its application to simulation of C60 plasma jet penetration through tokamak-like magnetic barrier. We also examine the 3D model/code extension and its possible applications to tokamak and ionospheric plasmas. The work is supported in part by US DOE DE-SC0015776 Grant.
Del Carpio R., Maikol; Hashemi, M. Javad; Mosqueda, Gilberto
2017-10-01
This study examines the performance of integration methods for hybrid simulation of large and complex structural systems in the context of structural collapse due to seismic excitations. The target application is not necessarily for real-time testing, but rather for models that involve large-scale physical sub-structures and highly nonlinear numerical models. Four case studies are presented and discussed. In the first case study, the accuracy of integration schemes including two widely used methods, namely, modified version of the implicit Newmark with fixed-number of iteration (iterative) and the operator-splitting (non-iterative) is examined through pure numerical simulations. The second case study presents the results of 10 hybrid simulations repeated with the two aforementioned integration methods considering various time steps and fixed-number of iterations for the iterative integration method. The physical sub-structure in these tests consists of a single-degree-of-freedom (SDOF) cantilever column with replaceable steel coupons that provides repeatable highlynonlinear behavior including fracture-type strength and stiffness degradations. In case study three, the implicit Newmark with fixed-number of iterations is applied for hybrid simulations of a 1:2 scale steel moment frame that includes a relatively complex nonlinear numerical substructure. Lastly, a more complex numerical substructure is considered by constructing a nonlinear computational model of a moment frame coupled to a hybrid model of a 1:2 scale steel gravity frame. The last two case studies are conducted on the same porotype structure and the selection of time steps and fixed number of iterations are closely examined in pre-test simulations. The generated unbalance forces is used as an index to track the equilibrium error and predict the accuracy and stability of the simulations.
Model for optimum design of standalone hybrid renewable energy ...
African Journals Online (AJOL)
An optimization model for the design of a hybrid renewable energy microgrid ... and increasing the rated power of the wind energy conversion system (WECS) or solar ... a 70% reduction in gas emissions and an 80% reduction in energy costs.
Hybrid Modelling of Individual Movement and Collective Behaviour
Franz, Benjamin
2013-01-01
Mathematical models of dispersal in biological systems are often written in terms of partial differential equations (PDEs) which describe the time evolution of population-level variables (concentrations, densities). A more detailed modelling approach is given by individual-based (agent-based) models which describe the behaviour of each organism. In recent years, an intermediate modelling methodology - hybrid modelling - has been applied to a number of biological systems. These hybrid models couple an individual-based description of cells/animals with a PDE-model of their environment. In this chapter, we overview hybrid models in the literature with the focus on the mathematical challenges of this modelling approach. The detailed analysis is presented using the example of chemotaxis, where cells move according to extracellular chemicals that can be altered by the cells themselves. In this case, individual-based models of cells are coupled with PDEs for extracellular chemical signals. Travelling waves in these hybrid models are investigated. In particular, we show that in contrary to the PDEs, hybrid chemotaxis models only develop a transient travelling wave. © 2013 Springer-Verlag Berlin Heidelberg.
Nuclear Hybrid Energy System Modeling: RELAP5 Dynamic Coupling Capabilities
Energy Technology Data Exchange (ETDEWEB)
Piyush Sabharwall; Nolan Anderson; Haihua Zhao; Shannon Bragg-Sitton; George Mesina
2012-09-01
The nuclear hybrid energy systems (NHES) research team is currently developing a dynamic simulation of an integrated hybrid energy system. A detailed simulation of proposed NHES architectures will allow initial computational demonstration of a tightly coupled NHES to identify key reactor subsystem requirements, identify candidate reactor technologies for a hybrid system, and identify key challenges to operation of the coupled system. This work will provide a baseline for later coupling of design-specific reactor models through industry collaboration. The modeling capability addressed in this report focuses on the reactor subsystem simulation.
Brandenburg, Jan Gerit; Caldeweyher, Eike; Grimme, Stefan
2016-06-21
We extend the recently introduced PBEh-3c global hybrid density functional [S. Grimme et al., J. Chem. Phys., 2015, 143, 054107] by a screened Fock exchange variant based on the Henderson-Janesko-Scuseria exchange hole model. While the excellent performance of the global hybrid is maintained for small covalently bound molecules, its performance for computed condensed phase mass densities is further improved. Most importantly, a speed up of 30 to 50% can be achieved and especially for small orbital energy gap cases, the method is numerically much more robust. The latter point is important for many applications, e.g., for metal-organic frameworks, organic semiconductors, or protein structures. This enables an accurate density functional based electronic structure calculation of a full DNA helix structure on a single core desktop computer which is presented as an example in addition to comprehensive benchmark results.
The WITCH Model. Structure, Baseline, Solutions.
Energy Technology Data Exchange (ETDEWEB)
Bosetti, V.; Massetti, E.; Tavoni, M.
2007-07-01
WITCH - World Induced Technical Change Hybrid - is a regionally disaggregated hard link hybrid global model with a neoclassical optimal growth structure (top down) and an energy input detail (bottom up). The model endogenously accounts for technological change, both through learning curves affecting prices of new vintages of capital and through R and D investments. The model features the main economic and environmental policies in each world region as the outcome of a dynamic game. WITCH belongs to the class of Integrated Assessment Models as it possesses a climate module that feeds climate changes back into the economy. In this paper we provide a thorough discussion of the model structure and baseline projections. We report detailed information on the evolution of energy demand, technology and CO2 emissions. Finally, we explicitly quantifiy the role of free riding in determining the emissions scenarios. (auth)
Modelling biochemical networks with intrinsic time delays: a hybrid semi-parametric approach
Directory of Open Access Journals (Sweden)
Oliveira Rui
2010-09-01
Full Text Available Abstract Background This paper presents a method for modelling dynamical biochemical networks with intrinsic time delays. Since the fundamental mechanisms leading to such delays are many times unknown, non conventional modelling approaches become necessary. Herein, a hybrid semi-parametric identification methodology is proposed in which discrete time series are incorporated into fundamental material balance models. This integration results in hybrid delay differential equations which can be applied to identify unknown cellular dynamics. Results The proposed hybrid modelling methodology was evaluated using two case studies. The first of these deals with dynamic modelling of transcriptional factor A in mammalian cells. The protein transport from the cytosol to the nucleus introduced a delay that was accounted for by discrete time series formulation. The second case study focused on a simple network with distributed time delays that demonstrated that the discrete time delay formalism has broad applicability to both discrete and distributed delay problems. Conclusions Significantly better prediction qualities of the novel hybrid model were obtained when compared to dynamical structures without time delays, being the more distinctive the more significant the underlying system delay is. The identification of the system delays by studies of different discrete modelling delays was enabled by the proposed structure. Further, it was shown that the hybrid discrete delay methodology is not limited to discrete delay systems. The proposed method is a powerful tool to identify time delays in ill-defined biochemical networks.
Hybrid continuum-coarse-grained modeling of erythrocytes
Lyu, Jinming; Chen, Paul G.; Boedec, Gwenn; Leonetti, Marc; Jaeger, Marc
2018-06-01
The red blood cell (RBC) membrane is a composite structure, consisting of a phospholipid bilayer and an underlying membrane-associated cytoskeleton. Both continuum and particle-based coarse-grained RBC models make use of a set of vertices connected by edges to represent the RBC membrane, which can be seen as a triangular surface mesh for the former and a spring network for the latter. Here, we present a modeling approach combining an existing continuum vesicle model with a coarse-grained model for the cytoskeleton. Compared to other two-component approaches, our method relies on only one mesh, representing the cytoskeleton, whose velocity in the tangential direction of the membrane may be different from that of the lipid bilayer. The finitely extensible nonlinear elastic (FENE) spring force law in combination with a repulsive force defined as a power function (POW), called FENE-POW, is used to describe the elastic properties of the RBC membrane. The mechanical interaction between the lipid bilayer and the cytoskeleton is explicitly computed and incorporated into the vesicle model. Our model includes the fundamental mechanical properties of the RBC membrane, namely fluidity and bending rigidity of the lipid bilayer, and shear elasticity of the cytoskeleton while maintaining surface-area and volume conservation constraint. We present three simulation examples to demonstrate the effectiveness of this hybrid continuum-coarse-grained model for the study of RBCs in fluid flows.
A hybrid Scatter/Transform cloaking model
Directory of Open Access Journals (Sweden)
Gad Licht
2015-01-01
Full Text Available A new Scatter/Transform cloak is developed that combines the light bending of refraction characteristic of a Transform cloak with the scatter cancellation characteristic of a Scatter cloak. The hybrid cloak incorporates both Transform’s variable index of refraction with modified linear intrusions to maximize the Scatter cloak effect. Scatter/Transform improved the scattering cross-section of cloaking in a 2-dimensional space to 51.7% compared to only 39.6% or 45.1% respectively with either Scatter or Transform alone. Metamaterials developed with characteristics based on the new ST hybrid cloak will exhibit superior cloaking capabilities.
A hybrid multiview stereo algorithm for modeling urban scenes.
Lafarge, Florent; Keriven, Renaud; Brédif, Mathieu; Vu, Hoang-Hiep
2013-01-01
We present an original multiview stereo reconstruction algorithm which allows the 3D-modeling of urban scenes as a combination of meshes and geometric primitives. The method provides a compact model while preserving details: Irregular elements such as statues and ornaments are described by meshes, whereas regular structures such as columns and walls are described by primitives (planes, spheres, cylinders, cones, and tori). We adopt a two-step strategy consisting first in segmenting the initial meshbased surface using a multilabel Markov Random Field-based model and second in sampling primitive and mesh components simultaneously on the obtained partition by a Jump-Diffusion process. The quality of a reconstruction is measured by a multi-object energy model which takes into account both photo-consistency and semantic considerations (i.e., geometry and shape layout). The segmentation and sampling steps are embedded into an iterative refinement procedure which provides an increasingly accurate hybrid representation. Experimental results on complex urban structures and large scenes are presented and compared to state-of-the-art multiview stereo meshing algorithms.
Superconductivity in the periodic Anderson model with anisotropic hybridization
International Nuclear Information System (INIS)
Sarasua, L.G.; Continentino, Mucio A.
2003-01-01
In this work we study superconductivity in the periodic Anderson model with both on-site and intersite hybridization, including the interband Coulomb repulsion. We show that the presence of the intersite hybridization together with the on-site hybridization significantly affects the superconducting properties of the system. The symmetry of the hybridization has a strong influence in the symmetry of the superconducting order parameter of the ground state. The interband Coulomb repulsion may increase or decrease the superconducting critical temperature at small values of this interaction, while is detrimental to superconductivity for strong values. We show that the present model can give rise to positive or negative values of dT c /dP, depending on the values of the system parameters
Modelling and Verifying Communication Failure of Hybrid Systems in HCSP
DEFF Research Database (Denmark)
Wang, Shuling; Nielson, Flemming; Nielson, Hanne Riis
2016-01-01
Hybrid systems are dynamic systems with interacting discrete computation and continuous physical processes. They have become ubiquitous in our daily life, e.g. automotive, aerospace and medical systems, and in particular, many of them are safety-critical. For a safety-critical hybrid system......, in the presence of communication failure, the expected control from the controller will get lost and as a consequence the physical process cannot behave as expected. In this paper, we mainly consider the communication failure caused by the non-engagement of one party in communication action, i.......e. the communication itself fails to occur. To address this issue, this paper proposes a formal framework by extending HCSP, a formal modeling language for hybrid systems, for modeling and verifying hybrid systems in the absence of receiving messages due to communication failure. We present two inference systems...
Rezvani, Alireza; Khalili, Abbas; Mazareie, Alireza; Gandomkar, Majid
2016-07-01
Nowadays, photovoltaic (PV) generation is growing increasingly fast as a renewable energy source. Nevertheless, the drawback of the PV system is its dependence on weather conditions. Therefore, battery energy storage (BES) can be considered to assist for a stable and reliable output from PV generation system for loads and improve the dynamic performance of the whole generation system in grid connected mode. In this paper, a novel topology of intelligent hybrid generation systems with PV and BES in a DC-coupled structure is presented. Each photovoltaic cell has a specific point named maximum power point on its operational curve (i.e. current-voltage or power-voltage curve) in which it can generate maximum power. Irradiance and temperature changes affect these operational curves. Therefore, the nonlinear characteristic of maximum power point to environment has caused to development of different maximum power point tracking techniques. In order to capture the maximum power point (MPP), a hybrid fuzzy-neural maximum power point tracking (MPPT) method is applied in the PV system. Obtained results represent the effectiveness and superiority of the proposed method, and the average tracking efficiency of the hybrid fuzzy-neural is incremented by approximately two percentage points in comparison to the conventional methods. It has the advantages of robustness, fast response and good performance. A detailed mathematical model and a control approach of a three-phase grid-connected intelligent hybrid system have been proposed using Matlab/Simulink. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.
Directory of Open Access Journals (Sweden)
Xingfa Yang
2018-01-01
Full Text Available Nondeterministic parameters of certain distribution are employed to model structural uncertainties, which are usually assumed as stochastic factors. However, model parameters may not be precisely represented due to some factors in engineering practices, such as lack of sufficient data, data with fuzziness, and unknown-but-bounded conditions. To this end, interval and fuzzy parameters are implemented and an efficient approach to structural reliability analysis with random-interval-fuzzy hybrid parameters is proposed in this study. Fuzzy parameters are first converted to equivalent random ones based on the equal entropy principle. 3σ criterion is then employed to transform the equivalent random and the original random parameters to interval variables. In doing this, the hybrid reliability problem is transformed into the one only with interval variables, in other words, nonprobabilistic reliability analysis problem. Nevertheless, the problem of interval extension existed in interval arithmetic, especially for the nonlinear systems. Therefore, universal grey mathematics, which can tackle the issue of interval extension, is employed to solve the nonprobabilistic reliability analysis problem. The results show that the proposed method can obtain more conservative results of the hybrid structural reliability.
International Nuclear Information System (INIS)
Marcel, T.
2011-01-01
The prediction of fluid-elastic instabilities that develop in a tube bundle is of major importance for the design of modern heat exchangers in nuclear reactors, to prevent accidents associated with such instabilities. The fluid-elastic instabilities, or flutter, cause material fatigue, shocks between beams and damage to the solid walls. These issues are very complex for scientific applications involving the nuclear industry. This work is a collaboration between EDF, CEA and IMFT. It aims to improve the numerical simulation of the fluid-structure interaction in the tube bundle, in particular in the range of critical parameters contribute to the onset of damping negative system and the fluid-elastic instability. (author) [fr
Fluid Survival Tool: A Model Checker for Hybrid Petri Nets
Postema, Björn Frits; Remke, Anne Katharina Ingrid; Haverkort, Boudewijn R.H.M.; Ghasemieh, Hamed
2014-01-01
Recently, algorithms for model checking Stochastic Time Logic (STL) on Hybrid Petri nets with a single general one-shot transition (HPNG) have been introduced. This paper presents a tool for model checking HPNG models against STL formulas. A graphical user interface (GUI) not only helps to
Nuclear Hybrid Energy System Model Stability Testing
Energy Technology Data Exchange (ETDEWEB)
Greenwood, Michael Scott [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Cetiner, Sacit M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Fugate, David W. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
2017-04-01
A Nuclear Hybrid Energy System (NHES) uses a nuclear reactor as the basic power generation unit, and the power generated is used by multiple customers as combinations of thermal power or electrical power. The definition and architecture of a particular NHES can be adapted based on the needs and opportunities of different localities and markets. For example, locations in need of potable water may be best served by coupling a desalination plant to the NHES. Similarly, a location near oil refineries may have a need for emission-free hydrogen production. Using the flexible, multi-domain capabilities of Modelica, Argonne National Laboratory, Idaho National Laboratory, and Oak Ridge National Laboratory are investigating the dynamics (e.g., thermal hydraulics and electrical generation/consumption) and cost of a hybrid system. This paper examines the NHES work underway, emphasizing the control system developed for individual subsystems and the overall supervisory control system.
Sheikhan, Mansour; Abbasnezhad Arabi, Mahdi; Gharavian, Davood
2015-10-01
Artificial neural networks are efficient models in pattern recognition applications, but their performance is dependent on employing suitable structure and connection weights. This study used a hybrid method for obtaining the optimal weight set and architecture of a recurrent neural emotion classifier based on gravitational search algorithm (GSA) and its binary version (BGSA), respectively. By considering the features of speech signal that were related to prosody, voice quality, and spectrum, a rich feature set was constructed. To select more efficient features, a fast feature selection method was employed. The performance of the proposed hybrid GSA-BGSA method was compared with similar hybrid methods based on particle swarm optimisation (PSO) algorithm and its binary version, PSO and discrete firefly algorithm, and hybrid of error back-propagation and genetic algorithm that were used for optimisation. Experimental tests on Berlin emotional database demonstrated the superior performance of the proposed method using a lighter network structure.
Hybrid solar cells composed of perovskite and polymer photovoltaic structures
Phaometvarithorn, Apatsanan; Chuangchote, Surawut; Kumnorkaew, Pisist; Wootthikanokkhan, Jatuphorn
2018-06-01
Organic/inorganic lead halide perovskite solar cells have recently attracted much attention in photovoltaic research, due to the devices show promising ways to achieve high efficiencies. The perovskite devices with high efficiencies, however, are typically fabricated in tandem solar cell which is complicated. In this research work, we introduce a solar cell device with the combination of CH3NH3PbI3-xClx perovskite and bulk heterojunction PCDTBT:PC70BM polymer without any tandem structure. The new integrated perovskite/polymer hybrid structure of ITO/PEDOT:PSS/perovskite/PCDTBT:PC70BM/PC70BM/TiOx/Al provides higher power conversion efficiency (PCE) of devices compared with conventional perovskite cell structure. With the optimized PCDTBT:PC70BM thickness of ∼70 nm, the highest PCE of 11.67% is achieved. Variation of conducting donor polymers in this new structure is also preliminary demonstrated. This study provides an attractively innovative structure and a promising design for further development of the new-generation solar cells.
Hadden, C. M.; Klimek-McDonald, D. R.; Pineda, E. J.; King, J. A.; Reichanadter, A. M.; Miskioglu, I.; Gowtham, S.; Odegard, G. M.
2015-01-01
Because of the relatively high specific mechanical properties of carbon fiber/epoxy composite materials, they are often used as structural components in aerospace applications. Graphene nanoplatelets (GNPs) can be added to the epoxy matrix to improve the overall mechanical properties of the composite. The resulting GNP/carbon fiber/epoxy hybrid composites have been studied using multiscale modeling to determine the influence of GNP volume fraction, epoxy crosslink density, and GNP dispersion on the mechanical performance. The hierarchical multiscale modeling approach developed herein includes Molecular Dynamics (MD) and micromechanical modeling, and it is validated with experimental testing of the same hybrid composite material system. The results indicate that the multiscale modeling approach is accurate and provides physical insight into the composite mechanical behavior. Also, the results quantify the substantial impact of GNP volume fraction and dispersion on the transverse mechanical properties of the hybrid composite, while the effect on the axial properties is shown to be insignificant.
Hadden, Cameron M.; Klimek-McDonald, Danielle R.; Pineda, Evan J.; King, Julie A.; Reichanadter, Alex M.; Miskioglu, Ibrahim; Gowtham, S.; Odegard, Gregory M.
2015-01-01
Because of the relatively high specific mechanical properties of carbon fiber/epoxy composite materials, they are often used as structural components in aerospace applications. Graphene nanoplatelets (GNPs) can be added to the epoxy matrix to improve the overall mechanical properties of the composite. The resulting GNP/carbon fiber/epoxy hybrid composites have been studied using multiscale modeling to determine the influence of GNP volume fraction, epoxy crosslink density, and GNP dispersion on the mechanical performance. The hierarchical multiscale modeling approach developed herein includes Molecular Dynamics (MD) and micromechanical modeling, and it is validated with experimental testing of the same hybrid composite material system. The results indicate that the multiscale modeling approach is accurate and provides physical insight into the composite mechanical behavior. Also, the results quantify the substantial impact of GNP volume fraction and dispersion on the transverse mechanical properties of the hybrid composite, while the effect on the axial properties is shown to be insignificant.
Hybrid metal-dielectric, slow wave structure with magnetic coupling and compensation
Energy Technology Data Exchange (ETDEWEB)
Smirnov, A.V., E-mail: asmirnov@radiabeam.com [RadiaBeam Systems LLC, 1713 Stewart St., Santa Monica, CA 90404 (United States); Savin, E. [RadiaBeam Systems LLC, 1713 Stewart St., Santa Monica, CA 90404 (United States); National Research Nuclear University “MEPhI”, Moscow 115409 (Russian Federation)
2016-06-01
A number of electron beam vacuum devices such as small radiofrequency (RF) linear accelerators (linacs) and microwave traveling wave tubes (TWTs) utilize slow wave structures which are usually rather complicated in production and may require multi-step brazing and time consuming tuning. Fabrication of these devices becomes challenging at centimeter wavelengths, at large number of cells, and when a series or mass production of such structures is required. A hybrid, metal-dielectric, periodic structure for low gradient, low beam current applications is introduced here as a modification of Andreev’s disk-and-washer (DaW) structure. Compensated type of coupling between even and odd TE01 modes in the novel structure results in negative group velocity with absolute values as high as 0.1c–0.2c demonstrated in simulations. Sensitivity to material imperfections and electrodynamic parameters of the disk-and-ring (DaR) structure are considered numerically using a single cell model.
Novel structural hybrids of pyrazolobenzothiazines with benzimidazoles as cholinesterase inhibitors.
Aslam, Sana; Zaib, Sumera; Ahmad, Matloob; Gardiner, John M; Ahmad, Aqeel; Hameed, Abdul; Furtmann, Norbert; Gütschow, Michael; Bajorath, Jürgen; Iqbal, Jamshed
2014-05-06
Two series of novel pyrazolobenzothiazine-based hybrid compounds were efficiently synthesized starting from saccharin sodium salt. Pyrazolo[4,3-c][1,2]benzothiazine scaffolds were N-arylated by using p-fluorobenzaldehyde, followed by the incorporation of a benzimidazole or similar ring systems by treatment with arylenediamines. These phenylene-connected hybrid compounds were investigated as potential inhibitors of acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE). Compounds 12d and 12k were the most potent AChE inhibitors with IC50 values of 11 and 13 nM, respectively, while 6j (IC50 = 17 nM) proved to be the most active inhibitor against BuChE with remarkable selectivity for BuChE over AChE. Molecular docking studies were also performed on human AChE and BuChE to suggest possible binding modes in which the inhibitor's extended structure is accommodated along the active site gorge of both enzymes. Copyright © 2014 Elsevier Masson SAS. All rights reserved.
Metallic glasses: structural models
International Nuclear Information System (INIS)
Nassif, E.
1984-01-01
The aim of this work is to give a summary of the attempts made up to the present in order to discribe by structural models the atomic arrangement in metallic glasses, showing also why the structure factors and atomic distribution functions cannot be always experimentally determined with a reasonable accuracy. (M.W.O.) [pt
Hannah, David R.; Venkatachary, Ranga
2010-01-01
In this article, the authors present a retrospective analysis of an instructor's multiyear redesign of a course on organization theory into what is called a hybrid Classroom-as-Organization model. It is suggested that this new course design served to apprentice students to function in quasi-real organizational structures. The authors further argue…
A hybrid simulation model for a stable auroral arc
Directory of Open Access Journals (Sweden)
P. Janhunen
Full Text Available We present a new type of hybrid simulation model, intended to simulate a single stable auroral arc in the latitude/altitude plane. The ionospheric ions are treated as particles, the electrons are assumed to follow a Boltzmann response and the magnetospheric ions are assumed to be so hot that they form a background population unaffected by the electric fields that arise. The system is driven by assumed parallel electron energisation causing a primary negative charge cloud and an associated potential structure to build up. The results show how a closed potential structure and density depletion of an auroral arc build up and how they decay after the driver is turned off. The model also produces upgoing energetic ion beams and predicts strong static perpendicular electric fields to be found in a relatively narrow altitude range (~ 5000–11 000 km.
Key words. Magnetospheric physics (magnetosphere-ionosphere interactions; auroral phenomena – Space plasma physics (numerical simulation studies
Some hybrid models applicable to dose-response relationships
International Nuclear Information System (INIS)
Kumazawa, Shigeru
1992-01-01
A new type of models of dose-response relationships has been studied as an initial stage to explore a reliable extrapolation of the relationships decided by high dose data to the range of low dose covered by radiation protection. The approach is to use a 'hybrid scale' of linear and logarithmic scales; the first model is that the normalized surviving fraction (ρ S > 0) in a hybrid scale decreases linearly with dose in a linear scale, and the second is that the induction in a log scale increases linearly with the normalized dose (τ D > 0) in a hybrid scale. The hybrid scale may reflect an overall effectiveness of a complex system against adverse events caused by various agents. Some data of leukemia in the atomic bomb survivors and of rodent experiments were used to show the applicability of hybrid scale models. The results proved that proposed models fit these data not less than the popular linear-quadratic models, providing the possible interpretation of shapes of dose-response curves, e.g. shouldered survival curves varied by recovery time. (author)
A hybrid agent-based approach for modeling microbiological systems.
Guo, Zaiyi; Sloot, Peter M A; Tay, Joc Cing
2008-11-21
Models for systems biology commonly adopt Differential Equations or Agent-Based modeling approaches for simulating the processes as a whole. Models based on differential equations presuppose phenomenological intracellular behavioral mechanisms, while models based on Multi-Agent approach often use directly translated, and quantitatively less precise if-then logical rule constructs. We propose an extendible systems model based on a hybrid agent-based approach where biological cells are modeled as individuals (agents) while molecules are represented by quantities. This hybridization in entity representation entails a combined modeling strategy with agent-based behavioral rules and differential equations, thereby balancing the requirements of extendible model granularity with computational tractability. We demonstrate the efficacy of this approach with models of chemotaxis involving an assay of 10(3) cells and 1.2x10(6) molecules. The model produces cell migration patterns that are comparable to laboratory observations.
Das, Subhojit; Paul, Anumita; Chattopadhyay, Arun
2013-09-01
We report on the generation of core-shell nanoparticles (NPs) having an organic nanocrystal (NC) core coated with an inorganic metallic shell, being dispersed in aqueous medium. First, NCs of p-hydroxyacetanilide (pHA)--known also as paracetamol--were generated in an aqueous medium. Transmission electron microscopy (TEM) and powder X-ray diffraction (XRD) evidenced the formation of pHA NCs and of their crystalline nature. The NCs were then coated with Au to form pHA@Au core-shell NPs, where the thickness of the Au shell was on the order of nanometers. The formation of Au nanoshell--surrounding pHA NC--was confirmed from its surface plasmon resonance (SPR) band in the UV/Vis spectrum and by TEM measurements. Further, on treatment of the core-shell particles with a solution comprising NaCl and HCl (pH paracetamol--were generated in an aqueous medium. Transmission electron microscopy (TEM) and powder X-ray diffraction (XRD) evidenced the formation of pHA NCs and of their crystalline nature. The NCs were then coated with Au to form pHA@Au core-shell NPs, where the thickness of the Au shell was on the order of nanometers. The formation of Au nanoshell--surrounding pHA NC--was confirmed from its surface plasmon resonance (SPR) band in the UV/Vis spectrum and by TEM measurements. Further, on treatment of the core-shell particles with a solution comprising NaCl and HCl (pH < 3), the Au shell could be dissolved, subsequently releasing pHA molecules. The dissolution of Au shell was marked by a gradual diminishing of its SPR band, while the release of pHA molecules in the solution was confirmed from TEM and FTIR studies. The findings suggest that the core-shell NP could be hypothesized to be a model for encapsulating drug molecules, in their crystalline forms, for slow as well as targeted release. Electronic supplementary information (ESI) available: See DOI: 10.1039/c3nr03566b
Hybrid optical-fibre/geopolymer sensors for structural health monitoring of concrete structures
Perry, M.; Saafi, M.; Fusiek, G.; Niewczas, P.
2015-04-01
In this work, we demonstrate hybrid optical-fibre/geopolymer sensors for monitoring temperature, uniaxial strain and biaxial strain in concrete structures. The hybrid sensors detect these measurands via changes in geopolymer electrical impedance, and via optical wavelength measurements of embedded fibre Bragg gratings. Electrical and optical measurements were both facilitated by metal-coated optical fibres, which provided the hybrid sensors with a single, shared physical path for both voltage and wavelength signals. The embedded fibre sensors revealed that geopolymer specimens undergo 2.7 mɛ of shrinkage after one week of curing at 42 °C. After curing, an axial 2 mɛ compression of the uniaxial hybrid sensor led to impedance and wavelength shifts of 7 × 10-2 and -2 × 10-4 respectively. The typical strain resolution in the uniaxial sensor was 100 μ \\varepsilon . The biaxial sensor was applied to the side of a concrete cylinder, which was then placed under 0.6 mɛ of axial, compressive strain. Fractional shifts in impedance and wavelength, used to monitor axial and circumferential strain, were 3 × 10-2 and 4 × 10-5 respectively. The biaxial sensor’s strain resolution was approximately 10 μ \\varepsilon in both directions. Due to several design flaws, the uniaxial hybrid sensor was unable to accurately measure ambient temperature changes. The biaxial sensor, however, successfully monitored local temperature changes with 0.5 °C resolution.
Long range energy transfer in graphene hybrid structures
International Nuclear Information System (INIS)
Gonçalves, Hugo; Bernardo, César; Moura, Cacilda; Belsley, Michael; Schellenberg, Peter; Ferreira, R A S; André, P S; Stauber, Tobias
2016-01-01
In this work we quantify the distance dependence for the extraction of energy from excited chromophores by a single layer graphene flake over a large separation range. To this end hybrid structures were prepared, consisting of a thin (2 nm) layer of a polymer matrix doped with a well chosen strongly fluorescent organic molecule, followed by an un-doped spacer layer of well-defined thicknesses made of the same polymer material and an underlying single layer of pristine, undoped graphene. The coupling strength is assessed through the variation of the fluorescence decay kinetics as a function of distance between the graphene and the excited chromophore molecules. Non-radiative energy transfer to the graphene was observed at distances of up to 60 nm; a range much greater than typical energy transfer distances observed in molecular systems. (paper)
Giant Magnetic Field Enhancement in Hybridized MIM Structures
Alrasheed, Salma
2017-10-23
We propose numerically an approach to narrow the plasmon linewidth and enhance the magnetic near field intensity at a magnetic hot spot in a hybridized metal-insulatormetal (MIM) structure. First we insert in part of the dielectric layer of the MIM, at its center, another dielectric material of a high refractive index (HRI). This results in an increase in the magnetic near field enhancement of the magnetic plasmon (MP) resonance by 82% compared with the MIM without the HRI material. We then couple this enhanced MP resonance to a propagating surface plasmon polariton (SPP) to achieve a further enhancement of 438%. The strong coupling between the MP and the SPP is demonstrated by the large anti-crossing in the reflection spectra. The resulting maximum magnetic field enhancement at the gap is ~ |H / Hi|² = 3555.
Multi-locus estimates of population structure and migration in a fence lizard hybrid zone.
Directory of Open Access Journals (Sweden)
Adam D Leaché
Full Text Available A hybrid zone between two species of lizards in the genus Sceloporus (S. cowlesi and S. tristichus on the Mogollon Rim in Arizona provides a unique opportunity to study the processes of lineage divergence and merging. This hybrid zone involves complex interactions between 2 morphologically and ecologically divergent subspecies, 3 chromosomal groups, and 4 mitochondrial DNA (mtDNA clades. The spatial patterns of divergence between morphology, chromosomes and mtDNA are discordant, and determining which of these character types (if any reflects the underlying population-level lineages that are of interest has remained impeded by character conflict. The focus of this study is to estimate the number of populations interacting in the hybrid zone using multi-locus nuclear data, and to then estimate the migration rates and divergence time between the inferred populations. Multi-locus estimates of population structure and gene flow were obtained from 12 anonymous nuclear loci sequenced for 93 specimens of Sceloporus. Population structure estimates support two populations, and this result is robust to changes to the prior probability distribution used in the Bayesian analysis and the use of spatially-explicit or non-spatial models. A coalescent analysis of population divergence suggests that gene flow is high between the two populations, and that the timing of divergence is restricted to the Pleistocene. The hybrid zone is more accurately described as involving two populations belonging to S. tristichus, and the presence of S. cowlesi mtDNA haplotypes in the hybrid zone is an anomaly resulting from mitochondrial introgression.
Structural Equation Model Trees
Brandmaier, Andreas M.; von Oertzen, Timo; McArdle, John J.; Lindenberger, Ulman
2013-01-01
In the behavioral and social sciences, structural equation models (SEMs) have become widely accepted as a modeling tool for the relation between latent and observed variables. SEMs can be seen as a unification of several multivariate analysis techniques. SEM Trees combine the strengths of SEMs and the decision tree paradigm by building tree…
Directory of Open Access Journals (Sweden)
Haijun Chen
2014-01-01
Full Text Available Combining two different types of solar cells with different absorption bands into a hybrid cell is a very useful method to improve the utilization efficiency of solar energy. The experimental data of dye-sensitized solar cells (DSSCs and thermoelectric generators (TEG was simulated by equivalent circuit method, and some parameters of DSSCs were obtained. Then, the equivalent circuit model with the obtained parameters was used to optimize the structure design of photovoltaic- (PV- thermoelectric (TE hybrid devices. The output power (Pout first increases to a maximum and then decreases by increasing the TE prism size, and a smaller spacing between p-type prism and n-type prism of a TE p-n junction causes a higher output power of TEG and hybrid device. When the spacing between TE prisms is 15 μm and the optimal base side length of TE prism is 40 μm, the maximum theoretical efficiency reaches 24.6% according to the equivalent circuit analysis. This work would give some enlightenment for the development of high-performance PV-TE hybrid devices.
A new adaptive hybrid electromagnetic damper: modelling, optimization, and experiment
International Nuclear Information System (INIS)
Asadi, Ehsan; Ribeiro, Roberto; Behrad Khamesee, Mir; Khajepour, Amir
2015-01-01
This paper presents the development of a new electromagnetic hybrid damper which provides regenerative adaptive damping force for various applications. Recently, the introduction of electromagnetic technologies to the damping systems has provided researchers with new opportunities for the realization of adaptive semi-active damping systems with the added benefit of energy recovery. In this research, a hybrid electromagnetic damper is proposed. The hybrid damper is configured to operate with viscous and electromagnetic subsystems. The viscous medium provides a bias and fail-safe damping force while the electromagnetic component adds adaptability and the capacity for regeneration to the hybrid design. The electromagnetic component is modeled and analyzed using analytical (lumped equivalent magnetic circuit) and electromagnetic finite element method (FEM) (COMSOL ® software package) approaches. By implementing both modeling approaches, an optimization for the geometric aspects of the electromagnetic subsystem is obtained. Based on the proposed electromagnetic hybrid damping concept and the preliminary optimization solution, a prototype is designed and fabricated. A good agreement is observed between the experimental and FEM results for the magnetic field distribution and electromagnetic damping forces. These results validate the accuracy of the modeling approach and the preliminary optimization solution. An analytical model is also presented for viscous damping force, and is compared with experimental results The results show that the damper is able to produce damping coefficients of 1300 and 0–238 N s m −1 through the viscous and electromagnetic components, respectively. (paper)
Design and fabrication of a hybrid maglev model employing PML and SML
Sun, R. X.; Zheng, J.; Zhan, L. J.; Huang, S. Y.; Li, H. T.; Deng, Z. G.
2017-10-01
A hybrid maglev model combining permanent magnet levitation (PML) and superconducting magnetic levitation (SML) was designed and fabricated to explore a heavy-load levitation system advancing in passive stability and simple structure. In this system, the PML was designed to levitate the load, and the SML was introduced to guarantee the stability. In order to realize different working gaps of the two maglev components, linear bearings were applied to connect the PML layer (for load) and the SML layer (for stability) of the hybrid maglev model. Experimental results indicate that the hybrid maglev model possesses excellent advantages of heavy-load ability and passive stability at the same time. This work presents a possible way to realize a heavy-load passive maglev concept.
Hybrid programming model for implicit PDE simulations on multicore architectures
Kaushik, Dinesh; Keyes, David E.; Balay, Satish; Smith, Barry F.
2011-01-01
The complexity of programming modern multicore processor based clusters is rapidly rising, with GPUs adding further demand for fine-grained parallelism. This paper analyzes the performance of the hybrid (MPI+OpenMP) programming model in the context of an implicit unstructured mesh CFD code. At the implementation level, the effects of cache locality, update management, work division, and synchronization frequency are studied. The hybrid model presents interesting algorithmic opportunities as well: the convergence of linear system solver is quicker than the pure MPI case since the parallel preconditioner stays stronger when hybrid model is used. This implies significant savings in the cost of communication and synchronization (explicit and implicit). Even though OpenMP based parallelism is easier to implement (with in a subdomain assigned to one MPI process for simplicity), getting good performance needs attention to data partitioning issues similar to those in the message-passing case. © 2011 Springer-Verlag.
International Nuclear Information System (INIS)
Carter, A.A.; Oliveira, R. de; Gandi, A.
1999-01-01
Novel techniques are described for fabricating a new thermal management structure (TMS), in the form of rigid low-mass structures with extremely high in-plane thermal conductivity. The core materials can be forms of thermally anisotropically conducting pyrolytic graphite that are directly encapsulated in a new thin-layering process. The structures can be used in a large variety of applications, including: (a) Efficient interfacing with ceramic materials and metals to provide new thermal management technologies. (b) Providing the source for a new hybrid technology where low-mass custom-designed multilayer thin-film circuits can be directly processed onto such structures. Alternatively, having been prefabricated on an independent substrate, hybrids can be efficiently interfaced to such thermal management structures. (c) Providing electrical connectivity between both sides of a TMS board through a new feedthrough technology that allows the fabrication of both single-sided and double-sided hybrids. These thermal management techniques and their applications are the subject of an international patent application number PCT/GB99/02180, filed in the names of the European Organization for Nuclear Research and Queen Mary and Westfield College, London. (orig.)
Multi-level and hybrid modelling approaches for systems biology.
Bardini, R; Politano, G; Benso, A; Di Carlo, S
2017-01-01
During the last decades, high-throughput techniques allowed for the extraction of a huge amount of data from biological systems, unveiling more of their underling complexity. Biological systems encompass a wide range of space and time scales, functioning according to flexible hierarchies of mechanisms making an intertwined and dynamic interplay of regulations. This becomes particularly evident in processes such as ontogenesis, where regulative assets change according to process context and timing, making structural phenotype and architectural complexities emerge from a single cell, through local interactions. The information collected from biological systems are naturally organized according to the functional levels composing the system itself. In systems biology, biological information often comes from overlapping but different scientific domains, each one having its own way of representing phenomena under study. That is, the different parts of the system to be modelled may be described with different formalisms. For a model to have improved accuracy and capability for making a good knowledge base, it is good to comprise different system levels, suitably handling the relative formalisms. Models which are both multi-level and hybrid satisfy both these requirements, making a very useful tool in computational systems biology. This paper reviews some of the main contributions in this field.
Hexahedral connection element based on hybrid-stress theory for solid structures
International Nuclear Information System (INIS)
Wu, D; Sze, K Y; Lo, S H
2010-01-01
For building structures, high-performance hybrid-stress hexahedral solid elements are excellent choices for modelling joints, beams/columns walls and thick slabs if the exact geometrical representation is required. While it is straight-forward to model beam-column structures of uniform member size with solid hexahedral elements, joining up beams and columns of various cross-sections at a common point proves to be a challenge for structural modelling using hexahedral elements with specified dimensions. In general, the joint has to be decomposed into 27 smaller solid elements to cater for the necessary connection requirements. This will inevitably increase the computational cost and introduce element distortions when elements of different sizes have to be used at the joint. Hexahedral connection elements with arbitrary specified connection interfaces will be an ideal setup to connect structural members of different sizes without increasing the number of elements or introducing highly distorted elements. In this paper, based on the hybrid-stress element theory, a general way to construct hexahedral connection element with various interfaces is introduced. Following this way, a 24-node connection element is presented and discussed in detail. Performance of the 24-node connection element equipped with different number of stress modes will be assessed with worked examples.
Nuclear Hybrid Energy Systems FY16 Modeling Efforts at ORNL
Energy Technology Data Exchange (ETDEWEB)
Cetiner, Sacit M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Greenwood, Michael Scott [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Harrison, Thomas J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Qualls, A. L. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Guler Yigitoglu, Askin [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Fugate, David W. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
2016-09-01
A nuclear hybrid system uses a nuclear reactor as the basic power generation unit. The power generated by the nuclear reactor is utilized by one or more power customers as either thermal power, electrical power, or both. In general, a nuclear hybrid system will couple the nuclear reactor to at least one thermal power user in addition to the power conversion system. The definition and architecture of a particular nuclear hybrid system is flexible depending on local markets needs and opportunities. For example, locations in need of potable water may be best served by coupling a desalination plant to the nuclear system. Similarly, an area near oil refineries may have a need for emission-free hydrogen production. A nuclear hybrid system expands the nuclear power plant from its more familiar central power station role by diversifying its immediately and directly connected customer base. The definition, design, analysis, and optimization work currently performed with respect to the nuclear hybrid systems represents the work of three national laboratories. Idaho National Laboratory (INL) is the lead lab working with Argonne National Laboratory (ANL) and Oak Ridge National Laboratory. Each laboratory is providing modeling and simulation expertise for the integration of the hybrid system.
Johnson, Erik A.; Elhaddad, Wael M.; Wojtkiewicz, Steven F.
2016-04-01
A variety of strategies have been developed over the past few decades to determine controllable damping device forces to mitigate the response of structures and mechanical systems to natural hazards and other excitations. These "smart" damping devices produce forces through passive means but have properties that can be controlled in real time, based on sensor measurements of response across the structure, to dramatically reduce structural motion by exploiting more than the local "information" that is available to purely passive devices. A common strategy is to design optimal damping forces using active control approaches and then try to reproduce those forces with the smart damper. However, these design forces, for some structures and performance objectives, may achieve high performance by selectively adding energy, which cannot be replicated by a controllable damping device, causing the smart damper performance to fall far short of what an active system would provide. The authors have recently demonstrated that a model predictive control strategy using hybrid system models, which utilize both continuous and binary states (the latter to capture the switching behavior between dissipative and non-dissipative forces), can provide reductions in structural response on the order of 50% relative to the conventional clipped-optimal design strategy. This paper explores the robustness of this newly proposed control strategy through evaluating controllable damper performance when the structure model differs from the nominal one used to design the damping strategy. Results from the application to a two-degree-of-freedom structure model confirms the robustness of the proposed strategy.
Detailed Post-Soft Impact Progressive Damage Assessment for Hybrid Structure Jet Engines
Siddens, Aaron; Bayandor, Javid; Celestina, Mark L.
2014-01-01
Currently, certification of engine designs for resistance to bird strike is reliant on physical tests. Predictive modeling of engine structural damage has mostly been limited to evaluation of individual forward section components, such as fan blades within a fixed frame of reference, to direct impact with a bird. Such models must be extended to include interactions among engine components under operating conditions to evaluate the full extent of engine damage. This paper presents the results of a study aim to develop a methodology for evaluating bird strike damage in advanced propulsion systems incorporating hybrid composite/metal structures. The initial degradation and failure of individual fan blades struck by a bird were investigated. Subsequent damage to other fan blades and engine components due to resultant violent fan assembly vibrations and fragmentation was further evaluated. Various modeling parameters for the bird and engine components were investigated to determine guidelines for accurately capturing initial damage and progressive failure of engine components. Then, a novel hybrid structure modeling approach was investigated and incorporated into the crashworthiness methodology. Such a tool is invaluable to the process of design, development, and certification of future advanced propulsion systems.
Modeling of hybrid vehicle fuel economy and fuel engine efficiency
Wu, Wei
"Near-CV" (i.e., near-conventional vehicle) hybrid vehicles, with an internal combustion engine, and a supplementary storage with low-weight, low-energy but high-power capacity, are analyzed. This design avoids the shortcoming of the "near-EV" and the "dual-mode" hybrid vehicles that need a large energy storage system (in terms of energy capacity and weight). The small storage is used to optimize engine energy management and can provide power when needed. The energy advantage of the "near-CV" design is to reduce reliance on the engine at low power, to enable regenerative braking, and to provide good performance with a small engine. The fuel consumption of internal combustion engines, which might be applied to hybrid vehicles, is analyzed by building simple analytical models that reflect the engines' energy loss characteristics. Both diesel and gasoline engines are modeled. The simple analytical models describe engine fuel consumption at any speed and load point by describing the engine's indicated efficiency and friction. The engine's indicated efficiency and heat loss are described in terms of several easy-to-obtain engine parameters, e.g., compression ratio, displacement, bore and stroke. Engine friction is described in terms of parameters obtained by fitting available fuel measurements on several diesel and spark-ignition engines. The engine models developed are shown to conform closely to experimental fuel consumption and motored friction data. A model of the energy use of "near-CV" hybrid vehicles with different storage mechanism is created, based on simple algebraic description of the components. With powertrain downsizing and hybridization, a "near-CV" hybrid vehicle can obtain a factor of approximately two in overall fuel efficiency (mpg) improvement, without considering reductions in the vehicle load.
Rapidity distributions of hadrons in the HydHSD hybrid model
Energy Technology Data Exchange (ETDEWEB)
Khvorostukhin, A. S., E-mail: hvorost@theor.jinr.ru; Toneev, V. D. [Joint Institute for Nuclear Research (Russian Federation)
2017-03-15
A multistage hybrid model intended for describing heavy-ion interactions in the energy region of the NICA collider under construction in Dubna is proposed. The model combines the initial, fast, interaction stage described by the model of hadron string dynamics (HSD) and the subsequent evolution that the expanding system formed at the first stage experiences at the second stage and which one treats on the basis of ideal hydrodynamics; after the completion of the second stage, the particles involved may still undergo rescattering (third interaction stage). The model admits three freeze-out scenarios: isochronous, isothermal, and isoenergetic. Generally, the HydHSD hybrid model developed in the present study provides fairly good agreement with available experimental data on proton rapidity spectra. It is shown that, within this hybrid model, the two-humped structure of proton rapidity distributions can be obtained either by increasing the freeze-out temperature and energy density or by more lately going over to the hydrodynamic stage. Although the proposed hybrid model reproduces rapidity spectra of protons, it is unable to describe rapidity distributions of pions, systematically underestimating their yield. It is necessary to refine the model by including viscosity effects at the hydrodynamic stage of evolution of the system and by considering in more detail the third interaction stage.
