WorldWideScience

Sample records for hybrid solar cell

  1. Organic and hybrid solar cells

    CERN Document Server

    Huang, Hui

    2014-01-01

    This book delivers a comprehensive evaluation of organic and hybrid solar cells and identifies their fundamental principles and numerous applications. Great attention is given to the charge transport mechanism, donor and acceptor materials, interfacial materials, alternative electrodes, device engineering and physics, and device stability. The authors provide an industrial perspective on the future of photovoltaic technologies.

  2. Hybrid emitter all back contact solar cell

    Science.gov (United States)

    Loscutoff, Paul; Rim, Seung

    2016-04-12

    An all back contact solar cell has a hybrid emitter design. The solar cell has a thin dielectric layer formed on a backside surface of a single crystalline silicon substrate. One emitter of the solar cell is made of doped polycrystalline silicon that is formed on the thin dielectric layer. The other emitter of the solar cell is formed in the single crystalline silicon substrate and is made of doped single crystalline silicon. The solar cell includes contact holes that allow metal contacts to connect to corresponding emitters.

  3. A Bicontinuous Double Gyroid Hybrid Solar Cell

    KAUST Repository

    Crossland, Edward J. W.; Kamperman, Marleen; Nedelcu, Mihaela; Ducati, Caterina; Wiesner, Ulrich; Smilgies, Detlef -M.; Toombes, Gilman E. S.; Hillmyer, Marc A.; Ludwigs, Sabine; Steiner, Ullrich; Snaith, Henry J.

    2009-01-01

    We report the first successful application of an ordered bicontinuous gyroid semiconducting network in a hybrid bulk heterojunction solar cell. The freestanding gyroid network is fabricated by electrochemical deposition into the 10 nm wide voided

  4. Hybrid Perovskites: Prospects for Concentrator Solar Cells.

    Science.gov (United States)

    Lin, Qianqian; Wang, Zhiping; Snaith, Henry J; Johnston, Michael B; Herz, Laura M

    2018-04-01

    Perovskite solar cells have shown a meteoric rise of power conversion efficiency and a steady pace of improvements in their stability of operation. Such rapid progress has triggered research into approaches that can boost efficiencies beyond the Shockley-Queisser limit stipulated for a single-junction cell under normal solar illumination conditions. The tandem solar cell architecture is one concept here that has recently been successfully implemented. However, the approach of solar concentration has not been sufficiently explored so far for perovskite photovoltaics, despite its frequent use in the area of inorganic semiconductor solar cells. Here, the prospects of hybrid perovskites are assessed for use in concentrator solar cells. Solar cell performance parameters are theoretically predicted as a function of solar concentration levels, based on representative assumptions of charge-carrier recombination and extraction rates in the device. It is demonstrated that perovskite solar cells can fundamentally exhibit appreciably higher energy-conversion efficiencies under solar concentration, where they are able to exceed the Shockley-Queisser limit and exhibit strongly elevated open-circuit voltages. It is therefore concluded that sufficient material and device stability under increased illumination levels will be the only significant challenge to perovskite concentrator solar cell applications.

  5. Hybrid solar cells : Perovskites under the Sun

    NARCIS (Netherlands)

    Loi, Maria Antonietta; Hummelen, Jan C.

    2013-01-01

    Mixed-halide organic–inorganic hybrid perovskites are reported to display electron–hole diffusion lengths over 1 μm. This observation provides important insight into the charge-carrier dynamics of this class of semiconductors and increases the expectations for highly efficient and cheap solar cells.

  6. Hybrid Silicon Nanocone–Polymer Solar Cells

    KAUST Repository

    Jeong, Sangmoo

    2012-06-13

    Recently, hybrid Si/organic solar cells have been studied for low-cost Si photovoltaic devices because the Schottky junction between the Si and organic material can be formed by solution processes at a low temperature. In this study, we demonstrate a hybrid solar cell composed of Si nanocones and conductive polymer. The optimal nanocone structure with an aspect ratio (height/diameter of a nanocone) less than two allowed for conformal polymer surface coverage via spin-coating while also providing both excellent antireflection and light trapping properties. The uniform heterojunction over the nanocones with enhanced light absorption resulted in a power conversion efficiency above 11%. Based on our simulation study, the optimal nanocone structures for a 10 μm thick Si solar cell can achieve a short-circuit current density, up to 39.1 mA/cm 2, which is very close to the theoretical limit. With very thin material and inexpensive processing, hybrid Si nanocone/polymer solar cells are promising as an economically viable alternative energy solution. © 2012 American Chemical Society.

  7. Hybrid Silicon Nanocone–Polymer Solar Cells

    KAUST Repository

    Jeong, Sangmoo; Garnett, Erik C.; Wang, Shuang; Yu, Zongfu; Fan, Shanhui; Brongersma, Mark L.; McGehee, Michael D.; Cui, Yi

    2012-01-01

    Recently, hybrid Si/organic solar cells have been studied for low-cost Si photovoltaic devices because the Schottky junction between the Si and organic material can be formed by solution processes at a low temperature. In this study, we demonstrate a hybrid solar cell composed of Si nanocones and conductive polymer. The optimal nanocone structure with an aspect ratio (height/diameter of a nanocone) less than two allowed for conformal polymer surface coverage via spin-coating while also providing both excellent antireflection and light trapping properties. The uniform heterojunction over the nanocones with enhanced light absorption resulted in a power conversion efficiency above 11%. Based on our simulation study, the optimal nanocone structures for a 10 μm thick Si solar cell can achieve a short-circuit current density, up to 39.1 mA/cm 2, which is very close to the theoretical limit. With very thin material and inexpensive processing, hybrid Si nanocone/polymer solar cells are promising as an economically viable alternative energy solution. © 2012 American Chemical Society.

  8. A Bicontinuous Double Gyroid Hybrid Solar Cell

    KAUST Repository

    Crossland, Edward J. W.

    2009-08-12

    We report the first successful application of an ordered bicontinuous gyroid semiconducting network in a hybrid bulk heterojunction solar cell. The freestanding gyroid network is fabricated by electrochemical deposition into the 10 nm wide voided channels of a self-assembled, selectively degradable block copolymer film. The highly ordered pore structure is ideal for uniform infiltration of an organic hole transporting material, and solid-state dye-sensitized solar cells only 400 nm thick exhibit up to 1.7% power conversion efficiency. This patterning technique can be readily extended to other promising heterojunction systems and is a major step toward realizing the full potential of self-assembly in the next generation of device technologies. © 2009 American Chemical Society.

  9. Hybrid Solar Cells: Materials, Interfaces, and Devices

    Science.gov (United States)

    Mariani, Giacomo; Wang, Yue; Kaner, Richard B.; Huffaker, Diana L.

    Photovoltaic technologies could play a pivotal role in tackling future fossil fuel energy shortages, while significantly reducing our carbon dioxide footprint. Crystalline silicon is pervasively used in single junction solar cells, taking up 80 % of the photovoltaic market. Semiconductor-based inorganic solar cells deliver relatively high conversion efficiencies at the price of high material and manufacturing costs. A great amount of research has been conducted to develop low-cost photovoltaic solutions by incorporating organic materials. Organic semiconductors are conjugated hydrocarbon-based materials that are advantageous because of their low material and processing costs and a nearly unlimited supply. Their mechanical flexibility and tunable electronic properties are among other attractions that their inorganic counterparts lack. Recently, collaborations in nanotechnology research have combined inorganic with organic semiconductors in a "hybrid" effort to provide high conversion efficiencies at low cost. Successful integration of these two classes of materials requires a profound understanding of the material properties and an exquisite control of the morphology, surface properties, ligands, and passivation techniques to ensure an optimal charge carrier generation across the hybrid device. In this chapter, we provide background information of this novel, emerging field, detailing the various approaches for obtaining inorganic nanostructures and organic polymers, introducing a multitude of methods for combining the two components to achieve the desired morphologies, and emphasizing the importance of surface manipulation. We highlight several studies that have fueled new directions for hybrid solar cell research, including approaches for maximizing efficiencies by controlling the morphologies of the inorganic component, and in situ molecular engineering via electrochemical polymerization of a polymer directly onto the inorganic nanowire surfaces. In the end, we

  10. Hybrid Perovskite/Perovskite Heterojunction Solar Cells.

    Science.gov (United States)

    Hu, Yinghong; Schlipf, Johannes; Wussler, Michael; Petrus, Michiel L; Jaegermann, Wolfram; Bein, Thomas; Müller-Buschbaum, Peter; Docampo, Pablo

    2016-06-28

    Recently developed organic-inorganic hybrid perovskite solar cells combine low-cost fabrication and high power conversion efficiency. Advances in perovskite film optimization have led to an outstanding power conversion efficiency of more than 20%. Looking forward, shifting the focus toward new device architectures holds great potential to induce the next leap in device performance. Here, we demonstrate a perovskite/perovskite heterojunction solar cell. We developed a facile solution-based cation infiltration process to deposit layered perovskite (LPK) structures onto methylammonium lead iodide (MAPI) films. Grazing-incidence wide-angle X-ray scattering experiments were performed to gain insights into the crystallite orientation and the formation process of the perovskite bilayer. Our results show that the self-assembly of the LPK layer on top of an intact MAPI layer is accompanied by a reorganization of the perovskite interface. This leads to an enhancement of the open-circuit voltage and power conversion efficiency due to reduced recombination losses, as well as improved moisture stability in the resulting photovoltaic devices.

  11. Methodological comparison on hybrid nano organic solar cell fabrication

    Science.gov (United States)

    Vairavan, Rajendaran; Hambali, Nor Azura Malini Ahmad; Wahid, Mohamad Halim Abd; Retnasamy, Vithyacharan; Shahimin, Mukhzeer Mohamad

    2018-02-01

    The development of low cost solar cells has been the main focus in recent years. This has lead to the generation of photovoltaic cells based on hybrid of nanoparticle-organic polymer materials. This type of hybrid photovoltaic cells can overcome the problem of polymeric devices having low optical absorption and carrier mobilities. The hybrid cell has the potential of bridging the efficiency gap, which in present in organic and inorganic semiconductor materials. This project focuses on obtaining an hybrid active layer consisting of nanoparticles and organic polymer, to understand the parameter involved in obtaining this active layer and finally to investigate if the addition of nano particles in to the active layer could enhance the output of the hybrid solar cell. The hybrid active layer have will be deposited using the spin coating technique by using CdTe, CdS nano particles mixed with poly (2-methoxy,5-(2-ethyl-hexyloxy)-p-phenylvinylene)MEH-PPV.

  12. Review of Polymer, Dye-Sensitized, and Hybrid Solar Cells

    Directory of Open Access Journals (Sweden)

    S. N. F. Mohd-Nasir

    2014-01-01

    Full Text Available The combination of inorganic nanoparticles semiconductor, conjugated polymer, and dye-sensitized in a layer of solar cell is now recognized as potential application in developing flexible, large area, and low cost photovoltaic devices. Several conjugated low bandgap polymers, dyes, and underlayer materials based on the previous studies are quoted in this paper, which can provide guidelines in designing low cost photovoltaic solar cells. All of these materials are designed to help harvest more sunlight in a wider range of the solar spectrum besides enhancing the rate of charge transfer in a device structure. This review focuses on developing solid-state dye-synthesized, polymer, and hybrid solar cells.

  13. Nanotetrapods: quantum dot hybrid for bulk heterojunction solar cells

    Science.gov (United States)

    2013-01-01

    Hybrid thin film solar cell based on all-inorganic nanoparticles is a new member in the family of photovoltaic devices. In this work, a novel and performance-efficient inorganic hybrid nanostructure with continuous charge transportation and collection channels is demonstrated by introducing CdTe nanotetropods (NTs) and CdSe quantum dots (QDs). Hybrid morphology is characterized, demonstrating an interpenetration and compacted contact of NTs and QDs. Electrical measurements show enhanced charge transfer at the hybrid bulk heterojunction interface of NTs and QDs after ligand exchange which accordingly improves the performance of solar cells. Photovoltaic and light response tests exhibit a combined optic-electric contribution from both CdTe NTs and CdSe QDs through a formation of interpercolation in morphology as well as a type II energy level distribution. The NT and QD hybrid bulk heterojunction is applicable and promising in other highly efficient photovoltaic materials such as PbS QDs. PMID:24139059

  14. A Bicontinuous Double Gyroid Hybrid Solar Cell : Letter

    NARCIS (Netherlands)

    Crossland, E.J.W.; Kamperman, M.M.G.; Nedelcu, M.; Ducati, C.; Wiesner, U.; Smilgies, D.M.; Toombes, G.E.S.; Hillmyer, M.A.; Ludwigs, S.; Steiner, U.; Snaith, H.J.

    2009-01-01

    We report the first successful application of an ordered bicontinuous gyroid semiconducting network in a hybrid bulk heterojunction solar cell. The freestanding gyroid network is fabricated by electrochemical deposition into the 10 nm wide voided channels of a self-assembled, selectively degradable

  15. Graphene-based transparent electrodes for hybrid solar cells

    Directory of Open Access Journals (Sweden)

    Pengfei eLi

    2014-11-01

    Full Text Available The graphene-based transparent and conductive films were demonstrated to be cost-effective electrodes working in organic-inorganic hybrid Schottky solar cells. Large area graphene films were produced by chemical vapor deposition (CVD on copper foils and transferred onto glass as transparent electrodes. The hybrid solar cell devices consist of solution processed poly (3, 4-ethlenedioxythiophene: poly (styrenesulfonate (PEDOT: PSS which is sandwiched between silicon wafer and graphene electrode. The solar cells based on graphene electrodes, especially those doped with HNO3, has comparable performance to the reference devices using commercial indium tin oxide (ITO. Our work suggests that graphene-based transparent electrode is a promising candidate to replace ITO.

  16. Organic / IV, III-V Semiconductor Hybrid Solar Cells

    Directory of Open Access Journals (Sweden)

    Pang-Leen Ong

    2010-03-01

    Full Text Available We present a review of the emerging class of hybrid solar cells based on organic-semiconductor (Group IV, III-V, nanocomposites, which states separately from dye synthesized, polymer-metal oxides and organic-inorganic (Group II-VI nanocomposite photovoltaics. The structure of such hybrid cell comprises of an organic active material (p-type deposited by coating, printing or spraying technique on the surface of bulk or nanostructured semiconductor (n-type forming a heterojunction between the two materials. Organic components include various photosensitive monomers (e.g., phtalocyanines or porphyrines, conjugated polymers, and carbon nanotubes. Mechanisms of the charge separation at the interface and their transport are discussed. Also, perspectives on the future development of such hybrid cells and comparative analysis with other classes of photovoltaics of third generation are presented.

  17. Nanocomposite-Based Bulk Heterojunction Hybrid Solar Cells

    Directory of Open Access Journals (Sweden)

    Bich Phuong Nguyen

    2014-01-01

    Full Text Available Photovoltaic devices based on nanocomposites composed of conjugated polymers and inorganic nanocrystals show promise for the fabrication of low-cost third-generation thin film photovoltaics. In theory, hybrid solar cells can combine the advantages of the two classes of materials to potentially provide high power conversion efficiencies of up to 10%; however, certain limitations on the current within a hybrid solar cell must be overcome. Current limitations arise from incompatibilities among the various intradevice interfaces and the uncontrolled aggregation of nanocrystals during the step in which the nanocrystals are mixed into the polymer matrix. Both effects can lead to charge transfer and transport inefficiencies. This paper highlights potential strategies for resolving these obstacles and presents an outlook on the future directions of this field.

  18. Low cost, efficient hybrid solar cells

    OpenAIRE

    Malinkiewicz, Olga

    2017-01-01

    Actualmente, existen diversas estrategias para producir energía limpia mediante fuentes renovables, pero es la explotación directa de la energía del Sol la que se presenta como una solución ideal, siendo la mayor fuente de energía verde en la Tierra. La potencia de la energía solar que llega a la Tierra cada año es del orden de 86000 TW (Terawatt, 1012 Watt). Esto representa 4800 veces la demanda energética anual del mundo, estimada en 18 TW. Además, todos los depósitos de energía fósil recon...

  19. Hybrid solar cells composed of perovskite and polymer photovoltaic structures

    Science.gov (United States)

    Phaometvarithorn, Apatsanan; Chuangchote, Surawut; Kumnorkaew, Pisist; Wootthikanokkhan, Jatuphorn

    2018-06-01

    Organic/inorganic lead halide perovskite solar cells have recently attracted much attention in photovoltaic research, due to the devices show promising ways to achieve high efficiencies. The perovskite devices with high efficiencies, however, are typically fabricated in tandem solar cell which is complicated. In this research work, we introduce a solar cell device with the combination of CH3NH3PbI3-xClx perovskite and bulk heterojunction PCDTBT:PC70BM polymer without any tandem structure. The new integrated perovskite/polymer hybrid structure of ITO/PEDOT:PSS/perovskite/PCDTBT:PC70BM/PC70BM/TiOx/Al provides higher power conversion efficiency (PCE) of devices compared with conventional perovskite cell structure. With the optimized PCDTBT:PC70BM thickness of ∼70 nm, the highest PCE of 11.67% is achieved. Variation of conducting donor polymers in this new structure is also preliminary demonstrated. This study provides an attractively innovative structure and a promising design for further development of the new-generation solar cells.

  20. Performance evaluation of hybrid modified micro-channel solar cell ...

    African Journals Online (AJOL)

    user

    International Journal of Engineering, Science and Technology ... of hybrid PVT solar air heater had been proposed in the past. ...... president of Bag Energy Research Society (BERS:www.bers.in) which is responsible for energy education in ...

  1. Perspective: Hybrid solar cells: How to get the polymer to cooperate?

    Directory of Open Access Journals (Sweden)

    Jonas Weickert

    2013-08-01

    Full Text Available Lately, a lot of attention has been paid to metal oxide-organic hybrid solar cells. In these devices, conjugated polymers replace the typically transparent hole transporter as usually used in solid-state dye-sensitized solar cells in order to maximize the photon absorption efficiency. However, to unleash the full potential of hybrid solar cells it is imperative to push the photocurrent contribution of the absorbing polymer.

  2. Recent progress in stabilizing hybrid perovskites for solar cell applications

    Science.gov (United States)

    Chen, Jianqing; Cai, Xin; Yang, Donghui; Song, Dan; Wang, Jiajia; Jiang, Jinghua; Ma, Aibin; Lv, Shiquan; Hu, Michael Z.; Ni, Chaoying

    2017-07-01

    Hybrid inorganic-organic perovskites have quickly evolved as a promising group of materials for solar cells and optoelectronic applications mainly owing to the inexpensive materials, relatively simple and versatile fabrication and high power conversion efficiency (PCE). The certified energy conversion efficiency for perovskite solar cell (PSC) has reached above 20%, which is compatible to the current best for commercial applications. However, long-term stabilities of the materials and devices remain to be the biggest challenging issue for realistic implementation of the PSCs. This article discusses the key issues related to the stability of perovskite absorbing layer including crystal structural stability, chemical stability under moisture, oxygen, illumination and interface reaction, effects of electron-transporting materials (ETM), hole-transporting materials (HTM), contact electrodes, ion migration and preparation conditions. Towards the end, prospective strategies for improving the stability of PSCs are also briefly discussed and summarized. We focus on recent understanding of the stability of materials and devices and our perspectives about the strategies for the stability improvement.

  3. Perylenes as sensitizers in hybrid solar cells : how molecular size influences performance

    NARCIS (Netherlands)

    Li, Chen; Liu, Zhihong; Schoneboom, Jan; Eickemeyer, Felix; Pschirer, Neil G.; Erk, Peter; Herrmann, Andreas; Mullen, Klaus; Schöneboom, Jan; Grätzel, Michael; Janssen, René

    2009-01-01

    Dye-sensitized solar cells (DSCs), one kind of hybrid solar cells, are being intensively developed due to their high efficiency and low cost. One of the main factors to improve the efficiency is the minimization of the recombination of holes and electrons at the TiO(2)/dye/electrolyte interface. To

  4. What Is Moving in Hybrid Halide Perovskite Solar Cells?

    Science.gov (United States)

    2016-01-01

    Conspectus Organic–inorganic semiconductors, which adopt the perovskite crystal structure, have perturbed the landscape of contemporary photovoltaics research. High-efficiency solar cells can be produced with solution-processed active layers. The materials are earth abundant, and the simple processing required suggests that high-throughput and low-cost manufacture at scale should be possible. While these materials bear considerable similarity to traditional inorganic semiconductors, there are notable differences in their optoelectronic behavior. A key distinction of these materials is that they are physically soft, leading to considerable thermally activated motion. In this Account, we discuss the internal motion of methylammonium lead iodide (CH3NH3PbI3) and formamidinium lead iodide ([CH(NH2)2]PbI3), covering: (i) molecular rotation-libration in the cuboctahedral cavity; (ii) drift and diffusion of large electron and hole polarons; (iii) transport of charged ionic defects. These processes give rise to a range of properties that are unconventional for photovoltaic materials, including frequency-dependent permittivity, low electron–hole recombination rates, and current–voltage hysteresis. Multiscale simulations, drawing from electronic structure, ab initio molecular dynamic and Monte Carlo computational techniques, have been combined with neutron diffraction measurements, quasi-elastic neutron scattering, and ultrafast vibrational spectroscopy to qualify the nature and time scales of the motions. Electron and hole motion occurs on a femtosecond time scale. Molecular libration is a sub-picosecond process. Molecular rotations occur with a time constant of several picoseconds depending on the cation. Recent experimental evidence and theoretical models for simultaneous electron and ion transport in these materials has been presented, suggesting they are mixed-mode conductors with similarities to fast-ion conducting metal oxide perovskites developed for battery

  5. Hybrid solar cells from regioregular polythiophene and ZnO nanoparticles

    NARCIS (Netherlands)

    Beek, W.J.E.; Wienk, M.M.; Janssen, R.A.J.

    2006-01-01

    Blends of nanocryst. zinc oxide nanoparticles (nc-ZnO) and regioregular poly(3-hexylthiophene) (P3HT) processed from soln. have been used to construct hybrid polymer-metal oxide bulk-heterojunction solar cells. Thermal annealing of the spin-cast films significantly improves the solar-energy

  6. Compact hybrid cell based on a convoluted nanowire structure for harvesting solar and mechanical energy

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Chen; Wang, Zhong Lin [School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA 30332 (United States)

    2011-02-15

    A fully integrated, solid-state, compact hybrid cell (CHC) that comprises ''convoluted'' ZnO nanowire structures for concurrent harvesting of both solar and mechanical energy is demonstrated. The compact hybrid cell is based on a conjunction design of an organic solid-state dye-sensitized solar cell (DSSC) and piezoelectric nanogenerator in one compact structure. The CHC shows a significant increase in output power, clearly demonstrating its potential for simultaneously harvesting multiple types of energy for powering small electronic devices for independent, sustainable, and mobile operation. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  7. Flexible hybrid energy cell for simultaneously harvesting thermal, mechanical, and solar energies.

    Science.gov (United States)

    Yang, Ya; Zhang, Hulin; Zhu, Guang; Lee, Sangmin; Lin, Zong-Hong; Wang, Zhong Lin

    2013-01-22

    We report the first flexible hybrid energy cell that is capable of simultaneously or individually harvesting thermal, mechanical, and solar energies to power some electronic devices. For having both the pyroelectric and piezoelectric properties, a polarized poly(vinylidene fluoride) (PVDF) film-based nanogenerator (NG) was used to harvest thermal and mechanical energies. Using aligned ZnO nanowire arrays grown on the flexible polyester (PET) substrate, a ZnO-poly(3-hexylthiophene) (P3HT) heterojunction solar cell was designed for harvesting solar energy. By integrating the NGs and the solar cells, a hybrid energy cell was fabricated to simultaneously harvest three different types of energies. With the use of a Li-ion battery as the energy storage, the harvested energy can drive four red light-emitting diodes (LEDs).

  8. Innovative architecture design for high performance organic and hybrid multi-junction solar cells

    Science.gov (United States)

    Li, Ning; Spyropoulos, George D.; Brabec, Christoph J.

    2017-08-01

    The multi-junction concept is especially attractive for the photovoltaic (PV) research community owing to its potential to overcome the Schockley-Queisser limit of single-junction solar cells. Tremendous research interests are now focused on the development of high-performance absorbers and novel device architectures for emerging PV technologies, such as organic and perovskite PVs. It has been predicted that the multi-junction concept is able to boost the organic and perovskite PV technologies approaching the 20% and 30% benchmarks, respectively, showing a bright future of commercialization of the emerging PV technologies. In this contribution, we will demonstrate innovative architecture design for solution-processed, highly functional organic and hybrid multi-junction solar cells. A simple but elegant approach to fabricating organic and hybrid multi-junction solar cells will be introduced. By laminating single organic/hybrid solar cells together through an intermediate layer, the manufacturing cost and complexity of large-scale multi-junction solar cells can be significantly reduced. This smart approach to balancing the photocurrents as well as open circuit voltages in multi-junction solar cells will be demonstrated and discussed in detail.

  9. Hybrid tandem solar cells with depleted-heterojunction quantum dot and polymer bulk heterojunction subcells

    KAUST Repository

    Kim, Taesoo

    2015-10-01

    We investigate hybrid tandem solar cells that rely on the combination of solution-processed depleted-heterojunction colloidal quantum dot (CQD) and bulk heterojunction polymer:fullerene subcells. The hybrid tandem solar cell is monolithically integrated and electrically connected in series with a suitable p-n recombination layer that includes metal oxides and a conjugated polyelectrolyte. We discuss the monolithic integration of the subcells, taking into account solvent interactions with underlayers and associated constraints on the tandem architecture, and show that an adequate device configuration consists of a low bandgap CQD bottom cell and a high bandgap polymer:fullerene top cell. Once we optimize the recombination layer and individual subcells, the hybrid tandem device reaches a VOC of 1.3V, approaching the sum of the individual subcell voltages. An impressive fill factor of 70% is achieved, further confirming that the subcells are efficiently connected via an appropriate recombination layer. © 2015.

  10. Optical Fiber/Nanowire Hybrid Structures for Efficient Three-Dimensional Dye-Sensitized Solar Cells

    KAUST Repository

    Weintraub, Benjamin

    2009-11-09

    Wired up: The energy conversion efficiency of three-dimensional dye-sensitized solar cells (DSSCs) in a hybrid structure that integrates optical fibers and nanowire arrays is greater than that of a two-dimensional device. Internal axial illumination enhances the energy conversion efficiency of a rectangular fiber-based hybrid structure (see picture) by a factor of up to six compared to light illumination normal to the fiber axis from outside the device.

  11. Modeling and control of a small solar fuel cell hybrid energy system

    Institute of Scientific and Technical Information of China (English)

    LI Wei; ZHU Xin-jian; CAO Guang-yi

    2007-01-01

    This paper describes a solar photovoltaic fuel cell (PVEC) hybrid generation system consisting of a photovoltaic (PV) generator, a proton exchange membrane fuel cell (PEMFC), an electrolyser, a supercapacitor, a storage gas tank and power conditioning unit (PCU). The load is supplied from the PV generator with a fuel cell working in parallel. Excess PV energy when available is converted to hydrogen using an electrolyser for later use in the fuel cell. The individual mathematical model for each component is presented. Control strategy for the system is described. MATLAB/Simulink is used for the simulation of this highly nonlinear hybrid energy system. The simulation results are shown in the paper.

  12. On practicality of a hybrid car with solar cells; Taiyo denchi wo tosaishita hybrid car no jitsuyosei ni tsuite

    Energy Technology Data Exchange (ETDEWEB)

    Sasaki, K; Nagayoshi, H; Kamisako, K [Tokyo University of Agriculture and Technology, Tokyo (Japan)

    1997-11-25

    The paper stated a development of a hybrid car which is a parallel type with gasoline engine and electric motor as driving source (connecting each according to the situation) and is also equipped with solar cells. Specifications are gasoline engine of 1200cc, induction motor of 5.5kW, lead battery of 288V and 7.2kWh, monocrystal silicon solar cells of 180W maximum output, and body weight of 1100kg. The rear wheel is driven by electric motor, and the front wheel by gasoline engine. The car is loaded with battery charge use solar cells on hood and roof. To enhance cleaning degree, 1.6kW solar cells are installed as an installed power system and used for battery charge. Even by an electric motor with output less than that of the usual electric car, harmful exhaust gas emitted in start-up can be controlled. This is because the electric motor can be used in accelerating. It was confirmed that the power required for it could be supplied by solar cells installed on the car. The hybrid car is practically useful for prevention of local air pollution. 5 refs., 4 figs., 2 tabs.

  13. Electron transport limitation in P3HT:CdSe nanorods hybrid solar cells.

    Science.gov (United States)

    Lek, Jun Yan; Xing, Guichuan; Sum, Tze Chien; Lam, Yeng Ming

    2014-01-22

    Hybrid solar cells have the potential to be efficient solar-energy-harvesting devices that can combine the benefits of solution-processable organic materials and the extended absorption offered by inorganic materials. In this work, an understanding of the factors limiting the performance of hybrid solar cells is explored. Through photovoltaic-device characterization correlated with transient absorption spectroscopy measurements, it was found that the interfacial charge transfer between the organic (P3HT) and inorganic (CdSe nanorods) components is not the factor limiting the performance of these solar cells. The insulating original ligands retard the charge recombination between the charge-transfer states across the CdSe-P3HT interface, and this is actually beneficial for charge collection. These cells are, in fact, limited by the subsequent electron collection via CdSe nanoparticles to the electrodes. Hence, the design of a more continuous electron-transport pathway should greatly improve the performance of hybrid solar cells in the future.

  14. Planar structured perovskite solar cells by hybrid physical chemical vapor deposition with optimized perovskite film thickness

    Science.gov (United States)

    Wei, Xiangyang; Peng, Yanke; Jing, Gaoshan; Cui, Tianhong

    2018-05-01

    The thickness of perovskite absorber layer is a critical parameter to determine a planar structured perovskite solar cell’s performance. By modifying the spin coating speed and PbI2/N,N-dimethylformamide (DMF) solution concentration, the thickness of perovskite absorber layer was optimized to obtain high-performance solar cells. Using a PbI2/DMF solution of 1.3 mol/L, maximum power conversion efficiency (PCE) of a perovskite solar cell is 15.5% with a perovskite film of 413 nm at 5000 rpm, and PCE of 14.3% was also obtained for a solar cell with a perovskite film of 182 nm thick. It is derived that higher concentration of PbI2/DMF will result in better perovskite solar cells. Additionally, these perovskite solar cells are highly uniform. In 14 sets of solar cells, standard deviations of 11 sets of solar cells were less than 0.50% and the smallest standard deviation was 0.25%, which demonstrates the reliability and effectiveness of hybrid physical chemical vapor deposition (HPCVD) method.

  15. Hybrid ZnO:polymer bulk heterojunction solar cells from a ZnO precursor

    NARCIS (Netherlands)

    Beek, W.J.E.; Slooff, L.H.; Wienk, M.M.; Kroon, J.M.; Janssen, R.A.J.; Kafafi, Z.H.

    2005-01-01

    We describe a simple and new method to create hybrid bulk heterojunction solar cells consisting of ZnO and conjugated polymers. A gel-forming ZnO precursor, blended with conjugated polymers, is converted into crystalline ZnO at temperatures as low as 110 °C. In-situ formation of ZnO in MDMO-PPV

  16. Highly Reproducible Sn-Based Hybrid Perovskite Solar Cells with 9% Efficiency

    NARCIS (Netherlands)

    Shao, Shuyan; Liu, Jian; Portale, Giuseppe; Fang, Hong-Hua; Blake, Graeme R.; ten Brink, Gert H.; Koster, L. Jan Anton; Loi, Maria Antonietta

    2018-01-01

    The low power conversion efficiency (PCE) of tin-based hybrid perovskite solar cells (HPSCs) is mainly attributed to the high background carrier density due to a high density of intrinsic defects such as Sn vacancies and oxidized species (Sn4+) that characterize Sn-based HPSCs. Herein, this study

  17. Design guideline for Si/organic hybrid solar cell with interdigitated back contact structure

    Science.gov (United States)

    Bimo Prakoso, Ari; Rusli; Li, Zeyu; Lu, Chenjin; Jiang, Changyun

    2018-03-01

    We study the design of Si/organic hybrid (SOH) solar cells with interdigitated back contact (IBC) structure. SOH solar cells formed between n-Si and poly(3,4-ethylenedioxythiophene): polystyrenesulphonate (PEDOT:PSS) is a promising concept that combines the excellent electronic properties of Si with the solution-based processing advantage of an organic polymer. The IBC cell structure is employed to minimize parasitic absorption losses in the organic polymer, eliminate grid shadowing losses, and allow excellent passivation of the front Si surface in one step over a large area. The influence of Si thickness, doping concentration and contact geometry are simulated in this study to optimize the performance of the SOH-IBC solar cell. We found that a high power conversion efficiency of >20% can be achieved for optimized SOH-IBC cell based on a thin c-Si substrate of 40 μm thickness.

  18. Nanowire Structured Hybrid Cell for Concurrently Scavenging Solar and Mechanical Energies

    KAUST Repository

    Xu, Chen

    2009-04-29

    Conversion cells for harvesting solar energy and mechanical energy are usually separate and independent entities that are designed and built following different physical principles. Developing a technology that harvests multiple-type energies in forms such as sun light and mechanical around the clock is desperately desired for fully utilizing the energies available in our living environment. We report a hybrid cell that is intended for simultaneously harvesting solar and mechanical energies. Using aligned ZnO nanowire arrays grown on surfaces of a flat substrate, a dye-sensitized solar cell is integrated with a piezoelectric nanogenerator. The former harvests solar energy irradiating on the top, and the latter harvests ultrasonic wave energy from the surrounding. The two energy harvesting approaches can work simultaneously or individually, and they can be integrated in parallel and serial for raising the output current and voltage, respectively, as well as power. It is found that the voltage output from the solar cell can be used to raise the output voltage of the nanogenerator, providing an effective approach for effectively storing and utilizing the power generated by the nanogenerator. Our study demonstrates a new approach for concurrently harvesting multiple types of energies using an integrated hybrid cell so that the energy resources can be effectively and complementary utilized whenever and wherever one or all of them is available. © 2009 American Chemical Society.

  19. Cadmium Sulfide Nanoparticles Synthesized by Microwave Heating for Hybrid Solar Cell Applications

    Directory of Open Access Journals (Sweden)

    Claudia Martínez-Alonso

    2014-01-01

    Full Text Available Cadmium sulfide nanoparticles (CdS-n are excellent electron acceptor for hybrid solar cell applications. However, the particle size and properties of the CdS-n products depend largely on the synthesis methodologies. In this work, CdS-n were synthetized by microwave heating using thioacetamide (TA or thiourea (TU as sulfur sources. The obtained CdS-n(TA showed a random distribution of hexagonal particles and contained TA residues. The latter could originate the charge carrier recombination process and cause a low photovoltage (Voc, 0.3 V in the hybrid solar cells formed by the inorganic particles and poly(3-hexylthiophene (P3HT. Under similar synthesis conditions, in contrast, CdS-n synthesized with TU consisted of spherical particles with similar size and contained carbonyl groups at their surface. CdS-n(TU could be well dispersed in the nonpolar P3HT solution, leading to a Voc of about 0.6–0.8 V in the resulting CdS-n(TU : P3HT solar cells. The results of this work suggest that the reactant sources in microwave methods can affect the physicochemical properties of the obtained inorganic semiconductor nanoparticles, which finally influenced the photovoltaic performance of related hybrid solar cells.

  20. Hybrid Solar Cell with TiO2 Film: BBOT Polymer and Copper Phthalocyanine as Sensitizer

    Directory of Open Access Journals (Sweden)

    Saptadip Saha

    2016-01-01

    Full Text Available An organic-inorganic hybrid solar cell was fabricated using Titanium dioxide (TiO2: 2,5-bis(5-tert-butyl-2-benzoxazolyl thiophene (BBOT film and Copper Phthalocyanine (CuPc as a sensitizer. BBOT was used in photodetector in other reported research works, but as per best of our knowledge, it was not implemented in solar cells till date. The blend of TiO2: BBOT blend was used to fabricate the film on ITO-coated glass and further a thin layer of CuPc was coated on the film. This was acted as photoanode and another ITO coated glass with a platinum coating was used as a counter electrode (cathode. An optimal blend of acetonitrile (solvent (50-100%, 1,3-dimethylimidazolium iodide (10-25%, iodine (2.5-10% and lithium iodide, pyridine derivative and thiocyanate was used as electrolytes in the hybrid solar cell. The different structural, optical and electrical characteristics were measured. The Hybrid solar cell showed a maximum conversion efficiency of 6.51%.

  1. Embedded Metal Electrode for Organic-Inorganic Hybrid Nanowire Solar Cells.

    Science.gov (United States)

    Um, Han-Don; Choi, Deokjae; Choi, Ahreum; Seo, Ji Hoon; Seo, Kwanyong

    2017-06-27

    We demonstrate here an embedded metal electrode for highly efficient organic-inorganic hybrid nanowire solar cells. The electrode proposed here is an effective alternative to the conventional bus and finger electrode which leads to a localized short circuit at a direct Si/metal contact and has a poor collection efficiency due to a nonoptimized electrode design. In our design, a Ag/SiO 2 electrode is embedded into a Si substrate while being positioned between Si nanowire arrays underneath poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS), facilitating suppressed recombination at the Si/Ag interface and notable improvements in the fabrication reproducibility. With an optimized microgrid electrode, our 1 cm 2 hybrid solar cells exhibit a power conversion efficiency of up to 16.1% with an open-circuit voltage of 607 mV and a short circuit current density of 34.0 mA/cm 2 . This power conversion efficiency is more than twice as high as that of solar cells using a conventional electrode (8.0%). The microgrid electrode significantly minimizes the optical and electrical losses. This reproducibly yields a superior quantum efficiency of 99% at the main solar spectrum wavelength of 600 nm. In particular, our solar cells exhibit a significant increase in the fill factor of 78.3% compared to that of a conventional electrode (61.4%); this is because of the drastic reduction in the metal/contact resistance of the 1 μm-thick Ag electrode. Hence, the use of our embedded microgrid electrode in the construction of an ideal carrier collection path presents an opportunity in the development of highly efficient organic-inorganic hybrid solar cells.

  2. Hybrid zinc oxide/graphene electrodes for depleted heterojunction colloidal quantum-dot solar cells.

    Science.gov (United States)

    Tavakoli, Mohammad Mahdi; Aashuri, Hossein; Simchi, Abdolreza; Fan, Zhiyong

    2015-10-07

    Recently, hybrid nanocomposites consisting of graphene/nanomaterial heterostructures have emerged as promising candidates for the fabrication of optoelectronic devices. In this work, we have employed a facile and in situ solution-based process to prepare zinc oxide/graphene quantum dots (ZnO/G QDs) in a hybrid structure. The prepared hybrid dots are composed of a ZnO core, with an average size of 5 nm, warped with graphene nanosheets. Spectroscopic studies show that the graphene shell quenches the photoluminescence intensity of the ZnO nanocrystals by about 72%, primarily due to charge transfer reactions and static quenching. A red shift in the absorption peak is also observed. Raman spectroscopy determines G-band splitting of the graphene shell into two separated sub-bands (G(+), G(-)) caused by the strain induced symmetry breaking. It is shown that the hybrid ZnO/G QDs can be used as a counter-electrode for heterojunction colloidal quantum-dot solar cells for efficient charge-carrier collection, as evidenced by the external quantum efficiency measurement. Under the solar simulated spectrum (AM 1.5G), we report enhanced power conversion efficiency (35%) with higher short current circuit (80%) for lead sulfide-based solar cells as compared to devices prepared by pristine ZnO nanocrystals.

  3. Nanoscale Analysis of a Hierarchical Hybrid Solar Cell in 3D.

    Science.gov (United States)

    Divitini, Giorgio; Stenzel, Ole; Ghadirzadeh, Ali; Guarnera, Simone; Russo, Valeria; Casari, Carlo S; Bassi, Andrea Li; Petrozza, Annamaria; Di Fonzo, Fabio; Schmidt, Volker; Ducati, Caterina

    2014-05-01

    A quantitative method for the characterization of nanoscale 3D morphology is applied to the investigation of a hybrid solar cell based on a novel hierarchical nanostructured photoanode. A cross section of the solar cell device is prepared by focused ion beam milling in a micropillar geometry, which allows a detailed 3D reconstruction of the titania photoanode by electron tomography. It is found that the hierarchical titania nanostructure facilitates polymer infiltration, thus favoring intermixing of the two semiconducting phases, essential for charge separation. The 3D nanoparticle network is analyzed with tools from stochastic geometry to extract information related to the charge transport in the hierarchical solar cell. In particular, the experimental dataset allows direct visualization of the percolation pathways that contribute to the photocurrent.

  4. Photovoltaic Performance of a Nanowire/Quantum Dot Hybrid Nanostructure Array Solar Cell.

    Science.gov (United States)

    Wu, Yao; Yan, Xin; Zhang, Xia; Ren, Xiaomin

    2018-02-23

    An innovative solar cell based on a nanowire/quantum dot hybrid nanostructure array is designed and analyzed. By growing multilayer InAs quantum dots on the sidewalls of GaAs nanowires, not only the absorption spectrum of GaAs nanowires is extended by quantum dots but also the light absorption of quantum dots is dramatically enhanced due to the light-trapping effect of the nanowire array. By incorporating five layers of InAs quantum dots into a 500-nm high-GaAs nanowire array, the power conversion efficiency enhancement induced by the quantum dots is six times higher than the power conversion efficiency enhancement in thin-film solar cells which contain the same amount of quantum dots, indicating that the nanowire array structure can benefit the photovoltaic performance of quantum dot solar cells.

  5. Energy management of fuel cell/solar cell/supercapacitor hybrid power source

    Energy Technology Data Exchange (ETDEWEB)

    Thounthong, Phatiphat; Sethakul, Panarit [Department of Teacher Training in Electrical Engineering, King Mongkut' s University of Technology North Bangkok, 1518, Piboolsongkram Road, Bangsue, Bangkok 10800 (Thailand); Chunkag, Viboon [Department of Electrical Engineering, King Mongkut' s University of Technology North Bangkok, 1518, Piboolsongkram Road, Bangsue, Bangkok 10800 (Thailand); Sikkabut, Suwat [Thai-French Innovation Institute, King Mongkut' s University of Technology North Bangkok, 1518, Piboolsongkram Road, Bangsue, Bangkok 10800 (Thailand); Pierfederici, Serge; Davat, Bernard [Groupe de Recherche en Electrotechnique et Electronique de Nancy (GREEN: UMR 7037), Nancy Universite, INPL-ENSEM, 2, Avenue de la Foret de Haye, Vandoeuvre-les-Nancy, Lorraine 54516 (France)

    2011-01-01

    This study presents an original control algorithm for a hybrid energy system with a renewable energy source, namely, a polymer electrolyte membrane fuel cell (PEMFC) and a photovoltaic (PV) array. A single storage device, i.e., a supercapacitor (ultracapacitor) module, is in the proposed structure. The main weak point of fuel cells (FCs) is slow dynamics because the power slope is limited to prevent fuel starvation problems, improve performance and increase lifetime. The very fast power response and high specific power of a supercapacitor complements the slower power output of the main source to produce the compatibility and performance characteristics needed in a load. The energy in the system is balanced by d.c.-bus energy regulation (or indirect voltage regulation). A supercapacitor module functions by supplying energy to regulate the d.c.-bus energy. The fuel cell, as a slow dynamic source in this system, supplies energy to the supercapacitor module in order to keep it charged. The photovoltaic array assists the fuel cell during daytime. To verify the proposed principle, a hardware system is realized with analog circuits for the fuel cell, solar cell and supercapacitor current control loops, and with numerical calculation (dSPACE) for the energy control loops. Experimental results with small-scale devices, namely, a PEMFC (1200 W, 46 A) manufactured by the Ballard Power System Company, a photovoltaic array (800 W, 31 A) manufactured by the Ekarat Solar Company and a supercapacitor module (100 F, 32 V) manufactured by the Maxwell Technologies Company, illustrate the excellent energy-management scheme during load cycles. (author)

  6. Hybrid resonant organic-inorganic nanostructures for novel light emitting devices and solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Agranovich, Vladimir M. [Institute of Spectroscopy, Russian Academy of Science, Troitsk, Moscow (Russian Federation); Chemistry Department, University of Texas at Dallas, Texas (United States); Rupasov, Valery I. [ANTEOS, Inc., Shrewsbury, Massachusetts 01545 (United States); Silvestri, Leonardo [Dipartimento di Scienza dei Materiali, Universita degli Studi di Milano Bicocca, Milano (Italy)

    2010-06-15

    The energy transfer from an inorganic layer to an organic component of resonant hybrid organic/inorganic nanos-tructures can be used for creation of new type of LED. We mentioned the problem of electrical pumping which has to be solved. As was first suggested in 1979 by Dexter the transfer energy in opposite direction from organic part of nanostructure to semiconductor layer can be used for the creation of new type of solar cells. In this note we stress the importance of the idea by Dexter for photovoltaics and solar cells. We argue that the organic part in such hybrid structures can play a role of an effective organic collector of the light energy (copyright 2010 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  7. Controlling the morphology and efficiency of hybrid ZnO: Polythiophene solar cells via side chain functionalization

    NARCIS (Netherlands)

    Oosterhout, S.D.; Koster, L.J.A.; Bavel, van S.S.; Loos, J.; Stenzel, O.; Thiedmann, R.; Schmidt, V.; Campo, B.J.; Cleij, T.J.; Lutzen, L.; Vanderzande, D.J.M.; Wienk, M.M.; Janssen, R.A.J.

    2011-01-01

    The efficiency of polymer – metal oxide hybrid solar cells depends critically on the intimacy of mixing of the two semiconductors. The effect of side chain functionalization on the morphology and performance of conjugated polymer:ZnO solar cells is investigated. Using an ester-functionalized side

  8. Controlling the Morphology and Efficiency of Hybrid ZnO : Polythiophene Solar Cells Via Side Chain Functionalization

    NARCIS (Netherlands)

    Oosterhout, Stefan D.; Koster, L. Jan Anton; van Bavel, Svetlana S.; Loos, Joachim; Stenzel, Ole; Thiedmann, Ralf; Schmidt, Volker; Campo, Bert; Cleij, Thomas J.; Lutzen, Laurence; Vanderzande, Dirk; Wienk, Martijn M.; Janssen, Rene A. J.

    2011-01-01

    The efficiency of polymer - metal oxide hybrid solar cells depends critically on the intimacy of mixing of the two semiconductors. The effect of side chain functionalization on the morphology and performance of conjugated polymer:ZnO solar cells is investigated. Using an ester-functionalized side

  9. A thin-film silicon/silicon hetero-junction hybrid solar cell for photoelectrochemical water-reduction applications

    NARCIS (Netherlands)

    Vasudevan, R.A.; Thanawala, Z; Han, L.; Buijs, Thom; Tan, H.; Deligiannis, D.; Perez Rodriguez, P.; Digdaya, I.A.; Smith, W.A.; Zeman, M.; Smets, A.H.M.

    2016-01-01

    A hybrid tandem solar cell consisting of a thin-film, nanocrystalline silicon top junction and a siliconheterojunction bottom junction is proposed as a supporting solar cell for photoelectrochemical applications.Tunneling recombination junction engineering is shown to be an important consideration

  10. Photothermally Activated Pyroelectric Polymer Films for Harvesting of Solar Heat with a Hybrid Energy Cell Structure.

    Science.gov (United States)

    Park, Teahoon; Na, Jongbeom; Kim, Byeonggwan; Kim, Younghoon; Shin, Haijin; Kim, Eunkyoung

    2015-12-22

    Photothermal effects in poly(3,4-ethylenedioxythiophene)s (PEDOTs) were explored for pyroelectric conversion. A poled ferroelectric film was coated on both sides with PEDOT via solution casting polymerization of EDOT, to give highly conductive and effective photothermal thin films of PEDOT. The PEDOT films not only provided heat source upon light exposure but worked as electrodes for the output energy from the pyroelectric layer in an energy harvester hybridized with a thermoelectric layer. Compared to a bare thermoelectric system under NIR irradiation, the photothermal-pyro-thermoelectric device showed more than 6 times higher thermoelectric output with the additional pyroelectric output. The photothermally driven pyroelectric harvesting film provided a very fast electric output with a high voltage output (Vout) of 15 V. The pyroelectric effect was significant due to the transparent and high photothermal PEDOT film, which could also work as an electrode. A hybrid energy harvester was assembled to enhance photoconversion efficiency (PCE) of a solar cell with a thermoelectric device operated by the photothermally generated heat. The PCE was increased more than 20% under sunlight irradiation (AM 1.5G) utilizing the transmitted light through the photovoltaic cell as a heat source that was converted into pyroelectric and thermoelectric output simultaneously from the high photothermal PEDOT electrodes. Overall, this work provides a dynamic and static hybrid energy cell to harvest solar energy in full spectral range and thermal energy, to allow solar powered switching of an electrochromic display.

  11. Analysis of the PEDOT:PSS/Si nanowire hybrid solar cell with a tail state model

    Science.gov (United States)

    Ho, Kuan-Ying; Li, Chi-Kang; Syu, Hong-Jhang; Lai, Yi; Lin, Ching-Fuh; Wu, Yuh-Renn

    2016-12-01

    In this paper, the electrical properties of the poly(3,4-ethylenedioxythiophene): poly(styrenesulfonate) (PEDOT:PSS)/silicon nanowire hybrid solar cell have been analyzed and an optimized structure is proposed. In addition, the planar PEDOT:PSS/c-Si hybrid solar cell is also modeled for comparison. We first developed a simulation software which is capable of modeling organic/inorganic hybrid solar cells by including Gaussian shape density of states into Poisson and drift-diffusion solver to present the tail states and trap states in the organic material. Therefore, the model can handle carrier transport, generation, and recombination in both organic and inorganic materials. Our results show that at the applied voltage near open-circuit voltage (Voc), the recombination rate becomes much higher at the PEDOT:PSS/Si interface region, which limits the fill factor and Voc. Hence, a modified structure with a p-type amorphous silicon (a-Si) layer attached on the interface of Si layer and an n+-type Si layer inserted near the bottom contact are proposed. The highest conversion efficiency of 16.10% can be achieved if both structures are applied.

  12. Reduced energy offset via substitutional doping for efficient organic/inorganic hybrid solar cells.

    Science.gov (United States)

    Jin, Xiao; Sun, Weifu; Zhang, Qin; Ruan, Kelian; Cheng, Yuanyuan; Xu, Haijiao; Xu, Zhongyuan; Li, Qinghua

    2015-06-01

    Charge carrier transport in bulk heterojunction that is central to the device performance of solar cells is sensitively dependent on the energy level alignment of acceptor and donor. However, the effect of energy level regulation induced by nickel ions on the primary photoexcited electron transfer and the performance of P3HT/TiO2 hybrid solar cells remains being poorly understood and rarely studied. Here we demonstrate that the introduction of the versatile nickel ions into TiO2 nanocrystals can significantly elevate the conduction and valence band energy levels of the acceptor, thus resulting in a remarkable reduction of energy level offset between the conduction band of acceptor and lowest unoccupied molecular orbital of donor. By applying transient photoluminescence and femtosecond transient absorption spectroscopies, we demonstrate that the electron transfer becomes more competitive after incorporating nickel ions. In particular, the electron transfer life time is shortened from 30.2 to 16.7 ps, i.e., more than 44% faster than pure TiO2 acceptor, thus leading to a notable increase of power conversion efficiency in organic/inorganic hybrid solar cells. This work underscores the promising virtue of engineering the reduction of 'excess' energy offset to accelerate electron transport and demonstrates the potential of nickel ions in applications of solar energy conversion and photon detectors.

  13. Full-spectrum photon management of solar cell structures for photovoltaic–thermoelectric hybrid systems

    International Nuclear Information System (INIS)

    Xu, Yuanpei; Xuan, Yimin; Yang, Lili

    2015-01-01

    Highlights: • A novel photon management method is proposed for hybrid photovoltaic–thermoelectric systems. • Composite structured surfaces enable creditable ultra-broadband anti-reflection property. • Incorporation of anti-reflection and light-trapping brings spectral absorption and transmission. • The efficient photon management of the structured surface is also omnidirectional. - Abstract: In this paper, a novel ultra-broadband photon management structure is proposed for crystalline silicon thin-film solar cells used in the photovoltaic–thermoelectric hybrid system. Nanostructures are employed on both front and back side. Optical behavior of the structure in ultra-broadband (300–2500 nm) are investigated through the Finite Difference Time Domain method. By combing moth-eye and inverted-parabolic surface, a new composite surface structure is proposed for anti-reflection in the ultra-broadband wavelengths. Front metallic nanoparticles, plasmonic back reflector and metallic gratings are studied for light-trapping and the effect of plasmonic back reflector is validated by the experimental data of the external quantum efficiency. The effects of incident angle are discussed for metallic gratings. Numerical computation shows that the incorporation of anti-reflection and light-trapping can obtain high absorption in the solar cell and ensure the rest incident light transmits to the thermoelectric generator efficiently. This work shows potential full-spectrum utilization of solar energy for various photovoltaic devices related with hybrid photovoltaic–thermoelectric systems

  14. Study on Production of Silicon Nanoparticles from Quartz Sand for Hybrid Solar Cell Applications

    Science.gov (United States)

    Arunmetha, S.; Vinoth, M.; Srither, S. R.; Karthik, A.; Sridharpanday, M.; Suriyaprabha, R.; Manivasakan, P.; Rajendran, V.

    2018-01-01

    Nano silicon (nano Si) particles were directly prepared from natural mineral quartz sand and thereafter used to fabricate the hybrid silicon solar cells. Here, in this preparation technique, two process stages were involved. In the first stage, the alkaline extraction and acid precipitation processes were applied on quartz sand to fetch silica nanoparticles. In the second stage, magnesiothermic and modified magnesiothermic reduction reactions were applied on nano silica particles to prepare nano Si particles. The effect of two distinct reduction methodologies on nano Si particle preparation was compared. The magnesiothermic and modified magnesiothermic reductions in the silica to silicon conversion process were studied with the help of x-ray diffraction (XRD) with intent to study the phase changes during the reduction reaction as well as its crystalline nature in the pure silicon phase. The particles consist of a combination of fine particles with spherical morphology. In addition to this, the optical study indicated an increase in visible light absorption and also increases the performance of the solar cell. The obtained nano Si particles were used as an active layer to fabricate the hybrid solar cells (HSCs). The obtained results confirmed that the power conversion efficiency (PCE) of the magnesiothermically modified nano Si cells (1.06%) is much higher as compared to the nano Si cells that underwent magnesiothermic reduction (1.02%). Thus, this confirms the increased PCE of the investigated nano Si solar cell up to 1.06%. It also revealed that nano Si behaved as an electron acceptor and transport material. The present study provided valuable insights and direction for the preparation of nano Si particles from quartz sand, including the influence of process methods. The prepared nano Si particles can be utilized for HSCs and an array of portable electronic devices.

  15. Nanostructural optimization of silicon/PEDOT:PSS hybrid solar cells for performance improvement

    International Nuclear Information System (INIS)

    Wang, Yanzhou; Shao, Pengfei; Li, Yali; Li, Junshuai; He, Deyan; Chen, Qiang

    2017-01-01

    In this paper, an inverted silicon (Si) nanopyramid (iSiNP) surface structure with low aspect ratio and remarkable antireflection is developed through sequential treatments of NaOH and HF/CH 3 COOH/HNO 3 solutions to Si nanowire (SiNW)-textured Si wafers, which are prepared by traditional electroless chemical etching. The iSiNP/PEDOT:PSS hybrid solar cell is fabricated through conformally spin-coating poly(3.4-ethylene dioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) onto the iSiNPs; it exhibits enhanced device performance owing to the improved junction and contact quality as compared to the SiNW/PEDOT:PSS counterpart. A power conversion efficiency (PCE) of 9.6% mainly contributed from an increased fill factor (FF) of 0.61 and improved open circuit voltage ( V oc ) of 0.53 V is delivered by the iSiNP/PEDOT:PSS solar cell. As a comparison, the SiNW/PEDOT:PSS structure delivers a 7.1% PCE with a FF of 0.45 and V oc of 0.46 V. Considering the submicro-scale characteristic dimensions, iSiNPs are expected to be applicable to highly efficient thin film Si/PEDOT:PSS hybrid solar cells. (paper)

  16. Tuning back contact property via artificial interface dipoles in Si/organic hybrid solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Dan [Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201 (China); Department of Physics and Institute of Solid-state electronics physical, Ningbo University, Ningbo 315211 (China); Sheng, Jiang, E-mail: shengjiang@nimte.ac.cn; Wu, Sudong; Zhu, Juye; Chen, Shaojie; Gao, Pingqi; Ye, Jichun, E-mail: jichun.ye@nimte.ac.cn [Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201 (China)

    2016-07-25

    Back contact property plays a key role in the charge collection efficiency of c-Si/poly(3,4-ethylthiophene):poly(styrenesulfonate) hybrid solar cells (Si-HSCs), as an alternative for the high-efficiency and low-cost photovoltaic devices. In this letter, we utilize the water soluble poly (ethylene oxide) (PEO) to modify the Al/Si interface to be an Ohmic contact via interface dipole tuning, decreasing the work function of the Al film. This Ohmic contact improves the electron collection efficiency of the rear electrode, increasing the short circuit current density (J{sub sc}). Furthermore, the interface dipoles make the band bending downward to increase the total barrier height of built-in electric field of the solar cell, enhancing the open circuit voltage (V{sub oc}). The PEO solar cell exhibits an excellent performance, 12.29% power conversion efficiency, a 25.28% increase from the reference solar cell without a PEO interlayer. The simple and water soluble method as a promising alternative is used to develop the interfacial contact quality of the rear electrode for the high photovoltaic performance of Si-HSCs.

