WorldWideScience

Sample records for hybrid solar manufactured

  1. Method of manufacturing a hybrid emitter all back contact solar cell

    Energy Technology Data Exchange (ETDEWEB)

    Loscutoff, Paul; Rim, Seung

    2017-02-07

    A method of manufacturing an all back contact solar cell which has a hybrid emitter design. The solar cell has a thin dielectric layer formed on a backside surface of a single crystalline silicon substrate. One emitter of the solar cell is made of doped polycrystalline silicon that is formed on the thin dielectric layer. A second emitter of the solar cell is formed in the single crystalline silicon substrate and is made of doped single crystalline silicon. The method further includes forming contact holes that allow metal contacts to connect to corresponding emitters.

  2. Eco green flexible hybrid photovoltaic-thermoelectric solar cells with nanoimprint technology and roll-to-roll manufacturing

    Science.gov (United States)

    Varadan, Vijay K.; Choi, Sang H.

    2010-04-01

    This paper explores the technical and commercial feasibility of nanotechnology based, high-efficiency, photovoltaic-thermoelectric hybrid solar cells as an environmentally-friendly, renewable energy source for residential and commercial buildings. To convert as much as possible of the usable photovoltaic (58% of the Energy Density) and thermoelectric (42% of the Energy Density) solar spectrum into electricity, a hybrid multilayer system is presented which comprises of 1) carbon nanotube (CNT) embedded in conducting polymers such as P3HT (poly(3-hexylthiophene) or P3OT (poly3-octylthiophene), 2) 3D gold nanostructures exhibiting plasmonic resonances for energy conversion, 3) nanoantenna architecture to capture IR energy, 4) a composite of Bi2Te3, SiGe nanocrystals and Au nanoshells as thermoelectric energy conversion layer, 5) configuration of the above items engineered in the form of meta-material designs that by virtue of their 3D structures ensure that incident light is neither reflected nor transmitted, but is rather all absorbed, 6) a multilayer arrangement of the above layers in a fractal architecture to capture all the wavelengths from 200 to 3000 nm8 and the matching electronic interface for each layer. The roll-to-roll manufacturing method presented will enable economical large-scale production of solar panels. This potentially transformational technology has the ability to replace the Si solar cell technology by reducing costs from 0.18/KWh to 0.003/KWh while introducing a more environmentally-friendly manufacturing process.

  3. Additive Manufacturing of Hybrid Circuits

    Science.gov (United States)

    Sarobol, Pylin; Cook, Adam; Clem, Paul G.; Keicher, David; Hirschfeld, Deidre; Hall, Aaron C.; Bell, Nelson S.

    2016-07-01

    There is a rising interest in developing functional electronics using additively manufactured components. Considerations in materials selection and pathways to forming hybrid circuits and devices must demonstrate useful electronic function; must enable integration; and must complement the complex shape, low cost, high volume, and high functionality of structural but generally electronically passive additively manufactured components. This article reviews several emerging technologies being used in industry and research/development to provide integration advantages of fabricating multilayer hybrid circuits or devices. First, we review a maskless, noncontact, direct write (DW) technology that excels in the deposition of metallic colloid inks for electrical interconnects. Second, we review a complementary technology, aerosol deposition (AD), which excels in the deposition of metallic and ceramic powder as consolidated, thick conformal coatings and is additionally patternable through masking. Finally, we show examples of hybrid circuits/devices integrated beyond 2-D planes, using combinations of DW or AD processes and conventional, established processes.

  4. Solar collector manufacturing activity, 1992

    Energy Technology Data Exchange (ETDEWEB)

    1993-11-09

    This report presents data provided by US-based manufacturers and importers of solar collectors. Summary data on solar thermal collector shipments are presented for the years 1974 through 1992. Summary data on photovoltaic cell and module shipments are presented for the years 1982 through 1992. Detailed information for solar thermal collectors and photovoltaic cells and modules are presented for 1992. Appendix A describes the survey methodology. Appendix B contains the 1992 survey forms and instructions. Appendices C and D list the companies that responded to the 1992 surveys and granted permission for their names and addresses to appear in the report. Appendix E provides selected tables from this report with data shown in the International System of Units (SI) metric units. Appendix F provides an estimate of installed capacity and energy production from solar collectors for 1992.

  5. NextFlex Flexible Hybrid Electronics Manufacturing

    Science.gov (United States)

    2016-10-01

    and innovators, along with a robust U.S. network of manufacturing nodes, to advance a national flexible hybrid electronics (FHE) manufacturing...methods to scale up today’s FHE laboratory experiments into smart , affordable products. FHE manufacturing en- compasses innovative electronic...The software design tools will encompass multiphysics simulation (e.g., electrical , thermal, mechanical, etc., interactions based on first principles

  6. Hybrid solar lighting distribution systems and components

    Science.gov (United States)

    Muhs, Jeffrey D.; Earl, Dennis D.; Beshears, David L.; Maxey, Lonnie C.; Jordan, John K.; Lind, Randall F.

    2011-07-05

    A hybrid solar lighting distribution system and components having at least one hybrid solar concentrator, at least one fiber receiver, at least one hybrid luminaire, and a light distribution system operably connected to each hybrid solar concentrator and each hybrid luminaire. A controller operates all components.

  7. Hybrid solar lighting systems and components

    Science.gov (United States)

    Muhs, Jeffrey D.; Earl, Dennis D.; Beshears, David L.; Maxey, Lonnie C.; Jordan, John K.; Lind, Randall F.

    2007-06-12

    A hybrid solar lighting system and components having at least one hybrid solar concentrator, at least one fiber receiver, at least one hybrid luminaire, and a light distribution system operably connected to each hybrid solar concentrator and each hybrid luminaire. A controller operates each component.

  8. Recent Developments in Abrasive Hybrid Manufacturing Processes

    Directory of Open Access Journals (Sweden)

    Ruszaj Adam

    2017-06-01

    Full Text Available Recent dynamic development of abrasive hybrid manufacturing processes results from application of a new difficult for machining materials and improvement of technological indicators of manufacturing processes already applied in practice. This tendency also occurs in abrasive machining processes which are often supported by ultrasonic vibrations, electrochemical dissolution or by electrical discharges. In the paper we present the review of new results of investigations and new practical applications of Abrasive Electrodischarge (AEDM and Electrochemical (AECM Machining.

  9. CERN manufactured hybrid photon detectors

    CERN Multimedia

    Maximilien Brice

    2004-01-01

    These hybrid photon detectors (HPDs) produce an electric signal from a single photon. An electron is liberated from a photocathode and accelerated to a silicon pixel array allowing the location of the photon on the cathode to be recorded. The electronics and optics for these devices have been developed in close collaboration with industry. HPDs have potential for further use in astrophysics and medical imaging.

  10. Organic and hybrid solar cells

    CERN Document Server

    Huang, Hui

    2014-01-01

    This book delivers a comprehensive evaluation of organic and hybrid solar cells and identifies their fundamental principles and numerous applications. Great attention is given to the charge transport mechanism, donor and acceptor materials, interfacial materials, alternative electrodes, device engineering and physics, and device stability. The authors provide an industrial perspective on the future of photovoltaic technologies.

  11. Towards stable silicon nanoarray hybrid solar cells.

    Science.gov (United States)

    He, W W; Wu, K J; Wang, K; Shi, T F; Wu, L; Li, S X; Teng, D Y; Ye, C H

    2014-01-16

    Silicon nanoarray hybrid solar cells benefit from the ease of fabrication and the cost-effectiveness of the hybrid structure, and represent a new research focus towards the utilization of solar energy. However, hybrid solar cells composed of both inorganic and organic components suffer from the notorious stability issue, which has to be tackled before the hybrid solar cells could become a viable alternative for harvesting solar energy. Here we show that Si nanoarray/PEDOT:PSS hybrid solar cells with improved stability can be fabricated via eliminating the water inclusion in the initial formation of the heterojunction between Si nanoarray and PEDOT:PSS. The Si nanoarray hybrid solar cells are stable against rapid degradation in the atmosphere environment for several months without encapsulation. This finding paves the way towards the real-world applications of Si nanoarray hybrid solar cells.

  12. Environmentally benign silicon solar cell manufacturing

    Energy Technology Data Exchange (ETDEWEB)

    Tsuo, Y.S. [National Renewable Energy Lab., Golden, CO (United States); Gee, J.M. [Sandia National Labs., Albuquerque, NM (United States); Menna, P. [National Agency for New Technologies Energy and Environment, Portici (Italy); Strebkov, D.S.; Pinov, A.; Zadde, V. [Intersolarcenter, Moscow (Russian Federation)

    1998-09-01

    The manufacturing of silicon devices--from polysilicon production, crystal growth, ingot slicing, wafer cleaning, device processing, to encapsulation--requires many steps that are energy intensive and use large amounts of water and toxic chemicals. In the past two years, the silicon integrated-circuit (IC) industry has initiated several programs to promote environmentally benign manufacturing, i.e., manufacturing practices that recover, recycle, and reuse materials resources with a minimal consumption of energy. Crystalline-silicon solar photovoltaic (PV) modules, which accounted for 87% of the worldwide module shipments in 1997, are large-area devices with many manufacturing steps similar to those used in the IC industry. Obviously, there are significant opportunities for the PV industry to implement more environmentally benign manufacturing approaches. Such approaches often have the potential for significant cost reduction by reducing energy use and/or the purchase volume of new chemicals and by cutting the amount of used chemicals that must be discarded. This paper will review recent accomplishments of the IC industry initiatives and discuss new processes for environmentally benign silicon solar-cell manufacturing.

  13. Solar-geothermal hybrid system

    Energy Technology Data Exchange (ETDEWEB)

    Lentz, Alvaro; Almanza, Rafael [Instituto de Ingenieria, UNAM, Ciudad Universitaria, Edificio 12, 04510 Mexico DF (Mexico)

    2006-10-15

    The Cerro Prieto Geothermal Power Plant is located in the northwest of Mexico, lat. 32{sup o}39', long. 115{sup o}21' in the northern hemisphere. A solar-geothermal hybrid system is proposed in order to increase the steam flow during the present geothermal cycle, adding a solar field of parabolic trough concentrators. Energy is supplied to the geothermal flow from wells in order to increase the steam generation rate. This configuration will increase the capacity factor of the system by generating additional steam during the peak demand hours. The parabolic trough solar field is evaluated in North-South and East-West orientation collector alignments. A proposal to obtain an increase of 10% in steam flow is evaluated, as the increase in flow is limited by the content of dissolved salts, so as to avoid a liquid phase with high salt concentrations. The size of the parabolic troughs field was obtained. (author)

  14. Nanostructured organic and hybrid solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Weickert, Jonas; Dunbar, Ricky B.; Hesse, Holger C.; Wiedemann, Wolfgang; Schmidt-Mende, Lukas [Department of Physics and Center for NanoScience (CeNS), Ludwig-Maximilians University (LMU) Munich, Amalienstr. 54, 80799 Munich (Germany)

    2011-04-26

    This progress report highlights recent developments in nanostructured organic and hybrid solar cells. The authors discuss novel approaches to control the film morphology in fully organic solar cells and the design of nanostructured hybrid solar cells. The motivation and recent results concerning fabrication and effects on device physics are emphasized. The aim of this review is not to give a summary of all recent results in organic and hybrid solar cells, but rather to focus on the fabrication, device physics, and light trapping properties of nanostructured organic and hybrid devices. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  15. Laser technology in solar absorber manufacturing; Laser punktet

    Energy Technology Data Exchange (ETDEWEB)

    Berner, Joachim

    2009-12-07

    No other solar collector manufacturing stage is as fully automatic as absorber fabrication. Laser welding systems are well established in the market. In addition to welding machines, some manufacturers are also offering complete assembly lines for solar collector production. SONNE WIND and WAeRME presents technologies and manufacturers. (orig./AKB)

  16. Solar cell circuit and method for manufacturing solar cells

    Science.gov (United States)

    Mardesich, Nick (Inventor)

    2010-01-01

    The invention is a novel manufacturing method for making multi-junction solar cell circuits that addresses current problems associated with such circuits by allowing the formation of integral diodes in the cells and allows for a large number of circuits to readily be placed on a single silicon wafer substrate. The standard Ge wafer used as the base for multi-junction solar cells is replaced with a thinner layer of Ge or a II-V semiconductor material on a silicon/silicon dioxide substrate. This allows high-voltage cells with multiple multi-junction circuits to be manufactured on a single wafer, resulting in less array assembly mass and simplified power management.

  17. Future hybrid systems: solar and hydrogen

    Energy Technology Data Exchange (ETDEWEB)

    Kazmerski, L.L. [National Renewable Energy Lab., Golden, CO (United States); Broussard, K. [National Renewable Energy Lab., Golden, CO (United States)]|[NREL MURA Intern from Southern Univ., Baton Rouge, LA (United States)

    2003-07-01

    Future solar and hydrogen hybrid systems are discussed in terms of the evolving hydrogen economy. The focus is on distributed hydrogen, relying on the same distributed-energy strengths of solar-photovoltaic electricity in the built environment. Solar-hydrogen residences, as well as solar parks, are presented. Landarea issues are evaluated, and the economics and potential of these approaches are examined in terms of roadmap predictions on PV and hydrogen pathways. (orig.)

  18. Printing Processes Used to Manufacture Photovoltaic Solar Cells

    Science.gov (United States)

    Rardin, Tina E.; Xu, Renmei

    2011-01-01

    There is a growing need for renewable energy sources, and solar power is a good option in many instances. Photovoltaic solar panels are now being manufactured via various methods, and different printing processes are being incorporated into the manufacturing process. Screen printing has been used most prevalently in the printing process to make…

  19. Solar Cell Panel and the Method for Manufacturing the Same

    Science.gov (United States)

    Richards, Benjamin C. (Inventor); Sarver, Charles F. (Inventor); Naidenkova, Maria (Inventor)

    2016-01-01

    According to an aspect of an embodiment of the present disclosure, there is provided a solar cell panel and a method for manufacturing the same. The solar cell panel comprises: a solar cell for generating electric power from sunlight; a coverglass for covering the solar cell; transparent shims, which are disposed between the solar cell and the coverglass at the points where the distance between the solar cell and the coverglass needs to be controlled, and form a space between the solar cell and the coverglass; and adhesive layer, which fills the space between the solar cell and the coverglass and has the thickness the same as that of the transparent shims.

  20. Hybrid emitter all back contact solar cell

    Science.gov (United States)

    Loscutoff, Paul; Rim, Seung

    2016-04-12

    An all back contact solar cell has a hybrid emitter design. The solar cell has a thin dielectric layer formed on a backside surface of a single crystalline silicon substrate. One emitter of the solar cell is made of doped polycrystalline silicon that is formed on the thin dielectric layer. The other emitter of the solar cell is formed in the single crystalline silicon substrate and is made of doped single crystalline silicon. The solar cell includes contact holes that allow metal contacts to connect to corresponding emitters.

  1. Wind-solar Hybrid Power System

    OpenAIRE

    Jin, Fei

    2014-01-01

    In the development and utilization of new energy sources, the solar energy and wind energy are paid more attention by various countries, and have become a new field of energy development and utilization of the highest level, the most mature technology, the most widely used and commercial development conditions for new energy. But both the traditional wind power system and solar power system have the characteristic of energy instability. Therefore, wind-solar hybrid power system was proposed i...

  2. Simulation of hybrid solar power plants

    Science.gov (United States)

    Dieckmann, Simon; Dersch, Jürgen

    2017-06-01

    Hybrid solar power plants have the potential to combine advantages of two different technologies at the cost of increased complexity. The present paper shows the potential of the software greenius for the techno-economic evaluation of hybrid solar power plants and discusses two exemplary scenarios. Depreciated Concentrated Solar Power (CSP) plants based on trough technology can be retrofitted with solar towers in order to reach higher steam cycle temperatures and hence efficiencies. Compared to a newly built tower plant the hybridization of a depreciated trough plant causes about 30% lower LCOE reaching 104 /MWh. The second hybrid scenario combines cost-efficient photovoltaics with dispatchable CSP technology. This hybrid plant offers very high capacity factors up to 69% based on 100% load from 8am to 11pm. The LCOE of the hybrid plant are only slightly lower (174 vs. 186 /MWh) compared to the pure CSP plant because the capital expenditure for thermal storage and power block remains the same while the electricity output is much lower.

  3. An Architecture for Hybrid Manufacturing Combining 3D Printing and CNC Machining

    OpenAIRE

    Marcel Müller; Elmar Wings

    2016-01-01

    Additive manufacturing is one of the key technologies of the 21st century. Additive manufacturing processes are often combined with subtractive manufacturing processes to create hybrid manufacturing because it is useful for manufacturing complex parts, for example, 3D printed sensor systems. Currently, several CNC machines are required for hybrid manufacturing: one machine is required for additive manufacturing and one is required for subtractive manufacturing. Disadvantages of conventional h...

  4. An Architecture for Hybrid Manufacturing Combining 3D Printing and CNC Machining

    OpenAIRE

    Marcel Müller; Elmar Wings

    2016-01-01

    Additive manufacturing is one of the key technologies of the 21st century. Additive manufacturing processes are often combined with subtractive manufacturing processes to create hybrid manufacturing because it is useful for manufacturing complex parts, for example, 3D printed sensor systems. Currently, several CNC machines are required for hybrid manufacturing: one machine is required for additive manufacturing and one is required for subtractive manufacturing. Disadvantages of conventional h...

  5. Hybrid Additive Manufacturing Technologies - An Analysis Regarding Potentials and Applications

    Science.gov (United States)

    Merklein, Marion; Junker, Daniel; Schaub, Adam; Neubauer, Franziska

    Imposing the trend of mass customization of lightweight construction in industry, conventional manufacturing processes like forming technology and chipping production are pushed to their limits for economical manufacturing. More flexible processes are needed which were developed by the additive manufacturing technology. This toolless production principle offers a high geometrical freedom and an optimized utilization of the used material. Thus load adjusted lightweight components can be produced in small lot sizes in an economical way. To compensate disadvantages like inadequate accuracy and surface roughness hybrid machines combining additive and subtractive manufacturing are developed. Within this paper the principles of mainly used additive manufacturing processes of metals and their possibility to be integrated into a hybrid production machine are summarized. It is pointed out that in particular the integration of deposition processes into a CNC milling center supposes high potential for manufacturing larger parts with high accuracy. Furthermore the combination of additive and subtractive manufacturing allows the production of ready to use products within one single machine. Additionally actual research for the integration of additive manufacturing processes into the production chain will be analyzed. For the long manufacturing time of additive production processes the combination with conventional manufacturing processes like sheet or bulk metal forming seems an effective solution. Especially large volumes can be produced by conventional processes. In an additional production step active elements can be applied by additive manufacturing. This principle is also investigated for tool production to reduce chipping of the high strength material used for forming tools. The aim is the addition of active elements onto a geometrical simple basis by using Laser Metal Deposition. That process allows the utilization of several powder materials during one process what

  6. THE CONCEPT OF HYBRID MANUFACTURING FOR HIGH PERFORMANCE PARTS#

    Directory of Open Access Journals (Sweden)

    K. Boivie

    2012-01-01

    Full Text Available

    ENGLISH ABSTRACT: The development of additive manufacturing technology (AMT for metallic materials has reached a level where the processes are capable of producing complex geometries with industrial grade material properties. However, AMT is still hardly competitive with conventional (subtractive machining with regard to production speed, accuracy, and surface quality. To address these limitations, AMT can be combined with subtractive manufacturing technology into a hybrid manufacturing system. This paper introduces the concept of hybrid manufacturing with examples from ongoing industrial case studies, and describes the requirements for the future development of an integrated hybrid manufacturing system.

    AFRIKAANSE OPSOMMING: Die ontwikkeling van byvoegende vervaardigingstegnologie vir metaal het die peil bereik waar prosesse in staat is om komplekse meetkundes te vervaardig met nywerheidsgraad materiale. Die tegnologie ondervind egter strawwe mededinging vanaf konvensionele masjinering ten opsigte van produksienetheid, akkuraatheid en oppervlakte-afwerking. Die twee mededingende metodes kan egter tesame gebruik word as ’n bastersisteem soos getoon deur voortgaande industriële gevallestudies.

  7. Solar-collector manufacturing activity, July through December, 1981

    Energy Technology Data Exchange (ETDEWEB)

    None

    1982-03-01

    Solar thermal collector and solar cell manufacturing activity is both summarized and tabulated. Data are compared for three survey periods (July through December, 1981; January through June, 1981; and July through December, 1980). Annual totals are also provided for the years 1979 through 1981. Data include total producer shipments, end use, market sector, imports and exports. (LEW)

  8. Hybrid solar cells : Perovskites under the Sun

    NARCIS (Netherlands)

    Loi, Maria Antonietta; Hummelen, Jan C.

    2013-01-01

    Mixed-halide organic–inorganic hybrid perovskites are reported to display electron–hole diffusion lengths over 1 μm. This observation provides important insight into the charge-carrier dynamics of this class of semiconductors and increases the expectations for highly efficient and cheap solar cells.

  9. A Novel Robot of Manufacturing Space Solar Cell Arrays

    Directory of Open Access Journals (Sweden)

    Wu Yuexin

    2008-11-01

    Full Text Available This paper presents a novel robot employed to manufacture space solar cell arrays. First of all including the mechanical configuration and control system, the architecture of the robot is described. Then the flow velocity field of adhesive in the dispensing needles is acquired based on hydrodynamics. The accurate section form model of adhesive dispensed on the solar cells is obtained, which is essential for the robot to control the uniformity of dispensing adhesive. Finally the experiment validates the feasibility and reliability of the robot system. The application of robots instead of manual work in manufacturing space solar cell arrays will enhance the development of space industry.

  10. A Novel Robot of Manufacturing Space Solar Cell Arrays

    Directory of Open Access Journals (Sweden)

    Wu Yuexin

    2007-03-01

    Full Text Available This paper presents a novel robot employed to manufacture space solar cell arrays. First of all including the mechanical configuration and control system, the architecture of the robot is described. Then the flow velocity field of adhesive in the dispensing needles is acquired based on hydrodynamics. The accurate section form model of adhesive dispensed on the solar cells is obtained, which is essential for the robot to control the uniformity of dispensing adhesive. Finally the experiment validates the feasibility and reliability of the robot system. The application of robots instead of manual work in manufacturing space solar cell arrays will enhance the development of space industry.

  11. Laser Crystallization of Organic-Inorganic Hybrid Perovskite Solar Cells.

    Science.gov (United States)

    Jeon, Taewoo; Jin, Hyeong Min; Lee, Seung Hyun; Lee, Ju Min; Park, Hyung Il; Kim, Mi Kyung; Lee, Keon Jae; Shin, Byungha; Kim, Sang Ouk

    2016-08-23

    Organic-inorganic hybrid perovskites attract enormous research interest for next generation solar energy harvest. Synergistic crystalline structures comprising organic and inorganic components enable solution processing of perovskite films. A reliable crystallization method for perovskites, compatible with fast continuous process over large-area flexible substrates, is crucial for high performance solar cell production. Here, we present laser crystallization of hybrid perovskite solar cells using near-infrared (NIR) laser (λ = 1064 nm). Crystalline morphology of CH3NH3PbI3 (MAPbI3) perovskite films are widely controllable with laser irradiation condition while maintaining film uniformity. Photothermal heating effectively assisted by interfacial photoconversion layers is critical for phase transformation without beam damage of multilayered device structures. Notably, laser crystallization attains higher device performances than conventional thermal annealing. Fast laser crystallization with manufacture level scan rate (1 m min(-1)) demonstrates inverted-type perovskite solar cells with 11.3 and 8.0% efficiencies on typical glass and flexible polymer substrates, respectively, without rigorous device optimization.

  12. Hybrid Silicon Nanocone–Polymer Solar Cells

    KAUST Repository

    Jeong, Sangmoo

    2012-06-13

    Recently, hybrid Si/organic solar cells have been studied for low-cost Si photovoltaic devices because the Schottky junction between the Si and organic material can be formed by solution processes at a low temperature. In this study, we demonstrate a hybrid solar cell composed of Si nanocones and conductive polymer. The optimal nanocone structure with an aspect ratio (height/diameter of a nanocone) less than two allowed for conformal polymer surface coverage via spin-coating while also providing both excellent antireflection and light trapping properties. The uniform heterojunction over the nanocones with enhanced light absorption resulted in a power conversion efficiency above 11%. Based on our simulation study, the optimal nanocone structures for a 10 μm thick Si solar cell can achieve a short-circuit current density, up to 39.1 mA/cm 2, which is very close to the theoretical limit. With very thin material and inexpensive processing, hybrid Si nanocone/polymer solar cells are promising as an economically viable alternative energy solution. © 2012 American Chemical Society.

  13. An Architecture for Hybrid Manufacturing Combining 3D Printing and CNC Machining

    Directory of Open Access Journals (Sweden)

    Marcel Müller

    2016-01-01

    Full Text Available Additive manufacturing is one of the key technologies of the 21st century. Additive manufacturing processes are often combined with subtractive manufacturing processes to create hybrid manufacturing because it is useful for manufacturing complex parts, for example, 3D printed sensor systems. Currently, several CNC machines are required for hybrid manufacturing: one machine is required for additive manufacturing and one is required for subtractive manufacturing. Disadvantages of conventional hybrid manufacturing methods are presented. Hybrid manufacturing with one CNC machine offers many advantages. It enables manufacturing of parts with higher accuracy, less production time, and lower costs. Using the example of fused layer modeling (FLM, we present a general approach for the integration of additive manufacturing processes into a numerical control for machine tools. The resulting CNC architecture is presented and its functionality is demonstrated. Its application is beyond the scope of this paper.

  14. Analysis of hybrid solar systems

    Science.gov (United States)

    Swisher, J.

    1980-10-01

    The TRNSYS simulation program was used to evaluate the performance of active charge/passive discharge solar systems with water as the working fluid. TRNSYS simulations are used to evaluate the heating performance and cooling augmentation provided by systems in several climates. The results of the simulations are used to develop a simplified analysis tool similar to the F-chart and Phi-bar procedures used for active systems. This tool, currently in a preliminary stage, should provide the designer with quantitative performance estimates for comparison with other passive, active, and nonsolar heating and cooling designs.

  15. Hybrid solar cell on a carbon fiber

    Science.gov (United States)

    Grynko, Dmytro A.; Fedoryak, Alexander N.; Smertenko, Petro S.; Dimitriev, Oleg P.; Ogurtsov, Nikolay A.; Pud, Alexander A.

    2016-05-01

    In this work, a method to assemble nanoscale hybrid solar cells in the form of a brush of radially oriented CdS nanowire crystals around a single carbon fiber is demonstrated for the first time. A solar cell was assembled on a carbon fiber with a diameter of ~5-10 μm which served as a core electrode; inorganic CdS nanowire crystals and organic dye or polymer layers were successively deposited on the carbon fiber as active components resulting in a core-shell photovoltaic structure. Polymer, dye-sensitized, and inverted solar cells have been prepared and compared with their analogues made on the flat indium-tin oxide electrode.

  16. Hybrid nanorod-polymer solar cells.

    Science.gov (United States)

    Huynh, Wendy U; Dittmer, Janke J; Alivisatos, A Paul

    2002-03-29

    We demonstrate that semiconductor nanorods can be used to fabricate readily processed and efficient hybrid solar cells together with polymers. By controlling nanorod length, we can change the distance on which electrons are transported directly through the thin film device. Tuning the band gap by altering the nanorod radius enabled us to optimize the overlap between the absorption spectrum of the cell and the solar emission spectrum. A photovoltaic device consisting of 7-nanometer by 60-nanometer CdSe nanorods and the conjugated polymer poly-3(hexylthiophene) was assembled from solution with an external quantum efficiency of over 54% and a monochromatic power conversion efficiency of 6.9% under 0.1 milliwatt per square centimeter illumination at 515 nanometers. Under Air Mass (A.M.) 1.5 Global solar conditions, we obtained a power conversion efficiency of 1.7%.

  17. Three-Dimensional Printing Based Hybrid Manufacturing of Microfluidic Devices.

    Science.gov (United States)

    Alapan, Yunus; Hasan, Muhammad Noman; Shen, Richang; Gurkan, Umut A

    2015-05-01

    Microfluidic platforms offer revolutionary and practical solutions to challenging problems in biology and medicine. Even though traditional micro/nanofabrication technologies expedited the emergence of the microfluidics field, recent advances in advanced additive manufacturing hold significant potential for single-step, stand-alone microfluidic device fabrication. One such technology, which holds a significant promise for next generation microsystem fabrication is three-dimensional (3D) printing. Presently, building 3D printed stand-alone microfluidic devices with fully embedded microchannels for applications in biology and medicine has the following challenges: (i) limitations in achievable design complexity, (ii) need for a wider variety of transparent materials, (iii) limited z-resolution, (iv) absence of extremely smooth surface finish, and (v) limitations in precision fabrication of hollow and void sections with extremely high surface area to volume ratio. We developed a new way to fabricate stand-alone microfluidic devices with integrated manifolds and embedded microchannels by utilizing a 3D printing and laser micromachined lamination based hybrid manufacturing approach. In this new fabrication method, we exploit the minimized fabrication steps enabled by 3D printing, and reduced assembly complexities facilitated by laser micromachined lamination method. The new hybrid fabrication method enables key features for advanced microfluidic system architecture: (i) increased design complexity in 3D, (ii) improved control over microflow behavior in all three directions and in multiple layers, (iii) transverse multilayer flow and precisely integrated flow distribution, and (iv) enhanced transparency for high resolution imaging and analysis. Hybrid manufacturing approaches hold great potential in advancing microfluidic device fabrication in terms of standardization, fast production, and user-independent manufacturing.

  18. Assessing the techno-economics of modular hybrid solar thermal systems

    Science.gov (United States)

    Lim, Jin Han; Chinnici, Alfonso; Dally, Bassam; Nathan, Graham

    2017-06-01

    A techno-economic assessment was performed on modular hybrid solar thermal (in particular, solar power tower) systems with combustion from natural gas as backup to provide a continuous supply of electricity. Two different configurations were compared, i.e. a Hybrid Solar Receiver Combustor (HSRC), in which the functions of a solar cavity receiver and a combustor are integrated into a single device, and a Solar Gas Hybrid (SGH), which is a reference hybrid solar thermal system with a standalone solar-only cavity receiver and a backup boiler. The techno-economic benefits were assessed by varying the size of the modular components, i.e. the heliostat field and the solar receivers. It was found that for modularization to be cost effective requires more than the increased learning from higher production of a larger number of smaller units, such as access to alternative, lower-cost manufacturing methods and/or the use of a low melting point Heat Transfer Fluid (HTF) such as sodium to reduce parasitic losses. In particular, for a plant with 30 units of 1MWth modules, the Levelized Cost of Electricity is competitive compared with a single unit of 30MWth after ˜100 plants are installed for both the HSRC and SGH if the systems employ the use of sodium as the heat transfer fluid.

  19. Improved photovoltaic performance of silicon nanowire/organic hybrid solar cells by incorporating silver nanoparticles.

    Science.gov (United States)

    Liu, Kong; Qu, Shengchun; Zhang, Xinhui; Tan, Furui; Wang, Zhanguo

    2013-02-18

    Silicon nanowire (SiNW) arrays show an excellent light-trapping characteristic and high mobility for carriers. Surface plasmon resonance of silver nanoparticles (AgNPs) can be used to increase light scattering and absorption in solar cells. We fabricated a new kind of SiNW/organic hybrid solar cell by introducing AgNPs. Reflection spectra confirm the improved light scattering of AgNP-decorated SiNW arrays. A double-junction tandem structure was designed to manufacture our hybrid cells. Both short-circuit current and external quantum efficiency measurements show an enhancement in optical absorption of organic layer, especially at lower wavelengths.

  20. A Bicontinuous Double Gyroid Hybrid Solar Cell

    KAUST Repository

    Crossland, Edward J. W.

    2009-08-12

    We report the first successful application of an ordered bicontinuous gyroid semiconducting network in a hybrid bulk heterojunction solar cell. The freestanding gyroid network is fabricated by electrochemical deposition into the 10 nm wide voided channels of a self-assembled, selectively degradable block copolymer film. The highly ordered pore structure is ideal for uniform infiltration of an organic hole transporting material, and solid-state dye-sensitized solar cells only 400 nm thick exhibit up to 1.7% power conversion efficiency. This patterning technique can be readily extended to other promising heterojunction systems and is a major step toward realizing the full potential of self-assembly in the next generation of device technologies. © 2009 American Chemical Society.

  1. Recent Advancements and Techniques in Manufacture of Solar Cells: Organic Solar Cells

    Directory of Open Access Journals (Sweden)

    B. Naga Venkata Sai Ganesh,

    2013-03-01

    Full Text Available The major problem faced by the society is power crisis. All the non-renewable resources like fossil fuelsnecessary for producing power are being used excessively, which might result a day in future where, the world might godark due to lack of power producing resources. Usage of renewable resources like solar energy can be a solution to thisproblem. Solar cells invented to overcome this problem show rigidity in their structure which is a drawback. Inorganicsolar cells are rigid and can be mounted only on rooftops. Hence only upper surface of buildings are utilized. In this paperwe bring out a new era or solar cells- organic solar cells, which are flexible. These organic solar cells offer the bestsolution for the above problem for a tradeoff of efficiency. This paper briefs the manufacturing technique of solar cellsfrom plastic i.e. ,organic polymers, their architecture, the working process of solar energy production from the organicsolar cells with their ease of usage

  2. HYBRID FUEL CELL-SOLAR CELL SPACE POWER SUBSYSTEM CAPABILITY.

    Science.gov (United States)

    This report outlines the capabilities and limitations of a hybrid solar cell- fuel cell space power subsystem by comparing the proposed hybrid system...to conventional power subsystem devices. The comparisons are based on projected 1968 capability in the areas of primary and secondary battery, fuel ... cell , solar cell, and chemical dynamic power subsystems. The purpose of the investigation was to determine the relative merits of a hybrid power

  3. Solar air-conditioning-active, hybrid and passive

    Energy Technology Data Exchange (ETDEWEB)

    Yellott, J. I.

    1981-04-01

    After a discussion of summer air conditioning requirements in the United States, active, hybrid, and passive cooling systems are defined. Active processes and systems include absorption, Rankine cycle, and a small variety of miscellaneous systems. The hybrid solar cooling and dehumidification technology of desiccation is covered as well as evaporative cooling. The passive solar cooling processes covered include convective, radiative and evaporative cooling. Federal and state involvement in solar cooling is then discussed. (LEW)

  4. Stillwater Hybrid Geo-Solar Power Plant Optimization Analyses

    Energy Technology Data Exchange (ETDEWEB)

    Wendt, Daniel S.; Mines, Gregory L.; Turchi, Craig S.; Zhu, Guangdong; Cohan, Sander; Angelini, Lorenzo; Bizzarri, Fabrizio; Consoli, Daniele; De Marzo, Alessio

    2015-09-02

    The Stillwater Power Plant is the first hybrid plant in the world able to bring together a medium-enthalpy geothermal unit with solar thermal and solar photovoltaic systems. Solar field and power plant models have been developed to predict the performance of the Stillwater geothermal / solar-thermal hybrid power plant. The models have been validated using operational data from the Stillwater plant. A preliminary effort to optimize performance of the Stillwater hybrid plant using optical characterization of the solar field has been completed. The Stillwater solar field optical characterization involved measurement of mirror reflectance, mirror slope error, and receiver position error. The measurements indicate that the solar field may generate 9% less energy than the design value if an appropriate tracking offset is not employed. A perfect tracking offset algorithm may be able to boost the solar field performance by about 15%. The validated Stillwater hybrid plant models were used to evaluate hybrid plant operating strategies including turbine IGV position optimization, ACC fan speed and turbine IGV position optimization, turbine inlet entropy control using optimization of multiple process variables, and mixed working fluid substitution. The hybrid plant models predict that each of these operating strategies could increase net power generation relative to the baseline Stillwater hybrid plant operations.

  5. Hybrid Perovskite/Perovskite Heterojunction Solar Cells.

    Science.gov (United States)

    Hu, Yinghong; Schlipf, Johannes; Wussler, Michael; Petrus, Michiel L; Jaegermann, Wolfram; Bein, Thomas; Müller-Buschbaum, Peter; Docampo, Pablo

    2016-06-28

    Recently developed organic-inorganic hybrid perovskite solar cells combine low-cost fabrication and high power conversion efficiency. Advances in perovskite film optimization have led to an outstanding power conversion efficiency of more than 20%. Looking forward, shifting the focus toward new device architectures holds great potential to induce the next leap in device performance. Here, we demonstrate a perovskite/perovskite heterojunction solar cell. We developed a facile solution-based cation infiltration process to deposit layered perovskite (LPK) structures onto methylammonium lead iodide (MAPI) films. Grazing-incidence wide-angle X-ray scattering experiments were performed to gain insights into the crystallite orientation and the formation process of the perovskite bilayer. Our results show that the self-assembly of the LPK layer on top of an intact MAPI layer is accompanied by a reorganization of the perovskite interface. This leads to an enhancement of the open-circuit voltage and power conversion efficiency due to reduced recombination losses, as well as improved moisture stability in the resulting photovoltaic devices.

  6. Energy Efficient Hybrid Dual Axis Solar Tracking System

    Directory of Open Access Journals (Sweden)

    Rashid Ahammed Ferdaus

    2014-01-01

    Full Text Available This paper describes the design and implementation of an energy efficient solar tracking system from a normal mechanical single axis to a hybrid dual axis. For optimizing the solar tracking mechanism electromechanical systems were evolved through implementation of different evolutional algorithms and methodologies. To present the tracker, a hybrid dual-axis solar tracking system is designed, built, and tested based on both the solar map and light sensor based continuous tracking mechanism. These light sensors also compare the darkness and cloudy and sunny conditions assisting daily tracking. The designed tracker can track sun’s apparent position at different months and seasons; thereby the electrical controlling device requires a real time clock device for guiding the tracking system in seeking solar position for the seasonal motion. So the combination of both of these tracking mechanisms made the designed tracker a hybrid one. The power gain and system power consumption are compared with a static and continuous dual axis solar tracking system. It is found that power gain of hybrid dual axis solar tracking system is almost equal to continuous dual axis solar tracking system, whereas the power saved in system operation by the hybrid tracker is 44.44% compared to the continuous tracking system.

  7. Hybrid additive manufacturing of 3D electronic systems

    Science.gov (United States)

    Li, J.; Wasley, T.; Nguyen, T. T.; Ta, V. D.; Shephard, J. D.; Stringer, J.; Smith, P.; Esenturk, E.; Connaughton, C.; Kay, R.

    2016-10-01

    A novel hybrid additive manufacturing (AM) technology combining digital light projection (DLP) stereolithography (SL) with 3D micro-dispensing alongside conventional surface mount packaging is presented in this work. This technology overcomes the inherent limitations of individual AM processes and integrates seamlessly with conventional packaging processes to enable the deposition of multiple materials. This facilitates the creation of bespoke end-use products with complex 3D geometry and multi-layer embedded electronic systems. Through a combination of four-point probe measurement and non-contact focus variation microscopy, it was identified that there was no obvious adverse effect of DLP SL embedding process on the electrical conductivity of printed conductors. The resistivity maintained to be less than 4  ×  10-4 Ω · cm before and after DLP SL embedding when cured at 100 °C for 1 h. The mechanical strength of SL specimens with thick polymerized layers was also identified through tensile testing. It was found that the polymerization thickness should be minimised (less than 2 mm) to maximise the bonding strength. As a demonstrator a polymer pyramid with embedded triple-layer 555 LED blinking circuitry was successfully fabricated to prove the technical viability.

  8. Manufacturing of CSS CdTe solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Bonnet, D. [ANTEC Solar GmbH, Rudisleben (Germany)

    2000-02-21

    Due to its basic physical and chemical properties CdTe has become a favoured base material for thin film solar cells, using robust, high-throughput manufacturing procedures. The technology shows significant potential for attaining cost levels of <0.5 Euro/W{sub p}. Close-spaced sublimation (CSS) is the fastest and simplest deposition process for both semiconductors used, CdTe and CdS, permitting in-line production at a high linear speed of about 1 m/min. The individual manufacturing steps for integrated modules are explained in view of their incorporation into the production line. ANTEC solar GmbH is engaged to enter the production of CdTe thin film modules on a scale of 10 MW{sub p} (100000 m{sup 2}) per annum, using CSS as the deposition procedure for the semiconductor films, and high-rate in-line sputtering for transparent and opaque contacts. Standard module size will be 60 x 120 cm{sup 2}. The production line is presently under construction. (orig.)

  9. Hybrid nanocone forests with high absorption in full-solar spectrum for solar cell applications

    Science.gov (United States)

    Yang, Yudong; Mao, Haiyang; Xiong, Jijun; Ming, Anjie; Wang, Weibing

    2016-11-01

    In this work, hybrid nanocone forests (HNFs) with high absorption in full-solar-spectrum are fabricated based on a plasma repolymerization technique. The HNFs combine light trapping effect of the nanocone forests with surface plasmon resonance effect of the metallic nanoparticles, thus can achieve an optimized absorption larger than 80% in the full-solar spectrum (i.e. 200-2500nm). Besides, with the hybrid nanostructures, the absorption decrease around the Si bandgap width can be narrowed greatly, while the normalized utilization efficiency of solar radiation can be increased. Therefore, usage of the HNFs as a texture structure in solar cells to obtain higher conversion efficiencies is foreseeable.

  10. Review of Polymer, Dye-Sensitized, and Hybrid Solar Cells

    Directory of Open Access Journals (Sweden)

    S. N. F. Mohd-Nasir

    2014-01-01

    Full Text Available The combination of inorganic nanoparticles semiconductor, conjugated polymer, and dye-sensitized in a layer of solar cell is now recognized as potential application in developing flexible, large area, and low cost photovoltaic devices. Several conjugated low bandgap polymers, dyes, and underlayer materials based on the previous studies are quoted in this paper, which can provide guidelines in designing low cost photovoltaic solar cells. All of these materials are designed to help harvest more sunlight in a wider range of the solar spectrum besides enhancing the rate of charge transfer in a device structure. This review focuses on developing solid-state dye-synthesized, polymer, and hybrid solar cells.

  11. Reconfigurable Equiplets Operating System A Hybrid Architecture to Combine Flexibility and Performance for Manufacturing

    NARCIS (Netherlands)

    Telgen, Daniël; Puik, Erik; Moergestel, leo van; Bakker, Tommas; Meyer, John-Jules

    2015-01-01

    Author supplied: Abstract—The growing importance and impact of new technologies are changing many industries. This effect is especially noticeable in the manufacturing industry. This paper explores a practical implementation of a hybrid architecture for the newest generation of manufacturing systems

  12. Reconfigurable Equiplets Operating System A Hybrid Architecture to Combine Flexibility and Performance for Manufacturing

    NARCIS (Netherlands)

    Daniël Telgen; Ing. Erik Puik; Leo van Moergestel; John-Jules Meyer; Tommas Bakker

    2015-01-01

    Author supplied: Abstract—The growing importance and impact of new technologies are changing many industries. This effect is especially noticeable in the manufacturing industry. This paper explores a practical implementation of a hybrid architecture for the newest generation of manufacturing

  13. Manufacturing of aluminium nano hybrid composites: a state of review

    Science.gov (United States)

    Madhukar, P.; Selvaraj, N.; Rao, CSP

    2016-09-01

    This paper gives the details of hybrid composites, their fabrication methods and evaluation of mechanical, tribological behaviour and machining characteristics. Investigations on the various aspects of Hybrid composites furnish several conclusions regarding the influence of various parameters on the performance of the composites. Mostly micro structures of the hybrid composites fabricated through casting routes have been found to be stable with the distribution of uniformed reinforce particles. therefore, the hybrid composites can be constructed with various combinations of reinforcements to carry out desirable mechanical properties. The density of Hybrid composites increases with increasing reinforcements such as SiC, TiC, B4C....etc, while incorporation of partial reinforcements like fly ash, mica, rice husk, etc. reduces the density of composites. The study also reports that the hybrid composites can be treated as a replacement for regular composite materials in different advanced applications.

  14. Assessment of low-cost manufacturing process sequences. [photovoltaic solar arrays

    Science.gov (United States)

    Chamberlain, R. G.

    1979-01-01

    An extensive research and development activity to reduce the cost of manufacturing photovoltaic solar arrays by a factor of approximately one hundred is discussed. Proposed and actual manufacturing process descriptions were compared to manufacturing costs. An overview of this methodology is presented.

  15. A stamped PEDOT:PSS-silicon nanowire hybrid solar cell.

    Science.gov (United States)

    Moiz, Syed Abdul; Nahhas, Ahmed Muhammad; Um, Han-Don; Jee, Sang-Won; Cho, Hyung Koun; Kim, Sang-Woo; Lee, Jung-Ho

    2012-04-13

    A novel stamped hybrid solar cell was proposed using the stamping transfer technique by stamping an active PEDOT:PSS thin layer onto the top of silicon nanowires (SiNWs). Compared to a bulk-type counterpart that fully embeds SiNWs inside PEDOT:PSS, an increase in the photovoltaic efficiency was observed by a factor of ∼4.6, along with improvements in both electrical and optical responses for the stamped hybrid cell. Such improvements for hybrid cells was due to the formation of well-connected and linearly aligned active PEDOT:PSS channels at the top ends of the nanowires after the stamping process. These stamped channels facilitated not only to improve the charge transport, light absorption, but also to decrease the free carriers as well as exciton recombination losses for stamped hybrid solar cells.

  16. Thermal analysis of solar biomass hybrid co-generation plants

    Science.gov (United States)

    Kaushika, N. D.; Mishra, Anuradha; Chakravarty, M. N.

    2005-12-01

    This article describes a co-generation plant based on the biogas being produced from the waste of distillery plant and highlights the possible configuration in which the plant can be hybridized with auxiliary solar energy source having the advantage of using financial incentives in several countries. In hybridization, the solar heat is used for heating the boiler feed water. The solar heat-generating unit consists of line focus parabolic trough collector, heat transportation system and heat delivery unit such as heat exchanger. The simulation model of heat and mass transfer processes in the solar field as well as the balance of the system is developed to investigate the technological feasibility of the concept in terms of plant yield and matching of subsystems.

  17. Benefits of solar/fossil hybrid gas turbine systems

    Science.gov (United States)

    Bloomfield, H. S.

    1979-01-01

    The potential benefits of solar/fossil hybrid gas turbine power systems were assessed. Both retrofit and new systems were considered from the aspects of cost of electricity, fuel conservation, operational mode, technology requirements, and fuels flexibility. Hybrid retrofit (repowering) of existing combustion (simple Brayton cycle) turbines can provide near-term fuel savings and solar experience, while new and advanced recuperated or combined cycle systems may be an attractive fuel saving and economically competitive vehicle to transition from today's gas and oil-fired powerplants to other more abundant fuels.

  18. Solar central receiver hybrid - A cost effective future power alternative

    Science.gov (United States)

    Beshore, D. G.; Bolton, C. N.; Montague, J. E.

    1980-05-01

    System analyses and conceptual designs of solar central receiver hybrid concepts using molten salt (60% NaNO3, 40% KNO3 by weight) and fossil fired nonsolar energy sources (coal, oil, or gas) have been performed. Analyses have developed plant configurations with various solar energy storage capacities and fossil fuels. Economic analyses support the final configuration selection based on minimization of the cost of energy produced from the plant. A 500 MWe commercial plant size installed for a 1990 initial year of operation is competitive with new coal, oil, and nuclear power generation sources. This hybrid plant will save an estimated 5 million barrels of oil per year.

  19. The possibility of developing hybrid PV/T solar system

    Science.gov (United States)

    Dobrnjac, M.; Zivkovic, P.; Babic, V.

    2017-05-01

    An alternative and cost-effective solution to developing integrated PV system is to use hybrid photovoltaic/thermal (PV/T) solar system. The temperature of PV modules increases due to the absorbed solar radiation that is not converted into electricity, causing a decrease in their efficiency. In hybrid PV/T solar systems the reduction of PV module temperature can be combined with a useful fluid heating. In this paper we present the possibility of developing a new hybrid PV/T solar system. Hybrid PV/T system can provide electrical and thermal energy, thus achieving a higher energy conversion rate of the absorbed solar radiation. We developed PV/T prototype consisted of commercial PV module and thermal panel with our original solution of aluminium absorber with special geometric shapes. The main advantages of our combined PV/T system are: removing of heat from the PV panel; extending the lifetime of photovoltaic cells; excess of the removing heat from PV part is used to heat the fluid in the thermal part of the panel; the possibility of using on the roof and facade constructions because less weight.

  20. Fresnel-collectors in hybrid solar thermal power plants with high solar shares

    Energy Technology Data Exchange (ETDEWEB)

    Lerchenmueller, H.; Mertins, M.; Morin, G. [Fraunhofer Inst. for Solar Energy Systems, Freiburg (Germany); Haeberle, A. [PSE GmbH, Solar Info Center, Freiburg (Germany); Bockamp, S.; Ewert, M.; Fruth, M.; Griestop, T. [E.ON Energie AG, Muenchen (Germany); Dersch, J. [Deutsches Zentrum fuer Luft- und Raumfahrt, Koeln (Germany)

    2004-07-01

    The use of Fresnel-Collectors in power plant configurations with low or zero CO2-emission has been analysed in this paper. Both, the solar-biomass hybrid plant and the solar-gas hybrid plant are very promising concepts with respect to technical, economical and ecological aspects. The hybrid operation would be very useful to handle the fluctuating solar resource and facilitate operation. Depending on feed in tariffs the hybridisation of a solar thermal power plant with biomass or with small shares of natural gas can be economically very interesting. The ecological advantage of a solar-biomass power plant is evident, since it would be a zero CO2- emission plant. Beyond that biomass is a limited source, especially in regions with high solar irradiance. The herein examined gas hybrid variants are by far more favourable than Integrated Solar Combined Cycle Systems (ISCCS), which have been previously examined. Since much higher solar shares can be reached this is a forward-looking technology. Furthermore the solar field does not act as a disturbing factor as opposed to the ISCCS concept, where the efficiency of the sophisticated CC system is reduced due to suboptimal dimensioning of components. In other words: It is better to build the suggested hybrid plant with low gas share and CC plants instead of ISCCS plants. The resulting solar levelised electricity costs of both options are approximately the same. The calculated levelised electricity costs for the examined configurations of between 11 and 13 ct/kWh are very promising results. The calculations were made based on cost assumptions for the collector of 130 Euro/m{sup 2} which seems realistic not for the first project but for the third plant. As a next step in the commercialisation of the Fresnel-technology demonstration and test collectors must be built, such as by the Australian company Solar Heat and Power, to validate the technical and economic assumptions. (orig.)

  1. Solar Cooling System Using Solar-Driven Hybrid Chiller

    OpenAIRE

    Hirai, Akira

    2012-01-01

    We developed an appropriate Absorption chiller to "Solar cooling system" in 2010. In addition, we added the improvement to the machine. "Solar cooling system" can be easily constructed with the machine. and, we constructed the demonstration plant, and verified the utility

  2. Technical and economic assessment of solar hybrid repowering. Final report

    Energy Technology Data Exchange (ETDEWEB)

    None

    1978-09-01

    Public Service Company of New Mexico (PNM) has performed a Technical and Economic Assessment of Solar Hybrid Repowering under funding by the Department of Energy (DOE), the Electric Power Research Institute (EPRI), Western Energy Supply and Transmission (WEST) Associates, and a number of southwestern utilities. Solar hybrid repowering involves placement of solar hardware adjacent to and connected to existing gas- and oil-fueled electric generation units to displace some of or all the fossil fuel normally used during daylight hours. The subject study assesses the technical economic viability of the solar hybrid repowering concept within the southwestern United States and the PNM system. This document is a final report on the study and its results. The study was divided into the six primary tasks to allow a systematic investigation of the concept: (1) market survey and cost/benefit analysis, (2) study unit selection, (3) conceptual design and cost estimates, (4) unit economic analysis, (5) program planning, future phases, and (6) program management. Reeves Station No. 2 at Albuquerque, New Mexico, was selected for repowering with a design goal of 50 percent (25 MWe). The solar system design is based on the 10 MW solar central receiver pilot plant preliminary design for Barstow, California. SAN--1608-4-2 contains the technical drawings. (WHK)

  3. The Restaurant as Hybrid: Lean Manufacturer and Service Provider

    Directory of Open Access Journals (Sweden)

    Christopher Muller

    2013-01-01

    Full Text Available Uniquely positioned as both consumer service providers and tangible finished goods manufacturers, restaurants sell at retail an inventory that is fabricated from raw materials at the site of consumption. This article illustrates how restaurant managers have historically used the fundamentals of just-in-time and lean manufacturing production, often without understanding the power for efficiency and profit each brings. The goal is to encourage restaurateurs to seek a better understanding of where these principles interface with service management theory.

  4. Passive and Hybrid Solar Energy Program

    Energy Technology Data Exchange (ETDEWEB)

    1980-11-01

    The background and scope of the program is presented in general terms. The Program Plan is summarized describing how individual projects are categorized into mission-oriented tasks according to market sector categories. The individual projects funded by DOE are presented as follows: residential buildings, commercial buildings, solar products, solar cities and towns, and agricultural buildings. A summary list of projects by institution (contractors) and indexed by market application area is included. (MHR)

  5. A hybrid reconfigurable solar and wind energy system

    Science.gov (United States)

    Gadkari, Sagar A.

    We study the feasibility of a novel hybrid solar-wind hybrid system that shares most of its infrastructure and components. During periods of clear sunny days the system will generate electricity from the sun using a parabolic concentrator. The concentrator is formed by individual mirror elements and focuses the light onto high intensity vertical multi-junction (VMJ) cells. During periods of high wind speeds and at night, the same concentrator setup will be reconfigured to channel the wind into a wind turbine which will be used to harness wind energy. In this study we report on the feasibility of this type of solar/wind hybrid energy system. The key mechanisms; optics, cooling mechanism of VMJ cells and air flow through the system were investigated using simulation tools. The results from these simulations, along with a simple economic analysis giving the levelized cost of energy for such a system are presented. An iterative method of design refinement based on the simulation results was used to work towards a prototype design. The levelized cost of the system achieved in the economic analysis shows the system to be a good alternative for a grid isolated site and could be used as a standalone system in regions of lower demand. The new approach to solar wind hybrid system reported herein will pave way for newer generation of hybrid systems that share common infrastructure in addition to the storage and distribution of energy.

  6. Hybrid Solar: A Review on Photovoltaic and Thermal Power Integration

    Directory of Open Access Journals (Sweden)

    T. T. Chow

    2012-01-01

    Full Text Available The market of solar thermal and photovoltaic electricity generation is growing rapidly. New ideas on hybrid solar technology evolve for a wide range of applications, such as in buildings, processing plants, and agriculture. In the building sector in particular, the limited building space for the accommodation of solar devices has driven a demand on the use of hybrid solar technology for the multigeneration of active power and/or passive solar devices. The importance is escalating with the worldwide trend on the development of low-carbon/zero-energy buildings. Hybrid photovoltaic/thermal (PVT collector systems had been studied theoretically, numerically, and experimentally in depth in the past decades. Together with alternative means, a range of innovative products and systems has been put forward. The final success of the integrative technologies relies on the coexistence of robust product design/construction and reliable system operation/maintenance in the long run to satisfy the user needs. This paper gives a broad review on the published academic works, with an emphasis placed on the research and development activities in the last decade.

  7. A Dynamic Feature-Based Method for Hybrid Blurred/Multiple Object Detection in Manufacturing Processes

    Directory of Open Access Journals (Sweden)

    Tsun-Kuo Lin

    2016-01-01

    Full Text Available Vision-based inspection has been applied for quality control and product sorting in manufacturing processes. Blurred or multiple objects are common causes of poor performance in conventional vision-based inspection systems. Detecting hybrid blurred/multiple objects has long been a challenge in manufacturing. For example, single-feature-based algorithms might fail to exactly extract features when concurrently detecting hybrid blurred/multiple objects. Therefore, to resolve this problem, this study proposes a novel vision-based inspection algorithm that entails selecting a dynamic feature-based method on the basis of a multiclassifier of support vector machines (SVMs for inspecting hybrid blurred/multiple object images. The proposed algorithm dynamically selects suitable inspection schemes for classifying the hybrid images. The inspection schemes include discrete wavelet transform, spherical wavelet transform, moment invariants, and edge-feature-descriptor-based classification methods. The classification methods for single and multiple objects are adaptive region growing- (ARG- based and local adaptive region growing- (LARG- based learning approaches, respectively. The experimental results demonstrate that the proposed algorithm can dynamically select suitable inspection schemes by applying a selection algorithm, which uses SVMs for classifying hybrid blurred/multiple object samples. Moreover, the method applies suitable feature-based schemes on the basis of the classification results for employing the ARG/LARG-based method to inspect the hybrid objects. The method improves conventional methods for inspecting hybrid blurred/multiple objects and achieves high recognition rates for that in manufacturing processes.

  8. Laser assisted hybrid additive manufacturing of thermoelectric modules

    Science.gov (United States)

    Zhang, Tao; Tewolde, Mahder; Longtin, Jon P.; Hwang, David J.

    2017-02-01

    Thermoelectric generators (TEGs) are an attractive means to produce electricity, particular from waste heat applications. However, TEGs are almost exclusively manufactured as flat, rigid modules of limited size and shape, and therefore an appropriate mounting for intimate contact of TEGs modules onto arbitrary surfaces represents a significant challenge. In this study, we introduce laser assisted additive manufacturing method to produce multi-layered thermoelectric generator device directly on flat and non-flat surfaces for waste heat recovery. The laser assisted processing spans from laser scribing of thermal sprayed thin films, curing of dispensed thermoelectric inks and selective laser sintering to functionalize thermoelectric materials.

  9. Graphene-based transparent electrodes for hybrid solar cells

    Directory of Open Access Journals (Sweden)

    Pengfei eLi

    2014-11-01

    Full Text Available The graphene-based transparent and conductive films were demonstrated to be cost-effective electrodes working in organic-inorganic hybrid Schottky solar cells. Large area graphene films were produced by chemical vapor deposition (CVD on copper foils and transferred onto glass as transparent electrodes. The hybrid solar cell devices consist of solution processed poly (3, 4-ethlenedioxythiophene: poly (styrenesulfonate (PEDOT: PSS which is sandwiched between silicon wafer and graphene electrode. The solar cells based on graphene electrodes, especially those doped with HNO3, has comparable performance to the reference devices using commercial indium tin oxide (ITO. Our work suggests that graphene-based transparent electrode is a promising candidate to replace ITO.

  10. What Is Moving in Hybrid Halide Perovskite Solar Cells?

    Science.gov (United States)

    2016-01-01

    Conspectus Organic–inorganic semiconductors, which adopt the perovskite crystal structure, have perturbed the landscape of contemporary photovoltaics research. High-efficiency solar cells can be produced with solution-processed active layers. The materials are earth abundant, and the simple processing required suggests that high-throughput and low-cost manufacture at scale should be possible. While these materials bear considerable similarity to traditional inorganic semiconductors, there are notable differences in their optoelectronic behavior. A key distinction of these materials is that they are physically soft, leading to considerable thermally activated motion. In this Account, we discuss the internal motion of methylammonium lead iodide (CH3NH3PbI3) and formamidinium lead iodide ([CH(NH2)2]PbI3), covering: (i) molecular rotation-libration in the cuboctahedral cavity; (ii) drift and diffusion of large electron and hole polarons; (iii) transport of charged ionic defects. These processes give rise to a range of properties that are unconventional for photovoltaic materials, including frequency-dependent permittivity, low electron–hole recombination rates, and current–voltage hysteresis. Multiscale simulations, drawing from electronic structure, ab initio molecular dynamic and Monte Carlo computational techniques, have been combined with neutron diffraction measurements, quasi-elastic neutron scattering, and ultrafast vibrational spectroscopy to qualify the nature and time scales of the motions. Electron and hole motion occurs on a femtosecond time scale. Molecular libration is a sub-picosecond process. Molecular rotations occur with a time constant of several picoseconds depending on the cation. Recent experimental evidence and theoretical models for simultaneous electron and ion transport in these materials has been presented, suggesting they are mixed-mode conductors with similarities to fast-ion conducting metal oxide perovskites developed for battery

  11. What Is Moving in Hybrid Halide Perovskite Solar Cells?

    Science.gov (United States)

    Frost, Jarvist M; Walsh, Aron

    2016-03-15

    Organic-inorganic semiconductors, which adopt the perovskite crystal structure, have perturbed the landscape of contemporary photovoltaics research. High-efficiency solar cells can be produced with solution-processed active layers. The materials are earth abundant, and the simple processing required suggests that high-throughput and low-cost manufacture at scale should be possible. While these materials bear considerable similarity to traditional inorganic semiconductors, there are notable differences in their optoelectronic behavior. A key distinction of these materials is that they are physically soft, leading to considerable thermally activated motion. In this Account, we discuss the internal motion of methylammonium lead iodide (CH3NH3PbI3) and formamidinium lead iodide ([CH(NH2)2]PbI3), covering: (i) molecular rotation-libration in the cuboctahedral cavity; (ii) drift and diffusion of large electron and hole polarons; (iii) transport of charged ionic defects. These processes give rise to a range of properties that are unconventional for photovoltaic materials, including frequency-dependent permittivity, low electron-hole recombination rates, and current-voltage hysteresis. Multiscale simulations, drawing from electronic structure, ab initio molecular dynamic and Monte Carlo computational techniques, have been combined with neutron diffraction measurements, quasi-elastic neutron scattering, and ultrafast vibrational spectroscopy to qualify the nature and time scales of the motions. Electron and hole motion occurs on a femtosecond time scale. Molecular libration is a sub-picosecond process. Molecular rotations occur with a time constant of several picoseconds depending on the cation. Recent experimental evidence and theoretical models for simultaneous electron and ion transport in these materials has been presented, suggesting they are mixed-mode conductors with similarities to fast-ion conducting metal oxide perovskites developed for battery and fuel cell

  12. Ultralight Solar Powered Hybrid Research Drone

    CERN Document Server

    Singer, Csaba

    2013-01-01

    A planetary research drone is proposed, which is capable for vertical takeoff and landing. A hybrid flight concept utilizing static lift enables the exploration over ground. The static lift is achieved with a lighter than CO2 gas like air, He or H2.

  13. Design and Testing of Digitally Manufactured Paraffin Acrylonitrile-Butadiene-Styrene Hybrid Rocket Motors

    OpenAIRE

    McCulley, Jonathan M.

    2013-01-01

    This research investigates the application of additive manufacturing techniques for fabricating hybrid rocket fuel grains composed of porous Acrylonitrile-butadiene-styrene impregnated with paraffin wax. The digitally manufactured ABS substrate provides mechanical support for the paraffin fuel material and serves as an additional fuel component. The embedded paraffin provides an enhanced fuel regression rate while having no detrimental effect on the thermodynamic burn properties of the fuel g...

  14. Solar Field Optical Characterization at Stillwater Geothermal/Solar Hybrid Plant

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Guangdong [National Renewable Energy Laboratory,15013 Denver West Parkway,Golden, CO 80401e-mail: Guangdong.Zhu@nrel.gov; Turchi, Craig [National Renewable Energy Laboratory,15013 Denver West Parkway,Golden, CO 80401

    2017-01-27

    Concentrating solar power (CSP) can provide additional thermal energy to boost geothermal plant power generation. For a newly constructed solar field at a geothermal power plant site, it is critical to properly characterize its performance so that the prediction of thermal power generation can be derived to develop an optimum operating strategy for a hybrid system. In the past, laboratory characterization of a solar collector has often extended into the solar field performance model and has been used to predict the actual solar field performance, disregarding realistic impacting factors. In this work, an extensive measurement on mirror slope error and receiver position error has been performed in the field by using the optical characterization tool called Distant Observer (DO). Combining a solar reflectance sampling procedure, a newly developed solar characterization program called FirstOPTIC and public software for annual performance modeling called System Advisor Model (SAM), a comprehensive solar field optical characterization has been conducted, thus allowing for an informed prediction of solar field annual performance. The paper illustrates this detailed solar field optical characterization procedure and demonstrates how the results help to quantify an appropriate tracking-correction strategy to improve solar field performance. In particular, it is found that an appropriate tracking-offset algorithm can improve the solar field performance by about 15%. The work here provides a valuable reference for the growing CSP industry.

  15. A hybrid life-cycle inventory for multi-crystalline silicon PV module manufacturing in China

    Science.gov (United States)

    Yao, Yuan; Chang, Yuan; Masanet, Eric

    2014-11-01

    China is the world’s largest manufacturer of multi-crystalline silicon photovoltaic (mc-Si PV) modules, which is a key enabling technology in the global transition to renewable electric power systems. This study presents a hybrid life-cycle inventory (LCI) of Chinese mc-Si PV modules, which fills a critical knowledge gap on the environmental implications of mc-Si PV module manufacturing in China. The hybrid LCI approach combines process-based LCI data for module and poly-silicon manufacturing plants with a 2007 China IO-LCI model for production of raw material and fuel inputs to estimate ‘cradle to gate’ primary energy use, water consumption, and major air pollutant emissions (carbon dioxide, methane, sulfur dioxide, nitrous oxide, and nitrogen oxides). Results suggest that mc-Si PV modules from China may come with higher environmental burdens that one might estimate if one were using LCI results for mc-Si PV modules manufactured elsewhere. These higher burdens can be reasonably explained by the efficiency differences in China’s poly-silicon manufacturing processes, the country’s dependence on highly polluting coal-fired electricity, and the expanded system boundaries associated with the hybrid LCI modeling framework. The results should be useful for establishing more conservative ranges on the potential ‘cradle to gate’ impacts of mc-Si PV module manufacturing for more robust LCAs of PV deployment scenarios.

  16. A Review of Hybrid Solar PV and Wind Energy System

    Directory of Open Access Journals (Sweden)

    Rashid Al Badwawi

    2015-07-01

    Full Text Available Due to the fact that solar and wind power is intermittent and unpredictable in nature, higher penetration of their types in existing power system could cause and create high technical challenges especially to weak grids or stand-alone systems without proper and enough storage capacity. By integrating the two renewable resources into an optimum combination, the impact of the variable nature of solar and wind resources can be partially resolved and the overall system becomes more reliable and economical to run. This paper provides a review of challenges and opportunities / solutions of hybrid solar PV and wind energy integration systems. Voltage and frequency fluctuation, and harmonics are major power quality issues for both grid-connected and stand-alone systems with bigger impact in case of weak grid. This can be resolved to a large extent by having proper design, advanced fast response control facilities, and good optimization of the hybrid systems. The paper gives a review of the main research work reported in the literature with regard to optimal sizing design, power electronics topologies and control. The paper presents a review of the state of the art of both grid-connected and stand-alone hybrid solar and wind systems.

  17. Analysis of advanced solar hybrid desiccant cooling systems for buildings

    Energy Technology Data Exchange (ETDEWEB)

    Schlepp, D.; Schultz, K.

    1984-10-01

    This report describes an assessment of the energy savings possible from developing hybrid desiccant/vapor-compression air conditioning systems. Recent advances in dehumidifier design for solar desiccant cooling systems have resulted in a dehumidifier with a low pressure drop and high efficiency in heat and mass transfer. A recent study on hybrid desiccant/vapor compression systems showed a 30%-80% savings in resource energy when compared with the best conventional systems with vapor compression. A system consisting of a dehumidifier with vapor compression subsystems in series was found to be the simplest and best overall performer.

  18. Normative price for a manufactured product: the SAMICS methodology. Volume II. Analysis. JPL publication 78-98. [Solar Array Manufacturing Industry Costing Standards

    Energy Technology Data Exchange (ETDEWEB)

    Chamberlain, R.G.

    1979-01-15

    The Solar Array Manufacturing Industry Costing Standards (SAMICS) provide standard formats, data, assumptions, and procedures for determining the price a hypothetical solar array manufacturer would have to be able to obtain in the market to realize a specified after-tax rate of return on equity for a specified level of production. This document presents the methodology and its theoretical background. It is contended that the model is sufficiently general to be used in any production-line manufacturing environment. Implementation of this methodology by the Solar Array Manufacturing Industry Simulation computer program (SAMIS III, Release 1) is discussed.

  19. What is moving in hybrid halide perovskite solar cells?

    OpenAIRE

    Frost, Jarvist M.; Walsh, Aron

    2016-01-01

    Conspectus Organic–inorganic semiconductors, which adopt the perovskite crystal structure, have perturbed the landscape of contemporary photovoltaics research. High-efficiency solar cells can be produced with solution-processed active layers. The materials are earth abundant, and the simple processing required suggests that high-throughput and low-cost manufacture at scale should be possible. While these materials bear considerable similarity to traditional inorganic semiconductors, there are...