Hybrid structure in civil engineering construction.; Doboku bun`ya ni okeru fukugo kozo.
Energy Technology Data Exchange (ETDEWEB)
Ikeda, S. [Yokohama National Univ. (Japan). Faculty of Engineering
1995-03-30
The structure of steel-concrete hybrid structure which is recently attracting attention is outlined quoting some examples. The effects of steel-concrete hybrid structure are classified according to the characteristics. The Normandie Bridge completed in January this year near the mouth of the Seine River in France is a cable stayed bridge with the world largest span, and it has a hybrid structure of ingeniously combined steel and concrete. The Dole Bridge in France is a hybrid bridge with 7 continuous spans having steel corrugated sheets in the web. Hybrid structure has come to be applied to many structures other than the superstructure works of bridges. The substructures of bridges are applied to immersed tunnels, and the usefulness has come to be recognized widely. The features of hybrid structure can contribute well to the reinforcement of existing structures. In addition, adoption of hybrid structure has been studied as the best method for repairing and reinforcing structures damaged by earthquakes. 8 refs., 6 figs., 1 tab.
Hybrid attacks on model-based social recommender systems
Yu, Junliang; Gao, Min; Rong, Wenge; Li, Wentao; Xiong, Qingyu; Wen, Junhao
2017-10-01
With the growing popularity of the online social platform, the social network based approaches to recommendation emerged. However, because of the open nature of rating systems and social networks, the social recommender systems are susceptible to malicious attacks. In this paper, we present a certain novel attack, which inherits characteristics of the rating attack and the relation attack, and term it hybrid attack. Furtherly, we explore the impact of the hybrid attack on model-based social recommender systems in multiple aspects. The experimental results show that, the hybrid attack is more destructive than the rating attack in most cases. In addition, users and items with fewer ratings will be influenced more when attacked. Last but not the least, the findings suggest that spammers do not depend on the feedback links from normal users to become more powerful, the unilateral links can make the hybrid attack effective enough. Since unilateral links are much cheaper, the hybrid attack will be a great threat to model-based social recommender systems.
Structural Transformations in Nematic Liquid Crystals with a Hybrid Orientation
Delev, V. A.; Krekhov, A. P.
2017-12-01
The structural transformations in a nematic liquid crystal (NLC) layer with a hybrid orientation (planar director orientation is created on one substrate and homeotropic director orientation is created on the other) are studied. In the case of a dc voltage applied to the NLC layer, the primary instability is flexoelectric. It causes the appearance of flexoelectric domains oriented along the director on the substrate with a planar orientation. When the voltage increases further, an electroconvective instability in the form of rolls moving almost normal to flexoelectric domains develops along with these domains. Thus, the following spatially periodic structures of different natures coexist in one system: equilibrium static flexoelectric deformation of a director and dissipative moving oblique electroconvection rolls. The primary instability in the case of an ac voltage is represented by electroconvection, which leads to moving oblique or normal rolls depending on the electric field frequency. Above the electroconvection threshold, a transition to moving "abnormal" rolls is detected. The wavevector of the rolls coincides with the initial director orientation on the substrate with a planar orientation, and the projection of the director at the midplane of the NLC layer on the layer plane makes a certain angle with the wavevector. The results of numerical calculations of the threshold characteristics of the primary instabilities agree well with the obtained experimental data.
Optical properties of hybrid semiconductor-metal structures
Energy Technology Data Exchange (ETDEWEB)
Kreilkamp, L.E.; Pohl, M.; Akimov, I.A.; Yakovlev, D.R.; Bayer, M. [Experimentelle Physik 2, Technische Universitaet Dortmund, 44221 Dortmund (Germany); Belotelov, V.I.; Zvezdin, A.K. [A.M. Prokhorov General Physics Institute, Russian Academy of Sciences, 119992 Moscow (Russian Federation); Karczewski, G.; Wojtowicz, T. [Institute of Physics, Polish Academy of Sciences, 02668 Warsaw (Poland); Rudzinski, A.; Kahl, M. [Raith GmbH, Konrad-Adenauer-Allee 8, 44263 Dortmund (Germany)
2012-07-01
We study the optical properties of hybrid nanostructures comprising a semiconductor CdTe quantum well (QW) separated by a thin CdMgTe cap layer of 40 nm from a patterned gold film. The CdTe/CdMgTe QW structure with a well width of 10nm was grown by molecular beam epitaxy. The one-dimensional periodic gold films on top were made using e-beam lithography and lift-off process. The investigated structures can be considered as plasmonic crystals because the metal films attached to the semiconductor are patterned with a period in the range from 475 to 600 nm, which is comparable to the surface plasmon-polariton (SPP) wavelength. Angle dependent reflection spectra at room temperature clearly show plasmonic resonances. PL spectra taken at low temperatures of about 10 K under below- and above-barrier illumination show significant modifications compared to the unstructured QW sample. The number of emission lines and their position shift change depending on the excitation energy. The role of exciton-SPP coupling and Schottky barrier at the semiconductor-metal interface are discussed.
Zhang, Yu; Pan, Peng; Gong, Runhua; Wang, Tao; Xue, Weichen
2017-10-01
An online hybrid test was carried out on a 40-story 120-m high concrete shear wall structure. The structure was divided into two substructures whereby a physical model of the bottom three stories was tested in the laboratory and the upper 37 stories were simulated numerically using ABAQUS. An overlapping domain method was employed for the bottom three stories to ensure the validity of the boundary conditions of the superstructure. Mixed control was adopted in the test. Displacement control was used to apply the horizontal displacement, while two controlled force actuators were applied to simulate the overturning moment, which is very large and cannot be ignored in the substructure hybrid test of high-rise buildings. A series of tests with earthquake sources of sequentially increasing intensities were carried out. The test results indicate that the proposed hybrid test method is a solution to reproduce the seismic response of high-rise concrete shear wall buildings. The seismic performance of the tested precast high-rise building satisfies the requirements of the Chinese seismic design code.
Hybrid photovoltaic–thermal solar collectors dynamic modeling
International Nuclear Information System (INIS)
Amrizal, N.; Chemisana, D.; Rosell, J.I.
2013-01-01
Highlights: ► A hybrid photovoltaic/thermal dynamic model is presented. ► The model, once calibrated, can predict the power output for any set of climate data. ► The physical electrical model includes explicitly thermal and irradiance dependences. ► The results agree with those obtained through steady-state characterization. ► The model approaches the junction cell temperature through the system energy balance. -- Abstract: A hybrid photovoltaic/thermal transient model has been developed and validated experimentally. The methodology extends the quasi-dynamic thermal model stated in the EN 12975 in order to involve the electrical performance and consider the dynamic behavior minimizing constraints when characterizing the collector. A backward moving average filtering procedure has been applied to improve the model response for variable working conditions. Concerning the electrical part, the model includes the thermal and radiation dependences in its variables. The results revealed that the characteristic parameters included in the model agree reasonably well with the experimental values obtained from the standard steady-state and IV characteristic curve measurements. After a calibration process, the model is a suitable tool to predict the thermal and electrical performance of a hybrid solar collector, for a specific weather data set.
Argument Structure in Arabic and English: Re-assessing Purity and Redeeming Hybridity
Directory of Open Access Journals (Sweden)
Faisal Said Al-Maamari
2017-05-01
Full Text Available This study presents a contrastive rhetorical analysis of 20 argumentative Arabic and English editorials in argument structure. Samples were selected from two daily newspapers with equally wide distribution, and articles were written by their respective native writers. Both graphical and textual analyses captured the argument structure in terms of macro and micro arguments. A core finding is that the argument structure in the sampled editorials did not conform to the current predominant model of argument structure, which tended to polarize argument structure in terms of through or counter argumentation. The study contributes to the existing literature by defying the polarized traditional purity typology of argument structure frequently cited in the literature, and emphasizes a more dynamic hybrid model to understanding and analyzing arguments in general and in Arabic and English specifically. Additionally, the study of the professional genre of editorails has implications for academic writing and second language writing pedagogy by sensitizing foreign language learners to existing models of argument structure and possible ways to structure their arguments in the target language.
A New Model for Baryogenesis through Hybrid Inflation
International Nuclear Information System (INIS)
Delepine, D.; Prieto, C. Martinez; Lopez, L. A. Urena
2009-01-01
We propose a hybrid inflation model with a complex waterfall field which contains an interaction term that breaks the U(1) global symmetry associated to the waterfall field charge. The asymmetric evolution of the real and imaginary parts of the complex field during the phase transition at the end of inflation translates into a charge asymmetry.
Model Predictive Control of the Hybrid Ventilation for Livestock
DEFF Research Database (Denmark)
Wu, Zhuang; Stoustrup, Jakob; Trangbæk, Klaus
2006-01-01
In this paper, design and simulation results of Model Predictive Control (MPC) strategy for livestock hybrid ventilation systems and associated indoor climate through variable valve openings and exhaust fans are presented. The design is based on thermal comfort parameters for poultry in barns...
A novel Monte Carlo approach to hybrid local volatility models
A.W. van der Stoep (Anton); L.A. Grzelak (Lech Aleksander); C.W. Oosterlee (Cornelis)
2017-01-01
textabstractWe present in a Monte Carlo simulation framework, a novel approach for the evaluation of hybrid local volatility [Risk, 1994, 7, 18–20], [Int. J. Theor. Appl. Finance, 1998, 1, 61–110] models. In particular, we consider the stochastic local volatility model—see e.g. Lipton et al. [Quant.
Evaluation of models generated via hybrid evolutionary algorithms ...
African Journals Online (AJOL)
2016-04-02
Apr 2, 2016 ... Evaluation of models generated via hybrid evolutionary algorithms for the prediction of Microcystis ... evolutionary algorithms (HEA) proved to be highly applica- ble to the hypertrophic reservoirs of South Africa. .... discovered and optimised using a large-scale parallel computational device and relevant soft-.
New Models of Hybrid Leadership in Global Higher Education
Tonini, Donna C.; Burbules, Nicholas C.; Gunsalus, C. K.
2016-01-01
This manuscript highlights the development of a leadership preparation program known as the Nanyang Technological University Leadership Academy (NTULA), exploring the leadership challenges unique to a university undergoing rapid growth in a highly multicultural context, and the hybrid model of leadership it developed in response to globalization.…
Modeling of Hybrid Growth Wastewater Bio-reactor
International Nuclear Information System (INIS)
EI Nashaei, S.; Garhyan, P.; Prasad, P.; Abdel Halim, H.S.; Ibrahim, G.
2004-01-01
The attached/suspended growth mixed reactors are considered one of the recently tried approaches to improve the performance of the biological treatment by increasing the volume of the accumulated biomass in terms of attached growth as well as suspended growth. Moreover, the domestic WW can be easily mixed with a high strength non-hazardous industrial wastewater and treated together in these bio-reactors if the need arises. Modeling of Hybrid hybrid growth wastewater reactor addresses the need of understanding the rational of such system in order to achieve better design and operation parameters. This paper aims at developing a heterogeneous mathematical model for hybrid growth system considering the effect of diffusion, external mass transfer, and power input to the system in a rational manner. The model will be based on distinguishing between liquid/solid phase (bio-film and bio-floc). This model would be a step ahead to the fine tuning the design of hybrid systems based on the experimental data of a pilot plant to be implemented in near future
Hybrid time/frequency domain modeling of nonlinear components
DEFF Research Database (Denmark)
Wiechowski, Wojciech Tomasz; Lykkegaard, Jan; Bak, Claus Leth
2007-01-01
This paper presents a novel, three-phase hybrid time/frequency methodology for modelling of nonlinear components. The algorithm has been implemented in the DIgSILENT PowerFactory software using the DIgSILENT Programming Language (DPL), as a part of the work described in [1]. Modified HVDC benchmark...
Efficient Proof Engines for Bounded Model Checking of Hybrid Systems
DEFF Research Database (Denmark)
Fränzle, Martin; Herde, Christian
2005-01-01
In this paper we present HySat, a new bounded model checker for linear hybrid systems, incorporating a tight integration of a DPLL-based pseudo-Boolean SAT solver and a linear programming routine as core engine. In contrast to related tools like MathSAT, ICS, or CVC, our tool exploits all...
Wetting properties of hybrid structure with hydrophilic ridges and hydrophobic channels
Lee, Dong-Ki; Choi, Su Young; Park, Min Soo; Cho, Young Hak
2018-02-01
In the present study, we fabricated a hybrid structure where the upper surface of the ridge is hydrophilic and the inner surface of the channel is hydrophobic. Laser-induced backside wet etching (LIBWE) process was performed to machine the hybrid structure on a Pyrex glass substrate. Wetting properties were evaluated from static contact angles (CAs) measurement in parallel and orthogonal directions. The water droplet on the hybrid structure was in the Cassie-Baxter state and showed anisotropic wetting property along groove lines. Moisture condensation studies under humid condition indicated that water droplets grew and coalesced on the ridge with hydrophilicity. Furthermore, water-oil separation was tested using a microfluidic chip with the developed hybrid structure. In case of hybrid microfluidic chip, the water could not flow into channel but the hexadecane could flow due to the capillary pressure difference.
Travelling Waves in Hybrid Chemotaxis Models
Franz, Benjamin; Xue, Chuan; Painter, Kevin J.; Erban, Radek
2013-01-01
. Bacteria are modelled using an agent-based (individual-based) approach with internal dynamics describing signal transduction. In addition to the chemotactic behaviour of the bacteria, the individual-based model also includes cell proliferation and death
Energy Technology Data Exchange (ETDEWEB)
Hsu, Chia-Wen [Department of Chemical Engineering, National Tsing Hua University, Hsinchu, Taiwan (China); Material and Chemical Research Laboratories, Industrial Technology Research Institute, Hsinchu, Taiwan (China); Ma, Chen-Chi M., E-mail: ccma@che.nthu.edu.tw [Department of Chemical Engineering, National Tsing Hua University, Hsinchu, Taiwan (China); Tan, Chung-Sung [Department of Chemical Engineering, National Tsing Hua University, Hsinchu, Taiwan (China); Li, Hsun-Tien [Material and Chemical Research Laboratories, Industrial Technology Research Institute, Hsinchu, Taiwan (China)
2015-07-15
The cured network conformations and structural relaxation behaviours of the diglycidyl ether of bisphenol A (DGEBA)-methylhexahydrophthalic anhydride (MHHPA) modified with phenylmethylsiloxane-modified epoxy (PMSE) at different aging temperatures were studied using dynamic mechanical analysis (DMA) and positron annihilation lifetime spectroscopy (PALS). The DMA results revealed that the cured PMSE network can insert into the cured DGEBA network to form interpenetrating polymer networks (IPNs). The structural relaxation behaviours of DGEBA–PMSE-0.4 produced using DGEBA, PMSE, and MHHPA at a ratio of 0.6:0.4:1 by equivalent weight were studied using PALS at 150 °C and 55 °C. The aging-induced free volume relaxation parameters of DGEBA–PMSE-0.4 at 150 °C and 55 °C were investigated using the double additive exponential model and the Kohlrausch–Williams–Watts exponential model. For double additive exponential model, only one relaxation time (ζ) of 584.5 h was found at 150 °C; By contrast, there were two separate relaxation times of 37.4 h (ζ{sub 1}) and 753.6 h (ζ{sub 2}) at 55 °C. The ζ{sub 1} of the IPNs hybrid can be attributed to the network relaxation of PMSE, and the ζ{sub 2} can be attributed to the network relaxation of DGEBA at 55 °C. The results suggested the double additive exponential model can effectively predict DGEBA–PMSE hybrid relaxation behaviours. - Highlights: • The cured network conformations of DGEBA–PMSE hybrids were studied using DMA. • The structural relaxation behaviours of DGEBA–PMSE hybrids were studied using PALS. • The cured DGEBA–PMSE hybrids were interpenetrating polymer networks (IPNs). • PALS studies provided a quantitative demonstration of relaxation behaviours. • Double additive exponential model effectively predicted the relaxation times of hybrids.
International Nuclear Information System (INIS)
Hsu, Chia-Wen; Ma, Chen-Chi M.; Tan, Chung-Sung; Li, Hsun-Tien
2015-01-01
The cured network conformations and structural relaxation behaviours of the diglycidyl ether of bisphenol A (DGEBA)-methylhexahydrophthalic anhydride (MHHPA) modified with phenylmethylsiloxane-modified epoxy (PMSE) at different aging temperatures were studied using dynamic mechanical analysis (DMA) and positron annihilation lifetime spectroscopy (PALS). The DMA results revealed that the cured PMSE network can insert into the cured DGEBA network to form interpenetrating polymer networks (IPNs). The structural relaxation behaviours of DGEBA–PMSE-0.4 produced using DGEBA, PMSE, and MHHPA at a ratio of 0.6:0.4:1 by equivalent weight were studied using PALS at 150 °C and 55 °C. The aging-induced free volume relaxation parameters of DGEBA–PMSE-0.4 at 150 °C and 55 °C were investigated using the double additive exponential model and the Kohlrausch–Williams–Watts exponential model. For double additive exponential model, only one relaxation time (ζ) of 584.5 h was found at 150 °C; By contrast, there were two separate relaxation times of 37.4 h (ζ 1 ) and 753.6 h (ζ 2 ) at 55 °C. The ζ 1 of the IPNs hybrid can be attributed to the network relaxation of PMSE, and the ζ 2 can be attributed to the network relaxation of DGEBA at 55 °C. The results suggested the double additive exponential model can effectively predict DGEBA–PMSE hybrid relaxation behaviours. - Highlights: • The cured network conformations of DGEBA–PMSE hybrids were studied using DMA. • The structural relaxation behaviours of DGEBA–PMSE hybrids were studied using PALS. • The cured DGEBA–PMSE hybrids were interpenetrating polymer networks (IPNs). • PALS studies provided a quantitative demonstration of relaxation behaviours. • Double additive exponential model effectively predicted the relaxation times of hybrids
Hybrid modelling of bed-discordant river confluences
Franca, M. J.; Guillén-Ludeña, S.; Cheng, Z.; Cardoso, A. H.; Constantinescu, G.
2016-12-01
In fluvial networks, tributaries are the main providers of sediment and water to the main rivers. Furthermore, confluences are environmental hotspots since they provide ecological connectivity and flow and morphology diversity. Mountain confluences, in particular, are characterized by narrow and steep tributaries that provide important sediment load to the confluence, whereas the main channel supplies the dominant flow discharge. This results in a marked bed discordance between the tributary and main channel. This discordance has been observed to be a key feature that alters the dynamics of the confluence, when compared to concordant confluences. The processes of initiation and maintenance of the morphology of confluences is still unknown, and research linking morphodynamics and hydrodynamics of river confluences is required to understand this. Here, a hybrid approach combining laboratory experiments made in a live-bed model of a river confluence, with 3D numerical simulations using advanced turbulence models is presented. We use the laboratory experiments performed by Guillén-Ludeña et al. (2016) for a 70o channel confluence, which focused on sediment transport and morphology changes rather than on the structure of the flow. Highly eddy resolving simulations were performed for two extreme bathymetric conditions, at the start of the experiment and at equilibrium scour conditions. The first allows to understand the initiation mechanisms which will condition later the equilibrium morphology. The second allows to understand the hydrodynamics actions which keep the equilibrium morphology. The patterns of the mean flow, turbulence and dynamics of the large-scale coherent structures, show how the main sediment-entrainment mechanisms evolve during the scour process. The present results contribute to a better understanding of the interaction between bed morphology and flow dynamics at discordant mountain river confluences.
A hybrid parallel framework for the cellular Potts model simulations
Energy Technology Data Exchange (ETDEWEB)
Jiang, Yi [Los Alamos National Laboratory; He, Kejing [SOUTH CHINA UNIV; Dong, Shoubin [SOUTH CHINA UNIV
2009-01-01
The Cellular Potts Model (CPM) has been widely used for biological simulations. However, most current implementations are either sequential or approximated, which can't be used for large scale complex 3D simulation. In this paper we present a hybrid parallel framework for CPM simulations. The time-consuming POE solving, cell division, and cell reaction operation are distributed to clusters using the Message Passing Interface (MPI). The Monte Carlo lattice update is parallelized on shared-memory SMP system using OpenMP. Because the Monte Carlo lattice update is much faster than the POE solving and SMP systems are more and more common, this hybrid approach achieves good performance and high accuracy at the same time. Based on the parallel Cellular Potts Model, we studied the avascular tumor growth using a multiscale model. The application and performance analysis show that the hybrid parallel framework is quite efficient. The hybrid parallel CPM can be used for the large scale simulation ({approx}10{sup 8} sites) of complex collective behavior of numerous cells ({approx}10{sup 6}).
Modelling and analysis of real-time and hybrid systems
Energy Technology Data Exchange (ETDEWEB)
Olivero, A
1994-09-29
This work deals with the modelling and analysis of real-time and hybrid systems. We first present the timed-graphs as model for the real-time systems and we recall the basic notions of the analysis of real-time systems. We describe the temporal properties on the timed-graphs using TCTL formulas. We consider two methods for property verification: in one hand we study the symbolic model-checking (based on backward analysis) and in the other hand we propose a verification method derived of the construction of the simulation graph (based on forward analysis). Both methods have been implemented within the KRONOS verification tool. Their application for the automatic verification on several real-time systems confirms the practical interest of our approach. In a second part we study the hybrid systems, systems combining discrete components with continuous ones. As in the general case the analysis of this king of systems is not decidable, we identify two sub-classes of hybrid systems and we give a construction based method for the generation of a timed-graph from an element into the sub-classes. We prove that in one case the timed-graph obtained is bi-similar with the considered system and that there exists a simulation in the other case. These relationships allow the application of the described technics on the hybrid systems into the defined sub-classes. (authors). 60 refs., 43 figs., 8 tabs., 2 annexes.
Hybrid Composites for LH2 Fuel Tank Structure
Grimsley, Brian W.; Cano, Roberto J.; Johnston, Norman J.; Loos, Alfred C.; McMahon, William M.
2001-01-01
The application of lightweight carbon fiber reinforced plastics (CFRP) as structure for cryogenic fuel tanks is critical to the success of the next generation of Reusable Launch Vehicles (RLV). The recent failure of the X-33 composite fuel tank occurred in part due to microcracking of the polymer matrix, which allowed cryogen to permeate through the inner skin to the honeycomb core. As part of an approach to solve these problems, NASA Langley Research Center (LaRC) and Marshall Space Flight Center (MSFC) are working to develop and investigate polymer films that will act as a barrier to the permeation of LH2 through the composite laminate. In this study two commercially available films and eleven novel LaRC films were tested in an existing cryogenics laboratory at MSFC to determine the permeance of argon at room temperature. Several of these films were introduced as a layer in the composite to form an interleaved, or hybrid, composite to determine the effects on permeability. In addition, the effects of the interleaved layer thickness, number, and location on the mechanical properties of the composite laminate were investigated. In this initial screening process, several of the films were found to exhibit lower permeability to argon than the composite panels tested.
Hybrid Spintronic Structures With Magnetic Oxides and Heusler Alloys
DEFF Research Database (Denmark)
Xu, Y. B.; Hassan, S. S. A.; Wong, P. K. J.
2008-01-01
Hybrid spintronic structures, integrating half-metallic magnetic oxides and Heusler alloys with their predicted high spin polarization, are important for the development of second-generation spintronics with high-efficient spin injection. We have synthesized epitaxial magnetic oxide Fe3O4 on Ga......As(100) and the unit cell of the Fe3O4 was found to be rotated by 45 degrees to match the gallium arsenide GaAs. The films were found to have a bulk-like moment down to 3-4 nm and a low coercivity indicating a high-quality magnetic interface. The magnetization hysteresis loops of the ultrathin films...... are controlled by uniaxial magnetic anisotropy. The dynamic response of the sample shows a heavily damped precessional response to the applied field pulses. In the Heusler alloy system of Co-2 MnGa on GaAs, we found that the magnetic moment was reduced for thicknesses down to 10 nm, which may account...
A 'simple' hybrid model for power derivatives
International Nuclear Information System (INIS)
Lyle, Matthew R.; Elliott, Robert J.
2009-01-01
This paper presents a method for valuing power derivatives using a supply-demand approach. Our method extends work in the field by incorporating randomness into the base load portion of the supply stack function and equating it with a noisy demand process. We obtain closed form solutions for European option prices written on average spot prices considering two different supply models: a mean-reverting model and a Markov chain model. The results are extensions of the classic Black-Scholes equation. The model provides a relatively simple approach to describe the complicated price behaviour observed in electricity spot markets and also allows for computationally efficient derivatives pricing. (author)
On the Likely Utility of Hybrid Weights Optimized for Variances in Hybrid Error Covariance Models
Satterfield, E.; Hodyss, D.; Kuhl, D.; Bishop, C. H.
2017-12-01
Because of imperfections in ensemble data assimilation schemes, one cannot assume that the ensemble covariance is equal to the true error covariance of a forecast. Previous work demonstrated how information about the distribution of true error variances given an ensemble sample variance can be revealed from an archive of (observation-minus-forecast, ensemble-variance) data pairs. Here, we derive a simple and intuitively compelling formula to obtain the mean of this distribution of true error variances given an ensemble sample variance from (observation-minus-forecast, ensemble-variance) data pairs produced by a single run of a data assimilation system. This formula takes the form of a Hybrid weighted average of the climatological forecast error variance and the ensemble sample variance. Here, we test the extent to which these readily obtainable weights can be used to rapidly optimize the covariance weights used in Hybrid data assimilation systems that employ weighted averages of static covariance models and flow-dependent ensemble based covariance models. Univariate data assimilation and multi-variate cycling ensemble data assimilation are considered. In both cases, it is found that our computationally efficient formula gives Hybrid weights that closely approximate the optimal weights found through the simple but computationally expensive process of testing every plausible combination of weights.
Self-diagnosis of structures strengthened with hybrid carbon-fiber-reinforced polymer sheets
Wu, Z. S.; Yang, C. Q.; Harada, T.; Ye, L. P.
2005-06-01
The correlation of mechanical and electrical properties of concrete beams strengthened with hybrid carbon-fiber-reinforced polymer (HCFRP) sheets is studied in this paper. Two types of concrete beams, with and without reinforcing bars, are strengthened with externally bonded HCFRP sheets, which have a self-structural health monitoring function due to the electrical conduction and piezoresistivity of carbon fibers. Parameters investigated include the volume fractions and types of carbon fibers. According to the investigation, it is found that the hybridization of uniaxial HCFRP sheets with several different types of carbon fibers is a viable method for enhancing the mechanical properties and obtaining a built-in damage detection function for concrete structures. The changes in electrical resistance during low strain ranges before the rupture of carbon fibers are generally smaller than 1%. Nevertheless, after the gradual ruptures of carbon fibers, the electrical resistance increases remarkably with the strain in a step-wise manner. For the specimens without reinforcing bars, the electrical behaviors are not stable, especially during the low strain ranges. However, the electrical behaviors of the specimens with reinforcing bars are relatively stable, and the whole range of self-sensing function of the HCFRP-strengthened RC structures has realized the conceptual design of the HCFRP sensing models and is confirmed by the experimental investigations. The relationships between the strain/load and the change in electrical resistance show the potential self-monitoring capacity of HCFRP reinforcements used for strengthening concrete structures.
A hybrid society model for simulating residential electricity consumption
Energy Technology Data Exchange (ETDEWEB)
Xu, Minjie [School of Electrical Engineering, Beijing Jiaotong University, Beijing (China); State Power Economic Research Institute, Beijing (China); Hu, Zhaoguang [State Power Economic Research Institute, Beijing (China); Wu, Junyong; Zhou, Yuhui [School of Electrical Engineering, Beijing Jiaotong University, Beijing (China)
2008-12-15
In this paper, a hybrid social model of econometric model and social influence model is proposed for evaluating the influence of pricing policy and public education policy on residential habit of electricity using in power resources management. And, a hybrid society simulation platform based on the proposed model, called residential electricity consumption multi-agent systems (RECMAS), is designed for simulating residential electricity consumption by multi-agent system. RECMAS is composed of consumer agent, power supplier agent, and policy maker agent. It provides the policy makers with a useful tool to evaluate power price policies and public education campaigns in different scenarios. According to an influenced diffusion mechanism, RECMAS can simulate the residential electricity demand-supply chain and analyze impacts of the factors on residential electricity consumption. Finally, the proposed method is used to simulate urban residential electricity consumption in China. (author)
A hybrid society model for simulating residential electricity consumption
International Nuclear Information System (INIS)
Xu, Minjie; Hu, Zhaoguang; Wu, Junyong; Zhou, Yuhui
2008-01-01
In this paper, a hybrid social model of econometric model and social influence model is proposed for evaluating the influence of pricing policy and public education policy on residential habit of electricity using in power resources management. And, a hybrid society simulation platform based on the proposed model, called residential electricity consumption multi-agent systems (RECMAS), is designed for simulating residential electricity consumption by multi-agent system. RECMAS is composed of consumer agent, power supplier agent, and policy maker agent. It provides the policy makers with a useful tool to evaluate power price policies and public education campaigns in different scenarios. According to an influenced diffusion mechanism, RECMAS can simulate the residential electricity demand-supply chain and analyze impacts of the factors on residential electricity consumption. Finally, the proposed method is used to simulate urban residential electricity consumption in China. (author)
Elsheikh, Ahmed H.; Wheeler, Mary Fanett; Hoteit, Ibrahim
2014-01-01
A Hybrid Nested Sampling (HNS) algorithm is proposed for efficient Bayesian model calibration and prior model selection. The proposed algorithm combines, Nested Sampling (NS) algorithm, Hybrid Monte Carlo (HMC) sampling and gradient estimation using
The semantics of hybrid process models
Slaats, T.; Schunselaar, D.M.M.; Maggi, F.M.; Reijers, H.A.; Debruyne, C.; Panetto, H.; Meersman, R.; Dillon, T.; Kuhn, E.; O'Sullivan, D.; Agostino Ardagna, C.
2016-01-01
In the area of business process modelling, declarative notations have been proposed as alternatives to notations that follow the dominant, imperative paradigm. Yet, the choice between an imperative or declarative style of modelling is not always easy to make. Instead, a mixture of these styles is
A modeling method for hybrid energy behaviors in flexible machining systems
International Nuclear Information System (INIS)
Li, Yufeng; He, Yan; Wang, Yan; Wang, Yulin; Yan, Ping; Lin, Shenlong
2015-01-01
Increasingly environmental and economic pressures have led to great concerns regarding the energy consumption of machining systems. Understanding energy behaviors of flexible machining systems is a prerequisite for improving energy efficiency of these systems. This paper proposes a modeling method to predict energy behaviors in flexible machining systems. The hybrid energy behaviors not only depend on the technical specification related of machine tools and workpieces, but are significantly affected by individual production scenarios. In the method, hybrid energy behaviors are decomposed into Structure-related energy behaviors, State-related energy behaviors, Process-related energy behaviors and Assignment-related energy behaviors. The modeling method for the hybrid energy behaviors is proposed based on Colored Timed Object-oriented Petri Net (CTOPN). The former two types of energy behaviors are modeled by constructing the structure of CTOPN, whist the latter two types of behaviors are simulated by applying colored tokens and associated attributes. Machining on two workpieces in the experimental workshop were undertaken to verify the proposed modeling method. The results showed that the method can provide multi-perspective transparency on energy consumption related to machine tools, workpieces as well as production management, and is particularly suitable for flexible manufacturing system when frequent changes in machining systems are often encountered. - Highlights: • Energy behaviors in flexible machining systems are modeled in this paper. • Hybrid characteristics of energy behaviors are examined from multiple viewpoints. • Flexible modeling method CTOPN is used to predict the hybrid energy behaviors. • This work offers a multi-perspective transparency on energy consumption
Energy Technology Data Exchange (ETDEWEB)
NONE
1997-12-31
This report documents a numerical simulation model of the natural gas market in Germany, France, the Netherlands and Belgium. It is a part of a project called ``Internationalization and structural change in the gas market`` aiming to enhance the understanding of the factors behind the current and upcoming changes in the European gas market, especially the downstream part of the gas chain. The model takes European border prices of gas as given, adds transmission and distribution cost and profit margins as well as gas taxes to calculate gas prices. The model includes demand sub-models for households, chemical industry, other industry, the commercial sector and electricity generation. Demand responses to price changes are assumed to take time, and the long run effects are significantly larger than the short run effects. For the household sector and the electricity sector, the dynamics are modeled by distinguishing between energy use in the old and new capital stock. In addition to prices and the activity level (GDP), the model includes the extension of the gas network as a potentially important variable in explaining the development of gas demand. The properties of numerical simulation models are often described by dynamic multipliers, which describe the behaviour of important variables when key explanatory variables are changed. At the end, the report shows the results of a model experiment where the costs in transmission and distribution were reduced. 6 refs., 9 figs., 1 tab.
International Nuclear Information System (INIS)
1997-01-01
This report documents a numerical simulation model of the natural gas market in Germany, France, the Netherlands and Belgium. It is a part of a project called ''Internationalization and structural change in the gas market'' aiming to enhance the understanding of the factors behind the current and upcoming changes in the European gas market, especially the downstream part of the gas chain. The model takes European border prices of gas as given, adds transmission and distribution cost and profit margins as well as gas taxes to calculate gas prices. The model includes demand sub-models for households, chemical industry, other industry, the commercial sector and electricity generation. Demand responses to price changes are assumed to take time, and the long run effects are significantly larger than the short run effects. For the household sector and the electricity sector, the dynamics are modeled by distinguishing between energy use in the old and new capital stock. In addition to prices and the activity level (GDP), the model includes the extension of the gas network as a potentially important variable in explaining the development of gas demand. The properties of numerical simulation models are often described by dynamic multipliers, which describe the behaviour of important variables when key explanatory variables are changed. At the end, the report shows the results of a model experiment where the costs in transmission and distribution were reduced. 6 refs., 9 figs., 1 tab
The hybrid thermography approach applied to architectural structures
Sfarra, S.; Ambrosini, D.; Paoletti, D.; Nardi, I.; Pasqualoni, G.
2017-07-01
This work contains an overview of infrared thermography (IRT) method and its applications relating to the investigation of architectural structures. In this method, the passive approach is usually used in civil engineering, since it provides a panoramic view of the thermal anomalies to be interpreted also thanks to the use of photographs focused on the region of interest (ROI). The active approach, is more suitable for laboratory or indoor inspections, as well as for objects having a small size. The external stress to be applied is thermal, coming from non-natural apparatus such as lamps or hot / cold air jets. In addition, the latter permits to obtain quantitative information related to defects not detectable to the naked eyes. Very recently, the hybrid thermography (HIRT) approach has been introduced to the attention of the scientific panorama. It can be applied when the radiation coming from the sun, directly arrives (i.e., possibly without the shadow cast effect) on a surface exposed to the air. A large number of thermograms must be collected and a post-processing analysis is subsequently applied via advanced algorithms. Therefore, an appraisal of the defect depth can be obtained passing through the calculation of the combined thermal diffusivity of the materials above the defect. The approach is validated herein by working, in a first stage, on a mosaic sample having known defects while, in a second stage, on a Church built in L'Aquila (Italy) and covered with a particular masonry structure called apparecchio aquilano. The results obtained appear promising.
A computational model for lower hybrid current drive
International Nuclear Information System (INIS)
Englade, R.C.; Bonoli, P.T.; Porkolab, M.
1983-01-01
A detailed simulation model for lower hybrid (LH) current drive in toroidal devices is discussed. This model accounts reasonably well for the magnitude of radio frequency (RF) current observed in the PLT and Alcator C devices. It also reproduces the experimental dependencies of RF current generation on toroidal magnetic field and has provided insights about mechanisms which may underlie the observed density limit of current drive. (author)
A Hybrid Model for Forecasting Sales in Turkish Paint Industry
Alp Ustundag
2009-01-01
Sales forecasting is important for facilitating effective and efficient allocation of scarce resources. However, how to best model and forecast sales has been a long-standing issue. There is no best forecasting method that is applicable in all circumstances. Therefore, confidence in the accuracy of sales forecasts is achieved by corroborating the results using two or more methods. This paper proposes a hybrid forecasting model that uses an artificial intelligence method (AI) w...
Hybrid Neuro-Fuzzy Classifier Based On Nefclass Model
Directory of Open Access Journals (Sweden)
Bogdan Gliwa
2011-01-01
Full Text Available The paper presents hybrid neuro-fuzzy classifier, based on NEFCLASS model, which wasmodified. The presented classifier was compared to popular classifiers – neural networks andk-nearest neighbours. Efficiency of modifications in classifier was compared with methodsused in original model NEFCLASS (learning methods. Accuracy of classifier was testedusing 3 datasets from UCI Machine Learning Repository: iris, wine and breast cancer wisconsin.Moreover, influence of ensemble classification methods on classification accuracy waspresented.
Hierarchical models and iterative optimization of hybrid systems
Energy Technology Data Exchange (ETDEWEB)
Rasina, Irina V. [Ailamazyan Program Systems Institute, Russian Academy of Sciences, Peter One str. 4a, Pereslavl-Zalessky, 152021 (Russian Federation); Baturina, Olga V. [Trapeznikov Control Sciences Institute, Russian Academy of Sciences, Profsoyuznaya str. 65, 117997, Moscow (Russian Federation); Nasatueva, Soelma N. [Buryat State University, Smolina str.24a, Ulan-Ude, 670000 (Russian Federation)
2016-06-08
A class of hybrid control systems on the base of two-level discrete-continuous model is considered. The concept of this model was proposed and developed in preceding works as a concretization of the general multi-step system with related optimality conditions. A new iterative optimization procedure for such systems is developed on the base of localization of the global optimality conditions via contraction the control set.
Modeling and design of a high-performance hybrid actuator
Aloufi, Badr; Behdinan, Kamran; Zu, Jean
2016-12-01
This paper presents the model and design of a novel hybrid piezoelectric actuator which provides high active and passive performances for smart structural systems. The actuator is composed of a pair of curved pre-stressed piezoelectric actuators, so-called commercially THUNDER actuators, installed opposite each other using two clamping mechanisms constructed of in-plane fixable hinges, grippers and solid links. A fully mathematical model is developed to describe the active and passive dynamics of the actuator and investigate the effects of its geometrical parameters on the dynamic stiffness, free displacement and blocked force properties. Among the literature that deals with piezoelectric actuators in which THUNDER elements are used as a source of electromechanical power, the proposed study is unique in that it presents a mathematical model that has the ability to predict the actuator characteristics and achieve other phenomena, such as resonances, mode shapes, phase shifts, dips, etc. For model validation, the measurements of the free dynamic response per unit voltage and passive acceleration transmissibility of a particular actuator design are used to check the accuracy of the results predicted by the model. The results reveal that there is a good agreement between the model and experiment. Another experiment is performed to teste the linearity of the actuator system by examining the variation of the output dynamic responses with varying forces and voltages at different frequencies. From the results, it can be concluded that the actuator acts approximately as a linear system at frequencies up to 1000 Hz. A parametric study is achieved here by applying the developed model to analyze the influence of the geometrical parameters of the fixable hinges on the active and passive actuator properties. The model predictions in the frequency range of 0-1000 Hz show that the hinge thickness, radius, and opening angle parameters have great effects on the frequency dynamic
Intelligent-based Structural Damage Detection Model
International Nuclear Information System (INIS)
Lee, Eric Wai Ming; Yu, K.F.
2010-01-01
This paper presents the application of a novel Artificial Neural Network (ANN) model for the diagnosis of structural damage. The ANN model, denoted as the GRNNFA, is a hybrid model combining the General Regression Neural Network Model (GRNN) and the Fuzzy ART (FA) model. It not only retains the important features of the GRNN and FA models (i.e. fast and stable network training and incremental growth of network structure) but also facilitates the removal of the noise embedded in the training samples. Structural damage alters the stiffness distribution of the structure and so as to change the natural frequencies and mode shapes of the system. The measured modal parameter changes due to a particular damage are treated as patterns for that damage. The proposed GRNNFA model was trained to learn those patterns in order to detect the possible damage location of the structure. Simulated data is employed to verify and illustrate the procedures of the proposed ANN-based damage diagnosis methodology. The results of this study have demonstrated the feasibility of applying the GRNNFA model to structural damage diagnosis even when the training samples were noise contaminated.
Intelligent-based Structural Damage Detection Model
Lee, Eric Wai Ming; Yu, Kin Fung
2010-05-01
This paper presents the application of a novel Artificial Neural Network (ANN) model for the diagnosis of structural damage. The ANN model, denoted as the GRNNFA, is a hybrid model combining the General Regression Neural Network Model (GRNN) and the Fuzzy ART (FA) model. It not only retains the important features of the GRNN and FA models (i.e. fast and stable network training and incremental growth of network structure) but also facilitates the removal of the noise embedded in the training samples. Structural damage alters the stiffness distribution of the structure and so as to change the natural frequencies and mode shapes of the system. The measured modal parameter changes due to a particular damage are treated as patterns for that damage. The proposed GRNNFA model was trained to learn those patterns in order to detect the possible damage location of the structure. Simulated data is employed to verify and illustrate the procedures of the proposed ANN-based damage diagnosis methodology. The results of this study have demonstrated the feasibility of applying the GRNNFA model to structural damage diagnosis even when the training samples were noise contaminated.
A model for particle acceleration in lower hybrid collapse
International Nuclear Information System (INIS)
Retterer, J.M.
1997-01-01
A model for particle acceleration during the nonlinear collapse of lower hybrid waves is described. Using the Musher-Sturman wave equation to describe the effects of nonlinear processes and a velocity diffusion equation for the particle velocity distribution, the model self-consistently describes the exchange of energy between the fields and the particles in the local plasma. Two-dimensional solutions are presented for the modulational instability of a plane wave and the collapse of a cylindrical wave packet. These calculations were motivated by sounding rocket observations in the vicinity of auroral arcs in the Earth close-quote s ionosphere, which have revealed the existence of large-amplitude lower-hybrid wave packets associated with ions accelerated to energies of 100 eV. The scaling of the sizes of these wave packets is consistent with the theory of lower-hybrid collapse and the observed lower-hybrid field amplitudes are adequate to accelerate the ionospheric ions to the observed energies
Hybrid reduced order modeling for assembly calculations
International Nuclear Information System (INIS)
Bang, Youngsuk; Abdel-Khalik, Hany S.; Jessee, Matthew A.; Mertyurek, Ugur
2015-01-01
Highlights: • Reducing computational cost in engineering calculations. • Reduced order modeling algorithm for multi-physics problem like assembly calculation. • Non-intrusive algorithm with random sampling. • Pattern recognition in the components with high sensitive and large variation. - Abstract: While the accuracy of assembly calculations has considerably improved due to the increase in computer power enabling more refined description of the phase space and use of more sophisticated numerical algorithms, the computational cost continues to increase which limits the full utilization of their effectiveness for routine engineering analysis. Reduced order modeling is a mathematical vehicle that scales down the dimensionality of large-scale numerical problems to enable their repeated executions on small computing environment, often available to end users. This is done by capturing the most dominant underlying relationships between the model's inputs and outputs. Previous works demonstrated the use of the reduced order modeling for a single physics code, such as a radiation transport calculation. This manuscript extends those works to coupled code systems as currently employed in assembly calculations. Numerical tests are conducted using realistic SCALE assembly models with resonance self-shielding, neutron transport, and nuclides transmutation/depletion models representing the components of the coupled code system.
Hybrid reduced order modeling for assembly calculations
Energy Technology Data Exchange (ETDEWEB)
Bang, Youngsuk, E-mail: ysbang00@fnctech.com [FNC Technology, Co. Ltd., Yongin-si (Korea, Republic of); Abdel-Khalik, Hany S., E-mail: abdelkhalik@purdue.edu [Purdue University, West Lafayette, IN (United States); Jessee, Matthew A., E-mail: jesseema@ornl.gov [Oak Ridge National Laboratory, Oak Ridge, TN (United States); Mertyurek, Ugur, E-mail: mertyurek@ornl.gov [Oak Ridge National Laboratory, Oak Ridge, TN (United States)
2015-12-15
Highlights: • Reducing computational cost in engineering calculations. • Reduced order modeling algorithm for multi-physics problem like assembly calculation. • Non-intrusive algorithm with random sampling. • Pattern recognition in the components with high sensitive and large variation. - Abstract: While the accuracy of assembly calculations has considerably improved due to the increase in computer power enabling more refined description of the phase space and use of more sophisticated numerical algorithms, the computational cost continues to increase which limits the full utilization of their effectiveness for routine engineering analysis. Reduced order modeling is a mathematical vehicle that scales down the dimensionality of large-scale numerical problems to enable their repeated executions on small computing environment, often available to end users. This is done by capturing the most dominant underlying relationships between the model's inputs and outputs. Previous works demonstrated the use of the reduced order modeling for a single physics code, such as a radiation transport calculation. This manuscript extends those works to coupled code systems as currently employed in assembly calculations. Numerical tests are conducted using realistic SCALE assembly models with resonance self-shielding, neutron transport, and nuclides transmutation/depletion models representing the components of the coupled code system.
A Hybrid Model for Forecasting Sales in Turkish Paint Industry
Directory of Open Access Journals (Sweden)
Alp Ustundag
2009-12-01
Full Text Available Sales forecasting is important for facilitating effective and efficient allocation of scarce resources. However, how to best model and forecast sales has been a long-standing issue. There is no best forecasting method that is applicable in all circumstances. Therefore, confidence in the accuracy of sales forecasts is achieved by corroborating the results using two or more methods. This paper proposes a hybrid forecasting model that uses an artificial intelligence method (AI with multiple linear regression (MLR to predict product sales for the largest Turkish paint producer. In the hybrid model, three different AI methods, fuzzy rule-based system (FRBS, artificial neural network (ANN and adaptive neuro fuzzy network (ANFIS, are used and compared to each other. The results indicate that FRBS yields better forecasting accuracy in terms of root mean squared error (RMSE and mean absolute percentage error (MAPE.