  17. Enhanced photovoltaic properties of perovskite solar cells by TiO2 homogeneous hybrid structure.

    Science.gov (United States)

    Su, Pengyu; Fu, Wuyou; Yao, Huizhen; Liu, Li; Ding, Dong; Feng, Fei; Feng, Shuang; Xue, Yebin; Liu, Xizhe; Yang, Haibin

    2017-10-01

    In this paper, we fabricated a TiO 2 homogeneous hybrid structure for application in perovskite solar cells (PSCs) under ambient conditions. Under the standard air mass 1.5 global (AM 1.5G) illumination, PSCs based on homogeneous hybrid structure present a maximum power conversion efficiency of 5.39% which is higher than that of pure TiO 2 nanosheets. The enhanced properties can be explained by the better contact of TiO 2 nanosheets/nanoparticles with CH 3 NH 3 PbI 3 and fewer pinholes in electron transport materials. The advent of such unique structure opens up new avenues for the future development of high-efficiency photovoltaic cells.

  18. Influence of Hybrid Perovskite Fabrication Methods on Film Formation, Electronic Structure, and Solar Cell Performance

    Science.gov (United States)

    Schnier, Tobias; Emara, Jennifer; Olthof, Selina; Meerholz, Klaus

    2017-01-01

    Hybrid organic/inorganic halide perovskites have lately been a topic of great interest in the field of solar cell applications, with the potential to achieve device efficiencies exceeding other thin film device technologies. Yet, large variations in device efficiency and basic physical properties are reported. This is due to unintentional variations during film processing, which have not been sufficiently investigated so far. We therefore conducted an extensive study of the morphology and electronic structure of a large number of CH3NH3PbI3 perovskite where we show how the preparation method as well as the mixing ratio of educts methylammonium iodide and lead(II) iodide impact properties like film formation, crystal structure, density of states, energy levels, and ultimately the solar cell performance. PMID:28287555

  19. Disorder Improves Light Absorption in Thin Film Silicon Solar Cells with Hybrid Light Trapping Structure

    Directory of Open Access Journals (Sweden)

    Yanpeng Shi

    2016-01-01

    Full Text Available We present a systematic simulation study on the impact of disorder in thin film silicon solar cells with hybrid light trapping structure. For the periodical structures introducing certain randomness in some parameters, the nanophotonic light trapping effect is demonstrated to be superior to their periodic counterparts. The nanophotonic light trapping effect can be associated with the increased modes induced by the structural disorders. Our study is a systematic proof that certain disorder is conceptually an advantage for nanophotonic light trapping concepts in thin film solar cells. The result is relevant to the large field of research on nanophotonic light trapping which currently investigates and prototypes a number of new concepts including disordered periodic and quasiperiodic textures. The random effect on the shape of the pattern (position, height, and radius investigated in this paper could be a good approach to estimate the influence of experimental inaccuracies for periodic or quasi-periodic structures.

  20. Design of hybrid nanoheterostructure systems for enhanced quantum and solar conversion efficiencies in dye-sensitized solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Kılıç, Bayram, E-mail: bkilic@yalova.edu.tr, E-mail: kbayramkilic@gmail.com [Department of Energy Systems Engineering, Faculty of Engineering, Yalova University, 77100 Yalova (Turkey); Telli, Hakan; Başaran, Ali; Pirge, Gursev [Turkish Air Force Academy, Institute of Aeronautics and Space Technologies, Istanbul (Turkey); Tüzemen, Sebahattin [Department of Physics, Faculty of Science, Ataturk University, Erzurum (Turkey)

    2015-04-07

    Dye sensitized solar cells (DSSCs) with an innovative design involving controlled-morphology vertically aligned (VA) ZnO nanowires within mesoporous TiO{sub 2} structures with ultrahigh surface area for implementation as photoanodes are herein reported. Although TiO{sub 2} nanostructures exhibit excellent power conversion efficiency, the electron transport rate is low owing to low electron mobility. To overcome this, ZnO nanowires with high electron mobility have been investigated as potential candidates for photoanodes. However, the power conversion efficiency of ZnO nanowires is still lower than that of TiO{sub 2} owing to their low internal surface area. Consequently, in this work, vertical growth of ZnO nanowires within mesoporous TiO{sub 2} structures is carried out to increase their solar power conversion efficiency. The photovoltaic performance of solar cells using ZnO nanowires, mesoporous TiO{sub 2}, and TiO{sub 2}/ZnO hybrid structures are compared. The VA TiO{sub 2}/ZnO hybrid structures are found to provide direct electron transfer compared with the tortuous pathway of zero-dimensional nanostructures, resulting in an increased conversion efficiency. It is demonstrated that the light scattering of the photoanode film is increased and electron recombination is decreased when an appropriate amount of mesoporous TiO{sub 2} is used as a substrate for ZnO nanowires. The DSSC fabricated with the TiO{sub 2}/ZnO hybrid photoanode prepared with 15.8 wt. % TiO{sub 2} showed the highest conversion efficiency of 7.30%, approximately 5%, 18%, and 40% higher than that of DSSCs fabricated with 3.99 wt. % TiO{sub 2}, pure TiO{sub 2}, and pure ZnO photoanodes, respectively.

  1. Enhanced performance of hybrid solar cells using longer arms of quantum cadmium selenide tetrapods

    KAUST Repository

    Lee, Kyu-Sung

    2011-12-01

    We demonstrate that enhanced device performance of hybrid solar cells based on tetrapod (TP)-shaped cadmium selenide (CdSe) nanoparticles and conjugated polymer of poly (3-hexylthiophene) (P3HT) can be obtained by using longer armed tetrapods which aids in better spatial connectivity, thus decreasing charge hopping events which lead to better charge transport. Longer tetrapods with 10 nm arm length lead to improved power conversion efficiency of 1.12% compared to 0.80% of device having 5 nm short-armed tetrapods:P3HT photoactive blends.

  2. Enhanced performance of hybrid solar cells using longer arms of quantum cadmium selenide tetrapods

    KAUST Repository

    Lee, Kyu-Sung; Kim, Inho; Gullapalli, Sravani; Wong, Michael S.; Jabbour, Ghassan E.

    2011-01-01

    We demonstrate that enhanced device performance of hybrid solar cells based on tetrapod (TP)-shaped cadmium selenide (CdSe) nanoparticles and conjugated polymer of poly (3-hexylthiophene) (P3HT) can be obtained by using longer armed tetrapods which aids in better spatial connectivity, thus decreasing charge hopping events which lead to better charge transport. Longer tetrapods with 10 nm arm length lead to improved power conversion efficiency of 1.12% compared to 0.80% of device having 5 nm short-armed tetrapods:P3HT photoactive blends.

  3. A hybrid tandem solar cell based on hydrogenated amorphous silicon and dye-sensitized TiO{sub 2} film

    Energy Technology Data Exchange (ETDEWEB)

    Hao Sancun [Institute of Materials Physical Chemistry, Huaqiao University, Quanzhou, 362021 (China); Institute of Photo-Electronics of Nankai University, Tianjin 300071 (China); Jiangsu Shuangdeng Group Co. Ltd, Thaizhou, Jiangsu, 225526 (China); Wu Jihuai, E-mail: jhwu@hqu.edu.cn [Institute of Materials Physical Chemistry, Huaqiao University, Quanzhou, 362021 (China); Sun Zhonglin [Institute of Photo-Electronics of Nankai University, Tianjin 300071 (China)

    2012-01-01

    Hydrogenated amorphous silicon film (a-Si:H) as top cell is introduced to dye-sensitized titanium dioxide nanocrystalline solar cell (DSSC) as bottom cell to assemble a hybrid tandem solar cell. The hybrid tandem solar cell fabricated with the thicknesses a-Si:H layer of 235 nm, ZnO/Pt interlayer of 100 nm and DSSC layer of 8.5 {mu}m achieves a photo-to-electric energy conversion efficiency of 8.31%, a short circuit current density of 10.61 mA{center_dot}cm{sup -2} and an open-circuit voltage of 1.45 V under a simulated solar light irradiation of 100 mW{center_dot}cm{sup -2}.

  4. Design, Construction and Effectiveness Analysis of Hybrid Automatic Solar Tracking System for Amorphous and Crystalline Solar Cells

    OpenAIRE

    Bhupendra Gupta

    2013-01-01

    - This paper concerns the design and construction of a Hybrid solar tracking system. The constructed device was implemented by integrating it with Amorphous & Crystalline Solar Panel, three dimensional freedom mechanism and microcontroller. The amount of power available from a photovoltaic panel is determined by three parameters, the type of solar tracker, materials of solar panel and the intensity of the sunlight. The objective of this paper is to present analysis on the use of two differ...

  5. An alternative route towards monodisperse CdS quantum dots for hybrid solar cells

    International Nuclear Information System (INIS)

    Cao, Fengfeng; Wang, Hao; Xia, Zhouhui; Dai, Xiao; Cong, Shan; Dong, Chao; Sun, Baoquan; Lou, Yanhui; Sun, Yinghui; Zhao, Jie; Zou, Guifu

    2015-01-01

    Monodisperse CdS quantum dots (QDs) are synthesized by thermal decomposition of organic complexes in the system of the cost-effective commercial 0 # diesel at 200 °C. The prepared CdS QDs have a good dispersion and high crystallization. When the CdS QDs are doped into the blends of poly(3-hexylthiophene) (P3HT) and 1-(3-methoxycarbonyl)-propyl-1-phenyl-(6, 6)C61 (PCBM) for hybrid solar cells (HSCs), the HSCs achieve about 25% increase of power conversion efficiency in comparison to the reference device without the CdS QDs. The improvement of the cell performance mainly attributes to the increased short-circuit current density arising from the absorption enhancement in the wavelength range of 350–550 nm by introducing the synthesized CdS QDs into the P3HT: PCBM active layer. - Highlights: • Monodisperse CdS quantum dots. • A cost-effective route to synthesize crystalline CdS quantum dots. • CdS quantum dots based hybrid solar cells with power conversion efficiency enhancement

  6. An alternative route towards monodisperse CdS quantum dots for hybrid solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Cao, Fengfeng; Wang, Hao [College of Physics, Optoelectronics and Energy and Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215006 (China); Xia, Zhouhui [Institute of Functional Nano and Soft Materials, Soochow University, Suzhou 215123 (China); Dai, Xiao; Cong, Shan [College of Physics, Optoelectronics and Energy and Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215006 (China); Dong, Chao [Department of Chemistry and Biology, University of New Mexico, ABQ 87120 (United States); Sun, Baoquan [Institute of Functional Nano and Soft Materials, Soochow University, Suzhou 215123 (China); Lou, Yanhui, E-mail: yhlou@suda.edu.cn [College of Physics, Optoelectronics and Energy and Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215006 (China); Sun, Yinghui; Zhao, Jie [College of Physics, Optoelectronics and Energy and Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215006 (China); Zou, Guifu, E-mail: zouguifu@suda.edu.cn [College of Physics, Optoelectronics and Energy and Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215006 (China)

    2015-01-15

    Monodisperse CdS quantum dots (QDs) are synthesized by thermal decomposition of organic complexes in the system of the cost-effective commercial 0{sup #} diesel at 200 °C. The prepared CdS QDs have a good dispersion and high crystallization. When the CdS QDs are doped into the blends of poly(3-hexylthiophene) (P3HT) and 1-(3-methoxycarbonyl)-propyl-1-phenyl-(6, 6)C61 (PCBM) for hybrid solar cells (HSCs), the HSCs achieve about 25% increase of power conversion efficiency in comparison to the reference device without the CdS QDs. The improvement of the cell performance mainly attributes to the increased short-circuit current density arising from the absorption enhancement in the wavelength range of 350–550 nm by introducing the synthesized CdS QDs into the P3HT: PCBM active layer. - Highlights: • Monodisperse CdS quantum dots. • A cost-effective route to synthesize crystalline CdS quantum dots. • CdS quantum dots based hybrid solar cells with power conversion efficiency enhancement.

  7. Infiltration and Selective Interactions at the Interface in Polymer-Oxide Hybrid Solar Cells

    Science.gov (United States)

    Ferragut, R.; Aghion, S.; Moia, F.; Binda, M.; Canesi, E. V.; Lanzani, G.; Petrozza, A.

    2013-06-01

    Positron annihilation spectroscopy was used to characterize polymer-based hybrid solar cells formed by poly(3-hexylthiophene) (P3HT) finely infiltrated in a porous TiO2 skeleton. A step-change improvement in the device performance is enabled by engineering the hybrid interface by the insertion of a proper molecular interlayer namely 4-mercaptopyridine (4-MP). In order to obtain depth-resolved data, positrons were implanted in the sample using a variable-energy positron beam. The characteristics of the partially filled nanoporous structures were evaluated in terms of the depth profile of the positronium yield and the S-parameter. A quantitative evaluation of the pore filling in the deep region is given from the analysis of Coincidence Doppler Broadening taken at fixed implantation energy. We note a remarkable difference in terms of the positronium yield when the 4-MP interlayer is introduced, which means a better covering of P3HT on the porous surface.

  8. Hybrid Organic-Inorganic Perovskites Open a New Era for Low-Cost, High Efficiency Solar Cells

    Directory of Open Access Journals (Sweden)

    Guiming Peng

    2015-01-01

    Full Text Available The ramping solar energy to electricity conversion efficiencies of hybrid organic-inorganic perovskite solar cells during the last five years have opened new doors to low-cost solar energy. The record power conversion efficiency has climbed to 19.3% in August 2014 and then jumped to 20.1% in November. In this review, the main achievements for perovskite solar cells categorized from a viewpoint of device structure are overviewed. The challenges and prospects for future development of this field are also briefly presented.

  9. Compositional engineering of acceptors for highly efficient bulk heterojunction hybrid organic solar cells.

    Science.gov (United States)

    Amber Yousaf, S; Ikram, M; Ali, S

    2018-10-01

    The wet chemical synthesis of chromium oxide (Cr 2 O 3 ) nanoparticles (NPs) and its application in active layer of inverted bulk heterojunction organic solar cells is documented in this research. Chromium oxide NPs of 10-30 nm size range having a band gap of 2.9 eV were successfully synthesized. These NPs were used in inverted organic solar cells in amalgamation with P3HT:PCBM and PTB7:PCBM polymers. The fabricated hybrid devices improves PCE significantly for P3HT:PCBM and PTB7:PCBM systems. The photophysical energy levels, optoelectrical properties and microscopic images have been systematically studied for the fabricated devices. The introduction of Cr 2 O 3 nanoparticles (NPs) enhances light harvesting and tunes energy levels into improved electrical parameters. A clear red shift and improved absorption have been observed for ternary blended devices compared to that observed with controlled organic solar cells. Apparently, when the amount of NPs in the binary polymer blend exceeds the required optimum level, there is a breakdown of the bulk heterojunction leading to lowering of the optical and electrical performance of the devices. Copyright © 2018 Elsevier Inc. All rights reserved.

  10. Hybrid heterojunction solar cell based on organic-inorganic silicon nanowire array architecture.

    Science.gov (United States)

    Shen, Xiaojuan; Sun, Baoquan; Liu, Dong; Lee, Shuit-Tong

    2011-12-07

    Silicon nanowire arrays (SiNWs) on a planar silicon wafer can be fabricated by a simple metal-assisted wet chemical etching method. They can offer an excellent light harvesting capability through light scattering and trapping. In this work, we demonstrated that the organic-inorganic solar cell based on hybrid composites of conjugated molecules and SiNWs on a planar substrate yielded an excellent power conversion efficiency (PCE) of 9.70%. The high efficiency was ascribed to two aspects: one was the improvement of the light absorption by SiNWs structure on the planar components; the other was the enhancement of charge extraction efficiency, resulting from the novel top contact by forming a thin organic layer shell around the individual silicon nanowire. On the contrary, the sole planar junction solar cell only exhibited a PCE of 6.01%, due to the lower light trapping capability and the less hole extraction efficiency. It indicated that both the SiNWs structure and the thin organic layer top contact were critical to achieve a high performance organic/silicon solar cell. © 2011 American Chemical Society

  11. Silver nanowire-graphene hybrid transparent conductive electrodes for highly efficient inverted organic solar cells

    Science.gov (United States)

    Ye, Neng; Yan, Jielin; Xie, Shuang; Kong, Yuhan; Liang, Tao; Chen, Hongzheng; Xu, Mingsheng

    2017-07-01

    Silver nanowires (AgNWs) and graphene are both promising candidates as a transparent conductive electrode (TCE) to replace expensive and fragile indium tin oxide (ITO) TCE. A synergistically optimized performance is expected when the advantages of AgNWs and graphene are combined. In this paper, the AgNW-graphene hybrid electrode is constructed by depositing a graphene layer on top of the network of AgNWs. Compared with the pristine AgNWs electrode, the AgNW-graphene TCE exhibits reduced sheet resistance, lower surface roughness, excellent long-term stability, and corrosion resistance in corrosive liquids. The graphene layer covering the AgNWs provides additional conduction pathways for electron transport and collection by the electrode. Benefiting from these advantages of the hybrid electrodes, we achieve a power conversion efficiency of 8.12% of inverted organic solar cells using PTB7:PC71BM as the active layer, which is compared to that of the solar cells based on standard ITO TCE but about 10% higher than that based on AgNWs TCE.

  12. Optical and electrical effects of plasmonic nanoparticles in high-efficiency hybrid solar cells.

    Science.gov (United States)

    Fu, Wei-Fei; Chen, Xiaoqiang; Yang, Xi; Wang, Ling; Shi, Ye; Shi, Minmin; Li, Han-Ying; Jen, Alex K-Y; Chen, Jun-Wu; Cao, Yong; Chen, Hong-Zheng

    2013-10-28

    Plasmonics have been proven to be an effective way to harness more incident light to achieve high efficiency in photovoltaic devices. Herein, we explore the possibility that plasmonics can be utilized to enhance light trapping and power conversion efficiency (PCE) for polymer-quantum dot (QD) hybrid solar cells (HSCs). Based on a low band-gap polymer poly[2,6-(4,4-bis-(2-ethylhexyl)-4H-cyclopenta[2,1-b;3,4-b']-dithiophene)-alt-4,7-(2,1,3-benzothiadiazole)] (PCPDTBT) and a CdSe QD bulk-heterojunction (BHJ) system, gold nanoparticles were doped at different locations of the devices. Successfully, an improved PCE of 3.20 ± 0.22% and 3.16 ± 0.15% was achieved by doping the hole transporting layer and the active layer, respectively, which are among the highest values reported for CdSe QD based HSCs. A detailed study of processing, characterization, microscopy, and device fabrication is conducted to understand the underlying mechanism for the enhanced device performance. The success of this work provides a simple and generally applicable approach to enhance light harnessing of polymer-QD hybrid solar cells.

  13. Hybrid Tandem Quantum Dot/Organic Solar Cells with Enhanced Photocurrent and Efficiency via Ink and Interlayer Engineering

    KAUST Repository

    Kim, Taesoo

    2018-05-03

    Realization of colloidal quantum dot (CQD)/organic photovoltaic (OPV) tandem solar cells that integrate the strong infrared absorption of CQDs with large photovoltages of OPVs is an attractive option toward high-performing, low-cost thin film solar cells. To date, monolithic hybrid tandem integration of CQD/OPV solar cells has been restricted due to the CQD ink’s catastrophic damage to the organic subcell, thus forcing the low bandgap CQD to be used as front cell. This sub-optimal configuration limits the maximum achievable photocurrent in CQD/OPV hybrid tandem solar cells. In this work, we demonstrate hybrid tandem solar cells employing a low-bandgap CQD back cell on top of an organic front cell thanks to a modified CQD ink formulation and a robust interconnection layer (ICL) which together overcome the long-standing integration challenges for CQD and organic subcells. The resulting tandem architecture surpasses previously reported current densities by ~20-25% and yields a state-of-the-art power conversion efficiency (PCE) of 9.4%.

  14. Photoeletrochemistry of metallo-octacarboxyphthalocyanines/multi-walled carbon nanotubes hybrid for development of dye solar cells

    CSIR Research Space (South Africa)

    Mphahlele, N

    2013-04-01

    Full Text Available Significant attention is being paid to dye solar cells (DSCs) as the next generation in solar cell technology for their low cost alternative to the currently implemented solid state solar cells [1]. In these devices, photosensitisers are one...

  15. Improved performance of colloidal CdSe quantum dot-sensitized solar cells by hybrid passivation.

    Science.gov (United States)

    Huang, Jing; Xu, Bo; Yuan, Chunze; Chen, Hong; Sun, Junliang; Sun, Licheng; Agren, Hans

    2014-11-12

    A hybrid passivation strategy is employed to modify the surface of colloidal CdSe quantum dots (QDs) for quantum dot-sensitized solar cells (QDSCs), by using mercaptopropionic acid (MPA) and iodide anions through a ligand exchange reaction in solution. This is found to be an effective way to improve the performance of QDSCs based on colloidal QDs. The results show that MPA can increase the coverage of the QDs on TiO2 electrodes and facilitate the hole extraction from the photoxidized QDs, and simultaneously, that the iodide anions can remedy the surface defects of the CdSe QDs and thus reduce the recombination loss in the device. This hybrid passivation treatment leads to a significant enhancement of the power conversion efficiency of the QDSCs by 41%. Furthermore, an optimal ratio of iodide ions to MPA was determined for favorable hybrid passivation; results show that excessive iodine anions are detrimental to the loading of the QDs. This study demonstrates that the improvement in QDSC performance can be realized by using a combination of different functional ligands to passivate the QDs, and that ligand exchange in solution can be an effective approach to introduce different ligands.

  16. Effect of hybrid carbon nanotubes-bimetallic composite particles on the performance of polymer solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Park, Sun-Young [Department of Material Processing, Korea Institute of Materials Science, Changwon 641-831 (Korea); Division of Applied Chemical Engineering, Department of Polymer Engineering, Pukyong National University, Busan 608-739 (Korea); Kim, Whi-Dong; Kim, Soo H. [Department of Nanosystem and Nanoprocess Engineering, Pusan National University, 30 Jangjeon-dong, Geumjeong-gu, Busan 609-735 (Korea); Kim, Do-Geun; Kim, Jong-Kuk; Jeong, Yong-Soo; Kang, Jae-Wook [Department of Material Processing, Korea Institute of Materials Science, Changwon 641-831 (Korea); Kim, Joo Hyun [Division of Applied Chemical Engineering, Department of Polymer Engineering, Pukyong National University, Busan 608-739 (Korea); Lee, Jae Keun [School of Mechanical Engineering, Pusan National University, 30 Jangjeon-dong, Geumjeong-gu, Busan 609-735 (Korea)

    2010-05-15

    Hybrid carbon nanotubes-bimetallic composite nanoparticles with sea urchin-like structures (SU-CNTs) were introduced to bulk heterojunction polymer-fullerene solar cells to improve their performance. The SU-CNTs were composed of multi-walled CNTs, which were grown radially over the entire surface of the bimetallic nanoparticles composed of Ni and Al. SU-CNTs with a precisely controlled length of {proportional_to}200{+-}40 nm were dispersed homogenously in a polymer active layer. Compared with a pristine device (i.e., without SU-CNTs), the SU-CNTs-doped organic photovoltaic (OPV) cells showed an improved short-circuit current density and power conversion efficiency from 7.5 to 9.5 mA/cm{sup 2} and 2.1{+-}0.1% to 2.2{+-}0.2% (max. 2.5%), respectively. The specially designed SU-CNTs have strong potential as an effective exciton dissociation medium in the polymer active layer to enhance the performance of organic solar cells. (author)

  17. Techno-economic assessment of a solar PV, fuel cell, and biomass gasifier hybrid energy system

    Directory of Open Access Journals (Sweden)

    Anand Singh

    2016-11-01

    Full Text Available The interest of power is expanding step by step all through the world. Because of constrained measure of fossil fuel, it is vital to outline some new non-renewable energy frameworks that can diminish the reliance on ordinary energy asset. A hybrid off-grid renewable energy framework might be utilized to reduction reliance on the traditional energy assets. Advancement of crossover framework is a procedure to choose the best mix of part and there cost that can give shabby, solid and successful option energy resource. In this paper sun oriented photovoltaic, fuel cell, biomass gasifier generator set, battery backup and power conditioning unit have been simulated and optimized for educational institute, energy centre, Maulana Azad National Institute of Technology, Bhopal in the Indian state of Madhya Pradesh. The area of the study range on the guide situated of 23°12′N latitude and 77°24′E longitude. In this framework, the essential wellspring of power is sun based solar photovoltaic system and biomass gasifier generator set while fuel cell and batteries are utilized as reinforcement supply. HOMER simulator has been utilized to recreate off the grid and it checks the specialized and financial criteria of this hybrid energy system. The execution of every segment of this framework is dissected lastly delicate examination has been performing to enhance the mixture framework at various conditions. In view of the recreation result, it is found that the cost of energy (COE of a biomass gasifier generator set, solar PV and fuel cell crossover energy system has been found to be 15.064 Rs/kWh and complete net present cost Rs.51,89003. The abundance power in the proposed framework is observed to be 36 kWh/year with zero rates unmet electrical burden.

  18. Significant efficiency enhancement of hybrid solar cells using core-shell nanowire geometry for energy harvesting.

    Science.gov (United States)

    Tsai, Shin-Hung; Chang, Hung-Chih; Wang, Hsin-Hua; Chen, Szu-Ying; Lin, Chin-An; Chen, Show-An; Chueh, Yu-Lun; He, Jr-Hau

    2011-12-27

    A novel strategy employing core-shell nanowire arrays (NWAs) consisting of Si/regioregular poly(3-hexylthiophene) (P3HT) was demonstrated to facilitate efficient light harvesting and exciton dissociation/charge collection for hybrid solar cells (HSCs). We experimentally demonstrate broadband and omnidirectional light-harvesting characteristics of core-shell NWA HSCs due to their subwavelength features, further supported by the simulation based on finite-difference time domain analysis. Meanwhile, core-shell geometry of NWA HSCs guarantees efficient charge separation since the thickness of the P3HT shells is comparable to the exciton diffusion length. Consequently, core-shell HSCs exhibit a 61% improvement of short-circuit current for a conversion efficiency (η) enhancement of 31.1% as compared to the P3HT-infiltrated Si NWA HSCs with layers forming a flat air/polymer cell interface. The improvement of crystal quality of P3HT shells due to the formation of ordering structure at Si interfaces after air mass 1.5 global (AM 1.5G) illumination was confirmed by transmission electron microscopy and Raman spectroscopy. The core-shell geometry with the interfacial improvement by AM 1.5G illumination promotes more efficient exciton dissociation and charge separation, leading to η improvement (∼140.6%) due to the considerable increase in V(oc) from 257 to 346 mV, J(sc) from 11.7 to 18.9 mA/cm(2), and FF from 32.2 to 35.2%, which is not observed in conventional P3HT-infiltrated Si NWA HSCs. The stability of the Si/P3HT core-shell NWA HSCs in air ambient was carefully examined. The core-shell geometry should be applicable to many other material systems of solar cells and thus holds high potential in third-generation solar cells.

  19. Si Hybrid Solar Cells with 13% Efficiency via Concurrent Improvement in Optical and Electrical Properties by Employing Graphene Quantum Dots

    KAUST Repository

    Tsai, Meng Lin; Wei, Wan-Rou; Tang, Libin; Chang, Hung Chih; Tai, Shih Hsiang; Yang, Po Kang; Lau, Shu Ping; Chen, Lih Juann; He, Jr-Hau

    2015-01-01

    By employing graphene quantum dots (GQDs) in PEDOT:PSS, we have achieved an efficiency of 13.22% in Si/PEDOT:PSS hybrid solar cells. The efficiency enhancement is based on concurrent improvement in optical and electrical properties by the photon downconversion process and the improved conductivity of PEDOT:PSS via appropriate incorporation of GQDs. After introducing GQDs into PEDOT:PSS, the short circuit current and the fill factor of rear-contact optimized hybrid cells are increased from 32.11 to 36.26 mA/cm and 62.85% to 63.87%, respectively. The organic-inorganic hybrid solar cell obtained herein holds the promise for developing photon-managing, low-cost, and highly efficient photovoltaic devices.

  20. Si Hybrid Solar Cells with 13% Efficiency via Concurrent Improvement in Optical and Electrical Properties by Employing Graphene Quantum Dots

    KAUST Repository

    Tsai, Meng Lin

    2015-12-18

    By employing graphene quantum dots (GQDs) in PEDOT:PSS, we have achieved an efficiency of 13.22% in Si/PEDOT:PSS hybrid solar cells. The efficiency enhancement is based on concurrent improvement in optical and electrical properties by the photon downconversion process and the improved conductivity of PEDOT:PSS via appropriate incorporation of GQDs. After introducing GQDs into PEDOT:PSS, the short circuit current and the fill factor of rear-contact optimized hybrid cells are increased from 32.11 to 36.26 mA/cm and 62.85% to 63.87%, respectively. The organic-inorganic hybrid solar cell obtained herein holds the promise for developing photon-managing, low-cost, and highly efficient photovoltaic devices.

  1. Spatial modeling of the 3D morphology of hybrid polymer-ZnO solar cells, based on electron tomography data

    NARCIS (Netherlands)

    Stenzel, O.; Hassfeld, H.; Thiedmann, R.; Koster, L. J. A.; Oosterhout, S. D.; van Bavel, S. S.; Wienk, M. M.; Loos, J.; Janssen, R. A. J.; Schmidt, V.

    A spatial stochastic model is developed which describes the 3D nanomorphology of composite materials, being blends of two different (organic and inorganic) solid phases. Such materials are used, for example, in photoactive layers of hybrid polymer zinc oxide solar cells. The model is based on ideas

  2. N-type polymers as electron extraction layers in hybrid perovskite solar cells with improved ambient stability

    NARCIS (Netherlands)

    Shao, S.; Chen, Z.; Fang, H. -H.; ten Brink, G. H.; Bartesaghi, D.; Adjokatse, S.; Koster, L. J. A.; Kooi, B. J.; Facchetti, A.; Loi, M. A.

    2016-01-01

    We studied three n-type polymers of the naphthalenediimide-bithiophene family as electron extraction layers (EELs) in hybrid perovskite solar cells. The recombination mechanism in these devices is found to be heavily influenced by the EEL transport properties. The maximum efficiency of the devices

  3. Optimization of hybrid organic/inorganic poly(3-hexylthiophene-2,5-diyl)/silicon solar cells

    Science.gov (United States)

    Weingarten, Martin; Sanders, Simon; Stümmler, Dominik; Pfeiffer, Pascal; Vescan, Andrei; Kalisch, Holger

    2016-04-01

    In the last years, hybrid organic/silicon solar cells have attracted great interest in photovoltaic research due to their potential to become a low-cost alternative for the conventionally used silicon pn-junction solar cells. This work is focused on hybrid solar cells based on the polymer poly(3-hexylthiophene-2,5-diyl), which was deposited on n-doped crystalline silicon via spin-coating under ambient conditions. By employing an anisotropic etching step with potassium hydroxide (KOH), the reflection losses at the silicon surface were reduced. Hereby, the short-circuit current density of the hybrid devices was increased by 31%, leading to a maximum power conversion efficiency (PCE) of 13.1% compared to a PCE of 10.7% for the devices without KOH etching. In addition, the contacts were improved by replacing gold with the more conductive silver as top grid material to reduce the contact resistance and by introducing a thin (˜0.5 nm) lithium fluoride layer between the silicon and the aluminum backside contact to improve electron collection and hole blocking. Hereby, the open-circuit voltage and the fill factor of the hybrid solar cells were further improved and devices with very high PCE up to 14.2% have been realized.

  4. Synthesis of a conjugated pyrrolopyridazinedione-benzodithiophene (PPD-BDT) copolymer and its application in organic and hybrid solar cells.

    Science.gov (United States)

    Knall, Astrid-Caroline; Jones, Andrew O F; Kunert, Birgit; Resel, Roland; Reishofer, David; Zach, Peter W; Kirkus, Mindaugas; McCulloch, Iain; Rath, Thomas

    2017-01-01

    Herein, we describe the synthesis and characterization of a conjugated donor-acceptor copolymer consisting of a pyrrolopyridazinedione (PPD) acceptor unit, and a benzodithiophene (BDT) donor unit. The polymerization was done via a Stille cross-coupling polycondensation. The resulting PPD-BDT copolymer revealed an optical bandgap of 1.8 eV and good processability from chlorobenzene solutions. In an organic solar cell in combination with PC 70 BM, the polymer led to a power conversion efficiency of 4.5%. Moreover, the performance of the copolymer was evaluated in polymer/nanocrystal hybrid solar cells using non-toxic CuInS 2 nanocrystals as inorganic phase, which were prepared from precursors directly in the polymer matrix without using additional capping ligands. The PPD-BDT/CuInS 2 hybrid solar cells showed comparably high photovoltages and a power conversion efficiency of 2.2%.

  5. Synthesis of a conjugated pyrrolopyridazinedione–benzodithiophene (PPD–BDT) copolymer and its application in organic and hybrid solar cells

    KAUST Repository

    Knall, Astrid-Caroline

    2017-03-30

    Herein, we describe the synthesis and characterization of a conjugated donor–acceptor copolymer consisting of a pyrrolopyridazinedione (PPD) acceptor unit, and a benzodithiophene (BDT) donor unit. The polymerization was done via a Stille cross-coupling polycondensation. The resulting PPD–BDT copolymer revealed an optical bandgap of 1.8 eV and good processability from chlorobenzene solutions. In an organic solar cell in combination with PC70BM, the polymer led to a power conversion efficiency of 4.5%. Moreover, the performance of the copolymer was evaluated in polymer/nanocrystal hybrid solar cells using non-toxic CuInS2 nanocrystals as inorganic phase, which were prepared from precursors directly in the polymer matrix without using additional capping ligands. The PPD–BDT/CuInS2 hybrid solar cells showed comparably high photovoltages and a power conversion efficiency of 2.2%.Graphical abstract

  6. Molecular ferroelectric contributions to anomalous hysteresis in hybrid perovskite solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Frost, Jarvist M.; Butler, Keith T.; Walsh, Aron, E-mail: a.walsh@bath.ac.uk [Centre for Sustainable Chemical Technologies and Department of Chemistry, University of Bath, Claverton Down, Bath BA2 7AY (United Kingdom)

    2014-08-01

    We report a model describing the molecular orientation disorder in CH{sub 3}NH{sub 3}PbI{sub 3}, solving a classical Hamiltonian parametrised with electronic structure calculations, with the nature of the motions informed by ab initio molecular dynamics. We investigate the temperature and static electric field dependence of the equilibrium ferroelectric (molecular) domain structure and resulting polarisability. A rich domain structure of twinned molecular dipoles is observed, strongly varying as a function of temperature and applied electric field. We propose that the internal electrical fields associated with microscopic polarisation domains contribute to hysteretic anomalies in the current-voltage response of hybrid organic-inorganic perovskite solar cells due to variations in electron-hole recombination in the bulk.

  7. Anomalous photovoltaic effect in organic-inorganic hybrid perovskite solar cells.

    Science.gov (United States)

    Yuan, Yongbo; Li, Tao; Wang, Qi; Xing, Jie; Gruverman, Alexei; Huang, Jinsong

    2017-03-01

    Organic-inorganic hybrid perovskites (OIHPs) have been demonstrated to be highly successful photovoltaic materials yielding very-high-efficiency solar cells. We report the room temperature observation of an anomalous photovoltaic (APV) effect in lateral structure OIHP devices manifested by the device's open-circuit voltage ( V OC ) that is much larger than the bandgap of OIHPs. The persistent V OC is proportional to the electrode spacing, resembling that of ferroelectric photovoltaic devices. However, the APV effect in OIHP devices is not caused by ferroelectricity. The APV effect can be explained by the formation of tunneling junctions randomly dispersed in the polycrystalline films, which allows the accumulation of photovoltage at a macroscopic level. The formation of internal tunneling junctions as a result of ion migration is visualized with Kelvin probe force microscopy scanning. This observation points out a new avenue for the formation of large and continuously tunable V OC without being limited by the materials' bandgap.

  8. Optoelectronic Evaluation and Loss Analysis of PEDOT:PSS/Si Hybrid Heterojunction Solar Cells.

    Science.gov (United States)

    Yang, Zhenhai; Fang, Zebo; Sheng, Jiang; Ling, Zhaoheng; Liu, Zhaolang; Zhu, Juye; Gao, Pingqi; Ye, Jichun

    2017-12-01

    The organic/silicon (Si) hybrid heterojunction solar cells (HHSCs) have attracted considerable attention due to their potential advantages in high efficiency and low cost. However, as a newly arisen photovoltaic device, its current efficiency is still much worse than commercially available Si solar cells. Therefore, a comprehensive and systematical optoelectronic evaluation and loss analysis on this HHSC is therefore highly necessary to fully explore its efficiency potential. Here, a thoroughly optoelectronic simulation is provided on a typical planar polymer poly (3,4-ethylenedioxy thiophene):polystyrenesulfonate (PEDOT:PSS)/Si HHSC. The calculated spectra of reflection and external quantum efficiency (EQE) match well with the experimental results in a full-wavelength range. The losses in current density, which are contributed by both optical losses (i.e., reflection, electrode shield, and parasitic absorption) and electrical recombination (i.e., the bulk and surface recombination), are predicted via carefully addressing the electromagnetic and carrier-transport processes. In addition, the effects of Si doping concentrations and rear surface recombination velocities on the device performance are fully investigated. The results drawn in this study are beneficial to the guidance of designing high-performance PEDOT:PSS/Si HHSCs.

  9. Poly(3-hexylthiophene) films by electrospray deposition for crystalline silicon/organic hybrid junction solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Hiate, Taiga; Miyauchi, Naoto; Tang, Zeguo; Ishikawa, Ryo; Ueno, Keiji; Shirai, Hajime [Graduate School of Science and Engineering, Saitama University, 255 Shimo-Okubo, Sakura, Saitama 858-3676 (Japan)

    2012-10-15

    The electrospray deposition (ESD) of poly(3-hexylthiophene) (P3HT) and conductive poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) on P3HT for use in crystalline silicon/organic hybrid heterojunction solar cells on CZ crystalline silicon (c-Si) (100) wafer was investigated using real-time characterization by spectroscopic ellipsometry (SE). In contrast to the nonuniform deposition of products frequently obtained by conventional spin-coating, a uniform deposition of P3HT and PEDOT:PSS films were achieved on flat and textured hydrophobic c-Si(100) wafers by adjusting the deposition conditions. The c-Si/P3HT/PEDOT:PSS heterojunction solar cells exhibited efficiencies of 4.1 and 6.3% on flat and textured c-Si(100) wafers, respectively. These findings suggest that ESD is a promising method for the uniform deposition of P3HT and PEDOT:PSS films on flat and textured hydrophobic substrates. (copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  10. High performance hybrid silicon micropillar solar cell based on light trapping characteristics of Cu nanoparticles

    Directory of Open Access Journals (Sweden)

    Yulong Zhang

    2018-05-01

    Full Text Available High performance silicon combined structure (micropillar with Cu nanoparticles solar cell has been synthesized from N-type silicon substrates based on the micropillar array. The combined structure solar cell exhibited higher short circuit current rather than the silicon miropillar solar cell, which the parameters of micropillar array are the same. Due to the Cu nanoparticles were decorated on the surface of silicon micropillar array, the photovoltaic properties of cells have been improved. In addition, the optimal efficiency of 11.5% was measured for the combined structure solar cell, which is better than the silicon micropillar cell.

  11. High performance hybrid silicon micropillar solar cell based on light trapping characteristics of Cu nanoparticles

    Science.gov (United States)

    Zhang, Yulong; Fan, Zhiqiang; Zhang, Weijia; Ma, Qiang; Jiang, Zhaoyi; Ma, Denghao

    2018-05-01

    High performance silicon combined structure (micropillar with Cu nanoparticles) solar cell has been synthesized from N-type silicon substrates based on the micropillar array. The combined structure solar cell exhibited higher short circuit current rather than the silicon miropillar solar cell, which the parameters of micropillar array are the same. Due to the Cu nanoparticles were decorated on the surface of silicon micropillar array, the photovoltaic properties of cells have been improved. In addition, the optimal efficiency of 11.5% was measured for the combined structure solar cell, which is better than the silicon micropillar cell.

  12. Charge transfer processes in hybrid solar cells composed of amorphous silicon and organic materials

    Energy Technology Data Exchange (ETDEWEB)

    Schaefer, Sebastian; Neher, Dieter [Universitaet Potsdam, Inst. Physik u. Astronomie, Karl-Liebknecht-Strasse 24/25, 14467 Potsdam-Golm (Germany); Schulze, Tim; Korte, Lars [Helmholtz Zentrum Berlin, Inst. fuer Silizium Photovoltaik, Kekulestrasse 5, 12489 Berlin (Germany)

    2011-07-01

    The efficiency of hybrid solar cells composed of organic materials and amorphous hydrogenated silicon (a-Si:H) strongly depends upon the efficiency of charge transfer processes at the inorganic-organic interface. We investigated the performance of devices comprising an ITO/a-Si:H(n-type)/a-Si:H(intrinsic)/organic/metal multilayer structure and using two different organic components: zinc phthalocyanine (ZnPc) and poly(3-hexylthiophene) (P3HT). The results show higher power conversion- and quantum efficiencies for the P3HT based cells, compared to ZnPc. This can be explained by larger energy-level offset at the interface between the organic layer and a-Si:H, which facilitates hole transfer from occupied states in the valence band tail to the HOMO of the organic material and additionally promotes exciton splitting. The performance of the a-Si:H/P3HT cells can be further improved by treatment of the amorphous silicon surface with hydrofluoric acid (HF) and p-type doping of P3HT with F4TCNQ. The improved cells reached maximum power conversion efficiencies of 1%.

  13. Influence of an Inorganic Interlayer on Exciton Separation in Hybrid Solar Cells

    Science.gov (United States)

    2015-01-01

    It has been shown that in hybrid polymer–inorganic photovoltaic devices not all the photogenerated excitons dissociate at the interface immediately, but can instead exist temporarily as bound charge pairs (BCPs). Many of these BCPs do not contribute to the photocurrent, as their long lifetime as a bound species promotes various charge carrier recombination channels. Fast and efficient dissociation of BCPs is therefore considered a key challenge in improving the performance of polymer–inorganic cells. Here we investigate the influence of an inorganic energy cascading Nb2O5 interlayer on the charge carrier recombination channels in poly(3-hexylthiophene-2,5-diyl) (P3HT)–TiO2 and PbSe colloidal quantum dot–TiO2 photovoltaic devices. We demonstrate that the additional Nb2O5 film leads to a suppression of BCP formation at the heterojunction of the P3HT cells and also a reduction in the nongeminate recombination mechanisms in both types of cells. Furthermore, we provide evidence that the reduction in nongeminate recombination in the P3HT–TiO2 devices is due in part to the passivation of deep midgap trap states in the TiO2, which prevents trap-assisted Shockley–Read–Hall recombination. Consequently a significant increase in both the open-circuit voltage and the short-circuit current was achieved, in particular for P3HT-based solar cells, where the power conversion efficiency increased by 39%. PMID:26548399

  14. Organic Gelators as Growth Control Agents for Stable and Reproducible Hybrid Perovskite-Based Solar Cells

    KAUST Repository

    Masi, Sofia

    2017-03-03

    Low-molecular-weight organic gelators are widely used to influence the solidification of polymers, with applications ranging from packaging items, food containers to organic electronic devices, including organic photovoltaics. Here, this concept is extended to hybrid halide perovskite-based materials. In situ time-resolved grazing incidence wide-angle X-ray scattering measurements performed during spin coating reveal that organic gelators beneficially influence the nucleation and growth of the perovskite precursor phase. This can be exploited for the fabrication of planar n-i-p heterojunction devices with MAPbI3 (MA = CH3NH3+) that display a performance that not only is enhanced by ≈25% compared to solar cells where the active layer is produced without the use of a gelator but that also features a higher stability to moisture and a reduced hysteresis. Most importantly, the presented approach is straightforward and simple, and it provides a general method to render the film formation of hybrid perovskites more reliable and robust, analogous to the control that is afforded by these additives in the processing of commodity “plastics.”

  15. Controllable self-induced passivation of hybrid lead iodide perovskites toward high performance solar cells.

    Science.gov (United States)

    Chen, Qi; Zhou, Huanping; Song, Tze-Bin; Luo, Song; Hong, Ziruo; Duan, Hsin-Sheng; Dou, Letian; Liu, Yongsheng; Yang, Yang

    2014-07-09

    To improve the performance of the polycrystalline thin film devices, it requires a delicate control of its grain structures. As one of the most promising candidates among current thin film photovoltaic techniques, the organic/inorganic hybrid perovskites generally inherit polycrystalline nature and exhibit compositional/structural dependence in regard to their optoelectronic properties. Here, we demonstrate a controllable passivation technique for perovskite films, which enables their compositional change, and allows substantial enhancement in corresponding device performance. By releasing the organic species during annealing, PbI2 phase is presented in perovskite grain boundaries and at the relevant interfaces. The consequent passivation effects and underlying mechanisms are investigated with complementary characterizations, including scanning electron microscopy (SEM), X-ray diffraction (XRD), time-resolved photoluminescence decay (TRPL), scanning Kelvin probe microscopy (SKPM), and ultraviolet photoemission spectroscopy (UPS). This controllable self-induced passivation technique represents an important step to understand the polycrystalline nature of hybrid perovskite thin films and contributes to the development of perovskite solar cells judiciously.

  16. Charge and energy transfer interplay in hybrid sensitized solar cells mediated by graphene quantum dots

    International Nuclear Information System (INIS)

    Mihalache, Iuliana; Radoi, Antonio; Mihaila, Mihai; Munteanu, Cornel; Marin, Alexandru; Danila, Mihai; Kusko, Mihaela; Kusko, Cristian

    2015-01-01

    Highlights: • We report a one pot synthesis metod of GQD with controlled size and optoelectronic properties. • An improvement of common N3-DSSC characteristics is achieved when GQDs are used as co-sensitiser. • The role of GQD as cosensitisers in hybrid DSSC was investigated and the interplay between charge and energy transfer phenomena mediated by GQDs was demonstrated. • The GQDs presence determines an inhibition of the recombination processes at the TiO 2 /electrolyte interface. - Abstract: We explored the role of graphene quantum dots (GQDs) as co-sensitizers in hybrid dye sensitized solar cell (DSSC) architectures, focusing on various concurring mechanisms, such as: charge transfer, energy transfer and recombination rate, towards light harvesting improvement. GQDs were prepared by the hydrothermal method that allows the tuning of electronic levels and optical properties by employing appropriate precursors and synthesis conditions. The aim was to realize a type II alignment for TiO 2 /GQD/dye hybrid configuration, using standard N3 Ru-dye in order to improve charge transfer. When GQDs were used as co-sensitizers together with N3 Ru-dye, an improvement in power conversion efficiency was achieved, as shown by electrical measurements. The experimental analysis indicates that this improvement arises from the interplay of various mechanisms mediated by GQDs: (i) enhancement of charge separation and collection due to the cascaded alignment of the energy levels; (ii) energy transfer from GQDs to N3 Ru-dye due to the overlap between GQD photoluminescence and N3 Ru-dye absorption spectra; and (iii) reduction of the electron recombination to the redox couple due to the inhibition of the back electron transfer to the electrolyte by the GQDs

  17. Hybrid structure of polyaniline/ZnO nanograss and its application in dye-sensitized solar cell with performance improvement

    Energy Technology Data Exchange (ETDEWEB)

    Zhu Shibu; Wei Wei; Chen Xiangnan [Key Laboratory of Advanced Technologies of Materials (Ministry of Education), School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031 (China); Jiang Man, E-mail: jiangman1021@163.com [Key Laboratory of Advanced Technologies of Materials (Ministry of Education), School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031 (China); Zhou Zuowan, E-mail: zwzhou@at-c.net [Key Laboratory of Advanced Technologies of Materials (Ministry of Education), School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031 (China)

    2012-06-15

    Polyaniline (PANI) hybridized ZnO photoanode for dye-sensitized solar cell (DSSC) was primarily prepared via a two-step process which involved hydrothermal growth of ZnO nanograss on the fluorine-doped tin oxide (FTO) substrate and subsequently chemisorption of PANI on the surfaces of the ZnO nanorods. The PANI hybridized ZnO nanograss films were characterized by scanning electron microscope (SEM), X-ray diffraction (XRD) and Fourier transform infrared spectra (FT-IR), and the results indicated that there were chemical interactions between PANI and ZnO. Both pure ZnO nanograss and PANI hybridized ZnO nanograss were applied to DSSC. The results of photoelectrochemical measurement showed that the photocurrent density of PANI (100 mg/L) hybridized ZnO nanograss photoanode was significantly enhanced, and the overall light-conversion efficiency increased by 60%. The electrochemical impedance spectra (EIS) displayed that the electron densities in photoanodes of PANI hybridized ZnO nanograss were larger than that in pure ZnO nanograss. This is ascribed to more effective charge separation and faster interfacial charge transferring occurred in the hybrid photoanode. - Graphical abstract: Operational principle of the DSSC: the introduced hybridizing PANI layer performs effective charge separation and faster interfacial charge transferring. Highlights: Black-Right-Pointing-Pointer PANI/ZnO nanograss hybrid materials as photoanode in Dye-sensitized solar cell. Black-Right-Pointing-Pointer Photoelectric conversion efficiency after hybridization was enhanced by 60%. Black-Right-Pointing-Pointer PANI hybridizing ZnO nanograss induced a rapid charge separation.

  18. Hybrid structure of polyaniline/ZnO nanograss and its application in dye-sensitized solar cell with performance improvement

    International Nuclear Information System (INIS)

    Zhu Shibu; Wei Wei; Chen Xiangnan; Jiang Man; Zhou Zuowan

    2012-01-01

    Polyaniline (PANI) hybridized ZnO photoanode for dye-sensitized solar cell (DSSC) was primarily prepared via a two-step process which involved hydrothermal growth of ZnO nanograss on the fluorine-doped tin oxide (FTO) substrate and subsequently chemisorption of PANI on the surfaces of the ZnO nanorods. The PANI hybridized ZnO nanograss films were characterized by scanning electron microscope (SEM), X-ray diffraction (XRD) and Fourier transform infrared spectra (FT-IR), and the results indicated that there were chemical interactions between PANI and ZnO. Both pure ZnO nanograss and PANI hybridized ZnO nanograss were applied to DSSC. The results of photoelectrochemical measurement showed that the photocurrent density of PANI (100 mg/L) hybridized ZnO nanograss photoanode was significantly enhanced, and the overall light-conversion efficiency increased by 60%. The electrochemical impedance spectra (EIS) displayed that the electron densities in photoanodes of PANI hybridized ZnO nanograss were larger than that in pure ZnO nanograss. This is ascribed to more effective charge separation and faster interfacial charge transferring occurred in the hybrid photoanode. - Graphical abstract: Operational principle of the DSSC: the introduced hybridizing PANI layer performs effective charge separation and faster interfacial charge transferring. Highlights: ► PANI/ZnO nanograss hybrid materials as photoanode in Dye-sensitized solar cell. ► Photoelectric conversion efficiency after hybridization was enhanced by 60%. ► PANI hybridizing ZnO nanograss induced a rapid charge separation.

  19. Theoretical Analysis of Two Novel Hybrid Thermoelectric-Photovoltaic Systems Based on Cu₂ZnSnS₄ Solar Cells.

    Science.gov (United States)

    Lorenzi, Bruno; Contento, Gaetano; Sabatelli, Vincenzo; Rizzo, Antonella; Narducci, Dario

    2017-03-01

    The development and commercialization of Photovoltaic (PV) cells with good cost-efficiency trade-off not using critical raw materials (CRMs) is one of the strategies chosen by the European Community (EC) to address the Energy Roadmap 2050. In this context Cu2ZnSnS4 (CZTS) solar cells are attracting a major interest since they have the potential to combine low price with relatively high conversion efficiencies. Although a ≈9% lab scale efficiency has already been reported for CZTS this technology is still far from being competitive in terms of cost per peak-power (€/Wp) with other common materials. One possible near-future solution to increase the CZTS competiveness comes from thermoelectrics. Actually it has already been shown that Hybrid Thermoelectric-Photovoltaic Systems (HTEPVs) based on CIGS, another kesterite very similar to CZTS, can lead to a significant efficiency improvement. However it has been also clarified how the optimal hybridization strategy cannot come from the simple coupling of solar cells with commercial TEGs, but special layouts have to be implemented. Furthermore, since solar cell performances are well known to decrease with temperature, thermal decoupling strategies of the PV and TEG sections have to be taken. To address these issues, we developed a model for two different HTEPV solutions, both coupled with CZTS solar cells. In the first case we considered a Thermally-Coupled HTEPV device (TC-HTEPV) in which the TEG is placed underneath the solar cell and in thermal contact with it. The second system consists instead of an Optically-Coupled but thermally decoupled device (OC-HTEPV) in which part of the solar spectrum is focused by a non-imaging optical concentrator on the TEG hot side. For both solutions the model returns conversion efficiencies higher than that of the CZTS solar cell alone. Specifically, increases of ≈30% are predicted for both kind of systems considered.

  20. Hybrid Optical Devices: The Case of the Unification of the Electrochromic Device and the Organic Solar Cell

    Directory of Open Access Journals (Sweden)

    Andre F. S. Guedes

    2016-06-01

    Full Text Available The development of Hybrid Optical Devices, using some flexible optically transparent substrate material and organic semiconductor materials, has been widely utilized by the organic electronic industry, when manufacturing new technological products. The Hybrid Optical Device is constituted by the union of the electrochromic device and the organic solar cell. The flexible organic photovoltaic solar cells, in this hybrid optical device, have been the Poly base (3-hexyl thiophene, P3HT, Phenyl-C61-butyric acid methyl ester, PCBM and Polyaniline, PANI, all being deposited in Indium Tin Oxide, ITO. In addition, the thin film, obtained by the deposition of PANI, and prepared in perchloric acid solution, has been identified through PANI-X1. In the flexible electrochromic device, the Poly base (3,4-ethylenedioxythiophene, PEDOT, has been prepared in Propylene Carbonate, PC, being deposited in Indium Tin Oxide, ITO. Also, both devices have been united by an electrolyte solution prepared with Vanadium Pentoxide, V2O5, Lithium Perchlorate, LiClO4, and Polymethylmethacrylate, PMMA. This device has been characterized through Electrical Measurements, such as UV-Vis Spectroscopy and Scanning Electron Microscopy (SEM. Thus, the result obtained through electrical measurements has demonstrated that the flexible organic photovoltaic solar cell presented the characteristic curve of standard solar cell after spin-coating and electrodeposition. Accordingly, the results obtained with optical and electrical characterization have revealed that the electrochromic device demonstrated some change in optical absorption, when subjected to some voltage difference. Moreover, the inclusion of the V2O5/PANI-X1 layer reduced the effects of degradation that this hybrid organic device caused, that is, solar irradiation. Studies on Scanning Electron Microscopy (SEM have found out that the surface of V2O5/PANI-X1 layers can be strongly conditioned by the surface morphology of the

  1. Hybrid solar cells based on CuInS2 and organic buffer-sensitizer layers

    International Nuclear Information System (INIS)

    Bereznev, S.; Koeppe, R.; Konovalov, I.; Kois, J.; Guenes, S.; Opik, A.; Mellikov, E.; Sariciftci, N.S.

    2007-01-01

    Hybrid solar cells on the basis of CuInS 2 (CIS) photoabsorber on Cu-tape (CISCuT) in combination with organic buffer layers of Zn-phthalocyanine (ZnPc), ZnPc:fullerene (ZnPc:C 60 ) composite and conductive polymer buffer layers of poly(3,4-ethylenedioxythiophene) (PEDOT) doped with polystyrenesulfonate (PSS) were prepared using vacuum evaporation and spin-casting techniques. To prepare solar cells with an active area of 2 cm 2 , the appropriate deposition parameters and thickness of ZnPc, ZnPc:C 60 and PEDOT-PSS layers were selected experimentally. For preparation of semitransparent contact-window layers, chromium and gold were evaporated on the surface of ZnPc, ZnPc:C 60 and PEDOT-PSS films. It was found that an intermediate chromium layer improves PV properties of the structures with organic buffer layers. The photosensitivity at small illumination intensities of complete structures with ZnPc and ZnPc:C 60 layers increased more than one order of magnitude in comparison with the structures where the PEDOT-PSS buffer layer was deposited. The presence of C 60 in the composite-buffer layer results in increased photoconductivity. The best structure with composite ZnPc:C 60 buffer layer showed an open-circuit voltage of 560 mV, a short-circuit current density of around 10 mA/cm 2 and a photoconversion efficiency of around 3.3% under the light illumination with an intensity of 100 mW/cm 2 from a tungsten-halogen lamp. The low transmission of the semitransparent chromium-gold window layer is the reason for relatively low current density

  2. Interfacial engineering of CuO nanorod/ZnO nanowire hybrid nanostructure photoanode in dye-sensitized solar cell

    Science.gov (United States)

    Kilic, Bayram; Turkdogan, Sunay; Astam, Aykut; Baran, Sümeyra Seniha; Asgin, Mansur; Gur, Emre; Kocak, Yusuf

    2018-01-01

    Developing efficient and cost-effective photoanode plays a vital role determining the photocurrent and photovoltage in dye-sensitized solar cells (DSSCs). Here, we demonstrate DSSCs that achieve relatively high power conversion efficiencies (PCEs) by using one-dimensional (1D) zinc oxide (ZnO) nanowires and copper (II) oxide (CuO) nanorods hybrid nanostructures. CuO nanorod-based thin films were prepared by hydrothermal method and used as a blocking layer on top of the ZnO nanowires' layer. The use of 1D ZnO nanowire/CuO nanorod hybrid nanostructures led to an exceptionally high photovoltaic performance of DSSCs with a remarkably high open-circuit voltage (0.764 V), short current density (14.76 mA/cm2 under AM1.5G conditions), and relatively high solar to power conversion efficiency (6.18%) . The enhancement of the solar to power conversion efficiency can be explained in terms of the lag effect of the interfacial recombination dynamics of CuO nanorod-blocking layer on ZnO nanowires. This work shows more economically feasible method to bring down the cost of the nano-hybrid cells and promises for the growth of other important materials to further enhance the solar to power conversion efficiency.