  20. Nanocomposite-Based Bulk Heterojunction Hybrid Solar Cells

    Directory of Open Access Journals (Sweden)

    Bich Phuong Nguyen

    2014-01-01

    Full Text Available Photovoltaic devices based on nanocomposites composed of conjugated polymers and inorganic nanocrystals show promise for the fabrication of low-cost third-generation thin film photovoltaics. In theory, hybrid solar cells can combine the advantages of the two classes of materials to potentially provide high power conversion efficiencies of up to 10%; however, certain limitations on the current within a hybrid solar cell must be overcome. Current limitations arise from incompatibilities among the various intradevice interfaces and the uncontrolled aggregation of nanocrystals during the step in which the nanocrystals are mixed into the polymer matrix. Both effects can lead to charge transfer and transport inefficiencies. This paper highlights potential strategies for resolving these obstacles and presents an outlook on the future directions of this field.

  1. A solar receiver-storage modular cascade based on porous ceramic structures for hybrid sensible/thermochemical solar energy storage

    Science.gov (United States)

    Agrafiotis, Christos; de Oliveira, Lamark; Roeb, Martin; Sattler, Christian

    2016-05-01

    The current state-of-the-art solar heat storage concept in air-operated Solar Tower Power Plants is to store the solar energy provided during on-sun operation as sensible heat in porous solid materials that operate as recuperators during off-sun operation. The technology is operationally simple; however its storage capacity is limited to 1.5 hours. An idea for extending this capacity is to render this storage concept from "purely" sensible to "hybrid" sensible/ thermochemical one, via coating the porous heat exchange modules with oxides of multivalent metals for which their reduction/oxidation reactions are accompanied by significant heat effects, or by manufacturing them entirely of such oxides. In this way solar heat produced during on-sun operation can be used (in addition to sensibly heating the porous solid) to power the endothermic reduction of the oxide from its state with the higher metal valence to that of the lower; the thermal energy can be entirely recovered by the reverse exothermic oxidation reaction (in addition to sensible heat) during off-sun operation. Such sensible and thermochemical storage concepts were tested on a solar-irradiated receiver- heat storage module cascade for the first time. Parametric studies performed so far involved the comparison of three different SiC-based receivers with respect to their capability of supplying solar-heated air at temperatures sufficient for the reduction of the oxides, the effect of air flow rate on the temperatures achieved within the storage module, as well as the comparison of different porous storage media made of cordierite with respect to their sensible storage capacity.

  2. Silicon-Film{trademark} Solar Cells by a Flexible Manufacturing System

    Energy Technology Data Exchange (ETDEWEB)

    Culik, J. S.; Rand, J. A.; Bai, Y.; Bower, J. R.; Cummings, J. R.; Goncharovsky, I.; Jonczyk, R.; Sims, P. E.; Hall, R. B.; Barnett, A. M.

    1999-09-13

    AstroPower is developing a manufacturing process for Silicon-Film{trademark} solar cell production under the Photovoltaic Manufacturing Technology (PVMaT) cost-share program. This document reports on results from the first phase of a three-phase effort. Progress is reported on developing new procedures and equipment for in-line wet-chemical processes, metallization processes, sheet fabrication, solar cell processing, module assembly, solar cell testing, metallurgical-grade silicon purification, and recycling of Silicon-Film{trademark} sheet materials. Future concepts and goals for the Silicon-Film{trademark} process are also discussed.

  3. Wind Solar Hybrid System Rectifier Stage Topology Simulation

    Directory of Open Access Journals (Sweden)

    Anup M. Gakare

    2014-06-01

    Full Text Available This paper presents power-control strategies of a grid-connected hybrid generation system with versatile power transfer. The hybrid system allows maximum utilization of freely available renewable sources like wind and photovoltaic energies. This paper presents a new system configuration of the multi input rectifier stage for a hybrid wind and photovoltaic energy system. This configuration allows the two sources to supply the load simultaneously depending on the availability of the energy sources maximum power from the sun when it is available. An adaptive MPPT algorithm with a standard perturbs and observed method will be used for the Photo Voltaic system. The main advantage of the hybrid system is to give continuous power supply to the load. The gating pulses to the inverter switches are implemented with conventional and fuzzy controller. This hybrid wind-photo voltaic system is modeled in MATLAB/ SIMULINK environment. Simulation circuit is analyzed and results are presented for this hybrid wind and solar energy system.

  4. Low cost, efficient hybrid solar cells

    OpenAIRE

    Malinkiewicz, Olga

    2017-01-01

    Actualmente, existen diversas estrategias para producir energía limpia mediante fuentes renovables, pero es la explotación directa de la energía del Sol la que se presenta como una solución ideal, siendo la mayor fuente de energía verde en la Tierra. La potencia de la energía solar que llega a la Tierra cada año es del orden de 86000 TW (Terawatt, 1012 Watt). Esto representa 4800 veces la demanda energética anual del mundo, estimada en 18 TW. Además, todos los depósitos de energía fósil recon...

  5. Solar photovoltaic/thermal (hybrid) energy project

    Science.gov (United States)

    Sheldon, D. B.

    1981-09-01

    Development of photovoltaic/thermal (PV/T) collectors and residential heat pump systems is reported. Candidate collector and residential heat pump systems were evaluated using the TRNSYS computer program. It is found that combined heat pump and PV array is a promising method for achieving economical solar cooling. Where the cooling load is dominant, exclusively PV collectors rather than PV/T collectors are preferred. Where the heating load is dominant, the thermal component of PV/T collectors makes a significant contribution to heating a residence. PV/T collectors were developed whose combined efficiency approaches the efficiency of a double glazed, exclusively thermal collector. The design and operational problems of air source heat pumps are reviewed. Possible effects of compressor startup transients on PV power system operation are discussed.

  6. Prospects of Nanostructure-Based Solar Cells for Manufacturing Future Generations of Photovoltaic Modules

    Directory of Open Access Journals (Sweden)

    N. Gupta

    2009-01-01

    Full Text Available We present a comprehensive review on prospects for one-, two-, or three-dimensional nanostructure-based solar cells for manufacturing the future generation of photovoltaic (PV modules. Reducing heat dissipation and utilizing the unabsorbed part of the solar spectrum are the key driving forces for the development of nanostructure-based solar cells. Unrealistic assumptions involved in theoretical work and the tendency of stretching observed experimental results are the primary reasons why quantum phenomena-based nanostructures solar cells are unlikely to play a significant role in the manufacturing of future generations of PV modules. Similar to the invention of phase shift masks (to beat the conventional diffraction limit of optical lithography clever design concepts need to be invented to take advantage of quantum-based nanostructures. Silicon-based PV manufacturing will continue to provide sustained growth of the PV industry.

  7. Organic / IV, III-V Semiconductor Hybrid Solar Cells

    Directory of Open Access Journals (Sweden)

    Pang-Leen Ong

    2010-03-01

    Full Text Available We present a review of the emerging class of hybrid solar cells based on organic-semiconductor (Group IV, III-V, nanocomposites, which states separately from dye synthesized, polymer-metal oxides and organic-inorganic (Group II-VI nanocomposite photovoltaics. The structure of such hybrid cell comprises of an organic active material (p-type deposited by coating, printing or spraying technique on the surface of bulk or nanostructured semiconductor (n-type forming a heterojunction between the two materials. Organic components include various photosensitive monomers (e.g., phtalocyanines or porphyrines, conjugated polymers, and carbon nanotubes. Mechanisms of the charge separation at the interface and their transport are discussed. Also, perspectives on the future development of such hybrid cells and comparative analysis with other classes of photovoltaics of third generation are presented.

  8. Efficient Organic/Inorganic Hybrid Solar Cell Integrating Polymer Nanowires and Inorganic Nanotetrapods

    National Research Council Canada - National Science Library

    Xu, Weizhe; Tan, Furui; Liu, Xiansheng; Zhang, Weifeng; Qu, Shengchun; Wang, Zhijie; Wang, Zhanguo

    2017-01-01

    ...% in the hybrid solar cell, up to 42% enhancement compared to the reference solar cell with traditional P3HT molecules as electron donor. Our work provides a promising hybrid structure for efficient organic/inorganic bulk-heterojunction solar cells.

  9. Analysis of a Hybrid Solar-Assisted Trigeneration System

    Directory of Open Access Journals (Sweden)

    Elisa Marrasso

    2016-09-01

    Full Text Available A hybrid solar-assisted trigeneration system is analyzed in this paper. The system is composed of a 20 m2 solar field of evacuated tube collectors, a natural gas fired micro combined heat and power system delivering 12.5 kW of thermal power, an absorption heat pump (AHP with a nominal cooling power of 17.6 kW, two storage tanks (hot and cold and an electric auxiliary heater (AH. The plant satisfies the energy demand of an office building located in Naples (Southern Italy. The electric energy of the cogenerator is used to meet the load and auxiliaries electric demand; the interactions with the grid are considered in cases of excess or over requests. This hybrid solution is interesting for buildings located in cities or historical centers with limited usable roof surface to install a conventional solar heating and cooling (SHC system able to achieve high solar fraction (SF. The results of dynamic simulation show that a tilt angle of 30° maximizes the SF of the system on annual basis achieving about 53.5%. The influence on the performance of proposed system of the hot water storage tank (HST characteristics (volume, insulation is also studied. It is highlighted that the SF improves when better insulated and bigger HSTs are considered. A maximum SF of about 58.2% is obtained with a 2000 L storage, whereas the lower thermal losses take place with a better insulated 1000 L tank.

  10. Hybrid inorganic-organic tandem solar cells for broad absorption of the solar spectrum

    NARCIS (Netherlands)

    Speirs, M. J.; Groeneveld, B. G. H. M.; Protesescu, L.; Piliego, Claudia; Kovalenko, M. V.; Loi, M. A.

    2014-01-01

    We report the first hybrid tandem solar cell with solution processable active layers using colloidal PbS quantum dots (QDs) as the front subcell in combination with a polymer-fullerene rear subcell. Al/WO3 is introduced as an interlayer, yielding an open circuit voltage (V-OC) equal to about 92% of

  11. Techno-economic assessment of a hybrid solar receiver and combustor

    Science.gov (United States)

    Lim, Jin Han; Nathan, Graham; Dally, Bassam; Chinnici, Alfonso

    2016-05-01

    A techno-economic analysis is performed to compare two different configurations of hybrid solar thermal systems with fossil fuel backup to provide continuous electricity output. The assessment compares a Hybrid Solar Receiver Combustor (HSRC), in which the functions of a solar cavity receiver and a combustor are integrated into a single device with a reference conventional solar thermal system using a regular solar cavity receiver with a backup boiler, termed the Solar Gas Hybrid (SGH). The benefits of the integration is assessed by varying the size of the storage capacity and heliostat field while maintaining the same overall thermal input to the power block.

  12. Hybrid thermoelectric solar collector design and analysis

    Science.gov (United States)

    Roberts, A. S., Jr.; Shaheen, K. E.

    1982-01-01

    A flat-plate solar collector is conceived where energy cascades through thermoelectric power modules generating direct-current electricity. The intent of this work was to choose a collector configuration and to perform a steady-state thermal performance assessment. A set of energy balance equations were written and solved numerically for the purpose of optimizing collector thermal and electrical performance. The collector design involves finned columns of thermoelectric modules imbedded in the absorber plate (hot junction) over a parallel array of vertical tubes. The thermoelectric power output is limited by the small hot-junction/cold-junction temperature difference which can be maintained under steady-state conditions. The electric power per unit tube pass area is found to have a maximum as a function of a geometric parameter, while electric power is maximized with respect to an electric resistance ratio. Although the electric power efficiency is small, results indicate that there is sufficient electric power production to drive a coolant circulator, suggesting the potential for a stand-alone system.

  13. Hybrid thermoelectric solar collector design and analysis

    Science.gov (United States)

    Roberts, A. S., Jr.; Shaheen, K. E.

    1982-01-01

    A flat-plate solar collector is conceived where energy cascades through thermoelectric power modules generating direct-current electricity. The intent of this work was to choose a collector configuration and to perform a steady-state thermal performance assessment. A set of energy balance equations were written and solved numerically for the purpose of optimizing collector thermal and electrical performance. The collector design involves finned columns of thermoelectric modules imbedded in the absorber plate (hot junction) over a parallel array of vertical tubes. The thermoelectric power output is limited by the small hot-junction/cold-junction temperature difference which can be maintained under steady-state conditions. The electric power per unit tube pass area is found to have a maximum as a function of a geometric parameter, while electric power is maximized with respect to an electric resistance ratio. Although the electric power efficiency is small, results indicate that there is sufficient electric power production to drive a coolant circulator, suggesting the potential for a stand-alone system.

  14. Fracture strength of GaAs solar cells as a function of manufacturing process steps

    Science.gov (United States)

    Chen, C. P.; Leipold, M. H.

    1985-01-01

    Fracture of single crystal GaAs substrate during the solar cell processing is an important factor in solar cell yield and cost. Fracture mechanics technique was utilized to evaluate cell cracking characteristics and changes in fracture strength of GaAs solar cells in a present state-of-the-art of manufacturing process for GaAs solar cells from wafer to complete cell of a typical production line. Considerable change in the fracture strength of GaAs solar cells as a function of cell processing was found. The strength data were described by Weibull statistical analysis and can be interpreted with the change of flaw distribution of each of the manufacturing process steps.

  15. Development of nanostructured and surface modified semiconductors for hybrid organic-inorganic solar cells.

    Energy Technology Data Exchange (ETDEWEB)

    Hsu, Julia, W. P.

    2008-09-01

    Solar energy conversion is increasingly being recognized as one of the principal ways to meet future energy needs without causing detrimental environmental impact. Hybrid organic-inorganic solar cells (SCs) are attracting particular interest due to the potential for low cost manufacturing and for use in new applications, such as consumer electronics, architectural integration and light-weight sensors. Key materials advantages of these next generation SCs over conventional semiconductor SCs are in design opportunities--since the different functions of the SCs are carried out by different materials, there are greater materials choices for producing optimized structures. In this project, we explore the hybrid organic-inorganic solar cell system that consists of oxide, primarily ZnO, nanostructures as the electron transporter and poly-(3-hexylthiophene) (P3HT) as the light-absorber and hole transporter. It builds on our capabilities in the solution synthesis of nanostructured semiconducting oxide arrays to this photovoltaic (PV) technology. The three challenges in this hybrid material system for solar applications are (1) achieving inorganic nanostructures with critical spacing that matches the exciton diffusion in the polymer, {approx} 10 nm, (2) infiltrating the polymer completely into the dense nanostructure arrays, and (3) optimizing the interfacial properties to facilitate efficient charge transfer. We have gained an understanding and control over growing oriented ZnO nanorods with sub-50 nm diameters and the required rod-to-rod spacing on various substrates. We have developed novel approaches to infiltrate commercially available P3HT in the narrow spacing between ZnO nanorods. Also, we have begun to explore ways to modify the interfacial properties. In addition, we have established device fabrication and testing capabilities at Sandia for prototype devices. Moreover, the control synthesis of ZnO nanorod arrays lead to the development of an efficient anti

  16. Evaluation of hybrid solar – biomass dryer with no load

    Directory of Open Access Journals (Sweden)

    Yassen Tadahmun Ahmed

    2014-07-01

    Full Text Available Experimental study was carried out to investigate the performance of designed and fabricated hybrid solar-biomass dryer without load. The solar side was a natural convection mixed mode, while the biomass side was a hot air produced from a burner/gas to gas heat exchanger. The experiments have been conducted to test the dryer temperature, inlet and outlet relative humidity, outlet velocity, and biomass feeding rate. In the solar mode the maximum dryer temperature was 63°C. Behaviours of the velocity in the dryer was found to follow solar radiation available to the dryer. The velocity was in the range of 0.6 – 1.35 m/s through the 0.0176 m2 area of the outlet when the solar radiation was in the range of 150 – 880 W/m2. Two feeding rates of wood were used to investigate the dryer performance through the night. The results showed that at feeding rate 278 g/hr, the drying air mean temperature was 62 ºC. This temperature was more suitable than the measured drying air temperature at feeding rate 490 g/hr. Also the 62 °C drying environment is more stable and feasible for drying almost all types of products.

  17. Real time intelligent process control system for thin film solar cell manufacturing

    Energy Technology Data Exchange (ETDEWEB)

    George Atanasoff

    2010-10-29

    This project addresses the problem of lower solar conversion efficiency and waste in the typical solar cell manufacturing process. The work from the proposed development will lead toward developing a system which should be able to increase solar panel conversion efficiency by an additional 12-15% resulting in lower cost panels, increased solar technology adoption, reduced carbon emissions and reduced dependency on foreign oil. All solar cell manufacturing processes today suffer from manufacturing inefficiencies that currently lead to lower product quality and lower conversion efficiency, increased product cost and greater material and energy consumption. This results in slower solar energy adoption and extends the time solar cells will reach grid parity with traditional energy sources. The thin film solar panel manufacturers struggle on a daily basis with the problem of thin film thickness non-uniformity and other parameters variances over the deposited substrates, which significantly degrade their manufacturing yield and quality. Optical monitoring of the thin films during the process of the film deposition is widely perceived as a necessary step towards resolving the non-uniformity and non-homogeneity problem. In order to enable the development of an optical control system for solar cell manufacturing, a new type of low cost optical sensor is needed, able to acquire local information about the panel under deposition and measure its local characteristics, including the light scattering in very close proximity to the surface of the film. This information cannot be obtained by monitoring from outside the deposition chamber (as traditional monitoring systems do) due to the significant signal attenuation and loss of its scattering component before the reflected beam reaches the detector. In addition, it would be too costly to install traditional external in-situ monitoring systems to perform any real-time monitoring over large solar panels, since it would require

  18. Life Cycle Assessment of Titania Perovskite Solar Cell Technology for Sustainable Design and Manufacturing.

    Science.gov (United States)

    Zhang, Jingyi; Gao, Xianfeng; Deng, Yelin; Li, Bingbing; Yuan, Chris

    2015-11-01

    Perovskite solar cells have attracted enormous attention in recent years due to their low cost and superior technical performance. However, the use of toxic metals, such as lead, in the perovskite dye and toxic chemicals in perovskite solar cell manufacturing causes grave concerns for its environmental performance. To understand and facilitate the sustainable development of perovskite solar cell technology from its design to manufacturing, a comprehensive environmental impact assessment has been conducted on titanium dioxide nanotube based perovskite solar cells by using an attributional life cycle assessment approach, from cradle to gate, with manufacturing data from our laboratory-scale experiments and upstream data collected from professional databases and the literature. The results indicate that the perovskite dye is the primary source of environmental impact, associated with 64.77% total embodied energy and 31.38% embodied materials consumption, contributing to more than 50% of the life cycle impact in almost all impact categories, although lead used in the perovskite dye only contributes to about 1.14% of the human toxicity potential. A comparison of perovskite solar cells with commercial silicon and cadmium-tellurium solar cells reveals that perovskite solar cells could be a promising alternative technology for future large-scale industrial applications. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Field tests of a natural vacuum solar desalination system using hybrid solar collector

    Science.gov (United States)

    Setyawan, Eko Y.; Napitupulu, Richard A. M.; Siagian, Parulian; Ambarita, Himsar

    2017-09-01

    This study deals with field test of a natural vacuum solar desalination system using hybrid type solar collector. In order to perform the tests, a natural vacuum solar desalination has been designed and fabricated. The dimension of evaporator is 1000 mm ×1000 mm × 200 mm, while dimension of solar collector is 1000 mm ×1500 mm. The system is tested by exposing to solar radiation in Medan city of Indonesia for five days. The solar radiations during test are 8.79 MJ/m2, 10.14 MJ/m2, 6.88 MJ/m2, 11.05 MJ/m2, and 11.36 MJ/m2, respectively. The produced fresh waters are 160 ml, 180 ml, 118 ml, 206 ml, 220 ml, respectively. The conclusions are as follows. The produced fresh water is still very low due to the heat from the solar collector is not transferred perfectly to the evaporator. There produced fresh water is strongly affected by solar irradiation. It is recommended to minimize the heat loss from the evaporator and the transfer fluid.

  20. Flat plate vs. concentrator solar photovoltaic cells - A manufacturing cost analysis

    Science.gov (United States)

    Granon, L. A.; Coleman, M. G.

    1980-01-01

    The choice of which photovoltaic system (flat plate or concentrator) to use for utilizing solar cells to generate electricity depends mainly on the cost. A detailed, comparative manufacturing cost analysis of the two types of systems is presented. Several common assumptions, i.e., cell thickness, interest rate, power rate, factory production life, polysilicon cost, and direct labor rate are utilized in this analysis. Process sequences, cost variables, and sensitivity analyses have been studied, and results of the latter show that the most important parameters which determine manufacturing costs are concentration ratio, manufacturing volume, and cell efficiency. The total cost per watt of the flat plate solar cell is $1.45, and that of the concentrator solar cell is $1.85, the higher cost being due to the increased process complexity and material costs.

  1. PERFORMANCE EVALUATION METHOD FOR BUSINESS PROCESS OF MACHINERY MANUFACTURER BASED ON DEA/AHP HYBRID MODEL

    Institute of Scientific and Technical Information of China (English)

    WANG Ting; YI Shuping; YANG Yuanzhao

    2007-01-01

    A set of indices for performance evaluation for business processes with multiple inputs and multiple outputs is proposed, which are found in machinery manufacturers. Based on the traditional methods of data envelopment analysis (DEA) and analytical hierarchical process (AHP), a hybrid model called DEA/AHP model is proposed to deal with the evaluation of business process performance. With the proposed method, the DEA is firstly used to develop a pairwise comparison matrix, and then the AHP is applied to evaluate the performance of business process using the pairwise comparison matrix. The significant advantage of this hybrid model is the use of objective data instead of subjective human judgment for performance evaluation. In the case study, a project of business process reengineering (BPR) with a hydraulic machinery manufacturer is used to demonstrate the effectiveness of the DEA/AHP model.

  2. ROBUST-HYBRID GENETIC ALGORITHM FOR A FLOW-SHOP SCHEDULING PROBLEM (A Case Study at PT FSCM Manufacturing Indonesia

    Directory of Open Access Journals (Sweden)

    Johan Soewanda

    2007-01-01

    Full Text Available This paper discusses the application of Robust Hybrid Genetic Algorithm to solve a flow-shop scheduling problem. The proposed algorithm attempted to reach minimum makespan. PT. FSCM Manufacturing Indonesia Plant 4's case was used as a test case to evaluate the performance of the proposed algorithm. The proposed algorithm was compared to Ant Colony, Genetic-Tabu, Hybrid Genetic Algorithm, and the company's algorithm. We found that Robust Hybrid Genetic produces statistically better result than the company's, but the same as Ant Colony, Genetic-Tabu, and Hybrid Genetic. In addition, Robust Hybrid Genetic Algorithm required less computational time than Hybrid Genetic Algorithm

  3. Application of laser technology in high efficiency silicon solar cell manufacturing

    Energy Technology Data Exchange (ETDEWEB)

    Long, W.X.; Tu, J.L.; Wang, Z.G.; Cui, H.Y.; Deng, J.L.; Liu, Z.M.; Liao, H. [Yunnan Normal Univ., Yunnan (China). Solar Energy Research Inst., Education Ministry Key Laboratory of Renewable Energy Advanced Materials and Manufacturing Technology

    2008-07-01

    This paper examined the use of laser processing applications in solar cell fabrication. Laser processing is used to improve the electrical performance of solar cells as well as to reduce their manufacturing cost. Laser processes included laser scribing and cutting; laser fired contacts; wrap through technology; laser chemical processing; and the application of thin film devices. The study also examined the use of laser-fired contact (LFC) process schemes for the production of silicon (Si) Results of the study indicated that the lasers resulted in decreased wafer thickness and increased wafer sizes. LFC schemes can be applied on almost all advanced solar cell structures, including metal or emitter wrap-through cells and interdigitated back contact cells. Laser doping and via hole drilling techniques are also feasible in industrial applications. The use of laser technologies is expected to reduce costs. It was concluded that laser technologies are an appropriate choice for solar cell manufacturing processes. 12 refs., 8 figs.

  4. Electromagnetic lower hybrid instability in the solar wind

    Energy Technology Data Exchange (ETDEWEB)

    Lakhina, G.S.

    1985-04-01

    A fully electromagnetic lower hybrid instability which is driven by a resonant halo electron component is studied analytically. It is shown that the growth rate of the instability peaks at a certain value of the wave-number and that an increase in the ratio of electron pressure to magnetic field pressure reduces the growth rate. At 0.3 AU the typical growth time for the instability is found to be of the order of 25 ms or less, whereas the most unstable wavelengths associated with the instability fall typically in a range of 27 to 90 km. Relevance of electromagnetic lower hybrid instability to the obliquely propagating whistler, characterized by large values of refractive indices, detected behind interplanetary shocks in the solar wind and to the generation mechanism of correlated whistler and electron-plasma oscillation bursts detected on ISEE-3 are discussed. 17 references.

  5. Recent progress in efficient hybrid lead halide perovskite solar cells

    Science.gov (United States)

    Cui, Jin; Yuan, Huailiang; Li, Junpeng; Xu, Xiaobao; Shen, Yan; Lin, Hong; Wang, Mingkui

    2015-01-01

    The efficiency of perovskite solar cells (PSCs) has been improved from 9.7 to 19.3%, with the highest value of 20.1% achieved in 2014. Such a high photovoltaic performance can be attributed to optically high absorption characteristics and balanced charge transport properties with long diffusion lengths of the hybrid lead halide perovskite materials. In this review, some fundamental details of hybrid lead iodide perovskite materials, various fabrication techniques and device structures are described, aiming for a better understanding of these materials and thus highly efficient PSC devices. In addition, some advantages and open issues are discussed here to outline the prospects and challenges of using perovskites in commercial photovoltaic devices. PMID:27877815

  6. Recent progress in efficient hybrid lead halide perovskite solar cells.

    Science.gov (United States)

    Cui, Jin; Yuan, Huailiang; Li, Junpeng; Xu, Xiaobao; Shen, Yan; Lin, Hong; Wang, Mingkui

    2015-06-01

    The efficiency of perovskite solar cells (PSCs) has been improved from 9.7 to 19.3%, with the highest value of 20.1% achieved in 2014. Such a high photovoltaic performance can be attributed to optically high absorption characteristics and balanced charge transport properties with long diffusion lengths of the hybrid lead halide perovskite materials. In this review, some fundamental details of hybrid lead iodide perovskite materials, various fabrication techniques and device structures are described, aiming for a better understanding of these materials and thus highly efficient PSC devices. In addition, some advantages and open issues are discussed here to outline the prospects and challenges of using perovskites in commercial photovoltaic devices.

  7. The establishment of a production-ready manufacturing process utilizing thin silicon substrates for solar cells

    Science.gov (United States)

    Pryor, R. A.

    1980-01-01

    Three inch diameter Czochralski silicon substrates sliced directly to 5 mil, 8 mil, and 27 mil thicknesses with wire saw techniques were procured. Processing sequences incorporating either diffusion or ion implantation technologies were employed to produce n+p or n+pp+ solar cell structures. These cells were evaluated for performance, ease of fabrication, and cost effectiveness. It was determined that the use of 7 mil or even 4 mil wafers would provide near term cost reductions for solar cell manufacturers.

  8. Three Sides Billboard Wind-Solar Hybrid System Design

    Directory of Open Access Journals (Sweden)

    Bai Xuefeng

    2015-01-01

    Full Text Available With the high development of world economy, the demand of energy is increasing all the time, As energy shortage and environment problem are increasing outstanding, Renewable energy has been attracting more and more attention. A kind of three sides billboard supply by wind-Solar hybrid system has been designed in this paper, the overall structure of the system, components, working principle and control strategy has been analyzed from the system perspective. The software and hardware of the system are debugged together and the result is acquired. System function is better and has achieved the expected results.

  9. Organic-inorganic hybrid solar cells via electropolymerization

    Science.gov (United States)

    Feng, Wenchun

    Integrating polymers with inorganic nanostructures is difficult due to wetting and surface energy considerations. We developed an electropolymerization method to grow conformal polymers on high aspect ratio nanostructures. Our method is shown to improve the polymer filling rate inside the nanostructures and can be used in the development of efficient hybrid solar cells. As an example, we have studied the hybrid system of electropolymerized polythiophene (e-PT) on a variety of conductive (Au and ITO) and semiconductive substrates (Si, Ge, ZnO). In particular, e-PT/ZnO hybrid structure can be further developed into organic photovoltaics (OPV). Although unsubstituted PT is not the ideal polymer material for high efficiency solar cells, it is an excellent choice for studying basic bonding and morphology in hybrid structures. We find that e-PT is covalently bound to the polar ZnO planar substrate via a Zn-S bond, adopting an upright geometry. By contrast, no strong covalent bonding was observed between e-PT and ZnO nanorods that consist of non-polar ZnO surfaces predominantly. Energy level alignment at interfaces is critical for fundamental understanding and optimization of OPV as band offsets of the donor and acceptor materials largely determine the open circuit voltage (Voc) of the device. Using ultraviolet photoemission spectroscopy (UPS) and inverse photoemission spectroscopy (IPS), we examined the correlation between energy alignment and photovoltaic properties of a model hybrid solar cell structure incorporating undoped electrodeposited polythiophene (e-PT) films on ZnO planar substrates. The electrolyte anion (BF4-, PF6 -, ClO4- or CF3SO3 -) used in the electrodeposition solution was found to exert a strong influence on the neutral e-PT film morphology and adhesion, the band alignment at the interface, and ultimately the photovoltaic behavior. The interfacial dipole lowers polythiophene energy levels, increasing the theoretical and actual Voc in polythiophene

  10. SUITABILITY OF THREE HYBRID POPLAR CLONES FOR LAMINATED VENEER LUMBER MANUFACTURING USING MELAMINE UREA FORMALDEHYDE ADHESIVE

    Directory of Open Access Journals (Sweden)

    Ramazan Kurt

    2010-07-01

    Full Text Available Experimental laminated veneer lumbers (LVLs from rotary peeled I-214 (Populus x Euramericana and two Populus deltoides I-77/51 and S.307-26 fast growing hybrid poplar clones were manufactured with a melamine urea formaldehyde (MUF adhesive successfully. Two Populus deltoides clones that are grown in Turkey were used for the first time in LVLs manufacturing. The results showed that clone types affected physical and mechanical properties of LVLs. Populus deltoides clones had better physical and mechanical properties compared to Populus x Euramericana clone due to their higher density and fiber length values. S.307-26 clone had the highest and I-214 had the lowest properties among three hybrid poplar clones. The physical and mechanical properties of LVLs were higher than those of solid woods. This increase may be due to compaction factor (densification, manufacturing techniques, and the use of adhesives. The degree of contribution of solid wood properties to the LVLs’ properties was explained by using a contribution factor. Two Populus deltoides clones were found to be more suitable for LVLs manufacturing compared to Populus x Euramericana clone.

  11. Design, Construction and Effectiveness Analysis of Hybrid Automatic Solar Tracking System for Amorphous and Crystalline Solar Cells

    OpenAIRE

    Bhupendra Gupta

    2013-01-01

    - This paper concerns the design and construction of a Hybrid solar tracking system. The constructed device was implemented by integrating it with Amorphous & Crystalline Solar Panel, three dimensional freedom mechanism and microcontroller. The amount of power available from a photovoltaic panel is determined by three parameters, the type of solar tracker, materials of solar panel and the intensity of the sunlight. The objective of this paper is to present analysis on the use of two differ...

  12. Combustion system for hybrid solar fossil fuel receiver

    Science.gov (United States)

    Mehos, Mark S.; Anselmo, Kenneth M.; Moreno, James B.; Andraka, Charles E.; Rawlinson, K. Scott; Corey, John; Bohn, Mark S.

    2004-05-25

    A combustion system for a hybrid solar receiver comprises a pre-mixer which combines air and fuel to form an air-fuel mixture. The mixture is introduced tangentially into a cooling jacket. A burner plenum is fluidically connected to the cooling jacket such that the burner plenum and the cooling jacket are arranged in thermal contact with one another. The air-fuel mixture flows through the cooling jacket cooling the burner plenum to reduce pre-ignition of the air-fuel mixture in the burner plenum. A combustion chamber is operatively associated with and open to the burner plenum to receive the air-fuel mixture from the burner plenum. An igniter is operatively positioned in the combustion chamber to combust the air-fuel mixture, releasing heat. A recuperator is operatively associated with the burner plenum and the combustion chamber and pre-heats the air-fuel mixture in the burner plenum with heat from the combustion chamber. A heat-exchanger is operatively associated and in thermal contact with the combustion chamber. The heat-exchanger provides heat for the hybrid solar receiver.

  13. Organic Inorganic Hybrid Solar Cell Efficiency Improvement By Employing Au Nanocluster

    Science.gov (United States)

    2015-06-14

    Specialists Conference Conference Date: June 14, 2015 Organic - Inorganic Hybrid Solar Cell Efficiency Improvement by Employing Au Nanocluster Manisha...tunable conductivity, organic polymer, heterojunction, nanocluster I. INTRODUCTION Recently, organic / inorganic hybrid heterojunction solar cells have...conventional Si p−n junction. These heterojunction devices are intended to exploit the advantageous properties of both organic and inorganic materials

  14. A Hybrid Tandem Solar Cell Combining a Dye-Sensitized and a Polymer Solar Cell.

    Science.gov (United States)

    Shao, Zhipeng; Chen, Shuanghong; Zhang, Xuhui; Zhu, Liangzheng; Ye, Jiajiu; Dai, Songyuan

    2016-06-01

    A hybrid tandem solar cell was assambled by connecting a dye sensitized solar cell and a polymer solar cell in series. A N719 sensitized TiO2 was used as photocathode in dye-sensitized subcell, and a MEH-PPV/PCBM composite was used as active layer in the polymer subcell. The polymer subcell fabricated on the counter electrode of the dye sensitized solar cell. A solution processed TiO(x) layer was used as electron collection layer of the polymer sub cell and the charge recombination layer. The effects of the TiO(x) interlayer and the spectral overlap between the two sub cells have been studied and optimized. The results shows that a proper thickness of the TiO(x) layer is needed for tandem solar cells. Thick TiO(x) will enhance the series resistance, but too thin TiO(x), layer will damage the hole blocking effect and its hydrophilic. The resulting optimized tandem solar cells exhibited a power conversion efficiency of 1.28% with a V(oc) of 0.95 V under simulated 100 mW cm(-2) AM 1.5 illumination.

  15. Si/PEDOT:PSS core/shell nanowire arrays for efficient hybrid solar cells.

    Science.gov (United States)

    Lu, Wenhui; Wang, Chengwei; Yue, Wei; Chen, Liwei

    2011-09-01

    A solution filling and drying method has been demonstrated to fabricate Si/PEDOT:PSS core/shell nanowire arrays for hybrid solar cells. The hybrid core/shell nanowire arrays show excellent broadband anti-reflection, and resulting hybrid solar cells absorb about 88% of AM 1.5G photons in the 300-1100 nm range. The power conversion efficiency (PCE) of the hybrid solar cell reaches 6.35%, and is primarily limited by direct and indirect interfacial recombination of charge carriers.

  16. Ultra-Portable Solar-Powered 3D Printers for Onsite Manufacturing of Medical Resources.

    Science.gov (United States)

    Wong, Julielynn Y

    2015-09-01

    The first space-based fused deposition modeling (FDM) 3D printer is powered by solar photovoltaics. This study seeks to demonstrate the feasibility of using solar energy to power a FDM 3D printer to manufacture medical resources at the Mars Desert Research Station and to design an ultra-portable solar-powered 3D printer for off-grid environments. Six solar panels in a 3×2 configuration, a voltage regulator/capacitor improvised from a power adapter, and two 12V batteries in series were connected to power a FDM 3D printer. Three designs were printed onsite and evaluated by experts post analogue mission. A solar-powered 3D printer composed of off-the-shelf components was designed to be transported in airline carry-on luggage. During the analogue mission, the solar-powered printer could only be operated for 3D printer was designed that could print an estimated 16 dental tools or 8 mallet finger splints or 7 scalpel handles on one fully charged 12V 150Wh battery with a 110V AC converter. It is feasible to use solar energy to power a 3D printer to manufacture functional and personalized medical resources at a Mars analogue research station. Based on these findings, a solar-powered suitcase 3D printing system containing solar panels, 12V battery with charge controller and AC inverter, and back-up solar charge controller and inverter was designed for transport to and use in off-grid communities.

  17. Improved performance of silicon nanowire/cadmium telluride quantum dots/organic hybrid solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Ge, Zhaoyun [National Laboratory of Solid State Microstructures and School of Electronic Science and Engineering, Nanjing University, Nanjing 210093 (China); Jiangsu University of Science and Technology, Zhenjiang 212003, Jiangsu Province (China); Xu, Ling, E-mail: xuling@nju.edu.cn [National Laboratory of Solid State Microstructures and School of Electronic Science and Engineering, Nanjing University, Nanjing 210093 (China); Zhang, Renqi; Xue, Zhaoguo; Wang, Hongyu; Xu, Jun; Yu, Yao; Su, Weining; Ma, Zhongyuan; Chen, Kunji [National Laboratory of Solid State Microstructures and School of Electronic Science and Engineering, Nanjing University, Nanjing 210093 (China)

    2015-04-15

    Highlights: • We introduce an intermediate cadmium telluride quantum dots (CdTe QDs) layer between the organic with silicon nanowires of hybrid solar cells as a down-shifting layer. • The hybrid solar cell got the maximum short circuit current density of 33.5 mA/cm{sup 2}, getting an increase of 15.1% comparing to solar cell without CdTe QDs. • The PCE of the hybrid solar cells with CdTe QDs layer increases 28.8%. - Abstract: We fabricated silicon nanowire/cadmium telluride quantum dots (CdTe QDs)/organic hybrid solar cells and investigated their structure and electrical properties. Transmission electron microscope revealed that CdTe QDs were uniformly distributed on the surface of the silicon nanowires, which made PEDOT:PSS easily filled the space between SiNWs. The current density–voltage (J–V) characteristics of hybrid solar cells were investigated both in dark and under illumination. The result shows that the performance of the hybrid solar cells with CdTe QDs layer has an obvious improvement. The optimal short-circuit current density (J{sub sc}) of solar cells with CdTe QDs layer can reach 33.5 mA/cm{sup 2}. Compared with the solar cells without CdTe QDs, J{sub sc} has an increase of 15.1%. Power conversion efficiency of solar cells also increases by 28.8%. The enhanced performance of the hybrid solar cells with CdTe QDs layers are ascribed to down-shifting effect of CdTe QDs and the modification of the silicon nanowires surface with CdTe QDs. The result of our experiments suggests that hybrid solar cells with CdTe QDs modified are promising candidates for solar cell application.

  18. 77 FR 75609 - Approval for Manufacturing Authority; Foreign-Trade Zone 277; Suntech Arizona, Inc. (Solar Panel...

    Science.gov (United States)

    2012-12-21

    ... Foreign-Trade Zones Board Approval for Manufacturing Authority; Foreign-Trade Zone 277; Suntech Arizona, Inc. (Solar Panel Manufacturing); Goodyear, AZ Pursuant to its authority under the Foreign-Trade Zones... requested manufacturing authority on behalf of Suntech Arizona, Inc., within FTZ 277, in Goodyear,...

  19. Ionic transport in hybrid lead iodide perovskite solar cells

    Science.gov (United States)

    Eames, Christopher; Frost, Jarvist M.; Barnes, Piers R. F.; O'Regan, Brian C.; Walsh, Aron; Islam, M. Saiful

    2015-01-01

    Solar cells based on organic–inorganic halide perovskites have recently shown rapidly rising power conversion efficiencies, but exhibit unusual behaviour such as current–voltage hysteresis and a low-frequency giant dielectric response. Ionic transport has been suggested to be an important factor contributing to these effects; however, the chemical origin of this transport and the mobile species are unclear. Here, the activation energies for ionic migration in methylammonium lead iodide (CH3NH3PbI3) are derived from first principles, and are compared with kinetic data extracted from the current–voltage response of a perovskite-based solar cell. We identify the microscopic transport mechanisms, and find facile vacancy-assisted migration of iodide ions with an activation energy of 0.6 eV, in good agreement with the kinetic measurements. The results of this combined computational and experimental study suggest that hybrid halide perovskites are mixed ionic–electronic conductors, a finding that has major implications for solar cell device architectures. PMID:26105623

  20. Design, Construction and Effectiveness Analysis of Hybrid Automatic Solar Tracking System for Amorphous and Crystalline Solar Cells

    Directory of Open Access Journals (Sweden)

    Bhupendra Gupta

    2013-10-01

    Full Text Available - This paper concerns the design and construction of a Hybrid solar tracking system. The constructed device was implemented by integrating it with Amorphous & Crystalline Solar Panel, three dimensional freedom mechanism and microcontroller. The amount of power available from a photovoltaic panel is determined by three parameters, the type of solar tracker, materials of solar panel and the intensity of the sunlight. The objective of this paper is to present analysis on the use of two different material of Solar panel like Amorphous & Crystalline in a Solar tracking system at Stationary, Single Axis, Dual Axis & Hybrid Axis solar tracker to have better performance with minimum losses to the surroundings, as this device ensures maximum intensity of sun rays hitting the surface of the panel from sunrise to sunset

  1. Energy management of fuel cell/solar cell/supercapacitor hybrid power source

    Energy Technology Data Exchange (ETDEWEB)

    Thounthong, Phatiphat; Sethakul, Panarit [Department of Teacher Training in Electrical Engineering, King Mongkut' s University of Technology North Bangkok, 1518, Piboolsongkram Road, Bangsue, Bangkok 10800 (Thailand); Chunkag, Viboon [Department of Electrical Engineering, King Mongkut' s University of Technology North Bangkok, 1518, Piboolsongkram Road, Bangsue, Bangkok 10800 (Thailand); Sikkabut, Suwat [Thai-French Innovation Institute, King Mongkut' s University of Technology North Bangkok, 1518, Piboolsongkram Road, Bangsue, Bangkok 10800 (Thailand); Pierfederici, Serge; Davat, Bernard [Groupe de Recherche en Electrotechnique et Electronique de Nancy (GREEN: UMR 7037), Nancy Universite, INPL-ENSEM, 2, Avenue de la Foret de Haye, Vandoeuvre-les-Nancy, Lorraine 54516 (France)

    2011-01-01

    This study presents an original control algorithm for a hybrid energy system with a renewable energy source, namely, a polymer electrolyte membrane fuel cell (PEMFC) and a photovoltaic (PV) array. A single storage device, i.e., a supercapacitor (ultracapacitor) module, is in the proposed structure. The main weak point of fuel cells (FCs) is slow dynamics because the power slope is limited to prevent fuel starvation problems, improve performance and increase lifetime. The very fast power response and high specific power of a supercapacitor complements the slower power output of the main source to produce the compatibility and performance characteristics needed in a load. The energy in the system is balanced by d.c.-bus energy regulation (or indirect voltage regulation). A supercapacitor module functions by supplying energy to regulate the d.c.-bus energy. The fuel cell, as a slow dynamic source in this system, supplies energy to the supercapacitor module in order to keep it charged. The photovoltaic array assists the fuel cell during daytime. To verify the proposed principle, a hardware system is realized with analog circuits for the fuel cell, solar cell and supercapacitor current control loops, and with numerical calculation (dSPACE) for the energy control loops. Experimental results with small-scale devices, namely, a PEMFC (1200 W, 46 A) manufactured by the Ballard Power System Company, a photovoltaic array (800 W, 31 A) manufactured by the Ekarat Solar Company and a supercapacitor module (100 F, 32 V) manufactured by the Maxwell Technologies Company, illustrate the excellent energy-management scheme during load cycles. (author)

  2. TNB Experience in Developing Solar Hybrid Station at RPS Kemar, Gerik, Perak Darul Ridzuan

    Science.gov (United States)

    Aziz, K. A.; Shamsudin, K. N.

    2013-06-01

    This paper will discuss on TNB experience in developing Solar Hybrid Station at RPS Kemar, Gerik, Perak. TNB has been approached by KKLW to submit proposal to provide electricity in the rural area namely RPS Kemar. Looking at area and source available, Solar Hybrid System was the best method in order to provide electricity at this area. This area is far from national grid sources. Solar Hybrid System is the best method to produce electrical power using the renewable energy from Solar PV, Battery and Diesel Generator Set. Nowadays, price of petroleum is slightly high due to higher demand from industry. Solar energy is good alternative in this country to practice in order to reduce cost for produce of electrical energy. Generally, Solar will produce energy during daytime and when become cloudy and dark, automatically battery and diesel generator set will recover the system through the hybrid controller system.

  3. Introducing a Novel Hybrid Artificial Intelligence Algorithm to Optimize Network of Industrial Applications in Modern Manufacturing

    Directory of Open Access Journals (Sweden)

    Aydin Azizi

    2017-01-01

    Full Text Available Recent advances in modern manufacturing industries have created a great need to track and identify objects and parts by obtaining real-time information. One of the main technologies which has been utilized for this need is the Radio Frequency Identification (RFID system. As a result of adopting this technology to the manufacturing industry environment, RFID Network Planning (RNP has become a challenge. Mainly RNP deals with calculating the number and position of antennas which should be deployed in the RFID network to achieve full coverage of the tags that need to be read. The ultimate goal of this paper is to present and evaluate a way of modelling and optimizing nonlinear RNP problems utilizing artificial intelligence (AI techniques. This effort has led the author to propose a novel AI algorithm, which has been named “hybrid AI optimization technique,” to perform optimization of RNP as a hard learning problem. The proposed algorithm is composed of two different optimization algorithms: Redundant Antenna Elimination (RAE and Ring Probabilistic Logic Neural Networks (RPLNN. The proposed hybrid paradigm has been explored using a flexible manufacturing system (FMS, and results have been compared with Genetic Algorithm (GA that demonstrates the feasibility of the proposed architecture successfully.

  4. ROBUST-HYBRID GENETIC ALGORITHM FOR A FLOW-SHOP SCHEDULING PROBLEM (A Case Study at PT FSCM Manufacturing Indonesia)

    OpenAIRE

    Johan Soewanda; Tanti Octavia; Iwan Halim Sahputra

    2007-01-01

    This paper discusses the application of Robust Hybrid Genetic Algorithm to solve a flow-shop scheduling problem. The proposed algorithm attempted to reach minimum makespan. PT. FSCM Manufacturing Indonesia Plant 4's case was used as a test case to evaluate the performance of the proposed algorithm. The proposed algorithm was compared to Ant Colony, Genetic-Tabu, Hybrid Genetic Algorithm, and the company's algorithm. We found that Robust Hybrid Genetic produces statistically better result than...

  5. Hybrid Optical Devices: The Case of the Unification of the Electrochromic Device and the Organic Solar Cell

    Directory of Open Access Journals (Sweden)

    Andre F. S. Guedes

    2016-06-01

    Full Text Available The development of Hybrid Optical Devices, using some flexible optically transparent substrate material and organic semiconductor materials, has been widely utilized by the organic electronic industry, when manufacturing new technological products. The Hybrid Optical Device is constituted by the union of the electrochromic device and the organic solar cell. The flexible organic photovoltaic solar cells, in this hybrid optical device, have been the Poly base (3-hexyl thiophene, P3HT, Phenyl-C61-butyric acid methyl ester, PCBM and Polyaniline, PANI, all being deposited in Indium Tin Oxide, ITO. In addition, the thin film, obtained by the deposition of PANI, and prepared in perchloric acid solution, has been identified through PANI-X1. In the flexible electrochromic device, the Poly base (3,4-ethylenedioxythiophene, PEDOT, has been prepared in Propylene Carbonate, PC, being deposited in Indium Tin Oxide, ITO. Also, both devices have been united by an electrolyte solution prepared with Vanadium Pentoxide, V2O5, Lithium Perchlorate, LiClO4, and Polymethylmethacrylate, PMMA. This device has been characterized through Electrical Measurements, such as UV-Vis Spectroscopy and Scanning Electron Microscopy (SEM. Thus, the result obtained through electrical measurements has demonstrated that the flexible organic photovoltaic solar cell presented the characteristic curve of standard solar cell after spin-coating and electrodeposition. Accordingly, the results obtained with optical and electrical characterization have revealed that the electrochromic device demonstrated some change in optical absorption, when subjected to some voltage difference. Moreover, the inclusion of the V2O5/PANI-X1 layer reduced the effects of degradation that this hybrid organic device caused, that is, solar irradiation. Studies on Scanning Electron Microscopy (SEM have found out that the surface of V2O5/PANI-X1 layers can be strongly conditioned by the surface morphology of the

  6. Demonstrative study for the wind and solar hybrid power system. 2; Furyoku taiyoko hybrid hatsuden system ni kansuru jissho kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    Kimura, Y.; Sakuma, H.; Ushiyama, I. [Ashikaga Institute of Technology, Tochigi (Japan)

    1996-10-27

    In order to verify the complementary relationship between wind and solar energy, the long-term field test of the hybrid power system was conducted at the natural energy square of Ashikaga Institute of Technology. The solar cell blade windmill composed of a Savonius windmill and flexible solar cells applied to swept buckets was also prepared. As a result, the wind power generation was promising mainly in the winter period including the late fall and early spring, while solar one was stable all the year through although it was slightly poor in winter. Stable power generation was thus achieved by combining wind energy with solar energy. As the whole data of other wind and solar power generation systems at the square were analyzed for every month, the same conclusion as the solar cell blade windmill was obtained as follows: the wind power generation in Ashikaga area is promising in Nov.-March from the field test result for 16 months, solar power generation is stable all the year through, the hybrid power system is effective in Nov.-April, and the solar cell blade windmill is equivalent to the hybrid power system. 3 refs., 5 figs.

  7. Method of manufacturing large dish reflectors for a solar concentrator apparatus

    Science.gov (United States)

    Angel, Roger P; Olbert, Blain H

    2011-12-27

    A method of manufacturing monolithic glass reflectors for concentrating sunlight in a solar energy system is disclosed. The method of manufacturing allows large monolithic glass reflectors to be made from float glass in order to realize significant cost savings on the total system cost for a solar energy system. The method of manufacture includes steps of heating a sheet of float glass positioned over a concave mold until the sheet of glass sags and stretches to conform to the shape of the mold. The edges of the dish-shaped glass are rolled for structural stiffening around the periphery. The dish-shaped glass is then silvered to create a dish-shaped mirror that reflects solar radiation to a focus. The surface of the mold that contacts the float glass preferably has a grooved surface profile comprising a plurality of cusps and concave valleys. This grooved profile minimizes the contact area and marring of the specular glass surface, reduces parasitic heat transfer into the mold and increases mold lifetime. The disclosed method of manufacture is capable of high production rates sufficiently fast to accommodate the output of a conventional float glass production line so that monolithic glass reflectors can be produced as quickly as a float glass production can make sheets of float glass to be used in the process.

  8. Evaluation of green manufacturing practices using a hybrid MCDM model combining DANP with PROMETHEE

    DEFF Research Database (Denmark)

    Govindan, Kannan; Kannan, Devika; Shankar, Madan

    2015-01-01

    literature, particularly in environmental practices specific to India. In this connection, there is a need to explore green manufacturing practices (GMP) in an Indian context. The purpose of this article is to select the best GMP based on dimensions and relevant criteria with the assistance of a hybrid multi...... is the leading manufacturer of rubber tyres and tubes. By virtue of these findings, industries can identify the best GM practice to adopt in order to increase the chances of profit and performance throughout their systems. This study concludes by successfully identifying the best GM practice for this case...... industry, and it provides some important managerial implications. This research explores some future trends to make the study more reliable in changing real life scenarios. © 2014 © 2014 Taylor & Francis....

  9. Efficient Organic/Inorganic Hybrid Solar Cell Integrating Polymer Nanowires and Inorganic Nanotetrapods

    Science.gov (United States)

    Xu, Weizhe; Tan, Furui; Liu, Xiansheng; Zhang, Weifeng; Qu, Shengchun; Wang, Zhijie; Wang, Zhanguo

    2017-01-01

    Constructing a highly efficient bulk-heterojunction is of critical importance to the hybrid organic/inorganic solar cells. Here in this work, we introduce a novel hybrid architecture containing P3HT nanowire and CdSe nanotetrapod as bicontinuous charge channels for holes and electrons, respectively. Compared to the traditionally applied P3HT molecules, the well crystallized P3HT nanowires qualify an enhanced light absorption at the long wavelength as well as strengthened charge carrier transport in the hybrid active layer. Accordingly, based on efficient dissociation of photogenerated excitons, the interpercolation of these two nano-building blocks allows a photovoltaic conversion efficiency of 1.7% in the hybrid solar cell, up to 42% enhancement compared to the reference solar cell with traditional P3HT molecules as electron donor. Our work provides a promising hybrid structure for efficient organic/inorganic bulk-heterojunction solar cells.

  10. Efficient Organic/Inorganic Hybrid Solar Cell Integrating Polymer Nanowires and Inorganic Nanotetrapods.

    Science.gov (United States)

    Xu, Weizhe; Tan, Furui; Liu, Xiansheng; Zhang, Weifeng; Qu, Shengchun; Wang, Zhijie; Wang, Zhanguo

    2017-12-01

    Constructing a highly efficient bulk-heterojunction is of critical importance to the hybrid organic/inorganic solar cells. Here in this work, we introduce a novel hybrid architecture containing P3HT nanowire and CdSe nanotetrapod as bicontinuous charge channels for holes and electrons, respectively. Compared to the traditionally applied P3HT molecules, the well crystallized P3HT nanowires qualify an enhanced light absorption at the long wavelength as well as strengthened charge carrier transport in the hybrid active layer. Accordingly, based on efficient dissociation of photogenerated excitons, the interpercolation of these two nano-building blocks allows a photovoltaic conversion efficiency of 1.7% in the hybrid solar cell, up to 42% enhancement compared to the reference solar cell with traditional P3HT molecules as electron donor. Our work provides a promising hybrid structure for efficient organic/inorganic bulk-heterojunction solar cells.

  11. Scalable-manufactured randomized glass-polymer hybrid metamaterial for daytime radiative cooling

    Science.gov (United States)

    Zhai, Yao; Ma, Yaoguang; David, Sabrina N.; Zhao, Dongliang; Lou, Runnan; Tan, Gang; Yang, Ronggui; Yin, Xiaobo

    2017-03-01

    Passive radiative cooling draws heat from surfaces and radiates it into space as infrared radiation to which the atmosphere is transparent. However, the energy density mismatch between solar irradiance and the low infrared radiation flux from a near-ambient-temperature surface requires materials that strongly emit thermal energy and barely absorb sunlight. We embedded resonant polar dielectric microspheres randomly in a polymeric matrix, resulting in a metamaterial that is fully transparent to the solar spectrum while having an infrared emissivity greater than 0.93 across the atmospheric window. When backed with a silver coating, the metamaterial shows a noontime radiative cooling power of 93 watts per square meter under direct sunshine. More critically, we demonstrated high-throughput, economical roll-to-roll manufacturing of the metamaterial, which is vital for promoting radiative cooling as a viable energy technology.

  12. Photoanodic Hybrid Semiconductor–Molecular Heterojunction for Solar Water Oxidation

    KAUST Repository

    Joya, Khurram Saleem

    2015-06-29

    Inorganic photo-responsive semiconducting materials have been employed in photoelectrochemical(PEC) water oxidation devicesin pursuit of solar to fuel conversion.[1]The reaction kinetics in semiconductors is limited by poor contact at the interfaces, and charge transfer is impeded by surface defects and the grain boundaries.[2]It has shown that successful surface functionalization of the photo-responsive semiconducting materials with co-catalysts can maximize the charge separation, hole delivery and its effective consumption, and enhances the efficiency and performane of the PEC based water oxidation assembly.[3]We present here unique modification of photoanodic hematite (α-Fe2O3) and bismuth vanadate (BiVO4) with molecular co-catalysts for enhanced photoelectrochemical water oxidation (Figure 1). These hybrid inorganic–organometallic heterojunctions manifest impressive cathodic shifts in the onset potentials, and the photocurrent densities have been enhanced by > 90% at all potentials relative to uncatalyzed α-Fe2O3 or BiVO4, and other catalyst-semiconductor based heterojunctions.This is a novel development in the solar to fuel conversion field, and is crucially important for designing a tandem device where light interfere very little with the catalyst layer on top of semiconducting light absorber.

  13. Recent progress in stabilizing hybrid perovskites for solar cell applications

    Science.gov (United States)

    Chen, Jianqing; Cai, Xin; Yang, Donghui; Song, Dan; Wang, Jiajia; Jiang, Jinghua; Ma, Aibin; Lv, Shiquan; Hu, Michael Z.; Ni, Chaoying

    2017-07-01

    Hybrid inorganic-organic perovskites have quickly evolved as a promising group of materials for solar cells and optoelectronic applications mainly owing to the inexpensive materials, relatively simple and versatile fabrication and high power conversion efficiency (PCE). The certified energy conversion efficiency for perovskite solar cell (PSC) has reached above 20%, which is compatible to the current best for commercial applications. However, long-term stabilities of the materials and devices remain to be the biggest challenging issue for realistic implementation of the PSCs. This article discusses the key issues related to the stability of perovskite absorbing layer including crystal structural stability, chemical stability under moisture, oxygen, illumination and interface reaction, effects of electron-transporting materials (ETM), hole-transporting materials (HTM), contact electrodes, ion migration and preparation conditions. Towards the end, prospective strategies for improving the stability of PSCs are also briefly discussed and summarized. We focus on recent understanding of the stability of materials and devices and our perspectives about the strategies for the stability improvement.

  14. Comparison of hybrid blends for solar cell application

    Energy Technology Data Exchange (ETDEWEB)

    Lechmann, M. C.; Gutmann, J. S. [Max Planck Institute for Polymer Research, Mainz (Germany); Institute for Physical Chemistry, Johannes Gutenberg University, Mainz (Germany); Koll, D.; Tremel, W. [Institute for Inorganic Chemistry and Analytical Chemistry, Johannes Gutenberg University, Mainz (Germany); Kessler, D. [Institute for Organic Chemistry, Johannes Gutenberg University, Mainz (Germany); Theato, P. [Institute for Organic Chemistry, Johannes Gutenberg University, Mainz (Germany); School of Chemical and Biological Engineering, WCU program of Chemical Convergence for Energy and Environment (C2E2), College of Engineering, Seoul National University, 151-744 Seoul (Korea, Republic of)

    2010-07-01

    In blended hybrid systems distinct micro- or nanostructured materials can be formed by phase separation. Network structures of particles or rods in a polymer matrix can be developed via self-assembly. We use this blending approach to compare active materials for application in solar cell devices. Blends were fabricated from either poly(hexylthiophene) P3HT or poly(triphenylamine) PTPA mixed with nanocrystalline TiO{sub 2} rods. In this manner, we compare two different hole conducting polymers in their performance in photovoltaic devices, while experimental conditions are kept identical. We find that the choice of solvent and photovoltaic characterization conducted in inert atmosphere is of importance for blends prepared from P3HT/TiO{sub 2} blends, but not for PTPA/TiO{sub 2} blends. Even though prepared with the same TiO{sub 2} rods, solar cells prepared from PTPA blends showed an enhanced efficiency when measured under ambient conditions. Furthermore, the PTPA/TiO{sub 2} showed higher long-term stability. (author)

  15. Comparison of Hybrid Blends for Solar Cell Application

    Directory of Open Access Journals (Sweden)

    Maria C. Lechmann

    2010-03-01

    Full Text Available In blended hybrid systems distinct micro- or nanostructured materials can be formed by phase separation. Network structures of particles or rods in a polymer matrix can be developed via self-assembly. We use this blending approach to compare active materials for application in solar cell devices. Blends were fabricated from either poly(hexylthiophene P3HT or poly(triphenylamine PTPA mixed with nanocrystalline TiO2 rods. In this manner, we compare two different hole conducting polymers in their performance in photovoltaic devices, while experimental conditions are kept identical. We find that the choice of solvent and photovoltaic characterization conducted in inert atmosphere is of importance for blends prepared from P3HT/TiO2 blends, but not for PTPA/TiO2 blends. Even though prepared with the same TiO2 rods, solar cells prepared from PTPA blends showed an enhanced efficiency when measured under ambient conditions. Furthermore, the PTPA/TiO2 showed higher long-term stability.

  16. Plasma monitoring and PECVD process control in thin film silicon-based solar cell manufacturing

    Directory of Open Access Journals (Sweden)

    Gabriel Onno

    2014-02-01

    Full Text Available A key process in thin film silicon-based solar cell manufacturing is plasma enhanced chemical vapor deposition (PECVD of the active layers. The deposition process can be monitored in situ by plasma diagnostics. Three types of complementary diagnostics, namely optical emission spectroscopy, mass spectrometry and non-linear extended electron dynamics are applied to an industrial-type PECVD reactor. We investigated the influence of substrate and chamber wall temperature and chamber history on the PECVD process. The impact of chamber wall conditioning on the solar cell performance is demonstrated.

  17. Degradation and stability of R2R manufactured polymer solar cells

    DEFF Research Database (Denmark)

    Norrman, Kion; Krebs, Frederik C

    2009-01-01

    Polymer solar cells have many advantages such as light weight, flexibility, environmental friendliness, low thermal budget, low cost and most notably very fast modes of production by printing techniques. Production experiments have shown that it is highly feasible with existing technology to mass...... produce polymer solar cells at a very low cost. We have employed state-of-the-art analytical techniques to address the challenging issues of degradation and stability of R2R manufactured devices. We have specifically studied the relative effect of oxygen and water on the operational devices in regard...

  18. Solar hybrid power plants: Solar energy contribution in reaching full dispatchability and firmness

    Science.gov (United States)

    Servert, Jorge F.; López, Diego; Cerrajero, Eduardo; Rocha, Alberto R.; Pereira, Daniel; Gonzalez, Lucía

    2016-05-01

    Renewable energies for electricity generation have always been considered as a risk for the electricity system due to its lack of dispatchability and firmness. Renewable energies penetration is constrained to strong grids or else its production must be limited to ensure grid stability, which is kept by the usage of hydropower energy or fossil-fueled power plants. CSP technology has an opportunity to arise not only as a dispatchable and firm technology, but also as an alternative that improves grid stability. To achieve that objective, solar hybrid configurations are being developed, being the most representative three different solutions: SAPG, ISCC and HYSOL. A reference scenario in Kingdom of Saudi Arabia (KSA) has been defined to compare these solutions, which have been modelled, simulated and evaluated in terms of dispatchability and firmness using ratios defined by the authors. The results show that: a) SAPG obtains the highest firmness KPI values, but no operation constraints have been considered for the coal boiler and the solar energy contribution is limited to 1.7%, b) ISCC provides dispatchable and firm electricity production but its solar energy contribution is limited to a 6.4%, and c) HYSOL presents the higher solar energy contribution of all the technologies considered: 66.0% while providing dispatchable and firm generation in similar conditions as SAPG and ISCC.

  19. Rapid Deposition Technology Holds the Key for the World's Largest Manufacturer of Thin-Film Solar Modules (Fact Sheet)

    Energy Technology Data Exchange (ETDEWEB)

    2013-08-01

    First Solar, Inc. has been collaborating with NREL since 1991, advancing its thin-film cadmium telluride solar technology to grow from a startup company to become one of the world's largest manufacturers of solar modules, and the world's largest manufacturer of thin-film solar modules.

  20. Product pricing in the Solar Array Manufacturing Industry - An executive summary of SAMICS

    Science.gov (United States)

    Chamberlain, R. G.

    1978-01-01

    Capabilities, methodology, and a description of input data to the Solar Array Manufacturing Industry Costing Standards (SAMICS) are presented. SAMICS were developed to provide a standardized procedure and data base for comparing manufacturing processes of Low-cost Solar Array (LSA) subcontractors, guide the setting of research priorities, and assess the progress of LSA toward its hundred-fold cost reduction goal. SAMICS can be used to estimate the manufacturing costs and product prices and determine the impact of inflation, taxes, and interest rates, but it is limited by its ignoring the effects of the market supply and demand and an assumption that all factories operate in a production line mode. The SAMICS methodology defines the industry structure, hypothetical supplier companies, and manufacturing processes and maintains a body of standardized data which is used to compute the final product price. The input data includes the product description, the process characteristics, the equipment cost factors, and production data for the preparation of detailed cost estimates. Activities validating that SAMICS produced realistic price estimates and cost breakdowns are described.

  1. Hybrid morphology dependence of CdTe:CdSe bulk-heterojunction solar cells.

    Science.gov (United States)

    Tan, Furui; Qu, Shengchun; Zhang, Weifeng; Wang, Zhanguo

    2014-01-01

    A nanocrystal thin-film solar cell operating on an exciton splitting pattern requires a highly efficient separation of electron-hole pairs and transportation of separated charges. A hybrid bulk-heterojunction (HBH) nanostructure providing a large contact area and interpenetrated charge channels is favorable to an inorganic nanocrystal solar cell with high performance. For this freshly appeared structure, here in this work, we have firstly explored the influence of hybrid morphology on the photovoltaic performance of CdTe:CdSe bulk-heterojunction solar cells with variation in CdSe nanoparticle morphology. Quantum dot (QD) or nanotetrapod (NT)-shaped CdSe nanocrystals have been employed together with CdTe NTs to construct different hybrid structures. The solar cells with the two different hybrid active layers show obvious difference in photovoltaic performance. The hybrid structure with densely packed and continuously interpenetrated two phases generates superior morphological and electrical properties for more efficient inorganic bulk-heterojunction solar cells, which could be readily realized in the NTs:QDs hybrid. This proved strategy is applicable and promising in designing other highly efficient inorganic hybrid solar cells.

  2. Design, development, manufacture, testing, and delivery of devices for connection of solar cell panel circuitry to flat conductor cable solar cell array harness

    Science.gov (United States)

    Dillard, P. A.; Waddington, D.

    1971-01-01

    The technology status and problem areas which exist for the application of flat conductor cabling to solar cell arrays are summarized. Details covering the design, connector manufacture, and prototype test results are also summarized.

  3. Defect engineering in solar cell manufacturing and thin film solar cell development

    Energy Technology Data Exchange (ETDEWEB)

    Sopori, B.L. [National Renewable Energy Lab., Golden, CO (United States)

    1995-08-01

    During the last few years many defect engineering concepts were successfully applied to fabricate high efficiency silicon solar cells on low-cost substrates. Some of the research advances are described.

  4. Manufacture method of a solar cell. Taiyo denchi no seizo hoho

    Energy Technology Data Exchange (ETDEWEB)

    Kitamura, S.; Hanabusa, A.; Arita, T.; Murosono, M.

    1993-12-24

    Conventional manufacture methods of a CdS/CdTe solar cell have problems that a blurred layer of CdTe printing and a redeposition layer of CdTe firing exist at a CdS contact surface and the contact width between the CdS film and its electrode AgIn film is required to be larger than 0.30 mm in order to reduce the contact resistance and to give a highly efficient solar cell. This invention aims to provide a manufacture method of a solar cell in which a CdS film of the window layer and a CdTe film of the optical absorption layer are stacked successively followed by the formation of a carbon film as an acceptor material on the CdTe film, and the surface of the CdS film is treated by laser irradiation by the use of a mask of the carbon film. Consequently, a clean surface is obtained between the CdS film and the electrode AgIn film so as to reduce the contact resistance and the contact width between the CdS film and the AgIn film can be reduced so that a highly efficient solar cell can be produced. 5 figs.

  5. Mobile Open-Source Solar-Powered 3-D Printers for Distributed Manufacturing in Off-Grid Communities

    National Research Council Canada - National Science Library

    Debbie L. King; Adegboyega Babasola; Joseph Rozario; Joshua M. Pearce

    2014-01-01

    .... This study designs and demonstrates the technical viability of two open-source mobile digital manufacturing facilities powered with solar photovoltaics, and capable of printing customizable OSAT in any...