Hybrid reduced order modeling for assembly calculations
Energy Technology Data Exchange (ETDEWEB)
Bang, Y.; Abdel-Khalik, H. S. [North Carolina State University, Raleigh, NC (United States); Jessee, M. A.; Mertyurek, U. [Oak Ridge National Laboratory, Oak Ridge, TN (United States)
2013-07-01
While the accuracy of assembly calculations has considerably improved due to the increase in computer power enabling more refined description of the phase space and use of more sophisticated numerical algorithms, the computational cost continues to increase which limits the full utilization of their effectiveness for routine engineering analysis. Reduced order modeling is a mathematical vehicle that scales down the dimensionality of large-scale numerical problems to enable their repeated executions on small computing environment, often available to end users. This is done by capturing the most dominant underlying relationships between the model's inputs and outputs. Previous works demonstrated the use of the reduced order modeling for a single physics code, such as a radiation transport calculation. This manuscript extends those works to coupled code systems as currently employed in assembly calculations. Numerical tests are conducted using realistic SCALE assembly models with resonance self-shielding, neutron transport, and nuclides transmutation/depletion models representing the components of the coupled code system. (authors)
Hybrid neural network bushing model for vehicle dynamics simulation
International Nuclear Information System (INIS)
Sohn, Jeong Hyun; Lee, Seung Kyu; Yoo, Wan Suk
2008-01-01
Although the linear model was widely used for the bushing model in vehicle suspension systems, it could not express the nonlinear characteristics of bushing in terms of the amplitude and the frequency. An artificial neural network model was suggested to consider the hysteretic responses of bushings. This model, however, often diverges due to the uncertainties of the neural network under the unexpected excitation inputs. In this paper, a hybrid neural network bushing model combining linear and neural network is suggested. A linear model was employed to represent linear stiffness and damping effects, and the artificial neural network algorithm was adopted to take into account the hysteretic responses. A rubber test was performed to capture bushing characteristics, where sine excitation with different frequencies and amplitudes is applied. Random test results were used to update the weighting factors of the neural network model. It is proven that the proposed model has more robust characteristics than a simple neural network model under step excitation input. A full car simulation was carried out to verify the proposed bushing models. It was shown that the hybrid model results are almost identical to the linear model under several maneuvers
Hybrid Nanocomposites for Efficient Aerospace Structures, Phase II
National Aeronautics and Space Administration — NASA's Advanced Air Vehicles program seeks to improve safety and efficiency through exploration of the value of hybrid composites, guiding utilization of the...
ON THE STABILIZATION OF THE LINEAR HYBRID SYSTEM STRUCTURE
Directory of Open Access Journals (Sweden)
Kirillov
2014-11-01
Full Text Available The linear control hybrid system, consisting of a fi- nite set of subsystems (modes having different dimensions, is considered. The moments of reset time are determined by some complementary function – evolutionary time. This function satisfies the special complementary ordinary differential equation. The mode stabilization problem is solved for some class of piecewise linear controls. The method of stabilization relies on the set of invariant planes, the existence of which is due to the special form of the hybrid system.
The Cheshire Cat principle for hybrid bag models
International Nuclear Information System (INIS)
Nielsen, H.B.
1987-05-01
The Cheshire Cat point of view where the bag in the chiral bag model has no physical significance, but only a notational one is argued for. It is explained how a fermion - in, say, a 1+1 dimensional exact Cheshire Cat model - escapes the bag by means of an anomaly. The possibility to construct sophisticated hybrid bag models is suggested which use the lack of physical significance of the bag to fix the many parameters so as to anyway give hope of a phenomenologically sensible model. (orig.)
Modelling of a Hybrid Energy System for Autonomous Application
Directory of Open Access Journals (Sweden)
Yang He
2013-10-01
Full Text Available A hybrid energy system (HES is a trending power supply solution for autonomous devices. With the help of an accurate system model, the HES development will be efficient and oriented. In spite of various precise unit models, a HES system is hardly developed. This paper proposes a system modelling approach, which applies the power flux conservation as the governing equation and adapts and modifies unit models of solar cells, piezoelectric generators, a Li-ion battery and a super-capacitor. A generalized power harvest, storage and management strategy is also suggested to adapt to various application scenarios.
Kurnia, Domas; Nugroho, Denny
2018-02-01
Trimulyo is one of coastal village in Genuk Subdistrict, Semarang City which now facing serious coastal abrasion. Such a thing has been causing loss of ponds and settlements. One of solution which currently carried is hybrid structure which combining permeable structure to break up the waves and trap sediment. The hybrid structure is designed as agitation dredging, which increase suspended sediment in sea water. The goals of this research were to studying the effectiveness of hybrid structure in handling coastal abration and to counting the volume of sedimentation during 20 months as well as rate of sedimentation. To reach the goals, high resolution satellite imagery year 2015 and 2016, scaled stick and sediment trap were applied to the study. Image processing was conducted by using Arc GIS 10.3 software. The effectiveness of hybrid structured was determined by series of field survey of existing condition. Rate of sedimentation measured during before and after hybrid structure built (20 months). The results showed that hybrid structure was effective to reduce coastal abrasion, it proven by a large amount of sediment was trapped behind the structure and coastline was upward along 170 meter since it was built. The volume of sediment during 20 months is 81.500 m3. If it assumed that the rate of sedimentation constantly, monthly rate of sedimentation is 4.075 m3/month or daily rate is 135,8 m3/day. The sediment that has formed highly recommended to use as mangrove conservation area in Semarang City.
Tunable thermal rectification in graphene/hexagonal boron nitride hybrid structures
Chen, Xue-Kun; Hu, Ji-Wen; Wu, Xi-Jun; Jia, Peng; Peng, Zhi-Hua; Chen, Ke-Qiu
2018-02-01
Using non-equilibrium molecular dynamics simulations, we investigate thermal rectification (TR) in graphene/hexagonal boron nitride (h-BN) hybrid structures. Two different structural models, partially substituting graphene into h-BN (CBN) and partially substituting h-BN into graphene (BNC), are considered. It is found that CBN has a significant TR effect while that of BNC is very weak. The observed TR phenomenon can be attributed to the resonance effect between out-of-plane phonons of graphene and h-BN domains in the low-frequency region under negative temperature bias. In addition, the influences of ambient temperature, system size, defect number and substrate interaction are also studied to obtain the optimum conditions for TR. More importantly, the TR ratio could be effectively tuned through chemical and structural diversity. A moderate C/BN ratio and parallel arrangement are found to enhance the TR ratio. Detailed phonon spectra analyses are conducted to understand the thermal transport behavior. This work extends hybrid engineering to 2D materials for achieving TR.
Advanced Ceramic Matrix Composites with Multifunctional and Hybrid Structures
Singh, Mrityunjay; Morscher, Gregory N.
2004-01-01
Ceramic matrix composites are leading candidate materials for a number of applications in aeronautics, space, energy, and nuclear industries. Potential composite applications differ in their requirements for thickness. For example, many space applications such as "nozzle ramps" or "heat exchangers" require very thin (structures whereas turbine blades would require very thick parts (> or = 1 cm). Little is known about the effect of thickness on stress-strain behavior or the elevated temperature tensile properties controlled by oxidation diffusion. In this study, composites consisting of woven Hi-Nicalon (trademark) fibers a carbon interphase and CVI SiC matrix were fabricated with different numbers of plies and thicknesses. The effect of thickness on matrix crack formation, matrix crack growth and diffusion kinetics will be discussed. In another approach, hybrid fiber-lay up concepts have been utilized to "alloy" desirable properties of different fiber types for mechanical properties, thermal stress management, and oxidation resistance. Such an approach has potential for the C(sub I)-SiC and SiC(sub f)-SiC composite systems. CVI SiC matrix composites with different stacking sequences of woven C fiber (T300) layers and woven SiC fiber (Hi-Nicalon (trademark)) layers were fabricated. The results will be compared to standard C fiber reinforced CVI SiC matrix and Hi-Nicalon reinforced CVI SiC matrix composites. In addition, shear properties of these composites at different temperatures will also be presented. Other design and implementation issues will be discussed along with advantages and benefits of using these materials for various components in high temperature applications.
Energy Technology Data Exchange (ETDEWEB)
Saba, N., E-mail: naheedchem@gmail.com [Laboratory of Biocomposite Technology, Institute of Tropical Forestry and Forest Products(INTROP), Universiti Putra Malaysia, 43400 UPM Serdang, Selangor (Malaysia); Paridah, M.T. [Laboratory of Biocomposite Technology, Institute of Tropical Forestry and Forest Products(INTROP), Universiti Putra Malaysia, 43400 UPM Serdang, Selangor (Malaysia); Abdan, K. [Department of Biological and Agricultural Engineering, Faculty of Engineering, Universiti Putra Malaysia, 43400 UPM Serdang Selangor (Malaysia); Ibrahim, N.A. [Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor (Malaysia)
2016-12-01
The present research study deals with the fabrication of kenaf/epoxy hybrid nanocomposites by the incorporation of oil palm nano filler, montmorillonite (MMT) and organically modified montmorillonite (OMMT) at 3% loading, through hand lay-up technique. Effect of adding different nano fillers on the physical (density), structural [X-ray diffraction (XRD)] and thermomechanical analysis (TMA) of kenaf/epoxy composites were carried out. Density results revealed that the incorporation of nano filler in the kenaf/epoxy composites increases the density which in turn increases the hardness of the hybrid nanocomposites. XRD analysis confirmed the presence of nano fillers in the structure of their respective fabricated hybrid nanocomposites. All hybrid nanocomposites displayed lower coefficient of thermal expansion (CTE) with respect to kenaf/epoxy composites. Overall results predicted that the properties improvement in nano OPEFB/kenaf/epoxy was quite comparable to MMT/kenaf/epoxy but relatively lesser to OMMT/kenaf/epoxy hybrid nanocomposites and higher with respect to kenaf/epoxy composites. The improvement ascribed due to improved interfacial bonding or cross linking between kenaf fibers and epoxy matrix by addition of nano filler. - Highlights: • Nano OPEFB/kenaf/epoxy hybrid nanocomposites were fabricated by hand lay-up. • Effect of nano OPEFB on density & structure of kenaf/epoxy were investigated. • Thermal expansion coefficients of kenaf/epoxy and hybrid nanocomposites evaluated. • Comparative studies were made with MMT and OMMT kenaf/epoxy hybrid nanocomposites.
International Nuclear Information System (INIS)
Saba, N.; Paridah, M.T.; Abdan, K.; Ibrahim, N.A.
2016-01-01
The present research study deals with the fabrication of kenaf/epoxy hybrid nanocomposites by the incorporation of oil palm nano filler, montmorillonite (MMT) and organically modified montmorillonite (OMMT) at 3% loading, through hand lay-up technique. Effect of adding different nano fillers on the physical (density), structural [X-ray diffraction (XRD)] and thermomechanical analysis (TMA) of kenaf/epoxy composites were carried out. Density results revealed that the incorporation of nano filler in the kenaf/epoxy composites increases the density which in turn increases the hardness of the hybrid nanocomposites. XRD analysis confirmed the presence of nano fillers in the structure of their respective fabricated hybrid nanocomposites. All hybrid nanocomposites displayed lower coefficient of thermal expansion (CTE) with respect to kenaf/epoxy composites. Overall results predicted that the properties improvement in nano OPEFB/kenaf/epoxy was quite comparable to MMT/kenaf/epoxy but relatively lesser to OMMT/kenaf/epoxy hybrid nanocomposites and higher with respect to kenaf/epoxy composites. The improvement ascribed due to improved interfacial bonding or cross linking between kenaf fibers and epoxy matrix by addition of nano filler. - Highlights: • Nano OPEFB/kenaf/epoxy hybrid nanocomposites were fabricated by hand lay-up. • Effect of nano OPEFB on density & structure of kenaf/epoxy were investigated. • Thermal expansion coefficients of kenaf/epoxy and hybrid nanocomposites evaluated. • Comparative studies were made with MMT and OMMT kenaf/epoxy hybrid nanocomposites.
HYBRID WAYS OF DOING: A MODEL FOR TEACHING PUBLIC SPACE
Directory of Open Access Journals (Sweden)
Gabrielle Bendiner-Viani
2010-07-01
Full Text Available This paper addresses an exploratory practice undertaken by the authors in a co-taught class to hybridize theory, research and practice. This experiment in critical transdisciplinary design education took the form of a “critical studio + practice-based seminar on public space”, two interlinked classes co-taught by landscape architect Elliott Maltby and environmental psychologist Gabrielle Bendiner-Viani at the Parsons, The New School for Design. This design process was grounded in the political and social context of the contested East River waterfront of New York City and valued both intensive study (using a range of social science and design methods and a partnership with a local community organization, engaging with the politics, issues and human needs of a complex site. The paper considers how we encouraged interdisciplinary collaboration and dialogue between teachers as well as between liberal arts and design students and developed strategies to overcome preconceived notions of traditional “studio” and “seminar” work. By exploring the challenges and adjustments made during the semester and the process of teaching this class, this paper addresses how we moved from a model of intertwining theory, research and practice, to a hybrid model of multiple ways of doing, a model particularly apt for teaching public space. Through examples developed for and during our course, the paper suggests practical ways of supporting this transdisciplinary hybrid model.
Hybrid Control of Supply Chains: a Structured Exploration from a Systems Perspective
Directory of Open Access Journals (Sweden)
Paul W. P. J. Grefen
2013-07-01
Full Text Available Supply chains are becoming increasingly complex these days, both in the structure of the chains and in the need for fine-grained, real-time control. This development occurs in many industries, such as manufacturing, logistics, and the service industry. The increasing structural complexity is caused by larger numbers of participating companies in supply chains because of increasing complexity of products and services. Increasing requirements to control are caused by developments like mass-customization, pressure on delivery times, and smaller margins for waste. Maintaining well-structured strategic, tactic, and operational control over these complex supply chains is not an easy task – certainly as they are pressured by end-to-end synchronization requirements and just-in-time demands. Things become even more complex when chains need to be flexible to react to changing requirements to the products or services they deliver. To enable design of well-structured control, clear models of control topologies are required. In this paper, we address this need by exploring supply chain control topologies in an organized fashion. The exploration is based on integrating a supply chain model and a control model in two alternative ways to obtain two extreme models for supply chain control. These two models are next combined to obtain a hybrid chain control model in which control parameters can be adapted to accommodate different circumstances, hence facilitating agility in supply chains and networks. We apply the developed model to a number of case studies to show its usability. The contribution of this paper is the structured analysis of the design space for chain-level control models - not the description of individual new models.
Modelling the solar wind interaction with Mercury by a quasi-neutral hybrid model
Directory of Open Access Journals (Sweden)
E. Kallio
2003-11-01
Full Text Available Quasi-neutral hybrid model is a self-consistent modelling approach that includes positively charged particles and an electron fluid. The approach has received an increasing interest in space plasma physics research because it makes it possible to study several plasma physical processes that are difficult or impossible to model by self-consistent fluid models, such as the effects associated with the ions’ finite gyroradius, the velocity difference between different ion species, or the non-Maxwellian velocity distribution function. By now quasi-neutral hybrid models have been used to study the solar wind interaction with the non-magnetised Solar System bodies of Mars, Venus, Titan and comets. Localized, two-dimensional hybrid model runs have also been made to study terrestrial dayside magnetosheath. However, the Hermean plasma environment has not yet been analysed by a global quasi-neutral hybrid model. In this paper we present a new quasi-neutral hybrid model developed to study various processes associated with the Mercury-solar wind interaction. Emphasis is placed on addressing advantages and disadvantages of the approach to study different plasma physical processes near the planet. The basic assumptions of the approach and the algorithms used in the new model are thoroughly presented. Finally, some of the first three-dimensional hybrid model runs made for Mercury are presented. The resulting macroscopic plasma parameters and the morphology of the magnetic field demonstrate the applicability of the new approach to study the Mercury-solar wind interaction globally. In addition, the real advantage of the kinetic hybrid model approach is to study the property of individual ions, and the study clearly demonstrates the large potential of the approach to address these more detailed issues by a quasi-neutral hybrid model in the future.Key words. Magnetospheric physics (planetary magnetospheres; solar wind-magnetosphere interactions – Space plasma
Properties of hybrid stars in an extended MIT bag model
International Nuclear Information System (INIS)
Bao Tmurbagan; Liu Guangzhou; Zhu Mingfeng
2009-01-01
The properties of hybrid stars are investigated in the framework of the relativistic mean field theory (RMFT) and an MIT bag model with density-dependent bag constant to describe the hadron phase (HP) and quark phase (QP), respectively. We find that the density-dependent B(ρ) decreases with baryon density ρ; this decrement makes the strange quark matter become more energetically favorable than ever; which makes the threshold densities of the hadron-quark phase transition lower than those of the original bag constant case. In this case, the hyperon degrees of freedom can not be considered. As a result, the equations of state of a star in the mixed phase (MP) become softer whereas those in the QP become stiffer, and the radii of the star obviously decrease. This indicates that the extended MIT bag model is more suitable to describe hybrid stars with small radii. (authors)
Effective-mass model and magneto-optical properties in hybrid perovskites
Yu, Z. G.
2016-01-01
Hybrid inorganic-organic perovskites have proven to be a revolutionary material for low-cost photovoltaic applications. They also exhibit many other interesting properties, including giant Rashba splitting, large-radius Wannier excitons, and novel magneto-optical effects. Understanding these properties as well as the detailed mechanism of photovoltaics requires a reliable and accessible electronic structure, on which models of transport, excitonic, and magneto-optical properties can be effici...
A Generalized Hybrid Multiscale Modeling Approach for Flow and Reactive Transport in Porous Media
Yang, X.; Meng, X.; Tang, Y. H.; Guo, Z.; Karniadakis, G. E.
2017-12-01
Using emerging understanding of biological and environmental processes at fundamental scales to advance predictions of the larger system behavior requires the development of multiscale approaches, and there is strong interest in coupling models at different scales together in a hybrid multiscale simulation framework. A limited number of hybrid multiscale simulation methods have been developed for subsurface applications, mostly using application-specific approaches for model coupling. The proposed generalized hybrid multiscale approach is designed with minimal intrusiveness to the at-scale simulators (pre-selected) and provides a set of lightweight C++ scripts to manage a complex multiscale workflow utilizing a concurrent coupling approach. The workflow includes at-scale simulators (using the lattice-Boltzmann method, LBM, at the pore and Darcy scale, respectively), scripts for boundary treatment (coupling and kriging), and a multiscale universal interface (MUI) for data exchange. The current study aims to apply the generalized hybrid multiscale modeling approach to couple pore- and Darcy-scale models for flow and mixing-controlled reaction with precipitation/dissolution in heterogeneous porous media. The model domain is packed heterogeneously that the mixing front geometry is more complex and not known a priori. To address those challenges, the generalized hybrid multiscale modeling approach is further developed to 1) adaptively define the locations of pore-scale subdomains, 2) provide a suite of physical boundary coupling schemes and 3) consider the dynamic change of the pore structures due to mineral precipitation/dissolution. The results are validated and evaluated by comparing with single-scale simulations in terms of velocities, reactive concentrations and computing cost.
A light neutralino in hybrid models of supersymmetry breaking
Dudas, Emilian; Parmentier, Jeanne; 10.1016
2008-01-01
We show that in gauge mediation models where heavy messenger masses are provided by the adjoint Higgs field of an underlying SU(5) theory, a generalized gauge mediation spectrum arises with the characteristic feature of having a neutralino much lighter than in the standard gauge or gravity mediation schemes. This naturally fits in a hybrid scenario where gravity mediation, while subdominant with respect to gauge mediation, provides mu and B mu parameters in the TeV range.
A light neutralino in hybrid models of supersymmetry breaking
International Nuclear Information System (INIS)
Dudas, Emilian; Lavignac, Stephane; Parmentier, Jeanne
2009-01-01
We show that in gauge mediation models where heavy messenger masses are provided by the adjoint Higgs field of an underlying SU(5) theory, a generalized gauge mediation spectrum arises with the characteristic feature of having a neutralino LSP much lighter than in the standard gauge or gravity mediation schemes. This naturally fits in a hybrid scenario where gravity mediation, while subdominant with respect to gauge mediation, provides μ and Bμ parameters of the appropriate size for electroweak symmetry breaking
Hybrid Model for e-Learning Quality Evaluation
Directory of Open Access Journals (Sweden)
Suzana M. Savic
2012-02-01
Full Text Available E-learning is becoming increasingly important for the competitive advantage of economic organizations and higher education institutions. Therefore, it is becoming a significant aspect of quality which has to be integrated into the management system of every organization or institution. The paper examines e-learning quality characteristics, standards, criteria and indicators and presents a multi-criteria hybrid model for e-learning quality evaluation based on the method of Analytic Hierarchy Process, trend analysis, and data comparison.
Modeling and control of a hybrid-electric vehicle for drivability and fuel economy improvements
Koprubasi, Kerem
The gradual decline of oil reserves and the increasing demand for energy over the past decades has resulted in automotive manufacturers seeking alternative solutions to reduce the dependency on fossil-based fuels for transportation. A viable technology that enables significant improvements in the overall tank-to-wheel vehicle energy conversion efficiencies is the hybridization of electrical and conventional drive systems. Sophisticated hybrid powertrain configurations require careful coordination of the actuators and the onboard energy sources for optimum use of the energy saving benefits. The term optimality is often associated with fuel economy, although other measures such as drivability and exhaust emissions are also equally important. This dissertation focuses on the design of hybrid-electric vehicle (HEV) control strategies that aim to minimize fuel consumption while maintaining good vehicle drivability. In order to facilitate the design of controllers based on mathematical models of the HEV system, a dynamic model that is capable of predicting longitudinal vehicle responses in the low-to-mid frequency region (up to 10 Hz) is developed for a parallel HEV configuration. The model is validated using experimental data from various driving modes including electric only, engine only and hybrid. The high fidelity of the model makes it possible to accurately identify critical drivability issues such as time lags, shunt, shuffle, torque holes and hesitation. Using the information derived from the vehicle model, an energy management strategy is developed and implemented on a test vehicle. The resulting control strategy has a hybrid structure in the sense that the main mode of operation (the hybrid mode) is occasionally interrupted by event-based rules to enable the use of the engine start-stop function. The changes in the driveline dynamics during this transition further contribute to the hybrid nature of the system. To address the unique characteristics of the HEV
Hybrid Speaker Recognition Using Universal Acoustic Model
Nishimura, Jun; Kuroda, Tadahiro
We propose a novel speaker recognition approach using a speaker-independent universal acoustic model (UAM) for sensornet applications. In sensornet applications such as “Business Microscope”, interactions among knowledge workers in an organization can be visualized by sensing face-to-face communication using wearable sensor nodes. In conventional studies, speakers are detected by comparing energy of input speech signals among the nodes. However, there are often synchronization errors among the nodes which degrade the speaker recognition performance. By focusing on property of the speaker's acoustic channel, UAM can provide robustness against the synchronization error. The overall speaker recognition accuracy is improved by combining UAM with the energy-based approach. For 0.1s speech inputs and 4 subjects, speaker recognition accuracy of 94% is achieved at the synchronization error less than 100ms.
Stochastic linear hybrid systems: Modeling, estimation, and application
Seah, Chze Eng
Hybrid systems are dynamical systems which have interacting continuous state and discrete state (or mode). Accurate modeling and state estimation of hybrid systems are important in many applications. We propose a hybrid system model, known as the Stochastic Linear Hybrid System (SLHS), to describe hybrid systems with stochastic linear system dynamics in each mode and stochastic continuous-state-dependent mode transitions. We then develop a hybrid estimation algorithm, called the State-Dependent-Transition Hybrid Estimation (SDTHE) algorithm, to estimate the continuous state and discrete state of the SLHS from noisy measurements. It is shown that the SDTHE algorithm is more accurate or more computationally efficient than existing hybrid estimation algorithms. Next, we develop a performance analysis algorithm to evaluate the performance of the SDTHE algorithm in a given operating scenario. We also investigate sufficient conditions for the stability of the SDTHE algorithm. The proposed SLHS model and SDTHE algorithm are illustrated to be useful in several applications. In Air Traffic Control (ATC), to facilitate implementations of new efficient operational concepts, accurate modeling and estimation of aircraft trajectories are needed. In ATC, an aircraft's trajectory can be divided into a number of flight modes. Furthermore, as the aircraft is required to follow a given flight plan or clearance, its flight mode transitions are dependent of its continuous state. However, the flight mode transitions are also stochastic due to navigation uncertainties or unknown pilot intents. Thus, we develop an aircraft dynamics model in ATC based on the SLHS. The SDTHE algorithm is then used in aircraft tracking applications to estimate the positions/velocities of aircraft and their flight modes accurately. Next, we develop an aircraft conformance monitoring algorithm to detect any deviations of aircraft trajectories in ATC that might compromise safety. In this application, the SLHS
Structural system identification: Structural dynamics model validation
Energy Technology Data Exchange (ETDEWEB)
Red-Horse, J.R.
1997-04-01
Structural system identification is concerned with the development of systematic procedures and tools for developing predictive analytical models based on a physical structure`s dynamic response characteristics. It is a multidisciplinary process that involves the ability (1) to define high fidelity physics-based analysis models, (2) to acquire accurate test-derived information for physical specimens using diagnostic experiments, (3) to validate the numerical simulation model by reconciling differences that inevitably exist between the analysis model and the experimental data, and (4) to quantify uncertainties in the final system models and subsequent numerical simulations. The goal of this project was to develop structural system identification techniques and software suitable for both research and production applications in code and model validation.
The Cheshire Cat principle applied to hybrid bag models
International Nuclear Information System (INIS)
Nielsen, H.B.; Wirzba, A.
1987-05-01
Here is argued for the Cheshire Cat point of view according to which the bag (itself) has only notational, but no physical significance. It is explained in a 1+1 dimensional exact Cheshire Cat model how a fermion can escape from the bag by means of an anomaly. We also suggest that suitably constructed hybrid bag models may be used to fix such parameters of effective Lagrangians that can otherwise be obtained from experiments only. This idea is illustrated in a calculation of the mass of the pseudoscalar η' meson in 1+1 dimension. Thus there is hope to find a construction principle for a phenomenologically sensible model. (orig.)
Hybrid model for the decay of nuclear giant resonances
International Nuclear Information System (INIS)
Hussein, M.S.
1986-12-01
The decay properties of nuclear giant multipole resonances are discussed within a hybrid model that incorporates, in a unitary consistent way, both the coherent and statistical features. It is suggested that the 'direct' decay of the GR is described with continuum first RPA and the statistical decay calculated with a modified Hauser-Feshbach model. Application is made to the decay of the giant monopole resonance in 208 Pb. Suggestions are made concerning the calculation of the mixing parameter using the statistical properties of the shell model eigenstates at high excitation energies. (Author) [pt
2015-12-10
Laboratory (Ret.), private communication. 33. S. Kou, Welding Metallurgy , 2nd Ed., John Wiley & Sons, Inc., 2003. DOI: 10.1002/0471434027. 34. J. K...Naval Research Laboratory Washington, DC 20375-5320 NRL/MR/6390--15-9665 Temperature Histories of Structural Steel Laser and Hybrid Laser-GMA Welds ...NUMBER OF PAGES 17. LIMITATION OF ABSTRACT Temperature Histories of Structural Steel Laser and Hybrid Laser-GMA Welds Calculated Using Multiple
Optical Fiber/Nanowire Hybrid Structures for Efficient Three-Dimensional Dye-Sensitized Solar Cells
Weintraub, Benjamin
2009-11-09
Wired up: The energy conversion efficiency of three-dimensional dye-sensitized solar cells (DSSCs) in a hybrid structure that integrates optical fibers and nanowire arrays is greater than that of a two-dimensional device. Internal axial illumination enhances the energy conversion efficiency of a rectangular fiber-based hybrid structure (see picture) by a factor of up to six compared to light illumination normal to the fiber axis from outside the device.
Model Predictive Control for Connected Hybrid Electric Vehicles
Directory of Open Access Journals (Sweden)
Kaijiang Yu
2015-01-01
Full Text Available This paper presents a new model predictive control system for connected hybrid electric vehicles to improve fuel economy. The new features of this study are as follows. First, the battery charge and discharge profile and the driving velocity profile are simultaneously optimized. One is energy management for HEV for Pbatt; the other is for the energy consumption minimizing problem of acc control of two vehicles. Second, a system for connected hybrid electric vehicles has been developed considering varying drag coefficients and the road gradients. Third, the fuel model of a typical hybrid electric vehicle is developed using the maps of the engine efficiency characteristics. Fourth, simulations and analysis (under different parameters, i.e., road conditions, vehicle state of charge, etc. are conducted to verify the effectiveness of the method to achieve higher fuel efficiency. The model predictive control problem is solved using numerical computation method: continuation and generalized minimum residual method. Computer simulation results reveal improvements in fuel economy using the proposed control method.
Analysis of the PEDOT:PSS/Si nanowire hybrid solar cell with a tail state model
Ho, Kuan-Ying; Li, Chi-Kang; Syu, Hong-Jhang; Lai, Yi; Lin, Ching-Fuh; Wu, Yuh-Renn
2016-12-01
In this paper, the electrical properties of the poly(3,4-ethylenedioxythiophene): poly(styrenesulfonate) (PEDOT:PSS)/silicon nanowire hybrid solar cell have been analyzed and an optimized structure is proposed. In addition, the planar PEDOT:PSS/c-Si hybrid solar cell is also modeled for comparison. We first developed a simulation software which is capable of modeling organic/inorganic hybrid solar cells by including Gaussian shape density of states into Poisson and drift-diffusion solver to present the tail states and trap states in the organic material. Therefore, the model can handle carrier transport, generation, and recombination in both organic and inorganic materials. Our results show that at the applied voltage near open-circuit voltage (Voc), the recombination rate becomes much higher at the PEDOT:PSS/Si interface region, which limits the fill factor and Voc. Hence, a modified structure with a p-type amorphous silicon (a-Si) layer attached on the interface of Si layer and an n+-type Si layer inserted near the bottom contact are proposed. The highest conversion efficiency of 16.10% can be achieved if both structures are applied.
Parametric Linear Hybrid Automata for Complex Environmental Systems Modeling
Directory of Open Access Journals (Sweden)
Samar Hayat Khan Tareen
2015-07-01
Full Text Available Environmental systems, whether they be weather patterns or predator-prey relationships, are dependent on a number of different variables, each directly or indirectly affecting the system at large. Since not all of these factors are known, these systems take on non-linear dynamics, making it difficult to accurately predict meaningful behavioral trends far into the future. However, such dynamics do not warrant complete ignorance of different efforts to understand and model close approximations of these systems. Towards this end, we have applied a logical modeling approach to model and analyze the behavioral trends and systematic trajectories that these systems exhibit without delving into their quantification. This approach, formalized by René Thomas for discrete logical modeling of Biological Regulatory Networks (BRNs and further extended in our previous studies as parametric biological linear hybrid automata (Bio-LHA, has been previously employed for the analyses of different molecular regulatory interactions occurring across various cells and microbial species. As relationships between different interacting components of a system can be simplified as positive or negative influences, we can employ the Bio-LHA framework to represent different components of the environmental system as positive or negative feedbacks. In the present study, we highlight the benefits of hybrid (discrete/continuous modeling which lead to refinements among the fore-casted behaviors in order to find out which ones are actually possible. We have taken two case studies: an interaction of three microbial species in a freshwater pond, and a more complex atmospheric system, to show the applications of the Bio-LHA methodology for the timed hybrid modeling of environmental systems. Results show that the approach using the Bio-LHA is a viable method for behavioral modeling of complex environmental systems by finding timing constraints while keeping the complexity of the model
Hopmann, Ch.; Schöngart, M.; Weber, M.; Klein, J.
2015-05-01
Thermoplastic materials are more and more used as a light weight replacement for metal, especially in the automotive industry. Since these materials do not provide the mechanical properties, which are required to manufacture supporting elements like an auto body or a cross bearer, plastics are combined with metals in so called hybrid structures. Normally, the plastics components are joined to the metal structures using different technologies like welding or screwing. Very often, the hybrid structures are made of flat metal parts, which are stiffened by a reinforcement structure made of thermoplastic materials. The loads on these structures are very often impulsive, for example in the crash situation of an automobile. Due to the large stiffness variation of metal and thermoplastic materials, complex states of stress and very high local strain rates occur in the contact zone under impact conditions. Since the mechanical behavior of thermoplastic materials is highly dependent on these types of load, the crash failure of metal plastic hybrid parts is very complex. The problem is that the normally used strain rate dependent elastic/plastic material models are not capable to simulate the mechanical behavior of thermoplastic materials depended on the state of stress. As part of a research project, a method to simulate the mechanical behavior of hybrid structures under impact conditions is developed at the IKV. For this purpose, a specimen for the measurement of mechanical properties dependet on the state of stress and a method for the strain rate depended characterization of thermoplastic materials were developed. In the second step impact testing is performed. A hybrid structure made from a metal sheet and a reinforcement structure of a Polybutylenterephthalat Polycarbonate blend is tested under impact conditions. The measured stress and strain rate depended material data are used to simulate the mechanical behavior of the hybrid structure under highly dynamic load with
CVD growth of graphene under exfoliated hexagonal boron nitride for vertical hybrid structures
International Nuclear Information System (INIS)
Wang, Min; Jang, Sung Kyu; Song, Young Jae; Lee, Sungjoo
2015-01-01
Graphical abstract: We have demonstrated a novel yet simple method for fabricating graphene-based vertical hybrid structures by performing the CVD growth of graphene at an h-BN/Cu interface. Our systematic Raman measurements combined with plasma etching process indicate that a graphene film is grown under exfoliated h-BN rather than on its top surface, and that an h-BN/graphene vertical hybrid structure has been fabricated. Electrical transport measurements of this h-BN/graphene, transferred on SiO2, show the carrier mobility up to approximately 2250 cm 2 V −1 s −1 . The developed method would enable the exploration of the possibility of novel hybrid structure integration with two-dimensional material systems. - Abstract: We have demonstrated a novel yet simple method for fabricating graphene-based vertical hybrid structures by performing the CVD growth of graphene at an h-BN/Cu interface. Our systematic Raman measurements combined with plasma etching process indicate that a graphene film is grown under exfoliated h-BN rather than on its top surface, and that an h-BN/graphene vertical hybrid structure has been fabricated. Electrical transport measurements of this h-BN/graphene, transferred on SiO 2 , show the carrier mobility up to approximately 2250 cm 2 V −1 s −1 . The developed method would enable the exploration of the possibility of novel hybrid structure integration with two-dimensional material systems
Hybrid-hybrid matrix structural refinement of a DNA three-way junction from 3D NOESY-NOESY
International Nuclear Information System (INIS)
Thiviyanathan, Varatharasa; Luxon, Bruce A.; Leontis, Neocles B.; Illangasekare, Nishantha; Donne, David G.; Gorenstein, David G.
1999-01-01
Homonuclear 3D NOESY-NOESY has shown great promise for the structural refinement of large biomolecules. A computationally efficient hybrid-hybrid relaxation matrix refinement methodology, using 3D NOESY-NOESY data, was used to refine the structure of a DNA three-way junction having two unpaired bases at the branch point of the junction. The NMR data and the relaxation matrix refinement confirm that the DNA three-way junction exists in a folded conformation with two of the helical stems stacked upon each other. The third unstacked stem extends away from the junction, forming an acute angle (∼60 deg.) with the stacked stems. The two unpaired bases are stacked upon each other and are exposed to the solvent. Helical parameters for the bases in all three strands show slight deviations from typical values expected for right-handed B-form DNA. Inter-nucleotide imino-imino NOEs between the bases at the branch point of the junction show that the junction region is well defined. The helical stems show mobility (± 20 deg.) indicating dynamic processes around the junction region. The unstacked helical stem adjacent to the unpaired bases shows greater mobility compared to the other two stems. The results from this study indicate that the 3D hybrid-hybrid matrix MORASS refinement methodology, by combining the spectral dispersion of 3D NOESY-NOESY and the computational efficiency of 2D refinement programs, provides an accurate and robust means for structure determination of large biomolecules. Our results also indicate that the 3D MORASS method gives higher quality structures compared to the 2D complete relaxation matrix refinement method
Scalability of Sustainable Business Models in Hybrid Organizations
Directory of Open Access Journals (Sweden)
Adam Jabłoński
2016-02-01
Full Text Available The dynamics of change in modern business create new mechanisms for company management to determine their pursuit and the achievement of their high performance. This performance maintained over a long period of time becomes a source of ensuring business continuity by companies. An ontological being enabling the adoption of such assumptions is such a business model that has the ability to generate results in every possible market situation and, moreover, it has the features of permanent adaptability. A feature that describes the adaptability of the business model is its scalability. Being a factor ensuring more work and more efficient work with an increasing number of components, scalability can be applied to the concept of business models as the company’s ability to maintain similar or higher performance through it. Ensuring the company’s performance in the long term helps to build the so-called sustainable business model that often balances the objectives of stakeholders and shareholders, and that is created by the implemented principles of value-based management and corporate social responsibility. This perception of business paves the way for building hybrid organizations that integrate business activities with pro-social ones. The combination of an approach typical of hybrid organizations in designing and implementing sustainable business models pursuant to the scalability criterion seems interesting from the cognitive point of view. Today, hybrid organizations are great spaces for building effective and efficient mechanisms for dialogue between business and society. This requires the appropriate business model. The purpose of the paper is to present the conceptualization and operationalization of scalability of sustainable business models that determine the performance of a hybrid organization in the network environment. The paper presents the original concept of applying scalability in sustainable business models with detailed
Directory of Open Access Journals (Sweden)
Bo Wang
2018-02-01
Full Text Available This paper presents the numerical investigation on the seismic performance of a steel–concrete hybrid structure consisting of reinforced concrete (RC tubular columns and steel braced truss with A-shaped steel frames, which is a novel supporting structural system to house air-cooled condensers (ACC in large-capacity thermal power plants (TPPs. First, the finite element (FE modeling approach for this hybrid structure using the software ABAQUS was validated by a range of pseudo-dynamic tests (PDTs performed on a 1/8-scaled sub-structure. The failure process, lateral displacement responses, changing rules of dynamic characteristic parameters and lateral stiffness with increase of peak ground acceleration (PGA were presented here. Then, nonlinear time-history analysis of the prototype structure was carried out. The dynamic characteristics, base shear force, lateral deformation capacity, stiffness deterioration and damage characteristics were investigated. Despite the structural complexity and irregularity, both experimental and numerical results indicate that the overall seismic performance of this steel–concrete hybrid supporting structure meets the seismic design requirements with respect to the high-intensity earthquakes.
Numerical modeling of hybrid fiber-reinforced concrete (hyfrc)
International Nuclear Information System (INIS)
Hameed, R.; Turatsinze, A.
2015-01-01
A model for numerical simulation of mechanical response of concrete reinforced with slipping and non slipping metallic fibers in hybrid form is presented in this paper. Constitutive law used to model plain concrete behaviour is based on plasticity and damage theories, and is capable to determine localized crack opening in three dimensional (3-D) systems. Behaviour law used for slipping metallic fibers is formulated based on effective stress carried by these fibers after when concrete matrix is cracked. A continuous approach is proposed to model the effect of addition of non-slipping metallic fibers in plain concrete. This approach considers the constitutive law of concrete matrix with increased fracture energy in tension obtained experimentally in direct tension tests on Fiber Reinforced Concrete (FRC). To simulate the mechanical behaviour of hybrid fiber-reinforced concrete (HyFRC), proposed approaches to model non-slipping metallic fibers and constitutive law of plain concrete and slipping fibers are used simultaneously without any additive equation. All the parameters used by the proposed model have physical meanings and are determined through experiments or drawn from literature. The model was implemented in Finite Element (FE) Code CASTEM and tested on FRC prismatic notched specimens in flexure. Model prediction showed good agreement with experimental results. (author)
Modelling and control of a light-duty hybrid electric truck
Park, Jong-Kyu
2006-01-01
This study is concentrated on modelling and developing the controller for the light-duty hybrid electric truck. The hybrid electric vehicle has advantages in fuel economy. However, there have been relatively few studies on commercial HEVs, whilst a considerable number of studies on the hybrid electric system have been conducted in the field of passenger cars. So the current status and the methodologies to develop the LD hybrid electric truck model have been studied through the ...
A hybrid model for the computationally-efficient simulation of the cerebellar granular layer
Directory of Open Access Journals (Sweden)
Anna eCattani
2016-04-01
Full Text Available The aim of the present paper is to efficiently describe the membrane potential dynamics of neural populations formed by species having a high density difference in specific brain areas. We propose a hybrid model whose main ingredients are a conductance-based model (ODE system and its continuous counterpart (PDE system obtained through a limit process in which the number of neurons confined in a bounded region of the brain tissue is sent to infinity. Specifically, in the discrete model, each cell is described by a set of time-dependent variables, whereas in the continuum model, cells are grouped into populations that are described by a set of continuous variables.Communications between populations, which translate into interactions among the discrete and the continuous models, are the essence of the hybrid model we present here. The cerebellum and cerebellum-like structures show in their granular layer a large difference in the relative density of neuronal species making them a natural testing ground for our hybrid model. By reconstructing the ensemble activity of the cerebellar granular layer network and by comparing our results to a more realistic computational network, we demonstrate that our description of the network activity, even though it is not biophysically detailed, is still capable of reproducing salient features of neural network dynamics. Our modeling approach yields a significant computational cost reduction by increasing the simulation speed at least $270$ times. The hybrid model reproduces interesting dynamics such as local microcircuit synchronization, traveling waves, center-surround and time-windowing.
Maximum Mass of Hybrid Stars in the Quark Bag Model
Alaverdyan, G. B.; Vartanyan, Yu. L.
2017-12-01
The effect of model parameters in the equation of state for quark matter on the magnitude of the maximum mass of hybrid stars is examined. Quark matter is described in terms of the extended MIT bag model including corrections for one-gluon exchange. For nucleon matter in the range of densities corresponding to the phase transition, a relativistic equation of state is used that is calculated with two-particle correlations taken into account based on using the Bonn meson-exchange potential. The Maxwell construction is used to calculate the characteristics of the first order phase transition and it is shown that for a fixed value of the strong interaction constant αs, the baryon concentrations of the coexisting phases grow monotonically as the bag constant B increases. It is shown that for a fixed value of the strong interaction constant αs, the maximum mass of a hybrid star increases as the bag constant B decreases. For a given value of the bag parameter B, the maximum mass rises as the strong interaction constant αs increases. It is shown that the configurations of hybrid stars with maximum masses equal to or exceeding the mass of the currently known most massive pulsar are possible for values of the strong interaction constant αs > 0.6 and sufficiently low values of the bag constant.
Modelling grain-scattered ultrasound in austenitic stainless-steel welds: A hybrid model
International Nuclear Information System (INIS)
Nowers, O.; Duxbury, D. J.; Velichko, A.; Drinkwater, B. W.
2015-01-01
The ultrasonic inspection of austenitic stainless steel welds can be challenging due to their coarse grain structure, charaterised by preferentially oriented, elongated grains. The anisotropy of the weld is manifested as both a ‘steering’ of the beam and the back-scatter of energy due to the macroscopic granular structure of the weld. However, the influence of weld properties, such as mean grain size and orientation distribution, on the magnitude of scattered ultrasound is not well understood. A hybrid model has been developed to allow the study of grain-scatter effects in austenitic welds. An efficient 2D Finite Element (FE) method is used to calculate the complete scattering response from a single elliptical austenitic grain of arbitrary length and width as a function of the specific inspection frequency. A grain allocation model of the weld is presented to approximate the characteristic structures observed in austenitic welds and the complete scattering behaviour of each grain calculated. This model is incorporated into a semi-analytical framework for a single-element inspection of a typical weld in immersion. Experimental validation evidence is demonstrated indicating excellent qualitative agreement of SNR as a function of frequency and a minimum SNR difference of 2 dB at a centre frequency of 2.25 MHz. Additionally, an example Monte-Carlo study is presented detailing the variation of SNR as a function of the anisotropy distribution of the weld, and the application of confidence analysis to inform inspection development
MODEL APLIKASI FIKIH MUAMALAH PADA FORMULASI HYBRID CONTRACT
Directory of Open Access Journals (Sweden)
Ali Murtadho
2013-10-01
Full Text Available Modern literatures of fiqh mu’āmalah talk alot about various contract formulation with capability of maximizing profit in shariah finance industry. This new contract modification is the synthesis among existing contracts which is formulated in such a way to be an integrated contract. This formulation is known as a hybrid contract or multicontract (al-'uqūd al-murakkabah. Some of them are, bay' bi thaman 'ājil, Ijārah muntahiyah bi ’l-tamlīk dan mushārakah mutanāqiṣah. This study intends to further describe models of hybrid contract, and explore the shari'ah principles in modern financial institutions. This study found a potential shift from the ideal values of the spirit of shari'ah into the spirit of competition based shari'ah formally.
Hybrid structures based on montmorillonite/modified starch intercalate
Czech Academy of Sciences Publication Activity Database
Duchek, P.; Špírková, Milena
2010-01-01
Roč. 104, č. 9 (2010), s. 885 ISSN 0009-2770. [International Conference on Polysaccharides-Glycoscience /6./. 29.09.2010-1.10.2010, Praha] R&D Projects: GA AV ČR(CZ) IAAX08240901 Institutional research plan: CEZ:AV0Z40500505 Keywords : organic/inorganic hybrides * montmorillonite Subject RIV: JI - Composite Materials
Tensile properties of a boron/nitrogen-doped carbon nanotube–graphene hybrid structure
Directory of Open Access Journals (Sweden)
Kang Xia
2014-03-01
Full Text Available Doping is an effective approach that allows for the intrinsic modification of the electrical and chemical properties of nanomaterials. Recently, a graphene and carbon nanotube hybrid structure (GNHS has been reported, which extends the excellent properties of carbon-based materials to three dimensions. In this paper, we carried out a first-time investigation on the tensile properties of the hybrid structures with different dopants. It is found that with the presence of dopants, the hybrid structures usually exhibit lower yield strength, Young’s modulus, and earlier yielding compared to that of a pristine hybrid structure. For dopant concentrations below 2.5% no significant reduction of Young’s modulus or yield strength could be observed. For all considered samples, the failure is found to initiate at the region where the nanotubes and graphene sheets are connected. After failure, monatomic chains are normally observed around the failure region. Dangling graphene layers without the separation of a residual CNT wall are found to adhere to each other after failure with a distance of about 3.4 Å. This study provides a fundamental understanding of the tensile properties of the doped graphene–nanotube hybrid structures, which will benefit the design and also the applications of graphene-based hybrid materials.
Hybrid modeling of microbial exopolysaccharide (EPS) production: The case of Enterobacter A47.
Marques, Rodolfo; von Stosch, Moritz; Portela, Rui M C; Torres, Cristiana A V; Antunes, Sílvia; Freitas, Filomena; Reis, Maria A M; Oliveira, Rui
2017-03-20
Enterobacter A47 is a bacterium that produces high amounts of a fucose-rich exopolysaccharide (EPS) from glycerol residue of the biodiesel industry. The fed-batch process is characterized by complex non-linear dynamics with highly viscous pseudo-plastic rheology due to the accumulation of EPS in the culture medium. In this paper, we study hybrid modeling as a methodology to increase the predictive power of models for EPS production optimization. We compare six hybrid structures that explore different levels of knowledge-based and machine-learning model components. Knowledge-based components consist of macroscopic material balances, Monod type kinetics, cardinal temperature and pH (CTP) dependency and power-law viscosity models. Unknown dependencies are set to be identified by a feedforward artificial neural network (ANN). A semiparametric identification schema is applied resorting to a data set of 13 independent fed-batch experiments. A parsimonious hybrid model was identified that describes the dynamics of the 13 experiments with the same parameterization. The final model is specific to Enterobacter A47 but can be easily extended to other microbial EPS processes. Copyright © 2017 Elsevier B.V. All rights reserved.
A Simple Hybrid Model for Short-Term Load Forecasting
Directory of Open Access Journals (Sweden)
Suseelatha Annamareddi
2013-01-01
Full Text Available The paper proposes a simple hybrid model to forecast the electrical load data based on the wavelet transform technique and double exponential smoothing. The historical noisy load series data is decomposed into deterministic and fluctuation components using suitable wavelet coefficient thresholds and wavelet reconstruction method. The variation characteristics of the resulting series are analyzed to arrive at reasonable thresholds that yield good denoising results. The constitutive series are then forecasted using appropriate exponential adaptive smoothing models. A case study performed on California energy market data demonstrates that the proposed method can offer high forecasting precision for very short-term forecasts, considering a time horizon of two weeks.
Modeling and Density Estimation of an Urban Freeway Network Based on Dynamic Graph Hybrid Automata.
Chen, Yangzhou; Guo, Yuqi; Wang, Ying
2017-03-29
In this paper, in order to describe complex network systems, we firstly propose a general modeling framework by combining a dynamic graph with hybrid automata and thus name it Dynamic Graph Hybrid Automata (DGHA). Then we apply this framework to model traffic flow over an urban freeway network by embedding the Cell Transmission Model (CTM) into the DGHA. With a modeling procedure, we adopt a dual digraph of road network structure to describe the road topology, use linear hybrid automata to describe multi-modes of dynamic densities in road segments and transform the nonlinear expressions of the transmitted traffic flow between two road segments into piecewise linear functions in terms of multi-mode switchings. This modeling procedure is modularized and rule-based, and thus is easily-extensible with the help of a combination algorithm for the dynamics of traffic flow. It can describe the dynamics of traffic flow over an urban freeway network with arbitrary topology structures and sizes. Next we analyze mode types and number in the model of the whole freeway network, and deduce a Piecewise Affine Linear System (PWALS) model. Furthermore, based on the PWALS model, a multi-mode switched state observer is designed to estimate the traffic densities of the freeway network, where a set of observer gain matrices are computed by using the Lyapunov function approach. As an example, we utilize the PWALS model and the corresponding switched state observer to traffic flow over Beijing third ring road. In order to clearly interpret the principle of the proposed method and avoid computational complexity, we adopt a simplified version of Beijing third ring road. Practical application for a large-scale road network will be implemented by decentralized modeling approach and distributed observer designing in the future research.
Hybrid Adaptive Flight Control with Model Inversion Adaptation
Nguyen, Nhan
2011-01-01
This study investigates a hybrid adaptive flight control method as a design possibility for a flight control system that can enable an effective adaptation strategy to deal with off-nominal flight conditions. The hybrid adaptive control blends both direct and indirect adaptive control in a model inversion flight control architecture. The blending of both direct and indirect adaptive control provides a much more flexible and effective adaptive flight control architecture than that with either direct or indirect adaptive control alone. The indirect adaptive control is used to update the model inversion controller by an on-line parameter estimation of uncertain plant dynamics based on two methods. The first parameter estimation method is an indirect adaptive law based on the Lyapunov theory, and the second method is a recursive least-squares indirect adaptive law. The model inversion controller is therefore made to adapt to changes in the plant dynamics due to uncertainty. As a result, the modeling error is reduced that directly leads to a decrease in the tracking error. In conjunction with the indirect adaptive control that updates the model inversion controller, a direct adaptive control is implemented as an augmented command to further reduce any residual tracking error that is not entirely eliminated by the indirect adaptive control.
Analysis of SMA Hybrid Composite Structures in MSC.Nastran and ABAQUS
Turner, Travis L.; Patel, Hemant D.
2005-01-01
A thermoelastic constitutive model for shape memory alloy (SMA) actuators and SMA hybrid composite (SMAHC) structures was recently implemented in the commercial finite element codes MSC.Nastran and ABAQUS. The model may be easily implemented in any code that has the capability for analysis of laminated composite structures with temperature dependent material properties. The model is also relatively easy to use and requires input of only fundamental engineering properties. A brief description of the model is presented, followed by discussion of implementation and usage in the commercial codes. Results are presented from static and dynamic analysis of SMAHC beams of two types; a beam clamped at each end and a cantilever beam. Nonlinear static (post-buckling) and random response analyses are demonstrated for the first specimen. Static deflection (shape) control is demonstrated for the cantilever beam. Approaches for modeling SMAHC material systems with embedded SMA in ribbon and small round wire product forms are demonstrated and compared. The results from the commercial codes are compared to those from a research code as validation of the commercial implementations; excellent correlation is achieved in all cases.
Lynch, K. A.; Arnoldy, R. L.; Kintner, P. M.; Schuck, P.; Bonnell, J. W.; Coffey, V.
In this paper we present a review of sounding rocket observations of the ion acceleration seen in nightside auroral zone lower hybrid solitary structures. Observations from Topaz3, Amicist, and Phaze2 are presented on various spatial scales, including the two-point measurements of the Amicist mission. From this collection of observations we will demonstrate the following characteristics of transverse acceleration of ions (TAI) in lower hybrid solitary structures (LHSS). The ion acceleration process is narrowly confined to 90° pitch angle, in spatially confined regions of up to a few hundred meters across B. The acceleration process does not affect the thermal core of the ambient distribution and does not directly create a measurable effect on the ambient ion population outside the LHSS themselves. This precludes observation with these data of any nonlinear feedback between the ion acceleration and the existence or evolution of the density irregularities on which these LHSS events grow. Within the LHSS region the acceleration process creates a high-energy tail beginning at a few times the thermal ion speed. The ion acceleration events are closely associated with localized wave events. Accelerated ions bursts are also seen without a concurrent observation of a localized wave event, for two possible reasons. In some cases, the pitch angles of the accelerated tail ions are elevated above perpendicular; that is, the acceleration occurred below the observer and the mirror force has begun to act upon the distribution, moving it upward from the source. In other cases, the accelerated ion structure is spatially larger than the wave event structure, and the observation catches only the ion event. The occurrence rate of these ion acceleration events is related to the ambient environment in two ways: its altitude dependence can be modeled with the parameter B2/ne, and it is highest in regions of intense VLF activity. The cumulative ion outflow from these LHSS TAI is
Design, test and model of a hybrid magnetostrictive hydraulic actuator
International Nuclear Information System (INIS)
Chaudhuri, Anirban; Yoo, Jin-Hyeong; Wereley, Norman M
2009-01-01
The basic operation of hybrid hydraulic actuators involves high frequency bi-directional operation of an active material that is converted to uni-directional motion of hydraulic fluid using valves. A hybrid actuator was developed using magnetostrictive material Terfenol-D as the driving element and hydraulic oil as the working fluid. Two different lengths of Terfenol-D rod, 51 and 102 mm, with the same diameter, 12.7 mm, were used. Tests with no load and with load were carried out to measure the performance for uni-directional motion of the output piston at different pumping frequencies. The maximum no-load flow rates were 24.8 cm 3 s −1 and 22.7 cm 3 s −1 with the 51 mm and 102 mm long rods respectively, and the peaks were noted around 325 Hz pumping frequency. The blocked force of the actuator was close to 89 N in both cases. A key observation was that, at these high pumping frequencies, the inertial effects of the fluid mass dominate over the viscous effects and the problem becomes unsteady in nature. In this study, we also develop a mathematical model of the hydraulic hybrid actuator in the time domain to show the basic operational principle under varying conditions and to capture phenomena affecting system performance. Governing equations for the pumping piston and output shaft were obtained from force equilibrium considerations, while compressibility of the working fluid was taken into account by incorporating the bulk modulus. Fluid inertia was represented by a lumped parameter approach to the transmission line model, giving rise to strongly coupled ordinary differential equations. The model was then used to calculate the no-load velocities of the actuator at different pumping frequencies and simulation results were compared with experimental data for model validation
Hybrid functional calculation of electronic and phonon structure of BaSnO3
International Nuclear Information System (INIS)
Kim, Bog G.; Jo, J.Y.; Cheong, S.W.
2013-01-01
Barium stannate, BaSnO 3 (BSO), with a cubic perovskite structure, has been highlighted as a promising host material for the next generation transparent oxide electrodes. This study examined theoretically the electronic structure and phonon structure of BSO using hybrid density functional theory based on the HSE06 functional. The electronic structure results of BSO were corrected by extending the phonon calculations based on the hybrid density functional. The fundamental thermal properties were also predicted based on a hybrid functional calculation. Overall, a detailed understanding of the electronic structure, phonon modes and phonon dispersion of BSO will provide a theoretical starting-point for engineering applications of this material. - Graphical Abstract: (a) Crystal structure of BaSnO 3 . The center ball is Ba and small (red) ball on edge is oxygen and SnO 6 octahedrons are plotted as polyhedron. (b) Electronic band structure along the high symmetry point in the Brillouin zone using the HSE06 hybrid functional. (c) The phonon dispersion curve calculated using the HSE06 hybrid functional (d) Zone center lowest energy F 1u phonon mode. Highlights: ► We report the full hybrid functional calculation of not only the electronic structure but also the phonon structure for BaSnO 3 . ► The band gap calculation of HSE06 revealed an indirect gap with 2.48 eV. ► The effective mass at the conduction band minimum and valence band maximum was calculated. ► In addition, the phonon structure of BSO was calculated using the HSE06 functional. ► Finally, the heat capacity was calculated and compared with the recent experimental result.
Trust and Contracting in Agri-Food Hybrid Structures
Martino, Gaetano
2007-01-01
The paper aims at examining the hypothesis that the influence of trust on contract can be thought of as a dynamic factor of organizational choices in supply chains. The relationship between contract and trust is delineated on the basis of institutional environment, contractual incompleteness, safeguards and restrictive provisions. The interaction between individual and system elements in the formation of trust and its influence in hybrid contracting is considered. According to a New Instituti...
Optical fiber-based core-shell coaxially structured hybrid cells for self-powered nanosystems
Energy Technology Data Exchange (ETDEWEB)
Pan, Caofeng; Zhu, Guang [School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia (United States); Guo, Wenxi [School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia (United States); State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005 (China); Dong, Lin [School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia (United States); School of Materials Science and Enginnering, Zhenzhou University, Zhenghou 450001 (China); Wang, Zhong Lin [School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia (United States); Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing (China)
2012-07-03
An optical fiber-based 3D hybrid cell consisting of a coaxially structured dye-sensitized solar cell (DSSC) and a nanogenerator (NG) for simultaneously or independently harvesting solar and mechanical energy is demonstrated. The current output of the hybrid cell is dominated by the DSSC, and the voltage output is dominated by the NG; these can be utilized complementarily for different applications. The output of the hybrid cell is about 7.65 {mu}A current and 3.3 V voltage, which is strong enough to power nanodevices and even commercial electronic components. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)
Hybrid perturbation methods based on statistical time series models
San-Juan, Juan Félix; San-Martín, Montserrat; Pérez, Iván; López, Rosario
2016-04-01
In this work we present a new methodology for orbit propagation, the hybrid perturbation theory, based on the combination of an integration method and a prediction technique. The former, which can be a numerical, analytical or semianalytical theory, generates an initial approximation that contains some inaccuracies derived from the fact that, in order to simplify the expressions and subsequent computations, not all the involved forces are taken into account and only low-order terms are considered, not to mention the fact that mathematical models of perturbations not always reproduce physical phenomena with absolute precision. The prediction technique, which can be based on either statistical time series models or computational intelligence methods, is aimed at modelling and reproducing missing dynamics in the previously integrated approximation. This combination results in the precision improvement of conventional numerical, analytical and semianalytical theories for determining the position and velocity of any artificial satellite or space debris object. In order to validate this methodology, we present a family of three hybrid orbit propagators formed by the combination of three different orders of approximation of an analytical theory and a statistical time series model, and analyse their capability to process the effect produced by the flattening of the Earth. The three considered analytical components are the integration of the Kepler problem, a first-order and a second-order analytical theories, whereas the prediction technique is the same in the three cases, namely an additive Holt-Winters method.
Bayesian inference for hybrid discrete-continuous stochastic kinetic models
International Nuclear Information System (INIS)
Sherlock, Chris; Golightly, Andrew; Gillespie, Colin S
2014-01-01
We consider the problem of efficiently performing simulation and inference for stochastic kinetic models. Whilst it is possible to work directly with the resulting Markov jump process (MJP), computational cost can be prohibitive for networks of realistic size and complexity. In this paper, we consider an inference scheme based on a novel hybrid simulator that classifies reactions as either ‘fast’ or ‘slow’ with fast reactions evolving as a continuous Markov process whilst the remaining slow reaction occurrences are modelled through a MJP with time-dependent hazards. A linear noise approximation (LNA) of fast reaction dynamics is employed and slow reaction events are captured by exploiting the ability to solve the stochastic differential equation driving the LNA. This simulation procedure is used as a proposal mechanism inside a particle MCMC scheme, thus allowing Bayesian inference for the model parameters. We apply the scheme to a simple application and compare the output with an existing hybrid approach and also a scheme for performing inference for the underlying discrete stochastic model. (paper)
Bloch-Surface-Polariton-Based Hybrid Nanowire Structure for Subwavelength, Low-Loss Waveguiding
Directory of Open Access Journals (Sweden)
Weijing Kong
2018-03-01
Full Text Available Surface plasmon polaritons (SPPs have been thoroughly studied in the past decades for not only sensing but also waveguiding applications. Various plasmonic device structures have been explored due to their ability to confine their optical mode to the subwavelength level. However, with the existence of metal, the large ohmic loss limits the propagation distance of the SPP and thus the scalability of such devices. Therefore, different hybrid waveguides have been proposed to overcome this shortcoming. Through fine tuning of the coupling between the SPP and a conventional waveguide mode, a hybrid mode could be excited with decent mode confinement and extended propagation distance. As an effective alternative of SPP, Bloch surface waves have been re-investigated more recently for their unique advantages. As is supported in all-dielectric structures, the optical loss for the Bloch surface wave is much lower, which stands for a much longer propagating distance. Yet, the confinement of the Bloch surface wave due to the reflections and refractions in the multilayer structure is not as tight as that of the SPP. In this work, by integrating a periodic multilayer structure that supports the Bloch surface wave with a metallic nanowire structure, a hybrid Bloch surface wave polariton could be excited. With the proposed hybrid nanowire structure, a hybrid mode is demonstrated with the deep subwavelength mode confinement and a propagation distance of tens of microns.
A viable D-term hybrid inflation model
Kadota, Kenji; Kobayashi, Tatsuo; Sumita, Keigo
2017-11-01
We propose a new model of the D-term hybrid inflation in the framework of supergravity. Although our model introduces, analogously to the conventional D-term inflation, the inflaton and a pair of scalar fields charged under a U(1) gauge symmetry, we study the logarithmic and exponential dependence on the inflaton field, respectively, for the Kähler and superpotential. This results in a characteristic one-loop scalar potential consisting of linear and exponential terms, which realizes the small-field inflation dominated by the Fayet-Iliopoulos term. With the reasonable values for the coupling coefficients and, in particular, with the U(1) gauge coupling constant comparable to that of the Standard Model, our D-term inflation model can solve the notorious problems in the conventional D-term inflation, namely, the CMB constraints on the spectral index and the generation of cosmic strings.
Ionocovalency and Applications 1. Ionocovalency Model and Orbital Hybrid Scales
Directory of Open Access Journals (Sweden)
Yonghe Zhang
2010-11-01
Full Text Available Ionocovalency (IC, a quantitative dual nature of the atom, is defined and correlated with quantum-mechanical potential to describe quantitatively the dual properties of the bond. Orbiotal hybrid IC model scale, IC, and IC electronegativity scale, XIC, are proposed, wherein the ionicity and the covalent radius are determined by spectroscopy. Being composed of the ionic function I and the covalent function C, the model describes quantitatively the dual properties of bond strengths, charge density and ionic potential. Based on the atomic electron configuration and the various quantum-mechanical built-up dual parameters, the model formed a Dual Method of the multiple-functional prediction, which has much more versatile and exceptional applications than traditional electronegativity scales and molecular properties. Hydrogen has unconventional values of IC and XIC, lower than that of boron. The IC model can agree fairly well with the data of bond properties and satisfactorily explain chemical observations of elements throughout the Periodic Table.
International Nuclear Information System (INIS)
Nikonowicz, E.P.; Meadows, R.P.; Fagan, P.; Gorenstein, D.G.
1991-01-01
A complete relaxation matrix approach employing a matrix eigenvalue/eigenvector solution to the Bloch equations is used to evaluate the NMR solution structure of a tandemly positioned G·A double mismatch decamer oligodeoxyribonucleotide duplex, d(CCAAGATTGG) 2 . An iterative refinement method using a hybrid relaxation matrix combined with restrained molecular dynamics calculations is shown to provide structures having good agreement with the experimentally derived structures. Distances incorporated into the MD simulations have been calculated from the relaxation rate matrix evaluated from a hybrid NOESY volume matrix whose elements are obtained from the merging of experimental and calculated NOESY intensities. Starting from both A- and B-DNA and mismatch syn and anti models, it is possible to calculate structures that are in good atomic RMS agreement with each other ( 3.6 angstrom). Importantly, the hybrid matrix derived structures are in excellent agreement with the experimental solution conformation as determined by comparison of the 200-ms simulated and experimental NOESY spectra, while the crystallographic data provide spectra that are grossly different
On The Modelling Of Hybrid Aerostatic - Gas Journal Bearings
DEFF Research Database (Denmark)
Morosi, Stefano; Santos, Ilmar
2011-01-01
modeling for hybrid lubrication of a compressible fluid film journal bearing. Additional forces are generated by injecting pressurized air into the bearing gap through orifices located on the bearing walls. A modified form of the compressible Reynolds equation for active lubrication is derived. By solving......Gas journal bearing have been increasingly adopted in modern turbo-machinery applications, as they meet the demands of operation at higher rotational speeds, in clean environment and great efficiency. Due to the fact that gaseous lubricants, typically air, have much lower viscosity than more...
Active diagnosis of hybrid systems - A model predictive approach
DEFF Research Database (Denmark)
Tabatabaeipour, Seyed Mojtaba; Ravn, Anders P.; Izadi-Zamanabadi, Roozbeh
2009-01-01
A method for active diagnosis of hybrid systems is proposed. The main idea is to predict the future output of both normal and faulty model of the system; then at each time step an optimization problem is solved with the objective of maximizing the difference between the predicted normal and fault...... can be used as a test signal for sanity check at the commissioning or for detection of faults hidden by regulatory actions of the controller. The method is tested on the two tank benchmark example. ©2009 IEEE....
Software development infrastructure for the HYBRID modeling and simulation project
International Nuclear Information System (INIS)
Epiney, Aaron S.; Kinoshita, Robert A.; Kim, Jong Suk; Rabiti, Cristian; Greenwood, M. Scott
2016-01-01
One of the goals of the HYBRID modeling and simulation project is to assess the economic viability of hybrid systems in a market that contains renewable energy sources like wind. The idea is that it is possible for the nuclear plant to sell non-electric energy cushions, which absorb (at least partially) the volatility introduced by the renewable energy sources. This system is currently modeled in the Modelica programming language. To assess the economics of the system, an optimization procedure is trying to find the minimal cost of electricity production. The RAVEN code is used as a driver for the whole problem. It is assumed that at this stage, the HYBRID modeling and simulation framework can be classified as non-safety “research and development” software. The associated quality level is Quality Level 3 software. This imposes low requirements on quality control, testing and documentation. The quality level could change as the application development continues.Despite the low quality requirement level, a workflow for the HYBRID developers has been defined that include a coding standard and some documentation and testing requirements. The repository performs automated unit testing of contributed models. The automated testing is achieved via an open-source python script called BuildingsP from Lawrence Berkeley National Lab. BuildingsPy runs Modelica simulation tests using Dymola in an automated manner and generates and runs unit tests from Modelica scripts written by developers. In order to assure effective communication between the different national laboratories a biweekly videoconference has been set-up, where developers can report their progress and issues. In addition, periodic face-face meetings are organized intended to discuss high-level strategy decisions with management. A second means of communication is the developer email list. This is a list to which everybody can send emails that will be received by the collective of the developers and managers
The Hybrid Airline Model. Generating Quality for Passengers
Directory of Open Access Journals (Sweden)
Bogdan AVRAM
2017-12-01
Full Text Available This research aims to investigate the different strategies adopted by the airline companies in adapting to the ongoing changes while developing products and services for passengers in order to increase their yield, load factor and passenger satisfaction. Finding a balance between costs and services quality in the airline industry is a crucial task for every airline wanting to gain a competitive advantage on the market. Also, the rise of the hybrid business operating model has brought up many challenges for airlines as the line between legacy carriers and low-cost carriers is getting thinner in terms of costs and innovative ideas to create a superior product for the passengers.
Software development infrastructure for the HYBRID modeling and simulation project
Energy Technology Data Exchange (ETDEWEB)
Epiney, Aaron S. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Kinoshita, Robert A. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Kim, Jong Suk [Idaho National Lab. (INL), Idaho Falls, ID (United States); Rabiti, Cristian [Idaho National Lab. (INL), Idaho Falls, ID (United States); Greenwood, M. Scott [Idaho National Lab. (INL), Idaho Falls, ID (United States)
2016-09-01
One of the goals of the HYBRID modeling and simulation project is to assess the economic viability of hybrid systems in a market that contains renewable energy sources like wind. The idea is that it is possible for the nuclear plant to sell non-electric energy cushions, which absorb (at least partially) the volatility introduced by the renewable energy sources. This system is currently modeled in the Modelica programming language. To assess the economics of the system, an optimization procedure is trying to find the minimal cost of electricity production. The RAVEN code is used as a driver for the whole problem. It is assumed that at this stage, the HYBRID modeling and simulation framework can be classified as non-safety “research and development” software. The associated quality level is Quality Level 3 software. This imposes low requirements on quality control, testing and documentation. The quality level could change as the application development continues.Despite the low quality requirement level, a workflow for the HYBRID developers has been defined that include a coding standard and some documentation and testing requirements. The repository performs automated unit testing of contributed models. The automated testing is achieved via an open-source python script called BuildingsP from Lawrence Berkeley National Lab. BuildingsPy runs Modelica simulation tests using Dymola in an automated manner and generates and runs unit tests from Modelica scripts written by developers. In order to assure effective communication between the different national laboratories a biweekly videoconference has been set-up, where developers can report their progress and issues. In addition, periodic face-face meetings are organized intended to discuss high-level strategy decisions with management. A second means of communication is the developer email list. This is a list to which everybody can send emails that will be received by the collective of the developers and managers
PRODUCT STRUCTURE DIGITAL MODEL
Directory of Open Access Journals (Sweden)
V.M. Sineglazov
2005-02-01
Full Text Available Research results of representation of product structure made by means of CADDS5 computer-aided design (CAD system, Product Data Management Optegra (PDM system and Product Life Cycle Management Wind-chill system (PLM, are examined in this work. Analysis of structure component development and its storage in various systems is carried out. Algorithms of structure transformation required for correct representation of the structure are considered. Management analysis of electronic mockup presentation of the product structure is carried out for Windchill system.
Zeng, Xiang-Yang; Wang, Shu-Guang; Gao, Li-Ping
2010-09-01
As the basic data for virtual auditory technology, head-related transfer function (HRTF) has many applications in the areas of room acoustic modeling, spatial hearing and multimedia. How to individualize HRTF fast and effectively has become an opening problem at present. Based on the similarity and relativity of anthropometric structures, a hybrid HRTF customization algorithm, which has combined the method of principal component analysis (PCA), multiple linear regression (MLR) and database matching (DM), has been presented in this paper. The HRTFs selected by both the best match and the worst match have been applied into obtaining binaurally auralized sounds, which are then used for subjective listening experiments and the results are compared. For the area in the horizontal plane, the localization results have shown that the selection of HRTFs can enhance the localization accuracy and can also abate the problem of front-back confusion.
Guo, Ning; Yang, Zhichun; Wang, Le; Ouyang, Yan; Zhang, Xinping
2018-05-01
Aiming at providing a precise dynamic structural finite element (FE) model for dynamic strength evaluation in addition to dynamic analysis. A dynamic FE model updating method is presented to correct the uncertain parameters of the FE model of a structure using strain mode shapes and natural frequencies. The strain mode shape, which is sensitive to local changes in structure, is used instead of the displacement mode for enhancing model updating. The coordinate strain modal assurance criterion is developed to evaluate the correlation level at each coordinate over the experimental and the analytical strain mode shapes. Moreover, the natural frequencies which provide the global information of the structure are used to guarantee the accuracy of modal properties of the global model. Then, the weighted summation of the natural frequency residual and the coordinate strain modal assurance criterion residual is used as the objective function in the proposed dynamic FE model updating procedure. The hybrid genetic/pattern-search optimization algorithm is adopted to perform the dynamic FE model updating procedure. Numerical simulation and model updating experiment for a clamped-clamped beam are performed to validate the feasibility and effectiveness of the present method. The results show that the proposed method can be used to update the uncertain parameters with good robustness. And the updated dynamic FE model of the beam structure, which can correctly predict both the natural frequencies and the local dynamic strains, is reliable for the following dynamic analysis and dynamic strength evaluation.
A Lookahead Behavior Model for Multi-Agent Hybrid Simulation
Directory of Open Access Journals (Sweden)
Mei Yang
2017-10-01
Full Text Available In the military field, multi-agent simulation (MAS plays an important role in studying wars statistically. For a military simulation system, which involves large-scale entities and generates a very large number of interactions during the runtime, the issue of how to improve the running efficiency is of great concern for researchers. Current solutions mainly use hybrid simulation to gain fewer updates and synchronizations, where some important continuous models are maintained implicitly to keep the system dynamics, and partial resynchronization (PR is chosen as the preferable state update mechanism. However, problems, such as resynchronization interval selection and cyclic dependency, remain unsolved in PR, which easily lead to low update efficiency and infinite looping of the state update process. To address these problems, this paper proposes a lookahead behavior model (LBM to implement a PR-based hybrid simulation. In LBM, a minimal safe time window is used to predict the interactions between implicit models, upon which the resynchronization interval can be efficiently determined. Moreover, the LBM gives an estimated state value in the lookahead process so as to break the state-dependent cycle. The simulation results show that, compared with traditional mechanisms, LBM requires fewer updates and synchronizations.
Causality in Psychiatry: A Hybrid Symptom Network Construct Model
Directory of Open Access Journals (Sweden)
Gerald eYoung
2015-11-01
Full Text Available Causality or etiology in psychiatry is marked by standard biomedical, reductionistic models (symptoms reflect the construct involved that inform approaches to nosology, or classification, such as in the DSM-5 (Diagnostic and Statistical Manual of Mental Disorders, Fifth Edition; American Psychiatric Association, 2013. However, network approaches to symptom interaction (i.e., symptoms are formative of the construct; e.g., McNally, Robinaugh, Wu, Wang, Deserno, & Borsboom, 2014, for PTSD (posttraumatic stress disorder are being developed that speak to bottom-up processes in mental disorder, in contrast to the typical top-down psychological construct approach. The present article presents a hybrid top-down, bottom-up model of the relationship between symptoms and mental disorder, viewing symptom expression and their causal complex as a reciprocally dynamic system with multiple levels, from lower-order symptoms in interaction to higher-order constructs affecting them. The hybrid model hinges on good understanding of systems theory in which it is embedded, so that the article reviews in depth nonlinear dynamical systems theory (NLDST. The article applies the concept of emergent circular causality (Young, 2011 to symptom development, as well. Conclusions consider that symptoms vary over several dimensions, including: subjectivity; objectivity; conscious motivation effort; and unconscious influences, and the degree to which individual (e.g., meaning and universal (e.g., causal processes are involved. The opposition between science and skepticism is a complex one that the article addresses in final comments.
Ma, Yanli; He, Ling; Jia, Mengjun; Zhao, Lingru; Zuo, Yanyan; Hu, Pingan
2017-08-15
Three polysiloxane/epoxy hybrids obtained by evolving cage- or linear-structured polysiloxane into poly glycidyl methacrylate (PGMA) matrix are compared used as coatings. One is the cage-structured hybrid of P(GMA/MA-POSS) copolymer obtained by GMA and methacrylisobutyl polyhedral oligomeric silsesquioxane (MA-POSS) via free radical polymerization, the other two are PGMA/NH 2 -POSS and PGMA/NH 2 -PDMS hybrids by cage-structured aminopropyllsobutyl POSS (NH 2 -POSS) or linear-structured diamino terminated poly(dimethylsiloxane) (NH 2 -PDMS) to cure PGMA. The effect of MA-POSS, NH 2 -POSS and NH 2 -PDMS on polysiloxane/epoxy hybrid films is characterized according to their surface morphology, transparency, permeability, adhesive strength and thermo-mechanical properties. Due to caged POSS tending to agglomerate onto the film surface, P(GMA/MA-POSS) and PGMA/NH 2 -POSS films exhibit much more heterogeneous surfaces than PGMA/NH 2 -PDMS film, but the well-compatibility between epoxy matrix and MA-POSS has provided P(GMA/MA-POSS) film with much higher transmittance (98%) than PGMA/NH 2 -POSS film (24%), PGMA/NH 2 -PDMS film (27%) and traditional epoxy resin film (5%). The introduction of polysiloxane into epoxy matrix is confirmed to create hybrids with strong adhesive strength (526-1113N) and high thermos-stability (T g =262-282°C), especially the cage-structured P(GMA/MA-POSS) hybrid (1113N and 282°C), but the flexible PDMS improves PGMA/NH 2 -PDMS hybrid with much higher storage modulus (519MPa) than PGMA/NH 2 -POSS (271MPa), which suggests that PDMS is advantage in improving the film stiffness than POSS cages. However, cage-structured P(GMA/MA-POSS) and PGMA/NH 2 -POSS indicate higher permeability than PGMA/NH 2 -PDMS and traditional epoxy resin. Comparatively, the cage-structured P(GMA/MA-POSS) hybrid is the best coating in transparency, permeability, adhesive strength and thermostability, but linear-structured PGMA/NH 2 -PDMS hybrid behaviors the best coating in
Non-binary Hybrid LDPC Codes: Structure, Decoding and Optimization
Sassatelli, Lucile; Declercq, David
2007-01-01
In this paper, we propose to study and optimize a very general class of LDPC codes whose variable nodes belong to finite sets with different orders. We named this class of codes Hybrid LDPC codes. Although efficient optimization techniques exist for binary LDPC codes and more recently for non-binary LDPC codes, they both exhibit drawbacks due to different reasons. Our goal is to capitalize on the advantages of both families by building codes with binary (or small finite set order) and non-bin...
Hybrid organic-inorganic materials based on hydroxyapatite structure
Energy Technology Data Exchange (ETDEWEB)
Moussa, Sana Ben; Bachouâ, Hassen [U.R. Matériaux et synthèse organique UR17ES31, Institut Préparatoire aux Etudes d’Ingénieur de Monastir, Université de Monastir, 5019 Monastir (Tunisia); Gruselle, Michel, E-mail: michel.gruselle@upmc.fr [Sorbonne Université, UPMC Univ Paris 06, CNRS, UMR 8232, Institut Parisien de Chimie Moléculaire, F-75005 Paris (France); Beaunier, Patricia [Sorbonne Université, UPMC Univ Paris 06, CNRS, UMR 7197, Laboratoire de Réactivité de Surface, F-75005 Paris (France); Flambard, Alexandrine [Sorbonne Université, UPMC Univ Paris 06, CNRS, UMR 8232, Institut Parisien de Chimie Moléculaire, F-75005 Paris (France); Badraoui, Béchir [U.R. Matériaux et synthèse organique UR17ES31, Institut Préparatoire aux Etudes d’Ingénieur de Monastir, Université de Monastir, 5019 Monastir (Tunisia)
2017-04-15
The present article details the formation of calcium hydroxyapatite synthesized by the hydrothermal way, in presence of glycine or sarcosine. The presence of these amino-acids during the synthetic processes reduces the crystalline growthing through the formation of hybrid organic-inorganic species The crystallite sizes are decreasing and the morphology is modified with the increase of the amino-acid concentration. - Graphical abstract: Formation of Ca carboxylate salt leading to the grafting of glycine and sarcosine on the Ca=Hap surface (R= H, CH3).
Genomic structural variation-mediated allelic suppression causes hybrid male sterility in rice.
Shen, Rongxin; Wang, Lan; Liu, Xupeng; Wu, Jiang; Jin, Weiwei; Zhao, Xiucai; Xie, Xianrong; Zhu, Qinlong; Tang, Huiwu; Li, Qing; Chen, Letian; Liu, Yao-Guang
2017-11-03
Hybrids between divergent populations commonly show hybrid sterility; this reproductive barrier hinders hybrid breeding of the japonica and indica rice (Oryza sativa L.) subspecies. Here we show that structural changes and copy number variation at the Sc locus confer japonica-indica hybrid male sterility. The japonica allele, Sc-j, contains a pollen-essential gene encoding a DUF1618-domain protein; the indica allele, Sc-i, contains two or three tandem-duplicated ~ 28-kb segments, each carrying an Sc-j-homolog with a distinct promoter. In Sc-j/Sc-i hybrids, the high-expression of Sc-i in sporophytic cells causes suppression of Sc-j expression in pollen and selective abortion of Sc-j-pollen, leading to transmission ratio distortion. Knocking out one or two of the three Sc-i copies by CRISPR/Cas9 rescues Sc-j expression and male fertility. Our results reveal the gene dosage-dependent allelic suppression as a mechanism of hybrid incompatibility, and provide an effective approach to overcome the reproductive barrier for hybrid breeding.
Hybrid Modeling Method for a DEP Based Particle Manipulation
Directory of Open Access Journals (Sweden)
Mohamad Sawan
2013-01-01
Full Text Available In this paper, a new modeling approach for Dielectrophoresis (DEP based particle manipulation is presented. The proposed method fulfills missing links in finite element modeling between the multiphysic simulation and the biological behavior. This technique is amongst the first steps to develop a more complex platform covering several types of manipulations such as magnetophoresis and optics. The modeling approach is based on a hybrid interface using both ANSYS and MATLAB to link the propagation of the electrical field in the micro-channel to the particle motion. ANSYS is used to simulate the electrical propagation while MATLAB interprets the results to calculate cell displacement and send the new information to ANSYS for another turn. The beta version of the proposed technique takes into account particle shape, weight and its electrical properties. First obtained results are coherent with experimental results.
The influence of nonlocal hybridization on ground-state properties of the Falicov-Kimball model
International Nuclear Information System (INIS)
Farkasovsky, Pavol
2005-01-01
The density matrix renormalization group is used to examine effects of nonlocal hybridization on ground-state properties of the Falicov-Kimball model (FKM) in one dimension. Special attention is devoted to the problem of hybridization-induced insulator-metal transition. It is shown that the picture of insulator-metal transitions found for the FKM with nonlocal hybridization strongly differs from one found for the FKM without hybridization (as well as with local hybridization). The effect of nonlocal hybridization is so strong that it can induce the insulator-metal transition, even in the half-filled band case where the ground states of the FKM without hybridization are insulating for all finite Coulomb interactions. Outside the half-filled band case the metal-insulator transition driven by pressure is found for finite values of nonlocal hybridization
International Nuclear Information System (INIS)
Cruz, Roberto de la; Guerrero, Pilar; Calvo, Juan; Alarcón, Tomás
2017-01-01
The development of hybrid methodologies is of current interest in both multi-scale modelling and stochastic reaction–diffusion systems regarding their applications to biology. We formulate a hybrid method for stochastic multi-scale models of cells populations that extends the remit of existing hybrid methods for reaction–diffusion systems. Such method is developed for a stochastic multi-scale model of tumour growth, i.e. population-dynamical models which account for the effects of intrinsic noise affecting both the number of cells and the intracellular dynamics. In order to formulate this method, we develop a coarse-grained approximation for both the full stochastic model and its mean-field limit. Such approximation involves averaging out the age-structure (which accounts for the multi-scale nature of the model) by assuming that the age distribution of the population settles onto equilibrium very fast. We then couple the coarse-grained mean-field model to the full stochastic multi-scale model. By doing so, within the mean-field region, we are neglecting noise in both cell numbers (population) and their birth rates (structure). This implies that, in addition to the issues that arise in stochastic-reaction diffusion systems, we need to account for the age-structure of the population when attempting to couple both descriptions. We exploit our coarse-graining model so that, within the mean-field region, the age-distribution is in equilibrium and we know its explicit form. This allows us to couple both domains consistently, as upon transference of cells from the mean-field to the stochastic region, we sample the equilibrium age distribution. Furthermore, our method allows us to investigate the effects of intracellular noise, i.e. fluctuations of the birth rate, on collective properties such as travelling wave velocity. We show that the combination of population and birth-rate noise gives rise to large fluctuations of the birth rate in the region at the leading edge
IT vendor selection model by using structural equation model & analytical hierarchy process
Maitra, Sarit; Dominic, P. D. D.
2012-11-01
Selecting and evaluating the right vendors is imperative for an organization's global marketplace competitiveness. Improper selection and evaluation of potential vendors can dwarf an organization's supply chain performance. Numerous studies have demonstrated that firms consider multiple criteria when selecting key vendors. This research intends to develop a new hybrid model for vendor selection process with better decision making. The new proposed model provides a suitable tool for assisting decision makers and managers to make the right decisions and select the most suitable vendor. This paper proposes a Hybrid model based on Structural Equation Model (SEM) and Analytical Hierarchy Process (AHP) for long-term strategic vendor selection problems. The five steps framework of the model has been designed after the thorough literature study. The proposed hybrid model will be applied using a real life case study to assess its effectiveness. In addition, What-if analysis technique will be used for model validation purpose.
Dynamic Modeling and Simulation of a Switched Reluctance Motor in a Series Hybrid Electric Vehicle
Siavash Sadeghi; Mojtaba Mirsalim; Arash Hassanpour Isfahani
2010-01-01
Dynamic behavior analysis of electric motors is required in order to accuratelyevaluate the performance, energy consumption and pollution level of hybrid electricvehicles. Simulation tools for hybrid electric vehicles are divided into steady state anddynamic models. Tools with steady-state models are useful for system-level analysiswhereas tools that utilize dynamic models give in-depth information about the behavior ofsublevel components. For the accurate prediction of hybrid electric vehicl...
An Interactive Personalized Recommendation System Using the Hybrid Algorithm Model
Directory of Open Access Journals (Sweden)
Yan Guo
2017-10-01
Full Text Available With the rapid development of e-commerce, the contradiction between the disorder of business information and customer demand is increasingly prominent. This study aims to make e-commerce shopping more convenient, and avoid information overload, by an interactive personalized recommendation system using the hybrid algorithm model. The proposed model first uses various recommendation algorithms to get a list of original recommendation results. Combined with the customer’s feedback in an interactive manner, it then establishes the weights of corresponding recommendation algorithms. Finally, the synthetic formula of evidence theory is used to fuse the original results to obtain the final recommendation products. The recommendation performance of the proposed method is compared with that of traditional methods. The results of the experimental study through a Taobao online dress shop clearly show that the proposed method increases the efficiency of data mining in the consumer coverage, the consumer discovery accuracy and the recommendation recall. The hybrid recommendation algorithm complements the advantages of the existing recommendation algorithms in data mining. The interactive assigned-weight method meets consumer demand better and solves the problem of information overload. Meanwhile, our study offers important implications for e-commerce platform providers regarding the design of product recommendation systems.
A Probability-Based Hybrid User Model for Recommendation System
Directory of Open Access Journals (Sweden)
Jia Hao
2016-01-01
Full Text Available With the rapid development of information communication technology, the available information or knowledge is exponentially increased, and this causes the well-known information overload phenomenon. This problem is more serious in product design corporations because over half of the valuable design time is consumed in knowledge acquisition, which highly extends the design cycle and weakens the competitiveness. Therefore, the recommender systems become very important in the domain of product domain. This research presents a probability-based hybrid user model, which is a combination of collaborative filtering and content-based filtering. This hybrid model utilizes user ratings and item topics or classes, which are available in the domain of product design, to predict the knowledge requirement. The comprehensive analysis of the experimental results shows that the proposed method gains better performance in most of the parameter settings. This work contributes a probability-based method to the community for implement recommender system when only user ratings and item topics are available.
Hybrid quantum-classical modeling of quantum dot devices
Kantner, Markus; Mittnenzweig, Markus; Koprucki, Thomas
2017-11-01
The design of electrically driven quantum dot devices for quantum optical applications asks for modeling approaches combining classical device physics with quantum mechanics. We connect the well-established fields of semiclassical semiconductor transport theory and the theory of open quantum systems to meet this requirement. By coupling the van Roosbroeck system with a quantum master equation in Lindblad form, we introduce a new hybrid quantum-classical modeling approach, which provides a comprehensive description of quantum dot devices on multiple scales: it enables the calculation of quantum optical figures of merit and the spatially resolved simulation of the current flow in realistic semiconductor device geometries in a unified way. We construct the interface between both theories in such a way, that the resulting hybrid system obeys the fundamental axioms of (non)equilibrium thermodynamics. We show that our approach guarantees the conservation of charge, consistency with the thermodynamic equilibrium and the second law of thermodynamics. The feasibility of the approach is demonstrated by numerical simulations of an electrically driven single-photon source based on a single quantum dot in the stationary and transient operation regime.
Axelrod Model of Social Influence with Cultural Hybridization
Radillo-Díaz, Alejandro; Pérez, Luis A.; Del Castillo-Mussot, Marcelo
2012-10-01
Since cultural interactions between a pair of social agents involve changes in both individuals, we present simulations of a new model based on Axelrod's homogenization mechanism that includes hybridization or mixture of the agents' features. In this new hybridization model, once a cultural feature of a pair of agents has been chosen for the interaction, the average of the values for this feature is reassigned as the new value for both agents after interaction. Moreover, a parameter representing social tolerance is implemented in order to quantify whether agents are similar enough to engage in interaction, as well as to determine whether they belong to the same cluster of similar agents after the system has reached the frozen state. The transitions from a homogeneous state to a fragmented one decrease in abruptness as tolerance is increased. Additionally, the entropy associated to the system presents a maximum within the transition, the width of which increases as tolerance does. Moreover, a plateau was found inside the transition for a low-tolerance system of agents with only two cultural features.
Schlesinger, R.; Bianchi, F.; Blumstengel, S.; Christodoulou, C.; Ovsyannikov, R.; Kobin, B.; Moudgil, K.; Barlow, S.; Hecht, S.; Marder, S.R.; Henneberger, F.; Koch, N.
2015-01-01
The fundamental limits of inorganic semiconductors for light emitting applications, such as holographic displays, biomedical imaging and ultrafast data processing and communication, might be overcome by hybridization with their organic counterparts, which feature enhanced frequency response and colour range. Innovative hybrid inorganic/organic structures exploit efficient electrical injection and high excitation density of inorganic semiconductors and subsequent energy transfer to the organic semiconductor, provided that the radiative emission yield is high. An inherent obstacle to that end is the unfavourable energy level offset at hybrid inorganic/organic structures, which rather facilitates charge transfer that quenches light emission. Here, we introduce a technologically relevant method to optimize the hybrid structure's energy levels, here comprising ZnO and a tailored ladder-type oligophenylene. The ZnO work function is substantially lowered with an organometallic donor monolayer, aligning the frontier levels of the inorganic and organic semiconductors. This increases the hybrid structure's radiative emission yield sevenfold, validating the relevance of our approach. PMID:25872919
Schlesinger, R; Bianchi, F; Blumstengel, S; Christodoulou, C; Ovsyannikov, R; Kobin, B; Moudgil, K; Barlow, S; Hecht, S; Marder, S R; Henneberger, F; Koch, N
2015-04-15
The fundamental limits of inorganic semiconductors for light emitting applications, such as holographic displays, biomedical imaging and ultrafast data processing and communication, might be overcome by hybridization with their organic counterparts, which feature enhanced frequency response and colour range. Innovative hybrid inorganic/organic structures exploit efficient electrical injection and high excitation density of inorganic semiconductors and subsequent energy transfer to the organic semiconductor, provided that the radiative emission yield is high. An inherent obstacle to that end is the unfavourable energy level offset at hybrid inorganic/organic structures, which rather facilitates charge transfer that quenches light emission. Here, we introduce a technologically relevant method to optimize the hybrid structure's energy levels, here comprising ZnO and a tailored ladder-type oligophenylene. The ZnO work function is substantially lowered with an organometallic donor monolayer, aligning the frontier levels of the inorganic and organic semiconductors. This increases the hybrid structure's radiative emission yield sevenfold, validating the relevance of our approach.
Modelling the solar wind interaction with Mercury by a quasi-neutral hybrid model
Directory of Open Access Journals (Sweden)
E. Kallio
Full Text Available Quasi-neutral hybrid model is a self-consistent modelling approach that includes positively charged particles and an electron fluid. The approach has received an increasing interest in space plasma physics research because it makes it possible to study several plasma physical processes that are difficult or impossible to model by self-consistent fluid models, such as the effects associated with the ions’ finite gyroradius, the velocity difference between different ion species, or the non-Maxwellian velocity distribution function. By now quasi-neutral hybrid models have been used to study the solar wind interaction with the non-magnetised Solar System bodies of Mars, Venus, Titan and comets. Localized, two-dimensional hybrid model runs have also been made to study terrestrial dayside magnetosheath. However, the Hermean plasma environment has not yet been analysed by a global quasi-neutral hybrid model.
In this paper we present a new quasi-neutral hybrid model developed to study various processes associated with the Mercury-solar wind interaction. Emphasis is placed on addressing advantages and disadvantages of the approach to study different plasma physical processes near the planet. The basic assumptions of the approach and the algorithms used in the new model are thoroughly presented. Finally, some of the first three-dimensional hybrid model runs made for Mercury are presented.
The resulting macroscopic plasma parameters and the morphology of the magnetic field demonstrate the applicability of the new approach to study the Mercury-solar wind interaction globally. In addition, the real advantage of the kinetic hybrid model approach is to study the property of individual ions, and the study clearly demonstrates the large potential of the approach to address these more detailed issues by a quasi-neutral hybrid model in the future.