  3. Improved efficiency in organic/inorganic hybrid solar cells by interfacial modification of ZnO nanowires with small molecules

    International Nuclear Information System (INIS)

    Chang, Sehoon; Park, Hyesung; Cheng, Jayce J; Rekemeyer, Paul H; Gradečak, Silvija

    2014-01-01

    We demonstrate improved photovoltaic performance of ZnO nanowire/poly(3-hexylthiophene) (P3HT) nanofiber hybrid devices using an interfacial modification of ZnO nanowires. Formation of cascade energy levels between the ZnO nanowire and P3HT nanofiber was achieved by interfacial modification of ZnO nanowires using small molecules tetraphenyldibenzoperiflanthene (DBP) and 3,4,9,10-perylenetetracarboxylic bisbenzimidazole (PTCBI). The successful demonstration of improved device performance owing to the cascade energy levels by small molecule modification is a promising approach toward highly efficient organic/inorganic hybrid solar cells. (paper)

  4. Charge separation dynamics in a narrow band gap polymer-PbS nanocrystal blend for efficient hybrid solar cells

    NARCIS (Netherlands)

    Piliego, Claudia; Manca, Marianna; Kroon, Renee; Yarema, Maksym; Szendrei, Krisztina; Andersson, Mats R.; Heiss, Wolfgang; Loi, Maria A.

    2012-01-01

    We have demonstrated efficient hybrid solar cells based on lead sulfide (PbS) nanocrystals and a narrow band gap polymer, poly[{2,5-bis(2-hexyldecyl)-2,3,5,6-tetrahydro-3,6-dioxopyrrolo[3,4-c]pyrrole-1,4-diyl}-alt-{[2,2'-(1,4-phenylene)bis-thiophene]-5,5'-diyl}], (PDPPTPT). An opportune mixing of

  5. Hybrid thin-film solar cells comprising mesoporous titanium dioxide and conjugated polymers; Hybride Duennschicht-Solarzellen aus mesoporoesem Titandioxid und konjugierten Polymeren

    Energy Technology Data Exchange (ETDEWEB)

    Schattauer, Sylvia

    2010-12-01

    The main objective of this thesis is to study the active components and their interactions in so called organic hybrid solar cells. These consist of a thin inorganic titanium dioxide layer, combined with a polymer layer. In general, the efficiency of these hybrid solar cells is determined by the light absorption in the donor polymer, the dissociation of excitons at the heterojunction between TiO{sub 2} and polymer, as well as the generation and extraction of free charge carriers. To optimize the solar cells, the physical interactions between the materials are modified and the influences of various preparation parameters are systematically investigated. Among others, important findings regarding the optimal use of materials and preparation conditions as well as detailed investigations of fundamental factors such as film morphology and polymer infiltration are presented in more detail. First, a variety of titanium dioxide layer were produced, from which a selection for use in hybrid solar cells was made. The obtained films show differences in surface structure, film morphology and crystallinity, depending on the way how the TiO{sub 2} layer has been prepared. All these properties of the TiO{sub 2} films may strongly affect the performance of the hybrid solar cells, by influencing e.g. the exciton diffusion length, the efficiency of exciton dissociation at the hybrid interface, and the carrier transport properties. Detailed investigations were made for mesoporous TiO{sub 2} layer following a new nanoparticle synthesis route, which allows to produce crystalline particles during the synthesis. As donor component, conjugated polymers, either derivatives of cyclohexylamino-poly(p-phenylene vinylene) (PPV) or a thiophene are used. The preparation routine also includes a thermal treatment of the TiO{sub 2} layers, revealing a temperature-dependent change in morphology, but not of the crystal structure. The effects on the solar cell properties have been documented and

  6. Silicon spectral response extension through single wall carbon nanotubes in hybrid solar cells

    KAUST Repository

    Del Gobbo, Silvano; Castrucci, P.; Fedele, S.; Riele, L.; Convertino, A.; Morbidoni, M.; De Nicola, F.; Scarselli, M.; Camilli, L.; De Crescenzi, M.

    2013-01-01

    Photovoltaic devices based on single wall carbon nanotubes (SWCNTs) and n-silicon multiple heterojunctions have been fabricated by a SWCNT film transferring process. We report on the ability of the carbon nanotubes to extend the Si spectral range towards the near ultraviolet (UV) and the near infrared regions. Semiconducting and about metallic SWCNT networks have been studied as a function of the film sheet resistance, Rsh. Optical absorbance and Raman spectroscopy have been used to assign nanotube chirality and electronic character. This gave us hints of evidence of the participation of the metal nanotubes in the photocurrent generation. Moreover, we provide evidence that the external quantum efficiency spectral range can be modulated as a function of the SWCNT network sheet resistance in a hybrid SWCNT/Si solar cell. This result will be very useful to further design/optimize devices with improved performance in spectral regions generally not covered by conventional Si p-n devices. © 2013 The Royal Society of Chemistry.

  7. Black Phosphorus Quantum Dots for Hole Extraction of Typical Planar Hybrid Perovskite Solar Cells.

    Science.gov (United States)

    Chen, Wei; Li, Kaiwen; Wang, Yao; Feng, Xiyuan; Liao, Zhenwu; Su, Qicong; Lin, Xinnan; He, Zhubing

    2017-02-02

    Black phosphorus, famous as two-dimensional (2D) materials, shows such excellent properties for optoelectronic devices such as tunable direct band gap, extremely high hole mobility (300-1000 cm 2 /(V s)), and so forth. In this Letter, facile processed black phosphorus quantum dots (BPQDs) were successfully applied to enhance hole extraction at the anode side of the typical p-i-n planar hybrid perovskite solar cells, which remarkably improved the performance of devices with photon conversion efficiency ramping up from 14.10 to 16.69%. Moreover, more detailed investigations by c-AFM, SKPM, SEM, hole-only devices, and photon physics measurements discover further the hole extraction effect and work mechanism of the BPQDs, such as nucleation assistance for the growth of large grain size perovskite crystals, fast hole extraction, more efficient hole transfer, and suppression of energy-loss recombination at the anode interface. This work definitely paves the way for discovering more and more 2D materials with high electronic properties to be used in photovoltaics and optoelectronics.

  8. Organic-inorganic hybrid thin film solar cells using conducting polymer and gold nanoparticles

    Science.gov (United States)

    Hwan Jung, Hyung; Ho Kim, Dong; Su Kim, Chang; Bae, Tae-Sung; Bum Chung, Kwun; Yoon Ryu, Seung

    2013-05-01

    We employed poly(styrenesulfonate)-doped poly (3,4-ethylenedioxythiophene) (PEDOT:PSS) as a p-layer on textured fluorine-tin-oxide (FTO) glass in pin-type hydrogenated amorphous silicon solar cells (a-Si:H SCs). An amorphous tungsten oxide (WO3) layer and gold nanoparticles (Au-NPs) 10 nm in size were included to prevent the degradation and to increase short-circuit current by the Plasmon effect, respectively, between the PEDOT:PSS and intrinsic-Si layer. The energy band between PEDOT:PSS and WO3 was meaningfully adjusted by Au-NPs. The p-type PEDOT:PSS layer in these organic-inorganic hybrid a-Si:H SCs results in an increased conversion efficiency from ˜2.42% to ˜5.49% and an increased open-circuit voltage from ˜0.29 V to ˜0.56 V. PEDOT:PSS on textured FTO glass is sufficiently showing that it can replace the p-type Si layer in pin-type a-Si:H SCs.

  9. Sequential Dip-spin Coating Method: Fully Infiltration of MAPbI 3-x Cl x into Mesoporous TiO 2 for Stable Hybrid Perovskite Solar Cells

    KAUST Repository

    Kim, Woochul; Park, Jiyoon; Kim, Hyeonghun; Pak, Yusin; Lee, Heon; Jung, Gun Young

    2017-01-01

    Organic-inorganic hybrid perovskite solar cells (PSCs) have reached a power conversion efficiency of 22.1% in a short period (∼7 years), which has been obtainable in silicon-based solar cells for decades. The high power conversion efficiency

  10. Harnessing light energy with a planar transparent hybrid of graphene/single wall carbon nanotube/n-type silicon heterojunction solar cell

    DEFF Research Database (Denmark)

    Chen, Leifeng; Yu, Hua; Zhong, Jiasong

    2015-01-01

    The photovoltaic conversion efficiency of a solar cell fabricated by a simple electrophoretic method with a planar transparent hybrid of graphenes (GPs) and single wall carbon nanotubes (SCNTs)/n-type silicon heterojunction was significantly increased compared to GPs/n-Si and SCNTs/n-Si solar cells...

  11. Nanocrystal Solar Cells

    Energy Technology Data Exchange (ETDEWEB)

    Gur, Ilan [Univ. of California, Berkeley, CA (United States)

    2006-01-01

    This dissertation presents the results of a research agenda aimed at improving integration and stability in nanocrystal-based solar cells through advances in active materials and device architectures. The introduction of 3-dimensional nanocrystals illustrates the potential for improving transport and percolation in hybrid solar cells and enables novel fabrication methods for optimizing integration in these systems. Fabricating cells by sequential deposition allows for solution-based assembly of hybrid composites with controlled and well-characterized dispersion and electrode contact. Hyperbranched nanocrystals emerge as a nearly ideal building block for hybrid cells, allowing the controlled morphologies targeted by templated approaches to be achieved in an easily fabricated solution-cast device. In addition to offering practical benefits to device processing, these approaches offer fundamental insight into the operation of hybrid solar cells, shedding light on key phenomena such as the roles of electrode-contact and percolation behavior in these cells. Finally, all-inorganic nanocrystal solar cells are presented as a wholly new cell concept, illustrating that donor-acceptor charge transfer and directed carrier diffusion can be utilized in a system with no organic components, and that nanocrystals may act as building blocks for efficient, stable, and low-cost thin-film solar cells.

  12. Fabrication of Hybrid Polymer Solar Cells By Inverted Structure Based on P3HT:PCBM Active Layer

    Directory of Open Access Journals (Sweden)

    Shobih Shobih

    2017-08-01

    Full Text Available Hybrid polymer solar cell has privilege than its conventional structure, where it usually has structure of (ITO/PEDOT:PSS/Active Layer/Al. In humid environment the PEDOT:PSS will absorb water and hence can easily etch the ITO. Therefore it is necessary to use an alternative method to avoid this drawback and obtain more stable polymer solar cells, namely by using hybrid polymer solar cells structure with an inverted device architecture from the conventional, by reversing the nature of charge collection. In this paper we report the results of the fabrication of inverted bulk heterojunction polymer solar cells based on P3HT:PCBM as active layer, utilizing ZnO interlayer as buffer layer between the ITO and active layer with a stacked structure of ITO/ZnO/P3HT:PCBM/PEDOT:PSS/Ag. The ZnO interlayer is formed through short route, i.e. by dissolving ZnO nanoparticles powder in chloroform-methanol solvent blend rather than by sol-gel process. Based on the measurement results on electrical characteristics of inverted polymer solar cells under 500 W/m2 illumination and AM 1.5 direct filter at room temperature, cell with annealing process of active layer at 110 °C for 10 minutes results in higher cell performance than without annealing, with an open-circuit voltage of 0.21 volt, a short-circuit current density of 1.33 mA/cm2 , a fill factor of 43.1%, and a power conversion efficiency of 0.22%. The low cell’s performance is caused by very rough surface of ZnO interlayer.

  13. Nanowire Structured Hybrid Cell for Concurrently Scavenging Solar and Mechanical Energies

    KAUST Repository

    Xu, Chen; Wang, Xudong; Wang, Zhong Lin

    2009-01-01

    Conversion cells for harvesting solar energy and mechanical energy are usually separate and independent entities that are designed and built following different physical principles. Developing a technology that harvests multiple-type energies

  14. High performance silicon–organic hybrid solar cells via improving conductivity of PEDOT:PSS with reduced graphene oxide

    International Nuclear Information System (INIS)

    Jiang, Xinyu; Wang, Zilei; Han, Wenhui; Liu, Qiming; Lu, Shuqi; Wen, Yuxiang; Hou, Juan; Huang, Fei; Peng, Shanglong; He, Deyan; Cao, Guozhong

    2017-01-01

    Highlights: • The fabricated Si–organic hybrid solar cells with 2 mg/ml rGO addition yielded a power conversion efficiency of 11.95% with a J_s_c of 31.94 mA cm"−"2, a V_o_c of 579 mV and a FF of 0.648, about 27.8% increase from 9.35% in pristine hybrid solar cells. • The electrical conductivity of PEDOT:PSS improved 35% when appropriate amount rGO was added to PEDOT:PSS, the electron recombination at the junction interface of the device was suppressed by the appropriate amount rGO flakes addition. • The rGO flakes also serve as an antireflection coating to further reduce the reflectance in the wavelength range of 300–550 nm, leading to further enhanced performances of hybrid solar cells. - Abstract: The optical and electrical properties of PEDOT:PSS organic layer play a very important role in determining the power conversion efficiency (PCE) of Si–organic hybrid solar cells (HSCs). In the present study, properties of PEDOT:PSS thin films with reduced graphene oxide (rGO) and their impacts on the performances of the resultant Si–organic HSCs have been systematically investigated. The electrical conductivity of PEDOT:PSS improved 35% when rGO was added to PEDOT:PSS, and the fabricated HSCs with 2 mg/ml rGO addition yielded an PCE of 11.95% with a J_s_c of 31.94 mA cm"−"2, a V_o_c of 579 mV and a FF of 0.648. However, excess rGO would deteriorate the solar cells performances and it might create additional defects and prevent carriers being collected. The Raman spectroscopy, sheet resistance and EQE analyses with rGO suggested that the interaction between the conductive rGO flakes and the aromatic PEDOT most probably not only provide additional charge transport pathways in hole transport layer to improve carrier mobility leading to a higher carrier collection efficiency, but also suppress the electron recombination at the junction interface. In addition, the rGO serve as an antireflection coating to reduce the reflectance of PEDOT:PSS thin film

  15. High performance silicon–organic hybrid solar cells via improving conductivity of PEDOT:PSS with reduced graphene oxide

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Xinyu; Wang, Zilei; Han, Wenhui; Liu, Qiming; Lu, Shuqi; Wen, Yuxiang [School of Physical Science and Technology, Key Laboratory for Magnetism and Magnetic Materials of the Ministry of Education, Lanzhou University, Lanzhou 730000 (China); Hou, Juan [School of Science, Key Laboratory of Ecophysics, Shihezi University, Xinjiang 832003 (China); Huang, Fei [Department of Materials Science and Engineering, University of Washington, Seattle, WA 98195-2120 (United States); Peng, Shanglong, E-mail: pengshl@lzu.edu.cn [School of Physical Science and Technology, Key Laboratory for Magnetism and Magnetic Materials of the Ministry of Education, Lanzhou University, Lanzhou 730000 (China); He, Deyan [School of Physical Science and Technology, Key Laboratory for Magnetism and Magnetic Materials of the Ministry of Education, Lanzhou University, Lanzhou 730000 (China); Cao, Guozhong, E-mail: gzcao@u.washington.edu [Department of Materials Science and Engineering, University of Washington, Seattle, WA 98195-2120 (United States)

    2017-06-15

    Highlights: • The fabricated Si–organic hybrid solar cells with 2 mg/ml rGO addition yielded a power conversion efficiency of 11.95% with a J{sub sc} of 31.94 mA cm{sup −2}, a V{sub oc} of 579 mV and a FF of 0.648, about 27.8% increase from 9.35% in pristine hybrid solar cells. • The electrical conductivity of PEDOT:PSS improved 35% when appropriate amount rGO was added to PEDOT:PSS, the electron recombination at the junction interface of the device was suppressed by the appropriate amount rGO flakes addition. • The rGO flakes also serve as an antireflection coating to further reduce the reflectance in the wavelength range of 300–550 nm, leading to further enhanced performances of hybrid solar cells. - Abstract: The optical and electrical properties of PEDOT:PSS organic layer play a very important role in determining the power conversion efficiency (PCE) of Si–organic hybrid solar cells (HSCs). In the present study, properties of PEDOT:PSS thin films with reduced graphene oxide (rGO) and their impacts on the performances of the resultant Si–organic HSCs have been systematically investigated. The electrical conductivity of PEDOT:PSS improved 35% when rGO was added to PEDOT:PSS, and the fabricated HSCs with 2 mg/ml rGO addition yielded an PCE of 11.95% with a J{sub sc} of 31.94 mA cm{sup −2}, a V{sub oc} of 579 mV and a FF of 0.648. However, excess rGO would deteriorate the solar cells performances and it might create additional defects and prevent carriers being collected. The Raman spectroscopy, sheet resistance and EQE analyses with rGO suggested that the interaction between the conductive rGO flakes and the aromatic PEDOT most probably not only provide additional charge transport pathways in hole transport layer to improve carrier mobility leading to a higher carrier collection efficiency, but also suppress the electron recombination at the junction interface. In addition, the rGO serve as an antireflection coating to reduce the reflectance of

  16. Development of a Novel Hybrid Multi-Junction Architecture for Silicon Solar Cells

    Science.gov (United States)

    2015-03-26

    Section 2.2.2) were set and verified with a pyranometer and thermocouple probe prior to testing. Voltage and 52 current readings were then taken...without other parameters interfering. The values were recorded by placing the cells above a pyranometer that records intensity. Any ambient light was...Rapid thermal annealing Fabrication XPS-300 Solar Light Tester Measuring solar cell response Testing PMA2100 Pyranometer Measuring irradiance Testing

  17. Hybrid bio-photo-electro-chemical cells for solar water splitting

    OpenAIRE

    Pinhassi, Roy I.; Kallmann, Dan; Saper, Gadiel; Dotan, Hen; Linkov, Artyom; Kay, Asaf; Liveanu, Varda; Schuster, Gadi; Adir, Noam; Rothschild, Avner

    2016-01-01

    Photoelectrochemical water splitting uses solar power to decompose water to hydrogen and oxygen. Here we show how the photocatalytic activity of thylakoid membranes leads to overall water splitting in a bio-photo-electro-chemical (BPEC) cell via a simple process. Thylakoids extracted from spinach are introduced into a BPEC cell containing buffer solution with ferricyanide. Upon solar-simulated illumination, water oxidation takes place and electrons are shuttled by the ferri/ferrocyanide redox...

  18. Reversible structural transformation and enhanced performance of PEDOT:PSS-based hybrid solar cells driven by light intensity.

    Science.gov (United States)

    Thomas, Joseph Palathinkal; Srivastava, Saurabh; Zhao, Liyan; Abd-Ellah, Marwa; McGillivray, Donald; Kang, Jung Soo; Rahman, Md Anisur; Moghimi, Nafiseh; Heinig, Nina F; Leung, Kam Tong

    2015-04-15

    Hybrid solar cells made of poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) ( PSS) and appropriate amounts of a cosolvent and a fluorosurfactant on planar n-type silicon substrates showed a photoconversion efficiency (PCE) of above 13%. These cells also exhibited stable, reproducible, and high external quantum efficiency (EQE) that was not sensitive to light-bias intensity (LBI). In contrast, solar cells made of pristine PSS showed low PCE and high EQE only under certain measurement conditions. The EQE was found to degrade with increasing LBI. Here we report that the LBI-sensitive variation of EQE of the low-PCE cells is related to a reversible structural transformation from a quinoid to a benzoid structure of PEDOT.

  19. Small Hybrid Solar Power System

    OpenAIRE

    Kane, El Hadj Malick; Larrain, Diego; Favrat, Daniel

    2001-01-01

    This paper introduces a novel of mini-hybrid solar power plant integrating a field of solar concentrators, two superposed Organic Rankine Cycles (ORC) and a (bio)Diesel engine. Turbines for the organic Rankine Cycles are hermetic scroll expander-generators. Sun tracking solar collectors are composed of rows of flat mirror bands (CEP) arranged in a plane, which focus the solar energy onto a collector tube similar to those used in SEGS plant in California. The wast...

  20. Small Hybrid Solar Power System

    OpenAIRE

    Kane, El Hadj Malick; Favrat, Daniel; Larrain, Diego; Allani, Yassine

    2003-01-01

    This paper introduces a novel of mini-hybrid solar power plant integrating a field of solar concentrators, two superposed Organic Rankine Cycles (ORC) and a (bio)Diesel engine. Turbines for the organic Rankine Cycles are hermetic scroll expander-generators. Sun tracking solar collectors are composed of rows of flat mirror bands (CEP) arranged in a plane, which focus the solar energy onto a collector tube similar to those used in SEGS plant in California. The waste heat from both...

  1. Self-powered textile for wearable electronics by hybridizing fiber-shaped nanogenerators, solar cells, and supercapacitors.

    Science.gov (United States)

    Wen, Zhen; Yeh, Min-Hsin; Guo, Hengyu; Wang, Jie; Zi, Yunlong; Xu, Weidong; Deng, Jianan; Zhu, Lei; Wang, Xin; Hu, Chenguo; Zhu, Liping; Sun, Xuhui; Wang, Zhong Lin

    2016-10-01

    Wearable electronics fabricated on lightweight and flexible substrate are believed to have great potential for portable devices, but their applications are limited by the life span of their batteries. We propose a hybridized self-charging power textile system with the aim of simultaneously collecting outdoor sunshine and random body motion energies and then storing them in an energy storage unit. Both of the harvested energies can be easily converted into electricity by using fiber-shaped dye-sensitized solar cells (for solar energy) and fiber-shaped triboelectric nanogenerators (for random body motion energy) and then further stored as chemical energy in fiber-shaped supercapacitors. Because of the all-fiber-shaped structure of the entire system, our proposed hybridized self-charging textile system can be easily woven into electronic textiles to fabricate smart clothes to sustainably operate mobile or wearable electronics.

  2. Novel Integration of Perovskite Solar Cell and Supercapacitor Based on Carbon Electrode for Hybridizing Energy Conversion and Storage.

    Science.gov (United States)

    Liu, Zhiyong; Zhong, Yan; Sun, Bo; Liu, Xingyue; Han, Jinghui; Shi, Tielin; Tang, Zirong; Liao, Guanglan

    2017-07-12

    Power packs integrating both photovoltaic parts and energy storage parts have gained great scientific and technological attention due to the increasing demand for green energy and the tendency for miniaturization and multifunctionalization in electronics industry. In this study, we demonstrate novel integration of perovskite solar cell and solid-state supercapacitor for power packs. The perovskite solar cell is integrated with the supercapacitor based on common carbon electrodes to hybridize photoelectric conversion and energy storage. The power pack achieves a voltage of 0.84 V when the supercapacitor is charged by the perovskite solar cell under the AM 1.5G white light illumination with a 0.071 cm 2 active area, reaching an energy storage proportion of 76% and an overall conversion efficiency of 5.26%. When the supercapacitor is precharged at 1.0 V, an instant overall output efficiency of 22.9% can be achieved if the perovskite solar cell and supercapacitor are connected in series, exhibiting great potential in the applications of solar energy storage and flexible electronics such as portable and wearable devices.

  3. Hybrid solar lighting distribution systems and components

    Science.gov (United States)

    Muhs, Jeffrey D [Lenoir City, TN; Earl, Dennis D [Knoxville, TN; Beshears, David L [Knoxville, TN; Maxey, Lonnie C [Powell, TN; Jordan, John K [Oak Ridge, TN; Lind, Randall F [Lenoir City, TN

    2011-07-05

    A hybrid solar lighting distribution system and components having at least one hybrid solar concentrator, at least one fiber receiver, at least one hybrid luminaire, and a light distribution system operably connected to each hybrid solar concentrator and each hybrid luminaire. A controller operates all components.

  4. Development of a hybrid sputtering/evaporation process for Cu(In,Ga)Se{sub 2} thin film solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Acciarri, M.; Binetti, S.; Le Donne, A.; Lorenzi, B.; Caccamo, L.; Miglio, L. [Dipartimento di Scienza dei Materiali e Solar Energy Research Center MIB-SOLAR, Universita di Milano Bicocca, Milan (Italy); Moneta, R.; Marchionna, S.; Meschia, M. [Voltasolar s.r.l, Turate (Italy)

    2011-08-15

    In this paper we report a new method for Cu(In,Ga)Se{sub 2} deposition for solar cell application. Differently from the common co-evaporation process, an alterative approach for thin film Cu(In,Ga)Se{sub 2} has been tested: the sputtering deposition of metal elements combined with the selenium evaporation. We have studied the relationships between the growth parameters of our hybrid sputtering/evaporation method and the chemical-physical properties of the CIGS films. The cells are completed with a CdS buffer layer deposited by chemical bath deposition and ZnO + ITO deposited by RF sputtering. Test solar cells of 0.5 cm{sup 2} have shown an efficiency of 10% and 2.5% on glass and stainless steel substrate respectively. (copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  5. Core-shell nanophosphor architecture: toward efficient energy transport in inorganic/organic hybrid solar cells.

    Science.gov (United States)

    Li, Qinghua; Yuan, Yongbiao; Chen, Zihan; Jin, Xiao; Wei, Tai-huei; Li, Yue; Qin, Yuancheng; Sun, Weifu

    2014-08-13

    In this work, a core-shell nanostructure of samarium phosphates encapsulated into a Eu(3+)-doped silica shell has been successfully fabricated, which has been confirmed by X-ray diffraction, transmission electron microscopy (TEM), and high-resolution TEM. Moreover, we report the energy transfer process from the Sm(3+) to emitters Eu(3+) that widens the light absorption range of the hybrid solar cells (HSCs) and the strong enhancement of the electron-transport of TiO2/poly(3-hexylthiophene) (P3HT) bulk heterojunction (BHJ) HSCs by introducing the unique core-shell nanoarchitecture. Furthermore, by applying femtosecond transient absorption spectroscopy, we successfully obtain the electron transport lifetimes of BHJ systems with or without incorporating the core-shell nanophosphors (NPs). Concrete evidence has been provided that the doping of core-shell NPs improves the efficiency of electron transfers from donor to acceptor, but the hole transport almost remains unchanged. In particular, the hot electron transfer lifetime was shortened from 30.2 to 16.7 ps, i.e., more than 44% faster than pure TiO2 acceptor. Consequently, a notable power conversion efficiency of 3.30% for SmPO4@Eu(3+):SiO2 blended TiO2/P3HT HSCs is achieved at 5 wt % as compared to 1.98% of pure TiO2/P3HT HSCs. This work indicates that the core-shell NPs can efficiently broaden the absorption region, facilitate electron-transport of BHJ, and enhance photovoltaic performance of inorganic/organic HSCs.

  6. Lessons learned: from dye-sensitized solar cells to all-solid-state hybrid devices.

    Science.gov (United States)

    Docampo, Pablo; Guldin, Stefan; Leijtens, Tomas; Noel, Nakita K; Steiner, Ullrich; Snaith, Henry J

    2014-06-25

    The field of solution-processed photovoltaic cells is currently in its second spring. The dye-sensitized solar cell is a widely studied and longstanding candidate for future energy generation. Recently, inorganic absorber-based devices have reached new record efficiencies, with the benefits of all-solid-state devices. In this rapidly changing environment, this review sheds light on recent developments in all-solid-state solar cells in terms of electrode architecture, alternative sensitizers, and hole-transporting materials. These concepts are of general applicability to many next-generation device platforms. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Solution-Grown Monocrystalline Hybrid Perovskite Films for Hole-Transporter-Free Solar Cells

    KAUST Repository

    Peng, Wei; Wang, Lingfei; Banavoth, Murali; Ho, Kang-Ting; Bera, Ashok; Cho, Nam Chul; Kang, Chen-Fang; Burlakov, Victor M.; Pan, Jun; Sinatra, Lutfan; Ma, Chun; Xu, Wei; Shi, Dong; Alarousu, Erkki; Goriely, Alain; He, Jr-Hau; Mohammed, Omar F.; Wu, Tao; Bakr, Osman

    2016-01-01

    conversion efficiencies (PCEs) >5%, and superior stability for prototype cells. Furthermore, the monocrystalline devices using a hole-transporter-free structure yield PCEs ≈6.5%, the highest among other similar-structured CH3NH3PbBr3 solar cells to date.

  8. Silicon Nanowire/Polymer Hybrid Solar Cell-Supercapacitor: A Self-Charging Power Unit with a Total Efficiency of 10.5.

    Science.gov (United States)

    Liu, Ruiyuan; Wang, Jie; Sun, Teng; Wang, Mingjun; Wu, Changsheng; Zou, Haiyang; Song, Tao; Zhang, Xiaohong; Lee, Shuit-Tong; Wang, Zhong Lin; Sun, Baoquan

    2017-07-12

    An integrated self-charging power unit, combining a hybrid silicon nanowire/polymer heterojunction solar cell with a polypyrrole-based supercapacitor, has been demonstrated to simultaneously harvest solar energy and store it. By efficiency enhancement of the hybrid nanowire solar cells and a dual-functional titanium film serving as conjunct electrode of the solar cell and supercapacitor, the integrated system is able to yield a total photoelectric conversion to storage efficiency of 10.5%, which is the record value in all the integrated solar energy conversion and storage system. This system may not only serve as a buffer that diminishes the solar power fluctuations from light intensity, but also pave its way toward cost-effective high efficiency self-charging power unit. Finally, an integrated device based on ultrathin Si substrate is demonstrated to expand its feasibility and potential application in flexible energy conversion and storage devices.

  9. Perovskite Solar Cell

    Indian Academy of Sciences (India)

    Organic–inorganic halide perovskite, a newcomerin the solar cell industry has proved its potential forincreasing efficiency rapidly from 3.8% in 2009 to 22.1% in2016. High efficiency, flexibility, and cell architecture of theemerging hybrid halide perovskite have caught the attentionof researchers and technologists in the field.

  10. Hybrid nanocrystal/polymer solar cells based on tetrapod-shaped CdSexTe1-x nanocrystals

    International Nuclear Information System (INIS)

    Zhou Yi; Li Yunchao; Zhong Haizheng; Hou Jianhui; Ding Yuqin; Yang Chunhe; Li Yongfang

    2006-01-01

    A series of ternary tetrapodal nanocrystals of CdSe x Te 1-x with x = 0 (CdTe), 0.23, 0.53, 0.78, 1 (CdSe) were synthesized and used to fabricate hybrid nanocrystal/polymer solar cells. Herein, the nanocrystals acted as electron acceptors, and poly(2-methoxy-5-(2'-ethyl-hexyloxy)-1,4-phenylene vinylene) (MEH-PPV) was used as an electron donor. It was found that the open circuit voltage (V oc ), short-circuit current (J sc ) and power conversion efficiency (η) of the devices all increased with increasing Se content in the CdSe x Te 1-x nanocrystals under identical experimental conditions. The solar cell based on the blend of tetrapodal CdSe nanocrystals and MEH-PPV (9:1 w/w) showed the highest power conversion efficiency of 1.13% under AM 1.5, 80 mW cm -2 , and the maximum incident photon to converted current efficiency (IPCE) of the device reached 47% at 510 nm. The influence of nanocrystal composition on the photovoltaic properties of the hybrid solar cells was explained by the difference of the band level positions between MEH-PPV and the nanocrystals

  11. Effect of Surface Morphology and Dispersion Media on the Properties of PEDOT:PSS/n-Si Hybrid Solar Cell Containing Functionalized Graphene

    Directory of Open Access Journals (Sweden)

    Pham Van Trinh

    2017-01-01

    Full Text Available We present the results on the effect of surface morphology and dispersion media on the properties of PEDOT:PSS/n-Si hybrid solar cell containing functionalized graphene (Gr. The hybrid solar cells based on SiNWs showed higher power conversion efficiency (PCE compared to the planar based cells due to suppressing the carrier recombination and improving carrier transport efficiency. The PCE of hybrid solar cells could be improved by adding Gr into PEDOT:PSS. Different solvents including deionized (DI water, ethylene glycol (EG, and isopropyl alcohol (IPA were used as media for Gr dispersion. The best performance was obtained for the cell containing Gr dispersed in EG with a measured PCE of 7.33% and nearly 13% and 16% enhancement in comparison with the cells using Gr dispersed in IPA and DI water, respectively. The increase in PCE is attributed to improving the carrier-mobility, electrical conductivity, PEDOT crystallinity, and ordering.

  12. Design of a hybrid power system based on solar cell and vibration energy harvester

    Science.gov (United States)

    Zhang, Bin; Li, Mingxue; Zhong, Shaoxuan; He, Zhichao; Zhang, Yufeng

    2018-03-01

    Power source has become a serious restriction of wireless sensor network. High efficiency, self-energized and long-life renewable source is the optimum solution for unmanned sensor network applications. However, single renewable power source can be easily affected by ambient environment, which influences stability of the system. In this work, a hybrid power system consists of a solar panel, a vibration energy harvester and a lithium battery is demonstrated. The system is able to harvest multiple types of ambient energy, which extends its applicability and feasibility. Experiments have been conducted to verify performance of the system.

  13. Novel double-stage high-concentrated solar hybrid photovoltaic/thermal (PV/T) collector with nonimaging optics and GaAs solar cells reflector

    International Nuclear Information System (INIS)

    Abdelhamid, Mahmoud; Widyolar, Bennett K.; Jiang, Lun; Winston, Roland; Yablonovitch, Eli; Scranton, Gregg; Cygan, David; Abbasi, Hamid; Kozlov, Aleksandr

    2016-01-01

    Highlights: • A novel hybrid concentrating photovoltaic thermal (PV/T) collector is developed. • Thermal component achieves 60× concentration using nonimaging optics. • GaAs solar cells used as spectrally selective mirrors for low energy photons. • Thermal efficiencies of 37% at 365 °C and electrical efficiencies of 8% achieved. • Combined electric efficiency reaches 25% of DNI for system cost of $283.10/m"2". - Abstract: A novel double stage high-concentration hybrid solar photovoltaic thermal (PV/T) collector using nonimaging optics and world record thin film single-junction gallium arsenide (GaAs) solar cells has been developed. We present a detailed design and simulation of the system, experimental setup, prototype, system performance, and economic analysis. The system uses a parabolic trough (primary concentrator) to focus sunlight towards a secondary nonimaging compound parabolic concentrator (CPC) to simultaneously generate electricity from single junction GaAs solar cells, as well as high temperature dispatchable heat. This study is novel in that (a) the solar cells inside the vacuum tube act as spectrally selective mirrors for lower energy photons to maximize the system exergy, and (b) secondary concentrator allows the thermal component to reach a concentration ratio ∼60×, which is significantly higher than conventional PV/T concentration ratios. The maximum outlet temperature reached was 365 °C, and on average the thermal efficiency of the experiment was around 37%. The maximum electrical efficiency was around 8%. The total system electricity generation is around 25% of incoming DNI, by assuming the high temperature stream is used to power a steam turbine. The installed system cost per unit of parabolic trough aperture area is $283.10 per m"2.

  14. A simple nanostructured polymer/ZnO hybrid solar cell - preparation and operation in air

    DEFF Research Database (Denmark)

    Krebs, Frederik C; Thomann, Yi; Thomann, Ralf

    2008-01-01

    without notable loss in efficiency. The devices do not require any form of encapsulation to gain stability, while a barrier for mechanical protection may be useful. The devices are based on soluble zinc oxide nanoparticles mixed with the thermocleavable conjugated polymer poly-(3-(2-methylhexan-2-yl......A detailed description is given of the preparation of a polymer solar cell and its characterization. The solar cell can be prepared entirely in the ambient atmosphere by solution processing without the use of vacuum coating steps, and it can be operated in the ambient atmosphere with good...

  15. Can Ferroelectric Polarization Explain the High Performance of Hybrid Halide Perovskite Solar Cells?

    NARCIS (Netherlands)

    Sherkar, Tejas; Koster, L. Jan Anton

    The power conversion efficiency of photovoltaic cells based on the use of hybrid halide perovskites, CH3NH3PbX3 (X = Cl, Br, I), now exceeds 20%. Recently, it was suggested that this high performance originates from the presence of ferroelectricity in the perovskite, which is hypothesized to lower

  16. Hybrid bio-photo-electro-chemical cells for solar water splitting.

    Science.gov (United States)

    Pinhassi, Roy I; Kallmann, Dan; Saper, Gadiel; Dotan, Hen; Linkov, Artyom; Kay, Asaf; Liveanu, Varda; Schuster, Gadi; Adir, Noam; Rothschild, Avner

    2016-08-23

    Photoelectrochemical water splitting uses solar power to decompose water to hydrogen and oxygen. Here we show how the photocatalytic activity of thylakoid membranes leads to overall water splitting in a bio-photo-electro-chemical (BPEC) cell via a simple process. Thylakoids extracted from spinach are introduced into a BPEC cell containing buffer solution with ferricyanide. Upon solar-simulated illumination, water oxidation takes place and electrons are shuttled by the ferri/ferrocyanide redox couple from the thylakoids to a transparent electrode serving as the anode, yielding a photocurrent density of 0.5 mA cm(-2). Hydrogen evolution occurs at the cathode at a bias as low as 0.8 V. A tandem cell comprising the BPEC cell and a Si photovoltaic module achieves overall water splitting with solar to hydrogen efficiency of 0.3%. These results demonstrate the promise of combining natural photosynthetic membranes and man-made photovoltaic cells in order to convert solar power into hydrogen fuel.

  17. Flexible organic/inorganic hybrid solar cells based on conjugated polymer and ZnO nanorod array

    International Nuclear Information System (INIS)

    Tong, Fei; Kim, Kyusang; Martinez, Daniel; Thapa, Resham; Ahyi, Ayayi; Williams, John; Park, Minseo; Kim, Dong-Joo; Lee, Sungkoo; Lim, Eunhee; Lee, Kyeong K

    2012-01-01

    We report on the photovoltaic characteristics of organic/inorganic hybrid solar cells fabricated on ‘flexible’ transparent substrates. The solar cell device is composed of ZnO nanorod array and the bulk heterojunction structured organic layer which is the blend of poly(3-hexylthiophene) (P3HT) and (6,6)-phenyl C61 butyric acid methyl ester (PCBM). The ZnO nanorod array was grown on indium tin oxide (ITO)-coated polyethylene terephthalate (PET) substrates via a low-temperature (85 °C) aqueous solution process. The blend solution consisting of conjugated polymer P3HT and fullerene PCBM was spin coated at a low spinning rate of 400 rpm on top of the ZnO nanorod array structure and then the photoactive layer was slow dried at room temperature in air to promote its infiltration into the nanorod network. As a top electrode, silver was sputtered on top of the photoactive layer. The flexible solar cell with the structure of PET/ITO/ZnO thin film/ZnO nanorods/P3HT:PCBM/Ag exhibited a photovoltaic performance with an open circuit voltage (V OC ) of 0.52 V, a short circuit current density (J SC ) of 9.82 mA cm −2 , a fill factor (FF) of 35% and a power conversion efficiency (η) of 1.78%. All the measurements were performed under 100 mW cm −2 of illumination with an air mass 1.5 G filter. To the best of our knowledge, this is the first presentation of investigation into the fabrication and characterization of organic/inorganic hybrid solar cells based on bulk heterojunction structured conjugated polymer/fullerene photoactive layer and ZnO nanorod array constructed on flexible transparent substrates. (paper)

  18. Atmospheric effects on the photovoltaic performance of hybrid perovskite solar cells

    KAUST Repository

    Sheikh, Arif D.; Bera, Ashok; Haque, Mohammed; Baby, Rakhi Raghavan; Del Gobbo, Silvano; Alshareef, Husam N.; Wu, Tao

    2015-01-01

    nitrogen, and dry air, on the photovoltaic performance of TiO2-CH3NH3PbI3-xClx-spiro-MeOTAD solar cells. We found that spin coating of spiro-MeOTAD in an oxygen atmosphere alone was not adequate to functionalize its hole-transport property completely

  19. Metal-organic frameworks at interfaces of hybrid perovskite solar cells for enhanced photovoltaic properties.

    Science.gov (United States)

    Shen, Deli; Pang, Aiying; Li, Yafeng; Dou, Jie; Wei, Mingdeng

    2018-01-31

    In this study, metal-organic frameworks, as an interfacial layer, were introduced into perovskite solar cells (PSCs) for the first time. An interface modified with the metal-organic framework ZIF-8 efficiently enhanced perovskite crystallinity and grain sizes, and the photovoltaic performance of the PSCs was significantly improved, resulting in a maximum PCE of 16.99%.

  20. Hybrid Dye-Sensitized Solar Cells Consisting of Double Titania Layers for Harvesting Light with Wide Range of Wavelengths

    Science.gov (United States)

    Sadamasu, Kengo; Inoue, Takafumi; Ogomi, Yuhei; Pandey, Shyam S.; Hayase, Shuzi

    2011-02-01

    We report a hybrid dye-sensitized solar cell consisting of double titania layers (top and bottom layers) stained with two dyes. A top layer fabricated on a glass was mechanically pressed with a bottom layer fabricated on a glass cloth. The glass cloth acts as a supporter of a porous titania layer as well as a holder of electrolyte. The incident photon to current efficiency (IPCE) curve had two peaks corresponding to those of the two dyes, which demonstrates that electrons are collected from both the top and bottom layers.

  1. Charge separation dynamics in a narrow band gap polymer-PbS nanocrystal blend for efficient hybrid solar cells

    OpenAIRE

    Piliego, Claudia; Manca, Marianna; Kroon, Renee; Yarema, Maksym; Szendrei, Krisztina; Andersson, Mats R.; Heiss, Wolfgang; Loi, Maria A.

    2012-01-01

    We have demonstrated efficient hybrid solar cells based on lead sulfide (PbS) nanocrystals and a narrow band gap polymer, poly[{2,5-bis(2-hexyldecyl)-2,3,5,6-tetrahydro-3,6-dioxopyrrolo[3,4-c]pyrrole-1,4-diyl}-alt-{[2,2'-(1,4-phenylene)bis-thiophene]-5,5'-diyl}], (PDPPTPT). An opportune mixing of the two materials led to the formation of an energetically favorable bulk hetero-junction with a broad spectral response. Using a basic device structure, we reached a power conversion efficiency of s...

  2. Atmospheric effects on the photovoltaic performance of hybrid perovskite solar cells

    KAUST Repository

    Sheikh, Arif D.

    2015-06-01

    Organometal trihalide perovskite solar cells have recently attracted lots of attention in the photovoltaic community due to their escalating efficiency and solution processability. The most efficient organometallic mixed-halide sensitized solar cells often employ 2,2′7,7′-tetrakis-(N,N-di-p-methoxyphenyl-amine)-9,9′-spirobifluorene (spiro-MeOTAD) as the hole-transporting material. In this work, we investigated the effect of different atmospheric storage conditions, particularly vacuum, dry nitrogen, and dry air, on the photovoltaic performance of TiO2-CH3NH3PbI3-xClx-spiro-MeOTAD solar cells. We found that spin coating of spiro-MeOTAD in an oxygen atmosphere alone was not adequate to functionalize its hole-transport property completely, and our systematic experiments revealed that the device efficiency depends on the ambient atmospheric conditions during the drying process of spiro-MeOTAD. Complementary incident photon to current conversion efficiency (IPCE), light absorption and photoluminescence quenching measurements allowed us to attribute the atmosphere-dependent efficiency to the improved electronic characteristics of the solar cells. Furthermore, our Fourier transform infrared and electrical impedance measurements unambiguously detected modifications in the spiro-MeOTAD after the drying processes in different gas environments. Our findings demonstrate that proper oxidization and p-doping in functionalizing spiro-MeOTAD play a very critical role in determining device performance. These findings will facilitate the search for alternative hole-transporting materials in high-performance perovskite solar cells with long-term stability.

  3. Solution-Grown Monocrystalline Hybrid Perovskite Films for Hole-Transporter-Free Solar Cells

    KAUST Repository

    Peng, Wei

    2016-03-02

    High-quality perovskite monocrystalline films are successfully grown through cavitation-triggered asymmetric crystallization. These films enable a simple cell structure, ITO/CH3NH3PbBr3/Au, with near 100% internal quantum efficiency, promising power conversion efficiencies (PCEs) >5%, and superior stability for prototype cells. Furthermore, the monocrystalline devices using a hole-transporter-free structure yield PCEs ≈6.5%, the highest among other similar-structured CH3NH3PbBr3 solar cells to date.

  4. Solution-Processed hybrid Sb2 S3 planar heterojunction solar cell

    Science.gov (United States)

    Huang, Wenxiao; Borazan, Ismail; Carroll, David

    Thin-film solar cells based on inorganic absorbers permit a high efficiency and stability. Among or those absorber candidates, recently Sb2S3 has attracted extensive attention because of its suitable band gap (1.5eV ~1.7 eV) , strong optical absorption, low-cost and earth-abundant constituents. Currently high-efficiency Sb2S3 solar cells have absorber layer deposited on nanostructured TiO2 electrodes in combination with organic hole transport material (HTM) on top. However it's challenging to fill the nanostructured TiO2 layer with Sb2S3 and subsequently by HTM, this leads to uncovered surface permits charge recombination. And the existing of Sb2S3/TiO2/HTM triple interface will enhance the recombination due to the surface trap state. Therefore, a planar junction cell would not only have simpler structure with less steps to fabricate but also ideally also have a higher open circuit voltage because of less interface carrier recombination. By far there is limited research focusing on planar Sb2S3 solar cell, so the feasibility is still unclear. Here, we developed a low-toxic solution method to fabricate Sb2S3 thin film solar cell, then we studied the morphology of the Sb2S3 layer and its impact to the device performance. The best device with a structure of FTO/TiO2/Sb2S3/P3HT/Ag has PCE over 5% which is similar or higher than yet the best nanostructure devices with the same HTM. Furthermore, based on solution engineering and surface modification, we improved the Sb2S3 film quality and achieved a record PCE. .

  5. Cooling design and evaluation for photovoltaic cells within constrained space in a CPV/CSP hybrid solar system

    International Nuclear Information System (INIS)

    Wang, Sheng; Shi, Junxiang; Chen, Hsiu-Hung; Schafer, Steven R.; Munir, Moiz; Stecker, Greg; Pan, Wei; Lee, Jong-Jan; Chen, Chung-Lung

    2017-01-01

    Highlights: • A practical cooling solution is proposed for a novel CPV/CSP hybrid solar system. • Both passive and active cooling techniques were systematically investigated. • Comprehensive experimental and numerical studies were conducted for optimal design. • Active cooling is in great need for a high waste heat flux of 21.8 W/cm 2 . • Passive cooling becomes attractive for a waste heat flux less than 13.0 W/cm 2 . - Abstract: A hybrid solar energy system has been designed by combining the advantages of concentrated solar power (CSP) technology and high performance concentrated photovoltaic (CPV) cells which outperforms either single technology. Thermal management is crucial to CPV cells in this hybrid solar system, as concentrated solar radiation onto the PV cells leads to higher heat flux. If the heat is not dissipated effectively, it can cause obvious temperature rise and efficiency reduction in the cell. In addition, the constrained space available for PV cell cooling in such hybrid solar systems presents more challenges. In this study both passive cooling and active cooling techniques were systematically investigated in both numerical and experimental ways. For the passive cooling method, two different designs from off-the-shelf heat pipes with radial fins or annular fins were proposed and studied under various heat rejection requirements. Results shows that heat pipes with radial fins exhibited narrow capability of dumping the heat, while heat pipes with annular fins presented better performances under the same conditions. Numerical optimal designs of annular fin numbers and fin gaps were then carried out and experimentally validated, indicating a capability of dumping moderate waste heat (∼45 W). For active cooling technique, a comprehensive study of designing plate fin heatsinks were conducted corresponding to high Ingress Protection (IP) rated off-the-shelf fans. Results show that with a less than 2 W fan power consumption, this active

  6. Solar cells

    International Nuclear Information System (INIS)

    1980-01-01

    A method of producing solar cells is described which consists of producing a substantially monocrystalline tubular body of silicon or other suitable semiconductor material, treating this body to form an annular rectifying junction and then cutting it longitudinally to form a number of nearly flat ribbons from which the solar cells are fabricated. The P=N rectifying junction produced by the formation of silicon dioxide on the layers at the inner and outer surfaces of the body can be formed by ion-implantation or diffusion. (U.K.)

  7. Improving polymer/nanocrystal hybrid solar cell performance via tuning ligand orientation at CdSe quantum dot surface.

    Science.gov (United States)

    Fu, Weifei; Wang, Ling; Zhang, Yanfang; Ma, Ruisong; Zuo, Lijian; Mai, Jiangquan; Lau, Tsz-Ki; Du, Shixuan; Lu, Xinhui; Shi, Minmin; Li, Hanying; Chen, Hongzheng

    2014-11-12

    Achieving superior solar cell performance based on the colloidal nanocrystals remains challenging due to their complex surface composition. Much attention has been devoted to the development of effective surface modification strategies to enhance electronic coupling between the nanocrystals to promote charge carrier transport. Herein, we aim to attach benzenedithiol ligands onto the surface of CdSe nanocrystals in the "face-on" geometry to minimize the nanocrystal-nanocrystal or polymer-nanocrystal distance. Furthermore, the "electroactive" π-orbitals of the benzenedithiol are expected to further enhance the electronic coupling, which facilitates charge carrier dissociation and transport. The electron mobility of CdSe QD films was improved 20 times by tuning the ligand orientation, and high performance poly[2,6-(4,4-bis(2-ethylhexyl)-4H-cyclopenta[2,1-b;3,4-b']-dithiophene)-alt-4,7-(2,1,3-benzothiadiazole)] (PCPDTBT):CdSe nanocrystal hybrid solar cells were also achieved, showing a highest power conversion efficiency of 4.18%. This research could open up a new pathway to improve further the performance of colloidal nanocrystal based solar cells.

  8. Photovoltaic Performance of Inverted Polymer Solar Cells Using Hybrid Carbon Quantum Dots and Absorption Polymer Materials

    Science.gov (United States)

    Lim, Hwain; Lee, Kyu Seung; Liu, Yang; Kim, Hak Yong; Son, Dong Ick

    2018-05-01

    We report the synthesis and characterization of the carbon quantum dots (C-dots) easily obtained from citric acid and ethanediamine, and also investigated structural, optical and electrical properties. The C-dots have extraordinary optical and electrical features such as absorption of ultraviolet range and effective interface for charge separation and transport in active layer, which make them attractive materials for applications in photovoltaic devices (PV). The C-dots play important roles in charge extraction in the PV structures, they can be synthesized by a simple method and used to insert in active layer of polymer solar cells. In this study, we demonstrate that improve charge transport properties of inverted polymer solar cells (iPSCs) with C-dots and structural, optical and electrical properties of C-dots. As a result, iPSCs with C-dots showed enhancement of more than 30% compared with that of the contrast device in power conversion efficiency.

  9. Lead Acetate Based Hybrid Perovskite Through Hot Casting for Planar Heterojunction Solar Cells

    Science.gov (United States)

    Shin, Gwang Su; Choi, Won-Gyu; Na, Sungjae; Gökdemir, Fatma Pinar; Moon, Taeho

    2018-03-01

    Flawless coverage of a perovskite layer is essential in order to achieve realistic high-performance planar heterojunction solar cells. We present that high-quality perovskite layers can be efficiently formed by a novel hot casting route combined with MAI (CH3NH3I) and non-halide lead acetate (PbAc2) precursors under ambient atmosphere. Casting temperature is controlled to produce various perovskite microstructures and the resulted crystalline layers are found to be comprised of closely packed islands with a smooth surface structure. Lead acetate employed perovskite solar cells are fabricated using PEDOT:PSS and PCBM charge transporting layers, in p- i- n type planar architecture. Especially, the outstanding open-circuit voltage demonstrates the high crystallinity and dense coverage of the produced perovskite layers by this facile route.

  10. Hole transfer from CdSe nanoparticles to TQ1 polymer in hybrid solar cell device

    Science.gov (United States)

    Sohail, Muhammad; Shah, Zawar Hussain; Saeed, Shomaila; Bibi, Nasreen; Shahbaz, Sadia; Ahmed, Safeer; Shabbir, Saima; Siddiq, Muhammad; Iqbal, Azhar

    2018-05-01

    In view of realizing the economic viability, we fabricate a solar cell device containing low band gap and easily processable polymer 5-yl-8-(thiophene-2,5-diyl)-2,3-bis(3-(octyloxy)phenyl) quinoxaline (TQ1) and CdSe nanoparticles (NPs) and investigate its charge transport properties. When the TQ1 is combined with the CdSe NPs a strong photoluminescence quenching and shortening of photoluminescence lifetime of the TQ1 is observed indicating exciton transfer from TQ1 to the CdSe NPs. The time-resolved photoluminescence further reveals that the exciton transfer from the polymer to CdSe NPs is very efficient (68%) and it occurs in solar cell as compared to polymer only device. These observations suggest the importance of other II-VI semiconductor NPs to achieve higher efficiency for photovoltaic devices containing TQ1 polymer.

  11. A novel fabrication of MEH-PPV/Al:ZnO nanorod arrays based ordered bulk heterojunction hybrid solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Malek, M.F., E-mail: firz_solarzelle@yahoo.com [NANO-ElecTronic Centre (NET), Faculty of Electrical Engineering, Universiti Teknologi MARA (UiTM), 40450 Shah Alam, Selangor (Malaysia); Sahdan, M.Z.; Mamat, M.H.; Musa, M.Z. [NANO-ElecTronic Centre (NET), Faculty of Electrical Engineering, Universiti Teknologi MARA (UiTM), 40450 Shah Alam, Selangor (Malaysia); Khusaimi, Z.; Husairi, S.S. [NANO-SciTech Centre (NST), Institute of Science (IOS), Universiti Teknologi MARA -UiTM, 40450 Shah Alam, Selangor (Malaysia); Md Sin, N.D. [NANO-ElecTronic Centre (NET), Faculty of Electrical Engineering, Universiti Teknologi MARA (UiTM), 40450 Shah Alam, Selangor (Malaysia); Rusop, M. [NANO-ElecTronic Centre (NET), Faculty of Electrical Engineering, Universiti Teknologi MARA (UiTM), 40450 Shah Alam, Selangor (Malaysia); NANO-SciTech Centre (NST), Institute of Science (IOS), Universiti Teknologi MARA - UiTM, 40450 Shah Alam, Selangor (Malaysia)

    2013-06-15

    Vertically aligned Al:ZnO nanorod arrays has been used as window layer in the fabrication of ordered bulk heterojuction hybrid solar cells. The utilization of the nanorod arrays will enhance the electron transport in vertical direction and also for light harvesting applications for high performance devices. The performance of this hybrid polymer/metal oxide photovoltaic devices based on MEH-PPV [poly(2-methoxy-5-(2-ethylhexyloxy)-1,4-phenylenevinylene)] and oriented Al:ZnO nanorod arrays is studied. The Al:ZnO nanorod arrays with a diameter of about 70–80 nm and thickness of approximately 500 nm were successfully grown on Al:ZnO-coated ITO substrate by sonicated sol–gel immersion technique. The photovoltaic performance of a short-circuit current density of 5.320 mA/cm{sup 2}, an open-circuit voltage of 195 mV and a fill factor of 27.71%, with a power conversion efficiency of about 0.287% under AM 1.5 illumination (100 mW/cm{sup 2}). To the best of our knowledge, preparation of aligned Al:ZnO nanorod arrays for this type of solar cell fabrication has not been reported by any research group.

  12. Power fluctuations suppression of stand-alone hybrid generation combining solar photovoltaic/wind turbine and fuel cell systems

    International Nuclear Information System (INIS)

    Ahmed, Nabil A.; Miyatake, Masafumi; Al-Othman, A.K.

    2008-01-01

    In this paper a hybrid energy system combining variable speed wind turbine, solar photovoltaic and fuel cell generation systems is presented to supply continuous power to residential power applications as stand-alone loads. The wind and photovoltaic systems are used as main energy sources while the fuel cell is used as secondary or back-up energy source. Three individual dc-dc boost converters are used to control the power flow to the load. A simple and cost effective control with dc-dc converters is used for maximum power point tracking and hence maximum power extracting from the wind turbine and the solar photovoltaic systems. The hybrid system is sized to power a typical 2 kW/150 V dc load as telecommunication power plants or ac residential power applications in isolated islands continuously throughout the year. The results show that even when the sun and wind are not available; the system is reliable and available and it can supply high-quality power to the load. The simulation results which proved the accuracy of the proposed controllers are given to demonstrate the availability of the proposed system in this paper. Also, a complete description of the management and control system is presented

  13. Crafting semiconductor organic-inorganic nanocomposites via placing conjugated polymers in intimate contact with nanocrystals for hybrid solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Lei; Lin, Zhiqun [School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA (United States)

    2012-08-22

    Semiconductor organic-inorganic hybrid solar cells incorporating conjugated polymers (CPs) and nanocrystals (NCs) offer the potential to deliver efficient energy conversion with low-cost fabrication. The CP-based photovoltaic devices are complimented by an extensive set of advantageous characteristics from CPs and NCs, such as lightweight, flexibility, and solution-processability of CPs, combined with high electron mobility and size-dependent optical properties of NCs. Recent research has witnessed rapid advances in an emerging field of directly tethering CPs on the NC surface to yield an intimately contacted CP-NC nanocomposite possessing a well-defined interface that markedly promotes the dispersion of NCs within the CP matrix, facilitates the photoinduced charge transfer between these two semiconductor components, and provides an effective platform for studying the interfacial charge separation and transport. In this Review, we aim to highlight the recent developments in CP-NC nanocomposite materials, critically examine the viable preparative strategies geared to craft intimate CP-NC nanocomposites and their photovoltaic performance in hybrid solar cells, and finally provide an outlook for future directions of this extraordinarily rich field. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  14. Guanidinium: A Route to Enhanced Carrier Lifetime and Open-Circuit Voltage in Hybrid Perovskite Solar Cells.