  6. Silicon-film{trademark} solar cells by a flexible manufacturing system

    Energy Technology Data Exchange (ETDEWEB)

    Rand, J.A.; Bai, Y.; Culik, J.S.; Ford, D.H.; Sims, P.E.; Barnett, A.M. [AstroPower, Inc., Solar Park, Newark, Delaware 19716-2000 (United States)

    1999-03-01

    AstroPower is developing a manufacturing process for the production of large-area Silicon-Film{trademark} solar cells under an NREL-administered PVMaT cost-share program. Recent work has focused on new processes and equipment capable of handling very large Silicon-Film{trademark} planks in a low-cost, high-throughput, production environment. New solar cell processes developed include continuous large-area junction diffusion and AR coating. Processes under development include metallization and chemical etching. Large area plank-based processes give a high degree of flexibility, allowing the fabrication of solar cells 100 cm{sup 2} to 900 cm{sup 2} on the same production line. {copyright} {ital 1999 American Institute of Physics.}

  7. The Colloidal Stabilization of Quantum Dots: Towards Manufacturable, Efficient Solution-Processed Solar Cells

    Science.gov (United States)

    Rollny, Lisa

    Understanding colloidal stabilization can influence the design of optoelectronic devices and enable improvements to their performance and stability. For photovoltaics, important characteristics of the active layer material are high conductivity along with a minimum of recombination centers. In order to capitalize on the benefits of solution-processed materials, it is important to minimize the number of processing steps: ideally, to achieve a low-cost solution, materials would be deposited using a single process step compatible with roll-to-roll manufacturing. Prior to this work, the highest-performing colloidal quantum dots (CQD) solar cells have relied on several deposition steps that are repeated in a layer-by-layer (LBL) fashion. The purpose of these process steps has been to remove the long insulating ligands used in synthesis and replace them with short ligands that allow electrical conduction. The large number of steps combined, typically implemented via spin coating, leads to inefficient materials utilization and fails to show a path to a manufacturable solution. In this work, the first CQD solar cells were designed, built, and characterized combining state-of-art performance with scalable manufacture. Firstly, I report the first automated CQD synthesis to result in CQDs that form high-performance CQD solar cells. I analyze the CQD synthesis and by separating it into two phases---nucleation and growth phase---my insights are used to create higher-quality CQDs exhibiting enhanced monodispersity. I then proceed to develop a CQD ink: a CQD solution ready for direct deposition to form a semiconducting film exhibiting low trap state density. In early trials the CQD ink showed only limited power conversion efficiencies of 2%. I designed a new ink strategy, which I term cleavable hemiketal ligands. This novel two-component ligand strategy enables the combination of colloidal stabilization (via this longer two-component ligand) and cleavability (enabling excellent

  8. State of the art review on design and manufacture of hybrid biomedical materials: Hip and knee prostheses.

    Science.gov (United States)

    Bahraminasab, Marjan; Farahmand, Farzam

    2017-09-01

    The trend in biomaterials development has now headed for tailoring the properties and making hybrid materials to achieve the optimal performance metrics in a product. Modern manufacturing processes along with advanced computational techniques enable systematical fabrication of new biomaterials by design strategy. Functionally graded materials as a recent group of hybrid materials have found numerous applications in biomedical area, particularly for making orthopedic prostheses. This article, therefore, seeks to address the following research questions: (RQ1) What is the desired structure of orthopedic hybrid materials? (RQ2) What is the contribution of the literature in the development of hybrid materials in the field of orthopedic research? (RQ3) Which type of manufacturing approaches is prevalently used to build these materials for knee and hip implants? (RQ4) Is there any inadequacy in the methods applied?

  9. Analysis of the inner collection efficiency in hybrid silicon solar cells

    OpenAIRE

    Nubile, P.; Torres, P; Hof, Ch.; Fischer, D.

    2008-01-01

    The collection of photogenerated carriers in hybrid silicon solar cells structures were determined by the DICE (dynamic inner collection efficiency) technique. The hybrid solar cells have a microcrystalline n-type emitter and a crystalline p-type base. Cells with amorphous buffers of several thickness and p+ back surface field microcrystalline layers were also studied. Spectral response and reflectivity were measured for each sample in order to obtain the internal spectral response or quantum...

  10. A discussion on the origin and solutions of hysteresis in perovskite hybrid solar cells

    Science.gov (United States)

    Song, Dae Ho; Hyeok Jang, Min; Lee, Min Ho; Hyuck Heo, Jin; Park, Jin Kyoung; Sung, Shi-Joon; Kim, Dae-Hwan; Hong, Ki-Ha; Im, Sang Hyuk

    2016-11-01

    Although the record efficiencies of perovskite hybrid solar cells are gradually reaching the efficiency of crystalline Si solar cells, perovskite hybrid solar cells often exhibit significant current density-voltage (J-V) hysteresis with respect to the forward and reverse scan direction and scan rate. The origin of the J-V hysteresis of perovskite hybrid solar cells has not, to date, been clearly elucidated. Dielectric polarization by the ferroelectric properties of perovskite (i), the ionic motion/migration of perovskite materials (ii), and charge trapping and detrapping at trap sites by the unbalanced electron and hole flux (iii) are considered the possible origins of J-V hysteresis. Here, we reviewed the origin of the J-V hysteresis of perovskite solar cells from the above three points of view and we then suggest how one may reduce the J-V hysteresis with respect to the scan direction and scan rate.

  11. Theory and Manufacturing Processes of Solar NanoAntenna Electromagnetic Collectors

    Energy Technology Data Exchange (ETDEWEB)

    Dale K. Kotter; Steven D. Novack

    2010-02-01

    DRAFT For Submittal to Journal of Solar Energy - Rev 10.1 ---SOL-08-1091 SOLAR Nantenna Electromagnetic Collectors Dale K. Kotter Idaho National Laboratory Steven D. Novack Idaho National Laboratory W. Dennis Slafer MicroContinuum, Inc. Patrick Pinhero University of Missouri ABSTRACT The research described in this paper explores a new and efficient approach for producing electricity from the abundant energy of the sun, using nanoantenna (nantenna) electromagnetic collectors (NECs). NEC devices target mid-infrared wavelengths, where conventional photovoltaic (PV) solar cells are inefficient and where there is an abundance of solar energy. The initial concept of designing NECs was based on scaling of radio frequency antenna theory to the infrared and visible regions. This approach initially proved unsuccessful because the optical behavior of materials in the terahertz (THz) region was overlooked and, in addition, economical nanofabrication methods were not previously available to produce the optical antenna elements. This paper demonstrates progress in addressing significant technological barriers, including: 1) development of frequency-dependent modeling of double-feedpoint square spiral nantenna elements; 2) selection of materials with proper THz properties; and 3) development of novel manufacturing methods that could potentially enable economical large-scale manufacturing. We have shown that nantennas can collect infrared energy and induce THz currents, and we have also developed cost-effective proof-of-concept fabrication techniques for the large-scale manufacture of simple square loop nantenna arrays. Future work is planned to embed rectifiers into the double-feedpoint antenna structures. This work represents an important first step toward the ultimate realization of a low-cost device that will collect as well as convert this radiation into electricity. This could lead to a broadband, high conversion efficiency low-cost solution to complement conventional PV

  12. Thin Film Solar Cells: Organic, Inorganic and Hybrid

    Science.gov (United States)

    Dankovich, John

    2004-01-01

    Thin film solar cells are an important developing resource for hundreds of applications including space travel. In addition to being more cost effective than traditional single crystal silicon cells, thin film multi-crystaline cells are plastic and light weight. The plasticity of the cells allows for whole solar panels to be rolled out from reams. Organic layers are being investigated in order to increase the efficiency of the cells to create an organic / inorganic hybrid cell. The main focus of the group is a thin film inorganic cell made with the absorber CuInS2. So far the group has been successful in creating the layer from a single-source precursor. They also use a unique method of film deposition called chemical vapor deposition for this. The general makeup of the cell is a molybdenum back contact with the CuInS2 layer, then CdS, ZnO and aluminum top contacts. While working cells have been produced, the efficiency so far has been low. Along with quantum dot fabrication the side project of this that is currently being studied is adding a polymer layer to increase efficiency. The polymer that we are using is P3OT (Poly(3-octylthiopene-2,5-diyll), retroregular). Before (and if) it is added to the cell, it must be understood in itself. To do this simple diodes are being constructed to begin to look at its behavior. The P3OT is spin coated onto indium tin oxide and silver or aluminum contacts are added. This method is being studied in order to find the optimal thickness of the layer as well as other important considerations that may later affect the composition of the finished solar cell. Because the sun is the most abundant renewable, energy source that we have, it is important to learn how to harness that energy and begin to move away from our other depleted non-renewable energy sources. While traditional silicon cells currently create electricity at relatively high efficiencies, they have drawbacks such as weight and rigidness that make them unattractive

  13. The characteristics of arc beam shaping in hybrid plasma and laser deposition manufacturing

    Institute of Scientific and Technical Information of China (English)

    ZHANG; Hai'ou; QIAN; Yingping; WANG; Guilan; ZHENG; Qiguang

    2006-01-01

    As a new direct metal prototyping technology,the hybrid plasma and laser deposition manufacturing (PLDM) is proposed in this paper. In order to figure out the characteristics of plasma arc beam and mould in the PLDM process of high temperature alloy, the high speed CCD camera is used to obtain the picture around the plasma arc. Afterwards the sketch of picture is clearly obtained. And the effect of laser parameter, such as average power, pulse width, pulse repetition frequency and the angle between laser beam and plasma arc beam on the plasma arc appearance, is studied experimentally. The results show that the modality of plasma arc beam is markedly influenced by laser beam. And the improvements of shape precision and surface state of the layer deposited by PLDM are confirmed.

  14. Metal octacarboxyphthalocyanine / multi-walled carbon nanotube hybrid for the development of dye solar cells

    CSIR Research Space (South Africa)

    Mphahlele, N

    2013-09-01

    Full Text Available octacarboxyphthalocyanines-multi-walled carbon nanotubes hybrid was prepared through non- covalent (Pi)p-(Pi)p stacking. The metallo-octacarboxyphthalocyanines-multi-walled carbon nanotubes hybrid was later employed in dye solar cells as a photosensitiser of choice...

  15. Inorganic/organic hybrid solar cells: optimal carrier transport in vertically aligned silicon nanowire arrays.

    Science.gov (United States)

    Sato, Keisuke; Dutta, Mrinal; Fukata, Naoki

    2014-06-07

    Inorganic/organic hybrid radial heterojunction solar cells that combine vertically-aligned n-type silicon nanowires (SiNWs) with poly(3,4-ethylenedioxythiophene):poly(styrene-sulfonate) (PEDOT:PSS) have great potential for replacing commercial Si solar cells. The chief advantage of such solar cells is that they exhibit higher absorbance for a given thickness than commercial Si solar cells, due to incident light-trapping within the NW arrays, thus enabling lower-cost solar cell production. We report herein on the effects of NW length, annealing and surface electrode on the device performance of SiNW/PEDOT:PSS hybrid radial heterojunction solar cells. The power conversion efficiency (PCE) of the obtained SiNW/PEDOT:PSS hybrid solar cells can be optimized by tuning the thickness of the surface electrode, and the etching conditions during NW formation and post-annealing. The PCE of 9.3% is obtained by forming efficient transport pathways for photogenerated charge carriers to electrodes. Our approach is a significant contribution to design of high-performance and low-cost inorganic/organic hybrid heterojunction solar cells.

  16. Perylenes as sensitizers in hybrid solar cells : how molecular size influences performance

    NARCIS (Netherlands)

    Li, Chen; Liu, Zhihong; Schoneboom, Jan; Eickemeyer, Felix; Pschirer, Neil G.; Erk, Peter; Herrmann, Andreas; Mullen, Klaus; Schöneboom, Jan; Grätzel, Michael; Janssen, René

    2009-01-01

    Dye-sensitized solar cells (DSCs), one kind of hybrid solar cells, are being intensively developed due to their high efficiency and low cost. One of the main factors to improve the efficiency is the minimization of the recombination of holes and electrons at the TiO(2)/dye/electrolyte interface. To

  17. Photovoltaic nanocrystal scintillators hybridized on Si solar cells for enhanced conversion efficiency in UV.

    Science.gov (United States)

    Mutlugun, Evren; Soganci, Ibrahim Murat; Demir, Hilmi Volkan

    2008-03-17

    We propose and demonstrate semiconductor nanocrystal based photovoltaic scintillators integrated on solar cells to enhance photovoltaic device parameters including spectral responsivity, open circuit voltage, short circuit current, fill factor, and solar conversion efficiency in the ultraviolet. Hybridizing (CdSe)ZnS core-shell quantum dots of 2.4 nm in diameter on multi-crystalline Si solar cells for the first time, we show that the solar conversion efficiency is enhanced 2 folds under white light illumination similar to the solar spectrum. Such nanocrystal scintillators provide the ability to extend the photovoltaic activity towards UV.

  18. CROWDED HYBRID PANEL MANUFACTURED WITH PEANUT HULLS REINFORCED WITH ITAÚBA WOOD PARTICLES

    Directory of Open Access Journals (Sweden)

    Guilherme Barbirato

    2014-09-01

    Full Text Available http://dx.doi.org/10.5902/1980509815726In this paper, it was considered the study of the potential use of peanut hulls and wood particles of itaúba (Mezilaurus itauba species in order to add value to these materials through the manufacture of hybrid particle board in order to compare the physical and mechanical performances as well as durability. For these procedures, it was used the bi-component polyurethane resin based on castor beans (mammon oil and urea-formaldehyde. The product quality was evaluated based on the requirements of the standards NBR 14.810:2006 APA PRP and 108, through physico-mechanical and microstructural durability. The results indicate that the incorporation of wood particles warrants an increase in physical-mechanical properties of the particleboard manufactured with peanut hulls, the polyurethane resin based on castor oil was effective as a particle adhesive binder and the durability assay indicated that the material should be used under conditions of low exposure to moisture.

  19. Design and testing of digitally manufactured paraffin Acrylonitrile-butadiene-styrene hybrid rocket motors

    Science.gov (United States)

    McCulley, Jonathan M.

    This research investigates the application of additive manufacturing techniques for fabricating hybrid rocket fuel grains composed of porous Acrylonitrile-butadiene-styrene impregnated with paraffin wax. The digitally manufactured ABS substrate provides mechanical support for the paraffin fuel material and serves as an additional fuel component. The embedded paraffin provides an enhanced fuel regression rate while having no detrimental effect on the thermodynamic burn properties of the fuel grain. Multiple fuel grains with various ABS-to-Paraffin mass ratios were fabricated and burned with nitrous oxide. Analytical predictions for end-to-end motor performance and fuel regression are compared against static test results. Baseline fuel grain regression calculations use an enthalpy balance energy analysis with the material and thermodynamic properties based on the mean paraffin/ABS mass fractions within the fuel grain. In support of these analytical comparisons, a novel method for propagating the fuel port burn surface was developed. In this modeling approach the fuel cross section grid is modeled as an image with white pixels representing the fuel and black pixels representing empty or burned grid cells.

  20. PV-solar / wind hybrid energy system for GSM/CDMA type mobile telephony base station

    OpenAIRE

    Pragya Nema, R.K. Nema, Saroj Rangnekar

    2010-01-01

    This paper gives the design idea of optimized PV-Solar and Wind Hybrid Energy System for GSM/CDMA type mobile base station over conventional diesel generator for a particular site in central India (Bhopal) . For this hybrid system ,the meteorological data of Solar Insolation, hourly wind speed, are taken for Bhopal-Central India (Longitude 77o.23'and Latitude 23o.21' ) and the pattern of load consumption of mobile base station are studied and suitably modeled for optimization of the hybrid en...

  1. PV-solar / Wind Hybrid Energy System for GSM/CDMA Type Mobile Telephony Base

    OpenAIRE

    Station Md. Ibrahim; Mohammad Tayyab

    2015-01-01

    This paper presents the design of optimized PV-Solar and Wind Hybrid Energy System for GSM/CDMA type mobile base station over conventional diesel generator for a particular site in south India (Chennai). For this hybrid system ,the meteorological data of Solar Insolation, hourly wind speed, are taken for Chennai (Longitude 80ο .16’and Latitude 13ο .5’ ) and the pattern of load consumption of mobile base station are studied and suitably modeled for optimization of the hybrid ...

  2. Economics of scale in the production of steam with solar thermal-fossil boiler hybrid systems

    Science.gov (United States)

    Hansen, F. R.; Lindner, D. L.; Vitko, J., Jr.

    1983-03-01

    Levelized energy costs for steam plants in the size range 15 MM Btu/h to 400 MM Btu/h were estimated for steam produced by several different technologies, including stand alone oil and coal burning plants and solar central receiver fossil boiler hybrid plants. Models for the costs of plant subsystems used in these calculations are presented. Designs of the solar fossil hybrids examined were optimized for solar fraction and amount of thermal storage used by simulation of plant operation. The resulting levelized energy costs and their sensitivity to various modelling parameters are discussed.

  3. Optimism system refrigerator hybrid power (solar cell + actuator motor to traditional fisherman boat in Makassar

    Directory of Open Access Journals (Sweden)

    Soetyono Ch. Iskandar

    2016-10-01

    Full Text Available Research of Pre-eminent Donation of This college aimed at energetic refrigerator system planning of hybrid (solar cell + actuator motor at inclusion ship of fish in coming, principal from this research is, exploiting of dissociation energy of diatomic is newest with usage of diesel fuel technology cell as coolant system actuator at actuator motor plus fisherman ship. This research program planned in a period of three years to design freezing device of energetic fish of hybrid (solarcell + actuator motor fisherman ship, yields storage device basis barium product of energetic fish of hybrid.In first year, does with refer to study study about base material refrigerator and solar cell and makes energetic refrigerator system prototype of solar (laboratory scale. In second year, does study to design energetic refrigerator of hybrid (solar cell + actuator motor with laboratory scale productively energetic refrigerator prototype of hybrid with laboratory scale. In third year, application of energetic refrigerator system of hybrid (solar cell + actuator motor at fisherman ship Poetere in Makassar, expected can push and motivates fisherman public in developing and applies this technology, causing can increase quality of produce of fish and at the same time increases fisherman public economics value without using again ice block to make cool fisherman fishing boat hold.

  4. A pilot plant for solar-cell manufacture; Ligne pilote de fabrication de cellules solaires

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, D.; Ziegler, Y.; Closset, A. [VHF - Technologies SA, Yverdon-les-Bains (Switzerland)

    2005-07-01

    A pilot plant for the manufacture of amorphous silicon solar cells on plastic film substrate was built allowing the annual production of 40 kW peak power. The production steps comprise: a) the continuous coating of n-i-p solar cells by VHF-PECVD with a capacity of 28.5 meters in 8.5 hours; b) transparent-conducting-oxide (TCO) top contact structuring using a continuous process; c) series connection step (scribing and Ag-paste) with a capacity of 28 meters in 6 hours; d) back and top contact sputtering with 3 parallel magnetrons; e) integration of a large-area vacuum laminator enabling the simultaneous lamination of 4 products of 4 Wp. In parallel with this project, a complete cost model was established enabling a more quantitative approach of the future technological and industrial strategy of the company. An increase of the capacity to 100 kWp has been planned for summer 2005.

  5. Numerical simulations for the effiency improvement of hybrid dye-microcrystalline silicon pin-solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Burdorf, Sven; Bauer, Gottfried Heinrich; Brueggemann, Rudolf [Institut fuer Physik, Carl von Ossietzky Universitaet, Oldenburg (Germany)

    2011-07-01

    Hybrid solar cells consisting of dye sensitizers incorporated in the i-layer of microcrystalline silicon pin solar cell have been proposed and even recently processed. The dye sensitizer molecules are embedded in the matrix and enhance the overall absorption of the dye-matrix system due to their high absorption coefficient in the spectral range interesting for photovoltaic applications. However, the charge transport properties of dyes are quite poor. Microcrystalline silicon on the other hand has acceptable charge transport properties, while the absorption, given a layer thickness in the micron range, is relatively poor. This contribution investigates the effiency improvement of hybrid dye-microcrystalline solar cells compared to pure microcrystalline solar cells by simulation. The results indicate that, under optimal conditions, the effiency can be improved by more than 20 % compared to a pure microcrystalline silicon cell. The thickness reduction for the hybrid system can be as large as 50 % for the same effiency.

  6. Hybrid Model of Inhomogeneous Solar Wind Plasma Heating by Alfven Wave Spectrum: Parametric Studies

    Science.gov (United States)

    Ofman, L.

    2010-01-01

    Observations of the solar wind plasma at 0.3 AU and beyond show that a turbulent spectrum of magnetic fluctuations is present. Remote sensing observations of the corona indicate that heavy ions are hotter than protons and their temperature is anisotropic (T(sub perpindicular / T(sub parallel) >> 1). We study the heating and the acceleration of multi-ion plasma in the solar wind by a turbulent spectrum of Alfvenic fluctuations using a 2-D hybrid numerical model. In the hybrid model the protons and heavy ions are treated kinetically as particles, while the electrons are included as neutralizing background fluid. This is the first two-dimensional hybrid parametric study of the solar wind plasma that includes an input turbulent wave spectrum guided by observation with inhomogeneous background density. We also investigate the effects of He++ ion beams in the inhomogeneous background plasma density on the heating of the solar wind plasma. The 2-D hybrid model treats parallel and oblique waves, together with cross-field inhomogeneity, self-consistently. We investigate the parametric dependence of the perpendicular heating, and the temperature anisotropy in the H+-He++ solar wind plasma. It was found that the scaling of the magnetic fluctuations power spectrum steepens in the higher-density regions, and the heating is channeled to these regions from the surrounding lower-density plasma due to wave refraction. The model parameters are applicable to the expected solar wind conditions at about 10 solar radii.

  7. Hybrid Model of Inhomogeneous Solar Wind Plasma Heating by Alfven Wave Spectrum: Parametric Studies

    Science.gov (United States)

    Ofman, L.

    2010-01-01

    Observations of the solar wind plasma at 0.3 AU and beyond show that a turbulent spectrum of magnetic fluctuations is present. Remote sensing observations of the corona indicate that heavy ions are hotter than protons and their temperature is anisotropic (T(sub perpindicular / T(sub parallel) >> 1). We study the heating and the acceleration of multi-ion plasma in the solar wind by a turbulent spectrum of Alfvenic fluctuations using a 2-D hybrid numerical model. In the hybrid model the protons and heavy ions are treated kinetically as particles, while the electrons are included as neutralizing background fluid. This is the first two-dimensional hybrid parametric study of the solar wind plasma that includes an input turbulent wave spectrum guided by observation with inhomogeneous background density. We also investigate the effects of He++ ion beams in the inhomogeneous background plasma density on the heating of the solar wind plasma. The 2-D hybrid model treats parallel and oblique waves, together with cross-field inhomogeneity, self-consistently. We investigate the parametric dependence of the perpendicular heating, and the temperature anisotropy in the H+-He++ solar wind plasma. It was found that the scaling of the magnetic fluctuations power spectrum steepens in the higher-density regions, and the heating is channeled to these regions from the surrounding lower-density plasma due to wave refraction. The model parameters are applicable to the expected solar wind conditions at about 10 solar radii.

  8. Development of pulsed processes for the manufacture of solar cells. [Ion implantation and annealing process

    Energy Technology Data Exchange (ETDEWEB)

    Minnucci, J.A.

    1978-12-01

    This report describes the results of a 1-year program to develop the processes required for low-energy ion implantation for the automated production of silicon solar cells. The program included (1) demonstrating state-of-the-art ion implantation equipment and designing an automated ion implanter, (2) making efforts to improve the performance of ion-implanted solar cells to 16.5 percent AM1, (3) developing a model of the pulse annealing process used in solar cell production, and (4) preparing an economic analysis of the process costs of ion implantation. During the program, phosphorus ions at an energy of 10 keV and dose of 2 x 10/sup 15/ cm/sup -2/ were implanted in silicon solar cells to produce junctions, while boron ions at 25 keV and 5 x 10/sup 15/ cm/sup -2/ were implanted in the cells to produce effective back surface fields. An ion implantation facility with a beam current up to 4 mA and a production throughput of 300 wafers per hour was designed and installed. A design was prepared for a 100-mA, automated implanter with a production capacity of 100 MW/sub e/ per year. A Solar Array Manufacturing Industry Costing Standards (SAMICS) economic analysis of the automated process steps of ion implantation and pulse annealing indicated that junctions can be formed and annealed at a cost of less than 3 cents per watt. The efforts during this program represent a major advancement in developing the automated production of silicon solar cells with efficiencies greater than 16 percent AM1.

  9. Experimental studies on drying of Zingiber officinale, Curcuma longa l. and Tinospora cordifolia in solar-biomass hybrid drier

    Energy Technology Data Exchange (ETDEWEB)

    Prasad, J.; Vijay, V.K. [Indian Institute of Technology, New Delhi (India). Center for Rural Development and Technology

    2005-11-01

    An integral type natural convection solar drier has been fabricated and coupled with a biomass stove. Experiments have been conducted to test the performance of the drier by drying of Zingiber officinale (ginger), Curcuma longa l. (turmeric) and Tinospora cordifolia (guduchi) during the summer climate in Delhi. It was found that, during the load test for ginger, 18 kg of fresh product with an initial moisture content of 319.74(db)% was dried to a final moisture content of 11.8(db)% within 33 h. Similarly, moisture content of turmeric and guduchi were reduced from 358.96 to 8.8 and 257.45 to 9.67(db)% during 36 and 48 h of drying, respectively. The drying of these products has also been studied under 'solar-only' and open sun in the same climatic conditions and the results indicate that for all the products, drying is faster, and is within 33-48 h in hybrid drier, against 72-120 h in 'solar-only' operation of the same drier and 192-288 h in open sun. Efficiency of the drier during its two mode (solar and biomass separately) of operation has been estimated and quality evaluation of under-studied products showed that developed drier is suitable for the drying of these products. The developed drier is a simple system, which can be manufactured locally and can be used for drying of other agricultural products. (author)

  10. A novel organic-inorganic hybrid tandem solar cell with inverted structure

    Science.gov (United States)

    Bahrami, A.; Faez, R.

    2017-04-01

    A novel organic-inorganic hybrid tandem solar cell with inverted structure is proposed. This efficient double-junction hybrid tandem solar cell consists of a single-junction hydrogenated amorphous silicon (a-Si:H) subcell with n-i-p structure as front cell and a P3HT:PCBM organic subcell with inverted structure as back cell. In order to optimize the hybrid tandem cell, we have performed a simulation based on transfer matrix method. We have compared the characteristics of this novel structure with a conventional structure. As a result, a power conversion efficiency (PCE) of 6.1 and 24% improvement compared to the conventional hybrid tandem cell was achieved. We also discuss the high potential of this novel structure for realizing high-stability organic-inorganic hybrid photovoltaic devices.

  11. Silicon-Film(TM) Solar Cells by a Flexible Manufacturing System: Final Report, 16 April 1998 -- 31 March 2001

    Energy Technology Data Exchange (ETDEWEB)

    Rand, J.

    2002-02-01

    This report describes the overall goal to engineer and develop flexible manufacturing methods and equipment to process Silicon-Film solar cells and modules. Three major thrusts of this three-year effort were to: develop a new larger-area (208 mm x 208 mm) Silicon-Film solar cell, the APx-8; construct and operate a new high-throughput wafer-making system; and develop a 15-MW single-thread manufacturing process. Specific technical accomplishments from this period are: Increase solar cell area by 80%, increase the generation capacity of a Silicon-Film wafer-making system by 350%, use a new in-line HF etch system in solar cell production, design and develop an in-line NaOH etch system, eliminate cassettes in solar cell processing, and design a new family of module products.

  12. Development of hybrid lifecycle cost estimating tool (HLCET) for manufacturing influenced design tradeoff

    Science.gov (United States)

    Sirirojvisuth, Apinut

    In complex aerospace system design, making an effective design decision requires multidisciplinary knowledge from both product and process perspectives. Integrating manufacturing considerations into the design process is most valuable during the early design stages since designers have more freedom to integrate new ideas when changes are relatively inexpensive in terms of time and effort. Several metrics related to manufacturability are cost, time, and manufacturing readiness level (MRL). Yet, there is a lack of structured methodology that quantifies how changes in the design decisions impact these metrics. As a result, a new set of integrated cost analysis tools are proposed in this study to quantify the impacts. Equally important is the capability to integrate this new cost tool into the existing design methodologies without sacrificing agility and flexibility required during the early design phases. To demonstrate the applicability of this concept, a ModelCenter environment is used to develop software architecture that represents Integrated Product and Process Development (IPPD) methodology used in several aerospace systems designs. The environment seamlessly integrates product and process analysis tools and makes effective transition from one design phase to the other while retaining knowledge gained a priori. Then, an advanced cost estimating tool called Hybrid Lifecycle Cost Estimating Tool (HLCET), a hybrid combination of weight-, process-, and activity-based estimating techniques, is integrated with the design framework. A new weight-based lifecycle cost model is created based on Tailored Cost Model (TCM) equations [3]. This lifecycle cost tool estimates the program cost based on vehicle component weights and programmatic assumptions. Additional high fidelity cost tools like process-based and activity-based cost analysis methods can be used to modify the baseline TCM result as more knowledge is accumulated over design iterations. Therefore, with this

  13. A Novel Hybrid Statistical Particle Swarm Optimization for Multimodal Functions and Frequency Control of Hybrid Wind-Solar System

    Science.gov (United States)

    Verma, Harish Kumar; Jain, Cheshta

    2016-09-01

    In this article, a hybrid algorithm of particle swarm optimization (PSO) with statistical parameter (HSPSO) is proposed. Basic PSO for shifted multimodal problems have low searching precision due to falling into a number of local minima. The proposed approach uses statistical characteristics to update the velocity of the particle to avoid local minima and help particles to search global optimum with improved convergence. The performance of the newly developed algorithm is verified using various standard multimodal, multivariable, shifted hybrid composition benchmark problems. Further, the comparative analysis of HSPSO with variants of PSO is tested to control frequency of hybrid renewable energy system which comprises solar system, wind system, diesel generator, aqua electrolyzer and ultra capacitor. A significant improvement in convergence characteristic of HSPSO algorithm over other variants of PSO is observed in solving benchmark optimization and renewable hybrid system problems.

  14. Development of manufacturing capability for high-concentration, high-efficiency silicon solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Sinton, R.A.; Verlinden, P.J.; Crane, R.A.; Swanson, R.N. [SunPower Corp., Sunnyvale, CA (United States)

    1996-10-01

    This report presents a summary of the major results from a program to develop a manufacturable, high-efficiency silicon concentrator solar cell and a cost-effective manufacturing facility. The program was jointly funded by the Electric Power Research Institute, Sandia National Laboratories through the Concentrator Initiative, and SunPower Corporation. The key achievements of the program include the demonstration of 26%-efficient silicon concentrator solar cells with design-point (20 W/cm{sup 2}) efficiencies over 25%. High-performance front-surface passivations; that were developed to achieve this result were verified to be absolutely stable against degradation by 475 days of field exposure at twice the design concentration. SunPower demonstrated pilot production of more than 1500 of these cells. This cell technology was also applied to pilot production to supply 7000 17.7-cm{sup 2} one-sun cells (3500 yielded wafers) that demonstrated exceptional quality control. The average efficiency of 21.3% for these cells approaches the peak efficiency ever demonstrated for a single small laboratory cell within 2% (absolute). Extensive cost models were developed through this program and calibrated by the pilot-production project. The production levels achieved indicate that SunPower could produce 7-10 MW of concentrator cells per year in the current facility based upon the cell performance demonstrated during the program.

  15. 17.6%-Efficient radial junction solar cells using silicon nano/micro hybrid structures

    Science.gov (United States)

    Lee, Kangmin; Hwang, Inchan; Kim, Namwoo; Choi, Deokjae; Um, Han-Don; Kim, Seungchul; Seo, Kwanyong

    2016-07-01

    We developed a unique nano- and microwire hybrid structure by selectively modifying only the tops of microwires using metal-assisted chemical etching. The proposed nano/micro hybrid structure not only minimizes surface recombination but also absorbs 97% of incident light under AM 1.5G illumination, demonstrating outstanding light absorption compared to that of planar (59%) and microwire arrays (85%). The proposed hybrid solar cells with an area of 1 cm2 exhibit power conversion efficiencies (Eff) of up to 17.6% under AM 1.5G illumination. In particular, the solar cells show a high short-circuit current density (Jsc) of 39.5 mA cm-2 because of the high light-absorbing characteristics of the nanostructures. This corresponds to an approximately 61.5% and 16.5% increase in efficiency compared to that of a planar silicon solar cell (Eff = 10.9%) and a microwire solar cell (Eff = 15.1%), respectively. Therefore, we expect the proposed hybrid structure to become a foundational technology for the development of highly efficient radial junction solar cells.We developed a unique nano- and microwire hybrid structure by selectively modifying only the tops of microwires using metal-assisted chemical etching. The proposed nano/micro hybrid structure not only minimizes surface recombination but also absorbs 97% of incident light under AM 1.5G illumination, demonstrating outstanding light absorption compared to that of planar (59%) and microwire arrays (85%). The proposed hybrid solar cells with an area of 1 cm2 exhibit power conversion efficiencies (Eff) of up to 17.6% under AM 1.5G illumination. In particular, the solar cells show a high short-circuit current density (Jsc) of 39.5 mA cm-2 because of the high light-absorbing characteristics of the nanostructures. This corresponds to an approximately 61.5% and 16.5% increase in efficiency compared to that of a planar silicon solar cell (Eff = 10.9%) and a microwire solar cell (Eff = 15.1%), respectively. Therefore, we expect the

  16. Combined cycle solar central receiver hybrid power system study. Final technical report. Volume II

    Energy Technology Data Exchange (ETDEWEB)

    None

    1979-11-01

    This study develops the conceptual design for a commercial-scale (nominal 100 MWe) central receiver solar/fossil fuel hybrid power system with combined cycle energy conversion. A near-term, metallic heat pipe receiver and an advanced ceramic tube receiver hybrid system are defined through parametric and market potential analyses. Comparative evaluations of the cost of power generation, the fuel displacement potential, and the technological readiness of these two systems indicate that the near-term hybrid system has better potential for commercialization by 1990. Based on the assessment of the conceptual design, major cost and performance improvements are projected for the near-term system. Constraints preventing wide-spread use were not identified. Energy storage is not required for this system and analyses show no economic advantages with energy storage provisions. It is concluded that the solar hybrid system is a cost effective alternative to conventional gas turbines and combined cycle generating plants, and has potential for intermediate-load market penetration at 15% annual fuel escalation rate. Due to their flexibility, simple solar/nonsolar interfacing, and short startup cycles, these hybrid plants have significant operating advantages. Utility company comments suggest that hybrid power systems will precede stand-alone solar plants.

  17. Development of pulsed processes for the manufacture of solar cells. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Minnucci, J.A.

    1979-04-01

    The results of a one and half year program to develop the processes required for low-energy ion implantation for the automated production of silicon solar cells are described. The program included (1) demonstrating state-of-the-art ion implantation equipment and designing an automated ion implanter, (2) making efforts to improve the performance of ion-implanted solar cells to 16.5 percent AM1, (3) developing a model of the pulse annealing process used in solar cell production, and (4) preparing an economic analysis of the process costs of ion implantation and furnace annealing. During the program, phosphorus ions at an energy of 10 keV and dose of 2 x 10/sup 15/ cm/sup -2/ were implanted in silicon solar cells to produce junctions, while boron ions at 25 keV and 5 x 10/sup 15/ cm/sup -2/ were implanted in the cells to produce effective back surface fields. An ion implantation facility with a beam current up to 4 mA and a production throughput of 300 wafers per hour was designed and installed. A design was prepared for a 100-mA, automated implanter with a production capacity of 100 MW/sub e/ per year. Two process sequences were developed which employ ion implantation and furnace or pulse annealing. The JPL-Solar Array Manufacturing Industry Simulation (SAMIS) computer program was used to determine costs for junction formation by ion implantation and various furnace annealing cycles to demonstrate cost effectiveness of these methods.

  18. Evaluation of hybrid polymers for high-precision manufacturing of 3D optical interconnects by two-photon absorption lithography

    Science.gov (United States)

    Schleunitz, A.; Klein, J. J.; Krupp, A.; Stender, B.; Houbertz, R.; Gruetzner, G.

    2017-02-01

    The fabrication of optical interconnects has been widely investigated for the generation of optical circuit boards. Twophoton absorption (TPA) lithography (or high-precision 3D printing) as an innovative production method for direct manufacture of individual 3D photonic structures gains more and more attention when optical polymers are employed. In this regard, we have evaluated novel ORMOCER-based hybrid polymers tailored for the manufacture of optical waveguides by means of high-precision 3D printing. In order to facilitate future industrial implementation, the processability was evaluated and the optical performance of embedded waveguides was assessed. The results illustrate that hybrid polymers are not only viable consumables for industrial manufacture of polymeric micro-optics using generic processes such as UV molding. They also are potential candidates to fabricate optical waveguide systems down to the chip level where TPA-based emerging manufacturing techniques are engaged. Hence, it is shown that hybrid polymers continue to meet the increasing expectations of dynamically growing markets of micro-optics and optical interconnects due to the flexibility of the employed polymer material concept.

  19. On practicality of a hybrid car with solar cells; Taiyo denchi wo tosaishita hybrid car no jitsuyosei ni tsuite

    Energy Technology Data Exchange (ETDEWEB)

    Sasaki, K.; Nagayoshi, H.; Kamisako, K. [Tokyo University of Agriculture and Technology, Tokyo (Japan)

    1997-11-25

    The paper stated a development of a hybrid car which is a parallel type with gasoline engine and electric motor as driving source (connecting each according to the situation) and is also equipped with solar cells. Specifications are gasoline engine of 1200cc, induction motor of 5.5kW, lead battery of 288V and 7.2kWh, monocrystal silicon solar cells of 180W maximum output, and body weight of 1100kg. The rear wheel is driven by electric motor, and the front wheel by gasoline engine. The car is loaded with battery charge use solar cells on hood and roof. To enhance cleaning degree, 1.6kW solar cells are installed as an installed power system and used for battery charge. Even by an electric motor with output less than that of the usual electric car, harmful exhaust gas emitted in start-up can be controlled. This is because the electric motor can be used in accelerating. It was confirmed that the power required for it could be supplied by solar cells installed on the car. The hybrid car is practically useful for prevention of local air pollution. 5 refs., 4 figs., 2 tabs.

  20. Design and performance evaluation of a new hybrid solar dryer for banana

    Energy Technology Data Exchange (ETDEWEB)

    Amer, B.M.A. [Agricultural Engineering Department, Faculty of Agriculture, Cairo University, Giza 12613 (Egypt); Hossain, M.A. [FMP Engineering Division, Bangladesh Agricultural Research Institute, Gazipur 1701 (Bangladesh); Gottschalk, K. [Leibniz-Institut fuer Agrartechnik Potsdam-Bornim, 100 Max-Eyth-Allee, 14467 Potsdam (Germany)

    2010-04-15

    A hybrid solar dryer was designed and constructed using direct solar energy and a heat exchanger. The dryer consists of solar collector, reflector, heat exchanger cum heat storage unit and drying chamber. The drying chamber was located under the collector. The dryer was operated during normal sunny days as a solar dryer, and during cloudy day as a hybrid solar dryer. Drying was also carried out at night with stored heat energy in water which was collected during the time of sun-shine and with electric heaters located at water tank. The efficiency of the solar dryer was raised by recycling about 65% of the drying air in the solar dryer and exhausting a small amount of it outside the dryer. Under Mid-European summer conditions it can raise up the air temperature from 30 to 40 C above the ambient temperature. The solar dryer was tested for drying of ripe banana slices. The capacity of the dryer was to dry about 30 kg of banana slices in 8 h in sunny day from an initial moisture content of 82% to the final moisture content of 18% (wb). In the same time it reduced to only 62% (wb) moisture content in open sun drying method. The colour, aroma and texture of the solar dried products were better than the sun drying products. (author)

  1. System-wide hybrid MPC-PID control of a continuous pharmaceutical tablet manufacturing process via direct compaction.

    Science.gov (United States)

    Singh, Ravendra; Ierapetritou, Marianthi; Ramachandran, Rohit

    2013-11-01

    The next generation of QbD based pharmaceutical products will be manufactured through continuous processing. This will allow the integration of online/inline monitoring tools, coupled with an efficient advanced model-based feedback control systems, to achieve precise control of process variables, so that the predefined product quality can be achieved consistently. The direct compaction process considered in this study is highly interactive and involves time delays for a number of process variables due to sensor placements, process equipment dimensions, and the flow characteristics of the solid material. A simple feedback regulatory control system (e.g., PI(D)) by itself may not be sufficient to achieve the tight process control that is mandated by regulatory authorities. The process presented herein comprises of coupled dynamics involving slow and fast responses, indicating the requirement of a hybrid control scheme such as a combined MPC-PID control scheme. In this manuscript, an efficient system-wide hybrid control strategy for an integrated continuous pharmaceutical tablet manufacturing process via direct compaction has been designed. The designed control system is a hybrid scheme of MPC-PID control. An effective controller parameter tuning strategy involving an ITAE method coupled with an optimization strategy has been used for tuning of both MPC and PID parameters. The designed hybrid control system has been implemented in a first-principles model-based flowsheet that was simulated in gPROMS (Process System Enterprise). Results demonstrate enhanced performance of critical quality attributes (CQAs) under the hybrid control scheme compared to only PID or MPC control schemes, illustrating the potential of a hybrid control scheme in improving pharmaceutical manufacturing operations.

  2. Hybrid manufacturing processes for fusion welding and friction stir welding of aerospace grade aluminum alloys

    Science.gov (United States)

    Gegesky, Megan Alexandra

    Friction stir welding and processing can provide for joints in aerospace grade aluminum alloys that have preferable material properties as compared to fusion welding techniques. Aerospace grade aluminum alloys such as AA2024-T3 and AA7075-T6 are considered non-weldable by traditional fusion welding techniques. Improved mechanical properties over previously used techniques are usually preferable for aerospace applications. Therefore, by combining traditional fusion welding and friction stir processing techniques, it could be plausible to create more difficult geometries in manufactured parts instead of using traditional techniques. While this combination of fusion welding and friction stir processing is not a new technology, its introduction to aerospace grade aluminum alloys as well as non-weldable alloys, is new. This is brought about by a lowered required clamping force required by adding a fusion weld before a friction stir processing technique. The changes in properties associated with joining techniques include: microstructural changes, changes in hardness, tensile strength, and corrosion resistance. This thesis illustrates these changes for the non-weldable AA2024-T351 and AA7075-T651 as well as the weldable alloy AA5052-H32. The microhardness, tensile strength and corrosion resistance of the four processing states: base material, fusion welded material, friction stir welded material, and friction stir processed fusion welded material is studied. The plausibility of this hybrid process for the three different materials is characterized, as well as plausible applications for this joining technique.

  3. Design and Manufacture of 20 kA HTS Current Leads for a Hybrid Magnet System

    Science.gov (United States)

    Wesche, R.; Bruzzone, P.; March, S.; Vogel, M.; Ehmler, H.; Smeibidl, P.

    A new series connected 25 T hybrid magnet system is being developed by the Helmholtz Zentrum Berlin (HZB) for neutron scattering experiments. In collaboration with CRPP, high temperature superconducting (HTS) current leads have been developed for the powering of the outer superconducting coil. These HTS current leads, with a nominal current rating of 20 kA, have been designed and are being manufactured by CRPP, based on the design of the 18 kA EDIPO leads. Each of the two current leads consists of an HTS module cooled only by heat conduction from the cold end and a copper part actively cooled by helium gas of 44 K inlet temperature. To reach a temperature of 53.7 K at the warm end of the HTS a helium mass flow rate of 1.37 g/s per lead is required at a current of 20 kA. The estimated heat leak at the 4.5 K level caused only by heat conduction is as low as 1.4 W. The evolution of the temperatures in the case of a loss of flow has been calculated. In addition to the design, the main fabrication steps are described.

  4. Design, manufacture and performance evaluation of HTS electromagnets for the hybrid magnetic levitation system

    Energy Technology Data Exchange (ETDEWEB)

    Chu, S.Y.; Hwang, Y.J.; Choi, S.; Na, J.B.; Kim, Y.J.; Chang, K.S. [School of Electrical and Electronic Engineering, Yonsei University, Seoul 120-749 (Korea, Republic of); Bae, D.K. [Chungju National University, Chungju 380-702 (Korea, Republic of); Lee, C.Y. [Ultra High-Speed Train Research Department, Korea Railroad Research Institute, Uiwang-Si 437-757 (Korea, Republic of); Ko, T.K., E-mail: tkko@yonsei.ac.kr [School of Electrical and Electronic Engineering, Yonsei University, Seoul 120-749 (Korea, Republic of)

    2011-11-15

    A high speed electromagnetic suspension (EMS) maglev has emerged as the solution to speed limit problem that conventional high-speed railroad has. In the EMS maglev, small levitation gap needs uniform guide-way which leads to increase the construction cost. The large levitation gap can reduce the construction cost. However it is hard for normal conducting electromagnet to produce larger magneto-motive force (MMF) for generating levitation force as increased levitation gap. This is because normal conductors have limited rating current to their specific volume. Therefore, the superconducting electromagnet can be one of the solutions for producing both large levitation gap and sufficient MMF. The superconducting electromagnets have incomparably high allowable current density than what normal conductors have. In this paper, the prototype of high temperature superconducting (HTS) electromagnets were designed and manufactured applicable to hybrid electromagnetic suspension system (H-EMS). The H-EMS consists of control coils for levitation control and superconducting coils for producing MMF for levitation. The required MMF for generating given levitation force was calculated by both equations of ideal U-core magnet and magnetic field analysis using the finite element method (FEM). The HTS electromagnets were designed as double pancakes with Bi-2223/Ag tapes. Experiments to confirm its operating performance were performed in liquid nitrogen (LN{sub 2}).

  5. Hybrid nanostructure heterojunction solar cells fabricated using vertically aligned ZnO nanotubes grown on reduced graphene oxide

    Energy Technology Data Exchange (ETDEWEB)

    Yang Kaikun; Huang Liwei; Zou Lianfeng; Wang, Howard [Institute for Materials Research, Binghamton University, State University of New York, Binghamton, NY 13902 (United States); Xu Congkang, E-mail: wangh@binghamton.edu [Department of Mechanical Engineering, Binghamton University, State University of New York, Binghamton, NY 13902 (United States)

    2011-10-07

    Using reduced graphene oxide (rGO) films as the transparent conductive coating, inorganic/organic hybrid nanostructure heterojunction photovoltaic devices have been fabricated through hydrothermal synthesis of vertically aligned ZnO nanorods (ZnO-NRs) and nanotubes (ZnO-NTs) on rGO films followed by the spin casting of a poly(3-hexylthiophene) (P3HT) film. The data show that larger interfacial area in ZnO-NT/P3HT composites improves the exciton dissociation and the higher electrode conductance of rGO films helps the power output. This study offers an alternative to manufacturing nanostructure heterojunction solar cells at low temperatures using potentially low cost materials.

  6. Application Of Artificial Neural Networks In Modeling Of Manufactured Front Metallization Contact Resistance For Silicon Solar Cells

    Directory of Open Access Journals (Sweden)

    Musztyfaga-Staszuk M.

    2015-09-01

    Full Text Available This paper presents the application of artificial neural networks for prediction contact resistance of front metallization for silicon solar cells. The influence of the obtained front electrode features on electrical properties of solar cells was estimated. The front electrode of photovoltaic cells was deposited using screen printing (SP method and next to manufactured by two methods: convectional (1. co-fired in an infrared belt furnace and unconventional (2. Selective Laser Sintering. Resistance of front electrodes solar cells was investigated using Transmission Line Model (TLM. Artificial neural networks were obtained with the use of Statistica Neural Network by Statsoft. Created artificial neural networks makes possible the easy modelling of contact resistance of manufactured front metallization and allows the better selection of production parameters. The following technological recommendations for the screen printing connected with co-firing and selective laser sintering technology such as optimal paste composition, morphology of the silicon substrate, co-firing temperature and the power and scanning speed of the laser beam to manufacture the front electrode of silicon solar cells were experimentally selected in order to obtain uniformly melted structure well adhered to substrate, of a small front electrode substrate joint resistance value. The prediction possibility of contact resistance of manufactured front metallization is valuable for manufacturers and constructors. It allows preserving the customers’ quality requirements and bringing also measurable financial advantages.

  7. Middle East and North Africa Region Assessment of the Local Manufacturing Potential for Concentrated Solar Power (CSP) Projects

    Energy Technology Data Exchange (ETDEWEB)

    Gazzo, A.; Gousseland, P.; Verdier, J. [Ernst and Young et Associes, Neuilly-Sur-Seine (France); Kost, C.; Morin, G.; Engelken, M.; Schrof, J.; Nitz, P.; Selt, J.; Platzer, W. [Fraunhofer Institute for Solar Energy Systems ISE, Freiburg (Germany); Ragwitz, M.; Boie, I.; Hauptstock, D.; Eichhammer, W. [Fraunhofer Institute for Systems and Innovation Research ISI, Karlsruhe (Germany)

    2011-01-15

    The MENA CSP (Middle East and North Africa - Concentrated Solar Power) plan is an ambitious scheme with an appeal to anyone concerned about climate change and convinced by the need for clean, renewable power. But what does it really mean for the average citizen of say Morocco or Tunisia? The World Bank sees potential for significant job and wealth creation in solar energy producing countries. If the CSP market grows rapidly over the next few years, equipment manufacturing will be essential to supply this new sector. This study proposes roadmaps and an action plan to help develop the potential of locally manufactured CSP components in the existing industry and for new market entrants.

  8. Optical Fiber/Nanowire Hybrid Structures for Efficient Three-Dimensional Dye-Sensitized Solar Cells

    KAUST Repository

    Weintraub, Benjamin

    2009-11-09

    Wired up: The energy conversion efficiency of three-dimensional dye-sensitized solar cells (DSSCs) in a hybrid structure that integrates optical fibers and nanowire arrays is greater than that of a two-dimensional device. Internal axial illumination enhances the energy conversion efficiency of a rectangular fiber-based hybrid structure (see picture) by a factor of up to six compared to light illumination normal to the fiber axis from outside the device.

  9. Flexible hybrid energy cell for simultaneously harvesting thermal, mechanical, and solar energies.

    Science.gov (United States)

    Yang, Ya; Zhang, Hulin; Zhu, Guang; Lee, Sangmin; Lin, Zong-Hong; Wang, Zhong Lin

    2013-01-22

    We report the first flexible hybrid energy cell that is capable of simultaneously or individually harvesting thermal, mechanical, and solar energies to power some electronic devices. For having both the pyroelectric and piezoelectric properties, a polarized poly(vinylidene fluoride) (PVDF) film-based nanogenerator (NG) was used to harvest thermal and mechanical energies. Using aligned ZnO nanowire arrays grown on the flexible polyester (PET) substrate, a ZnO-poly(3-hexylthiophene) (P3HT) heterojunction solar cell was designed for harvesting solar energy. By integrating the NGs and the solar cells, a hybrid energy cell was fabricated to simultaneously harvest three different types of energies. With the use of a Li-ion battery as the energy storage, the harvested energy can drive four red light-emitting diodes (LEDs).

  10. Compact hybrid cell based on a convoluted nanowire structure for harvesting solar and mechanical energy

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Chen; Wang, Zhong Lin [School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA 30332 (United States)

    2011-02-15

    A fully integrated, solid-state, compact hybrid cell (CHC) that comprises ''convoluted'' ZnO nanowire structures for concurrent harvesting of both solar and mechanical energy is demonstrated. The compact hybrid cell is based on a conjunction design of an organic solid-state dye-sensitized solar cell (DSSC) and piezoelectric nanogenerator in one compact structure. The CHC shows a significant increase in output power, clearly demonstrating its potential for simultaneously harvesting multiple types of energy for powering small electronic devices for independent, sustainable, and mobile operation. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  11. Oxygen release and exchange in niobium oxide MEHPPV hybrid solar cells

    DEFF Research Database (Denmark)

    Lira-Cantu, M.; Norrman, K.; Andreasen, J.W.

    2006-01-01

    We demonstrate that niobium oxide exchanges oxygen with the atmosphere when illuminated by simulated sunlight. The oxygen exchange was found to take place for pristine niobium oxide films when illuminated in an oxygen atmosphere and when illuminated in an operational hybrid solar cell. The oxygen...... exchange was demonstrated using O-18(2)-isotopic labeling in combination with time-of-flight secondary ion mass spectrometry (TOF-SIMS) imaging analysis of devices and oxide substrates. TOF-SIMS depth profiling confirmed O-18 incorporation throughout the device in hybrid solar cells. The results...

  12. A High-Efficiency Si Nanowire Array/Perovskite Hybrid Solar Cell

    OpenAIRE

    Yan, Xin; Zhang, Chen; Wang, Jiamin; Zhang, Xia; Ren, Xiaomin

    2017-01-01

    A low-cost Si nanowire array/perovskite hybrid solar cell is proposed and simulated. The solar cell consists of a Si p-i-n nanowire array filled with CH3NH3PbI3, in which both the nanowires and perovskite absorb the incident light while the nanowires act as the channels for transporting photo-generated electrons and holes. The hybrid structure has a high absorption efficiency in a broad wavelength range of 300~800 nm. A large short-circuit current density of 28.8 mA/cm2 and remarkable convers...

  13. GEOTHERMAL / SOLAR HYBRID DESIGNS: USE OF GEOTHERMAL ENERGY FOR CSP FEEDWATER HEATING

    Energy Technology Data Exchange (ETDEWEB)

    Craig Turchi; Guangdong Zhu; Michael Wagner; Tom Williams; Dan Wendt

    2014-10-01

    This paper examines a hybrid geothermal / solar thermal plant design that uses geothermal energy to provide feedwater heating in a conventional steam-Rankine power cycle deployed by a concentrating solar power (CSP) plant. The geothermal energy represents slightly over 10% of the total thermal input to the hybrid plant. The geothermal energy allows power output from the hybrid plant to increase by about 8% relative to a stand-alone CSP plant with the same solar-thermal input. Geothermal energy is converted to electricity at an efficiency of 1.7 to 2.5 times greater than would occur in a stand-alone, binary-cycle geothermal plant using the same geothermal resource. While the design exhibits a clear advantage during hybrid plant operation, the annual advantage of the hybrid versus two stand-alone power plants depends on the total annual operating hours of the hybrid plant. The annual results in this draft paper are preliminary, and further results are expected prior to submission of a final paper.

  14. Use of a Geothermal-Solar Hybrid Power Plant to Mitigate Declines in Geothermal Resource Productivity

    Energy Technology Data Exchange (ETDEWEB)

    Dan Wendt; Greg Mines

    2014-09-01

    Many, if not all, geothermal resources are subject to decreasing productivity manifested in the form of decreasing brine temperature, flow rate, or both during the life span of the associated power generation project. The impacts of resource productivity decline on power plant performance can be significant; a reduction in heat input to a power plant not only decreases the thermal energy available for conversion to electrical power, but also adversely impacts the power plant conversion efficiency. The reduction in power generation is directly correlated to a reduction in revenues from power sales. Further, projects with Power Purchase Agreement (PPA) contracts in place may be subject to significant economic penalties if power generation falls below the default level specified. A potential solution to restoring the performance of a power plant operating from a declining productivity geothermal resource involves the use of solar thermal energy to restore the thermal input to the geothermal power plant. There are numerous technical merits associated with a renewable geothermal-solar hybrid plant in which the two heat sources share a common power block. The geo-solar hybrid plant could provide a better match to typical electrical power demand profiles than a stand-alone geothermal plant. The hybrid plant could also eliminate the stand-alone concentrated solar power plant thermal storage requirement for operation during times of low or no solar insolation. This paper identifies hybrid plant configurations and economic conditions for which solar thermal retrofit of a geothermal power plant could improve project economics. The net present value of the concentrated solar thermal retrofit of an air-cooled binary geothermal plant is presented as functions of both solar collector array cost and electricity sales price.

  15. Role of majority and minority carrier barriers silicon/organic hybrid heterojunction solar cells.

    Science.gov (United States)

    Avasthi, Sushobhan; Lee, Stephanie; Loo, Yueh-Lin; Sturm, James C

    2011-12-22

    A hybrid approach to solar cells is demonstrated in which a silicon p-n junction, used in conventional silicon-based photovoltaics, is replaced by a room-temperature fabricated silicon/organic heterojunction. The unique advantage of silicon/organic heterojunction is that it exploits the cost advantage of organic semiconductors and the performance advantages of silicon to enable potentially low-cost, efficient solar cells.

  16. Solution-processed, nanostructured hybrid solar cells with broad spectral sensitivity and stability.

    Science.gov (United States)

    Zhou, Renjia; Zheng, Ying; Qian, Lei; Yang, Yixing; Holloway, Paul H; Xue, Jiangeng

    2012-06-07

    Hybrid organic-inorganic solar cells, as an alternative to all-organic solar cells, have received significant attention for their potential advantages in combining the solution-processability and versatility of organic materials with high charge mobility and environmental stability of inorganic semiconductors. Here we report efficient and air-stable hybrid organic-inorganic solar cells with broad spectral sensitivity based on a low-gap polymer poly[2,6-(4,4-bis-(2-ethylhexyl)-4H-cyclopenta[2,1-b;3,4-b']-dithiophene)-alt-4,7-(2,1,3-benzothiadiazole)] (PCPDTBT) and spherical CdSe nanoparticles. The solvents used for depositing the hybrid PCPDTBT:CdSe active layer were shown to strongly influence the film morphology, and subsequently the photovoltaic performance of the resulted solar cells. Appropriate post-deposition annealing of the hybrid film was also shown to improve the solar cell efficiency. The inclusion of a thin ZnO nanoparticle layer between the active layer and the metal cathode leads to a significant increase in device efficiency especially at long wavelengths, due to a combination of optical and electronic effects including more optimal light absorption in the active layer and elimination of unwanted hole leakage into the cathode. Overall, maximum power conversion efficiencies up to 3.7 ± 0.2% and spectral sensitivity extending above 800 nm were achieved in such PCPDTBT:CdSe nanosphere hybrid solar cells. Furthermore, the devices with a ZnO nanoparticle layer retained ∼70% of the original efficiency after storage under ambient laboratory conditions for over 60 days without any encapsulation.

  17. Solar central receiver hybrid power system, Phase I. Volume 3. Appendices. Final technical report, October 1978-August 1979

    Energy Technology Data Exchange (ETDEWEB)

    None

    1979-09-01

    A design study for a central receiver/fossil fuel hybrid power system using molten salts for heat transfer and heat storage is presented. This volume contains the appendices: (A) parametric salt piping data; (B) sample heat exchanger calculations; (C) salt chemistry and salt/materials compatibility evaluation; (D) heliostat field coordinates; (E) data lists; (F) STEAEC program input data; (G) hybrid receiver design drawings; (H) hybrid receiver absorber tube thermal math model; (I) piping stress analysis; (J) 100-MWe 18-hour storage solar central receiver hybrid power system capital cost worksheets; and (K) 500-MWe 18-hour solar central receiver hybrid power system cost breakdown. (WHK)

  18. Platinum nanoparticle interlayer promoted improvement in photovoltaic performance of silicon/PEDOT:PSS hybrid solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Bao, Xiao-Qing; Liu, L.F., E-mail: lifeng.liu@inl.int

    2015-01-15

    Inorganic–organic hybrid solar cells have attracted considerable interest in recent years for their low production cost, good mechanical flexibility and ease of processing of polymer films over a large area. Particularly, silicon/conducting polymer hybrid solar cells are extensively investigated and widely believed to be a low-cost alternative to the crystalline silicon solar cells. However, the power conversion efficiency of silicon/conducting polymer solar cells remains low in case hydrogen-terminated silicon is used. In this paper, we report that by introducing a platinum nanoparticle interlayer between the hydrogen-terminated silicon and the conducting polymer poly(3,4-ethylenedioxy thiophene):poly(styrene sulfonate), namely PEDOT:PSS, the power conversion efficiency of the resulting Si/PEDOT:PSS hybrid solar cells can be improved by a factor of 2–3. The possible mechanism responsible for the improvement has been investigated using different techniques including impedance spectroscopy, Mott–Schottky analysis and intensity modulated photocurrent/photovoltage spectroscopy (IMPS/IMVS). The results show that with a platinum nanoparticle interlayer, both the series resistance and charge transport/transfer resistance of the Si/PEDOT:PSS hybrid solar cells are reduced leading to an increased short circuit current density, and the built-in voltage at the space charge region is raised facilitating electron-hole separation. Moreover, the lifetime of charge carriers in the Si/PEDOT:PSS solar cells is extended, namely, the recombination is effectively suppressed which also contributes to the improvement of photovoltaic performance. - Graphical abstract: A platinum nanoparticle interlayer electrolessly deposited between the n-Si:H and PEDOT:PSS can markedly improve the photovoltaic performance of the resulting Si/PEDOT:PSS hybrid solar cells. - Highlights: • A Pt nanoparticle layer is introduced between the Si and PEDOT:PSS in hybrid cells. • The Pt interlayer

  19. Ionic transport in hybrid lead iodide perovskite solar cells

    National Research Council Canada - National Science Library

    Eames, Christopher; Frost, Jarvist M; Barnes, Piers R F; O'Regan, Brian C; Walsh, Aron; Islam, M Saiful

    2015-01-01

    Solar cells based on organic-inorganic halide perovskites have recently shown rapidly rising power conversion efficiencies, but exhibit unusual behaviour such as current-voltage hysteresis and a low...

  20. Simulation and optimum design of hybrid solar-wind and solar-wind-diesel power generation systems

    Science.gov (United States)

    Zhou, Wei

    Solar and wind energy systems are considered as promising power generating sources due to its availability and topological advantages in local power generations. However, a drawback, common to solar and wind options, is their unpredictable nature and dependence on weather changes, both of these energy systems would have to be oversized to make them completely reliable. Fortunately, the problems caused by variable nature of these resources can be partially overcome by integrating these two resources in a proper combination to form a hybrid system. However, with the increased complexity in comparison with single energy systems, optimum design of hybrid system becomes more complicated. In order to efficiently and economically utilize the renewable energy resources, one optimal sizing method is necessary. This thesis developed an optimal sizing method to find the global optimum configuration of stand-alone hybrid (both solar-wind and solar-wind-diesel) power generation systems. By using Genetic Algorithm (GA), the optimal sizing method was developed to calculate the system optimum configuration which offers to guarantee the lowest investment with full use of the PV array, wind turbine and battery bank. For the hybrid solar-wind system, the optimal sizing method is developed based on the Loss of Power Supply Probability (LPSP) and the Annualized Cost of System (ACS) concepts. The optimization procedure aims to find the configuration that yields the best compromise between the two considered objectives: LPSP and ACS. The decision variables, which need to be optimized in the optimization process, are the PV module capacity, wind turbine capacity, battery capacity, PV module slope angle and wind turbine installation height. For the hybrid solar-wind-diesel system, minimization of the system cost is achieved not only by selecting an appropriate system configuration, but also by finding a suitable control strategy (starting and stopping point) of the diesel generator. The

  1. Solution-Processing of Organic Solar Cells: From In Situ Investigation to Scalable Manufacturing

    KAUST Repository

    Abdelsamie, Maged

    2016-12-05

    Photovoltaics provide a feasible route to fulfilling the substantial increase in demand for energy worldwide. Solution processable organic photovoltaics (OPVs) have attracted attention in the last decade because of the promise of low-cost manufacturing of sufficiently efficient devices at high throughput on large-area rigid or flexible substrates with potentially low energy and carbon footprints. In OPVs, the photoactive layer is made of a bulk heterojunction (BHJ) layer and is typically composed of a blend of an electron-donating (D) and an electron-accepting (A) materials which phase separate at the nanoscale and form a heterojunction at the D-A interface that plays a crucial role in the generation of charges. Despite the tremendous progress that has been made in increasing the efficiency of organic photovoltaics over the last few years, with power conversion efficiency increasing from 8% to 13% over the duration of this PhD dissertation, there have been numerous debates on the mechanisms of formation of the crucial BHJ layer and few clues about how to successfully transfer these lessons to scalable processes. This stems in large part from a lack of understanding of how BHJ layers form from solution. This lack of understanding makes it challenging to design BHJs and to control their formation in laboratory-based processes, such as spin-coating, let alone their successful transfer to scalable processes required for the manufacturing of organic solar cells. Consequently, the OPV community has in recent years sought out to better understand the key characteristics of state of the art lab-based organic solar cells and made efforts to shed light on how the BHJ forms in laboratory-based processes as well as in scalable processes. We take the view that understanding the formation of the solution-processed bulk heterojunction (BHJ) photoactive layer, where crucial photovoltaic processes take place, is the one of the most crucial steps to developing strategies towards the

  2. Surface Traps in Colloidal Quantum Dot Solar Cells, their Mitigation and Impact on Manufacturability

    KAUST Repository

    Kirmani, Ahmad R.

    2017-07-30

    Colloidal quantum dots (CQDs) are potentially low-cost, solution-processable semiconductors which are endowed, through their nanoscale dimensions, with strong absorption, band gap tunability, high dielectric constants and enhanced stability. CQDs are contenders as a standalone PV technology as well as a potential back layer for augmenting established photovoltaic (PV) technologies, such as Si. However, owing to their small size (ca. few nanometers), CQDs are prone to surface trap states that inhibit charge transport and threaten their otherwise wonderful optoelectronic properties. Surface traps have also, indirectly, impeded scalable and industry-compatible fabrication of these solar cells, as all of the reports, to date, have relied on spin-coating with sophisticated and tedious ligand exchange schemes, some of which need to be performed in low humidity environments. In this thesis, we posit that an in-depth understanding of the process-structure-property-performance relationship in CQDs can usher in fresh insights into the nature and origin of surface traps, lead to novel ways to mitigate them, and finally help achieve scalable fabrication. To this end, we probe the CQD surfaces and their interactions with process solvents, linkers, and ambient environment employing a suite of spectroscopic techniques. These fundamental insights help us develop facile chemical and physical protocols to mitigate surface traps such as solvent engineering, remote molecular doping, and oxygen doping, directly leading to better-performing solar cells. Our efforts finally culminate in the realization of >10% efficient, air-stable CQD solar cells scalably fabricated in an ambient environment of high, uncontrolled R.H. (50-65%). As-prepared solar cells fabricated in high humidity ambient conditions are found to underperform, however, an oxygen-doping recipe is devised to mitigate the moisture-induced surface traps and recover device performances. Importantly, these solar cells are

  3. Hybrid polymer solar cells from highly reactive diethylzinc : MDMO-PPV versus P3HT

    NARCIS (Netherlands)

    Moet, Date J.D.; Koster, L. Jan Anton; Boer, Bert de; Blom, Paul W.M.

    2007-01-01

    The degradation of poly[2-methoxy-5-(3',7'-dimethyloetyloxy)-p-phenylene vinylene] (MDMO-PPV) during the processing of hybrid organic/inorganic bulk-heterojunction solar cells with zinc oxide (ZnO) from a molecular precursor as acceptor is reported. Upon addition of diethylzinc, the absorption spect

  4. Annealing effect of hybrid solar cells based on poly (3-hexylthiophene) and zinc-oxide nanostructures

    CSIR Research Space (South Africa)

    Motaung, DE

    2013-06-01

    Full Text Available Solid Films June 2013/Vol. 537 Annealing effect of hybrid solar cells based on poly (3- hexylthiophene) and zinc-oxide nanostructures David E. Motaung a, *, Gerald F. Malgas a, **, Suprakas S. Ray a, Christopher J. Arendse b a DST...

  5. Solar energy in double-pack? Hybrid collectors; Sonne im Doppelpack? Hybridkollektoren

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    2012-07-01

    The scarce roof space could be utilized more efficient by means of modules which supply electricity as well as thermal energy for the generation of hot water or heating processes. Nethertheless, these solar modules do not harmonize optimally. Thus, the so-called hybrid technology prevails only hesitantly.

  6. Life Cycle Cost of Solar Biomass Hybrid Dryer Systems for Cashew Drying of Nuts in India

    Science.gov (United States)

    Dhanushkodi, Saravanan; Wilson, Vincent H.; Sudhakar, Kumarasamy

    2015-12-01

    Cashew nut farming in India is mostly carried out in small and marginal holdings. Energy consumption in the small scale cashew nut processing industry is very high and is mainly due to the high energy consumption of the drying process. The drying operation provides a lot of scope for energy saving and substitutions of other renewable energy sources. Renewable energy-based drying systems with loading capacity of 40 kg were proposed for application in small scale cashew nut processing industries. The main objective of this work is to perform economic feasibility of substituting solar, biomass and hybrid dryer in place of conventional steam drying for cashew drying. Four economic indicators were used to assess the feasibility of three renewable based drying technologies. The payback time was 1.58 yr. for solar, 1.32 for biomass and 1.99 for the hybrid drying system, whereas as the cost-benefit estimates were 5.23 for solar, 4.15 for biomass and 3.32 for the hybrid system. It was found that it is of paramount importance to develop solar biomass hybrid dryer for small scale processing industries.

  7. Fabrication and characterization of titania/poly (3-dodecylthiopene)/red seaweed as hybrid solar cell

    Science.gov (United States)

    Ghazali, Salmah Mohd; Salleh, Hasiah; Dagang, Ahmad Nazri; Ghazali, Mohd Sabri Mohd; Khamsan, Muhammad Emmer Ashraf; Ahmad, Zakiyah; Aziz, Nik; Ali, Nik

    2017-03-01

    In this research, hybrid solar cells which consist of a combination of organic red seaweed (RS) (Kappaphycus alvarezii) and poly (3-dodecylthiophene) (P3DT) with inorganic titania nanocrystals (TiO2 NCs) materials are fabricated. These hybrid solar cells are fabricated in bilayer heterojunction of ITO/TiO2 NCs/P3DT/RS/Au via electrochemistry method using Electrochemical Impedance Spectroscopy (EIS). The optical, electrical properties and power conversion efficiency (PCE) of these hybrid solar cells that can absorb over a broad range of light spectrum were studied. The UV-Vis spectra showed that TiO2 NCs, P3DT and RS were absorbed over a wide range of light spectrum which were 200-300 nm, 300-900 nm and 250-670 nm; respectively. The FTIR spectra of the RS showed the presence of carbonyl and hydroxyl group which was responsible for a good sensitizer for these hybrid solar cells. The electrical conductivity of ITO/ (1) TiO2 NCs/P3DT/RS thin film under the light radiation of 100 Wm-2 was 0.288 Scm-1, while for PCE, it was 2.0 %.

  8. Life Cycle Cost of Solar Biomass Hybrid Dryer Systems for Cashew Drying of Nuts in India

    Directory of Open Access Journals (Sweden)

    Dhanushkodi Saravanan

    2015-12-01

    Full Text Available Cashew nut farming in India is mostly carried out in small and marginal holdings. Energy consumption in the small scale cashew nut processing industry is very high and is mainly due to the high energy consumption of the drying process. The drying operation provides a lot of scope for energy saving and substitutions of other renewable energy sources. Renewable energy-based drying systems with loading capacity of 40 kg were proposed for application in small scale cashew nut processing industries. The main objective of this work is to perform economic feasibility of substituting solar, biomass and hybrid dryer in place of conventional steam drying for cashew drying. Four economic indicators were used to assess the feasibility of three renewable based drying technologies. The payback time was 1.58 yr. for solar, 1.32 for biomass and 1.99 for the hybrid drying system, whereas as the cost-benefit estimates were 5.23 for solar, 4.15 for biomass and 3.32 for the hybrid system. It was found that it is of paramount importance to develop solar biomass hybrid dryer for small scale processing industries.

  9. Modelling and Optimising the Value of a Hybrid Solar-Wind System

    Science.gov (United States)

    Nair, Arjun; Murali, Kartik; Anbuudayasankar, S. P.; Arjunan, C. V.

    2017-05-01

    In this paper, a net present value (NPV) approach for a solar hybrid system has been presented. The system, in question aims at supporting an investor by assessing an investment in solar-wind hybrid system in a given area. The approach follow a combined process of modelling the system, with optimization of major investment-related variables to maximize the financial yield of the investment. The consideration of solar wind hybrid supply presents significant potential for cost reduction. The investment variables concern the location of solar wind plant, and its sizing. The system demand driven, meaning that its primary aim is to fully satisfy the energy demand of the customers. Therefore, the model is a practical tool in the hands of investor to assess and optimize in financial terms an investment aiming at covering real energy demand. Optimization is performed by taking various technical, logical constraints. The relation between the maximum power obtained between individual system and the hybrid system as a whole in par with the net present value of the system has been highlighted.

  10. Solar thermal power & gas turbine hybrid design with molten salt storage tank

    Science.gov (United States)

    Martín, Fernando; Wiesenberg, Ralf; Santana, Domingo

    2017-06-01

    Taking into consideration the need to decelerate the global climatic change, power generation has to shift from burning fossil fuel to renewable energy source in short medium period of time. In this work, we are presenting a new model of a solar-gas natural hybrid power cycle with the main aim of decoupling the solar generation system from the gas turbine system. The objective is to have high solar power contribution compared to conventional ISCC plants [2], producing firm and dispatchable electricity at the same time. The decoupling is motivated by the low solar contribution reached by the ISCC, which is technically limited to maximum of 15%, [4]. In our case, we have implemented a solar tower with molten salts as working fluid. Central receiver systems get higher performance than others systems, like parabolic trough technology [1], due to the higher temperature achieved in the heat transferred fluid HTF, close to 560°C.

  11. Solar Central Receiver Hybrid Power Systems sodium-cooled receiver concept. Final report. Volume III. Appendices

    Energy Technology Data Exchange (ETDEWEB)

    None

    1980-01-01

    The overall, long term objective of the Solar Central Receiver Hybrid Power System is to identify, characterize, and ultimately demonstrate the viability and cost effectiveness of solar/fossil, steam Rankine cycle, hybrid power systems that: (1) consist of a combined solar central receiver energy source and a nonsolar energy source at a single, common site, (2) may operate in the base, intermediate, and peaking capacity modes, (3) produce the rated output independent of variations in solar insolation, (4) provide a significant savings (50% or more) in fuel consumpton, and (5) produce power at the minimum possible cost in mills/kWh. It is essential that these hybrid concepts be technically feasible and economically competitive with other systems in the near to mid-term time period (1985-1990) on a commercial scale. The program objective for Phase I is to identify and conceptually characterize solar/fossil steam Rankine cycle, commercial-scale, power plant systems that are economically viable and technically feasible. This volume contains appendices to the conceptual design and systems analysis studies gien in Volume II, Books 1 and 2. (WHK)

  12. Investigation of organic semiconductor interlayers in hybrid PEDOT:PSS/silicon solar cells

    Science.gov (United States)

    Weingarten, Martin; Zweipfennig, Thorsten; Sanders, Simon; Stümmler, Dominik; Pfeiffer, Pascal; Vescan, Andrei; Kalisch, Holger

    2016-10-01

    In the last years, hybrid organic/inorganic solar cells have attracted great interest in photovoltaic research due to their expected potential to combine the advantages of both material classes, the excellent electrical properties and stability of the inorganic and the low-cost processability of the organic semiconductors. This work is focused on hybrid solar cells based on n-doped crystalline Si as the inorganic and the polymer poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) as the organic part of the device. The hole-conducting organic semiconductors poly(3-hexylthiophene-2,5-diyl) (P3HT) and 2,2‧,7,7‧-Tetrakis[N,N-di(4-methoxyphenyl)amino]-9,9‧-spirobifluorene (Spiro-MeOTAD) are investigated as electron blocking interlayers to reduce the parasitic electron current into the metal top contact and thereby increase the efficiency of the solar cell. In this context, P3HT is identified to be insufficient as an interlayer material due to unfavorable hysteresis effects. On the other hand, for solar cells with a Spiro-MeOTAD interlayer, the power conversion efficiency (PCE) is significantly increased. This is mainly attributed to an increased short-circuit current density. For the best performing device, a PCE of 14.3% is achieved, which is one of the highest values reported for this type of hybrid solar cells so far.

  13. Potential Evaluation of Solar Heat Assisted Desiccant Hybrid Air Conditioning System

    Science.gov (United States)

    Tran, Thien Nha; Hamamoto, Yoshinori; Akisawa, Atsushi; Kashiwagi, Takao

    The solar thermal driven desiccant dehumidification-absorption cooling hybrid system has superior advantage in hot-humid climate regions. The reasonable air processing of desiccant hybrid air conditioning system and the utility of clean and free energy make the system environment friendly and energy efficient. The study investigates the performance of the desiccant dehumidification air conditioning systems with solar thermal assistant. The investigation is performed for three cases which are combinations of solar thermal and absorption cooling systems with different heat supply temperature levels. Two solar thermal systems are used in the study: the flat plate collector (FPC) and the vacuum tube with compound parabolic concentrator (CPC). The single-effect and high energy efficient double-, triple-effect LiBr-water absorption cooling cycles are considered for cooling systems. COP of desiccant hybrid air conditioning systems are determined. The evaluation of these systems is subsequently performed. The single effect absorption cooling cycle combined with the flat plate collector solar system is found to be the most energy efficient air conditioning system.

  14. Hybrid tandem solar cells with depleted-heterojunction quantum dot and polymer bulk heterojunction subcells

    KAUST Repository

    Kim, Taesoo

    2015-10-01

    We investigate hybrid tandem solar cells that rely on the combination of solution-processed depleted-heterojunction colloidal quantum dot (CQD) and bulk heterojunction polymer:fullerene subcells. The hybrid tandem solar cell is monolithically integrated and electrically connected in series with a suitable p-n recombination layer that includes metal oxides and a conjugated polyelectrolyte. We discuss the monolithic integration of the subcells, taking into account solvent interactions with underlayers and associated constraints on the tandem architecture, and show that an adequate device configuration consists of a low bandgap CQD bottom cell and a high bandgap polymer:fullerene top cell. Once we optimize the recombination layer and individual subcells, the hybrid tandem device reaches a VOC of 1.3V, approaching the sum of the individual subcell voltages. An impressive fill factor of 70% is achieved, further confirming that the subcells are efficiently connected via an appropriate recombination layer. © 2015.

  15. Optical design and optimization of parabolic dish solar concentrator with a cavity hybrid receiver

    Science.gov (United States)

    Blázquez, R.; Carballo, J.; Silva, M.

    2016-05-01

    One of the main goals of the BIOSTIRLING-4SKA project, funded by the European Commission, is the development of a hybrid Dish-Stirling system based on a hybrid solar-gas receiver, which has been designed by the Swedish company Cleanergy. A ray tracing study, which is part of the design of this parabolic dish system, is presented in this paper. The study pursues the optimization of the concentrator and receiver cavity geometry according to the requirements of flux distribution on the receiver walls set by the designer of the hybrid receiver. The ray-tracing analysis has been performed with the open source software Tonatiuh, a ray-tracing tool specifically oriented to the modeling of solar concentrators.

  16. TiO-Based Organic Hybrid Solar Cells with Mn+ Doping

    Directory of Open Access Journals (Sweden)

    Zühal Alparslan

    2011-01-01

    Full Text Available A hybrid solar cell is designed and proposed as a feasible and reasonable alternative, according to acquired efficiency with the employment of TiO2 (titanium dioxide and Mn-doped TiO2 thin films. In the scope of this work, TiO2 (titanium dioxide and Mn:TiO2 hybrid organic thin films are proposed as charge transporter layer in polymer solar cells. Poly(3-hexylthiophene:phenyl-C61-butyric acid methyl ester (P3HT: PCBM is used as active layer. When the Mn-doped TiO2 solar cells were compared with pure TiO2 cells, Mn-doped samples revealed a noteworthy efficiency enhancement with respect to undoped-TiO2-based cells. The highest conversion efficiency was obtained to be 2.44% at the ratio of 3.5% (wt/wt Mn doping.

  17. Utilizing wind and solar energy as power sources for a hybrid building ventilation device

    Energy Technology Data Exchange (ETDEWEB)

    Shun, Simon; Ahmed, Noor A. [School of Mechanical and Manufacturing Engineering, University of New South Wales, Sydney (Australia)

    2008-06-15

    Wind and solar energy are currently used to power many building ventilation devices. Such devices rely exclusively on either solar or wind energy, which limits their usefulness. A low-cost hybrid ventilation device that utilizes both wind and solar energy as power sources was designed to overcome some of the shortcomings of these devices. Wind tunnel testing conducted at the aerodynamics laboratory of the University of New South Wales revealed that the hybrid device had improved operational and performance benefits compared with conventional commercial roof top ventilators, particularly at zero to low wind speeds. This represents a significant step forward and will have an immediate impact in promoting the use of clean energy for the purposes of building ventilation. (author)

  18. A High-Efficiency Si Nanowire Array/Perovskite Hybrid Solar Cell.

    Science.gov (United States)

    Yan, Xin; Zhang, Chen; Wang, Jiamin; Zhang, Xia; Ren, Xiaomin

    2017-12-01

    A low-cost Si nanowire array/perovskite hybrid solar cell is proposed and simulated. The solar cell consists of a Si p-i-n nanowire array filled with CH3NH3PbI3, in which both the nanowires and perovskite absorb the incident light while the nanowires act as the channels for transporting photo-generated electrons and holes. The hybrid structure has a high absorption efficiency in a broad wavelength range of 300~800 nm. A large short-circuit current density of 28.8 mA/cm(2) and remarkable conversion efficiency of 13.3% are obtained at a thin absorber thickness of 1.6 μm, which are comparable to the best results of III-V nanowire solar cells.

  19. Laser-ablated titania nanoparticles for aqueous processed hybrid solar cells

    Science.gov (United States)

    Körstgens, V.; Pröller, S.; Buchmann, T.; Moseguí González, D.; Song, L.; Yao, Y.; Wang, W.; Werhahn, J.; Santoro, G.; Roth, S. V.; Iglev, H.; Kienberger, R.; Müller-Buschbaum, P.

    2015-02-01

    Titania nanoparticles are produced by laser ablation in liquid in order to initiate functionalization of titania with the polymer for the active layer. By combining these titania nanoparticles and water-soluble poly[3-(potassium-6-hexanoate)thiophene-2,5-diyl] (P3P6T) hybrid solar cells are realized.Titania nanoparticles are produced by laser ablation in liquid in order to initiate functionalization of titania with the polymer for the active layer. By combining these titania nanoparticles and water-soluble poly[3-(potassium-6-hexanoate)thiophene-2,5-diyl] (P3P6T) hybrid solar cells are realized. Electronic supplementary information (ESI) available: Full scheme of the production of solar cells, additional spectra and details of the measurement techniques. See DOI: 10.1039/c4nr06782g

  20. A High-Efficiency Si Nanowire Array/Perovskite Hybrid Solar Cell

    Science.gov (United States)

    Yan, Xin; Zhang, Chen; Wang, Jiamin; Zhang, Xia; Ren, Xiaomin

    2017-01-01

    A low-cost Si nanowire array/perovskite hybrid solar cell is proposed and simulated. The solar cell consists of a Si p-i-n nanowire array filled with CH3NH3PbI3, in which both the nanowires and perovskite absorb the incident light while the nanowires act as the channels for transporting photo-generated electrons and holes. The hybrid structure has a high absorption efficiency in a broad wavelength range of 300 800 nm. A large short-circuit current density of 28.8 mA/cm2 and remarkable conversion efficiency of 13.3% are obtained at a thin absorber thickness of 1.6 μm, which are comparable to the best results of III-V nanowire solar cells.

  1. Preliminary Feasibility Study of a Hybrid Solar and Modular Pumped Storage Hydro System at Biosphere 2

    Energy Technology Data Exchange (ETDEWEB)

    Lansey, Kevin [Univ. of Arizona, Tucson, AZ (United States); Hortsman, Chris [Univ. of Arizona, Tucson, AZ (United States)

    2016-10-01

    In this study, the preliminary feasibility of a hybrid solar and modular pumped storage system designed for high energy independence at Biosphere 2 is assessed. The system consists of an array of solar PV panels that generate electricity during the day to power both Biosphere 2 and a pump that sends water through a pipe to a tank at a high elevation. When solar power is not available, the water is released back down the pipe towards a tank at a lower elevation, where it passes through a hydraulic water turbine to generate hydroelectricity to power Biosphere 2. The hybrid system is sized to generate and store enough energy to enable Biosphere 2 to operate without a grid interconnection on an average day.

  2. On the Path to SunShot. Emerging Opportunities and Challenges in U.S. Solar Manufacturing

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Donald [National Renewable Energy Lab. (NREL), Golden, CO (United States); Horowitz, Kelsey [National Renewable Energy Lab. (NREL), Golden, CO (United States); Kurup, Parthiv [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2016-05-01

    This report provides insights into photovoltaic (PV) and concentrating solar power (CSP) manufacturing in the context of the U.S. Department of Energy's SunShot Initiative. Although global PV price reductions and deployment have been strong recently, PV manufacturing faces challenges. Slowing rates of manufacturing cost reductions, combined with the relatively low price of incumbent electricity generating sources in most large global PV markets, may constrain profit opportunities for firms and poses a potential challenge to the sustainable operation and growth of the global PV manufacturing base. In the United States, manufacturers also face a factors-of-production cost disadvantage compared with competing nations. However, the United States is one of the world's most competitive and innovative countries as well as one of the best locations for PV manufacturing. In conjunction with strong projected PV demand in the United States and across the Americas, these advantages could increase the share of PV technologies produced by U.S. manufacturers as the importance of innovation-driven PV cost reductions increases. Compared with PV, CSP systems are much more complex and require a much larger minimum effective scale, resulting in much higher total CAPEX requirements for system construction, lengthier development cycles, and ultimately higher costs of energy produced. The global lack of consistent CSP project development creates challenges for companies that manufacture specialty CSP components, and the potential lack of a near-term U.S. market could hinder domestic CSP manufacturers. However, global and U.S. CSP deployment is expected to expand beyond 2020, and U.S. CSP manufacturers could benefit from U.S. innovation advantages similar to those associated with PV. Expansion of PV and CSP manufacturing also presents U.S. job-growth opportunities.

  3. Technical and economic assessment of solar hybrid repowering. Final report

    Energy Technology Data Exchange (ETDEWEB)

    None

    1978-09-01

    Drawings are presented for the repowering project described in SAN--1608-4-1. Reeves Sation No. 2 was selected for study for repowering at 50 percent (25 MWe) using the 10-MW solar central receiver pilot plant preliminary design for Barstow, California. (WHK)

  4. Performance evaluation of hybrid modified micro-channel solar cell ...

    African Journals Online (AJOL)

    user

    Keywords: Solar cell thermal tile, Micro-channel, Electrical efficiency, Thermal modeling. 1. ... than that of the PV modules is heated, while at the same time, the PV module ..... For a number of modified MCSCT tiles connected in series, the outlet ..... Group Technology, Neural Networks, and Non-traditional Optimization and.

  5. Modelling the solar wind interaction with Mercury by a quasi-neutral hybrid model

    Directory of Open Access Journals (Sweden)

    E. Kallio

    Full Text Available Quasi-neutral hybrid model is a self-consistent modelling approach that includes positively charged particles and an electron fluid. The approach has received an increasing interest in space plasma physics research because it makes it possible to study several plasma physical processes that are difficult or impossible to model by self-consistent fluid models, such as the effects associated with the ions’ finite gyroradius, the velocity difference between different ion species, or the non-Maxwellian velocity distribution function. By now quasi-neutral hybrid models have been used to study the solar wind interaction with the non-magnetised Solar System bodies of Mars, Venus, Titan and comets. Localized, two-dimensional hybrid model runs have also been made to study terrestrial dayside magnetosheath. However, the Hermean plasma environment has not yet been analysed by a global quasi-neutral hybrid model.

    In this paper we present a new quasi-neutral hybrid model developed to study various processes associated with the Mercury-solar wind interaction. Emphasis is placed on addressing advantages and disadvantages of the approach to study different plasma physical processes near the planet. The basic assumptions of the approach and the algorithms used in the new model are thoroughly presented. Finally, some of the first three-dimensional hybrid model runs made for Mercury are presented.

    The resulting macroscopic plasma parameters and the morphology of the magnetic field demonstrate the applicability of the new approach to study the Mercury-solar wind interaction globally. In addition, the real advantage of the kinetic hybrid model approach is to study the property of individual ions, and the study clearly demonstrates the large potential of the approach to address these more detailed issues by a quasi-neutral hybrid model in the future.

    Key words. Magnetospheric physics

  6. New generation of hybrid solar PV/T collectors

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-07-01

    This final report for the Swiss Federal Office of Energy (SFOE) presents the results of a study made on the suitability of commercially available panels using amorphous silicon (a-Si) technology for use in hybrid photovoltaic-thermal collectors. A previously made feasibility study is quoted that showed that the competitiveness of hybrid collectors depends on the technical requirements placed on the integrated photovoltaic modules. The detail results of tests made on unencapsulated samples of a-Si modules based on various different substrates are presented. These include assessment of absorption factors on the basis of spectrometric and calorimetric measurements, testing of the thermal stability of the a-Si cells and emissivity measurements made on the top-cover materials used in the panels. The report is concluded with recommendations for the development of new encapsulation materials with low emissivity and improved durability at high temperatures.

  7. Transient Simulation Of A Solar-Hybrid Tower Power Plant With Open Volumetric Receiver At The Location Barstow

    OpenAIRE

    2013-01-01

    In this work the transient simulations of four hybrid solar tower power plant concepts with open-volumetric receiver technology for a location in Barstow-Daggett, USA, are presented. The open-volumetric receiver uses ambient air as heat transfer fluid and the hybridization is realized with a gas turbine. The Rankine cycle is heated by solar-heated air and/or by the gas turbine’s flue gases. The plant can be operated in solar-only, hybrid parallel or combined cycle-only mode as well a...

  8. Optical Metrology for CIGS Solar Cell Manufacturing and its Cost Implications

    Science.gov (United States)

    Sunkoju, Sravan Kumar

    Solar energy is a promising source of renewable energy which can meet the demand for clean energy in near future with advances in research in the field of photovoltaics and cost reduction by commercialization. Availability of a non-contact, in-line, real time robust process control strategies can greatly aid in reducing the gap between cell and module efficiencies, thereby leading to cost-effective large-scale manufacturing of high efficiency CIGS solar cells. In order to achieve proper process monitoring and control for the deposition of the functional layers of CuIn1-xGaxSe 2 (CIGS) based thin film solar cell, optical techniques such as spectroscopic reflectometry and polarimetry are advantageous because they can be set up in an unobtrusive manner in the manufacturing line, and collect data in-line and in-situ. The use of these techniques requires accurate optical models that correctly represent the properties of the layers being deposited. In this study, Spectroscopic ellipsometry (SE) has been applied for the characterization of each individual stage of CIGS layers deposited using the 3-stage co-evaporation process along with the other functional layers. Dielectric functions have been determined for the energy range from 0.7 eV to 5.1 eV. Critical-point line-shape analysis was used in this study to determine the critical point energies of the CIGS based layers. To control the compositional and thickness uniformity of all the functional layers during the fabrication of CIGS solar cells over large areas, multilayer photovoltaics (PV) stack optical models were developed with the help of extracted dielectric functions. In this study, mapping capability of RC2 spectroscopic ellipsometer was used to map all the functional layer thicknesses of a CIGS solar cell in order to probe the spatial non-uniformities that can affect the performance of a cell. The optical functions for each of the stages of CIGS 3-stage deposition process along with buffer layer and transparent

  9. DESIGN AND THERMAL PERFORMANCE OF THE SOLAR BIOMASS HYBRID DRYER FOR CASHEW DRYING

    Directory of Open Access Journals (Sweden)

    Saravanan Dhanuskodi

    2014-12-01

    Full Text Available Drying of Cashew nut to remove testa is one of the most energy-intensive processes of cashew nut process industry. For this reason a hybrid dryer consisting of a solar flat plate collector, a biomass heater and a drying chamber is designed and fabricated. 40 kg of Cashew nut with initial moisture of 9 % is used in the experiment. The performance test of the dryer is carried out in two modes of operation: hybrid-forced convection and hybrid-natural convection. Drying time and drying efficiency during these two modes of operation are estimated and compared with the sun drying. The system is capable of attaining drying temperature between 50º and 70ºC. In the hybrid forced drying, the required moisture content of 3% is achieved within 7 hours and the average system efficiency is estimated as 5.08%. In the hybrid natural drying, the required moisture content is obtained in 9 hours and the average system efficiency is 3.17%. The fuel consumption during the drying process is 0.5 kg/hr and 0.75 kg/hr for forced mode and natural mode, respectively. The drying process in the hybrid forced mode of operation is twice faster than the sun drying. The dryer can be operated in any climatic conditions: as a solar dryer on normal sunny days, as a biomass dryer at night time and as a hybrid dryer on cloudy days. Based on the experimental study, it is concluded that the developed hybrid dryer is suitable for small scale cashew nut farmers in rural areas of developing countries.

  10. The Development of Photocatalyst with Hybrid Material CNT/TiO2 Thin Films for Dye-Sensitized Solar Cell

    Directory of Open Access Journals (Sweden)

    Yong Woo Kim

    2013-01-01

    Full Text Available Dye-sensitized solar cell (DSSC has big merits of simple manufacturing, low cost, and good applications. However, efficiency of DSSC is quite low compared with other solar cells based on silicon. Ability of electron delivery is important for improving the efficiency; therefore, CNT used as an electrode and transferring electrons and heat significantly easily can be highly expected to contribute to increase conversion efficiency of DSSC. In this paper, CNT was loaded on the photocatalyst of TiO2 thin films in the range from 0 wt% to 0.01 wt%. CNT was treated with 60% nitric acid at 120°C for 6 hrs and performed on ball milling process for 3 hrs. Hybrid material was made of TiO2 paste and CNT predispersed by mixing. To demonstrate the property of each sample, the analytical techniques including a spectrometer for transmission and surface resistance were used. The sample of higher concentration of CNT has low transmission but low resistance, besides we have researched a proper amount of CNT 0.001 wt% that can increase 1.5% conversion efficiency of DSSC.

  11. Si/PEDOT:PSS Hybrid Solar Cells with Advanced Antireflection and Back Surface Field Designs

    Science.gov (United States)

    Sun, Yiling; Yang, Zhenhai; Gao, Pingqi; He, Jian; Yang, Xi; Sheng, Jiang; Wu, Sudong; Xiang, Yong; Ye, Jichun

    2016-08-01

    Molybdenum oxide (MoO3) is one of most suitable antireflection (AR) layers for silicon/poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (Si/PEDOT:PSS) hybrid solar cells due to its well-matched refractive index (2.1). A simulation model was employed to predict the optical characteristics of Si/PEDOT:PSS hybrid solar cells with the MoO3 layers as antireflection coatings (ARCs), as well as to analyze the loss in current density. By adding an optimum thickness of a 34-nm-thick ARC of MoO3 on the front side and an effective rear back surface field (BSF) of phosphorus-diffused N + layer at the rear side, the hybrid cells displayed higher light response in the visible and near infrared regions, boosting a short-circuit current density ( J sc) up to 28.7 mA/cm2. The average power conversion efficiency (PCE) of the Si/PEDOT:PSS hybrid solar cells was thus increased up to 11.90 %, greater than the value of 9.23 % for the reference devices.

  12. Hybrid zinc oxide/graphene electrodes for depleted heterojunction colloidal quantum-dot solar cells.

    Science.gov (United States)

    Tavakoli, Mohammad Mahdi; Aashuri, Hossein; Simchi, Abdolreza; Fan, Zhiyong

    2015-10-07

    Recently, hybrid nanocomposites consisting of graphene/nanomaterial heterostructures have emerged as promising candidates for the fabrication of optoelectronic devices. In this work, we have employed a facile and in situ solution-based process to prepare zinc oxide/graphene quantum dots (ZnO/G QDs) in a hybrid structure. The prepared hybrid dots are composed of a ZnO core, with an average size of 5 nm, warped with graphene nanosheets. Spectroscopic studies show that the graphene shell quenches the photoluminescence intensity of the ZnO nanocrystals by about 72%, primarily due to charge transfer reactions and static quenching. A red shift in the absorption peak is also observed. Raman spectroscopy determines G-band splitting of the graphene shell into two separated sub-bands (G(+), G(-)) caused by the strain induced symmetry breaking. It is shown that the hybrid ZnO/G QDs can be used as a counter-electrode for heterojunction colloidal quantum-dot solar cells for efficient charge-carrier collection, as evidenced by the external quantum efficiency measurement. Under the solar simulated spectrum (AM 1.5G), we report enhanced power conversion efficiency (35%) with higher short current circuit (80%) for lead sulfide-based solar cells as compared to devices prepared by pristine ZnO nanocrystals.

  13. Sustainable electricity generation by solar pv/diesel hybrid system without storage for off grids areas

    Science.gov (United States)

    Azoumah, Y.; Yamegueu, D.; Py, X.

    2012-02-01

    Access to energy is known as a key issue for poverty reduction. The electrification rate of sub Saharan countries is one of the lowest among the developing countries. However this part of the world has natural energy resources that could help raising its access to energy, then its economic development. An original "flexy energy" concept of hybrid solar pv/diesel/biofuel power plant, without battery storage, is developed in order to not only make access to energy possible for rural and peri-urban populations in Africa (by reducing the electricity generation cost) but also to make the electricity production sustainable in these areas. Some experimental results conducted on this concept prototype show that the sizing of a pv/diesel hybrid system by taking into account the solar radiation and the load/demand profile of a typical area may lead the diesel generator to operate near its optimal point (70-90 % of its nominal power). Results also show that for a reliability of a PV/diesel hybrid system, the rated power of the diesel generator should be equal to the peak load. By the way, it has been verified through this study that the functioning of a pv/Diesel hybrid system is efficient for higher load and higher solar radiation.

  14. Hybrid Solar Cell with TiO2 Film: BBOT Polymer and Copper Phthalocyanine as Sensitizer

    Directory of Open Access Journals (Sweden)

    Saptadip Saha

    2016-01-01

    Full Text Available An organic-inorganic hybrid solar cell was fabricated using Titanium dioxide (TiO2: 2,5-bis(5-tert-butyl-2-benzoxazolyl thiophene (BBOT film and Copper Phthalocyanine (CuPc as a sensitizer. BBOT was used in photodetector in other reported research works, but as per best of our knowledge, it was not implemented in solar cells till date. The blend of TiO2: BBOT blend was used to fabricate the film on ITO-coated glass and further a thin layer of CuPc was coated on the film. This was acted as photoanode and another ITO coated glass with a platinum coating was used as a counter electrode (cathode. An optimal blend of acetonitrile (solvent (50-100%, 1,3-dimethylimidazolium iodide (10-25%, iodine (2.5-10% and lithium iodide, pyridine derivative and thiocyanate was used as electrolytes in the hybrid solar cell. The different structural, optical and electrical characteristics were measured. The Hybrid solar cell showed a maximum conversion efficiency of 6.51%.

  15. Cadmium Sulfide Nanoparticles Synthesized by Microwave Heating for Hybrid Solar Cell Applications

    Directory of Open Access Journals (Sweden)

    Claudia Martínez-Alonso

    2014-01-01

    Full Text Available Cadmium sulfide nanoparticles (CdS-n are excellent electron acceptor for hybrid solar cell applications. However, the particle size and properties of the CdS-n products depend largely on the synthesis methodologies. In this work, CdS-n were synthetized by microwave heating using thioacetamide (TA or thiourea (TU as sulfur sources. The obtained CdS-n(TA showed a random distribution of hexagonal particles and contained TA residues. The latter could originate the charge carrier recombination process and cause a low photovoltage (Voc, 0.3 V in the hybrid solar cells formed by the inorganic particles and poly(3-hexylthiophene (P3HT. Under similar synthesis conditions, in contrast, CdS-n synthesized with TU consisted of spherical particles with similar size and contained carbonyl groups at their surface. CdS-n(TU could be well dispersed in the nonpolar P3HT solution, leading to a Voc of about 0.6–0.8 V in the resulting CdS-n(TU : P3HT solar cells. The results of this work suggest that the reactant sources in microwave methods can affect the physicochemical properties of the obtained inorganic semiconductor nanoparticles, which finally influenced the photovoltaic performance of related hybrid solar cells.

  16. Understanding polycarbazole-based polymer:CdSe hybrid solar cells.

    Science.gov (United States)

    Lek, Jun Yan; Lam, Yeng Ming; Niziol, Jacek; Marzec, Mateusz

    2012-08-10

    We report for the first time the fabrication and characterization of organic-inorganic bulk heterojunction (BHJ) hybrid solar cells made of poly[N-9″-hepta-decanyl-2,7-carbazole-alt-5,5-(4',7'-di-2-thienyl-2',1',3'-benzothiadiazole)] (PCDTBT) and pyridine-capped CdSe nanorods. By optimizing both CdSe loading and active layer film thickness, the power conversion efficiencies (PCEs) of PCDTBT:CdSe hybrid solar cells were able to reach 2%, with PCDTBT:CdSe devices displaying an open-circuit voltage (V(OC )) that is 35% higher than P3HT:CdSe devices due to the deeper HOMO level of PCDTBT polymer. The performance of PCDTBT:CdSe devices is limited by its morphology and also its lower LUMO energy offset compared to P3HT:CdSe devices. Hence, the performance of PCDTBT:CdSe solar cells could be further improved by modifying the morphology of the films and also by including an interlayer to generate a built-in voltage to encourage exciton dissociation. Our results suggest that PCDTBT could be a viable alternative to P3HT as an electron donor in hybrid BHJ solar cells for high photovoltage application.

  17. On the Path to SunShot - Emerging Opportunities and Challenges in U.S. Solar Manufacturing

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Donald [National Renewable Energy Lab. (NREL), Golden, CO (United States); Horowitz, Kelsey [National Renewable Energy Lab. (NREL), Golden, CO (United States); Kurup, Parthiv [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2016-05-01

    Innovation-driven cost and performance improvements, along with strong projected solar demand in the United States and across the Americas, could increase the attractiveness of U.S.-based solar manufacturing (see Chung et al. 2016). Although improvements to standard PV modules have produced deep cost reductions over the past 5 years, the returns on such incremental improvements appear to be diminishing, and more dramatic innovations in module design and manufacturing are required to continue along the path of rapid progress. At the same time, major opportunities exist for innovation to unlock the potential of CSP technologies. This need for innovation could benefit U.S. PV and CSP manufacturers. The United States has been rated one of the world’s most competitive and innovative countries as well as one of the best locations for PV manufacturing. It is a global leader in PV and CSP R&D and patent production, and U.S. PV manufacturers are already pursuing highly differentiated innovations.

  18. Planar organic-inorganic hybrid perovskite solar cell by electrospray

    OpenAIRE

    Chen, Wenjun

    2015-01-01

    Recently, the organic-inorganic perovskite solar cell has attracted great attention due to the easy processing and rapid developed power conversion efficiency. The tri-halide perovskite CH3NH3PbI3-xClx possessing excellent optical and electronic properties, such as absorption hands span the visible region, long charge carrier diffusion lengths, and appropriate direct band gap, makes them ideal active layer material for photovoltaic devices. In this thesis, electrohydrodynamic spraying is used...

  19. Hybrid polymer/ZnO solar cells sensitized by PbS quantum dots.

    Science.gov (United States)

    Wang, Lidan; Zhao, Dongxu; Su, Zisheng; Shen, Dezhen

    2012-02-07

    Poly[2-methoxy-5-(2-ethylhexyloxy-p-phenylenevinylene)]/ZnO nanorod hybrid solar cells consisting of PbS quantum dots [QDs] prepared by a chemical bath deposition method were fabricated. An optimum coating of the QDs on the ZnO nanorods could strongly improve the performance of the solar cells. A maximum power conversion efficiency of 0.42% was achieved for the PbS QDs' sensitive solar cell coated by 4 cycles, which was increased almost five times compared with the solar cell without using PbS QDs. The improved efficiency is attributed to the cascade structure formed by the PbS QD coating, which results in enhanced open-circuit voltage and exciton dissociation efficiency.

  20. Hybrid solar cells with prescribed nanoscale morphologies based on hyperbranched semiconductor nanocrystals.

    Science.gov (United States)

    Gur, Ilan; Fromer, Neil A; Chen, Chih-Ping; Kanaras, Antonios G; Alivisatos, A Paul

    2007-02-01

    In recent years, the search to develop large-area solar cells at low cost has led to research on photovoltaic (PV) systems based on nanocomposites containing conjugated polymers. These composite films can be synthesized and processed at lower costs and with greater versatility than the solid state inorganic semiconductors that comprise today's solar cells. However, the best nanocomposite solar cells are based on a complex architecture, consisting of a fine blend of interpenetrating and percolating donor and acceptor materials. Cell performance is strongly dependent on blend morphology, and solution-based fabrication techniques often result in uncontrolled and irreproducible blends, whose composite morphologies are difficult to characterize accurately. Here we incorporate three-dimensional hyperbranched colloidal semiconductor nanocrystals in solution-processed hybrid organic-inorganic solar cells, yielding reproducible and controlled nanoscale morphology.

  1. ANN based optimization of a solar assisted hybrid cooling system in Turkey

    Energy Technology Data Exchange (ETDEWEB)

    Ozgur, Arif; Yetik, Ozge; Arslan, Oguz [Mechanical Eng. Dept., Engineering Faculty, Dumlupinar University (Turkey)], email: maozgur@dpu.edu.tr, email: ozgeyetik@dpu.edu.tr, email: oarslan@dpu.edu.tr

    2011-07-01

    This study achieved optimization of a solar assisted hybrid cooling system with refrigerants such as R717, R141b, R134a and R123 using an artificial neural network (ANN) model based on average total solar radiation, ambient temperature, generator temperature, condenser temperature, intercooler temperature and fluid types. ANN is a new tool; it works rapidly and can thus be a solution for design and optimization of complex power cycles. A unique flexible ANN algorithm was introduced to evaluate the solar ejector cooling systems because of the nonlinearity of neural networks. The conclusion was that the best COPs value obtained with the ANN is 1.35 and COPc is 3.03 when the average total solar radiation, ambient temperature, generator temperature, condenser temperature, intercooler temperature and algorithm are respectively 674.72 W/m2, 17.9, 80, 15 and 13 degree celsius and LM with 14 neurons in single hidden layer, for R717.

  2. Hybrid-renewable processes for biofuels production: concentrated solar pyrolysis of biomass residues

    Energy Technology Data Exchange (ETDEWEB)

    George, Anthe [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Geier, Manfred [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Dedrick, Daniel E. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2014-10-01

    The viability of thermochemically-derived biofuels can be greatly enhanced by reducing the process parasitic energy loads. Integrating renewable power into biofuels production is one method by which these efficiency drains can be eliminated. There are a variety of such potentially viable "hybrid-renewable" approaches; one is to integrate concentrated solar power (CSP) to power biomass-to-liquid fuels (BTL) processes. Barriers to CSP integration into BTL processes are predominantly the lack of fundamental kinetic and mass transport data to enable appropriate systems analysis and reactor design. A novel design for the reactor has been created that can allow biomass particles to be suspended in a flow gas, and be irradiated with a simulated solar flux. Pyrolysis conditions were investigated and a comparison between solar and non-solar biomass pyrolysis was conducted in terms of product distributions and pyrolysis oil quality. A novel method was developed to analyse pyrolysis products, and investigate their stability.

  3. Hybrid solar cells from water-soluble polymers

    Directory of Open Access Journals (Sweden)

    James T. McLeskey

    2006-01-01

    Full Text Available We report on the use of a water-soluble, light-absorbing polythiophene polymer to fabricate novel photovoltaic devices. The polymer is a water-soluble thiophene known as sodium poly[2-(3-thienyl-ethoxy-4-butylsulfonate] or PTEBS. The intention is to take advantage of the properties of conjugated polymers (flexible, tunable, and easy to process and incorporate the additional benefits of water solubility (easily controlled evaporation rates and environmentally friendly. The PTEBS polythiophene has shown significant photovoltaic response and has been found to be effective for making solar cells. To date, solar cells in three different configurations have been produced: titanium dioxide (TiO2 bilayer cells, TiO2 bulk heterojunction solar cells, and carbon nanotubes (CNTs in bulk heterojunctions. The best performance thus far has been achieved with TiO2 bilayer devices. These devices have an open circuit voltage (Voc of 0.84V, a short circuit current (Jsc of 0.15 mA/cm2, a fill factor (ff of 0.91, and an efficiency (η of 0.15 %.

  4. Research on performance of hybrid organic dyes-sensitized solar cell

    Institute of Scientific and Technical Information of China (English)

    Lei Sun; Weizheng Yuan; Dayong Qiao

    2006-01-01

    The hybrid sensitizer rhodamine B and coumarin or eosin and coumarin is used to sensitize nanocrystalline porous films. Absorption of the nanocrystalline photovoltaic cell (NPC) is improved in visible light. The performance of these cells is more effective than that of cells sensitized only by sensitizer rhodamine B or eosin. In the simulative solar light, cell sensitized by hybrid sensitizer rhodamine B and coumarin can get open circuit voltage (Voc) of 550 mV and short circuit current (Isc) of 0.1375 mA/cm2.

  5. Modeling and control of a small solar fuel cell hybrid energy system

    Institute of Scientific and Technical Information of China (English)

    LI Wei; ZHU Xin-jian; CAO Guang-yi

    2007-01-01

    This paper describes a solar photovoltaic fuel cell (PVEC) hybrid generation system consisting of a photovoltaic (PV) generator, a proton exchange membrane fuel cell (PEMFC), an electrolyser, a supercapacitor, a storage gas tank and power conditioning unit (PCU). The load is supplied from the PV generator with a fuel cell working in parallel. Excess PV energy when available is converted to hydrogen using an electrolyser for later use in the fuel cell. The individual mathematical model for each component is presented. Control strategy for the system is described. MATLAB/Simulink is used for the simulation of this highly nonlinear hybrid energy system. The simulation results are shown in the paper.

  6. High Efficiency Hybrid Solar Cells Using Nanocrystalline Si Quantum Dots and Si Nanowires.

    Science.gov (United States)

    Dutta, Mrinal; Thirugnanam, Lavanya; Trinh, Pham Van; Fukata, Naoki

    2015-07-28

    We report on an efficient hybrid Si nanocrystal quantum dot modified radial p-n junction thinner Si solar cell that utilizes the advantages of effective exciton collection by energy transfer from nanocrystal-Si (nc-Si) quantum dots to underlying radial p-n junction Si nanowire arrays with excellent carrier separation and propagation via the built-in electric fields of radial p-n junctions. Minimization of recombination, optical, and spectrum losses in this hybrid structure led to a high cell efficiency of 12.9%.

  7. Embedded Metal Electrode for Organic-Inorganic Hybrid Nanowire Solar Cells.

    Science.gov (United States)

    Um, Han-Don; Choi, Deokjae; Choi, Ahreum; Seo, Ji Hoon; Seo, Kwanyong

    2017-06-27

    We demonstrate here an embedded metal electrode for highly efficient organic-inorganic hybrid nanowire solar cells. The electrode proposed here is an effective alternative to the conventional bus and finger electrode which leads to a localized short circuit at a direct Si/metal contact and has a poor collection efficiency due to a nonoptimized electrode design. In our design, a Ag/SiO2 electrode is embedded into a Si substrate while being positioned between Si nanowire arrays underneath poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS), facilitating suppressed recombination at the Si/Ag interface and notable improvements in the fabrication reproducibility. With an optimized microgrid electrode, our 1 cm(2) hybrid solar cells exhibit a power conversion efficiency of up to 16.1% with an open-circuit voltage of 607 mV and a short circuit current density of 34.0 mA/cm(2). This power conversion efficiency is more than twice as high as that of solar cells using a conventional electrode (8.0%). The microgrid electrode significantly minimizes the optical and electrical losses. This reproducibly yields a superior quantum efficiency of 99% at the main solar spectrum wavelength of 600 nm. In particular, our solar cells exhibit a significant increase in the fill factor of 78.3% compared to that of a conventional electrode (61.4%); this is because of the drastic reduction in the metal/contact resistance of the 1 μm-thick Ag electrode. Hence, the use of our embedded microgrid electrode in the construction of an ideal carrier collection path presents an opportunity in the development of highly efficient organic-inorganic hybrid solar cells.

  8. High Efficiency Organic/Silicon-Nanowire Hybrid Solar Cells: Significance of Strong Inversion Layer

    Science.gov (United States)

    Yu, Xuegong; Shen, Xinlei; Mu, Xinhui; Zhang, Jie; Sun, Baoquan; Zeng, Lingsheng; Yang, Lifei; Wu, Yichao; He, Hang; Yang, Deren

    2015-11-01

    Organic/silicon nanowires (SiNWs) hybrid solar cells have recently been recognized as one of potentially low-cost candidates for photovoltaic application. Here, we have controllably prepared a series of uniform silicon nanowires (SiNWs) with various diameters on silicon substrate by metal-assisted chemical etching followed by thermal oxidization, and then fabricated the organic/SiNWs hybrid solar cells with poly(3,4-ethylenedioxythiophene): poly(styrenesulfonate) (PEDOT:PSS). It is found that the reflective index of SiNWs layer for sunlight depends on the filling ratio of SiNWs. Compared to the SiNWs with the lowest reflectivity (LR-SiNWs), the solar cell based on the SiNWs with low filling ratio (LF-SiNWs) has a higher open-circuit voltage and fill factor. The capacitance-voltage measurements have clarified that the built-in potential barrier at the LF-SiNWs/PEDOT:PSS interface is much larger than that at the LR-SiNWs/PEDOT one, which yields a strong inversion layer generating near the silicon surface. The formation of inversion layer can effectively suppress the carrier recombination, reducing the leakage current of solar cell, and meanwhile transfer the LF-SiNWs/PEDOT:PSS device into a p-n junction. As a result, a highest efficiency of 13.11% is achieved for the LF-SiNWs/PEDOT:PSS solar cell. These results pave a way to the fabrication of high efficiency organic/SiNWs hybrid solar cells.

  9. Hybrid sunlight/LED illumination and renewable solar energy saving concepts for indoor lighting.

    Science.gov (United States)

    Tsuei, Chih-Hsuan; Sun, Wen-Shing; Kuo, Chien-Cheng

    2010-11-08

    A hybrid method for using sunlight and light-emitting diode (LED) illumination powered by renewable solar energy for indoor lighting is simulated and presented in this study. We can illuminate an indoor space and collect the solar energy using an optical switching system. When the system is turned off, the full spectrum of the sunlight is concentrated by a concentrator, to be absorbed by solar photovoltaic devices that provide the electricity to power the LEDs. When the system is turned on, the sunlight collected by the concentrator is split into visible and non-visible rays by a beam splitter. The visible rays pass through the light guide into a light box where it is mixed with LED light to ultimately provide uniform illumination by a diffuser. The non-visible rays are absorbed by the solar photovoltaic devices to provide electrical power for the LEDs. Simulation results show that the efficiency of the hybrid sunlight/LED illumination with the renewable solar energy saving design is better than that of LED and traditional lighting systems.

  10. Nanowire Structured Hybrid Cell for Concurrently Scavenging Solar and Mechanical Energies

    KAUST Repository

    Xu, Chen

    2009-04-29

    Conversion cells for harvesting solar energy and mechanical energy are usually separate and independent entities that are designed and built following different physical principles. Developing a technology that harvests multiple-type energies in forms such as sun light and mechanical around the clock is desperately desired for fully utilizing the energies available in our living environment. We report a hybrid cell that is intended for simultaneously harvesting solar and mechanical energies. Using aligned ZnO nanowire arrays grown on surfaces of a flat substrate, a dye-sensitized solar cell is integrated with a piezoelectric nanogenerator. The former harvests solar energy irradiating on the top, and the latter harvests ultrasonic wave energy from the surrounding. The two energy harvesting approaches can work simultaneously or individually, and they can be integrated in parallel and serial for raising the output current and voltage, respectively, as well as power. It is found that the voltage output from the solar cell can be used to raise the output voltage of the nanogenerator, providing an effective approach for effectively storing and utilizing the power generated by the nanogenerator. Our study demonstrates a new approach for concurrently harvesting multiple types of energies using an integrated hybrid cell so that the energy resources can be effectively and complementary utilized whenever and wherever one or all of them is available. © 2009 American Chemical Society.

  11. Analysis of the solar/wind resources in Southern Spain for optimal sizing of hybrid solar-wind power generation systems

    Science.gov (United States)

    Quesada-Ruiz, S.; Pozo-Vazquez, D.; Santos-Alamillos, F. J.; Lara-Fanego, V.; Ruiz-Arias, J. A.; Tovar-Pescador, J.

    2010-09-01

    A drawback common to the solar and wind energy systems is their unpredictable nature and dependence on weather and climate on a wide range of time scales. In addition, the variation of the energy output may not match with the time distribution of the load demand. This can partially be solved by the use of batteries for energy storage in stand-alone systems. The problem caused by the variable nature of the solar and wind resources can be partially overcome by the use of energy systems that uses both renewable resources in a combined manner, that is, hybrid wind-solar systems. Since both resources can show complementary characteristics in certain location, the independent use of solar or wind systems results in considerable over sizing of the batteries system compared to the use of hybrid solar-wind systems. Nevertheless, to the day, there is no single recognized method for properly sizing these hybrid wind-solar systems. In this work, we present a method for sizing wind-solar hybrid systems in southern Spain. The method is based on the analysis of the wind and solar resources on daily scale, particularly, its temporal complementary characteristics. The method aims to minimize the size of the energy storage systems, trying to provide the most reliable supply.

  12. Hybrid solar receiver as a source of high-temperature medium for an absorption chiller supply

    Science.gov (United States)

    Przenzak, Estera; Filipowicz, Mariusz

    2016-03-01

    This article discusses the problems related with the cold production, i.e. energy efficiency of the process. The idea of solar cooling systems has been presented as the solution of the problem of big electricity demand. The paper discusses the principle of the operation of absorption chillers. Disadvantages and advantages of the solar cooling systems were discussed. The installation for manufacturing high-temperature heat based on solar collectors and concentrator of solar radiation constructed in AGH in Cracow has been presented. This installation is a first stage of projected, complete solar cooling system. The special attention is paid to the dedicated solar high-temperature heat receiver as a most important element of the system. The achieved values of temperature, power and efficiency depending on the working medium flow has been presented and discussed. The intensity of solar radiation during the measurements has been taken into account. Two versions of heat receiver were investigated: non-insulated and insulated with mineral wool. The obtained efficiency of the heat receiver (less than 30%) is not satisfactory but possibility of improvements exist.

  13. Hybrid solar receiver as a source of high-temperature medium for an absorption chiller supply

    Directory of Open Access Journals (Sweden)

    Przenzak Estera

    2016-01-01

    Full Text Available This article discusses the problems related with the cold production, i.e. energy efficiency of the process. The idea of solar cooling systems has been presented as the solution of the problem of big electricity demand. The paper discusses the principle of the operation of absorption chillers. Disadvantages and advantages of the solar cooling systems were discussed. The installation for manufacturing high-temperature heat based on solar collectors and concentrator of solar radiation constructed in AGH in Cracow has been presented. This installation is a first stage of projected, complete solar cooling system. The special attention is paid to the dedicated solar high-temperature heat receiver as a most important element of the system. The achieved values of temperature, power and efficiency depending on the working medium flow has been presented and discussed. The intensity of solar radiation during the measurements has been taken into account. Two versions of heat receiver were investigated: non-insulated and insulated with mineral wool. The obtained efficiency of the heat receiver (less than 30% is not satisfactory but possibility of improvements exist.

  14. Hybrid joints manufactured by ultrasound enhanced friction stir welding (USE-FSW) - corrosion properties

    Science.gov (United States)

    Benfer, S.; Fürbeth, W.; Thomä, M.; Wagner, G.; Straß, B.; Wolter, B.

    2017-03-01

    To realize lightweight structures of material combinations like aluminum/magnesium and aluminum/steel an Ultrasound Enhanced Friction Stir Welding (USE-FSW) process was used. This process has a beneficial influence on the resulting microstructure (elimination of the brittle intermetallic phase Al3Mg2 as coherent layer) and the mechanical properties (increased tensile strength) of Al/Mg-joints and was now also applied for Al/steel-hybrid joints. Besides the mechanical properties the corrosion properties of the hybrid joints may play a significant role concerning the later use of the hybrid materials. Therefore, the corrosion properties of various hybrid joints have been investigated by different methods. With the Scanning Kelvin Probe (SKP) Volta potential differences between the base alloys and the welded area were investigated in air. The two-dimensional color-plots illustrate not only the Volta potential differences between the different phases but also their oxidation properties in air during the measurement time. Electrochemical measurements (open circuit potential and potentiodynamic polarization) have been carried out for the investigation of the corrosion properties of the FSW and USE-FSW hybrid joints in 0.5 molar NaCl solution. A three electrode setup within a mini-cell was used to enable measurements on different areas of the joints. This allows to observe the corrosion activity of the base alloys and the nugget phase separately. Differences between Al/steel-hybrid joints processed with and without ultrasound enhancement are discussed and compared with Al/Mg-hybrids.

  15. Investigation of bulk hybrid heterojunction solar cells based on Cu(In,Ga)Se2 nanocrystals.

    Science.gov (United States)

    Yen, Yu-Ting; Lin, Yi-Kai; Chang, Shu-Hao; Hong, Hwen-Fen; Tuan, Hsing-Yu; Chueh, Yu-Lun

    2013-07-19

    This work presents the systematic studies of bulk hybrid heterojunction solar cells based on Cu(In, Ga)Se2 (CIGS) nanocrystals (NCs) embedded in poly(3-hexylthiophene) matrix. The CIGS NCs of approximately 17 nm in diameter were homogeneously blended with P3HT layer to form an active layer of a photovoltaic device. The blend ratios of CIGS NCs to P3HT, solvent effects on thin film morphologies, interface between P3HT/CIGS NCs and post-production annealing of devices were investigated, and the best performance of photovoltaic devices was measured under AM 1.5 simulated solar illumination (100 mW/cm2).

  16. Application of system identification modelling to solar hybrid systems for predicting radiation, temperature and load

    Energy Technology Data Exchange (ETDEWEB)

    Sinha, S.; Matsumoto, Tsuyoshi; Kojima, Toshinori [Seikei University, Tokyo (Japan). Dept. of Industrial Chemistry; Sanjay Kumar [Kyoto University (Japan). Dept. of Global Environment Engineering

    2001-03-01

    Uncertainties in local solar radiation, ambient temperature and thermal load data have been one of the major factors limiting the reliability and efficiency of solar thermal hybrid systems. In the present paper, moving average auto regressive erogenous (ARX) model based reasoning has been mooted and modified to include moving average method, as an effective tool for predictions of these data. The results show that the method is quite robust and is capable of predicting fairly accurate results, which would make these systems more viable in areas where meteorological data are not available or vague. (author)

  17. Novel Hybrid Ligands for Passivating PbS Colloidal Quantum Dots to Enhance the Performance of Solar Cells

    National Research Council Canada - National Science Library

    Yang, Yuehua; Zhao, Baofeng; Gao, Yuping; Liu, Han; Tian, Yiyao; Qin, Donghuan; Wu, Hongbin; Huang, Wenbo; Hou, Lintao

    2015-01-01

    We developed novel hybrid ligands to passivate PbS colloidal quantum dots (CQDs), and two kinds of solar cells based on as-synthesized CQDs were fabricated to verify the passivation effects of the ligands...

  18. Design of hybrid nanoheterostructure systems for enhanced quantum and solar conversion efficiencies in dye-sensitized solar cells

    Science.gov (United States)

    Kılıç, Bayram; Telli, Hakan; Tüzemen, Sebahattin; Başaran, Ali; Pirge, Gursev

    2015-04-01

    Dye sensitized solar cells (DSSCs) with an innovative design involving controlled-morphology vertically aligned (VA) ZnO nanowires within mesoporous TiO2 structures with ultrahigh surface area for implementation as photoanodes are herein reported. Although TiO2 nanostructures exhibit excellent power conversion efficiency, the electron transport rate is low owing to low electron mobility. To overcome this, ZnO nanowires with high electron mobility have been investigated as potential candidates for photoanodes. However, the power conversion efficiency of ZnO nanowires is still lower than that of TiO2 owing to their low internal surface area. Consequently, in this work, vertical growth of ZnO nanowires within mesoporous TiO2 structures is carried out to increase their solar power conversion efficiency. The photovoltaic performance of solar cells using ZnO nanowires, mesoporous TiO2, and TiO2/ZnO hybrid structures are compared. The VA TiO2/ZnO hybrid structures are found to provide direct electron transfer compared with the tortuous pathway of zero-dimensional nanostructures, resulting in an increased conversion efficiency. It is demonstrated that the light scattering of the photoanode film is increased and electron recombination is decreased when an appropriate amount of mesoporous TiO2 is used as a substrate for ZnO nanowires. The DSSC fabricated with the TiO2/ZnO hybrid photoanode prepared with 15.8 wt. % TiO2 showed the highest conversion efficiency of 7.30%, approximately 5%, 18%, and 40% higher than that of DSSCs fabricated with 3.99 wt. % TiO2, pure TiO2, and pure ZnO photoanodes, respectively.

  19. Design of hybrid nanoheterostructure systems for enhanced quantum and solar conversion efficiencies in dye-sensitized solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Kılıç, Bayram, E-mail: bkilic@yalova.edu.tr, E-mail: kbayramkilic@gmail.com [Department of Energy Systems Engineering, Faculty of Engineering, Yalova University, 77100 Yalova (Turkey); Telli, Hakan; Başaran, Ali; Pirge, Gursev [Turkish Air Force Academy, Institute of Aeronautics and Space Technologies, Istanbul (Turkey); Tüzemen, Sebahattin [Department of Physics, Faculty of Science, Ataturk University, Erzurum (Turkey)

    2015-04-07

    Dye sensitized solar cells (DSSCs) with an innovative design involving controlled-morphology vertically aligned (VA) ZnO nanowires within mesoporous TiO{sub 2} structures with ultrahigh surface area for implementation as photoanodes are herein reported. Although TiO{sub 2} nanostructures exhibit excellent power conversion efficiency, the electron transport rate is low owing to low electron mobility. To overcome this, ZnO nanowires with high electron mobility have been investigated as potential candidates for photoanodes. However, the power conversion efficiency of ZnO nanowires is still lower than that of TiO{sub 2} owing to their low internal surface area. Consequently, in this work, vertical growth of ZnO nanowires within mesoporous TiO{sub 2} structures is carried out to increase their solar power conversion efficiency. The photovoltaic performance of solar cells using ZnO nanowires, mesoporous TiO{sub 2}, and TiO{sub 2}/ZnO hybrid structures are compared. The VA TiO{sub 2}/ZnO hybrid structures are found to provide direct electron transfer compared with the tortuous pathway of zero-dimensional nanostructures, resulting in an increased conversion efficiency. It is demonstrated that the light scattering of the photoanode film is increased and electron recombination is decreased when an appropriate amount of mesoporous TiO{sub 2} is used as a substrate for ZnO nanowires. The DSSC fabricated with the TiO{sub 2}/ZnO hybrid photoanode prepared with 15.8 wt. % TiO{sub 2} showed the highest conversion efficiency of 7.30%, approximately 5%, 18%, and 40% higher than that of DSSCs fabricated with 3.99 wt. % TiO{sub 2}, pure TiO{sub 2}, and pure ZnO photoanodes, respectively.

  20. A ZnO nanowire bio-hybrid solar cell

    Science.gov (United States)

    Yaghoubi, Houman; Schaefer, Michael; Yaghoubi, Shayan; Jun, Daniel; Schlaf, Rudy; Beatty, J. Thomas; Takshi, Arash

    2017-02-01

    Harvesting solar energy as a carbon free source can be a promising solution to the energy crisis and environmental pollution. Biophotovoltaics seek to mimic photosynthesis to harvest solar energy and to take advantage of the low material costs, negative carbon footprint, and material abundance. In the current study, we report on a combination of zinc oxide (ZnO) nanowires with monolayers of photosynthetic reaction centers which are self-assembled, via a cytochrome c linker, as photoactive electrode. In a three-probe biophotovoltaics cell, a photocurrent density of 5.5 μA cm-2 and photovoltage of 36 mV was achieved, using methyl viologen as a redox mediator in the electrolyte. Using ferrocene as a redox mediator a transient photocurrent density of 8.0 μA cm-2 was obtained, which stabilized at 6.4 μA cm-2 after 20 s. In-depth electronic structure characterization using photoemission spectroscopy in conjunction with electrochemical analysis suggests that the fabricated photoactive electrode can provide a proper electronic path for electron transport all the way from the conduction band of the ZnO nanowires, through the protein linker to the RC, and ultimately via redox mediator to the counter electrode.

  1. Hybrid resonant organic-inorganic nanostructures for novel light emitting devices and solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Agranovich, Vladimir M. [Institute of Spectroscopy, Russian Academy of Science, Troitsk, Moscow (Russian Federation); Chemistry Department, University of Texas at Dallas, Texas (United States); Rupasov, Valery I. [ANTEOS, Inc., Shrewsbury, Massachusetts 01545 (United States); Silvestri, Leonardo [Dipartimento di Scienza dei Materiali, Universita degli Studi di Milano Bicocca, Milano (Italy)

    2010-06-15

    The energy transfer from an inorganic layer to an organic component of resonant hybrid organic/inorganic nanos-tructures can be used for creation of new type of LED. We mentioned the problem of electrical pumping which has to be solved. As was first suggested in 1979 by Dexter the transfer energy in opposite direction from organic part of nanostructure to semiconductor layer can be used for the creation of new type of solar cells. In this note we stress the importance of the idea by Dexter for photovoltaics and solar cells. We argue that the organic part in such hybrid structures can play a role of an effective organic collector of the light energy (copyright 2010 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  2. Photovoltaic/thermal solar hybrid system with bifacial PV module and transparent plane collector

    Energy Technology Data Exchange (ETDEWEB)

    Robles-Ocampo, B. [Instituto Tecnologico de Celaya, Celaya 11111, Guanajuato (Mexico); CINVESTAV-Queretaro, Libramiento Norponiente 2000, Unidad Queretaro, Fracc. Real de Juriquilla, Queretaro, 76230, QRO (Mexico); Ruiz-Vasquez, E.; Canseco-Sanchez, H. [Instituto Tecnologico de Oaxaca, Oaxaca 68030, Oaxaca (Mexico); CINVESTAV-Queretaro, Libramiento Norponiente 2000, Unidad Queretaro, Fracc. Real de Juriquilla, Queretaro, 76230, QRO (Mexico); Cornejo-Meza, R.C. [Instituto Tecnologico de Tepic, av. Tecnologico 2595, Tepic 63175, Nayarit (Mexico); CINVESTAV-Queretaro, Libramiento Norponiente 2000, Unidad Queretaro, Fracc. Real de Juriquilla, Queretaro, 76230, QRO (Mexico); Trapaga-Martinez, G.; Vorobiev, Y.V. [CINVESTAV-Queretaro, Libramiento Norponiente 2000, Unidad Queretaro, Fracc. Real de Juriquilla, Queretaro, 76230, QRO (Mexico); Garcia-Rodriguez, F.J. [Instituto Tecnologico de Celaya, Celaya 11111, Guanajuato (Mexico); Gonzalez-Hernandez, J. [CIMAV, Miguel de Cervantes 120, Chihuahua 31109, Chihuahua (Mexico)

    2007-12-14

    Electric energy production with photovoltaic (PV)/thermal solar hybrid systems can be enhanced with the employment of a bifacial PV module. Experimental model of a PV/thermal hybrid system with such a module was constructed and studied. To make use of both active surfaces of the bifacial PV module, we designed and made an original water-heating planar collector and a set of reflecting planes. The heat collector was transparent in the visible and near-infrared spectral regions, which makes it compatible with the PV module made of crystalline Si. The estimated overall solar energy utilization efficiency for the system related to the direct radiation flux is of the order of 60%, with an electric efficiency of 16.4%. (author)

  3. ?HY-CHANGE?: AN HYBRID METHODOLOGY FOR CONTINUOUS PERFORMANCE IMPROVEMENT OF MANUFACTURING PROCESSES

    OpenAIRE

    Dassisti, Michele

    2010-01-01

    Abstract An hybrid methodology based on the joint recourse of Business Process An hybrid methodology for Continuous Performance Improvement (CPI) is presented, basically funded on the joint recourse of Business Process Reengineering (BPR) and Continuous Quality Improvement (CQI) principles and tools. The methodology (called HY-CHANGE) is conceived as a logical and technical support to the decision maker. It results in a number of recursive phases, where the rational and synchronous...

  4. Nanostructured Indium Oxide Coated Silicon Nanowire Arrays: A Hybrid Photothermal/Photochemical Approach to Solar Fuels.

    Science.gov (United States)

    Hoch, Laura B; O'Brien, Paul G; Jelle, Abdinoor; Sandhel, Amit; Perovic, Douglas D; Mims, Charles A; Ozin, Geoffrey A

    2016-09-27

    The field of solar fuels seeks to harness abundant solar energy by driving useful molecular transformations. Of particular interest is the photodriven conversion of greenhouse gas CO2 into carbon-based fuels and chemical feedstocks, with the ultimate goal of providing a sustainable alternative to traditional fossil fuels. Nonstoichiometric, hydroxylated indium oxide nanoparticles, denoted In2O3-x(OH)y, have been shown to function as active photocatalysts for CO2 reduction to CO via the reverse water gas shift reaction under simulated solar irradiation. However, the relatively wide band gap (2.9 eV) of indium oxide restricts the portion of the solar irradiance that can be utilized to ∼9%, and the elevated reaction temperatures required (150-190 °C) reduce the overall energy efficiency of the process. Herein we report a hybrid catalyst consisting of a vertically aligned silicon nanowire (SiNW) support evenly coated by In2O3-x(OH)y nanoparticles that utilizes the vast majority of the solar irradiance to simultaneously produce both the photogenerated charge carriers and heat required to reduce CO2 to CO at a rate of 22.0 μmol·gcat(-1)·h(-1). Further, improved light harvesting efficiency of the In2O3-x(OH)y/SiNW films due to minimized reflection losses and enhanced light trapping within the SiNW support results in a ∼6-fold increase in photocatalytic conversion rates over identical In2O3-x(OH)y films prepared on roughened glass substrates. The ability of this In2O3-x(OH)y/SiNW hybrid catalyst to perform the dual function of utilizing both light and heat energy provided by the broad-band solar irradiance to drive CO2 reduction reactions represents a general advance that is applicable to a wide range of catalysts in the field of solar fuels.

  5. A review on the recent development of solar absorption and vapour compression based hybrid air conditioning with low temperature storage

    Directory of Open Access Journals (Sweden)

    Noor D. N.

    2016-01-01

    Full Text Available Conventional air conditioners or vapour compression systems are main contributors to energy consumption in modern buildings. There are common environmental issues emanating from vapour compression system such as greenhouse gas emission and heat wastage. These problems can be reduced by adaptation of solar energy components to vapour compression system. However, intermittence input of daily solar radiation was the main issue of solar energy system. This paper presents the recent studies on hybrid air conditioning system. In addition, the basic vapour compression system and components involved in the solar air conditioning system are discussed. Introduction of low temperature storage can be an interactive solution and improved economically which portray different modes of operating strategies. Yet, very few studies have examined on optimal operating strategies of the hybrid system. Finally, the findings of this review will help suggest optimization of solar absorption and vapour compression based hybrid air conditioning system for future work while considering both economic and environmental factors.

  6. Scan rate effect of titania for hybrid solar cell applications: Structural and electrical study

    Science.gov (United States)

    Khamsan, Muhammad Emmer Ashraf; Ghazali, Mohd Sabri Mohd; Salleh, Hasiah; Zakaria, Azmi; Ghazali, Salmah Mohd; Ahmad, Zakiyah; Aziz, M. S.

    2017-03-01

    The AIP In this research, hybrid solar cell are produce by a combination of organic (Areca Catechu) extraction and Poly (3-hexylthiophene) (P3HT) and inorganic Titanium Dioxide, TiO2 materials. These hybrid solar cells are fabricated accordingly by layered of ITO/TiO2/P3HT/Areca Catechu/Au by using electrochemical method. The deposition of each layered by EIS was different by varied the scan rate of TiO2 deposition which are 0.05, 0.07, 0.09 and 0.11 vs-1 whereas the number of scans of each layers are fixed to 5 numbers of scans. Nanocrystals TiO2 (anatase structured) was prepared by dissolving the TiO2 nanoparticles with acetic acid which acts as capping agent in order to gain TiO2 nanostructures with better-controlled size and shape. Field Emission Scanning Electron Microscope (FESEM) images indicates that the TiO2 nanoparticles size was found to be around 15-34 nm. The XRD patterns indicate that the TiO2 film was highly crystalline and the anatase structure of TiO2 remains unchanged after annealed process took place at 450 °C. Sheet resistivity of the ITO/TiO2/P3HT/Areca Catechu/Au hybrid solar cell are measured in the dark and under different light intensity by using four point probes and power conversion efficiency are measured by using two point probes. In conclusion, the ITO/TiO2/P3HT/Areca Catechu/Au hybrid solar cell with 0.07 v s-1 scan rate produced the highest electrical conductivity and efficiency with 0.278 Scm-1 and 0.021 % respectively.

  7. Facile preparation of smooth perovskite films for efficient meso/planar hybrid structured perovskite solar cells.

    Science.gov (United States)

    Zhang, Meng; Yu, Hua; Yun, Jung-Ho; Lyu, Miaoqiang; Wang, Qiong; Wang, Lianzhou

    2015-06-21

    Smooth organolead halide perovskite films for meso/planar hybrid structured perovskite solar cells were prepared by a simple compressed air blow-drying method under ambient conditions. The resultant perovskite films show high surface coverage, leading to a device power conversion efficiency of over 10% with an open circuit voltage up to 1.003 V merely using pristine poly(3-hexylthiophene) (P3HT) as a hole transporter.

  8. High Volume Manufacturing of Silicon-Film Solar Cells and Modules; Final Subcontract Report, 26 February 2003 - 30 September 2003

    Energy Technology Data Exchange (ETDEWEB)

    Rand, J. A.; Culik, J. S.

    2005-10-01

    The objective of the PV Manufacturing R&D subcontract was to continue to improve AstroPower's technology for manufacturing Silicon-Film* wafers, solar cells, and modules to reduce costs, and increase production yield, throughput, and capacity. As part of the effort, new technology such as the continuous back metallization screen-printing system and the laser scribing system were developed and implemented. Existing processes, such as the silicon nitride antireflection coating system and the fire-through process were optimized. Improvements were made to the statistical process control (SPC) systems of the major manufacturing processes: feedstock preparation, wafer growth, surface etch, diffusion, and the antireflection coating process. These process improvements and improved process control have led to an increase of 5% relative power, and nearly 15% relative improvement in mechanical and visual yield.

  9. Surrogate Final Technical Report for "Solar: A Photovoltaic Manufacturing Development Facility"

    Energy Technology Data Exchange (ETDEWEB)

    Farrar, Paul [State University of New York Research Foundation, Albany, NY (United States)

    2014-06-27

    The project goal to create a first-of-a-kind crystalline Silicon (c-Si) photovoltaic (PV) Manufacturing & Technology Development Facility (MDF) that will support the growth and maturation of a strong domestic PV manufacturing industry, based on innovative and differentiated technology, by ensuring industry participants can, in a timely and cost-effective manner, access cutting-edge manufacturing equipment and production expertise needed to accelerate the transition of innovative technologies from R&D into manufacturing.

  10. Direct X-ray detection with hybrid solar cells based on organolead halide perovskites

    Science.gov (United States)

    Gill, Hardeep Singh; Elshahat, Bassem; Sajo, Erno; Kumar, Jayant; Kokil, Akshay; Zygmanski, Piotr; Li, Lian; Mosurkal, Ravi

    2014-03-01

    Organolead halide perovskite materials are attracting considerable interest due to their exceptional opto-electronic properties, such as, high charge carrier mobilities, high exciton diffusion length, high extinction coefficients and broad-band absorption. These interesting properties have enabled their application in high performance hybrid photovoltaic devices. The high Z value of their constituents also makes these materials efficient for absorbing X-rays. Here we will present on the efficient use of hybrid solar cells based on organolead perovskite materials as X-ray detectors. Hybrid solar cells based on CH3NH3PbI3 were fabricated using facile processing techniques on patterned indium tin oxide coated glass substrates. The solar cells typically had a planar configuration of ITO/CH3NH3PbI3/P3HT/Ag. High sensitivity for X-rays due to high Z value, larger carrier mobility and better charge collection was observed. Detecting X-rays with energies relevant to medical oncology applications opens up the potential for diagnostic imaging applications.

  11. PV-solar / wind hybrid energy system for GSM/CDMA type mobile telephony base station

    Directory of Open Access Journals (Sweden)

    Pragya Nema, R.K. Nema, Saroj Rangnekar

    2010-03-01

    Full Text Available This paper gives the design idea of optimized PV-Solar and Wind Hybrid Energy System for GSM/CDMA type mobile base station over conventional diesel generator for a particular site in central India (Bhopal . For this hybrid system ,the meteorological data of Solar Insolation, hourly wind speed, are taken for Bhopal-Central India (Longitude 77o.23'and Latitude 23o.21' and the pattern of load consumption of mobile base station are studied and suitably modeled for optimization of the hybrid energy system using HOMER software. The simulation and optimization result gives the best optimized sizing of wind turbine and solar array with diesel generator for particular GSM/CDMA type mobile telephony base station. This system is more cost effective and environmental friendly over the conventional diesel generator. It should reduced approximate 70%-80% fuel cost over conventional diesel generator and also reduced the emission of CO2 and other harmful gasses in environments. It is expected that the newly developed and installed system will provide very good opportunities for telecom sector in near future.

  12. Photothermally Activated Pyroelectric Polymer Films for Harvesting of Solar Heat with a Hybrid Energy Cell Structure.

    Science.gov (United States)

    Park, Teahoon; Na, Jongbeom; Kim, Byeonggwan; Kim, Younghoon; Shin, Haijin; Kim, Eunkyoung

    2015-12-22

    Photothermal effects in poly(3,4-ethylenedioxythiophene)s (PEDOTs) were explored for pyroelectric conversion. A poled ferroelectric film was coated on both sides with PEDOT via solution casting polymerization of EDOT, to give highly conductive and effective photothermal thin films of PEDOT. The PEDOT films not only provided heat source upon light exposure but worked as electrodes for the output energy from the pyroelectric layer in an energy harvester hybridized with a thermoelectric layer. Compared to a bare thermoelectric system under NIR irradiation, the photothermal-pyro-thermoelectric device showed more than 6 times higher thermoelectric output with the additional pyroelectric output. The photothermally driven pyroelectric harvesting film provided a very fast electric output with a high voltage output (Vout) of 15 V. The pyroelectric effect was significant due to the transparent and high photothermal PEDOT film, which could also work as an electrode. A hybrid energy harvester was assembled to enhance photoconversion efficiency (PCE) of a solar cell with a thermoelectric device operated by the photothermally generated heat. The PCE was increased more than 20% under sunlight irradiation (AM 1.5G) utilizing the transmitted light through the photovoltaic cell as a heat source that was converted into pyroelectric and thermoelectric output simultaneously from the high photothermal PEDOT electrodes. Overall, this work provides a dynamic and static hybrid energy cell to harvest solar energy in full spectral range and thermal energy, to allow solar powered switching of an electrochromic display.

  13. PV-solar / wind hybrid energy system for GSM/CDMA type mobile telephony base station

    Energy Technology Data Exchange (ETDEWEB)

    Nema, Pragya; Rangnekar, Saroj [Energy Engineering Department, Maulana Azad National Institute of Technology , Bhopal-462007 M.P. (India); Nema, R.K. [Electrical Engineering Department, Maulana Azad National Institute of Technology, Bhopal-462007 M.P. (India)

    2010-07-01

    This paper gives the design idea of optimized PV-Solar and Wind Hybrid Energy System for GSM/CDMA type mobile base station over conventional diesel generator for a particular site in central India (Bhopal). For this hybrid system ,the meteorological data of Solar Insolation, hourly wind speed, are taken for Bhopal-Central India (Longitude 77 deg.23'and Latitude 23 deg.21' ) and the pattern of load consumption of mobile base station are studied and suitably modeled for optimization of the hybrid energy system using HOMER software. The simulation and optimization result gives the best optimized sizing of wind turbine and solar array with diesel generator for particular GSM/CDMA type mobile telephony base station. This system is more cost effective and environmental friendly over the conventional diesel generator. It should reduced approximate 70%-80% fuel cost over conventional diesel generator and also reduced the emission of CO2 and other harmful gasses in environments. It is expected that the newly developed and installed system will provide very good opportunities for telecom sector in near future.

  14. Analysis of the PEDOT:PSS/Si nanowire hybrid solar cell with a tail state model

    Science.gov (United States)

    Ho, Kuan-Ying; Li, Chi-Kang; Syu, Hong-Jhang; Lai, Yi; Lin, Ching-Fuh; Wu, Yuh-Renn

    2016-12-01

    In this paper, the electrical properties of the poly(3,4-ethylenedioxythiophene): poly(styrenesulfonate) (PEDOT:PSS)/silicon nanowire hybrid solar cell have been analyzed and an optimized structure is proposed. In addition, the planar PEDOT:PSS/c-Si hybrid solar cell is also modeled for comparison. We first developed a simulation software which is capable of modeling organic/inorganic hybrid solar cells by including Gaussian shape density of states into Poisson and drift-diffusion solver to present the tail states and trap states in the organic material. Therefore, the model can handle carrier transport, generation, and recombination in both organic and inorganic materials. Our results show that at the applied voltage near open-circuit voltage (Voc), the recombination rate becomes much higher at the PEDOT:PSS/Si interface region, which limits the fill factor and Voc. Hence, a modified structure with a p-type amorphous silicon (a-Si) layer attached on the interface of Si layer and an n+-type Si layer inserted near the bottom contact are proposed. The highest conversion efficiency of 16.10% can be achieved if both structures are applied.

  15. PV-solar / Wind Hybrid Energy System for GSM/CDMA Type Mobile Telephony Base

    Directory of Open Access Journals (Sweden)

    Station Md. Ibrahim

    2015-05-01

    Full Text Available This paper presents the design of optimized PV-Solar and Wind Hybrid Energy System for GSM/CDMA type mobile base station over conventional diesel generator for a particular site in south India (Chennai. For this hybrid system ,the meteorological data of Solar Insolation, hourly wind speed, are taken for Chennai (Longitude 80ο .16’and Latitude 13ο .5’ and the pattern of load consumption of mobile base station are studied and suitably modeled for optimization of the hybrid energy system using HOMER software. The simulation and optimization result gives the best optimized sizing of wind turbine and solar array with diesel generator for particular GSM/CDMA type mobile telephony base station. This system is more cost effective and environmental friendly over the conventional diesel generator. The presented system reduce approximate 70%-80% fuel cost over conventional diesel generator and also reduced the emission of CO2 and other harmful gasses in environments. It is expected that the proposed developed and installed system will provide very good opportunities for telecom sector in near future.

  16. Development of hybrid solar-assisted cooling/heating system

    KAUST Repository

    Huang, B.J.

    2010-08-01

    A solar-assisted ejector cooling/heating system (SACH) was developed in this study. The SACH combines a pump-less ejector cooling system (ECS) with an inverter-type heat pump (R22) and is able to provide a stable capacity for space cooling. The ECS is driven by solar heat and is used to cool the condenser of the R22 heat pump to increase its COP and reduce the energy consumption of the compressor by regulating the rotational speed of the compressor through a control system. In a complete SACH system test run at outdoor temperature 35 °C, indoor temperature 25 °C and compressor speed 20-80 Hz, and the ECS operating at generator temperature 90 °C and condensing temperature 37 °C, the corresponding condensing temperature of the heat pump in the SACH is 24.5-42 °C, cooling capacity 1.02-2.44 kW, input power 0.20-0.98 kW, and cooling COPc 5.11-2.50. This indicates that the use of ECS in SACH can effectively reduce the condensing temperature of the heat pump by 12.6-7.3 °C and reduce the power consumption by 81.2-34.5%. The SACH can also supply heat from the heat pump. At ambient temperature from 5 °C to 35 °C, the heating COPh is in the range 2.0-3.3. © 2010 Elsevier Ltd. All rights reserved.

  17. Graphene hybrids: Synthesis strategies and applications in sensors and sensitized solar cells

    Directory of Open Access Journals (Sweden)

    Sushmee eBadhulika

    2015-06-01

    Full Text Available Graphene exhibits unique 2-D structural, chemical and electronic properties that lead to its many potential applications. In order to expand the scope of its usage, graphene hybrids which combine the synergetic properties of graphene along with metals/ metal oxides and other nanostructured materials have been synthesized and are a widely emerging field of research. This review presents an overview of the recent progress made in the field of graphene hybrid architectures with a focus on the synthesis of graphene-carbon nanotube (G-CNT, graphene-semiconductor nanomaterial (G-SNM and graphene-metal nanomaterial (G-MNM hybrids. It attempts to identify the bottlenecks involved and outlines future directions for development and comprehensively summarizes their applications in the field of sensing and sensitized solar cells.

  18. Renewable Energy Systems: Development and Perspectives of a Hybrid Solar-Wind System

    Directory of Open Access Journals (Sweden)

    C. Shashidhar

    2012-02-01

    Full Text Available Considering the intermittent natural energy resources and the seasonal un-balance, a phtovoltaic-wind hybrid electrical power supply system was developed to accommodate remote locations where a conventional grid connection is inconvenient or expensive. However, the hybrid system can also be applied with grid connection and owners are allowed to sell excessive power back to the electric utility. The proposed set-up consists of a photo-voltaic solar-cell array, a mast mounted wind generator, lead-acid storage batteries, an inverter unit to convert DC to AC, electrical lighting loads, electrical heating loads, several fuse and junction boxes and associated wiring, and test instruments for measuring voltages, currents, power factors, and harmonic contamination data throughout the system. The proposed hybrid solar-wind power generating system can be extensively used to illustrate electrical concepts in hands-on laboratories and also for demonstrations in the Industrial Technology curriculum. This paper describes an analysis of local PV-wind hybrid systems for supplying electricity to a private house, farmhouse or small company with electrical power depending on the site needs. The major system components, work principle and specific working condition are presented.

  19. A comparison of GaAs and Si hybrid solar power systems

    Science.gov (United States)

    Heinbockel, J. H.; Roberts, A. S., Jr.

    1977-01-01

    Five different hybrid solar power systems using silicon solar cells to produce thermal and electric power are modeled and compared with a hybrid system using a GaAs cell. Among the indices determined are capital cost per unit electric power plus mechanical power, annual cost per unit electric energy, and annual cost per unit electric plus mechanical work. Current costs are taken to be $35,000/sq m for GaAs cells with an efficiency of 15% and $1000/sq m for Si cells with an efficiency of 10%. It is shown that hybrid systems can be competitive with existing methods of practical energy conversion. Limiting values for annual costs of Si and GaAs cells are calculated to be 10.3 cents/kWh and 6.8 cents/kWh, respectively. Results for both systems indicate that for a given flow rate there is an optimal operating condition for minimum cost photovoltaic output. For Si cell costs of $50/sq m optimal performance can be achieved at concentrations of about 10; for GaAs cells costing 1000/sq m, optimal performance can be obtained at concentrations of around 100. High concentration hybrid systems offer a distinct cost advantage over flat systems.

  20. Hybrid chromophore/template nanostructures: A customizable platform material for solar energy storage and conversion

    Energy Technology Data Exchange (ETDEWEB)

    Kolpak, AM; Grossman, JC

    2013-01-21

    Challenges with cost, cyclability, and/or low energy density have largely prevented the development of solar thermal fuels, a potentially attractive alternative energy technology based on molecules that can capture and store solar energy as latent heat in a closed cycle. In this paper, we present a set of novel hybrid photoisomer/template solar thermal fuels that can potentially circumvent these challenges. Using first-principles computations, we demonstrate that these fuels, composed of organic photoisomers bound to inexpensive carbon-based templates, can reversibly store solar energy at densities comparable to Li-ion batteries. Furthermore, we show that variation of the template material in combination with the photoisomer can be used to optimize many of the key performance metrics of the fuel-i.e., the energy density, the storage lifetime, the temperature of the output heat, and the efficiency of the solar-to-heat conversion. Our work suggests that the solar thermal fuels concept can be translated into a practical and highly customizable energy storage and conversion technology. (C) 2013 American Institute of Physics. [http://dx.doi.org/10.1063/1.4773306

  1. Hybrid chromophore/template nanostructures: a customizable platform material for solar energy storage and conversion.

    Science.gov (United States)

    Kolpak, Alexie M; Grossman, Jeffrey C

    2013-01-21

    Challenges with cost, cyclability, and/or low energy density have largely prevented the development of solar thermal fuels, a potentially attractive alternative energy technology based on molecules that can capture and store solar energy as latent heat in a closed cycle. In this paper, we present a set of novel hybrid photoisomer/template solar thermal fuels that can potentially circumvent these challenges. Using first-principles computations, we demonstrate that these fuels, composed of organic photoisomers bound to inexpensive carbon-based templates, can reversibly store solar energy at densities comparable to Li-ion batteries. Furthermore, we show that variation of the template material in combination with the photoisomer can be used to optimize many of the key performance metrics of the fuel-i.e., the energy density, the storage lifetime, the temperature of the output heat, and the efficiency of the solar-to-heat conversion. Our work suggests that the solar thermal fuels concept can be translated into a practical and highly customizable energy storage and conversion technology.

  2. Solar Trigeneration: a Transitory Simulation of HVAC Systems Using Different Typologies of Hybrid Panels

    Directory of Open Access Journals (Sweden)

    Alejandro del Amo Sancho

    2014-03-01

    Full Text Available The high energy demand on buildings requires efficient installations and the integration of renewable energy to achieve the goal of reducing energy consumption using traditional energy sources. Usually, solar energy generation and heating loads have different profiles along a day and their maximums take place at different moments. In addition, in months in which solar production is higher, the heating demands are the minimum (hot water is consumed only domestically in summer. Cooling machines (absorption and adsorption allow using thermal energy to chill a fluid. This heat flow rate could be recovered from solar collectors or any other heat source. The aim of this study is to integrate different typologies of solar hybrid (photovoltaic and thermal collectors with cooling machines getting solar trigeneration and concluding the optimal combination for building applications. The heat recovered from the photovoltaic module is used to provide energy to these cooling machines getting a double effect: to get a better efficiency on PV modules and to cool the building. In this document the authors analyse these installations, their operating conditions, dimensions and parameters, in order to get the optimal installation in three different European cities. This work suggests that in a family house in Madrid, the optimal combination is to use CPVT with azimuthally tracking and absorption machine. In this case, the solar trigeneration system using 55 m2 of collector area saves the cooling loads and 79% of the heating load in the house round the year.

  3. Reduced energy offset via substitutional doping for efficient organic/inorganic hybrid solar cells.

    Science.gov (United States)

    Jin, Xiao; Sun, Weifu; Zhang, Qin; Ruan, Kelian; Cheng, Yuanyuan; Xu, Haijiao; Xu, Zhongyuan; Li, Qinghua

    2015-06-01

    Charge carrier transport in bulk heterojunction that is central to the device performance of solar cells is sensitively dependent on the energy level alignment of acceptor and donor. However, the effect of energy level regulation induced by nickel ions on the primary photoexcited electron transfer and the performance of P3HT/TiO2 hybrid solar cells remains being poorly understood and rarely studied. Here we demonstrate that the introduction of the versatile nickel ions into TiO2 nanocrystals can significantly elevate the conduction and valence band energy levels of the acceptor, thus resulting in a remarkable reduction of energy level offset between the conduction band of acceptor and lowest unoccupied molecular orbital of donor. By applying transient photoluminescence and femtosecond transient absorption spectroscopies, we demonstrate that the electron transfer becomes more competitive after incorporating nickel ions. In particular, the electron transfer life time is shortened from 30.2 to 16.7 ps, i.e., more than 44% faster than pure TiO2 acceptor, thus leading to a notable increase of power conversion efficiency in organic/inorganic hybrid solar cells. This work underscores the promising virtue of engineering the reduction of 'excess' energy offset to accelerate electron transport and demonstrates the potential of nickel ions in applications of solar energy conversion and photon detectors.

  4. Design and development of hybrid energy generator (photovoltaics) with solar tracker

    Science.gov (United States)

    Mohiuddin, A. K. M.; Sabarudin, Mohamad Syabil Bin; Khan, Ahsan Ali; Izan Ihsan, Sany

    2017-03-01

    This paper is the outcome of a small scale hybrid energy generator (hydro and photovoltaic) project. It contains the photovoltaics part of the project. The demand of energy resources is increasing day by day. That is why people nowadays tend to move on and changes their energy usage from using fossil fuels to a cleaner and green energy like hydro energy, solar energy etc. Nevertheless, energy is hard to come by for people who live in remote areas and also campsites in the remote areas which need continuous energy sources to power the facilities. Thus, the purpose of this project is to design and develop a small scale hybrid energy generator to help people that are in need of power. This main objective of this project is to develop and analyze the effectiveness of solar trackers in order to increase the electricity generation from solar energy. Software like Solidworks and Arduino is used to sketch and construct the design and also to program the microcontroller respectively. Experimental results show the effectiveness of the designed solar tracker sytem.

  5. Controlling the Morphology and Efficiency of Hybrid ZnO : Polythiophene Solar Cells Via Side Chain Functionalization

    NARCIS (Netherlands)

    Oosterhout, Stefan D.; Koster, L. Jan Anton; van Bavel, Svetlana S.; Loos, Joachim; Stenzel, Ole; Thiedmann, Ralf; Schmidt, Volker; Campo, Bert; Cleij, Thomas J.; Lutzen, Laurence; Vanderzande, Dirk; Wienk, Martijn M.; Janssen, Rene A. J.

    2011-01-01

    The efficiency of polymer - metal oxide hybrid solar cells depends critically on the intimacy of mixing of the two semiconductors. The effect of side chain functionalization on the morphology and performance of conjugated polymer:ZnO solar cells is investigated. Using an ester-functionalized side ch

  6. Hybrid Modeling and Optimization of Manufacturing Combining Artificial Intelligence and Finite Element Method

    CERN Document Server

    Quiza, Ramón; Davim, J Paulo

    2012-01-01

    Artificial intelligence (AI) techniques and the finite element method (FEM) are both powerful computing tools, which are extensively used for modeling and optimizing manufacturing processes. The combination of these tools has resulted in a new flexible and robust approach as several recent studies have shown. This book aims to review the work already done in this field as well as to expose the new possibilities and foreseen trends. The book is expected to be useful for postgraduate students and researchers, working in the area of modeling and optimization of manufacturing processes.

  7. Geothermal Risk Reduction via Geothermal/Solar Hybrid Power Plants. Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Wendt, Daniel [Idaho National Lab. (INL), Idaho Falls, ID (United States); Mines, Greg [Idaho National Lab. (INL), Idaho Falls, ID (United States); Turchi, Craig [National Renewable Energy Lab. (NREL), Golden, CO (United States); Zhu, Guangdong [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2015-11-01

    There are numerous technical merits associated with a renewable geothermal-solar hybrid plant concept. The performance of air-cooled binary plants is lowest when ambient temperatures are high due to the decrease in air-cooled binary plant performance that occurs when the working fluid condensing temperature, and consequently the turbine exhaust pressure, increases. Electrical power demand is generally at peak levels during periods of elevated ambient temperature and it is therefore especially important to utilities to be able to provide electrical power during these periods. The time periods in which air-cooled binary geothermal power plant performance is lowest generally correspond to periods of high solar insolation. Use of solar heat to increase air-cooled geothermal power plant performance during these periods can improve the correlation between power plant output and utility load curves. While solar energy is a renewable energy source with long term performance that can be accurately characterized, on shorter time scales of hours or days it can be highly intermittent. Concentrating solar power (CSP), aka solar-thermal, plants often incorporate thermal energy storage to ensure continued operation during cloud events or after sunset. Hybridization with a geothermal power plant can eliminate the need for thermal storage due to the constant availability of geothermal heat. In addition to the elimination of the requirement for solar thermal storage, the ability of a geothermal/solar-thermal hybrid plant to share a common power block can reduce capital costs relative to separate, stand-alone geothermal and solar-thermal power plant installations. The common occurrence of long-term geothermal resource productivity decline provides additional motivation to consider the use of hybrid power plants in geothermal power production. Geothermal resource productivity decline is a source of significant risk in geothermal power generation. Many, if not all, geothermal resources

  8. Optimal core acquisition and pricing strategies for hybrid manufacturing and remanufacturing systems

    NARCIS (Netherlands)

    Caner Bulmus, Serra; Zhu, Stuart X.; Teunter, Ruud H.

    2014-01-01

    In this study, we combine two aspects of remanufacturing, namely product acquisition management and marketing (pricing) of the remanufactured products. We consider an original equipment manufacturer (OEM) who decides on the acquisition prices offered for returns from different quality types and on s

  9. Optimal core acquisition and pricing strategies for hybrid manufacturing and remanufacturing systems

    NARCIS (Netherlands)

    Caner Bulmus, Serra; Zhu, Stuart X.; Teunter, Ruud H.

    2014-01-01

    In this study, we combine two aspects of remanufacturing, namely product acquisition management and marketing (pricing) of the remanufactured products. We consider an original equipment manufacturer (OEM) who decides on the acquisition prices offered for returns from different quality types and on s

  10. Ruthenium based metallopolymer grafted reduced graphene oxide as a new hybrid solar light harvester in polymer solar cells

    Science.gov (United States)

    Vinoth, R.; Babu, S. Ganesh; Bharti, Vishal; Gupta, V.; Navaneethan, M.; Bhat, S. Venkataprasad; Muthamizhchelvan, C.; Ramamurthy, Praveen C.; Sharma, Chhavi; Aswal, Dinesh K.; Hayakawa, Yasuhiro; Neppolian, B.

    2017-01-01

    A new class of pyridyl benzimdazole based Ru complex decorated polyaniline assembly (PANI-Ru) was covalently grafted onto reduced graphene oxide sheets (rGO) via covalent functionalization approach. The covalent attachment of PANI-Ru with rGO was confirmed from XPS analysis and Raman spectroscopy. The chemical bonding between PANI-Ru and rGO induced the electron transfer from Ru complex to rGO via backbone of the conjugated PANI chain. The resultant hybrid metallopolymer assembly was successfully demonstrated as an electron donor in bulk heterojunction polymer solar cells (PSCs). A PSC device fabricated with rGO/PANI-Ru showed an utmost ~6 fold and 2 fold enhancement in open circuit potential (Voc) and short circuit current density (Jsc) with respect to the standard device made with PANI-Ru (i.e., without rGO) under the illumination of AM 1.5 G. The excellent electronic properties of rGO significantly improved the electron injection from PANI-Ru to PCBM and in turn the overall performance of the PSC device was enhanced. The ultrafast excited state charge separation and electron transfer role of rGO sheet in hybrid metallopolymer was confirmed from ultrafast spectroscopy measurements. This covalent modification of rGO with metallopolymer assembly may open a new strategy for the development of new hybrid nanomaterials for light harvesting applications. PMID:28225039

  11. Robots in outdoor operation. A Baden-Wuerttemberg manufacturer opts for automatic assembly of solar farms; Roboter im Ausseneinsatz. Ein schwaebisches Unternehmen will die Montage von Solarparks automatisieren

    Energy Technology Data Exchange (ETDEWEB)

    Siemer, Jochen

    2011-04-15

    Solar farms are still constructed manually. However, this involves identical steps that may be repeated several hundreds of thousands of times. This induced manufacturers to look for automation options. Outdoor use of robots is faced with difficulties, but a Baden-Wuerttemberg manufacturer recently presented a new concept, i.e. the mobile assembly robot 'Momo'.

  12. Automated High-Volume Manufacturing of Modular Photovoltaic Panel Assemblies for Space Solar Arrays Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Deployable Space Systems, Inc. (DSS) will focus the proposed SBIR program on the creation and development of an automated robotic manufacturing infrastructure...

  13. Process in manufacturing high efficiency AlGaAs/GaAs solar cells by MO-CVD

    Science.gov (United States)

    Yeh, Y. C. M.; Chang, K. I.; Tandon, J.

    1984-01-01

    Manufacturing technology for mass producing high efficiency GaAs solar cells is discussed. A progress using a high throughput MO-CVD reactor to produce high efficiency GaAs solar cells is discussed. Thickness and doping concentration uniformity of metal oxide chemical vapor deposition (MO-CVD) GaAs and AlGaAs layer growth are discussed. In addition, new tooling designs are given which increase the throughput of solar cell processing. To date, 2cm x 2cm AlGaAs/GaAs solar cells with efficiency up to 16.5% were produced. In order to meet throughput goals for mass producing GaAs solar cells, a large MO-CVD system (Cambridge Instrument Model MR-200) with a susceptor which was initially capable of processing 20 wafers (up to 75 mm diameter) during a single growth run was installed. In the MR-200, the sequencing of the gases and the heating power are controlled by a microprocessor-based programmable control console. Hence, operator errors can be reduced, leading to a more reproducible production sequence.

  14. Biomimetic and plasmonic hybrid light trapping for highly efficient ultrathin crystalline silicon solar cells.

    Science.gov (United States)

    Zhang, Y; Jia, B; Gu, M

    2016-03-21

    Designing effective light-trapping structures for the insufficiently absorbed long-wavelength light in ultrathin silicon solar cells represents a key challenge to achieve low cost and highly efficient solar cells. We propose a hybrid structure based on the biomimetic silicon moth-eye structure combined with Ag nanoparticles to achieve advanced light trapping in 2 μm thick crystalline silicon solar cells approaching the Yablonovitch limit. By synergistically using the Mie resonances of the silicon moth-eye structure and the plasmonic resonances of the Ag nanoparticles, the integrated absorption enhancement achieved across the usable solar spectrum is 69% compared with the cells with the conventional light trapping design. This is significantly larger than both the silicon moth-eye structure (58%) and Ag nanoparticle (41%) individual light trapping. The generated photocurrent in the 2 μm thick silicon layer is as large as 33.4 mA/cm2, which is equivalent to that generated by a 30 μm single-pass absorption in the silicon. The research paves the way for designing highly efficient light trapping structures in ultrathin silicon solar cells.

  15. Bulk-heterojunction solar cells based on nanocrystal-polymer hybrid materials

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Yunfei; Krueger, Michael [Freiburg Materials Research Centre (FMF), University of Freiburg (Germany); Department of Microsystems Engineering (IMTEK), University of Freiburg (Germany); Urban, Gerald [Department of Microsystems Engineering (IMTEK), University of Freiburg (Germany)

    2009-07-01

    Organic solar cells have the promising advantages of low-cost and large-area fabrication on flexible substrates. State-of-the-art organic solar cells based on blends of conjugated polymers and fullerene derivatives achieve efficiencies up to 5-6%. Inorganic semiconductor nanocrystals (NCs) e.g. out of CdSe, with tunable bandgaps and high intrinsic carrier mobilities, can be incorporated into conjugated polymers e.g. poly(3-hexylthiophene) (P3HT) to form bulk-heterojunction hybrid solar cells. In our group, a highly reproducible synthesis method for CdSe NCs has been developed, leading to monodisperse NCs with excellent photophysical properties. Current research is performed to control the shape and the lattice structure of the NCs within the same synthesis approach. Various solar cells based on bulk-heterojunction nanocomposite materials have been fabricated and characterized. We systematically checked how the solar cell device performance is affected by different NC ligands and by different thermal annealing treatments. Devices using spherical NCs capped with aromatic ligands and appropriate thermal annealing treatment exhibit so far power conversion efficiencies over 0.5% under standard measurement condition. Further investigations to improve the materials and device performance are currently in progress.

  16. Design of Hybrid Solar and Wind Energy Harvester for Fishing Boat

    Science.gov (United States)

    Banjarnahor, D. A.; Hanifan, M.; Budi, E. M.

    2017-07-01

    In southern beach of West Java, Indonesia, there are many villagers live as fishermen. They use small boats for fishing, in one to three days. Therefore, they need a fish preservation system. Fortunately, the area has high potential of solar and wind energy. This paper presents the design of a hybrid solar and wind energy harvester to power a refrigerator in the fishing boat. The refrigerator should keep the fish in 2 - 4 °C. The energy needed is 720 Wh daily. In the area, the daily average wind velocity is 4.27 m/s and the sun irradiation is 672 W/m2. The design combined two 100W solar panels and a 300W wind turbine. The testing showed that the solar panels can harvest 815 - 817 Wh of energy, while the wind turbine can harvest 43 - 62 Wh of energy daily. Therefore, the system can fulfil the energy requirement in fishing boat, although the solar panels were more dominant. To install the wind turbine on the fishing-boat, a computational design had been conducted. The boat hydrostatic dimension was measured to determine its stability condition. To reach a stable equilibrium condition, the wind turbine should be installed no more than 1.7 m of height.

  17. Hybrid and Disposable Facilities for Manufacturing of Biopharmaceuticals: Pros and Cons

    Science.gov (United States)

    Ravisé, Aline; Cameau, Emmanuelle; de Abreu, Georges; Pralong, Alain

    Modern biotechnology has grown over the last 35 years to a maturing industry producing and delivering high-value biopharmaceuticals that yield important medical and economical benefits. The constantly increasing need for biopharmaceuticals and significant costs related to time-consuming R&D work makes this industry risky and highly competitive. This trend is confirmed by the important number of biopharmaceuticals that are actually under development at all stages by all major pharmaceutical industry companies. A consequence of this evolution is an increasing need for development and manufacturing capacity. The build up of traditional - stainless steel - technology is complicated, time consuming and very expensive. The decision for such a major investment needs to be taken early in the development cycle of a promising drug to cope with future demands for clinical trials and product launch. Possibilities for the reduction of R&D and manufacturing costs are therefore of significant interest in order to be competitive.

  18. A Highly Efficient Hybrid GaAs Solar Cell Based on Colloidal-Quantum-Dot-Sensitization

    Science.gov (United States)

    Han, Hau-Vei; Lin, Chien-Chung; Tsai, Yu-Lin; Chen, Hsin-Chu; Chen, Kuo-Ju; Yeh, Yun-Ling; Lin, Wen-Yi; Kuo, Hao-Chung; Yu, Peichen

    2014-07-01

    This paper presents a hybrid design, featuring a traditional GaAs-based solar cell combined with various colloidal quantum dots. This hybrid design effectively boosts photon harvesting at long wavelengths while enhancing the collection of photogenerated carriers in the ultraviolet region. The merits of using highly efficient semiconductor solar cells and colloidal quantum dots were seamlessly combined to increase overall power conversion efficiency. Several photovoltaic parameters, including short-circuit current density, open circuit voltage, and external quantum efficiency, were measured and analyzed to investigate the performance of this hybrid device. Offering antireflective features at long wavelengths and luminescent downshifting for high-energy photons, the quantum dots effectively enhanced overall power conversion efficiency by as high as 24.65% compared with traditional GaAs-based devices. The evolution of weighted reflectance as a function of the dilution factor of QDs was investigated. Further analysis of the quantum efficiency response showed that the luminescent downshifting effect can be as much as 6.6% of the entire enhancement of photogenerated current.

  19. Multi-branched CdSe nanocrystals stabilized by weak ligand for hybrid solar cell application.

    Science.gov (United States)

    Liu, Jincheng; Tao, Hong; Cao, Yong; Ackermann, Jorg

    2014-04-01

    In this article, multi-branched CdSe nanocrystals were produced by a facile colloidal approach stabilized by oleylamine at a relative low temperature. The as-prepared multi-branched CdSe nanocrystals after simple washing process were used in the fabrication of poly(3-hexylthiophene)/CdSe bulk heterojunction photovoltaic device. The effective charge separation in the poly(3-hexylthiophene)/ CdSe nanocomposites have been confirmed by the strong photoluminescence quenching. The films of the blends of P3HT and simply-washed CdSe nanocrystals show more uniform morphology and flatter surface than the film of the bends of P3HT and pyridine-refluxed CdSe nanocrystals. The corresponding power conversion efficiency under 1 sun is about 0.66% for the P3HT/pyridine-washed CdSe hybrid device. Our work did a preliminary study in the hybrid solar cell application of branched blenze CdSe nanocrystals prepared by an easier way, and will be interesting and helpful for making the high-efficiency hybrid solar cells with branched CdSe acceptors.

  20. Simulation of Hybrid Photovoltaic Solar Assisted Loop Heat Pipe/Heat Pump System

    Directory of Open Access Journals (Sweden)

    Nannan Dai

    2017-02-01

    Full Text Available A hybrid photovoltaic solar assisted loop heat pipe/heat pump (PV-SALHP/HP water heater system has been developed and numerically studied. The system is the combination of loop heat pipe (LHP mode and heat pump (HP mode, and the two modes can be run separately or compositely according to the weather conditions. The performances of independent heat pump (HP mode and hybrid loop heat pipe/heat pump (LHP/HP mode were simulated and compared. Simulation results showed that on typical sunny days in spring or autumn, using LHP/HP mode could save 40.6% power consumption than HP mode. In addition, the optimal switchover from LHP mode to HP mode was analyzed in different weather conditions for energy saving and the all-year round operating performances of the system were also simulated. The simulation results showed that hybrid LHP/HP mode should be utilized to save electricity on sunny days from March to November and the system can rely on LHP mode alone without any power consumption in July and August. When solar radiation and ambient temperature are low in winter, HP mode should be used

  1. Novel solar energy harvesting options based on solution-processable inorganic/organic hybrid materials

    Science.gov (United States)

    Stingelin, Natalie

    2015-03-01

    The growing demand for energy and increasing concerns for the effect of the excessive abuse of fossil fuels on the environment force the scientific world to search for alternative, clean and safe energy sources. Finding ways to harvest solar energy is thereby one of the most appealing options. Here, we present a novel approach that exploits the versatile properties of recently developed, photoactive organic/inorganic hybrid fluids based on titanium oxide hydrates and polyalcohols for the production of versatile solar fuels. We will show that such systems can absorb light in the UV-near visible wave-length range. The sunlight's energy is then converted into chemical energy in the form of reduced titanium species, which can be re-oxidised by oxygen when required. Therefore, the absorbed energy is stored as long as oxygen is excluded by the hybrid system. We, furthermore, demonstrate that once discharged, the fluid can be activated again by exposing it to sunlight and recycled - a property that is important technologically. The same hybrids can also be exploited to produce structures that permit efficient management of light. We will illustrate the potential of this class of materials based on some of our recent approaches to fabricate light-scattering and light in-coupling structures, and discuss future opportunities they open up.

  2. A hybrid solar panel maximum power point search method that uses light and temperature sensors

    Science.gov (United States)

    Ostrowski, Mariusz

    2016-04-01

    Solar cells have low efficiency and non-linear characteristics. To increase the output power solar cells are connected in more complex structures. Solar panels consist of series of connected solar cells with a few bypass diodes, to avoid negative effects of partial shading conditions. Solar panels are connected to special device named the maximum power point tracker. This device adapt output power from solar panels to load requirements and have also build in a special algorithm to track the maximum power point of solar panels. Bypass diodes may cause appearance of local maxima on power-voltage curve when the panel surface is illuminated irregularly. In this case traditional maximum power point tracking algorithms can find only a local maximum power point. In this article the hybrid maximum power point search algorithm is presented. The main goal of the proposed method is a combination of two algorithms: a method that use temperature sensors to track maximum power point in partial shading conditions and a method that use illumination sensor to track maximum power point in equal illumination conditions. In comparison to another methods, the proposed algorithm uses correlation functions to determinate the relationship between values of illumination and temperature sensors and the corresponding values of current and voltage in maximum power point. In partial shading condition the algorithm calculates local maximum power points bases on the value of temperature and the correlation function and after that measures the value of power on each of calculated point choose those with have biggest value, and on its base run the perturb and observe search algorithm. In case of equal illumination algorithm calculate the maximum power point bases on the illumination value and the correlation function and on its base run the perturb and observe algorithm. In addition, the proposed method uses a special coefficient modification of correlation functions algorithm. This sub

  3. Efficiency enhancement of pyramidal Si solar cells with reduced graphene oxide hybrid electrodes

    Science.gov (United States)

    Tu, Wei-Chen; Huang, Chun-Ying; Fang, Chang-Wen; Lin, Ming-Yi; Lee, Wen-Chieh; Liu, Xiang-Sheng; Uen, Wu-Yih

    2016-12-01

    Developing a transparent and cost-effective electrode for a textured and large-scale optoelectronic device is an important requirement for high-throughput products. Here, we propose a costly fabrication procedure using reduced graphene oxide (rGO) hybrid materials composed of rGO, Au nanoparticles (AuNPs) and Ag nanowires (AgNWs) top electrodes for structured Si solar cells via a spin coating method. This work overcomes the obstacle of graphene damage during the transferred process and provides a simple way to form large-scale graphene-based films on textured surfaces. Due to the spin-coated rGO being uniform along with AgNW frameworks and plasmonic AuNPs, the pyramidal Si solar cell exhibits a significant improved efficiency of 10.75% compared with solar cells using pure rGO flakes as the top electrodes. Our study realizes the rGO hybrid materials deposited on a textured surface and has great potential for integration into transparent and structured devices for next-generation industrial production.

  4. Hybrid solar-electric oven construction prototype; Construccion de prototipo de horno hibrido solar-electrico

    Energy Technology Data Exchange (ETDEWEB)

    Hernandez Roman, M. A; Pineda Pinon, J; Arcos Pichardo, A [CICATA, Santiago de Queretaro, Queretaro (Mexico)

    2013-03-15

    The oven construction consists of a solar collector system of cylindrical parabolic type, a heating through electrical resistance and a curing chamber. The warm fluid is air, which is injected into the chamber through forced draft. The temperature required in the system is within a range of 150 to 300 degrees Celsius. [Spanish] La construccion del horno consta de un sistema de captacion solar del tipo cilindrico parabolico, un sistema de calentamiento a traves de resistencias electricas y una camara de curado. El fluido a calentar es aire, el cual es inyectado dentro de la camara a traves de tiro forzado. La temperatura solicitada en el sistema es dentro de un rango de 150 a 300 grados centigrados.

  5. Development of Manufacturable Process to Deposit Metal Matrix Composites on Inverted Metamorphic Multijunction Solar Cells

    Science.gov (United States)

    2015-01-14

    MULTIJUNCTION SOLAR CELLS Sang M. Han University of New Mexico 1700 Lomas Blvd. NE, Suite 2200 Albuquerque, NM 87131-0001 14 Jan 2015 Final...Composites on Inverted Metamorphic Multijunction Solar Cells 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 62601F 6. AUTHOR(S) 5d. PROJECT NUMBER 8809 Sang...multijunction (IMM) space solar cells . The IMM cells fracture during packaging or after prolonged cycles of temperature fluctuations encountered in

  6. Multiscale tomographic analysis of polymer-nanoparticle hybrid materials for solar cells

    Science.gov (United States)

    Lopez-Haro, Miguel; Jiu, Tonggang; Bayle-Guillemaud, Pascale; Jouneau, Pierre-Henri; Chandezon, Frédéric

    2013-10-01

    The present work focuses on the study of the three-dimensional (3D) morphology of polymer and nanoparticle hybrid nanocomposites used as active layers in solution-processed solar cells. The hybrid consists of blends of regioregular poly(3-alkylthiophene) and CdSe nanorods. Electron tomography (ET) analysis performed in high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM) allows resolving single nanorods in the hybrid blend. These results are compared with those obtained using focused ion beam coupled with scanning electron microscopy (FIB-SEM), operated in a so-called 3D ``slice-and-view'' mode. This technique allows 3D information to be obtained on a whole device stack (hybrid active layers plus electrodes and the substrate) for significantly larger surface areas than with ET (~10 vs. ~0.1 μm2). The combination of ET and 3D FIB ``slice-and-view'' reconstructions provides complementary and coherent information on the 3D morphology of the hybrid systems at different length scales. Phase separation between the nanoparticles and the polymer is investigated by a quantitative analysis of the reconstructed volumes and is related to the performances of the hybrid devices.The present work focuses on the study of the three-dimensional (3D) morphology of polymer and nanoparticle hybrid nanocomposites used as active layers in solution-processed solar cells. The hybrid consists of blends of regioregular poly(3-alkylthiophene) and CdSe nanorods. Electron tomography (ET) analysis performed in high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM) allows resolving single nanorods in the hybrid blend. These results are compared with those obtained using focused ion beam coupled with scanning electron microscopy (FIB-SEM), operated in a so-called 3D ``slice-and-view'' mode. This technique allows 3D information to be obtained on a whole device stack (hybrid active layers plus electrodes and the substrate) for

  7. Numerical analysis of using hybrid photovoltaic-thermal solar water heater in Iran

    Directory of Open Access Journals (Sweden)

    M Mohammadi Sarduei

    2017-05-01

    Full Text Available Introduction Electrical performance of solar cells decreases with increasing cell temperature, basically because of growth of the internal charge carrier recombination rates, caused by increased carrier concentrations. Hybrid Photovoltaic/thermal (PVT systems produce electrical and thermal energy simultaneously. PVT solar collectors convert the heat generated in the solar cells to low temperature useful heat energy and so they provide a lower working temperature for solar cells which subsequently leads to a higher electrical efficiency. Recently, in Iran, the reforming government policy in subsidy and increasing fossil fuels price led to growing an interest in use of renewable energies for residual and industrial applications. In spite of this, the PV power generator investment is not economically feasible, so far. Hybrid PVT devices are well known as an alternative method to improve energy performance and therefore economic feasibility of the conventional PV systems. The aim of this study is to investigate the performance of a PVT solar water heater in four different cities of Iran using TRNSYS program. Materials and Methods The designed PVT solar water system consists of two separate water flow circuits namely closed cycle and open circuit. The closed cycle circuit was comprised of a solar PVT collector (with nominal power of 880 W and area of 5.6 m2, a heat exchanger in the tank (with volume of 300 L, a pump and connecting pipes. The water stream in the collector absorbs the heat accumulated in the solar cells and delivers it to the water in the tank though the heat exchanger. An on/off controller system was used to activate the pump when the collector outlet temperature was higher than that of the tank in the closed cycle circuit. The water in the open circuit, comes from city water at low temperature, enters in the lower part of the storage tank where the heat transfer occurs between the two separate circuits. An auxiliary heater, connected

  8. A hybrid discrete particle swarm optimization-genetic algorithm for multi-task scheduling problem in service oriented manufacturing systems

    Institute of Scientific and Technical Information of China (English)

    武善玉; 张平; 李方; 古锋; 潘毅

    2016-01-01

    To cope with the task scheduling problem under multi-task and transportation consideration in large-scale service oriented manufacturing systems (SOMS), a service allocation optimization mathematical model was established, and then a hybrid discrete particle swarm optimization-genetic algorithm (HDPSOGA) was proposed. In SOMS, each resource involved in the whole life cycle of a product, whether it is provided by a piece of software or a hardware device, is encapsulated into a service. So, the transportation during production of a task should be taken into account because the hard-services selected are possibly provided by various providers in different areas. In the service allocation optimization mathematical model, multi-task and transportation were considered simultaneously. In the proposed HDPSOGA algorithm, integer coding method was applied to establish the mapping between the particle location matrix and the service allocation scheme. The position updating process was performed according to the cognition part, the social part, and the previous velocity and position while introducing the crossover and mutation idea of genetic algorithm to fit the discrete space. Finally, related simulation experiments were carried out to compare with other two previous algorithms. The results indicate the effectiveness and efficiency of the proposed hybrid algorithm.

  9. Enhanced photovoltaic performance of organic/silicon nanowire hybrid solar cells by solution-evacuated method.

    Science.gov (United States)

    Wang, Wei-Li; Zou, Xian-Shao; Zhang, Bin; Dong, Jun; Niu, Qiao-Li; Yin, Yi-An; Zhang, Yong

    2014-06-01

    A method has been developed to fabricate organic-inorganic hybrid heterojunction solar cells based on n-type silicon nanowire (SiNW) and poly (3,4-ethylenedioxythiophene):poly (styrenesulfonate) (PEDOT:PSS) hybrid structures by evacuating the PEDOT:PSS solution with dip-dropping on the top of SiNWs before spin-coating (solution-evacuating). The coverage and contact interface between PEDOT:PSS and SiNW arrays can be dramatically enhanced by optimizing the solution-evacuated time. The maximum power conversion efficiency (PCE) reaches 9.22% for a solution-evacuated time of 2 min compared with 5.17% for the untreated pristine device. The improvement photovoltaic performance is mainly attributed to better organic coverage and contact with an n-type SiNW surface.

  10. Fuzzy logic controller versus classical logic controller for residential hybrid solar-wind-storage energy system

    Energy Technology Data Exchange (ETDEWEB)

    Derrouazin, A., E-mail: derrsid@gmail.com [University Hassiba BenBouali of Chlef, LGEER,Chlef (Algeria); Université de Lorraine, LMOPS, EA 4423, 57070 Metz (France); CentraleSupélec, LMOPS, 57070 Metz (France); Aillerie, M., E-mail: aillerie@metz.supelec.fr; Charles, J. P. [Université de Lorraine, LMOPS, EA 4423, 57070 Metz (France); CentraleSupélec, LMOPS, 57070 Metz (France); Mekkakia-Maaza, N. [Université des sciences et de la Technologie d’Oran, Mohamed Boudiaf-USTO MB,LMSE, Oran Algérie (Algeria)

    2016-07-25

    Several researches for management of diverse hybrid energy systems and many techniques have been proposed for robustness, savings and environmental purpose. In this work we aim to make a comparative study between two supervision and control techniques: fuzzy and classic logics to manage the hybrid energy system applied for typical housing fed by solar and wind power, with rack of batteries for storage. The system is assisted by the electric grid during energy drop moments. A hydrogen production device is integrated into the system to retrieve surplus energy production from renewable sources for the household purposes, intending the maximum exploitation of these sources over years. The models have been achieved and generated signals for electronic switches command of proposed both techniques are presented and discussed in this paper.

  11. Fuzzy logic controller versus classical logic controller for residential hybrid solar-wind-storage energy system

    Science.gov (United States)

    Derrouazin, A.; Aillerie, M.; Mekkakia-Maaza, N.; Charles, J. P.

    2016-07-01

    Several researches for management of diverse hybrid energy systems and many techniques have been proposed for robustness, savings and environmental purpose. In this work we aim to make a comparative study between two supervision and control techniques: fuzzy and classic logics to manage the hybrid energy system applied for typical housing fed by solar and wind power, with rack of batteries for storage. The system is assisted by the electric grid during energy drop moments. A hydrogen production device is integrated into the system to retrieve surplus energy production from renewable sources for the household purposes, intending the maximum exploitation of these sources over years. The models have been achieved and generated signals for electronic switches command of proposed both techniques are presented and discussed in this paper.

  12. Spacecraft/rover hybrids for the exploration of small Solar System bodies

    Science.gov (United States)

    Pavone, M.; Castillo-Rogez, J. C.; Nesnas, I. A. D.; Hoffman, J. A.; Strange, N. J.

    In this paper we present a mission architecture for the systematic and affordable in-situ exploration of small Solar System bodies (such as asteroids, comets, and Martian moons). At a general level, a mother spacecraft would deploy on the surface of a small body one, or several, spacecraft/rover hybrids, which are small (robots enclosing three mutually orthogonal flywheels and surrounded by external spikes (in particular, there is no external propulsion). By accelerating/decelerating the flywheels and by exploiting the low gravity environment, the hybrids would be capable of performing both long excursions (by hopping) and short traverses to specific locations (through a sequence of controlled “ tumbles” ). Their control would rely on synergistic operations with the mother spacecraft (where most of hybrids perception and localization functionalities would be hosted), which would make the platforms minimalistic and in turn the entire mission architecture affordable. Specifically, in the first part of the paper we present preliminary models and laboratory experiments for the hybrids, first-order estimates for critical subsystems, and a preliminary study for synergistic mission operations. In the second part, we tailor our mission architecture to the exploration of Mars' moon Phobos. The mission aims at exploring Phobos' Stickney crater, whose spectral similarities with C-type asteroids and variety of terrain properties make it a particularly interesting exploration target to address both high-priority science for the Martian system and strategic knowledge gaps for the future human exploration of Mars.

  13. Multiple EFG silicon ribbon technology as the basis for manufacturing low-cost terrestrial solar cells. [Epitaxial Film Growth

    Science.gov (United States)

    Mackintosh, B.; Kalejs, J. P.; Ho, C. T.; Wald, F. V.

    1981-01-01

    Mackintosh et al. (1978) have reported on the development of a multiple ribbon furnace based on the 'edge defined film fed growth' (EFG) process for the fabrication of silicon ribbon. It has been demonstrated that this technology can meet the requirements for a silicon substrate material to be used in the manufacture of solar panels which can meet requirements regarding a selling price of $0.70/Wp when certain goals in terms of throughput and quality are achieved. These goals for the multiple ribbon technology using 10 cm wide ribbon require simultaneous growth of 12 ribbons by one operator at average speeds of 4 to 4.5 cm/min, and 13% efficient solar cells. A description is presented of the progress made toward achieving these goals. It is concluded that the required performance levels have now been achieved. The separate aspects of technology must now be integrated into a single prototype furnace.

  14. Hybrid Organic-Inorganic Perovskites Open a New Era for Low-Cost, High Efficiency Solar Cells

    Directory of Open Access Journals (Sweden)

    Guiming Peng

    2015-01-01

    Full Text Available The ramping solar energy to electricity conversion efficiencies of hybrid organic-inorganic perovskite solar cells during the last five years have opened new doors to low-cost solar energy. The record power conversion efficiency has climbed to 19.3% in August 2014 and then jumped to 20.1% in November. In this review, the main achievements for perovskite solar cells categorized from a viewpoint of device structure are overviewed. The challenges and prospects for future development of this field are also briefly presented.

  15. Si nanowires organic semiconductor hybrid heterojunction solar cells toward 10% efficiency.

    Science.gov (United States)

    He, Lining; Jiang, Changyun; Wang, Hao; Lai, Donny; Rusli

    2012-03-01

    High-efficiency hybrid solar cells are fabricated using a simple approach of spin coating a transparent hole transporting organic small molecule, 2,2',7,7'-Tetrakis-(N,N-di-4-methoxyphenylamino)-9,9'-spirobifluorene (Spiro-OMeTAD) on silicon nanowires (SiNWs) arrays prepared by electroless chemical etching. The characteristics of the hybrid cells are investigated as a function of SiNWs length from 0.15 to 5 μm. A maximum average power conversion efficiency of 9.92% has been achieved from 0.35 μm length SiNWs cells, despite a 12% shadowing loss and the absence of antireflective coating and back surface field enhancement. It is found that enhanced aggregations in longer SiNWs limit the cell performance due to increased series resistance and higher carrier recombination in the shorter wavelength region. The effects of the Si substrate doping concentrations on the performance of the cells are also investigated. Cells with higher substrate doping concentration exhibit a significant drop in the incident photons-to-current conversion efficiency (IPCE) in the near infrared region. Nevertheless, a promising short circuit current density of 19 mA/cm(2) and IPCE peak of 57% have been achieved for a 0.9 μm length SiNWs cell fabricated on a highly doped substrate with a minority-carrier diffusion length of only 15 μm. The results suggest that such hybrid cells can potentially be realized using Si thin films instead of bulk substrates. This is promising towards realizing low-cost and high-efficiency SiNWs/organic hybrid solar cells.

  16. A self-sustaining high-strength wastewater treatment system using solar-bio-hybrid power generation.

    Science.gov (United States)

    Bustamante, Mauricio; Liao, Wei

    2017-06-01

    This study focuses on system analysis of a self-sustaining high-strength wastewater treatment concept combining solar technologies, anaerobic digestion, and aerobic treatment to reclaim water. A solar bio-hybrid power generation unit was adopted to power the wastewater treatment. Concentrated solar power (CSP) and photovoltaics (PV) were combined with biogas energy from anaerobic digestion. Biogas is also used to store the extra energy generated by the hybrid power unit and ensure stable and continuous wastewater treatment. It was determined from the energy balance analysis that the PV-bio hybrid power unit is the preferred energy unit to realize the self-sustaining high-strength wastewater treatment. With short-term solar energy storage, the PV-bio-hybrid power unit in Phoenix, AZ requires solar collection area (4032m(2)) and biogas storage (35m(3)), while the same unit in Lansing, MI needs bigger solar collection area and biogas storage (5821m(2) and 105m(3), respectively) due to the cold climate. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Defect passivation in hybrid perovskite solar cells using quaternary ammonium halide anions and cations

    Science.gov (United States)

    Zheng, Xiaopeng; Chen, Bo; Dai, Jun; Fang, Yanjun; Bai, Yang; Lin, Yuze; Wei, Haotong; Zeng, Xiao Cheng; Huang, Jinsong

    2017-07-01

    The ionic defects at the surfaces and grain boundaries of organic-inorganic halide perovskite films are detrimental to both the efficiency and stability of perovskite solar cells. Here, we show that quaternary ammonium halides can effectively passivate ionic defects in several different types of hybrid perovskite with their negative- and positive-charged components. The efficient defect passivation reduces the charge trap density and elongates the carrier recombination lifetime, which is supported by density-function-theory calculation. The defect passivation reduces the open-circuit-voltage deficit of the p-i-n-structured device to 0.39 V, and boosts the efficiency to a certified value of 20.59 ± 0.45%. Moreover, the defect healing also significantly enhances the stability of films in ambient conditions. Our findings provide an avenue for defect passivation to further improve both the efficiency and stability of solar cells.

  18. Simulation of generalized hybrid model for solar and wind power generation

    Directory of Open Access Journals (Sweden)

    Vankadara Sampath kumar

    2015-03-01

    Full Text Available Due to urbanization, globalization and industrialization the demand for energy is rapidly increasing allows the world and India is not an exception. Out of all energies electrical energy is playing a major role in developed as well as developing countries. The energy is mostly produced by fossil fuels which are developing day his is to by day .they also produce lot of pollutants which totally damage the environment the alternative to this is to encourage renewable energy source. Now days the energy production at domestic level is becoming popular with the help of solar and wind energies . These technologies are widely used now days in the present paper an attempt has been made to simulate a generalized hybrid model including solar and wind.

  19. SOLAR WIND TURBULENCE FROM MHD TO SUB-ION SCALES: HIGH-RESOLUTION HYBRID SIMULATIONS

    Energy Technology Data Exchange (ETDEWEB)

    Franci, Luca; Verdini, Andrea; Landi, Simone [Dipartimento di Fisica e Astronomia, Università di Firenze, Largo E. Fermi 2, I-50125 Firenze (Italy); Matteini, Lorenzo [Department of Physics, Imperial College London, London SW7 2AZ (United Kingdom); Hellinger, Petr [Astronomical Institute, AS CR, Bocni II/1401, CZ-14100 Prague (Czech Republic)

    2015-05-10

    We present results from a high-resolution and large-scale hybrid (fluid electrons and particle-in-cell protons) two-dimensional numerical simulation of decaying turbulence. Two distinct spectral regions (separated by a smooth break at proton scales) develop with clear power-law scaling, each one occupying about a decade in wavenumbers. The simulation results simultaneously exhibit several properties of the observed solar wind fluctuations: spectral indices of the magnetic, kinetic, and residual energy spectra in the magnetohydrodynamic (MHD) inertial range along with a flattening of the electric field spectrum, an increase in magnetic compressibility, and a strong coupling of the cascade with the density and the parallel component of the magnetic fluctuations at sub-proton scales. Our findings support the interpretation that in the solar wind, large-scale MHD fluctuations naturally evolve beyond proton scales into a turbulent regime that is governed by the generalized Ohm’s law.

  20. More stable hybrid organic solar cells deposited on amorphous Si electron transfer layer

    Energy Technology Data Exchange (ETDEWEB)

    Samiee, Mehran; Modtland, Brian; Dalal, Vikram L., E-mail: vdalal@iastate.edu [Iowa State University, Dept. of Electrical and Computer Engineering, Ames, Iowa 50011 (United States); Aidarkhanov, Damir [Nazarbayev University, Astana (Kazakhstan)

    2014-05-26

    We report on defect densities, performance, and stability of organic/inorganic hybrid solar cells produced using n-doped inorganic amorphous silicon-carbide layers as the electron transport layer (ETL). The organic material was poly-3-hexyl-thiophene (P3HT) and heterojunction was formed using phenyl-C{sub 71}-Butyric-Acid-Methyl Ester (PCBM). For comparison, inverted solar cells fabricated using Cs{sub 2}CO{sub 3} as ETL were fabricated. Defect densities and subgap quantum efficiency curves were found to be nearly identical for both types of cells. The cells were subjected to 2xsun illumination and it was found that the cells produced using doped a-Si as ETL were much more stable than the cells produced using Cs{sub 2}CO{sub 3}.

  1. Enhanced performance of hybrid solar cells using longer arms of quantum cadmium selenide tetrapods

    KAUST Repository

    Lee, Kyu-Sung

    2011-12-01

    We demonstrate that enhanced device performance of hybrid solar cells based on tetrapod (TP)-shaped cadmium selenide (CdSe) nanoparticles and conjugated polymer of poly (3-hexylthiophene) (P3HT) can be obtained by using longer armed tetrapods which aids in better spatial connectivity, thus decreasing charge hopping events which lead to better charge transport. Longer tetrapods with 10 nm arm length lead to improved power conversion efficiency of 1.12% compared to 0.80% of device having 5 nm short-armed tetrapods:P3HT photoactive blends.

  2. Low Cost Injection Mold Creation via Hybrid Additive and Conventional Manufacturing

    Energy Technology Data Exchange (ETDEWEB)

    Dehoff, Ryan R. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Watkins, Thomas R. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); List, III, Frederick Alyious [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Carver, Keith [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); England, Roger [Cummins, Inc, Knoxville, TN (United States)

    2015-12-01

    The purpose of the proposed project between Cummins and ORNL is to significantly reduce the cost of the tooling (machining and materials) required to create injection molds to make plastic components. Presently, the high cost of this tooling forces the design decision to make cast aluminum parts because Cummins typical production volumes are too low to allow injection molded plastic parts to be cost effective with the amortized cost of the injection molding tooling. In addition to reducing the weight of components, polymer injection molding allows the opportunity for the alternative cooling methods, via nitrogen gas. Nitrogen gas cooling offers an environmentally and economically attractive cooling option, if the mold can be manufactured economically. In this project, a current injection molding design was optimized for cooling using nitrogen gas. The various components of the injection mold tooling were fabricated using the Renishaw powder bed laser additive manufacturing technology. Subsequent machining was performed on the as deposited components to form a working assembly. The injection mold is scheduled to be tested in a projection setting at a commercial vendor selected by Cummins.

  3. High Efficiency, Low Cost Solar Cells Manufactured Using 'Silicon Ink' on Thin Crystalline Silicon Wafers

    Energy Technology Data Exchange (ETDEWEB)

    Antoniadis, H.

    2011-03-01

    Reported are the development and demonstration of a 17% efficient 25mm x 25mm crystalline Silicon solar cell and a 16% efficient 125mm x 125mm crystalline Silicon solar cell, both produced by Ink-jet printing Silicon Ink on a thin crystalline Silicon wafer. To achieve these objectives, processing approaches were developed to print the Silicon Ink in a predetermined pattern to form a high efficiency selective emitter, remove the solvents in the Silicon Ink and fuse the deposited particle Silicon films. Additionally, standard solar cell manufacturing equipment with slightly modified processes were used to complete the fabrication of the Silicon Ink high efficiency solar cells. Also reported are the development and demonstration of a 18.5% efficient 125mm x 125mm monocrystalline Silicon cell, and a 17% efficient 125mm x 125mm multicrystalline Silicon cell, by utilizing high throughput Ink-jet and screen printing technologies. To achieve these objectives, Innovalight developed new high throughput processing tools to print and fuse both p and n type particle Silicon Inks in a predetermined pat-tern applied either on the front or the back of the cell. Additionally, a customized Ink-jet and screen printing systems, coupled with customized substrate handling solution, customized printing algorithms, and a customized ink drying process, in combination with a purchased turn-key line, were used to complete the high efficiency solar cells. This development work delivered a process capable of high volume producing 18.5% efficient crystalline Silicon solar cells and enabled the Innovalight to commercialize its technology by the summer of 2010.

  4. Chemical management for colorful, efficient, and stable inorganic-organic hybrid nanostructured solar cells.

    Science.gov (United States)

    Noh, Jun Hong; Im, Sang Hyuk; Heo, Jin Hyuck; Mandal, Tarak N; Seok, Sang Il

    2013-04-10

    Chemically tuned inorganic-organic hybrid materials, based on CH3NH3(═MA)Pb(I(1-x)Br(x))3 perovskites, have been studied using UV-vis absorption and X-ray diffraction patterns and applied to nanostructured solar cells. The band gap engineering brought about by the chemical management of MAPb(I(1-x)Br(x))3 perovskites can be controllably tuned to cover almost the entire visible spectrum, enabling the realization of colorful solar cells. We demonstrate highly efficient solar cells exhibiting 12.3% in a power conversion efficiency of under standard AM 1.5, for the most efficient device, as a result of tunable composition for the light harvester in conjunction with a mesoporous TiO2 film and a hole conducting polymer. We believe that the works highlighted in this paper represent one step toward the realization of low-cost, high-efficiency, and long-term stability with colorful solar cells.

  5. Tuning back contact property via artificial interface dipoles in Si/organic hybrid solar cells

    Science.gov (United States)

    Wang, Dan; Sheng, Jiang; Wu, Sudong; Zhu, Juye; Chen, Shaojie; Gao, Pingqi; Ye, Jichun

    2016-07-01

    Back contact property plays a key role in the charge collection efficiency of c-Si/poly(3,4-ethylthiophene):poly(styrenesulfonate) hybrid solar cells (Si-HSCs), as an alternative for the high-efficiency and low-cost photovoltaic devices. In this letter, we utilize the water soluble poly (ethylene oxide) (PEO) to modify the Al/Si interface to be an Ohmic contact via interface dipole tuning, decreasing the work function of the Al film. This Ohmic contact improves the electron collection efficiency of the rear electrode, increasing the short circuit current density (Jsc). Furthermore, the interface dipoles make the band bending downward to increase the total barrier height of built-in electric field of the solar cell, enhancing the open circuit voltage (Voc). The PEO solar cell exhibits an excellent performance, 12.29% power conversion efficiency, a 25.28% increase from the reference solar cell without a PEO interlayer. The simple and water soluble method as a promising alternative is used to develop the interfacial contact quality of the rear electrode for the high photovoltaic performance of Si-HSCs.

  6. Two-dimensional hybrid models of H+-He++ expanding solar wind plasma heating

    Science.gov (United States)

    Ofman, L.; Viñas, A. F.; Maneva, Y.

    2014-06-01

    Preferential heating and acceleration of the solar wind He++ ions compared to protons in fast solar wind streams have been known for decades, thanks to in situ spacecraft measurements at 0.29-5 AU. Turbulent magnetic field fluctuations with approximate power law spectra have been observed as well. However, the exact causes of these processes are still not known due to the lack of detailed information on the magnetic field fluctuations and ion velocity distributions in the acceleration region of the solar wind. Here the collisionless heating processes in expanding solar wind plasma are investigated using 2-D hybrid modeling with parameters appropriate to the heliocentric distance of 10 RS. In this study the ion dynamics is described kinetically, while electrons are treated as a background massless fluid in an expanding solar wind model. The source of free energy for the heating is introduced through an initial nonequilibrium state of the plasma with large He++ ion temperature anisotropy or with super-Alfvénic relative ion drift. We also employ an externally imposed spectrum of magnetic fluctuations in the frequency range below the proton gyroresonant frequency to heat the He++ ions. We investigate the effects of solar wind radial expansion by modeling several values of the expansion rate in a parametric study. We find that the preferential ion heating is attained in both nonexpanding and expanding solar wind models. Thus, the expansion has little effect on the preferential He++ ion heating by the processes considered here. Moreover, the expansion leads to faster evolution of the magnetosonic drift instability, reducing the drift velocity to lower values sooner, and the corresponding generation of the magnetic fluctuations that heat the ions, compared to the nonexpanding case. This is due to the reduction of the perpendicular particle velocities in the expanding (inflated) frame. For cases with little proton perpendicular heating, the solar wind expansion leads to

  7. Automated High-Volume Manufacturing of Modular Photovoltaic Panel Assemblies for Space Solar Arrays Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Deployable Space Systems, Inc. (DSS) will focus the proposed SBIR Phase 2 program on the development and demonstration of an automated robotic manufacturing...

  8. Performance of a hybrid solar heating system of the solar laboratory at the JRC-ISPRA

    Science.gov (United States)

    van Hattem, D.; Aranovitch, E.; Actis-Dato, P.

    System features and the three year performance data from the solar laboratory at Ispra, which is heated by a heat pump, flat plate collectors, and storage unit are summarized. The heating system has 41 sq m of collector surface, a 50 cu m concrete hot water storage tank, a heat pump with a 17 kW capacity, a floor heating system, and a 2 cu m heat storage as a buffer for the collectors. The building requires 300 W/ deg C for heating and has a peak demand of 9 kW. Chilled water is stored in the underground large tank during the summer for cooling purposes, and one month is alotted to thermally charge the tank before the winter. The addition of the heat pump and storage to the solar flat plate collector system has increased the effective energy gain of the collectors to 1190 MJ/sq m, or 2.5 times the effectiveness without the storage and heat pump.

  9. Treatment of welding electrode manufacturing plant wastewater using coagulation/flocculation-nanofiltration as a hybrid process

    Directory of Open Access Journals (Sweden)

    H. A. Golestani

    2011-03-01

    Full Text Available High water consumption and water scarcity make industrial wastewater reuse necessary, especially in those industries characterized by polluted effluents such as welding electrode manufacturing industries. The present paper investigates the coupling of coagulation-flocculation with nanofiltration (NF to recycle water and reuse it in the process. First, the effect of different concentrations of a mixture of alum (Al2(SO43.18H2O and ferric chloride (FeCl3 on the pretreatment process was closely studied. Then the NF process was applied for complementary treatment. The NF results show that, by increasing both flow rate and transmembrane pressure (TMP, permeate flux is increased. The NF results also show that the COD value decreases below 2 mg/l, TDS rejection approaches 82%, turbidity decreases below 1 NTU and the hardness is lower than the factory constraint (100 mg/l as CaCO3, allowing the reuse of the treated wastewater in the process.

  10. Solar cell module and its manufacturing process. Taiyo denchi module oyobi sono seizo hoho

    Energy Technology Data Exchange (ETDEWEB)

    Nakano, Akihiko.

    1990-01-12

    The reason behind the high power costs of solar cells is expensiveness of solar cell element devices and its modules, and efforts to lower the costs of the former have so far been made, but the same efforts are necessary for the latter too. Concerning CdS/CdTe or CdS/CuInSe {sub 2} solar cells, when the oxygen concentration in the atmosphere available around the element device becomes less, deterioration of its performance occurs. Heretofore, concerning the above two kinds of solar cell modules, a stress was placed on prevention of infiltration of water into the element device and no concern has been paid to the effect of oxygen. Consequently, several issues have remained unsolved like alteration of crude material around the element of module with material which does not react with oxygen or absorb it. In view of the above, this invention proposes to make a solar cell module of the structure that thermosetting resin is set at the peripheral blank part of the substrate with no formation of solar cell element and a box with a flange is applied to that part in the heated and pressurized condition at the time of making protection of the back of the CdS/CdTe or CdS/CuInSe {sub 2} solar cell element device. 7 figs.

  11. Mobile Open-Source Solar-Powered 3-D Printers for Distributed Manufacturing in Off-Grid Communities

    Directory of Open Access Journals (Sweden)

    Debbie L. King

    2014-04-01

    Full Text Available Manufacturing in areas of the developing world that lack electricity severely restricts the technical sophistication of what is produced. More than a billion people with no access to electricity still have access to some imported higher-technologies; however, these often lack customization and often appropriateness for their community. Open source appropriate tech­nology (OSAT can over­come this challenge, but one of the key impediments to the more rapid development and distri­bution of OSAT is the lack of means of production beyond a specific technical complexity. This study designs and demonstrates the technical viability of two open-source mobile digital manufacturing facilities powered with solar photovoltaics, and capable of printing customizable OSAT in any com­munity with access to sunlight. The first, designed for com­munity use, such as in schools or maker­spaces, is semi-mobile and capable of nearly continuous 3-D printing using RepRap technology, while also powering multiple computers. The second design, which can be completely packed into a standard suitcase, allows for specialist travel from community to community to provide the ability to custom manufacture OSAT as needed, anywhere. These designs not only bring the possibility of complex manufacturing and replacement part fabrication to isolated rural communities lacking access to the electric grid, but they also offer the opportunity to leap-frog the entire conventional manufacturing supply chain, while radically reducing both the cost and the environmental impact of products for developing communities.

  12. Hybrid organic-inorganic heterojunction solar cells with 12% efficiency by utilizing flexible film-silicon with a hierarchical surface.

    Science.gov (United States)

    Thiyagu, Subramani; Hsueh, Chen-Chih; Liu, Chien-Ting; Syu, Hong-Jhang; Lin, Tzu-Ching; Lin, Ching-Fuh

    2014-03-21

    This paper reports an organic-inorganic hybrid solar cell with a hierarchical surface composed of high density silicon nanoholes and micro-desert textures. High-efficiency organic-inorganic hybrid solar cell Si/PEDOT-PSS with a hierarchical surface, showing a power conversion efficiency of 12%. The structure provides excellent light absorption over 97% for the spectral range of 300 to 1100 nm with a thickness of 60 μm due to internal multiple reflections caused by subwavelength features of high density silicon nanoholes and micro-desert textures. In addition, from the angle of incidence (AOI) observed, even at the large angle of 75°, the reflectance value still exhibits less than 1%. With the advantage of very thin silicon material and inexpensive processing, hybrid silicon/polymer solar cells are promising for various applications and thus could be an economically feasible alternative energy solution in the future.

  13. Hybrid ZnO nanowire/a-Si:H thin-film radial junction solar cells using nanoparticle front contacts

    Energy Technology Data Exchange (ETDEWEB)

    Pathirane, M., E-mail: minoli.pathirane@uwaterloo.ca; Iheanacho, B.; Lee, C.-H.; Wong, W. S. [Department of Electrical and Computer Engineering, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1 (Canada); Tamang, A.; Knipp, D. [Research Center for Functional Materials and Nanomolecular Science, Jacobs University Bremen, Bremen 28759 (Germany); Lujan, R. [Electronic Materials and Devices Laboratory, Palo Alto Research Center, Palo Alto, California 93003 (United States)

    2015-10-05

    Hydrothermally synthesized disordered ZnO nanowires were conformally coated with a-Si:H thin-films to fabricate three dimensional hybrid nanowire/thin-film structures. The a-Si:H layer formed a radial junction p-i-n diode solar cell around the ZnO nanowire. The cylindrical hybrid solar cells enhanced light scattering throughout the UV-visible-NIR spectrum (300 nm–800 nm) resulting in a 22% increase in short-circuit current density compared to the reference planar p-i-n device. A fill factor of 69% and a total power conversion efficiency of 6.5% were achieved with the hybrid nanowire solar cells using a spin-on indium tin oxide nanoparticle suspension as the top contact.

  14. Design and Manufacture of a Hybrid Final Focus Quadrupole Model for CLIC

    CERN Document Server

    Modena, Michele; Vorozhtsov, Alexey

    2012-01-01

    A tunable hybrid quadrupole magnet design has been proposed for the final focus in the Compact Linear Collider (CLIC) that is currently under study. The proposed design is a combination of an iron dominated electromagnetic quadrupole with a bore diameter of 8.25 mm with permanent magnet blocks placed between the poles made of soft magnetic CoFe alloy "Permendur". The possibility of using Sm2Co17 and Nd2Fe14B as material for the permanent magnet blocks has been investigated. It is shown that a very high field gradient of 530 T/m (Sm2Co17) and 590 T/m (Nd2Fe14B) can be achieved.

  15. Analysis of technical difficulties of partial hybrid board manufacturing%局部混压板技术难点剖析

    Institute of Scientific and Technical Information of China (English)

    袁凯华; 赵新; 袁处

    2013-01-01

    With PCB process cost rises, partial hybrid board’s quantities is increasing. Hybrid depth and hybrid dimension is larger and larger. Resin preventing, registration and warp are the key points of the partial hybrid board manufacturing. This paper made advanced suggestions on the three aspects of different hybrid depth and dimension to largely improve the partial hybrid board manufacturing.%随着当今PCB加工成本不断升高的背景下,局部混压板数量日渐增多,混压深度和混压尺寸也越来越大,而对其溢胶、对位和翘曲三个方面的控制是其制造过程中的关键要点。本文提出了不同混压深度和不同混压尺寸下的局部混压板在这三方面的改善措施,从而大幅提升局部混压板的可制造性。

  16. Sustainable Energy Solutions Task 4.1 Intelligent Manufacturing of Hybrid Carbon-Glass Fiber-Reinforced Composite Wind Turbine Blades

    Energy Technology Data Exchange (ETDEWEB)

    Twomey, Janet M. [Wichita State Univ., KS (United States)

    2010-04-30

    In this subtask, the manufacturability of hybrid carbon-glass fiber-reinforced composite wind turbine blades using Vacuum-Assisted Resin Transfer Molding (VARTM) was investigated. The objective of this investigation was to study the VARTM process and its parameters to manufacture cost-effective wind turbine blades with no defects (mainly eliminate dry spots and reduce manufacturing time). A 2.5-dimensional model and a 3-dimensional model were developed to simulate mold filling and part curing under different conditions. These conditions included isothermal and non-isothermal filling, curing of the part during and after filling, and placement of injection gates at different locations. Results from this investigation reveal that the process can be simulated and also that manufacturing parameters can be optimized to eliminate dry spot formation and reduce the manufacturing time. Using computer-based models is a cost-effective way to simulate manufacturing of wind turbine blades. The approach taken herein allows the design of the wind blade manufacturing processes without physically running trial-and-error experiments that are expensive and time-consuming; especially for larger blades needed for more demanding environmental conditions. This will benefit the wind energy industry by reducing initial design and manufacturing costs which can later be passed down to consumers and consequently make the wind energy industry more competitive.

  17. Plug and Play Solar Power: Simplifying the Integration of Solar Energy in Hybrid Applications; Cooperative Research and Development Final Report, CRADA Number CRD-13-523

    Energy Technology Data Exchange (ETDEWEB)

    Lundstrom, Blake R. [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-07-05

    The Commonwealth Scientific and Industrial Research Organisation (CSIRO) is Australia's national science agency. CSIRO received funding from the Australian Solar Institute (ASI) for the United States-Australia Solar Energy Collaboration (USASEC) project 1-USO032 Plug and Play Solar Power: Simplifying the Integration of Solar Energy in Hybrid Applications (Broader Project). The Australian Solar Institute (ASI) operated from August 2009 to December 2012 before being merged into the Australian Renewable Energy Agency (ARENA). The Broader Project sought to simplify the integration, accelerate the deployment, and lower the cost of solar energy in hybrid distributed generation applications by creating plug and play solar technology. CSIRO worked with the National Renewable Energy Laboratory (NREL) as set out in a Joint Work Statement to review communications protocols relevant to plug-and-play technology and perform prototype testing in its Energy System Integration Facility (ESIF). For the avoidance of doubt, this CRADA did not cover the whole of the Broader Project and only related to the work described in the Joint Work Statement, which was carried out by NREL.

  18. Preparation and characteristics of nanotetrapods CdSe-polymer hybrid solar cells

    Indian Academy of Sciences (India)

    Qi Pang; Li Juan Zhao; Jun He; Chun Jie Liang; Ai Miao Qin; Jian Nong Wang

    2013-12-01

    Tetrapod-shaped CdSe nanocrystals were obtained using a simple method. HRTEM shows that the average size of the tetrapod core are about 4 nm, widths of the tetrapod arms are about 4 nm and lengths of the arms are about 20 nm. XRD patterns reveal that the OA-capped CdSe tetrapod nanocrystals have a hexagonal wurtzite structure. A hybrid solar cell fabricated based on an 8:1 (w/w) blend of CdSe tetrapod nanocrystals and MEH–PPV showed a maximum power conversion efficiency of 0.46% under an air mass 1.5 global condition. The effects of nanocrystal composition on the photovoltaic properties of hybrid solar cells based on nanotetrapods CdSe/MEH–PPV were investigated. The power conversion efficiency values initially increased and then decreased, but the OC values linearly decreased from 1.1 to 0.25 V with increased CdSe nanotetrapod in the blend film. The significant quenching of PL with increased nanotetrapod concentration indicated photo-induced charge transfer between MEH–PPV and CdSe.

  19. Silver nanowire-graphene hybrid transparent conductive electrodes for highly efficient inverted organic solar cells

    Science.gov (United States)

    Ye, Neng; Yan, Jielin; Xie, Shuang; Kong, Yuhan; Liang, Tao; Chen, Hongzheng; Xu, Mingsheng

    2017-07-01

    Silver nanowires (AgNWs) and graphene are both promising candidates as a transparent conductive electrode (TCE) to replace expensive and fragile indium tin oxide (ITO) TCE. A synergistically optimized performance is expected when the advantages of AgNWs and graphene are combined. In this paper, the AgNW-graphene hybrid electrode is constructed by depositing a graphene layer on top of the network of AgNWs. Compared with the pristine AgNWs electrode, the AgNW-graphene TCE exhibits reduced sheet resistance, lower surface roughness, excellent long-term stability, and corrosion resistance in corrosive liquids. The graphene layer covering the AgNWs provides additional conduction pathways for electron transport and collection by the electrode. Benefiting from these advantages of the hybrid electrodes, we achieve a power conversion efficiency of 8.12% of inverted organic solar cells using PTB7:PC71BM as the active layer, which is compared to that of the solar cells based on standard ITO TCE but about 10% higher than that based on AgNWs TCE.

  20. Optical and electrical effects of plasmonic nanoparticles in high-efficiency hybrid solar cells.

    Science.gov (United States)

    Fu, Wei-Fei; Chen, Xiaoqiang; Yang, Xi; Wang, Ling; Shi, Ye; Shi, Minmin; Li, Han-Ying; Jen, Alex K-Y; Chen, Jun-Wu; Cao, Yong; Chen, Hong-Zheng

    2013-10-28

    Plasmonics have been proven to be an effective way to harness more incident light to achieve high efficiency in photovoltaic devices. Herein, we explore the possibility that plasmonics can be utilized to enhance light trapping and power conversion efficiency (PCE) for polymer-quantum dot (QD) hybrid solar cells (HSCs). Based on a low band-gap polymer poly[2,6-(4,4-bis-(2-ethylhexyl)-4H-cyclopenta[2,1-b;3,4-b']-dithiophene)-alt-4,7-(2,1,3-benzothiadiazole)] (PCPDTBT) and a CdSe QD bulk-heterojunction (BHJ) system, gold nanoparticles were doped at different locations of the devices. Successfully, an improved PCE of 3.20 ± 0.22% and 3.16 ± 0.15% was achieved by doping the hole transporting layer and the active layer, respectively, which are among the highest values reported for CdSe QD based HSCs. A detailed study of processing, characterization, microscopy, and device fabrication is conducted to understand the underlying mechanism for the enhanced device performance. The success of this work provides a simple and generally applicable approach to enhance light harnessing of polymer-QD hybrid solar cells.

  1. Hybrid Solar and Wind Off-Grid System - Design and Control

    Directory of Open Access Journals (Sweden)

    Prasad GVT,

    2010-04-01

    Full Text Available This paper is aimed to improve the efficiency of a hybrid solar and windmill system by altering the design parameters. A complete prototype model has been designed and tested based on the altered features. In the designed model, solar PV module along with a wind turbine, the small prototype created powers a load of capacity 120 Watts. The design implementation consists of adding reflectors to the photovoltaic panel along with a dedicated sun tracking system. Further, a wind sensor detects the maximum wind flow direction to guide the windmill with plastic finished edges to improve the overall efficiency. The hybrid setup could be operated in manual and automatic modes. The former mode consists of a RF transmitter and receiver setup and the latter is effectively controlled by means of a microcontroller-AT Mega 162V. The entire setup can be extended forlarger loads in order to electrify remote and inaccessible areas. Further, the project can be implemented in industrial and domestic sectors on a larger scale.

  2. An alternative route towards monodisperse CdS quantum dots for hybrid solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Cao, Fengfeng; Wang, Hao [College of Physics, Optoelectronics and Energy and Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215006 (China); Xia, Zhouhui [Institute of Functional Nano and Soft Materials, Soochow University, Suzhou 215123 (China); Dai, Xiao; Cong, Shan [College of Physics, Optoelectronics and Energy and Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215006 (China); Dong, Chao [Department of Chemistry and Biology, University of New Mexico, ABQ 87120 (United States); Sun, Baoquan [Institute of Functional Nano and Soft Materials, Soochow University, Suzhou 215123 (China); Lou, Yanhui, E-mail: yhlou@suda.edu.cn [College of Physics, Optoelectronics and Energy and Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215006 (China); Sun, Yinghui; Zhao, Jie [College of Physics, Optoelectronics and Energy and Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215006 (China); Zou, Guifu, E-mail: zouguifu@suda.edu.cn [College of Physics, Optoelectronics and Energy and Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215006 (China)

    2015-01-15

    Monodisperse CdS quantum dots (QDs) are synthesized by thermal decomposition of organic complexes in the system of the cost-effective commercial 0{sup #} diesel at 200 °C. The prepared CdS QDs have a good dispersion and high crystallization. When the CdS QDs are doped into the blends of poly(3-hexylthiophene) (P3HT) and 1-(3-methoxycarbonyl)-propyl-1-phenyl-(6, 6)C61 (PCBM) for hybrid solar cells (HSCs), the HSCs achieve about 25% increase of power conversion efficiency in comparison to the reference device without the CdS QDs. The improvement of the cell performance mainly attributes to the increased short-circuit current density arising from the absorption enhancement in the wavelength range of 350–550 nm by introducing the synthesized CdS QDs into the P3HT: PCBM active layer. - Highlights: • Monodisperse CdS quantum dots. • A cost-effective route to synthesize crystalline CdS quantum dots. • CdS quantum dots based hybrid solar cells with power conversion efficiency enhancement.

  3. Hybrid silicon honeycomb/organic solar cells with enhanced efficiency using surface etching

    Science.gov (United States)

    Liu, Ruiyuan; Sun, Teng; Liu, Jiawei; Wu, Shan; Sun, Baoquan

    2016-06-01

    Silicon (Si) nanostructure-based photovoltaic devices are attractive for their excellent optical and electrical performance, but show lower efficiency than their planar counterparts due to the increased surface recombination associated with the high surface area and roughness. Here, we demonstrate an efficiency enhancement for hybrid nanostructured Si/polymer solar cells based on a novel Si honeycomb (SiHC) structure using a simple etching method. SiHC structures are fabricated using a combination of nanosphere lithography and plasma treatment followed by a wet chemical post-etching. SiHC has shown superior light-trapping ability in comparison with the other Si nanostructures, along with a robust structure. Anisotropic tetramethylammonium hydroxide etching not only tunes the final surface morphologies of the nanostructures, but also reduces the surface roughness leading to a lower recombination rate in the hybrid solar cells. The suppressed recombination loss, benefiting from the reduced surface-to-volume ratio and roughness, has resulted in a high open-circuit voltage of 600 mV, a short-circuit current of 31.46 mA cm-2 due to the light-trapping ability of the SiHCs, and yields a power conversion efficiency of 12.79% without any other device structure optimization.

  4. Hybrid silicon honeycomb/organic solar cells with enhanced efficiency using surface etching.

    Science.gov (United States)

    Liu, Ruiyuan; Sun, Teng; Liu, Jiawei; Wu, Shan; Sun, Baoquan

    2016-06-24

    Silicon (Si) nanostructure-based photovoltaic devices are attractive for their excellent optical and electrical performance, but show lower efficiency than their planar counterparts due to the increased surface recombination associated with the high surface area and roughness. Here, we demonstrate an efficiency enhancement for hybrid nanostructured Si/polymer solar cells based on a novel Si honeycomb (SiHC) structure using a simple etching method. SiHC structures are fabricated using a combination of nanosphere lithography and plasma treatment followed by a wet chemical post-etching. SiHC has shown superior light-trapping ability in comparison with the other Si nanostructures, along with a robust structure. Anisotropic tetramethylammonium hydroxide etching not only tunes the final surface morphologies of the nanostructures, but also reduces the surface roughness leading to a lower recombination rate in the hybrid solar cells. The suppressed recombination loss, benefiting from the reduced surface-to-volume ratio and roughness, has resulted in a high open-circuit voltage of 600 mV, a short-circuit current of 31.46 mA cm(-2) due to the light-trapping ability of the SiHCs, and yields a power conversion efficiency of 12.79% without any other device structure optimization.

  5. Hybrid photovoltaic/thermal (PV/T) solar systems simulation with Simulink/Matlab

    Energy Technology Data Exchange (ETDEWEB)

    da Silva, R.M.; Fernandes, J.L.M. [Department of Mechanical Engineering, Instituto Superior Tecnico, Lisbon (Portugal)

    2010-12-15

    The purpose of this work consists in thermodynamic modeling of hybrid photovoltaic-thermal (PV/T) solar systems, pursuing a modular strategy approach provided by Simulink/Matlab. PV/T solar systems are a recently emerging solar technology that allows for the simultaneous conversion of solar energy into both electricity and heat. This type of technology present some interesting advantages over the conventional ''side-by-side'' thermal and PV solar systems, such as higher combined electrical/thermal energy outputs per unit area, and a more uniform and aesthetical pleasant roof area. Despite the fact that early research on PV/T systems can be traced back to the seventies, only recently it has gained a renewed impetus. In this work, parametric studies and annual transient simulations of PV/T systems are undertaken in Simulink/Matlab. The obtained results show an average annual solar fraction of 67%, and a global overall efficiency of 24% (i.e. 15% thermal and 9% electrical), for a typical four-person single-family residence in Lisbon, with p-Si cells, and a collector area of 6 m{sup 2}. A sensitivity analysis performed on the PV/T collector suggests that the most important variable that should be addressed to improve thermal performance is the photovoltaic (PV) module emittance. Based on those results, some additional improvements are proposed, such as the use of vacuum, or a noble gas at low-pressure, to allow for the removal of PV cells encapsulation without air oxidation and degradation, and thus reducing the PV module emittance. Preliminary results show that this option allows for an 8% increase on optical thermal efficiency, and a substantial reduction of thermal losses, suggesting the possibility of working at higher fluid temperatures. The higher working temperatures negative effect in electrical efficiency was negligible, due to compensation by improved optical properties. The simulation results are compared with experimental data obtained

  6. Solar thermochemical reactor, methods of manufacture and use thereof and thermogravimeter

    Energy Technology Data Exchange (ETDEWEB)

    Klausner, James F.; Petrasch, Joerg

    2017-06-06

    A solar thermochemical reactor contains an outer member, an inner member disposed within an outer member, wherein the outer member surrounds the inner member and wherein the outer member has an aperture for receiving solar radiation. An inner cavity and an outer cavity are formed by the inner member and outer member and a reactive material that is capable of being magnetically stabilized is disposed in the outer cavity between the inner member and the outer member.

  7. Formation of porous SnS nanoplate networks from solution and their application in hybrid solar cells

    OpenAIRE

    Rath, T.; Gury, L.; Sanchez-Molina, I; Martinez, L; Haque, SA

    2015-01-01

    Herein, we present a facile solution-based route towards nanostructured, hybrid absorber layers based on tin mono-sulfide (SnS), an emerging, non-toxic absorber material for low-cost and large-scale PV applications. Charge photogeneration properties in the hybrid system are studied using transient absorption spectroscopy and fabricated solar cells show efficient photocurrent generation over a broad spectral range.

  8. Study of MEH–PPV/PCBM active layer morphology and its application for hybrid solar cell performance

    Indian Academy of Sciences (India)

    Quynh Nhu Nguyen Truong; Nguyen Tam Nguyen Truong; Chinho Park; Jae Hak Jung

    2012-04-01

    Surface morphologies of MEH–PPV:PCBM active layers were optimized by investigating ITO substrate treated with oxygen and nitrogen plasma. This treatment effectively improved smoothness, transmittance, and contact angle of ITO’s, resulting in good anode contacts for hybrid device structures. The consistently improved performance of hybrid solar cells was also achieved. The surface properties of treated and untreated ITO substrates were compared by contact angle, four point probe, scanning electron microscopy, and atomic force microscopy.

  9. Details of a Hybrid Model for the Interaction between the Solar Wind and Planets Implemented in FLASH

    CERN Document Server

    Holmstrom, M

    2015-01-01

    A hybrid plasma solver treats ions as particles and electrons as a fluid. We have implemented a parallel hybrid solver in the FLASH open source software framework. The solver has been applied to studies of the interaction between the solar wind and planets. Here we discuss the implementation of different model features, such as permanent magnetic fields, ionospheric chemistry, and exospheres. Mars is used as an example.

  10. High-efficiency si/polymer hybrid solar cells based on synergistic surface texturing of Si nanowires on pyramids.

    Science.gov (United States)

    He, Lining; Lai, Donny; Wang, Hao; Jiang, Changyun; Rusli

    2012-06-11

    An efficient Si/PEDOT:PSS hybrid solar cell using synergistic surface texturing of Si nanowires (SiNWs) on pyramids is demonstrated. A power conversion efficiency (PCE) of 9.9% is achieved from the cells using the SiNW/pyramid binary structure, which is much higher than similar cells based on planar Si, pyramid-textured Si, and SiNWs. The PCE is the highest reported to-date for hybrid cells based on Si nanostructures and PEDOT.

  11. Constructing Post-Permeation Method to Fabricate Polymer/Nanocrystals Hybrid Solar Cells with PCE Exceeding 6.

    Science.gov (United States)

    Du, Xiaohang; Zeng, Qingsen; Jin, Gan; Liu, Fangyuan; Ji, Tianjiao; Yue, Yuanyuan; Yang, Yi; Zhang, Hao; Yang, Bai

    2017-01-11

    A post-permeation method is constructed for fabricating bulk-heterojunction hybrid solar cells. Porous CdTe film is prepared by annealing the mixture solution of aqueous CdTe nanocrystals and cetyltrimethyl ammonium bromide, after which the post-permeation of polymer is employed. By this method, kinds of polymers can be applied regardless of the intermiscibility with the nanoparticles. The inorganic nanocrystals and the polymer can be treated under respective optimized annealing temperatures, which can facilitate the growth of nanocrystals without damaging the polymers. A high power conversion efficiency of 6.36% in the polymer/nanocrystals hybrid solar cells is obtained via systematical optimization.

  12. Charge collection enhancement by incorporation of gold-silica core-shell nanoparticles into P3HT : PCBM/ZnO nanorod array hybrid solar cells

    NARCIS (Netherlands)

    Wang, Ting-Chung; Su, Yen-Hsun; Hung, Yun-Kai; Yeh, Chen-Sheng; Huang, Li-Wen; Gomulya, Widianta; Lai, Lai-Hung; Loi, Maria A.; Yang, Jih-Sheng; Wu, Jih-Jen

    2015-01-01

    In this work, gold-silica core-shell (Au@silica) nanoparticles (NPs) with various silica-shell thicknesses are incorporated into P3HT:PCBM/ZnO nanorod (NR) hybrid solar cells. Enhancement in the short-circuit current density and the efficiency of the hybrid solar cells is attained with the appropria

  13. Preliminary tests of silicon carbide based concretes for hybrid rocket nozzles in a solar furnace

    Science.gov (United States)

    D'Elia, Raffaele; Bernhart, Gérard; Cutard, Thierry; Peraudeau, Gilles; Balat-Pichelin, Marianne

    2014-06-01

    This research is part of the PERSEUS project, a space program concerning hybrid propulsion and supported by CNES. The main goal of this study is to characterise silicon carbide based micro-concrete with a maximum aggregates size of 800 μm, in a hybrid propulsion environment. The nozzle throat has to resist to a highly oxidising polyethylene (PE)/N2O hybrid environment, under temperatures ranging up to 2980 K. The study is divided into two main parts: the first one deals with the thermo-mechanical characterisation of the material up to 1500 K and the second one with an investigation on the oxidation behaviour in a standard atmosphere, under a solar flux up to 13.5 MW/m2. Young's modulus was determined by resonant frequency method: results show an increase with the stabilisation temperature. Four point bending tests have shown a rupture tensile strength increasing with stabilisation temperature, up to 1473 K. Sintering and densification processes are primary causes of this phenomenon. Visco-plastic behaviour appears at 1373 K, due to the formation of liquid phases in cement ternary system. High-temperature oxidation in ambient air was carried out at PROMES-CNRS laboratory, on a 2 kW solar furnace, with a concentration factor of 15,000. A maximum 13.5 MW/m2 incident solar flux and a 7-90 s exposure times have been chosen. Optical microscopy, SEM, EDS analyses were used to determine the microstructure evolution and the mass loss kinetics. During these tests, silicon carbide undergoes active oxidation with production of SiO and CO smokes and ablation. A linear relation between mass loss and time is found. Oxidation tests performed at 13.5 MW/m2 solar flux have shown a mass loss of 10 mg/cm2 after 15 s. After 90 s, the mass loss reaches 60 mg/cm2. Surface temperature measurement is a main point in this study, because of necessity of a thermo-mechanical-ablative model for the material. Smokes appear at around 5.9 MW/m2, leading to the impossibility of useful temperature

  14. Optimizing Decadal and Precursor Science on Small Solar System Bodies with Spacecraft/Rover Hybrids

    Science.gov (United States)

    Pavone, M.; Castillo, J. C.; Hoffman, J. A.; Nesnas, I. A.; Strange, N. J.

    2012-12-01

    In this paper we present a mission architecture for the systematic and affordable in-situ exploration of small Solar System bodies (such as asteroids, comets, and Martian moons). The proposed mission architecture stems from a paradigm-shifting approach whereby small bodies' low gravity is directly exploited in the design process, rather than being faced as a constraint. At a general level, a mother spacecraft (of the type of JPL's NEOSurveyor) would deploy on the surface of a small body one, or several, spacecraft/rover hybrids, which are small (robots enclosing three mutually orthogonal flywheels and surrounded by external spikes (in particular, there is no external propulsion). By accelerating/decelerating the flywheels and by exploiting the low gravity environment, the hybrids would be capable of performing both long excursions (by hopping) and short traverses to specific locations (through a sequence of controlled "tumbles"). Their control would rely on synergistic operations with the mother spacecraft (where most of hybrids' perception and localization functionalities would be hosted), which would make the platforms minimalistic and in turn the entire mission architecture affordable. A fundamental aspect of this mission architecture is that the responsibility for primary science would be shared between the mothership and the hybrids, in particular, the mothership would provide broad area coverage, while the hybrid would zoom in on specific areas and conduct in-situ measurements. Specifically, in the first part of the paper we discuss the scientific rationale behind the proposed mission architecture (including traceability matrices for both the mothership and the hybrids for a number of potential targets), we present preliminary models and laboratory experiments for the hybrids, we present first-order estimates for critical subsystems (e.g., communication, power, thermal) and a preliminary study for synergistic mission operations, and we discuss high

  15. Simulations of hybrid system varying solar radiation and microturbine response time

    Directory of Open Access Journals (Sweden)

    Yolanda Fernández Ribaya

    2015-07-01

    Full Text Available Hybrid power systems, such as combinations of renewable power sources with intermittent power production and non-renewable power sources, theoretically increase the reliability and thus integration of renewable sources in the electrical system. However, a recent increase in the number of hybrid installations has sparked interest in the effects of their connection to the grid, especially in remote areas. This paper analyses a photovoltaic-gas microturbine hybrid system dimensioned to be installed in La Paz (Mexico.The research presented in this paper studies and quantifies the effects on the total electric power produced, varying both the solar radiation and the gas microturbine response time. The gas microturbine and the photovoltaic panels are modelled using Matlab/Simulink software, obtaining a platform where different tests to simulate real conditions have been executed. They consist of diverse ramps of irradiance that replicate solar radiation variations, and different microturbine response times reproduced by the time constants of a first order transfer function that models the microturbine dynamic response. The results obtained show that when radiation varies quickly it does not produce significant differences in the power guarantee or the microturbine gas consumption, to any microturbine response time. However, these two parameters are highly variable with smooth radiance variations. The maximum total power variation decreases greatly as the radiation variation gets lower. In addition, by decreasing the microturbine response time, it is possible to appreciably increase the power guarantee although the maximum power variation and gas consumption increase. Only in cases of low radiation variation is there no appreciable difference in the maximum power variation obtained by the different turbine response times.

  16. Simulations of hybrid system varying solar radiation and microturbine response time

    Science.gov (United States)

    Fernández Ribaya, Yolanda; Álvarez, Eduardo; Paredes Sánchez, José Pablo; Xiberta Bernat, Jorge

    2015-07-01

    Hybrid power systems, such as combinations of renewable power sources with intermittent power production and non-renewable power sources, theoretically increase the reliability and thus integration of renewable sources in the electrical system. However, a recent increase in the number of hybrid installations has sparked interest in the effects of their connection to the grid, especially in remote areas. This paper analyses a photovoltaic-gas microturbine hybrid system dimensioned to be installed in La Paz (Mexico).The research presented in this paper studies and quantifies the effects on the total electric power produced, varying both the solar radiation and the gas microturbine response time. The gas microturbine and the photovoltaic panels are modelled using Matlab/Simulink software, obtaining a platform where different tests to simulate real conditions have been executed. They consist of diverse ramps of irradiance that replicate solar radiation variations, and different microturbine response times reproduced by the time constants of a first order transfer function that models the microturbine dynamic response. The results obtained show that when radiation varies quickly it does not produce significant differences in the power guarantee or the microturbine gas consumption, to any microturbine response time. However, these two parameters are highly variable with smooth radiance variations. The maximum total power variation decreases greatly as the radiation variation gets lower. In addition, by decreasing the microturbine response time, it is possible to appreciably increase the power guarantee although the maximum power variation and gas consumption increase. Only in cases of low radiation variation is there no appreciable difference in the maximum power variation obtained by the different turbine response times.

  17. Simulations of hybrid system varying solar radiation and microturbine response time

    Energy Technology Data Exchange (ETDEWEB)

    Fernández Ribaya, Yolanda, E-mail: fernandezryolanda@uniovi.es; Álvarez, Eduardo; Paredes Sánchez, José Pablo; Xiberta Bernat, Jorge [Department of Energy E.I.M.E.M., University of Oviedo. 13 Independencia Street 2" n" d floor, 36004, Oviedo (Spain)

    2015-07-15

    Hybrid power systems, such as combinations of renewable power sources with intermittent power production and non-renewable power sources, theoretically increase the reliability and thus integration of renewable sources in the electrical system. However, a recent increase in the number of hybrid installations has sparked interest in the effects of their connection to the grid, especially in remote areas. This paper analyses a photovoltaic-gas microturbine hybrid system dimensioned to be installed in La Paz (Mexico).The research presented in this paper studies and quantifies the effects on the total electric power produced, varying both the solar radiation and the gas microturbine response time. The gas microturbine and the photovoltaic panels are modelled using Matlab/Simulink software, obtaining a platform where different tests to simulate real conditions have been executed. They consist of diverse ramps of irradiance that replicate solar radiation variations, and different microturbine response times reproduced by the time constants of a first order transfer function that models the microturbine dynamic response. The results obtained show that when radiation varies quickly it does not produce significant differences in the power guarantee or the microturbine gas consumption, to any microturbine response time. However, these two parameters are highly variable with smooth radiance variations. The maximum total power variation decreases greatly as the radiation variation gets lower. In addition, by decreasing the microturbine response time, it is possible to appreciably increase the power guarantee although the maximum power variation and gas consumption increase. Only in cases of low radiation variation is there no appreciable difference in the maximum power variation obtained by the different turbine response times.

  18. Improved performance of colloidal CdSe quantum dot-sensitized solar cells by hybrid passivation.

    Science.gov (United States)

    Huang, Jing; Xu, Bo; Yuan, Chunze; Chen, Hong; Sun, Junliang; Sun, Licheng; Agren, Hans

    2014-11-12

    A hybrid passivation strategy is employed to modify the surface of colloidal CdSe quantum dots (QDs) for quantum dot-sensitized solar cells (QDSCs), by using mercaptopropionic acid (MPA) and iodide anions through a ligand exchange reaction in solution. This is found to be an effective way to improve the performance of QDSCs based on colloidal QDs. The results show that MPA can increase the coverage of the QDs on TiO2 electrodes and facilitate the hole extraction from the photoxidized QDs, and simultaneously, that the iodide anions can remedy the surface defects of the CdSe QDs and thus reduce the recombination loss in the device. This hybrid passivation treatment leads to a significant enhancement of the power conversion efficiency of the QDSCs by 41%. Furthermore, an optimal ratio of iodide ions to MPA was determined for favorable hybrid passivation; results show that excessive iodine anions are detrimental to the loading of the QDs. This study demonstrates that the improvement in QDSC performance can be realized by using a combination of different functional ligands to passivate the QDs, and that ligand exchange in solution can be an effective approach to introduce different ligands.

  19. Hybrid photovoltaic-thermoelectric system for concentrated solar energy conversion: Experimental realization and modeling

    Science.gov (United States)

    Beeri, Ofer; Rotem, Oded; Hazan, Eden; Katz, Eugene A.; Braun, Avi; Gelbstein, Yaniv

    2015-09-01

    An experimental demonstration of the combined photovoltaic (PV) and thermoelectric conversion of concentrated sunlight (with concentration factor, X, up to ˜300) into electricity is presented. The hybrid system is based on a multi-junction PV cell and a thermoelectric generator (TEG). The latter increases the electric power of the system and dissipates some of the excessive heat. For X ≤ 200, the system's maximal efficiency, ˜32%, was mostly due to the contribution from the PV cell. With increasing X and system temperature, the PV cell's efficiency decreased while that of the TEG increased. Accordingly, the direct electrical contribution of the TEG started to dominate in the total system power, reaching ˜20% at X ≈ 290. Using a simple steady state finite element modeling, the cooling effect of the TEG on the hybrid system's efficiency was proved to be even more significant than its direct electrical contribution for high solar concentrations. As a result, the total efficiency contribution of the TEG reached ˜40% at X ≈ 200. This suggests a new system optimization concept that takes into account the PV cell's temperature dependence and the trade-off between the direct electrical generation and cooling capabilities of the TEG. It is shown that the hybrid system has a real potential to exceed 50% total efficiency by using more advanced PV cells and TE materials.

  20. Conceptual Design of Hybrid Safety Features for NPP by Utilizing Solar Updraft Tower

    Energy Technology Data Exchange (ETDEWEB)

    Song, Sub Lee [Handong Global University, Pohang (Korea, Republic of); Choi, Young Jae; Kim, Yong Jin [KAIST, Daejeon (Korea, Republic of); Park, Hyo Chan; Park, Youn Won [BEES, Daejeon (Korea, Republic of)

    2016-05-15

    In this study, hybrid safety features for NPP with solar updraft tower (SUT) is conceptually suggested to cope with loss of ultimate heat sink accident. The hybrid safety features utilizing SUT target NPPs in seashore of Arabian Gulf. Usually NPPs are constructed near seashore to utilize sea water as an ultimate heat sink. Residual heat or decay heat of nuclear reactor will diffuse into the ocean through the condenser. NPPs in Middle East are expected to be placed in seashore of Arabian Gulf. The NPP site of Barakah is an actual example. For NPPs in seashore of Arabian Gulf, an additional safety concern should be considered. Arabian Gulf is the largest oil transporting route in the world. The oil spill risk in Arabian Gulf will be the largest simultaneously. Unfortunately, not like other oceans, Arabian Gulf is a kind of closed ocean which does not have strong ocean currents connected to out of the gulf. If once oil spill is occurred, its influence can be propagated more than our expectation. The spilled oil also can affect to NPPs in seashore by covering surfaces of condenser. It will directly cause loss of ultimate heat sink. The hybrid safety features of SUT system are expected to aid normal operation of safety system and mitigate consequence of severe accident. Detail analysis and technology development is ongoing now.

  1. Optical Simulation and Experimental Verification of a Fresnel Solar Concentrator with a New Hybrid Second Optical Element

    Directory of Open Access Journals (Sweden)

    Guiqiang Li

    2016-01-01

    Full Text Available Fresnel solar concentrator is one of the most common solar concentrators in solar applications. For high Fresnel concentrating PV or PV/T systems, the second optical element (SOE is the key component for the high optical efficiency at a wider deflection angle, which is important for overcoming unavoidable errors from the tacking system, the Fresnel lens processing and installment technology, and so forth. In this paper, a new hybrid SOE was designed to match the Fresnel solar concentrator with the concentration ratio of 1090x. The ray-tracing technology was employed to indicate the optical properties. The simulation outcome showed that the Fresnel solar concentrator with the new hybrid SOE has a wider deflection angle scope with the high optical efficiency. Furthermore, the flux distribution with different deviation angles was also analyzed. In addition, the experiment of the Fresnel solar concentrator with the hybrid SOE under outdoor condition was carried out. The verifications from the electrical and thermal outputs were all made to analyze the optical efficiency comprehensively. The optical efficiency resulting from the experiment is found to be consistent with that from the simulation.

  2. Theory and hybrid simulations of the radial evolution of the solar wind turbulence

    Science.gov (United States)

    Comisel, Horia; Narita, Yasuhito; Motschmann, Uwe

    2016-04-01

    Solar wind turbulence in the inner heliosphere is believed to evolve in the radial direction away from the Sun driven by various nonlinear processes. When a perturbative treatment is applicable, plasma fluctuations evolve along the dispersion relations while the frequencies deviate from the normal-mode frequency by exciting non-normal modes or sideband waves. Direct numerical simulations of magnetized plasma at the scale of ion gyro-radius or smaller using the hybrid code AIKEF show smooth transitions and evolutions into nonlinear stage with sideband wave excitations. The evolution profile of linear and nonlinear modes as well as the intrinsic nature of wave vector anisotropy can be unambiguously classified according to the values of ion plasma beta. By using a mapping based on a one-dimensional solar wind expansion model, the resulting ion kinetic scale turbulence is related to the solar distance from the Sun. We find that the relevant normal modes such as ion cyclotron and Bernstein mode will occur first at radial distance of about 0.2-0.3 AU, i.e., near the Mercury orbit. Furthermore, a radial dependence of the wave-vector anisotropy is obtained. The predominance of the filament structures highlights the strong impact of Alfvénic waves.

  3. Investigation of Solar Hybrid Electric/Thermal System with Radiation Concentrator and Thermoelectric Generator

    Directory of Open Access Journals (Sweden)

    Edgar Arturo Chávez Urbiola

    2013-01-01

    Full Text Available An experimental study of a solar-concentrating system based on thermoelectric generators (TEGs was performed. The system included an electrical generating unit with 6 serially connected TEGs using a traditional semiconductor material, Bi2Te3, which was illuminated by concentrated solar radiation on one side and cooled by running water on the other side. A sun-tracking concentrator with a mosaic set of mirrors was used; its orientation towards the sun was achieved with two pairs of radiation sensors, a differential amplifier, and two servomotors. The hot side of the TEGs at midday has a temperature of around 200°C, and the cold side is approximately 50°C. The thermosiphon cooling system was designed to absorb the heat passing through the TEGs and provide optimal working conditions. The system generates 20 W of electrical energy and 200 W of thermal energy stored in water with a temperature of around 50°C. The hybrid system studied can be considered as an alternative to photovoltaic/thermal systems, especially in countries with abundant solar radiation, such as Mexico, China, and India.

  4. Enhancing Intrinsic Stability of Hybrid Perovskite Solar Cell by Strong, yet Balanced, Electronic Coupling

    Science.gov (United States)

    El-Mellouhi, Fedwa; Bentria, El Tayeb; Rashkeev, Sergey N.; Kais, Sabre; Alharbi, Fahhad H.

    2016-07-01

    In the past few years, the meteoric development of hybrid organic–inorganic perovskite solar cells (PSC) astonished the community. The efficiency has already reached the level needed for commercialization; however, the instability hinders its deployment on the market. Here, we report a mechanism to chemically stabilize PSC absorbers. We propose to replace the widely used methylammonium cation (CH3NH3+) by alternative molecular cations allowing an enhanced electronic coupling between the cation and the PbI6 octahedra while maintaining the band gap energy within the suitable range for solar cells. The mechanism exploits establishing a balance between the electronegativity of the materials’ constituents and the resulting ionic electrostatic interactions. The calculations demonstrate the concept of enhancing the electronic coupling, and hence the stability, by exploring the stabilizing features of CH3PH3+, CH3SH2+, and SH3+ cations, among several other possible candidates. Chemical stability enhancement hence results from a strong, yet balanced, electronic coupling between the cation and the halides in the octahedron. This shall unlock the hindering instability problem for PSCs and allow them to hit the market as a serious low-cost competitor to silicon based solar cell technologies.

  5. Enhancing Intrinsic Stability of Hybrid Perovskite Solar Cell by Strong, yet Balanced, Electronic Coupling

    Science.gov (United States)

    El-Mellouhi, Fedwa; Bentria, El Tayeb; Rashkeev, Sergey N.; Kais, Sabre; Alharbi, Fahhad H.

    2016-01-01

    In the past few years, the meteoric development of hybrid organic–inorganic perovskite solar cells (PSC) astonished the community. The efficiency has already reached the level needed for commercialization; however, the instability hinders its deployment on the market. Here, we report a mechanism to chemically stabilize PSC absorbers. We propose to replace the widely used methylammonium cation (CH3NH3+) by alternative molecular cations allowing an enhanced electronic coupling between the cation and the PbI6 octahedra while maintaining the band gap energy within the suitable range for solar cells. The mechanism exploits establishing a balance between the electronegativity of the materials’ constituents and the resulting ionic electrostatic interactions. The calculations demonstrate the concept of enhancing the electronic coupling, and hence the stability, by exploring the stabilizing features of CH3PH3+, CH3SH2+, and SH3+ cations, among several other possible candidates. Chemical stability enhancement hence results from a strong, yet balanced, electronic coupling between the cation and the halides in the octahedron. This shall unlock the hindering instability problem for PSCs and allow them to hit the market as a serious low-cost competitor to silicon based solar cell technologies. PMID:27457130

  6. Material effects in manufacturing of silicon based solar cells and modules

    Energy Technology Data Exchange (ETDEWEB)

    Schieferdecker, Anja; Sachse, Jens-Uwe; Mueller, Torsten; Seidel, Ulf; Bartholomaeus, Lars; Germershausen, Sven; Perras, Reinhold; Meissner, Rita; Hoebbel, Helmut; Schenke, Andreas; Bhatti, A.K.; Kuesters, Karl Heinz [Conergy Solar Module GmbH and Co. KG, Conergy Str. 8, 15236 Frankfurt/Oder (Germany); Richter, Hans [IHP, Im Technologiepark 25, 15236 Frankfurt/Oder (Germany); GFWW, Im Technologiepark 1, 15236 Frankfurt/Oder (Germany)

    2011-03-15

    The performance and efficiency of solar cells depends strongly on influence of materials. Key topics for solar cell optimisation are presently silicon material properties and materials for cell metallisation. Optimisation of silicon is focussed e.g. on material properties such as impurity content, density of dislocation and grain boundaries in multi-crystalline silicon which influence parameters like carrier lifetime, and therefore the cell efficiency. Improved characterisation methods of solar cells like electroluminescence and photoluminescence are combined with techniques such as thermography and LBIC to improve production process and materials. As a result cell efficiency will be increased. Optimisation of cell metallisation and module interconnects is strongly related to progress in paste materials for front side metallisation. Improved materials enable the use of higher emitter resistance and the printing of smaller metal lines, while reducing the series resistance of the solar cell. Progress in paste materials leads to increased solar cell efficiency for the standard cell process. The introduction of new metal pastes has to be combined with careful optimisation of the process window in soldering during module built-up. (copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  7. Optimization design of hybrid Fresnel-based concentrator for generating uniformity irradiance with the broad solar spectrum

    Science.gov (United States)

    Zhuang, Zhenfeng; Yu, Feihong

    2014-08-01

    This paper presents a novel hybrid Fresnel-based concentrator with improved uniformity irradiance distribution on the solar cell without using secondary optical element (SOE) in the concentrator photovoltaic (CPV) system to overcome the Fresnel loss and to increase the solar cell conversion efficiency. The designed hybrid Fresnel-based concentrator is composed of two parts, the inner part and the outer part. The inner part is the conventional Fresnel lens, while the outer part is double total internal reflection (DTIR) lens. According to the simple geometrical relation, the profile of the proposed hybrid Fresnel-based concentrator is calculated as an initial design profile. To obtain good irradiance uniformity on the solar cell, optimal prism displacements are optimized by using a simplex algorithm for collimated incident sunlight based on different prism focus on different position principles. In addition, a Monte-Carlo ray-tracing simulation approach is utilized to verify the optical performance for the hybrid Fresnel-based concentrator. Results indicate that the hybrid Fresnel-based concentrator designed using this method can achieve spatial non-uniformity less than 16.2%, f-number less than 0.59 (focal length to entry aperture diameter ratio), geometrical concentrator ratio 1759.8×, and acceptance angle ±0.23°. Compared to the conventional Fresnel-based lens and the traditional hybrid Fresnel-based lens, the optimized concentrator yields a significant improvement in irradiance uniformity on the solar cell with a wide solar spectrum range. It also has good tolerance to the incident sunlight.

  8. A hybrid numerical prediction scheme for solar radiation estimation in un-gauged catchments.

    Science.gov (United States)

    Shamim, M. A.; Bray, M.; Ishak, A. M.; Remesan, R.; Han, D.

    2009-09-01

    The importance of solar radiation on earth's surface is depicted in its wide range of applications in the fields of meteorology, agricultural sciences, engineering, hydrology, crop water requirements, climatic changes and energy assessment. It is quite random in nature as it has to go through different processes of assimilation and dispersion while on its way to earth. Compared to other meteorological parameters, solar radiation is quite infrequently measured, for example, the worldwide ratio of stations collecting solar radiation to those collecting temperature is 1:500 (Badescu, 2008). Researchers, therefore, have to rely on indirect techniques of estimation that include nonlinear models, artificial intelligence (e.g. neural networks), remote sensing and numerical weather predictions (NWP). This study proposes a hybrid numerical prediction scheme for solar radiation estimation in un-gauged catchments. It uses the PSU/NCAR's Mesoscale Modelling system (MM5) (Grell et al., 1995) to parameterise the cloud effect on extraterrestrial radiation by dividing the atmosphere into four layers of very high (6-12 km), high (3-6 km), medium (1.5-3) and low (0-1.5) altitudes from earth. It is believed that various cloud forms exist within each of these layers. An hourly time series of upper air pressure and relative humidity data sets corresponding to all of these layers is determined for the Brue catchment, southwest UK, using MM5. Cloud Index (CI) was then determined using (Yang and Koike, 2002): 1 p?bi [ (Rh - Rh )] ci =------- max 0.0,---------cri dp pbi - ptipti (1- Rhcri) where, pbi and pti represent the air pressure at the top and bottom of each layer and Rhcri is the critical value of relative humidity at which a certain cloud type is formed. Output from a global clear sky solar radiation model (MRM v-5) (Kambezidis and Psiloglu, 2008) is used along with meteorological datasets of temperature and precipitation and astronomical information. The analysis is aided by the

  9. Hybrid utilization of solar energy. Part 2. Performance analyses of heating system with air hybrid collector; Taiyo energy no hybrid riyo ni kansuru kenkyu. 2. Kuki shunetsu hybrid collector wo mochiita danbo system no seino hyoka

    Energy Technology Data Exchange (ETDEWEB)

    Yoshinaga, M.; Okumiya, M. [Nagoya University, Nagoya (Japan)

    1996-10-27

    For the effective utilization of solar energy at houses, a heating system using an air hybrid collector (capable of simultaneously performing heat collection and photovoltaic power generation). As the specimen house, a wooden house of a total floor area of 120m{sup 2} was simulated. Collected air is fanned into a crushed stone heat accumulator (capable of storing one day`s collection) or into a living room. The output of solar cell arrays is put into a heat pump (capable of handling a maximum hourly load of 36,327kJ/h) via an inverter so as to drive the fan (corresponding to average insolation on the heat collecting plate of 10.7MJ/hm{sup 2} and heat collecting efficiency of 40%), and shortage in power if any is supplied from the system interconnection. A hybrid collector, as compared with the conventional air collector, is lower in thermal efficiency but the merit that it exhibits with respect to power generation is far greater than what is needed to counterbalance the demerit. When the hybrid system is in heating operation, there is an ideal heat cycle of collection, accumulation, and radiation when the load is light, but the balance between accumulation and radiation is disturbed when the load is heavy. 4 refs., 8 figs., 3 tabs.

  10. Manufacture method of CuInSe sub 2 solar cell. CuInSe sub 2 taiyo denchi no seizo hoho

    Energy Technology Data Exchange (ETDEWEB)

    Watanabe, Y. (Fuji Electric Co. Ltd., Tokyo (Japan))

    1992-04-28

    Energy conversion efficiency of CdS/CuInSe{sub 2} solar cell is very sensitive to a ratio of Cu/In composition and its control is important on manufacture of the cell. The invention aims to provide a CuInSe{sub 2} thin film solar cell and its manufacture method to give a prescribed Cu/In compositional ratio precisely and to enable production of large area cell and low cost. The invention concerns a manufacture method of a CuInSe{sub 2} solar cell, in which Cu-In alloy foil with a prescribed ratio of Cu/In composition is prepared and pressed onto the electrode film on the substrate surface to form a alloy film with a prescribed thickness, on which selenium is deposited from vapor and heated to form a CuInSe{sub 2} film. CdS is stacked on the CuInSe{sub 2} film to form a photovoltaic conversion layer and to afford a CdS/CuInSe{sub 2} solar cell. Zinc oxide may be stacked on the above CdS film and a film made of a transparent conductive material is stacked on the zinc oxide layer to give a solar cell. The invention also includes a manufacturing method in which ZnCdS film is formed on the CuInSe{sub 2} film prepared by the above method. 3 figs.

  11. Torsional Behaviour and Finite Element Analysis of the Hybrid Laminated Composite Shafts: Comparison of VARTM with Vacuum Bagging Manufacturing Method

    Directory of Open Access Journals (Sweden)

    Mehmet Emin Taşdelen

    2016-01-01

    Full Text Available Braided sleeve composite shafts are produced and their torsional behavior is investigated. The braided sleeves are slid over an Al tube to create very strong and rigid tubular form shafts and they are in the form of 2/2 twill biaxial fiber fabric that has been woven into a continuous sleeve. Carbon and glass fibers braided sleeves are used for the fabrication of the composite shafts. VARTM (vacuum assisted resin transfer molding and Vacuum Bagging are the two different types of manufacturing methods used in the study. Torsional behaviors of the shafts are investigated experimentally in terms of fabrication methods and various composite materials parameters such as fiber types, layer thickness, and ply angles. Comparing the two methods in terms of the torque forces and strain angles, the shafts producing entirely carbon fiber show the highest torque capacities; however, considering the cost and performance criteria, the hybrid shaft made up of carbon and glass fibers is the optimum solution for average demanded properties. Additionally, FE (finite element model of the shafts was created and analyzed by using ANSYS workbench environment. Results of finite element analysis are compared with the values of twisting angle and torque obtained by experimental tests.

  12. Three-dimensional numerical analysis of hybrid heterojunction silicon wafer solar cells with heterojunction rear point contacts

    Directory of Open Access Journals (Sweden)

    Zhi Peng Ling

    2015-07-01

    Full Text Available This paper presents a three-dimensional numerical analysis of homojunction/heterojunction hybrid silicon wafer solar cells, featuring front-side full-area diffused homojunction contacts and rear-side heterojunction point contacts. Their device performance is compared with conventional full-area heterojunction solar cells as well as conventional diffused solar cells featuring locally diffused rear point contacts, for both front-emitter and rear-emitter configurations. A consistent set of simulation input parameters is obtained by calibrating the simulation program with intensity dependent lifetime measurements of the passivated regions and the contact regions of the various types of solar cells. We show that the best efficiency is obtained when a-Si:H is used for rear-side heterojunction point-contact formation. An optimization of the rear contact area fraction is required to balance between the gains in current and voltage and the loss in fill factor with shrinking rear contact area fraction. However, the corresponding optimal range for the rear-contact area fraction is found to be quite large (e.g. 20-60 % for hybrid front-emitter cells. Hybrid rear-emitter cells show a faster drop in the fill factor with decreasing rear contact area fraction compared to front-emitter cells, stemming from a higher series resistance contribution of the rear-side a-Si:H(p+ emitter compared to the rear-side a-Si:H(n+ back surface field layer. Overall, we show that hybrid silicon solar cells in a front-emitter configuration can outperform conventional heterojunction silicon solar cells as well as diffused solar cells with rear-side locally diffused point contacts.

  13. Establishment of a production-ready manufacturing process utilizing thin silicon substrates for solar cells. Final report. Motorola report No. 2364/4

    Energy Technology Data Exchange (ETDEWEB)

    Pryor, R. A.

    1980-10-01

    Three inch diameter Czochralski silicon substrates sliced directly to 5 mil, 8 mil, and 27 mil thicknesses with wire saw techniques were procured. Processing sequences incorporating either diffusion or ion implantation technologies were employed to produce n+p or n+pp+ solar cell structures. These cells were evaluated for performance, ease of fabrication, and cost effectiveness. It was determined that the use of 7 mil or even 4 mil wafers would provide near term cost reductions for solar cell manufacturers.

  14. Progress in the manufacture of the cable-in-conduit Nb{sub 3}Sn outsert coils for the 45 Tesla Hybrid Magnet

    Energy Technology Data Exchange (ETDEWEB)

    Painter, T.A.; Miller, J.R.; Summers, L.T. [Florida State Univ., Tallahassee, FL (United States). National High Magnetic Field Lab.] [and others

    1994-07-01

    The 45 Tesla Hybrid Magnet is being built in a collaborative effort between the National High Magnetic Field Laboratory at Florida State University and the Francis Bitter National Magnet Laboratory at the Massachusetts Institute of Technology. The Hybrid Magnet combines a resistive insert magnet with two Nb3Sn and one NbTi superconducting cable-in-conduit outsert coil to produce the required field on axis. The Nb3Sn outsert coils are being built at Intermagnetics General Corporation under contract with FSU. A design summary for the entire 100 MJ outsert magnet is presented. The design criteria and manufacturing status for the two Nb3Sn outsert coils are described.

  15. Optimization of hybrid organic/inorganic poly(3-hexylthiophene-2,5-diyl)/silicon solar cells

    Science.gov (United States)

    Weingarten, Martin; Sanders, Simon; Stümmler, Dominik; Pfeiffer, Pascal; Vescan, Andrei; Kalisch, Holger

    2016-04-01

    In the last years, hybrid organic/silicon solar cells have attracted great interest in photovoltaic research due to their potential to become a low-cost alternative for the conventionally used silicon pn-junction solar cells. This work is focused on hybrid solar cells based on the polymer poly(3-hexylthiophene-2,5-diyl), which was deposited on n-doped crystalline silicon via spin-coating under ambient conditions. By employing an anisotropic etching step with potassium hydroxide (KOH), the reflection losses at the silicon surface were reduced. Hereby, the short-circuit current density of the hybrid devices was increased by 31%, leading to a maximum power conversion efficiency (PCE) of 13.1% compared to a PCE of 10.7% for the devices without KOH etching. In addition, the contacts were improved by replacing gold with the more conductive silver as top grid material to reduce the contact resistance and by introducing a thin (˜0.5 nm) lithium fluoride layer between the silicon and the aluminum backside contact to improve electron collection and hole blocking. Hereby, the open-circuit voltage and the fill factor of the hybrid solar cells were further improved and devices with very high PCE up to 14.2% have been realized.

  16. N-type polymers as electron extraction layers in hybrid perovskite solar cells with improved ambient stability

    NARCIS (Netherlands)

    Shao, S.; Chen, Z.; Fang, H. -H.; ten Brink, G. H.; Bartesaghi, D.; Adjokatse, S.; Koster, L. J. A.; Kooi, B. J.; Facchetti, A.; Loi, M. A.

    2016-01-01

    We studied three n-type polymers of the naphthalenediimide-bithiophene family as electron extraction layers (EELs) in hybrid perovskite solar cells. The recombination mechanism in these devices is found to be heavily influenced by the EEL transport properties. The maximum efficiency of the devices u

  17. Unsymmetrical triphenylamine-oligothiophene hybrid conjugated systems as donor materials for high-voltage solution-processed organic solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Ripaud, Emilie; Rousseau, Theodulf; Leriche, Philippe; Roncali, Jean [Group Linear Conjugated Systems, CNRS Moltech-Anjou, University of Angers, 2Bd Lavoisier, 49045 Angers (France)

    2011-07-15

    The synthesis of unsymmetrical triphenylamine-oligothiophene hybrid conjugated systems bearing dicyanovinyl electron acceptor end-groups is presented. When used as molecular donor materials in solution-processed bulk heteroj-unction solar cells, these compounds lead to efficient devices with very high open-circuit voltages. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  18. Novel R2R Manufacturable Photonic-Enhanced Thin Film Solar Cells; January 28, 2010 -- January 31, 2011

    Energy Technology Data Exchange (ETDEWEB)

    Slafer, D.; Dalal, V.

    2012-03-01

    Final subcontract report for PV Incubator project 'Novel R2R Manufacturable Photonic-Enhanced Thin Film Solar Cells.' The goal of this program was to produce tandem Si cells using photonic bandgap enhancement technology developed at ISU and Lightwave Power that would have an NREL-verified efficiency of 7.5% on 0.25 cm{sup 2} area tandem junction cell on plastic substrates. This goal was met and exceeded within the timeframe and budget of the program. On smaller area cells, the efficiency was even higher, {approx}9.5% (not verified by NREL). Appropriate polymers were developed to fabricate photonic and plasmonic devices on stainless steel, Kapton and PEN substrates. A novel photonic-plasmon structure was developed which shows a promise of improving light absorption in thin film cells, a better light absorption than by any other scheme.

  19. Toward High-Performance Organic-Inorganic Hybrid Solar Cells: Bringing Conjugated Polymers and Inorganic Nanocrystals in Close Contact.

    Science.gov (United States)

    He, Ming; Qiu, Feng; Lin, Zhiqun

    2013-06-06

    Organic-inorganic hybrid solar cells composed of conjugated polymers (CPs) and inorganic nanocrystal (NC) semiconductors have garnered considerable attention as a potential alternative to traditional silicon solar cells due to the capacity of producing high-efficiency solar energy in a cost-effective manner. The combination of advantageous characteristics of CPs and NCs enables the construction of nanostructured high-performance, lightweight, flexible, large-area, and low-cost hybrid solar cells. However, it remains a grand challenge to control the film morphology and interfacial structure of such organic/inorganic semiconductor blends on the nanoscale. In this Perspective, we highlight the strategies of implementing close contact between CPs and NCs by tailoring the colloidal synthesis, the coordination reaction, and the chemical modification of CPs. As such, they offer promising opportunities for rationally controlling the phase separation between electron-donating CPs and electron-accepting NCs, increasing the interfacial areas between them, enhancing their electronic interaction, and thus substantially promoting the photovoltaic performance of the resulting organic-inorganic hybrid solar cells.

  20. Si Hybrid Solar Cells with 13% Efficiency via Concurrent Improvement in Optical and Electrical Properties by Employing Graphene Quantum Dots

    KAUST Repository

    Tsai, Meng Lin

    2015-12-18

    By employing graphene quantum dots (GQDs) in PEDOT:PSS, we have achieved an efficiency of 13.22% in Si/PEDOT:PSS hybrid solar cells. The efficiency enhancement is based on concurrent improvement in optical and electrical properties by the photon downconversion process and the improved conductivity of PEDOT:PSS via appropriate incorporation of GQDs. After introducing GQDs into PEDOT:PSS, the short circuit current and the fill factor of rear-contact optimized hybrid cells are increased from 32.11 to 36.26 mA/cm and 62.85% to 63.87%, respectively. The organic-inorganic hybrid solar cell obtained herein holds the promise for developing photon-managing, low-cost, and highly efficient photovoltaic devices.

  1. Preparation of SnS2 colloidal quantum dots and their application in organic/inorganic hybrid solar cells

    Science.gov (United States)

    Tan, Furui; Qu, Shengchun; Wu, Ju; Liu, Kong; Zhou, Shuyun; Wang, Zhanguo

    2011-12-01

    Dispersive SnS2 colloidal quantum dots have been synthesized via hot-injection method. Hybrid photovoltaic devices based on blends of a conjugated polymer poly[2-methoxy-5-(3",7"dimethyloctyloxy)-1,4-phenylenevinylene] (MDMO-PPV) as electron donor and crystalline SnS2 quantum dots as electron acceptor have been studied. Photoluminescence measurement has been performed to study the surfactant effect on the excitons splitting process. The photocurrent of solar cells with the hybrid depends greatly on the ligands exchange as well as the device heat treatment. AFM characterization has demonstrated morphology changes happening upon surfactant replacement and annealing, which can explain the performance variation of hybrid solar cells.

  2. Papery solar cells based on dielectric/metal hybrid transparent cathode

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Fei; Chen, Zhijian; Xiao, Lixin; Qu, Bo; Gong, Qihuang [State Key Laboratory for Mesoscopic Physics and Department of Physics, Peking University, Beijing 100871 (China)

    2010-07-15

    Poly(3-hexylthiophene) (P3HT):1-(3-methoxycarbonyl)-propyl-1-phenyl-(6,6)C{sub 61} (PCBM) photovoltaic devices based on ordinary paper as substrate were fabricated. Au layer deposited on paper by RF magnetron sputtering was used as anode. The hybrid layer of LiF co-evaporated with Al was used for transparent cathode, and the light transmittance could reach to {proportional_to}70%. By optimizing the mass proportion of LiF and Al, we could get the best papery solar cells with the short current density and open circuit voltage 0.1 mA/cm{sup 2} and 0.39 V, respectively. The corresponding power conversion efficiency was measured to be 0.13 permille illuminated with 100 mW/cm{sup 2} air mass 1.5 global (AM 1.5 G) simulated sunlight. (author)

  3. Molecular ferroelectric contributions to anomalous hysteresis in hybrid perovskite solar cells

    Directory of Open Access Journals (Sweden)

    Jarvist M. Frost

    2014-08-01

    Full Text Available We report a model describing the molecular orientation disorder in CH3NH3PbI3, solving a classical Hamiltonian parametrised with electronic structure calculations, with the nature of the motions informed by ab initio molecular dynamics. We investigate the temperature and static electric field dependence of the equilibrium ferroelectric (molecular domain structure and resulting polarisability. A rich domain structure of twinned molecular dipoles is observed, strongly varying as a function of temperature and applied electric field. We propose that the internal electrical fields associated with microscopic polarisation domains contribute to hysteretic anomalies in the current-voltage response of hybrid organic-inorganic perovskite solar cells due to variations in electron-hole recombination in the bulk.

  4. Evidence for ion migration in hybrid perovskite solar cells with minimal hysteresis.

    Science.gov (United States)

    Calado, Philip; Telford, Andrew M; Bryant, Daniel; Li, Xiaoe; Nelson, Jenny; O'Regan, Brian C; Barnes, Piers R F

    2016-12-22

    Ion migration has been proposed as a possible cause of photovoltaic current-voltage hysteresis in hybrid perovskite solar cells. A major objection to this hypothesis is that hysteresis can be reduced by changing the interfacial contact materials; however, this is unlikely to significantly influence the behaviour of mobile ionic charge within the perovskite phase. Here, we show that the primary effects of ion migration can be observed regardless of whether the contacts were changed to give devices with or without significant hysteresis. Transient optoelectronic measurements combined with device simulations indicate that electric-field screening, consistent with ion migration, is similar in both high and low hysteresis CH3NH3PbI3 cells. Simulation of the photovoltage and photocurrent transients shows that hysteresis requires the combination of both mobile ionic charge and recombination near the perovskite-contact interfaces. Passivating contact recombination results in higher photogenerated charge concentrations at forward bias which screen the ionic charge, reducing hysteresis.

  5. Thin-Film Multilayer Filter Designs For Hybrid Solar Energy Conversion Systems

    Science.gov (United States)

    DeSandre, L.; Song, D. Y.; Macleod, H. A.; Jacobson, M. R.; Osborn, D. E.

    1985-12-01

    The efficiency of hybrid photothermal/photovoltaic energy conversion can be increased by separating the solar spectrum into portions matched to the photothermal and photovoltaic processes. Thin-film multilayer filters can implement this concept; five such filters consisting of all-dielectric or metal-dielectric layers have been designed. The transmission profile of each design is calculated by computer, considering dispersion, absorption, and angle of incidence effects. These profiles are compared and evaluated with respect to the desired spectral performance. The most successful candidate design is an optical minus filter consisting of Ti02, Zr02, and Si02. Results show very sharp selection of the targeted photovoltaic spectral region and low ripple in the transmission region outside the bandstop.

  6. Molecular ferroelectric contributions to anomalous hysteresis in hybrid perovskite solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Frost, Jarvist M.; Butler, Keith T.; Walsh, Aron, E-mail: a.walsh@bath.ac.uk [Centre for Sustainable Chemical Technologies and Department of Chemistry, University of Bath, Claverton Down, Bath BA2 7AY (United Kingdom)

    2014-08-01

    We report a model describing the molecular orientation disorder in CH{sub 3}NH{sub 3}PbI{sub 3}, solving a classical Hamiltonian parametrised with electronic structure calculations, with the nature of the motions informed by ab initio molecular dynamics. We investigate the temperature and static electric field dependence of the equilibrium ferroelectric (molecular) domain structure and resulting polarisability. A rich domain structure of twinned molecular dipoles is observed, strongly varying as a function of temperature and applied electric field. We propose that the internal electrical fields associated with microscopic polarisation domains contribute to hysteretic anomalies in the current-voltage response of hybrid organic-inorganic perovskite solar cells due to variations in electron-hole recombination in the bulk.

  7. Anomalous photovoltaic effect in organic-inorganic hybrid perovskite solar cells

    Science.gov (United States)

    Yuan, Yongbo; Li, Tao; Wang, Qi; Xing, Jie; Gruverman, Alexei; Huang, Jinsong

    2017-01-01

    Organic-inorganic hybrid perovskites (OIHPs) have been demonstrated to be highly successful photovoltaic materials yielding very-high-efficiency solar cells. We report the room temperature observation of an anomalous photovoltaic (APV) effect in lateral structure OIHP devices manifested by the device’s open-circuit voltage (VOC) that is much larger than the bandgap of OIHPs. The persistent VOC is proportional to the electrode spacing, resembling that of ferroelectric photovoltaic devices. However, the APV effect in OIHP devices is not caused by ferroelectricity. The APV effect can be explained by the formation of tunneling junctions randomly dispersed in the polycrystalline films, which allows the accumulation of photovoltage at a macroscopic level. The formation of internal tunneling junctions as a result of ion migration is visualized with Kelvin probe force microscopy scanning. This observation points out a new avenue for the formation of large and continuously tunable VOC without being limited by the materials’ bandgap. PMID:28345043

  8. Interface electric properties of Si/organic hybrid solar cells using impedance spectroscopy analysis

    Science.gov (United States)

    Wang, Dan; Zhu, Juye; Ding, Li; Gao, Pingqi; Pan, Xiaoyin; Sheng, Jiang; Ye, Jichun

    2016-05-01

    The internal resistance and capacitance of Si/organic hybrid solar cells (Si-HSC) based on poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) are investigated by electrochemical impedance spectroscopy (EIS). Three types of Nyquist plots in Si-HSC are observed firstly at different bias voltages, while suitable equivalent circuit models are established to evaluate the details of interface carrier transfer and recombination. In particular, the carrier transport property of the PEDOT:PSS film responds at a high frequency (6 × 104-1 × 106 Hz) in three-arc spectra. Therefore, EIS could help us deeply understand the electronic properties of Si-HSC for developing high performance devices.

  9. Evidence for ion migration in hybrid perovskite solar cells with minimal hysteresis

    Science.gov (United States)

    Calado, Philip; Telford, Andrew M.; Bryant, Daniel; Li, Xiaoe; Nelson, Jenny; O'Regan, Brian C.; Barnes, Piers R. F.

    2016-12-01

    Ion migration has been proposed as a possible cause of photovoltaic current-voltage hysteresis in hybrid perovskite solar cells. A major objection to this hypothesis is that hysteresis can be reduced by changing the interfacial contact materials; however, this is unlikely to significantly influence the behaviour of mobile ionic charge within the perovskite phase. Here, we show that the primary effects of ion migration can be observed regardless of whether the contacts were changed to give devices with or without significant hysteresis. Transient optoelectronic measurements combined with device simulations indicate that electric-field screening, consistent with ion migration, is similar in both high and low hysteresis CH3NH3PbI3 cells. Simulation of the photovoltage and photocurrent transients shows that hysteresis requires the combination of both mobile ionic charge and recombination near the perovskite-contact interfaces. Passivating contact recombination results in higher photogenerated charge concentrations at forward bias which screen the ionic charge, reducing hysteresis.

  10. Molecular ferroelectric contributions to anomalous hysteresis in hybrid perovskite solar cells

    Science.gov (United States)

    Frost, Jarvist M.; Butler, Keith T.; Walsh, Aron

    2014-08-01

    We report a model describing the molecular orientation disorder in CH3NH3PbI3, solving a classical Hamiltonian parametrised with electronic structure calculations, with the nature of the motions informed by ab initio molecular dynamics. We investigate the temperature and static electric field dependence of the equilibrium ferroelectric (molecular) domain structure and resulting polarisability. A rich domain structure of twinned molecular dipoles is observed, strongly varying as a function of temperature and applied electric field. We propose that the internal electrical fields associated with microscopic polarisation domains contribute to hysteretic anomalies in the current-voltage response of hybrid organic-inorganic perovskite solar cells due to variations in electron-hole recombination in the bulk.

  11. Inverted hybrid CdSe-polymer solar cells adopting PEDOT:PSS/MoO3 as dual hole transport layers.

    Science.gov (United States)

    Zhu, Leize; Richardson, Beau J; Yu, Qiuming

    2016-02-07

    Inverted CdSe quantum dots (QDs):poly (3-hexylthiophene) (P3HT) organic/inorganic hybrid solar cells (OIHSCs) with the PSS/MoO3 dual hole transport layers (HTLs) showed superior performance over those with a single HTL of PSS or MoO3. The enhanced electron blocking at the active layer/anode interface as well as the prevention of leakage current accounted for the enhancement in the efficiency of the solar cells with the dual HTLs. By adopting the inverted structure and using the dual HTLs, the resistive losses of the CdSe QDs:P3HT hybrid system at high illumination power were effectively prevented. Further study showed the structure of dual HTLs was applicable to the solar cells with CdSe QDs and nanorods (NRs) blended with poly(thienothiophene-co-benzodithiophenes)7-F20 (PTB7-F20).

  12. Efficient light harvesting by photon downconversion and light trapping in hybrid ZnS nanoparticles/Si nanotips solar cells.

    Science.gov (United States)

    Huang, Chun-Ying; Wang, Di-Yan; Wang, Chun-Hsiung; Chen, Yung-Ting; Wang, Yaw-Tyng; Jiang, You-Ting; Yang, Ying-Jay; Chen, Chia-Chun; Chen, Yang-Fang

    2010-10-26

    A hybrid colloidal ZnS nanoparticles/Si nanotips p-n active layer has been demonstrated to have promising potential for efficient solar spectrum utilization in crystalline silicon-based solar cells. The hybrid solar cell shows an enhancement of 20% in the short-circuit current and approximately 10% in power conversion efficiency compared to its counterpart without integrating ZnS nanoparticles. The enhancement has been investigated by external quantum efficiency, photoluminescence excitation spectrum, photoluminescence, and reflectance to distinct the role of ZnS quantum dots for light harvesting. It is concluded that ZnS nanoparticles not only act as frequency downconversion centers in the ultraviolet region but also serve as antireflection coating for light trapping in the measured spectral regime. Our approach is ready to be extended to many other material systems for the creation of highly efficient photovoltaic devices.

  13. Synthesis of a conjugated pyrrolopyridazinedione–benzodithiophene (PPD–BDT) copolymer and its application in organic and hybrid solar cells

    KAUST Repository

    Knall, Astrid-Caroline

    2017-03-30

    Herein, we describe the synthesis and characterization of a conjugated donor–acceptor copolymer consisting of a pyrrolopyridazinedione (PPD) acceptor unit, and a benzodithiophene (BDT) donor unit. The polymerization was done via a Stille cross-coupling polycondensation. The resulting PPD–BDT copolymer revealed an optical bandgap of 1.8 eV and good processability from chlorobenzene solutions. In an organic solar cell in combination with PC70BM, the polymer led to a power conversion efficiency of 4.5%. Moreover, the performance of the copolymer was evaluated in polymer/nanocrystal hybrid solar cells using non-toxic CuInS2 nanocrystals as inorganic phase, which were prepared from precursors directly in the polymer matrix without using additional capping ligands. The PPD–BDT/CuInS2 hybrid solar cells showed comparably high photovoltages and a power conversion efficiency of 2.2%.Graphical abstract

  14. Novel Hybrid Ligands for Passivating PbS Colloidal Quantum Dots to Enhance the Performance of Solar Cells

    Institute of Scientific and Technical Information of China (English)

    Yuehua Yang; Baofeng Zhao; Yuping Gao; Han Liu; Yiyao Tian; Donghuan Qin; Hongbin Wu; Wenbo Huang; Lintao Hou

    2015-01-01

    We developed novel hybrid ligands to passivate PbS colloidal quantum dots (CQDs), and two kinds of solar cells based on as-synthesized CQDs were fabricated to verify the passivation effects of the ligands. It was found that the ligands strongly affected the optical and electrical properties of CQDs, and the performances of solar cells were enhanced strongly. The optimized hybrid ligands, oleic amine/octyl-phosphine acid/CdCl2 improved power conversion efficiency (PCE) to much higher of 3.72%for Schottky diode cell and 5.04%for p–n junction cell. These results may be beneficial to design passivation strategy for low-cost and high-performance CQDs solar cells.

  15. Solar cells with low cost substrates, process of making same and article of manufacture

    Science.gov (United States)

    Mitchell, K.W.

    A solar cell is disclosed having a substrate and an intermediate recrystallized film and a semiconductor material capable of absorbing light with the substrate being selected from one of a synthetic organic resin, graphite, glass and a crystalline material having a grain size less than about 1 micron/sup 2/. The intermediate recrystallized film has a grain size in the range of from about 10 microns/sup 2/ to about 10,000 microns/sup 2/ and a lattice mismatch with the semiconductor material not greater than about 4%. The semiconductor material has a grain size not less than about 10 microns/sup 2/. An anti-reflective layer and electrical contact means are provided. Also disclosed is a subcombination of substrate, intermediate recrystallized film and semiconductor material. Also, methods of formulating the solar cell and subcombination are disclosed.

  16. Extraterrestrial fiberglass production using solar energy. [lunar plants or space manufacturing facilities

    Science.gov (United States)

    Ho, D.; Sobon, L. E.

    1979-01-01

    A conceptual design is presented for fiberglass production systems in both lunar and space environments. The raw material, of lunar origin, will be plagioclase concentrate, high silica content slag, and calcium oxide. Glass will be melted by solar energy. The multifurnace in the lunar plant and the spinning cylinder in the space plant are unique design features. Furnace design appears to be the most critical element in optimizing system performance. A conservative estimate of the total power generated by solar concentrators is 1880 kW; the mass of both plants is 120 tons. The systems will reproduce about 90 times their total mass in fiberglass in 1 year. A new design concept would be necessary if glass rods were produced in space.

  17. Techno-economic assessment of a solar PV, fuel cell, and biomass gasifier hybrid energy system

    Directory of Open Access Journals (Sweden)

    Anand Singh

    2016-11-01

    Full Text Available The interest of power is expanding step by step all through the world. Because of constrained measure of fossil fuel, it is vital to outline some new non-renewable energy frameworks that can diminish the reliance on ordinary energy asset. A hybrid off-grid renewable energy framework might be utilized to reduction reliance on the traditional energy assets. Advancement of crossover framework is a procedure to choose the best mix of part and there cost that can give shabby, solid and successful option energy resource. In this paper sun oriented photovoltaic, fuel cell, biomass gasifier generator set, battery backup and power conditioning unit have been simulated and optimized for educational institute, energy centre, Maulana Azad National Institute of Technology, Bhopal in the Indian state of Madhya Pradesh. The area of the study range on the guide situated of 23°12′N latitude and 77°24′E longitude. In this framework, the essential wellspring of power is sun based solar photovoltaic system and biomass gasifier generator set while fuel cell and batteries are utilized as reinforcement supply. HOMER simulator has been utilized to recreate off the grid and it checks the specialized and financial criteria of this hybrid energy system. The execution of every segment of this framework is dissected lastly delicate examination has been performing to enhance the mixture framework at various conditions. In view of the recreation result, it is found that the cost of energy (COE of a biomass gasifier generator set, solar PV and fuel cell crossover energy system has been found to be 15.064 Rs/kWh and complete net present cost Rs.51,89003. The abundance power in the proposed framework is observed to be 36 kWh/year with zero rates unmet electrical burden.

  18. The analysis of CdS thin film at the processes of manufacturing CdS/CdTe solar cells

    Science.gov (United States)

    Chun, S.; Jung, Y.; Kim, J.; Kim, D.

    2011-07-01

    In sequence, the deposited CdS thin film had undergone physical and optical changes by the processes of manufacturing CdS/CdTe solar cells. CdS thin film was manufactured by the Chemical Bath Deposition (CBD) method. The aqueous solution was based on ammonia solution. The temperature of bath system was 75 °C and deposition time was 50 min. The thickness of deposited CdS thin film was about 200 nm. The substrate was the glass coated with SnO 2:F thin film. The following process was the deposition of CdTe thin film by the Closed-Space-Sublimation (CSS) method. The final process was the CdCl 2 heat treatment at N 2+O 2 atmosphere, and the contrast experiment progressed for CdCl 2-CdS thin film after CSS process at N 2 atmosphere. The phase transition of CdS thin film, stress relaxation and optical band gap narrowing were developed by each process. And so, the formation of cadmium oxide was detected after the CdCl 2 heat treatment. It influenced to increase the optical band gap of CdS thin film. The variation in the structure properties, optical properties and residual stresses of CdS thin film was analyzed by X-ray diffractometer (XRD), Raman spectroscopy and ultraviolet (UV)-visible (VIS) spectroscopy.

  19. Implementation of an advanced hybrid MPC-PID control system using PAT tools into a direct compaction continuous pharmaceutical tablet manufacturing pilot plant.

    Science.gov (United States)

    Singh, Ravendra; Sahay, Abhishek; Karry, Krizia M; Muzzio, Fernando; Ierapetritou, Marianthi; Ramachandran, Rohit

    2014-10-01

    It is desirable for a pharmaceutical final dosage form to be manufactured through a quality by design (QbD)-based approach rather than a quality by testing (QbT) approach. An automatic feedback control system coupled with PAT tools that is part of the QbD paradigm shift, has the potential to ensure that the pre-defined end product quality attributes are met in a time and cost efficient manner. In this work, an advanced hybrid MPC-PID control architecture coupled with real time inline/online monitoring tools and principal components analysis (PCA) based additional supervisory control layer has been proposed for a continuous direct compaction tablet manufacturing process. The advantages of both MPC and PID have been utilized in a hybrid scheme. The control hardware and software integration and implementation of the control system has been demonstrated using feeders and blending unit operation of a continuous tablet manufacturing pilot plant and an NIR based PAT tool. The advanced hybrid MPC-PID control scheme leads to enhanced control loop performance of the critical quality attributes in comparison to a regulatory (e.g. PID) control scheme indicating its potential to improve pharmaceutical product quality.

  20. Solution-processed hybrid cathode interlayer for inverted organic solar cells.

    Science.gov (United States)

    Wu, Yulei; Zhang, Wenjun; Li, Xiaodong; Min, Chao; Jiu, Tonggang; Zhu, Yuejin; Dai, Ning; Fang, Junfeng

    2013-11-13

    A novel hybrid material CdS/2,9-Dimethyl-4,7-diphenyl-1,10-phenanthroline (CdS·BCP) was prepared from the decomposition of its organic soluble precursor complex Cd(S2COEt)2·(BCP) by low-temperature treatment. CdS·BCP, which integrated the favorable properties of solvent durability, and high electron mobility of CdS as well as the good hole blocking property of BCP, was designed and developed as the interface modification material to improve electron collection in bulk heterojunction organic solar cells (OSCs). The inverted OSCs with CdS·BCP as buffer layer on ITO showed improved efficiency compared with the pure CdS or BCP. Devices with CdS·BCP as interlayer exhibited excellent stability, only 14.19% decay of power conversion efficiencies (PCEs) was observed (from 7.47% to 6.41%) after stored in glovebox for 3264 h (136 days). Our results demonstrate promising potentials of hybrid materials as the interface modification layers in OSCs, and provide new insights for the development of new interface modification materials in the future.

  1. A high temperature hybrid photovoltaic-thermal receiver employing spectral beam splitting for linear solar concentrators

    Science.gov (United States)

    Mojiri, Ahmad; Stanley, Cameron; Rosengarten, Gary

    2015-09-01

    Hybrid photovoltaic/thermal (PV-T) solar collectors are capable of delivering heat and electricity concurrently. Implementing such receivers in linear concentrators for high temperature applications need special considerations such as thermal decoupling of the photovoltaic (pv) cells from the thermal receiver. Spectral beam splitting of concentrated light provides an option for achieving this purpose. In this paper we introduce a relatively simple hybrid receiver configuration that spectrally splits the light between a high temperature thermal fluid and silicon pv cells using volumetric light filtering by semi-conductor doped glass and propylene glycol. We analysed the optical performance of this device theoretically using ray tracing and experimentally through the construction and testing of a full scale prototype. The receiver was mounted on a commercial parabolic trough concentrator in an outdoor experiment. The prototype receiver delivered heat and electricity at total thermal efficiency of 44% and electrical efficiency of 3.9% measured relative to the total beam energy incident on the primary mirror.

  2. Pyramidal texturing of silicon surface via inorganic-organic hybrid alkaline liquor for heterojunction solar cells

    Science.gov (United States)

    Wang, Fengyou; Zhang, Xiaodan; Wang, Liguo; Jiang, Yuanjian; Wei, Changchun; Zhao, Ying

    2015-10-01

    We demonstrate a new class of silicon texturing approach based on inorganic (sodium hydroxide, NaOH) and organic (tetramethylammonium hydroxide, TMAH) alkaline liquor etching processes for photovoltaic applications. The first stage of inorganic alkaline etching textures the silicon surface rapidly with large pyramids and reduces the cost. The subsequent organic alkaline second-etching improves the coverage of small pyramids on the silicon surface and strip off the metallic contaminants produced by the first etching step. In addition, it could smoothen the surface of the pyramids to yield good morphology. In this study, the texturing duration of both etching steps was controlled to optimize the optical and electrical properties as well as the surface morphology and passivation characteristics of the silicon substrates. Compared with traditional inorganic NaOH texturing, this hybrid process yields smoother (111) facets of the pyramids, fewer residual Na+ ions on the silicon surface, and a shorter processing period. It also offers the advantage of lower cost compared with the organic texturing method based on the use of only TMAH. We applied this hybrid texturing process to fabricate silicon heterojunction solar cells, which showed a remarkable improvement compared with the cells based on traditional alkaline texturing processes.

  3. Optimization of woven jute/glass fibre-reinforced polyester hybrid composite solar parabolic trough collector

    Science.gov (United States)

    Reddy, K. S.; Singla, Hitesh

    2017-07-01

    In the present work, structural analysis of 5.77m × 4m woven jute (J)/glass (G) fibre-reinforced polyester hybrid composite solar parabolic trough is carried out based on trough parameters to obtain the minimum RMS local slope deviation, termed as SDx value under gravity loading. The optimization is done by varying parameters viz. direction and size of reinforced conduits, stacking number and sequence of hybrid trough laminate at fibre orientation of Δθ=45° and Δθ=60° amongst the layers at 0° collector angle. The analysis revealed that the configuration in which the conduits are placed in both X and Y directions is preferred over other configurations to scale down the effect of wind loads. Furthermore it has been observed that laminate of the order [0°G/45°G/-45°J/90°J]s undergoes minimum surface deformation amongst all the other configurations at conduit reinforcement in both X and Y directions for a conduit thickness of 0.75 mm and radius of 10 mm and obtains the overall SDx value of 1.3492 mrad. The results shows that proposed trough model is very promising and evolves a cost effective system.

  4. Organic Gelators as Growth Control Agents for Stable and Reproducible Hybrid Perovskite-Based Solar Cells

    KAUST Repository

    Masi, Sofia

    2017-03-03

    Low-molecular-weight organic gelators are widely used to influence the solidification of polymers, with applications ranging from packaging items, food containers to organic electronic devices, including organic photovoltaics. Here, this concept is extended to hybrid halide perovskite-based materials. In situ time-resolved grazing incidence wide-angle X-ray scattering measurements performed during spin coating reveal that organic gelators beneficially influence the nucleation and growth of the perovskite precursor phase. This can be exploited for the fabrication of planar n-i-p heterojunction devices with MAPbI3 (MA = CH3NH3+) that display a performance that not only is enhanced by ≈25% compared to solar cells where the active layer is produced without the use of a gelator but that also features a higher stability to moisture and a reduced hysteresis. Most importantly, the presented approach is straightforward and simple, and it provides a general method to render the film formation of hybrid perovskites more reliable and robust, analogous to the control that is afforded by these additives in the processing of commodity “plastics.”

  5. Hybrid thin-film solar cells comprising mesoporous titanium dioxide and conjugated polymers; Hybride Duennschicht-Solarzellen aus mesoporoesem Titandioxid und konjugierten Polymeren

    Energy Technology Data Exchange (ETDEWEB)

    Schattauer, Sylvia

    2010-12-01

    The main objective of this thesis is to study the active components and their interactions in so called organic hybrid solar cells. These consist of a thin inorganic titanium dioxide layer, combined with a polymer layer. In general, the efficiency of these hybrid solar cells is determined by the light absorption in the donor polymer, the dissociation of excitons at the heterojunction between TiO{sub 2} and polymer, as well as the generation and extraction of free charge carriers. To optimize the solar cells, the physical interactions between the materials are modified and the influences of various preparation parameters are systematically investigated. Among others, important findings regarding the optimal use of materials and preparation conditions as well as detailed investigations of fundamental factors such as film morphology and polymer infiltration are presented in more detail. First, a variety of titanium dioxide layer were produced, from which a selection for use in hybrid solar cells was made. The obtained films show differences in surface structure, film morphology and crystallinity, depending on the way how the TiO{sub 2} layer has been prepared. All these properties of the TiO{sub 2} films may strongly affect the performance of the hybrid solar cells, by influencing e.g. the exciton diffusion length, the efficiency of exciton dissociation at the hybrid interface, and the carrier transport properties. Detailed investigations were made for mesoporous TiO{sub 2} layer following a new nanoparticle synthesis route, which allows to produce crystalline particles during the synthesis. As donor component, conjugated polymers, either derivatives of cyclohexylamino-poly(p-phenylene vinylene) (PPV) or a thiophene are used. The preparation routine also includes a thermal treatment of the TiO{sub 2} layers, revealing a temperature-dependent change in morphology, but not of the crystal structure. The effects on the solar cell properties have been documented and

  6. Cost analysis of roll-to-roll fabricated ITO free single and tandem organic solar modules based on data from manufacture

    DEFF Research Database (Denmark)

    Machui, Florian; Hösel, Markus; Li, Ning

    2014-01-01

    We present a cost analysis based on state of the art printing and coating processes to fully encapsulated, flexible ITO- and vacuum-free polymer solar cell modules. Manufacturing data for both single junctions and tandem junctions are presented and analyzed. Within this calculation the most expen...

  7. Kinetic cascade beyond MHD of solar wind turbulence in two-dimensional hybrid simulations

    CERN Document Server

    Verscharen, Daniel; Motschmann, Uwe; Müller, Joachim

    2012-01-01

    The nature of solar wind turbulence in the dissipation range at scales much smaller than the large MHD scales remains under debate. Here a two-dimensional model based on the hybrid code abbreviated as A.I.K.E.F. is presented, which treats massive ions as particles obeying the kinetic Vlasov equation and massless electrons as a neutralizing fluid. Up to a certain wavenumber in the MHD regime, the numerical system is initialized by assuming a superposition of isotropic Alfv\\'en waves with amplitudes that follow the empirically confirmed spectral law of Kolmogorov. Then turbulence develops and energy cascades into the dispersive spectral range, where also dissipative effects occur. Under typical solar wind conditions, weak turbulence develops as a superposition of normal modes in the kinetic regime. Spectral analysis in the direction parallel to the background magnetic field reveals a cascade of left-handed Alfv\\'en/ion-cyclotron waves up to wave vectors where their resonant absorption sets in, as well as a cont...

  8. Atomistic Origins of High-Performance in Hybrid Halide Perovskite Solar Cells

    Science.gov (United States)

    2014-01-01

    The performance of organometallic perovskite solar cells has rapidly surpassed that of both conventional dye-sensitized and organic photovoltaics. High-power conversion efficiency can be realized in both mesoporous and thin-film device architectures. We address the origin of this success in the context of the materials chemistry and physics of the bulk perovskite as described by electronic structure calculations. In addition to the basic optoelectronic properties essential for an efficient photovoltaic device (spectrally suitable band gap, high optical absorption, low carrier effective masses), the materials are structurally and compositionally flexible. As we show, hybrid perovskites exhibit spontaneous electric polarization; we also suggest ways in which this can be tuned through judicious choice of the organic cation. The presence of ferroelectric domains will result in internal junctions that may aid separation of photoexcited electron and hole pairs, and reduction of recombination through segregation of charge carriers. The combination of high dielectric constant and low effective mass promotes both Wannier-Mott exciton separation and effective ionization of donor and acceptor defects. The photoferroic effect could be exploited in nanostructured films to generate a higher open circuit voltage and may contribute to the current–voltage hysteresis observed in perovskite solar cells. PMID:24684284

  9. Improved PEDOT:PSS/c-Si hybrid solar cell using inverted structure and effective passivation.

    Science.gov (United States)

    Zhang, Xisheng; Yang, Dong; Yang, Zhou; Guo, Xiaojia; Liu, Bin; Ren, Xiaodong; Liu, Shengzhong Frank

    2016-10-11

    The PEDOT:PSS is often used as the window layer in the normal structured PEDOT:PSS/c-Si hybrid solar cell (HSC), leading to significantly reduced response, especially in red and near-infrared region. By depositing the PEDOT:PSS on the rear side of the c-Si wafer, we developed an inverted structured HSC with much higher solar cell response in the red and near-infrared spectrum. Passivating the other side with hydrogenated amorphous silicon (a-Si:H) before electrode deposition, the minority carrier lifetime has been significantly increased and the power conversion efficiency (PCE) of the inverted HSC is improved to as high as 16.1% with an open-circuit voltage (Voc) of 634 mV, fill factor (FF) of 70.5%, and short-circuit current density (Jsc) of 36.2 mA cm(-2), an improvement of 33% over the control device. The improvements are ascribed to inverted configuration and a-Si:H passivation, which can increase photon carrier generation and reduce carrier recombination, respectively. Both of them will benefit the photovoltaic performance and should be considered as effective design strategies to improve the performance of organic/c-Si HSCs.

  10. Optoelectronic Evaluation and Loss Analysis of PEDOT:PSS/Si Hybrid Heterojunction Solar Cells.

    Science.gov (United States)

    Yang, Zhenhai; Fang, Zebo; Sheng, Jiang; Ling, Zhaoheng; Liu, Zhaolang; Zhu, Juye; Gao, Pingqi; Ye, Jichun

    2017-12-01

    The organic/silicon (Si) hybrid heterojunction solar cells (HHSCs) have attracted considerable attention due to their potential advantages in high efficiency and low cost. However, as a newly arisen photovoltaic device, its current efficiency is still much worse than commercially available Si solar cells. Therefore, a comprehensive and systematical optoelectronic evaluation and loss analysis on this HHSC is therefore highly necessary to fully explore its efficiency potential. Here, a thoroughly optoelectronic simulation is provided on a typical planar polymer poly (3,4-ethylenedioxy thiophene):polystyrenesulfonate (PEDOT:PSS)/Si HHSC. The calculated spectra of reflection and external quantum efficiency (EQE) match well with the experimental results in a full-wavelength range. The losses in current density, which are contributed by both optical losses (i.e., reflection, electrode shield, and parasitic absorption) and electrical recombination (i.e., the bulk and surface recombination), are predicted via carefully addressing the electromagnetic and carrier-transport processes. In addition, the effects of Si doping concentrations and rear surface recombination velocities on the device performance are fully investigated. The results drawn in this study are beneficial to the guidance of designing high-performance PEDOT:PSS/Si HHSCs.

  11. Oblique Bernstein Mode Generation Near the Upper-hybrid Frequency in Solar Pre-flare Plasmas

    Science.gov (United States)

    Kryshtal, A.; Fedun, V.; Gerasimenko, S.; Voitsekhovska, A.

    2015-11-01

    We study analytically the generation process of the first harmonics of the pure electron weakly oblique Bernstein modes. This mode can appear as a result of the rise and development of a corresponding instability in a solar active region. We assume that this wave mode is modified by the influence of pair Coulomb collisions and a weak large-scale sub-Dreicer electric field in the pre-flare chromosphere near the footpoints of a flare loop. To describe the pre-flare plasma we used the model of the solar atmosphere developed by Fontenla, Avrett, and Loeser ( Astrophys. J. 406, 319, 1993). We show that the generated first harmonic is close to the upper-hybrid frequency. This generation process begins at the very low threshold values of the sub-Dreicer electric field and well before the beginning of the preheating phase of a flare. We investigate the necessary conditions for the existence of non-damped first harmonics of oblique Bernstein waves with small amplitudes in the flare area.

  12. Compact hybrid solar simulator with the spectral match beyond class A

    Science.gov (United States)

    Baguckis, Artūras; Novičkovas, Algirdas; Mekys, Algirdas; Tamošiūnas, Vincas

    2016-07-01

    A compact hybrid solar simulator with the spectral match beyond class A is proposed. Six types of high-power light-emitting diodes (LEDs) and tungsten halogen lamps in total were employed to obtain spectral match with IEC 60904-9 Ed.2.0 and ASTM E927-10(2015) standards. Nonuniformity of the irradiance was evaluated and 3-cm diameter. A theoretical analysis was performed to evaluate possible performance of our simulator in the case of GaInP/GaAs/GaInAsP/GaInAs four-junction tandem solar cells and AM1.5D (ASTM G173-03 standard) spectrum. Lack of ultraviolet radiation in comparison to standard spectrum leads to 6.94% reduction of short-circuit current, which could be remedied with 137% increase of the output from blue LEDs. Excess of infrared radiation from halogen lamps outside ranges specified by standards is expected to lead to ˜0.77% voltage increase.

  13. Solar central receiver hybrid power system. Monthly technical progress report for the month of December 1978

    Energy Technology Data Exchange (ETDEWEB)

    None

    1979-01-17

    Levelized busbar energy costs for the sodium-cooled hybrid central receiver concept using both oil and coal as a fuel were developed as a function of the plant capacity factor and as a function of the solar multiple. The fuel escalation question was reviewed in detail on the basis of past historical data, and it was concluded that the lower escalation numbers that are provided in the requirements definition document appear to be more likely to represent the real situation. Subsystem-level trade studies were continued during this reporting period. A detailed investigation of the series/parallel arrangement of the sodium heater and solar receiver was conducted. The various performance, lifetime, and cost factors were determined for each arrangement for the receiver and nonsolar subsystems, respectively. Collector subsystem studies were continued. Revised cost algorithms that include levelized O and M costs for the heliostats were generated in order that they can be used in the field optimization. On the basis of the subsystem studies and the economic assessment work, a reference configuration was tentatively derived. This configuration does not require storage and uses a parallel arrangement of the receiver and the heater. At this time, a coal-fired heater seems to have a potential economic advantage under realistic assumptions for the escalation of coal relative to oil over the next decade or so.

  14. Light trapping in thin-film solar cells with randomly rough and hybrid textures.

    Science.gov (United States)

    Kowalczewski, Piotr; Liscidini, Marco; Andreani, Lucio Claudio

    2013-09-09

    We study light-trapping in thin-film silicon solar cells with rough interfaces. We consider solar cells made of different materials (c-Si and μc-Si) to investigate the role of size and nature (direct/indirect) of the energy band gap in light trapping. By means of rigorous calculations we demonstrate that the Lambertian Limit of absorption can be obtained in a structure with an optimized rough interface. We gain insight into the light trapping mechanisms by analysing the optical properties of rough interfaces in terms of Angular Intensity Distribution (AID) and haze. Finally, we show the benefits of merging ordered and disordered photonic structures for light trapping by studying a hybrid interface, which is a combination of a rough interface and a diffraction grating. This approach gives a significant absorption enhancement for a roughness with a modest size of spatial features, assuring good electrical properties of the interface. All the structures presented in this work are compatible with present-day technologies, giving recent progress in fabrication of thin monocrystalline silicon films and nanoimprint lithography.

  15. Optoelectronic Evaluation and Loss Analysis of PEDOT:PSS/Si Hybrid Heterojunction Solar Cells

    Science.gov (United States)

    Yang, Zhenhai; Fang, Zebo; Sheng, Jiang; Ling, Zhaoheng; Liu, Zhaolang; Zhu, Juye; Gao, Pingqi; Ye, Jichun

    2017-01-01

    The organic/silicon (Si) hybrid heterojunction solar cells (HHSCs) have attracted considerable attention due to their potential advantages in high efficiency and low cost. However, as a newly arisen photovoltaic device, its current efficiency is still much worse than commercially available Si solar cells. Therefore, a comprehensive and systematical optoelectronic evaluation and loss analysis on this HHSC is therefore highly necessary to fully explore its efficiency potential. Here, a thoroughly optoelectronic simulation is provided on a typical planar polymer poly (3,4-ethylenedioxy thiophene):polystyrenesulfonate (PEDOT:PSS)/Si HHSC. The calculated spectra of reflection and external quantum efficiency (EQE) match well with the experimental results in a full-wavelength range. The losses in current density, which are contributed by both optical losses (i.e., reflection, electrode shield, and parasitic absorption) and electrical recombination (i.e., the bulk and surface recombination), are predicted via carefully addressing the electromagnetic and carrier-transport processes. In addition, the effects of Si doping concentrations and rear surface recombination velocities on the device performance are fully investigated. The results drawn in this study are beneficial to the guidance of designing high-performance PEDOT:PSS/Si HHSCs.

  16. Efficiency Enhancement of Hybrid Perovskite Solar Cells with MEH-PPV Hole-Transporting Layers

    Science.gov (United States)

    Chen, Hsin-Wei; Huang, Tzu-Yen; Chang, Ting-Hsiang; Sanehira, Yoshitaka; Kung, Chung-Wei; Chu, Chih-Wei; Ikegami, Masashi; Miyasaka, Tsutomu; Ho, Kuo-Chuan

    2016-01-01

    In this study, hybrid perovskite solar cells are fabricated using poly[2-methoxy-5-(2-ethylhexyloxy)-1,4-phenylenevinylene] (MEH-PPV) and poly(3-hexylthiophene-2,5-diyl) (P3HT) as dopant-free hole-transporting materials (HTMs), and two solution processes (one- and two-step methods, respectively) for preparing methylammonium lead iodide perovskite. By optimizing the concentrations and solvents of MEH-PPV solutions, a power conversion efficiency of 9.65% with hysteresis-less performance is achieved, while the device with 2,2′,7,7′-tetrakis(N,N-di-p-methoxyphenylamine)-9,9′spirobifluorene (Spiro-OMeTAD) doped with lithium salts and tert-butylpyridine (TBP) exhibits an efficiency of 13.38%. This result shows that non-doped MEH-PPV is a suitable, low-cost HTM for efficient polymer-based perovskite solar cells. The effect of different morphologies of methylammonium lead iodide perovskite on conversion efficiency is also investigated by incident photon-to-electron conversion efficiency (IPCE) curves and electrochemical impedance spectroscopy (EIS). PMID:27698464

  17. Improved PEDOT:PSS/c-Si hybrid solar cell using inverted structure and effective passivation

    Science.gov (United States)

    Zhang, Xisheng; Yang, Dong; Yang, Zhou; Guo, Xiaojia; Liu, Bin; Ren, Xiaodong; Liu, Shengzhong (Frank)

    2016-10-01

    The PEDOT:PSS is often used as the window layer in the normal structured PEDOT:PSS/c-Si hybrid solar cell (HSC), leading to significantly reduced response, especially in red and near-infrared region. By depositing the PEDOT:PSS on the rear side of the c-Si wafer, we developed an inverted structured HSC with much higher solar cell response in the red and near-infrared spectrum. Passivating the other side with hydrogenated amorphous silicon (a-Si:H) before electrode deposition, the minority carrier lifetime has been significantly increased and the power conversion efficiency (PCE) of the inverted HSC is improved to as high as 16.1% with an open-circuit voltage (Voc) of 634 mV, fill factor (FF) of 70.5%, and short-circuit current density (Jsc) of 36.2 mA cm-2, an improvement of 33% over the control device. The improvements are ascribed to inverted configuration and a-Si:H passivation, which can increase photon carrier generation and reduce carrier recombination, respectively. Both of them will benefit the photovoltaic performance and should be considered as effective design strategies to improve the performance of organic/c-Si HSCs.

  18. Mechanism of charge recombination in organic-inorganic hybrid perovskite solar cells

    Science.gov (United States)

    Yang, Wenchao; Yao, Yao; Wu, Chang-Qin; organic Group Team

    2015-03-01

    In the recent popular organic-inorganic hybrid perovskite solar cells, the slowness of the charge recombination processes is found to be a key factor for contributing to their high efficiencies and open circuit voltages, but the underlying mechanism remains unclear. In this work we study the recombination mechanism in perovskite solar cells and its roles on determining the device performance. Based on macroscopic device model simulations, the recombination resistances (Rrec) under different applied voltages are calculated to characterize the recombination mechanism, and the current density-voltage (J - V) curves are simulated to describe the device performance under at the same time. Through comparison with the impedance spectroscopy (IS) extracted Rrec data, it is found that bimolecular recombination (BR) is the dominant recombination process in the whole applied voltage regime and can determine the open circuit voltage, while the trap-assisted SRH monomolecular recombination (MR) is only important if the trap density is high or the BR rate is significantly reduced. The different electron injection barriers at the contact can induce different patterns for the Rrec- V characteristics. Under the cases of increased band gap or decreased BR rate, the Rrec's are enhanced which leads to high open circuit voltages. We are grateful to the support from the state key laboratory of surface physics, Fudan University.

  19. Fuzzy Controller for a Voltage-Regulated Solar-Powered MPPT System for Hybrid Power System Applications

    Directory of Open Access Journals (Sweden)

    Jaw-Kuen Shiau

    2015-04-01

    Full Text Available This paper presents the design of a fuzzy-logic-based voltage-regulated solar power maximum power point tracking (MPPT system for applications involving hybrid power systems. The system contains a solar power system and battery as the primary and secondary power sources, respectively. The solar system alone supplies power to the electric motor and maintains the output voltage at a predetermined level when it has sufficient power. When the solar power is insufficient, the solar system is operated at its maximum power point (MPP and the battery is engaged to compensate for the insufficiency. First, a variant of the incremental conductance MPP condition was established. Under the MPP condition, the voltage-regulated MPPT system was formulated as a feedback control system, where the MPP condition and voltage regulation requirements were used as the system inputs. Next, a fuzzy controller was developed to perform the voltage-regulated MPPT function for the hybrid power system. A simulation model based on Matrix laboratory (MATLAB/SIMULINK (a block diagram environment for multi-domain simulation and model-based design and a piecewise linear electric circuit simulation (PLECS tool for controlling the dc motor velocity was developed to verify the voltage-regulated solar power MPPT system.

  20. Integration of photovoltaic and concentrated solar thermal technologies for H2 production by the hybrid sulfur cycle

    Science.gov (United States)

    Liberatore, Raffaele; Ferrara, Mariarosaria; Lanchi, Michela; Turchetti, Luca

    2017-06-01

    It is widely agreed that hydrogen used as energy carrier and/or storage media may significantly contribute in the reduction of emissions, especially if produced by renewable energy sources. The Hybrid Sulfur (HyS) cycle is considered as one of the most promising processes to produce hydrogen through the water-splitting process. The FP7 project SOL2HY2 (Solar to Hydrogen Hybrid Cycles) investigates innovative material and process solutions for the use of solar heat and power in the HyS process. A significant part of the SOL2HY2 project is devoted to the analysis and optimization of the integration of the solar and chemical (hydrogen production) plants. In this context, this work investigates the possibility to integrate different solar technologies, namely photovoltaic, solar central receiver and solar troughs, to optimize their use in the HyS cycle for a green hydrogen production, both in the open and closed process configurations. The analysis carried out accounts for different combinations of geographical location and plant sizing criteria. The use of a sulfur burner, which can serve both as thermal backup and SO2 source for the open cycle, is also considered.

  1. Eco-efficient based logistics network design in hybrid manufacturing/ remanufacturing system in low-carbon economy

    Directory of Open Access Journals (Sweden)

    Yacan Wang

    2013-03-01

    Full Text Available Purpose: Low-carbon economy requires the pursuit of eco-efficiency, which is a win-win situation between economic and environmental efficiency. In this paper the question of trading off the economic and environmental effects embodied in eco-efficiency in the hybrid manufacturing/remanufacturing logistics network design in the context of low-carbon economy is examined.Design/methodology/approach: A multi-objective mixed integer linear programming model to find the optimal facility locations and materials flow allocation is established. In the objective function, three minimum targets are set: economic cost, CO2 emission and waste generation. Through an iterative algorithm, the Pareto Boundary of the problem is obtained.Findings: The results of numeric study show that in order to achieve a Pareto improvement over an original system, three of the critical rates (i.e. return rate, recovery rate, and cost substitute rate should be increased.Practical implications: To meet the need of low-carbon dioxide, an iso- CO2 emission curve in which decision makers have a series of optimal choices with the same CO2 emission but different cost and waste generation is plotted. Each choice may have different network design but all of these are Pareto optimal solutions, which provide a comprehensive evaluation of both economics and ecology for the decision making.Originality/value: This research chooses carbon emission as one of the three objective functions and uses Pareto sets to analyze how to balance profitability and environmental impacts in designing remanufacturing closed-loop supply chain in the context of low-carbon economy.

  2. Performance Assessment of a Hybrid Solar-Geothermal Air Conditioning System for Residential Application: Energy, Exergy, and Sustainability Analysis

    Directory of Open Access Journals (Sweden)

    Yasser Abbasi

    2016-01-01

    Full Text Available This paper investigates the performance of a ground source heat pump that is coupled with a photovoltaic system to provide cooling and heating demands of a zero-energy residential building. Exergy and sustainability analyses have been conducted to evaluate the exergy destruction rate and SI of different compartments of the hybrid system. The effects of monthly thermal load variations on the performance of the hybrid system are investigated. The hybrid system consists of a vertical ground source heat exchanger, rooftop photovoltaic panels, and a heat pump cycle. Exergetic efficiency of the solar-geothermal heat pump system does not exceed 10 percent, and most exergy destruction takes place in photovoltaic panel, condenser, and evaporator. Although SI of PV system remains constant during a year, SI of GSHP varies depending on cooling and heating mode. The results also show that utilization of this hybrid system can reduce CO2 emissions by almost 70 tons per year.

  3. Effect of solvent environment on colloidal-quantum-dot solar-cell manufacturability and performance

    KAUST Repository

    Kirmani, Ahmad R.

    2014-06-04

    The absorbing layer in state-of-the-art colloidal quantum-dot solar cells is fabricated using a tedious layer-by-layer process repeated ten times. It is now shown that methanol, a common exchange solvent, is the main culprit, as extended exposure leaches off the surface halide passivant, creating carrier trap states. Use of a high-dipole-moment aprotic solvent eliminates this problem and is shown to produce state-of-the-art devices in far fewer steps. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Harnessing light energy with a planar transparent hybrid of graphene/single wall carbon nanotube/n-type silicon heterojunction solar cell

    DEFF Research Database (Denmark)

    Chen, Leifeng; Yu, Hua; Zhong, Jiasong

    2015-01-01

    The photovoltaic conversion efficiency of a solar cell fabricated by a simple electrophoretic method with a planar transparent hybrid of graphenes (GPs) and single wall carbon nanotubes (SCNTs)/n-type silicon heterojunction was significantly increased compared to GPs/n-Si and SCNTs/n-Si solar cells...... by doping the hybrid film with Au nanoparticles, and the power conversion efficiency can be increased to 8.8%. The fabrication processes are simple, low cost and fit for scaling. The results demonstrate that planar transparent hybrid of GPs/SCNTs/n-Si heterojunction is efficient for solar energy conversion...

  5. Dynamic Modeling and Simulation of a Thermoelectric-Solar Hybrid Energy System Using an Inverse Dynamic Analysis Input Shaper

    Directory of Open Access Journals (Sweden)

    A. M. Yusop

    2014-01-01

    Full Text Available This study presents the behavioral model of thermal temperature and power generation of a thermoelectric-solar hybrid energy system exposed to dynamic transient sources. In the development of thermoelectric-solar hybrid energy system, studies have focused on the regulation of both systems separately. In practice, a separate control system affects hardware pricing. In this study, an inverse dynamic analysis shaping technique based on exponential function is applied to a solar array (SA to stabilize output voltage before this technique is combined with a thermoelectric module (TEM. This method can be used to estimate the maximum power point of the hybrid system by initially shaping the input voltage of SA. The behavior of the overall system can be estimated by controlling the behavior of SA, such that SA can follow the output voltage of TEM as the time constant of TEM is greater than that of SA. Moreover, by employing a continuous and differentiable function, the acquired output behavior of the hybrid system can be attained. Data showing the model is obtained from current experiments with predicted values of temperature, internal resistance, and current attributes of TEM. The simulation results show that the proposed input shaper can be used to trigger the output voltage of SA to follow the TEM behavior under transient conditions.

  6. Efficiency Investigations of Organic/Inorganic Hybrid ZnO Nanoparticles Based Dye-Sensitized Solar Cells

    Directory of Open Access Journals (Sweden)

    Satbir Singh

    2016-01-01

    Full Text Available The present research study focuses upon the synthesis, characterization, and performances of optoelectronic properties of organic-inorganic (hybrid ZnO based dye sensitized solar cells. Initially, polymer dye A was synthesized using condensation reaction between 2-thiophenecarboxaldehyde and polyethylenimine and was capped to ZnO nanoparticles. Size and morphology of polymer dye A capped ZnO nanoparticles were analyzed using DLS, SEM, and XRD analysis. Further, the polymer dye was added to ruthenium metal complex (RuCl3 to form polymer-ruthenium composite dye B. Absorption and emission profiles of polymer dye A and polymer-ruthenium composite dye B capped ZnO nanoparticles were monitored using UV-Vis and fluorescence spectroscopy. Polymer dye A and polymer-ruthenium composite dye B capped ZnO nanoparticles were further processed to solar cells using wet precipitation method under room temperature. The results of investigations revealed that, after addition of ruthenium chloride (RuCl3 metal complex dye, the light harvesting capacity of ZnO solar cell was enhanced compared to polymer dye A capped ZnO based solar cell. The polymer-ruthenium composite dye B capped ZnO solar cell exhibited good photovoltaic performance with excellent cell parameters, that is, exciting open circuit voltage (Voc of 0.70 V, a short circuit current density (Jsc of 11.6 mA/cm2, and a fill factor (FF of 0.65. A maximum photovoltaic cell efficiency of 5.28% had been recorded under standard air mass (AM 1.5 simulated solar illuminations for polymer-ruthenium composite dye B based hybrid ZnO solar cell. The power conversion efficiency of hybrid ZnO based dye sensitized solar cell was enhanced by 1.78% and 3.88% compared to polymer dye A (concentrated and polymer dye A (diluted capped ZnO based dye sensitized solar cells, respectively. The hybrid organic/inorganic ZnO nanostructures can be implemented in a variety of optoelectronic applications in the future of clean and

  7. A hybrid solar photovoltaic-wind turbine-Rankine cycle for electricity generation in Turkish Republic of Northern Cyprus

    Directory of Open Access Journals (Sweden)

    Samuel Asumadu-Sarkodie

    2016-12-01

    Full Text Available This paper presents an energy demand model by designing a hybrid solar-wind-thermal power generation system of the Turkish Republic of Northern Cyprus, a promising substitute for the expensive battery banks. The study models the future energy demand of Turkish Republic of Northern Cyprus based on the IPCC emissions scenario A1B and A2 by designing a new hybrid solar-wind-thermal power system that satisfies the current and future requirements of firm capacity during peak periods. The study suggests an improvement in a hybrid solar-wind-thermal power system performance by predicting reliable outputs that can integrate renewable energy technologies to conventional power generation. The energy consumption prediction model emphasizes the energy requirement that has a growing demand from 300 to 400 GWh in scenario A1B and 150–450 GWh in scenario A2 from 2010 to 2050. The proposed design can meet 400 GWh of electricity demand in TRNC based on IPCC scenario A1B and 450 GWh of electricity demand in TRNC based on IPCC scenario A2. The percentage contribution of solar, wind and thermal energy for 2010, 2020, 2030, 2040 and 2050 are presented along with CO2 emissions and water consumption for each of the years.

  8. A novel integrated thermal-/membrane-based solar energy-driven hybrid desalination system: Concept description and simulation results

    KAUST Repository

    Kim, Young-Deuk

    2016-05-03

    In this paper, a hybrid desalination system consisting of vacuum membrane distillation (VMD) and adsorption desalination (AD) units, designated as VMD-AD cycle, is proposed. The synergetic integration of the VMD and AD is demonstrated where a useful effect of the AD cycle is channelled to boost the operation of the VMD process, namely the low vacuum environment to maintain the high pressure gradient across the microporous hydrophobic membrane. A solar-assisted multi-stage VMD-AD hybrid desalination system with temperature modulating unit is first designed, and its performance is then examined with a mathematical model of each component in the system and compared with the VMD-only system with temperature modulating and heat recovery units. The total water production and water recovery ratio of a solar-assisted 24-stage VMD-AD hybrid system are found to be about 21% and 23% higher, respectively, as compared to the VMD-only system. For the solar-assisted 24-stage VMD-AD desalination system having 150 m2 of evacuated-tube collectors and 10 m3 seawater storage tanks, both annual collector efficiency and solar fraction are close to 60%.

  9. A novel integrated thermal-/membrane-based solar energy-driven hybrid desalination system: Concept description and simulation results.

    Science.gov (United States)

    Kim, Young-Deuk; Thu, Kyaw; Ng, Kim Choon; Amy, Gary L; Ghaffour, Noreddine

    2016-09-01

    In this paper, a hybrid desalination system consisting of vacuum membrane distillation (VMD) and adsorption desalination (AD) units, designated as VMD-AD cycle, is proposed. The synergetic integration of the VMD and AD is demonstrated where a useful effect of the AD cycle is channelled to boost the operation of the VMD process, namely the low vacuum environment to maintain the high pressure gradient across the microporous hydrophobic membrane. A solar-assisted multi-stage VMD-AD hybrid desalination system with temperature modulating unit is first designed, and its performance is then examined with a mathematical model of each component in the system and compared with the VMD-only system with temperature modulating and heat recovery units. The total water production and water recovery ratio of a solar-assisted 24-stage VMD-AD hybrid system are found to be about 21% and 23% higher, respectively, as compared to the VMD-only system. For the solar-assisted 24-stage VMD-AD desalination system having 150 m(2) of evacuated-tube collectors and 10 m(3) seawater storage tanks, both annual collector efficiency and solar fraction are close to 60%. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Analysis and assessment of film materials and associated manufacturing processes for a solar sail

    Science.gov (United States)

    Bradbury, E. J.; Jakobsen, R. J.; Sliemers, F. A.

    1978-01-01

    Candidate resin manufacturers and film producers were surveyed to determine the availability of key materials and to establish the capabilities of fabricators to prepare ultrathin films of these materials within the capacity/cost/time constraints of the Halley program. Infrared spectra of three candidate samples were obtained by pressing each sample against an internal reflection crystal with the polymer sandwiched between the crystal and the metal backing. The sample size was such that less than one-fourth of the surface of the crystal was covered with the sample. This resulted in weak spectra requiring a six-fold expansion. Internal reflection spectra of the three samples were obtained using both a KRS-5 and a Ge internal reflection crystal. Subtracted infrared spectra of the three samples are presented.

  11. Research report for fiscal 1998. Research concerning studies for development of thermochemical solar hybrid fuel production system; 1998 nendo chosa hokokusho. Netsukagakuteki solar hybrid nenryo seisan system no kaihatsu kenkyu ni kakawaru chosa

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    A solar heat-aided system is investigated, in which CO2 is recycled, with methanol, dimethyl ether, etc., serving as carriers of the solar heat energy. In the evaluation of validity of the system as a whole, the system scale and economy and technologies necessary for the system were studied, which was to find out whether solar methanol production was commercially feasible in the sun belt. It was concluded that solar methanol was capable of competing against LNG (liquefied natural gas) in cost, that Japan was able to establish its own technologies for developing coal gasification solar reactors using overseas technologies for information, and that therefore such a system was technologically and economically valid. In the study of related technologies as is, surveys were conducted on coal gasification, natural gas reforming furnaces, methanol synthesis, dimethyl ether synthesis, light condensing technology, current state and cost of solar reactors, etc. Also investigated were the marketability of solar hybrid fuel, CO2 reduction efficiency, and the construction cost at the assumed site of construction (Australia). (NEDO)

  12. Manufacture, integration and demonstration of polymer solar cells in a lamp for the Lighting Africa initiative

    DEFF Research Database (Denmark)

    Krebs, Frederik C; Damgaard Nielsen, Torben; Fyenbo, Jan

    2010-01-01

    . The discrete components were white light LEDs, a blocking diode, a lithium ion battery, vias and button contacts in two adjacent corners. The completed lamp has outside dimensions of 22.5 × 30.5 cm, a weight of 50 g and a very flat outline. The battery and components were the thickest elements and measured ... mm. A hole with a ring was punched in one corner to enable mechanical fixation or tying. The lamp has two states. In the charging state it has a completely flat outline and will charge the battery when illuminated from either side while the front side illumination is preferable. When used as a lamp...... two adjacent corners are joined via button contacts whereby the device can stand on a horizontal surface and the circuit is closed such that the battery discharges through the LEDs that illuminate the surface in front of the lamp. Several different lamps were prepared using the same solar cell...

  13. Characterization and improved solar light activity of vanadium doped TiO2/diatomite hybrid catalysts.

    Science.gov (United States)

    Wang, Bin; Zhang, Guangxin; Leng, Xue; Sun, Zhiming; Zheng, Shuilin

    2015-03-21

    V-doped TiO2/diatomite composite photocatalysts with different vanadium concentrations were synthesized by a modified sol-gel method. The diatomite was responsible for the well dispersion of TiO2 nanoparticles on the matrix and consequently inhibited the agglomeration. V-TiO2/diatomite hybrids showed red shift in TiO2 absorption edge with enhanced absorption intensity. Most importantly, the dopant energy levels were formed in the TiO2 bandgap due to V(4+) ions substituted to Ti(4+) sites. The 0.5% V-TiO2/diatomite photocatalyst displayed narrower bandgap (2.95 eV) compared to undoped sample (3.13 eV) and other doped samples (3.05 eV) with higher doping concentration. The photocatalytic activities of V doped TiO2/diatomite samples for the degradation of Rhodamine B under stimulated solar light illumination were significantly improved compared with the undoped sample. In our case, V(4+) ions incorporated in TiO2 lattice were responsible for increased visible-light absorption and electron transfer to oxygen molecules adsorbed on the surface of TiO2 to produce superoxide radicals ˙O2(-), while V(5+) species presented on the surface of TiO2 particles in the form of V2O5 contributed to e(-)-h(+) separation. In addition, due to the combination of diatomite as support, this hybrid photocatalyst could be separated from solution quickly by natural settlement and exhibited good reusability.

  14. Realization of tin oxide like anode for the manufacture of the organic solar cells

    Directory of Open Access Journals (Sweden)

    Khelil A.

    2012-06-01

    Full Text Available The transparent oxides such as SnO2, In2O3 and ZnO continue to arouse a private interest for their various applications. The objective of the various studies being to carry out the layers which are simultaneously most transparent and most conducting possible. Thus in the field of the solar spectrum, the transmission of the layers must be higher than 80% and their conductivity exceeding 103 (Ohm.cm-1. Their transparency which is related to the value of their forbidden band must be higher than 3.7 e V. Their electric properties as for them depend on the composition of the layers and a possible doping. In this work, one characterized layers of SnO2 deposited by chemical pulverization, one carried out measurements by, electronic scan microscopy, diffraction of x-rays and also of the optical measurements and electronic. It results from it that the layers are conducting and transparent in the visible one but they are relatively rough, following its characterizations, one carried out organic photovoltaic cells using these layers of SnO2 and also of the commercial ITO like anode in these components. More particularly one was interested in the influence of the presence of a fine layer of gold between the anode and organic material.

  15. Side chain engineering of poly-thiophene and its impact on crystalline silicon based hybrid solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Zellmeier, M.; Rappich, J.; Nickel, N. H. [Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Institute for Silicon Photovoltaics, Kekuléstr. 5, 12489 Berlin (Germany); Klaus, M.; Genzel, Ch. [Department of Microstructure and Residual Stress Analysis, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Albert-Einstein-Straße 15, 12489 Berlin (Germany); Janietz, S. [Department of Polymer Electronics, Fraunhofer Institute for Applied Polymer Research, Geiselbergstr. 69, 14476 Potsdam (Germany); Frisch, J.; Koch, N. [Humboldt Universität zu Berlin, Brook-Taylor-Straße 6, 12489 Berlin (Germany)

    2015-11-16

    The influence of ether groups in the side chain of spin coated regioregular polythiophene derivatives on the polymer layer formation and the hybrid solar cell properties was investigated using electrical, optical, and X-ray diffraction experiments. The polymer layers are of high crystallinity but the polymer with 3 ether groups in the side chain (P3TOT) did not show any vibrational fine structure in the UV-Vis spectrum. The presence of ether groups in the side chains leads to better adhesion resulting in thinner and more homogeneous polymer layers. This, in turn, enhances the electronic properties of the planar c-Si/poly-thiophene hybrid solar cell. We find that the power conversion efficiency increases with the number of ether groups in the side chains, and a maximum power conversion efficiency of η = 9.6% is achieved even in simple planar structures.

  16. Self-powered textile for wearable electronics by hybridizing fiber-shaped nanogenerators, solar cells, and supercapacitors.

    Science.gov (United States)

    Wen, Zhen; Yeh, Min-Hsin; Guo, Hengyu; Wang, Jie; Zi, Yunlong; Xu, Weidong; Deng, Jianan; Zhu, Lei; Wang, Xin; Hu, Chenguo; Zhu, Liping; Sun, Xuhui; Wang, Zhong Lin

    2016-10-01

    Wearable electronics fabricated on lightweight and flexible substrate are believed to have great potential for portable devices, but their applications are limited by the life span of their batteries. We propose a hybridized self-charging power textile system with the aim of simultaneously collecting outdoor sunshine and random body motion energies and then storing them in an energy storage unit. Both of the harvested energies can be easily converted into electricity by using fiber-shaped dye-sensitized solar cells (for solar energy) and fiber-shaped triboelectric nanogenerators (for random body motion energy) and then further stored as chemical energy in fiber-shaped supercapacitors. Because of the all-fiber-shaped structure of the entire system, our proposed hybridized self-charging textile system can be easily woven into electronic textiles to fabricate smart clothes to sustainably operate mobile or wearable electronics.

  17. Ultrathin, flexible organic-inorganic hybrid solar cells based on silicon nanowires and PEDOT:PSS.

    Science.gov (United States)

    Sharma, Manisha; Pudasaini, Pushpa Raj; Ruiz-Zepeda, Francisco; Elam, David; Ayon, Arturo A

    2014-03-26

    Recently, free-standing, ultrathin, single-crystal silicon (c-Si) membranes have attracted considerable attention as a suitable material for low-cost, mechanically flexible electronics. In this paper, we report a promising ultrathin, flexible, hybrid solar cell based on silicon nanowire (SiNW) arrays and poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS). The free-standing, ultrathin c-Si membranes of different thicknesses were produced by KOH etching of double-side-polished silicon wafers for various etching times. The processed free-standing silicon membranes were observed to be mechanically flexible, and in spite of their relatively small thickness, the samples tolerated the different steps of solar cell fabrication, including surface nanotexturization, spin-casting, dielectric film deposition, and metallization. However, in terms of the optical performance, ultrathin c-Si membranes suffer from noticeable transmission losses, especially in the long-wavelength region. We describe the experimental performance of a promising light-trapping scheme in the aforementioned ultrathin c-Si membranes of thicknesses as small as 5.7 μm employing front-surface random SiNW texturization in combination with a back-surface distribution of silver (Ag) nanoparticles (NPs). We report the enhancement of both the short-circuit current density (JSC) and the open-circuit voltage (VOC) that has been achieved in the described devices. Such enhancement is attributable to the plasmonic backscattering effect of the back-surface Ag NPs, which led to an overall 10% increase in the power conversion efficiency (PCE) of the devices compared to similar structures without Ag NPs. A PCE in excess of 6.62% has been achieved in the described devices having a c-Si membrane of thickness 8.6 μm. The described device technology could prove crucial in achieving an efficient, low-cost, mechanically flexible photovoltaic device in the near future.

  18. Understanding the Effect of Surface Chemistry on Charge Generation and Transport in Poly (3-hexylthiophene)/CdSe Hybrid Solar Cells

    DEFF Research Database (Denmark)

    Lek, Jun Yan; Xi, Lifei; Kardynal, Beata

    2011-01-01

    For hybrid solar cells, interfacial chemistry is one of the most critical factors for good device performance. We have demonstrated that the size of the surface ligands and the dispersion of nanoparticles in the solvent and in the polymer are important criteria in obtaining optimized device...... potential as ligand replacement for poly(3-hexylthiophene)/CdSe hybrid solar cells. With the right ligand combination, we have shown that the power conversion efficiency improved by a factor of 6 after ligand exchange....

  19. IMPLEMENTATION OF A REAL TIME SUPERVISORY CONTROLLER FOR AN ISOLATED HYBRID (WIND/ SOLAR/DIESEL) POWER SYSTEM

    OpenAIRE

    Boopathy C P; Dr.Sivakumar L

    2014-01-01

    In most of the developing countries like India and South Africa, there exists still many remote places (isolated from the grid); where the electrification is unavailable due to the financial aspect related to establishing the infrastructure to distribute power over a long distance and consequent high transmission losses. Authors emphasize for an Autonomous Hybrid Power Systems (AHPS), which will eradicate the problems faced by the remote places. Integration of Wind/Solar/Diesel also ensures t...

  20. Electron-transporting small molecule/ o-xylene hybrid additives to boost the performance of simplified inverted polymer solar cells

    Science.gov (United States)

    Qin, Dashan; Cao, Huan; Zhang, Jidong

    2017-05-01

    Electron-transporting small molecule bathophenanthroline (Bphen) together with o-xylene has been used as hybrid additives to improve the performance of simplified inverted polymer solar cells employing ITO alone as cathode and photoactive layer based on polymer [[2,6'-4,8-di(5-ethylhexylthienyl)benzo[1,2-b;3,3-b] dithiophene] [3-fluoro-2[(2-ethylhexyl)carbonyl]thieno[3,4-b]thiophenediyl

  1. Design of Solar/Electric Powered Hybrid Vehicle (SEPHV) System with Charge Pattern Optimization for Energy Cost

    OpenAIRE

    T Balamurugan; Dr.S.Manoharan

    2014-01-01

    This paper proposes a Solar Electric Powered Hybrid Vehicle (SEPHV) system which solves the major problems of fuel and pollution. An electric vehicle usually uses a battery which has been charged by external electrical power supply. All recent electric vehicles present a drive on AC power supplied motor. An inverter set is required to be connected with the battery through which AC power is converted to DC power. During this conversion many losses take place and also the maintenance cost of th...

  2. 2D/3D perovskite hybrids as moisture-tolerant and efficient light absorbers for solar cells.

    Science.gov (United States)

    Ma, Chaoyan; Leng, Chongqian; Ji, Yixiong; Wei, Xingzhan; Sun, Kuan; Tang, Linlong; Yang, Jun; Luo, Wei; Li, Chaolong; Deng, Yunsheng; Feng, Shuanglong; Shen, Jun; Lu, Shirong; Du, Chunlei; Shi, Haofei

    2016-11-03

    The lifetime and power conversion efficiency are the key issues for the commercialization of perovskite solar cells (PSCs). In this paper, the development of 2D/3D perovskite hybrids (CA2PbI4/MAPbIxCl3-x) was firstly demonstrated to be a reliable method to combine their advantages, and provided a new concept for achieving both stable and efficient PSCs through the hybridization of perovskites. 2D/3D perovskite hybrids afforded significantly-improved moisture stability of films and devices without encapsulation in a high humidity of 63 ± 5%, as compared with the 3D perovskite (MAPbIxCl3-x). The 2D/3D perovskite-hybrid film did not undergo any degradation after 40 days, while the 3D perovskite decomposed completely under the same conditions after 8 days. The 2D/3D perovskite-hybrid device maintained 54% of the original efficiency after 220 hours, whereas the 3D perovskite device lost all the efficiency within only 50 hours. Moreover, the 2D/3D perovskite hybrid achieved comparable device performances (PCE: 13.86%) to the 3D perovskite (PCE: 13.12%) after the optimization of device fabrication conditions.

  3. Optimizing process time of laser drilling processes in solar cell manufacturing by coaxial camera control

    Science.gov (United States)

    Jetter, Volker; Gutscher, Simon; Blug, Andreas; Knorz, Annerose; Ahrbeck, Christopher; Nekarda, Jan; Carl, Daniel

    2014-03-01

    In emitter wrap through (EWT) solar cells, laser drilling is used to increase the light sensitive area by removing emitter contacts from the front side of the cell. For a cell area of 156 x 156 mm2, about 24000 via-holes with a diameter of 60 μm have to be drilled into silicon wafers with a thickness of 200 μm. The processing time of 10 to 20 s is determined by the number of laser pulses required for safely opening every hole on the bottom side. Therefore, the largest wafer thickness occurring in a production line defines the processing time. However, wafer thickness varies by roughly +/-20 %. To reduce the processing time, a coaxial camera control system was integrated into the laser scanner. It observes the bottom breakthrough from the front side of the wafer by measuring the process emissions of every single laser pulse. To achieve the frame rates and latency times required by the repetition rate of the laser (10 kHz), a camera based on cellular neural networks (CNN) was used where the images are processed directly on the camera chip by 176 x 144 sensor-processor-elements. One image per laser pulse is processed within 36 μs corresponding to a maximum pulse rate of 25 kHz. The laser is stopped when all of the holes are open on the bottom side. The result is a quality control system in which the processing time of a production line is defined by average instead of maximum wafer thickness.

  4. Study of a solar PV-diesel-battery hybrid power system for a remotely located population near Rafha, Saudi Arabia

    Energy Technology Data Exchange (ETDEWEB)

    Rehman, Shafiqur; Al-Hadhrami, Luai M. [Center for Engineering Research, Research Institute, King Fahd University of Petroleum and Minerals, KFUPM Box 767, Dhahran-31261 (Saudi Arabia)

    2010-12-15

    This study presents a PV-diesel hybrid power system with battery backup for a village being fed with diesel generated electricity to displace part of the diesel by solar. The hourly solar radiation data measured at the site along with PV modules mounted on fixed foundations, four generators of different rated powers, diesel prices of 0.2-1.2US$/l, different sizes of batteries and converters were used to find an optimal power system for the village. It was found that a PV array of 2000 kW and four generators of 1250, 750, 2250 and 250 kW; operating at a load factor of 70% required to run for 3317 h/yr, 4242 h/yr, 2820 h/yr and 3150 h/yr, respectively; to produce a mix of 17,640 MWh of electricity annually and 48.33 MWh per day. The cost of energy (COE) of diesel only and PV/diesel/battery power system with 21% solar penetration was found to be 0.190$/kWh and 0.219$/kWh respectively for a diesel price of 0.2$/l. The sensitivity analysis showed that at a diesel price of 0.6$/l the COE from hybrid system become almost the same as that of the diesel only system and above it, the hybrid system become more economical than the diesel only system. (author)

  5. The Technical and Economic Study of Solar-Wind Hybrid Energy System in Coastal Area of Chittagong, Bangladesh

    Directory of Open Access Journals (Sweden)

    Shuvankar Podder

    2015-01-01

    Full Text Available The size optimization and economic evaluation of the solar-wind hybrid renewable energy system (RES to meet the electricity demand of 276 kWh/day with 40 kW peak load have been determined in this study. The load data has been collected from the motels situated in the coastal areas of Patenga, Chittagong. RES in standalone as well as grid connected mode have been considered. The optimal system configurations have been determined based on systems net present cost (NPC and cost of per unit energy (COE. A standalone solar-wind-battery hybrid system is feasible and economically comparable to the present cost of diesel based power plant if 8% annual capacity shortage is allowed. Grid tied solar-wind hybrid system, where more than 70% electricity contribution is from RES, is economically comparable to present grid electricity price. Moreover, grid tied RES results in more than 60% reduction in greenhouse gases emission compared to the conventional grid. Sensitivity analysis has been performed in this study to determine the effect of capital cost variation or renewable resources variation on the system economy. Simulation result of sensitivity analysis has showed that 20% reduction of installation cost results in nearly 9%–12% reductions in cost of per unit energy.

  6. Hybrid system: Heat pump-solar air dryer for grains; Sistema hibrido: bomba de calor - calentador solar de aire para el secado de productos agricolas

    Energy Technology Data Exchange (ETDEWEB)

    Soto Gomez, Willfredo [Instituto Tecnologico de Tijuana, Tijuana (Mexico); Ortega Herrera, Jose Angel [Instituto Politecnico Nacional, Mexico, D.F. (Mexico)

    2000-07-01

    Design, building, operation and evaluation energy wise of a hybrid experimental type, with heat pump, that uses no chloride, does not destroy the ozone layer. It is solar air dryer for grains. In this research we dry rice. It has tree systems: 1.- A mechanical compression heat pump, 2.- An air solar heater, and 3.- An agriculture products dryer. The drying capacity is 20 pounds of grain /day, with a median daily solar radiation. The costs is approximately U.S. $ 6 000.00. The heat pump used 22 refrigerant first, and now works with refrigerant SUVA 9000. This refrigerant will be available this year in the I.S., it is one of the ecological class that substitutes the chlorofluorocarbonates. [Spanish] Se disena, construye, opera, y evalua energeticamente, un sistema hibrido tipo experimental, con bomba de calor que utiliza refrigerante que no contiene cloro, y no destruye la capa de ozono y un calentador solar de aire, para secar granos. En este trabajo secamos arroz. Se compone de tres sistemas: 1.- Bomba de calor por compresion mecanica, 2.- Calentador solar de aire, 3.- Secador de productos agricolas. La capacidad de secado es de 10 Kilos de granos/dia promedio. Tiene un costo aproximado de $ 60 000. La bomba de calor utiliza refrigerante 22 en una primera generacion, y actualmente opera con un refrigerante SUVA 9000, en una segunda generacion, este refrigerante se comercializara en este ano, en la Union Americana, pertenece a la familia de los llamados refrigerantes ecologicos, sustitutos de los clorofluorocarbonados.

  7. A unique semiconductor-carbon-metal hybrid structure design as a counter electrode in dye-sensitized solar cells.

    Science.gov (United States)

    Guo, Sheng-Qi; Wang, Ling-Chang; Zhang, Chen-Guang; Qi, Gao-Can; Gu, Bing-Chuan; Liu, Lu; Yuan, Zhi-Hao

    2017-05-25

    The catalytic activity of counter electrodes (CEs) severely restricts the photovoltaic conversion efficiency of dye-sensitized solar cells. However, electrons trapped by bulk defects greatly reduce the catalytic activity of the CE. In this study, we report a novel In2S3-C-Au hybrid structure designed by simply decorating Au particles on the surface of carbon-coated hierarchical In2S3 flower-like architectures, which could avoid the abovementioned problems. This effect can be attributed to the unique contribution of indium sulfide, carbon, and Au from the hybrid structure, as well as to their synergy. Electrochemical measurements revealed that the hybrid structure possessed high catalytic activity and electrochemical stability for the interconversion of the redox couple I3(-)/I(-). Moreover, this superior performance can be incorporated into the dye-sensitized solar cells system. We used this hybrid structure as a counter electrode by casting it on an FTO substrate to form a film, which displayed better photovoltaic conversion efficiency (8.91%) than the commercial Pt counterpart (7.67%).

  8. Performance Analysis of Solar-Wind-Diesel-Battery Hybrid Energy System for KLIA Sepang Station of Malaysia

    Science.gov (United States)

    Shezan, S. K. A.; Saidur, R.; Hossain, A.; Chong, W. T.; Kibria, M. A.

    2015-09-01

    A large number of populations of the world live in rural or remote areas those are geographically isolated. Power supply and uninterrupted fuel transportation to produce electrical power for these remote areas poses a great challenge. Using renewable energy in hybrid energy system might be a pathway to solve this problem. Malaysia is a large hilly land with the gift of renewable energy resources. There is a good chance to utilize these renewable resources to produce electrical power and to limit the dependency on the fossil fuel as well as reduce the carbon emissions. In this perspective, a research is carried out to analyze the performance of a solar-wind-diesel-battery hybrid energy system for a remote area named “KLIA Sepang station” in the state of Selangor, Malaysia. In this study, a 56 kW hybrid energy system has been proposed that is capable to support more than 50 households and 6 shops in that area. Real time field data of solar radiation and wind speed is used for the simulation and optimization of operations using “Homer” renewable energy software. The proposed system can reduce CO2 emission by about 16 tons per year compared to diesel generator only. In the same time the Cost of energy (COE) of the optimized system is USD 5.126/kWh.The proposed hybrid energy system might be applicable for other parts of the world where the climate conditions are similar.

  9. Review and comparison study of hybrid diesel/solar/hydro/fuel cell energy schemes for a rural ICT Telecenter

    Energy Technology Data Exchange (ETDEWEB)

    Abdullah, M.O.; Yung, V.C.; Anyi, M.; Othman, A.K.; Ab. Hamid, K.B. [Universiti Malaysia Sarawak (UNIMAS), 94300 Kota Samarahan, Sarawak (Malaysia); Tarawe, J. [e-Bario ICT Telecenter, Bario, Sarawak (Malaysia)

    2010-02-15

    In this paper, the rural electrification study of an ICT Telecenter in particular reference to the Kelabit Highland of Sarawak is presented. The use of diesel generator and its associated environmental implications is first discussed. The cost-effectiveness of the present solar PV system and the solar/hydro schemes for rural electrification of the rural ICT are evaluated employing the HOMER simulation software, considering sustainability factors such as system efficiency, weather, fuel costs, operating and maintaining costs. Subsequently, simple novel Hybrid Energy Performance Equations and the associated Energy Performance Curves are derived and introduced, respectively, which provide a visualization model, simplifying hybrid system analysis. Results obtained in this study have shown that combined power schemes is more sustainable in terms of supplying electricity to the Telecenter compared to a stand-alone PV system due to prolong cloudy and dense haze periods. The hybrid systems can have efficiency range of {proportional_to}15%-75% compared to PV stand-alone of only {proportional_to}10%, indicating hybrid systems are more reliable and sustainable - in minimizing both energy losses and excess energy. (author)

  10. Black Phosphorus Quantum Dots for Hole Extraction of Typical Planar Hybrid Perovskite Solar Cells.

    Science.gov (United States)

    Chen, Wei; Li, Kaiwen; Wang, Yao; Feng, Xiyuan; Liao, Zhenwu; Su, Qicong; Lin, Xinnan; He, Zhubing

    2017-02-02

    Black phosphorus, famous as two-dimensional (2D) materials, shows such excellent properties for optoelectronic devices such as tunable direct band gap, extremely high hole mobility (300-1000 cm(2)/(V s)), and so forth. In this Letter, facile processed black phosphorus quantum dots (BPQDs) were successfully applied to enhance hole extraction at the anode side of the typical p-i-n planar hybrid perovskite solar cells, which remarkably improved the performance of devices with photon conversion efficiency ramping up from 14.10 to 16.69%. Moreover, more detailed investigations by c-AFM, SKPM, SEM, hole-only devices, and photon physics measurements discover further the hole extraction effect and work mechanism of the BPQDs, such as nucleation assistance for the growth of large grain size perovskite crystals, fast hole extraction, more efficient hole transfer, and suppression of energy-loss recombination at the anode interface. This work definitely paves the way for discovering more and more 2D materials with high electronic properties to be used in photovoltaics and optoelectronics.

  11. Subproton-scale Cascades in Solar Wind Turbulence: Driven Hybrid-kinetic Simulations

    Science.gov (United States)

    Cerri, S. S.; Califano, F.; Jenko, F.; Told, D.; Rincon, F.

    2016-05-01

    A long-lasting debate in space plasma physics concerns the nature of subproton-scale fluctuations in solar wind (SW) turbulence. Over the past decade, a series of theoretical and observational studies were presented in favor of either kinetic Alfvén wave (KAW) or whistler turbulence. Here, we investigate numerically the nature of the subproton-scale turbulent cascade for typical SW parameters by means of unprecedented high-resolution simulations of forced hybrid-kinetic turbulence in two real-space and three velocity-space dimensions. Our analysis suggests that small-scale turbulence in this model is dominated by KAWs at β ≳ 1 and by magnetosonic/whistler fluctuations at lower β. The spectral properties of the turbulence appear to be in good agreement with theoretical predictions. A tentative interpretation of this result in terms of relative changes in the damping rates of the different waves is also presented. Overall, the results raise interesting new questions about the properties and variability of subproton-scale turbulence in the SW, including its possible dependence on the plasma β, and call for detailed and extensive parametric explorations of driven kinetic turbulence in three dimensions.

  12. Subproton-scale cascades in solar wind turbulence: driven hybrid-kinetic simulations

    CERN Document Server

    Cerri, S S; Jenko, F; Told, D; Rincon, F

    2016-01-01

    A long-lasting debate in space plasma physics concerns the nature of subproton-scale fluctuations in solar wind (SW) turbulence. Over the past decade, a series of theoretical and observational studies were presented in favor of either kinetic Alfv\\'en wave (KAW) or whistler turbulence. Here, we investigate numerically the nature of the subproton-scale turbulent cascade for typical SW parameters by means of unprecedented high-resolution simulations of forced hybrid-kinetic turbulence in two real-space and three velocity-space dimensions. Our analysis suggests that small-scale turbulence in this model is dominated by KAWs at $\\beta\\gtrsim1$ and by magnetosonic/whistler fluctuations at lower $\\beta$. The spectral properties of the turbulence appear to be in good agreement with theoretical predictions. A tentative interpretation of this result in terms of relative changes in the damping rates of the different waves is also presented. Overall, the results raise interesting new questions about the properties and va...

  13. Silicon spectral response extension through single wall carbon nanotubes in hybrid solar cells

    KAUST Repository

    Del Gobbo, Silvano

    2013-01-01

    Photovoltaic devices based on single wall carbon nanotubes (SWCNTs) and n-silicon multiple heterojunctions have been fabricated by a SWCNT film transferring process. We report on the ability of the carbon nanotubes to extend the Si spectral range towards the near ultraviolet (UV) and the near infrared regions. Semiconducting and about metallic SWCNT networks have been studied as a function of the film sheet resistance, Rsh. Optical absorbance and Raman spectroscopy have been used to assign nanotube chirality and electronic character. This gave us hints of evidence of the participation of the metal nanotubes in the photocurrent generation. Moreover, we provide evidence that the external quantum efficiency spectral range can be modulated as a function of the SWCNT network sheet resistance in a hybrid SWCNT/Si solar cell. This result will be very useful to further design/optimize devices with improved performance in spectral regions generally not covered by conventional Si p-n devices. © 2013 The Royal Society of Chemistry.

  14. Experimental and theoretical analysis of a hybrid solar thermoelectric generator with forced convection cooling

    Science.gov (United States)

    Sundarraj, Pradeepkumar; Taylor, Robert A.; Banerjee, Debosmita; Maity, Dipak; Sinha Roy, Susanta

    2017-01-01

    Hybrid solar thermoelectric generators (HSTEGs) have garnered significant research attention recently due to their potential ability to cogenerate heat and electricity. In this paper, theoretical and experimental investigations of the electrical and thermal performance of a HSTEG system are reported. In order to validate the theoretical model, a laboratory scale HSTEG system (based on forced convection cooling) is developed. The HSTEG consists of six thermoelectric generator modules, an electrical heater, and a stainless steel cooling block. Our experimental analysis shows that the HSTEG is capable of producing a maximum electrical power output of 4.7 W, an electrical efficiency of 1.2% and thermal efficiency of 61% for an average temperature difference of 92 °C across the TEG modules with a heater power input of 382 W. These experimental results of the HSTEG system are found to be in good agreement with the theoretical prediction. This experimental/theoretical analysis can also serve as a guide for evaluating the performance of the HSTEG system with forced convection cooling.

  15. Thin Film Silicon Nanowire/PEDOT:PSS Hybrid Solar Cells with Surface Treatment

    Science.gov (United States)

    Wang, Hao; Wang, Jianxiong; Hong, Lei; Tan, Yew Heng; Tan, Chuan Seng; Rusli

    2016-06-01

    SiNW/PEDOT:PSS hybrid solar cells are fabricated on 10.6-μm-thick crystalline Si thin films. Cells with Si nanowires (SiNWs) of different lengths fabricated using the metal-catalyzed electroless etching (MCEE) technique have been investigated. A surface treatment process using oxygen plasma has been applied to improve the surface quality of the SiNWs, and the optimized cell with 0.7-μm-long SiNWs achieved a power conversion efficiency (PCE) of 7.83 %. The surface treatment process is found to remove surface defects and passivate the SiNWs and substantially improve the average open circuit voltage from 0.461 to 0.562 V for the optimized cell. The light harvesting capability of the SiNWs has also been investigated theoretically using optical simulation. It is found that the inherent randomness of the MCEE SiNWs, in terms of their diameter and spacing, accounts for the excellent light harvesting capability. In comparison, periodic SiNWs of comparable dimensions have been shown to exhibit much poorer trapping and absorption of light.

  16. A hybrid electron donor comprising cyclopentadithiophene and dithiafulvenyl for dye-sensitized solar cells

    Directory of Open Access Journals (Sweden)

    Gleb Sorohhov

    2015-06-01

    Full Text Available Two new photosensitizers featured with a cyanoacrylic acid electron acceptor (A and a hybrid electron donor (D of cyclopentadithiophene and dithiafulvenyl, either directly linked or separated by a phenyl ring, were synthesized and characterized. Both of them undergo two reversible oxidations and strongly absorb in the visible spectral region due to a photo-induced intramolecular charge-transfer (ICT transition. To a great extent, the electronic interaction between the D and A units is affected by the presence of a phenyl spacer. Without a phenyl ring, the D unit appears more difficult to oxidize due to a strong electron-withdrawing effect of the A moiety. In sharp contrast, the insertion of the phenyl ring between the D and A units leads to a broken π-conjugation and therefore, the oxidation potentials remain almost unchanged compared to those of an analogue without the A group, suggesting that the electronic coupling between D and A units is relatively weak. As a consequence, the lowest-energy absorption band shows a slight hypsochromic shift upon the addition of the phenyl spacer, indicative of an increased HOMO–LUMO gap. In turn, the direct linkage of D and A units leads to an effective π-conjugation, thus substantially lowering the HOMO–LUMO gap. Moreover, the application in dye-sensitized solar cells was investigated, showing that the power conversion efficiency increases by the insertion of the phenyl unit.

  17. A hybrid electron donor comprising cyclopentadithiophene and dithiafulvenyl for dye-sensitized solar cells.

    Science.gov (United States)

    Sorohhov, Gleb; Yi, Chenyi; Grätzel, Michael; Decurtins, Silvio; Liu, Shi-Xia

    2015-01-01

    Two new photosensitizers featured with a cyanoacrylic acid electron acceptor (A) and a hybrid electron donor (D) of cyclopentadithiophene and dithiafulvenyl, either directly linked or separated by a phenyl ring, were synthesized and characterized. Both of them undergo two reversible oxidations and strongly absorb in the visible spectral region due to a photo-induced intramolecular charge-transfer (ICT) transition. To a great extent, the electronic interaction between the D and A units is affected by the presence of a phenyl spacer. Without a phenyl ring, the D unit appears more difficult to oxidize due to a strong electron-withdrawing effect of the A moiety. In sharp contrast, the insertion of the phenyl ring between the D and A units leads to a broken π-conjugation and therefore, the oxidation potentials remain almost unchanged compared to those of an analogue without the A group, suggesting that the electronic coupling between D and A units is relatively weak. As a consequence, the lowest-energy absorption band shows a slight hypsochromic shift upon the addition of the phenyl spacer, indicative of an increased HOMO-LUMO gap. In turn, the direct linkage of D and A units leads to an effective π-conjugation, thus substantially lowering the HOMO-LUMO gap. Moreover, the application in dye-sensitized solar cells was investigated, showing that the power conversion efficiency increases by the insertion of the phenyl unit.

  18. Lanthanide doped ultrafine hybrid nanostructures: multicolour luminescence, upconversion based energy transfer and luminescent solar collector applications.

    Science.gov (United States)

    Singh, Priyam; Shahi, Praveen Kumar; Singh, Sunil Kumar; Singh, Akhilesh Kumar; Singh, Manish Kumar; Prakash, Rajiv; Rai, Shyam Bahadur

    2017-01-05

    We herein demonstrate novel inorganic-organic hybrid nanoparticles (HNPs) composed of inorganic NPs, NaY0.78Er0.02Yb0.2F4, and an organic β-diketonate complex, Eu(TTA)3Phen, for energy harvesting applications. Both the systems maintain their core integrity and remain entangled through weak interacting forces. HNPs incorporate the characteristic optical behaviour of both the systems i.e. they give an intense red emission under UV excitation, due to Eu(3+) in organic complexes, and efficient green upconversion emission of Er(3+) in inorganic NPs for NIR (980 nm) excitation. However, (i) an energy transfer from Er(3+) (inorganic NPs) to Eu(3+) (organic complex) under NIR excitation, and (ii) an increase in the decay time of (5)D0 → (7)F2 transition of Eu(3+) for HNPs as compared to the Eu(TTA)3Phen complex, under different excitation wavelengths, are added optical characteristics which point to an important role of the interface between both the systems. Herein, the ultra-small size (6-9 nm) and spherical shape of the inorganic NPs offer a large surface area, which improves the weak interaction force between both the systems. Furthermore, the HNPs dispersed in the PMMA polymer have been successfully utilized for luminescent solar collector (LSC) applications.

  19. The Controlling Mechanism for Potential Loss in CH3NH3PbBr3 Hybrid Solar Cells

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Xiaojia; Chen, Bo; Yang, Mengjin; Wu, Congcong; Orler, Bruce; Moore, Robert B.; Zhu, Kai; Priya, Shashank

    2016-08-12

    We investigated moisture and thermal stability of MAPbBr3 perovskite material. Cubic MAPbBr3 was found to be moisture-insensitive and can avoid the thermal stability issues introduced by low-temperature phase transition in MAPbI3. MAPbBr3 and MAPbI3 hybrid solar cells with efficiencies of ~7.1% and ~15.5%, respectively, were fabricated, and we identified the correlation between the working temperature, light intensity, and the photovoltaic performance. No charge-carrier transport barriers were found in the MAPbBr3 and MAPbI3 solar cells. The MAPbBr3 solar cell displays a better stability under high working temperature because of its close-packed crystal structure. Temperature-dependent photocurrent-voltage characteristics indicate that, unlike the MAPbI3 solar cell with an activation energy (EA) nearly equal to its band gap (Eg), the EA for the MAPbBr3 solar cell is much lower than its Eg. This indicates that a high interface recombination process limits the photovoltage and consequently the device performance of the MAPbBr3 solar cell.

  20. Highly conductive and transparent silver grid/metal oxide hybrid electrodes for low-temperature planar perovskite solar cells

    Science.gov (United States)

    Zhang, Weihai; Xiong, Juan; Wang, Sheng; Liu, Wei-er; Li, Jun; Wang, Duofa; Gu, Haoshuang; Wang, Xianbao; Li, Jinhua

    2017-01-01

    Recently, organometal halide perovskite solar cells have attracted great attention in photovoltaic research. However, the devices require high-temperature processing of up to 450 °C that hinders the applications in the low cost and large-area product of devices. Here, we reported the ITO/Ag grid/AZO hybrid electrodes for planar perovskite solar cells fabricated under the temperature of 150 °C. The planar perovskite solar cells do not require a mesoporous scaffold that need high-temperature annealing processing. The optimized ITO/Ag grid/AZO electrode which was fabricated as the sequence of ITO, Ag grid, AZO by magnetron sputtering exhibited an extreme low sheet resistance about 3.8 Ω/sq and a relative high transparency of 89.6% at the wavelength of 550 nm. The hybrid electrode could combine the electrical property of ITO and optical property of AZO. On the other hand, AZO has better energy level match with electron transport layer of ZnO than ITO. The power conversion efficiency (PCE) of 13.8% was obtained under the processing temperature of 150 °C by using ITO/Ag grid/AZO electrode. The high performances of the solar cells were attributed to the superior performances of ITO/Ag grid/AZO electrode and the good band energy match between ZnO and AZO.

  1. Design of Solar/Electric Powered Hybrid Vehicle (SEPHV System with Charge Pattern Optimization for Energy Cost

    Directory of Open Access Journals (Sweden)

    T.Balamurugan

    2014-01-01

    Full Text Available This paper proposes a Solar Electric Powered Hybrid Vehicle (SEPHV system which solves the major problems of fuel and pollution. An electric vehicle usually uses a battery which has been charged by external electrical power supply. All recent electric vehicles present a drive on AC power supplied motor. An inverter set is required to be connected with the battery through which AC power is converted to DC power. During this conversion many losses take place and also the maintenance cost of the AC System is very high. The proposed topology has the most feasible solar/electric power generation system mounted on the vehicle to charge the battery during all durations. With a view of providing ignited us to develop this “Solar/Electric Powered Hybrid Vehicle” [SEPHV].This multi charging vehicle can charge itself from both solar and electric power. The vehicle is altered out of a Maruti Omni vehicle by replacing its engine with a 1.2HP, 24V Permanent Magnet DC [PMDC] Motor. The Supply to the motor is obtained from a battery set of 12V, 150AH. The household electric supply of 230V is reduced with a step-down transformer to 48V and then it is converted to the DC with a rectifying unit to charge the battery. Two solar panels each with a rating of 230watts are attached to the top of the Vehicle to grab the solar energy and is controlled with a help of charge controller. The SEPHV can be driven by 1.2 HP PMDC motor consisting of two 230 watts PV panel in the voltage rating of 24 V. The power which is absorbed by the PV panel is stored into the four 150 AH 12 V batteries. When there is no presence of sun, electric power supply act as an auxiliary energy source. For controlling speed of the motor, a switch is designed with four tapping, provided with different values of resistance at each tapping. It acts as a speed control switch for Solar/Electric Powered Hybrid Vehicle. This type of technique is to reduce the running cost and increasing the running

  2. The Interaction of the Solar Wind with Solar Probe Plus - 3D Hybrid Simulation. Report 1; The Study for the Distance 4.5Rs

    Science.gov (United States)

    Lipatov, Alexander S.; Sittler, Edward C.; Hartle, Richard E.; Cooper, John F.

    2010-01-01

    Our report devotes a 3D numerical hybrid model of the interaction of the solar wind with the Solar Probe spacecraft. The Solar Probe Plus (SPP) model includes 3 main parts, namely, a non-conducting heat shield, a support system, and cylindrical section or spacecraft bus that contains the particle analysis devices and antenna. One observes an excitation of the low frequency Alfven and whistler type wave directed by the magnetic field with an amplitude of about (0.06-0.6) V/m. The compression waves and the jumps in an electric field with an amplitude of about (0.15-0.7) V/m were also observed. The wave amplitudes are comparable to or greater than previously estimated max wave amplitudes that SPP is expected to measure. The results of our hybrid simulation will be useful for understanding the plasma environment near the SPP spacecraft at the distance 4.5 Rs. Future simulation will take into account the charging of the spacecraft, the charge separation effects, an outgassing from heat shield, a photoionization and an electron impact ionization effects near the spacecraft.

  3. Experimental Results of Aquasol Project: Development of an Advanced Hybrid Solar-Gas Multi-Effect Distillation System

    Energy Technology Data Exchange (ETDEWEB)

    Alarcon, D.; Blanco, J.; Lozano, A.; Malato, S.; Maldonado, M. I.; Fernandez, P.

    2006-07-01

    Main objective of R and D AQUASOL Project has been the development of a zero-discharge, improved cost and energy-efficient seawater desalination technology based on the multi-effect distillation (MED) process. During the course of the demonstration phase, an advanced hybrid solar/gas desalination system has been implemented at the Plataforma Solar de Almeria installations, in order to evaluate under real atmospheric conditions its reliability and energy efficiency. This paper shows the first results obtained of the MED unit performance working with a 500-m2 CPC solar collector field and the new double-effect absorption (H2O-LiBr) heat pump, which has allowed a very important increase in the overall thermal efficiency of the process. (Author)

  4. Project to ferro solar: solar silicon manufacture quality by the metallurgical way; Proyecto ferrosolar: fabricacion de silicio calidad solar por la via metalurgica

    Energy Technology Data Exchange (ETDEWEB)

    Buyon, C. J.; Miranda, V. A.; Souto, S. a.; Miguez, N. J. M.; Perez, V. A.

    2008-07-01

    The spectacular development in the last years of the photovoltaic industry has generated big tension on the market of his principal raw material: the silicon. In Galicia is located the unique factory of metallurgical silicon of the Iberian Peninsular and quartz mines of great quality that are a property of the Group Ferro atlantica I+D is the company that concentrates the activities of R and D inside the above mentioned Group and is developing, from 9 years ago, the project Ferro Solar that consists of the purification for the metallurgical route of the silicon. The success in this project would give to the photovoltaic industry a much more abundant, new and cheap source of silicon that the current route across the polysilicon. The project is developing in the Factory of Sabon - Arteixo- Corunna and already there are obtained very encouraging results, which are an object of this first public presentation. (Author)

  5. Silicon Nanowire/Polymer Hybrid Solar Cell-Supercapacitor: A Self-Charging Power Unit with a Total Efficiency of 10.5.

    Science.gov (United States)

    Liu, Ruiyuan; Wang, Jie; Sun, Teng; Wang, Mingjun; Wu, Changsheng; Zou, Haiyang; Song, Tao; Zhang, Xiaohong; Lee, Shuit-Tong; Wang, Zhong Lin; Sun, Baoquan

    2017-07-12

    An integrated self-charging power unit, combining a hybrid silicon nanowire/polymer heterojunction solar cell with a polypyrrole-based supercapacitor, has been demonstrated to simultaneously harvest solar energy and store it. By efficiency enhancement of the hybrid nanowire solar cells and a dual-functional titanium film serving as conjunct electrode of the solar cell and supercapacitor, the integrated system is able to yield a total photoelectric conversion to storage efficiency of 10.5%, which is the record value in all the integrated solar energy conversion and storage system. This system may not only serve as a buffer that diminishes the solar power fluctuations from light intensity, but also pave its way toward cost-effective high efficiency self-charging power unit. Finally, an integrated device based on ultrathin Si substrate is demonstrated to expand its feasibility and potential application in flexible energy conversion and storage devices.

  6. Dry Process for Manufacturing Hybridized Boron Fiber/Carbon Fiber Thermoplastic Composite Materials from a Solution Coated Precursor

    Science.gov (United States)

    Belvin, Harry L. (Inventor); Cano, Roberto J. (Inventor)

    2003-01-01

    An apparatus for producing a hybrid boron reinforced polymer matrix composite from precursor tape and a linear array of boron fibers. The boron fibers are applied onto the precursor tapes and the precursor tape processed within a processing component having an impregnation bar assembly. After passing through variable-dimension forming nip-rollers, the precursor tape with the boron fibers becomes a hybrid boron reinforced polymer matrix composite. A driving mechanism is used to pulled the precursor tape through the method and a take-up spool is used to collect the formed hybrid boron reinforced polymer matrix composite.

  7. Cross-Linkable and Dual Functional Hybrid Polymeric Electron Transporting Layer for High-Performance Inverted Polymer Solar Cells.

    Science.gov (United States)

    Dong, Sheng; Hu, Zhicheng; Zhang, Kai; Yin, Qingwu; Jiang, Xiaofang; Huang, Fei; Cao, Yong

    2017-06-20

    A cross-linkable dual functional polymer hybrid electron transport layer (ETL) is developed by simply adding an amino-functionalized polymer dopant (PN4N) and a light crosslinker into a commercialized n-type semiconductor (N2200) matrix. It is found that the resulting hybrid ETL not only has a good solvent resistance, facilitating multilayers device fabrication but also exhibits much improved electron transporting/extraction properties due to the doping between PN4N and N2200. As a result, by using PTB7-Th:PC71 BM blend as an active layer, the inverted device based on the hybrid ETL can yield a prominent power conversion efficiency of around 10.07%. More interestingly, photovoltaic property studies of bilayer devices suggest that the absorption of the hybrid ETL contributes to photocurrent and hence the hybrid ETL simultaneously acts as both cathode interlayer material and an electron acceptor. The resulting inverted polymer solar cells function like a novel device architectures with a combination of a bulk heterojunction device and miniature bilayer devices. This work provides new insights on function of ETLs and may be open up a new direction for the design of new ETL materials and novel device architectures to further improve device performance. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Solar central receiver hybrid power system, Phase I. Volume 2. Conceptual design. Final technical report, October 1978-August 1979

    Energy Technology Data Exchange (ETDEWEB)

    None

    1979-09-01

    The objectives of this study were to develop a hybrid power system design that (1) produces minimum cost electric power, (2) minimizes the capital investment and operating cost, (3) permits capacity displacement, (4) and achieves utility acceptance for market penetration. We have met the first three of these objectives and therefore believe that the fourth, utility acceptance, will become a reality. These objectives have been met by utilizing the Martin Marietta concept that combines the alternate central receiver power system design and a high-temperature salt primary heat transfer fluid and thermal storage media system with a fossil-fired nonsolar energy source. Task 1 reviewed the requirements definition document and comments and recommendations were provided to DOE/San Francisco. Task 2 consisted of a market analysis to evaluate the potential market of solar hybrid power plants. Twenty-two utilities were selected within nine regions of the country. Both written and verbal correspondence was used to assess solar hybrid power plants with respect to the utilities' future requirements and plans. The parametric analysis of Task 3 evaluated a wide range of subsystem configurations and sizes. These analyses included subsystems from the solar standalone alternate central receiver power system using high-temperature molten salt and from fossil fuel nonsolar subsystems. Task 4, selection of the preferred commerical system configuration, utilized the parametric analyses developed in Task 3 to select system and subsystem configurations for the commercial plant design. Task 5 developed a conceptual design of the selected commercial plant configuration and assessed the related cost and performance. Task 6 assessed the economics and performance of the selected configuration as well as future potential improvements or limitations of the hybrid power plants.

  9. Central-Receiver Solar-Thermal Power System 10-MW/sub e/ Pilot Plant: collector subsystem manufacturing plan report

    Energy Technology Data Exchange (ETDEWEB)

    None

    1977-09-15

    The overall manufacturing planning effort included: design modification analysis; manufacturing/tooling conceptual trades; process/tooling verification experiments; and documentation of manufacturing plans and cost estimates. Innovative tooling concepts were evaluated. Studies also included comparison of costs of both field and shop assembly of heliostats.

  10. Renewable Electricity Generation via Solar-Powered Methanol Reforming: Hybrid Proton Exchange Membrane Fuel Cell Systems Based on Novel Non-Concentrating, Intermediate-Temperature Solar Collectors

    Science.gov (United States)

    Real, Daniel J.

    Tremendous research efforts have been conducted studying the capturing and conversion of solar energy. Solar thermal power systems offer a compelling opportunity for renewable energy utilization with high efficiencies and excellent cost-effectiveness. The goal of this work was to design a non-concentrating collector capable of reaching temperatures above 250 °C, use this collector to power methanol steam reforming, and operate a proton exchange membrane (PEM) fuel cell using the generated hydrogen. The study presents the construction and characterization of a non-concentrating, intermediate-temperature, fin-in-tube evacuated solar collector, made of copper and capable of reaching stagnation temperatures of 268.5 °C at 1000 W/m2 irradiance. The collector was used to power methanol steam reforming, including the initial heating and vaporization of liquid reactants and the final heating of the gaseous reactants. A preferential oxidation (PROX) catalyst was used to remove CO from simulated reformate gas, and this product gas was used to operate a PEM fuel cell. The results show 1) that the outlet temperature is not limited by heat transfer from the absorber coating to the heat transfer fluid, but by the amount of solar energy absorbed. This implicates a constant heat flux description of the heat transfer process and allows for the usage of materials with lower thermal conductivity than copper. 2) It is possible to operate a PEM fuel cell from reformate gas if a PROX catalyst is used to remove CO from the gas. 3) The performance of the fuel cell is only slightly decreased (~4%) by CO2 dilution present in the reformate and PROX gas. These results provide a foundation for the first renewable electricity generation via solar-powered methanol reforming through a hybrid PEM fuel cell system based on novel non-concentrating, intermediate-temperature solar collectors.

  11. Characterizing microscale aluminum composite layer properties on silicon solar cells with hybrid 3D scanning force measurements

    Science.gov (United States)

    Bae, Sung-Kuk; Choi, Beomjoon; Chung, Haseung; Shin, Seungwon; Song, Hee-Eun; Seo, Jung Hwan

    2016-03-01

    This article presents a novel technique to estimate the mechanical properties of the aluminum composite layer on silicon solar cells by using a hybrid 3-dimensional laser scanning force measurement (3-D LSFM) system. The 3-D LSFM system measures the material properties of sub-layers constituting a solar cell. This measurement is critical for realizing high-efficient ultra-thin solar cells. The screen-printed aluminum layer, which significantly affects the bowing phenomenon, is separated from the complete solar cell by removing the silicon (Si) layer with deep reactive ion etching. An elastic modulus of ~15.1 GPa and a yield strength of ~35.0 MPa for the aluminum (Al) composite layer were obtained by the 3-D LSFM system. In experiments performed for 6-inch Si solar cells, the bowing distances decreased from 12.02 to 1.18 mm while the Si layer thicknesses increased from 90 to 190 μm. These results are in excellent agreement with the theoretical predictions for ultra-thin Si thickness (90 μm) based on the obtained Al composite layer properties.

  12. First Lunar Wake Passage of ARTEMIS: Discrimination of Wake Effects and Solar Wind Fluctuations by 3D Hybrid Simulations

    Science.gov (United States)

    Wiehle, S.; Plaschke, F.; Motschmann, U.; Glassmeier, K. H.; Auster, H. U.; Angelopoulos, V.; Mueller, J.; Kriegel, H.; Georgescu, E.; Halekas, J.; Sibeck, D. G.; McFadden, J. P.

    2011-01-01

    The spacecraft P1 of the new ARTEMIS (Acceleration, Reconnection, Turbulence, and Electrodynamics of the Moon's Interaction with the Sun) mission passed the lunar wake for the first time on February 13, 2010. We present magnetic field and plasma data of this event and results of 3D hybrid simulations. As the solar wind magnetic field was highly dynamic during the passage, a simulation with stationary solar wind input cannot distinguish whether distortions were caused by these solar wind variations or by the lunar wake; therefore, a dynamic real-time simulation of the flyby has been performed. The input values of this simulation are taken from NASA OMNI data and adapted to the P1 data, resulting in a good agreement between simulation and measurements. Combined with the stationary simulation showing non-transient lunar wake structures, a separation of solar wind and wake effects is achieved. An anisotropy in the magnitude of the plasma bulk flow velocity caused by a non-vanishing magnetic field component parallel to the solar wind flow and perturbations created by counterstreaming ions in the lunar wake are observed in data and simulations. The simulations help to interpret the data granting us the opportunity to examine the entire lunar plasma environment and, thus, extending the possibilities of measurements alone: A comparison of a simulation cross section to theoretical predictions of MHD wave propagation shows that all three basic MHD modes are present in the lunar wake and that their expansion governs the lunar wake refilling process.

  13. Characterizing microscale aluminum composite layer properties on silicon solar cells with hybrid 3D scanning force measurements.

    Science.gov (United States)

    Bae, Sung-Kuk; Choi, Beomjoon; Chung, Haseung; Shin, Seungwon; Song, Hee-eun; Seo, Jung Hwan

    2016-03-07

    This article presents a novel technique to estimate the mechanical properties of the aluminum composite layer on silicon solar cells by using a hybrid 3-dimensional laser scanning force measurement (3-D LSFM) system. The 3-D LSFM system measures the material properties of sub-layers constituting a solar cell. This measurement is critical for realizing high-efficient ultra-thin solar cells. The screen-printed aluminum layer, which significantly affects the bowing phenomenon, is separated from the complete solar cell by removing the silicon (Si) layer with deep reactive ion etching. An elastic modulus of ~15.1 GPa and a yield strength of ~35.0 MPa for the aluminum (Al) composite layer were obtained by the 3-D LSFM system. In experiments performed for 6-inch Si solar cells, the bowing distances decreased from 12.02 to 1.18 mm while the Si layer thicknesses increased from 90 to 190 μm. These results are in excellent agreement with the theoretical predictions for ultra-thin Si thickness (90 μm) based on the obtained Al composite layer properties.

  14. Novel Integration of Perovskite Solar Cell and Supercapacitor Based on Carbon Electrode for Hybridizing Energy Conversion and Storage.

    Science.gov (United States)

    Liu, Zhiyong; Zhong, Yan; Sun, Bo; Liu, Xingyue; Han, Jinghui; Shi, Tielin; Tang, Zirong; Liao, Guanglan

    2017-07-12

    Power packs integrating both photovoltaic parts and energy storage parts have gained great scientific and technological attention due to the increasing demand for green energy and the tendency for miniaturization and multifunctionalization in electronics industry. In this study, we demonstrate novel integration of perovskite solar cell and solid-state supercapacitor for power packs. The perovskite solar cell is integrated with the supercapacitor based on common carbon electrodes to hybridize photoelectric conversion and energy storage. The power pack achieves a voltage of 0.84 V when the supercapacitor is charged by the perovskite solar cell under the AM 1.5G white light illumination with a 0.071 cm(2) active area, reaching an energy storage proportion of 76% and an overall conversion efficiency of 5.26%. When the supercapacitor is precharged at 1.0 V, an instant overall output efficiency of 22.9% can be achieved if the perovskite solar cell and supercapacitor are connected in series, exhibiting great potential in the applications of solar energy storage and flexible electronics such as portable and wearable devices.

  15. Molecular design of interfacial modifiers for polymer-inorganic hybrid solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Jusfong; Shen, Tsung-Lung; Weng, Wei-Hsiang; Huang, Yu-Chen; Huang, Ching-I; Su, Wei-Fang; Ho, Kuo-Chuan [Institute of Polymer Science and Engineering, National Taiwan University, Taipei (China); Rwei, Syang-Peng [Institute of Organic and Polymeric Materials, National Taipei University of Technology, Taipei (China); Wang, Leeyih [Institute of Polymer Science and Engineering, National Taiwan University, Taipei (China); Center for Condensed Matter Sciences and Center for Emerging Material and Advanced Devices, National Taiwan University, Taipei (China)

    2012-02-15

    The heterojunction of poly(3-hexylthiophene) (P3HT) and TiO{sub 2} in hybrid solar cells is systematically engineered with four cyanoacrylic acid-containing conjugated molecules with various lowest unoccupied molecular orbital (LUMO) levels, WL-1 to WL-4, which are prepared by the formylation of thiophene derivatives in a Vilsmeier-Haack reaction, followed by treatment with cyanoacetic acid. The optical characteristics, redox properties, and intrinsic dipole moments of these interfacial modifiers (IMs) are examined using UV-vis spectrophotometry, cyclic voltammetry, and density functional theory calculations. Using cyanoacrylic acid as a terminal anchoring group in IMs increases the electron affinity in regions close to the titania surface and forms a molecular dipole that is orientated away from the TiO{sub 2} surface, enabling both open-circuit voltage (V{sub OC}) and short-circuit current density to be increased simultaneously. Photovoltaic measurements demonstrate that V{sub OC} increases with the dipole moment of IMs along the molecular backbone. Moreover, the external quantum efficiency (EQE) spectra display a bimodal distribution, revealing that both IMs and P3HT contribute to the photocurrent. The EQE at 570 nm is identified as characteristic of P3HT. More importantly, the LUMO of the IMs decisively determines the dissociation efficiency of P3HT excitons. The device based on P3HT/WL-4/TiO{sub 2} exhibits the highest power conversion efficiency of 2.87%. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  16. Influence of the polymer matrix on the efficiency of hybrid solar cells based on silicon nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Ben Dkhil, S., E-mail: sadok.bendekhil@gmail.com [Laboratoire Physique des Materiaux: Structures et Proprietes Groupe Physique des Composants et Dispositifs Nanometriques, 7021 Jarzouna, Bizerte (Tunisia); Ingenierie des Materiaux Polymeres: IMP, UMR CNRS 5223, Universite Claude Bernard Lyon 1, 15 boulevard Latarjet, 69622 Villeurbanne (France); Bourguiga, R. [Laboratoire Physique des Materiaux: Structures et Proprietes Groupe Physique des Composants et Dispositifs Nanometriques, 7021 Jarzouna, Bizerte (Tunisia); Davenas, J. [Ingenierie des Materiaux Polymeres: IMP, UMR CNRS 5223, Universite Claude Bernard Lyon 1, 15 boulevard Latarjet, 69622 Villeurbanne (France); Cornu, D. [Institut Europeen des Membranes, UMR CNRS 5635, Ecole Nationale superieure de Chimie, Universite de Montpellier, 1919 route de Mende, 34000 Montpellier (France)

    2012-02-15

    Highlights: Black-Right-Pointing-Pointer Hybrid solar cells based on silicon nanowires have been fabricated. Black-Right-Pointing-Pointer The relation between the morphology of the composite thin films and the charge transfer between the polymer matrices and SiNWs has been examined. Black-Right-Pointing-Pointer We have investigated the effect of the polymer matrix on the photovoltaic characteristics. - Abstract: Poly (N-vinylcarbazole) (PVK):SiNWs and poly (2-methoxy, 5-(2-ethyl-hexyloxy)-p-phenyl vinylene) (MEH-PPV):SiNWs bulk-heterojunctions (BHJ) have been elaborated from blends of SiNWs and the polymer in solution from a common solvent. Optical properties of these nanocomposites have been investigated by UV-vis absorption and photoluminescence (PL) spectral measurements. We have studied the charge transfer between SiNWs and the two polymers using the photoluminescence quenching of PVK and MEH-PPV which is a convenient signature of the reduced radiative recombination of the generated charge pairs upon exciton dissociation. We found that PVK and SiNWs constitutes the better donor-acceptor system. In order to understand the difference between PVK:SiNWs or MEH-PPV:SiNWs behaviours, photoluminescence responses were correlated with the topography (SEM) of the thin films. The photovoltaic effect of ITO/PEDOT:PSS/SiNWs:PVK/Al and ITO/PEDOT:PSS/SiNWs:MEH-PPV/Al structures was studied by current-voltage (I-V) measurements in dark and under illumination and interpreted on the basis of the charge transfer differences resulting from the morphologies.

  17. Plasmon-enhanced Solar Fuel Production with Gold-metal Oxide Hybrid Nanomaterials

    DEFF Research Database (Denmark)

    Engelbrekt, Christian; Law, Matt; Zhang, Jingdong

    Harnessing sunlight to drive chemical reactions for energy storage is an important element in the transitiontowards green and sustainable technologies. Solar fuel production using semiconductor nanoparticles (SNPs) are widely studied but suffer from poor utilization of the solar spectrum and...

  18. Correlation between CdSe QD Synthesis, Post-Synthetic Treatment, and BHJ Hybrid Solar Cell Performance

    Directory of Open Access Journals (Sweden)

    Michael Eck

    2016-06-01

    Full Text Available In this publication we show that the procedure to synthesize nanocrystals and the post-synthetic nanocrystal ligand sphere treatment have a great influence not only on the immediate performance of hybrid bulk heterojunction solar cells, but also on their thermal, long-term, and air stability. We herein demonstrate this for the particular case of spherical CdSe nanocrystals, post-synthetically treated with a hexanoic acid based treatment. We observe an influence from the duration of this post-synthetic treatment on the nanocrystal ligand sphere size, and also on the solar cell performance. By tuning the post-synthetic treatment to a certain degree, optimal device performance can be achieved. Moreover, we show how to effectively adapt the post-synthetic nanocrystal treatment protocol to different nanocrystal synthesis batches, hence increasing the reproducibility of hybrid nanocrystal:polymer bulk-heterojunction solar cells, which usually suffers due to the fluctuations in nanocrystal quality of different synthesis batches and synthesis procedures.

  19. Annual measured and simulated thermal performance analysis of a hybrid solar district heating plant with flat plate collectors and parabolic trough collectors in series

    DEFF Research Database (Denmark)

    Tian, Zhiyong; Perers, Bengt; Furbo, Simon

    2017-01-01

    in large solar heating plants for a district heating network, a hybrid solar collector field with 5960 m2 flat plate collectors and 4039 m2 parabolic trough collectors in series was constructed in Taars, Denmark. The design principle is that the flat plate collectors preheat the return water from...... for this type of hybrid solar district heating plants with flat plate collectors and parabolic trough collectors in the Nordic region, but also introduce a novel design concept of solar district heating plants to other high solar radiation areas.......Flat plate collectors have relatively low efficiency at the typical supply temperatures of district heating networks (70–95 °C). Parabolic trough collectors retain their high efficiency at these temperatures. To maximize the advantages of flat plate collectors and parabolic trough collectors...

  20. Solution-processed MoO3:PEDOT:PSS hybrid hole transporting layer for inverted polymer solar cells.

    Science.gov (United States)

    Wang, Yiling; Luo, Qun; Wu, Na; Wang, Qiankun; Zhu, Hongfei; Chen, Liwei; Li, Yan-Qing; Luo, Liqiang; Ma, Chang-Qi

    2015-04-08

    Solution-processed organic-inorganic hybrids composing of MoO3 nanoparticles and PEDOT:PSS were developed for use in inverted organic solar cells as hole transporting layer (HTL). The hybrid MoO3:PEDOT:PSS inks were prepared by simply mixing PEDOT:PSS aqueous and MoO3 ethanol suspension together. A core-shell structure was proposed in the MoO3:PEDOT:PSS hybrid ink, where PEDOT chains act as the core and MoO3 nanoparticles connected with PSS chains act as the composite shell. The mixing with PEDOT:PSS suppressed the aggregation of MoO3 nanoparticles, which led to a smoother surface. In addition, since the hydrophilic PSS chains were passivated through preferentially connection with MoO3, the stronger adhesion between MoO3 nanoparticles and the photoactive layer improved the film forming ability of the MoO3:PEDOT:PSS hybrid ink. The MoO3:PEDOT:PSS hybrid HTL can therefore be feasibly deposited onto the hydrophobic photoactive polymer layer without any surface treatment. The use of the MoO3:PEDOT:PSS hybrid HTL resulted in the optimized P3HT:PC61BM- and PTB7:PC61BM-based inverted organic solar cells reaching highest power conversion efficiencies of 3.29% and 5.92%, respectively, which were comparable with that of the control devices using thermally evaporated MoO3 HTL (3.05% and 6.01%, respectively). Furthermore, less HTL thickness dependence of device performance was found for the hybrid HTL-based devices, which makes it more compatible with roll-to-roll printing process. In the end, influence of the blend ratio of MoO3 to PEDOT:PSS on photovoltaic performance and device stability was studied carefully, results indicated that the device performance would decrease with the increase of MoO3 blended ratio, whereas the long-term stability was improved.

  1. Highly Conductive PEDOT:PSS Transparent Hole Transporting Layer with Solvent Treatment for High Performance Silicon/Organic Hybrid Solar Cells

    Science.gov (United States)

    Li, Qingduan; Yang, Jianwei; Chen, Shuangshuang; Zou, Jizhao; Xie, Weiguang; Zeng, Xierong

    2017-08-01

    Efficient Si/organic hybrid solar cells were fabricated with dimethyl sulfoxide (DMSO) and surfactant-doped poly(3,4-ethylenedioxythiophene): polystyrene (PEDOT:PSS). A post-treatment on PEDOT:PSS films with polar solvent was performed to increase the device performance. We found that the performance of hybrid solar cells increase with the polarity of solvent. A high conductivity of 1105 S cm- 1 of PEDOT:PSS was achieved by adopting methanol treatment, and the best efficiency of corresponding hybrid solar cells reaches 12.22%. X-ray photoelectron spectroscopy (XPS) and RAMAN spectroscopy were utilized to conform to component changes of PEDOT:PSS films after solvent treatment. It was found that the removal of the insulator PSS from the film and the conformational changes are the determinants for the device performance enhancement. Electrochemical impedance spectroscopy (EIS) was used to investigate the recombination resistance and capacitance of methanol-treated and untreated hybrid solar cells, indicating that methanol-treated devices had a larger recombination resistance and capacitance. Our findings bring a simple and efficient way for improving the performance of hybrid solar cell.

  2. Highly Conductive PEDOT:PSS Transparent Hole Transporting Layer with Solvent Treatment for High Performance Silicon/Organic Hybrid Solar Cells.

    Science.gov (United States)

    Li, Qingduan; Yang, Jianwei; Chen, Shuangshuang; Zou, Jizhao; Xie, Weiguang; Zeng, Xierong

    2017-08-23

    Efficient Si/organic hybrid solar cells were fabricated with dimethyl sulfoxide (DMSO) and surfactant-doped poly(3,4-ethylenedioxythiophene): polystyrene (PEDOT:PSS). A post-treatment on PEDOT:PSS films with polar solvent was performed to increase the device performance. We found that the performance of hybrid solar cells increase with the polarity of solvent. A high conductivity of 1105 S cm(- 1) of PEDOT:PSS was achieved by adopting methanol treatment, and the best efficiency of corresponding hybrid solar cells reaches 12.22%. X-ray photoelectron spectroscopy (XPS) and RAMAN spectroscopy were utilized to conform to component changes of PEDOT:PSS films after solvent treatment. It was found that the removal of the insulator PSS from the film and the conformational changes are the determinants for the device performance enhancement. Electrochemical impedance spectroscopy (EIS) was used to investigate the recombination resistance and capacitance of methanol-treated and untreated hybrid solar cells, indicating that methanol-treated devices had a larger recombination resistance and capacitance. Our findings bring a simple and efficient way for improving the performance of hybrid solar cell.

  3. Ti/Au Cathode for Electronic transport material-free organic-inorganic hybrid perovskite solar cells

    Science.gov (United States)

    Shi, Tongfei; Chen, Jian; Zheng, Jianqiang; Li, Xinhua; Zhou, Bukang; Cao, Huaxiang; Wang, Yuqi

    2016-12-01

    We have fabricated organic-inorganic hybrid perovskite solar cell that uses a Ti/Au multilayer as cathode and does not use electron transport materials, and achieved the highest power conversion efficiency close to 13% with high reproducibility and hysteresis-free photocurrent curves. Our cell has a Schottky planar heterojunction structure (ITO/PEDOT:PSS/perovskite/Ti/Au), in which the Ti insertion layer isolate the perovskite and Au layers, thus proving good contact between the Au and perovskite and increasing the cells’ shunt resistance greatly. Moreover, the Ti/Au cathode in direct contact with hybrid perovskite showed no reaction for a long-term exposure to the air, and can provide sufficient protection and avoid the perovskite and PEDOT:PSS layers contact with moisture. Hence, the Ti/Au based devices retain about 70% of their original efficiency after 300 h storage in the ambient environment.

  4. Spacecraft/Rover Hybrids for the Exploration of Small Solar System Bodies. [NASA NIAC Phase I Study

    Science.gov (United States)

    Pavone, Marco; Castillo-Rogez, Julie C.; Hoffman, Jeffrey A.; Nesnas, Issa A. D.

    2012-01-01

    This study investigated a novel mission architecture for the systematic and affordable in-situ exploration of small Solar System bodies. Specifically, a mother spacecraft would deploy over the surface of a small body one, or several, spacecraft/rover hybrids, which are small, multi-faceted enclosed robots with internal actuation and external spikes. They would be capable of 1) long excursions (by hopping), 2) short traverses to specific locations (through a sequence of controlled tumbles), and 3) high-altitude, attitude-controlled ballistic flight (akin to spacecraft flight). Their control would rely on synergistic operations with the mother spacecraft (where most of hybrids' perception and localization functionalities would be hosted), which would make the platforms minimalistic and, in turn, the entire mission architecture affordable.

  5. Improving the organic/Si heterojunction hybrid solar cell property by optimizing PEDOT:PSS film and with amorphous silicon as back surface field

    Science.gov (United States)

    Wen, Hongbin; Cai, Hongkun; Du, Yangyang; Dai, Xiaowan; Sun, Yun; Ni, Jian; Li, Juan; Zhang, Dexian; Zhang, Jianjun

    2017-01-01

    Organic/Si hybrid heterojunction hybrid solar cells have got a great progress. The hybrid device may be promising in terms of reducing cost due to its simple technological process. It is crucial for high efficiency solar cells to form better coating films on the Si substrate. Here, the performance of organic/Si heterojunction hybrid solar cells is obviously enhanced by adding surfactant (FS300) into poly(3,4-ethylenedioxythiophene)/poly(styrenesulfonate) film and the device with amorphous silicon as back surface field is successfully fabricated. The proper amount of surfactant addition improves the uniformity and homogeneous of the polymer film that can be reflected by scanning electron microscope and atomic force microscope, which allows good contact on the texture-Si substrate resulting in excellent device property. Also, the power conversion efficiency of cells is boosted to 9.37 from 7.31% displayed a 28% enhancement by embedding amorphous silicon thin film layer at rear interface as holes blocking layer. The insertion layer of amorphous silicon enhances the extraction of photon-generated carrier and suppresses the recombination of hole-electron at the rear cathode. Which results all improvement in the short-circuit current density, the open-circuit voltage and the fill factor. By optimizing the polymer film property and inserting the hole blocking layer, the performance of hybrid Si/organic hybrid solar cells is greatly improved.

  6. Solar Central Receiver Hybrid Power Systems sodium-cooled receiver concept. Final report. Volume II, Book 2. Conceptual design, Sections 5 and 6

    Energy Technology Data Exchange (ETDEWEB)

    None

    1980-01-01

    The overall, long-term objective of the Solar Central Receiver Hybrid Power System program is to identify, characterize, and ultimately demonstrate the viability and cost effectiveness of solar/fossil, steam Rankine cycle, hybrid power systems that: (1) consist of a combined solar central receiver energy source and a nonsolar energy source at a single, common site, (2) may operate in the base, intermediate, and peaking capacity modes, (3) produce the rated output independent of variations in solar insolation, (4) provide a significant savings (50% or more) in fuel consumption, and (5) produce power at the minimum possible cost in mills/kWh. It is essential that these hybrid concepts be technically feasible and economically competitive with other systems in the near to mid-term time period (1985-1990) on a commercial scale. The program objective for Phase I is to identify and conceptually characterize solar/fossil steam Rankine cycle, commercial-scale, power plant systems that are economically viable and technically feasible. This volume contains the detailed conceptual design and cost/performance estimates and an assessment of the commercial scale solar central receiver hybrid power system. (WHK)

  7. Development of a hybrid sputtering/evaporation process for Cu(In,Ga)Se{sub 2} thin film solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Acciarri, M.; Binetti, S.; Le Donne, A.; Lorenzi, B.; Caccamo, L.; Miglio, L. [Dipartimento di Scienza dei Materiali e Solar Energy Research Center MIB-SOLAR, Universita di Milano Bicocca, Milan (Italy); Moneta, R.; Marchionna, S.; Meschia, M. [Voltasolar s.r.l, Turate (Italy)

    2011-08-15

    In this paper we report a new method for Cu(In,Ga)Se{sub 2} deposition for solar cell application. Differently from the common co-evaporation process, an alterative approach for thin film Cu(In,Ga)Se{sub 2} has been tested: the sputtering deposition of metal elements combined with the selenium evaporation. We have studied the relationships between the growth parameters of our hybrid sputtering/evaporation method and the chemical-physical properties of the CIGS films. The cells are completed with a CdS buffer layer deposited by chemical bath deposition and ZnO + ITO deposited by RF sputtering. Test solar cells of 0.5 cm{sup 2} have shown an efficiency of 10% and 2.5% on glass and stainless steel substrate respectively. (copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  8. Design and feasibility of high temperature nanoparticle fluid filter in hybrid thermal/photovoltaic concentrating solar power

    Science.gov (United States)

    DeJarnette, Drew; Brekke, Nick; Tunkara, Ebrima; Hari, Parameswar; Roberts, Kenneth; Otanicar, Todd

    2015-09-01

    A nanoparticle fluid filter used with concentrating hybrid solar/thermal collector design is presented. Nanoparticle fluid filters could be situated on any given concentrating system with appropriate customized engineering. This work shows the design in the context of a trough concentration system. Geometric design and physical placement in the optical path was modeled using SolTrace. It was found that a design can be made that blocks 0% of the traced rays. The nanoparticle fluid filter is tunable for different concentrating systems using various PV cells or operating at varying temperatures.

  9. A model for the operation of perovskite based hybrid solar cells: formulation, analysis, and comparison to experiment\\ud

    OpenAIRE

    Foster, Jamie M.; Snaith, Henry J.; Leijtens, Tomas; Richardson, Giles

    2014-01-01

    This work is concerned with the modeling of perovskite based hybrid solar cells formed by sandwiching a slab of organic lead halide perovskite (CH$_3$NH$_3$PbI$_{3-x}$Cl$_x$) photo-absorber between (n-type) acceptor and (p-type) donor materials---typically titanium dioxide and spiro. A model for the electrical behavior of these cells is formulated based on drift-diffusion equations for the motion of the charge carriers and Poisson's equation for the electric potential. It is closed by (i) int...

  10. Silicon-Film{trademark} Solar Cells by a Flexible Manufacturing System: PVMaT Phase II Annual Report, 1 February 1999 - 31 January 2000

    Energy Technology Data Exchange (ETDEWEB)

    Culik, J.S.; Rand, J.A.; Bower, J.R.; Bisaillon, J.C.; Cummings, J.R.; Allison, K.W.; Goncharovsky, I.; Jonczyk, R.; Ressler, S.D.; Sims, P.E.; Hall, R.B.; Barnett, A.M. (AstroPower, Inc.; Newark, Delaware)

    2000-08-24

    AstroPower is developing a manufacturing process for Silicon-Film solar cell production under an NREL-administered Photovoltaic Manufacturing Technology (PVMaT) cost-share program. This document reports on results from the second phase of a three-phase effort. Progress is reported on the development of new procedures and equipment for in-line wet chemical processes, sheet fabrication, solar cell processing, and module assembly. Future concepts and goals for the Silicon-Film process are also discussed. A major technical goal of this effort is the elimination of batch production processes in AstroPower's solar cell process. New processes are being developed that can accommodate large-area Silicon-Film planks in an in-line, continuous manner. During Phase II of this program, an in-line chemical etching system for removing diffusion oxides was specified, procured, and installed. Operation of this system during Phase III of this program is expected to validate the in-line approach and will provide valuable information for use in the design of a second, and more challenging, in-line etch system. Significant progress was made during this reporting period in the development of new screenprinting ink formulations for both the front and back metallization of Silicon-Film solar cells. Cost reductions and efficiency improvements were achieved as a result of these efforts. Progress was made in the design of a new Silicon-Film plank machine, as well as in improved processes to fabricate this material into cost-effective and efficient solar cells. Additionally, a new large-area module concept was developed and prototyped during this phase of the PVMaT program.

  11. 面向离散制造的混杂数控自治系统设计%Design of autonomous system for hybrid NC of discrete manufacturing

    Institute of Scientific and Technical Information of China (English)

    钱峰; 王德伦; 杜广宇

    2014-01-01

    研究离散制造中混杂数控生产线的智能化控制问题。引入智能感知、智能决策与智能执行等智能制造技术,构建生产线数控设备的联网协同机制,实现类似流程制造中自动化生产及无人值守的自治控制。基于信息物理融合系统(cyber physical systems,CPS)设计混杂数控自治系统(autonomous system for hybrid NC,ASHNC),提出具体架构与分层模型。采用WPF技术开发原型系统,并且在多个知名企业所构建的数控生产线中得到应用。实际效果验证了系统的可行性。%The intelligent control for hybrid NC production line in discrete manufacturing is studied. IntelliSense,smart decision-making and implementation of intelligent technologies are introduced,a networked-collaborative mechanism for hybrid NC production line is built,and a kind of autonomous control of unmanned production is implemented.Based on cyber physical systems,an autonomous system for hybrid NC is designed,a specific structure and a hierarchical model are proposed.A prototype system is developed using WPF technology.By the application of this research in some well-known enterprises,feasibility of the system has been well verified through practical effects.

  12. Hybrid PV/diesel solar power system design using multi-level factor analysis optimization

    Science.gov (United States)

    Drake, Joshua P.

    Solar power systems represent a large area of interest across a spectrum of organizations at a global level. It was determined that a clear understanding of current state of the art software and design methods, as well as optimization methods, could be used to improve the design methodology. Solar power design literature was researched for an in depth understanding of solar power system design methods and algorithms. Multiple software packages for the design and optimization of solar power systems were analyzed for a critical understanding of their design workflow. In addition, several methods of optimization were studied, including brute force, Pareto analysis, Monte Carlo, linear and nonlinear programming, and multi-way factor analysis. Factor analysis was selected as the most efficient optimization method for engineering design as it applied to solar power system design. The solar power design algorithms, software work flow analysis, and factor analysis optimization were combined to develop a solar power system design optimization software package called FireDrake. This software was used for the design of multiple solar power systems in conjunction with an energy audit case study performed in seven Tibetan refugee camps located in Mainpat, India. A report of solar system designs for the camps, as well as a proposed schedule for future installations was generated. It was determined that there were several improvements that could be made to the state of the art in modern solar power system design, though the complexity of current applications is significant.

  13. Hybrid solar cells of conjugated polymers metal-oxide nanocrystals blends; state of the art and future research challenges in Indonesia

    Science.gov (United States)

    Bahtiar, Ayi

    2013-09-01

    Ever-increasing world energy demand, depleting non-renewable energy resources and disruptive climate change due to greenhouse gases has aroused much interest in alternative renewable energy sources. Solar energy is one of the best available alternatives, for it is both abundant and clean. Solar cell is an effective device for converting solar energy into electricity. Indonesia is located on the equator where the sunlight is always available in abundance throughout the year; therefore solar cell would become the main source of electrical energy in Indonesia. However, the high cost of inorganic solar cells in spite of their high power conversion efficiency (PCE) has been a major constrain for their mass utilization in Indonesia. The only way to reduce the cost of production and installation is to find other materials which offer low-cost and easy processing into solar cells. Polymer solar cells have been intensively investigated for high performance and low-cost solar cells. Today, 9-11% power conversion efficiency (PCE) of small area polymer solar cells and 2-4% PCE of large area or module solar cells are already achieved. However, for practical application and mass production, 10% or higher PCE of module solar cells is highly required. The main strategic issue for improving the PCE is to use blend of conjugated polymer-metal oxide nanocrystals as active materials for hybrid solar cells, due to the good combination of the versatile solution processability of conjugated polymers and high charge carrier mobility of metal-oxide nanocrystals. In this paper, current development of hybrid solar cells worldwide and future research challenges in Indonesia will be discussed.

  14. Torsional Behaviour and Finite Element Analysis of the Hybrid Laminated Composite Shafts: Comparison of VARTM with Vacuum Bagging Manufacturing Method

    OpenAIRE

    Mehmet Emin Taşdelen; Mehmet Halidun Keleştemur; Ercan Şevkat

    2016-01-01

    Braided sleeve composite shafts are produced and their torsional behavior is investigated. The braided sleeves are slid over an Al tube to create very strong and rigid tubular form shafts and they are in the form of 2/2 twill biaxial fiber fabric that has been woven into a continuous sleeve. Carbon and glass fibers braided sleeves are used for the fabrication of the composite shafts. VARTM (vacuum assisted resin transfer molding) and Vacuum Bagging are the two different types of manufacturing...

  15. ZnSe·0.5N2H4 hybrid nanostructures: a promising alternative photocatalyst for solar conversion.

    Science.gov (United States)

    Chen, Yu-Chih; Liu, Tao-Cheng; Hsu, Yung-Jung

    2015-01-28

    As the molecular precursor of ZnSe, ZnSe·0.5N2H4 inorganic-organic hybrids have received relatively less attention due to the feasibility of their further processing and decomposition into pure-phase ZnSe. Here we demonstrated that ZnSe·0.5N2H4 hybrid nanostructures, which were prepared using a facile hydrazine-assisted hydrothermal method, may practically harvest solar energy for photoconversion applications. By modulating the volume ratio of hydrazine hydrate to deionized water employed in the synthesis, the morphology of the grown ZnSe·0.5N2H4 can be varied, which included nanowires, nanobelts and nanoflakes. With the relatively long exciton lifetime and highly anisotropic structure, ZnSe·0.5N2H4 nanowires performed much better in the photodegradation of rhodamine B than the other two counterpart products. As compared to pure ZnSe nanoparticles and single-phase ZnSe nanowires obtained from further processing ZnSe·0.5N2H4, the ZnSe·0.5N2H4 hybrid nanowires exhibited superior photocatalytic performance under visible light illumination. The hybrid nanowires were further decorated with Au particles to endow them with structural and compositional diversities. Time-resolved photoluminescence spectra suggested that almost 40% of the photoexcited electrons in ZnSe·0.5N2H4 nanowires can be transported to the decorated Au, which enabled a fuller extent of participation of charge carriers in the photocatalytic process and thus conduced to a significant enhancement in the photocatalytic activity. The demonstrations from this work illustrate that ZnSe·0.5N2H4 hybrid nanostructures can serve as a versatile photocatalyst platform for advanced photocatalytic applications.

  16. Spectrum-splitting hybrid CSP-CPV solar energy system with standalone and parabolic trough plant retrofit applications

    Science.gov (United States)

    Orosz, Matthew; Zweibaum, Nicolas; Lance, Tamir; Ruiz, Maritza; Morad, Ratson

    2016-05-01

    Sunlight to electricity efficiencies of Parabolic Trough Collector (PTC) plants are typically on the order of 15%, while commercial solar Photovoltaic (PV) technologies routinely achieve efficiencies of greater than 20%, albeit with much higher conversion efficiencies of photons at the band gap. Hybridizing concentrating solar power and photovoltaic technologies can lead to higher aggregate efficiencies due to the matching of photons to the appropriate converter based on wavelength. This can be accomplished through spectral filtering whereby photons unusable or poorly utilitized by PV (IR and UV) are passed through to a heat collection element, while useful photons (VIS) are reflected onto a concentrating PV (CPV) receiver. The mechanical design and experimental validation of spectral splitting optics is described in conjunction with system level modeling and economic analysis. The implications of this architecture include higher efficiency, lower cost hybrid CSP-PV power systems, as well as the potential to retrofit existing PTC plants to boost their output by ~ 10% at a projected investment cost of less than 1 per additional net Watt and an IRR of 18%, while preserving the dispatchability of the CSP plant's thermal energy storage.

  17. Crafting semiconductor organic-inorganic nanocomposites via placing conjugated polymers in intimate contact with nanocrystals for hybrid solar cells.

    Science.gov (United States)

    Zhao, Lei; Lin, Zhiqun

    2012-08-22

    Semiconductor organic-inorganic hybrid solar cells incorporating conjugated polymers (CPs) and nanocrystals (NCs) offer the potential to deliver efficient energy conversion with low-cost fabrication. The CP-based photovoltaic devices are complimented by an extensive set of advantageous characteristics from CPs and NCs, such as lightweight, flexibility, and solution-processability of CPs, combined with high electron mobility and size-dependent optical properties of NCs. Recent research has witnessed rapid advances in an emerging field of directly tethering CPs on the NC surface to yield an intimately contacted CP-NC nanocomposite possessing a well-defined interface that markedly promotes the dispersion of NCs within the CP matrix, facilitates the photoinduced charge transfer between these two semiconductor components, and provides an effective platform for studying the interfacial charge separation and transport. In this Review, we aim to highlight the recent developments in CP-NC nanocomposite materials, critically examine the viable preparative strategies geared to craft intimate CP-NC nanocomposites and their photovoltaic performance in hybrid solar cells, and finally provide an outlook for future directions of this extraordinarily rich field. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Manufacturing cost analysis of a parabolic dish concentrator (General Electric design) for solar thermal electric power systems in selected production volumes

    Science.gov (United States)

    1981-01-01

    The manufacturing cost of a General Electric 12 meter diameter concentrator was estimated. This parabolic dish concentrator for solar thermal system was costed in annual production volumes of 100 - 1,000 - 5,000 - 10,000 - 50,000 100,000 - 400,000 and 1,000,000 units. Presented for each volume are the costs of direct labor, material, burden, tooling, capital equipment and buildings. Also presented is the direct labor personnel and factory space requirements. All costs are based on early 1981 economics.

  19. Additively Manufactured Propulsion System

    OpenAIRE

    Dushku, Matthew; Mueller, Paul

    2012-01-01

    New high-performance, carbon-fiber reinforced polymer material allows additive manufacturing to produce pressure vessels capable of high pressures (thousands of pounds per square inch). This advancement in turn allows integral hybrid propulsion which is revolutionary for both CubeSats and additively-manufactured spacecraft. Hybrid propulsion offers simplicity as compared to bipropellant liquid propulsion, significantly better safety compared to solid or monopropellant hydrazine propulsion, an...

  20. Analysis of off-grid hybrid wind turbine/solar PV water pumping systems

    Science.gov (United States)

    While many remote water pumping systems exist (e.g. mechanical windmills, solar photovoltaic , wind-electric, diesel powered), very few combine both the wind and solar energy resources to possibly improve the reliability and the performance of the system. In this paper, off-grid wind turbine (WT) a...