Key words. Magnetospheric physics
Quasi-Static Single-Component Hybrid Simulation of a Composite Structure with Multi-Axis Control
DEFF Research Database (Denmark)
Høgh, J.; Waldbjørn, J.; Wittrup-Schmidt, J.
2015-01-01
This paper presents a quasi-static hybrid simulation performed on a single component structure. Hybrid simulation is a substructural technique, where a structure is divided into two sections: a numerical section of the main structure and a physical experiment of the remainder. In previous cases...
A Surface Modeling Paradigm for Electromagnetic Applications in Aerospace Structures
Jha, RM; Bokhari, SA; Sudhakar, V; Mahapatra, PR
1989-01-01
A systematic approach has been developed to model the surfaces encountered in aerospace engineering for EM applications. The basis of this modeling is the quadric canonical shapes which are the coordinate surfaces of the Eisenhart Coordinate systems. The building blocks are visualized as sections of quadric cylinders and surfaces of revolution. These truncated quadrics can successfully model realistic aerospace structures which are termed a s hybrid quadrics, of which the satellite launch veh...
Integrated materials–structural models
DEFF Research Database (Denmark)
Stang, Henrik; Geiker, Mette Rica
2008-01-01
, repair works and strengthening methods for structures. A very significant part of the infrastructure consists of reinforced concrete structures. Even though reinforced concrete structures typically are very competitive, certain concrete structures suffer from various types of degradation. A framework...... should define a framework in which materials research results eventually should fit in and on the other side the materials research should define needs and capabilities in structural modelling. Integrated materials-structural models of a general nature are almost non-existent in the field of cement based...
CVD growth of graphene under exfoliated hexagonal boron nitride for vertical hybrid structures
Energy Technology Data Exchange (ETDEWEB)
Wang, Min [SKKU Advanced Institute of Nanotechnology (SAINT) (Korea, Republic of); Center for Human Interface Nanotechnology (HINT) (Korea, Republic of); Jang, Sung Kyu [SKKU Advanced Institute of Nanotechnology (SAINT) (Korea, Republic of); Song, Young Jae [SKKU Advanced Institute of Nanotechnology (SAINT) (Korea, Republic of); Department of Physics, Sungkyunkwan University (SKKU), Suwon 440-746 (Korea, Republic of); Lee, Sungjoo, E-mail: leesj@skku.edu [SKKU Advanced Institute of Nanotechnology (SAINT) (Korea, Republic of); Center for Human Interface Nanotechnology (HINT) (Korea, Republic of); College of Information and Communication Engineering, Sungkyunkwan University (SKKU), Suwon 440-746 (Korea, Republic of)
2015-01-15
Graphical abstract: We have demonstrated a novel yet simple method for fabricating graphene-based vertical hybrid structures by performing the CVD growth of graphene at an h-BN/Cu interface. Our systematic Raman measurements combined with plasma etching process indicate that a graphene film is grown under exfoliated h-BN rather than on its top surface, and that an h-BN/graphene vertical hybrid structure has been fabricated. Electrical transport measurements of this h-BN/graphene, transferred on SiO2, show the carrier mobility up to approximately 2250 cm{sup 2} V{sup −1} s{sup −1}. The developed method would enable the exploration of the possibility of novel hybrid structure integration with two-dimensional material systems. - Abstract: We have demonstrated a novel yet simple method for fabricating graphene-based vertical hybrid structures by performing the CVD growth of graphene at an h-BN/Cu interface. Our systematic Raman measurements combined with plasma etching process indicate that a graphene film is grown under exfoliated h-BN rather than on its top surface, and that an h-BN/graphene vertical hybrid structure has been fabricated. Electrical transport measurements of this h-BN/graphene, transferred on SiO{sub 2}, show the carrier mobility up to approximately 2250 cm{sup 2} V{sup −1} s{sup −1}. The developed method would enable the exploration of the possibility of novel hybrid structure integration with two-dimensional material systems.
Modeling Structural Brain Connectivity
DEFF Research Database (Denmark)
Ambrosen, Karen Marie Sandø
The human brain consists of a gigantic complex network of interconnected neurons. Together all these connections determine who we are, how we react and how we interpret the world. Knowledge about how the brain is connected can further our understanding of the brain’s structural organization, help...... improve diagnosis, and potentially allow better treatment of a wide range of neurological disorders. Tractography based on diffusion magnetic resonance imaging is a unique tool to estimate this “structural connectivity” of the brain non-invasively and in vivo. During the last decade, brain connectivity...... has increasingly been analyzed using graph theoretic measures adopted from network science and this characterization of the brain’s structural connectivity has been shown to be useful for the classification of populations, such as healthy and diseased subjects. The structural connectivity of the brain...
Mapping of coma anisotropies to plasma structures of weak comets: a 3-D hybrid simulation study
Directory of Open Access Journals (Sweden)
N. Gortsas
2009-04-01
Full Text Available The effects of coma anisotropies on the plasma environment of comets have been studied by means of a 3-D hybrid model which treats electrons as a massless, charge-neutralizing fluid, whereas ion dynamics are covered by a kinetic approach. From Earth-based observations as well as from in-situ spacecraft measurements the shape of the coma of many comets is ascertained to be anisotropic. However, most plasma simulation studies deploy a spherically symmetric activity pattern. In this paper anisotropy is studied by considering three different coma shape models. The first model is derived from the Haser model and is characterised by spherically symmetry. This reference model is then compared with two different neutral gas shape models: the dayside restricted model with no nightside activity and a cone shaped model with opening angle of π/2. In all models the integrated surface activity is kept constant. The simulations have been done for the Rosetta target comet 67P/Churyumov-Gerasimenko for two heliocentric distances, 1.30 AU and 3.25 AU. It is found that shock formation processes are modified as a result of increasing spatial confinement. Characteristic plasma structures of comets such as the bow shock, magnetic barrier region and the ion composition boundary exhibit a shift towards the sun. In addition, the cone shaped model leads to a strong increase of the mass-loaded region which in turn leads to a smooth deceleration of the solar wind flow and an increasing degree of mixture between the solar wind and cometary ion species. This creates an additional transport channel of the magnetic field from the magnetic barrier region away which in turn leads to a broadening of this region. In addition, it leads to an ion composition boundary which is only gradually developed.
Oscillating water column structural model
Energy Technology Data Exchange (ETDEWEB)
Copeland, Guild [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Bull, Diana L [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Jepsen, Richard Alan [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Gordon, Margaret Ellen [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
2014-09-01
An oscillating water column (OWC) wave energy converter is a structure with an opening to the ocean below the free surface, i.e. a structure with a moonpool. Two structural models for a non-axisymmetric terminator design OWC, the Backward Bent Duct Buoy (BBDB) are discussed in this report. The results of this structural model design study are intended to inform experiments and modeling underway in support of the U.S. Department of Energy (DOE) initiated Reference Model Project (RMP). A detailed design developed by Re Vision Consulting used stiffeners and girders to stabilize the structure against the hydrostatic loads experienced by a BBDB device. Additional support plates were added to this structure to account for loads arising from the mooring line attachment points. A simplified structure was designed in a modular fashion. This simplified design allows easy alterations to the buoyancy chambers and uncomplicated analysis of resulting changes in buoyancy.
Electromagnetic moments of hadrons and quarks in a hybrid model
International Nuclear Information System (INIS)
Gerasimov, S.B.
1989-01-01
Magnetic moments of baryons are analyzed on the basis of general sum rules following from the theory of broken symmetries and quark models including the relativistic effects and hadronic corrections due to the meson exchange currents. A new sum rule is proposed for the hyperon magnetic moments, which is in accord with the most precise new data and also with a theory of the electromagnetic ΛΣ 0 mixing. The numerical values of the quark electromagnetic moments are obtained within a hybrid model treating the pion cloud effects through the local coupling of the pion field with the constituent massive quarks. Possible sensitivity of the weak neutral current magnetic moments to violation of the Okubo-Zweig-Izuki rule is emphasized nand discussed. 39 refs.; 1 fig
A Hybrid Multiple Criteria Decision Making Model for Supplier Selection
Directory of Open Access Journals (Sweden)
Chung-Min Wu
2013-01-01
Full Text Available The sustainable supplier selection would be the vital part in the management of a sustainable supply chain. In this study, a hybrid multiple criteria decision making (MCDM model is applied to select optimal supplier. The fuzzy Delphi method, which can lead to better criteria selection, is used to modify criteria. Considering the interdependence among the selection criteria, analytic network process (ANP is then used to obtain their weights. To avoid calculation and additional pairwise comparisons of ANP, a technique for order preference by similarity to ideal solution (TOPSIS is used to rank the alternatives. The use of a combination of the fuzzy Delphi method, ANP, and TOPSIS, proposing an MCDM model for supplier selection, and applying these to a real case are the unique features of this study.
Energy Technology Data Exchange (ETDEWEB)
Xu, Chen; Wang, Zhong Lin [School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA 30332 (United States)
2011-02-15
A fully integrated, solid-state, compact hybrid cell (CHC) that comprises ''convoluted'' ZnO nanowire structures for concurrent harvesting of both solar and mechanical energy is demonstrated. The compact hybrid cell is based on a conjunction design of an organic solid-state dye-sensitized solar cell (DSSC) and piezoelectric nanogenerator in one compact structure. The CHC shows a significant increase in output power, clearly demonstrating its potential for simultaneously harvesting multiple types of energy for powering small electronic devices for independent, sustainable, and mobile operation. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)
A hybrid absorbing boundary condition for frequency-domain finite-difference modelling
International Nuclear Information System (INIS)
Ren, Zhiming; Liu, Yang
2013-01-01
Liu and Sen (2010 Geophysics 75 A1–6; 2012 Geophys. Prospect. 60 1114–32) proposed an efficient hybrid scheme to significantly absorb boundary reflections for acoustic and elastic wave modelling in the time domain. In this paper, we extend the hybrid absorbing boundary condition (ABC) into the frequency domain and develop specific strategies for regular-grid and staggered-grid modelling, respectively. Numerical modelling tests of acoustic, visco-acoustic, elastic and vertically transversely isotropic (VTI) equations show significant absorptions for frequency-domain modelling. The modelling results of the Marmousi model and the salt model also demonstrate the effectiveness of the hybrid ABC. For elastic modelling, the hybrid Higdon ABC and the hybrid Clayton and Engquist (CE) ABC are implemented, respectively. Numerical simulations show that the hybrid Higdon ABC gets better absorption than the hybrid CE ABC, especially for S-waves. We further compare the hybrid ABC with the classical perfectly matched layer (PML). Results show that the two ABCs cost the same computation time and memory space for the same absorption width. However, the hybrid ABC is more effective than the PML for the same small absorption width and the absorption effects of the two ABCs gradually become similar when the absorption width is increased. (paper)
Active structural control of a floating wind turbine with a stroke-limited hybrid mass damper
Hu, Yaqi; He, Erming
2017-12-01
Floating wind turbines are subjected to more severe structural loads than fixed-bottom wind turbines due to additional degrees of freedom (DOFs) of their floating foundations. It's a promising way of using active structural control method to improve the structural responses of floating wind turbines. This paper investigates an active vibration control strategy for a barge-type floating wind turbine by setting a stroke-limited hybrid mass damper (HMD) in the turbine's nacelle. Firstly, a contact nonlinear modeling method for the floating wind turbine with clearance between the HMD and the stroke limiters is presented based on Euler-Lagrange's equations and an active control model of the whole system is established. The structural parameters are validated for the active control model and an equivalent load coefficient method is presented for identifying the wind and wave disturbances. Then, a state-feedback linear quadratic regulator (LQR) controller is designed to reduce vibration and loads of the wind turbine, and two optimization methods are combined to optimize the weighting coefficients when considering the stroke of the HMD and the active control power consumption as constraints. Finally, the designed controllers are implemented in high fidelity simulations under five typical wind and wave conditions. The results show that active HMD control strategy is shown to be achievable and the designed controllers could further reduce more vibration and loads of the wind turbine under the constraints of stroke limitation and power consumption. "V"-shaped distribution of the TMD suppression effect is inconsistent with the Weibull distribution in practical offshore floating wind farms, and the active HMD control could overcome this shortcoming of the passive TMD.
Energy Technology Data Exchange (ETDEWEB)
Zhang, Zhen [School of Electrical Engineering and Automation, Tianjin University, Tianjin 300072 (China); Xia, Changliang [School of Electrical Engineering and Automation, Tianjin University, Tianjin 300072 (China); Tianjin Engineering Center of Electric Machine System Design and Control, Tianjin 300387 (China); Yan, Yan, E-mail: yanyan@tju.edu.cn [School of Electrical Engineering and Automation, Tianjin University, Tianjin 300072 (China); Geng, Qiang [Tianjin Engineering Center of Electric Machine System Design and Control, Tianjin 300387 (China); Shi, Tingna [School of Electrical Engineering and Automation, Tianjin University, Tianjin 300072 (China)
2017-08-01
Highlights: • A hybrid analytical model is developed for field calculation of multilayer IPM machines. • The rotor magnetic field is calculated by the magnetic equivalent circuit method. • The field in the stator and air-gap is calculated by subdomain technique. • The magnetic scalar potential on rotor surface is modeled as trapezoidal distribution. - Abstract: Due to the complicated rotor structure and nonlinear saturation of rotor bridges, it is difficult to build a fast and accurate analytical field calculation model for multilayer interior permanent magnet (IPM) machines. In this paper, a hybrid analytical model suitable for the open-circuit field calculation of multilayer IPM machines is proposed by coupling the magnetic equivalent circuit (MEC) method and the subdomain technique. In the proposed analytical model, the rotor magnetic field is calculated by the MEC method based on the Kirchhoff’s law, while the field in the stator slot, slot opening and air-gap is calculated by subdomain technique based on the Maxwell’s equation. To solve the whole field distribution of the multilayer IPM machines, the coupled boundary conditions on the rotor surface are deduced for the coupling of the rotor MEC and the analytical field distribution of the stator slot, slot opening and air-gap. The hybrid analytical model can be used to calculate the open-circuit air-gap field distribution, back electromotive force (EMF) and cogging torque of multilayer IPM machines. Compared with finite element analysis (FEA), it has the advantages of faster modeling, less computation source occupying and shorter time consuming, and meanwhile achieves the approximate accuracy. The analytical model is helpful and applicable for the open-circuit field calculation of multilayer IPM machines with any size and pole/slot number combination.
Solution processable inverted structure ZnO-organic hybrid heterojuction white LEDs
Bano, N.; Hussain, I.; Soomro, M. Y.; EL-Naggar, A. M.; Albassam, A. A.
2018-05-01
Improving luminance efficiency and colour purity are the most important challenges for zinc oxide (ZnO)-organic hybrid heterojunction light emitting diodes (LEDs), affecting their large area applications. If ZnO-organic hybrid heterojunction white LEDs are fabricated by a hydrothermal method, it is difficult to obtain pure and stable blue emission from PFO due to the presence of an undesirable green emission. In this paper, we present an inverted-structure ZnO-organic hybrid heterojunction LED to avoid green emission from PFO, which mainly originates during device processing. With this configuration, each ZnO nanorod (NR) forms a discrete p-n junction; therefore, large-area white LEDs can be designed without compromising the junction area. The configuration used for this novel structure is glass/ZnO NRs/PFO/PEDOT:PSS/L-ITO, which enables the development of efficient, large-area and low-cost hybrid heterojunction LEDs. Inverted-structure ZnO-organic hybrid heterojunction white LEDs offer several improvements in terms of brightness, size, colour, external quantum efficiency and a wider applicability as compared to normal architecture LEDs.
Calculation of the Initial Magnetic Field for Mercury's Magnetosphere Hybrid Model
Alexeev, Igor; Parunakian, David; Dyadechkin, Sergey; Belenkaya, Elena; Khodachenko, Maxim; Kallio, Esa; Alho, Markku
2018-03-01
Several types of numerical models are used to analyze the interactions of the solar wind flow with Mercury's magnetosphere, including kinetic models that determine magnetic and electric fields based on the spatial distribution of charges and currents, magnetohydrodynamic models that describe plasma as a conductive liquid, and hybrid models that describe ions kinetically in collisionless mode and represent electrons as a massless neutralizing liquid. The structure of resulting solutions is determined not only by the chosen set of equations that govern the behavior of plasma, but also by the initial and boundary conditions; i.e., their effects are not limited to the amount of computational work required to achieve a quasi-stationary solution. In this work, we have proposed using the magnetic field computed by the paraboloid model of Mercury's magnetosphere as the initial condition for subsequent hybrid modeling. The results of the model have been compared to measurements performed by the Messenger spacecraft during a single crossing of the magnetosheath and the magnetosphere. The selected orbit lies in the terminator plane, which allows us to observe two crossings of the bow shock and the magnetopause. In our calculations, we have defined the initial parameters of the global magnetospheric current systems in a way that allows us to minimize paraboloid magnetic field deviation along the trajectory of the Messenger from the experimental data. We have shown that the optimal initial field parameters include setting the penetration of a partial interplanetary magnetic field into the magnetosphere with a penetration coefficient of 0.2.
Investigating actinide compounds within a hybrid MCSCF-DFT model
International Nuclear Information System (INIS)
Fromager, E.; Jensen, H.J.A.; Wahlin, P.; Real, F.; Wahlgren, U.
2007-01-01
Complete text of publication follows: Investigations of actinide chemistry with quantum chemical methods still remain a complicated task since it requires an accurate and efficient treatment of the environment (crystal or solvent) as well as relativistic and electron correlation effects. Concerning the latter, the current correlated methods, based on either Density-Functional Theory (DFT) or Wave-Function Theory (WFT), have their advantages and drawbacks. On the one hand, Kohn-Sham DFT (KS-DFT) calculates the dynamic correlation quite accurately and at a fairly low computational cost. However, it does not treat adequately the static correlation, which is significant in some actinide compounds because of the near-degeneracy of the 5f orbitals: a first example is the bent geometry obtained in KS-DFT(B3LYP) for the neptunyl ion NpO 2 3+ , which is found to be linear within a Multi-Configurational Self-Consistent Field (MCSCF) model [1]. A second one is the stable and bent geometry obtained in KS-DFT(B3LYP) for the plutonyl ion PuO 2 4+ , which disintegrates at the MCSCF level [1]. On the other hand, WFT can describe the static correlation, using for example a MCSCF model, but then an important part of the dynamic correlation has to be neglected. This can be recovered with perturbation-theory based methods like for example CASPT2 or NEVPT2, but their computational complexity prevents large scale calculations. It is therefore of great interest to develop a hybrid MCSCF-DFT model which combines the best of both WFT and DFT approaches. The merge of WFT and DFT can be achieved by splitting the two-electron interaction into long-range and short-range parts [2]. The long-range part is then treated by WFT and the short-range part by DFT. We use the so-called 'erf' long-range interaction erf(μr 12 )/r 12 , which is based on the standard error function, and where μ is a free parameter which controls the long/short-range decomposition. The newly proposed recipe for the
Tomar, Kiledar S.; Kumar, Shashi; Tolpekin, Valentyn A.; Joshi, Sushil K.
2016-05-01
Forests act as sink of carbon and as a result maintains carbon cycle in atmosphere. Deforestation leads to imbalance in global carbon cycle and changes in climate. Hence estimation of forest biophysical parameter like biomass becomes a necessity. PolSAR has the ability to discriminate the share of scattering element like surface, double bounce and volume scattering in a single SAR resolution cell. Studies have shown that volume scattering is a significant parameter for forest biophysical characterization which mainly occurred from vegetation due to randomly oriented structures. This random orientation of forest structure causes shift in orientation angle of polarization ellipse which ultimately disturbs the radar signature and shows overestimation of volume scattering and underestimation of double bounce scattering after decomposition of fully PolSAR data. Hybrid polarimetry has the advantage of zero POA shift due to rotational symmetry followed by the circular transmission of electromagnetic waves. The prime objective of this study was to extract the potential of Hybrid PolSAR and fully PolSAR data for AGB estimation using Extended Water Cloud model. Validation was performed using field biomass. The study site chosen was Barkot Forest, Uttarakhand, India. To obtain the decomposition components, m-alpha and Yamaguchi decomposition modelling for Hybrid and fully PolSAR data were implied respectively. The RGB composite image for both the decomposition techniques has generated. The contribution of all scattering from each plot for m-alpha and Yamaguchi decomposition modelling were extracted. The R2 value for modelled AGB and field biomass from Hybrid PolSAR and fully PolSAR data were found 0.5127 and 0.4625 respectively. The RMSE for Hybrid and fully PolSAR between modelled AGB and field biomass were 63.156 (t ha-1) and 73.424 (t ha-1) respectively. On the basis of RMSE and R2 value, this study suggests Hybrid PolSAR decomposition modelling to retrieve scattering
Structural design aspects of magnetic coils for a linear theta-pinch hybrid reactor
International Nuclear Information System (INIS)
Bartholomew, R.J.
1976-02-01
The structural design aspects of a linear theta-pinch hybrid reactor (LTPHR) are centered in the solenoidal adiabatic compression coil (ACC) which must support the high magnetic pulse forces that tend to expand the coil and separate the leads. The structural model is represented by the theory of elasticity solution to a thick-walled cylinder. Dynamic amplification (or attenuation) is considered by a shock spectrum technique. A composite material is postulated, where the conductor material for each strand is clad with a high-strength stainless steel with insulation considered. Yield strength (for isolated-pulse operation) and endurance limit (for repetitive-pulse operation) for the high-strength steel impose magnetic field strength constraints on the coil design. These constraints are combined in an overall energy balance calculation that includes neutronic considerations to determine an optimum ACC design. The computer code ENBAL was used to incorporate neutronic, electrical, and structural constraints into the overall energy balance of the LTPHR. The lead separation problem is solved by designing spaced clamps to hold the leads together over great distances
Ozmutlu, H. Cenk
2014-01-01
We developed mixed integer programming (MIP) models and hybrid genetic-local search algorithms for the scheduling problem of unrelated parallel machines with job sequence and machine-dependent setup times and with job splitting property. The first contribution of this paper is to introduce novel algorithms which make splitting and scheduling simultaneously with variable number of subjobs. We proposed simple chromosome structure which is constituted by random key numbers in hybrid genetic-local search algorithm (GAspLA). Random key numbers are used frequently in genetic algorithms, but it creates additional difficulty when hybrid factors in local search are implemented. We developed algorithms that satisfy the adaptation of results of local search into the genetic algorithms with minimum relocation operation of genes' random key numbers. This is the second contribution of the paper. The third contribution of this paper is three developed new MIP models which are making splitting and scheduling simultaneously. The fourth contribution of this paper is implementation of the GAspLAMIP. This implementation let us verify the optimality of GAspLA for the studied combinations. The proposed methods are tested on a set of problems taken from the literature and the results validate the effectiveness of the proposed algorithms. PMID:24977204
Eroglu, Duygu Yilmaz; Ozmutlu, H Cenk
2014-01-01
We developed mixed integer programming (MIP) models and hybrid genetic-local search algorithms for the scheduling problem of unrelated parallel machines with job sequence and machine-dependent setup times and with job splitting property. The first contribution of this paper is to introduce novel algorithms which make splitting and scheduling simultaneously with variable number of subjobs. We proposed simple chromosome structure which is constituted by random key numbers in hybrid genetic-local search algorithm (GAspLA). Random key numbers are used frequently in genetic algorithms, but it creates additional difficulty when hybrid factors in local search are implemented. We developed algorithms that satisfy the adaptation of results of local search into the genetic algorithms with minimum relocation operation of genes' random key numbers. This is the second contribution of the paper. The third contribution of this paper is three developed new MIP models which are making splitting and scheduling simultaneously. The fourth contribution of this paper is implementation of the GAspLAMIP. This implementation let us verify the optimality of GAspLA for the studied combinations. The proposed methods are tested on a set of problems taken from the literature and the results validate the effectiveness of the proposed algorithms.
A New Hybrid Viscoelastic Soft Tissue Model based on Meshless Method for Haptic Surgical Simulation
Bao, Yidong; Wu, Dongmei; Yan, Zhiyuan; Du, Zhijiang
2013-01-01
This paper proposes a hybrid soft tissue model that consists of a multilayer structure and many spheres for surgical simulation system based on meshless. To improve accuracy of the model, tension is added to the three-parameter viscoelastic structure that connects the two spheres. By using haptic device, the three-parameter viscoelastic model (TPM) produces accurate deformationand also has better stress-strain, stress relaxation and creep properties. Stress relaxation and creep formulas have been obtained by mathematical formula derivation. Comparing with the experimental results of the real pig liver which were reported by Evren et al. and Amy et al., the curve lines of stress-strain, stress relaxation and creep of TPM are close to the experimental data of the real liver. Simulated results show that TPM has better real-time, stability and accuracy. PMID:24339837
A new approach to flow simulation using hybrid models
Solgi, Abazar; Zarei, Heidar; Nourani, Vahid; Bahmani, Ramin
2017-11-01
The necessity of flow prediction in rivers, for proper management of water resource, and the need for determining the inflow to the dam reservoir, designing efficient flood warning systems and so forth, have always led water researchers to think about models with high-speed response and low error. In the recent years, the development of Artificial Neural Networks and Wavelet theory and using the combination of models help researchers to estimate the river flow better and better. In this study, daily and monthly scales were used for simulating the flow of Gamasiyab River, Nahavand, Iran. The first simulation was done using two types of ANN and ANFIS models. Then, using wavelet theory and decomposing input signals of the used parameters, sub-signals were obtained and were fed into the ANN and ANFIS to obtain hybrid models of WANN and WANFIS. In this study, in addition to the parameters of precipitation and flow, parameters of temperature and evaporation were used to analyze their effects on the simulation. The results showed that using wavelet transform improved the performance of the models in both monthly and daily scale. However, it had a better effect on the monthly scale and the WANFIS was the best model.
Modeling integrated cellular machinery using hybrid Petri-Boolean networks.
Directory of Open Access Journals (Sweden)
Natalie Berestovsky
Full Text Available The behavior and phenotypic changes of cells are governed by a cellular circuitry that represents a set of biochemical reactions. Based on biological functions, this circuitry is divided into three types of networks, each encoding for a major biological process: signal transduction, transcription regulation, and metabolism. This division has generally enabled taming computational complexity dealing with the entire system, allowed for using modeling techniques that are specific to each of the components, and achieved separation of the different time scales at which reactions in each of the three networks occur. Nonetheless, with this division comes loss of information and power needed to elucidate certain cellular phenomena. Within the cell, these three types of networks work in tandem, and each produces signals and/or substances that are used by the others to process information and operate normally. Therefore, computational techniques for modeling integrated cellular machinery are needed. In this work, we propose an integrated hybrid model (IHM that combines Petri nets and Boolean networks to model integrated cellular networks. Coupled with a stochastic simulation mechanism, the model simulates the dynamics of the integrated network, and can be perturbed to generate testable hypotheses. Our model is qualitative and is mostly built upon knowledge from the literature and requires fine-tuning of very few parameters. We validated our model on two systems: the transcriptional regulation of glucose metabolism in human cells, and cellular osmoregulation in S. cerevisiae. The model produced results that are in very good agreement with experimental data, and produces valid hypotheses. The abstract nature of our model and the ease of its construction makes it a very good candidate for modeling integrated networks from qualitative data. The results it produces can guide the practitioner to zoom into components and interconnections and investigate them
arXiv Hybrid Fluid Models from Mutual Effective Metric Couplings
Kurkela, Aleksi; Preis, Florian; Rebhan, Anton; Soloviev, Alexander
Motivated by a semi-holographic approach to the dynamics of quark-gluon plasma which combines holographic and perturbative descriptions of a strongly coupled infrared and a more weakly coupled ultraviolet sector, we construct a hybrid two-fluid model where interactions between its two sectors are encoded by their effective metric backgrounds, which are determined mutually by their energy-momentum tensors. We derive the most general consistent ultralocal interactions such that the full system has a total conserved energy-momentum tensor in flat Minkowski space and study its consequences in and near thermal equilibrium by working out its phase structure and its hydrodynamic modes.
International Nuclear Information System (INIS)
Tsuanyo, David; Azoumah, Yao; Aussel, Didier; Neveu, Pierre
2015-01-01
This paper presents a new model and optimization procedure for off-grid hybrid PV (photovoltaic)/Diesel systems operating without battery storage. The proposed technico-economic model takes into account the variability of both the solar irradiation and the electrical loads. It allows optimizing the design and the operation of the hybrid systems by searching their lowest LCOE (Levelized Cost of Electricity). Two cases have been investigated: identical Diesel generators and Diesel generators with different sizes, and both are compared to conventional standalone Diesel generator systems. For the same load profile, the optimization results show that the LCOE of the optimized batteryless hybrid solar PV/Diesel (0.289 €/kWh for the hybrid system with identical Diesel generators and 0.284 €/kWh for the hybrid system with different sizes of Diesel generators) is lower than the LCOE obtained with standalone Diesel generators (0.32 €/kWh for the both cases). The obtained results are then confirmed by HOMER (Hybrid Optimization Model for Electric Renewables) software. - Highlights: • A technico-economic model for optimal design and operation management of batteryless hybrid systems is developed. • The model allows optimizing design and operation of hybrid systems by ensuring their lowest LCOE. • The model was validated by HOMER. • Batteryless hybrid system are suitable for off-grid applications
Hybrid AC EL structures with thin protective ZnO film
International Nuclear Information System (INIS)
Tsvetkova, E; Dikov, H; Kolentsov, K; Yourukova, L; Zhechev, D; Steflekova, V
2008-01-01
Alternating current hybrid electroluminescent Al/SnO 2 /ZnS: Cu/ZnO/Al structures with blue emission have been prepared. In these ZnO films are used as protective layers. The optical properties of different RF magnetron sputtered ZnO films have been studied. The voltage - brightness characteristics of AC EL structures with a ZnO protective film and conventional structures with a TiO 2 protective layer are compared. The investigation shows that the brightness of the structures with a ZnO protective film is higher. The improved characteristics of these new hybrid structures could be used in preparing various systems for representation of permanent or variable light information
Zhang, Zhen; Xia, Changliang; Yan, Yan; Geng, Qiang; Shi, Tingna
2017-08-01
Due to the complicated rotor structure and nonlinear saturation of rotor bridges, it is difficult to build a fast and accurate analytical field calculation model for multilayer interior permanent magnet (IPM) machines. In this paper, a hybrid analytical model suitable for the open-circuit field calculation of multilayer IPM machines is proposed by coupling the magnetic equivalent circuit (MEC) method and the subdomain technique. In the proposed analytical model, the rotor magnetic field is calculated by the MEC method based on the Kirchhoff's law, while the field in the stator slot, slot opening and air-gap is calculated by subdomain technique based on the Maxwell's equation. To solve the whole field distribution of the multilayer IPM machines, the coupled boundary conditions on the rotor surface are deduced for the coupling of the rotor MEC and the analytical field distribution of the stator slot, slot opening and air-gap. The hybrid analytical model can be used to calculate the open-circuit air-gap field distribution, back electromotive force (EMF) and cogging torque of multilayer IPM machines. Compared with finite element analysis (FEA), it has the advantages of faster modeling, less computation source occupying and shorter time consuming, and meanwhile achieves the approximate accuracy. The analytical model is helpful and applicable for the open-circuit field calculation of multilayer IPM machines with any size and pole/slot number combination.
International Nuclear Information System (INIS)
Nisar, J.A.; Abdullah, A.N.; Iqbal, N.
2004-01-01
In hybrid pressure vessels, composite (Fiber) is wound over a metallic liner (Steel/Aluminum) in hoop direction. In this concept of hybrid pressure vessel structure, metallic liner takes all the axial loads and fiber reinforced polymers (FRP/sub s/) takes load in circumferential (Hoop) direction. Hybrid structures combine the relatively high shear stiffness and ductility of metal alloy with high specific stiffness, strength and fatigue properties of FRP/sub s/. The relatively simple methods for producing hybrid structures circumvent the need for the complex and expensive equipment that is used for advanced composites processing. This paper presents an efficient way of designing a hybrid pressure vessel where prime concern is weight reduction over an equivalent aluminum structure and investigates various methodologies regarding combinations of metals and FRP/sub s/ for optimization of a given pressure vessel. For this purpose we adopted two different methods of simulation one is computer simulation using ANSYS and other is experimental verification by hydrostatic testing of manufactured pressure vessel. Two different pressure vessels one with aluminum liner and other with steel liner were fabricated. Kevlar 49/epoxy was wrapped around the liners in hoop direction. Both the pressure vessels were put into hydrostatic test. Strains were measured during the test and then converted into corresponding stresses. Results of hydrostatic test were quite in favor of the ANSYS results. In this way we have successfully designed, manufactured and tested the Hybrid pressure vessel saving almost 40% weight in case of aluminum liner and 43.6% in case of steel liner. (author)
Modelling of hybrid energy system - Part I: Problem formulation and model development
Energy Technology Data Exchange (ETDEWEB)
Gupta, Ajai; Saini, R.P.; Sharma, M.P. [Alternate Hydro Energy Centre, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand 247667 (India)
2011-02-15
A well designed hybrid energy system can be cost effective, has a high reliability and can improve the quality of life in remote rural areas. The economic constraints can be met, if these systems are fundamentally well designed, use appropriate technology and make use effective dispatch control techniques. The first paper of this tri-series paper, presents the analysis and design of a mixed integer linear mathematical programming model (time series) to determine the optimal operation and cost optimization for a hybrid energy generation system consisting of a photovoltaic array, biomass (fuelwood), biogas, small/micro-hydro, a battery bank and a fossil fuel generator. The optimization is aimed at minimizing the cost function based on demand and potential constraints. Further, mathematical models of all other components of hybrid energy system are also developed. This is the generation mix of the remote rural of India; it may be applied to other rural areas also. (author)
Simulation of hybrid vehicle propulsion with an advanced battery model
Energy Technology Data Exchange (ETDEWEB)
Nallabolu, S.; Kostetzer, L.; Rudnyi, E. [CADFEM GmbH, Grafing (Germany); Geppert, M.; Quinger, D. [LION Smart GmbH, Frieding (Germany)
2011-07-01
In the recent years there has been observed an increasing concern about global warming and greenhouse gas emissions. In addition to the environmental issues the predicted scarcity of oil supplies and the dramatic increase in oil price puts new demands on vehicle design. As a result energy efficiency and reduced emission have become one of main selling point for automobiles. Hybrid electric vehicles (HEV) have therefore become an interesting technology for the governments and automotive industries. HEV are more complicated compared to conventional vehicles due to the fact that these vehicles contain more electrical components such as electric machines, power electronics, electronic continuously variable transmissions (CVT), and embedded powertrain controllers. Advanced energy storage devices and energy converters, such as Li-ion batteries, ultracapacitors, and fuel cells are also considered. A detailed vehicle model used for an energy flow analysis and vehicle performance simulation is necessary. Computer simulation is indispensible to facilitate the examination of the vast hybrid electric vehicle design space with the aim to predict the vehicle performance over driving profiles, estimate fuel consumption and the pollution emissions. There are various types of mathematical models and simulators available to perform system simulation of vehicle propulsion. One of the standard methods to model the complete vehicle powertrain is ''backward quasistatic modeling''. In this method vehicle subsystems are defined based on experiential models in the form of look-up tables and efficiency maps. The interaction between adjacent subsystems of the vehicle is defined through the amount of power flow. Modeling the vehicle subsystems like motor, engine, gearbox and battery is under this technique is based on block diagrams. The vehicle model is applied in two case studies to evaluate the vehicle performance and fuel consumption. In the first case study the affect
Recent developments on the UrQMD hybrid model
Energy Technology Data Exchange (ETDEWEB)
Steinheimer, J., E-mail: steinheimer@th.physik.uni-frankfurt.de; Nahrgang, M., E-mail: nahrgang@th.physik.uni-frankfurt.de; Gerhard, J., E-mail: jochen.gerhard@compeng.uni-frankfurt.de; Schramm, S., E-mail: schramm@fias.uni-frankfurt.de; Bleicher, M., E-mail: bleicher@fias.uni-frankfurt.de [Frankfurt Institute for Advanced Studies (FIAS) (Germany)
2012-06-15
We present recent results from the UrQMD hybrid approach investigating the influence of a deconfinement phase transition on the dynamics of hot and dense nuclear matter. In the hydrodynamic stage an equation of state that incorporates a critical end-point (CEP) in line with lattice data is used. The equation of state describes chiral restoration as well as the deconfinement phase transition. We compare the results from this new equation of state to results obtained by applying a hadron resonance gas equation of state, focusing on bulk observables. Furthermore we will discuss future improvements of the hydrodynamic model. This includes the formulation of chiral fluid dynamics to be able to study the effects of a chiral critical point as well as considerable improvements in terms of computational time which would open up possibilities for observables that require high statistics.
Modeling of Hybrid Permanent Magnetic-Gas Bearings
DEFF Research Database (Denmark)
Morosi, Stefano; Santos, Ilmar
2009-01-01
Modern turbomachinery applications require nowadays ever-growing rotational speeds and high degree of reliability. It then becomes natural to focus the attention of the research to contact-free bearings elements. The present alternatives focus on gas lubricated journal bearings or magnetic bearings....... In the present paper, a detailed mathematical modeling of the gas bearing based on the compressible form of the Reynolds equation is presented. Perturbation theory is applied in order to identify the dynamic characteristic of the bearing. Due to the simple design of the magnetic bearings elements - being...... the rotor equilibrium position can be made independent on the rotational speed and applied load; it becomes function of the passive magnetic bearing offset. By adjusting the offset it is possible to significantly influence the dynamic coefficients of the hybrid bearing....
Applying a Hybrid MCDM Model for Six Sigma Project Selection
Directory of Open Access Journals (Sweden)
Fu-Kwun Wang
2014-01-01
Full Text Available Six Sigma is a project-driven methodology; the projects that provide the maximum financial benefits and other impacts to the organization must be prioritized. Project selection (PS is a type of multiple criteria decision making (MCDM problem. In this study, we present a hybrid MCDM model combining the decision-making trial and evaluation laboratory (DEMATEL technique, analytic network process (ANP, and the VIKOR method to evaluate and improve Six Sigma projects for reducing performance gaps in each criterion and dimension. We consider the film printing industry of Taiwan as an empirical case. The results show that our study not only can use the best project selection, but can also be used to analyze the gaps between existing performance values and aspiration levels for improving the gaps in each dimension and criterion based on the influential network relation map.
RF modeling of the ITER-relevant lower hybrid antenna
International Nuclear Information System (INIS)
Hillairet, J.; Ceccuzzi, S.; Belo, J.; Marfisi, L.; Artaud, J.F.; Bae, Y.S.; Berger-By, G.; Bernard, J.M.; Cara, Ph.; Cardinali, A.; Castaldo, C.; Cesario, R.; Decker, J.; Delpech, L.; Ekedahl, A.; Garcia, J.; Garibaldi, P.; Goniche, M.; Guilhem, D.; Hoang, G.T.
2011-01-01
In the frame of the EFDA task HCD-08-03-01, a 5 GHz Lower Hybrid system which should be able to deliver 20 MW CW on ITER and sustain the expected high heat fluxes has been reviewed. The design and overall dimensions of the key RF elements of the launcher and its subsystem has been updated from the 2001 design in collaboration with ITER organization. Modeling of the LH wave propagation and absorption into the plasma shows that the optimal parallel index must be chosen between 1.9 and 2.0 for the ITER steady-state scenario. The present study has been made with n || = 2.0 but can be adapted for n || = 1.9. Individual components have been studied separately giving confidence on the global RF design of the whole antenna.
Modelling and Investigation of a Hybrid Thermal Energy Harvester
Directory of Open Access Journals (Sweden)
Todorov Todor
2018-01-01
Full Text Available The presented paper deals with dynamical and experimental investigations of a hybrid energy harvester containing shape memory alloy (SMA wire and elastic cantilever with piezoelectric layer. The SMA wire periodically changes its temperature under the influence of a heated plate that approaches and moves away from the SMA wire. The change of SMA wire length causes rotation of the hot plate. The plate is heated by a heater with constant temperature. The repeated SMA wire extensions and contractions bend the piezoelectric cantilever which generates electric charges. The shape memory effect is presented as a temperature approximation of the Young’s modulus. A dynamical model of the energy harvester is created and some analytical investigations are presented. With the help of an experimental setup the acceleration, the force, the temperature, and the output voltage have been measured. The theoretical results are validated experimentally. Some conclusions are made about the best performance of the energy harvester.
Exploring the lambda model of the hybrid superstring
Energy Technology Data Exchange (ETDEWEB)
Schmidtt, David M. [Instituto de Física Teórica IFT/UNESP,Rua Dr. Bento Teobaldo Ferraz 271, Bloco II, CEP 01140-070, São Paulo-SP (Brazil)
2016-10-26
The purpose of this contribution is to initiate the study of integrable deformations for different superstring theory formalisms that manifest the property of (classical) integrability. In this paper we choose the hybrid formalism of the superstring in the background AdS{sub 2}×S{sup 2} and explore in detail the most immediate consequences of its λ-deformation. The resulting action functional corresponds to the λ-model of the matter part of the fairly more sophisticated pure spinor formalism, which is also known to be classical integrable. In particular, the deformation preserves the integrability and the one-loop conformal invariance of its parent theory, hence being a marginal deformation.
Stroke maximizing and high efficient hysteresis hybrid modeling for a rhombic piezoelectric actuator
Shao, Shubao; Xu, Minglong; Zhang, Shuwen; Xie, Shilin
2016-06-01
Rhombic piezoelectric actuator (RPA), which employs a rhombic mechanism to amplify the small stroke of PZT stack, has been widely used in many micro-positioning machineries due to its remarkable properties such as high displacement resolution and compact structure. In order to achieve large actuation range along with high accuracy, the stroke maximizing and compensation for the hysteresis are two concerns in the use of RPA. However, existing maximization methods based on theoretical model can hardly accurately predict the maximum stroke of RPA because of approximation errors that are caused by the simplifications that must be made in the analysis. Moreover, despite the high hysteresis modeling accuracy of Preisach model, its modeling procedure is trivial and time-consuming since a large set of experimental data is required to determine the model parameters. In our research, to improve the accuracy of theoretical model of RPA, the approximation theory is employed in which the approximation errors can be compensated by two dimensionless coefficients. To simplify the hysteresis modeling procedure, a hybrid modeling method is proposed in which the parameters of Preisach model can be identified from only a small set of experimental data by using the combination of discrete Preisach model (DPM) with particle swarm optimization (PSO) algorithm. The proposed novel hybrid modeling method can not only model the hysteresis with considerable accuracy but also significantly simplified the modeling procedure. Finally, the inversion of hysteresis is introduced to compensate for the hysteresis non-linearity of RPA, and consequently a pseudo-linear system can be obtained.
Hybrid Reduced Order Modeling Algorithms for Reactor Physics Calculations
Bang, Youngsuk
hybrid ROM algorithms which can be readily integrated into existing methods and offer higher computational efficiency and defendable accuracy of the reduced models. For example, the snapshots ROM algorithm is hybridized with the range finding algorithm to render reduction in the state space, e.g. the flux in reactor calculations. In another implementation, the perturbation theory used to calculate first order derivatives of responses with respect to parameters is hybridized with a forward sensitivity analysis approach to render reduction in the parameter space. Reduction at the state and parameter spaces can be combined to render further reduction at the interface between different physics codes in a multi-physics model with the accuracy quantified in a similar manner to the single physics case. Although the proposed algorithms are generic in nature, we focus here on radiation transport models used in support of the design and analysis of nuclear reactor cores. In particular, we focus on replacing the traditional assembly calculations by ROM models to facilitate the generation of homogenized cross-sections for downstream core calculations. The implication is that assembly calculations could be done instantaneously therefore precluding the need for the expensive evaluation of the few-group cross-sections for all possible core conditions. Given the generic natures of the algorithms, we make an effort to introduce the material in a general form to allow non-nuclear engineers to benefit from this work.
Malyar, Ivan V.; Gorin, Dmitry A.; Stetsyura, Svetlana V.
2013-01-01
In this report we present the analysis of I-V curves for MIS-structures like silicon substrate / nanodimensional polyelectrolyte layer / metal probe (contact) which is promising for biosensors, microfluidic chips, different devices of molecular electronics, such as OLEDs, solar cells, where polyelectrolyte layers can be used to modify semiconductor surface. The research is directed to investigate the contact phenomena which influence the resulting signal of devices mentioned above. The comparison of I-V characteristics of such structures measured by scanning tunnel microscopy (contactless technique) and using contact areas deposited by thermal evaporation onto the organic layer (the contact one) was carried out. The photoassisted I-V measurements and complex analysis based on Simmons and Schottky models allow one to extract the potential barriers and to observe the changes of charge transport in MIS-structures under illumination and after polyelectrolyte adsorption. The direct correlation between the thickness of the deposited polyelectrolyte layer and both equilibrium tunnel barrier and Schottky barrier height was observed for hybrid structures with polyethylenimine. The possibility of control over the I-V curves of hybrid structure and the height of the potential barriers (for different charge transports) by illumination was confirmed. Based on experimental data and complex analysis the band diagrams were plotted which illustrate the changes of potential barriers for MIS-structures due to the polyelectrolyte adsorption and under the illumination.
Nano-Structured Bio-Inorganic Hybrid Material for High Performing Oxygen Reduction Catalyst.
Jiang, Rongzhong; Tran, Dat T; McClure, Joshua P; Chu, Deryn
2015-08-26
In this study, we demonstrate a non-Pt nanostructured bioinorganic hybrid (BIH) catalyst for catalytic oxygen reduction in alkaline media. This catalyst was synthesized through biomaterial hemin, nanostructured Ag-Co alloy, and graphene nano platelets (GNP) by heat-treatment and ultrasonically processing. This hybrid catalyst has the advantages of the combined features of these bio and inorganic materials. A 10-fold improvement in catalytic activity (at 0.8 V vs RHE) is achieved in comparison of pure Ag nanoparticles (20-40 nm). The hybrid catalyst reaches 80% activity (at 0.8 V vs RHE) of the state-of-the-art catalyst (containing 40% Pt and 60% active carbon). Comparable catalytic stability for the hybrid catalyst with the Pt catalyst is observed by chronoamperometric experiment. The hybrid catalyst catalyzes 4-electron oxygen reduction to produce water with fast kinetic rate. The rate constant obtained from the hybrid catalyst (at 0.6 V vs RHE) is 4 times higher than that of pure Ag/GNP catalyst. A catalytic model is proposed to explain the oxygen reduction reaction at the BIH catalyst.
Bounded Model Checking and Inductive Verification of Hybrid Discrete-Continuous Systems
DEFF Research Database (Denmark)
Becker, Bernd; Behle, Markus; Eisenbrand, Fritz
2004-01-01
We present a concept to signicantly advance the state of the art for bounded model checking (BMC) and inductive verication (IV) of hybrid discrete-continuous systems. Our approach combines the expertise of partners coming from dierent domains, like hybrid systems modeling and digital circuit veri...
Pedagogy and Process: A Case Study of Writing in a Hybrid Learning Model
Keiner, Jason F.
2017-01-01
This qualitative case study explored the perceived experiences and outcomes of writing in a hybrid model of instruction in a large suburban high school. In particular, the impact of a hybrid model on the writing process and on future writing performance were examined. In addition, teacher expectation and teacher attitude and their impact upon…
Status and modeling improvements of hybrid wind/PV/diesel power systems for Brazilian applications
Energy Technology Data Exchange (ETDEWEB)
McGowan, J.G.; Manwell, J.F.; Avelar, C. [Univ. of Massachusetts, Amherst, MA (United States); Taylor, R. [National Renewable Energy Lab., Golden, CO (United States)
1997-12-31
This paper present a summary of the ongoing work on the modeling and system design of hybrid wind/PV/diesel systems for two different sites in the Amazonia region of Brazil. The work incorporates the latest resource data and is based on the use of the Hybrid2 simulation code developed by the University of Massachusetts and NREL. Details of the baseline operating hybrid systems are reviewed, and the results of the latest detailed hybrid system evaluation for each site are summarized. Based on the system modeling results, separate recommendations for system modification and improvements are made.
Hybrid Model Predictive Control as a LFC solution in Hydropower Plants
Directory of Open Access Journals (Sweden)
Donaisky Emerson
2015-01-01
Full Text Available For Electric Power System safety and stable operation, planning and analysis by using simulation environments are necessary. An important point for frequency stability analysis is, on one hand, an adequate representation of Load-Frequency Control (LFC loops and, on the other hand, the design of advanced control strategies to deal with the power system dynamic complexity. Therefore, in this paper we propose to represent the group turbine/penstock, found in hydropower plants, in a Piecewise Affine (PWA modelling structure. Based on such modelling, we also propose the use of a Hybrid Model Predictive algorithm to be use as a control law in LFC loops. Among the advantages of this PWA representation is the use of this model in the controller algorithm, thereby improving the Load-Frequency Control performance. Simulation results, on a 200 MW hydropower plant compares the performance of predictive control strategy presented with the classical PID control strategy in an isolated condition.
A Hybrid Vector Quantization Combining a Tree Structure and a Voronoi Diagram
Directory of Open Access Journals (Sweden)
Yeou-Jiunn Chen
2014-01-01
Full Text Available Multimedia data is a popular communication medium, but requires substantial storage space and network bandwidth. Vector quantization (VQ is suitable for multimedia data applications because of its simple architecture, fast decoding ability, and high compression rate. Full-search VQ can typically be used to determine optimal codewords, but requires considerable computational time and resources. In this study, a hybrid VQ combining a tree structure and a Voronoi diagram is proposed to improve VQ efficiency. To efficiently reduce the search space, a tree structure integrated with principal component analysis is proposed, to rapidly determine an initial codeword in low-dimensional space. To increase accuracy, a Voronoi diagram is applied to precisely enlarge the search space by modeling relations between each codeword. This enables an optimal codeword to be efficiently identified by rippling an optimal neighbor from parts of neighboring Voronoi regions. The experimental results demonstrated that the proposed approach improved VQ performance, outperforming other approaches. The proposed approach also satisfies the requirements of handheld device application, namely, the use of limited memory and network bandwidth, when a suitable number of dimensions in principal component analysis is selected.
Free Energy Landscapes of Alanine Oligopeptides in Rigid-Body and Hybrid Water Models.
Nayar, Divya; Chakravarty, Charusita
2015-08-27
Replica exchange molecular dynamics is used to study the effect of different rigid-body (mTIP3P, TIP4P, SPC/E) and hybrid (H1.56, H3.00) water models on the conformational free energy landscape of the alanine oligopeptides (acAnme and acA5nme), in conjunction with the CHARMM22 force field. The free energy landscape is mapped out as a function of the Ramachandran angles. In addition, various secondary structure metrics, solvation shell properties, and the number of peptide-solvent hydrogen bonds are monitored. Alanine dipeptide is found to have similar free energy landscapes in different solvent models, an insensitivity which may be due to the absence of possibilities for forming i-(i + 4) or i-(i + 3) intrapeptide hydrogen bonds. The pentapeptide, acA5nme, where there are three intrapeptide backbone hydrogen bonds, shows a conformational free energy landscape with a much greater degree of sensitivity to the choice of solvent model, though the three rigid-body water models differ only quantitatively. The pentapeptide prefers nonhelical, non-native PPII and β-sheet populations as the solvent is changed from SPC/E to the less tetrahedral liquid (H1.56) to an LJ-like liquid (H3.00). The pentapeptide conformational order metrics indicate a preference for open, solvent-exposed, non-native structures in hybrid solvent models at all temperatures of study. The possible correlations between the properties of solvent models and secondary structure preferences of alanine oligopeptides are discussed, and the competition between intrapeptide, peptide-solvent, and solvent-solvent hydrogen bonding is shown to be crucial in the relative free energies of different conformers.
Hybrid 3D structures of ZnO nanoflowers and PdO nanoparticles as a highly selective methanol sensor.
Acharyya, D; Huang, K Y; Chattopadhyay, P P; Ho, M S; Fecht, H-J; Bhattacharyya, P
2016-05-10
The present study concerns the enhancement of methanol selectivity of three dimensional (3D) nanoflowers (NFs) of ZnO by dispersing nickel oxide (NiO) and palladium oxide (PdO) nanoparticles on the surface of the nanoflowers to form localized hybrid nano-junctions. The nanoflowers were fabricated through a liquid phase deposition technique and the modification was achieved by addition of NiCl and PdCl2 solutions. In addition to the detailed structural (like X-ray diffraction (XRD), electron dispersive spectroscopy (EDS), X-ray mapping, XPS) and morphological characterization (by field emission scanning electron microscopy (FESEM)), the existence of different defect states (viz. oxygen vacancy) was also confirmed by photoluminescence (PL) spectroscopy. The sensing properties of the pristine and metal oxide nanoparticle (NiO/PdO)-ZnO NF hybrid sensor structures, towards different alcohol vapors (methanol, ethanol, 2-propanol) were investigated in the concentration range of 0.5-700 ppm at 100-350 °C. Methanol selectivity study against other interfering species, viz. ethanol, 2-propanol, acetone, benzene, xylene and toluene was also investigated. It was found that the PdO-ZnO NF hybrid system offered enhanced selectivity towards methanol at low temperature (150 °C) compared to the NiO-ZnO NF and pristine ZnO NF counterparts. The underlying mechanism for such improvement has been discussed with respective energy band diagram and preferential dissociation of target species on such 3D hybrid structures. The corresponding improvement in transient characteristics has also been co-related with the proposed model.
Finite element modelling of concrete beams reinforced with hybrid fiber reinforced bars
Smring, Santa binti; Salleh, Norhafizah; Hamid, NoorAzlina Abdul; Majid, Masni A.
2017-11-01
Concrete is a heterogeneous composite material made up of cement, sand, coarse aggregate and water mixed in a desired proportion to obtain the required strength. Plain concrete does not with stand tension as compared to compression. In order to compensate this drawback steel reinforcement are provided in concrete. Now a day, for improving the properties of concrete and also to take up tension combination of steel and glass fibre-reinforced polymer (GFRP) bars promises favourable strength, serviceability, and durability. To verify its promise and support design concrete structures with hybrid type of reinforcement, this study have investigated the load-deflection behaviour of concrete beams reinforced with hybrid GFRP and steel bars by using ATENA software. Fourteen beams, including six control beams reinforced with only steel or only GFRP bars, were analysed. The ratio and the ordinate of GFRP to steel were the main parameters investigated. The behaviour of these beams was investigated via the load-deflection characteristics, cracking behaviour and mode of failure. Hybrid GFRP-Steel reinforced concrete beam showed the improvement in both ultimate capacity and deflection concomitant to the steel reinforced concrete beam. On the other hand, finite element (FE) modelling which is ATENA were validated with previous experiment and promising the good result to be used for further analyses and development in the field of present study.
Modeling level change in Lake Urmia using hybrid artificial intelligence approaches
Esbati, M.; Ahmadieh Khanesar, M.; Shahzadi, Ali
2017-06-01
The investigation of water level fluctuations in lakes for protecting them regarding the importance of these water complexes in national and regional scales has found a special place among countries in recent years. The importance of the prediction of water level balance in Lake Urmia is necessary due to several-meter fluctuations in the last decade which help the prevention from possible future losses. For this purpose, in this paper, the performance of adaptive neuro-fuzzy inference system (ANFIS) for predicting the lake water level balance has been studied. In addition, for the training of the adaptive neuro-fuzzy inference system, particle swarm optimization (PSO) and hybrid backpropagation-recursive least square method algorithm have been used. Moreover, a hybrid method based on particle swarm optimization and recursive least square (PSO-RLS) training algorithm for the training of ANFIS structure is introduced. In order to have a more fare comparison, hybrid particle swarm optimization and gradient descent are also applied. The models have been trained, tested, and validated based on lake level data between 1991 and 2014. For performance evaluation, a comparison is made between these methods. Numerical results obtained show that the proposed methods with a reasonable error have a good performance in water level balance prediction. It is also clear that with continuing the current trend, Lake Urmia will experience more drop in the water level balance in the upcoming years.
DEFF Research Database (Denmark)
Kushon, S A; Jordan, J P; Seifert, J L
2001-01-01
The binding of a series of PNA and DNA probes to a group of unusually stable DNA hairpins of the tetraloop motif has been observed using absorbance hypochromicity (ABS), circular dichroism (CD), and a colorimetric assay for PNA/DNA duplex detection. These results indicate that both stable PNA...... structures in both target and probe molecules are shown to depress the melting temperatures and free energies of the probe-target duplexes. Kinetic analysis of hybridization yields reaction rates that are up to 160-fold slower than hybridization between two unstructured strands. The thermodynamic and kinetic...
International Nuclear Information System (INIS)
Dung, Nguyen Van; Yoo, Young Joon; Lee, Young Pak; Tung, Nguyen Thanh; Tung, Bui Son; Lam, Vu Dinh
2014-01-01
The influence of lattice constants on the electromagnetic behavior of a cut-wire-pair (CWP) structure has been elucidated. In this report, we performed both simulations and experiments to determine the influence of polarization on the metamagnetic resonance of the CWP structure. The key finding is the result of an investigation on the plasmon hybridization between the two CWs, which showed that the polarization of the incident wave was affected. Good agreement between numerical simulation and measurement is achieved.
Mobile phone use while driving: a hybrid modeling approach.
Márquez, Luis; Cantillo, Víctor; Arellana, Julián
2015-05-01
The analysis of the effects that mobile phone use produces while driving is a topic of great interest for the scientific community. There is consensus that using a mobile phone while driving increases the risk of exposure to traffic accidents. The purpose of this research is to evaluate the drivers' behavior when they decide whether or not to use a mobile phone while driving. For that, a hybrid modeling approach that integrates a choice model with the latent variable "risk perception" was used. It was found that workers and individuals with the highest education level are more prone to use a mobile phone while driving than others. Also, "risk perception" is higher among individuals who have been previously fined and people who have been in an accident or almost been in an accident. It was also found that the tendency to use mobile phones while driving increases when the traffic speed reduces, but it decreases when the fine increases. Even though the urgency of the phone call is the most important explanatory variable in the choice model, the cost of the fine is an important attribute in order to control mobile phone use while driving. Copyright © 2015 Elsevier Ltd. All rights reserved.
Structure of Solvent-Free Nanoparticle−Organic Hybrid Materials
Yu, Hsiu-Yu; Koch, Donald L.
2010-01-01
that the constraint that each particle carries its own share of the fluid attached to itself yields a static structure factor that approaches zero as the wavenumber approaches zero. This result indicates that each particle excludes exactly one other particle from its
International Nuclear Information System (INIS)
Thirumurugan, A.; Rao, C.N.R.
2008-01-01
Three-dimensional homoleptic (single type of ligand) lead dicarboxylates with hybrid structures involving Pb-O-Pb linkages of the compositions, Pb(C 5 H 6 O 4 ), I, and Pb(C 6 H 8 O 4 ), II and III, have been synthesized and characterized. Three-dimensional heteroleptic (mixed ligands) lead dicarboxylates of the formulae, Pb 2 (C 2 O 4 )(C 4 H 4 O 4 ), IV and Pb 2 (C 2 O 4 )(C 6 H 8 O 4 ), V, with hybrid structures involving Pb-O-Pb linkages have also been prepared and characterized along with a novel two-dimensional lead nitrate-oxalate of the composition, (OPb 2 ) 2 (C 2 O 4 )(NO 3 ) 2 , VI. In all these dicarboxylates, there is two-dimensional inorganic connectivity and the lead (II) cation has hemi- or holo-directed coordination geometry. Depending upon the torsional angle and the coordination mode of the dicarboxylate anions as well as the geometry of the lead (II) cations, these hybrid compounds exhibit two types of two-dimensional inorganic connectivities. - Graphical abstract: Three homoleptic and two heteroleptic three-dimensional lead aliphatic dicarboxylates along with a novel two-dimensional lead nitrate-oxalate with hybrid structures involving Pb-O-Pb linkages have been synthesized and charecterized. In all these dicarboxylates, there is two-dimensional inorganic connectivity. The lead (II) cation has hemi- or holo-directed coordination geometry
Different proportions of C/KCu7S4 hybrid structure for high-performance supercapacitors
Dai, Shuge; Xi, Yi; Hu, Chenguo; Yue, Xule; Cheng, Lu; Wang, Guo
2014-10-01
KCu7S4 has the channel structure and minor resistance. Its double larger channels ensure that the ions can well exchange with other's, at the same time, can shorten the ionic diffusion path and improve the ionic and electronic transport. So KCu7S4 shows good electrochemical property. The paper reports a novel and high performance supercapacitor based on hybrid carbon particles and KCu7S4 (C/KCu7S4) electrode. For the hybrid structure with different proportions of C and KCu7S4, the C/KCu7S4 (1:10) hybrid supercapacitor shows preferable electrochemical performance and large specific capacitance (469 mF cm-2) at high charge-discharge rate (2 mA), still retaining ∼95% of the capacitance over 5000 cycles by charge-discharge process at a fixed current of 10 mA. Three supercapacitor units in series can light 50 light-emitting diodes (LEDs) for 2.5 min, 10 LEDs for 4 min, one LED for 5.5 min. The much-increased capacity, rate capability, and cycling stability may be attributed to the superionic conductive KCu7S4 nanowires and C/KCu7S4 hybrid structure, which improve ionic and electronic transport, enhance the kinetics of redox reactions through the electrode system.
Jao, M.-H.; Teague, M. L.; Huang, J.-S.; Tseng, W.-S.; Yeh, N.-C.
Organic-inorganic hybrid perovskites, arising from research of low-cost high performance photovoltaics, have become promising materials not only for solar cells but also for various optoelectronic and spintronic applications. An interesting aspect of the hybrid perovskites is that their material properties, such as the band gap, can be easily tuned by varying the composition, temperature, and the crystalline phases. Additionally, the surface structure is critically important for their optoelectronic applications. It is speculated that different crystalline facets could show different trap densities, thus resulting in microscopically inhomogeneous performance. Here we report direct studies of the surface structures and electronic properties of hybrid perovskite CH3NH3PbI3 single crystals by scanning tunneling microscopy and spectroscopy (STM/STS). We found long-range spatially homogeneous tunneling conductance spectra with a well-defined energy gap of (1.55 +/- 0.1) eV at 300 K in the tetragonal phase, suggesting high quality of the single crystals. The energy gap increased to (1.81 +/- 0.1) eV in the orthorhombic phase, below the tetragonal-to-orthorhombic phase transition temperature at 150 K. Detailed studies of the temperature evolution in the spatially resolved surface structures and local density of states will be discussed to elucidate how these properties may influence the optoelectronic performance of the hybrid perovskites. We thank the support from NTU in Taiwan and from NSF in the US.
DEFF Research Database (Denmark)
Kløjgaard, Mirja Elisabeth; Hess, S.
2014-01-01
A growing number of studies across different fields are making use of a new class of choice models, labelled variably as hybrid model structures or integrated choice and latent variable models, and incorporating the role of attitudes in decision making. To date, this technique has not been used...... in spring/summer 2012. We show how the hybrid model structure is able to make a link between attitudinal questions and treatment choices, and also explains variation of these attitudes across key socio-demographic groups. However, we also show how, in this case, only a small share of the overall...
Structural dynamic modifications via models
Indian Academy of Sciences (India)
The study shows that as many as half of the matrix ... the dynamicist's analytical modelling skill which would appear both in the numerator as. Figure 2. ..... Brandon J A 1990 Strategies for structural dynamic modification (New York: John Wiley).
Structure-Based Turbulence Model
National Research Council Canada - National Science Library
Reynolds, W
2000-01-01
.... Maire carried out this work as part of his Phi) research. During the award period we began to explore ways to simplify the structure-based modeling so that it could be used in repetitive engineering calculations...
Probabilistic modeling of timber structures
DEFF Research Database (Denmark)
Köhler, Jochen; Sørensen, John Dalsgaard; Faber, Michael Havbro
2007-01-01
The present paper contains a proposal for the probabilistic modeling of timber material properties. It is produced in the context of the Probabilistic Model Code (PMC) of the Joint Committee on Structural Safety (JCSS) [Joint Committee of Structural Safety. Probabilistic Model Code, Internet...... Publication: www.jcss.ethz.ch; 2001] and of the COST action E24 ‘Reliability of Timber Structures' [COST Action E 24, Reliability of timber structures. Several meetings and Publications, Internet Publication: http://www.km.fgg.uni-lj.si/coste24/coste24.htm; 2005]. The present proposal is based on discussions...... and comments from participants of the COST E24 action and the members of the JCSS. The paper contains a description of the basic reference properties for timber strength parameters and ultimate limit state equations for timber components. The recommended probabilistic model for these basic properties...
International Nuclear Information System (INIS)
Gupta, S.; Farmer, J.
2011-01-01
We report the structure and physical properties of novel hybrids of multiwalled carbon nanotubes (MWCNTs) and ultradispersed diamond (UDD) forming nanocomposite ensemble that were subjected to 50, 100, and 10 3 kGy gamma ray doses and characterized using various analytical tools to investigate hierarchical defects evolution. This work is prompted by recent work on single-walled CNTs and UDD ensemble [Gupta et al., J. Appl. Phys. 107, 104308 (2010)] where radiation-induced microscopic defects seem to be stabilized by UDD. The present experiments show similar effects where these hybrids display only a minimal structural modification under the maximum dose. Quantitative analyses of multiwavelength Raman spectra revealed lattice defects induced by irradiation assessed through the variation in prominent D, G, and 2D bands. A minimal change in the position of D, G, and 2D bands and a marginal increase in intensity of the defect-induced double resonant Raman scattered D and 2D bands are some of the implications suggesting the radiation coupling. The in-plane correlation length (L a ) was also determined following Tunistra-Koenig relation from the ratio of D to G band (I D /I G ) besides microscopic stress. However, we also suggest the following taking into account of intrinsic defects of the constituents: (a) charge transfer arising at the interface due to the difference in electronegativity of MWCNT C sp 2 and UDD core (C sp 3 ) leading to phonon and electron energy renormalization; (b) misorientation of C sp 2 at the interface of MWCNT and UDD shell (C sp 2 ) resulting in structural disorder; (c) softening or violation of the q∼0 selection rule leading to D band broadening and a minimal change in G band intensity; and (d) normalized intensity of D and G bands with 2D band help to distinguish defect-induced double resonance phenomena. The MWCNT when combined with nanodiamond showed a slight decrease in their conductance further affected by irradiation pointing at
Kalman Filtered Bio Heat Transfer Model Based Self-adaptive Hybrid Magnetic Resonance Thermometry.
Zhang, Yuxin; Chen, Shuo; Deng, Kexin; Chen, Bingyao; Wei, Xing; Yang, Jiafei; Wang, Shi; Ying, Kui
2017-01-01
To develop a self-adaptive and fast thermometry method by combining the original hybrid magnetic resonance thermometry method and the bio heat transfer equation (BHTE) model. The proposed Kalman filtered Bio Heat Transfer Model Based Self-adaptive Hybrid Magnetic Resonance Thermometry, abbreviated as KalBHT hybrid method, introduced the BHTE model to synthesize a window on the regularization term of the hybrid algorithm, which leads to a self-adaptive regularization both spatially and temporally with change of temperature. Further, to decrease the sensitivity to accuracy of the BHTE model, Kalman filter is utilized to update the window at each iteration time. To investigate the effect of the proposed model, computer heating simulation, phantom microwave heating experiment and dynamic in-vivo model validation of liver and thoracic tumor were conducted in this study. The heating simulation indicates that the KalBHT hybrid algorithm achieves more accurate results without adjusting λ to a proper value in comparison to the hybrid algorithm. The results of the phantom heating experiment illustrate that the proposed model is able to follow temperature changes in the presence of motion and the temperature estimated also shows less noise in the background and surrounding the hot spot. The dynamic in-vivo model validation with heating simulation demonstrates that the proposed model has a higher convergence rate, more robustness to susceptibility problem surrounding the hot spot and more accuracy of temperature estimation. In the healthy liver experiment with heating simulation, the RMSE of the hot spot of the proposed model is reduced to about 50% compared to the RMSE of the original hybrid model and the convergence time becomes only about one fifth of the hybrid model. The proposed model is able to improve the accuracy of the original hybrid algorithm and accelerate the convergence rate of MR temperature estimation.
Vallé, Karine; Belleville, Philippe; Pereira, Franck; Sanchez, Clément
2006-02-01
The elaborate performances characterizing natural materials result from functional hierarchical constructions at scales ranging from nanometres to millimetres, each construction allowing the material to fit the physical or chemical demands occurring at these different levels. Hierarchically structured materials start to demonstrate a high input in numerous promising applied domains such as sensors, catalysis, optics, fuel cells, smart biologic and cosmetic vectors. In particular, hierarchical hybrid materials permit the accommodation of a maximum of elementary functions in a small volume, thereby optimizing complementary possibilities and properties between inorganic and organic components. The reported strategies combine sol-gel chemistry, self-assembly routes using templates that tune the material's architecture and texture with the use of larger inorganic, organic or biological templates such as latex, organogelator-derived fibres, nanolithographic techniques or controlled phase separation. We propose an approach to forming transparent hierarchical hybrid functionalized membranes using in situ generation of mesostructured hybrid phases inside a non-porogenic hydrophobic polymeric host matrix. We demonstrate that the control of the multiple affinities existing between organic and inorganic components allows us to design the length-scale partitioning of hybrid nanomaterials with tuned functionalities and desirable size organization from ångström to centimetre. After functionalization of the mesoporous hybrid silica component, the resulting membranes have good ionic conductivity offering interesting perspectives for the design of solid electrolytes, fuel cells and other ion-transport microdevices.
Bioprocess iterative batch-to-batch optimization based on hybrid parametric/nonparametric models.
Teixeira, Ana P; Clemente, João J; Cunha, António E; Carrondo, Manuel J T; Oliveira, Rui
2006-01-01
This paper presents a novel method for iterative batch-to-batch dynamic optimization of bioprocesses. The relationship between process performance and control inputs is established by means of hybrid grey-box models combining parametric and nonparametric structures. The bioreactor dynamics are defined by material balance equations, whereas the cell population subsystem is represented by an adjustable mixture of nonparametric and parametric models. Thus optimizations are possible without detailed mechanistic knowledge concerning the biological system. A clustering technique is used to supervise the reliability of the nonparametric subsystem during the optimization. Whenever the nonparametric outputs are unreliable, the objective function is penalized. The technique was evaluated with three simulation case studies. The overall results suggest that the convergence to the optimal process performance may be achieved after a small number of batches. The model unreliability risk constraint along with sampling scheduling are crucial to minimize the experimental effort required to attain a given process performance. In general terms, it may be concluded that the proposed method broadens the application of the hybrid parametric/nonparametric modeling technique to "newer" processes with higher potential for optimization.
International Nuclear Information System (INIS)
Ahmad, Shahab; Vijaya Prakash, G.; Baumberg, Jeremy J.
2013-01-01
Room-temperature tunable excitonic photoluminescence is demonstrated in alloy-tuned layered Inorganic-Organic (IO) hybrids, (C 12 H 25 NH 3 ) 2 PbI 4(1−y) Br 4y (y = 0 to 1). These perovskite IO hybrids adopt structures with alternating stacks of low-dimensional inorganic and organic layers, considered to be naturally self-assembled multiple quantum wells. These systems resemble stacked monolayer 2D semiconductors since no interlayer coupling exists. Thin films of IO hybrids exhibit sharp and strong photoluminescence (PL) at room-temperature due to stable excitons formed within the low-dimensional inorganic layers. Systematic variation in the observed exciton PL from 510 nm to 350 nm as the alloy composition is changed, is attributed to the structural readjustment of crystal packing upon increase of the Br content in the Pb-I inorganic network. The energy separation between exciton absorption and PL is attributed to the modified exciton density of states and diffusion of excitons from relatively higher energy states corresponding to bromine rich sites towards the lower energy iodine sites. Apart from compositional fluctuations, these excitons show remarkable reversible flips at temperature-induced phase transitions. All the results are successfully correlated with thermal and structural studies. Such structural engineering flexibility in these hybrids allows selective tuning of desirable exciton properties within suitable operating temperature ranges. Such wide-range PL tunability and reversible exciton switching in these novel IO hybrids paves the way to potential applications in new generation of optoelectronic devices
Ahmad, Shahab; Baumberg, Jeremy J.; Vijaya Prakash, G.
2013-12-01
Room-temperature tunable excitonic photoluminescence is demonstrated in alloy-tuned layered Inorganic-Organic (IO) hybrids, (C12H25NH3)2PbI4(1-y)Br4y (y = 0 to 1). These perovskite IO hybrids adopt structures with alternating stacks of low-dimensional inorganic and organic layers, considered to be naturally self-assembled multiple quantum wells. These systems resemble stacked monolayer 2D semiconductors since no interlayer coupling exists. Thin films of IO hybrids exhibit sharp and strong photoluminescence (PL) at room-temperature due to stable excitons formed within the low-dimensional inorganic layers. Systematic variation in the observed exciton PL from 510 nm to 350 nm as the alloy composition is changed, is attributed to the structural readjustment of crystal packing upon increase of the Br content in the Pb-I inorganic network. The energy separation between exciton absorption and PL is attributed to the modified exciton density of states and diffusion of excitons from relatively higher energy states corresponding to bromine rich sites towards the lower energy iodine sites. Apart from compositional fluctuations, these excitons show remarkable reversible flips at temperature-induced phase transitions. All the results are successfully correlated with thermal and structural studies. Such structural engineering flexibility in these hybrids allows selective tuning of desirable exciton properties within suitable operating temperature ranges. Such wide-range PL tunability and reversible exciton switching in these novel IO hybrids paves the way to potential applications in new generation of optoelectronic devices.
Temporal structures in shell models
DEFF Research Database (Denmark)
Okkels, F.
2001-01-01
The intermittent dynamics of the turbulent Gledzer, Ohkitani, and Yamada shell-model is completely characterized by a single type of burstlike structure, which moves through the shells like a front. This temporal structure is described by the dynamics of the instantaneous configuration of the shell...
Structuring very large domain models
DEFF Research Database (Denmark)
Störrle, Harald
2010-01-01
View/Viewpoint approaches like IEEE 1471-2000, or Kruchten's 4+1-view model are used to structure software architectures at a high level of granularity. While research has focused on architectural languages and with consistency between multiple views, practical questions such as the structuring a...
Modeling, hybridization, and optimal charging of electrical energy storage systems
Parvini, Yasha
The rising rate of global energy demand alongside the dwindling fossil fuel resources has motivated research for alternative and sustainable solutions. Within this area of research, electrical energy storage systems are pivotal in applications including electrified vehicles, renewable power generation, and electronic devices. The approach of this dissertation is to elucidate the bottlenecks of integrating supercapacitors and batteries in energy systems and propose solutions by the means of modeling, control, and experimental techniques. In the first step, the supercapacitor cell is modeled in order to gain fundamental understanding of its electrical and thermal dynamics. The dependence of electrical parameters on state of charge (SOC), current direction and magnitude (20-200 A), and temperatures ranging from -40°C to 60°C was embedded in this computationally efficient model. The coupled electro-thermal model was parameterized using specifically designed temporal experiments and then validated by the application of real world duty cycles. Driving range is one of the major challenges of electric vehicles compared to combustion vehicles. In order to shed light on the benefits of hybridizing a lead-acid driven electric vehicle via supercapacitors, a model was parameterized for the lead-acid battery and combined with the model already developed for the supercapacitor, to build the hybrid battery-supercapacitor model. A hardware in the loop (HIL) setup consisting of a custom built DC/DC converter, micro-controller (muC) to implement the power management strategy, 12V lead-acid battery, and a 16.2V supercapacitor module was built to perform the validation experiments. Charging electrical energy storage systems in an efficient and quick manner, motivated to solve an optimal control problem with the objective of maximizing the charging efficiency for supercapacitors, lead-acid, and lithium ion batteries. Pontryagins minimum principle was used to solve the problems
A finite element modeling of a multifunctional hybrid composite beam with viscoelastic materials
Wang, Ya; Inman, Daniel J.
2013-04-01
The multifunctional hybrid composite structure studied here consists of a ceramic outer layer capable of withstanding high temperatures, a functionally graded ceramic layer combining shape memory alloy (SMA) properties of NiTi together with Ti2AlC (called Graded Ceramic/Metal Composite, or GCMeC), and a high temperature sensor patch, followed by a polymer matrix composite laced with vascular cooling channels all held together with various epoxies. Due to the recoverable nature of SMA and adhesive properties of Ti2AlC, the damping behavior of the GCMeC is largely viscoelastic. This paper presents a finite element formulation for this multifunctional hybrid structure with embedded viscoelastic material. In order to implement the viscoelastic model into the finite element formulation, a second order three parameter Golla-Hughes-McTavish (GHM) method is used to describe the viscoelastic behavior. Considering the parameter identification, a strategy to estimate the fractional order of the time derivative and the relaxation time is outlined. The curve-fitting aspects of both GHM and ADF show good agreement with experimental data obtained from dynamic mechanics analysis. The performance of the finite element of the layered multifunctional beam is verified through experimental model analysis.
Electronic structure of hybrid interfaces for polymer-based electronics
International Nuclear Information System (INIS)
Fahlman, M; Crispin, A; Crispin, X; Henze, S K M; Jong, M P de; Osikowicz, W; Tengstedt, C; Salaneck, W R
2007-01-01
The fundamentals of the energy level alignment at anode and cathode electrodes in organic electronics are described. We focus on two different models that treat weakly interacting organic/metal (and organic/organic) interfaces: the induced density of interfacial states model and the so-called integer charge transfer model. The two models are compared and evaluated, mainly using photoelectron spectroscopy data of the energy level alignment of conjugated polymers and molecules at various organic/metal and organic/organic interfaces. We show that two different alignment regimes are generally observed: (i) vacuum level alignment, which corresponds to the lack of vacuum level offsets (Schottky-Mott limit) and hence the lack of charge transfer across the interface, and (ii) Fermi level pinning where the resulting work function of an organic/metal and organic/organic bilayer is independent of the substrate work function and an interface dipole is formed due to charge transfer across the interface. We argue that the experimental results are best described by the integer charge transfer model which predicts the vacuum level alignment when the substrate work function is above the positive charge transfer level and below the negative charge transfer level of the conjugated material. The model further predicts Fermi level pinning to the positive (negative) charge transfer level when the substrate work function is below (above) the positive (negative) charge transfer level. The nature of the integer charge transfer levels depend on the materials system: for conjugated large molecules and polymers, the integer charge transfer states are polarons or bipolarons; for small molecules' highest occupied and lowest unoccupied molecular orbitals and for crystalline systems, the relevant levels are the valence and conduction band edges. Finally, limits and further improvements to the integer charge transfer model are discussed as well as the impact on device design. (topical review)
Fatgraph models of RNA structure
Directory of Open Access Journals (Sweden)
Huang Fenix
2017-01-01
Full Text Available In this review paper we discuss fatgraphs as a conceptual framework for RNA structures. We discuss various notions of coarse-grained RNA structures and relate them to fatgraphs.We motivate and discuss the main intuition behind the fatgraph model and showcase its applicability to canonical as well as noncanonical base pairs. Recent discoveries regarding novel recursions of pseudoknotted (pk configurations as well as their translation into context-free grammars for pk-structures are discussed. This is shown to allow for extending the concept of partition functions of sequences w.r.t. a fixed structure having non-crossing arcs to pk-structures. We discuss minimum free energy folding of pk-structures and combine these above results outlining how to obtain an inverse folding algorithm for PK structures.
Directory of Open Access Journals (Sweden)
Kurochkina M
2018-04-01
Full Text Available Margarita Kurochkina,1 Elena Konshina,1 Aleksandr Oseev,2 Soeren Hirsch3 1Centre of Information Optical Technologies, ITMO University, Saint Petersburg, Russia; 2Institute of Micro and Sensor Systems, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany; 3Department of Engineering, University of Applied Sciences Brandenburg, Brandenburg an der Havel, Germany Background: The luminescence amplification of semiconductor quantum dots (QD in the presence of self-assembled gold nanoparticles (Au NPs is one of way for creating biosensors with highly efficient transduction. Aims: The objective of this study was to fabricate the hybrid structures based on semiconductor CdSe/ZnS QDs and Au NP arrays and to use them as biosensors of protein. Methods: In this paper, the hybrid structures based on CdSe/ZnS QDs and Au NP arrays were fabricated using spin coating processes. Au NP arrays deposited on a glass wafer were investigated by optical microscopy and absorption spectroscopy depending on numbers of spin coating layers and their baking temperature. Bovine serum albumin (BSA was used as the target protein analyte in a phosphate buffer. A confocal laser scanning microscope was used to study the luminescent properties of Au NP/QD hybrid structures and to test BSA. Results: The dimensions of Au NP aggregates increased and the space between them decreased with increasing processing temperature. At the same time, a blue shift of the plasmon resonance peak in the absorption spectra of Au NP arrays was observed. The deposition of CdSe/ZnS QDs with a core diameter of 5 nm on the surface of the Au NP arrays caused an increase in absorption and a red shift of the plasmon peak in the spectra. The exciton–plasmon enhancement of the QDs’ photoluminescence intensity has been obtained at room temperature for hybrid structures with Au NPs array pretreated at temperatures of 100°C and 150°C. It has been found that an increase in the weight content of BSA
Development of hybrid 3-D hydrological modeling for the NCAR Community Earth System Model (CESM)
Energy Technology Data Exchange (ETDEWEB)
Zeng, Xubin [Univ. of Arizona, Tucson, AZ (United States); Troch, Peter [Univ. of Arizona, Tucson, AZ (United States); Pelletier, Jon [Univ. of Arizona, Tucson, AZ (United States); Niu, Guo-Yue [Univ. of Arizona, Tucson, AZ (United States); Gochis, David [NCAR Research Applications Lab., Boulder, CO (United States)
2015-11-15
This is the Final Report of our four-year (3-year plus one-year no cost extension) collaborative project between the University of Arizona (UA) and the National Center for Atmospheric Research (NCAR). The overall objective of our project is to develop and evaluate the first hybrid 3-D hydrological model with a horizontal grid spacing of 1 km for the NCAR Community Earth System Model (CESM).
A Hybrid Fuzzy Model for Lean Product Development Performance Measurement
Osezua Aikhuele, Daniel; Mohd Turan, Faiz
2016-02-01
In the effort for manufacturing companies to meet up with the emerging consumer demands for mass customized products, many are turning to the application of lean in their product development process, and this is gradually moving from being a competitive advantage to a necessity. However, due to lack of clear understanding of the lean performance measurements, many of these companies are unable to implement and fully integrated the lean principle into their product development process. Extensive literature shows that only few studies have focus systematically on the lean product development performance (LPDP) evaluation. In order to fill this gap, the study therefore proposed a novel hybrid model based on Fuzzy Reasoning Approach (FRA), and the extension of Fuzzy-AHP and Fuzzy-TOPSIS methods for the assessment of the LPDP. Unlike the existing methods, the model considers the importance weight of each of the decision makers (Experts) since the performance criteria/attributes are required to be rated, and these experts have different level of expertise. The rating is done using a new fuzzy Likert rating scale (membership-scale) which is designed such that it can address problems resulting from information lost/distortion due to closed-form scaling and the ordinal nature of the existing Likert scale.
An SVM model with hybrid kernels for hydrological time series
Wang, C.; Wang, H.; Zhao, X.; Xie, Q.
2017-12-01
Support Vector Machine (SVM) models have been widely applied to the forecast of climate/weather and its impact on other environmental variables such as hydrologic response to climate/weather. When using SVM, the choice of the kernel function plays the key role. Conventional SVM models mostly use one single type of kernel function, e.g., radial basis kernel function. Provided that there are several featured kernel functions available, each having its own advantages and drawbacks, a combination of these kernel functions may give more flexibility and robustness to SVM approach, making it suitable for a wide range of application scenarios. This paper presents such a linear combination of radial basis kernel and polynomial kernel for the forecast of monthly flowrate in two gaging stations using SVM approach. The results indicate significant improvement in the accuracy of predicted series compared to the approach with either individual kernel function, thus demonstrating the feasibility and advantages of such hybrid kernel approach for SVM applications.
A hybrid model of primary radiation damage in crystals
International Nuclear Information System (INIS)
Samarin, S.I.; Dremov, V.V.
2009-01-01
The paper offers a hybrid model which combines molecular dynamics and Monte Carlo (MD+MC) methods to describe primary radiation damage in crystals, caused by particles whose energies are no higher than several tens of keV. The particles are tracked in accord with equations of motion with account for pair interaction. The model also considers particle interaction with the mean-field potential (MFP) of the crystal. Only particles involved in cascading are tracked. Equations of motion for these particles include dissipative forces which describe energy exchange between cascade particles and electrons. New particles - the atoms of the crystal in the cascade region - have stochastic parameters (phase coordinates); they are sampled by the Monte Carlo method from the distribution that describes the classic canonical ensemble of non-interacting particles subjected to the external MFP. The introduction of particle interaction with the MFP helps avoid difficulties related to crystal stability and the choice of an adequate interparticle interaction potential in the traditional MD methods. Our technique is many times as fast as the traditional MD methods because we consider only particles which are involved in cascading and apply special methods to speedup the calculation of forces by accounting for the short-range pair potential used
Hybrid network defense model based on fuzzy evaluation.
Cho, Ying-Chiang; Pan, Jen-Yi
2014-01-01
With sustained and rapid developments in the field of information technology, the issue of network security has become increasingly prominent. The theme of this study is network data security, with the test subject being a classified and sensitive network laboratory that belongs to the academic network. The analysis is based on the deficiencies and potential risks of the network's existing defense technology, characteristics of cyber attacks, and network security technologies. Subsequently, a distributed network security architecture using the technology of an intrusion prevention system is designed and implemented. In this paper, first, the overall design approach is presented. This design is used as the basis to establish a network defense model, an improvement over the traditional single-technology model that addresses the latter's inadequacies. Next, a distributed network security architecture is implemented, comprising a hybrid firewall, intrusion detection, virtual honeynet projects, and connectivity and interactivity between these three components. Finally, the proposed security system is tested. A statistical analysis of the test results verifies the feasibility and reliability of the proposed architecture. The findings of this study will potentially provide new ideas and stimuli for future designs of network security architecture.
Enhanced photovoltaic properties of perovskite solar cells by TiO2 homogeneous hybrid structure.
Su, Pengyu; Fu, Wuyou; Yao, Huizhen; Liu, Li; Ding, Dong; Feng, Fei; Feng, Shuang; Xue, Yebin; Liu, Xizhe; Yang, Haibin
2017-10-01
In this paper, we fabricated a TiO 2 homogeneous hybrid structure for application in perovskite solar cells (PSCs) under ambient conditions. Under the standard air mass 1.5 global (AM 1.5G) illumination, PSCs based on homogeneous hybrid structure present a maximum power conversion efficiency of 5.39% which is higher than that of pure TiO 2 nanosheets. The enhanced properties can be explained by the better contact of TiO 2 nanosheets/nanoparticles with CH 3 NH 3 PbI 3 and fewer pinholes in electron transport materials. The advent of such unique structure opens up new avenues for the future development of high-efficiency photovoltaic cells.
Magneto-transport phenomena in metal/SiO2/n(p)-Si hybrid structures
Volkov, N. V.; Tarasov, A. S.; Rautskii, M. V.; Lukyanenko, A. V.; Bondarev, I. A.; Varnakov, S. N.; Ovchinnikov, S. G.
2018-04-01
Present review touches upon a subject of magnetotransport phenomena in hybrid structures which consist of ferromagnetic or nonmagnetic metal layer, layer of silicon oxide and silicon substrate with n- or p-type conductivity. Main attention will be paid to a number gigantic magnetotransport effects discovered in the devices fabricated on the base of the M/SiO2/n(p)-Si (M is ferromagnetic or paramagnetic metal) hybrid structures. These effects include bias induced dc magnetoresistance, gigantic magnetoimpedance, dc magnetoresistance induced by an optical irradiation and lateral magneto-photo-voltaic effect. The magnetoresistance ratio in ac and dc modes for some of our devices can exceed 106% in a magnetic field below 1 T. For lateral magneto-photo-voltaic effect, the relative change of photo-voltage in magnetic field can reach 103% at low temperature. Two types of mechanisms are responsible for sensitivity of the transport properties of the silicon based hybrid structures to magnetic field. One is related to transformation of the energy structure of the (donor) acceptor states including states near SiO2/n(p)-Si interface in magnetic field. Other mechanism is caused by the Lorentz force action. The features in behaviour of magnetotransport effects in concrete device depend on composition of the used structure, device topology and experimental conditions (bias voltage, optical radiation and others). Obtained results can be base for design of some electronic devices driven by a magnetic field. They can also provide an enhancement of the functionality for existing sensors.
International Nuclear Information System (INIS)
Xu, Yuanpei; Xuan, Yimin; Yang, Lili
2015-01-01
Highlights: • A novel photon management method is proposed for hybrid photovoltaic–thermoelectric systems. • Composite structured surfaces enable creditable ultra-broadband anti-reflection property. • Incorporation of anti-reflection and light-trapping brings spectral absorption and transmission. • The efficient photon management of the structured surface is also omnidirectional. - Abstract: In this paper, a novel ultra-broadband photon management structure is proposed for crystalline silicon thin-film solar cells used in the photovoltaic–thermoelectric hybrid system. Nanostructures are employed on both front and back side. Optical behavior of the structure in ultra-broadband (300–2500 nm) are investigated through the Finite Difference Time Domain method. By combing moth-eye and inverted-parabolic surface, a new composite surface structure is proposed for anti-reflection in the ultra-broadband wavelengths. Front metallic nanoparticles, plasmonic back reflector and metallic gratings are studied for light-trapping and the effect of plasmonic back reflector is validated by the experimental data of the external quantum efficiency. The effects of incident angle are discussed for metallic gratings. Numerical computation shows that the incorporation of anti-reflection and light-trapping can obtain high absorption in the solar cell and ensure the rest incident light transmits to the thermoelectric generator efficiently. This work shows potential full-spectrum utilization of solar energy for various photovoltaic devices related with hybrid photovoltaic–thermoelectric systems
A hybrid video compression based on zerotree wavelet structure
International Nuclear Information System (INIS)
Kilic, Ilker; Yilmaz, Reyat
2009-01-01
A video compression algorithm comparable to the standard techniques at low bit rates is presented in this paper. The overlapping block motion compensation (OBMC) is combined with discrete wavelet transform which followed by Lloyd-Max quantization and zerotree wavelet (ZTW) structure. The novel feature of this coding scheme is the combination of hierarchical finite state vector quantization (HFSVQ) with the ZTW to encode the quantized wavelet coefficients. It is seen that the proposed video encoder (ZTW-HFSVQ) performs better than the MPEG-4 and Zerotree Entropy Coding (ZTE). (author)
Czech Academy of Sciences Publication Activity Database
Krahulec, František; Krahulcová, Anna; Hlaváček, R.
2014-01-01
Roč. 86, č. 2 (2014), s. 179-192 ISSN 0032-7786 R&D Projects: GA ČR GAP506/10/1363; GA ČR GA206/08/0890 Institutional support: RVO:67985939 Keywords : chromosome numbers * hybrid swarm composition * reproductive models Subject RIV: EF - Botanics Impact factor: 4.104, year: 2014
Spatial genetic structure across a hybrid zone between European rabbit subspecies
Directory of Open Access Journals (Sweden)
Fernando Alda
2014-09-01
Full Text Available The Iberian Peninsula is the only region in the world where the two existing subspecies of the European rabbit (Oryctolagus cuniculus naturally occur and hybridize. In this study we explore the relative roles of historical and contemporary processes in shaping the spatial genetic structure of the rabbit across its native distribution range, and how they differently affect each subspecies and the hybrid zone. For that purpose we obtained multilocus genotypes and mitochondrial DNA data from 771 rabbits across most of the distribution range of the European rabbit in Spain. Based on the nuclear markers we observed a hierarchical genetic structure firstly comprised by two genetic groups, largely congruent with the mitochondrial lineages and subspecies distributions (O. c. algirus and O. c. cuniculus, which were subsequently subdivided into seven genetic groups. Geographic distance alone emerged as an important factor explaining genetic differentiation across the whole range, without the need to invoke for the effect for geographical barriers. Additionally, the significantly positive spatial correlation up to a distance of only 100 km supported the idea that differentiation at a local level is of greater importance when considering the species overall genetic structure. When looking at the subspecies, northern populations of O. c. cuniculus showed more spatial genetic structure and differentiation than O. c. algirus. This could be due to local geographic barriers, limited resources, soil type and/or social behavior limiting dispersal. The hybrid zone showed similar genetic structure to the southern populations but a larger introgression from the northern lineage genome. These differences have been attributed to selection against the hybrids rather than to behavioral differences between subspecies. Ultimately, the genetic structure of the rabbit in its native distribution range is the result of an ensemble of factors, from geographical and ecological
Hybrid Simulation Modeling to Estimate U.S. Energy Elasticities
Baylin-Stern, Adam C.
This paper demonstrates how an U.S. application of CIMS, a technologically explicit and behaviourally realistic energy-economy simulation model which includes macro-economic feedbacks, can be used to derive estimates of elasticity of substitution (ESUB) and autonomous energy efficiency index (AEEI) parameters. The ability of economies to reduce greenhouse gas emissions depends on the potential for households and industry to decrease overall energy usage, and move from higher to lower emissions fuels. Energy economists commonly refer to ESUB estimates to understand the degree of responsiveness of various sectors of an economy, and use estimates to inform computable general equilibrium models used to study climate policies. Using CIMS, I have generated a set of future, 'pseudo-data' based on a series of simulations in which I vary energy and capital input prices over a wide range. I then used this data set to estimate the parameters for transcendental logarithmic production functions using regression techniques. From the production function parameter estimates, I calculated an array of elasticity of substitution values between input pairs. Additionally, this paper demonstrates how CIMS can be used to calculate price-independent changes in energy-efficiency in the form of the AEEI, by comparing energy consumption between technologically frozen and 'business as usual' simulations. The paper concludes with some ideas for model and methodological improvement, and how these might figure into future work in the estimation of ESUBs from CIMS. Keywords: Elasticity of substitution; hybrid energy-economy model; translog; autonomous energy efficiency index; rebound effect; fuel switching.
Three hybridization models based on local search scheme for job shop scheduling problem
Balbi Fraga, Tatiana
2015-05-01
This work presents three different hybridization models based on the general schema of Local Search Heuristics, named Hybrid Successive Application, Hybrid Neighborhood, and Hybrid Improved Neighborhood. Despite similar approaches might have already been presented in the literature in other contexts, in this work these models are applied to analyzes the solution of the job shop scheduling problem, with the heuristics Taboo Search and Particle Swarm Optimization. Besides, we investigate some aspects that must be considered in order to achieve better solutions than those obtained by the original heuristics. The results demonstrate that the algorithms derived from these three hybrid models are more robust than the original algorithms and able to get better results than those found by the single Taboo Search.
Effective-mass model and magneto-optical properties in hybrid perovskites
Yu, Z. G.
2016-06-01
Hybrid inorganic-organic perovskites have proven to be a revolutionary material for low-cost photovoltaic applications. They also exhibit many other interesting properties, including giant Rashba splitting, large-radius Wannier excitons, and novel magneto-optical effects. Understanding these properties as well as the detailed mechanism of photovoltaics requires a reliable and accessible electronic structure, on which models of transport, excitonic, and magneto-optical properties can be efficiently developed. Here we construct an effective-mass model for the hybrid perovskites based on the group theory, experiment, and first-principles calculations. Using this model, we relate the Rashba splitting with the inversion-asymmetry parameter in the tetragonal perovskites, evaluate anisotropic g-factors for both conduction and valence bands, and elucidate the magnetic-field effect on photoluminescence and its dependence on the intensity of photoexcitation. The diamagnetic effect of exciton is calculated for an arbitrarily strong magnetic field. The pronounced excitonic peak emerged at intermediate magnetic fields in cyclotron resonance is assigned to the 3D±2 states, whose splitting can be used to estimate the difference in the effective masses of electron and hole.
Energy Technology Data Exchange (ETDEWEB)
Jung, A., E-mail: anne.jung@mx.uni-saarland.de [Universität des Saarlandes, Institute of Applied Mechanics, Campus A4 2, 66123 Saarbrücken (Germany); Klis, D., E-mail: d.klis@lte.uni-saarland.de [Universität des Saarlandes, Laboratory for Electromagnetic Theory, Campus C6 3, 66123 Saarbrücken (Germany); Goldschmidt, F., E-mail: f.goldschmidt@mx.uni-saarland.de [Universität des Saarlandes, Institute of Applied Mechanics, Campus A4 2, 66123 Saarbrücken (Germany)
2015-03-15
Open-cell metal foams are used as lightweight construction elements, energy absorbers or as support for catalytic coatings. Coating of open-cell metal foams is not only used for catalytic applications, but it leads also to tremendous increase in stiffness and energy absorption capacity. A non-line of sight coating technique for complex 3D structures is electrodeposition. Unfortunately, due to the 3D porosity and the related problems in mass transport limitation during the deposition, it is not possible to produce homogeneously coated foams. In the present contribution, we present a semi-non-destructive technique applicable to determine the coating thickness distribution of magnetic coatings by measuring the remanent magnetic field of coated foams. In order to have a closer look at the mass transport mechanism, a numerical model was developed to predict the field scans for different coating thickness distributions in the foams. For long deposition times the deposition reaches a steady state whereas a Helmholtz equation is sufficient to predict the coating thickness distribution. The applied current density could be identified as the main influencing parameter. Based on the developed model, it is possible to improve the electrodeposition process and hence the homogeneity in the coating thickness of coated metal foams. This leads to enhanced mechanical properties of the hybrid foams and contributes to better and resource-efficient energy absorbers and lightweight materials. - Highlights: • Production of hybrid foams by electrodeposition of nickel on open-cell metal foams. • Magnetic field scans for visualization of spatial coating thickness distribution. • Modeling of magnetic fields of inhomogeneously coated hybrid foams. • Investigation of mass transport limitation during coating by a Helmholtz equation. • Increasing coating homogeneity by use of low current densities and deposition rates.
Handbook of structural equation modeling
Hoyle, Rick H
2012-01-01
The first comprehensive structural equation modeling (SEM) handbook, this accessible volume presents both the mechanics of SEM and specific SEM strategies and applications. The editor, contributors, and editorial advisory board are leading methodologists who have organized the book to move from simpler material to more statistically complex modeling approaches. Sections cover the foundations of SEM; statistical underpinnings, from assumptions to model modifications; steps in implementation, from data preparation through writing the SEM report; and basic and advanced applications, inclu
Bridge Deterioration Prediction Model Based On Hybrid Markov-System Dynamic
Directory of Open Access Journals (Sweden)
Widodo Soetjipto Jojok
2017-01-01
Full Text Available Instantaneous bridge failure tends to increase in Indonesia. To mitigate this condition, Indonesia’s Bridge Management System (I-BMS has been applied to continuously monitor the condition of bridges. However, I-BMS only implements visual inspection for maintenance priority of the bridge structure component instead of bridge structure system. This paper proposes a new bridge failure prediction model based on hybrid Markov-System Dynamic (MSD. System dynamic is used to represent the correlation among bridge structure components while Markov chain is used to calculate temporal probability of the bridge failure. Around 235 data of bridges in Indonesia were collected from Directorate of Bridge the Ministry of Public Works and Housing for calculating transition probability of the model. To validate the model, a medium span concrete bridge was used as a case study. The result shows that the proposed model can accurately predict the bridge condition. Besides predicting the probability of the bridge failure, this model can also be used as an early warning system for bridge monitoring activity.
Hybrid model for forecasting time series with trend, seasonal and salendar variation patterns
Suhartono; Rahayu, S. P.; Prastyo, D. D.; Wijayanti, D. G. P.; Juliyanto
2017-09-01
Most of the monthly time series data in economics and business in Indonesia and other Moslem countries not only contain trend and seasonal, but also affected by two types of calendar variation effects, i.e. the effect of the number of working days or trading and holiday effects. The purpose of this research is to develop a hybrid model or a combination of several forecasting models to predict time series that contain trend, seasonal and calendar variation patterns. This hybrid model is a combination of classical models (namely time series regression and ARIMA model) and/or modern methods (artificial intelligence method, i.e. Artificial Neural Networks). A simulation study was used to show that the proposed procedure for building the hybrid model could work well for forecasting time series with trend, seasonal and calendar variation patterns. Furthermore, the proposed hybrid model is applied for forecasting real data, i.e. monthly data about inflow and outflow of currency at Bank Indonesia. The results show that the hybrid model tend to provide more accurate forecasts than individual forecasting models. Moreover, this result is also in line with the third results of the M3 competition, i.e. the hybrid model on average provides a more accurate forecast than the individual model.
Concept analysis of moral courage in nursing: A hybrid model.
Sadooghiasl, Afsaneh; Parvizy, Soroor; Ebadi, Abbas
2018-02-01
Moral courage is one of the most fundamental virtues in the nursing profession, however, little attention has been paid to it. As a result, no exact and clear definition of moral courage has ever been accessible. This study is carried out for the purposes of defining and clarifying its concept in the nursing profession. This study used a hybrid model of concept analysis comprising three phases, namely, a theoretical phase, field work phase, and a final analysis phase. To find relevant literature, electronic search of valid databases was utilized using keywords related to the concept of courage. Field work data were collected over an 11 months' time period from 2013 to 2014. In the field work phase, in-depth interviews were performed with 10 nurses. The conventional content analysis was used in two theoretical and field work phases using Graneheim and Lundman stages, and the results were combined in the final analysis phase. Ethical consideration: Permission for this study was obtained from the ethics committee of Tehran University of Medical Sciences. Oral and written informed consent was received from the participants. From the sum of 750 gained titles in theoretical phase, 26 texts were analyzed. The analysis resulted in 494 codes in text analysis and 226 codes in interview analysis. The literature review in the theoretical phase revealed two features of inherent-transcendental characteristics, two of which possessed a difficult nature. Working in the field phase added moral self-actualization characteristic, rationalism, spiritual beliefs, and scientific-professional qualifications to the feature of the concept. Moral courage is a pure and prominent characteristic of human beings. The antecedents of moral courage include model orientation, model acceptance, rationalism, individual excellence, acquiring academic and professional qualification, spiritual beliefs, organizational support, organizational repression, and internal and external personal barriers
Generalized Swept Mid-structure for Polygonal Models
Martin, Tobias; Chen, Guoning; Musuvathy, Suraj; Cohen, Elaine; Hansen, Charles
2012-01-01
We introduce a novel mid-structure called the generalized swept mid-structure (GSM) of a closed polygonal shape, and a framework to compute it. The GSM contains both curve and surface elements and has consistent sheet-by-sheet topology, versus triangle-by-triangle topology produced by other mid-structure methods. To obtain this structure, a harmonic function, defined on the volume that is enclosed by the surface, is used to decompose the volume into a set of slices. A technique for computing the 1D mid-structures of these slices is introduced. The mid-structures of adjacent slices are then iteratively matched through a boundary similarity computation and triangulated to form the GSM. This structure respects the topology of the input surface model is a hybrid mid-structure representation. The construction and topology of the GSM allows for local and global simplification, used in further applications such as parameterization, volumetric mesh generation and medical applications.
Generalized Swept Mid-structure for Polygonal Models
Martin, Tobias
2012-05-01
We introduce a novel mid-structure called the generalized swept mid-structure (GSM) of a closed polygonal shape, and a framework to compute it. The GSM contains both curve and surface elements and has consistent sheet-by-sheet topology, versus triangle-by-triangle topology produced by other mid-structure methods. To obtain this structure, a harmonic function, defined on the volume that is enclosed by the surface, is used to decompose the volume into a set of slices. A technique for computing the 1D mid-structures of these slices is introduced. The mid-structures of adjacent slices are then iteratively matched through a boundary similarity computation and triangulated to form the GSM. This structure respects the topology of the input surface model is a hybrid mid-structure representation. The construction and topology of the GSM allows for local and global simplification, used in further applications such as parameterization, volumetric mesh generation and medical applications.
Daily air quality index forecasting with hybrid models: A case in China
International Nuclear Information System (INIS)
Zhu, Suling; Lian, Xiuyuan; Liu, Haixia; Hu, Jianming; Wang, Yuanyuan; Che, Jinxing
2017-01-01
Air quality is closely related to quality of life. Air pollution forecasting plays a vital role in air pollution warnings and controlling. However, it is difficult to attain accurate forecasts for air pollution indexes because the original data are non-stationary and chaotic. The existing forecasting methods, such as multiple linear models, autoregressive integrated moving average (ARIMA) and support vector regression (SVR), cannot fully capture the information from series of pollution indexes. Therefore, new effective techniques need to be proposed to forecast air pollution indexes. The main purpose of this research is to develop effective forecasting models for regional air quality indexes (AQI) to address the problems above and enhance forecasting accuracy. Therefore, two hybrid models (EMD-SVR-Hybrid and EMD-IMFs-Hybrid) are proposed to forecast AQI data. The main steps of the EMD-SVR-Hybrid model are as follows: the data preprocessing technique EMD (empirical mode decomposition) is utilized to sift the original AQI data to obtain one group of smoother IMFs (intrinsic mode functions) and a noise series, where the IMFs contain the important information (level, fluctuations and others) from the original AQI series. LS-SVR is applied to forecast the sum of the IMFs, and then, S-ARIMA (seasonal ARIMA) is employed to forecast the residual sequence of LS-SVR. In addition, EMD-IMFs-Hybrid first separately forecasts the IMFs via statistical models and sums the forecasting results of the IMFs as EMD-IMFs. Then, S-ARIMA is employed to forecast the residuals of EMD-IMFs. To certify the proposed hybrid model, AQI data from June 2014 to August 2015 collected from Xingtai in China are utilized as a test case to investigate the empirical research. In terms of some of the forecasting assessment measures, the AQI forecasting results of Xingtai show that the two proposed hybrid models are superior to ARIMA, SVR, GRNN, EMD-GRNN, Wavelet-GRNN and Wavelet-SVR. Therefore, the
Develop a Hybrid Coordinate Ocean Model with Data Assimilation Capabilities
National Research Council Canada - National Science Library
Thacker, W. C
2003-01-01
.... The objectives of the research are as follows: (1) to develop a methodology for assimilating temperature and salinity profiles from XBT, CTD, and ARGO float data that accommodates the peculiarities of HYCOM's hybrid vertical coordinates, allowing...
A Hybrid Physical and Maximum-Entropy Landslide Susceptibility Model
Directory of Open Access Journals (Sweden)
Jerry Davis
2015-06-01
Full Text Available The clear need for accurate landslide susceptibility mapping has led to multiple approaches. Physical models are easily interpreted and have high predictive capabilities but rely on spatially explicit and accurate parameterization, which is commonly not possible. Statistical methods can include other factors influencing slope stability such as distance to roads, but rely on good landslide inventories. The maximum entropy (MaxEnt model has been widely and successfully used in species distribution mapping, because data on absence are often uncertain. Similarly, knowledge about the absence of landslides is often limited due to mapping scale or methodology. In this paper a hybrid approach is described that combines the physically-based landslide susceptibility model “Stability INdex MAPping” (SINMAP with MaxEnt. This method is tested in a coastal watershed in Pacifica, CA, USA, with a well-documented landslide history including 3 inventories of 154 scars on 1941 imagery, 142 in 1975, and 253 in 1983. Results indicate that SINMAP alone overestimated susceptibility due to insufficient data on root cohesion. Models were compared using SINMAP stability index (SI or slope alone, and SI or slope in combination with other environmental factors: curvature, a 50-m trail buffer, vegetation, and geology. For 1941 and 1975, using slope alone was similar to using SI alone; however in 1983 SI alone creates an Areas Under the receiver operator Curve (AUC of 0.785, compared with 0.749 for slope alone. In maximum-entropy models created using all environmental factors, the stability index (SI from SINMAP represented the greatest contributions in all three years (1941: 48.1%; 1975: 35.3; and 1983: 48%, with AUC of 0.795, 0822, and 0.859, respectively; however; using slope instead of SI created similar overall AUC values, likely due to the combined effect with plan curvature indicating focused hydrologic inputs and vegetation identifying the effect of root cohesion
Smith, Andrew M.; LaVerde, Bruce; Teague, David W.
2010-01-01
In the lower frequency range, where particular boundary conditions can make a significant difference to panel response characteristics Statistical Energy Analysis (SEA) has never been the analytical tool of choice. In addition to boundary condition effects, SEA is not well suited in frequency bands where no modes or less than a few modes exist. The advent of the Hybrid Module has enabled integration of Finite Element Analysis to expand and enhance the capability for response calculations within VA One into the lower frequency range. Exploration of several additional modeling approaches was completed for the cylindrical orthogrid panel test article that was examined in Reference 1. Comparison of the new analytical response predictions with the measured response data from ground test and the pure SEA results from the reference will be presented. One approach that is considered promising is the periodic subsystem capability. Initially, a detailed FEM of just one region of the test article is defined. After evaluating this small region using symmetric boundary conditions, the FEM may be expanded to determine the properties of the entire system using similar connected regions that map over the entire test article. Another approach is the direct use of a very detailed finite element model of the entire panel, explicitly modeling pocket and rib details of the structure. A third approach is to approximate localized structure geometry details with a smeared property generalization using a PCOMP (NASTRAN card used to define layered composite structures) to define skin layer and ribbed layer for the orthogrid panel. The authors expect to demonstrate that the integrated Hybrid/FEM approach increases confidence in response prediction in the lower frequency range (for example from 20-300 Hz for the test article under consideration). In addition the strength and weakness of each additional approach will be highlighted and compared to those reported with those reported in an
Effect of Different Structural Materials on Neutronic Performance of a Hybrid Reactor
Übeyli, Mustafa; Tel, Eyyüp
2003-06-01
Selection of structural material for a fusion-fission (hybrid) reactor is very important by taking into account of neutronic performance of the blanket. Refractory metals and alloys have much higher operating temperatures and neutron wall load (NWL) capabilities than low activation materials (ferritic/martensitic steels, vanadium alloys and SiC/SiC composites) and austenitic stainless steels. In this study, effect of primary candidate refractory alloys, namely, W-5Re, T111, TZM and Nb-1Zr on neutronic performance of the hybrid reactor was investigated. Neutron transport calculations were conducted with the help of SCALE 4.3 System by solving the Boltzmann transport equation with code XSDRNPM. Among the investigated structural materials, tantalum had the worst performance due to the fact that it has higher neutron absorption cross section than others. And W-5Re and TZM having similar results showed the best performance.
Structural origins of broadband emission from layered Pb-Br hybrid perovskites.
Smith, Matthew D; Jaffe, Adam; Dohner, Emma R; Lindenberg, Aaron M; Karunadasa, Hemamala I
2017-06-01
Through structural and optical studies of a series of two-dimensional hybrid perovskites, we show that broadband emission upon near-ultraviolet excitation is common to (001) lead-bromide perovskites. Importantly, we find that the relative intensity of the broad emission correlates with increasing out-of-plane distortion of the Pb-(μ-Br)-Pb angle in the inorganic sheets. Temperature- and power-dependent photoluminescence data obtained on a representative (001) perovskite support an intrinsic origin to the broad emission from the bulk material, where photogenerated carriers cause excited-state lattice distortions mediated through electron-lattice coupling. In contrast, most inorganic phosphors contain extrinsic emissive dopants or emissive surface sites. The design rules established here could allow us to systematically optimize white-light emission from layered hybrid perovskites by fine-tuning the bulk crystal structure.
Directory of Open Access Journals (Sweden)
Selina Olthof
2016-09-01
Full Text Available In recent years, the interest in hybrid organic–inorganic perovskites has increased at a rapid pace due to their tremendous success in the field of thin film solar cells. This area closely ties together fundamental solid state research and device application, as it is necessary to understand the basic material properties to optimize the performances and open up new areas of application. In this regard, the energy levels and their respective alignment with adjacent charge transport layers play a crucial role. Currently, we are lacking a detailed understanding about the electronic structure and are struggling to understand what influences the alignment, how it varies, or how it can be intentionally modified. This research update aims at giving an overview over recent results regarding measurements of the electronic structure of hybrid perovskites using photoelectron spectroscopy to summarize the present status.
Zhang, Tianyou; Zhao, Bo; Chu, Bei; Li, Wenlian; Su, Zisheng; Yan, Xingwu; Liu, Chengyuan; Wu, Hairuo; Gao, Yuan; Jin, Fangming; Hou, Fuhua
2015-05-01
Exciplex is well known as a charge transfer state formed between electron-donating and electron-accepting molecules. However, exciplex based organic light emitting diodes (OLED) often performed low efficiencies relative to pure phosphorescent OLED and could hardly be used to construct white OLED (WOLED). In this work, a new mechanism is developed to realize efficient WOLED with extremely simple structure by redistributing the energy of triplet exciplex to both singlet exciplex and the orange dopant. The micro process of energy transfer could be directly examined by detailed photoluminescence decay measurement and time resolved photoluminescence analysis. This strategy overcomes the low reverse intersystem crossing efficiency of blue exciplex and complicated device structure of traditional WOLED, enables us to achieve efficient hybrid WOLEDs. Based on this mechanism, we have successfully constructed both exciplex-fluorescence and exciplex-phosphorescence hybrid WOLEDs with remarkable efficiencies.
International Nuclear Information System (INIS)
Evans, Drew; Zuber, Kamil; Merkens, Kerstin; Murphy, Peter
2012-01-01
The orbital hybridization and crystal structure are experimentally explored for ultrathin chrome zirconium (CrZr x ) alloy films co-sputtered on precoated polymeric substrates. We determine the level of orbital hybridization and crystal structure using X-ray photoelectron spectroscopy and electron diffraction. Body-centred cubic and Ω-hexagonally close-packed phases are observed to coexist in the sputtered Cr-based films. Experiments reveal the orbital hybridization and crystal structure combine to produce anomalous resistivity for these ultrathin films.
Nam, Gwang-Hee; Baek, Seong-Ho; Cho, Chang-Hee; Park, Il-Kyu
2014-09-01
We demonstrate the fabrication of a graphene/ZnO nanorod (NR) hybrid structure by mechanical exfoliation of ZnO NRs grown on a graphite substrate. We confirmed the existence of graphene sheets on the hybrid structure by analyzing the Raman spectra and current-voltage (I-V) characteristics. The Raman spectra of the exfoliated graphene/ZnO NR hybrid structure show G and 2D band peaks that are shifted to lower wavenumbers, indicating that the exfoliated graphene layer exists under a significant amount of strain. The I-V characteristics of the graphene/ZnO NR hybrid structure show current flow through the graphene layer, while no current flow is observed on the ZnO NR/polydimethylsiloxane (PDMS) composite without graphene, thereby indicating that the few-layer graphene was successfully transferred onto the hybrid structure. A piezoelectric nanogenerator is demonstrated by using the fabricated graphene/ZnO NR hybrid structure. The nanogenerator exhibits stable output voltage up to 3.04 V with alternating current output characteristics.We demonstrate the fabrication of a graphene/ZnO nanorod (NR) hybrid structure by mechanical exfoliation of ZnO NRs grown on a graphite substrate. We confirmed the existence of graphene sheets on the hybrid structure by analyzing the Raman spectra and current-voltage (I-V) characteristics. The Raman spectra of the exfoliated graphene/ZnO NR hybrid structure show G and 2D band peaks that are shifted to lower wavenumbers, indicating that the exfoliated graphene layer exists under a significant amount of strain. The I-V characteristics of the graphene/ZnO NR hybrid structure show current flow through the graphene layer, while no current flow is observed on the ZnO NR/polydimethylsiloxane (PDMS) composite without graphene, thereby indicating that the few-layer graphene was successfully transferred onto the hybrid structure. A piezoelectric nanogenerator is demonstrated by using the fabricated graphene/ZnO NR hybrid structure. The nanogenerator
Dynamic Modeling and Simulation on a Hybrid Power System for Electric Vehicle Applications
Directory of Open Access Journals (Sweden)
Hong-Wen He
2010-11-01
Full Text Available Hybrid power systems, formed by combining high-energy-density batteries and high-power-density ultracapacitors in appropriate ways, provide high-performance and high-efficiency power systems for electric vehicle applications. This paper first establishes dynamic models for the ultracapacitor, the battery and a passive hybrid power system, and then based on the dynamic models a comparative simulation between a battery only power system and the proposed hybrid power system was done under the UDDS (Urban Dynamometer Driving Schedule. The simulation results showed that the hybrid power system could greatly optimize and improve the efficiency of the batteries and their dynamic current was also decreased due to the participation of the ultracapacitors, which would have a good influence on batteries’ cycle life. Finally, the parameter matching for the passive hybrid power system was studied by simulation and comparisons.
HyLTL: a temporal logic for model checking hybrid systems
Directory of Open Access Journals (Sweden)
Davide Bresolin
2013-08-01
Full Text Available The model-checking problem for hybrid systems is a well known challenge in the scientific community. Most of the existing approaches and tools are limited to safety properties only, or operates by transforming the hybrid system to be verified into a discrete one, thus loosing information on the continuous dynamics of the system. In this paper we present a logic for specifying complex properties of hybrid systems called HyLTL, and we show how it is possible to solve the model checking problem by translating the formula into an equivalent hybrid automaton. In this way the problem is reduced to a reachability problem on hybrid automata that can be solved by using existing tools.
Directory of Open Access Journals (Sweden)
Ping Jiang
2015-01-01
Full Text Available The establishment of electrical power system cannot only benefit the reasonable distribution and management in energy resources, but also satisfy the increasing demand for electricity. The electrical power system construction is often a pivotal part in the national and regional economic development plan. This paper constructs a hybrid model, known as the E-MFA-BP model, that can forecast indices in the electrical power system, including wind speed, electrical load, and electricity price. Firstly, the ensemble empirical mode decomposition can be applied to eliminate the noise of original time series data. After data preprocessing, the back propagation neural network model is applied to carry out the forecasting. Owing to the instability of its structure, the modified firefly algorithm is employed to optimize the weight and threshold values of back propagation to obtain a hybrid model with higher forecasting quality. Three experiments are carried out to verify the effectiveness of the model. Through comparison with other traditional well-known forecasting models, and models optimized by other optimization algorithms, the experimental results demonstrate that the hybrid model has the best forecasting performance.
Skopelitis, Petros; Cherotchenko, Evgenia D.; Kavokin, Alexey V.; Posazhennikova, Anna
2018-03-01
We predict a strong enhancement of the critical temperature in a conventional Bardeen-Cooper-Schrieffer (BCS) superconductor in the presence of a bosonic condensate of exciton polaritons. The effect depends strongly on the ratio of the cutoff frequencies for phonon and exciton-polariton mediated BCS superconductivity, respectively. We also discuss a possible design of hybrid semiconductor-superconductor structures suitable for the experimental observation of such an effect.
A Hybrid Setarx Model for Spikes in Tight Electricity Markets
Directory of Open Access Journals (Sweden)
Carlo Lucheroni
2012-01-01
Full Text Available The paper discusses a simple looking but highly nonlinear regime-switching, self-excited threshold model for hourly electricity prices in continuous and discrete time. The regime structure of the model is linked to organizational features of the market. In continuous time, the model can include spikes without using jumps, by defining stochastic orbits. In passing from continuous time to discrete time, the stochastic orbits survive discretization and can be identified again as spikes. A calibration technique suitable for the discrete version of this model, which does not need deseasonalization or spike filtering, is developed, tested and applied to market data. The discussion of the properties of the model uses phase-space analysis, an approach uncommon in econometrics. (original abstract
Directory of Open Access Journals (Sweden)
Zhiyuan Xia
2017-02-01
Full Text Available Nowadays, many more bridges with extra-width have been needed for vehicle throughput. In order to obtain a precise finite element (FE model of those complex bridge structures, the practical hybrid updating method by integration of Gaussian mutation particle swarm optimization (GMPSO, Kriging meta-model and Latin hypercube sampling (LHS was proposed. By demonstrating the efficiency and accuracy of the hybrid method through the model updating of a damaged simply supported beam, the proposed method was applied to the model updating of a self-anchored suspension bridge with extra-width which showed great necessity considering the results of ambient vibration test. The results of bridge model updating showed that both of the mode frequencies and shapes had relatively high agreement between the updated model and experimental structure. The successful model updating of this bridge fills in the blanks of model updating of a complex self-anchored suspension bridge. Moreover, the updating process enables other model updating issues for complex bridge structures
Probabilistic Modeling of Timber Structures
DEFF Research Database (Denmark)
Köhler, J.D.; Sørensen, John Dalsgaard; Faber, Michael Havbro
2005-01-01
The present paper contains a proposal for the probabilistic modeling of timber material properties. It is produced in the context of the Probabilistic Model Code (PMC) of the Joint Committee on Structural Safety (JCSS) and of the COST action E24 'Reliability of Timber Structures'. The present...... proposal is based on discussions and comments from participants of the COST E24 action and the members of the JCSS. The paper contains a description of the basic reference properties for timber strength parameters and ultimate limit state equations for components and connections. The recommended...
Optoelectronic Properties of Van Der Waals Hybrid Structures: Fullerenes on Graphene Nanoribbons.
Correa, Julián David; Orellana, Pedro Alejandro; Pacheco, Mónica
2017-03-20
The search for new optical materials capable of absorbing light in the frequency range from visible to near infrared is of great importance for applications in optoelectronic devices. In this paper, we report a theoretical study of the electronic and optical properties of hybrid structures composed of fullerenes adsorbed on graphene and on graphene nanoribbons. The calculations are performed in the framework of the density functional theory including the van der Waals dispersive interactions. We found that the adsorption of the C 60 fullerenes on a graphene layer does not modify its low energy states, but it has strong consequences for its optical spectrum, introducing new absorption peaks in the visible energy region. The optical absorption of fullerenes and graphene nanoribbon composites shows a strong dependence on photon polarization and geometrical characteristics of the hybrid systems, covering a broad range of energies. We show that an external electric field across the nanoribbon edges can be used to tune different optical transitions coming from nanoribbon-fullerene hybridized states, which yields a very rich electro-absorption spectrum for longitudinally polarized photons. We have carried out a qualitative analysis on the potential of these hybrids as possible donor-acceptor systems in photovoltaic cells.
Optoelectronic Properties of Van Der Waals Hybrid Structures: Fullerenes on Graphene Nanoribbons
Directory of Open Access Journals (Sweden)
Julián David Correa
2017-03-01
Full Text Available The search for new optical materials capable of absorbing light in the frequency range from visible to near infrared is of great importance for applications in optoelectronic devices. In this paper, we report a theoretical study of the electronic and optical properties of hybrid structures composed of fullerenes adsorbed on graphene and on graphene nanoribbons. The calculations are performed in the framework of the density functional theory including the van der Waals dispersive interactions. We found that the adsorption of the C 60 fullerenes on a graphene layer does not modify its low energy states, but it has strong consequences for its optical spectrum, introducing new absorption peaks in the visible energy region. The optical absorption of fullerenes and graphene nanoribbon composites shows a strong dependence on photon polarization and geometrical characteristics of the hybrid systems, covering a broad range of energies. We show that an external electric field across the nanoribbon edges can be used to tune different optical transitions coming from nanoribbon–fullerene hybridized states, which yields a very rich electro-absorption spectrum for longitudinally polarized photons. We have carried out a qualitative analysis on the potential of these hybrids as possible donor-acceptor systems in photovoltaic cells.
Nacre-like hybrid films: Structure, properties, and the effect of relative humidity.
Abba, Mohammed T; Hunger, Philipp M; Kalidindi, Surya R; Wegst, Ulrike G K
2015-03-01
Functional materials often are hybrids composed of biopolymers and mineral constituents. The arrangement and interactions of the constituents frequently lead to hierarchical structures with exceptional mechanical properties and multifunctionality. In this study, hybrid thin films with a nacre-like brick-and-mortar microstructure were fabricated in a straightforward and reproducible manner through manual shear casting using the biopolymer chitosan as the matrix material (mortar) and alumina platelets as the reinforcing particles (bricks). The ratio of inorganic to organic content was varied from 0% to 15% and the relative humidities from 36% to 75% to determine their effects on the mechanical properties. It was found that increasing the volume fraction of alumina from 0% to 15% results in a twofold increase in the modulus of the film, but decreases the tensile strength by up to 30%, when the volume fraction of alumina is higher than 5%. Additionally, this study quantifies and illustrates the critical role of the relative humidity on the mechanical properties of the hybrid film. Increasing the relative humidity from 36% to 75% decreases the modulus and strength by about 45% and triples the strain at failure. These results suggest that complex hybrid materials can be manufactured and tailor made for specific applications or environmental conditions. Copyright © 2015. Published by Elsevier Ltd.
Insect damages on structural, morphologic and composition of Bt maize hybrids to silage
Directory of Open Access Journals (Sweden)
Geraldo Balieiro Neto
2013-03-01
Full Text Available It was aimed to evaluate the effect of insect damage on the morphologic and structural characteristics and chemical composition from maize hybrids DKB 390 and AG 8088 with the Cry1Ab trait versus its nonbiotech counterpart. The GMO did not receive insecticide application and the conventional hybrids received one deltametrina (2.8% application at 42 days. The damages caused bySpodoptera frugiperda and Helicoverpa zea in hybrids with Cry1Ab were smaller than its nonbiotech counterpart. After harvest, 95 days after seedling plants were separated in stalks, ears, leafs, dead leafs and floral pennant. The experimental design was randomized block in factorial arrangement 2 x 2. The height of plant and height of ear, percentage and amount of dead leafs from hybrids with the Cry1Ab were higher than its nonbiotech counterpart. There was higher nutrients transfer from stalks to grain filling and smaller rate stalks:ear on transgenic plant. The quality of the transgenic plants can be better when harvest earlier, by increasing no fiber carbohydrates, but when harvest latter, by increasing stalk percentage and stalk lignin content.
Tuning Structure and Properties of Graded Triblock Terpolymer-Based Mesoporous and Hybrid Films
Phillip, William A.
2011-07-13
Despite considerable efforts toward fabricating ordered, water-permeable, mesoporous films from block copolymers, fine control over pore dimensions, structural characteristics, and mechanical behavior of graded structures remains a major challenge. To this end, we describe the fabrication and performance characteristics of graded mesoporous and hybrid films derived from the newly synthesized triblock terpolymer, poly(isoprene-b-styrene-b-4-vinylpyridine). A unique morphology, unachievable in diblock copolymer systems, with enhanced mechanical integrity is evidenced. The film structure comprises a thin selective layer containing vertically aligned and nearly monodisperse mesopores at a density of more than 1014 per m2 above a graded macroporous layer. Hybridization via homopolymer blending enables tuning of pore size within the range of 16 to 30 nm. Solvent flow and solute separation experiments demonstrate that the terpolymer films have permeabilities comparable to commercial membranes, are stimuli-responsive, and contain pores with a nearly monodisperse diameter. These results suggest that moving to multiblock polymers and their hybrids may open new paths to produce high-performance graded membranes for filtration, separations, nanofluidics, catalysis, and drug delivery. © 2011 American Chemical Society.
Contributions of each isotope in structural material on radiation damage in a hybrid reactor
International Nuclear Information System (INIS)
Günay, Mehtap
2016-01-01
In this study, the fluids were used in the liquid first-wall, blanket and shield zones of the designed hybrid reactor system. In this study, salt-heavy metal mixtures consisting of 93–85% Li_2_0Sn_8_0 + 5% SFG-PuO_2 and 2-10% UO_2, 93–85% Li_2_0Sn_8_0 + 5% SFG-PuO_2 and 2-10% NpO_2, and 93–85% Li_2_0Sn_8_0 + 5% SFG-PuO_2 and 2-10% UCO were used as fluids. In this study, the effect on the radiation damage of spent fuel-grade (SFG)-PuO_2, UO_2, NpO_2 and UCO contents was investigated in the structural material of a designed fusion–fission hybrid reactor system. In the designed hybrid reactor system were investigated the effect on the radiation damage of the selected fluid according to each isotopes of structural material in the structural material for 30 full power years (FPYs). Three-dimensional analyses were performed using the most recent MCNPX-2.7.0 Monte Carlo radiation transport code and the ENDF/B-VII.0 nuclear data library
High power experimental studies of hybrid photonic band gap accelerator structures
Directory of Open Access Journals (Sweden)
JieXi Zhang
2016-08-01
Full Text Available This paper reports the first high power tests of hybrid photonic band gap (PBG accelerator structures. Three hybrid PBG (HPBG structures were designed, built and tested at 17.14 GHz. Each structure had a triangular lattice array with 60 inner sapphire rods and 24 outer copper rods sandwiched between copper disks. The dielectric PBG band gap map allows the unique feature of overmoded operation in a TM_{02} mode, with suppression of both lower order modes, such as the TM_{11} mode, as well as higher order modes. The use of sapphire rods, which have negligible dielectric loss, required inclusion of the dielectric birefringence in the design. The three structures were designed to sequentially reduce the peak surface electric field. Simulations showed relatively high surface fields at the triple point as well as in any gaps between components in the clamped assembly. The third structure used sapphire rods with small pin extensions at each end and obtained the highest gradient of 19 MV/m, corresponding to a surface electric field of 78 MV/m, with a breakdown probability of 5×10^{-1} per pulse per meter for a 100-ns input power pulse. Operation at a gradient above 20 MV/m led to runaway breakdowns with extensive light emission and eventual damage. For all three structures, multipactor light emission was observed at gradients well below the breakdown threshold. This research indicated that multipactor triggered at the triple point limited the operational gradient of the hybrid structure.
Halliwell, George R.
Vertical coordinate and vertical mixing algorithms included in the HYbrid Coordinate Ocean Model (HYCOM) are evaluated in low-resolution climatological simulations of the Atlantic Ocean. The hybrid vertical coordinates are isopycnic in the deep ocean interior, but smoothly transition to level (pressure) coordinates near the ocean surface, to sigma coordinates in shallow water regions, and back again to level coordinates in very shallow water. By comparing simulations to climatology, the best model performance is realized using hybrid coordinates in conjunction with one of the three available differential vertical mixing models: the nonlocal K-Profile Parameterization, the NASA GISS level 2 turbulence closure, and the Mellor-Yamada level 2.5 turbulence closure. Good performance is also achieved using the quasi-slab Price-Weller-Pinkel dynamical instability model. Differences among these simulations are too small relative to other errors and biases to identify the "best" vertical mixing model for low-resolution climate simulations. Model performance deteriorates slightly when the Kraus-Turner slab mixed layer model is used with hybrid coordinates. This deterioration is smallest when solar radiation penetrates beneath the mixed layer and when shear instability mixing is included. A simulation performed using isopycnic coordinates to emulate the Miami Isopycnic Coordinate Ocean Model (MICOM), which uses Kraus-Turner mixing without penetrating shortwave radiation and shear instability mixing, demonstrates that the advantages of switching from isopycnic to hybrid coordinates and including more sophisticated turbulence closures outweigh the negative numerical effects of maintaining hybrid vertical coordinates.
Hybrid Logical Analyses of the Ambient Calculus
DEFF Research Database (Denmark)
Bolander, Thomas; Hansen, Rene Rydhof
2010-01-01
In this paper, hybrid logic is used to formulate three control flow analyses for Mobile Ambients, a process calculus designed for modelling mobility. We show that hybrid logic is very well-suited to express the semantic structure of the ambient calculus and how features of hybrid logic can...
Probabilistic modelling and analysis of stand-alone hybrid power systems
International Nuclear Information System (INIS)
Lujano-Rojas, Juan M.; Dufo-López, Rodolfo; Bernal-Agustín, José L.
2013-01-01
As a part of the Hybrid Intelligent Algorithm, a model based on an ANN (artificial neural network) has been proposed in this paper to represent hybrid system behaviour considering the uncertainty related to wind speed and solar radiation, battery bank lifetime, and fuel prices. The Hybrid Intelligent Algorithm suggests a combination of probabilistic analysis based on a Monte Carlo simulation approach and artificial neural network training embedded in a genetic algorithm optimisation model. The installation of a typical hybrid system was analysed. Probabilistic analysis was used to generate an input–output dataset of 519 samples that was later used to train the ANNs to reduce the computational effort required. The generalisation ability of the ANNs was measured in terms of RMSE (Root Mean Square Error), MBE (Mean Bias Error), MAE (Mean Absolute Error), and R-squared estimators using another data group of 200 samples. The results obtained from the estimation of the expected energy not supplied, the probability of a determined reliability level, and the estimation of expected value of net present cost show that the presented model is able to represent the main characteristics of a typical hybrid power system under uncertain operating conditions. - Highlights: • This paper presents a probabilistic model for stand-alone hybrid power system. • The model considers the main sources of uncertainty related to renewable resources. • The Hybrid Intelligent Algorithm has been applied to represent hybrid system behaviour. • The installation of a typical hybrid system was analysed. • The results obtained from the study case validate the presented model
Hybrid ATDL-gamma distribution model for predicting area source acid gas concentrations
Energy Technology Data Exchange (ETDEWEB)
Jakeman, A J; Taylor, J A
1985-01-01
An air quality model is developed to predict the distribution of concentrations of acid gas in an urban airshed. The model is hybrid in character, combining reliable features of a deterministic ATDL-based model with statistical distributional approaches. The gamma distribution was identified from a range of distributional models as the best model. The paper shows that the assumptions of a previous hybrid model may be relaxed and presents a methodology for characterizing the uncertainty associated with model predictions. Results are demonstrated for the 98-percentile predictions of 24-h average data over annual periods at six monitoring sites. This percentile relates to the World Health Organization goal for acid gas concentrations.
Design of hybrid electron linac with standing wave buncher and traveling wave structure
International Nuclear Information System (INIS)
Kutsaev, S.V.; Sobenin, N.P.; Smirnov, A.Yu.; Kamenschikov, D.S.; Gusarova, M.A.; Nikolskiy, K.I.; Zavadtsev, A.A.; Lalayan, M.V.
2011-01-01
A disk-loaded waveguide (DLW) is the most common structure for compact linear accelerators working in a traveling wave (TW) regime. Among its advantages are high shunt impedance and manufacturing simplicity. The other popular structure is an on-axis coupled bi-periodical accelerating structure (BAS) that works in standing wave (SW) regime. Both the standing and the traveling wave regimes have their own advantages and disadvantages. The design of the hybrid accelerator with SW buncher and TW accelerating section presented in this paper unites the advantages of both regimes. For example, the buncher in the hybrid accelerator is shorter than in a pure TW accelerator, and it requires no solenoid; this structure is more technologically convenient as it does not require a circulator. The other way to combine the advantages of DLW and BAS is to design a magnetic coupled disk-loaded waveguide (DLW-M). This paper also presents the results of a survey study that analyzed the electrodynamical parameters of such a structure and compared them with those of DLW. The experimental data is also presented. Higher order modes, multipacting discharge and thermal simulations show that DLW-M structure is more preferable to classical DLW.
Hybrid modeling and empirical analysis of automobile supply chain network
Sun, Jun-yan; Tang, Jian-ming; Fu, Wei-ping; Wu, Bing-ying
2017-05-01
Based on the connection mechanism of nodes which automatically select upstream and downstream agents, a simulation model for dynamic evolutionary process of consumer-driven automobile supply chain is established by integrating ABM and discrete modeling in the GIS-based map. Firstly, the rationality is proved by analyzing the consistency of sales and changes in various agent parameters between the simulation model and a real automobile supply chain. Second, through complex network theory, hierarchical structures of the model and relationships of networks at different levels are analyzed to calculate various characteristic parameters such as mean distance, mean clustering coefficients, and degree distributions. By doing so, it verifies that the model is a typical scale-free network and small-world network. Finally, the motion law of this model is analyzed from the perspective of complex self-adaptive systems. The chaotic state of the simulation system is verified, which suggests that this system has typical nonlinear characteristics. This model not only macroscopically illustrates the dynamic evolution of complex networks of automobile supply chain but also microcosmically reflects the business process of each agent. Moreover, the model construction and simulation of the system by means of combining CAS theory and complex networks supplies a novel method for supply chain analysis, as well as theory bases and experience for supply chain analysis of auto companies.
A hybrid fuzzy multi-criteria decision making model for green ...
African Journals Online (AJOL)
A hybrid fuzzy multi-criteria decision making model for green supplier selection. ... Hence,supplier selection is significant factor in supply chain success. ... reduce purchasing cost, lead time and improve quality and environmental issue.
Hybrid Computational Model for High-Altitude Aeroassist Vehicles, Phase I
National Aeronautics and Space Administration — A hybrid continuum/noncontinuum computational model will be developed for analyzing the aerodynamics and heating on aeroassist vehicles. Unique features of this...
Directory of Open Access Journals (Sweden)
Araceli Sanchis
2013-04-01
Full Text Available Activities of daily living are good indicators of elderly health status, and activity recognition in smart environments is a well-known problem that has been previously addressed by several studies. In this paper, we describe the use of two powerful machine learning schemes, ANN (Artificial Neural Network and SVM (Support Vector Machines, within the framework of HMM (Hidden Markov Model in order to tackle the task of activity recognition in a home setting. The output scores of the discriminative models, after processing, are used as observation probabilities of the hybrid approach. We evaluate our approach by comparing these hybrid models with other classical activity recognition methods using five real datasets. We show how the hybrid models achieve significantly better recognition performance, with significance level p < 0:05, proving that the hybrid approach is better suited for the addressed domain.
Uncertain hybrid model for the response calculation of an alternator
International Nuclear Information System (INIS)
Kuczkowiak, Antoine
2014-01-01
The complex structural dynamic behavior of alternator must be well understood in order to insure their reliable and safe operation. The numerical model is however difficult to construct mainly due to the presence of a high level of uncertainty. The objective of this work is to provide decision support tools in order to assess the vibratory levels in operation before to restart the alternator. Based on info-gap theory, a first decision support tool is proposed: the objective here is to assess the robustness of the dynamical response to the uncertain modal model. Based on real data, the calibration of an info-gap model of uncertainty is also proposed in order to enhance its fidelity to reality. Then, the extended constitutive relation error is used to expand identified mode shapes which are used to assess the vibratory levels. The robust expansion process is proposed in order to obtain robust expanded mode shapes to parametric uncertainties. In presence of lack-of knowledge, the trade-off between fidelity-to-data and robustness-to-uncertainties which expresses that robustness improves as fidelity deteriorates is emphasized on an industrial structure by using both reduced order model and surrogate model techniques. (author)
A new hybrid model optimized by an intelligent optimization algorithm for wind speed forecasting
International Nuclear Information System (INIS)
Su, Zhongyue; Wang, Jianzhou; Lu, Haiyan; Zhao, Ge
2014-01-01
Highlights: • A new hybrid model is developed for wind speed forecasting. • The model is based on the Kalman filter and the ARIMA. • An intelligent optimization method is employed in the hybrid model. • The new hybrid model has good performance in western China. - Abstract: Forecasting the wind speed is indispensable in wind-related engineering studies and is important in the management of wind farms. As a technique essential for the future of clean energy systems, reducing the forecasting errors related to wind speed has always been an important research subject. In this paper, an optimized hybrid method based on the Autoregressive Integrated Moving Average (ARIMA) and Kalman filter is proposed to forecast the daily mean wind speed in western China. This approach employs Particle Swarm Optimization (PSO) as an intelligent optimization algorithm to optimize the parameters of the ARIMA model, which develops a hybrid model that is best adapted to the data set, increasing the fitting accuracy and avoiding over-fitting. The proposed method is subsequently examined on the wind farms of western China, where the proposed hybrid model is shown to perform effectively and steadily
Accurate Energies and Structures for Large Water Clusters Using the X3LYP Hybrid Density Functional
Su, Julius T.; Xu, Xin; Goddard, William A., III
2004-01-01
We predict structures and energies of water clusters containing up to 19 waters with X3LYP, an extended hybrid density functional designed to describe noncovalently bound systems as accurately as covalent systems. Our work establishes X3LYP as the most practical ab initio method today for calculating accurate water cluster structures and energies. We compare X3LYP/aug-cc-pVTZ energies to the most accurate theoretical values available (n = 2−6, 8), MP2 with basis set superposition error (BSSE)...
Hybrid Electric Vehicle Experimental Model with CAN Network Real Time Control
Directory of Open Access Journals (Sweden)
RATOI, M.
2010-05-01
Full Text Available In this paper an experimental model with a distributed control system of a hybrid electrical vehicle is presented. A communication CAN network of high speed (1 Mbps assures a distributed control of the all components. The modeling and the control of different operating regimes are realized on an experimental test-bench of a hybrid electrical vehicle. The experimental results concerning the variations of the mains variables (currents, torques, speeds are presented.
High renewable content sandwich structures based on flax-basalt hybrids and biobased epoxy polymers
Colomina, S.; Boronat, T.; Fenollar, O.; Sánchez-Nacher, L.; Balart, R.
2014-05-01
In the last years, a growing interest in the development of high environmental efficiency materials has been detected and this situation is more accentuated in the field of polymers and polymer composites. In this work, green composite sandwich structures with high renewable content have been developed with core cork materials. The base resin for composites was a biobased epoxy resin derived from epoxidized vegetable oils. Hybrid basalt-flax fabrics have been used as reinforcements for composites and the influence of the stacking sequence has been evaluated in order to optimize the appropriate laminate structure for the sandwich bases. Core cork materials with different thickness have been used to evaluate performance of sandwich structures thus leading to high renewable content composite sandwich structures. Results show that position of basalt fabrics plays a key role in flexural fracture of sandwich structures due to differences in stiffness between flax and basalt fibers.
Directory of Open Access Journals (Sweden)
Barbara Plytycz
Full Text Available Lumbricid earthworms Eisenia andrei (Ea and E. fetida (Ef are simultaneous hermaphrodites with reciprocal insemination capable of self-fertilization while the existence of hybridization of these two species was still debatable. During the present investigation fertile hybrids of Ea and Ef were detected. Virgin specimens of Ea and Ef were laboratory crossed (Ea+Ef and their progeny was doubly identified. 1 -identified by species-specific maternally derived haploid mitochondrial DNA sequences of the COI gene being either 'a' for worms hatched from Ea ova or 'f' for worms hatched from Ef ova. 2 -identified by the diploid maternal/paternal nuclear DNA sequences of 28s rRNA gene being either 'AA' for Ea, 'FF' for Ef, or AF/FA for their hybrids derived either from the 'aA' or 'fF' ova, respectively. Among offspring of Ea+Ef pairs in F1 generation there were mainly aAA and fFF earthworms resulted from the facilitated self-fertilization and some aAF hybrids from aA ova but none fFA hybrids from fF ova. In F2 generation resulting from aAF hybrids mated with aAA a new generations of aAA and aAF hybrids were noticed, while aAF hybrids mated with fFF gave fFF and both aAF and fFA hybrids. Hybrids intercrossed together produced plenty of cocoons but no hatchlings independently whether aAF+aAF or aAF+fFA were mated. These results indicated that Ea and Ef species, easy to maintain in laboratory and commonly used as convenient models in biomedicine and ecotoxicology, may also serve in studies on molecular basis of interspecific barriers and mechanisms of introgression and speciation. Hypothetically, their asymmetrical hybridization can be modified by some external factors.
Directory of Open Access Journals (Sweden)
Seyed Nematollah Mousavi
2016-09-01
Full Text Available Forecasting future water consumption in cities to plan for the required capacities in urban water supply systems (including water transmission networks and water treatment facilities depends on the application of behavioral models of uban water consumption. Being located in the North-South corridor, Rasht City is assuming a new role to play in the national economy as a foreign trade center. It will, thus, be necessary to review its present urban infrastructure in order to draft the required infrastructural development plans for meeting the city’s future water demands. The three Seasonal Autoregressive Integrated Moving Average (SARIMA, Artificial Neural Network (ANN, and SARIMABP approaches were employed in present study to model and forecast Rasht urban water consumption using monthly time series for the period 2001‒2008 of urban water consumption in Rasht. The seasonal unit root test was applied to develop the relevant SARIMA model. Results showed that all the seasonal and non-seasonal unit roots are present in all the frequencies in the monthly time series for Rasht urban water consumption. Using a proper filter, the SAIMA patterns were estimated. In a second stage the SARIMA output was used to determine the ANN output and the hybrid SARIMABP structure was accordingly constructed. The values for Rasht urban water consumption predicted by the three models indicated the superiority of the SARIMABP hybrid model as evidenced by the forecast error index of 0.41% obtained for this model. The other two models of SARIMA and ANN were, however, found to yield acceptable results for urban water managers since the forecasting error recorded for them was below 1%.
Jie, Wenjing; Hao, Jianhua
2014-06-21
Fundamental studies and applications of 2-dimensional (2D) graphene may be deepened and broadened via combining graphene sheets with various functional materials, which have been extended from the traditional insulator of SiO2 to a versatile range of dielectrics, semiconductors and metals, as well as organic compounds. Among them, ferroelectric materials have received much attention due to their unique ferroelectric polarization. As a result, many attractive characteristics can be shown in graphene/ferroelectric hybrid systems. On the other hand, graphene can be integrated with conventional semiconductors and some newly-discovered 2D layered materials to form distinct Schottky junctions, yielding fascinating behaviours and exhibiting the potential for various applications in future functional devices. This review article is an attempt to illustrate the most recent progress in the fabrication, operation principle, characterization, and promising applications of graphene-based hybrid structures combined with various functional materials, ranging from ferroelectrics to semiconductors. We focus on mechanically exfoliated and chemical-vapor-deposited graphene sheets integrated in numerous advanced devices. Some typical hybrid structures have been highlighted, aiming at potential applications in non-volatile memories, transparent flexible electrodes, solar cells, photodetectors, and so on.
Long-range p-d exchange interaction in a ferromagnet-semiconductor hybrid structure
Korenev, V. L.; Salewski, M.; Akimov, I. A.; Sapega, V. F.; Langer, L.; Kalitukha, I. V.; Debus, J.; Dzhioev, R. I.; Yakovlev, D. R.; Müller, D.; Schröder, C.; Hövel, H.; Karczewski, G.; Wiater, M.; Wojtowicz, T.; Kusrayev, Yu. G.; Bayer, M.
2016-01-01
Hybrid structures synthesized from different materials have attracted considerable attention because they may allow not only combination of the functionalities of the individual constituents but also mutual control of their properties. To obtain such a control an interaction between the components needs to be established. For coupling the magnetic properties, an exchange interaction has to be implemented which typically depends on wavefunction overlap and is therefore short-ranged, so that it may be compromised across the hybrid interface. Here we study a hybrid structure consisting of a ferromagnetic Co layer and a semiconducting CdTe quantum well, separated by a thin (Cd, Mg)Te barrier. In contrast to the expected p-d exchange that decreases exponentially with the wavefunction overlap of quantum well holes and magnetic atoms, we find a long-ranged, robust coupling that does not vary with barrier width up to more than 30 nm. We suggest that the resulting spin polarization of acceptor-bound holes is induced by an effective p-d exchange that is mediated by elliptically polarized phonons.
Directory of Open Access Journals (Sweden)
Abdolreza Yazdani-Chamzini
2017-12-01
Full Text Available Cost estimation is an essential issue in feasibility studies in civil engineering. Many different methods can be applied to modelling costs. These methods can be divided into several main groups: (1 artificial intelligence, (2 statistical methods, and (3 analytical methods. In this paper, the multivariate regression (MVR method, which is one of the most popular linear models, and the artificial neural network (ANN method, which is widely applied to solving different prediction problems with a high degree of accuracy, have been combined to provide a cost estimate model for a shovel machine. This hybrid methodology is proposed, taking the advantages of MVR and ANN models in linear and nonlinear modelling, respectively. In the proposed model, the unique advantages of the MVR model in linear modelling are used first to recognize the existing linear structure in data, and, then, the ANN for determining nonlinear patterns in preprocessed data is applied. The results with three indices indicate that the proposed model is efficient and capable of increasing the prediction accuracy.
Hybrid Wing-Body (HWB) Pressurized Fuselage Modeling, Analysis, and Design for Weight Reduction
Mukhopadhyay, Vivek
2012-01-01
This paper describes the interim progress for an in-house study that is directed toward innovative structural analysis and design of next-generation advanced aircraft concepts, such as the Hybrid Wing-Body (HWB) and the Advanced Mobility Concept-X flight vehicles, for structural weight reduction and associated performance enhancement. Unlike the conventional, skin-stringer-frame construction for a cylindrical fuselage, the box-type pressurized fuselage panels in the HWB undergo significant deformation of the outer aerodynamic surfaces, which must be minimized without significant structural weight penalty. Simple beam and orthotropic plate theory is first considered for sizing, analytical verification, and possible equivalent-plate analysis with appropriate simplification. By designing advanced composite stiffened-shell configurations, significant weight reduction may be possible compared with the sandwich and ribbed-shell structural concepts that have been studied previously. The study involves independent analysis of the advanced composite structural concepts that are presently being developed by The Boeing Company for pressurized HWB flight vehicles. High-fidelity parametric finite-element models of test coupons, panels, and multibay fuselage sections, were developed for conducting design studies and identifying critical areas of potential failure. Interim results are discussed to assess the overall weight/strength advantages.
Nandola, Naresh N.; Rivera, Daniel E.
2011-01-01
This paper presents a data-centric modeling and predictive control approach for nonlinear hybrid systems. System identification of hybrid systems represents a challenging problem because model parameters depend on the mode or operating point of the system. The proposed algorithm applies Model-on-Demand (MoD) estimation to generate a local linear approximation of the nonlinear hybrid system at each time step, using a small subset of data selected by an adaptive bandwidth selector. The appeal of the MoD approach lies in the fact that model parameters are estimated based on a current operating point; hence estimation of locations or modes governed by autonomous discrete events is achieved automatically. The local MoD model is then converted into a mixed logical dynamical (MLD) system representation which can be used directly in a model predictive control (MPC) law for hybrid systems using multiple-degree-of-freedom tuning. The effectiveness of the proposed MoD predictive control algorithm for nonlinear hybrid systems is demonstrated on a hypothetical adaptive behavioral intervention problem inspired by Fast Track, a real-life preventive intervention for improving parental function and reducing conduct disorder in at-risk children. Simulation results demonstrate that the proposed algorithm can be useful for adaptive intervention problems exhibiting both nonlinear and hybrid character. PMID:21874087
Directory of Open Access Journals (Sweden)
Narong Wichapa
2017-11-01
Originality/value: The novelty of the proposed methodologies, hybrid fuzzy goal programming model, is the simultaneous combination of both intangible and tangible factors in order to choose new suitable locations, and the hybrid genetic algorithm can be used to determine the optimal routes which provide a minimum number of vehicles and minimum transportation cost under the actual situation, efficiently.
Directory of Open Access Journals (Sweden)
Gaohong Xu
2017-05-01
Full Text Available This paper proposes a novel permanent magnet (PM motor for high torque performance, in which hybrid PM material and asymmetric rotor design are applied. The hybrid PM material is adopted to reduce the consumption of rare-earth PM because ferrite PM is assisted to enhance the torque production. Meanwhile, the rotor structure is designed to be asymmetric by shifting the surface-insert PM (SPM, which is used to improve the torque performance, including average torque and torque ripple. Moreover, the reasons for improvement of the torque performance are explained by evaluation and analysis of the performances of the proposed motor. Compared with SPM motor and V-type motor, the merit of high utilization ratio of rare-earth PM is also confirmed, showing that the proposed motor can offer higher torque density and lower torque ripple simultaneously with less consumption of rare-earth PM.
Polarization modulation based on the hybrid waveguide of graphene sandwiched structure
Yang, Junbo; Chen, Dingbo; Zhang, Jingjing; Zhang, Zhaojian; Huang, Jie
2017-09-01
Polarization beam splitter (PBS) plays an important role to realize beam control and modulation. A novel hybrid structure of graphene sandwiched waveguide is proposed to fulfill polarization manipulation and selection based on the refractive index engineering techniques. The fundamental mode of TM cannot be supported in this case. However, both TE and TM mode are excited and transmitting in the hybrid waveguide if the design parameters, including the waveguide width and the waveguide height, are changed. The incident wavelength largely affects the effective index, which results in supporting/not supporting the TM mode. The proposed design exhibits high extinction ratio, compact in size, flexible to control, compatible with CMOS process, and easy to be integrated with other optoelectronic devices, allowing it to be used in optical communication and optical information processing.
Directory of Open Access Journals (Sweden)
Andranik Tsakanian
2012-05-01
Full Text Available In particle accelerators a preferred direction, the direction of motion, is well defined. If in a numerical calculation the (numerical dispersion in this direction is suppressed, a quite coarse mesh and moderate computational resources can be used to reach accurate results even for extremely short electron bunches. Several approaches have been proposed in the past decades to reduce the accumulated dispersion error in wakefield calculations for perfectly conducting structures. In this paper we extend the TE/TM splitting algorithm to a new hybrid scheme that allows for wakefield calculations in structures with walls of finite conductivity. The conductive boundary is modeled by one-dimensional wires connected to each boundary cell. A good agreement of the numerical simulations with analytical results and other numerical approaches is obtained.
Frog: Asynchronous Graph Processing on GPU with Hybrid Coloring Model
Energy Technology Data Exchange (ETDEWEB)
Shi, Xuanhua; Luo, Xuan; Liang, Junling; Zhao, Peng; Di, Sheng; He, Bingsheng; Jin, Hai
2018-01-01
GPUs have been increasingly used to accelerate graph processing for complicated computational problems regarding graph theory. Many parallel graph algorithms adopt the asynchronous computing model to accelerate the iterative convergence. Unfortunately, the consistent asynchronous computing requires locking or atomic operations, leading to significant penalties/overheads when implemented on GPUs. As such, coloring algorithm is adopted to separate the vertices with potential updating conflicts, guaranteeing the consistency/correctness of the parallel processing. Common coloring algorithms, however, may suffer from low parallelism because of a large number of colors generally required for processing a large-scale graph with billions of vertices. We propose a light-weight asynchronous processing framework called Frog with a preprocessing/hybrid coloring model. The fundamental idea is based on Pareto principle (or 80-20 rule) about coloring algorithms as we observed through masses of realworld graph coloring cases. We find that a majority of vertices (about 80%) are colored with only a few colors, such that they can be read and updated in a very high degree of parallelism without violating the sequential consistency. Accordingly, our solution separates the processing of the vertices based on the distribution of colors. In this work, we mainly answer three questions: (1) how to partition the vertices in a sparse graph with maximized parallelism, (2) how to process large-scale graphs that cannot fit into GPU memory, and (3) how to reduce the overhead of data transfers on PCIe while processing each partition. We conduct experiments on real-world data (Amazon, DBLP, YouTube, RoadNet-CA, WikiTalk and Twitter) to evaluate our approach and make comparisons with well-known non-preprocessed (such as Totem, Medusa, MapGraph and Gunrock) and preprocessed (Cusha) approaches, by testing four classical algorithms (BFS, PageRank, SSSP and CC). On all the tested applications and
Synthesis of a hybrid model of the VSC FACTS devices and HVDC technologies
Borovikov, Yu S.; Gusev, A. S.; Sulaymanov, A. O.; Ufa, R. A.
2014-10-01
The motivation of the presented research is based on the need for development of new methods and tools for adequate simulation of FACTS devices and HVDC systems as part of real electric power systems (EPS). The Research object: An alternative hybrid approach for synthesizing VSC-FACTS and -HVDC hybrid model is proposed. The results: the VSC- FACTS and -HVDC hybrid model is designed in accordance with the presented concepts of hybrid simulation. The developed model allows us to carry out adequate simulation in real time of all the processes in HVDC, FACTS devices and EPS as a whole without any decomposition and limitation on their duration, and also use the developed tool for effective solution of a design, operational and research tasks of EPS containing such devices.
Synthesis of a hybrid model of the VSC FACTS devices and HVDC technologies
International Nuclear Information System (INIS)
Borovikov, Yu S; Gusev, A S; Sulaymanov, A O; Ufa, R A
2014-01-01
The motivation of the presented research is based on the need for development of new methods and tools for adequate simulation of FACTS devices and HVDC systems as part of real electric power systems (EPS). The Research object: An alternative hybrid approach for synthesizing VSC-FACTS and -HVDC hybrid model is proposed. The results: the VSC- FACTS and -HVDC hybrid model is designed in accordance with the presented concepts of hybrid simulation. The developed model allows us to carry out adequate simulation in real time of all the processes in HVDC, FACTS devices and EPS as a whole without any decomposition and limitation on their duration, and also use the developed tool for effective solution of a design, operational and research tasks of EPS containing such devices
The Efficiency of a Hybrid Flapping Wing Structure—A Theoretical Model Experimentally Verified
Directory of Open Access Journals (Sweden)
Yuval Keren
2016-07-01
Full Text Available To propel a lightweight structure, a hybrid wing structure was designed; the wing’s geometry resembled a rotor blade, and its flexibility resembled an insect’s flapping wing. The wing was designed to be flexible in twist and spanwise rigid, thus maintaining the aeroelastic advantages of a flexible wing. The use of a relatively “thick” airfoil enabled the achievement of higher strength to weight ratio by increasing the wing’s moment of inertia. The optimal design was based on a simplified quasi-steady inviscid mathematical model that approximately resembles the aerodynamic and inertial behavior of the flapping wing. A flapping mechanism that imitates the insects’ flapping pattern was designed and manufactured, and a set of experiments for various parameters was performed. The simplified analytical model was updated according to the tests results, compensating for the viscid increase of drag and decrease of lift, that were neglected in the simplified calculations. The propelling efficiency of the hovering wing at various design parameters was calculated using the updated model. It was further validated by testing a smaller wing flapping at a higher frequency. Good and consistent test results were obtained in line with the updated model, yielding a simple, yet accurate tool, for flapping wings design.
Interfacial symmetry of Co–Alq_3–Co hybrid structures for effective spin filtering
International Nuclear Information System (INIS)
Lam, Tu-Ngoc; Lai, Yu-Ling; Chen, Chih-Han; Chen, Po-Hung; Wei, Der-Hsin; Lin, Hong-Ji; Chen, C.T.; Sheu, Jeng-Tzong; Hsu, Yao-Jane
2015-01-01
Graphical abstract: - Highlights: • The spin interface at Alq_3/Co and Co/Alq_3 contacts was examined. • An interfacial symmetry was determined at Co–Alq_3–Co interfaces. • Spin-polarized N orbitals are induced within the Co atop Alq_3 hybridized interface. • The spin-filter role at the top contact interface of Alq_3/Co is proved. • Effective spin-filtering at Co–Alq_3–Co contacts was elucidated. - Abstract: Understanding the interfacial behavior at FM-OSC-FM hybrid structures for both the bottom contact (Alq_3 adsorption on Co, Co/Alq_3) and the top contact (Co atop Alq_3, Alq_3/Co) is crucial for efficient spin filtering with transport of spin-polarized charge carriers through these interfaces. X-ray photoelectron spectroscopy (XPS) spectra indicate a symmetry of charge transfer from Co to Alq_3 and the corresponding orbital hybridization to a certain extent at both contacts. The alignment of energy levels at both Alq_3/Co and Co/Alq_3 heterostructures is depicted with ultraviolet photoelectron spectroscopy (UPS). Through magnetic images acquired with a X-ray photoemission electron microscope (XPEEM), the strong hybridization of the top contact presents no micromagnetic domain but still shows magnetic coupling, to some extent, to the bottom contact in the Co–Alq_3–Co trilayer structure. Measurements of X-ray magnetic circular dichroism (XMCD) demonstrate the induced spin-polarization of non-magnetic Alq_3 at both contacts, proving Alq_3 a unique and promising organic material for spin filtering in OSV.
H2RM: A Hybrid Rough Set Reasoning Model for Prediction and Management of Diabetes Mellitus
Directory of Open Access Journals (Sweden)
Rahman Ali
2015-07-01
Full Text Available Diabetes is a chronic disease characterized by high blood glucose level that results either from a deficiency of insulin produced by the body, or the body’s resistance to the effects of insulin. Accurate and precise reasoning and prediction models greatly help physicians to improve diagnosis, prognosis and treatment procedures of different diseases. Though numerous models have been proposed to solve issues of diagnosis and management of diabetes, they have the following drawbacks: (1 restricted one type of diabetes; (2 lack understandability and explanatory power of the techniques and decision; (3 limited either to prediction purpose or management over the structured contents; and (4 lack competence for dimensionality and vagueness of patient’s data. To overcome these issues, this paper proposes a novel hybrid rough set reasoning model (H2RM that resolves problems of inaccurate prediction and management of type-1 diabetes mellitus (T1DM and type-2 diabetes mellitus (T2DM. For verification of the proposed model, experimental data from fifty patients, acquired from a local hospital in semi-structured format, is used. First, the data is transformed into structured format and then used for mining prediction rules. Rough set theory (RST based techniques and algorithms are used to mine the prediction rules. During the online execution phase of the model, these rules are used to predict T1DM and T2DM for new patients. Furthermore, the proposed model assists physicians to manage diabetes using knowledge extracted from online diabetes guidelines. Correlation-based trend analysis techniques are used to manage diabetic observations. Experimental results demonstrate that the proposed model outperforms the existing methods with 95.9% average and balanced accuracies.
H2RM: A Hybrid Rough Set Reasoning Model for Prediction and Management of Diabetes Mellitus.
Ali, Rahman; Hussain, Jamil; Siddiqi, Muhammad Hameed; Hussain, Maqbool; Lee, Sungyoung
2015-07-03
Diabetes is a chronic disease characterized by high blood glucose level that results either from a deficiency of insulin produced by the body, or the body's resistance to the effects of insulin. Accurate and precise reasoning and prediction models greatly help physicians to improve diagnosis, prognosis and treatment procedures of different diseases. Though numerous models have been proposed to solve issues of diagnosis and management of diabetes, they have the following drawbacks: (1) restricted one type of diabetes; (2) lack understandability and explanatory power of the techniques and decision; (3) limited either to prediction purpose or management over the structured contents; and (4) lack competence for dimensionality and vagueness of patient's data. To overcome these issues, this paper proposes a novel hybrid rough set reasoning model (H2RM) that resolves problems of inaccurate prediction and management of type-1 diabetes mellitus (T1DM) and type-2 diabetes mellitus (T2DM). For verification of the proposed model, experimental data from fifty patients, acquired from a local hospital in semi-structured format, is used. First, the data is transformed into structured format and then used for mining prediction rules. Rough set theory (RST) based techniques and algorithms are used to mine the prediction rules. During the online execution phase of the model, these rules are used to predict T1DM and T2DM for new patients. Furthermore, the proposed model assists physicians to manage diabetes using knowledge extracted from online diabetes guidelines. Correlation-based trend analysis techniques are used to manage diabetic observations. Experimental results demonstrate that the proposed model outperforms the existing methods with 95.9% average and balanced accuracies.
Track structure in biological models.
Curtis, S B
1986-01-01
High-energy heavy ions in the galactic cosmic radiation (HZE particles) may pose a special risk during long term manned space flights outside the sheltering confines of the earth's geomagnetic field. These particles are highly ionizing, and they and their nuclear secondaries can penetrate many centimeters of body tissue. The three dimensional patterns of ionizations they create as they lose energy are referred to as their track structure. Several models of biological action on mammalian cells attempt to treat track structure or related quantities in their formulation. The methods by which they do this are reviewed. The proximity function is introduced in connection with the theory of Dual Radiation Action (DRA). The ion-gamma kill (IGK) model introduces the radial energy-density distribution, which is a smooth function characterizing both the magnitude and extension of a charged particle track. The lethal, potentially lethal (LPL) model introduces lambda, the mean distance between relevant ion clusters or biochemical species along the track. Since very localized energy depositions (within approximately 10 nm) are emphasized, the proximity function as defined in the DRA model is not of utility in characterizing track structure in the LPL formulation.
Optimal control on hybrid ode systems with application to a tick disease model.
Ding, Wandi
2007-10-01
We are considering an optimal control problem for a type of hybrid system involving ordinary differential equations and a discrete time feature. One state variable has dynamics in only one season of the year and has a jump condition to obtain the initial condition for that corresponding season in the next year. The other state variable has continuous dynamics. Given a general objective functional, existence, necessary conditions and uniqueness for an optimal control are established. We apply our approach to a tick-transmitted disease model with age structure in which the tick dynamics changes seasonally while hosts have continuous dynamics. The goal is to maximize disease-free ticks and minimize infected ticks through an optimal control strategy of treatment with acaricide. Numerical examples are given to illustrate the results.
Energy Technology Data Exchange (ETDEWEB)
Hu, Jie, E-mail: hujie@tyut.edu.cn [Micro and Nano System Research Center, Key Lab of Advanced Transducers and Intelligent Control System (Ministry of Education) & College of Information Engineering, Taiyuan University of Technology, Taiyuan, 030024, Shanxi (China); Zhao, Zhenting; Zhang, Jun; Li, Gang; Li, Pengwei; Zhang, Wendong [Micro and Nano System Research Center, Key Lab of Advanced Transducers and Intelligent Control System (Ministry of Education) & College of Information Engineering, Taiyuan University of Technology, Taiyuan, 030024, Shanxi (China); Lian, Kun, E-mail: liankun@tyut.edu.cn [Micro and Nano System Research Center, Key Lab of Advanced Transducers and Intelligent Control System (Ministry of Education) & College of Information Engineering, Taiyuan University of Technology, Taiyuan, 030024, Shanxi (China); School of Nano-Science and Nano-Engineering, Suzhou & Collaborative Innovation Center of Suzhou Nano Science and Technology, Xi' an Jiaotong University, Xi' an, 710049 (China); Center for Advanced Microstructures and Devices, Louisiana State University, LA, 70806 (United States)
2017-02-28
Graphical abstract: A sensitive hydrazine electrochemical sensor was fabricated by using palladium (Pd) nanoparticle functionalized reduced graphene oxide (rGO) and multi-walled carbon nanotube (MWCNTs) hybrid structures (Pd/rGO-MWCNTs). - Highlights: • rGO-MWCNTs hybrid structures and Pd nanoparticles are prepared using electrochemical methods. • rGO-MWCNTs hybrid films are used as supports and co-catalysts for Pd nanoparticles. • The Pd/rGO-MWCNTs hybrid structure based sensor shows an ultra-high sensitivity of 7.09 μA μM{sup −1} cm{sup −2} and a low detection limit of 0.15 μM. • The proposed electrochemical sensor exhibits excellent selectivity. - Abstract: In this work, palladium (Pd) nanoparticles functionalized reduced graphene oxide (rGO) and multi-walled carbon nanotubes (MWCNTs) hybrid structures (Pd/rGO-MWCNTs) were successfully prepared by a combination of electrochemical reduction with electrodeposition method. The morphology, structure, and composition of the Pd/rGO-MWCNTs hybrid were characterized by scanning electron microscopy, transmission electron microscopy and energy dispersive spectroscopy. The as-synthesized hybrid structures were modified on the glassy carbon electrode (GCE) and further utilized for hydrazine sensing. Electrochemical impedance spectroscopic, cyclic voltammetry and single-potential amperometry experiments were carried out on Pd/rGO-MWCNTs hybrid structures to investigate the interface properties and sensing performance. The measured results demonstrate that the fabricated Pd/rGO-MWCNTs/GCE sensor show a high sensitivity of 7.09 μA μM{sup −1} cm{sup −2} in a large concentration range of 1.0 to 1100 μM and a low detection limit of 0.15 μM. Moreover, the as-prepared sensor exhibits good selectivity and stability for the determination of hydrazine under interference conditions.
International Nuclear Information System (INIS)
Hu, Jie; Zhao, Zhenting; Zhang, Jun; Li, Gang; Li, Pengwei; Zhang, Wendong; Lian, Kun
2017-01-01
Graphical abstract: A sensitive hydrazine electrochemical sensor was fabricated by using palladium (Pd) nanoparticle functionalized reduced graphene oxide (rGO) and multi-walled carbon nanotube (MWCNTs) hybrid structures (Pd/rGO-MWCNTs). - Highlights: • rGO-MWCNTs hybrid structures and Pd nanoparticles are prepared using electrochemical methods. • rGO-MWCNTs hybrid films are used as supports and co-catalysts for Pd nanoparticles. • The Pd/rGO-MWCNTs hybrid structure based sensor shows an ultra-high sensitivity of 7.09 μA μM"−"1 cm"−"2 and a low detection limit of 0.15 μM. • The proposed electrochemical sensor exhibits excellent selectivity. - Abstract: In this work, palladium (Pd) nanoparticles functionalized reduced graphene oxide (rGO) and multi-walled carbon nanotubes (MWCNTs) hybrid structures (Pd/rGO-MWCNTs) were successfully prepared by a combination of electrochemical reduction with electrodeposition method. The morphology, structure, and composition of the Pd/rGO-MWCNTs hybrid were characterized by scanning electron microscopy, transmission electron microscopy and energy dispersive spectroscopy. The as-synthesized hybrid structures were modified on the glassy carbon electrode (GCE) and further utilized for hydrazine sensing. Electrochemical impedance spectroscopic, cyclic voltammetry and single-potential amperometry experiments were carried out on Pd/rGO-MWCNTs hybrid structures to investigate the interface properties and sensing performance. The measured results demonstrate that the fabricated Pd/rGO-MWCNTs/GCE sensor show a high sensitivity of 7.09 μA μM"−"1 cm"−"2 in a large concentration range of 1.0 to 1100 μM and a low detection limit of 0.15 μM. Moreover, the as-prepared sensor exhibits good selectivity and stability for the determination of hydrazine under interference conditions.
Applying a Hybrid Model: Can It Enhance Student Learning Outcomes?
Potter, Jodi
2015-01-01
There has been a marked increase in the use of online learning over the past decade. There remains conflict in the current body of research on the efficacy of online versus face to face learning in these environments. One resolution of these issues is the hybrid learning option which is a combination of face-to-face classroom instruction with…
Model-based health monitoring of hybrid systems
Wang, Danwei; Low, Chang Boon; Arogeti, Shai
2013-01-01
Offers in-depth comprehensive study on health monitoring for hybrid systems Includes new concepts, such as GARR, mode tracking and multiple failure prognosis Contains many examples, making the developed techniques easily understandable and accessible Introduces state-of-the-art algorithms and methodologies from experienced researchers
A hybrid model for the play hysteresis operator
Czech Academy of Sciences Publication Activity Database
Al Janaideh, M.; Naldi, R.; Marconi, L.; Krejčí, Pavel
2013-01-01
Roč. 430, 1 December (2013), s. 95-98 ISSN 0921-4526 R&D Projects: GA ČR GAP201/10/2315 Institutional support: RVO:67985840 Keywords : hysteresis * hybrid * play Subject RIV: BA - General Mathematics Impact factor: 1.276, year: 2013 http://www.sciencedirect.com/science/article/pii/S0921452613004146
Directory of Open Access Journals (Sweden)
Paweł Sitek
2016-01-01
Full Text Available This paper presents a hybrid method for modeling and solving supply chain optimization problems with soft, hard, and logical constraints. Ability to implement soft and logical constraints is a very important functionality for supply chain optimization models. Such constraints are particularly useful for modeling problems resulting from commercial agreements, contracts, competition, technology, safety, and environmental conditions. Two programming and solving environments, mathematical programming (MP and constraint logic programming (CLP, were combined in the hybrid method. This integration, hybridization, and the adequate multidimensional transformation of the problem (as a presolving method helped to substantially reduce the search space of combinatorial models for supply chain optimization problems. The operation research MP and declarative CLP, where constraints are modeled in different ways and different solving procedures are implemented, were linked together to use the strengths of both. This approach is particularly important for the decision and combinatorial optimization models with the objective function and constraints, there are many decision variables, and these are summed (common in manufacturing, supply chain management, project management, and logistic problems. The ECLiPSe system with Eplex library was proposed to implement a hybrid method. Additionally, the proposed hybrid transformed model is compared with the MILP-Mixed Integer Linear Programming model on the same data instances. For illustrative models, its use allowed finding optimal solutions eight to one hundred times faster and reducing the size of the combinatorial problem to a significant extent.
Directory of Open Access Journals (Sweden)
Tuan Anh Pham
2016-03-01
Full Text Available Hybrid nanoparticle (NP structures containing organic building units such as polymers, peptides, DNA and proteins have great potential in biosensor and electronic applications. The nearly free modification of the polymer chain, the variation of the protein and DNA sequence and the implementation of functional moieties provide a great platform to create inorganic structures of different morphology, resulting in different optical and magnetic properties. Nevertheless, the design and modification of a protein structure with functional groups or sequences for the assembly of biohybrid materials is not trivial. This is mainly due to the sensitivity of its secondary, tertiary and quaternary structure to the changes in the interaction (e.g., hydrophobic, hydrophilic, electrostatic, chemical groups between the protein subunits and the inorganic material. Here, we use hemolysin coregulated protein 1 (Hcp1 from Pseudomonas aeruginosa as a building and gluing unit for the formation of biohybrid structures by implementing cysteine anchoring points at defined positions on the protein rim (Hcp1_cys3. We successfully apply the Hcp1_cys3 gluing unit for the assembly of often linear, hybrid structures of plasmonic gold (Au NP, magnetite (Fe3O4 NP, and cobalt ferrite nanoparticles (CoFe2O4 NP. Furthermore, the assembly of Au NPs into linear structures using Hcp1_cys3 is investigated by UV–vis spectroscopy, TEM and cryo-TEM. One key parameter for the formation of Au NP assembly is the specific ionic strength in the mixture. The resulting network-like structure of Au NPs is characterized by Raman spectroscopy, showing surface-enhanced Raman scattering (SERS by a factor of 8·104 and a stable secondary structure of the Hcp1_cys3 unit. In order to prove the catalytic performance of the gold hybrid structures, they are used as a catalyst in the reduction reaction of 4-nitrophenol showing similar catalytic activity as the pure Au NPs. To further extend the
Directory of Open Access Journals (Sweden)
Yanpeng Shi
2016-01-01
Full Text Available We present a systematic simulation study on the impact of disorder in thin film silicon solar cells with hybrid light trapping structure. For the periodical structures introducing certain randomness in some parameters, the nanophotonic light trapping effect is demonstrated to be superior to their periodic counterparts. The nanophotonic light trapping effect can be associated with the increased modes induced by the structural disorders. Our study is a systematic proof that certain disorder is conceptually an advantage for nanophotonic light trapping concepts in thin film solar cells. The result is relevant to the large field of research on nanophotonic light trapping which currently investigates and prototypes a number of new concepts including disordered periodic and quasiperiodic textures. The random effect on the shape of the pattern (position, height, and radius investigated in this paper could be a good approach to estimate the influence of experimental inaccuracies for periodic or quasi-periodic structures.
Energy Technology Data Exchange (ETDEWEB)
Wichapa, Narong; Khokhajaikiat, Porntep
2017-07-01
Disposal of infectious waste remains one of the most serious problems in the social and environmental domains of almost every nation. Selection of new suitable locations and finding the optimal set of transport routes to transport infectious waste, namely location routing problem for infectious waste disposal, is one of the major problems in hazardous waste management. Design/methodology/approach: Due to the complexity of this problem, location routing problem for a case study, forty hospitals and three candidate municipalities in sub-Northeastern Thailand, was divided into two phases. The first phase is to choose suitable municipalities using hybrid fuzzy goal programming model which hybridizes the fuzzy analytic hierarchy process and fuzzy goal programming. The second phase is to find the optimal routes for each selected municipality using hybrid genetic algorithm which hybridizes the genetic algorithm and local searches including 2-Opt-move, Insertion-move and ?-interchange-move. Findings: The results indicate that the hybrid fuzzy goal programming model can guide the selection of new suitable municipalities, and the hybrid genetic algorithm can provide the optimal routes for a fleet of vehicles effectively. Originality/value: The novelty of the proposed methodologies, hybrid fuzzy goal programming model, is the simultaneous combination of both intangible and tangible factors in order to choose new suitable locations, and the hybrid genetic algorithm can be used to determine the optimal routes which provide a minimum number of vehicles and minimum transportation cost under the actual situation, efficiently.
International Nuclear Information System (INIS)
Wichapa, Narong; Khokhajaikiat, Porntep
2017-01-01
Disposal of infectious waste remains one of the most serious problems in the social and environmental domains of almost every nation. Selection of new suitable locations and finding the optimal set of transport routes to transport infectious waste, namely location routing problem for infectious waste disposal, is one of the major problems in hazardous waste management. Design/methodology/approach: Due to the complexity of this problem, location routing problem for a case study, forty hospitals and three candidate municipalities in sub-Northeastern Thailand, was divided into two phases. The first phase is to choose suitable municipalities using hybrid fuzzy goal programming model which hybridizes the fuzzy analytic hierarchy process and fuzzy goal programming. The second phase is to find the optimal routes for each selected municipality using hybrid genetic algorithm which hybridizes the genetic algorithm and local searches including 2-Opt-move, Insertion-move and ?-interchange-move. Findings: The results indicate that the hybrid fuzzy goal programming model can guide the selection of new suitable municipalities, and the hybrid genetic algorithm can provide the optimal routes for a fleet of vehicles effectively. Originality/value: The novelty of the proposed methodologies, hybrid fuzzy goal programming model, is the simultaneous combination of both intangible and tangible factors in order to choose new suitable locations, and the hybrid genetic algorithm can be used to determine the optimal routes which provide a minimum number of vehicles and minimum transportation cost under the actual situation, efficiently.
Model-based framework for multi-axial real-time hybrid simulation testing
Fermandois, Gaston A.; Spencer, Billie F.
2017-10-01
Real-time hybrid simulation is an efficient and cost-effective dynamic testing technique for performance evaluation of structural systems subjected to earthquake loading with rate-dependent behavior. A loading assembly with multiple actuators is required to impose realistic boundary conditions on physical specimens. However, such a testing system is expected to exhibit significant dynamic coupling of the actuators and suffer from time lags that are associated with the dynamics of the servo-hydraulic system, as well as control-structure interaction (CSI). One approach to reducing experimental errors considers a multi-input, multi-output (MIMO) controller design, yielding accurate reference tracking and noise rejection. In this paper, a framework for multi-axial real-time hybrid simulation (maRTHS) testing is presented. The methodology employs a real-time feedback-feedforward controller for multiple actuators commanded in Cartesian coordinates. Kinematic transformations between actuator space and Cartesian space are derived for all six-degrees-offreedom of the moving platform. Then, a frequency domain identification technique is used to develop an accurate MIMO transfer function of the system. Further, a Cartesian-domain model-based feedforward-feedback controller is implemented for time lag compensation and to increase the robustness of the reference tracking for given model uncertainty. The framework is implemented using the 1/5th-scale Load and Boundary Condition Box (LBCB) located at the University of Illinois at Urbana- Champaign. To demonstrate the efficacy of the proposed methodology, a single-story frame subjected to earthquake loading is tested. One of the columns in the frame is represented physically in the laboratory as a cantilevered steel column. For realtime execution, the numerical substructure, kinematic transformations, and controllers are implemented on a digital signal processor. Results show excellent performance of the maRTHS framework when six
Xiong, Yujie
2016-10-01
Designing new photocatalytic materials for improving photoconversion efficiency is a promising route to alleviate the steadily worsening environmental issues and energy crisis. Despite the invention of a large number of catalytic materials with well-defined structures, their overall efficiency in photocatalysis is still quite limited as the three key steps - light harvesting, charge generation and separation, and charge transfer to surface for redox reactions - have not been substantially improved. To improve each step in the complex process, there is a major trend to develop materials based on inorganic hybrid structures. In this case, interface engineering holds the promise for boosting the overall efficiency, given the key roles of interface structures in charge and energy transfer. In this talk, I will demonstrate several different approaches to designing inorganic hybrid structures with improved photocatalytic performance via interface engineering. The typical demonstrations include semiconductor-plasmonics systems for broad-spectrum light harvesting, metal-semiconductor interfaces for improved charge separation, semiconductor-MOF (metal-organic framework) configurations for activated surface reactions. It is anticipated that this series of works open a new window to rationally designing inorganic hybrid materials for photo-induced applications. References: (1) Bai, S.; Yang, L.; Wang, C.; Lin, Y.; Lu, J.; Jiang, J. and Xiong, Y.*, Angew. Chem. Int. Ed. 54, 14810-14814 (2015). (2) Bai, S.; Jiang, J.; Zhang, Q. and Xiong, Y.*, Chem. Soc. Rev. 44, 2893-2939 (2015). (3) Bai, S.; Li, X.; Kong, Q.; Long, R.; Wang, C.; Jiang, J. and Xiong, Y.*, Adv. Mater. 27, 3444-3452 (2015). (4) Bai, S.; Ge, J.; Wang, L.; Gong, M.; Deng, M.; Kong, Q.; Song, L.; Jiang, J.;* Zhang, Q.;* Luo, Y.; Xie, Y. and Xiong, Y.*, Adv. Mater. 26, 5689-5695 (2014). (5) Li, R.; Hu, J.; Deng, M.; Wang, H.; Wang, X.; Hu, Y.; Jiang, H. L.; Jiang, J.;* Zhang, Q.;* Xie, Y. and Xiong, Y.*, Adv. Mater
Modeling and design of hybrid vehicle propulsion systems for passenger cars
Hofman, Theo; Steinbuch, Maarten; Van Dritten, Roëll; Serrarens, Alex
2007-01-01
Designing a hybrid drive train implies, that choices have to be made regarding the drive train structure, component technologies, and - sizes. Designing an appropriate Energy Management Strategy (EMS), that facilitates the usage of the chosen components and drive train structure to its best
Induced superconductivity in Nb/InAs-hybrid structures in parallel and perpendicular magnetic fields
International Nuclear Information System (INIS)
Rohlfing, Franziska
2007-07-01
The thesis in hand investigates experimentally Josephson contacts based on Nb/InAs-hybrid structures. The experiments discussed here were done on samples of different width of the Josephson contacts (between 500 nm and 2000 nm). They were realized by means of different methods of the semiconductor technology. The length of the Josephson contacts was about 600 nm and, as superconducting material, niobium was used. Both critical current and characteristics in the resistive regime (excess-current and multiple Andreev reflection) are studied as a function of temperature and external magnetic fields. Measurements in perpendicular and parallel magnetic fields with respect to the plain of the two-dimensional electron gas, are presented. The Andreev reflection amplitude determining the supercurrent is calculated by means of the Greens functions of the two-dimensional electron gas beneath the superconductors which is modified by the proximity effect. From the fit to the data with this model, the transparency of the boundary between the superconductor and the two-dimensional electron gas can be estimated to be about 0.1. The transparency of the point contacts in the two-dimensional electrons gas can be determined independently from the Josephson junction width dependence of the normal resistance (T=10 K). This transparency amounts to about 0.8 in the examined samples. The measurements of the critical current in a magnetic field perpendicular to the two-dimensional electron gas show a Fraunhofer pattern. In order to study the transition from perpendicular orientation into parallel orientation, measurements of the critical current as a function of the magnetic field were done for different angles. In the resistive regime, the excess current measurements in the magnetic field show a very interesting behaviour: In parallel magnetic fields, the excess current becomes zero at about 2.5 T. In perpendicular magnetic field however, the excess current is strongly suppressed below 30 m
Structure and modeling of turbulence
International Nuclear Information System (INIS)
Novikov, E.A.
1995-01-01
The open-quotes vortex stringsclose quotes scale l s ∼ LRe -3/10 (L-external scale, Re - Reynolds number) is suggested as a grid scale for the large-eddy simulation. Various aspects of the structure of turbulence and subgrid modeling are described in terms of conditional averaging, Markov processes with dependent increments and infinitely divisible distributions. The major request from the energy, naval, aerospace and environmental engineering communities to the theory of turbulence is to reduce the enormous number of degrees of freedom in turbulent flows to a level manageable by computer simulations. The vast majority of these degrees of freedom is in the small-scale motion. The study of the structure of turbulence provides a basis for subgrid-scale (SGS) models, which are necessary for the large-eddy simulations (LES)
Kappus, W.
1981-06-01
A model concerning adatom structures is proposed. Attractive nearest neighbour interactions, which may be of electronic nature lead to 2-dimensional condensation. Every pair bond causes and elastic dipole. The elastic dipoles interact via substrate strains with an anisotropic s -3 power law. Different types of adatoms or sites are permitted and many-body effects result, from the assumptions. Electric dipole interactions of adatoms are included for comparison. The model is applied to the W(110) surface and compared with superstructures experimentally found in the W(110)-0 system. It is found that there is still lack for an additional next-nearest neighbour interaction.
Reddy, Rajiv M; Panahi, Issa M S
2008-01-01
The performance of FIR feedforward, IIR feedforward, FIR feedback, hybrid FIR feedforward--FIR feedback, and hybrid IIR feedforward - FIR feedback structures for active noise control (ANC) are compared for an fMRI noise application. The filtered-input normalized least squares (FxNLMS) algorithm is used to update the coefficients of the adaptive filters in all these structures. Realistic primary and secondary paths of an fMRI bore are used by estimating them on a half cylindrical acrylic bore of 0.76 m (D)x1.52 m (L). Detailed results of the performance of the ANC system are presented in the paper for each of these structures. We find that the IIR feedforward structure produces most of the performance improvement in the hybrid IIR feedforward - FIR feedback structure and adding the feedback structure becomes almost redundant in the case of fMRI noise.
Fabrication of Nano-Micro Hybrid Structures by Replication and Surface Treatment of Nanowires
Directory of Open Access Journals (Sweden)
Yeonho Jeong
2017-07-01
Full Text Available Nanowire structures have attracted attention in various fields, since new characteristics could be acquired in minute regions. Especially, Anodic Aluminum Oxide (AAO is widely used in the fabrication of nanostructures, which has many nanosized pores and well-organized nano pattern. Using AAO as a template for replication, nanowires with a very high aspect ratio can be fabricated. Herein, we propose a facile method to fabricate a nano-micro hybrid structure using n