    Science.gov (United States)

    De Marco, Nicholas; Zhou, Huanping; Chen, Qi; Sun, Pengyu; Liu, Zonghao; Meng, Lei; Yao, En-Ping; Liu, Yongsheng; Schiffer, Andy; Yang, Yang

    2016-02-10

    Hybrid perovskites have shown astonishing power conversion efficiencies owed to their remarkable absorber characteristics including long carrier lifetimes, and a relatively substantial defect tolerance for solution-processed polycrystalline films. However, nonradiative charge carrier recombination at grain boundaries limits open circuit voltages and consequent performance improvements of perovskite solar cells. Here we address such recombination pathways and demonstrate a passivation effect through guanidinium-based additives to achieve extraordinarily enhanced carrier lifetimes and higher obtainable open circuit voltages. Time-resolved photoluminescence measurements yield carrier lifetimes in guanidinium-based films an order of magnitude greater than pure-methylammonium counterparts, giving rise to higher device open circuit voltages and power conversion efficiencies exceeding 17%. A reduction in defect activation energy of over 30% calculated via admittance spectroscopy and confocal fluorescence intensity mapping indicates successful passivation of recombination/trap centers at grain boundaries. We speculate that guanidinium ions serve to suppress formation of iodide vacancies and passivate under-coordinated iodine species at grain boundaries and within the bulk through their hydrogen bonding capability. These results present a simple method for suppressing nonradiative carrier loss in hybrid perovskites to further improve performances toward highly efficient solar cells.

  15. Towards hybrid heterojunction silicon solar cells with organic charge carrier selective contacts

    OpenAIRE

    Jäckle, Sara Lisa

    2017-01-01

    Photovoltaic is an essential part of the needed global transition towards renewable energies. Even though many materials have good absorption and energy conversion properties, the market is dominated by technologies based on crystalline silicon. Silicon has the advantage of being neither toxic nor rare on earth and it is very well investigated due to its extensive use in microelectronics. The best power conversion efficiencies of silicon solar cells and modules are achieved by sophisticated d...

  16. A hybrid nanostructure of platinum-nanoparticles/graphitic-nanofibers as a three-dimensional counter electrode in dye-sensitized solar cells.

    Science.gov (United States)

    Hsieh, Chien-Kuo; Tsai, Ming-Chi; Su, Ching-Yuan; Wei, Sung-Yen; Yen, Ming-Yu; Ma, Chen-Chi M; Chen, Fu-Rong; Tsai, Chuen-Horng

    2011-11-07

    We directly synthesized a platinum-nanoparticles/graphitic-nanofibers (PtNPs/GNFs) hybrid nanostructure on FTO glass. We applied this structure as a three-dimensional counter electrode in dye-sensitized solar cells (DSSCs), and investigated the cells' photoconversion performance. This journal is © The Royal Society of Chemistry 2011

  17. Synthesis and application of solar cells of poly (3-decylthiophene/N/titanium dioxide hybrid

    Directory of Open Access Journals (Sweden)

    2011-05-01

    Full Text Available An organic-inorganic nanocomposite material of poly (3-decylthiophene and titanium dioxide doped with N (P3DT/N/TiO2 were synthesized. Structures were characterized using X-ray diffraction (XRD, infrared spectroscopy (IR, transmission electron microscopy (TEM, and X-ray photoelectron spectroscopy (XPS. Optical and electrochemical properties were determined using UV-visible spectroscopy, fluorescence spectroscopy, and cyclic voltammetry. These tests indicated that P3DT/N/TiO2 was a new p-n semiconductor photoelectric material, and the solar cell prepared with P3DT/N/TiO2 performed well.

  18. Photovoltaic performance of hybrid ITO/PEDOT:PSS/n-SnS/Al solar cell structure

    Science.gov (United States)

    Jain, Priyal; Arun, P.

    2016-07-01

    The present paper discusses the performance of ITO/PEDOT:PSS/n-SnS/Al structured solar cells fabricated by thermal evaporation. The performance characterizing parameters such as the open circuit voltage, short circuit current density, series resistance, parallel resistance, ideality factor and the overall efficiency were found to be dependent on the SnS grain size in the nano-meter regime and incident light intensity. The experimental work directly reconfirms the theoretical results and ideas raised in the literature by early researchers.

  19. Self-assembled hybrid materials based on conjugated polymers and semiconductors nano-crystals for plastic solar cells

    International Nuclear Information System (INIS)

    Girolamo, J. de

    2007-11-01

    This work is devoted to the elaboration of self-assembled hybrid materials based on poly(3- hexyl-thiophene) and CdSe nano-crystals for photovoltaic applications. For that, complementary molecular recognition units were introduced as side chain groups on the polymer and at the nano-crystals' surface. Diamino-pyrimidine groups were introduced by post-functionalization of a precursor copolymer, namely poly(3-hexyl-thiophene-co-3- bromo-hexyl-thiophene) whereas thymine groups were introduced at the nano-crystals' surface by a ligand exchange reaction with 1-(6-mercapto-hexyl)thymine. However, due to their different solubility, the mixing of the two components by solution processes is difficult. A 'one-pot' procedure was developed, but this method led to insoluble aggregates without control of the hybrid composition. To overcome the solubility problem, the layer-by-layer method was used to prepare the films. This method allows a precise control of the deposition process. Experimental parameters were tested in order to evaluate their impact on the resulting film. The films morphology was investigated by microscopy and X-Ray diffraction techniques. These analyses reveal an interpenetrated structure of nano-crystals within the polymer matrix rather than a multilayered structure. Electrochemical and spectro electrochemical studies were performed on the hybrid material deposited by the LBL process. Finally the materials were tested in a solar cell configuration and the I=f(V) curves reveals a clear photovoltaic behaviour. (author)

  20. Single Molecule Spectroelectrochemistry of Interfacial Charge Transfer Dynamics In Hybrid Organic Solar Cell

    Energy Technology Data Exchange (ETDEWEB)

    Pan, Shanlin [Univ. of Alabama, Tuscaloosa, AL (United States)

    2014-11-16

    Our research under support of this DOE grant is focused on applied and fundamental aspects of model organic solar cell systems. Major accomplishments are: 1) we developed a spectroelectorchemistry technique of single molecule single nanoparticle method to study charge transfer between conjugated polymers and semiconductor at the single molecule level. The fluorescence of individual fluorescent polymers at semiconductor surfaces was shown to exhibit blinking behavior compared to molecules on glass substrates. Single molecule fluorescence excitation anisotropy measurements showed the conformation of the polymer molecules did not differ appreciably between glass and semiconductor substrates. The similarities in molecular conformation suggest that the observed differences in blinking activity are due to charge transfer between fluorescent polymer and semiconductor, which provides additional pathways between states of high and low fluorescence quantum efficiency. Similar spectroelectrochemistry work has been done for small organic dyes for understand their charge transfer dynamics on various substrates and electrochemical environments; 2) We developed a method of transferring semiconductor nanoparticles (NPs) and graphene oxide (GO) nanosheets into organic solvent for a potential electron acceptor in bulk heterojunction organic solar cells which employed polymer semiconductor as the electron donor. Electron transfer from the polymer semiconductor to semiconductor and GO in solutions and thin films was established through fluorescence spectroscopy and electroluminescence measurements. Solar cells containing these materials were constructed and evaluated using transient absorption spectroscopy and dynamic fluorescence techniques to understand the charge carrier generation and recombination events; 3) We invented a spectroelectorchemistry technique using light scattering and electroluminescence for rapid size determination and studying electrochemistry of single NPs in an

  1. Study of hybrid solar cells made of multilayer nanocrystalline titania and poly(3-octylthiophene) or poly-(3-(2-methylhex-2-yl)-oxy-carbonyldithiophene)

    DEFF Research Database (Denmark)

    Antoniadou, Maria; Stathatos, Elias; Boukos, Nikolaos

    2009-01-01

    Hybrid solar cells have been constructed by using nanocrystalline titania and hole-transporting polymers. Titania was deposited on fluorine-doped tin-oxide transparent electrodes in three layers: a blocking layer and two nanostructured layers, giving densely packed or open structures. Open...

  2. Understanding the Effect of Surface Chemistry on Charge Generation and Transport in Poly (3-hexylthiophene)/CdSe Hybrid Solar Cells

    DEFF Research Database (Denmark)

    Lek, Jun Yan; Xi, Lifei; Kardynal, Beata

    2011-01-01

    For hybrid solar cells, interfacial chemistry is one of the most critical factors for good device performance. We have demonstrated that the size of the surface ligands and the dispersion of nanoparticles in the solvent and in the polymer are important criteria in obtaining optimized device...

  3. The electrical conductivity and energy band gap of ‘bunga belimbing buluh’/tio2 nanocrystals as hybrid solar cell

    Science.gov (United States)

    Kamarulzaman, N. H.; Salleh, H.; Ghazali, M. S. M.; Ghazali, S. M.; Ahmad, Z.

    2018-05-01

    This research intends to explore the effect of thickness of inorganic titania nanocrystals (TiO2 NCs) materials and Averrhoe bilimbi’s flower towards the electrical conductivity. Averrhoe bilimbi’s flower or also known as ‘bunga belimbing buluh’ was used for the first time as a natural dye in hybrid solar cells. The performance of electrical conductivity can be improved in bilayer heterojunction hybrid solar cell (HCS). The TiO2 NCs was deposited on the ITO substrate using Electrochemistry method at room temperature. The dye extracted from Averrhoe bilimbi’s flower was deposited on the top of TiO2 NCs layered using the same method. The electrical conductivity can be recorded using Four Point Probe (FPP) under dark and light radiation (range of 0 Wm-2 to 200Wm-2). From the results, electrical conductivity was increased by the increment light intensity and suitable for further solar cell fabrications.

  4. Hybrid nanostructure heterojunction solar cells fabricated using vertically aligned ZnO nanotubes grown on reduced graphene oxide.

    Science.gov (United States)

    Yang, Kaikun; Xu, Congkang; Huang, Liwei; Zou, Lianfeng; Wang, Howard

    2011-10-07

    Using reduced graphene oxide (rGO) films as the transparent conductive coating, inorganic/organic hybrid nanostructure heterojunction photovoltaic devices have been fabricated through hydrothermal synthesis of vertically aligned ZnO nanorods (ZnO-NRs) and nanotubes (ZnO-NTs) on rGO films followed by the spin casting of a poly(3-hexylthiophene) (P3HT) film. The data show that larger interfacial area in ZnO-NT/P3HT composites improves the exciton dissociation and the higher electrode conductance of rGO films helps the power output. This study offers an alternative to manufacturing nanostructure heterojunction solar cells at low temperatures using potentially low cost materials.

  5. Preparation of Sb2S3 nanocrystals modified TiO2 dendritic structure with nanotubes for hybrid solar cell

    Science.gov (United States)

    Li, Yingpin; Wei, Yanan; Feng, Kangning; Hao, Yanzhong; Pei, Juan; Sun, Bao

    2018-06-01

    Array of TiO2 dendritic structure with nanotubes was constructed on transparent conductive fluorine-doped tin oxide glass (FTO) with titanium potassium oxalate as titanium source. Sb2S3 nanocrystals were successfully deposited on the TiO2 substrate via spin-coating method. Furthermore, TiO2/Sb2S3/P3HT/PEDOT:PSS composite film was prepared by successively spin-coating P3HT and PEDOT:PSS on TiO2/Sb2S3. It was demonstrated that the modification of TiO2 dendritic structure with Sb2S3 could enhance the light absorption in the visible region. The champion hybrid solar cell assembled by TiO2/Sb2S3/P3HT/PEDOT:PSS composite film achieved a power conversion efficiency (PCE) of 1.56%.

  6. Nb-TiO{sub 2}/polymer hybrid solar cells with photovoltaic response under inert atmosphere conditions

    Energy Technology Data Exchange (ETDEWEB)

    Lira-Cantu, Monica; Khoda Siddiki, Mahbube; Munoz-Rojas, David; Amade, Roger [Centre d' Investigacio en Nanociencia i Nanotecnologia (CIN2, CSIC), Laboratory of Nanostructured Materials for Photovoltaic Energy, Campus UAB, Barcelona (Spain); Gonzalez-Pech, Natalia I. [Centre d' Investigacio en Nanociencia i Nanotecnologia (CIN2, CSIC), Laboratory of Nanostructured Materials for Photovoltaic Energy, Campus UAB, Barcelona (Spain); Instituto Tecnologico y de Estudios Superiores de Monterrey (ITESM), Ave. Eugenio Garza Sada, 64640 Monterrey, N.L. (Mexico)

    2010-07-15

    Hybrid Solar Cells (HSC) applying Nb-TiO{sub 2} in direct contact with a conducting organic polymer, MEH-PPV, show higher stability than the bare TiO{sub 2}-based HSC when analyzed under inert atmosphere conditions. IPCE analyses revealed that inert atmospheres affect directly the semiconductor oxide in the first stages of the analyses but photovoltaic performance stabilizes after several hours. A 20 wt% Nb-doped TiO{sub 2} presented the highest stability and photovoltaic properties. The behavior has been attributed to the solubility limit of Nb within the TiO{sub 2} beyond 20 wt% doping level where the co-existence of NbO{sub 2} is observed. The HSCs were analyzed under controlled N{sub 2} atmosphere and 1000 W/m{sup 2} (AM 1.5) irradiation. (author)

  7. Photovoltaic characterization of hybrid solar cells using surface modified TiO2 nanoparticles and poly(3-hexyl)thiophene

    International Nuclear Information System (INIS)

    Guenes, Serap; Marjanovic, Nenad; Nedeljkovic, Jovan M; Sariciftci, Niyazi Serdar

    2008-01-01

    We report on the photovoltaic performance of bulk heterojunction solar cells using novel nanoparticles of 6-palmitate ascorbic acid surface modified TiO 2 as an electron acceptor embedded into the donor poly(3-hexyl)thiophene (P3HT) matrix. Devices were fabricated by using P3HT with varying amounts of red TiO 2 nanoparticles (1:1, 1:2, 1:3 w-w ratio). The devices were characterized by measuring current-voltage characteristics under simulated AM 1.5 conditions. Incident photon to current efficiency (IPCE) was spectrally resolved. The nanoscale morphology of such organic/inorganic hybrid blends was also investigated using atomic force microscopy (AFM).

  8. Enhanced efficiency of hybrid amorphous silicon solar cells based on single-walled carbon nanotubes/polymer composite thin film.

    Science.gov (United States)

    Rajanna, Pramod Mulbagal; Gilshteyn, Evgenia; Yagafarov, Timur; Alekseeva, Alena; Anisimov, Anton; Sergeev, Oleg; Neumueller, Alex; Bereznev, Sergei; Maricheva, Jelena; Nasibulin, Albert

    2018-01-09

    We report a simple approach to fabricate hybrid solar cells (HSCs) based on a single-walled carbon nanotube (SWCNT) film and a thin film hydrogenated amorphous silicon (a-Si:H). Randomly oriented high quality SWCNTs with an enhanced conductivity by means of poly(3,4-ethylenedioxythiophene) polystyrene sulfonate are used as a window layer and a front electrode. A series of HSCs are fabricated in ambient conditions with different SWCNT film thicknesses. The polymethylmethacrylate layer drop-casted on fabricated HSCs reduces the reflection fourfold and enhances the short-circuit Jsc, open-circuit Voc, and efficiency by nearly 10%. A state-of-the-art J-V performance is shown for SWCNT/a-Si HSC with an open-circuit voltage of 900 mV and efficiency of 3.4% under simulated one-sun AM 1.5G direct illumination. © 2018 IOP Publishing Ltd.

  9. Enhanced efficiency of hybrid amorphous silicon solar cells based on single-walled carbon nanotubes and polymer composite thin film

    Science.gov (United States)

    Rajanna, Pramod M.; Gilshteyn, Evgenia P.; Yagafarov, Timur; Aleekseeva, Alena K.; Anisimov, Anton S.; Neumüller, Alex; Sergeev, Oleg; Bereznev, Sergei; Maricheva, Jelena; Nasibulin, Albert G.

    2018-03-01

    We report a simple approach to fabricate hybrid solar cells (HSCs) based on a single-walled carbon nanotube (SWCNT) film and thin film hydrogenated amorphous silicon (a-Si:H). Randomly oriented high-quality SWCNTs with conductivity enhanced by means of poly(3,4-ethylenedioxythiophene) polystyrene sulfonate are used as a window layer and a front electrode. A series of HSCs are fabricated in ambient conditions with varying SWCNT film thicknesses. The polymethylmethacrylate layer drop-casted on fabricated HSCs reduces the reflection fourfold and enhances the short-circuit J sc , open-circuit V oc , and efficiency by nearly 10%. A state-of-the-art J-V performance is shown for SWCNT/a-Si HSC with an open-circuit voltage of 900 mV and an efficiency of 3.4% under simulated one-sun AM 1.5 G direct illumination.

  10. Solid-state dye-sensitized solar cells based on ZnO nanoparticle and nanorod array hybrid photoanodes

    Directory of Open Access Journals (Sweden)

    Sue Hung-Jue

    2011-01-01

    Full Text Available Abstract The effect of ZnO photoanode morphology on the performance of solid-state dye-sensitized solar cells (DSSCs is reported. Four different structures of dye-loaded ZnO layers have been fabricated in conjunction with poly(3-hexylthiophene. A significant improvement in device efficiency with ZnO nanorod arrays as photoanodes has been achieved by filling the interstitial voids of the nanorod arrays with ZnO nanoparticles. The overall power conversion efficiency increases from 0.13% for a nanorod-only device to 0.34% for a device with combined nanoparticles and nanorod arrays. The higher device efficiency in solid-state DSSCs with hybrid nanorod/nanoparticle photoanodes is originated from both large surface area provided by nanoparticles for dye adsorption and efficient charge transport provided by the nanorod arrays to reduce the recombinations of photogenerated carriers.

  11. Effect of electrolytes on the photovoltaic performance of a hybrid dye sensitized ZnO solar cell

    Energy Technology Data Exchange (ETDEWEB)

    Suri, Poonam; Mehra, R.M. [Department of Electronic Science, University of Delhi South Campus, New Delhi 110021 (India)

    2007-03-23

    The efficiency of dye sensitized solar cell depends on the number of factors such as impedance due to anions in the electrolytes, oxidation-reduction process of anions and size of cations of the electrolyte. This paper reports the effect of electrolytes on the photovoltaic performance of hybrid dye sensitized ZnO solar cells based on Eosin Y dye. The size of the cations has been varied by choosing different electrolytes such as LiBr+Br{sub 2}, LiI+I{sub 2}, tetrapropylammonium iodide +I{sub 2} in mixed solvent of acetronitrile and ethylene carbonate. The impedance of anions has been determined by electrochemical impedance spectra. It is observed that Br{sup -}/Br{sub 3}{sup -} offers high impedance as compared to I{sup -}/I{sub 3}{sup -} couple. The oxidation-reduction reactions of electrolytes are measured by linear sweep voltammogram. It is found that Br{sup -}/Br{sub 3}{sup -} is more suitable than an I{sup -}/I{sub 3}{sup -} couple in dye sensitized solar cell (DSSC) in terms of higher open-circuit photovoltage production and higher overall energy conversion efficiency. This is attributed to more positive potential of the dye sensitizer than that of Br{sup -}/Br{sub 3}{sup -}. The gain in V{sub oc} was due to the enlarged energy level difference between the redox potential of the electrolyte and the Fermi level (E{sub f}) of ZnO and the suppressed charge recombination as well. (author)

  12. A Model for the Operation of Perovskite Based Hybrid Solar Cells: Formulation, Analysis, and Comparison to Experiment

    KAUST Repository

    Foster, J. M.; Snaith, H. J.; Leijtens, T.; Richardson, G.

    2014-01-01

    This work is concerned with the modeling of perovskite based hybrid solar cells formed by sandwiching a slab of organic lead halide perovskite (CH3NH3PbI3-xClx) photo-absorber between (n-type) acceptor and (p-type) donor materialstypically titanium dioxide and spiro. A model for the electrical behavior of these cells is formulated based on drift-diffusion equations for the motion of the charge carriers and Poisson's equation for the electric potential. It is closed by (i) internal interface conditions accounting for charge recombination/generation and jumps in charge carrier densities arising from differences in the electron affinity/ionization potential between the materials and (ii) ohmic boundary conditions on the contacts. The model is analyzed by using a combination of asymptotic and numerical techniques. This leads to an approximateyet highly accurateexpression for the current-voltage relationship as a function of the solar induced photocurrent. In addition, we show that this approximate current-voltage relation can be interpreted as an equivalent circuit model consisting of three diodes, a resistor, and a current source. For sufficiently small biases the device's behavior is diodic and the current is limited by the recombination at the internal interfaces, whereas for sufficiently large biases the device acts like a resistor and the current is dictated by the ohmic dissipation in the acceptor and donor. The results of the model are also compared to experimental current-voltage curves, and good agreement is shown.

  13. A Model for the Operation of Perovskite Based Hybrid Solar Cells: Formulation, Analysis, and Comparison to Experiment

    KAUST Repository

    Foster, J. M.

    2014-01-01

    This work is concerned with the modeling of perovskite based hybrid solar cells formed by sandwiching a slab of organic lead halide perovskite (CH3NH3PbI3-xClx) photo-absorber between (n-type) acceptor and (p-type) donor materialstypically titanium dioxide and spiro. A model for the electrical behavior of these cells is formulated based on drift-diffusion equations for the motion of the charge carriers and Poisson\\'s equation for the electric potential. It is closed by (i) internal interface conditions accounting for charge recombination/generation and jumps in charge carrier densities arising from differences in the electron affinity/ionization potential between the materials and (ii) ohmic boundary conditions on the contacts. The model is analyzed by using a combination of asymptotic and numerical techniques. This leads to an approximateyet highly accurateexpression for the current-voltage relationship as a function of the solar induced photocurrent. In addition, we show that this approximate current-voltage relation can be interpreted as an equivalent circuit model consisting of three diodes, a resistor, and a current source. For sufficiently small biases the device\\'s behavior is diodic and the current is limited by the recombination at the internal interfaces, whereas for sufficiently large biases the device acts like a resistor and the current is dictated by the ohmic dissipation in the acceptor and donor. The results of the model are also compared to experimental current-voltage curves, and good agreement is shown.

  14. Hybrid TiO2 Solar Cells Produced from Aerosolized Nanoparticles of Water-Soluble Polythiophene Electron Donor Layer

    Directory of Open Access Journals (Sweden)

    Marshall L. Sweet

    2014-01-01

    Full Text Available Hybrid solar cells (HSCs with water soluble polythiophene sodium poly[2-(3-thienyl-ethyloxy-4-butylsulfonate] (PTEBS thin films produced using electrospray deposition (ESD were fabricated, tested, and modeled and compared to devices produced using conventional spin coating. A single device structure of FTO/TiO2/PTEBS/Au was used to study the effects of ESD of the PTEBS layer on device performance. ESD was found to increase the short circuit current density (Jsc by a factor of 2 while decreasing the open circuit voltage (Voc by half compared to spin coated PTEBS films. Comparable efficiencies of 0.009% were achieved from both device construction types. Current-voltage curves were modeled using the characteristic solar cell equation and showed a similar increase in generated photocurrent with an increase by two orders of magnitude in the saturation current in devices from ESD films. Increases in Jsc are attributed to an increase in the interfacial contact area between the TiO2 and PTEBS layers, while decreases in Voc are attributed to incomplete film formation from ESD.

  15. Enhanced performance of P3HT/(PCBM:ZnO:TiO{sub 2}) blend based hybrid organic solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Ikram, M., E-mail: mianraj.1981@gmail.com [Solar Application Lab, Department of Physics, Government College University Lahore, 54000 Pakistan (Pakistan); Murray, R. [Department of Physics and Astronomy, University of Delaware, Delaware 19716 (United States); Imran, M. [Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, 29 Zhongguancun East Road, Haidian District, Beijing 100190 (China); Ali, S. [Solar Application Lab, Department of Physics, Government College University Lahore, 54000 Pakistan (Pakistan); Shah, S.Ismat [Department of Materials Science and Engineering, University of Delaware, Delaware 19716 (United States); Department of Physics and Astronomy, University of Delaware, Delaware 19716 (United States)

    2016-03-15

    Highlights: • We fabricated hybrid bulk heterojunction organic solar cells. • TiO{sub 2} and ZnO nanoparticles replace PCBM with fixed amount of P3HT in active layer • PCE was significantly improved by the introduction of TiO{sub 2} and ZnO. • A possible route toward low-cost OPV. • To the best of my knowledge, this work is the first time going to report. - Abstract: Quaternary blend hybrid organic solar cells enjoy both an increased light absorption range and an easy method to fabricate because of the simple structure. In this study effects of mixing inorganic metal oxides (ZnO and TiO{sub 2}) nanoparticles to the active layer of organic photovoltaics devices were investigated. The active layer primarily consists of various ratios of electron donor poly (3-hexylthiophene) (P3HT) and an electron acceptor [6,6]-phenyl-C61-butyric acid methyl ester (PCBM) together with nanostructured ZnO and TiO{sub 2} dispersed in chlorobenzene (CB) and 1,2-dichlorobenzene (DCB). The ratio of PCBM to nanoparticles was varied keeping the ratio of P3HT to acceptor material constant. Mixing of nanoparticle plays a significant role in the resulting power conversion efficiency (PCE) of the devices. An increased PCE for ZnO/TiO{sub 2} doped devices can be attributed to increased absorption in the visible region and enhanced charge collection due to the percolation networks formed by metal oxides nanoparticles.

  16. Research Update: Behind the high efficiency of hybrid perovskite solar cells

    Directory of Open Access Journals (Sweden)

    Azhar Fakharuddin

    2016-09-01

    Full Text Available Perovskite solar cells (PSCs marked tremendous progress in a short period of time and offer bright hopes for cheap solar electricity. Despite high power conversion efficiency >20%, its poor operational stability as well as involvement of toxic, volatile, and less-abundant materials hinders its practical deployment. The fact that degradation and toxicity are typically observed in the most successful perovskite involving organic cation and toxic lead, i.e., CH3NH3PbX3, requires a deep understanding of their role in photovoltaic performance in order to envisage if a non-toxic, stable yet highly efficient device is feasible. Towards this, we first provide an overview of the basic chemistry and physics of halide perovskites and its correlation with its extraordinary properties such as crystal structure, bandgap, ferroelectricity, and electronic transport. We then discuss device related aspects such as the various device designs in PSCs and role of interfaces in origin of PV parameters particularly open circuit voltage, various film processing methods and their effect on morphology and characteristics of perovskite films, and the origin and elimination of hysteresis and operational stability in these devices. We then identify future perspectives for stable and efficient PSCs for practical deployment.

  17. Hybrid Tandem Quantum Dot/Organic Solar Cells with Enhanced Photocurrent and Efficiency via Ink and Interlayer Engineering

    KAUST Repository

    Kim, Taesoo; Firdaus, Yuliar; Kirmani, Ahmad R.; Liang, Ru-Ze; Hu, Hanlin; Liu, Mengxia; El Labban, Abdulrahman; Hoogland, Sjoerd; Beaujuge, Pierre; Sargent, Edward H.; Amassian, Aram

    2018-01-01

    Realization of colloidal quantum dot (CQD)/organic photovoltaic (OPV) tandem solar cells that integrate the strong infrared absorption of CQDs with large photovoltages of OPVs is an attractive option toward high-performing, low-cost thin film solar

  18. Hybrid Microgrid Model based on Solar Photovoltaics with Batteries and Fuel Cells system for intermittent applications

    Science.gov (United States)

    Patterson, Maxx

    Microgrids are a subset of the modern power structure; using distributed generation (DG) to supply power to communities rather than vast regions. The reduced scale mitigates loss allowing the power produced to do more with better control, giving greater security, reliability, and design flexibility. This paper explores the performance and cost viability of a hybrid grid-tied microgrid that utilizes Photovoltaic (PV), batteries, and fuel cell (FC) technology. The concept proposes that each community home is equipped with more PV than is required for normal operation. As the homes are part of a microgrid, excess or unused energy from one home is collected for use elsewhere within the microgrid footprint. The surplus power that would have been discarded becomes a community asset, and is used to run intermittent services. In this paper, the modeled community does not have parking adjacent to each home allowing for the installment of a privately owned slower Level 2 charger, making EV ownership option untenable. A solution is to provide a Level 3 DC Quick Charger (DCQC) as the intermittent service. The addition of batteries and Fuel Cells are meant to increase load leveling, reliability, and instill limited island capability.

  19. Efficiency enhancement of hybridized solar cells through co-sensitization and fast charge extraction by up-converted polyethylene glycol modified carbon quantum dots

    Science.gov (United States)

    Zhu, Wanlu; Duan, Jialong; Duan, Yanyan; Zhao, Yuanyuan; Tang, Qunwei

    2017-11-01

    Photovoltaics are promising solutions to energy crisis and environmental pollution problems. The dye-sensitized solar cells with mesoscopic structures have attracted growing interests because of zero emissions, easy fabrication, scalable materials and techniques, etc. However, the state-of-the-art dye-sensitized solar cells have narrow spectral absorption for photoelectric conversion and high electron-hole recombination rate under sunlight illumination. Therefore, it is a persistent object to make wide-spectral absorption and fast charge extraction solar cells for energy harvest in both solar and dark-light conditions. To address this issue, we present here experimental realization of a category of solar cells converting visible and near-infrared light into electricity by co-sensitizing photoanode with N719 dye and polyethylene glycol (PEG) modified carbon quantum dots (PEG-m-CQDs), arising from up-conversion and hole-transporting behaviors of PEG-m-CQDs as well as photofluorescence of green-emitting long persistence phosphors. The optimized solar cell yields maximized photoelectric conversion efficiencies of 9.89% and 25.81% under simulated sunlight (air mass 1.5, 100 mW cm-2) illumination and dark conditions, respectively. This work is far from optimization, but the physical proof-of-concept hybridized solar cell may markedly increase electricity generation time and total power output of photovoltaic platforms.

  20. Organic-Inorganic Hybrid Interfacial Layer for High-Performance Planar Perovskite Solar Cells.

    Science.gov (United States)

    Yang, Hao; Cong, Shan; Lou, Yanhui; Han, Liang; Zhao, Jie; Sun, Yinghui; Zou, Guifu

    2017-09-20

    4,7-Diphenyl-1,10-phenanthroline (Bphen) is an efficient electron transport and hole blocking material in organic photoelectric devices. Here, we report cesium carbonate (Cs 2 CO 3 ) doped Bphen as cathode interfacial layer in CH 3 NH 3 PbI 3-x Cl x based planar perovskite solar cells (PSCs). Investigation finds that introducing Cs 2 CO 3 suppresses the crystallization of Bphen and benefits a smooth interface contact between the perovskite and electrode, resulting in the decrease in carrier recombination and the perovskite degradation. In addition, the matching energy level of Bphen film in the PSCs effectively blocks the holes diffusion to cathode. The resultant power conversion efficiency (PCE) achieves as high as 17.03% in comparison with 12.67% of reference device without doping. Besides, experiments also demonstrate the stability of PSCs have large improvement because the suppressed crystallization of Bphen by doping Cs 2 CO 3 as a superior barrier layer blocks the Ag atom and surrounding moisture access to the vulnerable perovskite layer.

  1. Perovskite-based solar cells with inorganic inverted hybrid planar heterojunction structure

    Directory of Open Access Journals (Sweden)

    Wei-Chih Lai

    2018-01-01

    Full Text Available We demonstrated the good performance of inorganic inverted CH3NH3PbI3 perovskite-based solar cells (SCs with glass/ITO/NiOx/CH3NH3PbI3 perovskite/C60/ room temperature (RT-sputtered ZnO/Al structure. We adopted spin coating and RT sputtering for the deposition of NiOx and ZnO, respectively. The inorganic hole and electron transport layer of NiOx and RT-sputtered ZnO, respectively, could improve the open-circuit voltage (VOC, short-circuit current density (JSC, and power conversion efficiency (η% of the SCs. We obtained inorganic inverted CH3NH3PbI3 perovskite-based SCs with a JSC of 21.96 A/cm2, a VOC of 1.02 V, a fill factor (FF% of 68.2%, and an η% of 15.3% despite the sputtering damage of the RT-sputtered ZnO deposition. Moreover, the RT-sputtered ZnO could function as a diffusion barrier for Al, moisture, and O2. The inorganic inverted CH3NH3PbI3 perovskite-based SCs demonstrated improved storage reliability.

  2. Perovskite-based solar cells with inorganic inverted hybrid planar heterojunction structure

    Science.gov (United States)

    Lai, Wei-Chih; Lin, Kun-Wei; Guo, Tzung-Fang; Chen, Peter; Liao, Yuan-Yu

    2018-01-01

    We demonstrated the good performance of inorganic inverted CH3NH3PbI3 perovskite-based solar cells (SCs) with glass/ITO/NiOx/CH3NH3PbI3 perovskite/C60/ room temperature (RT)-sputtered ZnO/Al structure. We adopted spin coating and RT sputtering for the deposition of NiOx and ZnO, respectively. The inorganic hole and electron transport layer of NiOx and RT-sputtered ZnO, respectively, could improve the open-circuit voltage (VOC), short-circuit current density (JSC), and power conversion efficiency (η%) of the SCs. We obtained inorganic inverted CH3NH3PbI3 perovskite-based SCs with a JSC of 21.96 A/cm2, a VOC of 1.02 V, a fill factor (FF%) of 68.2%, and an η% of 15.3% despite the sputtering damage of the RT-sputtered ZnO deposition. Moreover, the RT-sputtered ZnO could function as a diffusion barrier for Al, moisture, and O2. The inorganic inverted CH3NH3PbI3 perovskite-based SCs demonstrated improved storage reliability.

  3. Carbon nanotube aerogel-CoS2 hybrid catalytic counter electrodes for enhanced photovoltaic performance dye-sensitized solar cells.

    Science.gov (United States)

    Liu, Tao; Mai, Xianmin; Chen, Haijun; Ren, Jing; Liu, Zheting; Li, Yingxiang; Gao, Lina; Wang, Ning; Zhang, Jiaoxia; He, Hongcai; Guo, Zhanhu

    2018-03-01

    The carbon nanotube aerogel (CNA) with an ultra-low density, three-dimensional network nanostructure, superior electronic conductivity and large surface area is being widely employed as a catalytic electrode and catalytic support. Impressively, dye-sensitized solar cells (DSSCs) assembled with a CNA counter electrode (CE) achieved a maximum power conversion efficiency (PCE) of 8.28%, which exceeded that of the conventional platinum (Pt)-based DSSC (7.20%) under the same conditions. Furthermore, highly dispersed CoS 2 nanoparticles endowed with excellent intrinsic catalytic activity were hydrothermally incorporated to form a CNA-supported CoS 2 (CNA-CoS 2 ) CE, which was due to the large number of catalytically active sites and sufficient connections between CoS 2 and the CNA. The electrocatalytic ability and stability were systematically evaluated by cyclic voltammetry (CV), electrochemical impedance spectra (EIS) and Tafel polarization, which confirmed that the resultant CNA-CoS 2 hybrid CE exhibited a remarkably higher electrocatalytic activity toward I 3 - reduction, and faster ion diffusion and electron transfer than the pure CNA CE. Such cost-effective DSSCs assembled with an optimized CNA-CoS 2 CE yielded an enhanced PCE of 8.92%, comparable to that of the cell fabricated with the CNA-Pt hybrid CE reported in our published literature (9.04%). These results indicate that the CNA-CoS 2 CE can be considered as a promising candidate for Pt-free CEs used in low-cost and high-performance DSSCs.

  4. Mechanism of charge recombination in meso-structured organic-inorganic hybrid perovskite solar cells: A macroscopic perspective

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Wenchao; Yao, Yao, E-mail: yaoyao@fudan.edu.cn; Wu, Chang-Qin, E-mail: cqw@fudan.edu.cn [State Key Laboratory of Surface Physics and Department of Physics, Fudan University, Shanghai 200433 (China); Collaborative Innovation Center of Advanced Microstructures, Fudan University, Shanghai 200433 (China)

    2015-04-21

    In the currently popular organic-inorganic hybrid perovskite solar cells, the slowness of the charge recombination processes is found to be a key factor for contributing to their high efficiencies and high open circuit voltages, but the underlying recombination mechanism remains unclear. In this work, we investigate the bimolecular recombination (BR) and the trap-assisted monomolecular recombination (MR) in meso-structured perovskite solar cells under steady state working condition, and try to reveal their roles on determining the device performance. Some interfacial effects such as the injection barriers at the selective contacts are examined as well. Based on the macroscopic device modeling, the recombination resistance-voltage (R{sub rec}−V) and the current density-voltage (J–V) curves are calculated to characterize the recombination mechanism and describe the device performance, respectively. Through comparison with the impedance spectroscopy extracted R{sub rec} data, it is found that under the typical BR reduction factor and deep trap densities observed in experiments, the MR dominates the charge recombination in the low voltage regime, while the BR dominates in the high voltage regime. The short circuit current and the fill factor could be reduced by the significant MR but the open circuit voltage is generally determined by the BR. The different electron injection barriers at the contact can change the BR rate and induce different patterns for the R{sub rec}–V characteristics. For the perovskites of increased band gaps, the R{sub rec}'s are significantly enhanced, corresponding to the high open circuit voltages. Finally, it is revealed that the reduced effective charge mobility due to the transport in electron and hole transporting material makes the R{sub rec} decrease slowly with the increasing voltage, which leads to increased open circuit voltage.

  5. Annealing effect of hybrid solar cells based on poly (3-hexylthiophene) and zinc-oxide nanostructures

    CSIR Research Space (South Africa)

    Motaung, DE

    2013-06-01

    Full Text Available The structural growth and optical and photovoltaic properties of the organic–inorganic hybrid structures of zinc oxide (ZnO)-nanorods/poly-3-hexylthiophene (P3HT) and two variations of organic polymer blends of ZnO/P3HT:C(sub60) fullerene and ZnO/P3...

  6. Fabrication and Characteristics of ZnO/OAD-InN/PbPc Hybrid Solar Cells Prepared by Oblique-Angle Deposition

    Directory of Open Access Journals (Sweden)

    Lung-Chien Chen

    2012-08-01

    Full Text Available In this work, lead phthalocyanine (PbPc and ZnO/InN inorganic semiconductor films prepared by oblique-angle deposition (OAD were layered to form heterojunction organic/inorganic hybrid photovoltaic solar cells. Among the available organic materials, phthalocyanines, particularly the non-planar ones such as PbPc, are notable for their absorption in the visible and near infrared regions. The organic/inorganic hybrid solar cells fabricated on ZnO/OAD-InN/PbPc showed short-circuit current density (JSC, open-circuit voltage (VOC, and power conversion efficiencies (η of 1.2 mA/cm2, 0.6 V and 0.144%, respectively.

  7. Fabrication of polymer/cadmium sulfide hybrid solar cells [P3HT:CdS and PCPDTBT:CdS] by spray deposition.

    Science.gov (United States)

    Kumar, Neetesh; Dutta, Viresh

    2014-11-15

    This paper investigates fabrication of surfactant free CdS nanoparticles (NPs) and application in the fabrication of P3HT:CdS and PCPDTBT:CdS bulk-heterojunction hybrid solar cells using high-throughput, large-area, low cost spray deposition technique. Both the hybrid active layers and hole transport layers are deposited by spray technique. The CdS/Poly(3-hexylthiophene-2,5-diyl) (P3HT) and CdS/Poly[2,6-(4,4-bis-(2-ethylhexyl)-4H-cyclopenta[2,1-b;3,4-b']dithiophene)-alt-4,7(2,1,3-benzothiadiazole)] (PCPDTBT) hybrid devices are fabricated by spray deposition process at optimized conditions (i.e. film thickness, spray solution volume, distance between sample and spray nozzle, substrate temperature, etc.). The power conversion efficiency of η=0.6% and 1.02% is obtained for P3HT:CdS and PCPDTBT:CdS hybrid devices, respectively. Spray coating holds significant promise as a technique capable of fabricating large-area, high performance hybrid solar cells. Copyright © 2014 Elsevier Inc. All rights reserved.

  8. Hybrid polymer-inorganic photovoltaic cells

    NARCIS (Netherlands)

    Beek, W.J.E.; Janssen, R.A.J.; Merhari, L.

    2009-01-01

    Composite materials made from organic conjugated polymers and inorganic semiconductors such as metal oxides attract considerable interest for photovoltaic applications. Hybrid polymer-inorganic solar cells offer the opportunity to combine the beneficial properties of the two materials in charge

  9. Passivating ZnO Surface States by C60 Pyrrolidine Tris-Acid for Hybrid Solar Cells Based on Poly(3-hexylthiophene/ZnO Nanorod Arrays

    Directory of Open Access Journals (Sweden)

    Peng Zhong

    2017-12-01

    Full Text Available Construction of ordered electron acceptors is a feasible way to solve the issue of phase separation in polymer solar cells by using vertically-aligned ZnO nanorod arrays (NRAs. However, the inert charge transfer between conducting polymer and ZnO limits the performance enhancement of this type of hybrid solar cells. In this work, a fullerene derivative named C60 pyrrolidine tris-acid is used to modify the interface of ZnO/poly(3-hexylthiophene (P3HT. Results indicate that the C60 modification passivates the surface defects of ZnO and improves its intrinsic fluorescence. The quenching efficiency of P3HT photoluminescence is enhanced upon C60 functionalization, suggesting a more efficient charge transfer occurs across the modified P3HT/ZnO interface. Furthermore, the fullerene modified hybrid solar cell based on P3HT/ZnO NRAs displays substantially-enhanced performance as compared to the unmodified one and the devices with other modifiers, which is contributed to retarded recombination and enhanced exciton separation as evidenced by electrochemical impedance spectra. Therefore, fullerene passivation is a promising method to ameliorate the connection between conjugated polymers and metal oxides, and is applicable in diverse areas, such as solar cells, transistors, and light-emitting dioxides.

  10. Nickel oxide electrode interlayer in CH3 NH3 PbI3 perovskite/PCBM planar-heterojunction hybrid solar cells.

    Science.gov (United States)

    Jeng, Jun-Yuan; Chen, Kuo-Cheng; Chiang, Tsung-Yu; Lin, Pei-Ying; Tsai, Tzung-Da; Chang, Yun-Chorng; Guo, Tzung-Fang; Chen, Peter; Wen, Ten-Chin; Hsu, Yao-Jane

    2014-06-25

    This study successfully demonstrates the application of inorganic p-type nickel oxide (NiOx ) as electrode interlayer for the fabrication of NiOx /CH3 NH3 PbI3 perovskite/PCBM PHJ hybrid solar cells with a respectable solar-to-electrical PCE of 7.8%. The better energy level alignment and improved wetting of the NiOx electrode interlayer significantly enhance the overall photovoltaic performance. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. High performance sponge-like cobalt sulfide/reduced graphene oxide hybrid counter electrode for dye-sensitized solar cells

    Science.gov (United States)

    Huo, Jinghao; Wu, Jihuai; Zheng, Min; Tu, Yongguang; Lan, Zhang

    2015-10-01

    A sponge-like cobalt sulfide/reduced graphene oxide (CoS/rGO) hybrid film is deposited on fluorine doped SnO2 (FTO) glass by electrophoretic deposition and ion exchange deposition, following by sodium borohydride and sulfuric acid solution treatment. The film is used as the counter electrode of dye-sensitized solar cells (DSSCs), and is characterized by field emission scanning electron microscopy, Raman spectroscopy, cyclic voltammetry, electrochemical impedance spectroscopy and Tafel measurements. The results show that the CoS counter electrode has a sponge structure with large specific surface area, small charge-transfer resistance at the electrode/electrolyte interface. The addition of rGO further improves the electrocatalytic activity for I3- reduction, which results in the better electrocatalytic property of CoS/rGO counter electrodes than that of Pt counter electrode. Using CoS/rGO0.2 as counter electrode, the DSSC achieves a power conversion efficiency of 9.39%; which is increased by 27.93% compared with the DSSC with Pt counter electrode (7.34%).

  12. Techno-economic feasibility analysis of hydrogen fuel cell and solar photovoltaic hybrid renewable energy system for academic research building

    International Nuclear Information System (INIS)

    Singh, Anand; Baredar, Prashant; Gupta, Bhupendra

    2017-01-01

    Highlights: • A HFC and SPV HRES for stand-alone applications is proposed. • The FC program computes the optimum cost of HRES components. • HOMER pro software to calculate the optimum performance of HRES. - Abstract: A hydrogen fuel cell (HFC) and solar photovoltaic (SPV) hybrid renewable energy system (HRES) for stand-alone applications is proposed. This system arrangement of a hydrogen tank, battery, and an electrolyzer are used as like the energy storage. The economic viability of using HRES power to supply the electrical load demand of academic research building located at 23°12′N latitude and 77°24′E longitudes, India is examined. The fuzzy logic program computes the optimum value of capital and replacement cost of the components, which is then utilized in HOMER pro software to calculate the optimum performance of HRES. The results shows the HFC and battery bank are the most significant modules of the HRES to meet load demand at late night and early morning hours. The AC primary load consuming 20712.63 kWh/year out of total power generation of HRES which is 24570.72 kWh/year. The excess of electricity produced by HRES is 791.7709 kWh/year with the optimized cost of energy, unmet electrical load and capacity shortage of 0%.

  13. Photophysical properties of novel small acceptor molecules and their application in hybrid small-molecular/polymeric organic solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Inal, Sahika; Castellani, Mauro; Neher, Dieter [Universitaet Potsdam, Institut fuer Physik und Astronomie, Potsdam-Golm (Germany); Sellinger, Alan [Institute of Materials Research and Engineering, Singapore (Singapore)

    2009-07-01

    Recent experimental investigations revealed that the photovoltaic properties of our devices are related to the balance between recombination and field-induced dissociation of interfacial excited states such as exciplexes or geminate polaron pairs. This balance was shown to be affected by the nanomorphology at the heterojunction. We have analyzed the photophysical properties of a new materials couple comprising an electron-donating PPV copolymer and a vinazene-based small molecule acceptor. Steady state and time-resolved photoluminescence (PL) spectroscopy in solution and in the solid state showed the formation of excimers within the acceptor. The associated long-range diffusion promise efficient energy harvesting at the heterojunction. On the other hand, blends of the PPV-derivative and the small molecule revealed strong exciplex formation. Therefore, bilayered hybrid small-molecular/polymeric solar cells have been fabricated by consequently spin-coating the macromolecular donor and the small molecule acceptor from two different solvents. The bilayer architecture limits recombination processes enabling high FFs of around 44% and a technologically important open circuit voltage of 1Volt.

  14. Interfacial micropore defect formation in PEDOT:PSS-Si hybrid solar cells probed by TOF-SIMS 3D chemical imaging.

    Science.gov (United States)

    Thomas, Joseph P; Zhao, Liyan; Abd-Ellah, Marwa; Heinig, Nina F; Leung, K T

    2013-07-16

    Conducting p-type polymer layers on n-type Si have been widely studied for the fabrication of cost-effective hybrid solar cells. In this work, time-of-flight secondary ion mass spectrometry (TOF-SIMS) is used to provide three-dimensional chemical imaging of the interface between poly(3,4-ethylene-dioxythiophene):polystyrenesulfonate (PEDOT:PSS) and SiOx/Si in a hybrid solar cell. To minimize structural damage to the polymer layer, an Ar cluster sputtering source is used for depth profiling. The present result shows the formation of micropore defects in the interface region of the PEDOT:PSS layer on the SiOx/Si substrate. This interfacial micropore defect formation becomes more prominent with increasing thickness of the native oxide layer, which is a key device parameter that greatly affects the hybrid solar cell performance. Three-dimensional chemical imaging coupled with Ar cluster ion sputtering has therefore been demonstrated as an emerging technique for probing the interface of this and other polymer-inorganic systems.

  15. The effects of fabrication temperature on current-voltage characteristics and energy efficiencies of quantum dot sensitized ZnOH-GO hybrid solar cells

    International Nuclear Information System (INIS)

    Islam, S. M. Z.; Gayen, Taposh; Tint, Naing; Alfano, Robert; Shi, Lingyan; Seredych, Mykola; Bandosz, Teresa J.

    2014-01-01

    The effects of fabrication temperature are investigated on the performance of CdSe quantum dot (QD)-sensitized hybrid solar cells of the composite material of zinc (hydr)oxide (ZnOH-GO)with 2 wt. % graphite oxide. The current-voltage (I-V) and photo-current measurements show that higher fabrication temperatures yield greater photovoltaic power conversion efficiencies that essentially indicate more efficient solar cells. Two Photon Fluorescence images show the effects of temperature on the internal morphologies of the solar devices based on such materials. The CdSe-QD sensitized ZnOH-GO hybrid solar cells fabricated at 450 °C showing conversion of ∼10.60% under a tungsten lamp (12.1 mW/cm 2 ) are reported here, while using potassium iodide as an electrolyte. The output photocurrent, I (μA) with input power, P (mW/cm 2 ) is found to be superlinear, showing a relation of I = P n , where n = 1.4.

  16. Fabrication of hybrid solar cells using poly(2,5-dimethoxyaniline) hexagonal structures and zinc oxide nanorods

    CSIR Research Space (South Africa)

    Mavundla, SE

    2012-04-01

    Full Text Available crystalline materials with one-dimensional morphology which improves the electron charge transport in the device. A distinctive photoluminescence quenching effect was observed indicating a photo-induced electron transfer. The solar cell devices fabricated from...

  17. Hybrid Energy Cell with Hierarchical Nano/Micro-Architectured Polymer Film to Harvest Mechanical, Solar, and Wind Energies Individually/Simultaneously.

    Science.gov (United States)

    Dudem, Bhaskar; Ko, Yeong Hwan; Leem, Jung Woo; Lim, Joo Ho; Yu, Jae Su

    2016-11-09

    We report the creation of hybrid energy cells based on hierarchical nano/micro-architectured polydimethylsiloxane (HNMA-PDMS) films with multifunctionality to simultaneously harvest mechanical, solar, and wind energies. These films consist of nano/micro dual-scale architectures (i.e., nanonipples on inverted micropyramidal arrays) on the PDMS surface. The HNMA-PDMS is replicable by facile and cost-effective soft imprint lithography using a nanoporous anodic alumina oxide film formed on the micropyramidal-structured silicon substrate. The HNMA-PDMS film plays multifunctional roles as a triboelectric layer in nanogenerators and an antireflection layer for dye-sensitized solar cells (DSSCs), as well as a self-cleaning surface. This film is employed in triboelectric nanogenerator (TENG) devices, fabricated by laminating it on indium-tin oxide-coated polyethylene terephthalate (ITO/PET) as a bottom electrode. The large effective contact area that emerged from the densely packed hierarchical nano/micro-architectures of the PDMS film leads to the enhancement of TENG device performance. Moreover, the HNMA-PDMS/ITO/PET, with a high transmittance of >90%, also results in highly transparent TENG devices. By placing the HNMA-PDMS/ITO/PET, where the ITO/PET is coated with zinc oxide nanowires, as the top glass substrate of DSSCs, the device is able to add the functionality of TENG devices, thus creating a hybrid energy cell. The hybrid energy cell can successfully convert mechanical, solar, and wind energies into electricity, simultaneously or independently. To specify the device performance, the effects of external pushing frequency and load resistance on the output of TENG devices are also analyzed, including the photovoltaic performance of the hybrid energy cells.

  18. Enhancement of the photovoltaic performance in P3HT: PbS hybrid solar cells using small size PbS quantum dots

    Energy Technology Data Exchange (ETDEWEB)

    Firdaus, Yuliar; Van der Auweraer, Mark, E-mail: mark.vanderauweraer@chem.kuleuven.be [Laboratory of Photochemistry and Spectroscopy, Division of Molecular Imaging and Photonics, Chemistry Department, KULeuven, Celestijnenlaan 200F, 2404, B-3001 Leuven (Belgium); Vandenplas, Erwin; Gehlhaar, Robert; Cheyns, David [Imec vzw, Kapeldreef 75, B-3001 Leuven (Belgium); Justo, Yolanda; Hens, Zeger [Physical Chemistry Laboratory, Ghent University, Krijgslaan 281-S3, 9000 Gent (Belgium)

    2014-09-07

    Different approaches of surface modification of the quantum dots (QDs), namely, solution-phase (octylamine, octanethiol) and post-deposition (acetic acid, 1,4-benzenedithiol) ligand exchange were used in the fabrication of hybrid bulk heterojunction solar cell containing poly (3-hexylthiophene) (P3HT) and small (2.4 nm) PbS QDs. We show that replacing oleic acid by shorter chain ligands improves the figures of merit of the solar cells. This can possibly be attributed to a combination of a reduced thickness of the barrier for electron transfer and an optimized phase separation. The best results were obtained for post-deposition ligand exchange by 1,4-benzenedithiol, which improves the power conversion efficiency of solar cells based on a bulk heterojunction of lead sulfide (PbS) QDs and P3HT up to two orders of magnitude over previously reported hybrid cells based on a bulk heterojunction of P3HT:PbS QDs, where the QDs are capped by acetic acid ligands. The optimal performance was obtained for solar cells with 69 wt. % PbS QDs. Besides the ligand effects, the improvement was attributed to the formation of an energetically favorable bulk heterojunction with P3HT, when small size (2.4 nm) PbS QDs were used. Dark current density-voltage (J-V) measurements carried out on the device provided insight into the working mechanism: the comparison between the dark J-V characteristics of the bench mark system P3HT:PCBM and the P3HT:PbS blends allows us to conclude that a larger leakage current and a more efficient recombination are the major factors responsible for the larger losses in the hybrid system.

  19. Enhancement of the photovoltaic performance in P3HT: PbS hybrid solar cells using small size PbS quantum dots

    International Nuclear Information System (INIS)

    Firdaus, Yuliar; Van der Auweraer, Mark; Vandenplas, Erwin; Gehlhaar, Robert; Cheyns, David; Justo, Yolanda; Hens, Zeger

    2014-01-01

    Different approaches of surface modification of the quantum dots (QDs), namely, solution-phase (octylamine, octanethiol) and post-deposition (acetic acid, 1,4-benzenedithiol) ligand exchange were used in the fabrication of hybrid bulk heterojunction solar cell containing poly (3-hexylthiophene) (P3HT) and small (2.4 nm) PbS QDs. We show that replacing oleic acid by shorter chain ligands improves the figures of merit of the solar cells. This can possibly be attributed to a combination of a reduced thickness of the barrier for electron transfer and an optimized phase separation. The best results were obtained for post-deposition ligand exchange by 1,4-benzenedithiol, which improves the power conversion efficiency of solar cells based on a bulk heterojunction of lead sulfide (PbS) QDs and P3HT up to two orders of magnitude over previously reported hybrid cells based on a bulk heterojunction of P3HT:PbS QDs, where the QDs are capped by acetic acid ligands. The optimal performance was obtained for solar cells with 69 wt. % PbS QDs. Besides the ligand effects, the improvement was attributed to the formation of an energetically favorable bulk heterojunction with P3HT, when small size (2.4 nm) PbS QDs were used. Dark current density-voltage (J-V) measurements carried out on the device provided insight into the working mechanism: the comparison between the dark J-V characteristics of the bench mark system P3HT:PCBM and the P3HT:PbS blends allows us to conclude that a larger leakage current and a more efficient recombination are the major factors responsible for the larger losses in the hybrid system

  20. Review and comparison study of hybrid diesel/solar/hydro/fuel cell energy schemes for a rural ICT Telecenter

    Energy Technology Data Exchange (ETDEWEB)

    Abdullah, M.O.; Yung, V.C.; Anyi, M.; Othman, A.K.; Ab. Hamid, K.B. [Universiti Malaysia Sarawak (UNIMAS), 94300 Kota Samarahan, Sarawak (Malaysia); Tarawe, J. [e-Bario ICT Telecenter, Bario, Sarawak (Malaysia)

    2010-02-15

    In this paper, the rural electrification study of an ICT Telecenter in particular reference to the Kelabit Highland of Sarawak is presented. The use of diesel generator and its associated environmental implications is first discussed. The cost-effectiveness of the present solar PV system and the solar/hydro schemes for rural electrification of the rural ICT are evaluated employing the HOMER simulation software, considering sustainability factors such as system efficiency, weather, fuel costs, operating and maintaining costs. Subsequently, simple novel Hybrid Energy Performance Equations and the associated Energy Performance Curves are derived and introduced, respectively, which provide a visualization model, simplifying hybrid system analysis. Results obtained in this study have shown that combined power schemes is more sustainable in terms of supplying electricity to the Telecenter compared to a stand-alone PV system due to prolong cloudy and dense haze periods. The hybrid systems can have efficiency range of {proportional_to}15%-75% compared to PV stand-alone of only {proportional_to}10%, indicating hybrid systems are more reliable and sustainable - in minimizing both energy losses and excess energy. (author)

  1. Research Update: Relativistic origin of slow electron-hole recombination in hybrid halide perovskite solar cells

    Directory of Open Access Journals (Sweden)

    Pooya Azarhoosh

    2016-09-01

    Full Text Available The hybrid perovskite CH3NH3PbI3 (MAPI exhibits long minority-carrier lifetimes and diffusion lengths. We show that slow recombination originates from a spin-split indirect-gap. Large internal electric fields act on spin-orbit-coupled band extrema, shifting band-edges to inequivalent wavevectors, making the fundamental gap indirect. From a description of photoluminescence within the quasiparticle self-consistent GW approximation for MAPI, CdTe, and GaAs, we predict carrier lifetime as a function of light intensity and temperature. At operating conditions we find radiative recombination in MAPI is reduced by a factor of more than 350 compared to direct gap behavior. The indirect gap is retained with dynamic disorder.

  2. Research Update: Relativistic origin of slow electron-hole recombination in hybrid halide perovskite solar cells

    Science.gov (United States)

    Azarhoosh, Pooya; McKechnie, Scott; Frost, Jarvist M.; Walsh, Aron; van Schilfgaarde, Mark

    2016-09-01

    The hybrid perovskite CH3NH3PbI3 (MAPI) exhibits long minority-carrier lifetimes and diffusion lengths. We show that slow recombination originates from a spin-split indirect-gap. Large internal electric fields act on spin-orbit-coupled band extrema, shifting band-edges to inequivalent wavevectors, making the fundamental gap indirect. From a description of photoluminescence within the quasiparticle self-consistent GW approximation for MAPI, CdTe, and GaAs, we predict carrier lifetime as a function of light intensity and temperature. At operating conditions we find radiative recombination in MAPI is reduced by a factor of more than 350 compared to direct gap behavior. The indirect gap is retained with dynamic disorder.

  3. ANALYSING SOLAR-WIND HYBRID POWER GENERATING SYSTEM

    Directory of Open Access Journals (Sweden)

    Mustafa ENGİN

    2005-02-01

    Full Text Available In this paper, a solar-wind hybrid power generating, system that will be used for security lighting was designed. Hybrid system was installed and solar cells, wind turbine, battery bank, charge regulators and inverter performance values were measured through the whole year. Using measured values of overall system efficiency, reliability, demanded energy cost per kWh were calculated, and percentage of generated energy according to resources were defined. We also include in the paper a discussion of new strategies to improve hybrid power generating system performance and demanded energy cost per kWh.

  4. Development of thin-film Si HYBRID solar module

    Energy Technology Data Exchange (ETDEWEB)

    Nakajima, Akihiko; Gotoh, Masahiro; Sawada, Toru; Fukuda, Susumu; Yoshimi, Masashi; Yamamoto, Kenji; Nomura, Takuji [Kaneka Corporation, 2-1-1, Hieitsuji, Otsu, Shiga 520-0104 (Japan)

    2009-06-15

    The device current-voltage (I-V) characteristics of thin-film silicon stacked tandem solar modules (HYBRID modules), consisting of a hydrogenated amorphous silicon (a-Si:H) cell and a thin-film crystalline silicon solar cell ({mu}c-Si), have been investigated under various spectral irradiance distributions. The performance of the HYBRID module varied periodically in natural sunlight due to the current-limiting property of the HYBRID module and the environmental effects. The behavior based on the current-limiting property was demonstrated by the modelling of the I-V curves using the linear interpolation method for each component cell. The improvement of the performance for the HYBRID module in natural sunlight will also be discussed from the viewpoint of the device design of the component cells. (author)

  5. Hybrid tandem solar cells with depleted-heterojunction quantum dot and polymer bulk heterojunction subcells

    KAUST Repository

    Kim, Taesoo; Gao, Yangqin; Hu, Hanlin; Yan, Buyi; Ning, Zhijun; Jagadamma, Lethy Krishnan; Zhao, Kui; Kirmani, Ahmad R.; Eid, Jessica; Adachi, Michael M.; Sargent, Edward H.; Beaujuge, Pierre; Amassian, Aram

    2015-01-01

    with underlayers and associated constraints on the tandem architecture, and show that an adequate device configuration consists of a low bandgap CQD bottom cell and a high bandgap polymer:fullerene top cell. Once we optimize the recombination layer and individual

  6. Zinc octacarboxyphthalocyanine/Multi-walled carbon nanotubes hybrid for the development of dye solar cells

    CSIR Research Space (South Africa)

    Mphahlele, N

    2010-09-01

    Full Text Available The main aim of this presentation is to show the improvement in cell performance and the long term stability of DSCs by utilizing dye (metallophthalocyanines) that absorb light at Visible region, integrated with carbon nanotubes to increase...

  7. Metal octacarboxy phthalocyanines / Multiwalled carbon nanotubes hybrid for the development of dye solar cells

    CSIR Research Space (South Africa)

    Mphahlele, N

    2011-05-01

    Full Text Available photovoltaic cells. In these devices, photosensitisers are one of the main components for light-driven processes. Metallophthalocyanine (MPc) complexes, especially those containing diamagnetic metal centres (M = Zn, Ga, Si), are well established as efficient...

  8. Improving charge transport in PbS quantum Dot to Al:ZnO layer by changing the size of Quantum dots in hybrid solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Mehrabian, Masood [Maragheh Univ. (Iran, Islamic Republic of). Faculty of Basic Science; Abdollahian, Parinaz [Maragheh Univ. (Iran, Islamic Republic of). Dept. of Materials Engineering

    2016-07-01

    PbS Quantum dots and P3HT are promising materials for photovoltaic applications due to their absorption in the NIR and visible region, respectively. Our previous experimental work showed that doping Al to ZnO lattice (Al:ZnO) could efficiently improve the cell performance. In this article, hybrid solar cells containing of two active areas with ITO/Al:ZnO/PbS QDs/P3HT and PCBM/Ag structure were fabricated and the effect of PbS QD size on photovoltaic properties was investigated. Optimised solar cell showed maximum power conversion efficiency of 2.45 % with short-circuit current of 9.36 mA/cm{sup 2} and open-circuit voltage of 0.59 V under 1 sun illumination (AM1.5).

  9. Nonimaging optics maximizing exergy for hybrid solar system

    Science.gov (United States)

    Winston, Roland; Jiang, Lun; Abdelhamid, Mahmoud; Widyolar, Bennett K.; Ferry, Jonathan; Cygan, David; Abbasi, Hamid; Kozlov, Alexandr; Kirk, Alexander; Elarde, Victor; Osowski, Mark

    2016-09-01

    The project team of University of California at Merced (UC-Merced), Gas Technology Institute (GTI) and MicroLink Devices Inc. (MicroLink) are developing a hybrid solar system using a nonimaging compound parabolic concentrator (CPC) that maximizes the exergy by delivering direct electricity and on-demand heat. The hybrid solar system technology uses secondary optics in a solar receiver to achieve high efficiency at high temperature, collects heat in particles and uses reflective liftoff cooled double junction (2J) InGaP/GaAs solar cells with backside infrared (IR) reflectors on the secondary optical element to raise exergy efficiency. The nonimaging optics provides additional concentration towards the high temperature thermal stream and enables it to operate efficiently at 650 °C while the solar cell is maintained at 40 °C to operate as efficiently as possible.

  10. Growth of ZnSe nano-needles by pulsed laser deposition and their application in polymer/inorganic hybrid solar cells

    International Nuclear Information System (INIS)

    Chen, L.; Lai, J.S.; Fu, X.N.; Sun, J.; Ying, Z.F.; Wu, J.D.; Lu, H.; Xu, N.

    2013-01-01

    Using pulsed-laser deposition method, crystalline ZnSe nano-needles have been grown on catalyst-coated silicon (100) substrates. The crystalline ZnSe nano-needles with the middle diameters of about 20–80 nm, and the lengths ranging from 100 to 600 nm can be grown densely on 300–400 °C substrates. The as-grown ZnSe nano-needles were well crystalline and base-grown. They are potential electron-capturing materials in polymer/inorganic hybrid solar cells for their properties of good electron-conductance and high ratio surface area. Based on the ZnSe nano-needle cathode, a five-layer composite structure of polymer/inorganic hybrid solar cell has been designed and fabricated. The absorption spectra of the blend of regioregular poly(3-hexylthiophene-2,5-diyl) and phenyl-C61-butyric acid methyl ester (P3HT:PCBM), ZnSe nano-needles and the combination of P3HT:PCBM and ZnSe nano-needles were examined by ultraviolet–visible-infrared spectrophotometer, respectively. The absorption bands of the combination of P3HT:PCBM and ZnSe nano-needles fit well with the solar spectral distribution. - Highlights: ► Crystalline ZnSe nano-needles grown by pulsed laser deposition. ► A five-layer polymer/inorganic hybrid solar cell based on ZnSe nano-needles cathode. ► ZnSe nano-needles improve light absorption. ► Employment of ZnSe nano-needles increase the open-circuit voltage and fill factor

  11. Facile Synthesis and High performance of a New Carbazole-Based Hole Transporting Material for Hybrid Perovskite Solar Cells

    KAUST Repository

    Wang, Hong

    2015-06-26

    Perovskite solar cells are very promising for practical applications owing to their rapidly rising power conversion efficiency and low cost of solution-based processing. 2,2’,7,7’-tetrakis-(N,N-di-p-methoxyphenylamine) 9,9’-spirobifluorene (Spiro-OMeTAD) is most widely used as hole transporting material (HTM) in perovskite solar cells. However, the tedious synthesis and high cost of Spiro-OMeTAD inhibit its commercial-scale application in the photovoltaic industry. In this article, we report a carbazole-based compound (R01) as a new HTM in efficient perovskite solar cells. R01 is synthesized via a facile route consisting of only two steps from inexpensive commercially available materials. Furthermore, R01 exhibits higher hole mobility and conductivity than the state-of-the-art Spiro-OMeTAD. Perovskite solar cells fabricated with R01 produce a power conversion efficiency of 12.03%, comparable to that obtained in devices using Spiro-OMeTAD in this study. Our findings underscore R01 as a highly promising HTM with high performance, and its facile synthesis and low cost may facilitate the large-scale applications of perovskite solar cells.

  12. Facile Synthesis and High performance of a New Carbazole-Based Hole Transporting Material for Hybrid Perovskite Solar Cells

    KAUST Repository

    Wang, Hong; Sheikh, Arif D.; Feng, Quanyou; Li, Feng; Chen, Yin; Yu, Weili; Alarousu, Erkki; Ma, Chun; Haque, Mohammed; Shi, Dong; Wang, Zhong-Sheng; Mohammed, Omar F.; Bakr, Osman; Wu, Tao

    2015-01-01

    Perovskite solar cells are very promising for practical applications owing to their rapidly rising power conversion efficiency and low cost of solution-based processing. 2,2’,7,7’-tetrakis-(N,N-di-p-methoxyphenylamine) 9,9’-spirobifluorene (Spiro-OMeTAD) is most widely used as hole transporting material (HTM) in perovskite solar cells. However, the tedious synthesis and high cost of Spiro-OMeTAD inhibit its commercial-scale application in the photovoltaic industry. In this article, we report a carbazole-based compound (R01) as a new HTM in efficient perovskite solar cells. R01 is synthesized via a facile route consisting of only two steps from inexpensive commercially available materials. Furthermore, R01 exhibits higher hole mobility and conductivity than the state-of-the-art Spiro-OMeTAD. Perovskite solar cells fabricated with R01 produce a power conversion efficiency of 12.03%, comparable to that obtained in devices using Spiro-OMeTAD in this study. Our findings underscore R01 as a highly promising HTM with high performance, and its facile synthesis and low cost may facilitate the large-scale applications of perovskite solar cells.

  13. Introduction to solar cell production

    International Nuclear Information System (INIS)

    Kim, Gyeong Hae; Lee, Jun Sin

    2009-08-01

    This book introduces solar cell production. It is made up eight chapters, which are summary of solar cell with structure and prospect of the business, special variable of solar cell on light of the sun and factor causing variable of solar cell, production of solar cell with surface texturing, diffusion, metal printing dry and firing and edge isolation, process of solar cell on silicone wafer for solar cell, forming of electrodes, introduction of thin film solar cell on operating of solar cell, process of production and high efficiency of thin film solar cell, sorting of solar cell and production with background of silicone solar cell and thin film solar cell, structure and production of thin film solar cell and compound solar cell, introduction of solar cell module and the Industrial condition and prospect of solar cell.

  14. Schottky diodes between Bi2S3 nanorods and metal nanoparticles in a polymer matrix as hybrid bulk-heterojunction solar cells

    International Nuclear Information System (INIS)

    Saha, Sudip K.; Pal, Amlan J.

    2015-01-01

    We report the use of metal-semiconductor Schottky junctions in a conjugated polymer matrix as solar cells. The Schottky diodes, which were formed between Bi 2 S 3 nanorods and gold nanoparticles, efficiently dissociated photogenerated excitons. The bulk-heterojunction (BHJ) devices based on such metal-semiconductor Schottky diodes in a polymer matrix therefore acted as an efficient solar cell as compared to the devices based on only the semiconductor nanorods in the polymer matrix or when gold nanoparticles were added separately to the BHJs. In the latter device, gold nanoparticles offered plasmonic enhancement due to an increased cross-section of optical absorption. We report growth and characteristics of the Schottky junctions formed through an intimate contact between Bi 2 S 3 nanorods and gold nanoparticles. We also report fabrication and characterization of BHJ solar cells based on such heterojunctions. We highlight the benefit of using metal-semiconductor Schottky diodes over only inorganic semiconductor nanorods or quantum dots in a polymer matrix in forming hybrid BHJ solar cells

  15. Cellulose acetate fibers covered by CdS nanoparticles for hybrid solar cell applications

    Energy Technology Data Exchange (ETDEWEB)

    Cortina, Hugo; Martinez-Alonso, Claudia [Centro de Investigacion en Energia, UNAM, Priv. Xochicalco S/N, Temixco, Morelos 62580 (Mexico); Castillo-Ortega, Monica [Universidad de Sonora, Hermosillo, Sonora 83000 (Mexico); Hu, Hailin, E-mail: hzh@cie.unam.mx [Centro de Investigacion en Energia, UNAM, Priv. Xochicalco S/N, Temixco, Morelos 62580 (Mexico)

    2012-09-20

    In this work cellulose acetate (CA) fibers with a diameter of approximately 1 {mu}m were immersed in a cadmium sulfide (CdS) precursor solution. After 3 h the original white color CA fibers became yellow and maintained the same form, suggesting the deposition of CdS on fiber surface. SEM images showed that CA fibers were covered by uniformly sized CdS nanoparticles of approximately 100 nm. XRD and optical absorption spectra indicated that they contained mostly cubic crystalline phase with the optical band gap of 2.43 eV. CdS coated CA fibers, called CdS(CA) fibers, were dispersed in a polar dispersant (dimethyl sulfoxide, DMSO) and then mixed with a poly(3-hexylthiophene) (P3HT) solution in a non-polar solvent (dichlorobenzene, DCB). The mixture was cast onto a transparent conductive glass substrate (Indium-Tin-Oxide, ITO), and after solvent evaporation a thin layer of CdS(CA)-P3HT composite was formed. It is observed that the volume relation between the polar dispersant and non-polar solvent influences the solubility of the P3HT product in the composite coating and the photovoltaic performance of the corresponding cell as well. The mass ratio between CdS(CA) fibers and P3HT in the composite layer affects the optical absorption of the composite. The best photovoltaic performance was obtained in CdS(CA)-P3HT based cells with a volume relation between DCB and DMSO of 3.5-1, a mass ratio between CdS(CA) and P3HT of 1:1, and a rapid drying process for composite coatings.

  16. Facile Preparation of TiO2 Nanobranch/Nanoparticle Hybrid Architecture with Enhanced Light Harvesting Properties for Dye-Sensitized Solar Cells

    Directory of Open Access Journals (Sweden)

    Ju Seong Kim

    2015-01-01

    Full Text Available We report TiO2 nanobranches/nanoparticles (NBN hybrid architectures that can be synthesized by a facile solution phase method. The hybrid architecture simultaneously improves light harvesting and charge collection performances for a dye-sensitized solar cell. First, TiO2 nanorods with a trunk length of 2 μm were grown on a fluorine-doped tin oxide (FTO/glass substrate, and then nanobranches and nanoparticles were deposited on the nanorods’ trunks through a solution method using an aqueous TiCl3 solution at 80°C. The relative amount of nanobranches and nanoparticles can be controlled by multiplying the number of TiCl3 treatments to maximize the amount of surface area. We found that the resultant TiO2 NBN hybrid architecture greatly improves the amount of dye adsorption (five times compared to bare nanorods due to the enhanced surface area, while maintaining a fast charge collection, leading to a three times higher current density and thus tripling the maximum power conversion efficiency for a dye-sensitized solar cell.

  17. A comparative study on the performance of hybrid solar cells containing ZnSTe QDs in hole transporting layer and photoactive layer

    Energy Technology Data Exchange (ETDEWEB)

    Najeeb, Mansoor Ani [Qatar University, Center for Advanced Materials (CAM) (Qatar); Abdullah, Shahino Mah; Aziz, Fakhra [University of Malaya, Low Dimensional Materials Research Centre (LDMRC), Department of Physics, Faculty of Science (Malaysia); Ahmad, Zubair, E-mail: zubairtarar@qu.edu.qa; Shakoor, R. A. [Qatar University, Center for Advanced Materials (CAM) (Qatar); Mohamed, A. M. A. [Suez University, Department of Metallurgical and Materials Engineering, Faculty of Petroleum and Mining Engineering (Egypt); Khalil, Uzma [University of Peshawar, Department of Electronics, Jinnah College for Women (Pakistan); Swelm, Wageh; Al-Ghamdi, Ahmed A. [King Abdulaziz University, Department of Physics, Faculty of Science (Saudi Arabia); Sulaiman, Khaulah [University of Malaya, Low Dimensional Materials Research Centre (LDMRC), Department of Physics, Faculty of Science (Malaysia)

    2016-12-15

    In this paper, ZnSTe quantum dots-based hybrid solar cells (HSC) with two different device architectures have been investigated. The improved performance of the poly(3-hexylthiophene) (P3HT) and [6,6]phenyl C{sub 71} butyric acid methyl ester (PC{sub 71}BM)-based bulk heterojunction (BHJ) solar cells by the incorporation of ZnSTe quantum dots (QDs) with an average size of 2.96 nm in PEDOT:PSS layer and active layer that have been demonstrated. Although the efficiency of both types of devices is almost the same, a close comparison reveals different reasons behind their improved performance. The device prepared with QDs in the HTL has shown reduced series resistance, increased shunt resistance, and improved mobility. On the other hand, QDs in the photoactive layer demonstrates increased photo-generation leading to improved efficiency.

  18. Nanostructured Organic Solar Cells

    DEFF Research Database (Denmark)

    Radziwon, Michal Jędrzej; Rubahn, Horst-Günter; Madsen, Morten

    Recent forecasts for alternative energy generation predict emerging importance of supporting state of art photovoltaic solar cells with their organic equivalents. Despite their significantly lower efficiency, number of application niches are suitable for organic solar cells. This work reveals...... the principles of bulk heterojunction organic solar cells fabrication as well as summarises major differences in physics of their operation....

  19. Solar Photovoltaic Cells.

    Science.gov (United States)

    Mickey, Charles D.

    1981-01-01

    Reviews information on solar radiation as an energy source. Discusses these topics: the key photovoltaic material; the bank theory of solids; conductors, semiconductors, and insulators; impurity semiconductors; solid-state photovoltaic cell operation; limitations on solar cell efficiency; silicon solar cells; cadmium sulfide/copper (I) sulfide…

  20. Surface tailoring of newly developed amorphous Znsbnd Sisbnd O thin films as electron injection/transport layer by plasma treatment: Application to inverted OLEDs and hybrid solar cells

    Science.gov (United States)

    Yang, Hongsheng; Kim, Junghwan; Yamamoto, Koji; Xing, Xing; Hosono, Hideo

    2018-03-01

    We report a unique amorphous oxide semiconductor Znsbnd Sisbnd O (a-ZSO) which has a small work function of 3.4 eV for as-deposited films. The surface modification of a-ZSO thin films by plasma treatments is examined to apply it to the electron injection/transport layer of organic devices. It turns out that the energy alignment and exciton dissociation efficiency at a-ZSO/organic semiconductor interface significantly changes by choosing different gas (oxygen or argon) for plasma treatments (after a-ZSO was exposed to atmospheric environment for 5 days). In situ ultraviolet photoelectron spectroscopy (UPS) measurement reveals that the work function of a-ZSO is increased to 4.0 eV after an O2-plasma treatment, while the work function of 3.5 eV is recovered after an Ar-plasma treatment which indicates this treatment is effective for surface cleaning. To study the effects of surface treatments to device performance, OLEDs and hybrid polymer solar cells with O2-plasma or Ar-plasma treated a-ZSO are compared. Effects of these surface treatments on performance of inverted OLEDs and hybrid polymer solar cells are examined. Ar-plasma treated a-ZSO works well as the electron injection layer in inverted OLEDs (Alq3/a-ZSO) because the injection barrier is small (∼ 0.1 eV). On the other hands, O2-plasma treated a-ZSO is more suitable for application to hybrid solar cells which is benefiting from higher exciton dissociation efficiency at polymer (P3HT)/ZSO interface.

  1. Synthesis of a conjugated pyrrolopyridazinedione–benzodithiophene (PPD–BDT) copolymer and its application in organic and hybrid solar cells

    KAUST Repository

    Knall, Astrid-Caroline; Jones, Andrew O. F.; Kunert, Birgit; Resel, Roland; Reishofer, David; Zach, Peter W.; Kirkus, Mindaugas; McCulloch, Iain; Rath, Thomas

    2017-01-01

    -coupling polycondensation. The resulting PPD–BDT copolymer revealed an optical bandgap of 1.8 eV and good processability from chlorobenzene solutions. In an organic solar cell in combination with PC70BM, the polymer led to a power conversion efficiency of 4.5%. Moreover

  2. Multifunctional Inverse Opal-Like TiO2 Electron Transport Layer for Efficient Hybrid Perovskite Solar Cells.

    Science.gov (United States)

    Chen, Xiao; Yang, Shuang; Zheng, Yi Chu; Chen, Ying; Hou, Yu; Yang, Xiao Hua; Yang, Hua Gui

    2015-09-01

    A novel multifunctional inverse opal-like TiO 2 electron transport layer (IOT-ETL) is designed to replace the traditional compact layer and mesoporous scaffold layer in perovskite solar cells (PSCs). Improved light harvesting efficiency and charge transporting performance in IOT-ETL based PSCs yield high power conversion efficiency of 13.11%.

  3. The Effect of the Microstructure on Trap-Assisted Recombination and Light Soaking Phenomenon in Hybrid Perovskite Solar Cells

    NARCIS (Netherlands)

    Shao, Shuyan; Abdu-Aguye, Mustapha; Sherkar, Tejas S.; Fang, Hong-Hua; Adjokatse, Sampson; ten Brink, Gert; Kooi, Bart J.; Koster, L. Jan Anton; Loi, Maria Antonietta

    2016-01-01

    Despite the rich experience gained in controlling the microstructure of perovskite films over the past several years, little is known about how the microstructure affects the device properties of perovskite solar cells (HPSCs). In this work, the effects of the perovskite film microstructure on the

  4. Amorphous Tin Oxide as a Low-Temperature-Processed Electron-Transport Layer for Organic and Hybrid Perovskite Solar Cells

    KAUST Repository

    Barbe, Jeremy; Tietze, Max Lutz; Neophytou, Marios; Banavoth, Murali; Alarousu, Erkki; El Labban, Abdulrahman; Abulikemu, Mutalifu; Yue, Wan; Mohammed, Omar F.; McCulloch, Iain; Amassian, Aram; Del Gobbo, Silvano

    2017-01-01

    Chemical bath deposition (CBD) of tin oxide (SnO) thin films as an electron-transport layer (ETL) in a planar-heterojunction n-i-p organohalide lead perovskite and organic bulk-heterojunction (BHJ) solar cells is reported. The amorphous SnO (a

  5. Hybrid solar cells with outstanding short-circuit currents based on a room temperature soft-chemical strategy: the case of P3HT:Ag2S.

    Science.gov (United States)

    Lei, Yan; Jia, Huimin; He, Weiwei; Zhang, Yange; Mi, Liwei; Hou, Hongwei; Zhu, Guangshan; Zheng, Zhi

    2012-10-24

    P3HT:Ag(2)S hybrid solar cells with broad absorption from the UV to NIR band were directly fabricated on ITO glass by using a room temperature, low energy consumption, and low-cost soft-chemical strategy. The resulting Ag(2)S nanosheet arrays facilitate the construction of a perfect percolation structure with organic P3HT to form ordered bulk heterojunctions (BHJ); without interface modification, the assembled P3HT:Ag(2)S device exhibits outstanding short-circuit current densities (J(sc)) around 20 mA cm(-2). At the current stage, the optimized device exhibited a power conversion efficiency of 2.04%.

  6. Influence of Quantum Dot Concentration on Carrier Transport in ZnO:TiO2 Nano-Hybrid Photoanodes for Quantum Dot-Sensitized Solar Cells

    Directory of Open Access Journals (Sweden)

    Francis S. Maloney

    2016-10-01

    Full Text Available Zinc oxide nanowire and titanium dioxide nanoparticle (ZnO:TiO2 NW/NP hybrid films were utilized as the photoanode layer in quantum dot-sensitized solar cells (QDSSCs. CdSe quantum dots (QDs with a ZnS passivation layer were deposited on the ZnO:TiO2 NW/NP layer as a photosensitizer by successive ion layer adsorption and reaction (SILAR. Cells were fabricated using a solid-state polymer electrolyte and intensity-modulated photovoltage and photocurrent spectroscopy (IMVS/PS was carried out to study the electron transport properties of the cell. Increasing the SILAR coating number enhanced the total charge collection efficiency of the cell. The electron transport time constant and diffusion length were found to decrease as more QD layers were added.

  7. Rear-Sided Passivation by SiNx:H Dielectric Layer for Improved Si/PEDOT:PSS Hybrid Heterojunction Solar Cells.

    Science.gov (United States)

    Sun, Yiling; Gao, Pingqi; He, Jian; Zhou, Suqiong; Ying, Zhiqin; Yang, Xi; Xiang, Yong; Ye, Jichun

    2016-12-01

    Silicon/organic hybrid solar cells have recently attracted great attention because they combine the advantages of silicon (Si) and the organic cells. In this study, we added a patterned passivation layer of silicon nitride (SiNx:H) onto the rear surface of the Si substrate in a Si/poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) ( PSS) hybrid solar cell, enabling an improvement of 0.6 % in the power conversion efficiency (PCE). The addition of the SiNx:H layer boosted the open circuit voltage (V oc) from 0.523 to 0.557 V, suggesting the well-passivation property of the patterned SiNx:H thin layer that was created by plasma-enhanced chemical vapor deposition and lithography processes. The passivation properties that stemmed from front PSS, rear-SiNx:H, front PSS/rear-SiNx:H, etc. are thoroughly investigated, in consideration of the process-related variations.

  8. Efficiency enhancement of dye-sensitized solar cells by optimization of electrospun ZnO nanowire/nanoparticle hybrid photoanode and combined modification

    International Nuclear Information System (INIS)

    Song, Lixin; Du, Pingfan; Xiong, Jie; Ko, Frank; Cui, Can

    2015-01-01

    ZnO nanoparticles (ZNPs) and ZnO nanowires (ZNWs) were fabricated via electrospinning and calcination. The ZNPs and ZNWs were blended with different mass ratio by varying ZNWs from 0% to 100% and serviced as photoanodic film of dye-sensitized solar cells (DSSCs) via spin coating. The efficiency of these DSSCs reached a maximum of 2.6% at 20 wt% ZNWs. In order to improve the photovoltaic properties of ZNWs/ZNPs hybrid photoanodic film, the ZNWs/ZNPs hybrid film was modified by the incorporation of multi-walled carbon nanotubes (MWCNTs) into ZnO matrix including both ZNPs and ZNWs combined with TiCl 4 post-treatment. As a result, the efficiency of DSSCs increased from 2.6% to 3.8%, which is mainly attributed to the increased dye loading, faster electron transport, and less electron loss

  9. Glucose aided preparation of tungsten sulfide/multi-wall carbon nanotube hybrid and use as counter electrode in dye-sensitized solar cells.

    Science.gov (United States)

    Wu, Jihuai; Yue, Gentian; Xiao, Yaoming; Huang, Miaoliang; Lin, Jianming; Fan, Leqing; Lan, Zhang; Lin, Jeng-Yu

    2012-12-01

    The tungsten sulfide/multi-wall carbon nanotube (WS(2)/MWCNT) hybrid was prepared in the presence of glucose by the hydrothermal route. The hybrid materials were used as counter electrode in the dye-sensitized solar cell (DSSC). The results of cyclic voltammetry measurement and electrochemical impedance spectroscopy indicated that the glucose aided prepared (G-A) WS(2)/MWCNT electrode had low charge-transfer resistance (R(ct)) and high electrocatalytic activity for triiodide reduction. The excellent electrochemical properties for (G-A) WS(2)/MWCNT electrode is due to the synergistic effects of WS(2) and MWCNTs, as well as amorphous carbon introduced by glucose. The DSSC based on the G-A WS(2)/MWCNT counter electrode achieved a high power conversion efficiency of 7.36%, which is comparable with the performance of the DSSC using Pt counter electrode (7.54%).

  10. Exploring the Effects of the Pb2+ Substitution in MAPbI3 on the Photovoltaic Performance of the Hybrid Perovskite Solar Cells.

    Science.gov (United States)

    Frolova, Lyubov A; Anokhin, Denis V; Gerasimov, Kirill L; Dremova, Nadezhda N; Troshin, Pavel A

    2016-11-03

    Here we report a systematic study of the Pb 2+ substitution in the hybrid iodoplumbate MAPbI 3 with a series of elements affecting optoelectronic, structural, and morphological properties of the system. It has been shown that even partial replacement of lead with Cd 2+ , Zn 2+ , Fe 2+ , Ni 2+ , Co 2+ , In 3+ , Bi 3+ , Sn 4+ , and Ti 4+ results in a significant deterioration of the photovoltaic characteristics. On the contrary, Hg-containing hybrid MAPb 1-x Hg x I 3 salts demonstrated a considerably improved solar cell performance at optimal mercury loading. This result opens up additional dimension in the compositional engineering of the complex lead halides for designing novel photoactive materials with advanced optoelectronic and photovoltaic properties.

  11. Improved Work Function of Poly(3,4-ethylenedioxythiophene): Poly(styrenesulfonic acid) and its Effect on Hybrid Silicon/Organic Heterojunction Solar Cells

    Science.gov (United States)

    Shen, Xiaojuan; Chen, Ling; Pan, Jianmei; Hu, Yue; Li, Songjun; Zhao, Jie

    2016-11-01

    Hybrid silicon/organic solar cells have been recently extensively investigated due to their simple structure and low-cost fabrication process. However, the efficiency of the solar cells is greatly limited by the barrier height as well as the carrier recombination at the silicon/organic interface. In this work, hydrochloroplatinic acid (H2PtCl6) is employed into the poly(3,4-ethlenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) solution, and the work function (WF) of the PEDOT:PSS layer has been successfully improved. Based on the Pt-modified PEDOT:PSS layer, the efficiency of the silicon/PEDOT:PSS cell can be increased to 11.46%, corresponding to 20% enhancement to the one without platinum (Pt) modification. Theoretical and experimental results show that, when increasing the WF of the PEDO:PSS layer, the barrier height between the silicon/PEDOT:PSS interface can be effectively enhanced. Meanwhile, the carrier recombination at the interface is significantly reduced. These results can contribute to better understanding of the interfacial mechanism of silicon/PEDOT:PSS interface, and further improving the device performance of silicon/organic solar cells.

  12. Performance investigation of a wind turbine–solar photovoltaic panels–fuel cell hybrid system installed at İncek region – Ankara, Turkey

    International Nuclear Information System (INIS)

    Devrim, Yılser; Bilir, Levent

    2016-01-01

    Highlights: • A hybrid system with a wind turbine, photovoltaic panels and a fuel cell was studied. • 3 kW wind turbine, 17.97 m 2 photovoltaics, 1.2 kW fuel cell and 4.7 kW electrolyzer was used. • The system can meet the entire demand of a residential house in Ankara, Turkey. • Only exception is in November, when the energy lack can be compensated from the grid. - Abstract: Renewable energy use in the world increases year by year. However, in many cases it is not possible to cover the electrical energy need of even a single house using only one renewable energy resource due to its intermittent nature. At this point, hybrid systems are applied to overcome this problem. This study focuses on the combination of photovoltaic solar panels, a small scale wind turbine, an electrolyzer and a proton exchange membrane fuel cell hybrid system for electrical power generation for an average house of 150 m 2 located at İncek region of Ankara, Turkey. Solar and wind energies were used as primary sources and a proton exchange membrane fuel cell is used as the backup power. The hybrid system was modeled and the results indicate that the use of the selected wind turbine with a 3 kW capacity along with photovoltaic panels with 17.97 m 2 area is sufficient to provide the required 5 h operation of the electrolyzer, which in turn provides the necessary hydrogen and oxygen to the fuel cell. Since the daily energy needed by the investigated house was taken as 5 kW h, the fuel cell with a net power output of 1 kW supplies all electrical demand with its 5 h operation. The outcomes show that the hybrid system is capable to provide all electrical need of the house all year round, except November. The electrical energy production of the proposed system is considerably higher than the demand in many months and this surplus electricity can be used in order to support the cooling and heating system of the considered house.

  13. Solar cell concentrating system

    International Nuclear Information System (INIS)

    Garg, H.P.; Sharma, V.K.; Agarwal, R.K.

    1986-11-01

    This study reviews fabrication techniques and testing facilities for different solar cells under concentration which have been developed and tested. It is also aimed to examine solar energy concentrators which are prospective candidates for photovoltaic concentrator systems. This may provide an impetus to the scientists working in the area of solar cell technology

  14. Developing the photovoltaic performance of dye-sensitized solar cells (DSSCs) using a SnO2-doped graphene oxide hybrid nanocomposite as a photo-anode

    Science.gov (United States)

    Sasikumar, Ragu; Chen, Tse-Wei; Chen, Shen-Ming; Rwei, Syang-Peng; Ramaraj, Sayee Kannan

    2018-05-01

    Tin(IV) oxide nanoparticles (SnO2 NPs) doped on the surface of graphene oxide (GO) sheets for application in Dye-Sensitized Solar Cells (DSSCs). The effective incorporation of SnO2 on the surface of GO sheets were confirmed by powder X-ray diffraction (PXRD), Fourier transform infra-red spectroscopy (FT-IR), thermogravimetric analysis (TGA), electrochemical impedance spectroscopy (EIS), and Raman spectroscopy. The morphology of the GO/SnO2 hybrid nanocomposite was confirmed by field emission scanning electron microscopy (FE-SEM) analysis. This current study involvement with the effect of different photo-anodes such as GO, SnO2, and GO/SnO2 hybrid nanocomposite on the power conversion efficiency (PCE) of the triiodide electrolyte based DSSCs. Remarkably, GO/SnO2 hybrid nanocomposite based photo-anode for DSSC observed PCE of 8.3% and it is about 12% higher than that of un-doped TiO2 photo-anode. The equivalent short-circuit photocurrent density (Jsc) of 16.67 mA cm-2, open circuit voltage (Voc) of 0.77 V, and fill factor (FF) of 0.65 respectively. The achieved results propose that the hybrid nanocomposite is an appropriate photo-anodic material for DSSCs applications.

  15. Sequential Dip-spin Coating Method: Fully Infiltration of MAPbI 3-x Cl x into Mesoporous TiO 2 for Stable Hybrid Perovskite Solar Cells

    KAUST Repository

    Kim, Woochul

    2017-05-31

    Organic-inorganic hybrid perovskite solar cells (PSCs) have reached a power conversion efficiency of 22.1% in a short period (∼7 years), which has been obtainable in silicon-based solar cells for decades. The high power conversion efficiency and simple fabrication process render perovskite solar cells as potential future power generators, after overcoming the lack of long-term stability, for which the deposition of void-free and pore-filled perovskite films on mesoporous TiO2 layers is the key pursuit. In this research, we developed a sequential dip-spin coating method in which the perovskite solution can easily infiltrate the pores within the TiO2 nanoparticulate layer, and the resultant film has large crystalline grains without voids between them. As a result, a higher short circuit current is achieved owing to the large interfacial area of TiO2/perovskite, along with enhanced power conversion efficiency, compared to the conventional spin coating method. The as-made pore-filled and void-free perovskite film avoids intrinsic moisture and air and can effectively protect the diffusion of degradation factors into the perovskite film, which is advantageous for the long-term stability of PSCs.

  16. Exploitation of inimitable properties of CuInS2 quantum dots for energy conversion in bulk heterojunction hybrid solar cell

    Science.gov (United States)

    Jindal, Shikha; Giripunje, Sushama M.

    2017-11-01

    Quantum dots (QDs) are the suitable material for solar cell devices owing to its distinctive optical, electrical and electronic properties. Currently, the most efficient devices have employed the toxic QDs which cause destructive impact on environment. In the present article, we have used environment benign CuInS2 QDs as an acceptor material in bulk heterojunction device of P3HT and QDs. The energy level positions corroborated from UPS spectra substantiates the acceptor property of CuInS2. We scrutinized the hybrid solar cell by tailoring the acceptor content in active layer. The increased acceptor content intensifies the performance of device. The enhancement in photovoltaic parameters is mainly due to the fast dissociation and extraction of photogenerated excitons which occurs with the larger wt% of acceptor QDs. Current density-voltage characteristics describes the greater V oc and I sc in the 60 wt% CuInS2 QDs based solar cell as compared to the low wt% of QDs in the active layer.

  17. Solution-processed highly conductive PEDOT:PSS/AgNW/GO transparent film for efficient organic-Si hybrid solar cells.

    Science.gov (United States)

    Xu, Qiaojing; Song, Tao; Cui, Wei; Liu, Yuqiang; Xu, Weidong; Lee, Shuit-Tong; Sun, Baoquan

    2015-02-11

    Hybrid solar cells based on n-Si/poly(3,4-ethylenedioxythiophene):poly(styrene- sulfonate) (PEDOT:PSS) heterojunction promise to be a low cost photovoltaic technology by using simple device structure and easy fabrication process. However, due to the low conductivity of PEDOT:PSS, a metal grid deposited by vacuum evaporation method is still required to enhance the charge collection efficiency, which complicates the device fabrication process. Here, a solution-processed graphene oxide (GO)-welded silver nanowires (AgNWs) transparent conductive electrode (TCE) was employed to replace the vacuum deposited metal grid. A unique "sandwich" structure was developed by embedding an AgNW network between PEDOT:PSS and GO with a figure-of-merit of 8.6×10(-3) Ω(-1), which was even higher than that of sputtered indium tin oxide electrode (6.6×10(-3) Ω(-1)). A champion power conversion efficiency of 13.3% was achieved, because of the decreased series resistance of the TCEs as well as the enhanced built-in potential (Vbi) in the hybrid solar cells. The TCEs were obtained by facile low-temperature solution process method, which was compatible with cost-effective mass production technology.

  18. Comprehensive Investigation of Silver Nanoparticle/Aluminum Electrodes for Copper Indium Sulfide/Polymer Hybrid Solar Cells

    DEFF Research Database (Denmark)

    Arar, Mario; Pein, Andreas; Haas, Wernfried

    2012-01-01

    ,1,3-benzothiadiazole)] (PSiF-DBT) nanocomposite solar cells, which improves the fill factor compared to pure aluminum electrodes. A comprehensive structural investigation was performed by means of transmission electron microscopy and time-of-flight secondary ion mass spectrometry revealing the presence of silver...... nanoparticles in an aluminum oxide matrix between the absorber layer and the aluminum cathode. In combination with complementary optical investigations, the origin of the improvement is ascribed to a facilitated charge extraction....

  19. Crystalline silicon solar cell with front and rear polysilicon passivated contacts as bottom cell for hybrid tandems

    NARCIS (Netherlands)

    Luxembourg, S.L.; Zhang, D.; Wu, Y.; Najafi, M.; Zardetto, V.; Verhees, W.; Burgers, A.R.; Veenstra, S.; Geerligs, L.J.

    2017-01-01

    In this paper we analyze and model perovskite/c-Si tandem cells with front and rear polySi passivated contacts on the bottom cell. A high-efficiency tandem approach will benefit from the high Voc potential of a c-Si bottom cell with front and rear polySi passivated contacts while the combination

  20. Perovskite oxide SrTiO3 as an efficient electron transporter for hybrid perovskite solar cells

    KAUST Repository

    Bera, Ashok

    2014-12-11

    In this work, we explored perovskite oxide SrTiO3 (STO) for the first time as the electron-transporting layer in organolead trihalide perovskite solar cells. The steady-state photoluminescence (PL) quenching and transient absorption experiments revealed efficient photoelectron transfer from CH3NH3PbI3-xClx to STO. Perovskite solar cells with meso-STO exhibit an open circuit voltage of 1.01 V, which is 25% higher than the value of 0.81 V achieved in the control device with the conventional meso-TiO2. In addition, an increase of 17% in the fill factor was achieved by tailoring the thickness of the meso-STO layer. We found that the application of STO leads to uniform perovskite layers with large grains and complete surface coverage, leading to a high shunt resistance and improved performance. These findings suggest STO as a competitive candidate as electron transport material in organometal perovskite solar cells.

  1. Perovskite oxide SrTiO3 as an efficient electron transporter for hybrid perovskite solar cells

    KAUST Repository

    Bera, Ashok; Wu, Kewei; Sheikh, Arif D.; Alarousu, Erkki; Mohammed, Omar F.; Wu, Tao

    2014-01-01

    In this work, we explored perovskite oxide SrTiO3 (STO) for the first time as the electron-transporting layer in organolead trihalide perovskite solar cells. The steady-state photoluminescence (PL) quenching and transient absorption experiments revealed efficient photoelectron transfer from CH3NH3PbI3-xClx to STO. Perovskite solar cells with meso-STO exhibit an open circuit voltage of 1.01 V, which is 25% higher than the value of 0.81 V achieved in the control device with the conventional meso-TiO2. In addition, an increase of 17% in the fill factor was achieved by tailoring the thickness of the meso-STO layer. We found that the application of STO leads to uniform perovskite layers with large grains and complete surface coverage, leading to a high shunt resistance and improved performance. These findings suggest STO as a competitive candidate as electron transport material in organometal perovskite solar cells.

  2. Photovoltaic solar cell

    Science.gov (United States)

    Nielson, Gregory N.; Gupta, Vipin P.; Okandan, Murat; Watts, Michael R.

    2015-09-08

    A photovoltaic solar concentrator is disclosed with one or more transverse-junction solar cells (also termed point contact solar cells) and a lens located above each solar cell to concentrate sunlight onto the solar cell to generate electricity. Piezoelectric actuators tilt or translate each lens to track the sun using a feedback-control circuit which senses the electricity generated by one or more of the solar cells. The piezoelectric actuators can be coupled through a displacement-multiplier linkage to provide an increased range of movement of each lens. Each lens in the solar concentrator can be supported on a frame (also termed a tilt plate) having three legs, with the movement of the legs being controlled by the piezoelectric actuators.

  3. Exciton generation/dissociation/charge-transfer enhancement in inorganic/organic hybrid solar cells by robust single nanocrystalline LnPxOy (Ln = Eu, Y) doping.

    Science.gov (United States)

    Jin, Xiao; Sun, Weifu; Chen, Zihan; Wei, Taihuei; Chen, Chuyang; He, Xingdao; Yuan, Yongbiao; Li, Yue; Li, Qinghua

    2014-06-11

    Low-temperature solution-processed photovoltaics suffer from low efficiencies because of poor exciton or electron-hole transfer. Inorganic/organic hybrid solar cell, although still in its infancy, has attracted great interest thus far. One of the promising ways to enhance exciton dissociation or electron-hole transport is the doping of lanthanide phosphate ions. However, the underlying photophysical mechanism remains poorly understood. Herein, by applying femtosecond transient absorption spectroscopy, we successfully distinguished hot electron, less energetic electron, hole transport from electron-hole recombination. Concrete evidence has been provided that lanthanide phosphate doping improves the efficiency of both hot electron and "less energetic" electron transfers from donor to acceptor, but the hole transport almost remains unchanged. In particular, the hot electron transfer lifetime was shortened from 30.2 to 12.7 ps, that is, more than 60% faster than pure TiO2 acceptor. Such improvement was ascribed to the facts that the conduction band (CB) edge energy level of TiO2 has been elevated by 0.2 eV, while the valence band level almost remains unchanged, thus not only narrowing the energy offset between CB levels of TiO2 and P3HT, but also meanwhile enlarging the band gap of TiO2 itself that permits one to inhibit electron-hole recombination within TiO2. Consequently, lanthanide phosphate doped TiO2/P3HT bulk-heterojunction solar cell has been demonstrated to be a promising hybrid solar cell, and a notable power conversion efficiency of 2.91% is therefore attained. This work indicates that lanthanide compound ions can efficiently facilitate exciton generation, dissociation, and charge transport, thus enhancing photovoltaic performance.

  4. A hybrid air conditioner driven by a hybrid solar collector

    Science.gov (United States)

    Al-Alili, Ali

    The objective of this thesis is to search for an efficient way of utilizing solar energy in air conditioning applications. The current solar Air Conditioners (A/C)s suffer from low Coefficient of Performance (COP) and performance degradation in hot and humid climates. By investigating the possible ways of utilizing solar energy in air conditioning applications, the bottlenecks in these approaches were identified. That resulted in proposing a novel system whose subsystem synergy led to a COP higher than unity. The proposed system was found to maintain indoor comfort at a higher COP compared to the most common solar A/Cs, especially under very hot and humid climate conditions. The novelty of the proposed A/C is to use a concentrating photovoltaic/thermal collector, which outputs thermal and electrical energy simultaneously, to drive a hybrid A/C. The performance of the hybrid A/C, which consists of a desiccant wheel, an enthalpy wheel, and a vapor compression cycle (VCC), was investigated experimentally. This work also explored the use of a new type of desiccant material, which can be regenerated with a low temperature heat source. The experimental results showed that the hybrid A/C is more effective than the standalone VCC in maintaining the indoor conditions within the comfort zone. Using the experimental data, the COP of the hybrid A/C driven by a hybrid solar collector was found to be at least double that of the current solar A/Cs. The innovative integration of its subsystems allows each subsystem to do what it can do best. That leads to lower energy consumption which helps reduce the peak electrical loads on electric utilities and reduces the consumer operating cost since less energy is purchased during the on peak periods and less solar collector area is needed. In order for the proposed A/C to become a real alternative to conventional systems, its performance and total cost were optimized using the experimentally validated model. The results showed that for an

  5. The possibility of developing hybrid PV/T solar system

    Science.gov (United States)

    Dobrnjac, M.; Zivkovic, P.; Babic, V.

    2017-05-01

    An alternative and cost-effective solution to developing integrated PV system is to use hybrid photovoltaic/thermal (PV/T) solar system. The temperature of PV modules increases due to the absorbed solar radiation that is not converted into electricity, causing a decrease in their efficiency. In hybrid PV/T solar systems the reduction of PV module temperature can be combined with a useful fluid heating. In this paper we present the possibility of developing a new hybrid PV/T solar system. Hybrid PV/T system can provide electrical and thermal energy, thus achieving a higher energy conversion rate of the absorbed solar radiation. We developed PV/T prototype consisted of commercial PV module and thermal panel with our original solution of aluminium absorber with special geometric shapes. The main advantages of our combined PV/T system are: removing of heat from the PV panel; extending the lifetime of photovoltaic cells; excess of the removing heat from PV part is used to heat the fluid in the thermal part of the panel; the possibility of using on the roof and facade constructions because less weight.

  6. Hybrid bulk heterojunction solar cells based on poly(3-hexylthiophene) and ZnO nanoparticles modified by side-chain functional polythiophenes

    International Nuclear Information System (INIS)

    Li, Fan; Du, Yanhui; Chen, Yiwang

    2012-01-01

    We report the investigation of the hybrid bulk heterojunction solar cells based on the blend of poly(3-hexylthiophene) (P3HT) and ZnO nanoparticles modified by side-chain thiol functional poly(3-thiophenehexanethiol) (P3HT-SH). Grafting of P3HT-SH onto ZnO nanoparticles can promote the dispersion of ZnO nanoparticles within P3HT matrix and facilitate electron injection process into ZnO nanoparticles, resulting in a more efficient photoinduced charge transfer than that in simple physical mixture of P3HT and non-modified ZnO nanoparticles (P3HT/ZnO). Furthermore, the performance of hybrid photovoltaic device based on P3HT/P3HT-SH-modified ZnO blend exhibits an improved device efficiency compared with P3HT/ZnO even before thermal treatment. After being annealed at 80 °C, the P3HT/P3HT-SH-modified ZnO device shows the power conversion efficiency as high as 0.68%, with the short-circuit current density of 1.89 mA/cm 2 , the open-circuit voltage of 0.599 V and a fill factor of 60.5% under AM 1.5 G illumination with 100 mW/cm 2 light intensity. - Highlights: ► Hybrid solar cells based on poly(3-hexylthiophene) and modified ZnO nanoparticles ► ZnO nanoparticles modified by side-chain functional polythiophenes ► Uniform dispersion and intimate contact between polymers and nanoparticles ► Efficient charge transfer leading to the improvement of device efficiency

  7. TiN nanoparticles on CNT-graphene hybrid support as noble-metal-free counter electrode for quantum-dot-sensitized solar cells.

    Science.gov (United States)

    Youn, Duck Hyun; Seol, Minsu; Kim, Jae Young; Jang, Ji-Wook; Choi, Youngwoo; Yong, Kijung; Lee, Jae Sung

    2013-02-01

    The development of an efficient noble-metal-free counter electrode is crucial for possible applications of quantum-dot-sensitized solar cells (QDSSCs). Herein, we present TiN nanoparticles on a carbon nanotube (CNT)-graphene hybrid support as a noble-metal-free counter electrode for QDSSCs employing a polysulfide electrolyte. The resulting TiN/CNT-graphene possesses an extremely high surface roughness, a good metal-support interaction, and less aggregation relative to unsupported TiN; it also has superior solar power conversion efficiency (4.13 %) when applying a metal mask, which is much higher than that of the state-of-the-art Au electrode (3.35 %). Based on electrochemical impedance spectroscopy measurements, the enhancement is ascribed to a synergistic effect between TiN nanoparticles and the CNT-graphene hybrid, the roles of which are to provide active sites for the reduction of polysulfide ions and electron pathways to TiN nanoparticles, respectively. The combination of graphene and CNTs leads to a favorable morphology that prevents stacking of graphene or bundling of CNTs, which maximizes the contact of the support with TiN nanoparticles and improves electron-transfer capability relative to either carbon material alone. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. A hybrid reconfigurable solar and wind energy system

    Science.gov (United States)

    Gadkari, Sagar A.

    We study the feasibility of a novel hybrid solar-wind hybrid system that shares most of its infrastructure and components. During periods of clear sunny days the system will generate electricity from the sun using a parabolic concentrator. The concentrator is formed by individual mirror elements and focuses the light onto high intensity vertical multi-junction (VMJ) cells. During periods of high wind speeds and at night, the same concentrator setup will be reconfigured to channel the wind into a wind turbine which will be used to harness wind energy. In this study we report on the feasibility of this type of solar/wind hybrid energy system. The key mechanisms; optics, cooling mechanism of VMJ cells and air flow through the system were investigated using simulation tools. The results from these simulations, along with a simple economic analysis giving the levelized cost of energy for such a system are presented. An iterative method of design refinement based on the simulation results was used to work towards a prototype design. The levelized cost of the system achieved in the economic analysis shows the system to be a good alternative for a grid isolated site and could be used as a standalone system in regions of lower demand. The new approach to solar wind hybrid system reported herein will pave way for newer generation of hybrid systems that share common infrastructure in addition to the storage and distribution of energy.

  9. Hybrid polymer-CdS solar cell active layers formed by in situ growth of CdS nanoparticles

    International Nuclear Information System (INIS)

    Masala, S.; Del Gobbo, S.; Borriello, C.; Bizzarro, V.; La Ferrara, V.; Re, M.; Pesce, E.; Minarini, C.; De Crescenzi, M.; Di Luccio, T.

    2011-01-01

    The integration of semiconductor nanoparticles (NPs) into a polymeric matrix has the potential to enhance the performance of polymer-based solar cells taking advantage of the physical properties of NPs and polymers. We synthesize a new class of CdS-NPs-based active layer employing a low-cost and low temperature route compatible with large-scale device manufacturing. Our approach is based on the controlled in situ thermal decomposition of a cadmium thiolate precursor in poly(3-hexylthiophene) (P3HT). The casted P3HT:precursor solid foils were heated up from 200 to 300 °C to allow the precursor decomposition and the CdS-NP formation within the polymer matrix. The CdS-NP growth was controlled by varying the annealing temperature. The polymer:precursor weight ratio was also varied to investigate the effects of increasing the NP volume fraction on the solar cell performances. The optical properties were studied by using UV–Vis absorption and photoluminescence (PL) spectroscopy at room temperature. To investigate the photocurrent response of P3HT:CdS nanocomposites, ITO/P3HT:CdS/Al solar cell devices were realized. We measured the external quantum efficiency (EQE) as a function of the wavelength. The photovoltaic response of the devices containing CdS-NPs showed a variation compared with the devices with P3HT only. By changing the annealing temperature the EQE is enhanced in the 400–600 nm spectral region. By increasing the NPs volume fraction remarkable changes in the EQE spectra were observed. The data are discussed also in relation to morphological features of the interfaces studied by Focused Ion Beam technique.

  10. Optical band gap tuning and electrical properties of polyaniline and its nanocomposites for hybrid solar cell application

    Science.gov (United States)

    Singh, R.; Choudhary, R. B.; Kandulna, R.

    2018-05-01

    Hcl doped conducting polyaniline-CdS nanocomposite has been prepared via In-situ polymerization in which cadmium nitrate was used as a source for cadmium. The structural morphology was investigated using FESEM and the presence of fibrous polyaniline and CdS nanoparticles. The synthesis of CdS and polyaniline was confirmed using the XRD analysis. I-V characteristic was used to explore the electrical behavior of PANI and its nanocoposites. Optical properties were studied and minimum band gap with highest band absorbance was found for synergistic concentration PANI-CdS (10%) for solar cells application.

  11. A Novel Activated-Charcoal-Doped Multiwalled Carbon Nanotube Hybrid for Quasi-Solid-State Dye-Sensitized Solar Cell Outperforming Pt Electrode.

    Science.gov (United States)

    Arbab, Alvira Ayoub; Sun, Kyung Chul; Sahito, Iftikhar Ali; Qadir, Muhammad Bilal; Choi, Yun Seon; Jeong, Sung Hoon

    2016-03-23

    Highly conductive mesoporous carbon structures based on multiwalled carbon nanotubes (MWCNTs) and activated charcoal (AC) were synthesized by an enzymatic dispersion method. The synthesized carbon configuration consists of synchronized structures of highly conductive MWCNT and porous activated charcoal morphology. The proposed carbon structure was used as counter electrode (CE) for quasi-solid-state dye-sensitized solar cells (DSSCs). The AC-doped MWCNT hybrid showed much enhanced electrocatalytic activity (ECA) toward polymer gel electrolyte and revealed a charge transfer resistance (RCT) of 0.60 Ω, demonstrating a fast electron transport mechanism. The exceptional electrocatalytic activity and high conductivity of the AC-doped MWCNT hybrid CE are associated with its synchronized features of high surface area and electronic conductivity, which produces higher interfacial reaction with the quasi-solid electrolyte. Morphological studies confirm the forms of amorphous and conductive 3D carbon structure with high density of CNT colloid. The excessive oxygen surface groups and defect-rich structure can entrap an excessive volume of quasi-solid electrolyte and locate multiple sites for iodide/triiodide catalytic reaction. The resultant D719 DSSC composed of this novel hybrid CE fabricated with polymer gel electrolyte demonstrated an efficiency of 10.05% with a high fill factor (83%), outperforming the Pt electrode. Such facile synthesis of CE together with low cost and sustainability supports the proposed DSSCs' structure to stand out as an efficient next-generation photovoltaic device.

  12. Microwave-assisted synthesis of C-doped TiO2 and ZnO hybrid nanostructured materials as quantum-dots sensitized solar cells

    Science.gov (United States)

    Rangel-Mendez, Jose R.; Matos, Juan; Cházaro-Ruiz, Luis F.; González-Castillo, Ana C.; Barrios-Yáñez, Guillermo

    2018-03-01

    The microwave-assisted solvothermal synthesis of C-doped TiO2 and ZnO hybrid materials was performed. Saccharose, titanium isopropoxide and zinc acetate were used as organic and inorganic sources for the synthesis. The influence of temperature and reaction time on the textural and optoelectronic properties of the hybrid materials was verified. Carbon quantum-dots of TiO2 and ZnO nanostructured spheres were obtained in a second pot by controlled calcination steps of the precursor hybrid materials. A carefully characterization by adsorption-desorption N2 isotherms, XRD, XPS, SEM, UV-vis/DR and electro- and photo-electrochemistry properties of the carbon quantum-dots TiO2 and ZnO spheres was performed. The photoelectrochemical activity of TiO2-C and ZnO-C films proved to be dependent on the conditions of synthesis. It was found a red-shift in the energy band gap of the semiconductors with values of 3.02 eV and 3.13 eV for the TiO2-C and ZnO-C, respectively, clearly lower than those on bare semiconductors, which is associated with the C-doping effect. From the photo-electrochemistry characterization of C-doped TiO2 and ZnO films can be concluded that the present materials have potential applications as photoelectrodes for quantum-dots sensitized solar cells.

  13. Simulation of Hybrid Solar Dryer

    International Nuclear Information System (INIS)

    Yunus, Y M; Al-Kayiem, H H

    2013-01-01

    The efficient performance of a solar dryer is mainly depending on the good distribution of the thermal and flow field inside the dryer body. This paper presents simulation results of a solar dryer with a biomass burner as backup heater. The flow and thermal fields were simulated by CFD tools under different operational modes. GAMBIT software was used for the model and grid generation while FLUENT software was used to simulate the velocity and temperature distribution inside the dryer body. The CFD simulation procedure was validated by comparing the simulation results with experimental measurement. The simulation results show acceptable agreement with the experimental measurements. The simulations have shown high temperature spot with very low velocity underneath the solar absorber and this is an indication for the poor design. Many other observations have been visualized from the temperature and flow distribution which cannot be captured by experimental measurements.

  14. Hybrids of Solar Sail, Solar Electric, and Solar Thermal Propulsion for Solar-System Exploration

    Science.gov (United States)

    Wilcox, Brian H.

    2012-01-01

    Solar sails have long been known to be an attractive method of propulsion in the inner solar system if the areal density of the overall spacecraft (S/C) could be reduced to approx.10 g/sq m. It has also long been recognized that the figure (precise shape) of useful solar sails needs to be reasonably good, so that the reflected light goes mostly in the desired direction. If one could make large reflective surfaces with reasonable figure at an areal density of approx.10 g/sq m, then several other attractive options emerge. One is to use such sails as solar concentrators for solar-electric propulsion. Current flight solar arrays have a specific output of approx. 100W/kg at 1 Astronomical Unit (AU) from the sun, and near-term advances promise to significantly increase this figure. A S/C with an areal density of 10 g/sq m could accelerate up to 29 km/s per year as a solar sail at 1 AU. Using the same sail as a concentrator at 30 AU, the same spacecraft could have up to approx. 45 W of electric power per kg of total S/C mass available for electric propulsion (EP). With an EP system that is 50% power-efficient, exhausting 10% of the initial S/C mass per year as propellant, the exhaust velocity is approx. 119 km/s and the acceleration is approx. 12 km/s per year. This hybrid thus opens attractive options for missions to the outer solar system, including sample-return missions. If solar-thermal propulsion were perfected, it would offer an attractive intermediate between solar sailing in the inner solar system and solar electric propulsion for the outer solar system. In the example above, both the solar sail and solar electric systems don't have a specific impulse that is near-optimal for the mission. Solar thermal propulsion, with an exhaust velocity of the order of 10 km/s, is better matched to many solar system exploration missions. This paper derives the basic relationships between these three propulsion options and gives examples of missions that might be enabled by

  15. Photovoltaic characterization of hybrid solar cells using surface modified TiO{sub 2} nanoparticles and poly(3-hexyl)thiophene

    Energy Technology Data Exchange (ETDEWEB)

    Guenes, Serap [Yildiz Technical University, Faculty of Arts and Science, Department of Physics, Davutpasa Campus, 34220, Esenler, Istanbul (Turkey); Marjanovic, Nenad [Plastic electronic GmbH, Rappetsederweg 28, A-4040 Linz (Austria); Nedeljkovic, Jovan M [Vinca Institute of Nuclear Sciences, PO Box 522, 11001 Belgrade (Serbia); Sariciftci, Niyazi Serdar [Linz Institute for Organic Solar Cells (LIOS), Physical Chemistry, Johannes Kepler University Linz, Altenberger Strasse 69, A-4040, Linz (Austria)], E-mail: sgunes@yildiz.edu.tr

    2008-10-22

    We report on the photovoltaic performance of bulk heterojunction solar cells using novel nanoparticles of 6-palmitate ascorbic acid surface modified TiO{sub 2} as an electron acceptor embedded into the donor poly(3-hexyl)thiophene (P3HT) matrix. Devices were fabricated by using P3HT with varying amounts of red TiO{sub 2} nanoparticles (1:1, 1:2, 1:3 w-w ratio). The devices were characterized by measuring current-voltage characteristics under simulated AM 1.5 conditions. Incident photon to current efficiency (IPCE) was spectrally resolved. The nanoscale morphology of such organic/inorganic hybrid blends was also investigated using atomic force microscopy (AFM)

  16. Rectenna solar cells

    CERN Document Server

    Moddel, Garret

    2013-01-01

    Rectenna Solar Cells discusses antenna-coupled diode solar cells, an emerging technology that has the potential to provide ultra-high efficiency, low-cost solar energy conversion. This book will provide an overview of solar rectennas, and provide thorough descriptions of the two main components: the diode, and the optical antenna. The editors discuss the science, design, modeling, and manufacturing of the antennas coupled with the diodes. The book will provide concepts to understanding the challenges, fabrication technologies, and materials required to develop rectenna structures. Written by e

  17. MgO-hybridized TiO{sub 2} interfacial layers assisting efficiency enhancement of solid-state dye-sensitized solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Sakai, Nobuya; Ikegami, Masashi; Miyasaka, Tsutomu, E-mail: miyasaka@toin.ac.jp [Graduate School of Engineering, Toin University of Yokohama, 1614 Kurogane-cho, Aoba, Yokohama, Kanagawa 225-8502 (Japan)

    2014-02-10

    Interfacial modification of a thin TiO{sub 2} compact layer (T-CL) by hybridization with MgO enhanced the quantum conversion efficiency of solid-state dye-sensitized solar cells (ssDSSCs) comprising a multilayer structure of transparent electrode/T-CL/dye-sensitized mesoporous TiO{sub 2}/hole conductor/metal counter electrode. The Mg(CH{sub 3}COO){sub 2} treatment was employed to introduce a MgO-TiO{sub 2} CL (T/M-CL), which enhanced the physical connection and conduction between the CL and mesoporous semiconductor layer as a consecutive interface, owing to the dehydration reaction of Mg(CH{sub 3}COO){sub 2}. The photocurrent density of ssDSSC was increased 33% by the T/M-CL compared with the T-CL, using an equivalent amount of adsorbed dye. The ssDSSC with the T/M-CL yielded the highest efficiency of 4.02% under irradiation at 100 mW cm{sup −2}. The electrical impedance spectroscopy showed that the charge-transfer resistance (R{sub ct}) of the photoelectrode with T/M-CL was reduced by 300 Ω from the reference non-treated T-CL electrode. Characterized by the intrinsically low R{sub ct} of the compact layer, the T/M-CL is capable of improving the photovoltaic performance of solid-state sensitized mesoscopic solar cells.

  18. Amorphous Tin Oxide as a Low-Temperature-Processed Electron-Transport Layer for Organic and Hybrid Perovskite Solar Cells

    KAUST Repository

    Barbe, Jeremy

    2017-02-08

    Chemical bath deposition (CBD) of tin oxide (SnO) thin films as an electron-transport layer (ETL) in a planar-heterojunction n-i-p organohalide lead perovskite and organic bulk-heterojunction (BHJ) solar cells is reported. The amorphous SnO (a-SnO) films are grown from a nontoxic aqueous bath of tin chloride at a very low temperature (55 °C) and do not require postannealing treatment to work very effectively as an ETL in a planar-heterojunction n-i-p organohalide lead perovskite or organic BHJ solar cells, in lieu of the commonly used ETL materials titanium oxide (TiO) and zinc oxide (ZnO), respectively. Ultraviolet photoelectron spectroscopy measurements on the glass/indium-tin oxide (ITO)/SnO/methylammonium lead iodide (MAPbI)/2,2′,7,7′-tetrakis(N,N-di-p-methoxyphenylamine)-9,9′-spirobifluorene device stack indicate that extraction of photogenerated electrons is facilitated by a perfect alignment of the conduction bands at the SnO/MAPbI interface, while the deep valence band of SnO ensures strong hole-blocking properties. Despite exhibiting very low electron mobility, the excellent interfacial energetics combined with high transparency (E > 4 eV) and uniform substrate coverage make the a-SnO ETL prepared by CBD an excellent candidate for the potentially low-cost and large-scale fabrication of organohalide lead perovskite and organic photovoltaics.

  19. Self-assembled hybrid materials based on conjugated polymers and semiconductors nano-crystals for plastic solar cells; Architectures hybrides auto-assemblees a base de systemes polyconjugues et de nanocristaux de semi-conducteurs pour le photovoltaique plastique

    Energy Technology Data Exchange (ETDEWEB)

    Girolamo, J. de

    2007-11-15

    This work is devoted to the elaboration of self-assembled hybrid materials based on poly(3- hexyl-thiophene) and CdSe nano-crystals for photovoltaic applications. For that, complementary molecular recognition units were introduced as side chain groups on the polymer and at the nano-crystals' surface. Diamino-pyrimidine groups were introduced by post-functionalization of a precursor copolymer, namely poly(3-hexyl-thiophene-co-3- bromo-hexyl-thiophene) whereas thymine groups were introduced at the nano-crystals' surface by a ligand exchange reaction with 1-(6-mercapto-hexyl)thymine. However, due to their different solubility, the mixing of the two components by solution processes is difficult. A 'one-pot' procedure was developed, but this method led to insoluble aggregates without control of the hybrid composition. To overcome the solubility problem, the layer-by-layer method was used to prepare the films. This method allows a precise control of the deposition process. Experimental parameters were tested in order to evaluate their impact on the resulting film. The films morphology was investigated by microscopy and X-Ray diffraction techniques. These analyses reveal an interpenetrated structure of nano-crystals within the polymer matrix rather than a multilayered structure. Electrochemical and spectro electrochemical studies were performed on the hybrid material deposited by the LBL process. Finally the materials were tested in a solar cell configuration and the I=f(V) curves reveals a clear photovoltaic behaviour. (author)

  20. Quantum dot solar cells

    CERN Document Server

    Wu, Jiang

    2013-01-01

    The third generation of solar cells includes those based on semiconductor quantum dots. This sophisticated technology applies nanotechnology and quantum mechanics theory to enhance the performance of ordinary solar cells. Although a practical application of quantum dot solar cells has yet to be achieved, a large number of theoretical calculations and experimental studies have confirmed the potential for meeting the requirement for ultra-high conversion efficiency. In this book, high-profile scientists have contributed tutorial chapters that outline the methods used in and the results of variou

  1. Dye Sensitized Solar Cells

    Directory of Open Access Journals (Sweden)

    Di Wei

    2010-03-01

    Full Text Available Dye sensitized solar cell (DSSC is the only solar cell that can offer both the flexibility and transparency. Its efficiency is comparable to amorphous silicon solar cells but with a much lower cost. This review not only covers the fundamentals of DSSC but also the related cutting-edge research and its development for industrial applications. Most recent research topics on DSSC, for example, applications of nanostructured TiO2, ZnO electrodes, ionic liquid electrolytes, carbon nanotubes, graphene and solid state DSSC have all been included and discussed.

  2. Solar cell radiation handbook

    Science.gov (United States)

    Tada, H. Y.; Carter, J. R., Jr.; Anspaugh, B. E.; Downing, R. G.

    1982-01-01

    The handbook to predict the degradation of solar cell electrical performance in any given space radiation environment is presented. Solar cell theory, cell manufacturing and how they are modeled mathematically are described. The interaction of energetic charged particles radiation with solar cells is discussed and the concept of 1 MeV equivalent electron fluence is introduced. The space radiation environment is described and methods of calculating equivalent fluences for the space environment are developed. A computer program was written to perform the equivalent fluence calculations and a FORTRAN listing of the program is included. Data detailing the degradation of solar cell electrical parameters as a function of 1 MeV electron fluence are presented.

  3. Polymer tandem solar cells

    NARCIS (Netherlands)

    Gilot, J.

    2010-01-01

    Solar cells convert solar energy directly into electricity and are attractive contribute to the increasing energy demand of modern society. Commercial mono-crystalline silicon based devices are infiltrating the energy market but their expensive, time and energy consuming production process

  4. Determination of Carrier Lifetimes in Organic-Inorganic Hybrid Solar Cells Based on Sb2S3 by Using the Time-Resolved Photocurrent

    Science.gov (United States)

    Jo, Hyun-Jun; Mun, Young Hee; Kim, Jong Su; Kim, Seung Hyun; Lee, Sang-Ju; Sung, Shi-Joon; Kim, Dae-Hwan

    2018-03-01

    This paper presents organic-inorganic hybrid solar cells (SCs) based on ZnO/Sb2S3/P3HT heterojunctions. The ZnO and the Sb2S3 layers were grown using atomic layer deposition (ALD). Although four cells were fabricated on one substrate by using the same process, their open-circuit voltages ( V OC ) and short-circuit current densities ( J SC ) were different. The SC with a high V OC has a low J SC . The causes of the changes in the V OC and the JSC were investigated by using photoluminescence (PL) spectroscopy and optically-biased time-resolved photocurrent (TRPC) measurements. The PL results at 300 K showed that the emission positions of the Sb2S3 layers in all cells were similar at approximately 1.71 eV. The carrier lifetime of the SCs was calculated from the TRPC results. The lifetime of cell 4 with the highest J SC decreased drastically with increasing intensity of the continuous-wave optical bias beam. Therefore, the defect states in the ZnO layer contribute to the J SC , but degrade the V OC .

  5. Photovoltaic solar cell

    Science.gov (United States)

    Nielson, Gregory N; Okandan, Murat; Cruz-Campa, Jose Luis; Resnick, Paul J

    2013-11-26

    A photovoltaic solar cell for generating electricity from sunlight is disclosed. The photovoltaic solar cell comprises a plurality of spaced-apart point contact junctions formed in a semiconductor body to receive the sunlight and generate the electicity therefrom, the plurality of spaced-apart point contact junctions having a first plurality of regions having a first doping type and a second plurality of regions having a second doping type. In addition, the photovoltaic solar cell comprises a first electrical contact electrically connected to each of the first plurality of regions and a second electrical contact electrically connected to each of the second plurality of regions, as well as a passivation layer covering major surfaces and sidewalls of the photovoltaic solar cell.

  6. Conjugated Polymer Solar Cells

    National Research Council Canada - National Science Library

    Paraschuk, Dmitry Y

    2006-01-01

    This report results from a contract tasking Moscow State University as follows: Conjugated polymers are promising materials for many photonics applications, in particular, for photovoltaic and solar cell devices...

  7. Synthesis and characterization of hybrid carbon nanotube/polymer for use in the active layer of organic solar cells'

    Energy Technology Data Exchange (ETDEWEB)

    Ferreira, Luiza De Lazari; Calado, Hallen Daniel Rezende, E-mail: luizadl@yahoo.com.br [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil)

    2016-07-01

    Full text: Nowadays, the fast development of portable and flexible devices such as smart phones, smart watches and adhesive sensors, has stimulated research into alternative energy generators for the operation of these devices. Organic solar cells (OPVs) are seen as a promising technology in this scenario because their properties such as low weight, semi-transparency, low cost and flexibility. Intrinsically conducting polymers (CPs) are studied as active layer in OPVs because their good electrical and optical properties. The carbon nanotube - CNT in the polymer matrix leads to the formation of interconnected nano networks influencing the crystalline CP behavior and reducing the resistance in the charge transfer. This increases the transport of electrons and minimizes recombination by p-p and p-CH{sub 2} interaction with CPs, enhancing its properties and improving the efficiency of OPVs optoelectronics. To preparing the hybrid for this work in 3 stages it was used a homemade multi-walled CNT. Initially, the CNT's were functionalized with amine 1,3-diaminopropane - DAP (CNT-DAP) and then with an amine monomer from p-aminobenzoic acid - ABA. In a subsequent step, the hybrid (CNT-DAP-ABA-P3HT) was obtained by polymerizing using FeCl{sub 3} 3- hexylthiophene (3HT) in the presence of NTC-DAP-ABA, which led to obtaining the PC directly connected to CNT. The resulting hybrid was characterized by FTIR, Raman, XPS, thermal analysis, SEM, optical absorption and fluorescence. FTIR spectra showed bands associated with functional groups present in the functionalization steps. Raman results showed the increase of the ratio ID/IG caused by greater disorder by inserting the new groups to the CNT. The electrochemical profile was studied by cyclic voltammetry at different scan rates, generating curves with almost reversible profile. The analyzes showed that the CNT were functionalized covalently and have potential for application in active layer of OPVs. (author)

  8. Demonstrative study for the wind and solar hybrid power system. 2; Furyoku taiyoko hybrid hatsuden system ni kansuru jissho kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    Kimura, Y; Sakuma, H; Ushiyama, I [Ashikaga Institute of Technology, Tochigi (Japan)

    1996-10-27

    In order to verify the complementary relationship between wind and solar energy, the long-term field test of the hybrid power system was conducted at the natural energy square of Ashikaga Institute of Technology. The solar cell blade windmill composed of a Savonius windmill and flexible solar cells applied to swept buckets was also prepared. As a result, the wind power generation was promising mainly in the winter period including the late fall and early spring, while solar one was stable all the year through although it was slightly poor in winter. Stable power generation was thus achieved by combining wind energy with solar energy. As the whole data of other wind and solar power generation systems at the square were analyzed for every month, the same conclusion as the solar cell blade windmill was obtained as follows: the wind power generation in Ashikaga area is promising in Nov.-March from the field test result for 16 months, solar power generation is stable all the year through, the hybrid power system is effective in Nov.-April, and the solar cell blade windmill is equivalent to the hybrid power system. 3 refs., 5 figs.

  9. Iron sulphide solar cells

    Science.gov (United States)

    Ennaoui, A.; Tributsch, H.

    1984-12-01

    The abundant, naturally occurring natural compound pyrite (FeS2) can be used as a semiconducting material for photoelectrochemical and photovoltaic solar cells. Unlike most of the intensively studied photoactive materials, pyrite solar cell production would never be limited by the availability of the elements or by their compatibility with the environment. An energy gap of 0.95 eV has been determined for pyrite, and it is noted that the theoretical efficiency limit for solar energy conversion in this material is of the order of 15-20 percent.

  10. Hybrid Organic/Inorganic Nanocomposites for Photovoltaic Cells

    Science.gov (United States)

    Liu, Ruchuan

    2014-01-01

    Inorganic/organic hybrid solar cells have attracted a lot of interest due to their potential in combining the advantages of both components. To understand the key issues in association with photoinduced charge separation/transportation processes and to improve overall power conversion efficiency, various combinations with nanostructures of hybrid systems have been investigated. Here, we briefly review the structures of hybrid nanocomposites studied so far, and attempt to associate the power conversion efficiency with these nanostructures. Subsequently, we are then able to summarize the factors for optimizing the performance of inorganic/organic hybrid solar cells. PMID:28788591

  11. Precise Composition Tailoring of Mixed-Cation Hybrid Perovskites for Efficient Solar Cells by Mixture Design Methods.

    Science.gov (United States)

    Li, Liang; Liu, Na; Xu, Ziqi; Chen, Qi; Wang, Xindong; Zhou, Huanping

    2017-09-26

    Mixed anion/cation perovskites absorber has been recently implemented to construct highly efficient single junction solar cells and tandem devices. However, considerable efforts are still required to map the composition-property relationship of the mixed perovskites absorber, which is essential to facilitate device design. Here we report the intensive exploration of mixed-cation perovskites in their compositional space with the assistance of a rational mixture design (MD) methods. Different from the previous linear search of the cation ratios, it is found that by employing the MD methods, the ternary composition can be tuned simultaneously following simplex lattice designs or simplex-centroid designs, which enable significantly reduced experiment/sampling size to unveil the composition-property relationship for mixed perovskite materials and to boost the resultant device efficiency. We illustrated the composition-property relationship of the mixed perovskites in multidimension and achieved an optimized power conversion efficiency of 20.99% in the corresponding device. Moreover, the method is demonstrated to be feasible to help adjust the bandgap through rational materials design, which can be further extended to other materials systems, not limited in polycrystalline perovskites films for photovoltaic applications only.

  12. Effect of composition of chlorophyll and ruthenium dyes mixture (hybrid) on the dye-sensitized solar cell performance

    Science.gov (United States)

    Pratiwi, D. D.; Nurosyid, F.; Kusumandari; Supriyanto, A.; Suryana, R.

    2018-03-01

    The fabrication of dye-sensitized solar cell (DSSC) has been conducted by varying the composition of natural dye from moss chlorophyll (Bryophyte) and synthesis dye from ruthenium complex N719. The sandwich structure of DSSC consists of the working electrode using TiO2, dye, electrolyte, and counter electrode using carbon. The composition of chlorophyll and synthesis dyes mixture were 100% and 0%, 80% and 20%, 60% and 40%, 40% and 60%, and 20% and 80%. The UV-Vis absorption spectra of moss chlorophyll showed the first peak in the wavelength range of 450-500 nm and the second peak at wavelength of 650-700 nm. The peak value of absorbance at wavelengths of 450-500 nm was 6.1004 and at wavelengths of 650-700 nm was 3.5835. The IPCE characteristic curves showed the absorption peak of photon for DSSCs occurred at wavelength of 550-650 nm. It considered that photon in this wavelength can contribute dominantly to produce the optimum electrons. The I-V characteristics of DSSCs with composition of chlorophyll and synthesis dyes mixture of 100% and 0%, 80% and 20%, 60% and 40%, 40% and 60%, and 20% and 80% resulted the efficiency of 0.0022; 0.0194; 0.0239; 0.0342; and 0.0414, respectively. It suggested that the addition of a little composition of the ruthenium complex dye into moss chlorophyll dye can increase the efficiency significantly.

  13. Resonance Raman and excitation energy dependent charge transfer mechanism in halide-substituted hybrid perovskite solar cells.

    Science.gov (United States)

    Park, Byung-wook; Jain, Sagar M; Zhang, Xiaoliang; Hagfeldt, Anders; Boschloo, Gerrit; Edvinsson, Tomas

    2015-02-24

    Organo-metal halide perovskites (OMHPs) are materials with attractive properties for optoelectronics. They made a recent introduction in the photovoltaics world by methylammonium (MA) lead triiodide and show remarkably improved charge separation capabilities when chloride and bromide are added. Here we show how halide substitution in OMHPs with the nominal composition CH3NH3PbI2X, where X is I, Br, or Cl, influences the morphology, charge quantum yield, and local interaction with the organic MA cation. X-ray diffraction and photoluminescence data demonstrate that halide substitution affects the local structure in the OMHPs with separate MAPbI3 and MAPbCl3 phases. Raman spectroscopies as well as theoretical vibration calculations reveal that this at the same time delocalizes the charge to the MA cation, which can liberate the vibrational movement of the MA cation, leading to a more adaptive organic phase. The resonance Raman effect together with quantum chemical calculations is utilized to analyze the change in charge transfer mechanism upon electronic excitation and gives important clues for the mechanism of the much improved photovoltage and photocurrent also seen in the solar cell performance for the materials when chloride compounds are included in the preparation.

  14. Solar hydrogen hybrid system with carbon storage

    International Nuclear Information System (INIS)

    Zini, G.; Marazzi, R.; Pedrazzi, S.; Tartarini, P.

    2009-01-01

    A complete solar hydrogen hybrid system has been developed to convert, store and use energy from renewable energy sources. The theoretical model has been implemented in a dynamic model-based software environment and applied to real data to simulate its functioning over a one-year period. Results are used to study system design and performance. A photovoltaic sub-system directly drives a residential load and, if a surplus of energy is available, an electrolyzer to produce hydrogen which is stored in a cluster of nitrogen-cooled tanks filled with AX-21 activated carbons. When the power converted from the sun is not sufficient to cover load needs, hydrogen is desorbed from activated carbon tanks and sent to the fuel-cell sub-system so to obtain electrical energy. A set of sub-systems (bus-bar, buck- and boost-converters, inverter, control circuits), handle the electrical power according to a Programmable Logic Control unit so that the load can be driven with adequate Quality of Service. Hydrogen storage is achieved through physisorption (weak van der Waals interactions) between carbon atoms and hydrogen molecules occurring at low temperature (77 K) in carbon porous solids at relatively low pressures. Storage modeling has been developed using a Langmuir-Freundlich 1st type isotherm and experimental data available in literature. Physisorption storage provides safer operations along with good gravimetric (10.8% at 6 MPa) and volumetric (32.5 g/l at 6 MPa) storage capacities at costs that can be comparable to, or smaller than, ordinary storage techniques (compression or liquefaction). Several test runs have been performed on residential user data-sets: the system is capable of providing grid independence and can be designed to yield a surplus production of hydrogen which can be used to recharge electric car batteries or fill tanks for non-stationary uses. (author)

  15. Four-cell solar tracker

    Science.gov (United States)

    Berdahl, C. M.

    1981-01-01

    Forty cm Sun tracker, consisting of optical telescope and four solar cells, stays pointed at Sun throughout day for maximum energy collection. Each solar cell generates voltage proportional to part of solar image it receives; voltages drive servomotors that keep image centered. Mirrored portion of cylinder extends acquisition angle of device by reflecting Sun image back onto solar cells.

  16. Enhanced photovoltaic performance of inverted hybrid bulk-heterojunction solar cells using TiO2/reduced graphene oxide films as electron transport layers

    Science.gov (United States)

    Morais, Andreia; Alves, João Paulo C.; Lima, Francisco Anderson S.; Lira-Cantu, Monica; Nogueira, Ana Flavia

    2015-01-01

    In this study, we investigated inverted hybrid bulk-heterojunction solar cells with the following configuration: fluorine-doped tin oxide (FTO) |TiO2/RGO|P3HT:PC61BM|V2O5 or PEDOT:PSS|Ag. The TiO2/GO dispersions were prepared by sol-gel method, employing titanium isopropoxide and graphene oxide (GO) as starting materials. The GO concentration was varied from 0.1 to 4.0 wt%. The corresponding dispersions were spin-coated onto FTO substrates and a thermal treatment was performed to remove organic materials and to reduce GO to reduced graphene oxide (RGO). The TiO2/RGO films were characterized by x-ray diffraction, Raman spectroscopy, and microscopy techniques. Atomic force microscopy (AFM) images showed that the addition of RGO significantly changes the morphology of the TiO2 films, with loss of uniformity and increase in surface roughness. Independent of the use of V2O5 or PEDOT: PSS films as the hole transport layer, the incorporation of 2.0 wt% of RGO into TiO2 films was the optimal concentration for the best organic photovoltaic performance. The solar cells based on TiO2/RGO (2.0 wt%) electrode exhibited a ˜22.3% and ˜28.9% short circuit current density (Jsc) and a power conversion efficiency enhancement, respectively, if compared with the devices based on pure TiO2 films. Kelvin probe force microscopy images suggest that the incorporation of RGO into TiO2 films can promote the appearance of regions with different charge dissipation capacities.

  17. Quantum dot solar cell

    International Nuclear Information System (INIS)

    Ahamefula, U.C.; Sulaiman, M.Y.; Sopian, K.; Ibarahim, Z.; Ibrahim, N.; Alghoul, M.A.; Haw, L.C.; Yahya, M.; Amin, N.; Mat, S.; Ruslan, M.H.

    2009-01-01

    Full text: The much awaited desire of replacing fossil fuel with photovoltaic will remain a fairy tale if the myriad of issues facing solar cell development are marginalized. Foremost in the list is the issue of cost. Silicon has reached a stage where its use on large scale can no longer be lavishly depended upon. The demand for high grade silicon from the microelectronics and solar industries has soared leading to scarcity. New approach has to be sought. Notable is the increased attention on thin films such as cadmium telluride, copper indium gallium diselenide, amorphous silicon, and the not so thin non-crystalline family of silicon. While efforts to address the issues of stability, toxicity and efficiency of these systems are ongoing, another novel approach is quietly making its appearance - quantum dots. Quantum dots seem to be promising candidates for solar cells because of the opportunity to manipulate their energy levels allowing absorption of a wider solar spectrum. Utilization of minute quantity of these nano structures is enough to bring the cost of solar cell down and to ascertain sustainable supply of useful material. The paper outlines the progress that has been made on quantum dot solar cells. (author)

  18. Remnant PbI2, an unforeseen necessity in high-efficiency hybrid perovskite-based solar cells?

    Directory of Open Access Journals (Sweden)

    Duyen H. Cao

    2014-09-01

    Full Text Available Perovskite-containing solar cells were fabricated in a two-step procedure in which PbI2 is deposited via spin-coating and subsequently converted to the CH3NH3PbI3 perovskite by dipping in a solution of CH3NH3I. By varying the dipping time from 5 s to 2 h, we observe that the device performance shows an unexpectedly remarkable trend. At dipping times below 15 min the current density and voltage of the device are enhanced from 10.1 mA/cm2 and 933 mV (5 s to 15.1 mA/cm2 and 1036 mV (15 min. However, upon further conversion, the current density decreases to 9.7 mA/cm2 and 846 mV after 2 h. Based on X-ray diffraction data, we determined that remnant PbI2 is always present in these devices. Work function and dark current measurements showed that the remnant PbI2 has a beneficial effect and acts as a blocking layer between the TiO2 semiconductor and the perovskite itself reducing the probability of back electron transfer (charge recombination. Furthermore, we find that increased dipping time leads to an increase in the size of perovskite crystals at the perovskite-hole-transporting material interface. Overall, approximately 15 min dipping time (∼2% unconverted PbI2 is necessary for achieving optimal device efficiency.

  19. Recent Advances in Dye Sensitized Solar Cells

    Directory of Open Access Journals (Sweden)

    Umer Mehmood

    2014-01-01

    Full Text Available Solar energy is an abundant and accessible source of renewable energy available on earth, and many types of photovoltaic (PV devices like organic, inorganic, and hybrid cells have been developed to harness the energy. PV cells directly convert solar radiation into electricity without affecting the environment. Although silicon based solar cells (inorganic cells are widely used because of their high efficiency, they are rigid and manufacturing costs are high. Researchers have focused on organic solar cells to overcome these disadvantages. DSSCs comprise a sensitized semiconductor (photoelectrode and a catalytic electrode (counter electrode with an electrolyte sandwiched between them and their efficiency depends on many factors. The maximum electrical conversion efficiency of DSSCs attained so far is 11.1%, which is still low for commercial applications. This review examines the working principle, factors affecting the efficiency, and key challenges facing DSSCs.

  20. Solution-Processed Ultrathin TiO2 Compact Layer Hybridized with Mesoporous TiO2 for High-Performance Perovskite Solar Cells.

    Science.gov (United States)

    Jeong, Inyoung; Park, Yun Hee; Bae, Seunghwan; Park, Minwoo; Jeong, Hansol; Lee, Phillip; Ko, Min Jae

    2017-10-25

    The electron transport layer (ETL) is a key component of perovskite solar cells (PSCs) and must provide efficient electron extraction and collection while minimizing the charge recombination at interfaces in order to ensure high performance. Conventional bilayered TiO 2 ETLs fabricated by depositing compact TiO 2 (c-TiO 2 ) and mesoporous TiO 2 (mp-TiO 2 ) in sequence exhibit resistive losses due to the contact resistance at the c-TiO 2 /mp-TiO 2 interface and the series resistance arising from the intrinsically low conductivity of TiO 2 . Herein, to minimize such resistive losses, we developed a novel ETL consisting of an ultrathin c-TiO 2 layer hybridized with mp-TiO 2 , which is fabricated by performing one-step spin-coating of a mp-TiO 2 solution containing a small amount of titanium diisopropoxide bis(acetylacetonate) (TAA). By using electron microscopies and elemental mapping analysis, we establish that the optimal concentration of TAA produces an ultrathin blocking layer with a thickness of ∼3 nm and ensures that the mp-TiO 2 layer has a suitable porosity for efficient perovskite infiltration. We compare PSCs based on mesoscopic ETLs with and without compact layers to determine the role of the hole-blocking layer in their performances. The hybrid ETLs exhibit enhanced electron extraction and reduced charge recombination, resulting in better photovoltaic performances and reduced hysteresis of PSCs compared to those with conventional bilayered ETLs.

  1. Characterization of solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Haerkoenen, J.; Tuominen, E.; Nybergh, K.; Ezer, Y.; Yli-Koski, M.; Sinkkonen, J. [Helsinki Univ. of Technology, Otaniemi (Finland). Dept. of Electrical and Communications Engineering

    1998-10-01

    Photovoltaic research in the Electron Physics Laboratory started in 1993, when laboratory joined the national TEKES/NEMO 2 research program. Since the beginning of the project, characterization as well as experimentally orientated development of the fabrication process of the solar cells were carried out parallery. The process development research started by the initiatives of the Finnish industry. At the moment a large amount of the laboratory personnel works on solar cell research and the financing comes mainly from external projects. The funding for the research has come from TEKES, Ministry of Education, Finnish Academy, GETA graduate school, special equipment grants of the university, and from the laboratory

  2. Flexible Solar Cells

    Science.gov (United States)

    1994-01-01

    Solar cell "modules" are plastic strips coated with thin films of photovoltaic silicon that collect solar energy for instant conversion into electricity. Lasers divide the thin film coating into smaller cells to build up voltage. Developed by Iowa Thin Film Technologies under NASA and DOE grants, the modules are used as electrical supply for advertising displays, battery rechargers for recreational vehicles, and to power model airplanes. The company is planning other applications both in consumer goods and as a power source in underdeveloped countries.

  3. FY 2000 report on the results of the development of technology for commercialization of the photovoltaic power system - Development of production technology of thin film solar cells. Development of production technology of application type new structure thin film solar cells (Development of production technology of high efficiency hybrid thin films/sheet solar cells); 2000 nendo New sunshine keikaku seika hokokusho. Taiyoko hatsuden system jitsuyoka gijutsu kaihatsu, Hakumaku taiyodenchi no seizo gijutsu kaihatsu, Oyogata shinkozo hakumaku taiyodenchi no seizo gijutsu kaihatsu, (Kokoritsu hybrid gata hakumaku / sheet taiyodenchi no seizo gijutsu kaihatsu)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    For the purpose of realizing low cost and high efficiency hybrid thin films/sheet solar cells, the R and D were carried out, and the FY 2000 results were reported. As to the formation technology of the upper cell, the following technologies were developed and the results contributory to the heightening of efficiency were obtained: technology for improvement of cell characteristics by gap widening of p layer, technology for optimization of formation conditions of i layer corresponding to the hybrid solar cell, technology for heightening of current by the intermediate ZnO layer just under the upper cell. Relating to the development of formation technology of high quality microcrystal thin films, it was indicated that the microcrystal silicon thin film had the conformity effective also for polycrystal silicon, and at the same time, the conversion efficiency of 12.8% and release voltage of 0.579V were obtained by the cell using the cast polycrystal board. In the thin film/polycrystal sheet hybrid solar cell in which all these technologies were integrated, the conversion efficiency of 12.0% was achieved, and the possibility was verified of achieving the target efficiency of 14% by further improvement of FF. (NEDO)

  4. Fiscal 1998 New Sunshine Program achievement report. Development for practical application of photovoltaic system - Development of thin-film solar cell manufacturing technology (Development of low-cost large-area module manufacturing technology - Development of application type novel-structure thin-film solar cell manufacturing technology - Development of amorphous silicon/thin-film polycrystalline silicon hybrid thin-film solar cell manufacturing technology); 1998 nendo taiyoko hatsuden system jitsuyoka gijutsu kaihatsu seika hokokusho. Usumaku taiyo denchi no seizo gijutsu kaihatsu / tei cost daimenseki module seizo gijutsu kaihatsu (oyogata shinkozo usumaku taiyo denchi no seizo gijutsu kaihatsu / amorphous silicon/usumaku takessho silicon hybrid usumaku taiyo denchi no seizo gijutsu kaihatsu)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    The project aims to manufacture the above for the development of low-cost high-efficiency practical cells. Technologies were developed to homogeneously fabricate films with an average efficiency of 10% or more in a 100mm times 85mm area in a STAR (naturally surface texture and enhanced absorption with a back reflector) structure thin-film polycrystalline silicon (poly-Si) solar cell. The texture shape was improved for a higher light trapping effect and a STAR structure cell highly sensitive to long wavelengths and fit for use for a hybrid cell bottom layer was obtained. Various cells were examined for temperature characteristics, and it was found that thin-film poly-Si cells present a temperature coefficient equal to or less than that of bulk single-crystal silicon systems, and hybrid cells a temperature coefficient similar to that of a-Si systems. The technology was applied to a hybrid solar cell in which an a-Si cell was placed on STAR structure thin film poly-Si cells, and a resultant 3-layer a-Si/poly-Si/poly-Si cell exhibited a stabilization factor of 12.0% after 550 hours of optical irradiation. (NEDO)

  5. Scale-Up of the Electrodeposition of ZnO/Eosin Y Hybrid Thin Films for the Fabrication of Flexible Dye-Sensitized Solar Cell Modules

    Directory of Open Access Journals (Sweden)

    Florian Bittner

    2018-02-01

    Full Text Available The low-temperature fabrication of flexible ZnO photo-anodes for dye-sensitized solar cells (DSSCs by templated electrochemical deposition of films was performed in an enlarged and technical simplified deposition setup to demonstrate the feasibility of the scale-up of the deposition process. After extraction of eosin Y (EY from the initially deposited ZnO/EY hybrid films, mesoporous ZnO films with an area of about 40 cm2 were reproducibly obtained on fluorine doped tin oxide (FTO-glass as well as flexible indium tin oxide (ITO–polyethylenterephthalate (PET substrates. With a film thickness of up to 9 µm and a high specific surface area of up to about 77 m2·cm−3 the ZnO films on the flexible substrates show suitable properties for DSSCs. Operative flexible DSSC modules proved the suitability of the ZnO films for use as DSSC photo-anodes. Under a low light intensity of about 0.007 sun these modules achieved decent performance parameters with conversion efficiencies of up to 2.58%. With rising light intensity the performance parameters deteriorated, leading to conversion efficiencies below 1% at light intensities above 0.5 sun. The poor performance of the modules under high light intensities can be attributed to their high series resistances.

  6. Hybrid density functional theory study of Cu(In1−xGaxSe2 band structure for solar cell application

    Directory of Open Access Journals (Sweden)

    Xu-Dong Chen

    2014-08-01

    Full Text Available Cu(In1−xGaxSe2 (CIGS alloy based thin film photovoltaic solar cells have attracted more and more attention due to its large optical absorption coefficient, long term stability, low cost and high efficiency. However, the previous theoretical investigation of this material with first principle calculation cannot fulfill the requirement of experimental development, especially the accurate description of band structure and density of states. In this work, we use first principle calculation based on hybrid density functional theory to investigate the feature of CIGS, with B3LYP applied in the CuIn1−xGaxSe2 stimulation of the band structure and density of states. We report the simulation of the lattice parameter, band gap and chemical composition. The band gaps of CuGaSe2, CuIn0.25Ga0.75Se2, CuIn0.5Ga0.5Se2, CuIn0.75Ga0.25Se2 and CuInSe2 are obtained as 1.568 eV, 1.445 eV, 1.416 eV, 1.275 eV and 1.205 eV according to our calculation, which agree well with the available experimental values. The band structure of CIGS is also in accordance with the current theory.

  7. Anatase TiO{sub 2} nanowires functionalized by organic sensitizers for solar cells: A screened Coulomb hybrid density functional study

    Energy Technology Data Exchange (ETDEWEB)

    Ünal, Hatice; Mete, Ersen, E-mail: emete@balikesir.edu.tr [Deparment of Physics, Balikesir University, Balikesir 10145 (Turkey); Gunceler, Deniz [Deparment of Physics, Cornell University, Ithaca, New York 14853 (United States); Gülseren, Oğuz [Department of Physics, Bilkent University, Ankara 06800 (Turkey); Ellialtioğlu, Şinasi [Basic Sciences, TED University, Ankara 06420 (Turkey)

    2015-11-21

    The adsorption of two different organic molecules cyanidin glucoside (C{sub 21}O{sub 11}H{sub 20}) and TA-St-CA on anatase (101) and (001) nanowires has been investigated using the standard and the range separated hybrid density functional theory calculations. The electronic structures and optical spectra of resulting dye–nanowire combined systems show distinct features for these types of photochromophores. The lowest unoccupied molecular orbital of the natural dye cyanidin glucoside is located below the conduction band of the semiconductor while, in the case of TA-St-CA, it resonates with the states inside the conduction band. The wide-bandgap anatase nanowires can be functionalized for solar cells through electron-hole generation and subsequent charge injection by these dye sensitizers. The intermolecular charge transfer character of Donor-π-Acceptor type dye TA-St-CA is substantially modified by its adsorption on TiO{sub 2} surfaces. Cyanidin glucoside exhibits relatively stronger anchoring on the nanowires through its hydroxyl groups. The atomic structures of dye–nanowire systems re-optimized with the inclusion of nonlinear solvation effects showed that the binding strengths of both dyes remain moderate even in ionic solutions.

  8. 3,6-Carbazole vs 2,7-carbazole: A comparative study of hole-transporting polymeric materials for inorganic–organic hybrid perovskite solar cells

    Directory of Open Access Journals (Sweden)

    Wei Li

    2016-07-01

    Full Text Available The ever increasing demand for clean energy has encouraged researchers to intensively investigate environmentally friendly photovoltaic devices. Inorganic–organic hybrid perovskite solar cells (PSCs are very promising due to their potentials of easy fabrication processes and high power conversion efficiencies (PCEs. Designing hole-transporting materials (HTMs is one of the key factors in achieving the high PCEs of PSCs. We now report the synthesis of two types of carbazole-based polymers, namely 3,6-Cbz-EDOT and 2,7-Cbz-EDOT, by Stille polycondensation. Despite the same chemical composition, 3,6-Cbz-EDOT and 2,7-Cbz-EDOT displayed different optical and electrochemical properties due to the different connectivity mode of the carbazole unit. Therefore, their performances as hole-transporting polymeric materials in the PSCs were also different. The device based on 2,7-Cbz-EDOT showed better photovoltaic properties with the PCE of 4.47% than that based on 3,6-Cbz-EDOT. This could be due to its more suitable highest occupied molecular orbital (HOMO level and higher hole mobility.

  9. Enhancement of ZnO nanorod arrays-based inverted type hybrid organic solar cell using spin-coated Eosin-Y

    International Nuclear Information System (INIS)

    Lim, Eng Liang; Yap, Chi Chin; Yahaya, Muhammad; Salleh, Muhamad Mat

    2013-01-01

    This paper reports the effect of Eosin-Y coating concentration on the performance of inverted type hybrid organic solar cell based on ZnO nanorod arrays and poly(3-hexylthiophene-2,5-diyl) (P3HT). The Eosin-Y solution with concentrations of 0.05, 0.2, 2.0 and 5.0 mM was spin-coated onto the ZnO nanorod arrays grown on the fluorine-doped tin oxide glass substrate. The P3HT film was then spin-coated onto Eosin-Y-coated ZnO nanorod arrays, followed by deposition of silver (Ag) as anode using magnetron sputtering technique. The short circuit current density increased with the Eosin-Y coating concentration up to 0.2 mM, after which it started to decrease, mainly due to the aggregation of Eosin-Y which reduced the charge extraction from P3HT to ZnO. Meanwhile, the open circuit voltage increased with the Eosin-Y coating concentration, indicating reduced back charge recombination of electron on the ZnO and hole on the P3HT, as well as reduced leakage current through the direct contact between the ZnO nanorods and the Ag metal contact. The power conversion efficiency of the device with the optimum coating concentration was approximately eight times higher than that without Eosin-Y modification. (paper)

  10. Enhancement of ZnO nanorod arrays-based inverted type hybrid organic solar cell using spin-coated Eosin-Y

    Science.gov (United States)

    Lim, Eng Liang; Yap, Chi Chin; Yahaya, Muhammad; Mat Salleh, Muhamad

    2013-04-01

    This paper reports the effect of Eosin-Y coating concentration on the performance of inverted type hybrid organic solar cell based on ZnO nanorod arrays and poly(3-hexylthiophene-2,5-diyl) (P3HT). The Eosin-Y solution with concentrations of 0.05, 0.2, 2.0 and 5.0 mM was spin-coated onto the ZnO nanorod arrays grown on the fluorine-doped tin oxide glass substrate. The P3HT film was then spin-coated onto Eosin-Y-coated ZnO nanorod arrays, followed by deposition of silver (Ag) as anode using magnetron sputtering technique. The short circuit current density increased with the Eosin-Y coating concentration up to 0.2 mM, after which it started to decrease, mainly due to the aggregation of Eosin-Y which reduced the charge extraction from P3HT to ZnO. Meanwhile, the open circuit voltage increased with the Eosin-Y coating concentration, indicating reduced back charge recombination of electron on the ZnO and hole on the P3HT, as well as reduced leakage current through the direct contact between the ZnO nanorods and the Ag metal contact. The power conversion efficiency of the device with the optimum coating concentration was approximately eight times higher than that without Eosin-Y modification.

  11. 3,6-Carbazole vs 2,7-carbazole: A comparative study of hole-transporting polymeric materials for inorganic-organic hybrid perovskite solar cells.

    Science.gov (United States)

    Li, Wei; Otsuka, Munechika; Kato, Takehito; Wang, Yang; Mori, Takehiko; Michinobu, Tsuyoshi

    2016-01-01

    The ever increasing demand for clean energy has encouraged researchers to intensively investigate environmentally friendly photovoltaic devices. Inorganic-organic hybrid perovskite solar cells (PSCs) are very promising due to their potentials of easy fabrication processes and high power conversion efficiencies (PCEs). Designing hole-transporting materials (HTMs) is one of the key factors in achieving the high PCEs of PSCs. We now report the synthesis of two types of carbazole-based polymers, namely 3,6-Cbz-EDOT and 2,7-Cbz-EDOT, by Stille polycondensation. Despite the same chemical composition, 3,6-Cbz-EDOT and 2,7-Cbz-EDOT displayed different optical and electrochemical properties due to the different connectivity mode of the carbazole unit. Therefore, their performances as hole-transporting polymeric materials in the PSCs were also different. The device based on 2,7-Cbz-EDOT showed better photovoltaic properties with the PCE of 4.47% than that based on 3,6-Cbz-EDOT. This could be due to its more suitable highest occupied molecular orbital (HOMO) level and higher hole mobility.

  12. Scale-Up of the Electrodeposition of ZnO/Eosin Y Hybrid Thin Films for the Fabrication of Flexible Dye-Sensitized Solar Cell Modules

    Science.gov (United States)

    Oekermann, Torsten

    2018-01-01

    The low-temperature fabrication of flexible ZnO photo-anodes for dye-sensitized solar cells (DSSCs) by templated electrochemical deposition of films was performed in an enlarged and technical simplified deposition setup to demonstrate the feasibility of the scale-up of the deposition process. After extraction of eosin Y (EY) from the initially deposited ZnO/EY hybrid films, mesoporous ZnO films with an area of about 40 cm2 were reproducibly obtained on fluorine doped tin oxide (FTO)-glass as well as flexible indium tin oxide (ITO)–polyethylenterephthalate (PET) substrates. With a film thickness of up to 9 µm and a high specific surface area of up to about 77 m2·cm−3 the ZnO films on the flexible substrates show suitable properties for DSSCs. Operative flexible DSSC modules proved the suitability of the ZnO films for use as DSSC photo-anodes. Under a low light intensity of about 0.007 sun these modules achieved decent performance parameters with conversion efficiencies of up to 2.58%. With rising light intensity the performance parameters deteriorated, leading to conversion efficiencies below 1% at light intensities above 0.5 sun. The poor performance of the modules under high light intensities can be attributed to their high series resistances. PMID:29393910

  13. A hybrid system for solar irradiance specification

    Science.gov (United States)

    Tobiska, W.; Bouwer, S.

    2006-12-01

    Space environment research and space weather operations require solar irradiances in a variety of time scales and spectral formats. We describe the development of solar irradiance characterization using four models and systems that are also used for space weather operations. The four models/systems include SOLAR2000 (S2K), SOLARFLARE (SFLR), APEX, and IDAR, which are used by Space Environment Technologies (SET) to provide solar irradiances from the soft X-rays through the visible spectrum. SFLR uses the GOES 0.1 0.8 nm X-rays in combination with a Mewe model subroutine to provide 0.1 30.0 nm irradiances at 0.1 nm spectral resolution, at 1 minute time resolution, and in a 6-hour XUV EUV spectral solar flare evolution forecast with a 7 minute latency and a 2 minute cadence. These irradiances have been calibrated with the SORCE XPS observations and we report on the inclusion of these irradiances into the S2K model. The APEX system is a real-time data retrieval system developed in conjunction with the University of Southern California Space Sciences Center (SSC) to provide SOHO SEM data processing and distribution. SSC provides the updated SEM data to the research community and SET provides the operational data to the space operations community. We describe how the SOHO SEM data, and especially the new S10.7 index, is being integrated directly into the S2K model for space weather operations. The IDAR system has been developed by SET to extract coronal hole boundaries, streamers, coronal loops, active regions, plage, network, and background (internetwork) features from solar images for comparison with solar magnetic features. S2K, SFLR, APEX, and IDAR outputs are integrated through the S2K solar irradiance platform that has become a hybrid system, i.e., a system that is able to produce irradiances using different processes, including empirical and physics-based models combined with real-time data integration.

  14. Development of a solar-hydrogen hybrid energy system

    International Nuclear Information System (INIS)

    Sebastian, P.J.; Gamboa, S.A.; Vejar, Set; Campos, J.

    2009-01-01

    Full text: The details of the development of a PV-hydrogen hybrid energy system is presented. An arrangement of photovoltaic modules (125 W/module) was established to provide 9 kW installed power in a three-phase configuration at 127 Vrms/phase. A 5 kW fuel cell system (hydrogen/oxygen) operate as a dynamic backup of the photovoltaic system. The autonomous operation of the hybrid power system implies the production of hydrogen by electrolysis. The hydrogen is produced by water electrolysis using an electrolyzer of 1 kW power. The electrical energy used to produce hydrogen is supplied from solar panels by using 1kW of photovoltaic modules. The photovoltaic modules are installed in a sun-tracker arrangement for increasing the energy conversion efficiency. The hydrogen is stored in solar to electric commercial metal hydride based containers and supplied to the fuel cell. The hybrid system is monitored by internet and some dynamic characteristics such as demanding power, energy and power factor could be analyzed independently from the system. Some energy saving recommendations has been implemented as a pilot program at CIE-UNAM to improve the efficient use of clean energy in normal operating conditions in offices and laboratories. (author)

  15. Electrodeposition of zinc oxide/tetrasulfonated copper phthalocyanine hybrid thin film for dye-sensitized solar cell application

    Energy Technology Data Exchange (ETDEWEB)

    Luo Xinze [Key Laboratory of Polyoxometalates Science of Ministry of Education, College of Chemistry, Northeast Normal University, Changchun 130024 (China); College of Chemistry and Biological Science, Yili Normal University, Yining 835000, (China); Xu Lin, E-mail: linxu@nenu.edu.cn [Key Laboratory of Polyoxometalates Science of Ministry of Education, College of Chemistry, Northeast Normal University, Changchun 130024 (China); Xu Bingbing; Li Fengyan [Key Laboratory of Polyoxometalates Science of Ministry of Education, College of Chemistry, Northeast Normal University, Changchun 130024 (China)

    2011-05-15

    Hybrid film of zinc oxide (ZnO) and tetrasulfonated copper phthalocyanine (TSPcCu) was grown on an indium tin oxide (ITO) glass by one-step cathodic electrodeposition from aqueous mixtures of Zn(NO{sub 3}){sub 2}, TSPcCu and KCl. The addition of TSPcCu strongly influences the morphology and crystallographic orientation of the ZnO. The nanosheets stack of ZnO leads to a porous surface structure which is advantageous to further adsorb organic dyes. The photovoltaic properties were investigated by assembling the DSSC device based on both the only ZnO film and the ZnO/TSPcCu hybrid films. Photoelectrochemical analysis revealed that the optimized DSSC device with TSPcCu represented a more than three-fold improvement in power conversion efficiency than the device without TSPcCu. The DSSC based on ZnO/TSPcCu hybrid films demonstrates an open circuit voltage of 0.308 V, a short circuit current of 90 {mu}A cm{sup -2}, a fill factor of 0.26, and a power conversion efficiency of 0.14%.

  16. Electrodeposition of zinc oxide/tetrasulfonated copper phthalocyanine hybrid thin film for dye-sensitized solar cell application

    International Nuclear Information System (INIS)

    Luo Xinze; Xu Lin; Xu Bingbing; Li Fengyan

    2011-01-01

    Hybrid film of zinc oxide (ZnO) and tetrasulfonated copper phthalocyanine (TSPcCu) was grown on an indium tin oxide (ITO) glass by one-step cathodic electrodeposition from aqueous mixtures of Zn(NO 3 ) 2 , TSPcCu and KCl. The addition of TSPcCu strongly influences the morphology and crystallographic orientation of the ZnO. The nanosheets stack of ZnO leads to a porous surface structure which is advantageous to further adsorb organic dyes. The photovoltaic properties were investigated by assembling the DSSC device based on both the only ZnO film and the ZnO/TSPcCu hybrid films. Photoelectrochemical analysis revealed that the optimized DSSC device with TSPcCu represented a more than three-fold improvement in power conversion efficiency than the device without TSPcCu. The DSSC based on ZnO/TSPcCu hybrid films demonstrates an open circuit voltage of 0.308 V, a short circuit current of 90 μA cm -2 , a fill factor of 0.26, and a power conversion efficiency of 0.14%.

  17. Flexible silicon solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Blakers, A.W.; Armour, T. [Centre for Sustainable Energy Systems, The Australian National University, Canberra ACT 0200 (Australia)

    2009-08-15

    In order to be useful for certain niche applications, crystalline silicon solar cells must be able to sustain either one-time flexure or multiple non-critical flexures without significant loss of strength or efficiency. This paper describes experimental characterisation of the behaviour of thin crystalline silicon solar cells, under either static or repeated flexure, by flexing samples and recording any resulting changes in performance. Thin SLIVER cells were used for the experiment. Mechanical strength was found to be unaffected after 100,000 flexures. Solar conversion efficiency remained at greater than 95% of the initial value after 100,000 flexures. Prolonged one-time flexure close to, but not below, the fracture radius resulted in no significant change of properties. For every sample, fracture occurred either on the first flexure to a given radius of curvature, or not at all when using that radius. In summary, for a given radius of curvature, either the flexed solar cells broke immediately, or they were essentially unaffected by prolonged or multiple flexing. (author)

  18. Flexible Solar Cells

    NARCIS (Netherlands)

    Galagan, Y.

    2018-01-01

    This chapter discusses roll-to-roll (R2R) manufacturing of organic and perovskite solar cells (PSCs), as these emerging photovoltaic (PV) technologies can be fabricated using well-known R2R printing and coating processes that are widely used in the industry. The manufacturing of PV devices starts

  19. Research Update: Hybrid organic-inorganic perovskite (HOIP thin films and solar cells by vapor phase reaction

    Directory of Open Access Journals (Sweden)

    Po-Shen Shen

    2016-09-01

    Full Text Available With the rapid progress in deposition techniques for hybrid organic-inorganic perovskite (HOIP thin films, this new class of photovoltaic (PV technology has achieved material quality and power conversion efficiency comparable to those established technologies. Among the various techniques for HOIP thin films preparation, vapor based deposition technique is considered as a promising alternative process to substitute solution spin-coating method for large-area or scale-up preparation. This technique provides some unique benefits for high-quality perovskite crystallization, which are discussed in this research update.

  20. Hybrid Fuel Cell Technology Overview

    Energy Technology Data Exchange (ETDEWEB)

    None available

    2001-05-31

    For the purpose of this STI product and unless otherwise stated, hybrid fuel cell systems are power generation systems in which a high temperature fuel cell is combined with another power generating technology. The resulting system exhibits a synergism in which the combination performs with an efficiency far greater than can be provided by either system alone. Hybrid fuel cell designs under development include fuel cell with gas turbine, fuel cell with reciprocating (piston) engine, and designs that combine different fuel cell technologies. Hybrid systems have been extensively analyzed and studied over the past five years by the Department of Energy (DOE), industry, and others. These efforts have revealed that this combination is capable of providing remarkably high efficiencies. This attribute, combined with an inherent low level of pollutant emission, suggests that hybrid systems are likely to serve as the next generation of advanced power generation systems.

  1. Degradation of CIGS solar cells

    NARCIS (Netherlands)

    Theelen, M.J.

    2015-01-01

    Thin film CIGS solar cells and individual layers within these solar cells have been tested in order to assess their long term stability. Alongside with the execution of standard tests, in which elevated temperatures and humidity levels are used, the solar cells have also been exposed to a

  2. World's Most Efficient Solar Cell

    Science.gov (United States)

    World's Most Efficient Solar Cell National Renewable Energy Laboratory, Spectrolab Set Record For , 1999 - A solar cell that can convert sunlight to electricity at a record-setting 32 percent efficiency on Earth. Spectrolab of Sylmar, Calif., "grew" the record-setting solar cell. After

  3. Elastic MCF Rubber with Photovoltaics and Sensing on Hybrid Skin (H-Skin) for Artificial Skin by Utilizing Natural Rubber: 2nd Report on the Effect of Tension and Compression on the Hybrid Photo- and Piezo-Electricity Properties in Wet-Type Solar Cell Rubber.

    Science.gov (United States)

    Shimada, Kunio

    2018-06-06

    In contrast to ordinary solid-state solar cells, a flexible, elastic, extensible and light-weight solar cell has the potential to be extremely useful in many new engineering applications, such as in the field of robotics. Therefore, we propose a new type of artificial skin for humanoid robots with hybrid functions, which we have termed hybrid skin (H-Skin). To realize the fabrication of such a solar cell, we have continued to utilize the principles of ordinary solid-state wet-type or dye-sensitized solar rubber as a follow-up study to the first report. In the first report, we dealt with both photovoltaic- and piezo-effects for dry-type magnetic compound fluid (MCF) rubber solar cells, which were generated because the polyisoprene, oleic acid of the magnetic fluid (MF), and water served as p- and n- semiconductors. In the present report, we deal with wet-type MCF rubber solar cells by using sensitized dyes and electrolytes. Photoreactions generated through the synthesis of these components were investigated by an experiment using irradiation with visible and ultraviolet light. In addition, magnetic clusters were formed by the aggregation of Fe₃O₄ in the MF and the metal particles created the hetero-junction structure of the semiconductors. In the MCF rubber solar cell, both photo- and piezo-electricity were generated using a physical model. The effects of tension and compression on their electrical properties were evaluated. Finally, we experimentally demonstrated the effect of the distance between the electrodes of the solar cell on photoelectricity and built-in electricity.

  4. Stillwater Hybrid Geo-Solar Power Plant Optimization Analyses

    Energy Technology Data Exchange (ETDEWEB)

    Wendt, Daniel S.; Mines, Gregory L.; Turchi, Craig S.; Zhu, Guangdong; Cohan, Sander; Angelini, Lorenzo; Bizzarri, Fabrizio; Consoli, Daniele; De Marzo, Alessio

    2015-09-02

    The Stillwater Power Plant is the first hybrid plant in the world able to bring together a medium-enthalpy geothermal unit with solar thermal and solar photovoltaic systems. Solar field and power plant models have been developed to predict the performance of the Stillwater geothermal / solar-thermal hybrid power plant. The models have been validated using operational data from the Stillwater plant. A preliminary effort to optimize performance of the Stillwater hybrid plant using optical characterization of the solar field has been completed. The Stillwater solar field optical characterization involved measurement of mirror reflectance, mirror slope error, and receiver position error. The measurements indicate that the solar field may generate 9% less energy than the design value if an appropriate tracking offset is not employed. A perfect tracking offset algorithm may be able to boost the solar field performance by about 15%. The validated Stillwater hybrid plant models were used to evaluate hybrid plant operating strategies including turbine IGV position optimization, ACC fan speed and turbine IGV position optimization, turbine inlet entropy control using optimization of multiple process variables, and mixed working fluid substitution. The hybrid plant models predict that each of these operating strategies could increase net power generation relative to the baseline Stillwater hybrid plant operations.

  5. Improving the Morphology of the Perovskite Absorber Layer in Hybrid Organic/Inorganic Halide Perovskite MAPbI3 Solar Cells

    Directory of Open Access Journals (Sweden)

    I. J. Ogundana

    2017-01-01

    Full Text Available Recently, perovskite solar cells have attracted tremendous attention due to their excellent power conversion efficiency, low cost, simple fabrications, and high photovoltaic performance. Furthermore, the perovskite solar cells are lightweight and possess thin film and semitransparency. However, the nonuniformity in perovskite layer constitutes a major setback to the operation mechanism, performance, reproducibility, and degradation of perovskite solar cells. Therefore, one of the main challenges in planar perovskite devices is the fabrication of high quality films with controlled morphology and least amount of pin-holes for high performance thin film perovskite devices. The poor reproducibility in perovskite solar cells hinders the accurate fabrication of practical devices for use in real world applications, and this is primarily as a result of the inability to control the morphology of perovskites, leading to large variability in the characteristics of perovskite solar cells. Hence, the focus of research in perovskites has been mostly geared towards improving the morphology and crystallization of perovskite absorber by selecting the optimal annealing condition considering the effect of humidity. Here we report a controlled ambient condition that is necessary to grow uniform perovskite crystals. A best PCE of 7.5% was achieved along with a short-circuit current density of 15.2 mA/cm2, an open-circuit voltage of 0.81 V, and a fill factor of 0.612 from the perovskite solar cell prepared under 60% relative humidity.

  6. Characterization of solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Haerkoenen, J.; Tuominen, E.; Nybergh, K.; Ezer, Y.; Yli-Koski, M.; Sinkkonen, J. [Helsinki Univ. of Technology (Finland). Dept. of Electrical and Communications Engineering

    1998-12-31

    Photovoltaic research began at the Electron Physics Laboratory of the Helsinki University of Tehnology in 1993, when the laboratory joined the national NEMO 2 research program. During the early stages of the photovoltaic research the main objective was to establish necessary measurement and characterisation routines, as well as to develop the fabrication process. The fabrication process development work has been supported by characterisation and theoretical modelling of the solar cells. Theoretical investigations have been concerned with systematic studies of solar cell parameters, such as diffusion lengths, surface recombination velocities and junction depths. The main result of the modelling and characterisation work is a method which is based on a Laplace transform of the so-called spatial collection efficiency function of the cell. The basic objective of the research has been to develop a fabrication process cheap enough to be suitable for commercial production

  7. Block copolymer based composition and morphology control in nanostructured hybrid materials for energy conversion and storage: solar cells, batteries, and fuel cells

    KAUST Repository

    Orilall, M. Christopher

    2011-01-01

    The development of energy conversion and storage devices is at the forefront of research geared towards a sustainable future. However, there are numerous issues that prevent the widespread use of these technologies including cost, performance and durability. These limitations can be directly related to the materials used. In particular, the design and fabrication of nanostructured hybrid materials is expected to provide breakthroughs for the advancement of these technologies. This tutorial review will highlight block copolymers as an emerging and powerful yet affordable tool to structure-direct such nanomaterials with precise control over structural dimensions, composition and spatial arrangement of materials in composites. After providing an introduction to materials design and current limitations, the review will highlight some of the most recent examples of block copolymer structure-directed nanomaterials for photovoltaics, batteries and fuel cells. In each case insights are provided into the various underlying fundamental chemical, thermodynamic and kinetic formation principles enabling general and relatively inexpensive wet-polymer chemistry methodologies for the efficient creation of multiscale functional materials. Examples include nanostructured ceramics, ceramic-carbon composites, ceramic-carbon-metal composites and metals with morphologies ranging from hexagonally arranged cylinders to three-dimensional bi-continuous cubic networks. The review ends with an outlook towards the synthesis of multicomponent and hierarchical multifunctional hybrid materials with different nano-architectures from self-assembly of higher order blocked macromolecules which may ultimately pave the way for the further development of energy conversion and storage devices. © 2011 The Royal Society of Chemistry.

  8. Block copolymer based composition and morphology control in nanostructured hybrid materials for energy conversion and storage: solar cells, batteries, and fuel cells.

    Science.gov (United States)

    Orilall, M Christopher; Wiesner, Ulrich

    2011-02-01

    The development of energy conversion and storage devices is at the forefront of research geared towards a sustainable future. However, there are numerous issues that prevent the widespread use of these technologies including cost, performance and durability. These limitations can be directly related to the materials used. In particular, the design and fabrication of nanostructured hybrid materials is expected to provide breakthroughs for the advancement of these technologies. This tutorial review will highlight block copolymers as an emerging and powerful yet affordable tool to structure-direct such nanomaterials with precise control over structural dimensions, composition and spatial arrangement of materials in composites. After providing an introduction to materials design and current limitations, the review will highlight some of the most recent examples of block copolymer structure-directed nanomaterials for photovoltaics, batteries and fuel cells. In each case insights are provided into the various underlying fundamental chemical, thermodynamic and kinetic formation principles enabling general and relatively inexpensive wet-polymer chemistry methodologies for the efficient creation of multiscale functional materials. Examples include nanostructured ceramics, ceramic-carbon composites, ceramic-carbon-metal composites and metals with morphologies ranging from hexagonally arranged cylinders to three-dimensional bi-continuous cubic networks. The review ends with an outlook towards the synthesis of multicomponent and hierarchical multifunctional hybrid materials with different nano-architectures from self-assembly of higher order blocked macromolecules which may ultimately pave the way for the further development of energy conversion and storage devices.

  9. Ca/Alq3 hybrid cathode buffer layer for the optimization of organic solar cells based on a planar heterojunction

    Science.gov (United States)

    El Jouad, Z.; Barkat, L.; Stephant, N.; Cattin, L.; Hamzaoui, N.; Khelil, A.; Ghamnia, M.; Addou, M.; Morsli, M.; Béchu, S.; Cabanetos, C.; Richard-Plouet, M.; Blanchard, P.; Bernède, J. C.

    2016-11-01

    Use of efficient anode cathode buffer layer (CBL) is crucial to improve the efficiency of organic photovoltaic cells. Here we show that using a double CBL, Ca/Alq3, allows improving significantly cell performances. The insertion of Ca layer facilitates electron harvesting and blocks hole collection, leading to improved charge selectivity and reduced leakage current, whereas Alq3 blocks excitons. After optimisation of this Ca/Alq3 CBL using CuPc as electron donor, it is shown that it is also efficient when SubPc is substituted to CuPc in the cells. In that case we show that the morphology of the SubPc layer, and therefore the efficiency of the cells, strongly depends on the deposition rate of the SubPc film. It is necessary to deposit slowly (0.02 nm/s) the SubPc films because at higher deposition rate (0.06 nm/s) the films are porous, which induces leakage currents and deterioration of the cell performances. The SubPc layers whose formations are kinetically driven at low deposition rates are more uniform, whereas those deposited faster exhibit high densities of pinholes.

  10. Solar cell. Taiyo denchi

    Energy Technology Data Exchange (ETDEWEB)

    Kamihara, T; Kondo, S; Mori, K [Matsushita Electric Industrial Co. Ltd., Osaka (Japan)

    1990-10-23

    This invention provides a solar cell having high resistance to strong incident light and high temperature preservability. Reason of performance degradation of the solar cell in high temperature atmosphere thermally diffuses at the boundary surface of the silicon with metal particles. The method of blocking this thermal diffusion is that the film thickness is of the level that the electrons can pass through the film by a quantum dynamical tunnel effect. In this invention, the construction is that a transparent substrate, a transparent electrode, a P-type amorphous silicon, an I-type amorphous silicon, silica and a collector electrode are sequentially laminated and receives the incident light, thus generating a voltage between the two electrodes. Thickness of silica film is 10-100 microns. Materials of the collector electrode are either single element or alloys of Cs, K, Na, Li, Ba, Mg, Cd, Ta, Al, Mo, Zr, Co, Fe, Cu, Ag, W, Cr, Au and Ni. 13 figs., 1 tab.

  11. Solar cell efficiency measurements

    International Nuclear Information System (INIS)

    Ostoja, P.

    1989-01-01

    Solar cells (and solar modules) have to be tested for their performance by means of sound reliable measurement procedures. The need for such measurements arises at various stages of research, of production, and of photovoltaic systems sizing and dimensioning. In fact, accurate measurements are necessary to the researcher, who studies new materials and new processes, to the manufacturer, who has to control his product and, finally, to the user, who needs sound measurements, in order to be in a position to make effective decisions about what kink of product will be needed and with what critical characteristics. In short, standard measurements that allow cells and modules to be characterized serve as a common language, allowing effective communication about products and requirements. 3 refs

  12. Panchromatic response composed of hybrid visible-light absorbing polymers and near-IR absorbing dyes for nanocrystalline TiO{sub 2}-based solid-state solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Hyo Joong; Graetzel, Michael; Nazeeruddin, Md. Khaja [Laboratory for Photonics and Interfaces, Institute of Chemical Sciences and Engineering, School of Basic Sciences, Swiss Federal Institute of Technology, CH-1015 Lausanne (Switzerland); Leventis, Henry C.; Haque, Saif A. [Department of Chemistry, Imperial College of Science Technology and Medicine, London SW72AZ (United Kingdom); Torres, Tomas [Departamento de Quimica Organica, Universidad Autonoma de Madrid (UAM), 28049 Madrid (Spain)

    2011-01-01

    In pursuit of panchromatic sensitizers for mesoporous TiO{sub 2}-based solid-state solar cells, a near-IR absorbing zinc phthalocyanine dye (coded TT1) was firstly adsorbed over relatively thin ({proportional_to}1 {mu}m) TiO{sub 2} mesoporous films and then a visible-light absorbing polymer [regioregular poly(3-hexylthiophene), P3HT] was incorporated into the mesopores as both a second sensitizer and a solid hole conductor. After optimizing some experimental parameters, these hybrid solid-state cells exhibited a clear panchromatic response, and an overall conversion efficiency of around 1% at full sun intensity. (author)

  13. Perovskite Solar Cells: Progress and Advancements

    Directory of Open Access Journals (Sweden)

    Naveen Kumar Elumalai

    2016-10-01

    Full Text Available Organic–inorganic hybrid perovskite solar cells (PSCs have emerged as a new class of optoelectronic semiconductors that revolutionized the photovoltaic research in the recent years. The perovskite solar cells present numerous advantages include unique electronic structure, bandgap tunability, superior charge transport properties, facile processing, and low cost. Perovskite solar cells have demonstrated unprecedented progress in efficiency and its architecture evolved over the period of the last 5–6 years, achieving a high power conversion efficiency of about 22% in 2016, serving as a promising candidate with the potential to replace the existing commercial PV technologies. This review discusses the progress of perovskite solar cells focusing on aspects such as superior electronic properties and unique features of halide perovskite materials compared to that of conventional light absorbing semiconductors. The review also presents a brief overview of device architectures, fabrication methods, and interface engineering of perovskite solar cells. The last part of the review elaborates on the major challenges such as hysteresis and stability issues in perovskite solar cells that serve as a bottleneck for successful commercialization of this promising PV technology.

  14. Highly Efficient 2D/3D Hybrid Perovskite Solar Cells via Low-Pressure Vapor-Assisted Solution Process.

    Science.gov (United States)

    Li, Ming-Hsien; Yeh, Hung-Hsiang; Chiang, Yu-Hsien; Jeng, U-Ser; Su, Chun-Jen; Shiu, Hung-Wei; Hsu, Yao-Jane; Kosugi, Nobuhiro; Ohigashi, Takuji; Chen, Yu-An; Shen, Po-Shen; Chen, Peter; Guo, Tzung-Fang

    2018-06-08

    The fabrication of multidimensional organometallic halide perovskite via a low-pressure vapor-assisted solution process is demonstrated for the first time. Phenyl ethyl-ammonium iodide (PEAI)-doped lead iodide (PbI 2 ) is first spin-coated onto the substrate and subsequently reacts with methyl-ammonium iodide (MAI) vapor in a low-pressure heating oven. The doping ratio of PEAI in MAI-vapor-treated perovskite has significant impact on the crystalline structure, surface morphology, grain size, UV-vis absorption and photoluminescence spectra, and the resultant device performance. Multiple photoluminescence spectra are observed in the perovskite film starting with high PEAI/PbI 2 ratio, which suggests the coexistence of low-dimensional perovskite (PEA 2 MA n -1 Pb n I 3 n +1 ) with various values of n after vapor reaction. The dimensionality of the as-fabricated perovskite film reveals an evolution from 2D, hybrid 2D/3D to 3D structure when the doping level of PEAI/PbI 2 ratio varies from 2 to 0. Scanning electron microscopy images and Kelvin probe force microscopy mapping show that the PEAI-containing perovskite grain is presumably formed around the MAPbI 3 perovskite grain to benefit MAPbI 3 grain growth. The device employing perovskite with PEAI/PbI 2 = 0.05 achieves a champion power conversion efficiency of 19.10% with an open-circuit voltage of 1.08 V, a current density of 21.91 mA cm -2 , and a remarkable fill factor of 80.36%. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. BM Solar Cells

    KAUST Repository

    Firdaus, Yuliar

    2018-05-02

    Fullerene‐based materials are widely used as electron acceptors in organic bulk‐heterojunction solar cells; yet, they have rarely been used as the only photoactive component due to their low absorbance and limited charge generation efficiency. However, blending the wide‐bandgap p‐type material copper (I) thiocyanate (CuSCN) with [6,6]‐phenyl‐C71‐butyric acid methyl ester (PC70BM) leads to the formation of a unique mesostructured p‐n like heterointerface between CuSCN and PC70BM and solar cells with a power conversion efficiency (PCE) of up to 5.4%. Here, we examine in detail the reasons for the surprisingly good device performance and elucidate the charge photogeneration and recombination mechanisms in CuSCN‐based devices with PC70BM as the exclusive light‐absorbing material. Our studies clearly demonstrate that a substantial fraction of the photocurrent in the CuSCN‐based devices results from improved dissociation of fullerene excitons and efficient charge transfer at the CuSCN:PC70BM interface combined with reduced geminate and nongeminate charge recombination losses. Our results have implications beyond the fullerene‐based devices studied here, as they demonstrate that careful selection of a mesostructured p‐type transparent semiconductor paves the path to a new type of efficient single photoactive material solar cells.

  16. BM Solar Cells

    KAUST Repository

    Firdaus, Yuliar; Seitkhan, Akmaral; Eisner, Flurin; Sit, Wai-Yu; Kan, Zhipeng; Wehbe, Nimer; Balawi, Ahmed H.; Yengel, Emre; Karuthedath, Safakath; Laquai, Fré dé ric; Anthopoulos, Thomas D.

    2018-01-01

    Fullerene‐based materials are widely used as electron acceptors in organic bulk‐heterojunction solar cells; yet, they have rarely been used as the only photoactive component due to their low absorbance and limited charge generation efficiency. However, blending the wide‐bandgap p‐type material copper (I) thiocyanate (CuSCN) with [6,6]‐phenyl‐C71‐butyric acid methyl ester (PC70BM) leads to the formation of a unique mesostructured p‐n like heterointerface between CuSCN and PC70BM and solar cells with a power conversion efficiency (PCE) of up to 5.4%. Here, we examine in detail the reasons for the surprisingly good device performance and elucidate the charge photogeneration and recombination mechanisms in CuSCN‐based devices with PC70BM as the exclusive light‐absorbing material. Our studies clearly demonstrate that a substantial fraction of the photocurrent in the CuSCN‐based devices results from improved dissociation of fullerene excitons and efficient charge transfer at the CuSCN:PC70BM interface combined with reduced geminate and nongeminate charge recombination losses. Our results have implications beyond the fullerene‐based devices studied here, as they demonstrate that careful selection of a mesostructured p‐type transparent semiconductor paves the path to a new type of efficient single photoactive material solar cells.

  17. Solar cell. Taiyo denchi

    Energy Technology Data Exchange (ETDEWEB)

    Amemiya, S.; Hashimoto, Y. (Canon Inc., Tokyo (Japan))

    1991-05-17

    This invention provides a cheap solar cell having a transparent surface protective layer which satisfies both controversial properties such as high electroconductivity and high water repellency and also abated the reduction of photoelectric conversion. In other words, this invention provides a solar cell having a surface-protective layer prepared by lamination of a mixture of a transparent water-repelling resin and a transparent electroconductive oxide powder; said protective layer is grounded at the surface resistance of 1 {times} 10 {sup 10} ohm or less and the contact angle of water on said protective layer is 90 degrees or more. The transparent water-repelling resin used is a fliorine resin such as PTFE and a silicone resin such as organopolysiloxane. The transparent electrodonductive oxide powder used is tin oxide, indium oxide or a complex compound of ton oxide and antimony oxide. The solar cell of this invention can be used for a long time because the adhesion of the dusts and the contamination by dirty water are restricted. 1 fig., 1 tab.

  18. HYBRID INDIRECT SOLAR COOKER WITH LATENT HEAT STORAGE

    OpenAIRE

    Benazeer Hassan K. Ibrahim *, Victor Jose

    2016-01-01

    Solar cooking is the simplest, safest, most convenient way to cook food without consuming fuels or heating up the kitchen. All the conventional solar cooker designs have the disadvantage of inability to cook during off-shine and night hours.This disadvantage can be eliminated if the solar cooker is designed with thermal storage arrangement. In this paper, a hybrid solar cooker with evacuated tube collector and latent thermal storage unit and alternate electric heatingsource is simulated. The...

  19. Transparent solar cell window module

    Energy Technology Data Exchange (ETDEWEB)

    Chau, Joseph Lik Hang; Chen, Ruei-Tang; Hwang, Gan-Lin; Tsai, Ping-Yuan [Nanopowder and Thin Film Technology Center, ITRI South, Industrial Technology Research Institute, Tainan County 709 (China); Lin, Chien-Chu [I-Lai Acrylic Corporation, Tainan City (China)

    2010-03-15

    A transparent solar cell window module based on the integration of traditional silicon solar cells and organic-inorganic nanocomposite material was designed and fabricated. The transparent solar cell window module was composed of a nanocomposite light-guide plate and traditional silicon solar cells. The preparation of the nanocomposite light-guide plate is easy without modification of the traditional casting process, the nanoparticles sol can be added directly to the polymethyl methacrylate (PMMA) monomer syrup during the process. The solar energy collected by this window can be used to power up small household electrical appliances. (author)

  20. Simulation and fabrication of SiO{sub 2}/graded-index TiO{sub 2} antireflection coating for triple-junction GaAs solar cells by using the hybrid deposition process

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Jheng-Jie; Ho, Wen-Jeng, E-mail: wjho@ntut.edu.tw; Lee, Yi-Yu; Chang, Chia-Ming

    2014-11-03

    GaAs-based multi-junction solar cells (MJ-SCs) provide a wide solar-energy absorption-band (300–1800 nm), but designing and fabricating a broadband antireflection coating (ARC) are challenging. Because MJ-SCs are typically in a series that connects each subcell, the total output current is limited by the subcell that generates the smallest photocurrent. Thus, the ARC for MJ-SCs must be designed not only to obtain broadband absorption but also to minimize light reflection at the wavelength band of the current-limited cell. This study proposes a broadband SiO{sub 2}/graded-index TiO{sub 2} ARC for improving the current-limited subcell performance by using a hybrid deposition (e-beam evaporation and spin-on coating). A bottom TiO{sub 2} layer and a top SiO{sub 2} layer were deposited through e-beam evaporation, but the middle TiO{sub 2} layer was deposited using spin-on coating because the refractive index values of the TiO{sub 2} films could be tuned by applying the spin speed. Therefore, the graded-index TiO{sub 2} layers were easily obtained using a hybrid deposition method. In addition, a suitable reflectance spectrum of an ARC structure for a middle-cell current-limited triple-junction (3-J) GaAs solar cell was simulated using commercial optical software. The photovoltaic current–voltage and external quantum efficiency (EQE) were measured and compared. The resulting improvements of a short-circuit current of 32.4% and conversion efficiency of 31.8% were attributed to an enhanced EQE of 32.97% as well as a low broadband reflectance exhibited on the middle cell of the 3-J GaAs solar cell with a SiO{sub 2}/graded-index TiO{sub 2} ARC. - Highlights: • A broadband SiO{sub 2}/graded-index TiO{sub 2} ARC obtained by a hybrid deposition • A suitable triple-layer ARC was simulated by a commercial optical software. • Optical reflection, photovoltaic I–V, and EQE of 3-J GaAs solar cell were characterized. • An increased J{sub sc} of 32.4% and an increased

  1. Silicon heterojunction solar cells

    CERN Document Server

    Fahrner, W R; Neitzert, H C

    2006-01-01

    The world of today must face up to two contradictory energy problems: on the one hand, there is the sharply growing consumer demand in countries such as China and India. On the other hand, natural resources are dwindling. Moreover, many of those countries which still possess substantial gas and oil supplies are politically unstable. As a result, renewable natural energy sources have received great attention. Among these, solar-cell technology is one of the most promising candidates. However, there still remains the problem of the manufacturing costs of such cells. Many attempts have been made

  2. Silicon Solar Cell Turns 50

    Energy Technology Data Exchange (ETDEWEB)

    Perlin, J.

    2004-08-01

    This short brochure describes a milestone in solar (or photovoltaic, PV) research-namely, the 50th anniversary of the invention of the first viable silicon solar cell by three researchers at Bell Laboratories.

  3. Hybrid solar and hydro-power for Austria

    Energy Technology Data Exchange (ETDEWEB)

    Weyss, N

    1978-02-01

    It is proposed that integrating solar powerplants into the Austrian electricity networks could cost less than conventional thermal plants, and provide a high degree of independence to the country. The following aspects are discussed; the seasonal distribution of sunshine, solar power plants, land requirements, economic feasibility, solar/fossil hybrid operation, integration strategy, Malta-B as a calculating unit, solar-hydraulic baseload throughout the year, concrete requirements, solar-hydraulic possibilities within the next 50 years, cement for solar plants, and energy accounting. (MHR)

  4. Energy Efficient Hybrid Dual Axis Solar Tracking System

    Directory of Open Access Journals (Sweden)

    Rashid Ahammed Ferdaus

    2014-01-01

    Full Text Available This paper describes the design and implementation of an energy efficient solar tracking system from a normal mechanical single axis to a hybrid dual axis. For optimizing the solar tracking mechanism electromechanical systems were evolved through implementation of different evolutional algorithms and methodologies. To present the tracker, a hybrid dual-axis solar tracking system is designed, built, and tested based on both the solar map and light sensor based continuous tracking mechanism. These light sensors also compare the darkness and cloudy and sunny conditions assisting daily tracking. The designed tracker can track sun’s apparent position at different months and seasons; thereby the electrical controlling device requires a real time clock device for guiding the tracking system in seeking solar position for the seasonal motion. So the combination of both of these tracking mechanisms made the designed tracker a hybrid one. The power gain and system power consumption are compared with a static and continuous dual axis solar tracking system. It is found that power gain of hybrid dual axis solar tracking system is almost equal to continuous dual axis solar tracking system, whereas the power saved in system operation by the hybrid tracker is 44.44% compared to the continuous tracking system.

  5. Perovskite Materials: Solar Cell and Optoelectronic Applications

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Bin [ORNL; Geohegan, David B [ORNL; Xiao, Kai [ORNL

    2017-01-01

    Hybrid organometallic trihalide perovskites are promising candidates in the applications for next-generation, high-performance, low-cost optoelectronic devices, including photovoltaics, light emitting diodes, and photodetectors. Particularly, the solar cells based on this type of materials have reached 22% lab scale power conversion efficiency in only about seven years, comparable to the other thin film photovoltaic technologies. Hybrid perovskite materials not only exhibit superior optoelectronic properties, but also show many interesting physical properties such as ion migration and defect physics, which may allow the exploration of more device functionalities. In this article, the fundamental understanding of the interrelationships between crystal structure, electronic structure, and material properties is discussed. Various chemical synthesis and processing methods for superior device performance in solar cells and optoelectronic devices are reviewed.

  6. KAJIAN TEKNIS PROPELLER -ENGINE MATCHING PADA KAPAL IKAN TRADISIONAL DENGAN MENGGUNAKAN MOTOR LISTRIK HYBRID DARI SOLAR CELL DAN GENSET SEBAGAI MESIN PENGGERAK UTAMA KAPAL DI KABUPATEN PASURUAN JAWA TIMUR

    Directory of Open Access Journals (Sweden)

    Eko Sasmito Hadi

    2012-03-01

    Full Text Available Ketersediaan energi tak terbarukan yang kian menipis akan menjadi permasalahan besar bagi kehidupan manusia, banyak pemikiran sudah dicurahkan oleh para ilmuan guna mengantisipasi adanya kemungkinan krisis energi di masa yang akan datang. Selain dari permasalahan keterbatasan energi yang ada juga timbul masalah baru dari penggunaan energi tak terbarukan tersebut yaitu berupa polusi dan pencemaran lingkungan yang berdampak pada perubahan iklim di dunia. Para pemimpin dari berbagai negara menggelar konferensi tentang perubahan iklim di Bali (UNFCCC, sebagai tindak lanjut dari Protokol Kyoto yang diselenggarakan di Jepang sebelumnya, sehubungan dengan perubahan iklim dunia, beberapa negara sepakat untuk mengurangi emisi gas buang pada mesin berbahan bakar mineral, yang dianggap sebagai penyumbang polusi udara terbanyak, dengan membuat kebijakan yang diharapkan dapat menjadi suatu solusi untuk mengurangi polusi udara, salah satu solusi yang dibahas penulis adalah penggunaan motor listrik sebagai pengganti mesin berbahan bakar mineral, tujuan dari penelitian ini adalah menghitung parameter pendukung propeller engine matching (putaran mesin, BHP mesin, dan hambatan kapal , pada kapal ikan tradisional KM Brandal, dan penentuan ukuran propeller yang sesuai dengan kapal ikan KM Brandal dengan menggunakan sistem hybrid. Dalam penelitian ini penulis melakukan pengukuran dan perhitungan pada sistem penggerak kapal baik di lapangan maupun simulasi hybrid, rangkaian hybrid ini terdiri dari beberapa komponen antara lain 2 buah solar cell 100 WP, genset 800 VA, 2 buah baterai 70 Ah, dan motor listrik 12 volt 80 ampere, sedangkan untuk mendapatkan tegangan listrik yang sama pada rangkaian hybrid beberapa komponen seperti baterai, genset, dan solar cell disusun secara paralel. Penelitian tentang Propeller-Engine Matching pada rangkaian hybrid kapal ikan KM Brandal menghasilkan beberapa parameter optimasi propeller antara lain hambatan kapal 1,04 kN, daya efektif

  7. Nanostructured dye-sensitized solar cells

    OpenAIRE

    Palma, Giuseppina

    2014-01-01

    2012/2013 Dye-sensitized solar cells (DSSCs) represent a promising alternative to silicon-based technology. From the first publications about DSSCs in the 90s, they are considered an important breakthrough for achieving high efficiency by using relatively inexpensive and abundant materials. Stability and efficiency are two crucial points in the development of this new class of hybrid photovoltaic devices. Most of the DSSC studies carried out over the past twenty years are based on the o...

  8. Cascade Organic Solar Cells

    KAUST Repository

    Schlenker, Cody W.

    2011-09-27

    We demonstrate planar organic solar cells consisting of a series of complementary donor materials with cascading exciton energies, incorporated in the following structure: glass/indium-tin-oxide/donor cascade/C 60/bathocuproine/Al. Using a tetracene layer grown in a descending energy cascade on 5,6-diphenyl-tetracene and capped with 5,6,11,12-tetraphenyl- tetracene, where the accessibility of the π-system in each material is expected to influence the rate of parasitic carrier leakage and charge recombination at the donor/acceptor interface, we observe an increase in open circuit voltage (Voc) of approximately 40% (corresponding to a change of +200 mV) compared to that of a single tetracene donor. Little change is observed in other parameters such as fill factor and short circuit current density (FF = 0.50 ± 0.02 and Jsc = 2.55 ± 0.23 mA/cm2) compared to those of the control tetracene-C60 solar cells (FF = 0.54 ± 0.02 and Jsc = 2.86 ± 0.23 mA/cm2). We demonstrate that this cascade architecture is effective in reducing losses due to polaron pair recombination at donor-acceptor interfaces, while enhancing spectral coverage, resulting in a substantial increase in the power conversion efficiency for cascade organic photovoltaic cells compared to tetracene and pentacene based devices with a single donor layer. © 2011 American Chemical Society.

  9. Cascade Organic Solar Cells

    KAUST Repository

    Schlenker, Cody W.; Barlier, Vincent S.; Chin, Stephanie W.; Whited, Matthew T.; McAnally, R. Eric; Forrest, Stephen R.; Thompson, Mark E.

    2011-01-01

    We demonstrate planar organic solar cells consisting of a series of complementary donor materials with cascading exciton energies, incorporated in the following structure: glass/indium-tin-oxide/donor cascade/C 60/bathocuproine/Al. Using a tetracene layer grown in a descending energy cascade on 5,6-diphenyl-tetracene and capped with 5,6,11,12-tetraphenyl- tetracene, where the accessibility of the π-system in each material is expected to influence the rate of parasitic carrier leakage and charge recombination at the donor/acceptor interface, we observe an increase in open circuit voltage (Voc) of approximately 40% (corresponding to a change of +200 mV) compared to that of a single tetracene donor. Little change is observed in other parameters such as fill factor and short circuit current density (FF = 0.50 ± 0.02 and Jsc = 2.55 ± 0.23 mA/cm2) compared to those of the control tetracene-C60 solar cells (FF = 0.54 ± 0.02 and Jsc = 2.86 ± 0.23 mA/cm2). We demonstrate that this cascade architecture is effective in reducing losses due to polaron pair recombination at donor-acceptor interfaces, while enhancing spectral coverage, resulting in a substantial increase in the power conversion efficiency for cascade organic photovoltaic cells compared to tetracene and pentacene based devices with a single donor layer. © 2011 American Chemical Society.

  10. Industrial Silicon Wafer Solar Cells

    OpenAIRE

    Neuhaus, Dirk-Holger; Münzer, Adolf

    2007-01-01

    In 2006, around 86% of all wafer-based silicon solar cells were produced using screen printing to form the silver front and aluminium rear contacts and chemical vapour deposition to grow silicon nitride as the antireflection coating onto the front surface. This paper reviews this dominant solar cell technology looking into state-of-the-art equipment and corresponding processes for each process step. The main efficiency losses of this type of solar cell are analyzed to demonstrate the future e...

  11. Solar cell materials developing technologies

    CERN Document Server

    Conibeer, Gavin J

    2014-01-01

    This book presents a comparison of solar cell materials, including both new materials based on organics, nanostructures and novel inorganics and developments in more traditional photovoltaic materials. It surveys the materials and materials trends in the field including third generation solar cells (multiple energy level cells, thermal approaches and the modification of the solar spectrum) with an eye firmly on low costs, energy efficiency and the use of abundant non-toxic materials.

  12. Study of band gap reduction of TiO{sub 2} thin films with variation in GO contents and use of TiO{sub 2}/Graphene composite in hybrid solar cell

    Energy Technology Data Exchange (ETDEWEB)

    Saleem, Hareema, E-mail: hareemasaleem@gmail.com; Habib, Amir

    2016-09-15

    We have successfully designed a hybrid solar cell for improved performance of the P3HT based photovoltaic devices by using TiO{sub 2}/Graphene composites. There has been significant improvement in IV characteristics of organic solar cells prepared by this method. The TiO{sub 2}/Graphene composites act as electron collectors in active layer along with P3HT: PCBM in inverted organic photovoltaic devices. The energy bandgap was prominently reduced from 3.00 eV to 2.71 eV as confirmed by cyclic voltametery (CV) and UV–Vis spectroscopy. We have separately synthesized the TiO{sub 2} nanoparticles of size range (15 nm–22 nm) through condensed refluxed sol gel method in which titanium isopropoxide was taken as precursor. Modified Hummer's Method was used for the oxidation of graphite flakes into graphene oxide (GO) using KMnO{sub 4} as an oxidizing agent. TiO{sub 2}/Graphene composites were prepared by the subsequent sonication and heating processes. We have rigorously characterized the sample through various characterization tools. Scanning electron microscopy (SEM) results of TiO{sub 2}/Graphene films reveal the homogenous distribution of graphene nanosheets among the homogenously distributed titanium nanoparticles. X-ray diffraction (XRD) has shown the pure anatase phase peaks of TiO{sub 2} nanoparticles and oxidation of graphite at 11.8°. Fourier transform infrared spectroscopy (FTIR) has been used to study the vibrating modes. The chemical bonding Ti−O−C resulted to enhance the electron transport in obtained TiO{sub 2}/Graphene composite films. UV–Vis spectroscopy has expressed the oxidation peaks of graphite around 216 nm and all composite films were observed in visible region. The significant reduction in band gap and improved performance of hybrid solar cell using TiO{sub 2}/Graphene composite as electron collector in active layer, is attributed to getting better economical power conversion efficiency solar cell. - Highlights: • Reduction of

  13. Dye solar cell research

    CSIR Research Space (South Africa)

    Cummings, F

    2009-11-01

    Full Text Available Cummings Energy and Processes Materials Science and Manufacturing Council for Scientific and Industrial Research P.O. Box 395 Pretoria 0001, South Africa 27 November 2009 CONTENT head2rightBackground head2rightCSIR Dye Solar Cell Research head2... rightCollaborations and Links © CSIR 2007 www.csir.co.za head2rightAcknowledgements BACKGROUND head2rightSA is dry: Annual rainfall average of 450 mm compared with a world average of 860 mm head2rightOn upside, we have some...

  14. Dye Sensitized Solar Cell, DSSC

    Directory of Open Access Journals (Sweden)

    Pongsatorn Amornpitoksuk

    2003-07-01

    Full Text Available A dye sensitized solar cell is a new type of solar cell. The operating system of this solar cell type is similar to plant’s photosynthesis process. The sensitizer is available for absorption light and transfer electrons to nanocrystalline metal oxide semiconductor. The ruthenium(II complexes with polypyridyl ligands are usually used as the sensitizers in solar cell. At the present time, the complex of [Ru(2,2',2'’-(COOH3- terpy(NCS3] is the most efficient sensitizer. The total photon to current conversion efficiency was approximately 10% at AM = 1.5.

  15. Space Solar Cell Characterization Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — FUNCTION: Measures, characterizes, and analyzes photovoltaic materials and devices. The primary focus is the measurement and characterization of solar cell response...

  16. Solar Hybrid Hydrogen Production in Sunbelt and Shipping to Japan as a Liquid fuel of Methanol

    International Nuclear Information System (INIS)

    Tamaura, Y.; Hasegawa, N.; Kaneko, H.; Utamura, M.; Katayama, Y.; Onozaki, M.; Hasuike, H.

    2006-01-01

    Solar hybrid methanol (SH-methanol) production (6000 t/day) from natural gas and coal using H 2 and O 2 gases, which are produced by electrolysis with solar thermal power (Tokyo Tech Beam-down concentration solar power generation with molten salt heat-storage system) at Sunbelt in Australia was studied from the economical view point. This system is the combined system of O 2 -burning coal gasification (C+1/2O 2 =CO), natural gas reforming by O 2 -partial oxidation (CH 4 + 1/2O 2 = CO + 2H 2 ), and water decomposition by electrolysis with solar thermal power (H 2 O = H 2 + 1/2O 2 ). In this production system, the SH-methanol is produced with zero CO 2 emission, shipped to Japan by oil tanker, and can be used as solar hybrid hydrogen in Japan for fuel cell. The solar hybrid methanol production cost of 24 yen/kg (58 US dollars bbl crude oil equivalent, April, 2006) is obtained with the solar power cost of the Tokyo Tech Beam-down solar concentration solar power generation with molten salt heat-storage. This cost is lower than the crude oil (67 US dollars bbl crude oil equivalent, April, 2006) and LPG (72 US dollars/ bbl crude oil equivalent, January, 2006). (authors)

  17. Hybrid photovoltaic–thermal solar collectors dynamic modeling

    International Nuclear Information System (INIS)

    Amrizal, N.; Chemisana, D.; Rosell, J.I.

    2013-01-01

    Highlights: ► A hybrid photovoltaic/thermal dynamic model is presented. ► The model, once calibrated, can predict the power output for any set of climate data. ► The physical electrical model includes explicitly thermal and irradiance dependences. ► The results agree with those obtained through steady-state characterization. ► The model approaches the junction cell temperature through the system energy balance. -- Abstract: A hybrid photovoltaic/thermal transient model has been developed and validated experimentally. The methodology extends the quasi-dynamic thermal model stated in the EN 12975 in order to involve the electrical performance and consider the dynamic behavior minimizing constraints when characterizing the collector. A backward moving average filtering procedure has been applied to improve the model response for variable working conditions. Concerning the electrical part, the model includes the thermal and radiation dependences in its variables. The results revealed that the characteristic parameters included in the model agree reasonably well with the experimental values obtained from the standard steady-state and IV characteristic curve measurements. After a calibration process, the model is a suitable tool to predict the thermal and electrical performance of a hybrid solar collector, for a specific weather data set.

  18. Enhancement of efficiency by embedding ZnS and Mn-doped ZnS nanoparticles in P3HT:PCBM hybrid solid state solar cells

    Science.gov (United States)

    Jabeen, Uzma; Adhikari, Tham; Shah, Syed Mujtaba; Nunzi, Jean-Michel; Badshah, Amin; Ahmad, Iqbal

    2017-06-01

    Zinc sulphide (ZnS) and Mn-doped ZnS nanoparticles were synthesized by wet chemical method. The synthesized nanoparticles were characterized by UV-visible, fluorescence, X-ray diffraction (XRD), fourier transform infra-red (FTIR) spectrometer, field emission scanning electron microscope (FESEM) and high resolution transmission electron microscope (HRTEM). Scanning electron microscope (SEM) was used to find particle size while chemical composition of the synthesized materials was investigated by EDAX. UV-visible absorption spectrum of Mn-doped ZnS was slightly shifted to lower wavelength with respect to the un-doped zinc sulphide with decrease in the size of nanoparticles. Consequently, the band gap was tuned from 3.04 to 3.13 eV. The photoluminescence (PL) emission positioned at 597 nm was ascribed to 4T1 → 6A1 transition within the 3d shell of Mn2+. X-ray diffraction (XRD) analysis revealed that the synthesized nanomaterials existed in cubic crystalline state. The effect of embedding un-doped and doped ZnS nanoparticles in the active layer and changing the ratio of PCBM ([6, 6]-phenyl-C61-butyric acid methyl ester) to nanoparticles on the performance of hybrid solar cell was studied. The device with active layer consisting of poly(3-hexylthiophene) (P3HT), [6, 6]-phenyl-C61-butyric acid methyl ester (PCBM), and un-doped ZnS nanoparticles combined in the ratio of (1:0.5:0.5) attained an efficiency of 2.42% which was found 71% higher than the reference device under the same conditions but not containing nanoparticles. Replacing ZnS nanoparticles with Mn-doped ZnS had a little effect on the enhancement of efficiency. The packing behavior and morphology of blend of nanoparticles with P3HT:PCBM were examined using atomic force microscope (AFM) and XRD. Contribution to the topical issue "Materials for Energy harvesting, conversion and storage II (ICOME 2016)", edited by Jean-Michel Nunzi, Rachid Bennacer and Mohammed El Ganaoui

  19. Quantum Junction Solar Cells

    KAUST Repository

    Tang, Jiang

    2012-09-12

    Colloidal quantum dot solids combine convenient solution-processing with quantum size effect tuning, offering avenues to high-efficiency multijunction cells based on a single materials synthesis and processing platform. The highest-performing colloidal quantum dot rectifying devices reported to date have relied on a junction between a quantum-tuned absorber and a bulk material (e.g., TiO 2); however, quantum tuning of the absorber then requires complete redesign of the bulk acceptor, compromising the benefits of facile quantum tuning. Here we report rectifying junctions constructed entirely using inherently band-aligned quantum-tuned materials. Realizing these quantum junction diodes relied upon the creation of an n-type quantum dot solid having a clean bandgap. We combine stable, chemically compatible, high-performance n-type and p-type materials to create the first quantum junction solar cells. We present a family of photovoltaic devices having widely tuned bandgaps of 0.6-1.6 eV that excel where conventional quantum-to-bulk devices fail to perform. Devices having optimal single-junction bandgaps exhibit certified AM1.5 solar power conversion efficiencies of 5.4%. Control over doping in quantum solids, and the successful integration of these materials to form stable quantum junctions, offers a powerful new degree of freedom to colloidal quantum dot optoelectronics. © 2012 American Chemical Society.

  20. Emerging Solar Technologies: Perovskite Solar Cell

    Indian Academy of Sciences (India)

    energy technologies and ... cost-effective and feasible non-silicon solar cell technologies. ..... storing in the air for long periods, and the stability reached up to .... [12] Y Liu, L A Renna, M Bag, Z A Page, P Kim, J Choi, T Emrick, D Venkatara-.

  1. Renewable Energy Systems: Development and Perspectives of a Hybrid Solar-Wind System

    OpenAIRE

    C. Shashidhar; K. Bhanupriya; P. Alluvada; Bandana; J. B. V. Subrahmanyam

    2012-01-01

    Considering the intermittent natural energy resources and the seasonal un-balance, a phtovoltaic-wind hybrid electrical power supply system was developed to accommodate remote locations where a conventional grid connection is inconvenient or expensive. However, the hybrid system can also be applied with grid connection and owners are allowed to sell excessive power back to the electric utility. The proposed set-up consists of a photo-voltaic solar-cell array, a mast mounted wind generator, le...

  2. Improved performance of dye-sensitized solar cells: An TiO{sub 2}-nano-SiO{sub 2} hybrid photoanode with post-treatment of TiCl{sub 4} aqueous solution

    Energy Technology Data Exchange (ETDEWEB)

    Liu Ling; Niu Haihong; Zhang Shouwei; Wan Lei [School of Electrical Engineering and Automation, Hefei University of Technology (HFUT), School of Chemical Engineering, HFUT, Hefei 230009 (China); Miao Shiding, E-mail: miaosd@iccas.ac.cn [School of Electrical Engineering and Automation, Hefei University of Technology (HFUT), School of Chemical Engineering, HFUT, Hefei 230009 (China); Xu Jinzhang, E-mail: xujz@hfut.edu.cn [School of Electrical Engineering and Automation, Hefei University of Technology (HFUT), School of Chemical Engineering, HFUT, Hefei 230009 (China)

    2012-11-15

    Highlights: Black-Right-Pointing-Pointer A TiO{sub 2}-nano-SiO{sub 2} hybrid film was prepared by depositing a paste of TiO{sub 2} (P{sub 25}) incorporated with SiO{sub 2}. Black-Right-Pointing-Pointer The optimal concentration of TiCl{sub 4} solution was found to be 75 mM for the post-treatment. Black-Right-Pointing-Pointer A photoelectron conversion efficiency of 6.39% was achieved for the prepared dye-sensitized solar cells (DSSCs). Black-Right-Pointing-Pointer SiO{sub 2} gives a significant improvement in the performance of the DSSCs. - Abstract: A TiO{sub 2}-nano-SiO{sub 2} hybrid film was prepared on a conductive F-doped tin oxide (FTO) substrate by depositing a mixture paste of TiO{sub 2} (P{sub 25}) and nano-sized SiO{sub 2} particles. The hybrid film was further treated by a titanium tetrachloride (TiCl{sub 4}) aqueous solution with different concentrations before it was assembled as a photoanode in dye sensitized solar cells (DSSCs). We studied the performance of DSSCs by using the dye molecule of cis-bis(isothiocy-anato)-bis-(2,2 Prime -bipyridyl-4,4 Prime -dicarboxylato) -ruthenium(II) bis-tetrabutylammonium (N719) as sensitizer. Results suggested that the post-treatment using TiCl{sub 4} could enhance the dye adsorption. The thin TiO{sub 2} layer hydrolyzed from TiCl{sub 4} could fill gaps between nanoparticles in the composite film, leading to a better electron transport than non-treated films, and improve the light harvesting efficiency. The optimal concentration was found to be 75 mM for the post-treatment of TiO{sub 2}-SiO{sub 2} hybrid film by TiCl{sub 4} solution. A photoelectron conversion efficiency of 6.39% was achieved in the back-side illuminated dye-sensitized solar cells, which is {approx}105% higher than the basic efficiency of the bare TiO{sub 2} sensitized sample. TiO{sub 2}-nano-SiO{sub 2} hybrid photoanode was prepared by incorporation of nano-sized SiO{sub 2} in the TiO{sub 2} film. The introduced SiO{sub 2} as a wide band

  3. Molecular and Nanoscale Engineering of High Efficiency Excitonic Solar Cells

    Energy Technology Data Exchange (ETDEWEB)

    Jenekhe, Samson A. [Univ. of Washington, Seattle, WA (United States); Ginger, David S. [Univ. of Washington, Seattle, WA (United States); Cao, Guozhong [Univ. of Washington, Seattle, WA (United States)

    2016-01-15

    We combined the synthesis of new polymers and organic-inorganic hybrid materials with new experimental characterization tools to investigate bulk heterojunction (BHJ) polymer solar cells and hybrid organic-inorganic solar cells during the 2007-2010 period (phase I) of this project. We showed that the bulk morphology of polymer/fullerene blend solar cells could be controlled by using either self-assembled polymer semiconductor nanowires or diblock poly(3-alkylthiophenes) as the light-absorbing and hole transport component. We developed new characterization tools in-house, including photoinduced absorption (PIA) spectroscopy, time-resolved electrostatic force microscopy (TR-EFM) and conductive and photoconductive atomic force microscopy (c-AFM and pc-AFM), and used them to investigate charge transfer and recombination dynamics in polymer/fullerene BHJ solar cells, hybrid polymer-nanocrystal (PbSe) devices, and dye-sensitized solar cells (DSSCs); we thus showed in detail how the bulk photovoltaic properties are connected to the nanoscale structure of the BHJ polymer solar cells. We created various oxide semiconductor (ZnO, TiO2) nanostructures by solution processing routes, including hierarchical aggregates and nanorods/nanotubes, and showed that the nanostructured photoanodes resulted in substantially enhanced light-harvesting and charge transport, leading to enhanced power conversion efficiency of dye-sensitized solar cells.

  4. A Simple Power Management Scheme with Enhanced Stability for a Solar PV/Wind/Fuel Cell/Grid Fed Hybrid Power Supply Designed for Industrial Loads

    Directory of Open Access Journals (Sweden)

    S. Saravanan

    2014-01-01

    Full Text Available This paper proposes a new power conditioner topology with an intelligent power management controller that integrates multiple renewable energy sources such as solar energy, wind energy, and fuel cell energy with battery and AC grid supply as backup to make the best use of their operating characteristics with better reliability than that could be obtained by single renewable energy source based power supply. The proposed embedded controller is programmed to perform MPPT for solar PV panel and WTG, SOC estimation and battery, maintaining a constant voltage at PCC and power flow control by regulating the reference currents of the controller in an instantaneous basis. The instantaneous variation in reference currents of the controller enhances the controller response as it accommodates the effect of continuously varying solar insolation and wind speed in the power management. It also prioritizes the sources for consumption to achieve maximum usage of green energy than grid energy. The simulation results of the proposed power management system with real-time solar radiation and wind velocity data collected from solar centre, KEC, and experimental results for a sporadically varying load demand are presented in this paper and the results are encouraging from reliability and stability perspectives.

  5. Thin-film solar cell

    NARCIS (Netherlands)

    Metselaar, J.W.; Kuznetsov, V.I.

    1998-01-01

    The invention relates to a thin-film solar cell provided with at least one p-i-n junction comprising at least one p-i junction which is at an angle alpha with that surface of the thin-film solar cell which collects light during operation and at least one i-n junction which is at an angle beta with

  6. Solar cell reloaded; Solarzelle reloaded

    Energy Technology Data Exchange (ETDEWEB)

    Iken, Joern

    2013-06-06

    Who comes up with something special, he may also compete with Chinese. The German-Scandinavian company Innotech Solar extends its solar module production capacity even in the midst of the crisis. Innotech Solar restores damaged cells. For this, the damaged areas are isolated and inactivated. [German] Wer sich etwas Besonderes einfallen laesst, kann auch mit chinesischer Konkurrenz bestehen. Das deutsch-skandinavische Unternehmen Innotech Solar erweitert seine Kapazitaet zur Modulherstellung sogar mitten in der Krise. Das Geschaeftsmodell der Innotech Solar sieht vor, vorgeschaedigte Solarzellen wiederherzustellen. Dafuer werden die schadhaften Stellen isoliert und stillgelegt.

  7. Upconversion in solar cells

    Science.gov (United States)

    2013-01-01

    The possibility to tune chemical and physical properties in nanosized materials has a strong impact on a variety of technologies, including photovoltaics. One of the prominent research areas of nanomaterials for photovoltaics involves spectral conversion. Modification of the spectrum requires down- and/or upconversion or downshifting of the spectrum, meaning that the energy of photons is modified to either lower (down) or higher (up) energy. Nanostructures such as quantum dots, luminescent dye molecules, and lanthanide-doped glasses are capable of absorbing photons at a certain wavelength and emitting photons at a different (shorter or longer) wavelength. We will discuss upconversion by lanthanide compounds in various host materials and will further demonstrate upconversion to work for thin-film silicon solar cells. PMID:23413889

  8. Back wall solar cell

    Science.gov (United States)

    Brandhorst, H. W., Jr. (Inventor)

    1978-01-01

    A solar cell is disclosed which comprises a first semiconductor material of one conductivity type with one face having the same conductivity type but more heavily doped to form a field region arranged to receive the radiant energy to be converted to electrical energy, and a layer of a second semiconductor material, preferably highly doped, of opposite conductivity type on the first semiconductor material adjacent the first semiconductor material at an interface remote from the heavily doped field region. Instead of the opposite conductivity layer, a metallic Schottky diode layer may be used, in which case no additional back contact is needed. A contact such as a gridded contact, previous to the radiant energy may be applied to the heavily doped field region of the more heavily doped, same conductivity material for its contact.

  9. Photon management in solar cells

    CERN Document Server

    Rau, Uwe; Gombert, Andreas

    2015-01-01

    Written by renowned experts in the field of photon management in solar cells, this one-stop reference gives an introduction to the physics of light management in solar cells, and discusses the different concepts and methods of applying photon management. The authors cover the physics, principles, concepts, technologies, and methods used, explaining how to increase the efficiency of solar cells by splitting or modifying the solar spectrum before they absorb the sunlight. In so doing, they present novel concepts and materials allowing for the cheaper, more flexible manufacture of solar cells and systems. For educational purposes, the authors have split the reasons for photon management into spatial and spectral light management. Bridging the gap between the photonics and the photovoltaics communities, this is an invaluable reference for materials scientists, physicists in industry, experimental physicists, lecturers in physics, Ph.D. students in physics and material sciences, engineers in power technology, appl...

  10. Development of practical application technology for photovoltaic power generation systems in fiscal 1997. Development of technologies to manufacture application type thin film solar cells with new structure (development of technologies to manufacture amorphous silicon and thin film poly-crystal silicon hybrid thin film solar cells); 1997 nendo taiyoko hatsuden system jitsuyoka gijutsu kaihatsu. Usumaku taiyo denchi no seizo gijutsu kaihatsu, oyogata shinkozo usumaku taiyo denchi no seizo gijutsu kaihatsu (amorphous silicon/usumaku takessho silicon hybrid usumaku taiyo denchi no seizo gijutsu kaihatsu)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-03-01

    Research and development was performed with an objective to manufacture amorphous silicon and thin film poly-crystal silicon hybrid solar cells with large area and at low cost, being a high-efficiency next generation solar cell. The research was performed based on a principle that low-cost substrates shall be used, that a manufacturing process capable of forming amorphous silicon films with large area shall be based on, and that silicon film with as thin as possible thickness shall be used. Fiscal 1997 has started research and development on making the cells hybrid with amorphous silicon cells. As a result of the research and development, such achievements have been attained as using texture structure on the rear layer in thin poly-crystal silicon film solar cells with a thickness of two microns, and having achieved conversion efficiency of 10.1% by optimizing the junction interface forming conditions. A photo-deterioration test was carried out on hybrid cells which combine the thin poly-crystal silicon film cells having STAR structure with the amorphous silicon cells. Stabilization efficiency of 11.5% was attained after light has been irradiated for 500 hours or longer. (NEDO)

  11. A hybrid solar chemical looping combustion system with a high solar share

    International Nuclear Information System (INIS)

    Jafarian, Mehdi; Arjomandi, Maziar; Nathan, Graham J.

    2014-01-01

    Highlights: • A novel hybrid solar chemical looping combustion system is presented. • This hybrid CLC system integrates a CLC plant with a solar thermal energy plant. • The oxygen carrier particles are used for chemical and sensible thermal energy storage. • A solar cavity reactor is proposed for fuel reactor. • The calculations show a total solar share of around 60% can be achieved. - Abstract: A novel hybrid solar chemical looping combustion (Hy-Sol-CLC) is presented, in which the oxygen carrier particles in a CLC system are employed to provide thermal energy storage for concentrated solar thermal energy. This hybrid aims to take advantage of key features of a chemical looping combustion (CLC) system that are desirable for solar energy systems, notably their inherent chemical and sensible energy storage systems, the relatively low temperature of the “fuel” reactor (to which the concentrated solar thermal energy is added in a hybrid) relative to that of the final temperature of the product gas and the potential to operate the fuel reactor at a different pressure to the heated gas stream. By this approach, it is aimed to achieve high efficiency of the solar energy, infrastructure sharing, economic synergy, base load power generation and a high solar fraction of the total energy. In the proposed Hy-Sol-CLC system, a cavity solar receiver has been chosen for fuel reactor while for the storage of the oxygen carrier particles two reservoirs have been added to a conventional CLC. A heat exchanger is also proposed to provide independent control of the temperatures of the storage reservoirs from those of solar fuel and air reactors. The system is simulated using Aspen Plus software for the average diurnal profile of normal irradiance for Port Augusta, South Australia. The operating temperature of the fuel reactor, solar absorption efficiency, solar share, fraction of the solar thermal energy stored within the solar reactor, the fractions of sensible and

  12. Nanostructuring of Solar Cell Surfaces

    DEFF Research Database (Denmark)

    Davidsen, Rasmus Schmidt; Schmidt, Michael Stenbæk

    Solar energy is by far the most abundant renewable energy source available, but the levelized cost of solar energy is still not competitive with that of fossil fuels. Therefore there is a need to improve the power conversion effciency of solar cells without adding to the production cost. The main...... objective of this PhD thesis is to develop nanostructured silicon (Si) solar cells with higher power conversion efficiency using only scalable and cost-efficient production methods. The nanostructures, known as 'black silicon', are fabricated by single-step, maskless reactive ion etching and used as front...... texturing of different Si solar cells. Theoretically the nanostructure topology may be described as a graded refractive index in a mean-field approximation between air and Si. The optical properties of the developed black Si were simulated and experimentally measured. Total AM1.5G-weighted average...

  13. Hybrid solar collector using nonimaging optics and photovoltaic components

    Science.gov (United States)

    Winston, Roland; Yablonovitch, Eli; Jiang, Lun; Widyolar, Bennett K.; Abdelhamid, Mahmoud; Scranton, Gregg; Cygan, David; Kozlov, Alexandr

    2015-08-01

    The project team of University of California at Merced (UC-M), Gas Technology Institute, and Dr. Eli Yablonovitch of University of California at Berkeley developed a novel hybrid concentrated solar photovoltaic thermal (PV/T) collector using nonimaging optics and world record single-junction Gallium arsenide (GaAs) PV components integrated with particle laden gas as thermal transfer and storage media, to simultaneously generate electricity and high temperature dispatchable heat. The collector transforms a parabolic trough, commonly used in CSP plants, into an integrated spectrum-splitting device. This places a spectrum-sensitive topping element on a secondary reflector that is registered to the thermal collection loop. The secondary reflector transmits higher energy photons for PV topping while diverting the remaining lower energy photons to the thermal media, achieving temperatures of around 400°C even under partial utilization of the solar spectrum. The collector uses the spectral selectivity property of Gallium arsenide (GaAs) cells to maximize the exergy output of the system, resulting in an estimated exergy efficiency of 48%. The thermal media is composed of fine particles of high melting point material in an inert gas that increases heat transfer and effectively stores excess heat in hot particles for later on-demand use.

  14. A hybrid solar and chemical looping combustion system for solar thermal energy storage

    International Nuclear Information System (INIS)

    Jafarian, Mehdi; Arjomandi, Maziar; Nathan, Graham J.

    2013-01-01

    Highlights: ► A novel solar–CLC hybrid system is proposed which integrates a CLC with solar thermal energy. ► The oxygen carrier particles are used as storage medium for thermal energy storage. ► A solar cavity reactor is proposed for fuel reactor. ► The absorbed solar energy is stored in the particles to produce a base heat load. -- Abstract: A novel hybrid of a solar thermal energy and a chemical looping combustion (CLC) system is proposed here, which employs the oxygen carrier particles in a CLC system to provide diurnal thermal energy storage for concentrated solar thermal energy. In taking advantage of the chemical and sensible energy storage systems that are an inherent part of a CLC system, this hybrid offers potential to achieve cost effective, base load power generation for solar energy. In the proposed system, three reservoirs have been added to a conventional CLC system to allow storage of the oxygen carrier particles, while a cavity solar receiver has been chosen for the fuel reactor. The performance of the system is evaluated using ASPEN PLUS software, with the model being validated using independent simulation result reported previously. Operating temperature, solar efficiency, solar fraction, exergy efficiency and the fraction of the solar thermal energy stored for a based load power generation application are reported.

  15. Harmonic analysis and suppression in hybrid wind & PV solar system

    Science.gov (United States)

    Gupta, Tripti; Namekar, Swapnil

    2018-04-01

    The growing demand of electricity has led to produce power through non-conventional source of energy such as solar energy, wind energy, hydro power, energy through biogas and biomass etc. Hybrid system is taken to complement the shortcoming of either sources of energy. The proposed system is grid connected hybrid wind and solar system. A 2.1 MW Doubly fed Induction Generator (DFIG) has been taken for analysis of wind farm whose rotor part is connected to two back-to-back converters. A 250 KW Photovoltaic (PV) array taken to analyze solar farm where inverter is required to convert power from DC to AC since electricity generated through solar PV is in the form of DC. Stability and reliability of the system is very important when the system is grid connected. Harmonics is the major Power quality issue which degrades the quality of power at load side. Harmonics in hybrid system arise through the use of power conversion unit. The other causes of harmonics are fluctuation in wind speed and solar irradiance. The power delivered to grid must be free from harmonics and within the limits specified by Indian grid codes. In proposed work, harmonic analysis of the hybrid system is performed in Electrical Transient Analysis program (ETAP) and single tuned harmonic filter is designed to maintain the utility grid harmonics within limits.

  16. Enhanced charge carrier transport properties in colloidal quantum dot solar cells via organic and inorganic hybrid surface passivation† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c6ta06835a Click here for additional data file.

    Science.gov (United States)

    Hong, John; Hou, Bo; Lim, Jongchul; Pak, Sangyeon; Kim, Byung-Sung; Cho, Yuljae; Lee, Juwon; Lee, Young-Woo; Giraud, Paul; Lee, Sanghyo; Park, Jong Bae; Morris, Stephen M.; Snaith, Henry J.; Kim, Jong Min

    2016-01-01

    Colloidal quantum dots (CQDs) are extremely promising as photovoltaic materials. In particular, the tunability of their electronic band gap and cost effective synthetic procedures allow for the versatile fabrication of solar energy harvesting cells, resulting in optimal device performance. However, one of the main challenges in developing high performance quantum dot solar cells (QDSCs) is the improvement of the photo-generated charge transport and collection, which is mainly hindered by imperfect surface functionalization, such as the presence of surface electronic trap sites and the initial bulky surface ligands. Therefore, for these reasons, finding effective methods to efficiently decorate the surface of the as-prepared CQDs with new short molecular length chemical structures so as to enhance the performance of QDSCs is highly desirable. Here, we suggest employing hybrid halide ions along with the shortest heterocyclic molecule as a robust passivation structure to eliminate surface trap sites while decreasing the charge trapping dynamics and increasing the charge extraction efficiency in CQD active layers. This hybrid ligand treatment shows a better coordination with Pb atoms within the crystal, resulting in low trap sites and a near perfect removal of the pristine initial bulky ligands, thereby achieving better conductivity and film structure. Compared to halide ion-only treated cells, solar cells fabricated through this hybrid passivation method show an increase in the power conversion efficiency from 5.3% for the halide ion-treated cells to 6.8% for the hybrid-treated solar cells. PMID:29308200

  17. Hybrid solar central receiver for combined cycle power plant

    Science.gov (United States)

    Bharathan, Desikan; Bohn, Mark S.; Williams, Thomas A.

    1995-01-01

    A hybrid combined cycle power plant including a solar central receiver for receiving solar radiation and converting it to thermal energy. The power plant includes a molten salt heat transfer medium for transferring the thermal energy to an air heater. The air heater uses the thermal energy to preheat the air from the compressor of the gas cycle. The exhaust gases from the gas cycle are directed to a steam turbine for additional energy production.

  18. Dye-sensitized solar cells based on nanostructured zinc oxide

    Energy Technology Data Exchange (ETDEWEB)

    Conradt, Jonas; Maier-Flaig, Florian; Sartor, Janos; Fallert, Johannes [Karlsruhe Institute of Technology (KIT), Karlsruhe (Germany); Szmytkowski, Jedrzej; Kalt, Heinz [Karlsruhe Institute of Technology (KIT), Karlsruhe (Germany); Center for Functional Nanostructures (CFN), Karlsruhe (Germany); Reinhard, Manuel; Colsmann, Alexander [Karlsruhe Institute of Technology (KIT), Lichttechnisches Institut, Karlsruhe (Germany); Lemmer, Uli [Center for Functional Nanostructures (CFN), Karlsruhe (Germany); Karlsruhe Institute of Technology (KIT), Lichttechnisches Institut, Karlsruhe (Germany); Balaban, Teodor Silviu [Center for Functional Nanostructures (CFN), Karlsruhe (Germany); Karlsruhe Institute of Technology (KIT), Institute for Nanotechnology, Karlsruhe (Germany)

    2009-07-01

    Hybrid solar cells represent a promising (cost-efficient) alternative to pure inorganic solar cells. We present dye-sensitized solar cells (DSSC) which are based on a zinc oxide (ZnO) electrode covered with a ruthenium dye. Our work focuses on the morphology of the ZnO electrode and its impact on the photovoltaic performance of the solar cell. Nanocrystalline ZnO powder layers and arrays of nanorods are incorporated into the DSSCs. The ZnO nanorods are grown by vapor transport deposition. The morphology and doping concentration of the rods can be controlled by the choice of substrate material, growth condition and catalytic metal layers. The nanorod arrays are expected to fasten the electron transport towards the anode and thereby improve the solar cell efficiency. In addition, novel self-assembling (porphyrin) dyes are tested as sensitizer within a DSSC.

  19. Development in fiscal 1999 of technologies to put photovoltaic power generation systems into practical use. Development of thin film solar cell manufacturing technologies (Development of technologies to manufacture applied type thin film solar cells with new structure and development of high-efficiency hybrid thin film/sheet solar cells); 1999 nendo taiyoko hatsuden system jitsuyoka gijutsu kaihatsu seika hokokusho. Usumaku taiyo denchi no seizo gijutsu kaihatsu (oyogata shin kozo usumaku taiyo denchi no seizo gijutsu kaihatsu (kokoritsu hybrid gata usumaku / sheet taiyo denchi no seizo gijutsu kaihatsu))

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-01

    With an objective to develop low-cost and high-efficiency hybrid thin film/sheet solar cells, research and development has been performed. This paper summarizes the achievements in fiscal 1999. The research is related to a hybrid construction, in which the upper cells of amorphous silicon thin film are formed on the lower cells bonded with micro-crystalline silicon thin film relative to a poly-crystalline silicon sheet. In the technology to form the upper cells, a pin-construction using amorphous silicon thin film made by using the plasma CVD process was adopted, whereas an open circuit voltage of 1.45V, a short circuit current of 13.6 mA/cm{sup 2}, and a conversion efficiency of 13.5% were obtained. In the technology to form the substrate for the lower cells, formation of flat silicon thin plate that can be peeled off was identified as a result of adopting the construction in which a graphite substrate is provided on a rotating cooling body of 12-prism type. With regard to the technology to bond and form the lower cells, electrical properties of hetero-bonded cells were discussed, and an open circuit voltage of 0.605V and a conversion efficiency of 14.3% were obtained as a result of enhancing the film quality and optimizing the film thickness. (NEDO)

  20. Comprehensive investigation of core-shell dimer nanoparticles size, distance and thicknesses on performance of a hybrid organic-inorganic halide perovskite solar cell

    Science.gov (United States)

    Heidarzadeh, Hamid

    2018-03-01

    Significant performance enhancement in an ultrathin perovskite (CH3NH3PbI3) solar cell is done using plasmonic embedded core–shell dimer nanoparticles. Three-dimensional finite difference time-domain (FDTD) method is used. A perovskite absorber with a volume of 400 × 400 × 200 nm3 is considered. At first, a cell with one embedded nanoparticle is simulated. Absorptance of CH3NH3PbI3 absorber and gold nanoparticle are obtained. An optimization is done. Then a cell with embedded dimer nanoparticles is evaluated. The results show higher photocurrent enhancement for that in compared to a cell with one embedded nanoparticle. To further photocurrent enhancement, gold-SiO2 core–shell nanoparticles are used. Photocurrents of 23.37 mA cm‑2, 23.3 mA cm‑2, 22.5 mA cm‑2 and 21.47 mA cm‑2 are obtained for a cell with two embedded core–shell nanoparticles with core radius of 60 nm and shell thickness of 2 nm, 5 nm, 10 nm and 20 nm, respectively. It is important to mention that the photocurrent is 17.9 mA cm‑2 for reference cell and 19.8 mA cm‑2 for a cell with one embedded nanoparticle. Higher photocurrent is due to the near-field plasmonic effect.

  1. Technical and economic assessment of solar hybrid repowering. Final report

    Energy Technology Data Exchange (ETDEWEB)

    None

    1978-09-01

    Public Service Company of New Mexico (PNM) has performed a Technical and Economic Assessment of Solar Hybrid Repowering under funding by the Department of Energy (DOE), the Electric Power Research Institute (EPRI), Western Energy Supply and Transmission (WEST) Associates, and a number of southwestern utilities. Solar hybrid repowering involves placement of solar hardware adjacent to and connected to existing gas- and oil-fueled electric generation units to displace some of or all the fossil fuel normally used during daylight hours. The subject study assesses the technical economic viability of the solar hybrid repowering concept within the southwestern United States and the PNM system. This document is a final report on the study and its results. The study was divided into the six primary tasks to allow a systematic investigation of the concept: (1) market survey and cost/benefit analysis, (2) study unit selection, (3) conceptual design and cost estimates, (4) unit economic analysis, (5) program planning, future phases, and (6) program management. Reeves Station No. 2 at Albuquerque, New Mexico, was selected for repowering with a design goal of 50 percent (25 MWe). The solar system design is based on the 10 MW solar central receiver pilot plant preliminary design for Barstow, California. SAN--1608-4-2 contains the technical drawings. (WHK)

  2. Photovoltaic solar panel for a hybrid PV/thermal system

    Energy Technology Data Exchange (ETDEWEB)

    Zakharchenko, R.; Licea-Jimenez, L.; Perez-Garcia, S.A.; Perez-Robles, J.F.; Gonzalez-Hernandez, J.; Vorobiev, Y. [CINVESTAV-Queretaro, (Mexico); Vorobiev, P. [Universidad Autonoma de Queretaro, (Mexico). Facultad de Ingenieria; Dehesa-Carrasco, U. [Instituto Tec. Del Istmo, Oaxaco (Mexico). Dep. de Ingenieria Electromecanica

    2004-05-01

    The hybrid PV-thermal system was studied, with the photovoltaic panel (PVP) area much smaller than that of the solar collector. Performance of the different panels in the system was investigated, in particular, those made of crystalline (c-) Si, {alpha}-Si and CuInSe{sub 2} as well as different materials and constructions for the thermal contact between the panel and the collector. Our conclusion is that the PVP for application in a hybrid system needs a special design providing efficient heat extraction from it. PVP was designed and made. Its study has shown that this design provides the high electrical and thermal efficiency of the hybrid system. (author)

  3. Preparation of Carbon Nanotube/TiO2 Mesoporous Hybrid Photoanode with Iron Pyrite (FeS2) Thin Films Counter Electrodes for Dye-Sensitized Solar Cell

    Science.gov (United States)

    Kilic, Bayram; Turkdogan, Sunay; Astam, Aykut; Ozer, Oguz Can; Asgin, Mansur; Cebeci, Hulya; Urk, Deniz; Mucur, Selin Pravadili

    2016-05-01

    Multi-walled carbon nanotube (MWCNT)/TiO2 mesoporous networks can be employed as a new alternative photoanode in dye-sensitized solar cells (DSSCs). By using the MWCNT/TiO2 mesoporous as photoanodes in DSSC, we demonstrate that the MWCNT/TiO2 mesoporous photoanode is promising alternative to standard FTO/TiO2 mesoporous based DSSC due to larger specific surface area and high electrochemical activity. We also show that iron pyrite (FeS2) thin films can be used as an efficient counter electrode (CE), an alternative to the conventional high cost Pt based CE. We are able to synthesis FeS2 nanostructures utilizing a very cheap and easy hydrothermal growth route. MWCNT/TiO2 mesoporous based DSSCs with FeS2 CE achieved a high solar conversion efficiency of 7.27% under 100 mW cm-2 (AM 1.5G 1-Sun) simulated solar irradiance which is considerably (slightly) higher than that of A-CNT/TiO2 mesoporous based DSSCs with Pt CE. Outstanding performance of the FeS2 CE makes it a very promising choice among the various CE materials used in the conventional DSSC and it is expected to be used more often to achieve higher photon-to-electron conversion efficiencies.

  4. Preparation of Carbon Nanotube/TiO2 Mesoporous Hybrid Photoanode with Iron Pyrite (FeS2) Thin Films Counter Electrodes for Dye-Sensitized Solar Cell

    OpenAIRE

    Bayram Kilic; Sunay Turkdogan; Aykut Astam; Oguz Can Ozer; Mansur Asgin; Hulya Cebeci; Deniz Urk; Selin Pravadili Mucur

    2016-01-01

    Multi-walled carbon nanotube (MWCNT)/TiO2 mesoporous networks can be employed as a new alternative photoanode in dye-sensitized solar cells (DSSCs). By using the MWCNT/TiO2 mesoporous as photoanodes in DSSC, we demonstrate that the MWCNT/TiO2 mesoporous photoanode is promising alternative to standard FTO/TiO2 mesoporous based DSSC due to larger specific surface area and high electrochemical activity. We also show that iron pyrite (FeS2) thin films can be used as an efficient counter electrode...

  5. Dust Removal from Solar Cells

    Science.gov (United States)

    Ashpis, David E. (Inventor)

    2015-01-01

    A solar panel cleaning device includes a solar panel having a plurality of photovoltaic cells arranged in rows and embedded in the solar panel with space between the rows. A transparent dielectric overlay is affixed to the solar panel. A plurality of electrode pairs each of which includes an upper and a lower electrode are arranged on opposite sides of the transparent dielectric and are affixed thereto. The electrodes may be transparent electrodes which may be arranged without concern for blocking sunlight to the solar panel. The solar panel may be a dielectric and its dielectric properties may be continuously and spatially variable. Alternatively the dielectric used may have dielectric segments which produce different electrical field and which affects the wind "generated."

  6. Solar cell with back side contacts

    Science.gov (United States)

    Nielson, Gregory N; Okandan, Murat; Cruz-Campa, Jose Luis; Resnick, Paul J; Wanlass, Mark Woodbury; Clews, Peggy J

    2013-12-24

    A III-V solar cell is described herein that includes all back side contacts. Additionally, the positive and negative electrical contacts contact compoud semiconductor layers of the solar cell other than the absorbing layer of the solar cell. That is, the positive and negative electrical contacts contact passivating layers of the solar cell.

  7. Industrial Silicon Wafer Solar Cells

    Directory of Open Access Journals (Sweden)

    Dirk-Holger Neuhaus

    2007-01-01

    Full Text Available In 2006, around 86% of all wafer-based silicon solar cells were produced using screen printing to form the silver front and aluminium rear contacts and chemical vapour deposition to grow silicon nitride as the antireflection coating onto the front surface. This paper reviews this dominant solar cell technology looking into state-of-the-art equipment and corresponding processes for each process step. The main efficiency losses of this type of solar cell are analyzed to demonstrate the future efficiency potential of this technology. In research and development, more various advanced solar cell concepts have demonstrated higher efficiencies. The question which arises is “why are new solar cell concepts not transferred into industrial production more frequently?”. We look into the requirements a new solar cell technology has to fulfill to have an advantage over the current approach. Finally, we give an overview of high-efficiency concepts which have already been transferred into industrial production.

  8. Passive and Hybrid Solar Energy Program

    Energy Technology Data Exchange (ETDEWEB)

    1980-11-01

    The background and scope of the program is presented in general terms. The Program Plan is summarized describing how individual projects are categorized into mission-oriented tasks according to market sector categories. The individual projects funded by DOE are presented as follows: residential buildings, commercial buildings, solar products, solar cities and towns, and agricultural buildings. A summary list of projects by institution (contractors) and indexed by market application area is included. (MHR)

  9. Block copolymer based composition and morphology control in nanostructured hybrid materials for energy conversion and storage: solar cells, batteries, and fuel cells

    KAUST Repository

    Orilall, M. Christopher; Wiesner, Ulrich

    2011-01-01

    to materials design and current limitations, the review will highlight some of the most recent examples of block copolymer structure-directed nanomaterials for photovoltaics, batteries and fuel cells. In each case insights are provided into the various

  10. Reliable solution processed planar perovskite hybrid solar cells with large-area uniformity by chloroform soaking and spin rinsing induced surface precipitation

    Directory of Open Access Journals (Sweden)

    Yann-Cherng Chern

    2015-08-01

    Full Text Available A solvent soaking and rinsing method, in which the solvent was allowed to soak all over the surface followed by a spinning for solvent draining, was found to produce perovskite layers with high uniformity on a centimeter scale and with much improved reliability. Besides the enhanced crystallinity and surface morphology due to the rinsing induced surface precipitation that constrains the grain growth underneath in the precursor films, large-area uniformity with film thickness determined exclusively by the rotational speed of rinsing spinning for solvent draining was observed. With chloroform as rinsing solvent, highly uniform and mirror-like perovskite layers of area as large as 8 cm × 8 cm were produced and highly uniform planar perovskite solar cells with power conversion efficiency of 10.6 ± 0.2% as well as much prolonged lifetime were obtained. The high uniformity and reliability observed with this solvent soaking and rinsing method were ascribed to the low viscosity of chloroform as well as its feasibility of mixing with the solvent used in the precursor solution. Moreover, since the surface precipitation forms before the solvent draining, this solvent soaking and rinsing method may be adapted to spinless process and be compatible with large-area and continuous production. With the large-area uniformity and reliability for the resultant perovskite layers, this chloroform soaking and rinsing approach may thus be promising for the mass production and commercialization of large-area perovskite solar cells.

  11. Radiation hard solar cell and array

    International Nuclear Information System (INIS)

    Russell, R.L.

    1975-01-01

    A power generating solar cell for a spacecraft solar array is hardened against transient response to nuclear radiation while permitting normal operation of the cell in a solar radiation environment by shunting the cell with a second solar cell whose contacts are reversed relative to the power cell to form a cell module, exposing the power cell only to the solar radiation in a solar radiation environment to produce an electrical output at the module terminals, and exposing both cells to the nuclear radiation in a nuclear radiation environment so that the radiation induced currents generated by the cells suppress one another

  12. Solar electron source and thermionic solar cell

    Directory of Open Access Journals (Sweden)

    Parham Yaghoobi

    2012-12-01

    Full Text Available Common solar technologies are either photovoltaic/thermophotovoltaic, or use indirect methods of electricity generation such as boiling water for a steam turbine. Thermionic energy conversion based on the emission of electrons from a hot cathode into vacuum and their collection by an anode is also a promising route. However, thermionic solar conversion is extremely challenging as the sunlight intensity is too low for heating a conventional cathode to thermionic emission temperatures in a practical manner. Therefore, compared to other technologies, little has been done in this area, and the devices have been mainly limited to large experimental apparatus investigated for space power applications. Based on a recently observed “Heat Trap” effect in carbon nanotube arrays, allowing their efficient heating with low-power light, we report the first compact thermionic solar cell. Even using a simple off-the-shelf focusing lens, the device delivered over 1 V across a load. The device also shows intrinsic storage capacity.

  13. Hybrid Solar: A Review on Photovoltaic and Thermal Power Integration

    Directory of Open Access Journals (Sweden)

    T. T. Chow

    2012-01-01

    Full Text Available The market of solar thermal and photovoltaic electricity generation is growing rapidly. New ideas on hybrid solar technology evolve for a wide range of applications, such as in buildings, processing plants, and agriculture. In the building sector in particular, the limited building space for the accommodation of solar devices has driven a demand on the use of hybrid solar technology for the multigeneration of active power and/or passive solar devices. The importance is escalating with the worldwide trend on the development of low-carbon/zero-energy buildings. Hybrid photovoltaic/thermal (PVT collector systems had been studied theoretically, numerically, and experimentally in depth in the past decades. Together with alternative means, a range of innovative products and systems has been put forward. The final success of the integrative technologies relies on the coexistence of robust product design/construction and reliable system operation/maintenance in the long run to satisfy the user needs. This paper gives a broad review on the published academic works, with an emphasis placed on the research and development activities in the last decade.

  14. Hybrid tandem quantum dot/organic photovoltaic cells with complementary near infrared absorption

    KAUST Repository

    Kim, Taesoo; Palmiano, Elenita; Liang, Ru-Ze; Hu, Hanlin; Banavoth, Murali; Kirmani, Ahmad R.; Firdaus, Yuliar; Gao, Yangqin; Sheikh, Arif D.; Yuan, Mingjian; Mohammed, Omar F.; Hoogland, Sjoerd; Beaujuge, Pierre; Sargent, Edward H.; Amassian, Aram

    2017-01-01

    Monolithically integrated hybrid tandem solar cells that effectively combine solution-processed colloidal quantum dot (CQD) and organic bulk heterojunction subcells to achieve tandem performance that surpasses the individual subcell efficiencies

  15. Optical fiber-based core-shell coaxially structured hybrid cells for self-powered nanosystems

    Energy Technology Data Exchange (ETDEWEB)

    Pan, Caofeng; Zhu, Guang [School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia (United States); Guo, Wenxi [School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia (United States); State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005 (China); Dong, Lin [School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia (United States); School of Materials Science and Enginnering, Zhenzhou University, Zhenghou 450001 (China); Wang, Zhong Lin [School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia (United States); Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing (China)

    2012-07-03

    An optical fiber-based 3D hybrid cell consisting of a coaxially structured dye-sensitized solar cell (DSSC) and a nanogenerator (NG) for simultaneously or independently harvesting solar and mechanical energy is demonstrated. The current output of the hybrid cell is dominated by the DSSC, and the voltage output is dominated by the NG; these can be utilized complementarily for different applications. The output of the hybrid cell is about 7.65 {mu}A current and 3.3 V voltage, which is strong enough to power nanodevices and even commercial electronic components. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  16. Sequential Introduction of Cations Deriving Large-Grain Csx FA1-x PbI3 Thin Film for Planar Hybrid Solar Cells: Insight into Phase-Segregation and Thermal-Healing Behavior.

    Science.gov (United States)

    Huang, Jiahao; Xu, Pan; Liu, Jian; You, Xiao-Zeng

    2017-03-01

    Composition engineering of perovskite materials has been demonstrated to be important for high-performance solar cells. Recently, the energy favorable hybridization of formamidinium (FA) and cesium (Cs) in three dimension lead halide perovskites has been attracting increasing attention due to its potential benefit on durability. Herein, we reported a simple and effective method to produce phase-pure CsxFA1-xPbI3 thin film via sequential introduction of cations, in which the FA cation was introduced by interdiffusion annealing in the presence of N-methylimidazole (NMI). NMI was employed as an additive to slow down the crystallization and thus drive the formation of CsxFA1-xPbI3 with micrometer grain size, which probably facilitate the charge dissociation and transportation in photovoltaic devices. More importantly, composition dependent phase-segregation has been revealed and investigated for the first time during the phase-pure mixed-cation perovskites CsxFA1-xPbI3. The present findings demonstrated that suppressing phase-segregation of mixed-cation perovskites by meticulous composition engineering is significant for further development of efficient photovoltaics. It also suggested that phase-pure Cs0.15FA0.85PbI3 may be a promising candidate with superior phase-durability, which performed an efficiency over 16% in planar perovskite solar cells. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. ZnO-based nanocrystalline powders with applications in hybrid photovoltaic cells

    Energy Technology Data Exchange (ETDEWEB)

    Damonte, L.C. [Dto. De Fisica, UNLP, IFLP-CCT-CONICET, C.C.67 (1900) La Plata (Argentina); Dto. De Fisica Aplicada, Universidad Politecnica de Valencia, Cami de Vera s/n (46071) Valencia (Spain); Donderis, V. [Dto. De Ingenieria Electrica, Universidad Politecnica de Valencia, Cami de Vera s/n (46071) Valencia (Spain); Ferrari, S.; Meyer, M. [Dto. De Fisica, UNLP, IFLP-CCT-CONICET, C.C.67 (1900) La Plata (Argentina); Orozco, J. [Dto. de Ingenieria Mecanica y Materiales, Universidad Politecnica de Valencia, Cami de Vera s/n (46071) Valencia (Spain); Hernandez-Fenollosa, M.A. [Dto. De Fisica Aplicada, Universidad Politecnica de Valencia, Cami de Vera s/n (46071) Valencia (Spain)

    2010-06-15

    In recent years there has been a growing interest in the development of hybrid photovoltaic cells consisting of new materials, such as devices based on the combination of a wide gap semiconductor and an organic dye (dye-sensitized solar cells, DSSC). In this paper we obtain nano-zinc oxide particles whose optical and electrical properties have been modified by the presence of small amounts of Al or In acting as dopants. The aim of this study is to improve the compatibility of each of the compounds present in the photovoltaic solar cell. The knowledge gained will provide input to guide the processes in the manufacture of hybrid solar cells. (author)

  18. Concentrator-solar-cell development

    Science.gov (United States)

    Grenon, L.

    1982-07-01

    A program is described which is a continuation of earlier programs for the development of high-efficiency, low-cost, silicon concentrator solar cells. The base-line process steps and process sequences identified in these earlier contracts were evaluated and specific processes reviewed. In particular, emphasis on the use of Czochralski-grown silicon wafers rather than float-zone wafers were examined. Additionally, a study of the trade-offs between textured and nontextured cells was initiated, and the limits within which the low-cost plated nickel copper metallization can be used in concentrator solar cell applications was identified.

  19. Thin-film solar cells

    International Nuclear Information System (INIS)

    Aberle, Armin G.

    2009-01-01

    The rapid progress that is being made with inorganic thin-film photovoltaic (PV) technologies, both in the laboratory and in industry, is reviewed. While amorphous silicon based PV modules have been around for more than 20 years, recent industrial developments include the first polycrystalline silicon thin-film solar cells on glass and the first tandem solar cells based on stacks of amorphous and microcrystalline silicon films ('micromorph cells'). Significant thin-film PV production levels are also being set up for cadmium telluride and copper indium diselenide.

  20. Solar cell power source system

    Energy Technology Data Exchange (ETDEWEB)

    Shimizu, Yoichi; Toma, Kunio; Fukuwa, Shinji

    1988-05-14

    This invention aims to supply a power source system with stable power output by reducing the power loss due to switching in the voltage stabilization even when the power source is a solar cell with frequent voltage variation. For this purpose, in a solar cell power source system consisting of a solar cell, a storage battery, a switching regulator placed between the storage cell and the load, and a load, arrangement was made that, by judging the input voltage from the storage battery, switch-acting the transistor of the switching regulator, if the input voltage is higher than the specified voltage; is the input voltage is lower than the specified voltage, the transistor is put in a full-on state. By this, the supply voltage can be stabilized even when the voltage fluctuates, and system gets more efficient as the switching loss decreases in the voltage stabilizing means. (1 fig)

  1. Efficiency Enhanced Colloidal Mn-Doped Type II Core/Shell ZnSe/CdS Quantum Dot Sensitized Hybrid Solar Cells

    Directory of Open Access Journals (Sweden)

    A. Jamshidi

    2015-01-01

    Full Text Available Colloidal Mn-doped ZnSe/CdS core/shell quantum dots (QDs are synthesized for the first time and employed as a strategy to boost the power conversion efficiency of quantum dot sensitized solar cells. By using Mn-doping as a band gap engineering tool for core/shell QDs an effective improvement of absorption spectra could be obtained. The mid-states generated by a proper Mn content alleviate carrier separation and enhance the electron injection rate, thus facilitating electron transport to the TiO2 substrate. It is demonstrated that a device constructed with 0.25% Mn-doped ZnSe/CdS leads to an enhancement of the electron injection rate and power conversion efficiency by 4 times and 1.3, respectively.

  2. Preliminary analysis for implementation of a hybrid solar-wind system with storage of electrical energy generated through electrolytic hydrogen and fuel cells; Analise preliminar para implementacao de um sistema hibrido solar-eolico com armazenamento da energia eletrica gerada atraves de hidrogenio eletrolitico e celula a combustivel

    Energy Technology Data Exchange (ETDEWEB)

    Lopes, Daniel Gabriel; Furlan, Andre Luis; Lopes, Davi Gabriel [Universidade Estadual de Campinas (FEM/UNICAMP), SP (Brazil). Fac. de Engenharia Mecanica], e-mail: danielg@fem.unicamp.br; Silva, Ennio Peres; Apolinario, Fernando Resende [Universidade Estadual de Campinas (IFGW/UNICAMP), SP (Brazil). Inst. de Fisica Gleb Wataghin. Lab. de Hidrogenio; Silva, Maria Eugenia Vieira da; Rocha, Paulo Alexandre Costa [Universidade Federal do Ceara (UFC), Fortaleza, CE (Brazil). Dept. de Engenharia Mecanica e de Producao; Codeceira Neto, Alcides [Companhia Hidro Eletrica do Sao Francisco (CHESF), Recife, PE (Brazil)

    2008-07-01

    Due to relevance of the study and applicability of hybrid electric power generation from solar photovoltaic and wind power in Brazil, the present paper aims to introduce briefly the importance of technical and economic comparison of two electrical energy storage technologies (batteries versus H2 + fuel cell) and also to indicate the previous difficulties related to this possible application. In this context, it was intended a partnership between State University of Campinas - UNICAMP, the Federal University of Ceara - UFC and Hydro Electric Company of the Sao Francisco - CHESF in the meaning of makes viable an implementation. (author)

  3. Solar energy utilization by solar cells and superblack absorbers

    Energy Technology Data Exchange (ETDEWEB)

    Bonnet, D; Selders, M

    1975-10-31

    A review is presented of the physical principles responsible for the characteristics of solar cells, with particular reference to Si homojunction and CdS--Cu/sub 2/S thin film devices. Electric power generation from solar cells still appears uncompetitive economically except in special circumstances, but heating from solar energy using selective absorbers with low reemission is more promising.

  4. A Review of Hybrid Solar PV and Wind Energy System

    Directory of Open Access Journals (Sweden)

    Rashid Al Badwawi

    2015-07-01

    Full Text Available Due to the fact that solar and wind power is intermittent and unpredictable in nature, higher penetration of their types in existing power system could cause and create high technical challenges especially to weak grids or stand-alone systems without proper and enough storage capacity. By integrating the two renewable resources into an optimum combination, the impact of the variable nature of solar and wind resources can be partially resolved and the overall system becomes more reliable and economical to run. This paper provides a review of challenges and opportunities / solutions of hybrid solar PV and wind energy integration systems. Voltage and frequency fluctuation, and harmonics are major power quality issues for both grid-connected and stand-alone systems with bigger impact in case of weak grid. This can be resolved to a large extent by having proper design, advanced fast response control facilities, and good optimization of the hybrid systems. The paper gives a review of the main research work reported in the literature with regard to optimal sizing design, power electronics topologies and control. The paper presents a review of the state of the art of both grid-connected and stand-alone hybrid solar and wind systems.

  5. Rehydrating dye sensitized solar cells

    Directory of Open Access Journals (Sweden)

    Christian Hellert

    2017-05-01

    Full Text Available Dye sensitized solar cells (DSSCs are silicon free, simply producible solar cells. Longevity, however, is a longstanding problem for DSSCs. Due to liquid electrolytes being commonly used, evaporation of the electrolyte causes a dramatic drop in electric output as cells continue to be used unmaintained. Stopping evaporation has been tried in different ways in the past, albeit with differing degrees of success. In a recent project, a different route was chosen, exploring ways of revitalizing DSSCs after varying periods of usage. For this, we focused on rehydration of the cells using distilled water as well as the electrolyte contained in the cells. The results show a significant influence of these rehydration procedures on the solar cell efficiency. In possible applications of DSSCs in tents etc., morning dew may thus be used for rehydration of solar cells. Refillable DSSCs can also be used in tropical climates or specific types of farms and greenhouses where high humidity serves the purpose of rehydrating DSSCs.

  6. Plastic solar cells : understanding the special additive

    NARCIS (Netherlands)

    van Franeker, H.; Janssen, R.A.J.

    2015-01-01

    Solar cells use freely available sunlight to make electricity. At the present time, solar electricity does not come cheap, because solar panels are rather expensive. Now imagine that we could reduce costs by printing solar panels like we print newspapers! We can do just that with plastic solar

  7. Characterization of multicrystalline solar cells

    International Nuclear Information System (INIS)

    Malik, A.Q.; Chong Chew Hah; Chan Siang Khwang; Tan Kha Sheng; Lim Chee Ming

    2006-01-01

    The evaluation and assessment of the performance of photovoltaic (PV) cells in terms of measurable parameters requires the measurement of the current as a function of voltage, temperature, intensity, wind speed and spectrum. Most noticeable of all these parameters in the PV conversion efficiency η, defined as the maximum electrical power P max produced by the PV cell divided by the incident photon power P in which is measured with respect to standard test conditions (Sc). These conditions refer to the spectrum (AM 1.5), solar radiation intensity (1000 Wm -2 ), cell temperature (25 ± 2 degree C) and wind speed (2 mph). Tests under STC are carried out in the laboratory at a controlled environment. There have been several studies that analyze uncertainties in the laboratory measurement of solar cell efficiencies using different solar simulators and their transference to operational situations. Our preliminary results demonstrate that the short circuit current (I SC ) of the solar cell decreases when irradiance is less than 1000 Wm -2 irrespective of the working temperature of the cell

  8. Characterisation of multicrystalline solar cells

    Directory of Open Access Journals (Sweden)

    A.Q. Malik

    2017-10-01

    Full Text Available The evaluation and assessment of the performance of photovoltaic (PV cells in terms of measurable parameters requires the measurement of the current as a function of voltage, temperature, intensity, wind speed and spectrum. Mo st noticeable of all these parameters is the PV conversion efficiency η, defined as the maximum electrical power Pmax produced by the PV cell divided by the incident photon power P in which is measured with respect to standard test conditions (STC. These conditions refer to the spectrum (AM 1.5, solar radiation intensity (1000 Wm-2, cell temperature (25 ±2oC and wind speed (2 mph. Tests under STC are carried out in the laboratory at a controlled environment. There have been several studies that analyze uncertainties in the laboratory measurement of solar cell efficiencies using different solar simulators and their transference to operational situations. Our preliminary results demonstratethat the short circuit current (ISC of the solar cell decreases when irradiance is less than 1000 Wm-2 irrespective of the working temperature of the cell.

  9. Perovskite-Based Solar Cells: Materials, Methods, and Future Perspectives

    Directory of Open Access Journals (Sweden)

    Di Zhou

    2018-01-01

    Full Text Available A novel all-solid-state, hybrid solar cell based on organic-inorganic metal halide perovskite (CH3NH3PbX3 materials has attracted great attention from the researchers all over the world and is considered to be one of the top 10 scientific breakthroughs in 2013. The perovskite materials can be used not only as light-absorbing layer, but also as an electron/hole transport layer due to the advantages of its high extinction coefficient, high charge mobility, long carrier lifetime, and long carrier diffusion distance. The photoelectric power conversion efficiency of the perovskite solar cells has increased from 3.8% in 2009 to 22.1% in 2016, making perovskite solar cells the best potential candidate for the new generation of solar cells to replace traditional silicon solar cells in the future. In this paper, we introduce the development and mechanism of perovskite solar cells, describe the specific function of each layer, and focus on the improvement in the function of such layers and its influence on the cell performance. Next, the synthesis methods of the perovskite light-absorbing layer and the performance characteristics are discussed. Finally, the challenges and prospects for the development of perovskite solar cells are also briefly presented.

  10. New mounting improves solar-cell efficiency

    Science.gov (United States)

    Shepard, N. F., Jr.

    1980-01-01

    Method boosts output by about 20 percent by trapping and redirecting solar radiation without increasing module depth. Mounted solar-cell array is covered with internally reflecting plate. Plate is attached to each cell by transparent adhesive, and space between cells is covered with layer of diffusely reflecting material. Solar energy falling on space between cells is diffused and reflected internally by plate until it is reflected onto solar cell.

  11. Gas Turbine/Solar Parabolic Trough Hybrid Designs: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Turchi, C. S.; Ma, Z.; Erbes, M.

    2011-03-01

    A strength of parabolic trough concentrating solar power (CSP) plants is the ability to provide reliable power by incorporating either thermal energy storage or backup heat from fossil fuels. Yet these benefits have not been fully realized because thermal energy storage remains expensive at trough operating temperatures and gas usage in CSP plants is less efficient than in dedicated combined cycle plants. For example, while a modern combined cycle plant can achieve an overall efficiency in excess of 55%; auxiliary heaters in a parabolic trough plant convert gas to electricity at below 40%. Thus, one can argue the more effective use of natural gas is in a combined cycle plant, not as backup to a CSP plant. Integrated solar combined cycle (ISCC) systems avoid this pitfall by injecting solar steam into the fossil power cycle; however, these designs are limited to about 10% total solar enhancement. Without reliable, cost-effective energy storage or backup power, renewable sources will struggle to achieve a high penetration in the electric grid. This paper describes a novel gas turbine / parabolic trough hybrid design that combines solar contribution of 57% and higher with gas heat rates that rival that for combined cycle natural gas plants. The design integrates proven solar and fossil technologies, thereby offering high reliability and low financial risk while promoting deployment of solar thermal power.

  12. Rational Strategies for Efficient Perovskite Solar Cells.

    Science.gov (United States)

    Seo, Jangwon; Noh, Jun Hong; Seok, Sang Il

    2016-03-15

    A long-standing dream in the large scale application of solar energy conversion is the fabrication of solar cells with high-efficiency and long-term stability at low cost. The realization of such practical goals depends on the architecture, process and key materials because solar cells are typically constructed from multilayer heterostructures of light harvesters, with electron and hole transporting layers as a major component. Recently, inorganic-organic hybrid lead halide perovskites have attracted significant attention as light absorbers for the fabrication of low-cost and high-efficiency solar cells via a solution process. This mainly stems from long-range ambipolar charge transport properties, low exciton binding energies, and suitable band gap tuning by managing the chemical composition. In our pioneering work, a new photovoltaic platform for efficient perovskite solar cells (PSCs) was proposed, which yielded a high power conversion efficiency (PCE) of 12%. The platform consisted of a pillared architecture of a three-dimensional nanocomposite of perovskites fully infiltrating mesoporous TiO2, resulting in the formation of continuous phases and perovskite domains overlaid with a polymeric hole conductor. Since then, the PCE of our PSCs has been rapidly increased from 3% to over 20% certified efficiency. The unprecedented increase in the PCE can be attributed to the effective integration of the advantageous attributes of the refined bicontinuous architecture, deposition process, and composition of perovskite materials. Specifically, the bicontinuous architectures used in the high efficiency comprise a layer of perovskite sandwiched between mesoporous metal-oxide layer, which is a very thinner than that of used in conventional dye-sensitized solar cells, and hole-conducting contact materials with a metal back contact. The mesoporous scaffold can affect the hysteresis under different scan direction in measurements of PSCs. The hysteresis also greatly depends on

  13. Influence of the dopant concentration on structural, optical and photovoltaic properties of Cu-doped ZnS nanocrystals based bulk heterojunction hybrid solar cells

    Science.gov (United States)

    Jabeen, Uzma; Adhikari, Tham; Shah, Syed Mujtaba; Pathak, Dinesh; Wagner, Tomas; Nunzi, Jean-Michel

    2017-06-01

    Zinc sulphide (ZnS) and Cu-doped ZnS nanoparticles were synthesized by the wet chemical method. The nanoparticles were characterized by UV-visible, fluorescence, fourier transform infra-red (FTIR) spectrometry, X-ray diffraction (XRD), X-ray photoelectron spectrometry (XPS), field emission scanning electron microscopy (FESEM) and high resolution transmission electron microscopy (HRTEM). Scanning electron microscopy supplemented with EDAX was employed to observe the morphology and chemical composition of the un-doped and doped samples. A significant blue shift of the absorption band with respect to the un-doped zinc sulphide was sighted by increasing the Cu concentration in the doped sample with decreasing the size of nanoparticles. Consequently, the band gap was tuned from 3.13 to 3.49 eV due to quantum confinement. The green emission arises from the recombination between the shallow donor level (sulfur vacancy) and the t2 level of Cu2+. However, the fluorescence emission spectrum of the undoped ZnS nanoparticles was deconvoluted into two bands, which are centered at 419 and 468 nm. XRD analysis showed that the nanomaterials were in cubic crystalline state. XRD peaks show that there were no massive crystalline distortions in the crystal lattice when the Cu concentration (0.05-0.1 M) was increased in the ZnS lattice. However, in the case of Cu-doped samples (0.15-0.2 M), the XRD pattern showed an additional peak at 37° due to incomplete substitution occurring during the experimental reaction step. A comparative study of surfaces of undoped and Cu-doped ZnS nanoparticles were investigated using X-ray photoelectron spectroscopy (XPS). The synthesized nanomaterial in combination with poly(3-hexylthiophene) (P3HT) was used in the fabrication of solar cells. The devices with ZnS nanoparticles showed an efficiency of 0.31%. The overall power conversion efficiency of the solar cells at 0.1 M Cu content in doped ZnS nanoparticles was found to be 1.6 times higher than the

  14. Mushroom dehydration in a hybrid-solar dryer

    International Nuclear Information System (INIS)

    Reyes, Alejandro; Mahn, Andrea; Cubillos, Francisco; Huenulaf, Pedro

    2013-01-01

    Highlights: ► Mushrooms (Paris variety) were dehydrated in a hybrid solar dryer. ► Effective diffusivity was estimated by the Constant Diffusivity Model. ► Drying kinetics were adjusted by a semi-theoretical and the empirical Page model. ► Temperature, thickness and air recycle significantly affected critical moisture. ► The input of solar energy resulted in 3.5–12.5% electrical energy saving. - Abstract: Mushrooms (Paris variety) were dehydrated in a hybrid solar dryer (HSD) provided with a 3 m 2 solar panel and electric resistances. Mushrooms were cut in 8 mm or 4 mm thickness slices. At the outlet of the tray dryer 80–90% air was recycled and the air temperature was adjusted to the pre-defined levels (50 or 60 °C). At the outlet of the solar panel the air temperature raised between 2 and 20 °C above the ambient temperature, depending mainly of solar radiation level. Temperature, slices thickness and air recycle level had statistically significant effects on critical moisture content (X c ), as well as on the time necessary to reach a moisture content of 0.1 (wb). The color parameters of dehydrated mushroom indicate a notorious darkening, in all runs. Rehydration assays at 35 °C showed that in less than 30 min rehydrated mushrooms reached a moisture content of 0.8 (wb). Effective diffusivity (D eff ) was estimated by the Simplified Constant Diffusivity Model (SCDM), and it ranged between 6E−10 and 40E−10 m 2 /s, with R 2 higher than 0.98, agreeing with literature. The adjustment of experimental drying kinetics with the empirical Page’s model resulted in R 2 higher than 0.997. Finally, the input of solar energy resulted in 3.5–12.5% energy saving. These values could even be improved by increasing the agro-product load in the HSD

  15. Development of Inorganic Solar Cells by Nanotechnology

    Institute of Scientific and Technical Information of China (English)

    Yafei Zhang; Huijuan Geng; Zhihua Zhou; Jiang Wu; Zhiming Wang; Yaozhong Zhang; Zhongli Li; Liying Zhang; Zhi Yang; Huey Liang Hwang

    2012-01-01

    Inorganic solar cells, as durable photovoltaic devices for harvesting electric energy from sun light,have received tremendous attention due to the fear of exhausting the earth’s energy resources and damaging the living environment due to greenhouse gases. Some recent developments in nanotechnology have opened up new avenues for more relevant inorganic solar cells produced by new photovoltaic conversion concepts and effective solar energy harvesting nanostructures. In this review, the multiple exciton generation effect solar cells, hot carrier solar cells, one dimensional material constructed asymmetrical schottky barrier arrays, noble nanoparticle induced plasmonic enhancement, and light trapping nanostructured semiconductor solar cells are highlighted.

  16. Increasing the efficiency of polymer solar cells by silicon nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Eisenhawer, B; Sivakov, V; Pietsch, M; Andrae, G; Falk, F [Institute of Photonic Technology, Albert-Einstein-Strasse 9, 07743 Jena (Germany); Sensfuss, S, E-mail: bjoern.eisenhawer@ipht-jena.de [Thuringian Institute for Textile and Plastics Research, Breitscheidstrasse 97, 07407 Rudolstadt (Germany)

    2011-08-05

    Silicon nanowires have been introduced into P3HT:[60]PCBM solar cells, resulting in hybrid organic/inorganic solar cells. A cell efficiency of 4.2% has been achieved, which is a relative improvement of 10% compared to a reference cell produced without nanowires. This increase in cell performance is possibly due to an enhancement of the electron transport properties imposed by the silicon nanowires. In this paper, we present a novel approach for introducing the nanowires by mixing them into the polymer blend and subsequently coating the polymer/nanowire blend onto a substrate. This new onset may represent a viable pathway to producing nanowire-enhanced polymer solar cells in a reel to reel process.

  17. Increasing the efficiency of polymer solar cells by silicon nanowires

    International Nuclear Information System (INIS)

    Eisenhawer, B; Sivakov, V; Pietsch, M; Andrae, G; Falk, F; Sensfuss, S

    2011-01-01

    Silicon nanowires have been introduced into P3HT:[60]PCBM solar cells, resulting in hybrid organic/inorganic solar cells. A cell efficiency of 4.2% has been achieved, which is a relative improvement of 10% compared to a reference cell produced without nanowires. This increase in cell performance is possibly due to an enhancement of the electron transport properties imposed by the silicon nanowires. In this paper, we present a novel approach for introducing the nanowires by mixing them into the polymer blend and subsequently coating the polymer/nanowire blend onto a substrate. This new onset may represent a viable pathway to producing nanowire-enhanced polymer solar cells in a reel to reel process.

  18. Neutral Color Semitransparent Microstructured Perovskite Solar Cells

    KAUST Repository

    Eperon, Giles E.; Burlakov, Victor M.; Goriely, Alain; Snaith, Henry J.

    2014-01-01

    Neutral-colored semitransparent solar cells are commercially desired to integrate solar cells into the windows and cladding of buildings and automotive applications. Here, we report the use of morphological control of perovskite thin films to form

  19. Passive and hybrid solar technologies program summary

    Science.gov (United States)

    1985-05-01

    The goal of the national energy policy is to foster an adequate supply of energy at reasonable prices. This policy recognizes that adequate supply requires flexibility, with no undue reliance on any single source of supply. The goal of reasonable prices suggests economic efficiency so that consumers, individuals, commercial and industrial users alike, are not penalized by government regulation or subside. The strategies for achieving this energy policy goal are: (1) to minimize federal regulation in energy pricing while maintaining public health and safety and environmental quality, and (2) to promote a balanced and mixed energy resource system through research and development. One of the keys to energy sufficiently is the scientific application of passive solar energy techniques.

  20. Characterization of Alternative Hybrid Solar Thermal Electric Systems

    International Nuclear Information System (INIS)

    Williams, T.A.

    1999-01-01

    Hybrid power towers offer a number of advantages over solar-only power tower systems for early commercial deployment of the technology. These advantages include enhanced modularity, reduced financial and technical risks, and lower energy costs. With the changes in the domestic and world markets for bulk power, hybrid power towers are likely to have the best opportunities for power projects. This paper discusses issues that are likely to be important to the deployment of hybrid power towers in the near future. A large number of alternative designs are possible, and it is likely that there is no single approach that can be considered best or optimal for all project opportunities. The preferred design will depend on the application, as well as the unique objectives and perspectives of the person evaluating the design

  1. Hybrid UV-Ozone-Treated rGO-PEDOT:PSS as an Efficient Hole Transport Material in Inverted Planar Perovskite Solar Cells

    Science.gov (United States)

    Wang, Shuying; Huang, Xiaona; Sun, Haoxuan; Wu, Chunyang

    2017-12-01

    Inverted planar perovskite solar cells (PSCs), which are regarded as promising devices for new generation of photovoltaic systems, show many advantages, such as low-temperature film formation, low-cost fabrication, and smaller hysteresis compared with those of traditional n-i-p PSCs. As an important carrier transport layer in PSCs, the hole transport layer (HTL) considerably affects the device performance. Therefore, HTL modification becomes one of the most critical issues in improving the performance of PSCs. In this paper, we report an effective and environmentally friendly UV-ozone treatment method to enhance the hydrophilia of reduced graphene oxide (rGO) with its excellent electrical performance. The treated rGO was applied to doped poly(3,4-ethylenedioxythiophene) poly(styrene-sulfonate) (PEDOT:PSS) as HTL material of PSCs. Consequently, the performance of rGO/PEDOT:PSS-doped PSCs was improved significantly, with power conversion efficiency (PCE) of 10.7%, Jsc of 16.75 mA/cm2, Voc of 0.87 V, and FF of 75%. The PCE of this doped PSCs was 27% higher than that of the PSCs with pristine PEDOT:PSS as HTL. This performance was attributed to the excellent surface morphology and optimized hole mobility of the solution-processable rGO-modified PEDOT:PSS.

  2. Mechanical properties of hybrid organic-inorganic CH3NH3BX3 (B = Sn, Pb; X = Br, I perovskites for solar cell absorbers

    Directory of Open Access Journals (Sweden)

    Jing Feng

    2014-08-01

    Full Text Available The crystal structures, elastic and anisotropic properties of CH3NH3BX3 (B = Sn, Pb; X = Br, I compounds as solar cell absorber layers are investigated by the first-principles calculations. The type and strength of chemical bond B-X are found to determine the elastic properties. B-X bonds and the organic cations are therefore crucial to the functionalities of such absorbers. The bulk, shear, Young's modulus ranges from 12 to 30 GPa, 3 to 12 GPa, and 15 to 37 GPa, respectively. Moreover, the interaction among organic and inorganic ions would have negligible effect for elastic properties. The B/G and Poisson's ratio show it would have a good ductile ability for extensive deformation as a flexible/stretchable layer on the polymer substrate. The main reason is attributed to the low shear modulus of such perovskites. The anisotropic indices AU, AB AG, A1, A2, and A3 show ABX3 perovskite have very strong anisotropy derived from the elastic constants, chemical bonds, and symmetry.

  3. Efficient CH3NH3PbI3 perovskite/fullerene planar heterojunction hybrid solar cells with oxidized Ni/Au/Cu transparent electrode

    Science.gov (United States)

    Lai, Wei-Chih; Lin, Kun-Wei; Guo, Tzung-Fang; Chen, Peter; Liao, Yuan-Yu

    2018-02-01

    We demonstrated the performance of inverted CH3NH3PbI3 perovskite-based solar cells (SCs) with a thermally oxidized nickel/gold/copper (Ni/Au/Cu) trilayer transparent electrode. Oxidized Ni/Au/Cu is a high transparent layer and has less resistance than the oxidized Ni/Au layer. Like the oxidized Ni/Au layer, oxidized Ni and Cu in oxidized Ni/Au/Cu could perform as a hole transport layer of the perovskite-based SCs. It leads to improved perovskite SC performance on an open circuit voltage of 1.01 V, a short circuit current density of 14.36 mA/cm2, a fill factor of 76.7%, and a power conversion efficiency (η%) of 11.1%. The η% of perovskite SCs with oxidized Ni (10 nm)/Au (6 nm)/Cu (1 nm) improved by approximately 10% compared with that of perovskite SCs with oxidized Ni/Au.

  4. Stable and Efficient Organo-Metal Halide Hybrid Perovskite Solar Cells via π-Conjugated Lewis Base Polymer Induced Trap Passivation and Charge Extraction.

    Science.gov (United States)

    Qin, Ping-Li; Yang, Guang; Ren, Zhi-Wei; Cheung, Sin Hang; So, Shu Kong; Chen, Li; Hao, Jianhua; Hou, Jianhui; Li, Gang

    2018-03-01

    High-quality pinhole-free perovskite film with optimal crystalline morphology is critical for achieving high-efficiency and high-stability perovskite solar cells (PSCs). In this study, a p-type π-conjugated polymer poly[(2,6-(4,8-bis(5-(2-ethylhexyl) thiophen-2-yl)-benzo[1,2-b:4,5-b'] dithiophene))-alt-(5,5-(1',3'-di-2-thienyl-5',7'-bis(2-ethylhexyl) benzo[1',2'-c:4',5'-c'] dithiophene-4,8-dione))] (PBDB-T) is introduced into chlorobenzene to form a facile and effective template-agent during the anti-solvent process of perovskite film formation. The π-conjugated polymer PBDB-T is found to trigger a heterogeneous nucleation over the perovskite precursor film and passivate the trap states of the mixed perovskite film through the formation of Lewis adducts between lead and oxygen atom in PBDB-T. The p-type semiconducting and hydrophobic PBDB-T polymer fills in the perovskite grain boundaries to improve charge transfer for better conductivity and prevent moisture invasion into the perovskite active layers. Consequently, the PSCs with PBDB-T modified anti-solvent processing leads to a high-efficiency close to 20%, and the devices show excellent stability, retaining about 90% of the initial power conversion efficiency after 150 d storage in dry air. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Semi-transparent solar cells

    International Nuclear Information System (INIS)

    Sun, J; Jasieniak, J J

    2017-01-01

    Semi-transparent solar cells are a type of technology that combines the benefits of visible light transparency and light-to-electricity conversion. One of the biggest opportunities for such technologies is in their integration as windows and skylights within energy-sustainable buildings. Currently, such building integrated photovoltaics (BIPV) are dominated by crystalline silicon based modules; however, the opaque nature of silicon creates a unique opportunity for the adoption of emerging photovoltaic candidates that can be made truly semi-transparent. These include: amorphous silicon-, kesterite-, chalcopyrite-, CdTe-, dye-sensitized-, organic- and perovskite- based systems. For the most part, amorphous silicon has been the workhorse in the semi-transparent solar cell field owing to its established, low-temperature fabrication processes. Excitement around alternative classes, particularly perovskites and the inorganic candidates, has recently arisen because of the major efficiency gains exhibited by these technologies. Importantly, each of these presents unique opportunities and challenges within the context of BIPV. This topic review provides an overview into the broader benefits of semi-transparent solar cells as building-integrated features, as well as providing the current development status into all of the major types of semi-transparent solar cells technologies. (topical review)

  6. Semi-transparent solar cells

    Science.gov (United States)

    Sun, J.; Jasieniak, J. J.

    2017-03-01

    Semi-transparent solar cells are a type of technology that combines the benefits of visible light transparency and light-to-electricity conversion. One of the biggest opportunities for such technologies is in their integration as windows and skylights within energy-sustainable buildings. Currently, such building integrated photovoltaics (BIPV) are dominated by crystalline silicon based modules; however, the opaque nature of silicon creates a unique opportunity for the adoption of emerging photovoltaic candidates that can be made truly semi-transparent. These include: amorphous silicon-, kesterite-, chalcopyrite-, CdTe-, dye-sensitized-, organic- and perovskite- based systems. For the most part, amorphous silicon has been the workhorse in the semi-transparent solar cell field owing to its established, low-temperature fabrication processes. Excitement around alternative classes, particularly perovskites and the inorganic candidates, has recently arisen because of the major efficiency gains exhibited by these technologies. Importantly, each of these presents unique opportunities and challenges within the context of BIPV. This topic review provides an overview into the broader benefits of semi-transparent solar cells as building-integrated features, as well as providing the current development status into all of the major types of semi-transparent solar cells technologies.

  7. Temperature-Induced Lattice Relaxation of Perovskite Crystal Enhances Optoelectronic Properties and Solar Cell Performance

    KAUST Repository

    Banavoth, Murali; Yengel, Emre; Peng, Wei; Chen, Zhijie; