WorldWideScience

Sample records for hybrid stress model

  1. Computer modeling for investigating the stress-strainstate of beams with hybrid reinforcement

    Directory of Open Access Journals (Sweden)

    Rakhmonov Ahmadzhon Dzhamoliddinovich

    2014-01-01

    Full Text Available In this article the operation of a continuous double-span beam with hybrid reinforcement, steel and composite reinforcement under the action of concentrated forces is considered. The nature of stress-strain state of structures is investigated with the help of computer modeling using a three-dimensional model. Five models of beams with different characteristics were studied. According to the results of numerical studies the data on the distribution of stresses and displacements in continuous beams was provided. The dependence of the stress-strain state on increasing the percentage of the top reinforcement (composite of fittings and change in the concrete class is determined and presented in the article. Currently, the interest in the use of composite reinforcement as a working reinforcement of concrete structures in Russia has increased significantly, which is reflected in the increase of the number of scientific and practical publications devoted to the study of the properties and use of composite materials in construction, as well as emerging draft documents for design of such structures. One of the proposals for basalt reinforcement application is to use it in bending elements with combined reinforcement. For theoretical justification of the proposed nature of reinforcement and improvement of the calculation method the authors conduct a study of stress-strain state of continuous beams with the use of modern computing systems. The software program LIRA is most often used compared to other programs representing strain-stress state analysis of concrete structures.

  2. The biomechanics of a validated finite element model of stress shielding in a novel hybrid total knee replacement.

    Science.gov (United States)

    Bougherara, H; Zdero, R; Mahboob, Z; Dubov, A; Shah, S; Schemitsch, E H

    2010-10-01

    This study proposes a novel hybrid total knee replacement (TKR) design to improve stress transfer to bone in the distal femur and, thereby, reduce stress shielding and consequent bone loss. Three-dimensional finite element (FE) models were developed for a standard and a hybrid TKR and validated experimentally. The Duracon knee system (Stryker Canada) was the standard TKR used for the FE models and for the experimental tests. The FE hybrid device was identical to the standard TKR, except that it had an interposing layer of carbon fibre-reinforced polyamide 12 lining the back of the metallic femoral component. A series of experimental surface strain measurements were then taken to validate the FE model of the standard TKR at 3000 N of axial compression and at 0 degreeof knee flexion. Comparison of surface strain values from FE analysis with experiments demonstrated good agreement, yielding a high Pearson correlation coefficient of R(2)= 0.94. Under a 3000N axial load and knee flexion angles simulating full stance (0O degree, heel strike (200 degrees, and toe off (600 degrees during normal walking gait, the FE model showed considerable changes in maximum Von Mises stress in the region most susceptible to stress shielding (i.e. the anterior region, just behind the flange of the femoral implant). Specifically, going from a standard to a hybrid TKR caused an increase in maximum stress of 87.4 per cent (O0 degree from 0.15 to 0.28 MPa), 68.3 per cent (200 degrees from 1.02 to 1.71 MPa), and 12.6 per cent (600 degrees from 2.96 to 3.33 MPa). This can potentially decrease stress shielding and subsequent bone loss and knee implant loosening. This is the first report to propose and biomechanically to assess a novel hybrid TKR design that uses a layer of carbon fibrereinforced polyamide 12 to reduce stress shielding.

  3. Dimensional structure of DSM-5 posttraumatic stress symptoms: support for a hybrid Anhedonia and Externalizing Behaviors model.

    Science.gov (United States)

    Armour, Cherie; Tsai, Jack; Durham, Tory A; Charak, Ruby; Biehn, Tracey L; Elhai, Jon D; Pietrzak, Robert H

    2015-02-01

    Several revisions to the symptom clusters of posttraumatic stress disorder (PTSD) have been made in the 5th edition of the Diagnostic and Statistical Manual of Mental Disorders (DSM-5). Central to the focus of this study was the revision of PTSD's tripartite structure in DSM-IV into four symptom clusters in DSM-5. Emerging confirmatory factor analytic (CFA) studies have suggested that DSM-5 PTSD symptoms may be best represented by one of two 6-factor models: (1) an Externalizing Behaviors model characterized by a factor which combines the irritability/anger and self-destructive/reckless behavior items; and (2) an Anhedonia model characterized by items of loss of interest, detachment, and restricted affect. The current study conducted CFAs of DSM-5 PTSD symptoms assessed using the PTSD Checklist for DSM-5 (PCL-5) in two independent and diverse trauma-exposed samples of a nationally representative sample of 1484 U.S. veterans and a sample of 497 Midwestern U.S. university undergraduate students. Relative fits of the DSM-5 model, the DSM-5 Dysphoria model, the DSM-5 Dysphoric Arousal model, the two 6-factor models, and a newly proposed 7-factor Hybrid model, which consolidates the two 6-factor models, were evaluated. Results revealed that, in both samples, both 6-factor models provided significantly better fit than the 4-factor DSM-5 model, the DSM-5 Dysphoria model and the DSM-5 Dysphoric Arousal model. Further, the 7-factor Hybrid model, which incorporates key features of both 6-factor models and is comprised of re-experiencing, avoidance, negative affect, anhedonia, externalizing behaviors, and anxious and dysphoric arousal symptom clusters, provided superior fit to the data in both samples. Results are discussed in light of theoretical and empirical support for the latent structure of DSM-5 PTSD symptoms.

  4. Hybrid Unifying Variable Supernetwork Model

    Institute of Scientific and Technical Information of China (English)

    LIU; Qiang; FANG; Jin-qing; LI; Yong

    2015-01-01

    In order to compare new phenomenon of topology change,evolution,hybrid ratio and network characteristics of unified hybrid network theoretical model with unified hybrid supernetwork model,this paper constructed unified hybrid variable supernetwork model(HUVSM).The first layer introduces a hybrid ratio dr,the

  5. Large Unifying Hybrid Supernetwork Model

    Institute of Scientific and Technical Information of China (English)

    LIU; Qiang; FANG; Jin-qing; LI; Yong

    2015-01-01

    For depicting multi-hybrid process,large unifying hybrid network model(so called LUHNM)has two sub-hybrid ratios except dr.They are deterministic hybrid ratio(so called fd)and random hybrid ratio(so called gr),respectively.

  6. STUDY ON STRESS CONCENTRATIONS IN AN INTRAPLY HYBRID COMPOSITE SHEET

    Institute of Scientific and Technical Information of China (English)

    曾庆敦; 黄小清; 林雪慧

    2001-01-01

    A reasonably, simply and accurately modified shear-lag model was proposed.Based on the model, the stress redistributions due to the failure of some fibers in an intraply hybrid composite under tension were analyzed. The results show that the present calculating stress concentration factors very coincide with Fukuda and Chou' s results, thus verifying the reasonableness and correctness of the present model and methods.

  7. A hybrid-stress element based on Hamilton principle

    Science.gov (United States)

    Cen, Song; Zhang, Tao; Li, Chen-Feng; Fu, Xiang-Rong; Long, Yu-Qiu

    2010-08-01

    A novel hybrid-stress finite element method is proposed for constructing simple 4-node quadrilateral plane elements, and the new element is denoted as HH4-3 β here. Firstly, the theoretical basis of the traditional hybrid-stress elements, i.e., the Hellinger-Reissner variational principle, is replaced by the Hamilton variational principle, in which the number of the stress variables is reduced from 3 to 2. Secondly, three stress parameters and corresponding trial functions are introduced into the system equations. Thirdly, the displacement fields of the conventional bilinear isoparametric element are employed in the new models. Finally, from the stationary condition, the stress parameters can be expressed in terms of the displacement parameters, and thus the new element stiffness matrices can be obtained. Since the required number of stress variables in the Hamilton variational principle is less than that in the Hellinger-Reissner variational principle, and no additional incompatible displacement modes are considered, the new hybrid-stress element is simpler than the traditional ones. Furthermore, in order to improve the accuracy of the stress solutions, two enhanced post-processing schemes are also proposed for element HH4-3 β. Numerical examples show that the proposed model exhibits great improvements in both displacement and stress solutions, implying that the proposed technique is an effective way for developing simple finite element models with high performance.

  8. New Variational Formulations of Hybrid Stress Elements

    Science.gov (United States)

    Pian, T. H. H.; Sumihara, K.; Kang, D.

    1984-01-01

    In the variational formulations of finite elements by the Hu-Washizu and Hellinger-Reissner principles the stress equilibrium condition is maintained by the inclusion of internal displacements which function as the Lagrange multipliers for the constraints. These versions permit the use of natural coordinates and the relaxation of the equilibrium conditions and render considerable improvements in the assumed stress hybrid elements. These include the derivation of invariant hybrid elements which possess the ideal qualities such as minimum sensitivity to geometric distortions, minimum number of independent stress parameters, rank sufficient, and ability to represent constant strain states and bending moments. Another application is the formulation of semiLoof thin shell elements which can yield excellent results for many severe test cases because the rigid body nodes, the momentless membrane strains, and the inextensional bending modes are all represented.

  9. New insights in dehydration stress behavior of two maize hybrids using advanced distributed reactivity model (DRM). Responses to the impact of 24-epibrassinolide

    Science.gov (United States)

    Janković, Bojan; Janković, Marija; Nikolić, Bogdan; Dimkić, Ivica; Lalević, Blažo; Raičević, Vera

    2017-01-01

    Proposed distributed reactivity model of dehydration for seedling parts of two various maize hybrids (ZP434, ZP704) was established. Dehydration stresses were induced thermally, which is also accompanied by response of hybrids to heat stress. It was found that an increased value of activation energy counterparts within radicle dehydration of ZP434, with a high concentration of 24-epibrassinolide (24-EBL) at elevated operating temperatures, probably causes activation of diffusion mechanisms in cutin network and may increases likelihood of formation of free volumes, large enough to accommodate diffusing molecule. Many small random effects were detected and can be correlated with micro-disturbing in a space filled with water caused by thermal gradients, increasing capillary phenomena, and which can induce thermo-capillary migration. The influence of seedling content of various sugars and minerals on dehydration was also examined. Estimated distributed reactivity models indicate a dependence of reactivity on structural arrangements, due to present interactions between water molecules and chemical species within the plant. PMID:28644899

  10. Unified Hybrid Network Theoretical Model Trilogy

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    The first of the unified hybrid network theoretical model trilogy (UHNTF) is the harmonious unification hybrid preferential model (HUHPM), seen in the inner loop of Fig. 1, the unified hybrid ratio is defined.

  11. Model Reduction of Hybrid Systems

    DEFF Research Database (Denmark)

    Shaker, Hamid Reza

    systems are derived in this thesis. The results are used for output feedback control of switched nonlinear systems. Model reduction of piecewise affine systems is also studied in this thesis. The proposed method is based on the reduction of linear subsystems inside the polytopes. The methods which......High-Technological solutions of today are characterized by complex dynamical models. A lot of these models have inherent hybrid/switching structure. Hybrid/switched systems are powerful models for distributed embedded systems design where discrete controls are applied to continuous processes...... of hybrid systems, designing controllers and implementations is very high so that the use of these models is limited in applications where the size of the state space is large. To cope with complexity, model reduction is a powerful technique. This thesis presents methods for model reduction and stability...

  12. Hybrid Model of Content Extraction

    DEFF Research Database (Denmark)

    Qureshi, Pir Abdul Rasool; Memon, Nasrullah

    2012-01-01

    We present a hybrid model for content extraction from HTML documents. The model operates on Document Object Model (DOM) tree of the corresponding HTML document. It evaluates each tree node and associated statistical features like link density and text distribution across the node to predict signi...

  13. Hybrid models for complex fluids

    CERN Document Server

    Tronci, Cesare

    2010-01-01

    This paper formulates a new approach to complex fluid dynamics, which accounts for microscopic statistical effects in the micromotion. While the ordinary fluid variables (mass density and momentum) undergo usual dynamics, the order parameter field is replaced by a statistical distribution on the order parameter space. This distribution depends also on the point in physical space and its dynamics retains the usual fluid transport features while containing the statistical information on the order parameter space. This approach is based on a hybrid moment closure for Yang-Mills Vlasov plasmas, which replaces the usual cold-plasma assumption. After presenting the basic properties of the hybrid closure, such as momentum map features, singular solutions and Casimir invariants, the effect of Yang-Mills fields is considered and a direct application to ferromagnetic fluids is presented. Hybrid models are also formulated for complex fluids with symmetry breaking. For the special case of liquid crystals, a hybrid formul...

  14. THE STRESS SUBSPACE OF HYBRID STRESS ELEMENT AND THE DIAGONALIZATION METHOD FOR FLEXIBILITY MATRIX H

    Institute of Scientific and Technical Information of China (English)

    张灿辉; 冯伟; 黄黔

    2002-01-01

    The following is proved: 1 ) The linear independence of assumed stress modes is the necessary and sufficient condition for the nonsingular fiexibility matrix; 2) The equivalent assumed stress modes lead to the identical hybrid element. The Hilbert stress subspace of the assumed stress modes is established. So, it is easy to derive the equivalent orthogonal normal stress modes by Schmidt 's method. Because of the resulting diagonal fiexibility matrix, the identical hybrid element is free from the complex matrix inversion so that the hybrid efficiency is improved greatly. The numerical examples show that the method is effective.

  15. Hybrid Model of Content Extraction

    DEFF Research Database (Denmark)

    Qureshi, Pir Abdul Rasool; Memon, Nasrullah

    2012-01-01

    We present a hybrid model for content extraction from HTML documents. The model operates on Document Object Model (DOM) tree of the corresponding HTML document. It evaluates each tree node and associated statistical features like link density and text distribution across the node to predict...... model outperformed other existing content extraction models. We present a browser based implementation of the proposed model as proof of concept and compare the implementation strategy with various state of art implementations. We also discuss various applications of the proposed model with special...

  16. Hybrid2 - The hybrid power system simulation model

    Energy Technology Data Exchange (ETDEWEB)

    Baring-Gould, E.I.; Green, H.J.; Dijk, V.A.P. van [National Renewable Energy Lab., Golden, CO (United States); Manwell, J.F. [Univ. of Massachusetts, Amherst, MA (United States)

    1996-12-31

    There is a large-scale need and desire for energy in remote communities, especially in the developing world; however the lack of a user friendly, flexible performance prediction model for hybrid power systems incorporating renewables hindered the analysis of hybrids as options to conventional solutions. A user friendly model was needed with the versatility to simulate the many system locations, widely varying hardware configurations, and differing control options for potential hybrid power systems. To meet these ends, researchers from the National Renewable Energy Laboratory (NREL) and the University of Massachusetts (UMass) developed the Hybrid2 software. This paper provides an overview of the capabilities, features, and functionality of the Hybrid2 code, discusses its validation and future plans. Model availability and technical support provided to Hybrid2 users are also discussed. 12 refs., 3 figs., 4 tabs.

  17. Modeling and analysis using hybrid Petri nets

    CERN Document Server

    Ghomri, Latéfa

    2007-01-01

    This paper is devoted to the use of hybrid Petri nets (PNs) for modeling and control of hybrid dynamic systems (HDS). Modeling, analysis and control of HDS attract ever more of researchers' attention and several works have been devoted to these topics. We consider in this paper the extensions of the PN formalism (initially conceived for modeling and analysis of discrete event systems) in the direction of hybrid modeling. We present, first, the continuous PN models. These models are obtained from discrete PNs by the fluidification of the markings. They constitute the first steps in the extension of PNs toward hybrid modeling. Then, we present two hybrid PN models, which differ in the class of HDS they can deal with. The first one is used for deterministic HDS modeling, whereas the second one can deal with HDS with nondeterministic behavior. Keywords: Hybrid dynamic systems; D-elementary hybrid Petri nets; Hybrid automata; Controller synthesis

  18. Hybrid Atlas Models

    CERN Document Server

    Ichiba, Tomoyuki; Banner, Adrian; Karatzas, Ioannis; Fernholz, Robert

    2009-01-01

    We study Atlas-type models of equity markets with local characteristics that depend on both name and rank, and in ways that induce a stability of the capital distribution. Ergodic properties and rankings of processes are examined with reference to the theory of reflected Brownian motions in polyhedral domains. In the context of such models, we discuss properties of various investment strategies, including the so-called growth-optimal and universal portfolios.

  19. Evaluation of thermally induced non-Fourier stress wave disturbances via tailored hybrid transfinite element formulations

    Science.gov (United States)

    Tamma, Kumar K.; Railkar, Sudhir B.

    1989-01-01

    Accurate solutions have been obtained for a class of non-Fourier models in dynamic thermoelasticity which are relevant to the understanding of thermally-induced stress wave disturbances. The method employs tailored hybrid formulations based on the transfinite element approach. The results show that significant thermal stresses may arise due to non-Fourier effects, especially when the speeds of propagation of the thermal and stress waves are equal.

  20. Data assimilation using a hybrid ice flow model

    Directory of Open Access Journals (Sweden)

    D. N. Goldberg

    2010-10-01

    Full Text Available Hybrid models, or depth-integrated flow models that include the effect of both longitudinal stresses and vertical shearing, are becoming more prevalent in dynamical ice modeling. Under a wide range of conditions they closely approximate the well-known First Order stress balance, yet are of computationally lower dimension, and thus require less intensive resources. Concomitant with the development and use of these models is the need to perform inversions of observed data. Here, an inverse control method is extended to use a hybrid flow model as a forward model. We derive an adjoint of a hybrid model and use it for inversion of ice-stream basal traction from observed surface velocities. A novel aspect of the adjoint derivation is a retention of non-linearities in Glen's flow law. Experiments show that including those nonlinearities is advantageous in minimization of the cost function, yielding a more efficient inversion procedure.

  1. A Hybrid Model. DEMETER

    Energy Technology Data Exchange (ETDEWEB)

    Gerlagh, Reyer [University of Manchester, Manchester (United Kingdom); Van der Zwaan, Bob [ECN Policy Studies, Petten (Netherlands)

    2009-11-15

    This insightful book explores the issue of sustainable development in its more operative and applied sense. Although a great deal of research has addressed potential interpretations and definitions of sustainable development, much of this work is too abstract to offer policy-makers and researchers the feasible and effective guidelines they require. This book redresses the balance. The authors highlight how various indicators and aggregate measures can be included in models that are used for decision-making support and sustainability assessment. They also demonstrate the importance of identifying practical means to assess whether policy proposals, specific decisions or targeted scenarios are sustainable. With discussions of basic concepts relevant to understanding applied sustainability analysis, such as definitions of costs and revenue recycling, this book provides policy-makers, researchers and graduate students with feasible and effective principles for measuring sustainable development.

  2. A STUDY OF THE INFLUENCE OF INTERFACIAL DAMAGE ON STRESS CONCENTRATIONS IN INTRAPLY HYBRID COMPOSITES

    Institute of Scientific and Technical Information of China (English)

    Zeng Qingdun; Lin Xuehui

    2001-01-01

    In the axial tensile failure process of intraply hybrid composites, the breakage of some fibers may lead to interfacial damage, thus directly influencing the local stress concentrations near the sites of breakage. A modified shear-lag model, in which the interfacial damage is considered, is proposed. Based on the model, the influence of interfacial shear strength on the stress concentrations and the lengths of interfacial damage zone is first studied. The present results also provide an important theoretical basis for investigating the failure mechanism and hybrid effects for such kind of composites.

  3. An intercomparison of measured and modeled canopy parameters during the variable water-stressed period of FIFE 1989 using an hybrid biosphere-remote sensing model

    Science.gov (United States)

    Cooper, H. J.; Crosson, W. L.; Smith, E. A.

    1992-01-01

    The measured atmospheric parameters and the fluxes of latent and sensible heat across the biosphere-atmosphere interface collected during the water-stressed period of the First ISLSCP Field Experiment (FIFE) were compared with those calculated by an experimental version of the Biosphere-Atmosphere Transfer Scheme (Ex-BATS). It is shown that the brightness temperature (T(B)) values observed near the surface during FIFE 1987 are closely correlated to in-canopy temperatures calculated by Ex-BATS. The 1987 near-surface observations of T(B) are also well correlated to AVHHR channels 4 and 5 measurements. An inverted form of Ex-BATS was applied to determine the associated required in-canopy temperatures, T(icr), and regressions between T(icr) and T(B) found from the 1987 data were applied to the 1989 observed T(B) at a different site. The T(icr) so estimated showed excellent correlation to the 1989 model calculated T(icr).

  4. Higher-order hybrid stress triangular Mindlin plate element

    Science.gov (United States)

    Li, Tan; Ma, Xu; Xili, Jing; Chen, Wanji

    2016-12-01

    A 6-node triangular hybrid stress element is presented for Mindlin plate in this paper. The proposed element, denoted by TH6-27β, can pass both the zero shear stress patch test and the non-zero constant shear stress enhanced patch test and, it can be employed to analyze very thin plate. To accomplish this purpose, special attention is devoted to selecting boundary displacement interpolation and stress approximation in domain. The arbitrary order Timoshenko beam function is used successfully to derive the displacement interpolation along each side of the element. According to the equilibrium equations, an appropriate stress approximation is rationally obtained. The assumed stress field is modified by using 27β instead of 15β to improve the accuracy. Numerical results show that the element is free of shear locking, and reliable for thick and thin plates. Moreover, it has no spurious zero energy modes and with geometric invariance (coordinate invariance, node sequencing independence).

  5. Stress test: identifying crowding stress-tolerant hybrids in processing sweet corn

    Science.gov (United States)

    Improvement in tolerance to intense competition at high plant populations (i.e. crowding stress) is a major genetic driver of corn yield gain the last half-century. Recent research found differences in crowding stress tolerance among a few modern processing sweet corn hybrids; however, a larger asse...

  6. Transcriptomic analysis of Crassostrea sikamea × Crassostrea angulata hybrids in response to low salinity stress

    Science.gov (United States)

    Yan, Lulu; Su, Jiaqi; Wang, Zhaoping; Yan, Xiwu; Yu, Ruihai; Ma, Peizhen; Li, Yangchun; Du, Junpeng

    2017-01-01

    Hybrid oysters often show heterosis in growth rate, weight, survival and adaptability to extremes of salinity. Oysters have also been used as model organisms to study the evolution of host-defense system. To gain comprehensive knowledge about various physiological processes in hybrid oysters under low salinity stress, we performed transcriptomic analysis of gill tissue of Crassostrea sikamea ♀ × Crassostrea angulata♂ hybrid using the deep-sequencing platform Illumina HiSeq. We exploited the high-throughput technique to delineate differentially expressed genes (DEGs) in oysters maintained in hypotonic conditions. A total of 199,391 high quality unigenes, with average length of 644 bp, were generated. Of these 35 and 31 genes showed up- and down-regulation, respectively. Functional categorization and pathway analysis of these DEGs revealed enrichment for immune mechanism, apoptosis, energy metabolism and osmoregulation under low salinity stress. The expression patterns of 41 DEGs in hybrids and their parental species were further analyzed by quantitative real-time PCR (qRT-PCR). This study will serve as a platform for subsequent gene expression analysis regarding environmental stress. Our findings will also provide valuable information about gene expression to better understand the immune mechanism, apoptosis, energy metabolism and osmoregulation in hybrid oysters under low salinity stress. PMID:28182701

  7. Spatial Self-Organization of Vegetation Subject to Climatic Stress-Insights from a System Dynamics-Individual-Based Hybrid Model.

    Science.gov (United States)

    Vincenot, Christian E; Carteni, Fabrizio; Mazzoleni, Stefano; Rietkerk, Max; Giannino, Francesco

    2016-01-01

    In simulation models of populations or communities, individual plants have often been obfuscated in favor of aggregated vegetation. This simplification comes with a loss of biological detail and a smoothing out of the demographic noise engendered by stochastic individual-scale processes and heterogeneities, which is significant among others when studying the viability of small populations facing challenging fluctuating environmental conditions. This consideration has motivated the development of precise plant-centered models. The accuracy gained in the representation of plant biology has then, however, often been balanced by the disappearance in models of important plant-soil interactions (esp. water dynamics) due to the inability of most individual-based frameworks to simulate complex continuous processes. In this study, we used a hybrid modeling approach, namely integrated System Dynamics (SD)-Individual-based (IB), to illustrate the importance of individual plant dynamics to explain spatial self-organization of vegetation in arid environments. We analyzed the behavior of this model under different parameter sets either related to individual plant properties (such as seed dispersal distance and reproductive age) or the environment (such as intensity and yearly distribution of precipitation events). While the results of this work confirmed the prevailing theory on vegetation patterning, they also revealed the importance therein of plant-level processes that cannot be rendered by reaction-diffusion models. Initial spatial distribution of plants, reproductive age, and average seed dispersal distance, by impacting patch size and vegetation aggregation, affected pattern formation and population survival under climatic variations. Besides, changes in precipitation regime altered the demographic structure and spatial organization of vegetation patches by affecting plants differentially depending on their age and biomass. Water availability influenced non-linearly total

  8. Travelling waves in hybrid chemotaxis models

    CERN Document Server

    Franz, Benjamin; Painter, Kevin J; Erban, Radek

    2013-01-01

    Hybrid models of chemotaxis combine agent-based models of cells with partial differential equation models of extracellular chemical signals. In this paper, travelling wave properties of hybrid models of bacterial chemotaxis are investigated. Bacteria are modelled using an agent-based (individual-based) approach with internal dynamics describing signal transduction. In addition to the chemotactic behaviour of the bacteria, the individual-based model also includes cell proliferation and death. Cells consume the extracellular nutrient field (chemoattractant) which is modelled using a partial differential equation. Mesoscopic and macroscopic equations representing the behaviour of the hybrid model are derived and the existence of travelling wave solutions for these models is established. It is shown that cell proliferation is necessary for the existence of non-transient (stationary) travelling waves in hybrid models. Additionally, a numerical comparison between the wave speeds of the continuum models and the hybr...

  9. DEFORMATION RIGIDITY OF ASSUMED STRESS MODES IN HYBRID ELEMENTS

    Institute of Scientific and Technical Information of China (English)

    ZHANG Can-hui; HUANG Qian; FENG Wei

    2006-01-01

    The new methods to determine the zero-energy deformation modes in the hybrid elements and the zero-energy stress modes in their assumed stress fields are presented by the natural deformation modes of the elements. And the formula of the additional element deformation rigidity due to additional mode into the assumed stress field is derived.Based on, it is concluded in theory that the zero-energy stress mode cannot suppress the zero-energy deformation modes but increase the extra rigidity to the nonzero-energy deformation modes of the element instead. So they should not be employed to assume the stress field. In addition, the parasitic stress modes will produce the spurious parasitic energy and result the element behaving over rigidity. Thus, they should not be used into the assumed stress field even though they can suppress the zero-energy deformation modes of the element. The numerical examples show the performance of the elements including the zero-energy stress modes or the parasitic stress modes.

  10. Hadron rapidity spectra within a hybrid model

    CERN Document Server

    Khvorostukhin, A S

    2016-01-01

    A 2-stage hybrid model is proposed that joins the fast initial state of interaction, described by the hadron string dynamics (HSD) model, to subsequent evolution of the expanding system at the second stage, treated within ideal hydrodynamics. The developed hybrid model is assigned to describe heavy-ion collisions in the energy range of the NICA collider under construction in Dubna. Generally, the model is in reasonable agreement with the available data on proton rapidity spectra. However, reproducing proton rapidity spectra, our hybrid model cannot describe the rapidity distributions of pions. The model should be improved by taking into consideration viscosity effects at the hydrodynamical stage of system evolution.

  11. Statistical Model Checking for Stochastic Hybrid Systems

    DEFF Research Database (Denmark)

    David, Alexandre; Du, Dehui; Larsen, Kim Guldstrand

    2012-01-01

    This paper presents novel extensions and applications of the UPPAAL-SMC model checker. The extensions allow for statistical model checking of stochastic hybrid systems. We show how our race-based stochastic semantics extends to networks of hybrid systems, and indicate the integration technique ap...

  12. Alternative ways for formulation of hybrid stress elements

    Science.gov (United States)

    Pian, T. H. H.; Chen, D.-P.

    1982-01-01

    An element stiffness matrix can be derived by the conventional potential energy principle and, indirectly, also by generalized variational principles, such as the Hu-Washizu principle and the Hellinger-Reissner principle. The present investigation has the objective to show an approach which is concerned with the formulation of incompatible elements for solid continuum and for plate bending problems by the Hellinger-Reissner principle. It is found that the resulting scheme is equivalent to that considered by Tong (1982) for the construction of hybrid stress elements. In Tong's scheme the inversion of a large flexibility matrix can be avoided. It is concluded that the introduction of additional internal displacement modes in mixed finite element formulations by the Hellinger-Reissner principle and the Hu-Washizu principle can lead to element stiffness matrices which are equivalent to the assumed stress hybrid method.

  13. Inter-laminar shear stress in hybrid CFRP/austenitic steel

    Directory of Open Access Journals (Sweden)

    J. Lopes

    2015-01-01

    Full Text Available Bolted joints are the most common solution for joining composite components in aerospace structures. Critical structures such as wing to fuselage joints, or flight control surface fittings use bolted joining techniques. Recent research concluded that higher bearing strengths in composite bolted joints can be achieved by a CFRP/ Titanium hybrid lay-up in the vicinity of the bolted joint. The high costs of titanium motivate a similar research with the more cost competitive austenitic steel. An experimental program was performed in order to compare the apparent inter-laminar shear stress (ILSS of a CFRP reference beam with the ILSS of hybrid CFRP/Steel beams utilizing different surface treatments in the metallic ply. The apparent ILSS was determined by short beam test, a three-point bending test. Finite element models using cohesive elements in the CFRP/Steel interface were built to simulate the short beam test in the reference beam and in the highest interlaminar shear stress hybrid beam. The main parameters for a FEM simulation of inter laminar shear are the cohesive elements damage model and appropriate value for the critical energy release rate. The results show that hybrid CFRP/Steel have a maximum ILSS very similar to the ILSS of the reference beam. Hybrid CFRP/Steel is a competitive solution when compared with the reference beam ILSS. FEM models were able to predict the maximum ILSS in each type of beam.

  14. Hybrid neural network models of transducers

    Science.gov (United States)

    Xie, Shilin; Zhang, Xinong; Chen, Shenglai; Zhu, Changchun

    2011-10-01

    A hybrid neural network (NN) approach is proposed and applied to modeling of transducers in the paper. The modeling procedures are also presented in detail. First, the simulated studies on the modeling of single input-single output and multi input-multi output transducers are conducted respectively by use of the developed hybrid NN scheme. Secondly, the hybrid NN modeling approach is utilized to characterize a six-axis force sensor prototype based on the measured data. The results show that the hybrid NN approach can significantly improve modeling precision in comparison with the conventional modeling method. In addition, the method is superior to NN black-box modeling because the former possesses smaller network scale, higher convergence speed, higher model precision and better generalization performance.

  15. Evaluating the Pedagogical Potential of Hybrid Models

    Science.gov (United States)

    Levin, Tzur; Levin, Ilya

    2013-01-01

    The paper examines how the use of hybrid models--that consist of the interacting continuous and discrete processes--may assist in teaching system thinking. We report an experiment in which undergraduate students were asked to choose between a hybrid and a continuous solution for a number of control problems. A correlation has been found between…

  16. Harmonious Unifying Hybrid Preferential Supernetwork Model

    Institute of Scientific and Technical Information of China (English)

    LIU; Qiang; FANG; Jin-qing; LI; Yong

    2015-01-01

    The basic concepts and methods for harmonious unifying hybrid preferential model(HUHPM)are based on random preferential attachment(RPA)mixed with deterministic preferential attachment(DPA),so there is only one unified hybrid ratio dr,which is defined as:

  17. Towards Modelling of Hybrid Systems

    DEFF Research Database (Denmark)

    Wisniewski, Rafal

    2006-01-01

    The article is an attempt to use methods of category theory and topology for analysis of hybrid systems. We use the notion of a directed topological space; it is a topological space together with a set of privileged paths. Dynamical systems are examples of directed topological spaces. A hybrid...... system consists of a number of dynamical systems that are glued together according to information encoded in the discrete part of the system. We develop a definition of a hybrid system as a functor from the category generated by a transition system to the category of directed topological spaces. Its...... directed homotopy colimit (geometric realization) is a single directed topological space. The behavior of hybrid systems can be then understood in terms of the behavior of dynamical systems through the directed homotopy colimit....

  18. Tensile stress-strain behavior of hybrid composite laminates

    Science.gov (United States)

    Kennedy, J. M.

    1983-01-01

    A study was made of the stress-strain response of several hybrid laminates, and the damage was correlated with nonlinear stress-strain response and ultimate strength. The fibers used in the laminates were graphite, S-glass, and Kevlar. Some laminates with graphite fibers had perforated Mylar film between plies, which lowered the interlaminar bond strength. The laminate configurations were chosen to be like those of buffer strips in large panels and fracture coupons. Longitudinal and transverse specimens were loaded in tension to failure. Some specimens were radiographed to reveal damage due to edge effects. Stress-strain response is discussed in terms of damage shown by the radiographs. Ultimate strengths are compared with simple failure criteria, one of which account for damage.

  19. Modeling hybrid perovskites by molecular dynamics.

    Science.gov (United States)

    Mattoni, Alessandro; Filippetti, Alessio; Caddeo, Claudia

    2017-02-01

    The topical review describes the recent progress in the modeling of hybrid perovskites by molecular dynamics simulations. Hybrid perovskites and in particular methylammonium lead halide (MAPI) have a tremendous technological relevance representing the fastest-advancing solar material to date. They also represent the paradigm of an organic-inorganic crystalline material with some conceptual peculiarities: an inorganic semiconductor for what concerns the electronic and absorption properties with a hybrid and solution processable organic-inorganic body. After briefly explaining the basic concepts of ab initio and classical molecular dynamics, the model potential recently developed for hybrid perovskites is described together with its physical motivation as a simple ionic model able to reproduce the main dynamical properties of the material. Advantages and limits of the two strategies (either ab initio or classical) are discussed in comparison with the time and length scales (from pico to microsecond scale) necessary to comprehensively study the relevant properties of hybrid perovskites from molecular reorientations to electrocaloric effects. The state-of-the-art of the molecular dynamics modeling of hybrid perovskites is reviewed by focusing on a selection of showcase applications of methylammonium lead halide: molecular cations disorder; temperature evolution of vibrations; thermally activated defects diffusion; thermal transport. We finally discuss the perspectives in the modeling of hybrid perovskites by molecular dynamics.

  20. Modeling hybrid perovskites by molecular dynamics

    Science.gov (United States)

    Mattoni, Alessandro; Filippetti, Alessio; Caddeo, Claudia

    2017-02-01

    The topical review describes the recent progress in the modeling of hybrid perovskites by molecular dynamics simulations. Hybrid perovskites and in particular methylammonium lead halide (MAPI) have a tremendous technological relevance representing the fastest-advancing solar material to date. They also represent the paradigm of an organic-inorganic crystalline material with some conceptual peculiarities: an inorganic semiconductor for what concerns the electronic and absorption properties with a hybrid and solution processable organic-inorganic body. After briefly explaining the basic concepts of ab initio and classical molecular dynamics, the model potential recently developed for hybrid perovskites is described together with its physical motivation as a simple ionic model able to reproduce the main dynamical properties of the material. Advantages and limits of the two strategies (either ab initio or classical) are discussed in comparison with the time and length scales (from pico to microsecond scale) necessary to comprehensively study the relevant properties of hybrid perovskites from molecular reorientations to electrocaloric effects. The state-of-the-art of the molecular dynamics modeling of hybrid perovskites is reviewed by focusing on a selection of showcase applications of methylammonium lead halide: molecular cations disorder; temperature evolution of vibrations; thermally activated defects diffusion; thermal transport. We finally discuss the perspectives in the modeling of hybrid perovskites by molecular dynamics.

  1. Travelling Waves in Hybrid Chemotaxis Models

    KAUST Repository

    Franz, Benjamin

    2013-12-18

    Hybrid models of chemotaxis combine agent-based models of cells with partial differential equation models of extracellular chemical signals. In this paper, travelling wave properties of hybrid models of bacterial chemotaxis are investigated. Bacteria are modelled using an agent-based (individual-based) approach with internal dynamics describing signal transduction. In addition to the chemotactic behaviour of the bacteria, the individual-based model also includes cell proliferation and death. Cells consume the extracellular nutrient field (chemoattractant), which is modelled using a partial differential equation. Mesoscopic and macroscopic equations representing the behaviour of the hybrid model are derived and the existence of travelling wave solutions for these models is established. It is shown that cell proliferation is necessary for the existence of non-transient (stationary) travelling waves in hybrid models. Additionally, a numerical comparison between the wave speeds of the continuum models and the hybrid models shows good agreement in the case of weak chemotaxis and qualitative agreement for the strong chemotaxis case. In the case of slow cell adaptation, we detect oscillating behaviour of the wave, which cannot be explained by mean-field approximations. © 2013 Society for Mathematical Biology.

  2. HYbrid Coordinate Ocean Model (HYCOM): Global

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Global HYbrid Coordinate Ocean Model (HYCOM) and U.S. Navy Coupled Ocean Data Assimilation (NCODA) 3-day, daily forecast at approximately 9-km (1/12-degree)...

  3. Boltzmann Transport in Hybrid PIC HET Modeling

    Science.gov (United States)

    2015-07-01

    Paper 3. DATES COVERED (From - To) July 2015-July 2015 4. TITLE AND SUBTITLE Boltzmann transport in hybrid PIC HET modeling 5a. CONTRACT NUMBER In...produced a variety of self-consistent electron swarm codes, such as the Magboltz code, focused on directly solving the steady Boltzmann trans-port...Std. 239.18 Boltzmann transport in hybrid PIC HET modeling IEPC-2015- /ISTS-2015-b- Presented at Joint Conference of 30th International

  4. Statistical Model Checking for Stochastic Hybrid Systems

    DEFF Research Database (Denmark)

    David, Alexandre; Du, Dehui; Larsen, Kim Guldstrand

    2012-01-01

    This paper presents novel extensions and applications of the UPPAAL-SMC model checker. The extensions allow for statistical model checking of stochastic hybrid systems. We show how our race-based stochastic semantics extends to networks of hybrid systems, and indicate the integration technique...... applied for implementing this semantics in the UPPAAL-SMC simulation engine. We report on two applications of the resulting tool-set coming from systems biology and energy aware buildings....

  5. A hybrid-stress solid-shell element for non-linear analysis of piezoelectric structures

    Institute of Scientific and Technical Information of China (English)

    SZE; K; Y

    2009-01-01

    This paper presents eight-node solid-shell elements for geometric non-linear analyze of piezoelectric structures. To subdue shear, trapezoidal and thickness locking, the assumed natural strain method and an ad hoc modified generalized laminate stiffness matrix are employed. With the generalized stresses arising from the modified generalized laminate stiffness matrix assumed to be independent from the ones obtained from the displacement, an extended Hellinger-Reissner functional can be derived. By choosing the assumed generalized stresses similar to the assumed stresses of a previous solid ele- ment, a hybrid-stress solid-shell element is formulated. The presented finite shell element is able to model arbitrary curved shell structures. Non-linear numerical examples demonstrate the ability of the proposed model to analyze nonlinear piezoelectric devices.

  6. Tectonic stress - Models and magnitudes

    Science.gov (United States)

    Solomon, S. C.; Bergman, E. A.; Richardson, R. M.

    1980-01-01

    It is shown that global data on directions of principal stresses in plate interiors can serve as a test of possible plate tectonic force models. Such tests performed to date favor force models in which ridge pushing forces play a significant role. For such models the general magnitude of regional deviatoric stresses is comparable to the 200-300 bar compressive stress exerted by spreading ridges. An alternative approach to estimating magnitudes of regional deviatoric stresses from stress orientations is to seek regions of local stress either demonstrably smaller than or larger than the regional stresses. The regional stresses in oceanic intraplate regions are larger than the 100-bar compression exerted by the Ninetyeast Ridge and less than the bending stresses (not less than 1 kbar) beneath Hawaii.

  7. Three-dimensional hybrid-stress finite element analysis of composite laminates with cracks and cutouts

    Science.gov (United States)

    Wang, S. S.

    1985-01-01

    A three-dimensional hybrid-stress finite element analysis of composite laminates containing cutouts and cracks is presented. Fully three-dimensional, hexahedral isoparametric elements of the hybrid-stress model are formulated on the basis of the Hellinger-Reissner variational principle. Traction-free edges, cutouts, and crack surfaces are modeled by imposition of exact traction boundary conditions along element surfaces. Special boundary and surface elements are constructed by introducing proper constraints on assumed stress functions. The Lagrangian multiplier technique is used to enforce ply-interface continuity conditions in hybrid bimaterial composite elements for modeling the interface region in a composite laminate. Two examples are given to illustrate the capability of the present method of approach: (1) the well-known delamination problem in an angle-ply laminate, and (2) the important problem of a composite laminate containing a circular hole. Results are presented in detail for each case. Implications of interlaminar and intralaminar crack initiation, growth and fracture in composites containing cracks and cutouts are discussed.

  8. A Mathematical Model for Suppression Subtractive Hybridization

    OpenAIRE

    2002-01-01

    Suppression subtractive hybridization (SSH) is frequently used to unearth differentially expressed genes on a whole-genome scale. Its versatility is based on combining cDNA library subtraction and normalization, which allows the isolation of sequences of varying degrees of abundance and differential expression. SSH is a complex process with many adjustable parameters that affect the outcome of gene isolation.We present a mathematical model of SSH based on DNA hybridization kinetics for assess...

  9. A Hybrid 3D Indoor Space Model

    Science.gov (United States)

    Jamali, Ali; Rahman, Alias Abdul; Boguslawski, Pawel

    2016-10-01

    GIS integrates spatial information and spatial analysis. An important example of such integration is for emergency response which requires route planning inside and outside of a building. Route planning requires detailed information related to indoor and outdoor environment. Indoor navigation network models including Geometric Network Model (GNM), Navigable Space Model, sub-division model and regular-grid model lack indoor data sources and abstraction methods. In this paper, a hybrid indoor space model is proposed. In the proposed method, 3D modeling of indoor navigation network is based on surveying control points and it is less dependent on the 3D geometrical building model. This research proposes a method of indoor space modeling for the buildings which do not have proper 2D/3D geometrical models or they lack semantic or topological information. The proposed hybrid model consists of topological, geometrical and semantical space.

  10. A Hybrid 3D Indoor Space Model

    Directory of Open Access Journals (Sweden)

    A. Jamali

    2016-10-01

    Full Text Available GIS integrates spatial information and spatial analysis. An important example of such integration is for emergency response which requires route planning inside and outside of a building. Route planning requires detailed information related to indoor and outdoor environment. Indoor navigation network models including Geometric Network Model (GNM, Navigable Space Model, sub-division model and regular-grid model lack indoor data sources and abstraction methods. In this paper, a hybrid indoor space model is proposed. In the proposed method, 3D modeling of indoor navigation network is based on surveying control points and it is less dependent on the 3D geometrical building model. This research proposes a method of indoor space modeling for the buildings which do not have proper 2D/3D geometrical models or they lack semantic or topological information. The proposed hybrid model consists of topological, geometrical and semantical space.

  11. Hybrid simulation models of production networks

    CERN Document Server

    Kouikoglou, Vassilis S

    2001-01-01

    This book is concerned with a most important area of industrial production, that of analysis and optimization of production lines and networks using discrete-event models and simulation. The book introduces a novel approach that combines analytic models and discrete-event simulation. Unlike conventional piece-by-piece simulation, this method observes a reduced number of events between which the evolution of the system is tracked analytically. Using this hybrid approach, several models are developed for the analysis of production lines and networks. The hybrid approach combines speed and accuracy for exceptional analysis of most practical situations. A number of optimization problems, involving buffer design, workforce planning, and production control, are solved through the use of hybrid models.

  12. Hybrid Models in Loop Quantum Cosmology

    CERN Document Server

    Navascués, B Elizaga; Marugán, G A Mena

    2016-01-01

    In the framework of Loop Quantum Cosmology, inhomogeneous models are usually quantized by means of a hybrid approach that combines loop quantization techniques with standard quantum field theory methods. This approach is based on a splitting of the phase space in a homogeneous sector, formed by global, zero-modes, and an inhomogeneous sector, formed by the remaining, infinite number of modes, that describe the local degrees of freedom. Then, the hybrid quantization is attained by adopting a loop representation for the homogeneous gravitational sector, while a Fock representation is used for the inhomogeneities. The zero-mode of the Hamiltonian constraint operator couples the homogeneous and inhomogeneous sectors. The hybrid approach, therefore, is expected to provide a suitable quantum theory in regimes where the main quantum effects of the geometry are those affecting the zero-modes, while the inhomogeneities, still being quantum, can be treated in a more conventional way. This hybrid strategy was first prop...

  13. Hybrid modelling of anaerobic wastewater treatment processes.

    Science.gov (United States)

    Karama, A; Bernard, O; Genovesi, A; Dochain, D; Benhammou, A; Steyer, J P

    2001-01-01

    This paper presents a hybrid approach for the modelling of an anaerobic digestion process. The hybrid model combines a feed-forward network, describing the bacterial kinetics, and the a priori knowledge based on the mass balances of the process components. We have considered an architecture which incorporates the neural network as a static model of unmeasured process parameters (kinetic growth rate) and an integrator for the dynamic representation of the process using a set of dynamic differential equations. The paper contains a description of the neural network component training procedure. The performance of this approach is illustrated with experimental data.

  14. Residual stress and electromagnetic characteristics in loop type frequency selective surface embedded hybrid structures

    Energy Technology Data Exchange (ETDEWEB)

    Park, Kyung Mi; Seo, Yun Seok; Chun, Heoung Jae [Yonsei University, Seoul (Korea, Republic of); Hong, Ik Pyo [Kongju National University, Cheonan (Korea, Republic of); Park, Yong Bae [Ajoo University, Suwon (Korea, Republic of); Kim, Yoon Jae [Agency for defense development, Daejeon (Korea, Republic of)

    2015-01-15

    Residual stresses occur in frequency-selective surface (FSS)-embedded composite structures after co-curing due to differences between the coefficients of thermal expansion between composite skins and FSSs. Furthermore, the electromagnetic characteristics may be affected by the deformation of the FSS pattern by residual stresses. Therefore, we studied the changes in electromagnetic characteristics due to the deformation of FSS, using residual stresses to deform loop-type FSS-embedded hybrid composites. We considered the effects of loop-type FSS patterns of equal dimension as well as the stacking sequences of composite laminates on the electromagnetic characteristics of FSSs: Square loop, triangular loop and circular loop. The stacking sequences of composite laminates considered in this study were [0]{sub 8}, [0/90]{sub 4}, [+-45]{sub 4} and [0/+-45/90]{sub 2}. The FSS was located between composite laminates in the middle plane. To determine the residual stresses and deformations in the FSS embedded laminate structures, the thermal loading condition in the finite element analysis was induced by cooling the hybrid structures from 125 .deg. C to 20 .deg. C based on the cure cycle of the composite. Also, the electromagnetic reflection characteristics of the hybrid structures were predicted using deformed models by residual stresses, considering the effects of stacking sequence of composite laminates. The results showed that the maximum residual stresses and deformations were produced in the [0]{sub 8} composites with all three loop-types of FSS pattern. However, the maximum resonance frequency shifts occurred in the square and triangle loop-types with stacking sequence of [0]{sub 8} , while the maximum resonance frequency shift occurred in the circular loop-type with stacking sequence of [0/+-45/90]{sub 2}.

  15. Weather forecasting based on hybrid neural model

    Science.gov (United States)

    Saba, Tanzila; Rehman, Amjad; AlGhamdi, Jarallah S.

    2017-02-01

    Making deductions and expectations about climate has been a challenge all through mankind's history. Challenges with exact meteorological directions assist to foresee and handle problems well in time. Different strategies have been investigated using various machine learning techniques in reported forecasting systems. Current research investigates climate as a major challenge for machine information mining and deduction. Accordingly, this paper presents a hybrid neural model (MLP and RBF) to enhance the accuracy of weather forecasting. Proposed hybrid model ensure precise forecasting due to the specialty of climate anticipating frameworks. The study concentrates on the data representing Saudi Arabia weather forecasting. The main input features employed to train individual and hybrid neural networks that include average dew point, minimum temperature, maximum temperature, mean temperature, average relative moistness, precipitation, normal wind speed, high wind speed and average cloudiness. The output layer composed of two neurons to represent rainy and dry weathers. Moreover, trial and error approach is adopted to select an appropriate number of inputs to the hybrid neural network. Correlation coefficient, RMSE and scatter index are the standard yard sticks adopted for forecast accuracy measurement. On individual standing MLP forecasting results are better than RBF, however, the proposed simplified hybrid neural model comes out with better forecasting accuracy as compared to both individual networks. Additionally, results are better than reported in the state of art, using a simple neural structure that reduces training time and complexity.

  16. MODA - A hybrid atmospheric pollutant dispersion model

    Energy Technology Data Exchange (ETDEWEB)

    Favaron, M.; Oliveti Selmi, O. [Servizi Territorio srl, Milan (Italy); Sozzi, R. [Agenzia Regionale Protezione Ambiente (ARPA) Lazio, Rieti (Italy)

    2004-07-01

    MODA is a Gaussian-hybrid atmospheric dispersion model, intended for regulatory applications, and designed to meet the following requirements: ability to operate in complex terrain, standard use of a refined description of turbulence, operational efficiency (in terms of both speed and ease to change simulation parameters), ease of integration in modelling interfaces, output compatibility with the widely-used ISC3. MODA can operate in two modes: a standard mode, in which the pollutant dispersion is treated as Gaussian, and an advanced mode, in which the hybrid relations are used to compute the pollutant concentrations. (orig.)

  17. Integrated Inflammatory Stress (ITIS) Model

    DEFF Research Database (Denmark)

    Bangsgaard, Elisabeth O.; Hjorth, Poul G.; Olufsen, Mette S.

    2017-01-01

    maintains a long-term level of the stress hormone cortisol which is also anti-inflammatory. A new integrated model of the interaction between these two subsystems of the inflammatory system is proposed and coined the integrated inflammatory stress (ITIS) model. The coupling mechanisms describing...

  18. SCAN-based hybrid and double-hybrid density functionals from models without fitted parameters

    OpenAIRE

    Hui, Kerwin; Chai, Jeng-Da

    2015-01-01

    By incorporating the nonempirical SCAN semilocal density functional [Sun, Ruzsinszky, and Perdew, Phys. Rev. Lett. 115, 036402 (2015)] in the underlying expression of four existing hybrid and double-hybrid models, we propose one hybrid (SCAN0) and three double-hybrid (SCAN0-DH, SCAN-QIDH, and SCAN0-2) density functionals, which are free from any fitted parameters. The SCAN-based double-hybrid functionals consistently outperform their parent SCAN semilocal functional for self-interaction probl...

  19. Hybrid models in loop quantum cosmology

    Science.gov (United States)

    Elizaga Navascués, Beatriz; Martín-Benito, Mercedes; Mena Marugán, Guillermo A.

    2016-06-01

    In the framework of Loop Quantum Cosmology (LQC), inhomogeneous models are usually quantized by means of a hybrid approach that combines loop quantization techniques with standard quantum field theory methods. This approach is based on a splitting of the phase space in a homogeneous sector, formed by global, zero-modes and an inhomogeneous sector, formed by the remaining, infinite number of modes, that describe the local degrees of freedom. Then, the hybrid quantization is attained by adopting a loop representation for the homogeneous gravitational sector, while a Fock representation is used for the inhomogeneities. The zero-mode of the Hamiltonian constraint operator couples the homogeneous and inhomogeneous sectors. The hybrid approach, therefore, is expected to provide a suitable quantum theory in regimes where the main quantum effects of the geometry are those affecting the zero-modes, while the inhomogeneities, still being quantum, can be treated in a more conventional way. This hybrid strategy was first proposed for the simplest cosmological midisuperspaces: the Gowdy models, and it has been later applied to the case of cosmological perturbations. This paper reviews the construction and main applications of hybrid LQC.

  20. Special hybrid stress element for stress analyses around circular cutouts in laminated composites

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    A 3-dimensional hybrid stress element with a traction-free cylindrical surface based on amodified complementary energy principle has been derived for efficient and accurate analysis of stressconcentration around circular cutouts in thin to thick laminated composites. New expressions of sixstress components are developed by using three stress-functions in cylindrical co-ordinates, so that thehomogeneous equilibrium equations, the interlayer surface transverse-stresses and the traction-freeboundary condition on the cylindrical surface are satisfied exactly, while the interelement traction conti-nuity has been relaxed via the Lagrange multiplier method. Transverse-shear deformation effects areincorporated in each layer with displacement continuity enforced along interlayer surface. Selected ex-amples are used to demonstrate the efficiency and accuracy of the present special element.

  1. Hybrid quantum teleportation: A theoretical model

    Energy Technology Data Exchange (ETDEWEB)

    Takeda, Shuntaro; Mizuta, Takahiro; Fuwa, Maria; Yoshikawa, Jun-ichi; Yonezawa, Hidehiro; Furusawa, Akira [Department of Applied Physics, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan)

    2014-12-04

    Hybrid quantum teleportation – continuous-variable teleportation of qubits – is a promising approach for deterministically teleporting photonic qubits. We propose how to implement it with current technology. Our theoretical model shows that faithful qubit transfer can be achieved for this teleportation by choosing an optimal gain for the teleporter’s classical channel.

  2. Novel Hybrid Model: Integrating Scrum and XP

    Directory of Open Access Journals (Sweden)

    Zaigham Mushtaq

    2012-06-01

    Full Text Available Scrum does not provide any direction about how to engineer a software product. The project team has to adopt suitable agile process model for the engineering of software. XP process model is mainly focused on engineering practices rather than management practices. The design of XP process makes it suitable for simple and small size projects and not appropriate for medium and large projects. A fine integration of management and engineering practices is desperately required to build quality product to make it valuable for customers. In this research a novel framework hybrid model is proposed to achieve this integration. The proposed hybrid model is actually an express version of Scrum model. It possesses features of engineering practices that are necessary to develop quality software as per customer requirements and company objectives. A case study is conducted to validate the proposal of hybrid model. The results of the case study reveal that proposed model is an improved version of XP and Scrum model.

  3. CORSICA modelling of ITER hybrid operation scenarios

    Science.gov (United States)

    Kim, S. H.; Bulmer, R. H.; Campbell, D. J.; Casper, T. A.; LoDestro, L. L.; Meyer, W. H.; Pearlstein, L. D.; Snipes, J. A.

    2016-12-01

    The hybrid operating mode observed in several tokamaks is characterized by further enhancement over the high plasma confinement (H-mode) associated with reduced magneto-hydro-dynamic (MHD) instabilities linked to a stationary flat safety factor (q ) profile in the core region. The proposed ITER hybrid operation is currently aiming at operating for a long burn duration (>1000 s) with a moderate fusion power multiplication factor, Q , of at least 5. This paper presents candidate ITER hybrid operation scenarios developed using a free-boundary transport modelling code, CORSICA, taking all relevant physics and engineering constraints into account. The ITER hybrid operation scenarios have been developed by tailoring the 15 MA baseline ITER inductive H-mode scenario. Accessible operation conditions for ITER hybrid operation and achievable range of plasma parameters have been investigated considering uncertainties on the plasma confinement and transport. ITER operation capability for avoiding the poloidal field coil current, field and force limits has been examined by applying different current ramp rates, flat-top plasma currents and densities, and pre-magnetization of the poloidal field coils. Various combinations of heating and current drive (H&CD) schemes have been applied to study several physics issues, such as the plasma current density profile tailoring, enhancement of the plasma energy confinement and fusion power generation. A parameterized edge pedestal model based on EPED1 added to the CORSICA code has been applied to hybrid operation scenarios. Finally, fully self-consistent free-boundary transport simulations have been performed to provide information on the poloidal field coil voltage demands and to study the controllability with the ITER controllers. Extended from Proc. 24th Int. Conf. on Fusion Energy (San Diego, 2012) IT/P1-13.

  4. Growth and Physiological Response of Jatropha Interspecific Hybrid (Jatropha curcas x J. integerrima under Salt Stress

    Directory of Open Access Journals (Sweden)

    Dhimas Handhi Putranto

    2014-01-01

    Full Text Available Interspecific hybrid of Jatropha curcas x J. integerrima is expected to answer the low oil yield problem of Jatropha (Jatropha curcas L.. However, as a novel invention, research concerning on Jatropha interspecific hybrid is still limited especially in the aspect of its adaptability to unfavorable environment such as salt stress condition. It is interesting to know how Jatropha interspecific hybrid responses to salt stress condition due to the moderate salt tolerance ability of its mother plant (J. curcas L.. The objectives of this study were to compare the growth and physiological response of interspecific hybrid and non-hybrid Jatropha under salt stress. Three varieties of both interspecific hybrid and non-hybrid Jatropha seedling were exposed with 3 levels of sodium chloride treatment in Hoagland media solution which are 2.0 (control, 8.0, and 16.0 dS m-1 for 7 weeks. The parameters measured include plant height, number of leaves, shoot dry weight, specific leaf area, chlorophyll content (SPAD Index, leaf water potential, and leaf solute concentration. V2 (interspecific hybrid showed the highest potential as moderate salt tolerant variety among experimental Jatropha varieties due to its increasing trend of leaf number, dry weight, and total leaf area at moderate salinity level   (8 dS m-1. KUBP 35 and KUBP 40 showed the best growth performance under salt stress among experimental Jatropha varieties, but its potential to be moderate salt tolerant variety was still lower than V2 variety. The solute concentration, osmotic potential, and turgor potential of both interspecific hybrid (V2 and non-hybrid variety (KUBP 35 and KUBP 40 showed an increasing pattern which could be implied as an adaptive response to salt stress. This study has showed that Jatropha interspecific hybrid might have an adaptive physiological response to salt stress and could be considered as potential moderate salt tolerant variety under salt stress.

  5. Modeling lithium/hybrid-cathode batteries

    Energy Technology Data Exchange (ETDEWEB)

    Gomadam, Parthasarathy M.; Merritt, Don R.; Scott, Erik R.; Schmidt, Craig L.; Skarstad, Paul M. [Medtronic Energy and Component Center, 6700 Shingle Creek Pkwy, Brooklyn Center, MN 55430 (United States); Weidner, John W. [Center for Electrochemical Engineering, Department of Chemical Engineering, University of South Carolina, Columbia, SC 29208 (United States)

    2007-12-06

    This document describes a first-principles-based mathematical model developed to predict the voltage-capacity behavior of batteries having hybrid cathodes comprising a mixture of carbon monofluoride (CF{sub x}) and silver vanadium oxide (SVO). These batteries typically operate at moderate rates of discharge, lasting several years. The model presented here is an accurate tool for design optimization and performance prediction of batteries under current drains that encompass both the application rate and accelerated testing. (author)

  6. Influence of Deterministic Attachments for Large Unifying Hybrid Network Model

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    Large unifying hybrid network model (LUHPM) introduced the deterministic mixing ratio fd on the basis of the harmonious unification hybrid preferential model, to describe the influence of deterministic attachment to the network topology characteristics,

  7. Hybrid model for QCD deconfining phase boundary

    Science.gov (United States)

    Srivastava, P. K.; Singh, C. P.

    2012-06-01

    Intensive search for a proper and realistic equations of state (EOS) is still continued for studying the phase diagram existing between quark gluon plasma (QGP) and hadron gas (HG) phases. Lattice calculations provide such EOS for the strongly interacting matter at finite temperature (T) and vanishing baryon chemical potential (μB). These calculations are of limited use at finite μB due to the appearance of notorious sign problem. In the recent past, we had constructed a hybrid model description for the QGP as well as HG phases where we make use of a new excluded-volume model for HG and a thermodynamically-consistent quasiparticle model for the QGP phase and used them further to get QCD phase boundary and a critical point. Since then many lattice calculations have appeared showing various thermal and transport properties of QCD matter at finite T and μB=0. We test our hybrid model by reproducing the entire data for strongly interacting matter and predict our results at finite μB so that they can be tested in future. Finally we demonstrate the utility of the model in fixing the precise location, the order of the phase transition and the nature of CP existing on the QCD phase diagram. We thus emphasize the suitability of the hybrid model as formulated here in providing a realistic EOS for the strongly interacting matter.

  8. Hybrid modeling and prediction of dynamical systems

    Science.gov (United States)

    Lloyd, Alun L.; Flores, Kevin B.

    2017-01-01

    Scientific analysis often relies on the ability to make accurate predictions of a system’s dynamics. Mechanistic models, parameterized by a number of unknown parameters, are often used for this purpose. Accurate estimation of the model state and parameters prior to prediction is necessary, but may be complicated by issues such as noisy data and uncertainty in parameters and initial conditions. At the other end of the spectrum exist nonparametric methods, which rely solely on data to build their predictions. While these nonparametric methods do not require a model of the system, their performance is strongly influenced by the amount and noisiness of the data. In this article, we consider a hybrid approach to modeling and prediction which merges recent advancements in nonparametric analysis with standard parametric methods. The general idea is to replace a subset of a mechanistic model’s equations with their corresponding nonparametric representations, resulting in a hybrid modeling and prediction scheme. Overall, we find that this hybrid approach allows for more robust parameter estimation and improved short-term prediction in situations where there is a large uncertainty in model parameters. We demonstrate these advantages in the classical Lorenz-63 chaotic system and in networks of Hindmarsh-Rose neurons before application to experimentally collected structured population data. PMID:28692642

  9. Hybrid Energy System Modeling in Modelica

    Energy Technology Data Exchange (ETDEWEB)

    William R. Binder; Christiaan J. J. Paredis; Humberto E. Garcia

    2014-03-01

    In this paper, a Hybrid Energy System (HES) configuration is modeled in Modelica. Hybrid Energy Systems (HES) have as their defining characteristic the use of one or more energy inputs, combined with the potential for multiple energy outputs. Compared to traditional energy systems, HES provide additional operational flexibility so that high variability in both energy production and consumption levels can be absorbed more effectively. This is particularly important when including renewable energy sources, whose output levels are inherently variable, determined by nature. The specific HES configuration modeled in this paper include two energy inputs: a nuclear plant, and a series of wind turbines. In addition, the system produces two energy outputs: electricity and synthetic fuel. The models are verified through simulations of the individual components, and the system as a whole. The simulations are performed for a range of component sizes, operating conditions, and control schemes.

  10. Mathematical Modeling of Hybrid Electrical Engineering Systems

    Directory of Open Access Journals (Sweden)

    A. A. Lobaty

    2016-01-01

    Full Text Available A large class of systems that have found application in various industries and households, electrified transportation facilities and energy sector has been classified as electrical engineering systems. Their characteristic feature is a combination of continuous and discontinuous modes of operation, which is reflected in the appearance of a relatively new term “hybrid systems”. A wide class of hybrid systems is pulsed DC converters operating in a pulse width modulation, which are non-linear systems with variable structure. Using various methods for linearization it is possible to obtain linear mathematical models that rather accurately simulate behavior of such systems. However, the presence in the mathematical models of exponential nonlinearities creates considerable difficulties in the implementation of digital hardware. The solution can be found while using an approximation of exponential functions by polynomials of the first order, that, however, violates the rigor accordance of the analytical model with characteristics of a real object. There are two practical approaches to synthesize algorithms for control of hybrid systems. The first approach is based on the representation of the whole system by a discrete model which is described by difference equations that makes it possible to synthesize discrete algorithms. The second approach is based on description of the system by differential equations. The equations describe synthesis of continuous algorithms and their further implementation in a digital computer included in the control loop system. The paper considers modeling of a hybrid electrical engineering system using differential equations. Neglecting the pulse duration, it has been proposed to describe behavior of vector components in phase coordinates of the hybrid system by stochastic differential equations containing generally non-linear differentiable random functions. A stochastic vector-matrix equation describing dynamics of the

  11. Hybrid optimization model of product concepts

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Deficiencies of applying the simple genetic algorithm to generate concepts were specified. Based on analyzing conceptual design and the morphological matrix of an excavator, the hybrid optimization model of generating its concepts was proposed, viz. an improved adaptive genetic algorithm was applied to explore the excavator concepts in the searching space of conceptual design, and a neural network was used to evaluate the fitness of the population. The optimization of generating concepts was finished through the "evolution - evaluation" iteration. The results show that by using the hybrid optimization model, not only the fitness evaluation and constraint conditions are well processed, but also the search precision and convergence speed of the optimization process are greatly improved. An example is presented to demonstrate the advantages of the proposed method and associated algorithms.

  12. A global hybrid coupled model based on Atmosphere-SST feedbacks

    CERN Document Server

    Cimatoribus, Andrea A; Dijkstra, Henk A

    2011-01-01

    A global hybrid coupled model is developed, with the aim of studying the effects of ocean-atmosphere feedbacks on the stability of the Atlantic meridional overturning circulation. The model includes a global ocean general circulation model and a statistical atmosphere model. The statistical atmosphere model is based on linear regressions of data from a fully coupled climate model on sea surface temperature both locally and hemispherically averaged, being the footprint of Atlantic meridional overturning variability. It provides dynamic boundary conditions to the ocean model for heat, freshwater and wind-stress. A basic but consistent representation of ocean-atmosphere feedbacks is captured in the hybrid coupled model and it is more than ten times faster than the fully coupled climate model. The hybrid coupled model reaches a steady state with a climate close to the one of the fully coupled climate model, and the two models also have a similar response (collapse) of the Atlantic meridional overturning circulati...

  13. Hybrid turbulence models for atmospheric flow: A proper comparison with RANS models

    Directory of Open Access Journals (Sweden)

    Bautista Mary C.

    2015-01-01

    Full Text Available A compromise between the required accuracy and the need for affordable simulations for the wind industry might be achieved with the use of hybrid turbulence models. Detached-Eddy Simulation (DES [1] is a hybrid technique that yields accurate results only if it is used according to its original formulation [2]. Due to its particular characteristics (i.e., the type of mesh required, the modeling of the atmospheric flow might always fall outside the original scope of DES. An enhanced version of DES called Simplify Improved Delayed Detached-Eddy Simulation (SIDDES [3] can overcome this and other disadvantages of DES. In this work the neutrally stratified atmospheric flow over a flat terrain with homogeneous roughness will be analyzed using a Reynolds-Averaged Navier–Stokes (RANS model called k – ω SST (shear stress transport [4], and the hybrids k – ω SST-DES and k – ω SST-SIDDES models. An obvious test is to validate these hybrid approaches and asses their advantages and disadvantages over the pure RANS model. However, for several reasons the technique to drive the atmospheric flow is generally different for RANS and LES or hybrid models. The flow in a RANS simulation is usually driven by a constant shear stress imposed at the top boundary [5], therefore modeling only the atmospheric surface layer. On the contrary the LES and hybrid simulations are usually driven by a constant pressure gradient, thus a whole atmospheric boundary layer is simulated. Rigorously, this represents two different simulated cases making the model comparison not trivial. Nevertheless, both atmospheric flow cases are studied with the mentioned models. The results prove that a simple comparison of the time average turbulent quantities obtained by RANS and hybrid simulations is not easily achieved. The RANS simulations yield consistent results for the atmospheric surface layer case, while the hybrid model results are not correct. As for the atmospheric boundary

  14. Special purpose hybrid transfinite elements and unified computational methodology for accurately predicting thermoelastic stress waves

    Science.gov (United States)

    Tamma, Kumar K.; Railkar, Sudhir B.

    1988-01-01

    This paper represents an attempt to apply extensions of a hybrid transfinite element computational approach for accurately predicting thermoelastic stress waves. The applicability of the present formulations for capturing the thermal stress waves induced by boundary heating for the well known Danilovskaya problems is demonstrated. A unique feature of the proposed formulations for applicability to the Danilovskaya problem of thermal stress waves in elastic solids lies in the hybrid nature of the unified formulations and the development of special purpose transfinite elements in conjunction with the classical Galerkin techniques and transformation concepts. Numerical test cases validate the applicability and superior capability to capture the thermal stress waves induced due to boundary heating.

  15. Hamiltonian approach to hybrid plasma models

    CERN Document Server

    Tronci, Cesare

    2010-01-01

    The Hamiltonian structures of several hybrid kinetic-fluid models are identified explicitly, upon considering collisionless Vlasov dynamics for the hot particles interacting with a bulk fluid. After presenting different pressure-coupling schemes for an ordinary fluid interacting with a hot gas, the paper extends the treatment to account for a fluid plasma interacting with an energetic ion species. Both current-coupling and pressure-coupling MHD schemes are treated extensively. In particular, pressure-coupling schemes are shown to require a transport-like term in the Vlasov kinetic equation, in order for the Hamiltonian structure to be preserved. The last part of the paper is devoted to studying the more general case of an energetic ion species interacting with a neutralizing electron background (hybrid Hall-MHD). Circulation laws and Casimir functionals are presented explicitly in each case.

  16. Dual Stimuli-Activatable Oxidative Stress Amplifying Agent as a Hybrid Anticancer Prodrug.

    Science.gov (United States)

    Han, Eunji; Kwon, Byeongsu; Yoo, Donghyuck; Kang, Changsun; Khang, Gilson; Lee, Dongwon

    2017-04-19

    Compared to normal cells, cancer cells have a higher level of reactive oxygen species (ROS) due to aberrant metabolism and disruption of redox homeostasis which drive their proliferation and promote progression and metastasis of cancers. The altered redox balance and biological difference between normal cells and cancer cells provide a basis for the development of anticancer agents which are able to generate pharmacological ROS insults to kill cancer cells preferentially. In this study, we report a new hybrid anticancer drug, termed OSamp, which undergoes esterase- and acid-catalyzed hydrolysis to deplete antioxidant glutathione (GSH) and generate ROS, simultaneously. OSamp significantly elevated oxidative stress in cancer cells, leading to enhanced apoptotic cancer cell death through mitochondrial membrane disruption, cytochrome c release, activation of pro-caspase 3, and deactivation of STAT3 (signal transducer and activator of transcription-3). OSamp, administered intravenously, significantly suppressed the tumor growth in a mouse model of tumor xenografts without notable side effects. Oxidative stress amplifying OSamp holds tremendous potential as a new anticancer therapeutic and provides a new therapeutic paradigm which can be extended to development of hybrid anticancer drugs.

  17. Infectious disease modeling a hybrid system approach

    CERN Document Server

    Liu, Xinzhi

    2017-01-01

    This volume presents infectious diseases modeled mathematically, taking seasonality and changes in population behavior into account, using a switched and hybrid systems framework. The scope of coverage includes background on mathematical epidemiology, including classical formulations and results; a motivation for seasonal effects and changes in population behavior, an investigation into term-time forced epidemic models with switching parameters, and a detailed account of several different control strategies. The main goal is to study these models theoretically and to establish conditions under which eradication or persistence of the disease is guaranteed. In doing so, the long-term behavior of the models is determined through mathematical techniques from switched systems theory. Numerical simulations are also given to augment and illustrate the theoretical results and to help study the efficacy of the control schemes.

  18. Fluid and hybrid models for streamers

    Science.gov (United States)

    Bonaventura, Zdeněk

    2016-09-01

    Streamers are contracted ionizing waves with self-generated field enhancement that propagate into a low-ionized medium exposed to high electric field leaving filamentary trails of plasma behind. The widely used model to study streamer dynamics is based on drift-diffusion equations for electrons and ions, assuming local field approximation, coupled with Poisson's equation. For problems where presence of energetic electrons become important a fluid approach needs to be extended by a particle model, accompanied also with Monte Carlo Collision technique, that takes care of motion of these electrons. A combined fluid-particle approach is used to study an influence of surface emission processes on a fast-pulsed dielectric barrier discharge in air at atmospheric pressure. It is found that fluid-only model predicts substantially faster reignition dynamics compared to coupled fluid-particle model. Furthermore, a hybrid model can be created in which the population of electrons is divided in the energy space into two distinct groups: (1) low energy `bulk' electrons that are treated with fluid model, and (2) high energy `beam' electrons, followed as particles. The hybrid model is then capable not only to deal with streamer discharges in laboratory conditions, but also allows us to study electron acceleration in streamer zone of lighting leaders. There, the production of fast electrons from streamers is investigated, since these (runaway) electrons act as seeds for the relativistic runaway electron avalanche (RREA) mechanism, important for high-energy atmospheric physics phenomena. Results suggest that high energy electrons effect the streamer propagation, namely the velocity, the peak electric field, and thus also the production rate of runaway electrons. This work has been supported by the Czech Science Foundation research project 15-04023S.

  19. New hybrid model of proton exchange membrane fuel cell

    Institute of Scientific and Technical Information of China (English)

    WANG Rui-min; CAO Guang-yi; ZHU Xin-jian

    2007-01-01

    Model and simulation are good tools for design optimization of fuel cell systems. This paper proposes a new hybrid model of proton exchange membrane fuel cell (PEMFC). The hybrid model includes physical component and black-box component. The physical component represents the well-known part of PEMFC, while artificial neural network (ANN) component estimates the poorly known part of PEMFC. The ANN model can compensate the performance of the physical model. This hybrid model is implemented on Matlab/Simulink software. The hybrid model shows better accuracy than that of the physical model and ANN model. Simulation results suggest that the hybrid model can be used as a suitable and accurate model for PEMFC.

  20. Modeling of renewable hybrid energy sources

    Directory of Open Access Journals (Sweden)

    Dumitru Cristian Dragos

    2009-12-01

    Full Text Available Recent developments and trends in the electric power consumption indicate an increasing use of renewable energy. Renewable energy technologies offer the promise of clean, abundant energy gathered from self-renewing resources such as the sun, wind, earth and plants. Virtually all regions of the world have renewable resources of one type or another. By this point of view studies on renewable energies focuses more and more attention. The present paper intends to present different mathematical models related to different types of renewable energy sources such as: solar energy and wind energy. It is also presented the validation and adaptation of such models to hybrid systems working in geographical and meteorological conditions specific to central part of Transylvania region. The conclusions based on validation of such models are also shown.

  1. Hybrid2: The hybrid system simulation model, Version 1.0, user manual

    Energy Technology Data Exchange (ETDEWEB)

    Baring-Gould, E.I.

    1996-06-01

    In light of the large scale desire for energy in remote communities, especially in the developing world, the need for a detailed long term performance prediction model for hybrid power systems was seen. To meet these ends, engineers from the National Renewable Energy Laboratory (NREL) and the University of Massachusetts (UMass) have spent the last three years developing the Hybrid2 software. The Hybrid2 code provides a means to conduct long term, detailed simulations of the performance of a large array of hybrid power systems. This work acts as an introduction and users manual to the Hybrid2 software. The manual describes the Hybrid2 code, what is included with the software and instructs the user on the structure of the code. The manual also describes some of the major features of the Hybrid2 code as well as how to create projects and run hybrid system simulations. The Hybrid2 code test program is also discussed. Although every attempt has been made to make the Hybrid2 code easy to understand and use, this manual will allow many organizations to consider the long term advantages of using hybrid power systems instead of conventional petroleum based systems for remote power generation.

  2. Hybrid breakdown weakens under thermal stress in population crosses of the copepod Tigriopus californicus.

    Science.gov (United States)

    Willett, Christopher S

    2012-01-01

    The outcome of hybridization can be impacted by environmental conditions, which themselves can contribute to reproductive isolation between taxa. In crosses of genetically divergent populations, hybridization can have both negative and positive impacts on fitness, the balance between which might be tipped by changes in the environment. Genetically divergent populations of the intertidal copepod Tigriopus californicus have been shown to differ in thermal tolerance at high temperatures along a latitudinal gradient. In this study, a series of crosses were made between pairs of genetically divergent populations of T. californicus, and the thermal tolerance of these hybrids was tested. In most cases, the first-generation hybrids had relatively high thermal tolerance and the second-generation hybrids were not generally reduced below the less-tolerant parental population for high temperature tolerance. This pattern contrasts with previous studies from crosses of genetically divergent populations of this copepod, which often shows hybrid breakdown in these second-generation hybrids for other measures of fitness. These results suggest that high temperature stress could either increase the positive impacts of hybridization or decrease the negative impacts of hybridization resulting in lowered hybrid breakdown in these population crosses.

  3. Multiscale Modeling of Graphite/CNT/Epoxy Hybrid Composites

    Science.gov (United States)

    2016-03-09

    AFRL-AFOSR-VA-TR-2016-0154 Multiscale Modeling of Graphite/CNT/Epoxy Hybrid Composites Gregory Odegard MICHIGAN TECHNOLOGICAL UNIVERSITY Final Report...SUBTITLE Multiscale Modeling of Graphite/CNT/Epoxy Hybrid Composites 5a. CONTRACT NUMBER 5b. GRANT NUMBER FA9550-13-1-0030 5c. PROGRAM ELEMENT NUMBER...DISTRIBUTION A: Distribution approved for public release. Final Report Multiscale Modeling of Graphite/CNT/Epoxy Hybrid Composites Grant FA9550-13-1-0030 PI

  4. Hybrid Models of Alternative Current Filter for Hvdc

    Directory of Open Access Journals (Sweden)

    Ufa Ruslan A.

    2017-01-01

    Full Text Available Based on a hybrid simulation concept of HVDC, the developed hybrid AC filter models, providing the sufficiently full and adequate modeling of all single continuous spectrum of quasi-steady-state and transient processes in the filter, are presented. The obtained results suggest that usage of the hybrid simulation approach is carried out a methodically accurate with guaranteed instrumental error solution of differential equation systems of mathematical models of HVDC.

  5. Modeling and Analysis of Hybrid Dynamic Systems Using Hybrid Petri Nets

    OpenAIRE

    GHOMRI Latefa; Alla, Hassane

    2008-01-01

    Some extensions of PNs permitting HDS modeling were presented here. The first models to be presented are continuous PNs. This model may be used for modeling either a continuous system or a discrete system. In this case, it is an approximation that is often satisfactory. Hybrid PNs combine in the same formalism a discrete PN and a continuous PN. Two hybrid PN models were considered in this chapter. The first, called the hybrid PN, has a deterministic behavior; this means that we can predict th...

  6. Causality in Psychiatry: A Hybrid Symptom Network Construct Model

    Directory of Open Access Journals (Sweden)

    Gerald eYoung

    2015-11-01

    Full Text Available Causality or etiology in psychiatry is marked by standard biomedical, reductionistic models (symptoms reflect the construct involved that inform approaches to nosology, or classification, such as in the DSM-5 (Diagnostic and Statistical Manual of Mental Disorders, Fifth Edition; American Psychiatric Association, 2013. However, network approaches to symptom interaction (i.e., symptoms are formative of the construct; e.g., McNally, Robinaugh, Wu, Wang, Deserno, & Borsboom, 2014, for PTSD (posttraumatic stress disorder are being developed that speak to bottom-up processes in mental disorder, in contrast to the typical top-down psychological construct approach. The present article presents a hybrid top-down, bottom-up model of the relationship between symptoms and mental disorder, viewing symptom expression and their causal complex as a reciprocally dynamic system with multiple levels, from lower-order symptoms in interaction to higher-order constructs affecting them. The hybrid model hinges on good understanding of systems theory in which it is embedded, so that the article reviews in depth nonlinear dynamical systems theory (NLDST. The article applies the concept of emergent circular causality (Young, 2011 to symptom development, as well. Conclusions consider that symptoms vary over several dimensions, including: subjectivity; objectivity; conscious motivation effort; and unconscious influences, and the degree to which individual (e.g., meaning and universal (e.g., causal processes are involved. The opposition between science and skepticism is a complex one that the article addresses in final comments.

  7. Causality in Psychiatry: A Hybrid Symptom Network Construct Model

    Science.gov (United States)

    Young, Gerald

    2015-01-01

    Causality or etiology in psychiatry is marked by standard biomedical, reductionistic models (symptoms reflect the construct involved) that inform approaches to nosology, or classification, such as in the DSM-5 [Diagnostic and Statistical Manual of Mental Disorders, Fifth Edition; (1)]. However, network approaches to symptom interaction [i.e., symptoms are formative of the construct; e.g., (2), for posttraumatic stress disorder (PTSD)] are being developed that speak to bottom-up processes in mental disorder, in contrast to the typical top-down psychological construct approach. The present article presents a hybrid top-down, bottom-up model of the relationship between symptoms and mental disorder, viewing symptom expression and their causal complex as a reciprocally dynamic system with multiple levels, from lower-order symptoms in interaction to higher-order constructs affecting them. The hybrid model hinges on good understanding of systems theory in which it is embedded, so that the article reviews in depth non-linear dynamical systems theory (NLDST). The article applies the concept of emergent circular causality (3) to symptom development, as well. Conclusions consider that symptoms vary over several dimensions, including: subjectivity; objectivity; conscious motivation effort; and unconscious influences, and the degree to which individual (e.g., meaning) and universal (e.g., causal) processes are involved. The opposition between science and skepticism is a complex one that the article addresses in final comments. PMID:26635639

  8. Hybrid Modeling Improves Health and Performance Monitoring

    Science.gov (United States)

    2007-01-01

    Scientific Monitoring Inc. was awarded a Phase I Small Business Innovation Research (SBIR) project by NASA's Dryden Flight Research Center to create a new, simplified health-monitoring approach for flight vehicles and flight equipment. The project developed a hybrid physical model concept that provided a structured approach to simplifying complex design models for use in health monitoring, allowing the output or performance of the equipment to be compared to what the design models predicted, so that deterioration or impending failure could be detected before there would be an impact on the equipment's operational capability. Based on the original modeling technology, Scientific Monitoring released I-Trend, a commercial health- and performance-monitoring software product named for its intelligent trending, diagnostics, and prognostics capabilities, as part of the company's complete ICEMS (Intelligent Condition-based Equipment Management System) suite of monitoring and advanced alerting software. I-Trend uses the hybrid physical model to better characterize the nature of health or performance alarms that result in "no fault found" false alarms. Additionally, the use of physical principles helps I-Trend identify problems sooner. I-Trend technology is currently in use in several commercial aviation programs, and the U.S. Air Force recently tapped Scientific Monitoring to develop next-generation engine health-management software for monitoring its fleet of jet engines. Scientific Monitoring has continued the original NASA work, this time under a Phase III SBIR contract with a joint NASA-Pratt & Whitney aviation security program on propulsion-controlled aircraft under missile-damaged aircraft conditions.

  9. Analysis of chromosome aberration data by hybrid-scale models

    Energy Technology Data Exchange (ETDEWEB)

    Indrawati, Iwiq [Research and Development on Radiation and Nuclear Biomedical Center, National Nuclear Energy Agency (Indonesia); Kumazawa, Shigeru [Nuclear Technology and Education Center, Japan Atomic Energy Research Institute, Honkomagome, Tokyo (Japan)

    2000-02-01

    This paper presents a new methodology for analyzing data of chromosome aberrations, which is useful to understand the characteristics of dose-response relationships and to construct the calibration curves for the biological dosimetry. The hybrid scale of linear and logarithmic scales brings a particular plotting paper, where the normal section paper, two types of semi-log papers and the log-log paper are continuously connected. The hybrid-hybrid plotting paper may contain nine kinds of linear relationships, and these are conveniently called hybrid scale models. One can systematically select the best-fit model among the nine models by among the conditions for a straight line of data points. A biological interpretation is possible with some hybrid-scale models. In this report, the hybrid scale models were applied to separately reported data on chromosome aberrations in human lymphocytes as well as on chromosome breaks in Tradescantia. The results proved that the proposed models fit the data better than the linear-quadratic model, despite the demerit of the increased number of model parameters. We showed that the hybrid-hybrid model (both variables of dose and response using the hybrid scale) provides the best-fit straight lines to be used as the reliable and readable calibration curves of chromosome aberrations. (author)

  10. Modelling supervisory controller for hybrid power systems

    Energy Technology Data Exchange (ETDEWEB)

    Pereira, A.; Bindner, H.; Lundsager, P. [Risoe National Lab., Roskilde (Denmark); Jannerup, O. [Technical Univ. of Denmark, Dept. of Automation, Lyngby (Denmark)

    1999-03-01

    Supervisory controllers are important to achieve optimal operation of hybrid power systems. The performance and economics of such systems depend mainly on the control strategy for switching on/off components. The modular concept described in this paper is an attempt to design standard supervisory controllers that could be used in different applications, such as village power and telecommunication applications. This paper presents some basic aspects of modelling and design of modular supervisory controllers using the object-oriented modelling technique. The functional abstraction hierarchy technique is used to formulate the control requirements and identify the functions of the control system. The modular algorithm is generic and flexible enough to be used with any system configuration and several goals (different applications). The modularity includes accepting modification of system configuration and goals during operation with minor or no changes in the supervisory controller. (au)

  11. A Hybrid Teaching and Learning Model

    Science.gov (United States)

    Juhary, Jowati Binti

    This paper aims at analysing the needs for a specific teaching and learning model for the National Defence University of Malaysia (NDUM). The main argument is that whether there are differences between teaching and learning for academic component versus military component at the university. It is further argued that in order to achieve excellence, there should be one teaching and learning culture. Data were collected through interviews with military cadets. It is found that there are variations of teaching and learning strategies for academic courses, in comparison to a dominant teaching and learning style for military courses. Thus, in the interest of delivering quality education and training for students at the university, the paper argues that possibly a hybrid model for teaching and learning is fundamental in order to generate a one culture of academic and military excellence for the NDUM.

  12. Hybrid adaptive control of a dragonfly model

    Science.gov (United States)

    Couceiro, Micael S.; Ferreira, Nuno M. F.; Machado, J. A. Tenreiro

    2012-02-01

    Dragonflies show unique and superior flight performances than most of other insect species and birds. They are equipped with two pairs of independently controlled wings granting an unmatchable flying performance and robustness. In this paper, it is presented an adaptive scheme controlling a nonlinear model inspired in a dragonfly-like robot. It is proposed a hybrid adaptive ( HA) law for adjusting the parameters analyzing the tracking error. At the current stage of the project it is considered essential the development of computational simulation models based in the dynamics to test whether strategies or algorithms of control, parts of the system (such as different wing configurations, tail) as well as the complete system. The performance analysis proves the superiority of the HA law over the direct adaptive ( DA) method in terms of faster and improved tracking and parameter convergence.

  13. Modeling of Residual Stresses In Toughened Glass

    DEFF Research Database (Denmark)

    Nielsen, Jens Henrik

    2006-01-01

    -depth knowledge of the residual stresses in toughened glass near holes and edges where the total stress state is a combination of contact stresses and residual stresses. The present paper, presenting the derivation and results for a model predicting the residual stresses in a glass plate far from edges and holes......, is a step towards such a model. The model is based on the Instant Freeze concept with a few modifications. Current work, using a partial differential equation approach for the modeling and state-of-the-art in modeling residual stresses in glass is briefly presented, and a short description of the toughening...

  14. A muscle model for hybrid muscle activation

    Directory of Open Access Journals (Sweden)

    Klauer Christian

    2015-09-01

    Full Text Available To develop model-based control strategies for Functional Electrical Stimulation (FES in order to support weak voluntary muscle contractions, a hybrid model for describing joint motions induced by concurrent voluntary-and FES induced muscle activation is proposed. It is based on a Hammerstein model – as commonly used in feedback controlled FES – and exemplarily applied to describe the shoulder abduction joint angle. Main component of a Hammerstein muscle model is usually a static input nonlinearity depending on the stimulation intensity. To additionally incorporate voluntary contributions, we extended the static non-linearity by a second input describing the intensity of the voluntary contribution that is estimated by electromyography (EMG measurements – even during active FES. An Artificial Neural Network (ANN is used to describe the static input non-linearity. The output of the ANN drives a second-order linear dynamical system that describes the combined muscle activation and joint angle dynamics. The tunable parameters are adapted to the individual subject by a system identification approach using previously recorded I/O-data. The model has been validated in two healthy subjects yielding RMS values for the joint angle error of 3.56° and 3.44°, respectively.

  15. Modelling of Natural and Hybrid Ventilation

    DEFF Research Database (Denmark)

    Heiselberg, Per

    be installed in existing buildings after a few modifications. In contrast, ventilation systems using only natural forces such as wind and thermal buoyancy need to be designed together with the building, since the building itself and its components are the elements that can reduce or increase air movement...... as well as influence the air content (dust, pollution etc.). Architects and engineers need to acquire qualitative and quantitative information about the interactions between building characteristics and natural ventilation in order to design buildings and systems consistent with a passive low......-energy approach. These lecture notes focus on modelling of natural and hybrid ventilation driven by thermal buoyancy, wind and/or mechanical driving forces for a single zone with one, two or several openings....

  16. Crash simulation of hybrid structures considering the stress and strain rate dependent material behavior of thermoplastic materials

    Science.gov (United States)

    Hopmann, Ch.; Schöngart, M.; Weber, M.; Klein, J.

    2015-05-01

    Thermoplastic materials are more and more used as a light weight replacement for metal, especially in the automotive industry. Since these materials do not provide the mechanical properties, which are required to manufacture supporting elements like an auto body or a cross bearer, plastics are combined with metals in so called hybrid structures. Normally, the plastics components are joined to the metal structures using different technologies like welding or screwing. Very often, the hybrid structures are made of flat metal parts, which are stiffened by a reinforcement structure made of thermoplastic materials. The loads on these structures are very often impulsive, for example in the crash situation of an automobile. Due to the large stiffness variation of metal and thermoplastic materials, complex states of stress and very high local strain rates occur in the contact zone under impact conditions. Since the mechanical behavior of thermoplastic materials is highly dependent on these types of load, the crash failure of metal plastic hybrid parts is very complex. The problem is that the normally used strain rate dependent elastic/plastic material models are not capable to simulate the mechanical behavior of thermoplastic materials depended on the state of stress. As part of a research project, a method to simulate the mechanical behavior of hybrid structures under impact conditions is developed at the IKV. For this purpose, a specimen for the measurement of mechanical properties dependet on the state of stress and a method for the strain rate depended characterization of thermoplastic materials were developed. In the second step impact testing is performed. A hybrid structure made from a metal sheet and a reinforcement structure of a Polybutylenterephthalat Polycarbonate blend is tested under impact conditions. The measured stress and strain rate depended material data are used to simulate the mechanical behavior of the hybrid structure under highly dynamic load with

  17. Modelling the creep behaviour of tempered martensitic steel based on a hybrid approach

    Energy Technology Data Exchange (ETDEWEB)

    Yadav, Surya Deo, E-mail: surya.yadav@tugraz.at [Institute of Materials Science and Welding, Graz University of Technology, Kopernikusgasse 24, A-8010 Graz (Austria); Sonderegger, Bernhard, E-mail: bernhard.sonderegger@tugraz.at [Institute of Materials Science and Welding, Graz University of Technology, Kopernikusgasse 24, A-8010 Graz (Austria); Stracey, Muhammad, E-mail: strmuh001@myuct.ac.za [Centre for Materials Engineering, Department of Mechanical Engineering, University of Cape Town, Cape Town (South Africa); Poletti, Cecilia, E-mail: cecilia.poletti@tugraz.at [Institute of Materials Science and Welding, Graz University of Technology, Kopernikusgasse 24, A-8010 Graz (Austria)

    2016-04-26

    In this work, we present a novel hybrid approach to describe and model the creep behaviour of tempered martensitic steels. The hybrid approach couples a physically based model with a continuum damage mechanics (CDM) model. The creep strain is modelled describing the motions of three categories of dislocations: mobile, dipole and boundary. The initial precipitate state is simulated using the thermodynamic software tool MatCalc. The particle radii and number densities are incorporated into the creep model in terms of Zener drag pressure. The Orowan's equation for creep strain rate is modified to account for tertiary creep using softening parameters related to precipitate coarsening and cavitation. For the first time the evolution of internal variables such as dislocation densities, glide velocities, effective stresses on dislocations, internal stress from the microstructure, subgrain size, pressure on subgrain boundaries and softening parameters is discussed in detail. The model is validated with experimental data of P92 steel reported in the literature.

  18. A hybrid Fermi-Ulam-bouncer model

    Energy Technology Data Exchange (ETDEWEB)

    Leonel, Edson D; McClintock, P V E [Department of Physics, Lancaster University, Lancaster LA1 4YB (United Kingdom)

    2005-01-28

    Some dynamical and chaotic properties are studied for a classical particle bouncing between two rigid walls, one of which is fixed and the other moves in time, in the presence of an external field. The system is a hybrid, behaving not as a purely Fermi-Ulam model, nor as a bouncer, but as a combination of the two. We consider two different kinds of motion of the moving wall: (i) periodic and (ii) random. The dynamics of the model is studied via a two-dimensional nonlinear area-preserving map. We confirm that, for periodic oscillations, our model recovers the well-known results of the Fermi-Ulam model in the limit of zero external field. For intense external fields, we establish the range of control parameters values within which invariant spanning curves are observed below the chaotic sea in the low energy domain. We characterize this chaotic low energy region in terms of Lyapunov exponents. We also show that the velocity of the particle, and hence also its kinetic energy, grow according to a power law when the wall moves randomly, yielding clear evidence of Fermi acceleration.

  19. A Hybrid Model of a Brushless DC Motor

    DEFF Research Database (Denmark)

    Bendtsen, Jan Dimon; Hansen, Hans Brink; Kallesøe, Carsten Skovmose

    2007-01-01

    This paper presents a novel approach to modeling of a Brush-Less Direct Current Motor (BLDCM) driven by an inverter using hybrid systems theory. Hybrid systems combine continuous and discrete (event-based) dynamics, which is exactly the case in an inverter-driven BLDCM. The model presented in thi...

  20. Numerical Analysis of Welding Residual Stress and Distortion in Laser+GMAW Hybrid Welding of Aluminum Alloy T-Joint

    Institute of Scientific and Technical Information of China (English)

    Guoxiang XU; Chuansong WU; Xuezhou MA; Xuyou WANG

    2013-01-01

    A 3-D finite element model is developed to predict the temperature field and thermally induced residual stress and distortion in laser+GMAW hybrid welding of 6061-T6 aluminum alloy T-joint.And the characteristics of residual stress distribution and deformation are numerically investigated.In the simulation,the heat source model takes into account the effect of joint geometric shape and welding torch slant on the heat flux distribution and a sequentially coupled thermo-mechanical method is used.The calculated results show that higher residual stress is distributed in and surround the weld zone.Its peak value is very close to the yield strength of base metal.Besides,a large deformation appears in the middle and rear part of the weldment.

  1. Stress field models from Maxwell stress functions: southern California

    Science.gov (United States)

    Bird, Peter

    2017-08-01

    The lithospheric stress field is formally divided into three components: a standard pressure which is a function of elevation (only), a topographic stress anomaly (3-D tensor field) and a tectonic stress anomaly (3-D tensor field). The boundary between topographic and tectonic stress anomalies is somewhat arbitrary, and here is based on the modeling tools available. The topographic stress anomaly is computed by numerical convolution of density anomalies with three tensor Green's functions provided by Boussinesq, Cerruti and Mindlin. By assuming either a seismically estimated or isostatic Moho depth, and by using Poisson ratio of either 0.25 or 0.5, I obtain four alternative topographic stress models. The tectonic stress field, which satisfies the homogeneous quasi-static momentum equation, is obtained from particular second derivatives of Maxwell vector potential fields which are weighted sums of basis functions representing constant tectonic stress components, linearly varying tectonic stress components and tectonic stress components that vary harmonically in one, two and three dimensions. Boundary conditions include zero traction due to tectonic stress anomaly at sea level, and zero traction due to the total stress anomaly on model boundaries at depths within the asthenosphere. The total stress anomaly is fit by least squares to both World Stress Map data and to a previous faulted-lithosphere, realistic-rheology dynamic model of the region computed with finite-element program Shells. No conflict is seen between the two target data sets, and the best-fitting model (using an isostatic Moho and Poisson ratio 0.5) gives minimum directional misfits relative to both targets. Constraints of computer memory, execution time and ill-conditioning of the linear system (which requires damping) limit harmonically varying tectonic stress to no more than six cycles along each axis of the model. The primary limitation on close fitting is that the Shells model predicts very sharp

  2. Hybrid Dynamical Systems Modeling, Stability, and Robustness

    CERN Document Server

    Goebel, Rafal; Teel, Andrew R

    2012-01-01

    Hybrid dynamical systems exhibit continuous and instantaneous changes, having features of continuous-time and discrete-time dynamical systems. Filled with a wealth of examples to illustrate concepts, this book presents a complete theory of robust asymptotic stability for hybrid dynamical systems that is applicable to the design of hybrid control algorithms--algorithms that feature logic, timers, or combinations of digital and analog components. With the tools of modern mathematical analysis, Hybrid Dynamical Systems unifies and generalizes earlier developments in continuous-time and discret

  3. Comparative study of hybrid RANS-LES models for separated flows

    Science.gov (United States)

    Kumar, G.; Lakshmanan, S. K.; Gopalan, H.; De, A.

    2016-06-01

    Hybrid RANS-LES models are proven to be capable of predicting massively separated flows with reasonable computation cost. In this paper, Spalart-Allmaras (S-A) based detached eddy simulation (DES) model and three SST based hybrid models with different RANS to LES switching criteriaare investigated. The flow over periodic hill at Re = 10,595 is chosen as the benchmark for comparing the performance of the different models due to the complex flow physics and reasonablecomputational cost. The model performances are evaluated based on their prediction capabilities of velocity and stress profiles, and separation and reattachment point. The simulated results are validatedagainst experimental and numerical results available in literature. The S-A DES model predicted separation bubble accurately at the top of the hill, as reported earlier in experiments and other numerical results. This model also correctly predicted velocity and stress profiles in recirculation region. However, the performance of this model was poor in the post reattachment region. On the other hand, the k-ω SST based hybrid models performed poorly in recirculation region, but it fairly predicted stress profiles in post reattachment region.

  4. Thermal-mechanical modeling of laser ablation hybrid machining

    Science.gov (United States)

    Matin, Mohammad Kaiser

    2001-08-01

    Hard, brittle and wear-resistant materials like ceramics pose a problem when being machined using conventional machining processes. Machining ceramics even with a diamond cutting tool is very difficult and costly. Near net-shape processes, like laser evaporation, produce micro-cracks that require extra finishing. Thus it is anticipated that ceramic machining will have to continue to be explored with new-sprung techniques before ceramic materials become commonplace. This numerical investigation results from the numerical simulations of the thermal and mechanical modeling of simultaneous material removal from hard-to-machine materials using both laser ablation and conventional tool cutting utilizing the finite element method. The model is formulated using a two dimensional, planar, computational domain. The process simulation acronymed, LAHM (Laser Ablation Hybrid Machining), uses laser energy for two purposes. The first purpose is to remove the material by ablation. The second purpose is to heat the unremoved material that lies below the ablated material in order to ``soften'' it. The softened material is then simultaneously removed by conventional machining processes. The complete solution determines the temperature distribution and stress contours within the material and tracks the moving boundary that occurs due to material ablation. The temperature distribution is used to determine the distance below the phase change surface where sufficient ``softening'' has occurred, so that a cutting tool may be used to remove additional material. The model incorporated for tracking the ablative surface does not assume an isothermal melt phase (e.g. Stefan problem) for laser ablation. Both surface absorption and volume absorption of laser energy as function of depth have been considered in the models. LAHM, from the thermal and mechanical point of view is a complex machining process involving large deformations at high strain rates, thermal effects of the laser, removal of

  5. Uniform convergence and a posteriori error estimation for assumed stress hybrid finite element methods

    CERN Document Server

    Yu, Guozhu; Carstensen, Carsten

    2011-01-01

    Assumed stress hybrid methods are known to improve the performance of standard displacement-based finite elements and are widely used in computational mechanics. The methods are based on the Hellinger-Reissner variational principle for the displacement and stress variables. This work analyzes two existing 4-node hybrid stress quadrilateral elements due to Pian and Sumihara [Int. J. Numer. Meth. Engng, 1984] and due to Xie and Zhou [Int. J. Numer. Meth. Engng, 2004], which behave robustly in numerical benchmark tests. For the finite elements, the isoparametric bilinear interpolation is used for the displacement approximation, while different piecewise-independent 5-parameter modes are employed for the stress approximation. We show that the two schemes are free from Poisson-locking, in the sense that the error bound in the a priori estimate is independent of the relevant Lame constant $\\lambda$. We also establish the equivalence of the methods to two assumed enhanced strain schemes. Finally, we derive reliable ...

  6. Synchronizability Analysis of Harmonious Unification Hybrid Preferential Model

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    The harmonious unification hybrid preferential model uses the dr ratio to adjust the proportion of deterministic preferential attachment and random preferential attachment, enriched the only deterministic preferential network model,

  7. Hybrid Information Retrieval Model For Web Images

    CERN Document Server

    Bassil, Youssef

    2012-01-01

    The Bing Bang of the Internet in the early 90's increased dramatically the number of images being distributed and shared over the web. As a result, image information retrieval systems were developed to index and retrieve image files spread over the Internet. Most of these systems are keyword-based which search for images based on their textual metadata; and thus, they are imprecise as it is vague to describe an image with a human language. Besides, there exist the content-based image retrieval systems which search for images based on their visual information. However, content-based type systems are still immature and not that effective as they suffer from low retrieval recall/precision rate. This paper proposes a new hybrid image information retrieval model for indexing and retrieving web images published in HTML documents. The distinguishing mark of the proposed model is that it is based on both graphical content and textual metadata. The graphical content is denoted by color features and color histogram of ...

  8. Modelling of data uncertainties on hybrid computers

    Energy Technology Data Exchange (ETDEWEB)

    Schneider, Anke (ed.)

    2016-06-15

    The codes d{sup 3}f and r{sup 3}t are well established for modelling density-driven flow and nuclide transport in the far field of repositories for hazardous material in deep geological formations. They are applicable in porous media as well as in fractured rock or mudstone, for modelling salt- and heat transport as well as a free groundwater surface. Development of the basic framework of d{sup 3}f and r{sup 3}t had begun more than 20 years ago. Since that time significant advancements took place in the requirements for safety assessment as well as for computer hardware development. The period of safety assessment for a repository of high-level radioactive waste was extended to 1 million years, and the complexity of the models is steadily growing. Concurrently, the demands on accuracy increase. Additionally, model and parameter uncertainties become more and more important for an increased understanding of prediction reliability. All this leads to a growing demand for computational power that requires a considerable software speed-up. An effective way to achieve this is the use of modern, hybrid computer architectures which requires basically the set-up of new data structures and a corresponding code revision but offers a potential speed-up by several orders of magnitude. The original codes d{sup 3}f and r{sup 3}t were applications of the software platform UG /BAS 94/ whose development had begun in the early nineteennineties. However, UG had recently been advanced to the C++ based, substantially revised version UG4 /VOG 13/. To benefit also in the future from state-of-the-art numerical algorithms and to use hybrid computer architectures, the codes d{sup 3}f and r{sup 3}t were transferred to this new code platform. Making use of the fact that coupling between different sets of equations is natively supported in UG4, d{sup 3}f and r{sup 3}t were combined to one conjoint code d{sup 3}f++. A direct estimation of uncertainties for complex groundwater flow models with the

  9. Estimating hybrid choice models with the new version of Biogeme

    OpenAIRE

    Bierlaire, Michel

    2010-01-01

    Hybrid choice models integrate many types of discrete choice modeling methods, including latent classes and latent variables, in order to capture concepts such as perceptions, attitudes, preferences, and motivatio (Ben-Akiva et al., 2002). Although they provide an excellent framework to capture complex behavior patterns, their use in applications remains rare in the literature due to the difficulty of estimating the models. In this talk, we provide a short introduction to hybrid choice model...

  10. Hybrids of Gibbs Point Process Models and Their Implementation

    Directory of Open Access Journals (Sweden)

    Adrian Baddeley

    2013-11-01

    Full Text Available We describe a simple way to construct new statistical models for spatial point pattern data. Taking two or more existing models (finite Gibbs spatial point processes we multiply the probability densities together and renormalise to obtain a new probability density. We call the resulting model a hybrid. We discuss stochastic properties of hybrids, their statistical implications, statistical inference, computational strategies and software implementation in the R package spatstat. Hybrids are particularly useful for constructing models which exhibit interaction at different spatial scales. The methods are demonstrated on a real data set on human social interaction. Software and data are provided.

  11. A NEW MODEL FOR WORK STRESS PATTERNS

    OpenAIRE

    Belal Barhem; Samsinar Md Sidin; Iskandar Abdullah; Syed Kadir Alsagoff

    2004-01-01

    This study tests a new work stress model by evaluating the major work stress sources and work stress coping strategies experienced by the Malaysian and Jordanian Customs Department employees. It further ranks the sources and coping strategies of work stress, and evaluates the relationships between stress patterns. The sample consists of 216 Malaysian Customs employees and 248 Jordanian Customs officers, from which correlation, means, path analysis and frequencies were computed. The major find...

  12. Thermodynamic Modeling and Analysis of Human Stress Response

    Science.gov (United States)

    Boregowda, S. C.; Tiwari, S. N.

    1999-01-01

    A novel approach based on the second law of thermodynamics is developed to investigate the psychophysiology and quantify human stress level. Two types of stresses (thermal and mental) are examined. A Unified Stress Response Theory (USRT) is developed under the new proposed field of study called Engineering Psychophysiology. The USRT is used to investigate both thermal and mental stresses from a holistic (human body as a whole) and thermodynamic viewpoint. The original concepts and definitions are established as postulates which form the basis for thermodynamic approach to quantify human stress level. An Objective Thermal Stress Index (OTSI) is developed by applying the second law of thermodynamics to the human thermal system to quantify thermal stress or dis- comfort in the human body. The human thermal model based on finite element method is implemented. It is utilized as a "Computational Environmental Chamber" to conduct series of simulations to examine the human thermal stress responses under different environmental conditions. An innovative hybrid technique is developed to analyze human thermal behavior based on series of human-environment interaction simulations. Continuous monitoring of thermal stress is demonstrated with the help of OTSI. It is well established that the human thermal system obeys the second law of thermodynamics. Further, the OTSI is validated against the experimental data. Regarding mental stress, an Objective Mental Stress Index (OMSI) is developed by applying the Maxwell relations of thermodynamics to the combined thermal and cardiovascular system in the human body. The OMSI is utilized to demonstrate the technique of monitoring mental stress continuously and is validated with the help of series of experimental studies. Although the OMSI indicates the level of mental stress, it provides a strong thermodynamic and mathematical relationship between activities of thermal and cardiovascular systems of the human body.

  13. STRESS RESPONSE STUDIES USING ANIMAL MODELS

    Science.gov (United States)

    This presentation will provide the evidence that ozone exposure in animal models induce neuroendocrine stress response and this stress response modulates lung injury and inflammation through adrenergic and glucocorticoid receptors.

  14. STRESS INDUCED OBESITY: LESSONS FROM RODENT MODELS OF STRESS

    Directory of Open Access Journals (Sweden)

    Zachary Robert Patterson

    2013-07-01

    Full Text Available Stress is defined as the behavioral and physiological responses generated in the face of, or in anticipation of, a perceived threat. The stress response involves activation of the sympathetic nervous system and recruitment of the hypothalamic-pituitary-adrenal (HPA axis. When an organism encounters a stressor (social, physical, etc., these endogenous stress systems are stimulated in order to generate a fight-or-flight response, and manage the stressful situation. As such, an organism is forced to liberate energy resources in attempt to meet the energetic demands posed by the stressor. A change in the energy homeostatic balance is thus required to exploit an appropriate resource and deliver useable energy to the target muscles and tissues involved in the stress response. Acutely, this change in energy homeostasis and the liberation of energy is considered advantageous, as it is required for the survival of the organism. However, when an organism is subjected to a prolonged stressor, as is the case during chronic stress, a continuous irregularity in energy homeostasis is considered detrimental and may lead to the development of metabolic disturbances such as cardiovascular disease, type II diabetes mellitus and obesity. This concept has been studied extensively using animal models, and the neurobiological underpinnings of stress induced metabolic disorders are beginning to surface. However, different animal models of stress continue to produce divergent metabolic phenotypes wherein some animals become anorexic and loose body mass while others increase food intake and body mass and become vulnerable to the development of metabolic disturbances. It remains unclear exactly what factors associated with stress models can be used to predict the metabolic outcome of the organism. This review will explore a variety of rodent stress models and discuss the elements that influence the metabolic outcome in order to further our understanding of stress

  15. Towards Comprehensive Job Stress Models of Reservists

    OpenAIRE

    Lang, Jessica

    2006-01-01

    Integrating findings from the general stress literature into occupational stress research the present dissertation aimed at developing comprehensive job stress models that include additionally valuable antecedents and moderators on the link between workplace stress and psychological health problems. Therefore, this work made use of McEwen’s (1998) Allostatic Load Model to analyze the influence of chronic as well as acute stressors on the employees’ (i.e., Reservists) long-term psychological h...

  16. Hybrid nonlinear model of the angular vestibulo-ocular reflex.

    Science.gov (United States)

    Ranjbaran, Mina; Galiana, Henrietta L

    2013-01-01

    A hybrid nonlinear bilateral model for the horizontal angular vestibulo-ocular reflex (AVOR) is presented in this paper. The model relies on known interconnections between saccadic burst circuits in the brainstem and ocular premotor areas in the vestibular nuclei during slow and fast phase intervals. A viable switching strategy for the timing of nystagmus events is proposed. Simulations show that this hybrid model replicates AVOR nystagmus patterns that are observed in experimentally recorded data.

  17. Design, analysis and modeling of a novel hybrid powertrain system based on hybridized automated manual transmission

    Science.gov (United States)

    Wu, Guang; Dong, Zuomin

    2017-09-01

    Hybrid electric vehicles are widely accepted as a promising short to mid-term technical solution due to noticeably improved efficiency and lower emissions at competitive costs. In recent years, various hybrid powertrain systems were proposed and implemented based on different types of conventional transmission. Power-split system, including Toyota Hybrid System and Ford Hybrid System, are well-known examples. However, their relatively low torque capacity, and the drive of alternative and more advanced designs encouraged other innovative hybrid system designs. In this work, a new type of hybrid powertrain system based hybridized automated manual transmission (HAMT) is proposed. By using the concept of torque gap filler (TGF), this new hybrid powertrain type has the potential to overcome issue of torque gap during gearshift. The HAMT design (patent pending) is described in details, from gear layout and design of gear ratios (EV mode and HEV mode) to torque paths at different gears. As an analytical tool, mutli-body model of vehicle equipped with this HAMT was built to analyze powertrain dynamics at various steady and transient modes. A gearshift was decomposed and analyzed based basic modes. Furthermore, a Simulink-SimDriveline hybrid vehicle model was built for the new transmission, driveline and vehicle modular. Control strategy has also been built to harmonically coordinate different powertrain components to realize TGF function. A vehicle launch simulation test has been completed under 30% of accelerator pedal position to reveal details during gearshift. Simulation results showed that this HAMT can eliminate most torque gap that has been persistent issue of traditional AMT, improving both drivability and performance. This work demonstrated a new type of transmission that features high torque capacity, high efficiency and improved drivability.

  18. Bond graph model-based fault diagnosis of hybrid systems

    CERN Document Server

    Borutzky, Wolfgang

    2015-01-01

    This book presents a bond graph model-based approach to fault diagnosis in mechatronic systems appropriately represented by a hybrid model. The book begins by giving a survey of the fundamentals of fault diagnosis and failure prognosis, then recalls state-of-art developments referring to latest publications, and goes on to discuss various bond graph representations of hybrid system models, equations formulation for switched systems, and simulation of their dynamic behavior. The structured text: • focuses on bond graph model-based fault detection and isolation in hybrid systems; • addresses isolation of multiple parametric faults in hybrid systems; • considers system mode identification; • provides a number of elaborated case studies that consider fault scenarios for switched power electronic systems commonly used in a variety of applications; and • indicates that bond graph modelling can also be used for failure prognosis. In order to facilitate the understanding of fault diagnosis and the presented...

  19. A hybrid model of a subminiature helicopter in horizontal turn

    Institute of Scientific and Technical Information of China (English)

    Chen Li; Gong Zhenbang; Liu Liang

    2007-01-01

    A hybrid model of a subminiature helicopter in horizontal turn is presented. This model is based on a mechanism model and its compensated neural network (NN). First, the nonlinear dynamics of a subminiature helicopter is established. Through the linearization of the nonlinear dynamics on a trim point, the linear time-invariant mechanism model in horizontal turn is obtained. Then a diagonal recursive neural network is used to compensate the model error between the mechanism model and the nonlinear model, thus the hybrid model of a subminiature helicopter in horizontal turn is achieved. Simulation results show that the hybrid model has higher accuracy than the mechanism model and the obtained compensated-NN has good generalization capability.

  20. Modeling of Residual Stresses In Toughened Glass

    DEFF Research Database (Denmark)

    Nielsen, Jens Henrik

    2006-01-01

    The motivation for this work is the need for more extended guidelines considering structural design of glass structures. Realistic models predicting the strength of bolted connections are a step towards improvement of such guidelines. Improvement of guidelines for bolted connections require in......-depth knowledge of the residual stresses in toughened glass near holes and edges where the total stress state is a combination of contact stresses and residual stresses. The present paper, presenting the derivation and results for a model predicting the residual stresses in a glass plate far from edges and holes......, is a step towards such a model. The model is based on the Instant Freeze concept with a few modifications. Current work, using a partial differential equation approach for the modeling and state-of-the-art in modeling residual stresses in glass is briefly presented, and a short description of the toughening...

  1. Hybrid Modelling of Individual Movement and Collective Behaviour

    KAUST Repository

    Franz, Benjamin

    2013-01-01

    Mathematical models of dispersal in biological systems are often written in terms of partial differential equations (PDEs) which describe the time evolution of population-level variables (concentrations, densities). A more detailed modelling approach is given by individual-based (agent-based) models which describe the behaviour of each organism. In recent years, an intermediate modelling methodology - hybrid modelling - has been applied to a number of biological systems. These hybrid models couple an individual-based description of cells/animals with a PDE-model of their environment. In this chapter, we overview hybrid models in the literature with the focus on the mathematical challenges of this modelling approach. The detailed analysis is presented using the example of chemotaxis, where cells move according to extracellular chemicals that can be altered by the cells themselves. In this case, individual-based models of cells are coupled with PDEs for extracellular chemical signals. Travelling waves in these hybrid models are investigated. In particular, we show that in contrary to the PDEs, hybrid chemotaxis models only develop a transient travelling wave. © 2013 Springer-Verlag Berlin Heidelberg.

  2. Hybrid ODE/SSA methods and the cell cycle model

    Science.gov (United States)

    Wang, S.; Chen, M.; Cao, Y.

    2017-07-01

    Stochastic effect in cellular systems has been an important topic in systems biology. Stochastic modeling and simulation methods are important tools to study stochastic effect. Given the low efficiency of stochastic simulation algorithms, the hybrid method, which combines an ordinary differential equation (ODE) system with a stochastic chemically reacting system, shows its unique advantages in the modeling and simulation of biochemical systems. The efficiency of hybrid method is usually limited by reactions in the stochastic subsystem, which are modeled and simulated using Gillespie's framework and frequently interrupt the integration of the ODE subsystem. In this paper we develop an efficient implementation approach for the hybrid method coupled with traditional ODE solvers. We also compare the efficiency of hybrid methods with three widely used ODE solvers RADAU5, DASSL, and DLSODAR. Numerical experiments with three biochemical models are presented. A detailed discussion is presented for the performances of three ODE solvers.

  3. A Structural Model Decomposition Framework for Hybrid Systems Diagnosis

    Science.gov (United States)

    Daigle, Matthew; Bregon, Anibal; Roychoudhury, Indranil

    2015-01-01

    Nowadays, a large number of practical systems in aerospace and industrial environments are best represented as hybrid systems that consist of discrete modes of behavior, each defined by a set of continuous dynamics. These hybrid dynamics make the on-line fault diagnosis task very challenging. In this work, we present a new modeling and diagnosis framework for hybrid systems. Models are composed from sets of user-defined components using a compositional modeling approach. Submodels for residual generation are then generated for a given mode, and reconfigured efficiently when the mode changes. Efficient reconfiguration is established by exploiting causality information within the hybrid system models. The submodels can then be used for fault diagnosis based on residual generation and analysis. We demonstrate the efficient causality reassignment, submodel reconfiguration, and residual generation for fault diagnosis using an electrical circuit case study.

  4. Hybrid Computational Model for High-Altitude Aeroassist Vehicles Project

    Data.gov (United States)

    National Aeronautics and Space Administration — A hybrid continuum/noncontinuum computational model will be developed for analyzing the aerodynamics and heating on aeroassist vehicles. Unique features of this...

  5. Nuclear Hybrid Energy System Modeling: RELAP5 Dynamic Coupling Capabilities

    Energy Technology Data Exchange (ETDEWEB)

    Piyush Sabharwall; Nolan Anderson; Haihua Zhao; Shannon Bragg-Sitton; George Mesina

    2012-09-01

    The nuclear hybrid energy systems (NHES) research team is currently developing a dynamic simulation of an integrated hybrid energy system. A detailed simulation of proposed NHES architectures will allow initial computational demonstration of a tightly coupled NHES to identify key reactor subsystem requirements, identify candidate reactor technologies for a hybrid system, and identify key challenges to operation of the coupled system. This work will provide a baseline for later coupling of design-specific reactor models through industry collaboration. The modeling capability addressed in this report focuses on the reactor subsystem simulation.

  6. DEVELOPMENT OF A HYBRID MODEL FOR THREE-DIMENSIONAL GIS

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    This paper presents a hybrid model for three-dimensional Geographical Information Systems which is an integration of surface- and volume-based models. The Triangulat ed Irregular Network (TIN) and octree models are integrated in this hybrid model. The TIN model works as a surface-based model which mainly serves for surface presentation and visualization. On the other hand, the octree encoding supports volumetric analysis. The designed data structure brings a major advantage in the three-dimensional selective retrieval. This technique increases the efficiency of three-dimensional data operation.

  7. Two-compartment model for competitive hybridization on molecular biochips

    Science.gov (United States)

    Chechetkin, V. R.

    2007-01-01

    During competitive hybridization the specific and non-specific fractions of tested biomolecules in solution bind jointly with the specific probes immobilized in a separate cell of a microchip. The application of two-compartment model to the two-component hybridization allows analytically investigating the underlying kinetics. It is shown that the behaviour with the non-monotonous growth of complexes formed by the non-specific fraction on a probe cell is a typical feature of competitive hybridization for both diffusion-limited and reaction-limited kinetics. The physical reason behind such an evolution consists in the fact that the characteristic hybridization time for the perfect complexes turns out longer with respect to that for the mismatch complexes. This behaviour should be taken into account for the choice of optimum hybridization and washing conditions for the analysis of specific fraction.

  8. Two-compartment model for competitive hybridization on molecular biochips

    Energy Technology Data Exchange (ETDEWEB)

    Chechetkin, V.R. [Theoretical Department of Division for Perspective Investigations, Troitsk Institute of Innovation and Thermonuclear Investigations (TRINITI), Troitsk, 142190 Moscow Region (Russian Federation)]. E-mail: chechet@biochip.ru

    2007-01-08

    During competitive hybridization the specific and non-specific fractions of tested biomolecules in solution bind jointly with the specific probes immobilized in a separate cell of a microchip. The application of two-compartment model to the two-component hybridization allows analytically investigating the underlying kinetics. It is shown that the behaviour with the non-monotonous growth of complexes formed by the non-specific fraction on a probe cell is a typical feature of competitive hybridization for both diffusion-limited and reaction-limited kinetics. The physical reason behind such an evolution consists in the fact that the characteristic hybridization time for the perfect complexes turns out longer with respect to that for the mismatch complexes. This behaviour should be taken into account for the choice of optimum hybridization and washing conditions for the analysis of specific fraction.

  9. A hybrid Scatter/Transform cloaking model

    Directory of Open Access Journals (Sweden)

    Gad Licht

    2015-01-01

    Full Text Available A new Scatter/Transform cloak is developed that combines the light bending of refraction characteristic of a Transform cloak with the scatter cancellation characteristic of a Scatter cloak. The hybrid cloak incorporates both Transform’s variable index of refraction with modified linear intrusions to maximize the Scatter cloak effect. Scatter/Transform improved the scattering cross-section of cloaking in a 2-dimensional space to 51.7% compared to only 39.6% or 45.1% respectively with either Scatter or Transform alone. Metamaterials developed with characteristics based on the new ST hybrid cloak will exhibit superior cloaking capabilities.

  10. The development of a mathematical model of a hybrid airship

    Science.gov (United States)

    Abdul Ghaffar, Alia Farhana

    The mathematical model of a winged hybrid airship is developed for the analysis of its dynamic stability characteristics. A full nonlinear equation of motion that describes the dynamics of the hybrid airship is determined and for completeness, some of the components in the equations are estimated using the appropriate methods that has been established and used in the past. Adequate assumptions are made in order to apply any relevant computation and estimation methods. While this hybrid airship design is unique, its modeling and stability analysis were done according to the typical procedure of conventional airships and aircrafts. All computations pertaining to the hybrid airship's equation of motion are carried out and any issues related to the integration of the wing to the conventional airship design are discussed in this thesis. The design of the hybrid airship is also slightly modified to suit the demanding requirement of a complete and feasible mathematical model. Then, linearization is performed under a chosen trim condition, and eigenvalue analysis is carried out to determine the general dynamic stability characteristics of the winged hybrid airship. The result shows that the winged hybrid airship possesses dynamic instability in longitudinal pitch motion and lateral-directional slow roll motion. This is due to the strong coupling between the aerostatic lift from the buoyant gas and aerodynamic lift from the wing.

  11. Exploratory Topology Modelling of Form-Active Hybrid Structures

    DEFF Research Database (Denmark)

    Holden Deleuran, Anders; Pauly, Mark; Tamke, Martin;

    2016-01-01

    The development of novel form-active hybrid structures (FAHS) is impeded by a lack of modelling tools that allow for exploratory topology modelling of shaped assemblies. We present a flexible and real-time computational design modelling pipeline developed for the exploratory modelling of FAHS tha...

  12. Hybrid modeling of xanthan gum bioproduction in batch bioreactor.

    Science.gov (United States)

    Zabot, Giovani L; Mecca, Jaqueline; Mesomo, Michele; Silva, Marceli F; Prá, Valéria Dal; de Oliveira, Débora; Oliveira, J Vladimir; Castilhos, Fernanda; Treichel, Helen; Mazutti, Marcio A

    2011-10-01

    This work is focused on hybrid modeling of xanthan gum bioproduction process by Xanthomonas campestris pv. mangiferaeindicae. Experiments were carried out to evaluate the effects of stirred speed and superficial gas velocity on the kinetics of cell growth, lactose consumption and xanthan gum production in a batch bioreactor using cheese whey as substrate. A hybrid model was employed to simulate the bio-process making use of an artificial neural network (ANN) as a kinetic parameter estimator for the phenomenological model. The hybrid modeling of the process provided a satisfactory fitting quality of the experimental data, since this approach makes possible the incorporation of the effects of operational variables on model parameters. The applicability of the validated model was investigated, using the model as a process simulator to evaluate the effects of initial cell and lactose concentration in the xanthan gum production.

  13. Hybrid reliability model for fatigue reliability analysis of steel bridges

    Institute of Scientific and Technical Information of China (English)

    曹珊珊; 雷俊卿

    2016-01-01

    A kind of hybrid reliability model is presented to solve the fatigue reliability problems of steel bridges. The cumulative damage model is one kind of the models used in fatigue reliability analysis. The parameter characteristics of the model can be described as probabilistic and interval. The two-stage hybrid reliability model is given with a theoretical foundation and a solving algorithm to solve the hybrid reliability problems. The theoretical foundation is established by the consistency relationships of interval reliability model and probability reliability model with normally distributed variables in theory. The solving process is combined with the definition of interval reliability index and the probabilistic algorithm. With the consideration of the parameter characteristics of theS−N curve, the cumulative damage model with hybrid variables is given based on the standards from different countries. Lastly, a case of steel structure in the Neville Island Bridge is analyzed to verify the applicability of the hybrid reliability model in fatigue reliability analysis based on the AASHTO.

  14. Support for the 7-factor hybrid model of PTSD in a community sample.

    Science.gov (United States)

    Seligowski, Antonia V; Orcutt, Holly K

    2016-03-01

    Research suggests that 4-factor models of posttraumatic stress disorder (PTSD) may be improved upon by the addition of novel factors, such as Dysphoric Arousal, Externalizing Behaviors, and Anhedonia. However, a novel 7-factor hybrid model has demonstrated superior fit in veteran and undergraduate samples. The current study sought to replicate this finding in a trauma-exposed community sample and examined relations with positive (PA) and negative affect (NA). Participants included 403 adults (M(age) = 37.75) recruited through Amazon's MTurk. PTSD was measured using the PTSD Checklist-5 (PCL-5). Confirmatory factor analyses were conducted in Mplus. The 7-factor hybrid model demonstrated good fit: CFI = .96, TLI = .95, RMSEA = .06 (90% CI [.05, .07]), SRMR = .03. This model was superior to the 5- and 6-factor models. All factors demonstrated significant relations with PA and NA, the largest of which were the Externalizing Behaviors (with NA) and Anhedonia (with PA) factors. Results provide support for the 7-factor hybrid model of PTSD using the PCL-5 in a community sample. Findings replicate previous research suggesting that PTSD is highly related to NA, which has been purported as an underlying dimension of PTSD. It is recommended that future research use clinical measures to further examine the hybrid model. (PsycINFO Database Record (c) 2016 APA, all rights reserved).

  15. A NEW MODEL FOR WORK STRESS PATTERNS

    Directory of Open Access Journals (Sweden)

    Belal Barhem

    2004-01-01

    Full Text Available This study tests a new work stress model by evaluating the major work stress sources and work stress coping strategies experienced by the Malaysian and Jordanian Customs Department employees. It further ranks the sources and coping strategies of work stress, and evaluates the relationships between stress patterns. The sample consists of 216 Malaysian Customs employees and 248 Jordanian Customs officers, from which correlation, means, path analysis and frequencies were computed. The major findings of the study show that Malaysian and Jordanian Customs employees identified role ambiguity as the main source of work stress while self-knowledge was the major coping strategy they used to overcome work stress. The relationship between sources of work stress and coping strategies is strong in the two cases while the relationship with personal differences is weak.

  16. A hybrid random field model for scalable statistical learning.

    Science.gov (United States)

    Freno, A; Trentin, E; Gori, M

    2009-01-01

    This paper introduces hybrid random fields, which are a class of probabilistic graphical models aimed at allowing for efficient structure learning in high-dimensional domains. Hybrid random fields, along with the learning algorithm we develop for them, are especially useful as a pseudo-likelihood estimation technique (rather than a technique for estimating strict joint probability distributions). In order to assess the generality of the proposed model, we prove that the class of pseudo-likelihood distributions representable by hybrid random fields strictly includes the class of joint probability distributions representable by Bayesian networks. Once we establish this result, we develop a scalable algorithm for learning the structure of hybrid random fields, which we call 'Markov Blanket Merging'. On the one hand, we characterize some complexity properties of Markov Blanket Merging both from a theoretical and from the experimental point of view, using a series of synthetic benchmarks. On the other hand, we evaluate the accuracy of hybrid random fields (as learned via Markov Blanket Merging) by comparing them to various alternative statistical models in a number of pattern classification and link-prediction applications. As the results show, learning hybrid random fields by the Markov Blanket Merging algorithm not only reduces significantly the computational cost of structure learning with respect to several considered alternatives, but it also leads to models that are highly accurate as compared to the alternative ones.

  17. Metabolic and Phenotypic Responses of Greenhouse-Grown Maize Hybrids to Experimentally Controlled Drought Stress

    Institute of Scientific and Technical Information of China (English)

    Sandra Witt; Luis Galici; Jan Lisec; Jill Cairns; Axel Tiessen; Jose Luis Araus; Natalia Palacios-Rojas; Alisdair R.Fernie

    2012-01-01

    Adaptation to abiotic stresses like drought is an important acquirement of agriculturally relevant crops like maize.Development of enhanced drought tolerance in crops grown in climatic zones where drought is a very dominant stress factor therefore plays an essential role in plant breeding.Previous studies demonstrated that corn yield potential and enhanced stress tolerance are associated traits.In this study,we analyzed six different maize hybrids for their ability to deal with drought stress in a greenhouse experiment.We were able to combine data from morphophysiological parameters measured under well-watered conditions and under water restriction with metabolic data from different organs.These different organs possessed distinct metabolite compositions,with the leaf blade displaying the most considerable metabolome changes following water deficiency.Whilst we could show a general increase in metabolite levels under drought stress,including changes in amino acids,sugars,sugar alcohols,and intermediates of the TCA cycle,these changes were not differential between maize hybrids that had previously been designated based on field trial data as either drought-tolerant or susceptible.The fact that data described here resulted from a greenhouse experiment with rather different growth conditions compared to natural ones in the field may explain why tolerance groups could not be confirmed in this study.We were,however,able to highlight several metabolites that displayed conserved responses to drought as well as metabolites whose levels correlated well with certain physiological traits.

  18. A global hybrid coupled model based on atmosphere-SST feedbacks

    Energy Technology Data Exchange (ETDEWEB)

    Cimatoribus, Andrea A.; Drijfhout, Sybren S. [Royal Netherlands Meteorological Institute, De Bilt (Netherlands); Dijkstra, Henk A. [Utrecht University, Institute for Marine and Atmospheric Research Utrecht, Utrecht (Netherlands)

    2012-02-15

    A global hybrid coupled model is developed, with the aim of studying the effects of ocean-atmosphere feedbacks on the stability of the Atlantic meridional overturning circulation. The model includes a global ocean general circulation model and a statistical atmosphere model. The statistical atmosphere model is based on linear regressions of data from a fully coupled climate model on sea surface temperature both locally and hemispherically averaged, being the footprint of Atlantic meridional overturning variability. It provides dynamic boundary conditions to the ocean model for heat, freshwater and wind-stress. A basic but consistent representation of ocean-atmosphere feedbacks is captured in the hybrid coupled model and it is more than 10 times faster than the fully coupled climate model. The hybrid coupled model reaches a steady state with a climate close to the one of the fully coupled climate model, and the two models also have a similar response (collapse) of the Atlantic meridional overturning circulation to a freshwater hosing applied in the northern North Atlantic. (orig.)

  19. Non-destructive Phenotyping to Identify Brachiaria Hybrids Tolerant to Waterlogging Stress under Field Conditions.

    Science.gov (United States)

    Jiménez, Juan de la Cruz; Cardoso, Juan A; Leiva, Luisa F; Gil, Juanita; Forero, Manuel G; Worthington, Margaret L; Miles, John W; Rao, Idupulapati M

    2017-01-01

    Brachiaria grasses are sown in tropical regions around the world, especially in the Neotropics, to improve livestock production. Waterlogging is a major constraint to the productivity and persistence of Brachiaria grasses during the rainy season. While some Brachiaria cultivars are moderately tolerant to seasonal waterlogging, none of the commercial cultivars combines superior yield potential and nutritional quality with a high level of waterlogging tolerance. The Brachiaria breeding program at the International Center for Tropical Agriculture, has been using recurrent selection for the past two decades to combine forage yield with resistance to biotic and abiotic stress factors. The main objective of this study was to test the suitability of normalized difference vegetation index (NDVI) and image-based phenotyping as non-destructive approaches to identify Brachiaria hybrids tolerant to waterlogging stress under field conditions. Nineteen promising hybrid selections from the breeding program and three commercial checks were evaluated for their tolerance to waterlogging under field conditions. The waterlogging treatment was imposed by applying and maintaining water to 3 cm above soil surface. Plant performance was determined non-destructively using proximal sensing and image-based phenotyping and also destructively via harvesting for comparison. Image analysis of projected green and dead areas, NDVI and shoot biomass were positively correlated (r ≥ 0.8). Our results indicate that image analysis and NDVI can serve as non-destructive screening approaches for the identification of Brachiaria hybrids tolerant to waterlogging stress.

  20. Non-destructive Phenotyping to Identify Brachiaria Hybrids Tolerant to Waterlogging Stress under Field Conditions

    Science.gov (United States)

    Jiménez, Juan de la Cruz; Cardoso, Juan A.; Leiva, Luisa F.; Gil, Juanita; Forero, Manuel G.; Worthington, Margaret L.; Miles, John W.; Rao, Idupulapati M.

    2017-01-01

    Brachiaria grasses are sown in tropical regions around the world, especially in the Neotropics, to improve livestock production. Waterlogging is a major constraint to the productivity and persistence of Brachiaria grasses during the rainy season. While some Brachiaria cultivars are moderately tolerant to seasonal waterlogging, none of the commercial cultivars combines superior yield potential and nutritional quality with a high level of waterlogging tolerance. The Brachiaria breeding program at the International Center for Tropical Agriculture, has been using recurrent selection for the past two decades to combine forage yield with resistance to biotic and abiotic stress factors. The main objective of this study was to test the suitability of normalized difference vegetation index (NDVI) and image-based phenotyping as non-destructive approaches to identify Brachiaria hybrids tolerant to waterlogging stress under field conditions. Nineteen promising hybrid selections from the breeding program and three commercial checks were evaluated for their tolerance to waterlogging under field conditions. The waterlogging treatment was imposed by applying and maintaining water to 3 cm above soil surface. Plant performance was determined non-destructively using proximal sensing and image-based phenotyping and also destructively via harvesting for comparison. Image analysis of projected green and dead areas, NDVI and shoot biomass were positively correlated (r ≥ 0.8). Our results indicate that image analysis and NDVI can serve as non-destructive screening approaches for the identification of Brachiaria hybrids tolerant to waterlogging stress. PMID:28243249

  1. Fluid Survival Tool: A Model Checker for Hybrid Petri Nets

    NARCIS (Netherlands)

    Postema, Björn; Remke, Anne; Haverkort, Boudewijn R.; Ghasemieh, Hamed

    2014-01-01

    Recently, algorithms for model checking Stochastic Time Logic (STL) on Hybrid Petri nets with a single general one-shot transition (HPNG) have been introduced. This paper presents a tool for model checking HPNG models against STL formulas. A graphical user interface (GUI) not only helps to demonstra

  2. Prediction of multiaxial mechanical behavior for conventional and highly crosslinked UHMWPE using a hybrid constitutive model.

    Science.gov (United States)

    Bergström, J S; Rimnac, C M; Kurtz, S M

    2003-04-01

    The development of theoretical failure, fatigue, and wear models for ultra-high molecular weight polyethylene (UHMWPE) used in joint replacements has been hindered by the lack of a validated constitutive model that can accurately predict large deformation mechanical behavior under clinically relevant, multiaxial loading conditions. Recently, a new Hybrid constitutive model for unirradiated UHMWPE was developed Bergström et al., (Biomaterials 23 (2002) 2329) based on a physics-motivated framework which incorporates the governing micro-mechanisms of polymers into an effective and accurate continuum representation. The goal of the present study was to compare the predictive capability of the new Hybrid model with the J(2)-plasticity model for four conventional and highly crosslinked UHMWPE materials during multiaxial loading. After calibration under uniaxial loading, the predictive capabilities of the J(2)-plasticity and Hybrid model were tested by comparing the load-displacement curves from experimental multiaxial (small punch) tests with simulated load-displacement curves calculated using a finite element model of the experimental apparatus. The quality of the model predictions was quantified using the coefficient of determination (r(2)). The results of the study demonstrate that the Hybrid model outperforms the J(2)-plasticity model both for combined uniaxial tension and compression predictions and for simulating multiaxial large deformation mechanical behavior produced by the small punch test. The results further suggest that the parameters of the HM may be generalizable for a wide range of conventional, highly crosslinked, and thermally treated UHMWPE materials, based on the characterization of four material properties related to the elastic modulus, yield stress, rate of strain hardening, and locking stretch of the polymer chains. Most importantly, from a practical perspective, these four key material properties for the Hybrid constitutive model can be measured

  3. Nuclear Hybrid Energy System Model Stability Testing

    Energy Technology Data Exchange (ETDEWEB)

    Greenwood, Michael Scott [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Cetiner, Sacit M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Fugate, David W. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-04-01

    A Nuclear Hybrid Energy System (NHES) uses a nuclear reactor as the basic power generation unit, and the power generated is used by multiple customers as combinations of thermal power or electrical power. The definition and architecture of a particular NHES can be adapted based on the needs and opportunities of different localities and markets. For example, locations in need of potable water may be best served by coupling a desalination plant to the NHES. Similarly, a location near oil refineries may have a need for emission-free hydrogen production. Using the flexible, multi-domain capabilities of Modelica, Argonne National Laboratory, Idaho National Laboratory, and Oak Ridge National Laboratory are investigating the dynamics (e.g., thermal hydraulics and electrical generation/consumption) and cost of a hybrid system. This paper examines the NHES work underway, emphasizing the control system developed for individual subsystems and the overall supervisory control system.

  4. Nonlinear lower hybrid modeling in tokamak plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Napoli, F.; Schettini, G. [Università Roma Tre, Dipartimento di Ingegneria, Roma (Italy); Castaldo, C.; Cesario, R. [Associazione EURATOM/ENEA sulla Fusione, Centro Ricerche Frascati (Italy)

    2014-02-12

    We present here new results concerning the nonlinear mechanism underlying the observed spectral broadening produced by parametric instabilities occurring at the edge of tokamak plasmas in present day LHCD (lower hybrid current drive) experiments. Low frequency (LF) ion-sound evanescent modes (quasi-modes) are the main parametric decay channel which drives a nonlinear mode coupling of lower hybrid (LH) waves. The spectrum of the LF fluctuations is calculated here considering the beating of the launched LH wave at the radiofrequency (RF) operating line frequency (pump wave) with the noisy background of the RF power generator. This spectrum is calculated in the frame of the kinetic theory, following a perturbative approach. Numerical solutions of the nonlinear LH wave equation show the evolution of the nonlinear mode coupling in condition of a finite depletion of the pump power. The role of the presence of heavy ions in a Deuterium plasma in mitigating the nonlinear effects is analyzed.

  5. Pseudospectral Model for Hybrid PIC Hall-effect Thruster Simulation

    Science.gov (United States)

    2015-07-01

    1149. 8Goebel, D. M. and Katz, I., Fundamentals of Electric Propulsion : Ion and Hall Thrusters, John Wiley & Sons, Inc., 2008. 9Martin, R., J.W., K...Bilyeu, D., and Tran, J., “Dynamic Particle Weight Remapping in Hybrid PIC Hall -effect Thruster Simulation,” 34th Int. Electric Propulsion Conf...Paper 3. DATES COVERED (From - To) July 2015-July 2015 4. TITLE AND SUBTITLE Pseudospectral model for hybrid PIC Hall -effect thruster simulationect

  6. Hybrid Modeling and Optimization of Yogurt Starter Culture Continuous Fermentation

    Directory of Open Access Journals (Sweden)

    Silviya Popova

    2009-10-01

    Full Text Available The present paper presents a hybrid model of yogurt starter mixed culture fermentation. The main nonlinearities within a classical structure of continuous process model are replaced by neural networks. The new hybrid model accounts for the dependence of the two microorganisms' kinetics from the on-line measured characteristics of the culture medium - pH. Then the model was used further for calculation of the optimal time profile of pH. The obtained results are with agreement with the experimental once.

  7. Mechanisms Underlying Mammalian Hybrid Sterility in Two Feline Interspecies Models.

    Science.gov (United States)

    Davis, Brian W; Seabury, Christopher M; Brashear, Wesley A; Li, Gang; Roelke-Parker, Melody; Murphy, William J

    2015-10-01

    The phenomenon of male sterility in interspecies hybrids has been observed for over a century, however, few genes influencing this recurrent phenotype have been identified. Genetic investigations have been primarily limited to a small number of model organisms, thus limiting our understanding of the underlying molecular basis of this well-documented "rule of speciation." We utilized two interspecies hybrid cat breeds in a genome-wide association study employing the Illumina 63 K single-nucleotide polymorphism array. Collectively, we identified eight autosomal genes/gene regions underlying associations with hybrid male sterility (HMS) involved in the function of the blood-testis barrier, gamete structural development, and transcriptional regulation. We also identified several candidate hybrid sterility regions on the X chromosome, with most residing in close proximity to complex duplicated regions. Differential gene expression analyses revealed significant chromosome-wide upregulation of X chromosome transcripts in testes of sterile hybrids, which were enriched for genes involved in chromatin regulation of gene expression. Our expression results parallel those reported in Mus hybrids, supporting the "Large X-Effect" in mammalian HMS and the potential epigenetic basis for this phenomenon. These results support the value of the interspecies feline model as a powerful tool for comparison to rodent models of HMS, demonstrating unique aspects and potential commonalities that underpin mammalian reproductive isolation.

  8. Residual Stress and Fatigue Strength of Hybrid Laser-MIG-Welded A7N01P-T4

    Science.gov (United States)

    Wang, Qiuying; Chen, Hui; Qiu, Peixian; Zhu, Zongtao

    2017-02-01

    A7N01P-T4 aluminum alloy is widely used in some important welded components of high-speed trains. The hybrid laser-metal inert gas (MIG) welding process was studied to solve problems associated with the MIG welding process, such as low welding efficiency, high residual stress and deformation, and serious loss of strength. A high-speed camera, a voltage and current collection system, and NI DAQ were used to acquire arc profiles, welding voltage, and welding current simultaneously. Thermal cycle tests were carried out. Residual stresses induced by the welding process and fatigue strength of the joint were investigated. Large-size fatigue specimens were used in fatigue tests. The results show that the energy of the hybrid welding process is focused, and the power density of hybrid welding process is intense. The heat input per unit of the hybrid welding process is only half of that of the MIG welding process. Compared with the MIG welded joint, the overall residual stress level of the hybrid-welded joint is lower. The peak longitudinal stress of the hybrid-welded joint is reduced by 20 pct. The fatigue strength of hybrid joints is 14 pct higher than that of MIG-welded joints. Narrow weld and HAZ, weak softening behavior, and low residual stress level are the causes of the improvement of fatigue strength.

  9. Residual Stress and Fatigue Strength of Hybrid Laser-MIG-Welded A7N01P-T4

    Science.gov (United States)

    Wang, Qiuying; Chen, Hui; Qiu, Peixian; Zhu, Zongtao

    2016-09-01

    A7N01P-T4 aluminum alloy is widely used in some important welded components of high-speed trains. The hybrid laser-metal inert gas (MIG) welding process was studied to solve problems associated with the MIG welding process, such as low welding efficiency, high residual stress and deformation, and serious loss of strength. A high-speed camera, a voltage and current collection system, and NI DAQ were used to acquire arc profiles, welding voltage, and welding current simultaneously. Thermal cycle tests were carried out. Residual stresses induced by the welding process and fatigue strength of the joint were investigated. Large-size fatigue specimens were used in fatigue tests. The results show that the energy of the hybrid welding process is focused, and the power density of hybrid welding process is intense. The heat input per unit of the hybrid welding process is only half of that of the MIG welding process. Compared with the MIG welded joint, the overall residual stress level of the hybrid-welded joint is lower. The peak longitudinal stress of the hybrid-welded joint is reduced by 20 pct. The fatigue strength of hybrid joints is 14 pct higher than that of MIG-welded joints. Narrow weld and HAZ, weak softening behavior, and low residual stress level are the causes of the improvement of fatigue strength.

  10. Constraining hybrid inflation models with WMAP three-year results

    CERN Document Server

    Cardoso, A

    2006-01-01

    We reconsider the original model of quadratic hybrid inflation in light of the WMAP three-year results and study the possibility of obtaining a spectral index of primordial density perturbations, $n_s$, smaller than one from this model. The original hybrid inflation model naturally predicts $n_s\\geq1$ in the false vacuum dominated regime but it is also possible to have $n_s<1$ when the quadratic term dominates. We therefore investigate whether there is also an intermediate regime compatible with the latest constraints, where the scalar field value during the last 50 e-folds of inflation is less than the Planck scale.

  11. Diagnosing Hybrid Systems: a Bayesian Model Selection Approach

    Science.gov (United States)

    McIlraith, Sheila A.

    2005-01-01

    In this paper we examine the problem of monitoring and diagnosing noisy complex dynamical systems that are modeled as hybrid systems-models of continuous behavior, interleaved by discrete transitions. In particular, we examine continuous systems with embedded supervisory controllers that experience abrupt, partial or full failure of component devices. Building on our previous work in this area (MBCG99;MBCG00), our specific focus in this paper ins on the mathematical formulation of the hybrid monitoring and diagnosis task as a Bayesian model tracking algorithm. The nonlinear dynamics of many hybrid systems present challenges to probabilistic tracking. Further, probabilistic tracking of a system for the purposes of diagnosis is problematic because the models of the system corresponding to failure modes are numerous and generally very unlikely. To focus tracking on these unlikely models and to reduce the number of potential models under consideration, we exploit logic-based techniques for qualitative model-based diagnosis to conjecture a limited initial set of consistent candidate models. In this paper we discuss alternative tracking techniques that are relevant to different classes of hybrid systems, focusing specifically on a method for tracking multiple models of nonlinear behavior simultaneously using factored sampling and conditional density propagation. To illustrate and motivate the approach described in this paper we examine the problem of monitoring and diganosing NASA's Sprint AERCam, a small spherical robotic camera unit with 12 thrusters that enable both linear and rotational motion.

  12. Runoff prediction using an integrated hybrid modelling scheme

    Science.gov (United States)

    Remesan, Renji; Shamim, Muhammad Ali; Han, Dawei; Mathew, Jimson

    2009-06-01

    SummaryRainfall runoff is a very complicated process due to its nonlinear and multidimensional dynamics, and hence difficult to model. There are several options for a modeller to consider, for example: the type of input data to be used, the length of model calibration (training) data and whether or not the input data be treated as signals with different frequency bands so that they can be modelled separately. This paper describes a new hybrid modelling scheme to answer the above mentioned questions. The proposed methodology is based on a hybrid model integrating wavelet transformation, a modelling engine (Artificial Neural Network) and the Gamma Test. First, the Gamma Test is used to decide the required input data dimensions and its length. Second, the wavelet transformation decomposes the input signals into different frequency bands. Finally, a modelling engine (ANN in this study) is used to model the decomposed signals separately. The proposed scheme was tested using the Brue catchment, Southwest England, as a case study and has produced very positive results. The hybrid model outperforms all other models tested. This study has a wider implication in the hydrological modelling field since its general framework could be applied to other model combinations (e.g., model engine could be Support Vector Machines, neuro-fuzzy systems, or even a conceptual model. The signal decomposition could be carried out by Fourier transformation).

  13. On Hybrid and mixed finite element methods

    Science.gov (United States)

    Pian, T. H. H.

    1981-01-01

    Three versions of the assumed stress hybrid model in finite element methods and the corresponding variational principles for the formulation are presented. Examples of rank deficiency for stiffness matrices by the hybrid stress model are given and their corresponding kinematic deformation modes are identified. A discussion of the derivation of general semi-Loof elements for plates and shells by the hybrid stress method is given. It is shown that the equilibrium model by Fraeijs de Veubeke can be derived by the approach of the hybrid stress model as a special case of semi-Loof elements.

  14. Hybrid continuum-atomistic approach to model electrokinetics in nanofluidics

    Energy Technology Data Exchange (ETDEWEB)

    Amani, Ehsan, E-mail: eamani@aut.ac.ir; Movahed, Saeid, E-mail: smovahed@aut.ac.ir

    2016-06-07

    In this study, for the first time, a hybrid continuum-atomistic based model is proposed for electrokinetics, electroosmosis and electrophoresis, through nanochannels. Although continuum based methods are accurate enough to model fluid flow and electric potential in nanofluidics (in dimensions larger than 4 nm), ionic concentration is too low in nanochannels for the continuum assumption to be valid. On the other hand, the non-continuum based approaches are too time-consuming and therefore is limited to simple geometries, in practice. Here, to propose an efficient hybrid continuum-atomistic method of modelling the electrokinetics in nanochannels; the fluid flow and electric potential are computed based on continuum hypothesis coupled with an atomistic Lagrangian approach for the ionic transport. The results of the model are compared to and validated by the results of the molecular dynamics technique for a couple of case studies. Then, the influences of bulk ionic concentration, external electric field, size of nanochannel, and surface electric charge on the electrokinetic flow and ionic mass transfer are investigated, carefully. The hybrid continuum-atomistic method is a promising approach to model more complicated geometries and investigate more details of the electrokinetics in nanofluidics. - Highlights: • A hybrid continuum-atomistic model is proposed for electrokinetics in nanochannels. • The model is validated by molecular dynamics. • This is a promising approach to model more complicated geometries and physics.

  15. Feller Property for a Special Hybrid Jump-Diffusion Model

    Directory of Open Access Journals (Sweden)

    Jinying Tong

    2014-01-01

    Full Text Available We consider the stochastic stability for a hybrid jump-diffusion model, where the switching here is a phase semi-Markovian process. We first transform the process into a corresponding jump-diffusion with Markovian switching by the supplementary variable technique. Then we prove the Feller and strong Feller properties of the model under some assumptions.

  16. Modeling and design of a high-performance hybrid actuator

    Science.gov (United States)

    Aloufi, Badr; Behdinan, Kamran; Zu, Jean

    2016-12-01

    This paper presents the model and design of a novel hybrid piezoelectric actuator which provides high active and passive performances for smart structural systems. The actuator is composed of a pair of curved pre-stressed piezoelectric actuators, so-called commercially THUNDER actuators, installed opposite each other using two clamping mechanisms constructed of in-plane fixable hinges, grippers and solid links. A fully mathematical model is developed to describe the active and passive dynamics of the actuator and investigate the effects of its geometrical parameters on the dynamic stiffness, free displacement and blocked force properties. Among the literature that deals with piezoelectric actuators in which THUNDER elements are used as a source of electromechanical power, the proposed study is unique in that it presents a mathematical model that has the ability to predict the actuator characteristics and achieve other phenomena, such as resonances, mode shapes, phase shifts, dips, etc. For model validation, the measurements of the free dynamic response per unit voltage and passive acceleration transmissibility of a particular actuator design are used to check the accuracy of the results predicted by the model. The results reveal that there is a good agreement between the model and experiment. Another experiment is performed to teste the linearity of the actuator system by examining the variation of the output dynamic responses with varying forces and voltages at different frequencies. From the results, it can be concluded that the actuator acts approximately as a linear system at frequencies up to 1000 Hz. A parametric study is achieved here by applying the developed model to analyze the influence of the geometrical parameters of the fixable hinges on the active and passive actuator properties. The model predictions in the frequency range of 0-1000 Hz show that the hinge thickness, radius, and opening angle parameters have great effects on the frequency dynamic

  17. Hybrid programming model for implicit PDE simulations on multicore architectures

    KAUST Repository

    Kaushik, Dinesh K.

    2011-01-01

    The complexity of programming modern multicore processor based clusters is rapidly rising, with GPUs adding further demand for fine-grained parallelism. This paper analyzes the performance of the hybrid (MPI+OpenMP) programming model in the context of an implicit unstructured mesh CFD code. At the implementation level, the effects of cache locality, update management, work division, and synchronization frequency are studied. The hybrid model presents interesting algorithmic opportunities as well: the convergence of linear system solver is quicker than the pure MPI case since the parallel preconditioner stays stronger when hybrid model is used. This implies significant savings in the cost of communication and synchronization (explicit and implicit). Even though OpenMP based parallelism is easier to implement (with in a subdomain assigned to one MPI process for simplicity), getting good performance needs attention to data partitioning issues similar to those in the message-passing case. © 2011 Springer-Verlag.

  18. Model-Invariant Hybrid Computations of Separated Flows for RCA Standard Test Cases

    Science.gov (United States)

    Woodruff, Stephen

    2016-01-01

    NASA's Revolutionary Computational Aerosciences (RCA) subproject has identified several smooth-body separated flows as standard test cases to emphasize the challenge these flows present for computational methods and their importance to the aerospace community. Results of computations of two of these test cases, the NASA hump and the FAITH experiment, are presented. The computations were performed with the model-invariant hybrid LES-RANS formulation, implemented in the NASA code VULCAN-CFD. The model- invariant formulation employs gradual LES-RANS transitions and compensation for model variation to provide more accurate and efficient hybrid computations. Comparisons revealed that the LES-RANS transitions employed in these computations were sufficiently gradual that the compensating terms were unnecessary. Agreement with experiment was achieved only after reducing the turbulent viscosity to mitigate the effect of numerical dissipation. The stream-wise evolution of peak Reynolds shear stress was employed as a measure of turbulence dynamics in separated flows useful for evaluating computations.

  19. A structured modeling approach for dynamic hybrid fuzzy-first principles models

    NARCIS (Netherlands)

    Lith, van Pascal F.; Betlem, Ben H.L.; Roffel, Brian

    2002-01-01

    Hybrid fuzzy-first principles models can be attractive if a complete physical model is difficult to derive. These hybrid models consist of a framework of dynamic mass and energy balances, supplemented with fuzzy submodels describing additional equations, such as mass transformation and transfer rate

  20. Nuclear Hybrid Energy Systems FY16 Modeling Efforts at ORNL

    Energy Technology Data Exchange (ETDEWEB)

    Cetiner, Sacit M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Greenwood, Michael Scott [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Harrison, Thomas J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Qualls, A. L. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Guler Yigitoglu, Askin [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Fugate, David W. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2016-09-01

    A nuclear hybrid system uses a nuclear reactor as the basic power generation unit. The power generated by the nuclear reactor is utilized by one or more power customers as either thermal power, electrical power, or both. In general, a nuclear hybrid system will couple the nuclear reactor to at least one thermal power user in addition to the power conversion system. The definition and architecture of a particular nuclear hybrid system is flexible depending on local markets needs and opportunities. For example, locations in need of potable water may be best served by coupling a desalination plant to the nuclear system. Similarly, an area near oil refineries may have a need for emission free hydrogen production. A nuclear hybrid system expands the nuclear power plant from its more familiar central power station role by diversifying its immediately and directly connected customer base. The definition, design, analysis, and optimization work currently performed with respect to the nuclear hybrid systems represents the work of three national laboratories. Idaho National Laboratory (INL) is the lead lab working with Argonne National Laboratory (ANL) and Oak Ridge National Laboratory. Each laboratory is providing modeling and simulation expertise for the integration of the hybrid system.

  1. Data sensitivity in a hybrid STEP/Coulomb model for aftershock forecasting

    Science.gov (United States)

    Steacy, S.; Jimenez Lloret, A.; Gerstenberger, M.

    2014-12-01

    Operational earthquake forecasting is rapidly becoming a 'hot topic' as civil protection authorities seek quantitative information on likely near future earthquake distributions during seismic crises. At present, most of the models in public domain are statistical and use information about past and present seismicity as well as b-value and Omori's law to forecast future rates. A limited number of researchers, however, are developing hybrid models which add spatial constraints from Coulomb stress modeling to existing statistical approaches. Steacy et al. (2013), for instance, recently tested a model that combines Coulomb stress patterns with the STEP (short-term earthquake probability) approach against seismicity observed during the 2010-2012 Canterbury earthquake sequence. They found that the new model performed at least as well as, and often better than, STEP when tested against retrospective data but that STEP was generally better in pseudo-prospective tests that involved data actually available within the first 10 days of each event of interest. They suggested that the major reason for this discrepancy was uncertainty in the slip models and, in particular, in the geometries of the faults involved in each complex major event. Here we test this hypothesis by developing a number of retrospective forecasts for the Landers earthquake using hypothetical slip distributions developed by Steacy et al. (2004) to investigate the sensitivity of Coulomb stress models to fault geometry and earthquake slip, and we also examine how the choice of receiver plane geometry affects the results. We find that the results are strongly sensitive to the slip models and moderately sensitive to the choice of receiver orientation. We further find that comparison of the stress fields (resulting from the slip models) with the location of events in the learning period provides advance information on whether or not a particular hybrid model will perform better than STEP.

  2. MODEL OF LASER-TIG HYBRID WELDING HEAT SOURCE

    Institute of Scientific and Technical Information of China (English)

    Chen Yanbin; Li Liqun; Feng Xiaosong; Fang Junfei

    2004-01-01

    The welding mechanism of laser-TIG hybrid welding process is analyzed. With the variation of arc current, the welding process is divided into two patterns: deep-penetration welding and heat conductive welding. The heat flow model of hybrid welding is presented. As to deep-penetration welding, the heat source includes a surface heat flux and a volume heat flux. The heat source of heat conductive welding is composed of two Gaussian distribute surface heat sources. With this heat source model, a temperature field is calculated. The finite element code MARC is employed for this purpose. The calculation results show a good agreement with the experimental data.

  3. Animal models of anxiety disorders and stress

    Directory of Open Access Journals (Sweden)

    Alline C. Campos

    2013-01-01

    Full Text Available Anxiety and stress-related disorders are severe psychiatric conditions that affect performance in daily tasks and represent a high cost to public health. The initial observation of Charles Darwin that animals and human beings share similar characteristics in the expression of emotion raise the possibility of studying the mechanisms of psychiatric disorders in other mammals (mainly rodents. The development of animal models of anxiety and stress has helped to identify the pharmacological mechanisms and potential clinical effects of several drugs. Animal models of anxiety are based on conflict situations that can generate opposite motivational states induced by approach-avoidance situations. The present review revisited the main rodent models of anxiety and stress responses used worldwide. Here we defined as “ethological” the tests that assess unlearned/unpunished responses (such as the elevated plus maze, light-dark box, and open field, whereas models that involve learned/punished responses are referred to as “conditioned operant conflict tests” (such as the Vogel conflict test. We also discussed models that involve mainly classical conditioning tests (fear conditioning. Finally, we addressed the main protocols used to induce stress responses in rodents, including psychosocial (social defeat and neonatal isolation stress, physical (restraint stress, and chronic unpredictable stress.

  4. Modeling of hybrid vehicle fuel economy and fuel engine efficiency

    Science.gov (United States)

    Wu, Wei

    "Near-CV" (i.e., near-conventional vehicle) hybrid vehicles, with an internal combustion engine, and a supplementary storage with low-weight, low-energy but high-power capacity, are analyzed. This design avoids the shortcoming of the "near-EV" and the "dual-mode" hybrid vehicles that need a large energy storage system (in terms of energy capacity and weight). The small storage is used to optimize engine energy management and can provide power when needed. The energy advantage of the "near-CV" design is to reduce reliance on the engine at low power, to enable regenerative braking, and to provide good performance with a small engine. The fuel consumption of internal combustion engines, which might be applied to hybrid vehicles, is analyzed by building simple analytical models that reflect the engines' energy loss characteristics. Both diesel and gasoline engines are modeled. The simple analytical models describe engine fuel consumption at any speed and load point by describing the engine's indicated efficiency and friction. The engine's indicated efficiency and heat loss are described in terms of several easy-to-obtain engine parameters, e.g., compression ratio, displacement, bore and stroke. Engine friction is described in terms of parameters obtained by fitting available fuel measurements on several diesel and spark-ignition engines. The engine models developed are shown to conform closely to experimental fuel consumption and motored friction data. A model of the energy use of "near-CV" hybrid vehicles with different storage mechanism is created, based on simple algebraic description of the components. With powertrain downsizing and hybridization, a "near-CV" hybrid vehicle can obtain a factor of approximately two in overall fuel efficiency (mpg) improvement, without considering reductions in the vehicle load.

  5. The innovative concept of three-dimensional hybrid receptor modeling

    Science.gov (United States)

    Stojić, A.; Stanišić Stojić, S.

    2017-09-01

    The aim of this study was to improve the current understanding of air pollution transport processes at regional and long-range scale. For this purpose, three-dimensional (3D) potential source contribution function and concentration weighted trajectory models, as well as new hybrid receptor model, concentration weighted boundary layer (CWBL), which uses a two-dimensional grid and a planetary boundary layer height as a frame of reference, are presented. The refined approach to hybrid receptor modeling has two advantages. At first, it considers whether each trajectory endpoint meets the inclusion criteria based on planetary boundary layer height, which is expected to provide a more realistic representation of the spatial distribution of emission sources and pollutant transport pathways. Secondly, it includes pollutant time series preprocessing to make hybrid receptor models more applicable for suburban and urban locations. The 3D hybrid receptor models presented herein are designed to identify altitude distribution of potential sources, whereas CWBL can be used for analyzing the vertical distribution of pollutant concentrations along the transport pathway.

  6. Fatigue reliability based on residual strength model with hybrid uncertain parameters

    Institute of Scientific and Technical Information of China (English)

    Jun Wang; Zhi-Ping Qiu

    2012-01-01

    The aim of this paper is to evaluate the fatigue reliability with hybrid uncertain parameters based on a residual strength model.By solving the non-probabilistic setbased reliability problem and analyzing the reliability with randomness,the fatigue reliability with hybrid parameters can be obtained.The presented hybrid model can adequately consider all uncertainties affecting the fatigue reliability with hybrid uncertain parameters.A comparison among the presented hybrid model,non-probabilistic set-theoretic model and the conventional random model is made through two typical numerical examples.The results show that the presented hybrid model,which can ensure structural security,is effective and practical.

  7. Battery thermal models for hybrid vehicle simulations

    Science.gov (United States)

    Pesaran, Ahmad A.

    This paper summarizes battery thermal modeling capabilities for: (1) an advanced vehicle simulator (ADVISOR); and (2) battery module and pack thermal design. The National Renewable Energy Laboratory's (NREL's) ADVISOR is developed in the Matlab/Simulink environment. There are several battery models in ADVISOR for various chemistry types. Each one of these models requires a thermal model to predict the temperature change that could affect battery performance parameters, such as resistance, capacity and state of charges. A lumped capacitance battery thermal model in the Matlab/Simulink environment was developed that included the ADVISOR battery performance models. For thermal evaluation and design of battery modules and packs, NREL has been using various computer aided engineering tools including commercial finite element analysis software. This paper will discuss the thermal ADVISOR battery model and its results, along with the results of finite element modeling that were presented at the workshop on "Development of Advanced Battery Engineering Models" in August 2001.

  8. Hybrid Scheduling Model for Independent Grid Tasks

    Directory of Open Access Journals (Sweden)

    J. Shanthini

    2015-01-01

    Full Text Available Grid computing facilitates the resource sharing through the administrative domains which are geographically distributed. Scheduling in a distributed heterogeneous environment is intrinsically very hard because of the heterogeneous nature of resource collection. Makespan and tardiness are two different measures of scheduling, and many of the previous researches concentrated much on reduction of makespan, which measures the machine utilization. In this paper, we propose a hybrid scheduling algorithm for scheduling independent grid tasks with the objective of reducing total weighted tardiness of grid tasks. Tardiness is to measure the due date performance, which has a direct impact on cost for executing the jobs. In this paper we propose BG_ATC algorithm which is a combination of best gap (BG search and Apparent Tardiness Cost (ATC indexing algorithm. Furthermore, we implemented these two algorithms in two different phases of the scheduling process. In addition to that, the comparison was made on results with various benchmark algorithms and the experimental results show that our algorithm outperforms the benchmark algorithms.

  9. Hybrid Scheduling Model for Independent Grid Tasks.

    Science.gov (United States)

    Shanthini, J; Kalaikumaran, T; Karthik, S

    2015-01-01

    Grid computing facilitates the resource sharing through the administrative domains which are geographically distributed. Scheduling in a distributed heterogeneous environment is intrinsically very hard because of the heterogeneous nature of resource collection. Makespan and tardiness are two different measures of scheduling, and many of the previous researches concentrated much on reduction of makespan, which measures the machine utilization. In this paper, we propose a hybrid scheduling algorithm for scheduling independent grid tasks with the objective of reducing total weighted tardiness of grid tasks. Tardiness is to measure the due date performance, which has a direct impact on cost for executing the jobs. In this paper we propose BG_ATC algorithm which is a combination of best gap (BG) search and Apparent Tardiness Cost (ATC) indexing algorithm. Furthermore, we implemented these two algorithms in two different phases of the scheduling process. In addition to that, the comparison was made on results with various benchmark algorithms and the experimental results show that our algorithm outperforms the benchmark algorithms.

  10. Recovery from hybrid breakdown in a marine invertebrate is faster, stronger and more repeatable under environmental stress.

    Science.gov (United States)

    Hwang, A S; Pritchard, V L; Edmands, S

    2016-09-01

    Understanding how environmental stress alters the consequences of hybridization is important, because the rate of hybridization and the likelihood of hybrid speciation both appear elevated in harsh, disturbed or marginal habitats. We assessed fitness, morphometrics and molecular genetic composition over 14 generations of hybridization between two highly divergent populations of the marine copepod Tigriopus californicus. Replicated, experimental hybrid populations in both control and high-salinity conditions showed a decline in fitness, followed by a recovery. Recovery was faster in the salinity stress treatment, returning to parental levels up to two generations earlier than in the control. This recovery was stable in the high-salinity treatment, whereas in the control treatment, fitness dropped back below parental levels at the final time point. Recovery in the high-salinity treatment was also stronger in terms of competitive fitness and heat-shock tolerance. Finally, consequences of hybridization were more repeatable under salinity stress, where among-replicate variance for survivorship and molecular genetic composition was lower than in the control treatment. In a system with low effective population sizes (estimates ranged from 17 to 63), where genetic drift might be expected to be the predominate force, strong selection under harsh environmental conditions apparently promoted faster, stronger and more repeatable recovery from depressed hybrid fitness.

  11. Hybrid Reynolds-Averaged/Large Eddy Simulation of a Cavity Flameholder; Assessment of Modeling Sensitivities

    Science.gov (United States)

    Baurle, R. A.

    2015-01-01

    Steady-state and scale-resolving simulations have been performed for flow in and around a model scramjet combustor flameholder. The cases simulated corresponded to those used to examine this flowfield experimentally using particle image velocimetry. A variety of turbulence models were used for the steady-state Reynolds-averaged simulations which included both linear and non-linear eddy viscosity models. The scale-resolving simulations used a hybrid Reynolds-averaged / large eddy simulation strategy that is designed to be a large eddy simulation everywhere except in the inner portion (log layer and below) of the boundary layer. Hence, this formulation can be regarded as a wall-modeled large eddy simulation. This effort was undertaken to formally assess the performance of the hybrid Reynolds-averaged / large eddy simulation modeling approach in a flowfield of interest to the scramjet research community. The numerical errors were quantified for both the steady-state and scale-resolving simulations prior to making any claims of predictive accuracy relative to the measurements. The steady-state Reynolds-averaged results showed a high degree of variability when comparing the predictions obtained from each turbulence model, with the non-linear eddy viscosity model (an explicit algebraic stress model) providing the most accurate prediction of the measured values. The hybrid Reynolds-averaged/large eddy simulation results were carefully scrutinized to ensure that even the coarsest grid had an acceptable level of resolution for large eddy simulation, and that the time-averaged statistics were acceptably accurate. The autocorrelation and its Fourier transform were the primary tools used for this assessment. The statistics extracted from the hybrid simulation strategy proved to be more accurate than the Reynolds-averaged results obtained using the linear eddy viscosity models. However, there was no predictive improvement noted over the results obtained from the explicit

  12. Efficient Proof Engines for Bounded Model Checking of Hybrid Systems

    DEFF Research Database (Denmark)

    Fränzle, Martin; Herde, Christian

    2005-01-01

    In this paper we present HySat, a new bounded model checker for linear hybrid systems, incorporating a tight integration of a DPLL-based pseudo-Boolean SAT solver and a linear programming routine as core engine. In contrast to related tools like MathSAT, ICS, or CVC, our tool exploits all...

  13. A novel Monte Carlo approach to hybrid local volatility models

    NARCIS (Netherlands)

    A.W. van der Stoep (Anton); L.A. Grzelak (Lech Aleksander); C.W. Oosterlee (Cornelis)

    2017-01-01

    textabstractWe present in a Monte Carlo simulation framework, a novel approach for the evaluation of hybrid local volatility [Risk, 1994, 7, 18–20], [Int. J. Theor. Appl. Finance, 1998, 1, 61–110] models. In particular, we consider the stochastic local volatility model—see e.g. Lipton et al. [Quant.

  14. (Hybrid) Baryons in the Flux-Tube Model

    CERN Document Server

    Page, P R

    1999-01-01

    We construct baryons and hybrid baryons in the non-relativistic flux-tube model of Isgur and Paton. The motion of the flux-tube with the three quark positions fixed, except for centre of mass corrections, is discussed. It is shown that the problem can to an excellent approximation be reduced to the independent motion of a junction and strings.

  15. New Models of Hybrid Leadership in Global Higher Education

    Science.gov (United States)

    Tonini, Donna C.; Burbules, Nicholas C.; Gunsalus, C. K.

    2016-01-01

    This manuscript highlights the development of a leadership preparation program known as the Nanyang Technological University Leadership Academy (NTULA), exploring the leadership challenges unique to a university undergoing rapid growth in a highly multicultural context, and the hybrid model of leadership it developed in response to globalization.…

  16. Incorporating RTI in a Hybrid Model of Reading Disability

    Science.gov (United States)

    Spencer, Mercedes; Wagner, Richard K.; Schatschneider, Christopher; Quinn, Jamie M.; Lopez, Danielle; Petscher, Yaacov

    2014-01-01

    The present study seeks to evaluate a hybrid model of identification that incorporates response to instruction and intervention (RTI) as one of the key symptoms of reading disability. The 1-year stability of alternative operational definitions of reading disability was examined in a large-scale sample of students who were followed longitudinally…

  17. A hybrid wind farm parameterization for mesoscale and climate models

    Science.gov (United States)

    Pan, Y.; Archer, C. L.

    2016-12-01

    To better understand the potential impacts of wind farms on weather and climate at the local to regional scale, a new hybrid wind farm parameterization is proposed here for mesoscale models, such as the Weather Research and Forecasting Model (WRF), or climate models, such as the Community Atmosphere Model (CAM). All previous wind farm parameterizations treat all the wind turbines in the same grid cell as identical (i.e., they all share the same upstream wind velocity) and ignore the effect of wind direction. By contrast, the new hybrid model considers each individual wind turbine, based on its position in the layout and on wind direction. The new parameterization is developed starting from large eddy simulations (LES) of existing wind farms, in which the local flow around each wind turbine is directly simulated at high spatial ( 3.5 m) and temporal ( 0.1 s) resolutions and the effects of subgrid-scale processes are modeled. Based on analytic and statistical relationships between the LES results and several geometric properties of the wind farm layout (such as blockage ratio and blocking distance), the new hybrid parameterization predicts the local upstream wind speed of each individual wind turbine in the same grid cell, and thus successfully account for the effects of layout and wind direction with little computational cost. With the newly predicted upstream velocity, the turbine-induced forces and added turbulence kinetic energy (TKE) in the atmosphere are derived analytically. The wind speed, wind speed deficit, and TKE profiles and power production obtained with the hybrid parameterization for the test case (the 48-turbine Lillgrund wind farm in Sweden) are in better agreement with the LES results than previous parameterizations. Future work includes the insertion of the hybrid parameterization into the WRF code to assess impacts on near-surface properties, such as temperature and heat and momentum fluxes, in the region surrounding the wind farm.

  18. Hybrid multiscale modeling and prediction of cancer cell behavior.

    Science.gov (United States)

    Zangooei, Mohammad Hossein; Habibi, Jafar

    2017-01-01

    Understanding cancer development crossing several spatial-temporal scales is of great practical significance to better understand and treat cancers. It is difficult to tackle this challenge with pure biological means. Moreover, hybrid modeling techniques have been proposed that combine the advantages of the continuum and the discrete methods to model multiscale problems. In light of these problems, we have proposed a new hybrid vascular model to facilitate the multiscale modeling and simulation of cancer development with respect to the agent-based, cellular automata and machine learning methods. The purpose of this simulation is to create a dataset that can be used for prediction of cell phenotypes. By using a proposed Q-learning based on SVR-NSGA-II method, the cells have the capability to predict their phenotypes autonomously that is, to act on its own without external direction in response to situations it encounters. Computational simulations of the model were performed in order to analyze its performance. The most striking feature of our results is that each cell can select its phenotype at each time step according to its condition. We provide evidence that the prediction of cell phenotypes is reliable. Our proposed model, which we term a hybrid multiscale modeling of cancer cell behavior, has the potential to combine the best features of both continuum and discrete models. The in silico results indicate that the 3D model can represent key features of cancer growth, angiogenesis, and its related micro-environment and show that the findings are in good agreement with biological tumor behavior. To the best of our knowledge, this paper is the first hybrid vascular multiscale modeling of cancer cell behavior that has the capability to predict cell phenotypes individually by a self-generated dataset.

  19. Brain anatomical structure segmentation by hybrid discriminative/generative models.

    Science.gov (United States)

    Tu, Z; Narr, K L; Dollar, P; Dinov, I; Thompson, P M; Toga, A W

    2008-04-01

    In this paper, a hybrid discriminative/generative model for brain anatomical structure segmentation is proposed. The learning aspect of the approach is emphasized. In the discriminative appearance models, various cues such as intensity and curvatures are combined to locally capture the complex appearances of different anatomical structures. A probabilistic boosting tree (PBT) framework is adopted to learn multiclass discriminative models that combine hundreds of features across different scales. On the generative model side, both global and local shape models are used to capture the shape information about each anatomical structure. The parameters to combine the discriminative appearance and generative shape models are also automatically learned. Thus, low-level and high-level information is learned and integrated in a hybrid model. Segmentations are obtained by minimizing an energy function associated with the proposed hybrid model. Finally, a grid-face structure is designed to explicitly represent the 3-D region topology. This representation handles an arbitrary number of regions and facilitates fast surface evolution. Our system was trained and tested on a set of 3-D magnetic resonance imaging (MRI) volumes and the results obtained are encouraging.

  20. A Hybrid Windkessel Model of Blood Flow in Arterial Tree Using Velocity Profile Method

    Science.gov (United States)

    Aboelkassem, Yasser; Virag, Zdravko

    2016-11-01

    For the study of pulsatile blood flow in the arterial system, we derived a coupled Windkessel-Womersley mathematical model. Initially, a 6-elements Windkessel model is proposed to describe the hemodynamics transport in terms of constant resistance, inductance and capacitance. This model can be seen as a two compartment model, in which the compartments are connected by a rigid pipe, modeled by one inductor and resistor. The first viscoelastic compartment models proximal part of the aorta, the second elastic compartment represents the rest of the arterial tree and aorta can be seen as the connection pipe. Although the proposed 6-elements lumped model was able to accurately reconstruct the aortic pressure, it can't be used to predict the axial velocity distribution in the aorta and the wall shear stress and consequently, proper time varying pressure drop. We then modified this lumped model by replacing the connection pipe circuit elements with a vessel having a radius R and a length L. The pulsatile flow motions in the vessel are resolved instantaneously along with the Windkessel like model enable not only accurate prediction of the aortic pressure but also wall shear stress and frictional pressure drop. The proposed hybrid model has been validated using several in-vivo aortic pressure and flow rate data acquired from different species such as, humans, dogs and pigs. The method accurately predicts the time variation of wall shear stress and frictional pressure drop. Institute for Computational Medicine, Dept. Biomedical Engineering.

  1. A quadrilateral membrane hybrid stress element with drilling degrees of freedom

    Institute of Scientific and Technical Information of China (English)

    An-Ping Wang

    2012-01-01

    A new kind of quadrilateral assumed stress hybrid membrane element with drilling degrees of freedom and a traction-free inclined side has been developed based on an extended Hellinger-Reissner principle which is established by expanding the essential terms of the assumed stress field as polynomials in the natural coordinates of the element.The homogeneous equilibrium equations are imposed in a variational sense through the internal displacements which are also expanded in the natural coordinates,while the tractionfree conditions along the inclined side are satisfied exactly.The use of such special element in the finite element solution is shown to be highly accurate when only a very coarse element mesh is used for plates with V-shaped rounded notches or inclined sides.

  2. Hybrid modelling of a sugar boiling process

    CERN Document Server

    Lauret, Alfred Jean Philippe; Gatina, Jean Claude

    2012-01-01

    The first and maybe the most important step in designing a model-based predictive controller is to develop a model that is as accurate as possible and that is valid under a wide range of operating conditions. The sugar boiling process is a strongly nonlinear and nonstationary process. The main process nonlinearities are represented by the crystal growth rate. This paper addresses the development of the crystal growth rate model according to two approaches. The first approach is classical and consists of determining the parameters of the empirical expressions of the growth rate through the use of a nonlinear programming optimization technique. The second is a novel modeling strategy that combines an artificial neural network (ANN) as an approximator of the growth rate with prior knowledge represented by the mass balance of sucrose crystals. The first results show that the first type of model performs local fitting while the second offers a greater flexibility. The two models were developed with industrial data...

  3. Hybrid Sludge Modeling in Water Treatment Processes

    OpenAIRE

    Brenda, Marian

    2015-01-01

    Sludge occurs in many waste water and drinking water treatment processes. The numeric modeling of sludge is therefore crucial for developing and optimizing water treatment processes. Numeric single-phase sludge models mainly include settling and viscoplastic behavior. Even though many investigators emphasize the importance of modeling the rheology of sludge for good simulation results, it is difficult to measure, because of settling and the viscoplastic behavior. In this thesis, a new method ...

  4. Modelling and analysis of real-time and hybrid systems

    Energy Technology Data Exchange (ETDEWEB)

    Olivero, A.

    1994-09-29

    This work deals with the modelling and analysis of real-time and hybrid systems. We first present the timed-graphs as model for the real-time systems and we recall the basic notions of the analysis of real-time systems. We describe the temporal properties on the timed-graphs using TCTL formulas. We consider two methods for property verification: in one hand we study the symbolic model-checking (based on backward analysis) and in the other hand we propose a verification method derived of the construction of the simulation graph (based on forward analysis). Both methods have been implemented within the KRONOS verification tool. Their application for the automatic verification on several real-time systems confirms the practical interest of our approach. In a second part we study the hybrid systems, systems combining discrete components with continuous ones. As in the general case the analysis of this king of systems is not decidable, we identify two sub-classes of hybrid systems and we give a construction based method for the generation of a timed-graph from an element into the sub-classes. We prove that in one case the timed-graph obtained is bi-similar with the considered system and that there exists a simulation in the other case. These relationships allow the application of the described technics on the hybrid systems into the defined sub-classes. (authors). 60 refs., 43 figs., 8 tabs., 2 annexes.

  5. A hybrid parallel framework for the cellular Potts model simulations

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Yi [Los Alamos National Laboratory; He, Kejing [SOUTH CHINA UNIV; Dong, Shoubin [SOUTH CHINA UNIV

    2009-01-01

    The Cellular Potts Model (CPM) has been widely used for biological simulations. However, most current implementations are either sequential or approximated, which can't be used for large scale complex 3D simulation. In this paper we present a hybrid parallel framework for CPM simulations. The time-consuming POE solving, cell division, and cell reaction operation are distributed to clusters using the Message Passing Interface (MPI). The Monte Carlo lattice update is parallelized on shared-memory SMP system using OpenMP. Because the Monte Carlo lattice update is much faster than the POE solving and SMP systems are more and more common, this hybrid approach achieves good performance and high accuracy at the same time. Based on the parallel Cellular Potts Model, we studied the avascular tumor growth using a multiscale model. The application and performance analysis show that the hybrid parallel framework is quite efficient. The hybrid parallel CPM can be used for the large scale simulation ({approx}10{sup 8} sites) of complex collective behavior of numerous cells ({approx}10{sup 6}).

  6. Mapping Seasonal Evapotranspiration and Root Zone Soil Moisture using a Hybrid Modeling Approach over Vineyards

    Science.gov (United States)

    Geli, H. M. E.

    2015-12-01

    Estimates of actual crop evapotranspiration (ETa) at field scale over the growing season are required for improving agricultural water management, particularly in water limited and drought prone regions. Remote sensing data from multiple platforms such as airborne and Landsat-based sensors can be used to provide these estimates. Combining these data with surface energy balance models can provide ETa estimates at sub- field scale as well as information on vegetation stress and soil moisture conditions. However, the temporal resolution of airborne and Landsat data does not allow for a continuous ETa monitoring over the course of the growing season. This study presents the application of a hybrid ETa modeling approach developed for monitoring daily ETa and root zone available water at high spatial resolutions. The hybrid ETa modeling approach couples a thermal-based energy balance model with a water balance-based scheme using data assimilation. The two source energy balance (TSEB) model is used to estimate instantaneous ETa which can be extrapolated to daily ETa using a water balance model modified to use the reflectance-based basal crop coefficient for interpolating ETa in between airborne and/or Landsat overpass dates. Moreover, since it is a water balance model, the soil moisture profile is also estimated. The hybrid ETa approach is applied over vineyard fields in central California. High resolution airborne and Landsat imagery were used to drive the hybrid model. These images were collected during periods that represented different vine phonological stages in 2013 growing season. Estimates of daily ETa and surface energy balance fluxes will be compared with ground-based eddy covariance tower measurements. Estimates of soil moisture at multiple depths will be compared with measurements.

  7. QCD Phase Transition in a new Hybrid Model Formulation

    CERN Document Server

    Srivastava, P K

    2013-01-01

    Search of a proper and realistic equations of state (EOS) for strongly interacting matter used in the study of QCD phase diagram still appears as a challenging task. Recently, we have constructed a hybrid model description for the quark gluon plasma (QGP) as well as hadron gas (HG) phases where we use a new excluded-volume model for HG and a thermodynamically-consistent quasiparticle model for the QGP phase. We attempt to use them to get a QCD phase boundary and a critical point. We test our hybrid model by reproducing the entire lattice QCD data for strongly interacting matter at zero baryon chemical potential ($\\mu_{B}$)and predict the results at finite $\\mu_{B}$ and $T$.

  8. Strongly Interacting Matter at Finite Chemical Potential: Hybrid Model Approach

    Science.gov (United States)

    Srivastava, P. K.; Singh, C. P.

    2013-06-01

    Search for a proper and realistic equation of state (EOS) for strongly interacting matter used in the study of the QCD phase diagram still appears as a challenging problem. Recently, we constructed a hybrid model description for the quark-gluon plasma (QGP) as well as hadron gas (HG) phases where we used an excluded volume model for HG and a thermodynamically consistent quasiparticle model for the QGP phase. The hybrid model suitably describes the recent lattice results of various thermodynamical as well as transport properties of the QCD matter at zero baryon chemical potential (μB). In this paper, we extend our investigations further in obtaining the properties of QCD matter at finite value of μB and compare our results with the most recent results of lattice QCD calculation.

  9. Active diagnosis of hybrid systems - A model predictive approach

    OpenAIRE

    2009-01-01

    A method for active diagnosis of hybrid systems is proposed. The main idea is to predict the future output of both normal and faulty model of the system; then at each time step an optimization problem is solved with the objective of maximizing the difference between the predicted normal and faulty outputs constrained by tolerable performance requirements. As in standard model predictive control, the first element of the optimal input is applied to the system and the whole procedure is repeate...

  10. Hybrid Neuro-Fuzzy Classifier Based On Nefclass Model

    Directory of Open Access Journals (Sweden)

    Bogdan Gliwa

    2011-01-01

    Full Text Available The paper presents hybrid neuro-fuzzy classifier, based on NEFCLASS model, which wasmodified. The presented classifier was compared to popular classifiers – neural networks andk-nearest neighbours. Efficiency of modifications in classifier was compared with methodsused in original model NEFCLASS (learning methods. Accuracy of classifier was testedusing 3 datasets from UCI Machine Learning Repository: iris, wine and breast cancer wisconsin.Moreover, influence of ensemble classification methods on classification accuracy waspresented.

  11. Advanced Geometric Modeler with Hybrid Representation

    Institute of Scientific and Technical Information of China (English)

    杨长贵; 陈玉健; 等

    1996-01-01

    An advanced geometric modeler GEMS4.0 has been developed,in which feature representation is used at the highest level abstraction of a product model.Boundary representation is used at the bottom level,while CSG model is adopted at the median level.A BRep data structure capable of modeling non-manifold is adopted.UNRBS representation is used for all curved surfaces,Quadric surfaces have dual representations consisting of their geometric data such as radius,center point,and center axis.Boundary representation of free form surfaces is easily built by sweeping and skinning method with NURBS geometry.Set operations on curved solids with boundary representation are performed by an evaluation process consisting of four steps.A file exchange facility is provided for the conversion between product data described by STEP and product information generated by GEMS4.0.

  12. Revised Reynolds Stress and Triple Product Models

    Science.gov (United States)

    Olsen, Michael E.; Lillard, Randolph P.

    2017-01-01

    Revised versions of Lag methodology Reynolds-stress and triple product models are applied to accepted test cases to assess the improvement, or lack thereof, in the prediction capability of the models. The Bachalo-Johnson bump flow is shown as an example for this abstract submission.

  13. Identification of calcium stress induced genes in amaranth leaves through suppression subtractive hybridization.

    Science.gov (United States)

    Aguilar-Hernández, Hugo S; Santos, Leticia; León-Galván, Fabiola; Barrera-Pacheco, Alberto; Espitia-Rangel, Eduardo; De León-Rodríguez, Antonio; Guevara-González, Ramón G; Barba de la Rosa, Ana P

    2011-11-15

    Calcium (Ca(2+)) is a critical ion for the growth and development of plants and plays an important role in signal transduction pathways in response to biotic and abiotic stresses. We investigated the Ca(2+) stress responsive-genes in amaranth leaves by using the suppression subtractive hybridization technique. Screening of the libraries generated 420 up-regulated transcripts and 199 down-regulated transcripts. The differentially expressed transcripts were associated with general stress response, transcription factors, gene regulation, signal transduction, and some other with unknown function. Selected genes were used to study their differential regulation by sqRT-PCR. Among the up-regulated transcripts, a fragment containing the motif of C3HC4-type RING-Zinc family was further characterized. The ORF of amaranth zinc finger protein (AhZnf) has a closer relationship with its ortholog from Ricinus communis while is distantly related to the Arabidopsis thaliana C3HC4-type ortholog. We have identified a novel putative zinc finger protein along with other novel proteins such as the wall associated kinase, phosphoinositide binding protein, and rhomboid protease involved in response to Ca(2+) stress in amaranth leaves.

  14. Investigating the drought-stress response of hybrid poplar genotypes by metabolite profiling.

    Science.gov (United States)

    Barchet, Genoa L H; Dauwe, Rebecca; Guy, Robert D; Schroeder, William R; Soolanayakanahally, Raju Y; Campbell, Malcolm M; Mansfield, Shawn D

    2014-11-01

    Drought stress is perhaps the most commonly encountered abiotic stress plants experience in the natural environment, and it is one of the most important factors limiting plant productivity. Here, we employed untargeted metabolite profiling to examine four drought-stressed hybrid poplar (Populus spp.) genotypes for their metabolite content, using gas chromatography coupled to mass spectrometry. The primary objective of these analyses was to characterize the metabolite profile of poplar trees to assess relative drought resistance and to investigate the underlying biochemical mechanisms employed by the genotypes to combat drought. Metabolite profiling identified key metabolites that increased or decreased in relative abundance upon exposure to drought stress. Overall, amino acids, the antioxidant phenolic compounds catechin and kaempferol, as well as the osmolytes raffinose and galactinol exhibited increased abundance under drought stress, whereas metabolites involved in photorespiration, redox regulation and carbon fixation showed decreased abundance under drought stress. One clone in particular, Okanese, displayed unique responses to the imposed drought conditions. This clone was found to have higher leaf water potential, but lower growth rate relative to the other clones tested. Okanese also had lower accumulation of osmolytes such as raffinose, galactinol and proline, but higher overall levels of antioxidants such as catechin and dehydroascorbic acid. As such, it was proposed that osmotic adjustment as a mechanism for drought avoidance in this clone is not as well developed in comparison with the other clones investigated in this study, and that a possible alternative mechanism for the enhanced drought avoidance displayed by Okanese may be due to differential allocation of resources or better retention of water.

  15. Long-wave approximation for hybridization modeling of local surface plasmonic resonance in nanoshells.

    Science.gov (United States)

    Li, Ben Q; Liu, Changhong

    2011-01-15

    A hybridization model for the localized surface plasmon resonance of a nanoshell is developed within the framework of long-wave approximation. Compared with the existing hybridization model derived from the hydrodynamic simulation of free electron gas, this approach is much simpler and gives identical results for a concentric nanoshell. Also, with this approach, the limitations associated with the original hybridization model are succinctly stated. Extension of this approach to hybridization modeling of more complicated structures such as multiplayered nanoshells is straightforward.

  16. Hybrid grey model to forecast monitoring series with seasonality

    Institute of Scientific and Technical Information of China (English)

    WANG Qi-jie; LIAO Xin-hao; ZHOU Yong-hong; ZOU Zheng-rong; ZHU Jian-jun; PENG Yue

    2005-01-01

    The grey forecasting model has been successfully applied to many fields. However, the precision of GM(1,1) model is not high. In order to remove the seasonal fluctuations in monitoring series before building GM(1,1) model, the forecasting series of GM(1,1) was built, and an inverse process was used to resume the seasonal fluctuations. Two deseasonalization methods were presented , i.e., seasonal index-based deseasonalization and standard normal distribution-based deseasonalization. They were combined with the GM(1,1) model to form hybrid grey models. A simple but practical method to further improve the forecasting results was also suggested. For comparison, a conventional periodic function model was investigated. The concept and algorithms were tested with four years monthly monitoring data. The results show that on the whole the seasonal index-GM(1,1) model outperform the conventional periodic function model and the conventional periodic function model outperform the SND-GM(1,1) model. The mean absolute error and mean square error of seasonal index-GM(1,1) are 30.69% and 54.53% smaller than that of conventional periodic function model, respectively. The high accuracy, straightforward and easy implementation natures of the proposed hybrid seasonal index-grey model make it a powerful analysis technique for seasonal monitoring series.

  17. Multiview coding mode decision with hybrid optimal stopping model.

    Science.gov (United States)

    Zhao, Tiesong; Kwong, Sam; Wang, Hanli; Wang, Zhou; Pan, Zhaoqing; Kuo, C-C Jay

    2013-04-01

    In a generic decision process, optimal stopping theory aims to achieve a good tradeoff between decision performance and time consumed, with the advantages of theoretical decision-making and predictable decision performance. In this paper, optimal stopping theory is employed to develop an effective hybrid model for the mode decision problem, which aims to theoretically achieve a good tradeoff between the two interrelated measurements in mode decision, as computational complexity reduction and rate-distortion degradation. The proposed hybrid model is implemented and examined with a multiview encoder. To support the model and further promote coding performance, the multiview coding mode characteristics, including predicted mode probability and estimated coding time, are jointly investigated with inter-view correlations. Exhaustive experimental results with a wide range of video resolutions reveal the efficiency and robustness of our method, with high decision accuracy, negligible computational overhead, and almost intact rate-distortion performance compared to the original encoder.

  18. Whispered speaker identification based on feature and model hybrid compensation

    Institute of Scientific and Technical Information of China (English)

    GU Xiaojiang; ZHAO Heming; Lu Gang

    2012-01-01

    In order to increase short time whispered speaker recognition rate in variable chan- nel conditions, the hybrid compensation in model and feature domains was proposed. This method is based on joint factor analysis in training model stage. It extracts speaker factor and eliminates channel factor by estimating training speech speaker and channel spaces. Then in the test stage, the test speech channel factor is projected into feature space to engage in feature compensation, so it can remove channel information both in model and feature domains in order to improve recognition rate. The experiment result shows that the hybrid compensation can obtain the similar recognition rate in the three different training channel conditions and this method is more effective than joint factor analysis in the test of short whispered speech.

  19. Credit Scoring Model Hybridizing Artificial Intelligence with Logistic Regression

    Directory of Open Access Journals (Sweden)

    Han Lu

    2013-01-01

    Full Text Available Today the most commonly used techniques for credit scoring are artificial intelligence and statistics. In this paper, we started a new way to use these two kinds of models. Through logistic regression filters the variables with a high degree of correlation, artificial intelligence models reduce complexity and accelerate convergence, while these models hybridizing logistic regression have better explanations in statistically significance, thus improve the effect of artificial intelligence models. With experiments on German data set, we find an interesting phenomenon defined as ‘Dimensional interference’ with support vector machine and from cross validation it can be seen that the new method gives a lot of help with credit scoring.

  20. A Hybrid Tool for User Interface Modeling and Prototyping

    Science.gov (United States)

    Trætteberg, Hallvard

    Although many methods have been proposed, model-based development methods have only to some extent been adopted for UI design. In particular, they are not easy to combine with user-centered design methods. In this paper, we present a hybrid UI modeling and GUI prototyping tool, which is designed to fit better with IS development and UI design traditions. The tool includes a diagram editor for domain and UI models and an execution engine that integrates UI behavior, live UI components and sample data. Thus, both model-based user interface design and prototyping-based iterative design are supported

  1. IMPLICIT REPRESENTATION FOR THE MODELLING OF HYBRID DYNAMIC SYSTEMS

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Hybrid systems can be represented by a discrete event model interacting with a continuous model, and the interface by ideal switching components which modify the topology of a system at the switching time. This paper deals with the modelling of such systems using the bond graph approach. The paper shows the interest of the implicit representation: to derive a unique state equation with jumping parameters, to derive the implicit state equation with index of nilpotency one corresponding to each configuration, to analyze the properties of those models and to compute the discontinuity.

  2. A fiber-bridging model with stress gradient effects

    Science.gov (United States)

    Yi, Sun; Tao, Li

    2000-05-01

    A fiber-bridging model with stress gradient effects is proposed for unidirectional fiber-reinforced composites. The stress gradient terms are introduced by solving a micromechanical model under a non-uniform stress loading. It is shown that the stress gradient effect is significant on both the fiber-bridging stress distribution and the value of the critical load of fiber failure.

  3. HYBRID TRUST MODEL FOR INTERNET ROUTING

    Directory of Open Access Journals (Sweden)

    Pekka Rantala

    2011-05-01

    Full Text Available The current Internet is based on a fundamental assumption of reliability and good intent among actors inthe network. Unfortunately, unreliable and malicious behaviour is becoming a major obstacle forInternet communication. In order to improve the trustworthiness and reliability of the networkinfrastructure, we propose a novel trust model to be incorporated into BGP routing. In our approach,trust model is defined by combining voting and recommendation to direct trust estimation for neighbourrouters located in different autonomous systems. We illustrate the impact of our approach with cases thatdemonstrate the indication of distrusted paths beyond the nearest neighbours and the detection of adistrusted neighbour advertising a trusted path. We simulated the impact of weighting voted and directtrust in a rectangular grid of 15*15 nodes (autonomous systems with a randomly connected topology.

  4. Hybrid Trust Model for Internet Routing

    CERN Document Server

    Rantala, Pekka; Isoaho, Jouni

    2011-01-01

    The current Internet is based on a fundamental assumption of reliability and good intent among actors in the network. Unfortunately, unreliable and malicious behaviour is becoming a major obstacle for Internet communication. In order to improve the trustworthiness and reliability of the network infrastructure, we propose a novel trust model to be incorporated into BGP routing. In our approach, trust model is defined by combining voting and recommendation to direct trust estimation for neighbour routers located in different autonomous systems. We illustrate the impact of our approach with cases that demonstrate the indication of distrusted paths beyond the nearest neighbours and the detection of a distrusted neighbour advertising a trusted path. We simulated the impact of weighting voted and direct trust in a rectangular grid of 15*15 nodes (autonomous systems) with a randomly connected topology.

  5. A New Hybrid Model Rotor Flux Observer and Its Application

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    A new hybrid model rotor flux observer, based on a new voltage model, is presented. In the first place, the voltage model of an induction machine was constructed by using the modeling method discussed in this paper and then the current model using a flux feedback was adopted in this flux observer. Secondly, the two models were combined via a filter and then the rotor flux observer was established. In the M-T synchronous coordinate, the observer was analyzed theoretically and several important functions were derived. A comparison between the observer and the traditional models was made using Matlab software. The simulation results show that the observer model had a better performance than the traditional model.

  6. A Secured Hybrid Architecture Model for Internet Banking (e - Banking

    Directory of Open Access Journals (Sweden)

    Ganesan R

    2009-05-01

    Full Text Available Internet banking has made it easy to carry out the personal or business financial trans action without going to bank and at any suitable time. This facility enables to transfer money to other accounts and checking current balance alongside the status of any financial transaction made in the account. However, in order to maintain privacy and t o avoid any misuse of transactions, it is necessary to follow a secured architecture model which ensures the privacy and integrity of the transactions and provides confidence on internet banking is stable. In this research paper, a secured hybrid architect ure model for the internet banking using Hyperelliptic curve cryptosystem and MD5 is described. This hybrid model is implemented with the hyperelliptic curve cryptosystem and it performs the encryption and decryption processes in an efficient way merely wi th an 80 - bit key size. The various screen shots given in this contribution shows that the hybrid model which encompasses HECC and MD5 can be considered in the internet banking environment to enrich the privacy and integrity of the sensitive data transmitte d between the clients and the application server

  7. Reverse engineering cellular decisions for hybrid reconfigurable network modeling

    Science.gov (United States)

    Blair, Howard A.; Saranak, Jureepan; Foster, Kenneth W.

    2011-06-01

    Cells as microorganisms and within multicellular organisms make robust decisions. Knowing how these complex cells make decisions is essential to explain, predict or mimic their behavior. The discovery of multi-layer multiple feedback loops in the signaling pathways of these modular hybrid systems suggests their decision making is sophisticated. Hybrid systems coordinate and integrate signals of various kinds: discrete on/off signals, continuous sensory signals, and stochastic and continuous fluctuations to regulate chemical concentrations. Such signaling networks can form reconfigurable networks of attractors and repellors giving them an extra level of organization that has resilient decision making built in. Work on generic attractor and repellor networks and on the already identified feedback networks and dynamic reconfigurable regulatory topologies in biological cells suggests that biological systems probably exploit such dynamic capabilities. We present a simple behavior of the swimming unicellular alga Chlamydomonas that involves interdependent discrete and continuous signals in feedback loops. We show how to rigorously verify a hybrid dynamical model of a biological system with respect to a declarative description of a cell's behavior. The hybrid dynamical systems we use are based on a unification of discrete structures and continuous topologies developed in prior work on convergence spaces. They involve variables of discrete and continuous types, in the sense of type theory in mathematical logic. A unification such as afforded by convergence spaces is necessary if one wants to take account of the affect of the structural relationships within each type on the dynamics of the system.

  8. Modelling hybrid stars in quark-hadron approaches

    Energy Technology Data Exchange (ETDEWEB)

    Schramm, S. [FIAS, Frankfurt am Main (Germany); Dexheimer, V. [Kent State University, Department of Physics, Kent, OH (United States); Negreiros, R. [Federal Fluminense University, Gragoata, Niteroi (Brazil)

    2016-01-15

    The density in the core of neutron stars can reach values of about 5 to 10 times nuclear matter saturation density. It is, therefore, a natural assumption that hadrons may have dissolved into quarks under such conditions, forming a hybrid star. This star will have an outer region of hadronic matter and a core of quark matter or even a mixed state of hadrons and quarks. In order to investigate such phases, we discuss different model approaches that can be used in the study of compact stars as well as being applicable to a wider range of temperatures and densities. One major model ingredient, the role of quark interactions in the stability of massive hybrid stars is discussed. In this context, possible conflicts with lattice QCD simulations are investigated. (orig.)

  9. Hybrid Modeling of Elastic Wave Scattering in a Welded Cylinder

    Science.gov (United States)

    Mahmoud, A.; Shah, A. H.; Popplewell, N.

    2003-03-01

    In the present study, a 3D hybrid method, which couples the finite element region with guided elastic wave modes, is formulated to investigate the scattering by a non-axisymmetric crack in a welded steel pipe. The algorithm is implemented on a parallel computing platform. Implementation is facilitated by the dynamic memory allocation capabilities of Fortran 90™ and the parallel processing directives of OpenMp™. The algorithm is validated against available numerical results. The agreement with a previous 2D hybrid model is excellent. Novel results are presented for the scattering of the first longitudinal mode from different non-axisymmetric cracks. The trend of the new results is consistent with the previous findings for the axisymmetric case. The developed model has potential application in ultrasonic nondestructive evaluation of welded steel pipes.

  10. A hybrid neural network model for consciousness

    Institute of Scientific and Technical Information of China (English)

    蔺杰; 金小刚; 杨建刚

    2004-01-01

    A new framework for consciousness is introduced based upon traditional artificial neural network models. This framework reflects explicit connections between two parts of the brain: one global working memory and distributed modular cerebral networks relating to specific brain functions. Accordingly this framework is composed of three layers,physical mnemonic layer and abstract thinking layer,which cooperate together through a recognition layer to accomplish information storage and cognition using algorithms of how these interactions contribute to consciousness:(1)the reception process whereby cerebral subsystems group distributed signals into coherent object patterns;(2)the partial recognition process whereby patterns from particular subsystems are compared or stored as knowledge; and(3)the resonant learning process whereby global workspace stably adjusts its structure to adapt to patterns' changes. Using this framework,various sorts of human actions can be explained,leading to a general approach for analyzing brain functions.

  11. A hybrid neural network model for consciousness

    Institute of Scientific and Technical Information of China (English)

    蔺杰; 金小刚; 杨建刚

    2004-01-01

    A new framework for consciousness is introduced based upon traditional artificial neural network models. This framework reflects explicit connections between two parts of the brain: one global working memory and distributed modular cerebral networks relating to specific brain functions. Accordingly this framework is composed of three layers, physical mnemonic layer and abstract thinking layer, which cooperate together through a recognition layer to accomplish information storage and cognition using algorithms of how these interactions contribute to consciousness: (l) the reception process whereby cerebral subsystems group distributed signals into coherent object patterns; (2) the partial recognition process whereby patterns from particular subsystems are compared or stored as knowledge; and (3) the resonant learning process whereby global workspace stably adjusts its structure to adapt to patterns' changes. Using this framework, various sorts of human actions can be explained, leading to a general approach for analyzing brain functions.

  12. Recent progress in battery models for hybrid wind power systems

    Energy Technology Data Exchange (ETDEWEB)

    Manwell, J.F.; McGowan, J.G.; Baring-Gould, I.; Stein, W. [Univ. of Massachusetts, Amherst, MA (United States)

    1995-12-31

    This paper summarizes the latest University of Massachusetts work on the analytical modeling and experimental testing of battery component models for hybrid power systems. An extension of the Kinetic Battery Model (KiBaM), developed at the University of Massachusetts is presented. The original model was based on a combination of phenomenological and physical considerations. As described in this paper, the modified KiBaM can now model the sharp increase in voltage near the end of charging, and the sharp drop in voltage when the battery is nearly empty. This model may readily be coupled with a DC load or charging source (such as a DC wind turbine or photovoltaic panels) to determine the corresponding DC bus voltage. For example, it is now an integral part of the DC bus section of the University of Massachusetts HYBRID simulation models. The paper describes the development of the extensions to the KiBaM model and the method of determining the constants from test data. On the experimental/applications side, it includes an illustration of how the constants are obtained from representative data (using a specially developed testing apparatus), and an example of how the model can be used.

  13. A light neutralino in hybrid models of supersymmetry breaking

    CERN Document Server

    Dudas, Emilian; Parmentier, Jeanne; 10.1016

    2008-01-01

    We show that in gauge mediation models where heavy messenger masses are provided by the adjoint Higgs field of an underlying SU(5) theory, a generalized gauge mediation spectrum arises with the characteristic feature of having a neutralino much lighter than in the standard gauge or gravity mediation schemes. This naturally fits in a hybrid scenario where gravity mediation, while subdominant with respect to gauge mediation, provides mu and B mu parameters in the TeV range.

  14. A Novel of Hybrid Maintenance Management Models for Industrial Applications

    OpenAIRE

    Tahir, Zulkifli

    2010-01-01

    It is observed through empirical studies that the effectiveness of industrial process have been increased by a well organized of machines maintenance structure. In current research, a novel of maintenance concept has been designed by hybrid several maintenance management models with Decision Making Grid (DMG), Analytic Hierarchy Process (AHP) and Fuzzy Logic. The concept is designed for maintenance personnel to evaluate and benchmark the maintenance operations and to reveal important maintena...

  15. Controllability in hybrid kinetic equations modeling nonequilibrium multicellular systems.

    Science.gov (United States)

    Bianca, Carlo

    2013-01-01

    This paper is concerned with the derivation of hybrid kinetic partial integrodifferential equations that can be proposed for the mathematical modeling of multicellular systems subjected to external force fields and characterized by nonconservative interactions. In order to prevent an uncontrolled time evolution of the moments of the solution, a control operator is introduced which is based on the Gaussian thermostat. Specifically, the analysis shows that the moments are solution of a Riccati-type differential equation.

  16. Incorporating RTI in a Hybrid Model of Reading Disability

    OpenAIRE

    2014-01-01

    The present study seeks to evaluate a hybrid model of identification that incorporates response-to-intervention (RTI) as a one of the key symptoms of reading disability. The one-year stability of alternative operational definitions of reading disability was examined in a large scale sample of students who were followed longitudinally from first to second grade. The results confirmed previous findings of limited stability for single-criterion based operational definitions of reading disability...

  17. Statics of levitated vehicle model with hybrid magnets

    Institute of Scientific and Technical Information of China (English)

    Desheng LI; Zhiyuan LU; Tianwu DONG

    2009-01-01

    By studying the special characteristics of permanent and electronic magnets, a levitated vehicle model with hybrid magnets is established. The mathematical model of the vehicle is built based on its dynamics equation by studying its machine structure and working principle. Based on the model, the basic characteristics and the effect between the excluding forces from permanent magnets in three different spatial directions are analyzed, statics characteristics of the interference forces in three different spatial directions are studied, and self-adjusting equilibrium characteristics and stabilization are analyzed. Based on the structure above, the vehicle can levitate steadily by control system adjustment.

  18. Hybrid Surface Mesh Adaptation for Climate Modeling

    Institute of Scientific and Technical Information of China (English)

    Ahmed Khamayseh; Valmor de Almeida; Glen Hansen

    2008-01-01

    Solution-driven mesh adaptation is becoming quite popular for spatial error control in the numerical simulation of complex computational physics applications, such as climate modeling. Typically, spatial adaptation is achieved by element subdivision (h adaptation) with a primary goal of resolving the local length scales of interest. A second, lesspopular method of spatial adaptivity is called "mesh motion" (r adaptation); the smooth repositioning of mesh node points aimed at resizing existing elements to capture the local length scales. This paper proposes an adaptation method based on a combination of both element subdivision and node point repositioning (rh adaptation). By combining these two methods using the notion of a mobility function, the proposed approach seeks to increase the flexibility and extensibility of mesh motion algorithms while providing a somewhat smoother transition between refined regions than is pro-duced by element subdivision alone. Further, in an attempt to support the requirements of a very general class of climate simulation applications, the proposed method is de-signed to accommodate unstructured, polygonal mesh topologies in addition to the most popular mesh types.

  19. Magnetic equivalent circuit model for unipolar hybrid excitation synchronous machine

    Directory of Open Access Journals (Sweden)

    Kupiec Emil

    2015-03-01

    Full Text Available Lately, there has been increased interest in hybrid excitation electrical machines. Hybrid excitation is a construction that combines permanent magnet excitation with wound field excitation. Within the general classification, these machines can be classified as modified synchronous machines or inductor machines. These machines may be applied as motors and generators. The complexity of electromagnetic phenomena which occur as a result of coupling of magnetic fluxes of separate excitation systems with perpendicular magnetic axis is a motivation to formulate various mathematical models of these machines. The presented paper discusses the construction of a unipolar hybrid excitation synchronous machine. The magnetic equivalent circuit model including nonlinear magnetization curves is presented. Based on this model, it is possible to determine the multi-parameter relationships between the induced voltage and magnetomotive force in the excitation winding. Particular attention has been paid to the analysis of the impact of additional stator and rotor yokes on above relationship. Induced voltage determines the remaining operating parameters of the machine, both in the motor and generator mode of operation. The analysis of chosen correlations results in an identification of the effective control range of electromotive force of the machine.

  20. A hybrid double-observer sightability model for aerial surveys

    Science.gov (United States)

    Griffin, Paul C.; Lubow, Bruce C.; Jenkins, Kurt J.; Vales, David J.; Moeller, Barbara J.; Reid, Mason; Happe, Patricia J.; Mccorquodale, Scott M.; Tirhi, Michelle J.; Schaberi, Jim P.; Beirne, Katherine

    2013-01-01

    Raw counts from aerial surveys make no correction for undetected animals and provide no estimate of precision with which to judge the utility of the counts. Sightability modeling and double-observer (DO) modeling are 2 commonly used approaches to account for detection bias and to estimate precision in aerial surveys. We developed a hybrid DO sightability model (model MH) that uses the strength of each approach to overcome the weakness in the other, for aerial surveys of elk (Cervus elaphus). The hybrid approach uses detection patterns of 2 independent observer pairs in a helicopter and telemetry-based detections of collared elk groups. Candidate MH models reflected hypotheses about effects of recorded covariates and unmodeled heterogeneity on the separate front-seat observer pair and back-seat observer pair detection probabilities. Group size and concealing vegetation cover strongly influenced detection probabilities. The pilot's previous experience participating in aerial surveys influenced detection by the front pair of observers if the elk group was on the pilot's side of the helicopter flight path. In 9 surveys in Mount Rainier National Park, the raw number of elk counted was approximately 80–93% of the abundance estimated by model MH. Uncorrected ratios of bulls per 100 cows generally were low compared to estimates adjusted for detection bias, but ratios of calves per 100 cows were comparable whether based on raw survey counts or adjusted estimates. The hybrid method was an improvement over commonly used alternatives, with improved precision compared to sightability modeling and reduced bias compared to DO modeling.

  1. Residual stresses and vector hysteresis modeling

    Energy Technology Data Exchange (ETDEWEB)

    Ktena, Aphrodite, E-mail: aktena@teiste.gr

    2016-04-01

    Residual stresses in magnetic materials, whether the result of processing or intentional loading, leave their footprint on macroscopic data, such hysteresis loops and differential permeability measurements. A Preisach-type vector model is used to reproduce the phenomenology observed based on assumptions deduced from the data: internal stresses lead to smaller and misaligned grains, hence increased domain wall pinning and angular dispersion of local easy axes, favouring rotation as a magnetization reversal mechanism; misaligned grains contribute to magnetostatic fields opposing the direction of the applied field. The model is using a vector operator which accounts for both reversible and irreversible processes; the Preisach concept for interactions for the role of stress related demagnetizing fields; and a characteristic probability density function which is constructed as a weighed sum of constituent functions: the material is modeled as consisting of various subsystems, e.g. reversal mechanisms or areas subject to strong/weak long range interactions and each subsystem is represented by a constituent probability density function. Our assumptions are validated since the model reproduces the hysteresis loops and differential permeability curves observed experimentally and calculations involving rotating inputs at various residual stress levels are consistent and in agreement with experimental evidence.

  2. Residual stresses and vector hysteresis modeling

    Science.gov (United States)

    Ktena, Aphrodite

    2016-04-01

    Residual stresses in magnetic materials, whether the result of processing or intentional loading, leave their footprint on macroscopic data, such hysteresis loops and differential permeability measurements. A Preisach-type vector model is used to reproduce the phenomenology observed based on assumptions deduced from the data: internal stresses lead to smaller and misaligned grains, hence increased domain wall pinning and angular dispersion of local easy axes, favouring rotation as a magnetization reversal mechanism; misaligned grains contribute to magnetostatic fields opposing the direction of the applied field. The model is using a vector operator which accounts for both reversible and irreversible processes; the Preisach concept for interactions for the role of stress related demagnetizing fields; and a characteristic probability density function which is constructed as a weighed sum of constituent functions: the material is modeled as consisting of various subsystems, e.g. reversal mechanisms or areas subject to strong/weak long range interactions and each subsystem is represented by a constituent probability density function. Our assumptions are validated since the model reproduces the hysteresis loops and differential permeability curves observed experimentally and calculations involving rotating inputs at various residual stress levels are consistent and in agreement with experimental evidence.

  3. A comprehensive model of stress - The roles of experienced stress and neuroticism in explaining the stress-distress relationship

    NARCIS (Netherlands)

    De Jong, GM; van Sonderen, E; Emmelkamp, PMG

    1999-01-01

    Background: In this study, a complex theoretical model regarding the stress-distress relationship was evaluated. The various components in the model included experienced stress (daily hassles), psychological distress, neuroticism, problem-focused coping, avoidant coping, satisfaction with received s

  4. Hybrid and adaptive meta-model-based global optimization

    Science.gov (United States)

    Gu, J.; Li, G. Y.; Dong, Z.

    2012-01-01

    As an efficient and robust technique for global optimization, meta-model-based search methods have been increasingly used in solving complex and computation intensive design optimization problems. In this work, a hybrid and adaptive meta-model-based global optimization method that can automatically select appropriate meta-modelling techniques during the search process to improve search efficiency is introduced. The search initially applies three representative meta-models concurrently. Progress towards a better performing model is then introduced by selecting sample data points adaptively according to the calculated values of the three meta-models to improve modelling accuracy and search efficiency. To demonstrate the superior performance of the new algorithm over existing search methods, the new method is tested using various benchmark global optimization problems and applied to a real industrial design optimization example involving vehicle crash simulation. The method is particularly suitable for design problems involving computation intensive, black-box analyses and simulations.

  5. An isentropic and sigma coordinate hybrid numerical model - Model development and some initial tests. [for atmospheric simulations

    Science.gov (United States)

    Uccellini, L. W.; Johnson, D. R.; Schlesinger, R. E.

    1979-01-01

    A solution is presented for matching boundary conditions across the interface of an isentropic and sigma coordinate hybrid model. A hybrid model based on the flux form of the primitive equations is developed which allows direct vertical exchange between the model domains, satisfies conservation principles with respect to transport processes, and maintains a smooth transition across the interface without need for artificial adjustment or parameterization schemes. The initial hybrid model simulations of a jet streak propagating in a zonal channel are used to test the feasibility of the hybrid model approach. High efficiency of the hybrid model is demonstrated.

  6. A Novel Software Simulator Model Based on Active Hybrid Architecture

    Directory of Open Access Journals (Sweden)

    Amr AbdElHamid

    2015-01-01

    Full Text Available The simulated training is an important issue for any type of missions such as aerial, ground, sea, or even space missions. In this paper, a new flexible aerial simulator based on active hybrid architecture is introduced. The simulator infrastructure is applicable to any type of training missions and research activities. This software-based simulator is tested on aerial missions to prove its applicability within time critical systems. The proposed active hybrid architecture is introduced via using the VB.NET and MATLAB in the same simulation loop. It exploits the remarkable computational power of MATLAB as a backbone aircraft model, and such mathematical model provides realistic dynamics to the trainee. Meanwhile, the Human-Machine Interface (HMI, the mission planning, the hardware interfacing, data logging, and MATLAB interfacing are developed using VB.NET. The proposed simulator is flexible enough to perform navigation and obstacle avoidance training missions. The active hybrid architecture is used during the simulated training, and also through postmission activities (like the generation of signals playback reports for evaluation purposes. The results show the ability of the proposed architecture to fulfill the aerial simulator demands and to provide a flexible infrastructure for different simulated mission requirements. Finally, a comparison with some existing simulators is introduced.

  7. MODEL APLIKASI FIKIH MUAMALAH PADA FORMULASI HYBRID CONTRACT

    Directory of Open Access Journals (Sweden)

    Ali Murtadho

    2013-10-01

    Full Text Available Modern literatures of fiqh mu’āmalah talk alot about various contract formulation with capability of maximizing profit in shariah finance industry. This new contract modification is the synthesis among existing contracts which is formulated in such a way to be an integrated contract. This formulation is known as a hybrid contract or multicontract (al-'uqūd al-murakkabah. Some of them are, bay' bi thaman 'ājil, Ijārah muntahiyah bi ’l-tamlīk dan mushārakah mutanāqiṣah. This study intends to further describe models of hybrid contract, and explore the shari'ah principles in modern financial institutions. This study found a potential shift from the ideal values of the spirit of shari'ah into the spirit of competition based shari'ah formally.

  8. Mechanically induced residual stresses: Modelling and characterisation

    Science.gov (United States)

    Stranart, Jean-Claude E.

    Accurate characterisation of residual stress represents a major challenge to the engineering community. This is because it is difficult to validate the measurement and the accuracy is doubtful. It is with this in mind that the current research program concerning the characterisation of mechanically induced residual stresses was undertaken. Specifically, the cold expansion of fastener holes and the shot peening treatment of aerospace alloys, aluminium 7075 and titanium Ti-6Al-4V, are considered. The objective of this study is to characterise residual stresses resulting from cold working using three powerful techniques. These are: (i) theoretical using three dimensional non-linear finite element modelling, (ii) semi-destructive using a modified incremental hole drilling technique and (iii) nondestructive using a newly developed guided wave method supplemented by traditional C-scan measurements. The three dimensional finite element results of both simultaneous and sequential cold expansion of two fastener holes revealed the importance of the separation distance, the expansion level and the loading history upon the development and growth of the plastic zone and unloading residual stresses. It further showed that the commonly adopted two dimensional finite element models are inaccurate and incapable of predicting these residual stresses. Similarly, the dynamic elasto-plastic finite element studies of shot peening showed that the depth of the compressed layer, surface and sub-surface residual stresses are significantly influenced by the shot characteristics. Furthermore, the results reveal that the separation distance between two simultaneously impacting shots governs the plastic zone development and its growth. In the semi-destructive incremental hole drilling technique, the accuracy of the newly developed calibration coefficients and measurement techniques were verified with a known stress field and the method was used to measure peening residual stresses. Unlike

  9. System Modeling and Diagnostics for Liquefying-Fuel Hybrid Rockets

    Science.gov (United States)

    Poll, Scott; Iverson, David; Ou, Jeremy; Sanderfer, Dwight; Patterson-Hine, Ann

    2003-01-01

    A Hybrid Combustion Facility (HCF) was recently built at NASA Ames Research Center to study the combustion properties of a new fuel formulation that burns approximately three times faster than conventional hybrid fuels. Researchers at Ames working in the area of Integrated Vehicle Health Management recognized a good opportunity to apply IVHM techniques to a candidate technology for next generation launch systems. Five tools were selected to examine various IVHM techniques for the HCF. Three of the tools, TEAMS (Testability Engineering and Maintenance System), L2 (Livingstone2), and RODON, are model-based reasoning (or diagnostic) systems. Two other tools in this study, ICS (Interval Constraint Simulator) and IMS (Inductive Monitoring System) do not attempt to isolate the cause of the failure but may be used for fault detection. Models of varying scope and completeness were created, both qualitative and quantitative. In each of the models, the structure and behavior of the physical system are captured. In the qualitative models, the temporal aspects of the system behavior and the abstraction of sensor data are handled outside of the model and require the development of additional code. In the quantitative model, less extensive processing code is also necessary. Examples of fault diagnoses are given.

  10. A Simple Hybrid Model for Short-Term Load Forecasting

    Directory of Open Access Journals (Sweden)

    Suseelatha Annamareddi

    2013-01-01

    Full Text Available The paper proposes a simple hybrid model to forecast the electrical load data based on the wavelet transform technique and double exponential smoothing. The historical noisy load series data is decomposed into deterministic and fluctuation components using suitable wavelet coefficient thresholds and wavelet reconstruction method. The variation characteristics of the resulting series are analyzed to arrive at reasonable thresholds that yield good denoising results. The constitutive series are then forecasted using appropriate exponential adaptive smoothing models. A case study performed on California energy market data demonstrates that the proposed method can offer high forecasting precision for very short-term forecasts, considering a time horizon of two weeks.

  11. Active diagnosis of hybrid systems - A model predictive approach

    DEFF Research Database (Denmark)

    Tabatabaeipour, Seyed Mojtaba; Ravn, Anders P.; Izadi-Zamanabadi, Roozbeh;

    2009-01-01

    A method for active diagnosis of hybrid systems is proposed. The main idea is to predict the future output of both normal and faulty model of the system; then at each time step an optimization problem is solved with the objective of maximizing the difference between the predicted normal and faulty...... outputs constrained by tolerable performance requirements. As in standard model predictive control, the first element of the optimal input is applied to the system and the whole procedure is repeated until the fault is detected by a passive diagnoser. It is demonstrated how the generated excitation signal...

  12. Melatonin–sulforaphane hybrid ITH12674 induces neuroprotection in oxidative stress conditions by a ‘drug–prodrug’ mechanism of action

    Science.gov (United States)

    Egea, Javier; Buendia, Izaskun; Parada, Esther; Navarro, Elisa; Rada, Patricia; Cuadrado, Antonio; López, Manuela G; García, Antonio G; León, Rafael

    2015-01-01

    Background and Purpose Neurodegenerative diseases are a major problem afflicting ageing populations; however, there are no effective treatments to stop their progression. Oxidative stress and neuroinflammation are common factors in their pathogenesis. Nuclear factor (erythroid-derived 2)-like 2 (Nrf2) is the master regulator of oxidative stress, and melatonin is an endogenous hormone with antioxidative properties that reduces its levels with ageing. We have designed a new compound that combines the effects of melatonin with Nrf2 induction properties, with the idea of achieving improved neuroprotective properties. Experimental Approach Compound ITH12674 is a hybrid of melatonin and sulforaphane designed to exert a dual drug–prodrug mechanism of action. We obtained the proposed hybrid in a single step. To test its neuroprotective properties, we used different in vitro models of oxidative stress related to neurodegenerative diseases and brain ischaemia. Key Results ITH12674 showed an improved neuroprotective profile compared to that of melatonin and sulforaphane. ITH12674 (i) mediated a concentration-dependent protective effect in cortical neurons subjected to oxidative stress; (ii) decreased reactive oxygen species production; (iii) augmented GSH concentrations in cortical neurons; (iv) enhanced the Nrf2–antioxidant response element transcriptional response in transfected HEK293T cells; and (v) protected organotypic cultures of hippocampal slices subjected to oxygen and glucose deprivation and re-oxygenation from stress by increasing the expression of haem oxygenase-1 and reducing free radical production. Conclusion and Implications ITH12674 combines the signalling pathways of the parent compounds to improve its neuroprotective properties. This opens a new line of research for such hybrid compounds to treat neurodegenerative diseases. PMID:25425158

  13. Petascale computation performance of lightweight multiscale cardiac models using hybrid programming models.

    Science.gov (United States)

    Pope, Bernard J; Fitch, Blake G; Pitman, Michael C; Rice, John J; Reumann, Matthias

    2011-01-01

    Future multiscale and multiphysics models must use the power of high performance computing (HPC) systems to enable research into human disease, translational medical science, and treatment. Previously we showed that computationally efficient multiscale models will require the use of sophisticated hybrid programming models, mixing distributed message passing processes (e.g. the message passing interface (MPI)) with multithreading (e.g. OpenMP, POSIX pthreads). The objective of this work is to compare the performance of such hybrid programming models when applied to the simulation of a lightweight multiscale cardiac model. Our results show that the hybrid models do not perform favourably when compared to an implementation using only MPI which is in contrast to our results using complex physiological models. Thus, with regards to lightweight multiscale cardiac models, the user may not need to increase programming complexity by using a hybrid programming approach. However, considering that model complexity will increase as well as the HPC system size in both node count and number of cores per node, it is still foreseeable that we will achieve faster than real time multiscale cardiac simulations on these systems using hybrid programming models.

  14. Hybrid models for hydrological forecasting: integration of data-driven and conceptual modelling techniques

    NARCIS (Netherlands)

    Corzo Perez, G.A.

    2009-01-01

    This book presents the investigation of different architectures of integrating hydrological knowledge and models with data-driven models for the purpose of hydrological flow forecasting. The models resulting from such integration are referred to as hybrid models. The book addresses the following top

  15. Hybrid models for hydrological forecasting: Integration of data-driven and conceptual modelling techniques

    NARCIS (Netherlands)

    Corzo Perez, G.A.

    2009-01-01

    This book presents the investigation of different architectures of integrating hydrological knowledge and models with data-driven models for the purpose of hydrological flow forecasting. The models resulting from such integration are referred to as hybrid models. The book addresses the following top

  16. Hybrid models for hydrological forecasting: integration of data-driven and conceptual modelling techniques

    NARCIS (Netherlands)

    Corzo Perez, G.A.

    2009-01-01

    This book presents the investigation of different architectures of integrating hydrological knowledge and models with data-driven models for the purpose of hydrological flow forecasting. The models resulting from such integration are referred to as hybrid models. The book addresses the following

  17. Hybrid models for hydrological forecasting: Integration of data-driven and conceptual modelling techniques

    NARCIS (Netherlands)

    Corzo Perez, G.A.

    2009-01-01

    This book presents the investigation of different architectures of integrating hydrological knowledge and models with data-driven models for the purpose of hydrological flow forecasting. The models resulting from such integration are referred to as hybrid models. The book addresses the following

  18. Residual Stresses Modeled in Thermal Barrier Coatings

    Science.gov (United States)

    Freborg, A. M.; Ferguson, B. L.; Petrus, G. J.; Brindley, W. J.

    1998-01-01

    Thermal barrier coating (TBC) applications continue to increase as the need for greater engine efficiency in aircraft and land-based gas turbines increases. However, durability and reliability issues limit the benefits that can be derived from TBC's. A thorough understanding of the mechanisms that cause TBC failure is a key to increasing, as well as predicting, TBC durability. Oxidation of the bond coat has been repeatedly identified as one of the major factors affecting the durability of the ceramic top coat during service. However, the mechanisms by which oxidation facilitates TBC failure are poorly understood and require further characterization. In addition, researchers have suspected that other bond coat and top coat factors might influence TBC thermal fatigue life, both separately and through interactions with the mechanism of oxidation. These other factors include the bond coat coefficient of thermal expansion, the bond coat roughness, and the creep behavior of both the ceramic and bond coat layers. Although it is difficult to design an experiment to examine these factors unambiguously, it is possible to design a computer modeling "experiment" to examine the action and interaction of these factors, as well as to determine failure drivers for TBC's. Previous computer models have examined some of these factors separately to determine their effect on coating residual stresses, but none have examined all the factors concurrently. The purpose of this research, which was performed at DCT, Inc., in contract with the NASA Lewis Research Center, was to develop an inclusive finite element model to characterize the effects of oxidation on the residual stresses within the TBC system during thermal cycling as well as to examine the interaction of oxidation with the other factors affecting TBC life. The plasma sprayed, two-layer thermal barrier coating that was modeled incorporated a superalloy substrate, a NiCrAlY bond coat, and a ZrO2-8 wt % Y2O3 ceramic top coat. We

  19. Multiobjective muffler shape optimization with hybrid acoustics modeling.

    Science.gov (United States)

    Airaksinen, Tuomas; Heikkola, Erkki

    2011-09-01

    This paper considers the combined use of a hybrid numerical method for the modeling of acoustic mufflers and a genetic algorithm for multiobjective optimization. The hybrid numerical method provides accurate modeling of sound propagation in uniform waveguides with non-uniform obstructions. It is based on coupling a wave based modal solution in the uniform sections of the waveguide to a finite element solution in the non-uniform component. Finite element method provides flexible modeling of complicated geometries, varying material parameters, and boundary conditions, while the wave based solution leads to accurate treatment of non-reflecting boundaries and straightforward computation of the transmission loss (TL) of the muffler. The goal of optimization is to maximize TL at multiple frequency ranges simultaneously by adjusting chosen shape parameters of the muffler. This task is formulated as a multiobjective optimization problem with the objectives depending on the solution of the simulation model. NSGA-II genetic algorithm is used for solving the multiobjective optimization problem. Genetic algorithms can be easily combined with different simulation methods, and they are not sensitive to the smoothness properties of the objective functions. Numerical experiments demonstrate the accuracy and feasibility of the model-based optimization method in muffler design.

  20. Hybrid model decomposition of speech and noise in a radial basis function neural model framework

    DEFF Research Database (Denmark)

    Sørensen, Helge Bjarup Dissing; Hartmann, Uwe

    1994-01-01

    applied is based on a combination of the hidden Markov model (HMM) decomposition method, for speech recognition in noise, developed by Varga and Moore (1990) from DRA and the hybrid (HMM/RBF) recognizer containing hidden Markov models and radial basis function (RBF) neural networks, developed by Singer...... and Lippmann (1992) from MIT Lincoln Lab. The present authors modified the hybrid recognizer to fit into the decomposition method to achieve high performance speech recognition in noisy environments. The approach has been denoted the hybrid model decomposition method and it provides an optimal method...... for decomposition of speech and noise by using a set of speech pattern models and a noise model(s), each realized as an HMM/RBF pattern model...

  1. Experimental Validation of a Thermoelastic Model for SMA Hybrid Composites

    Science.gov (United States)

    Turner, Travis L.

    2001-01-01

    This study presents results from experimental validation of a recently developed model for predicting the thermomechanical behavior of shape memory alloy hybrid composite (SMAHC) structures, composite structures with an embedded SMA constituent. The model captures the material nonlinearity of the material system with temperature and is capable of modeling constrained, restrained, or free recovery behavior from experimental measurement of fundamental engineering properties. A brief description of the model and analysis procedures is given, followed by an overview of a parallel effort to fabricate and characterize the material system of SMAHC specimens. Static and dynamic experimental configurations for the SMAHC specimens are described and experimental results for thermal post-buckling and random response are presented. Excellent agreement is achieved between the measured and predicted results, fully validating the theoretical model for constrained recovery behavior of SMAHC structures.

  2. Intra Plate Stresses Using Finite Element Modelling

    Directory of Open Access Journals (Sweden)

    Jayalakshmi S.

    2016-10-01

    Full Text Available One of the most challenging problems in the estimation of seismic hazard is the ability to quantify seismic activity. Empirical models based on the available earthquake catalogue are often used to obtain activity of source regions. The major limitation with this approach is the lack of sufficient data near a specified source. The non-availability of data poses difficulties in obtaining distribution of earthquakes with large return periods. Such events recur over geological time scales during which tectonic processes, including mantle convection, formation of faults and new plate boundaries, are likely to take place. The availability of geometries of plate boundaries, plate driving forces, lithospheric stress field and GPS measurements has provided numerous insights on the mechanics of tectonic plates. In this article, a 2D finite element model of Indo-Australian plate is developed with the focus of representing seismic activity in India. The effect of large scale geological features including sedimentary basins, fold belts and cratons on the stress field in India is explored in this study. In order to address long term behaviour, the orientation of stress field and tectonic faults of the present Indo-Australian plate are compared with a reconstructed stress field from the early Miocene (20 Ma.

  3. Internal stress distribution of X-ring using photoelastic experimental hybrid method

    Energy Technology Data Exchange (ETDEWEB)

    Bernard, Alunda Ouma [Dedan Kimathi University of Technology, Nyeri (Kenya); Hawong, Jai Sug; Lim, Hyun Seok [Yeungnam University, Gyeongsan (Korea, Republic of); Shin, Dong Chul [Koje College, Geoje (Korea, Republic of)

    2014-05-15

    Sealing elements are essential parts of many machines, and are used to prevent the loss of a fluid or gas. When such fluids are not properly sealed, catastrophic failures may result. Many different types of rings have been developed to suit various industrial needs. Considerable research has been done on the O-ring. We analyze the internal stresses developed in an X-ring under a uniform squeeze rate of 20%, which is suitable for static applications, using a photoelastic experimental hybrid method. The internal pressures applied were 0.98, 1.96, 2.94, 3.92, 4.90, and 5.88 MPa. We show that sealing rings with X geometry have considerably higher internal stresses than O-ring seals. In addition, we demonstrate that after extrusion, for an internal pressure of 5.88 MPa, the two lobes on the upper contact surface merge, thereby increasing the contact length of the upper side significantly. Extrusion in the X-ring occurred when the internal pressure was 4.90 MPa.

  4. Comparison of Welding Residual Stresses of Hybrid Laser-Arc Welding and Submerged Arc Welding in Offshore Steel Structures

    DEFF Research Database (Denmark)

    Andreassen, Michael Joachim; Yu, Zhenzhen; Liu, Stephen

    2016-01-01

    induced residual stresses. It is also investigated whether the assumption of residual stresses up to yield strength magnitude are present in welded structures as stated in the design guidelines. The fatigue strength for welded joints is based on this assumption. The two welding methods investigated...... are hybrid laser-arc welding (HLAW) and submerged arc welding (SAW). Both welding methods are applied for a full penetration butt-weld of 10 mm thick plates made of thermomechanically hot-rolled, low-carbon, fine-grain S355ML grade steel used in offshore steel structures. The welding residual stress state...

  5. SCAN-based hybrid and double-hybrid density functionals from parameter-free models

    CERN Document Server

    Hui, Kerwin

    2015-01-01

    By incorporating the nonempirical SCAN semilocal density functional [Sun, Ruzsinszky, and Perdew, Phys. Rev. Lett. 115, 036402 (2015)] in the underlying expression, we propose one hybrid (SCAN0) and three double-hybrid (SCAN0-DH, SCAN-QIDH, and SCAN0-2) density functionals, which are free of any empirical parameter. The SCAN-based hybrid and double-hybrid functionals consistently outperform their parent SCAN semilocal functional for a wide range of applications. The SCAN-based semilocal, hybrid, and double-hybrid functionals generally perform better than the corresponding PBE-based functionals. In addition, the SCAN0-2 and SCAN-QIDH double-hybrid functionals significantly reduce the qualitative failures of the SCAN semilocal functional, such as the self-interaction error and noncovalent interaction error, extending the applicability of the SCAN-based functionals to a very diverse range of systems.

  6. Hybrid Multi-Physics Modeling of an Ultra-Fast Electro-Mechanical Actuator

    Directory of Open Access Journals (Sweden)

    Ara Bissal

    2015-12-01

    Full Text Available The challenges of an HVDC breaker are to generate impulsive forces in the order of hundreds of kilonewtons within fractions of a millisecond, to withstand the arising internal mechanical stresses and to transmit these forces via an electrically-insulating device to the contact system with minimum time delay. In this work, several models were developed with different levels of complexity, computation time and accuracy. Experiments were done with two mushroom-shaped armatures to validate the developed simulation models. It was concluded that although the electromagnetic force generation mechanism is highly sensitive to the mechanical response of the system, the developed first order hybrid model is able to predict the performance of the breaker with good accuracy.

  7. Hybrid perturbation methods based on statistical time series models

    Science.gov (United States)

    San-Juan, Juan Félix; San-Martín, Montserrat; Pérez, Iván; López, Rosario

    2016-04-01

    In this work we present a new methodology for orbit propagation, the hybrid perturbation theory, based on the combination of an integration method and a prediction technique. The former, which can be a numerical, analytical or semianalytical theory, generates an initial approximation that contains some inaccuracies derived from the fact that, in order to simplify the expressions and subsequent computations, not all the involved forces are taken into account and only low-order terms are considered, not to mention the fact that mathematical models of perturbations not always reproduce physical phenomena with absolute precision. The prediction technique, which can be based on either statistical time series models or computational intelligence methods, is aimed at modelling and reproducing missing dynamics in the previously integrated approximation. This combination results in the precision improvement of conventional numerical, analytical and semianalytical theories for determining the position and velocity of any artificial satellite or space debris object. In order to validate this methodology, we present a family of three hybrid orbit propagators formed by the combination of three different orders of approximation of an analytical theory and a statistical time series model, and analyse their capability to process the effect produced by the flattening of the Earth. The three considered analytical components are the integration of the Kepler problem, a first-order and a second-order analytical theories, whereas the prediction technique is the same in the three cases, namely an additive Holt-Winters method.

  8. A Hybrid Model for QCD Deconfining Phase Boundary

    CERN Document Server

    Srivastava, P K

    2012-01-01

    Intensive search for a proper and realistic equations of state (EOS) is still continued for studying the phase diagram existing between quark gluon plasma (QGP) and hadron gas (HG) phases. Lattice calculations provide such EOS for the strongly interacting matter at finite temperature ($T$) and vanishing baryon chemical potential ($\\mu_{B}$). These calculations are of limited use at finite $\\mu_{B}$ due to the appearance of notorious sign problem. In the recent past, we had constructed a hybrid model description for the QGP as well as HG phases where we make use of a new excluded-volume model for HG and a thermodynamically-consistent quasiparticle model for the QGP phase and used them further to get QCD phase boundary and a critical point. Since then many lattice calculations have appeared showing various thermal and transport properties of QCD matter at finite $T$ and $\\mu_{B}=0$. We test our hybrid model by reproducing the entire data for strongly interacting matter and predict our results at finite $\\mu_{B}...

  9. Description of Strongly Interacting Matter in A Hybrid Model

    CERN Document Server

    Srivastava, P K

    2014-01-01

    Search for a proper and realistic equation of state (EOS) for strongly interacting matter used in the study of the QCD phase diagram still appears as a challenging problem. Recently, we constructed a hybrid model description for the quark gluon plasma (QGP) as well as hadron gas (HG) phases where we used an excluded volume model for HG and a thermodynamically consistent quasiparticle model for the QGP phase. The hybrid model suitably describes the recent lattice results of various thermodynamical as well as transport properties of the QCD matter at zero baryon chemical potential ($\\mu_{B}$). In this paper, we extend our investigations further in obtaining the properties of QCD matter at finite value of $\\mu_{B}$ and compare our results with the most recent results of lattice QCD calculation. Finally we demonstrate the existence of two different limiting energy regimes and propose that the connection point of these two limiting regimes would foretell the existence of critical point (CP) of the deconfining phas...

  10. Interval forecasts of a novelty hybrid model for wind speeds

    Directory of Open Access Journals (Sweden)

    Shanshan Qin

    2015-11-01

    Full Text Available The utilization of wind energy, as a booming technology in the field of renewable energies, has been highly regarded around the world. Quantification of uncertainties associated with accurate wind speed forecasts is essential for regulating wind power generation and integration. However, it remains difficult work primarily due to the stochastic and nonlinear characteristics of wind speed series. Traditional models for wind speed forecasting mostly focus on generating certain predictive values, which cannot properly handle uncertainties. For quantifying potential uncertainties, a hybrid model constructed by the Cuckoo Search Optimization (CSO-based Back Propagation Neural Network (BPNN is proposed to establish wind speed interval forecasts (IFs by estimating the lower and upper bounds. The quality of IFs is assessed quantitatively using IFs coverage probability (IFCP and IFs normalized average width (IFNAW. Moreover, to assess the overall quality of IFs comprehensively, a tradeoff between informativeness (IFNAW and validity (IFCP of IFs is examined by coverage width-based criteria (CWC. As an applicative study, wind speeds from the Xinjiang Region in China are used to validate the proposed hybrid model. The results demonstrate that the proposed model can construct higher quality IFs for short-term wind speed forecasts.

  11. A site dependent top height growth model for hybrid aspen

    Institute of Scientific and Technical Information of China (English)

    Tord Johansson

    2013-01-01

    In this study height growth models for hybrid aspen were developed using three growth equations. The mean age of the hybrid aspen was 21 years (range 15−51 years) with a mean stand density of 946 stems ha-1 (87−2374) and a mean diameter at breast height (over bark) of 19.6 cm (8.5−40.8 cm). Site index was also examined in relation to soil type. Multiple samples were collected for three types of soil: light clay, medium clay and till. Site index curves were constructed using the col-lected data and compared with published reports. A number of dynamic equations were assessed for modeling top-height growth from total age. A Generalized Algebraic Difference Approach model derived by Cieszewski (2001) performed the best. This model explained 99% of the observed variation in tree height growth and exhibited no apparent bias across the range of predicted site indices. There were no significant differences between the soil types and site indices.

  12. KNGEOID14: A national hybrid geoid model in Korea

    Science.gov (United States)

    Kang, S.; Sung, Y. M.; KIM, H.; Kim, Y. S.

    2016-12-01

    This study describes in brief the construction of a national hybrid geoid model in Korea, KNGEOID14, which can be used as an accurate vertical datum in/around Korea. The hybrid geoid model should be determined by fitting the gravimetric geoid to the geometric geoid undulations from GNSS/Leveling data which were presented the local vertical level. For developing the gravimetric geoid model, we determined all frequency parts (long, middle and short-frequency) of gravimetric geoid using all available data with optimal remove-restore technique based on EGM2008 reference surface. In remove-restore technique, the EGM2008 model to degree 360, RTM reduction method were used for calculating the long, middle and short-frequency part of gravimetric geoid, respectively. A number of gravity data compiled for modeling the middle-frequency part, residual geoid, containing 8,866 points gravity data on land and ocean areas. And, the DEM data gridded by 100m×100m were used for short-frequency part, is the topographic effect on the geoid generated by RTM method. The accuracy of gravimetric geoid model were evaluated by comparison with GNSS/Leveling data was about -0.362m ± 0.055m. Finally, we developed the national hybrid geoid model in Korea, KNGEOID14, corrected to gravimetric geoid with the correction term by fitting the about 1,200 GNSS/Leveling data on Korean bench marks. The correction term is modeled using the difference between GNSS/Leveling derived geoidal heights and gravimetric geoidal heights. The stochastic model used in the calculation of correction term is the LSC technique based on second-order Markov covariance function. The post-fit error (mean and std. dev.) of the KNGEOID14 model was evaluated as 0.001m ± 0.033m. Concerning the result of this study, the accurate orthometric height at any points in Korea will be easily and precisely calculated by combining the geoidal height from KNGEOID14 and ellipsoidal height from GPS observation technique.

  13. Ionocovalency and Applications 1. Ionocovalency Model and Orbital Hybrid Scales

    Directory of Open Access Journals (Sweden)

    Yonghe Zhang

    2010-11-01

    Full Text Available Ionocovalency (IC, a quantitative dual nature of the atom, is defined and correlated with quantum-mechanical potential to describe quantitatively the dual properties of the bond. Orbiotal hybrid IC model scale, IC, and IC electronegativity scale, XIC, are proposed, wherein the ionicity and the covalent radius are determined by spectroscopy. Being composed of the ionic function I and the covalent function C, the model describes quantitatively the dual properties of bond strengths, charge density and ionic potential. Based on the atomic electron configuration and the various quantum-mechanical built-up dual parameters, the model formed a Dual Method of the multiple-functional prediction, which has much more versatile and exceptional applications than traditional electronegativity scales and molecular properties. Hydrogen has unconventional values of IC and XIC, lower than that of boron. The IC model can agree fairly well with the data of bond properties and satisfactorily explain chemical observations of elements throughout the Periodic Table.

  14. Nonlinear Thermoelastic Model for SMAs and SMA Hybrid Composites

    Science.gov (United States)

    Turner, Travis L.

    2004-01-01

    A constitutive mathematical model has been developed that predicts the nonlinear thermomechanical behaviors of shape-memory-alloys (SMAs) and of shape-memory-alloy hybrid composite (SMAHC) structures, which are composite-material structures that contain embedded SMA actuators. SMAHC structures have been investigated for their potential utility in a variety of applications in which there are requirements for static or dynamic control of the shapes of structures, control of the thermoelastic responses of structures, or control of noise and vibrations. The present model overcomes deficiencies of prior, overly simplistic or qualitative models that have proven ineffective or intractable for engineering of SMAHC structures. The model is sophisticated enough to capture the essential features of the mechanics of SMAHC structures yet simple enough to accommodate input from fundamental engineering measurements and is in a form that is amenable to implementation in general-purpose structural analysis environments.

  15. Hierarchical modeling and control of hybrid systems with two layers; Hierarchische Modellierung und Regelung hybrider Systeme auf zwei Ebenen

    Energy Technology Data Exchange (ETDEWEB)

    Stursberg, Olaf; Paschedag, Tina; Rungger, Matthias; Ding, Hao [Kassel Univ. (Germany). Fachgebiet Regelungs- und Systemtheorie

    2010-08-15

    While hybrid dynamic models are, to a certain degree, established for modeling systems with heterogeneous dynamics, most approaches for design and analysis of hybrid systems are restricted to monolithic models without hierarchy. This contribution first shows, how modular hybrid systems with two layers of decision, as appropriate for representing manufacturing systems for example, can be modeled systematically. The second part proposes a technique for fixing discrete inputs (for coordinating control) and continuous inputs (for embedded continuous controllers) in combination. The method uses a graph-based search on the upper decision layer, while principles of predictive control are used on the lower layer. The procedure of modeling and control is illustrated for a manufacturing process. (orig.)

  16. A hybrid model of mammalian cell cycle regulation.

    Directory of Open Access Journals (Sweden)

    Rajat Singhania

    Full Text Available The timing of DNA synthesis, mitosis and cell division is regulated by a complex network of biochemical reactions that control the activities of a family of cyclin-dependent kinases. The temporal dynamics of this reaction network is typically modeled by nonlinear differential equations describing the rates of the component reactions. This approach provides exquisite details about molecular regulatory processes but is hampered by the need to estimate realistic values for the many kinetic constants that determine the reaction rates. It is difficult to estimate these kinetic constants from available experimental data. To avoid this problem, modelers often resort to 'qualitative' modeling strategies, such as Boolean switching networks, but these models describe only the coarsest features of cell cycle regulation. In this paper we describe a hybrid approach that combines the best features of continuous differential equations and discrete Boolean networks. Cyclin abundances are tracked by piecewise linear differential equations for cyclin synthesis and degradation. Cyclin synthesis is regulated by transcription factors whose activities are represented by discrete variables (0 or 1 and likewise for the activities of the ubiquitin-ligating enzyme complexes that govern cyclin degradation. The discrete variables change according to a predetermined sequence, with the times between transitions determined in part by cyclin accumulation and degradation and as well by exponentially distributed random variables. The model is evaluated in terms of flow cytometry measurements of cyclin proteins in asynchronous populations of human cell lines. The few kinetic constants in the model are easily estimated from the experimental data. Using this hybrid approach, modelers can quickly create quantitatively accurate, computational models of protein regulatory networks in cells.

  17. A hybrid model for improving response time in distributed data mining.

    Science.gov (United States)

    Krishnaswamy, Shonali; Loke, Seng W; Zaslasvky, Arkady

    2004-12-01

    This paper presents a hybrid distributed data mining (DDM) model for optimization of response time. The model combines a mobile agent approach with client server strategies to reduce the overall response time. The hybrid model proposes and develops accurate a priori estimates of the computation and communication components of response time as the costing strategy to support optimization. Experimental evaluation of the hybrid model is presented.

  18. Ecologically relevant stress resistance: from microarrays and quantitative trait loci to candidate genes – A research plan and preliminary results using Drosophila as a model organism and climatic and genetic stress as model stresses

    Indian Academy of Sciences (India)

    Volker Loeschcke; Jesper G Sørensen; Torsten N Kristensen

    2004-12-01

    We aim at studying adaptation to genetic and environmental stress and its evolutionary implications at different levels of biological organization. Stress influences cellular processes, individual physiology, genetic variation at the population level, and the process of natural selection. To investigate these highly connected levels of stress effects, it is advisable – if not critical – to integrate approaches from ecology, evolution, physiology, molecular biology and genetics. To investigate the mechanisms of stress resistance, how resistance evolves, and what factors contribute to and constrain its evolution, we use the well-defined model systems of Drosophila species, representing both cosmopolitan species such as D. melanogaster with a known genome map, and more specialized and ecologically well described species such as the cactophilic D. buzzatii. Various climate-related stresses are used as model stresses including desiccation, starvation, cold and heat. Genetic stress or genetic load is modelled by studying the consequences of inbreeding, the accumulation of (slightly) deleterious mutations, hybridization or the loss of genetic variability. We present here a research plan and preliminary results combining various approaches: molecular techniques such as microarrays, quantitative trait loci (QTL) analyses, quantitative PCR, ELISA or Western blotting are combined with population studies of resistance to climatic and genetic stress in natural populations collected across climatic gradients as well as in selection lines maintained in the laboratory.

  19. Chromosome mapping radiation hybrid data and stochastic spin models

    CERN Document Server

    Falk, C T

    1995-01-01

    This work approaches human chromosome mapping by developing algorithms for ordering markers associated with radiation hybrid data. Motivated by recent work of Boehnke et al. [1], we formulate the ordering problem by developing stochastic spin models to search for minimum-break marker configurations. As a particular application, the methods developed are applied to 14 human chromosome-21 markers tested by Cox et al. [2]. The methods generate configurations consistent with the best found by others. Additionally, we find that the set of low-lying configurations is described by a Markov-like ordering probability distribution. The distribution displays cluster correlations reflecting closely linked loci.

  20. Software development infrastructure for the HYBRID modeling and simulation project

    Energy Technology Data Exchange (ETDEWEB)

    Aaron S. Epiney; Robert A. Kinoshita; Jong Suk Kim; Cristian Rabiti; M. Scott Greenwood

    2016-09-01

    One of the goals of the HYBRID modeling and simulation project is to assess the economic viability of hybrid systems in a market that contains renewable energy sources like wind. The idea is that it is possible for the nuclear plant to sell non-electric energy cushions, which absorb (at least partially) the volatility introduced by the renewable energy sources. This system is currently modeled in the Modelica programming language. To assess the economics of the system, an optimization procedure is trying to find the minimal cost of electricity production. The RAVEN code is used as a driver for the whole problem. It is assumed that at this stage, the HYBRID modeling and simulation framework can be classified as non-safety “research and development” software. The associated quality level is Quality Level 3 software. This imposes low requirements on quality control, testing and documentation. The quality level could change as the application development continues.Despite the low quality requirement level, a workflow for the HYBRID developers has been defined that include a coding standard and some documentation and testing requirements. The repository performs automated unit testing of contributed models. The automated testing is achieved via an open-source python script called BuildingsP from Lawrence Berkeley National Lab. BuildingsPy runs Modelica simulation tests using Dymola in an automated manner and generates and runs unit tests from Modelica scripts written by developers. In order to assure effective communication between the different national laboratories a biweekly videoconference has been set-up, where developers can report their progress and issues. In addition, periodic face-face meetings are organized intended to discuss high-level strategy decisions with management. A second means of communication is the developer email list. This is a list to which everybody can send emails that will be received by the collective of the developers and managers

  1. Exploring The Lambda Model Of The Hybrid Superstring

    CERN Document Server

    Schmidtt, David M

    2016-01-01

    The purpose of this contribution is to initiate the study of integrable deformations for different superstring theory formalisms that manifest the property of (classical) integrability. In this paper we choose the hybrid formalism of the superstring in the background AdS_{2}xS^{2} and explore in detail the most immediate consequences of its lambda-deformation. The resulting action functional corresponds to the lambda-model of the matter part of the fairly more sophisticated pure spinor formalism, which is also known to be classical integrable. In particular, the deformation preserves the integrability and the one-loop conformal invariance of its parent theory, hence being a marginal deformation.

  2. On The Modelling Of Hybrid Aerostatic - Gas Journal Bearings

    DEFF Research Database (Denmark)

    Morosi, Stefano; Santos, Ilmar

    2011-01-01

    Gas journal bearing have been increasingly adopted in modern turbo-machinery applications, as they meet the demands of operation at higher rotational speeds, in clean environment and great efficiency. Due to the fact that gaseous lubricants, typically air, have much lower viscosity than more...... modeling for hybrid lubrication of a compressible fluid film journal bearing. Additional forces are generated by injecting pressurized air into the bearing gap through orifices located on the bearing walls. A modified form of the compressible Reynolds equation for active lubrication is derived. By solving...

  3. A hybrid neural network model for noisy data regression.

    Science.gov (United States)

    Lee, Eric W M; Lim, Chee Peng; Yuen, Richard K K; Lo, S M

    2004-04-01

    A hybrid neural network model, based on the fusion of fuzzy adaptive resonance theory (FA ART) and the general regression neural network (GRNN), is proposed in this paper. Both FA and the GRNN are incremental learning systems and are very fast in network training. The proposed hybrid model, denoted as GRNNFA, is able to retain these advantages and, at the same time, to reduce the computational requirements in calculating and storing information of the kernels. A clustering version of the GRNN is designed with data compression by FA for noise removal. An adaptive gradient-based kernel width optimization algorithm has also been devised. Convergence of the gradient descent algorithm can be accelerated by the geometric incremental growth of the updating factor. A series of experiments with four benchmark datasets have been conducted to assess and compare effectiveness of GRNNFA with other approaches. The GRNNFA model is also employed in a novel application task for predicting the evacuation time of patrons at typical karaoke centers in Hong Kong in the event of fire. The results positively demonstrate the applicability of GRNNFA in noisy data regression problems.

  4. Hybrid CFD/CAA Modeling for Liftoff Acoustic Predictions

    Science.gov (United States)

    Strutzenberg, Louise L.; Liever, Peter A.

    2011-01-01

    This paper presents development efforts at the NASA Marshall Space flight Center to establish a hybrid Computational Fluid Dynamics and Computational Aero-Acoustics (CFD/CAA) simulation system for launch vehicle liftoff acoustics environment analysis. Acoustic prediction engineering tools based on empirical jet acoustic strength and directivity models or scaled historical measurements are of limited value in efforts to proactively design and optimize launch vehicles and launch facility configurations for liftoff acoustics. CFD based modeling approaches are now able to capture the important details of vehicle specific plume flow environment, identifY the noise generation sources, and allow assessment of the influence of launch pad geometric details and sound mitigation measures such as water injection. However, CFD methodologies are numerically too dissipative to accurately capture the propagation of the acoustic waves in the large CFD models. The hybrid CFD/CAA approach combines the high-fidelity CFD analysis capable of identifYing the acoustic sources with a fast and efficient Boundary Element Method (BEM) that accurately propagates the acoustic field from the source locations. The BEM approach was chosen for its ability to properly account for reflections and scattering of acoustic waves from launch pad structures. The paper will present an overview of the technology components of the CFD/CAA framework and discuss plans for demonstration and validation against test data.

  5. Efficient Vaccine Distribution Based on a Hybrid Compartmental Model.

    Directory of Open Access Journals (Sweden)

    Zhiwen Yu

    Full Text Available To effectively and efficiently reduce the morbidity and mortality that may be caused by outbreaks of emerging infectious diseases, it is very important for public health agencies to make informed decisions for controlling the spread of the disease. Such decisions must incorporate various kinds of intervention strategies, such as vaccinations, school closures and border restrictions. Recently, researchers have paid increased attention to searching for effective vaccine distribution strategies for reducing the effects of pandemic outbreaks when resources are limited. Most of the existing research work has been focused on how to design an effective age-structured epidemic model and to select a suitable vaccine distribution strategy to prevent the propagation of an infectious virus. Models that evaluate age structure effects are common, but models that additionally evaluate geographical effects are less common. In this paper, we propose a new SEIR (susceptible-exposed-infectious šC recovered model, named the hybrid SEIR-V model (HSEIR-V, which considers not only the dynamics of infection prevalence in several age-specific host populations, but also seeks to characterize the dynamics by which a virus spreads in various geographic districts. Several vaccination strategies such as different kinds of vaccine coverage, different vaccine releasing times and different vaccine deployment methods are incorporated into the HSEIR-V compartmental model. We also design four hybrid vaccination distribution strategies (based on population size, contact pattern matrix, infection rate and infectious risk for controlling the spread of viral infections. Based on data from the 2009-2010 H1N1 influenza epidemic, we evaluate the effectiveness of our proposed HSEIR-V model and study the effects of different types of human behaviour in responding to epidemics.

  6. Application of soft computing based hybrid models in hydrological variables modeling: a comprehensive review

    Science.gov (United States)

    Fahimi, Farzad; Yaseen, Zaher Mundher; El-shafie, Ahmed

    2017-05-01

    Since the middle of the twentieth century, artificial intelligence (AI) models have been used widely in engineering and science problems. Water resource variable modeling and prediction are the most challenging issues in water engineering. Artificial neural network (ANN) is a common approach used to tackle this problem by using viable and efficient models. Numerous ANN models have been successfully developed to achieve more accurate results. In the current review, different ANN models in water resource applications and hydrological variable predictions are reviewed and outlined. In addition, recent hybrid models and their structures, input preprocessing, and optimization techniques are discussed and the results are compared with similar previous studies. Moreover, to achieve a comprehensive view of the literature, many articles that applied ANN models together with other techniques are included. Consequently, coupling procedure, model evaluation, and performance comparison of hybrid models with conventional ANN models are assessed, as well as, taxonomy and hybrid ANN models structures. Finally, current challenges and recommendations for future researches are indicated and new hybrid approaches are proposed.

  7. Application of soft computing based hybrid models in hydrological variables modeling: a comprehensive review

    Science.gov (United States)

    Fahimi, Farzad; Yaseen, Zaher Mundher; El-shafie, Ahmed

    2016-02-01

    Since the middle of the twentieth century, artificial intelligence (AI) models have been used widely in engineering and science problems. Water resource variable modeling and prediction are the most challenging issues in water engineering. Artificial neural network (ANN) is a common approach used to tackle this problem by using viable and efficient models. Numerous ANN models have been successfully developed to achieve more accurate results. In the current review, different ANN models in water resource applications and hydrological variable predictions are reviewed and outlined. In addition, recent hybrid models and their structures, input preprocessing, and optimization techniques are discussed and the results are compared with similar previous studies. Moreover, to achieve a comprehensive view of the literature, many articles that applied ANN models together with other techniques are included. Consequently, coupling procedure, model evaluation, and performance comparison of hybrid models with conventional ANN models are assessed, as well as, taxonomy and hybrid ANN models structures. Finally, current challenges and recommendations for future researches are indicated and new hybrid approaches are proposed.

  8. Meta-analysis of studies using suppression subtractive hybridization and microarrays to investigate the effects of environmental stress on gene transcription in oysters.

    Directory of Open Access Journals (Sweden)

    Kelli Anderson

    Full Text Available Many microarray and suppression subtractive hybridization (SSH studies have analyzed the effects of environmental stress on gene transcription in marine species. However, there have been no unifying analyses of these data to identify common stress response pathways. To address this shortfall, we conducted a meta-analysis of 14 studies that investigated the effects of different environmental stressors on gene expression in oysters. The stressors tested included chemical contamination, hypoxia and infection, as well as extremes of temperature, pH and turbidity. We found that the expression of over 400 genes in a range of oyster species changed significantly after exposure to environmental stress. A repeating pattern was evident in these transcriptional responses, regardless of the type of stress applied. Many of the genes that responded to environmental stress encoded proteins involved in translation and protein processing (including molecular chaperones, the mitochondrial electron transport chain, anti-oxidant activity and the cytoskeleton. In light of these findings, we put forward a consensus model of sub-cellular stress responses in oysters.

  9. Meta-analysis of studies using suppression subtractive hybridization and microarrays to investigate the effects of environmental stress on gene transcription in oysters.

    Science.gov (United States)

    Anderson, Kelli; Taylor, Daisy A; Thompson, Emma L; Melwani, Aroon R; Nair, Sham V; Raftos, David A

    2015-01-01

    Many microarray and suppression subtractive hybridization (SSH) studies have analyzed the effects of environmental stress on gene transcription in marine species. However, there have been no unifying analyses of these data to identify common stress response pathways. To address this shortfall, we conducted a meta-analysis of 14 studies that investigated the effects of different environmental stressors on gene expression in oysters. The stressors tested included chemical contamination, hypoxia and infection, as well as extremes of temperature, pH and turbidity. We found that the expression of over 400 genes in a range of oyster species changed significantly after exposure to environmental stress. A repeating pattern was evident in these transcriptional responses, regardless of the type of stress applied. Many of the genes that responded to environmental stress encoded proteins involved in translation and protein processing (including molecular chaperones), the mitochondrial electron transport chain, anti-oxidant activity and the cytoskeleton. In light of these findings, we put forward a consensus model of sub-cellular stress responses in oysters.

  10. Hybrid Perturbation methods based on Statistical Time Series models

    CERN Document Server

    San-Juan, Juan Félix; Pérez, Iván; López, Rosario

    2016-01-01

    In this work we present a new methodology for orbit propagation, the hybrid perturbation theory, based on the combination of an integration method and a prediction technique. The former, which can be a numerical, analytical or semianalytical theory, generates an initial approximation that contains some inaccuracies derived from the fact that, in order to simplify the expressions and subsequent computations, not all the involved forces are taken into account and only low-order terms are considered, not to mention the fact that mathematical models of perturbations not always reproduce physical phenomena with absolute precision. The prediction technique, which can be based on either statistical time series models or computational intelligence methods, is aimed at modelling and reproducing missing dynamics in the previously integrated approximation. This combination results in the precision improvement of conventional numerical, analytical and semianalytical theories for determining the position and velocity of a...

  11. A HYBRID PETRI-NET MODEL OF GRID WORKFLOW

    Institute of Scientific and Technical Information of China (English)

    Ji Yimu; Wang Ruchuan; Ren Xunyi

    2008-01-01

    In order to effectively control the random tasks submitted and executed in grid workflow, a grid workflow model based on hybrid petri-net is presented. This model is composed of random petri-net, colored petri-net and general petri-net. Therein random petri-net declares the relationship between the number of grid users' random tasks and the size of service window and computes the server intensity of grid system. Colored petri-net sets different color for places with grid services and provides the valid interfaces for grid resource allocation and task scheduling. The experiment indicated that the model presented in this letter could compute the valve between the number of users' random tasks and the size of grid service window in grid workflow management system.

  12. Proposal: A Hybrid Dictionary Modelling Approach for Malay Tweet Normalization

    Science.gov (United States)

    Muhamad, Nor Azlizawati Binti; Idris, Norisma; Arshi Saloot, Mohammad

    2017-02-01

    Malay Twitter message presents a special deviation from the original language. Malay Tweet widely used currently by Twitter users, especially at Malaya archipelago. Thus, it is important to make a normalization system which can translated Malay Tweet language into the standard Malay language. Some researchers have conducted in natural language processing which mainly focuses on normalizing English Twitter messages, while few studies have been done for normalize Malay Tweets. This paper proposes an approach to normalize Malay Twitter messages based on hybrid dictionary modelling methods. This approach normalizes noisy Malay twitter messages such as colloquially language, novel words, and interjections into standard Malay language. This research will be used Language Model and N-grams model.

  13. A FIBER-BRIDGING MODEL WITH STRESS GRADIENT EFFECTS

    Institute of Scientific and Technical Information of China (English)

    孙毅; 李涛

    2000-01-01

    Institute of Mechanics, Chinese Academy of Sciences, Beijing 100080, China)ABSTRACT: A fiber-bridging model with stress gradient effects is proposed for unidirectional fiber-reinforced composites. The stress gradient terms are introduced by solving a micromechanical model under a non-uniform stress loading. It is shown that the stress gradient effect is significant on both the fiber-bridging stress distribution and the value of the critical load of fiber failure.

  14. Effects of Drought Stress on Vegetative and Reproductive Stages of Forage and Kernel Corn Hybrids

    Directory of Open Access Journals (Sweden)

    M Hajibabaei

    2016-10-01

    Full Text Available Introduction Maize is one of the most important cereals which its global production is severely affected by drought in many parts of the world. One of the best ways of water management on field is to choose the proper variety which could be chosen indirectly by the traits affecting the grain yield. Materials and Methods In order to study the effect of drought stress in vegetative and reproductive stages in 14 corn hybrids, an experiment was conducted at the experimental field of Seed and Plant Improvement Institute of Karaj, in 2009. The Research Station located in 50°, 55´ eastern latitude and 35°, 47´ northern longitude with 1254 height above mean sea level (AMSL. The soil texture of the location was loam-clay with pH= 7.5 and the Electrical Capacity (EC = 0.7 dsm-1. The experiment was carried out using split-plot in a randomized complete block design (RCBD with three replications. The main plots consisted of three levels of irrigation regimes (irrigation after 70, 100 and 130 mm cumulative evaporation from evaporation pan class A and sub-plots included 14 new corn hybrids Includes eleven new hybrids such as (K47/2-2-1-4-1-1-1×MO17، K3653/2×K19، KLM76004/3-2-1-1-1-1-1-1×K3545/6، K3653/2×MO17، K74/2-2-1-2-1-1-1-1×K3545/6، K47/3-1-2-7-1-1-1×MO17، K47/2-2-1-2-2-1-1-1×K3544/1، KLM76004/3-2-1-1-1-1-1-1×K3544/1، K47/2-2-1-2-1-1-1-1×K3544/1، KLM77029/8-1-2-3-2-3×MO17 and KLM76005/2-3-1-1-1-1×MO17 and three hybrid control (KSC704, KSC720, KSC700. Irrigation time was determined using daily evaporation rate of standard class A evaporation pan. To determine the volume of water per irrigation, a sample of each plot from depth of root development was prepared before irrigation. The samples were kept in oven 80°C for 24 hours. The weight of soil moisture content was calculated and the volume of water per irrigation was calculated using equations 1 and 2. 1: H = ρb (F.C - m D 2: V = H × A Where H is the water height in the

  15. A Probability-Based Hybrid User Model for Recommendation System

    Directory of Open Access Journals (Sweden)

    Jia Hao

    2016-01-01

    Full Text Available With the rapid development of information communication technology, the available information or knowledge is exponentially increased, and this causes the well-known information overload phenomenon. This problem is more serious in product design corporations because over half of the valuable design time is consumed in knowledge acquisition, which highly extends the design cycle and weakens the competitiveness. Therefore, the recommender systems become very important in the domain of product domain. This research presents a probability-based hybrid user model, which is a combination of collaborative filtering and content-based filtering. This hybrid model utilizes user ratings and item topics or classes, which are available in the domain of product design, to predict the knowledge requirement. The comprehensive analysis of the experimental results shows that the proposed method gains better performance in most of the parameter settings. This work contributes a probability-based method to the community for implement recommender system when only user ratings and item topics are available.

  16. Hybrid TS fuzzy modelling and simulation for chaotic Lorenz system

    Institute of Scientific and Technical Information of China (English)

    Li De-Quan

    2006-01-01

    The projection of the chaotic attractor observed from the Lorenz system in the X-Z plane is like a butterfly, hence the classical Lorenz system is widely known as the butterfly attractor, and has served as a prototype model for studying chaotic behaviour since it was coined. In this work we take one step further to investigate some fundamental dynamic behaviours of a novel hybrid Takagi-Sugeno (TS) fuzzy Lorenz-type system, which is essentially derived from the delta-operator-based TS fuzzy modelling for complex nonlinear systems, and contains the original Lorenz system of continuous-time TS fuzzy form as a special case. By simply and appropriately tuning the additional parametric perturbations in the two-rule hybrid TS fuzzy Lorenz-type system, complex (two-wing) butterfly attractors observed from this system in the three dimensional (3D) X-Y-Z space are created, which have not yet been reported in the literature, and the forming mechanism of the compound structures have been numerically investigated.

  17. Modelling the solar wind interaction with Mercury by a quasi-neutral hybrid model

    Directory of Open Access Journals (Sweden)

    E. Kallio

    Full Text Available Quasi-neutral hybrid model is a self-consistent modelling approach that includes positively charged particles and an electron fluid. The approach has received an increasing interest in space plasma physics research because it makes it possible to study several plasma physical processes that are difficult or impossible to model by self-consistent fluid models, such as the effects associated with the ions’ finite gyroradius, the velocity difference between different ion species, or the non-Maxwellian velocity distribution function. By now quasi-neutral hybrid models have been used to study the solar wind interaction with the non-magnetised Solar System bodies of Mars, Venus, Titan and comets. Localized, two-dimensional hybrid model runs have also been made to study terrestrial dayside magnetosheath. However, the Hermean plasma environment has not yet been analysed by a global quasi-neutral hybrid model.

    In this paper we present a new quasi-neutral hybrid model developed to study various processes associated with the Mercury-solar wind interaction. Emphasis is placed on addressing advantages and disadvantages of the approach to study different plasma physical processes near the planet. The basic assumptions of the approach and the algorithms used in the new model are thoroughly presented. Finally, some of the first three-dimensional hybrid model runs made for Mercury are presented.

    The resulting macroscopic plasma parameters and the morphology of the magnetic field demonstrate the applicability of the new approach to study the Mercury-solar wind interaction globally. In addition, the real advantage of the kinetic hybrid model approach is to study the property of individual ions, and the study clearly demonstrates the large potential of the approach to address these more detailed issues by a quasi-neutral hybrid model in the future.

    Key words. Magnetospheric physics

  18. Empirical Estimation of Hybrid Model: A Controlled Case Study

    Directory of Open Access Journals (Sweden)

    Sadaf Un Nisa

    2012-07-01

    Full Text Available Scrum and Extreme Programming (XP are frequently used models among all agile models whereas Rational Unified Process (RUP is one of the widely used conventional plan driven software development models. The agile and plan driven approaches both have their own strengths and weaknesses. Although RUP model has certain drawbacks, such as tendency to be over budgeted, slow in adaptation to rapidly changing requirements and reputation of being impractical for small and fast paced projects. XP model has certain drawbacks such as weak documentation and poor performance for medium and large development projects. XP has a concrete set of engineering practices that emphasizes on team work where managers, customers and developers are all equal partners in collaborative teams. Scrum is more concerned with the project management. It has seven practices namely Scrum Master, Scrum teams, Product Backlog, Sprint, Sprint Planning Meeting, Daily Scrum Meeting and Sprint Review. Keeping above mentioned context in view, this paper intends to propose a hybrid model naming SPRUP model by combining strengths of Scrum, XP and RUP by eliminating their weaknesses to produce high quality software. The proposed SPRUP model is validated through a controlled case study.

  19. A hybrid deterministic-probabilistic approach to model the mechanical response of helically arranged hierarchical strands

    Science.gov (United States)

    Fraldi, M.; Perrella, G.; Ciervo, M.; Bosia, F.; Pugno, N. M.

    2017-09-01

    Very recently, a Weibull-based probabilistic strategy has been successfully applied to bundles of wires to determine their overall stress-strain behaviour, also capturing previously unpredicted nonlinear and post-elastic features of hierarchical strands. This approach is based on the so-called ;Equal Load Sharing (ELS); hypothesis by virtue of which, when a wire breaks, the load acting on the strand is homogeneously redistributed among the surviving wires. Despite the overall effectiveness of the method, some discrepancies between theoretical predictions and in silico Finite Element-based simulations or experimental findings might arise when more complex structures are analysed, e.g. helically arranged bundles. To overcome these limitations, an enhanced hybrid approach is proposed in which the probability of rupture is combined with a deterministic mechanical model of a strand constituted by helically-arranged and hierarchically-organized wires. The analytical model is validated comparing its predictions with both Finite Element simulations and experimental tests. The results show that generalized stress-strain responses - incorporating tension/torsion coupling - are naturally found and, once one or more elements break, the competition between geometry and mechanics of the strand microstructure, i.e. the different cross sections and helical angles of the wires in the different hierarchical levels of the strand, determines the no longer homogeneous stress redistribution among the surviving wires whose fate is hence governed by a ;Hierarchical Load Sharing; criterion.

  20. Identification and characterization of low temperature stress responsive genes in Poncirus trifoliata by suppression subtractive hybridization.

    Science.gov (United States)

    Peng, T; Zhu, X F; Fan, Q J; Sun, P P; Liu, J H

    2012-01-15

    Trifoliate orange (Poncirus trifoliata (L.) Raf.) is extremely cold hardy when fully acclimated, but knowledge relevant to the molecular events underlying the acclimation is still limited so far. In this study, forward (4 °C over 25 °C) and reverse (25 °C over 4 °C) suppression subtractive hybridization (SSH) libraries were constructed in order to identify the genes involved in cold acclimation in trifoliate orange. After reverse northern blotting analysis and sequencing, a total of 105 and 117 non-redundant differentially expressed sequence tags (ESTs) were obtained from the forward and reverse libraries, respectively. Blast2go analysis revealed that 91 ESTs, 31 from the forward library and 60 from the reverse library, displayed significant sequence homology to the genes with known or putative functions. They were categorized into various functional groups, including catalytic activity, binding protein, structural molecule, enzyme regulator, molecular transducer, electron carrier, and transport activity/transcription regulation. Expression analysis of the selected ESTs by reverse transcriptase polymerase chain reaction was consistent with the results of differential screening. In addition, time-course expression patterns of the genes further confirmed that they were responsive to low temperature treatment. Among the genes of known functions, many are related to maintenance of cell wall integrity, adjustment of osmotic potential and maintenance of reactive oxygen species homeostasis, implying that these physiological processes might be of paramount significance in rendering protective mechanisms against the low temperature stress. The data presented here gain an insight into the molecular changes underlying the cold acclimation of trifoliate orange, and the results can be of reference for unraveling candidate genes that hold great potential for genetic engineering in an effort to create novel germplasms with enhanced cold stress tolerance.

  1. Optimization and Static Stress Analysis of Hybrid Fiber Reinforced Composite Leaf Spring

    Directory of Open Access Journals (Sweden)

    Luay Muhammed Ali Ismaeel

    2015-01-01

    Full Text Available A monofiber reinforced composite leaf spring is proposed as an alternative to the typical steel one as it is characterized by high strength-to-weight ratio. Different reinforcing schemes are suggested to fabricate the leaf spring. The composite and the typical steel leaf springs are subjected to the same working conditions. A weight saving of about more than 60% can be achieved while maintaining the strength for the structures under consideration. The objective of the present study was to replace material for leaf spring. This study suggests various materials of hybrid fiber reinforced plastics (HFRP. Also the effects of shear moduli of the fibers, matrices, and the composites on the composites performance and responses are discussed. The results and behaviors of each are compared with each other and verified by comparison with analytical solution; a good convergence is found between them. The elastic properties of the hybrid composites are calculated using rules of mixtures and Halpin-Tsi equation through the software of MATLAB v-7. The problem is also analyzed by the technique of finite element analysis (FEA through the software of ANSYS v-14. An element modeling was done for every leaf with eight-node 3D brick element (SOLID185 3D 8-Node Structural Solid.

  2. Stress analysis and damage evaluation of flawed composite laminates by hybrid-numerical methods

    Science.gov (United States)

    Yang, Yii-Ching

    1992-01-01

    Structural components in flight vehicles is often inherited flaws, such as microcracks, voids, holes, and delamination. These defects will degrade structures the same as that due to damages in service, such as impact, corrosion, and erosion. It is very important to know how a structural component can be useful and survive after these flaws and damages. To understand the behavior and limitation of these structural components researchers usually do experimental tests or theoretical analyses on structures with simulated flaws. However, neither approach has been completely successful. As Durelli states that 'Seldom does one method give a complete solution, with the most efficiency'. Examples of this principle is seen in photomechanics which additional strain-gage testing can only average stresses at locations of high concentration. On the other hand, theoretical analyses including numerical analyses are implemented with simplified assumptions which may not reflect actual boundary conditions. Hybrid-Numerical methods which combine photomechanics and numerical analysis have been used to correct this inefficiency since 1950's. But its application is limited until 1970's when modern computer codes became available. In recent years, researchers have enhanced the data obtained from photoelasticity, laser speckle, holography and moire' interferometry for input of finite element analysis on metals. Nevertheless, there is only few of literature being done on composite laminates. Therefore, this research is dedicated to this highly anisotropic material.

  3. Buckling induced delamination of graphene composites through hybrid molecular modeling

    Science.gov (United States)

    Cranford, Steven W.

    2013-01-01

    The efficiency of graphene-based composites relies on mechanical stability and cooperativity, whereby separation of layers (i.e., delamination) can severely hinder performance. Here we study buckling induced delamination of mono- and bilayer graphene-based composites, utilizing a hybrid full atomistic and coarse-grained molecular dynamics approach. The coarse-grain model allows exploration of an idealized model material to facilitate parametric variation beyond any particular molecular structure. Through theoretical and simulation analyses, we show a critical delamination condition, where ΔD∝kL4, where ΔD is the change in bending stiffness (eV), k the stiffness of adhesion (eV/Å4), and L the length of the adhered section (Å).

  4. A Hybrid Program Projects Selection Model for Nonprofit TV Stations

    Directory of Open Access Journals (Sweden)

    Kuei-Lun Chang

    2015-01-01

    Full Text Available This study develops a hybrid multiple criteria decision making (MCDM model to select program projects for nonprofit TV stations on the basis of managers’ perceptions. By the concept of balanced scorecard (BSC and corporate social responsibility (CSR, we collect criteria for selecting the best program project. Fuzzy Delphi method, which can lead to better criteria selection, is used to modify criteria. Next, considering the interdependence among the selection criteria, analytic network process (ANP is then used to obtain the weights of them. To avoid calculation and additional pairwise comparisons of ANP, technique for order preference by similarity to ideal solution (TOPSIS is used to rank the alternatives. A case study is presented to demonstrate the applicability of the proposed model.

  5. A Hybrid Multiple Criteria Decision Making Model for Supplier Selection

    Directory of Open Access Journals (Sweden)

    Chung-Min Wu

    2013-01-01

    Full Text Available The sustainable supplier selection would be the vital part in the management of a sustainable supply chain. In this study, a hybrid multiple criteria decision making (MCDM model is applied to select optimal supplier. The fuzzy Delphi method, which can lead to better criteria selection, is used to modify criteria. Considering the interdependence among the selection criteria, analytic network process (ANP is then used to obtain their weights. To avoid calculation and additional pairwise comparisons of ANP, a technique for order preference by similarity to ideal solution (TOPSIS is used to rank the alternatives. The use of a combination of the fuzzy Delphi method, ANP, and TOPSIS, proposing an MCDM model for supplier selection, and applying these to a real case are the unique features of this study.

  6. Designing e-learning cognitively: TSOI Hybrid Learning Model

    Directory of Open Access Journals (Sweden)

    Mun Fie Tsoi

    2008-08-01

    Full Text Available Research on learning has proposed various models for learning. However, generally, there has been an inadequate research of the application of these models for learning for example the Kolb’s experiential learning cycle or the Jarvis’s model of reflection and learning to the development of e-learning materials. This is more so especially due to lack of effective yet practical design model for designing interactive e-learning materials. Having this in mind, the TSOI Hybrid Learning Model can be used as a pedagogic model for the cognitive design of e-learning. This Model represents learning as a cyclical cognitive process. A major feature is to promote active cognitive processing in the learner for meaningful learning proceeding from inductive to deductive. Design specificity in science and chemistry education is illustrated in terms of instructional storyboarding and the research-based e-learning product developed. Learners’ cognitive abilities will be addressed as part of the research data collected.

  7. OFF-LINE HANDWRITING RECOGNITION USING VARIOUS HYBRID MODELING TECHNIQUES AND CHARACTER N-GRAMS

    NARCIS (Netherlands)

    Brakensiek, A.; Rottland, J.; Kosmala, A.; Rigoll, G.

    2004-01-01

    In this paper a system for on-line cursive handwriting recognition is described. The system is based on Hidden Markov Models (HMMs) using discrete and hybrid modeling techniques. Here, we focus on two aspects of the recognition system. First, we present different hybrid modeling techniques, whereas

  8. Use of models in large-area forest surveys: comparing model-assisted, model-based and hybrid estimation

    Directory of Open Access Journals (Sweden)

    Göran Ståhl

    2016-02-01

    Full Text Available This paper focuses on the use of models for increasing the precision of estimators in large-area forest surveys. It is motivated by the increasing availability of remotely sensed data, which facilitates the development of models predicting the variables of interest in forest surveys. We present, review and compare three different estimation frameworks where models play a core role: model-assisted, model-based, and hybrid estimation. The first two are well known, whereas the third has only recently been introduced in forest surveys. Hybrid inference mixes designbased and model-based inference, since it relies on a probability sample of auxiliary data and a model predicting the target variable from the auxiliary data..We review studies on large-area forest surveys based on model-assisted, modelbased, and hybrid estimation, and discuss advantages and disadvantages of the approaches. We conclude that no general recommendations can be made about whether model-assisted, model-based, or hybrid estimation should be preferred. The choice depends on the objective of the survey and the possibilities to acquire appropriate field and remotely sensed data. We also conclude that modelling approaches can only be successfully applied for estimating target variables such as growing stock volume or biomass, which are adequately related to commonly available remotely sensed data, and thus purely field based surveys remain important for several important forest parameters. Keywords: Design-based inference, Model-assisted estimation, Model-based inference, Hybrid inference, National forest inventory, Remote sensing, Sampling

  9. Modeling Integrated Cellular Machinery Using Hybrid Petri-Boolean Networks

    Science.gov (United States)

    Berestovsky, Natalie; Zhou, Wanding; Nagrath, Deepak; Nakhleh, Luay

    2013-01-01

    The behavior and phenotypic changes of cells are governed by a cellular circuitry that represents a set of biochemical reactions. Based on biological functions, this circuitry is divided into three types of networks, each encoding for a major biological process: signal transduction, transcription regulation, and metabolism. This division has generally enabled taming computational complexity dealing with the entire system, allowed for using modeling techniques that are specific to each of the components, and achieved separation of the different time scales at which reactions in each of the three networks occur. Nonetheless, with this division comes loss of information and power needed to elucidate certain cellular phenomena. Within the cell, these three types of networks work in tandem, and each produces signals and/or substances that are used by the others to process information and operate normally. Therefore, computational techniques for modeling integrated cellular machinery are needed. In this work, we propose an integrated hybrid model (IHM) that combines Petri nets and Boolean networks to model integrated cellular networks. Coupled with a stochastic simulation mechanism, the model simulates the dynamics of the integrated network, and can be perturbed to generate testable hypotheses. Our model is qualitative and is mostly built upon knowledge from the literature and requires fine-tuning of very few parameters. We validated our model on two systems: the transcriptional regulation of glucose metabolism in human cells, and cellular osmoregulation in S. cerevisiae. The model produced results that are in very good agreement with experimental data, and produces valid hypotheses. The abstract nature of our model and the ease of its construction makes it a very good candidate for modeling integrated networks from qualitative data. The results it produces can guide the practitioner to zoom into components and interconnections and investigate them using such more

  10. Modeling integrated cellular machinery using hybrid Petri-Boolean networks.

    Directory of Open Access Journals (Sweden)

    Natalie Berestovsky

    Full Text Available The behavior and phenotypic changes of cells are governed by a cellular circuitry that represents a set of biochemical reactions. Based on biological functions, this circuitry is divided into three types of networks, each encoding for a major biological process: signal transduction, transcription regulation, and metabolism. This division has generally enabled taming computational complexity dealing with the entire system, allowed for using modeling techniques that are specific to each of the components, and achieved separation of the different time scales at which reactions in each of the three networks occur. Nonetheless, with this division comes loss of information and power needed to elucidate certain cellular phenomena. Within the cell, these three types of networks work in tandem, and each produces signals and/or substances that are used by the others to process information and operate normally. Therefore, computational techniques for modeling integrated cellular machinery are needed. In this work, we propose an integrated hybrid model (IHM that combines Petri nets and Boolean networks to model integrated cellular networks. Coupled with a stochastic simulation mechanism, the model simulates the dynamics of the integrated network, and can be perturbed to generate testable hypotheses. Our model is qualitative and is mostly built upon knowledge from the literature and requires fine-tuning of very few parameters. We validated our model on two systems: the transcriptional regulation of glucose metabolism in human cells, and cellular osmoregulation in S. cerevisiae. The model produced results that are in very good agreement with experimental data, and produces valid hypotheses. The abstract nature of our model and the ease of its construction makes it a very good candidate for modeling integrated networks from qualitative data. The results it produces can guide the practitioner to zoom into components and interconnections and investigate them

  11. Modeling integrated cellular machinery using hybrid Petri-Boolean networks.

    Directory of Open Access Journals (Sweden)

    Natalie Berestovsky

    Full Text Available The behavior and phenotypic changes of cells are governed by a cellular circuitry that represents a set of biochemical reactions. Based on biological functions, this circuitry is divided into three types of networks, each encoding for a major biological process: signal transduction, transcription regulation, and metabolism. This division has generally enabled taming computational complexity dealing with the entire system, allowed for using modeling techniques that are specific to each of the components, and achieved separation of the different time scales at which reactions in each of the three networks occur. Nonetheless, with this division comes loss of information and power needed to elucidate certain cellular phenomena. Within the cell, these three types of networks work in tandem, and each produces signals and/or substances that are used by the others to process information and operate normally. Therefore, computational techniques for modeling integrated cellular machinery are needed. In this work, we propose an integrated hybrid model (IHM that combines Petri nets and Boolean networks to model integrated cellular networks. Coupled with a stochastic simulation mechanism, the model simulates the dynamics of the integrated network, and can be perturbed to generate testable hypotheses. Our model is qualitative and is mostly built upon knowledge from the literature and requires fine-tuning of very few parameters. We validated our model on two systems: the transcriptional regulation of glucose metabolism in human cells, and cellular osmoregulation in S. cerevisiae. The model produced results that are in very good agreement with experimental data, and produces valid hypotheses. The abstract nature of our model and the ease of its construction makes it a very good candidate for modeling integrated networks from qualitative data. The results it produces can guide the practitioner to zoom into components and interconnections and investigate them

  12. Hybrid Soft Soil Tire Model (HSSTM). Part 1: Tire Material and Structure Modeling

    Science.gov (United States)

    2015-04-28

    HYBRID SOFT SOIL TIRE MODEL (HSSTM). PART I: TIRE MATERIAL AND STRUCTURE MODELING Taheri, Sh.a,1, Sandu, C.a...model the dynamic behavior of the tire on soft soil , a lumped mass discretized tire model using Kelvin-Voigt elements is developed. To optimize the...terrains (such as sandy loam) and tire force and moments, soil sinkage, and tire deformation data were collected for various case studies based on a

  13. The biopsychosocial model of stress in adolescence: self-awareness of performance versus stress reactivity.

    Science.gov (United States)

    Rith-Najarian, Leslie R; McLaughlin, Katie A; Sheridan, Margaret A; Nock, Matthew K

    2014-03-01

    Extensive research among adults supports the biopsychosocial (BPS) model of challenge and threat, which describes relationships among stress appraisals, physiological stress reactivity, and performance; however, no previous studies have examined these relationships in adolescents. Perceptions of stressors as well as physiological reactivity to stress increase during adolescence, highlighting the importance of understanding the relationships among stress appraisals, physiological reactivity, and performance during this developmental period. In this study, 79 adolescent participants reported on stress appraisals before and after a Trier Social Stress Test in which they performed a speech task. Physiological stress reactivity was defined by changes in cardiac output and total peripheral resistance from a baseline rest period to the speech task, and performance on the speech was coded using an objective rating system. We observed in adolescents only two relationships found in past adult research on the BPS model variables: (1) pre-task stress appraisal predicted post-task stress appraisal and (2) performance predicted post-task stress appraisal. Physiological reactivity during the speech was unrelated to pre- and post-task stress appraisals and to performance. We conclude that the lack of association between post-task stress appraisal and physiological stress reactivity suggests that adolescents might have low self-awareness of physiological emotional arousal. Our findings further suggest that adolescent stress appraisals are based largely on their performance during stressful situations. Developmental implications of this potential lack of awareness of one's physiological and emotional state during adolescence are discussed.

  14. Effects of Cold and Heat Stress on Egg Quality Traits of a Newly Developed Native Hybrid Layer

    Directory of Open Access Journals (Sweden)

    İsmail Durmuş

    2015-03-01

    Full Text Available ATAK-S is a newly developed native hybrid layer. Although the laying performance of this hybrid has been studied and determined, the performance response of the hybrid to different environmental temperature conditions is not known. This study was therefore undertaken to determine the effect of cold and heat stress on egg quality traits. Hens were divided into three different groups; control (20°C, low (12°C and high (32°C. A total of 360 hens, with 120 in each of the groups, were used in the study. Hens were held in three tier battery cages in an environmentally controlled poultry house. The study lasted for 3 weeks. No differences were found among different groups in terms of shape index, albumen height and Haugh unit of the egg quality traits. It was found that the differences among the heat groups in terms of egg shell breaking strength, egg weight, shell thickness and yolk colour were significant and the value of these traits decreased under the heat stress conditions, whereas they were not affected from the cold stress.

  15. A comparison of corporate distress prediction models in Brazil: hybrid neural networks, logit models and discriminant analysis

    Directory of Open Access Journals (Sweden)

    Juliana Yim

    2009-06-01

    Full Text Available This paper looks at the ability of a relatively new technique, hybrid ANN’s, to predict corporate distress in Brazil. These models are compared with traditional statistical techniques and conventional ANN models. The results suggest that hybrid neural networks outperform all other models in predicting firms in financial distress one year prior to the event. This suggests that for researchers, policymakers and others interested in early warning systems, hybrid networks may be a useful tool for predicting firm failure.

  16. A comparison of corporate distress prediction models in Brazil: hybrid neural networks, logit models and discriminant analysis

    Directory of Open Access Journals (Sweden)

    Juliana Yim

    2005-01-01

    Full Text Available This paper looks at the ability of a relatively new technique, hybrid ANN's, to predict corporate distress in Brazil. These models are compared with traditional statistical techniques and conventional ANN models. The results suggest that hybrid neural networks outperform all other models in predicting firms in financial distress one year prior to the event. This suggests that for researchers, policymakers and others interested in early warning systems, hybrid networks may be a useful tool for predicting firm failure.

  17. Toward a Multicultural Model of the Stress Process.

    Science.gov (United States)

    Slavin, Lesley A.; And Others

    1991-01-01

    Attempts to expand Lazarus and Folkman's stress model to include culture-relevant dimensions. Discusses cultural factors that influence each component of the stress model, including types and frequency of events experienced, appraisals of stressfulness of events, appraisals of available coping resources, selection of coping strategies, and…

  18. A novel simplified model for torsional vibration analysis of a series-parallel hybrid electric vehicle

    Science.gov (United States)

    Tang, Xiaolin; Yang, Wei; Hu, Xiaosong; Zhang, Dejiu

    2017-02-01

    In this study, based on our previous work, a novel simplified torsional vibration dynamic model is established to study the torsional vibration characteristics of a compound planetary hybrid propulsion system. The main frequencies of the hybrid driveline are determined. In contrast to vibration characteristics of the previous 16-degree of freedom model, the simplified model can be used to accurately describe the low-frequency vibration property of this hybrid powertrain. This study provides a basis for further vibration control of the hybrid powertrain during the process of engine start/stop.

  19. Modeling and simulation of a hybrid ship power system

    Science.gov (United States)

    Doktorcik, Christopher J.

    2011-12-01

    Optimizing the performance of naval ship power systems requires integrated design and coordination of the respective subsystems (sources, converters, and loads). A significant challenge in the system-level integration is solving the Power Management Control Problem (PMCP). The PMCP entails deciding on subsystem power usages for achieving a trade-off between the error in tracking a desired position/velocity profile, minimizing fuel consumption, and ensuring stable system operation, while at the same time meeting performance limitations of each subsystem. As such, the PMCP naturally arises at a supervisory level of a ship's operation. In this research, several critical steps toward the solution of the PMCP for surface ships have been undertaken. First, new behavioral models have been developed for gas turbine engines, wound rotor synchronous machines, DC super-capacitors, induction machines, and ship propulsion systems. Conventional models describe system inputs and outputs in terms of physical variables such as voltage, current, torque, and force. In contrast, the behavioral models developed herein express system inputs and outputs in terms of power whenever possible. Additionally, the models have been configured to form a hybrid system-level power model (HSPM) of a proposed ship electrical architecture. Lastly, several simulation studies have been completed to expose the capabilities and limitations of the HSPM.

  20. Simulation of hybrid vehicle propulsion with an advanced battery model

    Energy Technology Data Exchange (ETDEWEB)

    Nallabolu, S.; Kostetzer, L.; Rudnyi, E. [CADFEM GmbH, Grafing (Germany); Geppert, M.; Quinger, D. [LION Smart GmbH, Frieding (Germany)

    2011-07-01

    In the recent years there has been observed an increasing concern about global warming and greenhouse gas emissions. In addition to the environmental issues the predicted scarcity of oil supplies and the dramatic increase in oil price puts new demands on vehicle design. As a result energy efficiency and reduced emission have become one of main selling point for automobiles. Hybrid electric vehicles (HEV) have therefore become an interesting technology for the governments and automotive industries. HEV are more complicated compared to conventional vehicles due to the fact that these vehicles contain more electrical components such as electric machines, power electronics, electronic continuously variable transmissions (CVT), and embedded powertrain controllers. Advanced energy storage devices and energy converters, such as Li-ion batteries, ultracapacitors, and fuel cells are also considered. A detailed vehicle model used for an energy flow analysis and vehicle performance simulation is necessary. Computer simulation is indispensible to facilitate the examination of the vast hybrid electric vehicle design space with the aim to predict the vehicle performance over driving profiles, estimate fuel consumption and the pollution emissions. There are various types of mathematical models and simulators available to perform system simulation of vehicle propulsion. One of the standard methods to model the complete vehicle powertrain is ''backward quasistatic modeling''. In this method vehicle subsystems are defined based on experiential models in the form of look-up tables and efficiency maps. The interaction between adjacent subsystems of the vehicle is defined through the amount of power flow. Modeling the vehicle subsystems like motor, engine, gearbox and battery is under this technique is based on block diagrams. The vehicle model is applied in two case studies to evaluate the vehicle performance and fuel consumption. In the first case study the affect

  1. Lumiproxy: A Hybrid Representation of Image-Based Models

    Institute of Scientific and Technical Information of China (English)

    Bin Sheng; Jian Zhu; En-Hua; Yan-Ci Zhang

    2009-01-01

    In this paper, we present a hybrid representation of image-based models combining the textured planes and the hierarchical points. Taking a set of depth images as input, our method starts from classifying input pixels into two categories, indicating the planar and non-planar surfaces respectively. For the planar surfaces, the geometric coefficients are reconstructed to form the uniformly sampled textures. For nearly planar surfaces, some textured planes, called lumiproxies,are constructed to represent the equivalent visual appearance. The Hough transform is used to find the positions of these textured planes, and optic flow measures are used to determine their textures. For remaining pixels corresponding to the non-planar geometries, the point primitive is applied, reorganized as the OBB-tree structure. Then, texture mapping and point splatting are employed together to render the novel views, with the hardware acceleration.

  2. Applying a Hybrid MCDM Model for Six Sigma Project Selection

    Directory of Open Access Journals (Sweden)

    Fu-Kwun Wang

    2014-01-01

    Full Text Available Six Sigma is a project-driven methodology; the projects that provide the maximum financial benefits and other impacts to the organization must be prioritized. Project selection (PS is a type of multiple criteria decision making (MCDM problem. In this study, we present a hybrid MCDM model combining the decision-making trial and evaluation laboratory (DEMATEL technique, analytic network process (ANP, and the VIKOR method to evaluate and improve Six Sigma projects for reducing performance gaps in each criterion and dimension. We consider the film printing industry of Taiwan as an empirical case. The results show that our study not only can use the best project selection, but can also be used to analyze the gaps between existing performance values and aspiration levels for improving the gaps in each dimension and criterion based on the influential network relation map.

  3. Two dimensional cellular automaton for evacuation modeling: hybrid shuffle update

    CERN Document Server

    Arita, Chikashi; Appert-Rolland, Cécile

    2015-01-01

    We consider a cellular automaton model with a static floor field for pedestrians evacuating a room. After identifying some properties of real pedestrian flows, we discuss various update schemes, and we introduce a new one, the hybrid shuffle update. The properties specific to pedestrians are incorporated in variables associated to particles called phases, that represent their step cycles. The dynamics of the phases gives naturally raise to some friction, and allows to reproduce several features observed in experiments. We study in particular the crossover between a low- and a high-density regime that occurs when the density of pedestrian increases, the dependency of the outflow in the strength of the floor field, and the shape of the queue in front of the exit.

  4. Exploring the lambda model of the hybrid superstring

    Energy Technology Data Exchange (ETDEWEB)

    Schmidtt, David M. [Instituto de Física Teórica IFT/UNESP,Rua Dr. Bento Teobaldo Ferraz 271, Bloco II, CEP 01140-070, São Paulo-SP (Brazil)

    2016-10-26

    The purpose of this contribution is to initiate the study of integrable deformations for different superstring theory formalisms that manifest the property of (classical) integrability. In this paper we choose the hybrid formalism of the superstring in the background AdS{sub 2}×S{sup 2} and explore in detail the most immediate consequences of its λ-deformation. The resulting action functional corresponds to the λ-model of the matter part of the fairly more sophisticated pure spinor formalism, which is also known to be classical integrable. In particular, the deformation preserves the integrability and the one-loop conformal invariance of its parent theory, hence being a marginal deformation.

  5. Modelling hybrid Beta Cephei/SPB pulsations: Gamma Pegasi

    CERN Document Server

    Zdravkov, T

    2009-01-01

    Recent photometric and spectroscopic observations of the hybrid variable Gamma Pegasi (Handler et al. 2009, Handler 2009) revealed 6 frequencies of the SPB type and 8 of the Beta Cep type pulsations. Standard seismic models, which have been constructed with OPAL (Iglesias & Rogers 1996) and OP (Seaton 2005) opacities by fitting three frequencies (those of the radial fundamental and two dipole modes), do not reproduce the frequency range of observed pulsations and do not fit the observed individual frequencies with a satisfactory accuracy. We argue that better fitting can be achieved with opacity enhancements, over the OP data, by about 20-50 percent around the opacity bumps produced by excited ions of the iron-group elements at temperatures of about 200 000 K (Z bump) and 2 million K (Deep Opacity Bump).

  6. Hybrid Modelling Approach to Prairie hydrology: Fusing Data-driven and Process-based Hydrological Models

    Science.gov (United States)

    Mekonnen, B.; Nazemi, A.; Elshorbagy, A.; Mazurek, K.; Putz, G.

    2012-04-01

    Modeling the hydrological response in prairie regions, characterized by flat and undulating terrain, and thus, large non-contributing areas, is a known challenge. The hydrological response (runoff) is the combination of the traditional runoff from the hydrologically contributing area and the occasional overflow from the non-contributing area. This study provides a unique opportunity to analyze the issue of fusing the Soil and Water Assessment Tool (SWAT) and Artificial Neural Networks (ANNs) in a hybrid structure to model the hydrological response in prairie regions. A hybrid SWAT-ANN model is proposed, where the SWAT component and the ANN module deal with the effective (contributing) area and the non-contributing area, respectively. The hybrid model is applied to the case study of Moose Jaw watershed, located in southern Saskatchewan, Canada. As an initial exploration, a comparison between ANN and SWAT models is established based on addressing the daily runoff (streamflow) prediction accuracy using multiple error measures. This is done to identify the merits and drawbacks of each modeling approach. It has been found out that the SWAT model has better performance during the low flow periods but with degraded efficiency during periods of high flows. The case is different for the ANN model as ANNs exhibit improved simulation during high flow periods but with biased estimates during low flow periods. The modelling results show that the new hybrid SWAT-ANN model is capable of exploiting the strengths of both SWAT and ANN models in an integrated framrwork. The new hybrid SWAT-ANN model simulates daily runoff quite satisfactorily with NSE measures of 0.80 and 0.83 during calibration and validation periods, respectively. Furthermore, an experimental assessment was performed to identify the effects of the ANN training method on the performance of the hybrid model as well as the parametric identifiability. Overall, the results obtained in this study suggest that the fusion

  7. Photoionization models of the CALIFA HII regions. I. Hybrid models

    CERN Document Server

    Morisset, C; Sánchez, S F; Galbany, L; Garcia-Benito, R; Husemann, B; Marino, R A; Mast, D; Roth, M M; Colaboration, CALIFA

    2016-01-01

    Photoionization models of HII regions require as input a description of the ionizing SED and of the gas distribution, in terms of ionization parameter U and chemical abundances (e.g. O/H and N/O). A strong degeneracy exists between the hardness of the SED and U, which in turn leads to high uncertainties in the determination of the other parameters, including abundances. One way to resolve the degeneracy is to fix one of the parameters using additional information. For each of the ~ 20000 sources of the CALIFA HII regions catalog, a grid of photoionization models is computed assuming the ionizing SED being described by the underlying stellar population obtained from spectral synthesis modeling. The ionizing SED is then defined as the sum of various stellar bursts of different ages and metallicities. This solves the degeneracy between the shape of the ionizing SED and U. The nebular metallicity (associated to O/H) is defined using the classical strong line method O3N2 (which gives to our models the status of "h...

  8. Hybrid Models for Trajectory Error Modelling in Urban Environments

    Science.gov (United States)

    Angelatsa, E.; Parés, M. E.; Colomina, I.

    2016-06-01

    This paper tackles the first step of any strategy aiming to improve the trajectory of terrestrial mobile mapping systems in urban environments. We present an approach to model the error of terrestrial mobile mapping trajectories, combining deterministic and stochastic models. Due to urban specific environment, the deterministic component will be modelled with non-continuous functions composed by linear shifts, drifts or polynomial functions. In addition, we will introduce a stochastic error component for modelling residual noise of the trajectory error function. First step for error modelling requires to know the actual trajectory error values for several representative environments. In order to determine as accurately as possible the trajectories error, (almost) error less trajectories should be estimated using extracted nonsemantic features from a sequence of images collected with the terrestrial mobile mapping system and from a full set of ground control points. Once the references are estimated, they will be used to determine the actual errors in terrestrial mobile mapping trajectory. The rigorous analysis of these data sets will allow us to characterize the errors of a terrestrial mobile mapping system for a wide range of environments. This information will be of great use in future campaigns to improve the results of the 3D points cloud generation. The proposed approach has been evaluated using real data. The data originate from a mobile mapping campaign over an urban and controlled area of Dortmund (Germany), with harmful GNSS conditions. The mobile mapping system, that includes two laser scanner and two cameras, was mounted on a van and it was driven over a controlled area around three hours. The results show the suitability to decompose trajectory error with non-continuous deterministic and stochastic components.

  9. A hybrid multiview stereo algorithm for modeling urban scenes.

    Science.gov (United States)

    Lafarge, Florent; Keriven, Renaud; Brédif, Mathieu; Vu, Hoang-Hiep

    2013-01-01

    We present an original multiview stereo reconstruction algorithm which allows the 3D-modeling of urban scenes as a combination of meshes and geometric primitives. The method provides a compact model while preserving details: Irregular elements such as statues and ornaments are described by meshes, whereas regular structures such as columns and walls are described by primitives (planes, spheres, cylinders, cones, and tori). We adopt a two-step strategy consisting first in segmenting the initial meshbased surface using a multilabel Markov Random Field-based model and second in sampling primitive and mesh components simultaneously on the obtained partition by a Jump-Diffusion process. The quality of a reconstruction is measured by a multi-object energy model which takes into account both photo-consistency and semantic considerations (i.e., geometry and shape layout). The segmentation and sampling steps are embedded into an iterative refinement procedure which provides an increasingly accurate hybrid representation. Experimental results on complex urban structures and large scenes are presented and compared to state-of-the-art multiview stereo meshing algorithms.

  10. A New Hybrid Model of Amino Acid Substitution for Protein Functional Classification

    Institute of Scientific and Technical Information of China (English)

    Ke Long WANG; Zhi Ning WEN; Fu Sheng NIE; Meng Long LI

    2005-01-01

    In this paper, a new hybrid model of amino acid substitution is developed and compared with the others in previous works. The results show that the new hybrid model can characterize the protein sequences very well by calculating Fisher weights, which can denote how much the variants contribute to the classification.

  11. Control-relevant modeling and simulation of a SOFC-GT hybrid system

    Directory of Open Access Journals (Sweden)

    Rambabu Kandepu

    2006-07-01

    Full Text Available In this paper, control-relevant models of the most important components in a SOFC-GT hybrid system are described. Dynamic simulations are performed on the overall hybrid system. The model is used to develop a simple control structure, but the simulations show that more elaborate control is needed.

  12. Partitioning and interpolation based hybrid ARIMA–ANN model for time series forecasting

    Indian Academy of Sciences (India)

    C NARENDRA BABU; PALLAVIRAM SURE

    2016-07-01

    Time series data (TSD) originating from different applications have dissimilar characteristics. Hence for prediction of TSD, diversified varieties of prediction models exist. In many applications, hybrid models provide more accurate predictions than individual models. One such hybrid model, namely auto regressive integrated moving average – artificial neural network (ARIMA–ANN) is devised in many different ways in the literature. However, the prediction accuracy of hybrid ARIMA–ANN model can be further improved by devising suitable processing techniques. In this paper, a hybrid ARIMA–ANN model is proposed, which combines the concepts of the recently developed moving average (MA) filter based hybrid ARIMA–ANN model, with a processing technique involving a partitioning–interpolation (PI) step. The improved prediction accuracy of the proposed PI based hybrid ARIMA–ANN model is justified using a simulation experiment.Further, on different experimental TSD like sunspots TSD and electricity price TSD, the proposed hybrid model is applied along with four existing state-of-the-art models and it is found that the proposed model outperforms all the others, and hence is a promising model for TSD prediction

  13. Status and modeling improvements of hybrid wind/PV/diesel power systems for Brazilian applications

    Energy Technology Data Exchange (ETDEWEB)

    McGowan, J.G.; Manwell, J.F.; Avelar, C. [Univ. of Massachusetts, Amherst, MA (United States); Taylor, R. [National Renewable Energy Lab., Golden, CO (United States)

    1997-12-31

    This paper present a summary of the ongoing work on the modeling and system design of hybrid wind/PV/diesel systems for two different sites in the Amazonia region of Brazil. The work incorporates the latest resource data and is based on the use of the Hybrid2 simulation code developed by the University of Massachusetts and NREL. Details of the baseline operating hybrid systems are reviewed, and the results of the latest detailed hybrid system evaluation for each site are summarized. Based on the system modeling results, separate recommendations for system modification and improvements are made.

  14. Hybrid Baryons

    CERN Document Server

    Page, P R

    2003-01-01

    We review the status of hybrid baryons. The only known way to study hybrids rigorously is via excited adiabatic potentials. Hybrids can be modelled by both the bag and flux-tube models. The low-lying hybrid baryon is N 1/2^+ with a mass of 1.5-1.8 GeV. Hybrid baryons can be produced in the glue-rich processes of diffractive gamma N and pi N production, Psi decays and p pbar annihilation.

  15. Tracer Modeling with the Hybrid Coordinates Ocean Model (hycom)

    Science.gov (United States)

    Garraffo, Z. D.; Kim, H.; Li, B.; Mehra, A.; Rivin, I.; Spindler, T.; Tolman, H. L.

    2012-12-01

    A series of tracer simulations have been started at NCEP/NWS aiming to a variety of applications, from dispersion of contaminants in estimations motivated by the Japanese nuclear accident near Fukushima, to nutrient estimations. The tracer capabilities of HYCOM are used, in regional domains, nested to daily nowcast/forecast fields from 1/12 HYCOM (RTOFS-Global) model output. A Fukushima Cs-137 simulation is now run in operational mode (RTOFS_ET). The simulation was initialized at the time of the Fukushima nuclear accident, and includes atmospheric deposition of Cs-137 and coastal discharge from a high resolution coastal model (ROMS done at NOAA/NOS). Almost all tracer moved offshore before the end of the first year after the accident. The tracer initially deposited in the Pacific ocean through the atmosphere slowly moves eastward and to deeper waters following the 3D ocean circulation. A series of simulations were started for nutrient estimations in the Gulf Stream and Mid Atlantic Bight region. Initially the capabilities implemented in HYCOM are used. The work aims to monitoring nutrients in the chosen region. Work is done in collaboration with Victoria Coles of U. Maryland.

  16. Mobile phone use while driving: a hybrid modeling approach.

    Science.gov (United States)

    Márquez, Luis; Cantillo, Víctor; Arellana, Julián

    2015-05-01

    The analysis of the effects that mobile phone use produces while driving is a topic of great interest for the scientific community. There is consensus that using a mobile phone while driving increases the risk of exposure to traffic accidents. The purpose of this research is to evaluate the drivers' behavior when they decide whether or not to use a mobile phone while driving. For that, a hybrid modeling approach that integrates a choice model with the latent variable "risk perception" was used. It was found that workers and individuals with the highest education level are more prone to use a mobile phone while driving than others. Also, "risk perception" is higher among individuals who have been previously fined and people who have been in an accident or almost been in an accident. It was also found that the tendency to use mobile phones while driving increases when the traffic speed reduces, but it decreases when the fine increases. Even though the urgency of the phone call is the most important explanatory variable in the choice model, the cost of the fine is an important attribute in order to control mobile phone use while driving. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. A logistical model for performance evaluations of hybrid generation systems

    Energy Technology Data Exchange (ETDEWEB)

    Bonanno, F.; Consoli, A.; Raciti, A. [Univ. of Catania (Italy). Dept. of Electrical, Electronic, and Systems Engineering; Lombardo, S. [Schneider Electric SpA, Torino (Italy)

    1998-11-01

    In order to evaluate the fuel and energy savings, and to focus on the problems related to the exploitation of combined renewable and conventional energies, a logistical model for hybrid generation systems (HGS`s) has been prepared. A software package written in ACSL, allowing easy handling of the models and data of the HGS components, is presented. A special feature of the proposed model is that an auxiliary fictitious source is introduced in order to obtain the power electric balance at the busbars during the simulation state and, also, in the case of ill-sized components. The observed imbalance powers are then used to update the system design. As a case study, the simulation program is applied to evaluate the energetic performance of a power plant relative to a small isolated community, and island in the Mediterranean Sea, in order to establish the potential improvement achievable via an optimal integration of renewable energy sources in conventional plants. Evaluations and comparisons among different-sized wind, photovoltaic, and diesel groups, as well as of different management strategies have been performed using the simulation package and are reported and discussed in order to present the track followed to select the final design.

  18. Hybrid Aging Delay Model Considering the PBTI and TDDB

    Institute of Scientific and Technical Information of China (English)

    Yong Miao; Mao-Xiang Yi; Gui-Mao Zhang; Da-Wen Xu

    2015-01-01

    Abstract-With a 45nm process technique, the shrinking silicon feature size brings in a high-k/metal gate which significantly exacerbates the positive bias temperature instability (PBTI) and time-dependent dielectric breakdown (TDDB) effects of a NMOS transistor. However, previous works presented delay models to characterize the PBTI or TDDB individually. This paper demonstrates that the delay caused by the joint effects of PBTI and TDDB widely differs from the cumulated result of the delay caused by the PBTI and TDDB, respectively, with the experiments on an inverter chain. This paper proposes a hybrid aging delay model comprising both the PBTI and TDDB effects by analyzing the relationship between the aging propagation delay and the inherent delay of the gate. Experimental results on the logic gates under 45nm, 32 nm, 22nm, and 16nm CMOS technologies show that the maximum error between the proposed model and the actual value is less than 2.5%, meanwhile the average error is about 1.5%.

  19. Weighted Hybrid Decision Tree Model for Random Forest Classifier

    Science.gov (United States)

    Kulkarni, Vrushali Y.; Sinha, Pradeep K.; Petare, Manisha C.

    2016-06-01

    Random Forest is an ensemble, supervised machine learning algorithm. An ensemble generates many classifiers and combines their results by majority voting. Random forest uses decision tree as base classifier. In decision tree induction, an attribute split/evaluation measure is used to decide the best split at each node of the decision tree. The generalization error of a forest of tree classifiers depends on the strength of the individual trees in the forest and the correlation among them. The work presented in this paper is related to attribute split measures and is a two step process: first theoretical study of the five selected split measures is done and a comparison matrix is generated to understand pros and cons of each measure. These theoretical results are verified by performing empirical analysis. For empirical analysis, random forest is generated using each of the five selected split measures, chosen one at a time. i.e. random forest using information gain, random forest using gain ratio, etc. The next step is, based on this theoretical and empirical analysis, a new approach of hybrid decision tree model for random forest classifier is proposed. In this model, individual decision tree in Random Forest is generated using different split measures. This model is augmented by weighted voting based on the strength of individual tree. The new approach has shown notable increase in the accuracy of random forest.

  20. Multi-level and hybrid modelling approaches for systems biology.

    Science.gov (United States)

    Bardini, R; Politano, G; Benso, A; Di Carlo, S

    2017-01-01

    During the last decades, high-throughput techniques allowed for the extraction of a huge amount of data from biological systems, unveiling more of their underling complexity. Biological systems encompass a wide range of space and time scales, functioning according to flexible hierarchies of mechanisms making an intertwined and dynamic interplay of regulations. This becomes particularly evident in processes such as ontogenesis, where regulative assets change according to process context and timing, making structural phenotype and architectural complexities emerge from a single cell, through local interactions. The information collected from biological systems are naturally organized according to the functional levels composing the system itself. In systems biology, biological information often comes from overlapping but different scientific domains, each one having its own way of representing phenomena under study. That is, the different parts of the system to be modelled may be described with different formalisms. For a model to have improved accuracy and capability for making a good knowledge base, it is good to comprise different system levels, suitably handling the relative formalisms. Models which are both multi-level and hybrid satisfy both these requirements, making a very useful tool in computational systems biology. This paper reviews some of the main contributions in this field.

  1. The model of stress distribution in polymer electrolyte membrane

    CERN Document Server

    Atrazhev, Vadim V; Dmitriev, Dmitry V; Erikhman, Nikolay S; Sultanov, Vadim I; Patterson, Timothy; Burlatsky, Sergei F

    2014-01-01

    An analytical model of mechanical stress in a polymer electrolyte membrane (PEM) of a hydrogen/air fuel cell with porous Water Transfer Plates (WTP) is developed in this work. The model considers a mechanical stress in the membrane is a result of the cell load cycling under constant oxygen utilization. The load cycling causes the cycling of the inlet gas flow rate, which results in the membrane hydration/dehydration close to the gas inlet. Hydration/dehydration of the membrane leads to membrane swelling/shrinking, which causes mechanical stress in the constrained membrane. Mechanical stress results in through-plane crack formation. Thereby, the mechanical stress in the membrane causes mechanical failure of the membrane, limiting fuel cell lifetime. The model predicts the stress in the membrane as a function of the cell geometry, membrane material properties and operation conditions. The model was applied for stress calculation in GORE-SELECT.

  2. Modeling, hybridization, and optimal charging of electrical energy storage systems

    Science.gov (United States)

    Parvini, Yasha

    The rising rate of global energy demand alongside the dwindling fossil fuel resources has motivated research for alternative and sustainable solutions. Within this area of research, electrical energy storage systems are pivotal in applications including electrified vehicles, renewable power generation, and electronic devices. The approach of this dissertation is to elucidate the bottlenecks of integrating supercapacitors and batteries in energy systems and propose solutions by the means of modeling, control, and experimental techniques. In the first step, the supercapacitor cell is modeled in order to gain fundamental understanding of its electrical and thermal dynamics. The dependence of electrical parameters on state of charge (SOC), current direction and magnitude (20-200 A), and temperatures ranging from -40°C to 60°C was embedded in this computationally efficient model. The coupled electro-thermal model was parameterized using specifically designed temporal experiments and then validated by the application of real world duty cycles. Driving range is one of the major challenges of electric vehicles compared to combustion vehicles. In order to shed light on the benefits of hybridizing a lead-acid driven electric vehicle via supercapacitors, a model was parameterized for the lead-acid battery and combined with the model already developed for the supercapacitor, to build the hybrid battery-supercapacitor model. A hardware in the loop (HIL) setup consisting of a custom built DC/DC converter, micro-controller (muC) to implement the power management strategy, 12V lead-acid battery, and a 16.2V supercapacitor module was built to perform the validation experiments. Charging electrical energy storage systems in an efficient and quick manner, motivated to solve an optimal control problem with the objective of maximizing the charging efficiency for supercapacitors, lead-acid, and lithium ion batteries. Pontryagins minimum principle was used to solve the problems

  3. Forecasting Stock Exchange Movements Using Artificial Neural Network Models and Hybrid Models

    Science.gov (United States)

    Güreşen, Erkam; Kayakutlu, Gülgün

    Forecasting stock exchange rates is an important financial problem that is receiving increasing attention. During the last few years, a number of neural network models and hybrid models have been proposed for obtaining accurate prediction results, in an attempt to outperform the traditional linear and nonlinear approaches. This paper evaluates the effectiveness of neural network models; recurrent neural network (RNN), dynamic artificial neural network (DAN2) and the hybrid neural networks which use generalized autoregressive conditional heteroscedasticity (GARCH) and exponential generalized autoregressive conditional heteroscedasticity (EGARCH) to extract new input variables. The comparison for each model is done in two view points: MSE and MAD using real exchange daily rate values of Istanbul Stock Exchange (ISE) index XU10).

  4. Expanding stress generation theory: test of a transdiagnostic model.

    Science.gov (United States)

    Conway, Christopher C; Hammen, Constance; Brennan, Patricia A

    2012-08-01

    Originally formulated to understand the recurrence of depressive disorders, the stress generation hypothesis has recently been applied in research on anxiety and externalizing disorders. Results from these investigations, in combination with findings of extensive comorbidity between depression and other mental disorders, suggest the need for an expansion of stress generation models to include the stress generating effects of transdiagnostic pathology as well as those of specific syndromes. Employing latent variable modeling techniques to parse the general and specific elements of commonly co-occurring Axis I syndromes, the current study examined the associations of transdiagnostic internalizing and externalizing dimensions with stressful life events over time. Analyses revealed that, after adjusting for the covariation between the dimensions, internalizing was a significant predictor of interpersonal dependent stress, whereas externalizing was a significant predictor of noninterpersonal dependent stress. Neither latent dimension was associated with the occurrence of independent, or fateful, stressful life events. At the syndrome level, once variance due to the internalizing factor was partialed out, unipolar depression contributed incrementally to the generation of interpersonal dependent stress. In contrast, the presence of panic disorder produced a "stress inhibition" effect, predicting reduced exposure to interpersonal dependent stress. Additionally, dysthymia was associated with an excess of noninterpersonal dependent stress. The latent variable modeling framework used here is discussed in terms of its potential as an integrative model for stress generation research.

  5. Stress, glucocorticoids and absences in a genetic epilepsy model

    NARCIS (Netherlands)

    Tolmacheva, E.A.; Oitzl, M.S.; Luijtelaar, E.L.J.M. van

    2012-01-01

    Although stress can alter the susceptibility of patients and animal models to convulsive epilepsy, little is known about the role of stress and glucocorticoid hormones in absence epilepsy. We measured the basal and acute stress-induced (foot-shocks: FS) concentrations of corticosterone in WAG/Rij ra

  6. The Culture-Work-Health Model and Work Stress.

    Science.gov (United States)

    Peterson, Michael; Wilson, John F.

    2002-01-01

    Examines the role of organizational culture in the etiology of workplace stress through the framework of the Culture-Work- Health model. A review of relevant business and health literature indicates that culture is an important component of work stress and may be a key to creating effective organizational stress interventions. (SM)

  7. The Culture-Work-Health Model and Work Stress.

    Science.gov (United States)

    Peterson, Michael; Wilson, John F.

    2002-01-01

    Examines the role of organizational culture in the etiology of workplace stress through the framework of the Culture-Work- Health model. A review of relevant business and health literature indicates that culture is an important component of work stress and may be a key to creating effective organizational stress interventions. (SM)

  8. A dynamic model of stress and sustained attention

    Science.gov (United States)

    Hancock, Peter A.; Warm, Joel S.

    2003-01-01

    This paper examines the effects of stress on sustained attention. With recognition of the task itself as the major source of cognitive stress, a dynamic model is presented that addresses the effects of stress on vigilance and, potentially, a wide variety of attention performance tasks.

  9. Neotectonic stresses in Fennoscandia: field observations and modelling

    Science.gov (United States)

    Pascal, Christophe

    2013-04-01

    The present-day stress state of Fennoscandia is traditionally viewed as the combination of far field sources and residual glacial loading stresses. Investigations were conducted in different regions of Norway with the purpose of detecting and measuring stress-relief features and to derive from them valuable information on the crustal stress state. Stress-relief features are induced by blasting and sudden rock unloading in road construction and quarrying operations and are common in Norway and very likely in other regions of Fennoscandia. Stress relief at the Earth's surface is diagnostic of anomalously high stress levels at shallow depths in the crust and appears to be a characteristic of the formerly glaciated Baltic and Canadian Precambrian shields. The studied stress-relief features are, in general, indicative of NW-SE compression, suggesting ridge-push as the main source of stress. Our derived stress directions are also in excellent agreement with the ones derived from other kinds of stress indicators, including focal mechanisms from deep earthquakes, demonstrating that stress-relief features are valuable for neotectonic research. As a second step we applied numerical modelling techniques to simulate the neotectonic stress field in Fennoscandia with particular emphasis to southern Norway. A numerical method was used to reconstruct the structure of the Fennoscandian lithosphere. The numerical method involves classical steady-state heat equations to derive lithosphere thickness, geotherm and density distribution and, in addition, requires the studied lithosphere to be isostatically compensated at its base. The a priori crustal structure was derived from previous geophysical studies. Undulations of the geoid were used to calibrate the models. Once the density structure of the Fennoscandian lithosphere is reconstructed it is straightforward to quantify its stress state and compare modelling results with existing stress indicators. The modelling suggests that

  10. Modeling and Simulation for Hybrid of PV-Wind system

    Directory of Open Access Journals (Sweden)

    Maged N. F. Nashed

    2015-04-01

    Full Text Available The rising consumption rate of fossil fuels causes a significant pollution impact on the atmosphere, unwanted greenhouse gases has drawn worldwide attention towards renewable energy sources. Moreover, in recent year’s generation of electricity using the different types of renewable sources are specifically evaluated in the economical performance of the overall equipment. This paper focuses on the modeling and analysis of a Standalone Photovoltaic (PV- wind energy hybrid generation system under different conditions using MATLAB. The proposed system consists of two renewable sources i.e. wind and solar energy. Modeling of PV array and wind turbine is explained. The wind subsystem is equipped of an induction generator. In photovoltaic system, the variable DC output voltage is controlled using buck-boost converter for the MPPT. These two systems are combined to operate in parallel and the common bus collects the total energy from the wind and PV systems are uses it to the load and with change the load

  11. A Hybrid Fuzzy Model for Lean Product Development Performance Measurement

    Science.gov (United States)

    Osezua Aikhuele, Daniel; Mohd Turan, Faiz

    2016-02-01

    In the effort for manufacturing companies to meet up with the emerging consumer demands for mass customized products, many are turning to the application of lean in their product development process, and this is gradually moving from being a competitive advantage to a necessity. However, due to lack of clear understanding of the lean performance measurements, many of these companies are unable to implement and fully integrated the lean principle into their product development process. Extensive literature shows that only few studies have focus systematically on the lean product development performance (LPDP) evaluation. In order to fill this gap, the study therefore proposed a novel hybrid model based on Fuzzy Reasoning Approach (FRA), and the extension of Fuzzy-AHP and Fuzzy-TOPSIS methods for the assessment of the LPDP. Unlike the existing methods, the model considers the importance weight of each of the decision makers (Experts) since the performance criteria/attributes are required to be rated, and these experts have different level of expertise. The rating is done using a new fuzzy Likert rating scale (membership-scale) which is designed such that it can address problems resulting from information lost/distortion due to closed-form scaling and the ordinal nature of the existing Likert scale.

  12. A hybrid simulation model for a stable auroral arc

    Directory of Open Access Journals (Sweden)

    P. Janhunen

    Full Text Available We present a new type of hybrid simulation model, intended to simulate a single stable auroral arc in the latitude/altitude plane. The ionospheric ions are treated as particles, the electrons are assumed to follow a Boltzmann response and the magnetospheric ions are assumed to be so hot that they form a background population unaffected by the electric fields that arise. The system is driven by assumed parallel electron energisation causing a primary negative charge cloud and an associated potential structure to build up. The results show how a closed potential structure and density depletion of an auroral arc build up and how they decay after the driver is turned off. The model also produces upgoing energetic ion beams and predicts strong static perpendicular electric fields to be found in a relatively narrow altitude range (~ 5000–11 000 km.

    Key words. Magnetospheric physics (magnetosphere-ionosphere interactions; auroral phenomena – Space plasma physics (numerical simulation studies

  13. Chern-Simons production during preheating in hybrid inflation models

    CERN Document Server

    García-Bellido, J; González-Arroyo, A; Garcia-Bellido, Juan; Perez, Margarita Garcia; Gonzalez-Arroyo, Antonio

    2004-01-01

    We study the onset of symmetry breaking after hybrid inflation in a model having the field content of the SU(2) gauge-scalar sector of the standard model, coupled to a singlet inflaton. This process is studied in (3+1)-dimensions in a fully non-perturbative way with the help of lattice techniques within the classical approximation. We focus on the role played by gauge fields and, in particular, on the generation of Chern-Simons number. Our results are shown to be insensitive to the various cut-offs introduced in our numerical approach. The spectra preserves a large hierarchy between long and short-wavelength modes during the whole period of symmetry breaking and Chern-Simons generation, confirming that the dynamics is driven by the low momentum sector of the theory. We establish that the Chern-Simons production mechanism is associated with local sphaleron-like structures. The corresponding sphaleron rates are of order 10^{-5} m^{-4}, which, within certain scenarios of electroweak baryogenesis and a (not unnat...

  14. Hybrid Network Defense Model Based on Fuzzy Evaluation

    Directory of Open Access Journals (Sweden)

    Ying-Chiang Cho

    2014-01-01

    Full Text Available With sustained and rapid developments in the field of information technology, the issue of network security has become increasingly prominent. The theme of this study is network data security, with the test subject being a classified and sensitive network laboratory that belongs to the academic network. The analysis is based on the deficiencies and potential risks of the network’s existing defense technology, characteristics of cyber attacks, and network security technologies. Subsequently, a distributed network security architecture using the technology of an intrusion prevention system is designed and implemented. In this paper, first, the overall design approach is presented. This design is used as the basis to establish a network defense model, an improvement over the traditional single-technology model that addresses the latter’s inadequacies. Next, a distributed network security architecture is implemented, comprising a hybrid firewall, intrusion detection, virtual honeynet projects, and connectivity and interactivity between these three components. Finally, the proposed security system is tested. A statistical analysis of the test results verifies the feasibility and reliability of the proposed architecture. The findings of this study will potentially provide new ideas and stimuli for future designs of network security architecture.

  15. Dynamic Hybrid Model for Short-Term Electricity Price Forecasting

    Directory of Open Access Journals (Sweden)

    Marin Cerjan

    2014-05-01

    Full Text Available Accurate forecasting tools are essential in the operation of electric power systems, especially in deregulated electricity markets. Electricity price forecasting is necessary for all market participants to optimize their portfolios. In this paper we propose a hybrid method approach for short-term hourly electricity price forecasting. The paper combines statistical techniques for pre-processing of data and a multi-layer (MLP neural network for forecasting electricity price and price spike detection. Based on statistical analysis, days are arranged into several categories. Similar days are examined by correlation significance of the historical data. Factors impacting the electricity price forecasting, including historical price factors, load factors and wind production factors are discussed. A price spike index (CWI is defined for spike detection and forecasting. Using proposed approach we created several forecasting models of diverse model complexity. The method is validated using the European Energy Exchange (EEX electricity price data records. Finally, results are discussed with respect to price volatility, with emphasis on the price forecasting accuracy.

  16. Development of hybrid 3-D hydrological modeling for the NCAR Community Earth System Model (CESM)

    Energy Technology Data Exchange (ETDEWEB)

    Zeng, Xubin [Univ. of Arizona, Tucson, AZ (United States); Troch, Peter [Univ. of Arizona, Tucson, AZ (United States); Pelletier, Jon [Univ. of Arizona, Tucson, AZ (United States); Niu, Guo-Yue [Univ. of Arizona, Tucson, AZ (United States); Gochis, David [NCAR Research Applications Lab., Boulder, CO (United States)

    2015-11-15

    This is the Final Report of our four-year (3-year plus one-year no cost extension) collaborative project between the University of Arizona (UA) and the National Center for Atmospheric Research (NCAR). The overall objective of our project is to develop and evaluate the first hybrid 3-D hydrological model with a horizontal grid spacing of 1 km for the NCAR Community Earth System Model (CESM).

  17. Soil Compressibility Models for a Wide Stress Range

    KAUST Repository

    Chong, Song-Hun

    2016-03-03

    Soil compressibility models with physically correct asymptotic void ratios are required to analyze situations that involve a wide stress range. Previously suggested models and other functions are adapted to satisfy asymptotic void ratios at low and high stress levels; all updated models involve four parameters. Compiled consolidation data for remolded and natural clays are used to test the models and to develop correlations between model parameters and index properties. Models can adequately fit soil compression data for a wide range of stresses and soil types; in particular, models that involve the power of the stress σ\\'β display higher flexibility to capture the brittle response of some natural soils. The use of a single continuous function avoids numerical discontinuities or the need for ad hoc procedures to determine the yield stress. The tangent stiffness-readily computed for all models-should not be mistaken for the small-strain constant-fabric stiffness. © 2016 American Society of Civil Engineers.

  18. A Hybrid Analytical/Simulation Modeling Approach for Planning and Optimizing Mass Tactical Airborne Operations

    Science.gov (United States)

    1995-05-01

    A HYBRID ANALYTICAL/ SIMULATION MODELING APPROACH FOR PLANNING AND OPTIMIZING MASS TACTICAL AIRBORNE OPERATIONS by DAVID DOUGLAS BRIGGS M.S.B.A...COVERED MAY 1995 TECHNICAL REPORT THESIS 4. TITLE AND SUBTITLE 5. FUNDING NUMBERS A HYBRID ANALYTICAL SIMULATION MODELING APPROACH FOR PLANNING AND...are present. Thus, simulation modeling presents itself as an excellent alternate tool for planning because it allows for the modeling of highly complex

  19. Hybrid Simulation Modeling to Estimate U.S. Energy Elasticities

    Science.gov (United States)

    Baylin-Stern, Adam C.

    This paper demonstrates how an U.S. application of CIMS, a technologically explicit and behaviourally realistic energy-economy simulation model which includes macro-economic feedbacks, can be used to derive estimates of elasticity of substitution (ESUB) and autonomous energy efficiency index (AEEI) parameters. The ability of economies to reduce greenhouse gas emissions depends on the potential for households and industry to decrease overall energy usage, and move from higher to lower emissions fuels. Energy economists commonly refer to ESUB estimates to understand the degree of responsiveness of various sectors of an economy, and use estimates to inform computable general equilibrium models used to study climate policies. Using CIMS, I have generated a set of future, 'pseudo-data' based on a series of simulations in which I vary energy and capital input prices over a wide range. I then used this data set to estimate the parameters for transcendental logarithmic production functions using regression techniques. From the production function parameter estimates, I calculated an array of elasticity of substitution values between input pairs. Additionally, this paper demonstrates how CIMS can be used to calculate price-independent changes in energy-efficiency in the form of the AEEI, by comparing energy consumption between technologically frozen and 'business as usual' simulations. The paper concludes with some ideas for model and methodological improvement, and how these might figure into future work in the estimation of ESUBs from CIMS. Keywords: Elasticity of substitution; hybrid energy-economy model; translog; autonomous energy efficiency index; rebound effect; fuel switching.

  20. Effective Stress Management: A Model of Emotional Intelligence, Self-Leadership, and Student Stress Coping

    Science.gov (United States)

    Houghton, Jeffery D.; Wu, Jinpei; Godwin, Jeffrey L.; Neck, Christopher P.; Manz, Charles C.

    2012-01-01

    This article develops and presents a model of the relationships among emotional intelligence, self-leadership, and stress coping among management students. In short, the authors' model suggests that effective emotion regulation and self-leadership, as mediated through positive affect and self-efficacy, has the potential to facilitate stress coping…

  1. Effective Stress Management: A Model of Emotional Intelligence, Self-Leadership, and Student Stress Coping

    Science.gov (United States)

    Houghton, Jeffery D.; Wu, Jinpei; Godwin, Jeffrey L.; Neck, Christopher P.; Manz, Charles C.

    2012-01-01

    This article develops and presents a model of the relationships among emotional intelligence, self-leadership, and stress coping among management students. In short, the authors' model suggests that effective emotion regulation and self-leadership, as mediated through positive affect and self-efficacy, has the potential to facilitate stress coping…

  2. Modeling the Effects of Stress: An Approach to Training

    Science.gov (United States)

    Cuper, Taryn

    2010-01-01

    Stress is an integral element of the operational conditions experienced by combat medics. The effects of stress can compromise the performance of combat medics who must reach and treat their comrades under often threatening circumstances. Examples of these effects include tunnel vision, loss of motor control, and diminished hearing, which can result in an inability to perceive further danger, satisfactorily treat the casualty, and communicate with others. While many training programs strive to recreate this stress to aid in the experiential learning process, stress inducement may not always be feasible or desired. In addition, live simulations are not always a practical, convenient, and repeatable method of training. Instead, presenting situational training on a personal computer is proposed as an effective training platform in which the effects of stress can be addressed in a different way. We explore the cognitive and motor effects of stress, as well as the benefits of training for mitigating these effects in real life. While many training applications focus on inducing stress in order to "condition" the stress response, the author explores the possibilities of modeling stress to produce a similar effect. Can presenting modeled effects of stress help prepare or inoculate soldiers for stressful situations in which they must perform at a high level? This paper investigates feasibility of modeling stress and describes the preliminary design considerations of a combat medic training system that utilizes this method of battlefield preparation.

  3. Modeling of stresses at grain boundaries with respect to occurrence of stress corrosion cracking

    Energy Technology Data Exchange (ETDEWEB)

    Kozaczek, K.J. [Oak Ridge National Lab., TN (United States); Sinharoy, A.; Ruud, C.O. [Pennsylvania State Univ., University Park, PA (United States); McIlree, A.R. [Electric Power Research Institute, Palo Alto, CA (United States)

    1995-12-31

    The distributions of elastic stresses/strains in the grain boundary regions were studied by the analytical and the finite element models. The grain boundaries represent the sites where stress concentration occurs as a result of discontinuity of elastic properties across the grain boundary and the presence of second phase particles elastically different from the surrounding matrix grains. A quantitative analysis of those stresses for steels and nickel based alloys showed that the stress concentrations in the grain boundary regions are high enough to cause a local microplastic deformation even when the material is in the macroscopic elastic regime. The stress redistribution as a result of such a plastic deformation was discussed.

  4. Improvement and Validation of Weld Residual Stress Modelling Procedure

    Energy Technology Data Exchange (ETDEWEB)

    Zang, Weilin; Gunnars, Jens (Inspecta Technology AB, Stockholm (Sweden)); Dong, Pingsha; Hong, Jeong K. (Center for Welded Structures Research, Battelle, Columbus, OH (United States))

    2009-06-15

    The objective of this work is to identify and evaluate improvements for the residual stress modelling procedure currently used in Sweden. There is a growing demand to eliminate any unnecessary conservatism involved in residual stress assumptions. The study was focused on the development and validation of an improved weld residual stress modelling procedure, by taking advantage of the recent advances in residual stress modelling and stress measurement techniques. The major changes applied in the new weld residual stress modelling procedure are: - Improved procedure for heat source calibration based on use of analytical solutions. - Use of an isotropic hardening model where mixed hardening data is not available. - Use of an annealing model for improved simulation of strain relaxation in re-heated material. The new modelling procedure is demonstrated to capture the main characteristics of the through thickness stress distributions by validation to experimental measurements. Three austenitic stainless steel butt-welds cases are analysed, covering a large range of pipe geometries. From the cases it is evident that there can be large differences between the residual stresses predicted using the new procedure, and the earlier procedure or handbook recommendations. Previously recommended profiles could give misleading fracture assessment results. The stress profiles according to the new procedure agree well with the measured data. If data is available then a mixed hardening model should be used

  5. Experimental stress analysis for materials and structures stress analysis models for developing design methodologies

    CERN Document Server

    Freddi, Alessandro; Cristofolini, Luca

    2015-01-01

    This book summarizes the main methods of experimental stress analysis and examines their application to various states of stress of major technical interest, highlighting aspects not always covered in the classic literature. It is explained how experimental stress analysis assists in the verification and completion of analytical and numerical models, the development of phenomenological theories, the measurement and control of system parameters under operating conditions, and identification of causes of failure or malfunction. Cases addressed include measurement of the state of stress in models, measurement of actual loads on structures, verification of stress states in circumstances of complex numerical modeling, assessment of stress-related material damage, and reliability analysis of artifacts (e.g. prostheses) that interact with biological systems. The book will serve graduate students and professionals as a valuable tool for finding solutions when analytical solutions do not exist.

  6. Three hybridization models based on local search scheme for job shop scheduling problem

    Science.gov (United States)

    Balbi Fraga, Tatiana

    2015-05-01

    This work presents three different hybridization models based on the general schema of Local Search Heuristics, named Hybrid Successive Application, Hybrid Neighborhood, and Hybrid Improved Neighborhood. Despite similar approaches might have already been presented in the literature in other contexts, in this work these models are applied to analyzes the solution of the job shop scheduling problem, with the heuristics Taboo Search and Particle Swarm Optimization. Besides, we investigate some aspects that must be considered in order to achieve better solutions than those obtained by the original heuristics. The results demonstrate that the algorithms derived from these three hybrid models are more robust than the original algorithms and able to get better results than those found by the single Taboo Search.

  7. Advances in modeling of lower hybrid current drive

    Science.gov (United States)

    Peysson, Y.; Decker, J.; Nilsson, E.; Artaud, J.-F.; Ekedahl, A.; Goniche, M.; Hillairet, J.; Ding, B.; Li, M.; Bonoli, P. T.; Shiraiwa, S.; Madi, M.

    2016-04-01

    First principle modeling of the lower hybrid (LH) current drive in tokamak plasmas is a longstanding activity, which is gradually gaining in accuracy thanks to quantitative comparisons with experimental observations. The ability to reproduce simulatenously the plasma current and the non-thermal bremsstrahlung radial profiles in the hard x-ray (HXR) photon energy range represents in this context a significant achievement. Though subject to limitations, ray tracing calculations are commonly used for describing wave propagation in conjunction with Fokker-Planck codes, as it can capture prominent features of the LH wave dynamics in a tokamak plasma-like toroidal refraction. This tool has been validated on several machines when the full absorption of the LH wave requires the transfer of a small fraction of power from the main lobes of the launched power spectrum to a tail at a higher parallel refractive index. Conversely, standard modeling based on toroidal refraction only becomes more challenging when the spectral gap is large, except if other physical mechanisms may dominate to bridge it, like parametric instabilities, as suggested for JET LH discharges (Cesario et al 2004 Phys. Rev. Lett. 92 175002), or fast fluctuations of the launched power spectrum or ‘tail’ LH model, as shown for Tore Supra (Decker et al 2014 Phys. Plasma 21 092504). The applicability of the heuristic ‘tail’ LH model is investigated for a broader range of plasma parameters as compared to the Tore Supra study and with different LH wave characteristics. Discrepancies and agreements between simulations and experiments depending upon the different models used are discussed. The existence of a ‘tail’ in the launched power spectrum significantly improves the agreement between modeling and experiments in plasma conditions for which the spectral gap is large in EAST and Alcator C-Mod tokamaks. For the Alcator C-Mod tokamak, the experimental evolution of the HXR profiles with density suggests

  8. Control and verification of industrial hybrid systems using models specified with the formalism $ chi $

    NARCIS (Netherlands)

    J.J.H. Fey

    1996-01-01

    textabstractControl and verification of hybrid systems is studied using two industrial examples. The hybrid models of a conveyor-belt and of a biochemical plant for the production of ethanol are specified in the formalism $chi .$ A verification of the closed-loop systems for those examples,

  9. Thermal equilibrium solution to new model of bipolar hybrid quantum hydrodynamics

    Science.gov (United States)

    Di Michele, Federica; Mei, Ming; Rubino, Bruno; Sampalmieri, Rosella

    2017-08-01

    In this paper we study the hybrid quantum hydrodynamic model for nano-sized bipolar semiconductor devices in thermal equilibrium. By introducing a hybrid version of the Bhom potential, we derive a bipolar hybrid quantum hydrodynamic model, which is able to account for quantum effects in a localized region of the device for both electrons and holes. Coupled with Poisson equation for the electric potential, the steady-state system is regionally degenerate in its ellipticity, due to the quantum effect only in part of the device. This regional degeneracy of ellipticity makes the study more challenging. The main purpose of the paper is to investigate the existence and uniqueness of the weak solutions to this new type of equations. We first establish the uniform boundedness of the smooth solutions to the modified bipolar quantum hydrodynamic model by the variational method, then we use the compactness technique to prove the existence of weak solutions to the original hybrid system by taking hybrid limit. In particular, we account for two different kinds of hybrid behaviour. We perform the first hybrid limit when both electrons and holes behave quantum in a given region of the device, and the second one when only one carrier exhibits hybrid behaviour, whereas the other one is presented classically in the whole domain. The semi-classical limit results are also obtained. Finally, the theoretical results are tested numerically on a simple toy model.

  10. Hybrid model for forecasting time series with trend, seasonal and salendar variation patterns

    Science.gov (United States)

    Suhartono; Rahayu, S. P.; Prastyo, D. D.; Wijayanti, D. G. P.; Juliyanto

    2017-09-01

    Most of the monthly time series data in economics and business in Indonesia and other Moslem countries not only contain trend and seasonal, but also affected by two types of calendar variation effects, i.e. the effect of the number of working days or trading and holiday effects. The purpose of this research is to develop a hybrid model or a combination of several forecasting models to predict time series that contain trend, seasonal and calendar variation patterns. This hybrid model is a combination of classical models (namely time series regression and ARIMA model) and/or modern methods (artificial intelligence method, i.e. Artificial Neural Networks). A simulation study was used to show that the proposed procedure for building the hybrid model could work well for forecasting time series with trend, seasonal and calendar variation patterns. Furthermore, the proposed hybrid model is applied for forecasting real data, i.e. monthly data about inflow and outflow of currency at Bank Indonesia. The results show that the hybrid model tend to provide more accurate forecasts than individual forecasting models. Moreover, this result is also in line with the third results of the M3 competition, i.e. the hybrid model on average provides a more accurate forecast than the individual model.

  11. Photosynthesis and growth response of maize (Zea mays L.) hybrids exposed to cadmium stress.

    Science.gov (United States)

    Akhtar, Tasneem; Zia-Ur-Rehman, Muhammad; Naeem, Asif; Nawaz, Rab; Ali, Shafaqat; Murtaza, Ghulam; Maqsood, Muhammad Aamer; Azhar, Muhammad; Khalid, Hinnan; Rizwan, Muhammad

    2017-02-01

    Cadmium (Cd) is a biologically non-essential heavy metal while the cultivation of Cd-tolerant varieties/hybrids (V) seems the most promising strategy for remediation of Cd-contaminated soils. For this, 24-day-old seedlings of seven maize hybrids, DKC 65-25, DKC 61-25, DKC 919, 23-T-16, 32-B-33, 31-P-41, and Syn hybrid, were grown in hydroponic conditions for 21 additional days in various Cd concentrations (0, 5, 10, and 15 μM). Effects of variety, Cd, and their interaction were highly significant (p ≤ 0.05) for studied plant agronomic and physiological traits except the V × Cd interaction for leaf chlorophyll content, root-shoot length, and root dry weight. The Cd accumulation in root and shoot increased gradually with increasing Cd treatments while copper (Cu), zinc (Zn), and manganese (Mn) uptake was decreased in all hybrids. The reduction in root and shoot biomass and Cd uptake was lower in 32-B-33 and 23-T-16 compared to other hybrids. The highest accumulation of Cu, Zn, and Mn was observed in 32-B-33, DK C65-25, and 31-P-41, respectively. The differential uptake and accumulation of Cd by maize hybrids may be useful in selection and breeding for Cd-tolerant genotypes.

  12. Modeling, control, and simulation of grid connected intelligent hybrid battery/photovoltaic system using new hybrid fuzzy-neural method.

    Science.gov (United States)

    Rezvani, Alireza; Khalili, Abbas; Mazareie, Alireza; Gandomkar, Majid

    2016-07-01

    Nowadays, photovoltaic (PV) generation is growing increasingly fast as a renewable energy source. Nevertheless, the drawback of the PV system is its dependence on weather conditions. Therefore, battery energy storage (BES) can be considered to assist for a stable and reliable output from PV generation system for loads and improve the dynamic performance of the whole generation system in grid connected mode. In this paper, a novel topology of intelligent hybrid generation systems with PV and BES in a DC-coupled structure is presented. Each photovoltaic cell has a specific point named maximum power point on its operational curve (i.e. current-voltage or power-voltage curve) in which it can generate maximum power. Irradiance and temperature changes affect these operational curves. Therefore, the nonlinear characteristic of maximum power point to environment has caused to development of different maximum power point tracking techniques. In order to capture the maximum power point (MPP), a hybrid fuzzy-neural maximum power point tracking (MPPT) method is applied in the PV system. Obtained results represent the effectiveness and superiority of the proposed method, and the average tracking efficiency of the hybrid fuzzy-neural is incremented by approximately two percentage points in comparison to the conventional methods. It has the advantages of robustness, fast response and good performance. A detailed mathematical model and a control approach of a three-phase grid-connected intelligent hybrid system have been proposed using Matlab/Simulink.

  13. Field Test of a Hybrid Finite-Difference and Analytic Element Regional Model.

    Science.gov (United States)

    Abrams, D B; Haitjema, H M; Feinstein, D T; Hunt, R J

    2016-01-01

    Regional finite-difference models often have cell sizes that are too large to sufficiently model well-stream interactions. Here, a steady-state hybrid model is applied whereby the upper layer or layers of a coarse MODFLOW model are replaced by the analytic element model GFLOW, which represents surface waters and wells as line and point sinks. The two models are coupled by transferring cell-by-cell leakage obtained from the original MODFLOW model to the bottom of the GFLOW model. A real-world test of the hybrid model approach is applied on a subdomain of an existing model of the Lake Michigan Basin. The original (coarse) MODFLOW model consists of six layers, the top four of which are aggregated into GFLOW as a single layer, while the bottom two layers remain part of MODFLOW in the hybrid model. The hybrid model and a refined "benchmark" MODFLOW model simulate similar baseflows. The hybrid and benchmark models also simulate similar baseflow reductions due to nearby pumping when the well is located within the layers represented by GFLOW. However, the benchmark model requires refinement of the model grid in the local area of interest, while the hybrid approach uses a gridless top layer and is thus unaffected by grid discretization errors. The hybrid approach is well suited to facilitate cost-effective retrofitting of existing coarse grid MODFLOW models commonly used for regional studies because it leverages the strengths of both finite-difference and analytic element methods for predictions in mildly heterogeneous systems that can be simulated with steady-state conditions.

  14. Polarization of Inclusive $\\Lambda_{c}$'s in a Hybrid Model

    CERN Document Server

    Goldstein, G R

    2000-01-01

    A hybrid model is presented for hyperon polarization that is based on perturbative QCD subprocesses and the recombination of polarized quarks with scalar diquarks. The updated hybrid model is applied to $p+p\\to \\Lambda +X$ and successfully reproduces the detailed kinematic dependence shown by the data. The hybrid model is extended to include pion beams and polarized $\\Lambda_c$'s. The resulting polarization is found to be in fair agreement with recent experiments. Predictions for the polarization dependence on $x_F$ and $p_T$ is given.

  15. Modeling a Hybrid Microgrid Using Probabilistic Reconfiguration under System Uncertainties

    Directory of Open Access Journals (Sweden)

    Hadis Moradi

    2017-09-01

    Full Text Available A novel method for a day-ahead optimal operation of a hybrid microgrid system including fuel cells, photovoltaic arrays, a microturbine, and battery energy storage in order to fulfill the required load demand is presented in this paper. In the proposed system, the microgrid has access to the main utility grid in order to exchange power when required. Available municipal waste is utilized to produce the hydrogen required for running the fuel cells, and natural gas will be used as the backup source. In the proposed method, an energy scheduling is introduced to optimize the generating unit power outputs for the next day, as well as the power flow with the main grid, in order to minimize the operational costs and produced greenhouse gases emissions. The nature of renewable energies and electric power consumption is both intermittent and unpredictable, and the uncertainty related to the PV array power generation and power consumption has been considered in the next-day energy scheduling. In order to model uncertainties, some scenarios are produced according to Monte Carlo (MC simulations, and microgrid optimal energy scheduling is analyzed under the generated scenarios. In addition, various scenarios created by MC simulations are applied in order to solve unit commitment (UC problems. The microgrid’s day-ahead operation and emission costs are considered as the objective functions, and the particle swarm optimization algorithm is employed to solve the optimization problem. Overall, the proposed model is capable of minimizing the system costs, as well as the unfavorable influence of uncertainties on the microgrid’s profit, by generating different scenarios.

  16. Causal Model of Stress and Coping: Women in Management.

    Science.gov (United States)

    Long, Bonita C.; And Others

    1992-01-01

    Tested model of managerial women's (n=249) stress. Model was developed from Lazarus's theoretical framework of stress/coping and incorporated causal antecedent constructs (demographics, sex role attitudes, agentic traits), mediating constructs (environment, appraisals, engagement coping, disengagement coping), and outcomes (work performance,…

  17. HyLTL: a temporal logic for model checking hybrid systems

    Directory of Open Access Journals (Sweden)

    Davide Bresolin

    2013-08-01

    Full Text Available The model-checking problem for hybrid systems is a well known challenge in the scientific community. Most of the existing approaches and tools are limited to safety properties only, or operates by transforming the hybrid system to be verified into a discrete one, thus loosing information on the continuous dynamics of the system. In this paper we present a logic for specifying complex properties of hybrid systems called HyLTL, and we show how it is possible to solve the model checking problem by translating the formula into an equivalent hybrid automaton. In this way the problem is reduced to a reachability problem on hybrid automata that can be solved by using existing tools.

  18. Dynamic Modeling and Simulation on a Hybrid Power System for Electric Vehicle Applications

    Directory of Open Access Journals (Sweden)

    Hong-Wen He

    2010-11-01

    Full Text Available Hybrid power systems, formed by combining high-energy-density batteries and high-power-density ultracapacitors in appropriate ways, provide high-performance and high-efficiency power systems for electric vehicle applications. This paper first establishes dynamic models for the ultracapacitor, the battery and a passive hybrid power system, and then based on the dynamic models a comparative simulation between a battery only power system and the proposed hybrid power system was done under the UDDS (Urban Dynamometer Driving Schedule. The simulation results showed that the hybrid power system could greatly optimize and improve the efficiency of the batteries and their dynamic current was also decreased due to the participation of the ultracapacitors, which would have a good influence on batteries’ cycle life. Finally, the parameter matching for the passive hybrid power system was studied by simulation and comparisons.

  19. Hybrid Modeling for Soft Sensing of Molten Steel Temperature in LF

    Institute of Scientific and Technical Information of China (English)

    TIAN Hui-xin; MAO Zhi-zhong; WANG An-na

    2009-01-01

    Aiming at the limitations of traditional thermal model and intelligent model, a new hybrid model is established for soft sensing of the molten steel temperature in LF. Firstly, a thermal model based on energy conservation is described; and then, an improved intelligent model based on process data is presented by ensemble ELM (extreme learning machine) for predicting the molten steel temperature in LF. Secondly, the self-adaptive data fusion is proposed as a hybrid modeling method to combine the thermal model with the intelligent model. The new hybrid model could complement mutual advantage of two models by combination. It can overcome the shortcoming of parameters obtained on-line hardly in a thermal model and the disadvantage of lacking the analysis of ladle furnace metallurgical process in an intelligent model. The new hybrid model is applied to a 300 t LF in Baoshan Iron and Steel Co Ltd for predicting the molten steel temperature. The experiments demonstrate that the hybrid model has good generalization performance and high accuracy.

  20. Differential Reynolds stress modeling for separating flows in industrial aerodynamics

    CERN Document Server

    2015-01-01

    This book presents recent progress in the application of RANS turbulence models based on the Reynolds stress transport equations. A variety of models has been implemented by different groups into different flow solvers and applied to external as well as to turbomachinery flows. Comparisons between the models allow an assessment of their performance in different flow conditions. The results demonstrate the general applicability of differential Reynolds stress models to separating flows in industrial aerodynamics.

  1. Examining the dimensional structure models of secondary traumatic stress based on DSM-5 symptoms.

    Science.gov (United States)

    Mordeno, Imelu G; Go, Geraldine P; Yangson-Serondo, April

    2017-02-01

    Latent factor structure of Secondary Traumatic Stress (STS) has been examined using Diagnostic Statistic Manual-IV (DSM-IV)'s Posttraumatic Stress Disorder (PTSD) nomenclature. With the advent of Diagnostic Statistic Manual-5 (DSM-5), there is an impending need to reexamine STS using DSM-5 symptoms in light of the most updated PTSD models in the literature. The study investigated and determined the best fitted PTSD models using DSM-5 PTSD criteria symptoms. Confirmatory factor analysis (CFA) was conducted to examine model fit using the Secondary Traumatic Stress Scale in 241 registered and practicing Filipino nurses (166 females and 75 males) who worked in the Philippines and gave direct nursing services to patients. Based on multiple fit indices, the results showed the 7-factor hybrid model, comprising of intrusion, avoidance, negative affect, anhedonia, externalizing behavior, anxious arousal, and dysphoric arousal factors has excellent fit to STS. This model asserts that: (1) hyperarousal criterion needs to be divided into anxious and dysphoric arousal factors; (2) symptoms characterizing negative and positive affect need to be separated to two separate factors, and; (3) a new factor would categorize externalized, self-initiated impulse and control-deficit behaviors. Comparison of nested and non-nested models showed Hybrid model to have superior fit over other models. The specificity of the symptom structure of STS based on DSM-5 PTSD criteria suggests having more specific interventions addressing the more elaborate symptom-groupings that would alleviate the condition of nurses exposed to STS on a daily basis. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Study on Stress Concentrations in an Intraply Hybrid Composite Sheet%层内混杂复合材料应力集中问题的研究

    Institute of Scientific and Technical Information of China (English)

    曾庆敦; 黄小清; 林雪慧

    2001-01-01

    提出了一种合理、简便、精确的修正的剪滞模型,基于此模型,分析了受拉伸的层内混杂复合材料中某些纤维断裂后的应力重分布,结果表明,求得的应力集中因子与Fukuda和Chou的结果相当接近,从而证实了本文模型和方法的合理性和正确性,%A reasonably, simply and accurately modified shear_lag model was proposed. Based on the model, the stress redistributions due to the failure of some fibers in an intraply hybrid composite under tension were analyzed. The results show that the present calculating stress concentration factors very coincide with Fukuda and Chou's results, thus verifying the reasonableness and correctness of the present model and methods.

  3. A novel hybrid kinase is essential for regulating the sigma(B)-mediated stress response of Bacillus cereus.

    Science.gov (United States)

    de Been, Mark; Tempelaars, Marcel H; van Schaik, Willem; Moezelaar, Roy; Siezen, Roland J; Abee, Tjakko

    2010-03-01

    A common bacterial strategy for monitoring environmental challenges is to use two-component systems, which consist of a sensor histidine kinase (HK) and a response regulator (RR). In the food-borne pathogen Bacillus cereus, the alternative sigma factor sigma(B) is activated by the RR RsbY. Here we present strong indications that the PP2C-type phosphatase RsbY receives its input from the multi-sensor hybrid kinase BC1008 (renamed RsbK). Genome analyses revealed that, across bacilli, rsbY and rsbK are located in a conserved gene cluster. A B. cereus rsbK deletion strain was shown to be incapable of inducing sigma(B) upon stress conditions and was impaired in its heat adaptive response. Comparison of the wild-type and rsbK mutant transcriptomes upon heat shock revealed that RsbK was primarily involved in the activation of the sigma(B)-mediated stress response. Truncation of the RsbK RR receiver domain demonstrated the importance of this domain for sigma(B) induction upon stress. The domain architecture of RsbK suggests that in the B. cereus group and in other bacilli, environmental and intracellular stress signalling routes are combined into one single protein. This strategy is markedly different from the sigma(B) activation pathway in other low-GC Gram-positives.

  4. Activity recognition using hybrid generative/discriminative models on home environments using binary sensors.

    Science.gov (United States)

    Ordóñez, Fco Javier; de Toledo, Paula; Sanchis, Araceli

    2013-04-24

    Activities of daily living are good indicators of elderly health status, and activity recognition in smart environments is a well-known problem that has been previously addressed by several studies. In this paper, we describe the use of two powerful machine learning schemes, ANN (Artificial Neural Network) and SVM (Support Vector Machines), within the framework of HMM (Hidden Markov Model) in order to tackle the task of activity recognition in a home setting. The output scores of the discriminative models, after processing, are used as observation probabilities of the hybrid approach. We evaluate our approach by comparing these hybrid models with other classical activity recognition methods using five real datasets. We show how the hybrid models achieve significantly better recognition performance, with significance level p < 0.05, proving that the hybrid approach is better suited for the addressed domain.

  5. Activity Recognition Using Hybrid Generative/Discriminative Models on Home Environments Using Binary Sensors

    Directory of Open Access Journals (Sweden)

    Araceli Sanchis

    2013-04-01

    Full Text Available Activities of daily living are good indicators of elderly health status, and activity recognition in smart environments is a well-known problem that has been previously addressed by several studies. In this paper, we describe the use of two powerful machine learning schemes, ANN (Artificial Neural Network and SVM (Support Vector Machines, within the framework of HMM (Hidden Markov Model in order to tackle the task of activity recognition in a home setting. The output scores of the discriminative models, after processing, are used as observation probabilities of the hybrid approach. We evaluate our approach by comparing these hybrid models with other classical activity recognition methods using five real datasets. We show how the hybrid models achieve significantly better recognition performance, with significance level p < 0:05, proving that the hybrid approach is better suited for the addressed domain.

  6. Pattern of Stress-Induced Hyperglycemia according to Type of Diabetes: A Predator Stress Model

    Directory of Open Access Journals (Sweden)

    Jin-Sun Chang

    2013-12-01

    Full Text Available BackgroundWe aimed to quantify stress-induced hyperglycemia and differentiate the glucose response between normal animals and those with diabetes. We also examined the pattern in glucose fluctuation induced by stress according to type of diabetes.MethodsTo load psychological stress on animal models, we used a predator stress model by exposing rats to a cat for 60 minutes and measured glucose level from the beginning to the end of the test to monitor glucose fluctuation. We induced type 1 diabetes model (T1D for ten Sprague-Dawley rats using streptozotocin and used five Otsuka Long-Evans Tokushima Fatty rats as obese type 2 diabetes model (OT2D and 10 Goto-Kakizaki rats as nonobese type 2 diabetes model (NOT2D. We performed the stress loading test in both the normal and diabetic states and compared patterns of glucose fluctuation among the three models. We classified the pattern of glucose fluctuation into A, B, and C types according to speed of change in glucose level.ResultsIncrease in glucose, total amount of hyperglycemic exposure, time of stress-induced hyperglycemia, and speed of glucose increase were significantly increased in all models compared to the normal state. While the early increase in glucose after exposure to stress was higher in T1D and NOT2D, it was slower in OT2D. The rate of speed of the decrease in glucose level was highest in NOT2D and lowest in OT2D.ConclusionThe diabetic state was more vulnerable to stress compared to the normal state in all models, and the pattern of glucose fluctuation differed among the three types of diabetes. The study provides basic evidence for stress-induced hyperglycemia patterns and characteristics used for the management of diabetes patients.

  7. Application of a New Hybrid Fuzzy AHP Model to the Location Choice

    Directory of Open Access Journals (Sweden)

    Chien-Chang Chou

    2013-01-01

    Full Text Available The purpose of this paper is to propose a new hybrid fuzzy Analytic Hierarchy Process (AHP algorithm to deal with the decision-making problems in an uncertain and multiple-criteria environment. In this study, the proposed hybrid fuzzy AHP model is applied to the location choices of international distribution centers in international ports from the view of multiple-nation corporations. The results show that the proposed new hybrid fuzzy AHP model is an appropriate tool to solve the decision-making problems in an uncertain and multiple-criteria environment.

  8. Energy loss and coronary flow simulation following hybrid stage I palliation: a hypoplastic left heart computational fluid dynamic model.

    Science.gov (United States)

    Shuhaiber, Jeffrey H; Niehaus, Justin; Gottliebson, William; Abdallah, Shaaban

    2013-08-01

    The theoretical differences in energy losses as well as coronary flow with different band sizes for branch pulmonary arteries (PA) in hypoplastic left heart syndrome (HLHS) remain unknown. Our objective was to develop a computational fluid dynamic model (CFD) to determine the energy losses and pulmonary-to-systemic flow rates. This study was done for three different PA band sizes. Three-dimensional computer models of the hybrid procedure were constructed using the standard commercial CFD softwares Fluent and Gambit. The computer models were controlled for bilateral PA reduction to 25% (restrictive), 50% (intermediate) and 75% (loose) of the native branch pulmonary artery diameter. Velocity and pressure data were calculated throughout the heart geometry using the finite volume numerical method. Coronary flow was measured simultaneously with each model. Wall shear stress and the ratio of pulmonary-to-systemic volume flow rates were calculated. Computer simulations were compared at fixed points utilizing echocardiographic and catheter-based metric dimensions. Restricting the PA band to a 25% diameter demonstrated the greatest energy loss. The 25% banding model produced an energy loss of 16.76% systolic and 24.91% diastolic vs loose banding at 7.36% systolic and 17.90% diastolic. Also, restrictive PA bands had greater coronary flow compared with loose PA bands (50.2 vs 41.9 ml/min). Shear stress ranged from 3.75 Pascals with restrictive PA banding to 2.84 Pascals with loose banding. Intermediate PA banding at 50% diameter achieved a Qp/Qs (closest to 1) at 1.46 systolic and 0.66 diastolic compared with loose or restrictive banding without excess energy loss. CFD provides a unique platform to simulate pressure, shear stress as well as energy losses of the hybrid procedure. PA banding at 50% provided a balanced pulmonary and systemic circulation with adequate coronary flow but without extra energy losses incurred.

  9. DESIGNING A FORECAST MODEL FOR ECONOMIC GROWTH OF JAPAN USING COMPETITIVE (HYBRID ANN VS MULTIPLE REGRESSION MODELS

    Directory of Open Access Journals (Sweden)

    Ahmet DEMIR

    2015-07-01

    Full Text Available Artificial neural network models have been already used on many different fields successfully. However, many researches show that ANN models provide better optimum results than other competitive models in most of the researches. But does it provide optimum solutions in case ANN is proposed as hybrid model? The answer of this question is given in this research by using these models on modelling a forecast for GDP growth of Japan. Multiple regression models utilized as competitive models versus hybrid ANN (ANN + multiple regression models. Results have shown that hybrid model gives better responds than multiple regression models. However, variables, which were significantly affecting GDP growth, were determined and some of the variables, which were assumed to be affecting GDP growth of Japan, were eliminated statistically.

  10. Nonlinear Reynolds stress models and the renormalization group

    Science.gov (United States)

    Rubinstein, Robert; Barton, J. Michael

    1990-01-01

    The renormalization group is applied to derive a nonlinear algebraic Reynolds stress model of anisotropic turbulence in which the Reynolds stresses are quadratic functions of the mean velocity gradients. The model results from a perturbation expansion that is truncated systematically at second order with subsequent terms contributing no further information. The resulting turbulence model applied to both low and high Reynolds number flows without requiring wall functions or ad hoc modifications of the equations. All constants are derived from the renormalization group procedure; no adjustable constants arise. The model permits inequality of the Reynolds normal stresses, a necessary condition for calculating turbulence-driven secondary flows in noncircular ducts.

  11. Dynamic modeling of hybrid energy storage systems coupled to photovoltaic generation in residential applications

    OpenAIRE

    Maclay, JD; J. Brouwer; Samuelsen, GS

    2007-01-01

    A model of a photovoltaic (PV) powered residence in stand-alone configuration was developed and evaluated. The model assesses the sizing, capital costs, control strategies, and efficiencies of reversible fuel cells (RFC), batteries, and ultra-capacitors (UC) both individually, and in combination, as hybrid energy storage devices. The choice of control strategy for a hybrid energy storage system is found to have a significant impact on system efficiency, hydrogen production and component utili...

  12. Hybrid Electric Vehicle Experimental Model with CAN Network Real Time Control

    Directory of Open Access Journals (Sweden)

    RATOI, M.

    2010-05-01

    Full Text Available In this paper an experimental model with a distributed control system of a hybrid electrical vehicle is presented. A communication CAN network of high speed (1 Mbps assures a distributed control of the all components. The modeling and the control of different operating regimes are realized on an experimental test-bench of a hybrid electrical vehicle. The experimental results concerning the variations of the mains variables (currents, torques, speeds are presented.

  13. [Effects of exogenous silicon on the pollination and fertility characteristics of hybrid rice under heat stress during anthesis].

    Science.gov (United States)

    Wu, Chen-Yang; Chen, Dan; Luo, Hai-Wei; Yao, Yi-min; Wang, Zhi-Wei; Tsutomu, Matsui; Tian, Xiao-Hai

    2013-11-01

    Taking two medium-maturing indica rice hybrids Jinyou 63 and Shanyou 63 as test materials, this paper studied the effects of applying silicon fertilizer on the flag leaf chlorophyll content, photosynthetic properties, antioxidant enzyme activities, malondialdehyde (MDA) content, pollen vigor, anther acid invertase activity, pollination, and seed-setting of hybrid rice under the heat stress during anthesis. This study was conducted in pots and under growth chamber. Soluble solution of silicon fertilizer applied as Na2SiO3 x 9H2O was sprayed on the growing plants after early jointing stage, with three times successively and at an interval of one week. The pots were then moved into growth chamber to subject to normal temperature vs. high temperature (termed as heat stress) for five days. In treatment normal temperature, the average daily temperature was set at 26.6 degrees C, and the maximum daily temperature was set at 29.4 degres C; in treatment high temperature, the average and the maximum daily temperature were set at 33.2 degrees C and 40.1 degrees C, respectively. As compared with the control, applying silicon increased the flag leaf chlorophyll content significantly, improved the net photosynthetic rate and stomatal conductance, decreased the accumulative inter- cellular CO2 concentration, improved the leaf photosynthesis, reduced the MDA content, and improved the activities of SOD, POD and CAT under heat stress. In addition, applying silicon improved the anther acid invertase activity and the pollen vigor, increased the anther basal dehiscence width, total number of pollination per stigma, germinated number, germination rate of pollen, and percentage of florets with more than 10 germinated pollen grains, decreased the percentage of florets with fewer than 20 germinated pollen grains, and thus, alleviated the fertility loss of Jinyou 63 and Shanyou 63 under heat stress by 13.4% and 14.1%, respectively. It was suggested that spraying exogenous silicon in the

  14. Modeling of CMUTs with Multiple Anisotropic Layers and Residual Stress

    DEFF Research Database (Denmark)

    Engholm, Mathias; Thomsen, Erik Vilain

    2014-01-01

    Usually the analytical approach for modeling CMUTs uses the single layer plate equation to obtain the deflection and does not take anisotropy and residual stress into account. A highly accurate model is developed for analytical characterization of CMUTs taking an arbitrary number of layers...... and residual stress into account. Based on the stress-strain relation of each layer and balancing stress resultants and bending moments, a general multilayered anisotropic plate equation is developed for plates with an arbitrary number of layers. The exact deflection profile is calculated for a circular...... clamped plate of anisotropic materials with residual bi-axial stress. From the deflection shape the critical stress for buckling is calculated and by using the Rayleigh-Ritz method the natural frequency is estimated....

  15. A new model for analysing thermal stress in granular composite

    Institute of Scientific and Technical Information of China (English)

    郑茂盛; 金志浩; 浩宏奇

    1995-01-01

    A double embedding model of inletting reinforcement grain and hollow matrix ball into the effective media of the particulate-reinforced composite is advanced. And with this model the distributions of thermal stress in different phases of the composite during cooling are studied. Various expressions for predicting elastic and elastoplastic thermal stresses are derived. It is found that the reinforcement suffers compressive hydrostatic stress and the hydrostatic stress in matrix zone is a tensile one when temperature decreases; when temperature further decreases, yield area in matrix forms; when the volume fraction of reinforcement is enlarged, compressive stress on grain and tensile hydrostatic stress in matrix zone decrease; the initial temperature difference of the interface of reinforcement and matrix yielding rises, while that for the matrix yielding overall decreases.

  16. Hybrid systems modelling and simulation in DESTECS: a co-simulation approach

    NARCIS (Netherlands)

    Ni, Yunyun; Broenink, Johannes F.; Klumpp, M.

    2012-01-01

    This paper introduces the modelling methodology and tooling in DESTECS (www.destecs.org) - Design Support and Tooling for Embedded Control Software - project as a novel modelling approach for hybrid systems from an executable model perspective. It provides a top-level structure for the system model

  17. Modeling of Hysteresis Losses in Ferromagnetic Laminations under Mechanical Stress

    OpenAIRE

    Rasilo, Paavo; Singh, Deepak; Aydin, Ugur; Martin, Floran; Kouhia, Reijo; Belahcen, Anouar; Arkkio, Antero

    2015-01-01

    A novel approach for predicting magnetic hysteresis loops and losses in ferromagnetic laminations under mechanical stress is presented. The model is based on combining a Helmholtz free energy -based anhysteretic magnetoelastic constitutive law to a vector Jiles-Atherton hysteresis model. This paper focuses only on unidirectional and parallel magnetic fields and stresses, albeit the model is developed in full 3-D configuration in order to account also for strains perpendicular to the loading d...

  18. Synthesis of a hybrid model of the VSC FACTS devices and HVDC technologies

    Science.gov (United States)

    Borovikov, Yu S.; Gusev, A. S.; Sulaymanov, A. O.; Ufa, R. A.

    2014-10-01

    The motivation of the presented research is based on the need for development of new methods and tools for adequate simulation of FACTS devices and HVDC systems as part of real electric power systems (EPS). The Research object: An alternative hybrid approach for synthesizing VSC-FACTS and -HVDC hybrid model is proposed. The results: the VSC- FACTS and -HVDC hybrid model is designed in accordance with the presented concepts of hybrid simulation. The developed model allows us to carry out adequate simulation in real time of all the processes in HVDC, FACTS devices and EPS as a whole without any decomposition and limitation on their duration, and also use the developed tool for effective solution of a design, operational and research tasks of EPS containing such devices.

  19. Prediction of melting temperatures in fluorescence in situ hybridization (FISH) procedures using thermodynamic models

    DEFF Research Database (Denmark)

    Fontenete, Sílvia; Guimarães, Nuno; Wengel, Jesper

    2016-01-01

    Abstract The thermodynamics and kinetics of DNA hybridization, i.e. the process of self-assembly of one, two or more complementary nucleic acid strands, has been studied for many years. The appearance of the nearest-neighbor model led to several theoretical and experimental papers on DNA thermody......Abstract The thermodynamics and kinetics of DNA hybridization, i.e. the process of self-assembly of one, two or more complementary nucleic acid strands, has been studied for many years. The appearance of the nearest-neighbor model led to several theoretical and experimental papers on DNA...... thermodynamics that provide reasonably accurate thermodynamic information on nucleic acid duplexes and allow estimation of the melting temperature. Because there are no thermodynamic models specifically developed to predict the hybridization temperature of a probe used in a fluorescence in situ hybridization...

  20. Mathematical Modeling of the Three Phase Induction Motor Couple to DC Motor in Hybrid Electric Vehicle

    Directory of Open Access Journals (Sweden)

    Zulkarnain Lubis

    2009-01-01

    Full Text Available Problem statement: With emphasis on a cleaner environment and efficient operation, vehicles today rely more and more heavily on electrical power generation for success. Approach: Mathematical modeling the components of the HEV as the three phase induction motor couple to DC motor in hybrid electric vehicle was introduced. The controller of Induction Motor (IM was designed based on input-output feedback linearization technique. It allowed greater electrical generation capacity and the fuel economy and emissions benefits of hybrid electric automotive propulsion. Results: A typical series hybrid electric vehicle was modeled and investigated. Conclusion: Various tests, such as acceleration traversing ramp and fuel consumption and emission were performed on the proposed model of 3 phase induction motor coupler DC motor in electric hybrid vehicles drive.

  1. Hierarchical hybrid testability modeling and evaluation method based on information fusion

    Institute of Scientific and Technical Information of China (English)

    Xishan Zhang; Kaoli Huang; Pengcheng Yan; Guangyao Lian

    2015-01-01

    In order to meet the demand of testability analysis and evaluation for complex equipment under a smal sample test in the equipment life cycle, the hierarchical hybrid testability model-ing and evaluation method (HHTME), which combines the testabi-lity structure model (TSM) with the testability Bayesian networks model (TBNM), is presented. Firstly, the testability network topo-logy of complex equipment is built by using the hierarchical hybrid testability modeling method. Secondly, the prior conditional prob-ability distribution between network nodes is determined through expert experience. Then the Bayesian method is used to update the conditional probability distribution, according to history test information, virtual simulation information and similar product in-formation. Final y, the learned hierarchical hybrid testability model (HHTM) is used to estimate the testability of equipment. Compared with the results of other modeling methods, the relative deviation of the HHTM is only 0.52%, and the evaluation result is the most accurate.

  2. A finite element model for residual stress in repair welds

    Energy Technology Data Exchange (ETDEWEB)

    Feng, Z. [Edison Welding Inst., Columbus, OH (United States); Wang, X.L.; Spooner, S.; Goodwin, G.M.; Maziasz, P.J.; Hubbard, C.R.; Zacharia, T. [Oak Ridge National Lab., TN (United States)

    1996-03-28

    This paper describes a three-dimensional finite element model for calculation of the residual stress distribution caused by repair welding. Special user subroutines were developed to simulate the continuous deposition of filler metal during welding. The model was then tested by simulating the residual stress/strain field of a FeAl weld overlay clad on a 2{1/4}Cr-1 Mo steel plate, for which neutron diffraction measurement data of the residual strain field were available. It is shown that the calculated residual stress distribution was consistent with that determined with neutron diffraction. High tensile residual stresses in both the longitudinal and transverse directions were observed around the weld toe at the end of the weld. The strong spatial dependency of the residual stresses in the region around the weld demonstrates that the common two-dimensional cross-section finite element models should not be used for repair welding analysis.

  3. Modeling of plates with multiple anisotropic layers and residual stress

    DEFF Research Database (Denmark)

    Engholm, Mathias; Pedersen, Thomas; Thomsen, Erik Vilain

    2016-01-01

    Usually the analytical approach for modeling of plates uses the single layer plate equation to obtain the deflection and does not take anisotropy and residual stress into account. Based on the stress–strain relation of each layer and balancing stress resultants and bending moments, a general...... multilayered anisotropic plate equation is developed for plates with an arbitrary number of layers. The exact deflection profile is calculated for a circular clamped plate of anisotropic materials with residual bi-axial stress.From the deflection shape the critical stress for buckling is calculated......, and an excellent agreement between the two models is seen with a relative difference of less than 2% for all calculations. The model was also used to extract the cell capacitance, the parasitic capacitance and the residual stress of a pressure sensor composed of a multilayered plate of silicon and silicon oxide...

  4. A model of Barchan dunes including lateral shear stress.

    Science.gov (United States)

    Schwämmle, V; Herrmann, H J

    2005-01-01

    Barchan dunes are found where sand availability is low and wind direction quite constant. The two dimensional shear stress of the wind field and the sand movement by saltation and avalanches over a barchan dune are simulated. The model with one dimensional shear stress is extended including surface diffusion and lateral shear stress. The resulting final shape is compared to the results of the model with a one dimensional shear stress and confirmed by comparison to measurements. We found agreement and improvements with respect to the model with one dimensional shear stress. Additionally, a characteristic edge at the center of the windward side is discovered which is also observed for big barchans. Diffusion effects reduce this effect for small dunes.

  5. Hybrid multiple attribute decision making model based on entropy

    Institute of Scientific and Technical Information of China (English)

    Wang Wei; Cui Mingming

    2007-01-01

    From the viewpoint of entropy, this paper investigates a hybrid multiple attribute decision making problem with precision number, interval number and fuzzy number. It defines a new concept: project entropy and the decision is taken according to the values. The validity and scientific nature of the given is proven.

  6. Model-based health monitoring of hybrid systems

    CERN Document Server

    Wang, Danwei; Low, Chang Boon; Arogeti, Shai

    2013-01-01

    Offers in-depth comprehensive study on health monitoring for hybrid systems Includes new concepts, such as GARR, mode tracking and multiple failure prognosis Contains many examples, making the developed techniques easily understandable and accessible Introduces state-of-the-art algorithms and methodologies from experienced researchers

  7. A Hybrid Method for Modeling and Solving Supply Chain Optimization Problems with Soft and Logical Constraints

    Directory of Open Access Journals (Sweden)

    Paweł Sitek

    2016-01-01

    Full Text Available This paper presents a hybrid method for modeling and solving supply chain optimization problems with soft, hard, and logical constraints. Ability to implement soft and logical constraints is a very important functionality for supply chain optimization models. Such constraints are particularly useful for modeling problems resulting from commercial agreements, contracts, competition, technology, safety, and environmental conditions. Two programming and solving environments, mathematical programming (MP and constraint logic programming (CLP, were combined in the hybrid method. This integration, hybridization, and the adequate multidimensional transformation of the problem (as a presolving method helped to substantially reduce the search space of combinatorial models for supply chain optimization problems. The operation research MP and declarative CLP, where constraints are modeled in different ways and different solving procedures are implemented, were linked together to use the strengths of both. This approach is particularly important for the decision and combinatorial optimization models with the objective function and constraints, there are many decision variables, and these are summed (common in manufacturing, supply chain management, project management, and logistic problems. The ECLiPSe system with Eplex library was proposed to implement a hybrid method. Additionally, the proposed hybrid transformed model is compared with the MILP-Mixed Integer Linear Programming model on the same data instances. For illustrative models, its use allowed finding optimal solutions eight to one hundred times faster and reducing the size of the combinatorial problem to a significant extent.

  8. Tectonic stressing in California modeled from GPS observations

    Science.gov (United States)

    Parsons, T.

    2006-01-01

    What happens in the crust as a result of geodetically observed secular motions? In this paper we find out by distorting a finite element model of California using GPS-derived displacements. A complex model was constructed using spatially varying crustal thickness, geothermal gradient, topography, and creeping faults. GPS velocity observations were interpolated and extrapolated across the model and boundary condition areas, and the model was loaded according to 5-year displacements. Results map highest differential stressing rates in a 200-km-wide band along the Pacific-North American plate boundary, coinciding with regions of greatest seismic energy release. Away from the plate boundary, GPS-derived crustal strain reduces modeled differential stress in some places, suggesting that some crustal motions are related to topographic collapse. Calculated stressing rates can be resolved onto fault planes: useful for addressing fault interactions and necessary for calculating earthquake advances or delays. As an example, I examine seismic quiescence on the Garlock fault despite a calculated minimum 0.1-0.4 MPa static stress increase from the 1857 M???7.8 Fort Tejon earthquake. Results from finite element modeling show very low to negative secular Coulomb stress growth on the Garlock fault, suggesting that the stress state may have been too low for large earthquake triggering. Thus the Garlock fault may only be stressed by San Andreas fault slip, a loading pattern that could explain its erratic rupture history.

  9. Hybrid model predictive control for speed control of permanent magnet synchronous motor with saturation

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    A discrete-time hybrid model of a permanent magnet synchronous motor (PMSM) with saturation in voltage and current is formulated.The controller design with incorporated constraints is achieved in a systematic way from modeling to control synthesis and implementation.The Hybrid System Description Language is used to obtain a mixed-logical dynamical (MLD) model.Based on the MLD model,a model predictive controller is designed for an optimal speed regulation of the motor.For reducing computation complexity and ...

  10. Hybrid Model for Early Onset Prediction of Driver Fatigue with Observable Cues

    Directory of Open Access Journals (Sweden)

    Mingheng Zhang

    2014-01-01

    Full Text Available This paper presents a hybrid model for early onset prediction of driver fatigue, which is the major reason of severe traffic accidents. The proposed method divides the prediction problem into three stages, that is, SVM-based model for predicting the early onset driver fatigue state, GA-based model for optimizing the parameters in the SVM, and PCA-based model for reducing the dimensionality of the complex features datasets. The model and algorithm are illustrated with driving experiment data and comparison results also show that the hybrid method can generally provide a better performance for driver fatigue state prediction.

  11. One-dimensional models of thermal activation under shear stress

    CSIR Research Space (South Africa)

    Nabarro, FRN

    2003-01-01

    Full Text Available The analysis of thermal activation under shear stress in three- and even two-dimensional models presents unresolved problems. The analysis of one-dimensional models presented here may illuminate the study of more realistic models. For the model...

  12. Latent Growth Curve Models for Biomarkers of the Stress Response

    Directory of Open Access Journals (Sweden)

    John M. Felt

    2017-06-01

    Full Text Available Objective: The stress response is a dynamic process that can be characterized by predictable biochemical and psychological changes. Biomarkers of the stress response are typically measured over time and require statistical methods that can model change over time. One flexible method of evaluating change over time is the latent growth curve model (LGCM. However, stress researchers seldom use the LGCM when studying biomarkers, despite their benefits. Stress researchers may be unaware of how these methods can be useful. Therefore, the purpose of this paper is to provide an overview of LGCMs in the context of stress research. We specifically highlight the unique benefits of using these approaches.Methods: Hypothetical examples are used to describe four forms of the LGCM.Results: The following four specifications of the LGCM are described: basic LGCM, latent growth mixture model, piecewise LGCM, and LGCM for two parallel processes. The specifications of the LGCM are discussed in the context of the Trier Social Stress Test. Beyond the discussion of the four models, we present issues of modeling nonlinear patterns of change, assessing model fit, and linking specific research questions regarding biomarker research using different statistical models.Conclusions: The final sections of the paper discuss statistical software packages and more advanced modeling capabilities of LGCMs. The online Appendix contains example code with annotation from two statistical programs for the LCGM.

  13. Stress induced birefringence in hybrid TIR/PBG guiding solid photonic crystal fibers

    DEFF Research Database (Denmark)

    Lyngsøe, Jens Kristian; Mangan, Brian Joseph; Olausson, Christina Bjarnal Thulin

    2010-01-01

    We report on two types of polarization maintaining solid photonic crystal fibers that guide light by a combination of a photonic bandgap and total internal reflection. Group and phase birefringence are studied experimentally and numerically for stress-applying parts made from B-doped and F......-doped silica. The stress field originating from Ge-doped cladding rods is shown to interfere with the stress field from the B-doped and F-doped rods. Since the differential expansion coefficients of B-doped and F-doped silica have opposite signs this interference is either destructive or constructive...

  14. AMITIS: A 3D GPU-Based Hybrid-PIC Model for Space and Plasma Physics

    Science.gov (United States)

    Fatemi, Shahab; Poppe, Andrew R.; Delory, Gregory T.; Farrell, William M.

    2017-05-01

    We have developed, for the first time, an advanced modeling infrastructure in space simulations (AMITIS) with an embedded three-dimensional self-consistent grid-based hybrid model of plasma (kinetic ions and fluid electrons) that runs entirely on graphics processing units (GPUs). The model uses NVIDIA GPUs and their associated parallel computing platform, CUDA, developed for general purpose processing on GPUs. The model uses a single CPU-GPU pair, where the CPU transfers data between the system and GPU memory, executes CUDA kernels, and writes simulation outputs on the disk. All computations, including moving particles, calculating macroscopic properties of particles on a grid, and solving hybrid model equations are processed on a single GPU. We explain various computing kernels within AMITIS and compare their performance with an already existing well-tested hybrid model of plasma that runs in parallel using multi-CPU platforms. We show that AMITIS runs ∼10 times faster than the parallel CPU-based hybrid model. We also introduce an implicit solver for computation of Faraday’s Equation, resulting in an explicit-implicit scheme for the hybrid model equation. We show that the proposed scheme is stable and accurate. We examine the AMITIS energy conservation and show that the energy is conserved with an error < 0.2% after 500,000 timesteps, even when a very low number of particles per cell is used.

  15. Effect of nonlinearity in hybrid kinetic Monte Carlo-continuum models.

    Science.gov (United States)

    Balter, Ariel; Lin, Guang; Tartakovsky, Alexandre M

    2012-01-01

    Recently there has been interest in developing efficient ways to model heterogeneous surface reactions with hybrid computational models that couple a kinetic Monte Carlo (KMC) model for a surface to a finite-difference model for bulk diffusion in a continuous domain. We consider two representative problems that validate a hybrid method and show that this method captures the combined effects of nonlinearity and stochasticity. We first validate a simple deposition-dissolution model with a linear rate showing that the KMC-continuum hybrid agrees with both a fully deterministic model and its analytical solution. We then study a deposition-dissolution model including competitive adsorption, which leads to a nonlinear rate, and show that in this case the KMC-continuum hybrid and fully deterministic simulations do not agree. However, we are able to identify the difference as a natural result of the stochasticity coming from the KMC surface process. Because KMC captures inherent fluctuations, we consider it to be more realistic than a purely deterministic model. Therefore, we consider the KMC-continuum hybrid to be more representative of a real system.

  16. Modeling perceived stress via HRV and accelerometer sensor streams.

    Science.gov (United States)

    Wu, Min; Cao, Hong; Nguyen, Hai-Long; Surmacz, Karl; Hargrove, Caroline

    2015-08-01

    Discovering and modeling of stress patterns of human beings is a key step towards achieving automatic stress monitoring, stress management and healthy lifestyle. As various wearable sensors become popular, it becomes possible for individuals to acquire their own relevant sensory data and to automatically assess their stress level on the go. Previous studies for stress analysis were conducted in the controlled laboratory and clinic settings. These studies are not suitable for stress monitoring in one's daily life as various physical activities may affect the physiological signals. In this paper, we address such issue by integrating two modalities of sensors, i.e., HRV sensors and accelerometers, to monitor the perceived stress levels in daily life. We gathered both the heart and the motion data from 8 participants continuously for about 2 weeks. We then extracted features from both sensory data and compared the existing machine learning methods for learning personalized models to interpret the perceived stress levels. Experimental results showed that Bagging classifier with feature selection is able to achieve a prediction accuracy 85.7%, indicating our stress monitoring on daily basis is fairly practical.

  17. Thermal Residual Stress in Environmental Barrier Coated Silicon Nitride - Modeled

    Science.gov (United States)

    Ali, Abdul-Aziz; Bhatt, Ramakrishna T.

    2009-01-01

    When exposed to combustion environments containing moisture both un-reinforced and fiber reinforced silicon based ceramic materials tend to undergo surface recession. To avoid surface recession environmental barrier coating systems are required. However, due to differences in the elastic and thermal properties of the substrate and the environmental barrier coating, thermal residual stresses can be generated in the coated substrate. Depending on their magnitude and nature thermal residual stresses can have significant influence on the strength and fracture behavior of coated substrates. To determine the maximum residual stresses developed during deposition of the coatings, a finite element model (FEM) was developed. Using this model, the thermal residual stresses were predicted in silicon nitride substrates coated with three environmental coating systems namely barium strontium aluminum silicate (BSAS), rare earth mono silicate (REMS) and earth mono di-silicate (REDS). A parametric study was also conducted to determine the influence of coating layer thickness and material parameters on thermal residual stress. Results indicate that z-direction stresses in all three systems are small and negligible, but maximum in-plane stresses can be significant depending on the composition of the constituent layer and the distance from the substrate. The BSAS and REDS systems show much lower thermal residual stresses than REMS system. Parametric analysis indicates that in each system, the thermal residual stresses can be decreased with decreasing the modulus and thickness of the coating.

  18. Dynamic Modeling and Simulation of a Switched Reluctance Motor in a Series Hybrid Electric Vehicle

    Directory of Open Access Journals (Sweden)

    Siavash Sadeghi

    2010-04-01

    Full Text Available Dynamic behavior analysis of electric motors is required in order to accuratelyevaluate the performance, energy consumption and pollution level of hybrid electricvehicles. Simulation tools for hybrid electric vehicles are divided into steady state anddynamic models. Tools with steady-state models are useful for system-level analysiswhereas tools that utilize dynamic models give in-depth information about the behavior ofsublevel components. For the accurate prediction of hybrid electric vehicle performance,dynamic modeling of the motor and other components is necessary. Whereas the switchedreluctance machine is well suited for electric and hybrid electric vehicles, due to the simpleand rugged construction, low cost, and ability to operate over a wide speed range atconstant power, in this paper dynamic performance of the switched reluctance motor for eseries hybrid electric vehicles is investigated. For this purpose a switched reluctance motorwith its electrical drive is modeld and simulated first, and then the other components of aseries hybrid electric vehicle, such as battery, generator, internal combusion engine, andgearbox, are designed and linked with the electric motor. Finally a typical series hybridelectric vehicle is simulated for different drive cycles. The extensive simulation results showthe dynamic performance of SRM, battery, fuel consumption, and emissions.

  19. Stress field modelling from digital geological map data

    Science.gov (United States)

    Albert, Gáspár; Barancsuk, Ádám; Szentpéteri, Krisztián

    2016-04-01

    To create a model for the lithospheric stress a functional geodatabase is required which contains spatial and geodynamic parameters. A digital structural-geological map is a geodatabase, which usually contains enough attributes to create a stress field model. Such a model is not accurate enough for engineering-geological purposes because simplifications are always present in a map, but in many cases maps are the only sources for a tectonic analysis. The here presented method is designed for field geologist, who are interested to see the possible realization of the stress field over the area, on which they are working. This study presents an application which can produce a map of 3D stress vectors from a kml-file. The core application logic is implemented on top of a spatially aware relational database management system. This allows rapid and geographically accurate analysis of the imported geological features, taking advantage of standardized spatial algorithms and indexing. After pre-processing the map features in a GIS, according to the Type-Property-Orientation naming system, which was described in a previous study (Albert et al. 2014), the first stage of the algorithm generates an irregularly spaced point cloud by emitting a pattern of points within a user-defined buffer zone around each feature. For each point generated, a component-wise approximation of the tensor field at the point's position is computed, derived from the original feature's geodynamic properties. In a second stage a weighted moving average method calculates the stress vectors in a regular grid. Results can be exported as geospatial data for further analysis or cartographic visualization. Computation of the tensor field's components is based on the implementation of the Mohr diagram of a compressional model, which uses a Coulomb fracture criterion. Using a general assumption that the main principal stress must be greater than the stress from the overburden, the differential stress is

  20. Effects of natural hybrid and non-hybrid Epichloë endophytes on the response of Hordelymus europaeus to drought stress.

    Science.gov (United States)

    Oberhofer, Martina; Güsewell, Sabine; Leuchtmann, Adrian

    2014-01-01

    Interspecific hybrid endophytes of the genus Epichloë (Ascomycota, Clavicipitaceae) are prevalent in wild grass populations, possibly because of their larger gene variation, resulting in increased fitness benefits for host plants; however, the reasons are not yet known. We tested hypotheses regarding niche expansion mediated by hybrid endophytes, population-dependent interactions and local co-adaptation in the woodland grass Hordelymus europaeus, which naturally hosts both hybrid and non-hybrid endophyte taxa. Seedlings derived from seeds of four grass populations made endophyte free were re-inoculated with hybrid or non-hybrid endophyte strains, or left endophyte free. Plants were grown in the glasshouse with or without drought treatment. Endophyte infection increased plant biomass and tiller production by 10-15% in both treatments. Endophyte types had similar effects on growth, but opposite effects on reproduction: non-hybrid endophytes increased seed production, whereas hybrid endophytes reduced or prevented it completely. The results are consistent with the observation that non-hybrid endophytes in H. europaeus prevail at dry sites, but cannot explain the prevalence of hybrid endophytes. Thus, our results do not support the hypothesis of niche expansion of hybrid-infected plants. Moreover, plants inoculated with native relative to foreign endophytes yielded higher infections, but both showed similar growth and survival, suggesting weak co-adaptation.

  1. Hybrid Model for Cascading Outage in a Power System: A Numerical Study

    Science.gov (United States)

    Susuki, Yoshihiko; Takatsuji, Yu; Hikihara, Takashi

    Analysis of cascading outages in power systems is important for understanding why large blackouts emerge and how to prevent them. Cascading outages are complex dynamics of power systems, and one cause of them is the interaction between swing dynamics of synchronous machines and protection operation of relays and circuit breakers. This paper uses hybrid dynamical systems as a mathematical model for cascading outages caused by the interaction. Hybrid dynamical systems can combine families of flows describing swing dynamics with switching rules that are based on protection operation. This paper refers to data on a cascading outage in the September 2003 blackout in Italy and shows a hybrid dynamical system by which propagation of outages reproduced is consistent with the data. This result suggests that hybrid dynamical systems can provide an effective model for the analysis of cascading outages in power systems.

  2. A FLOW STRESS MODEL FOR AZ61 MAGNESIUM ALLOY

    Institute of Scientific and Technical Information of China (English)

    H.T.Zhou; X.Q.Zeng; Q.D Wang; W.J.Ding

    2004-01-01

    The flow stress behaviors of AZ61 alloy has been investigated at temperature range from 523 to 673K with the strain rates of 0.001-1s-1.It is found that the average activation energy,strain rate sensitive exponent and stress exponent are different at various deformation conditions changing from 1i3.6 to 176.3k J/mol,0.125 to 0.167 and 6 to 8 respectively.A flow stress model for AZ61 alloy is derived by analyzing the stress data based on hot compression test.It is demonstrated that the flow stress model including strain hardening exponent and strain softening exponent is suitable to predicate the flow stress.The prediction of the flow stress of AZ61 alloy has shown to be good agreement with the test data.The maximum differences of the peak stresses calculated by the model and obtained by experiment is less than 8%.

  3. Predicting the Yield Stress of SCC using Materials Modelling

    DEFF Research Database (Denmark)

    Thrane, Lars Nyholm; Hasholt, Marianne Tange; Pade, Claus

    2005-01-01

    A conceptual model for predicting the Bingham rheological parameter yield stress of SCC has been established. The model used here is inspired by previous work of Oh et al. (1), predicting that the yield stress of concrete relative to the yield stress of paste is a function of the relative thickness...... of excess paste around the aggregate. The thickness of excess paste is itself a function of particle shape, particle size distribution, and particle packing. Seven types of SCC were tested at four different excess paste contents in order to verify the conceptual model. Paste composition and aggregate shape...... and distribution were varied between SCC types. The results indicate that yield stress of SCC may be predicted using the model....

  4. Measurement and modeling of bed shear stress under solitary waves

    Digital Repository Service at National Institute of Oceanography (India)

    Jayakumar, S.; Guard, P.A.; Baldock, T.E.

    convolution integration methods forced with the free stream velocity and incorporating a range of eddy viscosity models. Wave friction factors were estimated from skin shear stress at different instances over the wave (viz., time of maximum positive total...

  5. Modelling biochemical networks with intrinsic time delays: a hybrid semi-parametric approach

    Directory of Open Access Journals (Sweden)

    Oliveira Rui

    2010-09-01

    Full Text Available Abstract Background This paper presents a method for modelling dynamical biochemical networks with intrinsic time delays. Since the fundamental mechanisms leading to such delays are many times unknown, non conventional modelling approaches become necessary. Herein, a hybrid semi-parametric identification methodology is proposed in which discrete time series are incorporated into fundamental material balance models. This integration results in hybrid delay differential equations which can be applied to identify unknown cellular dynamics. Results The proposed hybrid modelling methodology was evaluated using two case studies. The first of these deals with dynamic modelling of transcriptional factor A in mammalian cells. The protein transport from the cytosol to the nucleus introduced a delay that was accounted for by discrete time series formulation. The second case study focused on a simple network with distributed time delays that demonstrated that the discrete time delay formalism has broad applicability to both discrete and distributed delay problems. Conclusions Significantly better prediction qualities of the novel hybrid model were obtained when compared to dynamical structures without time delays, being the more distinctive the more significant the underlying system delay is. The identification of the system delays by studies of different discrete modelling delays was enabled by the proposed structure. Further, it was shown that the hybrid discrete delay methodology is not limited to discrete delay systems. The proposed method is a powerful tool to identify time delays in ill-defined biochemical networks.

  6. Theory and Modeling of Phase Transformations under Stress in Steel

    Institute of Scientific and Technical Information of China (English)

    T.Y. Hsu (XU Zu-yao)

    2004-01-01

    Thermodynamic prediction of the increment of the formation temperature of proeutectoid ferrite by applied stress is nearly consistent with the experimental data. Kinetics models for ferrite, pearlite and bainite transformations can be shown as modified Johnson-Mehl-Avrami equation in which parameter b(σ) varies with the level of applied stress.The effects of tensile and compressive stresses on enhancement of the ferrite/pearlite and bainite transformations are discussed. The necessity and approach of modification of additivity hypothesis are introduced and the results from modified equation in which some parameters are obtained by regression of two experimental results or taken from TTT and CCT diagrams of a certain steel are superior than that from Scheil's equation. Thermodynamic calculation of Ms and nucleation kinetics equations of martensitic transformation under stress are suggested. Modeling of phase transformations under stress in ferrous alloys is briefly described.

  7. Hybrid Model for Cascading Outage in a Power System: A Numerical Study

    OpenAIRE

    Susuki, Yoshihiko; Takatsuji, Yu; Hikihara, Takashi

    2009-01-01

    Analysis of cascading outages in power systems is important for understanding why large blackouts emerge and how to prevent them. Cascading outages are complex dynamics of power systems, and one cause of them is the interaction between swing dynamics of synchronous machines and protection operation of relays and circuit breakers. This paper uses hybrid dynamical systems as a mathematical model for cascading outages caused by the interaction. Hybrid dynamical systems can combine families of fl...

  8. Hybrid experimental/analytical models of structural dynamics - Creation and use for predictions

    Science.gov (United States)

    Balmes, Etienne

    1993-01-01

    An original complete methodology for the construction of predictive models of damped structural vibrations is introduced. A consistent definition of normal and complex modes is given which leads to an original method to accurately identify non-proportionally damped normal mode models. A new method to create predictive hybrid experimental/analytical models of damped structures is introduced, and the ability of hybrid models to predict the response to system configuration changes is discussed. Finally a critical review of the overall methodology is made by application to the case of the MIT/SERC interferometer testbed.

  9. Calibrated and Interactive Modelling of Form-Active Hybrid Structures

    DEFF Research Database (Denmark)

    Quinn, Gregory; Holden Deleuran, Anders; Piker, Daniel

    2016-01-01

    Form-active hybrid structures (FAHS) couple two or more different structural elements of low self weight and low or negligible bending flexural stiffness (such as slender beams, cables and membranes) into one structural assembly of high global stiffness. They offer high load-bearing capacity...... materially-informed sketching. Making use of a projection-based dynamic relaxation solver for structural analysis, explorative design has proven to be highly effective....

  10. Interspecific hybrids of dwarf hamsters and Phasianidae birds as animal models for studying the genetic and developmental basis of hybrid incompatibility.

    Science.gov (United States)

    Ishishita, Satoshi; Matsuda, Yoichi

    2016-10-13

    Hybrid incompatibility is important in speciation as it prevents gene flow between closely related populations. Reduced fitness from hybrid incompatibility may also reinforce prezygotic reproductive isolation between sympatric populations. However, the genetic and developmental basis of hybrid incompatibility in higher vertebrates remains poorly understood. Mammals and birds, both amniotes, have similar developmental processes, but marked differences in development such as the XY/ZW sex determination systems and the presence or absence of genomic imprinting. Here, we review the sterile phenotype of hybrids between the Phodopus dwarf hamsters P. campbelli and P. sungorus, and the inviable phenotype of hybrids between two birds of the family Phasianidae, chicken (Gallus gallus domesticus) and Japanese quail (Coturnix japonica). We propose hypotheses for developmental defects that are associated with these hybrid incompatibilities. In addition, we discuss the genetic and developmental basis for these defects in conjunction with recent findings from mouse and avian models of genetics, reproductive biology and genomics. We suggest that these hybrids are ideal animal models for studying the genetic and developmental basis of hybrid incompatibility in amniotes.

  11. Optimization of ultrasonic array inspections using an efficient hybrid model and real crack shapes

    Energy Technology Data Exchange (ETDEWEB)

    Felice, Maria V., E-mail: maria.felice@bristol.ac.uk [Department of Mechanical Engineering, University of Bristol, Bristol, U.K. and NDE Laboratory, Rolls-Royce plc., Bristol (United Kingdom); Velichko, Alexander, E-mail: p.wilcox@bristol.ac.uk; Wilcox, Paul D., E-mail: p.wilcox@bristol.ac.uk [Department of Mechanical Engineering, University of Bristol, Bristol (United Kingdom); Barden, Tim; Dunhill, Tony [NDE Laboratory, Rolls-Royce plc., Bristol (United Kingdom)

    2015-03-31

    Models which simulate the interaction of ultrasound with cracks can be used to optimize ultrasonic array inspections, but this approach can be time-consuming. To overcome this issue an efficient hybrid model is implemented which includes a finite element method that requires only a single layer of elements around the crack shape. Scattering Matrices are used to capture the scattering behavior of the individual cracks and a discussion on the angular degrees of freedom of elastodynamic scatterers is included. Real crack shapes are obtained from X-ray Computed Tomography images of cracked parts and these shapes are inputted into the hybrid model. The effect of using real crack shapes instead of straight notch shapes is demonstrated. An array optimization methodology which incorporates the hybrid model, an approximate single-scattering relative noise model and the real crack shapes is then described.

  12. Adaptive control using a hybrid-neural model: application to a polymerisation reactor

    Directory of Open Access Journals (Sweden)

    Cubillos F.

    2001-01-01

    Full Text Available This work presents the use of a hybrid-neural model for predictive control of a plug flow polymerisation reactor. The hybrid-neural model (HNM is based on fundamental conservation laws associated with a neural network (NN used to model the uncertain parameters. By simulations, the performance of this approach was studied for a peroxide-initiated styrene tubular reactor. The HNM was synthesised for a CSTR reactor with a radial basis function neural net (RBFN used to estimate the reaction rates recursively. The adaptive HNM was incorporated in two model predictive control strategies, a direct synthesis scheme and an optimum steady state scheme. Tests for servo and regulator control showed excellent behaviour following different setpoint variations, and rejecting perturbations. The good generalisation and training capacities of hybrid models, associated with the simplicity and robustness characteristics of the MPC formulations, make an attractive combination for the control of a polymerisation reactor.

  13. Hybrid predictions of railway induced ground vibration using a combination of experimental measurements and numerical modelling

    Science.gov (United States)

    Kuo, K. A.; Verbraken, H.; Degrande, G.; Lombaert, G.

    2016-07-01

    Along with the rapid expansion of urban rail networks comes the need for accurate predictions of railway induced vibration levels at grade and in buildings. Current computational methods for making predictions of railway induced ground vibration rely on simplifying modelling assumptions and require detailed parameter inputs, which lead to high levels of uncertainty. It is possible to mitigate against these issues using a combination of field measurements and state-of-the-art numerical methods, known as a hybrid model. In this paper, two hybrid models are developed, based on the use of separate source and propagation terms that are quantified using in situ measurements or modelling results. These models are implemented using term definitions proposed by the Federal Railroad Administration and assessed using the specific illustration of a surface railway. It is shown that the limitations of numerical and empirical methods can be addressed in a hybrid procedure without compromising prediction accuracy.

  14. A non-linear analytic stress model for the analysis on the stress interaction between TSVs

    Directory of Open Access Journals (Sweden)

    Ming-Han Liao

    2015-06-01

    Full Text Available Thermo-elastic strain is induced by through silicon vias (TSV due to the difference of thermal expansion coefficients between the copper (∼18 ppm/◦C and silicon (∼2.8 ppm/◦C when the structure is exposed to a thermal budget in the three dimensional integrated circuit (3DIC process. These thermal expansion stresses are high enough to induce the delamination on the interfaces between the copper, silicon, and isolated dielectric. A compact analytic model for the strain field induced by different layouts of thermal copper filled TSVs with the linear superposition principle is found to result in large errors due to the strong stress interaction between TSVs. In this work, a nonlinear stress analytic model with different TSV layouts is demonstrated by the finite element method and Mohr’s circle analysis. The stress characteristics are also measured by the atomic force microscope-raman technique at a nanometer level resolution. This nonlinear stress model for the strong interactions between TSVs results in an electron mobility change ~2-6% smaller than that resulting from a model that only considers the linear stress superposition principle.

  15. Principle Generalized Net Model of a Human Stress Reaction

    Directory of Open Access Journals (Sweden)

    Anthony Shannon

    2008-04-01

    Full Text Available The present study was aimed at investigating the mechanism of a human stress reaction by means of Generalized Nets (GNs. A principle GN-model of the main structures, organs and systems of the human body taking part in the acute and chronic reaction of the organism to a stress stimulus is generated. A possible application of the GN-model of the human stress reaction for testing the effect of known or newly synthesized pharmacological products as well as of food supplements is discussed.

  16. Proteomic Analysis of the Response of Liangyoupeijiu (Super High-Yield Hybrid Rice) Seedlings to Cold Stress

    Institute of Scientific and Technical Information of China (English)

    Ping-Fang Yang; Xiao-Juan Li; Yu Liang; Yu-Xiang Jing; Shi-Hua Shen; Ting-Yun Kuang

    2006-01-01

    Liangyoupeijiu is a super high-yield hybrid rice. Despite its advantages with respect to yield and grain quality, it is sensitive to cold, which keeps it from being widely cultivated. We subjected Liangyoupeijiu seedlings to 4 ℃ cold treatment, then extracted the leaf proteins. After 2-D gel electrophoresis separation and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry analysis, a series of differentially displayed proteins were identified. Some metabolism-associated proteins were found among the downregulated proteins, such as carbamoyl phosphate synthetase, transketolase 1, dihydrolipoamide dehydrogenase and glyceraldehyde 3-phosphate dehydrogenase. The upregulated proteins included both stress-resistance proteins such as nucleoside diphosphate kinase Ⅰ and proteins that are negative for rice growth, such as FtsH-like protein, plastid fusion and/or translocation factor (Pftf) and actin. Our results indicate that cold may inhibit Liangyoupeijiu growth through decreasing metabolic activity and damaging cell structure.

  17. Multivariate Analysis of Grain Yield and Its Attributing Traits in Different Maize Hybrids Grown under Heat and Drought Stress.

    Science.gov (United States)

    Ali, Fawad; Kanwal, Naila; Ahsan, Muhammmad; Ali, Qurban; Bibi, Irshad; Niazi, Nabeel Khan

    2015-01-01

    This study was carried out to evaluate F1 single cross-maize hybrids in four crop growing seasons (2010-2012). Morphological traits and physiological parameters of twelve maize hybrids were evaluated (i) to construct seed yield equation and (ii) to determine grain yield attributing traits of well-performing maize genotype using a previously unexplored method of two-way hierarchical clustering. In seed yield predicting equation photosynthetic rate contributed the highest variation (46%). Principal component analysis data showed that investigated traits contributed up to 90.55% variation in dependent structure. From factor analysis, we found that factor 1 contributed 49.6% variation (P < 0.05) with primary important traits (i.e., number of leaves per plant, plant height, stem diameter, fresh leaves weight, leaf area, stomata conductance, substomata CO2 absorption rate, and photosynthetic rate). The results of two-way hierarchical clustering demonstrated that Cluster III had outperforming genotype H12 (Sultan × Soneri) along with its most closely related traits (photosynthetic rate, stomata conductance, substomata CO2 absorption rate, chlorophyll contents, leaf area, and fresh stem weight). Our data shows that H12 (Sultan × Soneri) possessed the highest grain yield per plant under environmentally stress conditions, which are most likely to exist in arid and semiarid climatic conditions, such as in Pakistan.

  18. An ambient agent model for analyzing managers' performance during stress

    Science.gov (United States)

    ChePa, Noraziah; Aziz, Azizi Ab; Gratim, Haned

    2016-08-01

    Stress at work have been reported everywhere. Work related performance during stress is a pattern of reactions that occurs when managers are presented with work demands that are not matched with their knowledge, skills, or abilities, and which challenge their ability to cope. Although there are many prior findings pertaining to explain the development of manager performance during stress, less attention has been given to explain the same concept through computational models. In such, a descriptive nature in psychological theories about managers' performance during stress can be transformed into a causal-mechanistic stage that explains the relationship between a series of observed phenomena. This paper proposed an ambient agent model for analyzing managers' performance during stress. Set of properties and variables are identified through past literatures to construct the model. Differential equations have been used in formalizing the model. Set of equations reflecting relations involved in the proposed model are presented. The proposed model is essential and can be encapsulated within an intelligent agent or robots that can be used to support managers during stress.

  19. Multi-trait BLUP model indicates sorghum hybrids with genetic potential for agronomic and nutritional traits.

    Science.gov (United States)

    Almeida Filho, J E; Tardin, F D; Guimarães, J F R; Resende, M D V; Silva, F F; Simeone, M L; Menezes, C B; Queiroz, V A V

    2016-02-26

    The breeding of sorghum, Sorghum bicolor (L.) Moench, aimed at improving its nutritional quality, is of great interest, since it can be used as a highly nutritive alternative food source and can possibly be cultivated in regions with low rainfall. The objective of the present study was to evaluate the potential and genetic diversity of grain-sorghum hybrids for traits of agronomic and nutritional interest. To this end, the traits grain yield and flowering, and concentrations of protein, potassium, calcium, magnesium, sulfur, iron, manganese, and zinc in the grain were evaluated in 25 grain-sorghum hybrids, comprising 18 experimental hybrids of Embrapa Milho e Sorgo and seven commercial hybrids. The genetic potential was analyzed by a multi-trait best linear unbiased prediction (BLUP) model, and cluster analysis was accomplished by squared Mahalanobis distance using the predicted genotypic values. Hybrids 0306037 and 0306034 stood out in the agronomic evaluation. The hybrids with agronomic prominence, however, did not stand out for the traits related to the nutritional quality of the grain. Three clusters were formed from the dendrogram obtained with the unweighted pair group method with arithmetic mean method. From the results of the genotypic BLUP and the analysis of the dendrogram, hybrids 0577337, 0441347, 0307651, and 0306037 were identified as having the potential to establish a population that can aggregate alleles for all the evaluated traits of interest.

  20. Influence of Hardening Model on Weld Residual Stress Distribution

    Energy Technology Data Exchange (ETDEWEB)

    Mullins, Jonathan; Gunnars, Jens (Inspecta Technology AB, Stockholm (Sweden))

    2009-06-15

    This study is the third stage of a project sponsored by the Swedish Radiation Safety Authority (SSM) to improve the weld residual stress modelling procedures currently used in Sweden. The aim of this study was to determine which material hardening model gave the best agreement with experimentally measured weld residual stress distributions. Two girth weld geometries were considered: 19mm and 65mm thick girth welds with Rin/t ratios of 10.5 and 2.8, respectively. The FE solver ABAQUS Standard v6.5 was used for analysis. As a preliminary step some improvements were made to the welding simulation procedure used in part one of the project. First, monotonic stress strain curves and a mixed isotropic/kinematic hardening model were sourced from the literature for 316 stainless steel. Second, more detailed information was obtained regarding the geometry and welding sequence for the Case 1 weld (compared with phase 1 of this project). Following the preliminary step, welding simulations were conducted using isotropic, kinematic and mixed hardening models. The isotropic hardening model gave the best overall agreement with experimental measurements; it is therefore recommended for future use in welding simulations. The mixed hardening model gave good agreement for predictions of the hoop stress but tended to under estimate the magnitude of the axial stress. It must be noted that two different sources of data were used for the isotropic and mixed models in this study and this may have contributed to the discrepancy in predictions. When defining a mixed hardening model it is difficult to delineate the relative contributions of isotropic and kinematic hardening and for the model used it may be that a greater isotropic hardening component should have been specified. The kinematic hardening model consistently underestimated the magnitude of both the axial and hoop stress and is not recommended for use. Two sensitivity studies were also conducted. In the first the effect of using a

  1. Application of a single-objective, hybrid genetic algorithm approach to pharmacokinetic model building.

    Science.gov (United States)

    Sherer, Eric A; Sale, Mark E; Pollock, Bruce G; Belani, Chandra P; Egorin, Merrill J; Ivy, Percy S; Lieberman, Jeffrey A; Manuck, Stephen B; Marder, Stephen R; Muldoon, Matthew F; Scher, Howard I; Solit, David B; Bies, Robert R

    2012-08-01

    A limitation in traditional stepwise population pharmacokinetic model building is the difficulty in handling interactions between model components. To address this issue, a method was previously introduced which couples NONMEM parameter estimation and model fitness evaluation to a single-objective, hybrid genetic algorithm for global optimization of the model structure. In this study, the generalizability of this approach for pharmacokinetic model building is evaluated by comparing (1) correct and spurious covariate relationships in a simulated dataset resulting from automated stepwise covariate modeling, Lasso methods, and single-objective hybrid genetic algorithm approaches to covariate identification and (2) information criteria values, model structures, convergence, and model parameter values resulting from manual stepwise versus single-objective, hybrid genetic algorithm approaches to model building for seven compounds. Both manual stepwise and single-objective, hybrid genetic algorithm approaches to model building were applied, blinded to the results of the other approach, for selection of the compartment structure as well as inclusion and model form of inter-individual and inter-occasion variability, residual error, and covariates from a common set of model options. For the simulated dataset, stepwise covariate modeling identified three of four true covariates and two spurious covariates; Lasso identified two of four true and 0 spurious covariates; and the single-objective, hybrid genetic algorithm identified three of four true covariates and one spurious covariate. For the clinical datasets, the Akaike information criterion was a median of 22.3 points lower (range of 470.5 point decrease to 0.1 point decrease) for the best single-objective hybrid genetic-algorithm candidate model versus the final manual stepwise model: the Akaike information criterion was lower by greater than 10 points for four compounds and differed by less than 10 points for three

  2. A Hybrid Acoustic and Pronunciation Model Adaptation Approach for Non-native Speech Recognition

    Science.gov (United States)

    Oh, Yoo Rhee; Kim, Hong Kook

    In this paper, we propose a hybrid model adaptation approach in which pronunciation and acoustic models are adapted by incorporating the pronunciation and acoustic variabilities of non-native speech in order to improve the performance of non-native automatic speech recognition (ASR). Specifically, the proposed hybrid model adaptation can be performed at either the state-tying or triphone-modeling level, depending at which acoustic model adaptation is performed. In both methods, we first analyze the pronunciation variant rules of non-native speakers and then classify each rule as either a pronunciation variant or an acoustic variant. The state-tying level hybrid method then adapts pronunciation models and acoustic models by accommodating the pronunciation variants in the pronunciation dictionary and by clustering the states of triphone acoustic models using the acoustic variants, respectively. On the other hand, the triphone-modeling level hybrid method initially adapts pronunciation models in the same way as in the state-tying level hybrid method; however, for the acoustic model adaptation, the triphone acoustic models are then re-estimated based on the adapted pronunciation models and the states of the re-estimated triphone acoustic models are clustered using the acoustic variants. From the Korean-spoken English speech recognition experiments, it is shown that ASR systems employing the state-tying and triphone-modeling level adaptation methods can relatively reduce the average word error rates (WERs) by 17.1% and 22.1% for non-native speech, respectively, when compared to a baseline ASR system.

  3. Modeling of grain boundary stresses in Alloy 600

    Energy Technology Data Exchange (ETDEWEB)

    Kozaczek, K.J. [Oak Ridge National Lab., TN (United States); Sinharoy, A.; Ruud, C.O. [Pennsylvania State Univ., University Park, PA (United States); Mcllree, A.R. [Electric Power Research Inst., Palo Alto, CA (United States)

    1995-04-01

    Corrosive environments combined with high stress levels and susceptible microstructures can cause intergranular stress corrosion cracking (IGSCC) of Alloy 600 components on both primary and secondary sides of pressurized water reactors. One factor affecting the IGSCC is intergranular carbide precipitation controlled by heat treatment of Alloy 600. This study is concerned with analysis of elastic stress fields in vicinity of M{sub 7}C{sub 3} and M{sub 23}C{sub 6} carbides precipitated in the matrix and at a grain boundary triple point. The local stress concentration which can lead to IGSCC initiation was studied using a two-dimensional finite element model. The intergranular precipitates are more effective stress raisers than the intragranular precipitates. The combination of the elastic property mismatch and the precipitate shape can result in a local stress field substantially different than the macroscopic stress. The maximum local stresses in the vicinity of the intergranular precipitate were almost twice as high as the applied stress.

  4. Modelling of the Residual Stress State in a new Type of Residual Stress Specimen

    DEFF Research Database (Denmark)

    Jakobsen, Johnny; Andreasen, Jens Henrik

    2014-01-01

    The paper presents a study on a new type residual stress specimen which is proposed as a simple way to conduct experimental validation for model predictions. A specimen comprising of a steel plate with circular hole embedded into a stack of CSM glass fibre and further infused with an epoxy resin...... forms the experimental case which is analysed. A FE model of the specimen is used for analysing the curing history and the residual stress build up. The model is validated against experimental strain data which are recorded by a Fibre Brag Grating sensor and good agreement has been achieved....

  5. Mechanical modeling of stress generation during cure of encapsulating resins

    Energy Technology Data Exchange (ETDEWEB)

    Lagasse, R.R.; Chambers, R.S.; Guess, T.R. (Sandia National Labs., Albuquerque, NM (USA)); Plazek, D.J.; Bero, C. (Pittsburgh Univ., PA (USA). Dept. of Materials Science and Engineering)

    1991-01-01

    We have developed a numerical model for calculating stresses generated during cure of shrinking encapsulating resins. Mechanical modeling of polymer encapsulated electronic devices usually focuses on stress generated during cooling after cure. The stress developed during cure, due to shrinkage of the encapsulant, is normally neglected. That assumption is valid if both the shear and bulk moduli of the encapsulant at the cure temperature are negligible with respect to the moduli at lower temperatures. Our measurements on a model epoxy encapsulant show that the shear modulus during cure, varying from 0 to 6 MPa, is at least 100 times smaller than that at ambient temperature. In contrast, the bulk modulus at the cure temperature is only 2.5 times smaller. Since the bulk modulus during cure cannot be neglected, significant stress can be produced if volume shrinkage is constrained by a stiff mold or embedded elements. In fact, mechanical failure of encapsulating materials during cure has been evident in some of our experiments. Using measurements of shear and bulk moduli plus volume shrinkage as inputs to a finite element model, we have successfully predicted the shrinkage strains and stresses developed during cure of a model epoxy resin inside a cylindrical tube. Consideration of cure shrinkage stress has led to a process modification that appears to reduce mechanical failures in a real encapsulated device. 6 refs., 6 figs.

  6. Creep and stress relaxation modeling of polycrystalline ceramic fibers

    Science.gov (United States)

    Dicarlo, James A.; Morscher, Gregory N.

    1994-01-01

    A variety of high performance polycrystalline ceramic fibers are currently being considered as reinforcement for high temperature ceramic matrix composites. However, under mechanical loading about 800 C, these fibers display creep related instabilities which can result in detrimental changes in composite dimensions, strength, and internal stress distributions. As a first step toward understanding these effects, this study examines the validity of a mechanism-based empirical model which describes primary stage tensile creep and stress relaxation of polycrystalline ceramic fibers as independent functions of time, temperature, and applied stress or strain. To verify these functional dependencies, a simple bend test is used to measure stress relaxation for four types of commercial ceramic fibers for which direct tensile creep data are available. These fibers include both nonoxide (SCS-6, Nicalon) and oxide (PRD-166, FP) compositions. The results of the Bend Stress Relaxation (BSR) test not only confirm the stress, time, and temperature dependencies predicted by the model, but also allow measurement of model empirical parameters for the four fiber types. In addition, comparison of model tensile creep predictions based on the BSR test results with the literature data show good agreement, supporting both the predictive capability of the model and the use of the BSR text as a simple method for parameter determination for other fibers.

  7. Modeling and Simulation of Renewable Hybrid Power System using Matlab Simulink Environment

    Directory of Open Access Journals (Sweden)

    Cristian Dragoş Dumitru

    2010-12-01

    Full Text Available The paper presents the modeling of a solar-wind-hydroelectric hybrid system in Matlab/Simulink environment. The application is useful for analysis and simulation of a real hybrid solar-wind-hydroelectric system connected to a public grid. Application is built on modular architecture to facilitate easy study of each component module influence. Blocks like wind model, solar model, hydroelectric model, energy conversion and load are implemented and the results of simulation are also presented. As an example, one of the most important studies is the behavior of hybrid system which allows employing renewable and variable in time energy sources while providing a continuous supply. Application represents a useful tool in research activity and also in teaching

  8. Mechanical Properties of Graphene Nanoplatelet/Carbon Fiber/Epoxy Hybrid Composites: Multiscale Modeling and Experiments

    Science.gov (United States)

    Hadden, C. M.; Klimek-McDonald, D. R.; Pineda, E. J.; King, J. A.; Reichanadter, A. M.; Miskioglu, I.; Gowtham, S.; Odegard, G. M.

    2015-01-01

    Because of the relatively high specific mechanical properties of carbon fiber/epoxy composite materials, they are often used as structural components in aerospace applications. Graphene nanoplatelets (GNPs) can be added to the epoxy matrix to improve the overall mechanical properties of the composite. The resulting GNP/carbon fiber/epoxy hybrid composites have been studied using multiscale modeling to determine the influence of GNP volume fraction, epoxy crosslink density, and GNP dispersion on the mechanical performance. The hierarchical multiscale modeling approach developed herein includes Molecular Dynamics (MD) and micromechanical modeling, and it is validated with experimental testing of the same hybrid composite material system. The results indicate that the multiscale modeling approach is accurate and provides physical insight into the composite mechanical behavior. Also, the results quantify the substantial impact of GNP volume fraction and dispersion on the transverse mechanical properties of the hybrid composite, while the effect on the axial properties is shown to be insignificant.

  9. Mechanical Properties of Graphene Nanoplatelet Carbon Fiber Epoxy Hybrid Composites: Multiscale Modeling and Experiments

    Science.gov (United States)

    Hadden, Cameron M.; Klimek-McDonald, Danielle R.; Pineda, Evan J.; King, Julie A.; Reichanadter, Alex M.; Miskioglu, Ibrahim; Gowtham, S.; Odegard, Gregory M.

    2015-01-01

    Because of the relatively high specific mechanical properties of carbon fiber/epoxy composite materials, they are often used as structural components in aerospace applications. Graphene nanoplatelets (GNPs) can be added to the epoxy matrix to improve the overall mechanical properties of the composite. The resulting GNP/carbon fiber/epoxy hybrid composites have been studied using multiscale modeling to determine the influence of GNP volume fraction, epoxy crosslink density, and GNP dispersion on the mechanical performance. The hierarchical multiscale modeling approach developed herein includes Molecular Dynamics (MD) and micromechanical modeling, and it is validated with experimental testing of the same hybrid composite material system. The results indicate that the multiscale modeling approach is accurate and provides physical insight into the composite mechanical behavior. Also, the results quantify the substantial impact of GNP volume fraction and dispersion on the transverse mechanical properties of the hybrid composite, while the effect on the axial properties is shown to be insignificant.

  10. Coupled thermal model of photovoltaic-thermoelectric hybrid panel for sample cities in Europe

    DEFF Research Database (Denmark)

    Rezaniakolaei, Alireza; Sera, Dezso; Rosendahl, Lasse Aistrup

    2016-01-01

    generation by the TEG is insignificant compared to electrical output by the PV panel, and the TEG plays only a small role on power generation in the hybrid PV/TEG panel. However, contribution of the TEG in the power generation can be improved via higher ZT thermoelectric materials and geometry optimization......In general, modeling of photovoltaic-thermoelectric (PV/TEG) hybrid panels have been mostly simplified and disconnected from the actual ambient conditions and thermal losses from the panel. In this study, a thermally coupled model of PV/TEG panel is established to precisely predict performance...... of the hybrid system under different weather conditions. The model takes into account solar irradiation, wind speed and ambient temperature as well as convective and radiated heat losses from the front and rear surfaces of the panel. The model is developed for three sample cities in Europe with different...

  11. A Transport Model of Mobile Agent Based on Secure Hybrid Encryption

    Institute of Scientific and Technical Information of China (English)

    SUNZhixin; CHENZhixian; WANGRuchuan

    2005-01-01

    The solution of security problems of mobile agents is a key issue, which will decide whether mobile agents can be widely used. The paper analyzes main security problems, which currently are confronted with mobile agent systems and existing protection solutions. And then the paper presents a Security Transport model of mobile agents based on a hybrid encryption algorithm (TMSHE).Meanwhile, it expatiates on implementation of the algorithm. The algorithm of TMSHE model mainly consists of two parts, i.e., employing a hybrid encryption algorithm to encrypt mobile agents and using Transport layer security (TLS) to encrypt communication channel. Mobile agents by hybrid encryption move through communication channels, which are encrypted by TLS. The simulation results indicate that the model can protect mobile agents' security effectively, and consequently the security and steadiness of the whole mobile agent system are also improved. The model has succeeded in getting application in a prototypesystem- Intrusion detection system based on mobile agents.

  12. Modelling of the Global Geopotential Energy & Stress Field

    Science.gov (United States)

    Schiffer, C.; Nielsen, S. B.

    2012-04-01

    Lateral density and topography variations yield in and important contribution to the lithospheric stress field. The leading quantity is the Geopotential Energy, the integrated lithostatic pressure in a rock column. The horizontal gradient of this quantity is related to horizontal stresses through the Equations of equilibrium of stresses. The Geopotential Energy furthermore can be linearly related to the Geoid under assumption of local isostasy. Satellite Geoid measurements contain, however, also non-isostatic deeper mantle responses of long wavelength. Unfortunately, high-pass filtering of the Geoid does not suppress only the deeper sources. The age-dependent signal of the oceanic lithosphere, for instance, is of long wave length and a prominent representative of in-plane stress, derived from the horizontal gradient of isostatic Geoid anomalies and responsible for the ridge push effect. Therefore a global lithospheric density model is required in order to isolate the shallow Geoid signal and calculate the stress pattern from isostatically compensated lithospheric sources. We use a linearized inverse method to fit a lithospheric reference model to observations such as topography and surface heat flow in the presence of local isostasy and a steady state geotherm. Subsequently we use a FEM code to solve the Equations of equilibrium of stresses for a three dimensional elastic shell. The modelled results are shown and compared with the global stress field and other publications.

  13. Performance modeling of hybrid MPI/OpenMP scientific applications on large-scale multicore supercomputers

    KAUST Repository

    Wu, Xingfu

    2013-12-01

    In this paper, we present a performance modeling framework based on memory bandwidth contention time and a parameterized communication model to predict the performance of OpenMP, MPI and hybrid applications with weak scaling on three large-scale multicore supercomputers: IBM POWER4, POWER5+ and BlueGene/P, and analyze the performance of these MPI, OpenMP and hybrid applications. We use STREAM memory benchmarks and Intel\\'s MPI benchmarks to provide initial performance analysis and model validation of MPI and OpenMP applications on these multicore supercomputers because the measured sustained memory bandwidth can provide insight into the memory bandwidth that a system should sustain on scientific applications with the same amount of workload per core. In addition to using these benchmarks, we also use a weak-scaling hybrid MPI/OpenMP large-scale scientific application: Gyrokinetic Toroidal Code (GTC) in magnetic fusion to validate our performance model of the hybrid application on these multicore supercomputers. The validation results for our performance modeling method show less than 7.77% error rate in predicting the performance of hybrid MPI/OpenMP GTC on up to 512 cores on these multicore supercomputers. © 2013 Elsevier Inc.

  14. Optimized Treatment of Fibromyalgia Using System Identification and Hybrid Model Predictive Control.

    Science.gov (United States)

    Deshpande, Sunil; Nandola, Naresh N; Rivera, Daniel E; Younger, Jarred W

    2014-12-01

    The term adaptive intervention is used in behavioral health to describe individually-tailored strategies for preventing and treating chronic, relapsing disorders. This paper describes a system identification approach for developing dynamical models from clinical data, and subsequently, a hybrid model predictive control scheme for assigning dosages of naltrexone as treatment for fibromyalgia, a chronic pain condition. A simulation study that includes conditions of significant plant-model mismatch demonstrates the benefits of hybrid predictive control as a decision framework for optimized adaptive interventions. This work provides insights on the design of novel personalized interventions for chronic pain and related conditions in behavioral health.

  15. A Mean-Variance Hybrid-Entropy Model for Portfolio Selection with Fuzzy Returns

    Directory of Open Access Journals (Sweden)

    Rongxi Zhou

    2015-05-01

    Full Text Available In this paper, we define the portfolio return as fuzzy average yield and risk as hybrid-entropy and variance to deal with the portfolio selection problem with both random uncertainty and fuzzy uncertainty, and propose a mean-variance hybrid-entropy model (MVHEM. A multi-objective genetic algorithm named Non-dominated Sorting Genetic Algorithm II (NSGA-II is introduced to solve the model. We make empirical comparisons by using the data from the Shanghai and Shenzhen stock exchanges in China. The results show that the MVHEM generally performs better than the traditional portfolio selection models.

  16. Hybrid neural modelling of an anaerobic digester with respect to biological constraints.

    Science.gov (United States)

    Karama, A; Bernard, O; Gouzé, J L; Benhammou, A; Dochain, D

    2001-01-01

    A hybrid model for an anaerobic digestion process is proposed. The fermentation is assumed to be performed in two steps, acidogenesis and methanogenesis, by two bacterial populations. The model is based on mass balance equations, and the bacterial growth rates are represented by neural networks. In order to guarantee the biological meaning of the hybrid model (positivity of the concentrations, boundedness, saturation or inhibition of the growth rates) outside the training data set, a method that imposes constraints in the neural network is proposed. The method is applied to experimental data from a fixed bed reactor.

  17. A model updating method for hybrid composite/aluminum bolted joints using modal test data

    Science.gov (United States)

    Adel, Farhad; Shokrollahi, Saeed; Jamal-Omidi, Majid; Ahmadian, Hamid

    2017-05-01

    The aim of this paper is to present a simple and applicable model for predicting the dynamic behavior of bolted joints in hybrid aluminum/composite structures and its model updating using modal test data. In this regards, after investigations on bolted joints in metallic structures which led to a new concept called joint affected region (JAR) published in Shokrollahi and Adel (2016), now, a doubly connective layer is established in order to simulate the bolted joint interfaces in hybrid structures. Using the proposed model, the natural frequencies of the hybrid bolted joint structure are computed and compared to the modal test results in order to evaluate and verify the new model predictions. Because of differences in the results of two approaches, the finite element (FE) model is updated based on the genetic algorithm (GA) by minimizing the differences between analytical model and test results. This is done by identifying the parameters at the JAR including isotropic Young's modulus in metallic substructure and that of anisotropic composite substructure. The updated model compared to the initial model simulates experimental results more properly. Therefore, the proposed model can be used for modal analysis of the hybrid joint interfaces in complex and large structures.

  18. Modelling of the Global Geopotential Energy & Stress Field

    DEFF Research Database (Denmark)

    Schiffer, Christian; Nielsen, S.B.

    Lateral density and topography variations yield in and important contribution to the lithospheric stress field. The leading quantity is the Geopotential Energy, the integrated lithostatic pressure in a rock column. The horizontal gradient of this quantity is related to horizontal stresses through...... the Equations of equilibrium of stresses. The Geopotential Energy furthermore can be linearly related to the Geoid under assumption of local isostasy. Satellite Geoid measurements contain, however, also non-isostatic deeper mantle responses of long wavelength. Unfortunately, high-pass filtering of the Geoid...... flow in the presence of local isostasy and a steady state geotherm. Subsequently we use a FEM code to solve the Equations of equilibrium of stresses for a three dimensional elastic shell. The modelled results are shown and compared with the global stress field and other publications....

  19. A four-stage hybrid model for hydrological time series forecasting.

    Science.gov (United States)

    Di, Chongli; Yang, Xiaohua; Wang, Xiaochao

    2014-01-01

    Hydrological time series forecasting remains a difficult task due to its complicated nonlinear, non-stationary and multi-scale characteristics. To solve this difficulty and improve the prediction accuracy, a novel four-stage hybrid model is proposed for hydrological time series forecasting based on the principle of 'denoising, decomposition and ensemble'. The proposed model has four stages, i.e., denoising, decomposition, components prediction and ensemble. In the denoising stage, the empirical mode decomposition (EMD) method is utilized to reduce the noises in the hydrological time series. Then, an improved method of EMD, the ensemble empirical mode decomposition (EEMD), is applied to decompose the denoised series into a number of intrinsic mode function (IMF) components and one residual component. Next, the radial basis function neural network (RBFNN) is adopted to predict the trend of all of the components obtained in the decomposition stage. In the final ensemble prediction stage, the forecasting results of all of the IMF and residual components obtained in the third stage are combined to generate the final prediction results, using a linear neural network (LNN) model. For illustration and verification, six hydrological cases with different characteristics are used to test the effectiveness of the proposed model. The proposed hybrid model performs better than conventional single models, the hybrid models without denoising or decomposition and the hybrid models based on other methods, such as the wavelet analysis (WA)-based hybrid models. In addition, the denoising and decomposition strategies decrease the complexity of the series and reduce the difficulties of the forecasting. With its effective denoising and accurate decomposition ability, high prediction precision and wide applicability, the new model is very promising for complex time series forecasting. This new forecast model is an extension of nonlinear prediction models.

  20. Design and Implementation of “Many Parallel Task” Hybrid Subsurface Model

    Energy Technology Data Exchange (ETDEWEB)

    Agarwal, Khushbu; Chase, Jared M.; Schuchardt, Karen L.; Scheibe, Timothy D.; Palmer, Bruce J.; Elsethagen, Todd O.

    2011-11-01

    Continuum scale models have been used to study subsurface flow, transport, and reactions for many years. Recently, pore scale models, which operate at scales of individual soil grains, have been developed to more accurately model pore scale phenomena, such as precipitation, that may not be well represented at the continuum scale. However, particle-based models become prohibitively expensive for modeling realistic domains. Instead, we are developing a hybrid model that simulates the full domain at continuum scale and applies the pore model only to areas of high reactivity. The hybrid model uses a dimension reduction approach to formulate the mathematical exchange of information across scales. Since the location, size, and number of pore regions in the model varies, an adaptive Pore Generator is being implemented to define pore regions at each iteration. A fourth code will provide data transformation from the pore scale back to the continuum scale. These components are coupled into a single hybrid model using the SWIFT workflow system. Our hybrid model workflow simulates a kinetic controlled mixing reaction in which multiple pore-scale simulations occur for every continuum scale timestep. Each pore-scale simulation is itself parallel, thus exhibiting multi-level parallelism. Our workflow manages these multiple parallel tasks simultaneously, with the number of tasks changing across iterations. It also supports dynamic allocation of job resources and visualization processing at each iteration. We discuss the design, implementation and challenges associated with building a scalable, Many Parallel Task, hybrid model to run efficiently on thousands to tens of thousands of processors.

  1. Propagation of dissection in a residually-stressed artery model.

    Science.gov (United States)

    Wang, Lei; Roper, Steven M; Hill, Nicholas A; Luo, Xiaoyu

    2017-02-01

    This paper studies dissection propagation subject to internal pressure in a residually-stressed two-layer arterial model. The artery is assumed to be infinitely long, and the resultant plane strain problem is solved using the extended finite element method. The arterial layers are modelled using the anisotropic hyperelastic Holzapfel-Gasser-Ogden model, and the tissue damage due to tear propagation is described using a linear cohesive traction-separation law. Residual stress in the arterial wall is determined by an opening angle [Formula: see text] in a stress-free configuration. An initial tear is introduced within the artery which is subject to internal pressure. Quasi-static solutions are computed to determine the critical value of the pressure, at which the dissection starts to propagate. Our model shows that the dissection tends to propagate radially outwards. Interestingly, the critical pressure is higher for both very short and very long tears. The simulations also reveal that the inner wall buckles for longer tears, which is supported by clinical CT scans. In all simulated cases, the critical pressure is found to increase with the opening angle. In other words, residual stress acts to protect the artery against tear propagation. The effect of residual stress is more prominent when a tear is of intermediate length ([Formula: see text]90[Formula: see text] arc length). There is an intricate balance between tear length, wall buckling, fibre orientation, and residual stress that determines the tear propagation.

  2. Investigation of the Magnetotail and Inner Magnetosphere with Combined Global Hybrid and CIMI Models

    Science.gov (United States)

    Lin, Y.; Wang, X.; Perez, J. D.; Fok, M. C. H.

    2014-12-01

    The interconnection between the Earth's inner and outer magnetospheric regions is calculated by coupling an existing 3-D global hybrid simulation code to an existing ring current and radiation belt code, the Comprehensive Inner Magnetosphere/Ionosphere (CIMI) model. In the hybrid simulation, the global dynamics are driven by the solar wind and a southward IMF, and the simulation domain includes the plasma regions from x=-60RE to +20RE . Evolution of the magnetotail is revealed in the hybrid simulation. The response of the ring current and radiation belts is calculated by coupling the CIMI model to the global hybrid model. The hybrid simulation results provide the CIMI model with the magnetic field and electric potential at the high-latitude ionosphere boundary and plasma density and full ion phase space distribution function at the outer boundary at the equator. Our simulation shows that the ion velocity distributions in the tail are non-Maxwellian, with the existence of multiple ion beams, which have a significant impact on the ring current and the convection electric field. Detailed results will be presented for cases with various IMF and solar wind conditions, and the simulation will be compared with satellite observations.

  3. An equity-interest rate hybrid model with stochastic volatility and the interest rate smile

    NARCIS (Netherlands)

    Grzelak, L.A.; Oosterlee, C.W.

    2010-01-01

    We define an equity-interest rate hybrid model in which the equity part is driven by the Heston stochastic volatility [Hes93], and the interest rate (IR) is generated by the displaced-diffusion stochastic volatility Libor Market Model [AA02]. We assume a non-zero correlation between the main

  4. Applying TSOI Hybrid Learning Model to Enhance Blended Learning Experience in Science Education

    Science.gov (United States)

    Tsoi, Mun Fie

    2009-01-01

    Purpose: Research on the nature of blended learning and its features has led to a variety of approaches to the practice of blended learning. The purpose of this paper is to provide an alternative practice model, the TSOI hybrid learning model (HLM) to enhance the blended learning experiences in science education. Design/methodology/approach: The…

  5. MATHEMATICAL MODEL OF HYBRID ELECTRIC VEHICLE HIGH-VOLTAGE BATTERY IDENTIFICATION

    Directory of Open Access Journals (Sweden)

    S. Serikov

    2010-01-01

    Full Text Available The mathematical model of hybrid electric vehicle NiMH high-voltage battery is obtained. This model allows to explore the interaction of vehicle tractive electric drive and high-voltage battery at the electric motive power motion and in the process of recuperation of braking kinetic energy.

  6. Multi-Zone hybrid model for failure detection of the stable ventilation systems

    DEFF Research Database (Denmark)

    Gholami, Mehdi; Schiøler, Henrik; Soltani, Mohsen;

    2010-01-01

    In this paper, a conceptual multi-zone model for climate control of a live stock building is elaborated. The main challenge of this research is to estimate the parameters of a nonlinear hybrid model. A recursive estimation algorithm, the Extended Kalman Filter (EKF) is implemented for estimation....

  7. Assessing the Therapeutic Environment in Hybrid Models of Treatment: Prisoner Perceptions of Staff

    Science.gov (United States)

    Kubiak, Sheryl Pimlott

    2009-01-01

    Hybrid treatment models within prisons are staffed by both criminal justice and treatment professionals. Because these models may be indicative of future trends, examining the perceptions of prisoners/participants may provide important information. This study examines the perceptions of male and female inmates in three prisons, comparing those in…

  8. Hybrid Continuum and Molecular Modeling of Nano-scale Flows

    Science.gov (United States)

    Povitsky, Alex; Zhao, Shunliu

    2010-11-01

    A novel hybrid method combining the continuum approach based on boundary singularity method (BSM) and the molecular approach based on the direct simulation Monte Carlo (DSMC) is developed and then used to study viscous fibrous filtration flows in the transition flow regime, Kn>0.25. The DSMC is applied to a Knudsen layer enclosing the fiber and the BSM is employed to the entire flow domain. The parameters used in the DSMC and the coupling procedure, such as the number of simulated particles, the cell size and the size of the coupling zone are determined. Results are compared to the experiments measuring pressure drop and flowfield in filters. The optimal location of singularities outside of flow domain was determined and results are compared to those obtained by regularized Stokeslets. The developed hybrid method is parallelized by using MPI and extended to multi-fiber filtration flows. The multi-fiber filter flows considered are in the partial-slip and transition regimes. For Kn˜1, the computed velocity near fibers changes significantly that confirms the need of molecular methods in evaluation of the flow slip in transitional regime.

  9. Hybrid Analytical and Data-Driven Modeling for Feed-Forward Robot Control †

    Directory of Open Access Journals (Sweden)

    René Felix Reinhart

    2017-02-01

    Full Text Available Feed-forward model-based control relies on models of the controlled plant, e.g., in robotics on accurate knowledge of manipulator kinematics or dynamics. However, mechanical and analytical models do not capture all aspects of a plant’s intrinsic properties and there remain unmodeled dynamics due to varying parameters, unmodeled friction or soft materials. In this context, machine learning is an alternative suitable technique to extract non-linear plant models from data. However, fully data-based models suffer from inaccuracies as well and are inefficient if they include learning of well known analytical models. This paper thus argues that feed-forward control based on hybrid models comprising an analytical model and a learned error model can significantly improve modeling accuracy. Hybrid modeling here serves the purpose to combine the best of the two modeling worlds. The hybrid modeling methodology is described and the approach is demonstrated for two typical problems in robotics, i.e., inverse kinematics control and computed torque control. The former is performed for a redundant soft robot and the latter for a rigid industrial robot with redundant degrees of freedom, where a complete analytical model is not available for any of the platforms.

  10. Hybrid Analytical and Data-Driven Modeling for Feed-Forward Robot Control †.

    Science.gov (United States)

    Reinhart, René Felix; Shareef, Zeeshan; Steil, Jochen Jakob

    2017-02-08

    Feed-forward model-based control relies on models of the controlled plant, e.g., in robotics on accurate knowledge of manipulator kinematics or dynamics. However, mechanical and analytical models do not capture all aspects of a plant's intrinsic properties and there remain unmodeled dynamics due to varying parameters, unmodeled friction or soft materials. In this context, machine learning is an alternative suitable technique to extract non-linear plant models from data. However, fully data-based models suffer from inaccuracies as well and are inefficient if they include learning of well known analytical models. This paper thus argues that feed-forward control based on hybrid models comprising an analytical model and a learned error model can significantly improve modeling accuracy. Hybrid modeling here serves the purpose to combine the best of the two modeling worlds. The hybrid modeling methodology is described and the approach is demonstrated for two typical problems in robotics, i.e., inverse kinematics control and computed torque control. The former is performed for a redundant soft robot and the latter for a rigid industrial robot with redundant degrees of freedom, where a complete analytical model is not available for any of the platforms.

  11. Hybrid Analytical and Data-Driven Modeling for Feed-Forward Robot Control †

    Science.gov (United States)

    Reinhart, René Felix; Shareef, Zeeshan; Steil, Jochen Jakob

    2017-01-01

    Feed-forward model-based control relies on models of the controlled plant, e.g., in robotics on accurate knowledge of manipulator kinematics or dynamics. However, mechanical and analytical models do not capture all aspects of a plant’s intrinsic properties and there remain unmodeled dynamics due to varying parameters, unmodeled friction or soft materials. In this context, machine learning is an alternative suitable technique to extract non-linear plant models from data. However, fully data-based models suffer from inaccuracies as well and are inefficient if they include learning of well known analytical models. This paper thus argues that feed-forward control based on hybrid models comprising an analytical model and a learned error model can significantly improve modeling accuracy. Hybrid modeling here serves the purpose to combine the best of the two modeling worlds. The hybrid modeling methodology is described and the approach is demonstrated for two typical problems in robotics, i.e., inverse kinematics control and computed torque control. The former is performed for a redundant soft robot and the latter for a rigid industrial robot with redundant degrees of freedom, where a complete analytical model is not available for any of the platforms. PMID:28208697

  12. Gender Differences in Animal Models of Posttraumatic Stress Disorder

    Directory of Open Access Journals (Sweden)

    Hagit Cohen

    2011-01-01

    Full Text Available Epidemiological studies report higher prevalence rates of stress-related disorders such as acute stress disorder and post-traumatic stress disorder (PTSD in women than in men following exposure to trauma. It is still not clear whether this greater prevalence in woman reflects a greater vulnerability to stress-related psychopathology. A number of individual and trauma-related characteristics have been hypothesized to contribute to these gender differences in physiological and psychological responses to trauma, differences in appraisal, interpretation or experience of threat, coping style or social support. In this context, the use of an animal model for PTSD to analyze some of these gender-related differences may be of particular utility. Animal models of PTSD offer the opportunity to distinguish between biological and socio-cultural factors, which so often enter the discussion about gender differences in PTSD prevalence.

  13. Investigating the Subsurface Stress Field based on Hybrid Earthquake Focal Mechanisms: Examples from the Fort Worth Basin, Texas

    Science.gov (United States)

    Jia, S.; Eaton, D. W. S.; Wong, R.

    2016-12-01

    Knowledge of in situ stress state and rock failure mechanisms is key for modelling and predicting subsurface material behavior. Earthquake focal mechanisms are extensively used for in situ stress determination, as reflected by their widespread use for the World Stress Map project. The rupture process emits radiated seismic energy, from which equivalent force couples acting a point (moment tensor) may be determined. Inversion methods, including formal estimates of uncertainty, have been developed to estimate stress parameters from moment-tensor observations. Methods that have been developed so far are based on the assumptions that the source mechanism is purely double-couple (DC) and the direction of the slip vector is parallel to the shear stress acting on the fault plane (Wallace-Bott hypothesis). However, this is not always the case, especially for microseismic events that occur during hydraulic fracturing, in which case injected fluids can significantly elevate the pore pressure. In the case of shear-tensile failure, the slip vector may deviate from the fault plane due to complex failure mechanisms surrounding an injection site. To eliminate this restriction and better analyze stress state during injection, a new approach is developed under the assumption that the slip vector is parallel to the direction of the traction vector acting on a fault plane. The microseismic data analyzed in this study were acquired in 2010 during a multi-well completion in the Fort Worth Basin. The dataset contains 7444 microseismic events with full moment-tensor solutions. Results of our analysis, which utilizes events with the best resolved solutions, reveal that the shear-tensile stress inversion approach improves the determination of failure plane and stress state.

  14. Analysis of a model of fuel cell - gas turbine hybrid power system for enhanced energy efficiency

    Science.gov (United States)

    Calay, Rajnish K.; Mustafa, Mohamad Y.; Virk, Mohammad S.; Mustafa, Mahmoud F.

    2012-11-01

    A simple mathematical model to evaluate the performance of FC-GT hybrid system is presented in this paper. The model is used to analyse the influence of various parameters on the performance of a typical hybrid system, where excess heat rejected from the solid-oxide fuel cell stack is utilised to generate additional power through a gas turbine system and to provide heat energy for space heating. The model is based on thermodynamic analysis of various components of the plant and can be adapted for various configurations of the plant components. Because there are many parameters defining the efficiency and work output of the hybrid system, the technique is based on mathematical and graphical optimisation of various parameters; to obtain the maximum efficiency for a given plant configuration.

  15. Data Fusion Modeling for an RT3102 and Dewetron System Application in Hybrid Vehicle Stability Testing

    Directory of Open Access Journals (Sweden)

    Zhibin Miao

    2015-08-01

    Full Text Available More and more hybrid electric vehicles are driven since they offer such advantages as energy savings and better active safety performance. Hybrid vehicles have two or more power driving systems and frequently switch working condition, so controlling stability is very important. In this work, a two-stage Kalman algorithm method is used to fuse data in hybrid vehicle stability testing. First, the RT3102 navigation system and Dewetron system are introduced. Second, a modeling of data fusion is proposed based on the Kalman filter. Then, this modeling is simulated and tested on a sample vehicle, using Carsim and Simulink software to test the results. The results showed the merits of this modeling.

  16. Fuzzy clustering, genetic algorithms and neuro-fuzzy methods compared for hybrid fuzzy-first principles modeling

    NARCIS (Netherlands)

    van Lith, Pascal; van Lith, P.F.; Betlem, Bernardus H.L.; Roffel, B.

    2002-01-01

    Hybrid fuzzy-first principles models can be a good alternative if a complete physical model is difficult to derive. These hybrid models consist of a framework of dynamic mass and energy balances, supplemented by fuzzy submodels describing additional equations, such as mass transformation and

  17. Fuzzy Clustering, Genetic Algorithms and Neuro-Fuzzy Methods Compared for Hybrid Fuzzy-First Principles Modeling

    NARCIS (Netherlands)

    Lith, Pascal F. van; Betlem, Ben H.L.; Roffel, Brian

    2002-01-01

    Hybrid fuzzy-first principles models can be a good alternative if a complete physical model is difficult to derive. These hybrid models consist of a framework of dynamic mass and energy balances, supplemented by fuzzy submodels describing additional equations, such as mass transformation and

  18. Fuzzy Clustering, Genetic Algorithms and Neuro-Fuzzy Methods Compared for Hybrid Fuzzy-First Principles Modeling

    NARCIS (Netherlands)

    Lith, Pascal F. van; Betlem, Ben H.L.; Roffel, Brian

    2002-01-01

    Hybrid fuzzy-first principles models can be a good alternative if a complete physical model is difficult to derive. These hybrid models consist of a framework of dynamic mass and energy balances, supplemented by fuzzy submodels describing additional equations, such as mass transformation and transfe

  19. Fuzzy Clustering, Genetic Algorithms and Neuro-Fuzzy Methods Compared for Hybrid Fuzzy-First Principles Modeling

    NARCIS (Netherlands)

    Lith, Pascal F. van; Betlem, Ben H.L.; Roffel, Brian

    2002-01-01

    Hybrid fuzzy-first principles models can be a good alternative if a complete physical model is difficult to derive. These hybrid models consist of a framework of dynamic mass and energy balances, supplemented by fuzzy submodels describing additional equations, such as mass transformation and transfe

  20. Computational Psychometrics for Modeling System Dynamics during Stressful Disasters

    Directory of Open Access Journals (Sweden)

    Pietro Cipresso

    2017-08-01

    Full Text Available Disasters can be very stressful events. However, computational models of stress require data that might be very difficult to collect during disasters. Moreover, personal experiences are not repeatable, so it is not possible to collect bottom-up information when building a coherent model. To overcome these problems, we propose the use of computational models and virtual reality integration to recreate disaster situations, while examining possible dynamics in order to understand human behavior and relative consequences. By providing realistic parameters associated with disaster situations, computational scientists can work more closely with emergency responders to improve the quality of interventions in the future.

  1. A Hybrid LDA+gCCA Model for fMRI Data Classification and Visualization.

    Science.gov (United States)

    Afshin-Pour, Babak; Shams, Seyed-Mohammad; Strother, Stephen

    2015-05-01

    Linear predictive models are applied to functional MRI (fMRI) data to estimate boundaries that predict experimental task states for scans. These boundaries are visualized as statistical parametric maps (SPMs) and range from low to high spatial reproducibility across subjects (e.g., Strother , 2004; LaConte , 2003). Such inter-subject pattern reproducibility is an essential characteristic of interpretable SPMs that generalize across subjects. Therefore, we introduce a flexible hybrid model that optimizes reproducibility by simultaneously enhancing the prediction power and reproducibility. This hybrid model is formed by a weighted summation of the optimization functions of a linear discriminate analysis (LDA) model and a generalized canonical correlation (gCCA) model (Afshin-Pour , 2012). LDA preserves the model's ability to discriminate the fMRI scans of multiple brain states while gCCA finds a linear combination for each subject's scans such that the estimated boundary map is reproducible. The hybrid model is implemented in a split-half resampling framework (Strother , 2010) which provides reproducibility (r) and prediction (p) quality metrics. Then the model was compared with LDA, and Gaussian Naive Bayes (GNB). For simulated fMRI data, the hybrid model outperforms the other two techniques in terms of receiver operating characteristic (ROC) curves, particularly for detecting less predictable but spatially reproducible networks. These techniques were applied to real fMRI data to estimate the maps for two task contrasts. Our results indicate that compared to LDA and GNB, the hybrid model can provide maps with large increases in reproducibility for small reductions in prediction, which are jointly closer to the ideal performance point of (p=1, r=1).

  2. Modeling, analysis and control of fuel cell hybrid power systems

    Science.gov (United States)

    Suh, Kyung Won

    Transient performance is a key characteristic of fuel cells, that is sometimes more critical than efficiency, due to the importance of accepting unpredictable electric loads. To fulfill the transient requirement in vehicle propulsion and portable fuel cell applications, a fuel cell stack is typically coupled with a battery through a DC/DC converter to form a hybrid power system. Although many power management strategies already exist, they all rely on low level controllers that realize the power split. In this dissertation we design controllers that realize various power split strategies by directly manipulating physical actuators (low level commands). We maintain the causality of the electric dynamics (voltage and current) and investigate how the electric architecture affects the hybridization level and the power management. We first establish the performance limitations associated with a stand-alone and power-autonomous fuel cell system that is not supplemented by an additional energy storage and powers all its auxiliary components by itself. Specifically, we examine the transient performance in fuel cell power delivery as it is limited by the air supplied by a compressor driven by the fuel cell itself. The performance limitations arise from the intrinsic coupling in the fluid and electrical domain between the compressor and the fuel cell stack. Feedforward and feedback control strategies are used to demonstrate these limitations analytically and with simulations. Experimental tests on a small commercial fuel cell auxiliary power unit (APU) confirm the dynamics and the identified limitations. The dynamics associated with the integration of a fuel cell system and a DC/DC converter is then investigated. Decentralized and fully centralized (using linear quadratic techniques) controllers are designed to regulate the power system voltage and to prevent fuel cell oxygen starvation. Regulating these two performance variables is a difficult task and requires a compromise

  3. HyDE Framework for Stochastic and Hybrid Model-Based Diagnosis

    Science.gov (United States)

    Narasimhan, Sriram; Brownston, Lee

    2012-01-01

    Hybrid Diagnosis Engine (HyDE) is a general framework for stochastic and hybrid model-based diagnosis that offers flexibility to the diagnosis application designer. The HyDE architecture supports the use of multiple modeling paradigms at the component and system level. Several alternative algorithms are available for the various steps in diagnostic reasoning. This approach is extensible, with support for the addition of new modeling paradigms as well as diagnostic reasoning algorithms for existing or new modeling paradigms. HyDE is a general framework for stochastic hybrid model-based diagnosis of discrete faults; that is, spontaneous changes in operating modes of components. HyDE combines ideas from consistency-based and stochastic approaches to model- based diagnosis using discrete and continuous models to create a flexible and extensible architecture for stochastic and hybrid diagnosis. HyDE supports the use of multiple paradigms and is extensible to support new paradigms. HyDE generates candidate diagnoses and checks them for consistency with the observations. It uses hybrid models built by the users and sensor data from the system to deduce the state of the system over time, including changes in state indicative of faults. At each time step when observations are available, HyDE checks each existing candidate for continued consistency with the new observations. If the candidate is consistent, it continues to remain in the candidate set. If it is not consistent, then the information about the inconsistency is used to generate successor candidates while discarding the candidate that was inconsistent. The models used by HyDE are similar to simulation models. They describe the expected behavior of the system under nominal and fault conditions. The model can be constructed in modular and hierarchical fashion by building component/subsystem models (which may themselves contain component/ subsystem models) and linking them through shared variables/parameters. The

  4. Correlation and Regressive Model Between Spikelet Fertilized Rate and Temperature in Inter-Subspecific Hybrid Rice

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    To study the sensitivity of inter-subspecific hybrid rice to climatic conditions, the spikelet fertilized rate (SFR) of four types of rice including indica-japonica hybrid, intermediate hybrid, indica and japonica were analyzed during 2000-2004. The inter-subspecific hybrids showed lower SFR, and much higher fluctuation under various climatic conditions than indica and japonica rice, showing the inter-subspecific hybrids were sensitive to ecological conditions. Among 12 climatic factors, the key factor affecting rice SFR was temperature, with the most significant factor being the average temperature of the seven days around panicle flowering (T7). A regressive equation of SFR-temperature by T7, and a comprehensive synthetic model by four important temperature indices were put forward. The optimum temperature for inter-subspecific hybrids was estimated to be 26.1-26.6 ℃, and lower limit of safe temperature to be 22.5-23.3 ℃ for panicle flowering, showing higher by averagely 0.5℃ and 1.7℃, respectively, to be compared with indica and japonica rice. This suggested that inter-subspecific hybrids require proper climatic conditions. During panicle flowering, the suitable daily average temperature was 23.3-29.0 ℃, with the fittest one at 26.1-26.6 ℃. For an application example, optimum heading season for inter-subspecific hybrids in key rice growing areas in China was as same as common pure lines, while inferior limit for safe date of heading was about a ten-day period earlier than those of common pure lines.

  5. Solving Problem of Graph Isomorphism by Membrane-Quantum Hybrid Model

    Directory of Open Access Journals (Sweden)

    Artiom Alhazov

    2015-10-01

    Full Text Available This work presents the application of new parallelization methods based on membrane-quantum hybrid computing to graph isomorphism problem solving. Applied membrane-quantum hybrid computational model was developed by authors. Massive parallelism of unconventional computing is used to implement classic brute force algorithm efficiently. This approach does not suppose any restrictions of considered graphs types. The estimated performance of the model is less then quadratic that makes a very good result for the problem of \\textbf{NP} complexity.

  6. Bounded Model Checking and Inductive Verification of Hybrid Discrete-Continuous Systems

    DEFF Research Database (Denmark)

    Becker, Bernd; Behle, Markus; Eisenbrand, Fritz

    2004-01-01

    We present a concept to signicantly advance the state of the art for bounded model checking (BMC) and inductive verication (IV) of hybrid discrete-continuous systems. Our approach combines the expertise of partners coming from dierent domains, like hybrid systems modeling and digital circuit...... verication, bounded plan- ning and heuristic search, combinatorial optimization and integer programming. Af- ter sketching the overall verication ow we present rst results indicating that the combination and tight integration of dierent verication engines is a rst step to pave the way to fully automated BMC...

  7. A New Method for Modeling and Control of Hybrid Stepper Motors

    Directory of Open Access Journals (Sweden)

    George Mihalache

    2014-09-01

    Full Text Available Over time the mathematical models of the hybrid stepper motors (HSM have been developed in various forms. In this paper we propose to use for HSM a model of a two-phase synchronous machine with permanent magnet in which the number of pole pairs is equal to the number of rotor teeth of the HSM. It analyzes the behavior of hybrid stepper motor controlled in open loop. Control signals are obtained by implementing the control sequences:one-phase-on, two-phases-on, half step.

  8. Influence of Li-ion Battery Models in the Sizing of Hybrid Storage Systems with Supercapacitors

    DEFF Research Database (Denmark)

    Pinto, Claudio; Barreras, Jorge Varela; de Castro, Ricardo

    2014-01-01

    This paper presents a comparative study of the influence of different aggregated electrical circuit battery models in the sizing process of a hybrid energy storage system (ESS), composed by Li-ion batteries and supercapacitors (SCs). The aim is to find the number of cells required to propel......-order dynamics of the battery. Simulation results demonstrate that the adoption of a more accurate battery model in the sizing of hybrid ESSs prevents over-sizing, leading to a reduction in the number of cells of up to 29%, and a cost decrease of up to 10%....

  9. Daily air quality index forecasting with hybrid models: A case in China.

    Science.gov (United States)

    Zhu, Suling; Lian, Xiuyuan; Liu, Haixia; Hu, Jianming; Wang, Yuanyuan; Che, Jinxing

    2017-09-19

    Air quality is closely related to quality of life. Air pollution forecasting plays a vital role in air pollution warnings and controlling. However, it is difficult to attain accurate forecasts for air pollution indexes because the original data are non-stationary and chaotic. The existing forecasting methods, such as multiple linear models, autoregressive integrated moving average (ARIMA) and support vector regression (SVR), cannot fully capture the information from series of pollution indexes. Therefore, new effective techniques need to be proposed to forecast air pollution indexes. The main purpose of this research is to develop effective forecasting models for regional air quality indexes (AQI) to address the problems above and enhance forecasting accuracy. Therefore, two hybrid models (EMD-SVR-Hybrid and EMD-IMFs-Hybrid) are proposed to forecast AQI data. The main steps of the EMD-SVR-Hybrid model are as follows: the data preprocessing technique EMD (empirical mode decomposition) is utilized to sift the original AQI data to obtain one group of smoother IMFs (intrinsic mode functions) and a noise series, where the IMFs contain the important information (level, fluctuations and others) from the original AQI series. LS-SVR is applied to forecast the sum of the IMFs, and then, S-ARIMA (seasonal ARIMA) is employed to forecast the residual sequence of LS-SVR. In addition, EMD-IMFs-Hybrid first separately forecasts the IMFs via statistical models and sums the forecasting results of the IMFs as EMD-IMFs. Then, S-ARIMA is employed to forecast the residuals of EMD-IMFs. To certify the proposed hybrid model, AQI data from June 2014 to August 2015 collected from Xingtai in China are utilized as a test case to investigate the empirical research. In terms of some of the forecasting assessment measures, the AQI forecasting results of Xingtai show that the two proposed hybrid models are superior to ARIMA, SVR, GRNN, EMD-GRNN, Wavelet-GRNN and Wavelet-SVR. Therefore, the

  10. Modeling of Hybrid Permanent Magnetic-Gas Bearings

    DEFF Research Database (Denmark)

    Morosi, Stefano; Santos, Ilmar

    2009-01-01

    Modern turbomachinery applications require nowadays ever-growing rotational speeds and high degree of reliability. It then becomes natural to focus the attention of the research to contact-free bearings elements. The present alternatives focus on gas lubricated journal bearings or magnetic bearings....... In the present paper both the technologies are combined with the aim of developing a new kind of hybrid permanent magnetic - gas bearing. This new kind of machine is intended to exploit the benefits of the two technologies while minimizing their drawbacks. The poor start-up and low speed operation performance...... of the gas bearing is balanced by the properties of the passive magnetic one. At high speeds the dynamic characteristics of the gas bearing are improved by offsetting the stator ring of the permanent magnetic bearing. Furthermore this design shows a kind of redundancy, which offers soft failure properties...

  11. Modeling of Hybrid Permanent Magnetic-Gas Bearings

    DEFF Research Database (Denmark)

    Morosi, Stefano; Santos, Ilmar

    2009-01-01

    Modern turbomachinery applications require nowadays ever-growing rotational speeds and high degree of reliability. It then becomes natural to focus the attention of the research to contact-free bearings elements. The present alternatives focus on gas lubricated journal bearings or magnetic bearings...... concentric rings with radial magnetic orientation - analytical expressions for the calculation of the magnetic flux density and forces are employed, opposed to the main literature trend where finite element software is utilized at least for the calculation of the B-field. Numerical analysis shows how...... the rotor equilibrium position can be made independent on the rotational speed and applied load; it becomes function of the passive magnetic bearing offset. By adjusting the offset it is possible to significantly influence the dynamic coefficients of the hybrid bearing....

  12. Rough Set Model for Discovering Hybrid Association Rules

    CERN Document Server

    Pandey, Anjana

    2009-01-01

    In this paper, the mining of hybrid association rules with rough set approach is investigated as the algorithm RSHAR.The RSHAR algorithm is constituted of two steps mainly. At first, to join the participant tables into a general table to generate the rules which is expressing the relationship between two or more domains that belong to several different tables in a database. Then we apply the mapping code on selected dimension, which can be added directly into the information system as one certain attribute. To find the association rules, frequent itemsets are generated in second step where candidate itemsets are generated through equivalence classes and also transforming the mapping code in to real dimensions. The searching method for candidate itemset is similar to apriori algorithm. The analysis of the performance of algorithm has been carried out.

  13. Understanding lithospheric stresses in Arctic: constraints and models

    Science.gov (United States)

    Medvedev, Sergei; Minakov, Alexander; Lebedeva-Ivanova, Nina; Gaina, Carmen

    2016-04-01

    This pilot project aims to model stress patterns and analyze factors controlling lithospheric stresses in Arctic. The project aims to understand the modern stresses in Arctic as well as to define the ways to test recent hypotheses about Cenozoic evolution of the region. The regions around Lomonosov Ridge and Barents Sea are of particular interest driven by recent acquisition of high-resolution potential field and seismic data. Naturally, the major contributor to the lithospheric stress distribution is the gravitational potential energy (GPE). The study tries to incorporate available geological and geophysical data to build reliable GPE. In particular, we use the recently developed integrated gravity inversion for crustal thickness which incorporates up-to-date compilations of gravity anomalies, bathymetry, and sedimentary thickness. The modelled lithosphere thermal structure assumes a pure shear extension and the ocean age model constrained by global plate kinematics for the last ca. 120 Ma. The results of this approach are juxtaposed with estimates of the density variation inferred from the upper mantle S-wave velocity models based on previous surface wave tomography studies. Although new data and interpretations of the Arctic lithosphere structure become available now, there are areas of low accuracy or even lack of data. To compensate for this, we compare two approaches to constrain GPE: (1) one that directly integrates density of modelled lithosphere and (2) one that uses geoid anomalies which are filtered to account for density variations down to the base of the lithosphere only. The two versions of GPE compared to each other and the stresses calculated numerically are compared with observations. That allows us to optimize GPE and understand density structure, stress pattern, and factors controlling the stresses in Arctic.

  14. A hybrid model for predicting carbon monoxide from vehicular exhausts in urban environments

    Science.gov (United States)

    Gokhale, Sharad; Khare, Mukesh

    Several deterministic-based air quality models evaluate and predict the frequently occurring pollutant concentration well but, in general, are incapable of predicting the 'extreme' concentrations. In contrast, the statistical distribution models overcome the above limitation of the deterministic models and predict the 'extreme' concentrations. However, the environmental damages are caused by both extremes as well as by the sustained average concentration of pollutants. Hence, the model should predict not only 'extreme' ranges but also the 'middle' ranges of pollutant concentrations, i.e. the entire range. Hybrid modelling is one of the techniques that estimates/predicts the 'entire range' of the distribution of pollutant concentrations by combining the deterministic based models with suitable statistical distribution models ( Jakeman, et al., 1988). In the present paper, a hybrid model has been developed to predict the carbon monoxide (CO) concentration distributions at one of the traffic intersections, Income Tax Office (ITO), in the Delhi city, where the traffic is heterogeneous in nature and meteorology is 'tropical'. The model combines the general finite line source model (GFLSM) as its deterministic, and log logistic distribution (LLD) model, as its statistical components. The hybrid (GFLSM-LLD) model is then applied at the ITO intersection. The results show that the hybrid model predictions match with that of the observed CO concentration data within the 5-99 percentiles range. The model is further validated at different street location, i.e. Sirifort roadway. The validation results show that the model predicts CO concentrations fairly well ( d=0.91) in 10-95 percentiles range. The regulatory compliance is also developed to estimate the probability of exceedance of hourly CO concentration beyond the National Ambient Air Quality Standards (NAAQS) of India. It consists of light vehicles, heavy vehicles, three- wheelers (auto rickshaws) and two

  15. Multiscale modeling of rapid granular flow with a hybrid discrete-continuum method

    CERN Document Server

    Chen, Xizhong; Li, Jinghai

    2015-01-01

    Both discrete and continuum models have been widely used to study rapid granular flow, discrete model is accurate but computationally expensive, whereas continuum model is computationally efficient but its accuracy is doubtful in many situations. Here we propose a hybrid discrete-continuum method to profit from the merits but discard the drawbacks of both discrete and continuum models. Continuum model is used in the regions where it is valid and discrete model is used in the regions where continuum description fails, they are coupled via dynamical exchange of parameters in the overlap regions. Simulation of granular channel flow demonstrates that the proposed hybrid discrete-continuum method is nearly as accurate as discrete model, with much less computational cost.

  16. Development of Hybrid Models for a Vapor-Phase Fungi Bioreactor

    Directory of Open Access Journals (Sweden)

    Giorgia Spigno

    2015-01-01

    Full Text Available This study is aimed at the development of a model for an experimental vapour-phase fungi bioreactor, which could be derived in a simple way using the available measurements of a pilot-plant reactor, without the development of ad hoc experiments for the evaluation of fungi kinetics and the estimation of parameters related to biofilm characteristics. The proposed approach is based on hybrid models, obtained by the connection of the mass balance equation (used in traditional phenomenological models with a feedforward neural network (used in black-box modelling, and the proper use of statistical tools for the model assessment and system understanding. Two different hybrid models were developed and compared by proper performance indexes, and their capability to predict the biological complex phenomena was demonstrated and compared to that of a first-principle model.

  17. Modelling of hybrid scenario: from present-day experiments towards ITER

    Science.gov (United States)

    Litaudon, X.; Voitsekhovitch, I.; Artaud, J. F.; Belo, P.; Bizarro, João P. S.; Casper, T.; Citrin, J.; Fable, E.; Ferreira, J.; Garcia, J.; Garzotti, L.; Giruzzi, G.; Hobirk, J.; Hogeweij, G. M. D.; Imbeaux, F.; Joffrin, E.; Koechl, F.; Liu, F.; Lönnroth, J.; Moreau, D.; Parail, V.; Schneider, M.; Snyder, P. B.; the ASDEX-Upgrade Team; Contributors, JET-EFDA; the EU-ITM ITER Scenario Modelling Group

    2013-07-01

    The ‘hybrid’ scenario is an attractive operating scenario for ITER since it combines long plasma duration with the reliability of the reference H-mode regime. We review the recent European modelling effort carried out within the Integrated Scenario Modelling group which aims at (i) understanding the underlying physics of the hybrid regime in ASDEX-Upgrade and JET and (ii) extrapolating them towards ITER. JET and ASDEX-Upgrade hybrid scenarios performed under different experimental conditions have been simulated in an interpretative and predictive way in order to address the current profile dynamics and its link with core confinement, the relative importance of magnetic shear, s, and E × B flow shear on the core turbulence, pedestal stability and H-L transition. The correlation of the improved confinement with an increased s/q at outer radii observed in JET and ASDEX-Upgrade discharges is consistent with the predictions based on the GLF23 model applied in the simulations of the ion and electron kinetic profiles. Projections to ITER hybrid scenarios have been carried out focusing on optimization of the heating/current drive schemes to reach and ultimately control the desired plasma equilibrium using ITER actuators. Firstly, access condition to the hybrid-like q-profiles during the current ramp-up phase has been investigated. Secondly, from the interpreted role of the s/q ratio, ITER hybrid scenario flat-top performance has been optimized through tailoring the q-profile shape and pedestal conditions. EPED predictions of pedestal pressure and width have been used as constraints in the interpretative modelling while the core heat transport is predicted by GLF23. Finally, model-based approach for real-time control of advanced tokamak scenarios has been applied to ITER hybrid regime for simultaneous magnetic and kinetic profile control.

  18. Modeling of Stress Triggered Faulting at Agenor Linea, Europa

    Science.gov (United States)

    Nahm, A. L.; Cameron, M. E.; Smith-Konter, B. R.; Pappalardo, R. T.

    2012-04-01

    To better understand the role of tidal stress sources and implications for faulting on Europa, we investigate the relationship between shear and normal stresses at Agenor Linea (AL), a ~1500 km long, E-W trending, 20-30 km wide zone of geologically young deformation located in the southern hemisphere of Europa which forks into two branches at its eastern end. The orientation of AL is consistent with tensile stresses resulting from long-term decoupled ice shell rotation (non-synchronous rotation [NSR]) as well as dextral shear stresses due to diurnal flexure of the ice shell. Its brightness and lack of cross-cutting features make AL a candidate for recent or current activity. Several observations indicate that right-lateral strike-slip faulting has occurred, such as left-stepping en echelon fractures in the northern portion of AL and the presence of an imbricate fan or horsetail complex at AL's western end. To calculate tidal stresses on Europa, we utilize SatStress, a numerical code that calculates tidal stresses at any point on the surface of a satellite for both diurnal and NSR stresses. We adopt SatStress model parameters appropriate to a spherically symmetric ice shell of thickness 20 km, underlain by a global subsurface ocean: shear modulus G = 3.5 GPa, Poisson ratio ν = 0.33, gravity g= 1.32 m/s2, ice density ρ = 920 kg/m3, satellite radius R= 1.56 x 103 km, satellite mass M= 4.8 x 1022 kg, semimajor axis a= 6.71 x 105 km, and eccentricity e= 0.0094. In this study we assume a coefficient of friction μ = 0.6 and consider a range of vertical fault depths zto 6 km. To assess shear failure at AL, we adopt a model based on the Coulomb failure criterion. This model balances stresses that promote and resist the motion of a fault, simultaneously accounting for both normal and shear tidal and NSR stresses, the coefficient of friction of ice, and additional stress at depth due to the overburden pressure. In this model, tidal shear stresses drive strike-slip motions

  19. Accuracy improvement of a hybrid robot for ITER application using POE modeling method

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yongbo, E-mail: yongbo.wang@hotmail.com [Laboratory of Intelligent Machines, Lappeenranta University of Technology, FIN-53851 Lappeenranta (Finland); Wu, Huapeng; Handroos, Heikki [Laboratory of Intelligent Machines, Lappeenranta University of Technology, FIN-53851 Lappeenranta (Finland)

    2013-10-15

    Highlights: ► The product of exponential (POE) formula for error modeling of hybrid robot. ► Differential Evolution (DE) algorithm for parameter identification. ► Simulation results are given to verify the effectiveness of the method. -- Abstract: This paper focuses on the kinematic calibration of a 10 degree-of-freedom (DOF) redundant serial–parallel hybrid robot to improve its accuracy. The robot was designed to perform the assembling and repairing tasks of the vacuum vessel (VV) of the international thermonuclear experimental reactor (ITER). By employing the product of exponentials (POEs) formula, we extended the POE-based calibration method from serial robot to redundant serial–parallel hybrid robot. The proposed method combines the forward and inverse kinematics together to formulate a hybrid calibration method for serial–parallel hybrid robot. Because of the high nonlinear characteristics of the error model and too many error parameters need to be identified, the traditional iterative linear least-square algorithms cannot be used to identify the parameter errors. This paper employs a global optimization algorithm, Differential Evolution (DE), to identify parameter errors by solving the inverse kinematics of the hybrid robot. Furthermore, after the parameter errors were identified, the DE algorithm was adopted to numerically solve the forward kinematics of the hybrid robot to demonstrate the accuracy improvement of the end-effector. Numerical simulations were carried out by generating random parameter errors at the allowed tolerance limit and generating a number of configuration poses in the robot workspace. Simulation of the real experimental conditions shows that the accuracy of the end-effector can be improved to the same precision level of the given external measurement device.

  20. A maxent-stress model for graph layout.

    Science.gov (United States)

    Gansner, Emden R; Hu, Yifan; North, Stephen

    2013-06-01

    In some applications of graph visualization, input edges have associated target lengths. Dealing with these lengths is a challenge, especially for large graphs. Stress models are often employed in this situation. However, the traditional full stress model is not scalable due to its reliance on an initial all-pairs shortest path calculation. A number of fast approximation algorithms have been proposed. While they work well for some graphs, the results are less satisfactory on graphs of intrinsically high dimension, because some nodes may be placed too close together, or even share the same position. We propose a solution, called the maxent-stress model, which applies the principle of maximum entropy to cope with the extra degrees of freedom. We describe a force-augmented stress majorization algorithm that solves the maxent-stress model. Numerical results show that the algorithm scales well, and provides acceptable layouts for large, nonrigid graphs. This also has potential applications to scalable algorithms for statistical multidimensional scaling (MDS) with variable distances.

  1. Modeling of plasma in a hybrid electric propulsion for small satellites

    Science.gov (United States)

    Jugroot, Manish; Christou, Alex

    2016-09-01

    As space flight becomes more available and reliable, space-based technology is allowing for smaller and more cost-effective satellites to be produced. Working in large swarms, many small satellites can provide additional capabilities while reducing risk. These satellites require efficient, long term propulsion for manoeuvres, orbit maintenance and de-orbiting. The high exhaust velocity and propellant efficiency of electric propulsion makes it ideally suited for low thrust missions. The two dominant types of electric propulsion, namely ion thrusters and Hall thrusters, excel in different mission types. In this work, a novel electric hybrid propulsion design is modelled to enhance understanding of key phenomena and evaluate performance. Specifically, the modelled hybrid thruster seeks to overcome issues with existing Ion and Hall thruster designs. Scaling issues and optimization of the design will be discussed and will investigate a conceptual design of a hybrid spacecraft plasma engine.

  2. Atomistic modelling of residual stress at UO2 surfaces.

    Science.gov (United States)

    Arayro, Jack; Tréglia, Guy; Ribeiro, Fabienne

    2016-01-13

    Modelling oxide surface behaviour is of both technological and fundamental interest. In particular, in the case of the UO2 system, which is of major importance in the nuclear industry, it is essential to account for the link between microstructure and macroscopic mechanical properties. Indeed micromechanical models at the mesoscale need to be supplied by the energetic and stress data calculated at the nanoscale. In this framework, we present a theoretical study, coupling an analytical model and thermostatistical simulation to investigate the modifications induced by the presence of a surface regarding atomic relaxation and energetic and stress profiles. In particular, we show that the surface effective thickness as well as the stress profile, which are required by micromechanical approaches, are strongly anisotropic.

  3. Physical and JIT Model Based Hybrid Modeling Approach for Building Thermal Load Prediction

    Science.gov (United States)

    Iino, Yutaka; Murai, Masahiko; Murayama, Dai; Motoyama, Ichiro

    Energy conservation in building fields is one of the key issues in environmental point of view as well as that of industrial, transportation and residential fields. The half of the total energy consumption in a building is occupied by HVAC (Heating, Ventilating and Air Conditioning) systems. In order to realize energy conservation of HVAC system, a thermal load prediction model for building is required. This paper propose a hybrid modeling approach with physical and Just-in-Time (JIT) model for building thermal load prediction. The proposed method has features and benefits such as, (1) it is applicable to the case in which past operation data for load prediction model learning is poor, (2) it has a self checking function, which always supervises if the data driven load prediction and the physical based one are consistent or not, so it can find if something is wrong in load prediction procedure, (3) it has ability to adjust load prediction in real-time against sudden change of model parameters and environmental conditions. The proposed method is evaluated with real operation data of an existing building, and the improvement of load prediction performance is illustrated.

  4. TRISO-Fuel Element Performance Modeling for the Hybrid LIFE Engine with Pu Fuel Blanket

    Energy Technology Data Exchange (ETDEWEB)

    DeMange, P; Marian, J; Caro, M; Caro, A

    2010-02-18

    A TRISO-coated fuel thermo-mechanical performance study is performed for the hybrid LIFE engine to test the viability of TRISO particles to achieve ultra-high burnup of a weapons-grade Pu blanket. Our methodology includes full elastic anisotropy, time and temperature varying material properties for all TRISO layers, and a procedure to remap the elastic solutions in order to achieve fast fluences up to 30 x 10{sup 25} n {center_dot} m{sup -2} (E > 0.18 MeV). In order to model fast fluences in the range of {approx} 7 {approx} 30 x 10{sup 25} n {center_dot} m{sup -2}, for which no data exist, careful scalings and extrapolations of the known TRISO material properties are carried out under a number of potential scenarios. A number of findings can be extracted from our study. First, failure of the internal pyrolytic carbon (PyC) layer occurs within the first two months of operation. Then, the particles behave as BISO-coated particles, with the internal pressure being withstood directly by the SiC layer. Later, after 1.6 years, the remaining PyC crumbles due to void swelling and the fuel particle becomes a single-SiC-layer particle. Unrestrained by the PyC layers, and at the temperatures and fluences in the LIFE engine, the SiC layer maintains reasonably-low tensile stresses until the end-of-life. Second, the PyC creep constant, K, has a striking influence on the fuel performance of TRISO-coated particles, whose stresses scale almost inversely proportional to K. Obtaining more reliable measurements, especially at higher fluences, is an imperative for the fidelity of our models. Finally, varying the geometry of the TRISO-coated fuel particles results in little differences in the scope of fuel performance. The mechanical integrity of 2-cm graphite pebbles that act as fuel matrix has also been studied and it is concluded that they can reliable serve the entire LIFE burnup cycle without failure.

  5. Sex differences in the chronic mild stress model of depression.

    Science.gov (United States)

    Franceschelli, Anthony; Herchick, Samantha; Thelen, Connor; Papadopoulou-Daifoti, Zeta; Pitychoutis, Pothitos M

    2014-09-01

    A large volume of clinical and experimental evidence documents sex differences in brain anatomy, chemistry, and function, as well as in stress and drug responses. The chronic mild stress model (CMS) is one of the most extensively investigated animal models of chronic stress. However, only a limited number of studies have been conducted in female rodents despite the markedly higher prevalence of major depression among women. Herein, we review CMS studies conducted in rats and mice of both sexes and further discuss intriguing sex-dependent behavioral and neurobiological findings. The PubMed literature search engine was used to find and collect all relevant articles analyzed in this review. Specifically, a multitermed search was performed with 'chronic mild stress', 'chronic unpredictable stress' and 'chronic variable stress' as base terms and 'sex', 'gender', 'females' and 'depression' as secondary terms in various combinations. Male and female rodents appear to be differentially affected by CMS application, depending on the behavioral, physiological, and neurobiological indices that are being measured. Importantly, the CMS paradigm, despite its limitations, has been successfully used to assess a constellation of interdisciplinary research questions in the sex differences field and has served as a 'silver bullet' in assessing the role of sex in the neurobiology of major depression.

  6. Global test of seismic static stress triggering model

    Institute of Scientific and Technical Information of China (English)

    万永革; 吴忠良; 周公威; 黄静; 秦立新

    2002-01-01

    Seismic static stress triggering model is tested using Harvard centroid moment tensor (CMT) solution catalogue of 1976~2000 and concept of (earthquake doublet(. Result shows that seismic static stress triggering effect does exist in the view of global earthquakes, but the effect is very weak. Dividing the earthquakes into thrust focal mechanism, normal focal mechanism, strike-slip focal mechanism, we find that non-strike-slip focal mechanism earthquakes have significant triggering effect, whereas, the triggering effect in strike-slip focal mechanism earthquakes is not obvious. Divided the subsequent events delay time of (earthquake doublet( into 5 classes of t(1, t<1, t(10, t<10, 1(t(10 (t is in unit of d), then seismic static stress triggering effect does not change with delay time in short time period after earthquakes. The research on seismic static stress triggering in different regions of the world indicates that triggering effect is significant in subduction belts. Seismic static stress triggering model is tested by using (earthquake doublets( in China and its adjacent region. The result indicates that seismic static stress triggering effect cannot be observed easily in China and its adjacent region due to the seismic focal mechanism type (most of the earthquakes are strike-slip earthquakes).

  7. Hybrid composites

    CSIR Research Space (South Africa)

    Jacob John, Maya

    2009-04-01

    Full Text Available effect was observed for the elongation at break of the hybrid composites. The impact strength of the hybrid composites increased with the addition of glass fibres. The tensile and impact properties of thermoplastic natural rubber reinforced short... panels made from conventional structural materials. Figure 3 illustrates the performance of cellular biocomposite panels against conventional systems used for building and residential construction, namely a pre- cast pre-stressed hollow core concrete...

  8. Hybrid OPC modeling with SEM contour technique for 10nm node process

    Science.gov (United States)

    Hitomi, Keiichiro; Halle, Scott; Miller, Marshal; Graur, Ioana; Saulnier, Nicole; Dunn, Derren; Okai, Nobuhiro; Hotta, Shoji; Yamaguchi, Atsuko; Komuro, Hitoshi; Ishimoto, Toru; Koshihara, Shunsuke; Hojo, Yutaka

    2014-03-01

    Hybrid OPC modeling is investigated using both CDs from 1D and simple 2D structures and contours extracted from complex 2D structures, which are obtained by a Critical Dimension-Scanning Electron Microscope (CD-SEM). Recent studies have addressed some of key issues needed for the implementation of contour extraction, including an edge detection algorithm consistent with conventional CD measurements, contour averaging and contour alignment. Firstly, pattern contours obtained from CD-SEM images were used to complement traditional site driven CD metrology for the calibration of OPC models for both metal and contact layers of 10 nm-node logic device, developed in Albany Nano-Tech. The accuracy of hybrid OPC model was compared with that of conventional OPC model, which was created with only CD data. Accuracy of the model, defined as total error root-mean-square (RMS), was improved by 23% with the use of hybrid OPC modeling for contact layer and 18% for metal layer, respectively. Pattern specific benefit of hybrid modeling was also examined. Resist shrink correction was applied to contours extracted from CD-SEM images in order to improve accuracy of the contours, and shrink corrected contours were used for OPC modeling. The accuracy of OPC model with shrink correction was compared with that without shrink correction, and total error RMS was decreased by 0.2nm (12%) with shrink correction technique. Variation of model accuracy among 8 modeling runs with different model calibration patterns was reduced by applying shrink correction. The shrink correction of contours can improve accuracy and stability of OPC model.

  9. A hybrid modelling approach to simulating foot-and-mouth disease outbreaks in Australian livestock

    Directory of Open Access Journals (Sweden)

    Richard A Bradhurst

    2015-03-01

    Full Text Available Foot-and-mouth disease (FMD is a highly contagious and economically important viral disease of cloven-hoofed animals. Australia's freedom from FMD underpins a valuable trade in live animals and animal products. An outbreak of FMD would result in the loss of export markets and cause severe disruption to domestic markets. The prevention of, and contingency planning for, FMD are of key importance to government, industry, producers and the community. The spread and control of FMD is complex and dynamic due to a highly contagious multi-host pathogen operating in a heterogeneous environment across multiple jurisdictions. Epidemiological modelling is increasingly being recognized as a valuable tool for investigating the spread of disease under different conditions and the effectiveness of control strategies. Models of infectious disease can be broadly classified as: population-based models that are formulated from the top-down and employ population-level relationships to describe individual-level behaviour, individual-based models that are formulated from the bottom-up and aggregate individual-level behaviour to reveal population-level relationships, or hybrid models which combine the two approaches into a single model.The Australian Animal Disease Spread (AADIS hybrid model employs a deterministic equation-based model (EBM to model within-herd spread of FMD, and a stochastic, spatially-explicit agent-based model (ABM to model between-herd spread and control. The EBM provides concise and computationally efficient predictions of herd prevalence and clinical signs over time. The ABM captures the complex, stochastic and heterogeneous environment in which an FMD epidemic operates. The AADIS event-driven hybrid EBM/ABM architecture is a flexible, efficient and extensible framework for modelling the spread and control of disease in livestock on a national scale. We present an overview of the AADIS hybrid approach and a description of the model

  10. Modeling and Optimal Control of a Class of Warfare Hybrid Dynamic Systems Based on Lanchester (n,1 Attrition Model

    Directory of Open Access Journals (Sweden)

    Xiangyong Chen

    2014-01-01

    hybrid dynamic systems is established based on Lanchester equation in a (n,1 battle, where a heterogeneous force of n different troop types faces a homogeneous force. This model can be characterized by the interaction of continuous-time models (governed by Lanchester equation, and discrete event systems (described by variable tactics. Furthermore, an expository discussion is presented on an optimal variable tactics control problem for warfare hybrid dynamic system. The optimal control strategies are designed based on dynamic programming and differential game theory. As an example of the consequences of this optimal control problem, we take the (2, 1 case and solve the optimal strategies in a (2, 1 case. Simulation results show the feasibility of warfare hybrid system model and the effectiveness of the optimal control strategies designed.

  11. Development of residual stress prediction model in pipe weldment

    Energy Technology Data Exchange (ETDEWEB)

    Eom, Yun Yong; Lim, Se Young; Choi, Kang Hyeuk; Cho, Young Sam; Lim, Jae Hyuk [Korea Advanced Institute of Science and Technology, Taejon (Korea, Republic of)

    2002-03-15

    When Leak Before Break(LBB) concepts is applied to high energy piping of nuclear power plants, residual weld stresses is a important variable. The main purpose of his research is to develop the numerical model which can predict residual weld stresses. Firstly, basic theories were described which need to numerical analysis of welding parts. Before the analysis of pipe, welding of a flat plate was analyzed and compared. Appling the data of used pipes, thermal/mechanical analysis were accomplished and computed temperature gradient and residual stress distribution. For thermal analysis, proper heat flux was regarded as the heat source and convection/radiation heat transfer were considered at surfaces. The residual stresses were counted from the computed temperature gradient and they were compared and verified with a result of another research.

  12. Determination of residual stresses in sintered ceramics. A hypoelastic model

    Energy Technology Data Exchange (ETDEWEB)

    Taheri, F. (Advanced Materials Engineering Centre, Halifax, NS (Canada)); Murphy, J.G. (General Compiste Technology, Halifax, NS (Canada))

    1991-04-01

    The ceramic firing cycles necessary for sintering often produce high thermal gradients. Such thermal cycles, especially in materials with low thermal conductivity, can cause different densification rates. The result of such mechanical nonuniformity is the formation of residual stress patterns in the materials. The magnitude of these stresses is sufficient to cause microcracks to occur. In this study, a practical and versatile methodology used in evaluating the residual stresses resulting from mechanical nonuniformity in slip cast ceramics will be discussed. The analysis uses the commercial finite element program ABAQUS in conjunction with a hypoelastic material constitutive model. The qualitative results obtained from the preliminary finite element method (FEM) investigations illustrate that this numerical methodology can be used to emulate the sintering mechanism, and estimate the residual stresses caused by sintering processes. (orig.).

  13. Ultra-Short-Term Wind Power Prediction Using a Hybrid Model

    Science.gov (United States)

    Mohammed, E.; Wang, S.; Yu, J.

    2017-05-01

    This paper aims to develop and apply a hybrid model of two data analytical methods, multiple linear regressions and least square (MLR&LS), for ultra-short-term wind power prediction (WPP), for example taking, Northeast China electricity demand. The data was obtained from the historical records of wind power from an offshore region, and from a wind farm of the wind power plant in the areas. The WPP achieved in two stages: first, the ratios of wind power were forecasted using the proposed hybrid method, and then the transformation of these ratios of wind power to obtain forecasted values. The hybrid model combines the persistence methods, MLR and LS. The proposed method included two prediction types, multi-point prediction and single-point prediction. WPP is tested by applying different models such as autoregressive moving average (ARMA), autoregressive integrated moving average (ARIMA) and artificial neural network (ANN). By comparing results of the above models, the validity of the proposed hybrid model is confirmed in terms of error and correlation coefficient. Comparison of results confirmed that the proposed method works effectively. Additional, forecasting errors were also computed and compared, to improve understanding of how to depict highly variable WPP and the correlations between actual and predicted wind power.

  14. Adaptive Agent Model with Hybrid Routing Selection Strategy for Improving the Road-Network Congestion Problem

    Institute of Scientific and Technical Information of China (English)

    Bin Jiang; Chao Yang; Takao Terano

    2015-01-01

    This paper proposes an adaptive agent model with a hybrid routing selection strategy for studying the road⁃network congestion problem. We focus on improving those severely congested links. Firstly, a multi⁃agent system is built, where each agent stands for a vehicle, and it makes its routing selection by considering the shortest path and the minimum congested degree of the target link simultaneously. The agent⁃based model captures the nonlinear feedback between vehicle routing behaviors and road⁃network congestion status. Secondly, a hybrid routing selection strategy is provided, which guides the vehicle routes adapting to the real⁃time road⁃network congestion status. On this basis, we execute simulation experiments and compare the simulation results of network congestion distribution, by Floyd agent with shortest path strategy and our proposed adaptive agent with hybrid strategy. The simulation results show that our proposed model has reduced the congestion degree of those seriously congested links of road⁃network. Finally, we execute our model on a real road map. The results finds that those seriously congested roads have some common features such as located at the road junction or near the unique road connecting two areas. And, the results also show an effectiveness of our model on reduction of those seriously congested links in this actual road network. Such a bottom⁃up congestion control approach with a hybrid congestion optimization perspective will have its significance for actual traffic congestion control.

  15. Hybrid Dynamic Modeling and Control of Molten Carbonate Fuel Cell Stack Shutdown

    Institute of Scientific and Technical Information of China (English)

    LI Yong; CAO Guang-yi; ZHU Xin-jian

    2007-01-01

    A hybrid automaton modeling approach that incorporates state space partitioning, phase dynamic modeling and control law synthesis by control strategy is utilized to develop a hybrid automaton model of molten carbonate fuel cell (MCFC) stack shutdown. The shutdown operation is divided into several phases and their boundaries are decided according to a control strategy, which is a set of specifications about the dynamics of MCFC stack during shutdown. According to the control strategy, the specification of increasing stack temperature is satisfied in a phase that can be modeled accurately. The model for phase that has complex dynamic is approximated. The duration of this kind of phase is decreased to minimize the error caused by model approximation.

  16. A modeling method of semiconductor fabrication flows with extended knowledge hybrid Petri nets

    Institute of Scientific and Technical Information of China (English)

    Zhou Binghai; Jiang Shuyu; Wang Shijin; Wu bin

    2008-01-01

    A modeling method of extended knowledge hybrid Petri nets (EKHPNs), incorporating object-oriented methods into hybrid Petri nets (HPNs), was presented and used for the representation and modeling of semiconductor wafer fabrication flows. To model the discrete and continuous parts of a complex semiconductor wafer fabrication flow, the HPNs were introduced into the EKHPNs. Object-oriented methods were combined into the EKHPNs for coping with the complexity of the fabrication flow. Knowledge annotations were introduced to solve input and output conflicts of the EKHPNs.Finally, to demonstrate the validity of the EKHPN method, a real semiconductor wafer fabrication case was used to illustrate the modeling procedure. The modeling results indicate that the proposed method can be used to model a complex semiconductor wafer fabrication flow expediently.

  17. Job stress models for predicting burnout syndrome: a review.

    Science.gov (United States)

    Chirico, Francesco

    2016-01-01

    In Europe, the Council Directive 89/391 for improvement of workers' safety and health has emphasized the importance of addressing all occupational risk factors, and hence also psychosocial and organizational risk factors. Nevertheless, the construct of "work-related stress" elaborated from EU-OSHA is not totally corresponding with the "psychosocial" risk, that is a broader category of risk, comprising various and different psychosocial risk factors. The term "burnout", without any binding definition, tries to integrate symptoms as well as cause of the burnout process. In Europe, the most important methods developed for the work related stress risk assessment are based on the Cox's transactional model of job stress. Nevertheless, there are more specific models for predicting burnout syndrome. This literature review provides an overview of job burnout, highlighting the most important models of job burnout, such as the Job Strain, the Effort/Reward Imbalance and the Job Demands-Resources models. The difference between these models and the Cox's model of job stress is explored.

  18. Hybrid incompatibility arises in a sequence-based bioenergetic model of transcription factor binding.

    Science.gov (United States)

    Tulchinsky, Alexander Y; Johnson, Norman A; Watt, Ward B; Porter, Adam H

    2014-11-01

    Postzygotic isolation between incipient species results from the accumulation of incompatibilities that arise as a consequence of genetic divergence. When phenotypes are determined by regulatory interactions, hybrid incompatibility can evolve even as a consequence of parallel adaptation in parental populations because interacting genes can produce the same phenotype through incompatible allelic combinations. We explore the evolutionary conditions that promote and constrain hybrid incompatibility in regulatory networks using a bioenergetic model (combining thermodynamics and kinetics) of transcriptional regulation, considering the bioenergetic basis of molecular interactions between transcription factors (TFs) and their binding sites. The bioenergetic parameters consider the free energy of formation of the bond between the TF and its binding site and the availability of TFs in the intracellular environment. Together these determine fractional occupancy of the TF on the promoter site, the degree of subsequent gene expression and in diploids, and the degree of dominance among allelic interactions. This results in a sigmoid genotype-phenotype map and fitness landscape, with the details of the shape determining the degree of bioenergetic evolutionary constraint on hybrid incompatibility. Using individual-based simulations, we subjected two allopatric populations to parallel directional or stabilizing selection. Misregulation of hybrid gene expression occurred under either type of selection, although it evolved faster under directional selection. Under directional selection, the extent of hybrid incompatibility increased with the slope of the genotype-phenotype map near the derived parental expression level. Under stabilizing selection, hybrid incompatibility arose from compensatory mutations and was greater when the bioenergetic properties of the interaction caused the space of nearly neutral genotypes around the stable expression level to be wide. F2's showed higher

  19. Small World Effects in a Harmonious Unifying Hybrid Preferential Model Networks

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Small world effects in the harmonious unifying hybrid preferential model (HUHPM) networks are studied both numerically and analytically. The idea and method of the HUHPM is applied to three typical examples of unweighted BA model, weighted BBV model, and the TDE model, so-called HUHPM-BA, HUHPM-BBV and HUHPM-TDE networks. Comparing the HUHPM with current typical models above, it is found that the HUHPM networks has the smallest average path length and the biggest average clustering coefficient. The results demonstrate that the HUHPM is more suitable not only for the un-weighted models but also for the weighted models.

  20. Modeling of plasma and thermo-fluid transport in hybrid welding

    Science.gov (United States)

    Ribic, Brandon D.

    Hybrid welding combines a laser beam and electrical arc in order to join metals within a single pass at welding speeds on the order of 1 m min -1. Neither autonomous laser nor arc welding can achieve the weld geometry obtained from hybrid welding for the same process parameters. Depending upon the process parameters, hybrid weld depth and width can each be on the order of 5 mm. The ability to produce a wide weld bead increases gap tolerance for square joints which can reduce machining costs and joint fitting difficulty. The weld geometry and fast welding speed of hybrid welding make it a good choice for application in ship, pipeline, and aerospace welding. Heat transfer and fluid flow influence weld metal mixing, cooling rates, and weld bead geometry. Cooling rate affects weld microstructure and subsequent weld mechanical properties. Fluid flow and heat transfer in the liquid weld pool are affected by laser and arc energy absorption. The laser and arc generate plasmas which can influence arc and laser energy absorption. Metal vapors introduced from the keyhole, a vapor filled cavity formed near the laser focal point, influence arc plasma light emission and energy absorption. However, hybrid welding plasma properties near the opening of the keyhole are not known nor is the influence of arc power and heat source separation understood. A sound understanding of these processes is important to consistently achieving sound weldments. By varying process parameters during welding, it is possible to better understand their influence on temperature profiles, weld metal mixing, cooling rates, and plasma properties. The current literature has shown that important process parameters for hybrid welding include: arc power, laser power, and heat source separation distance. However, their influence on weld temperatures, fluid flow, cooling rates, and plasma properties are not well understood. Modeling has shown to be a successful means of better understanding the influence of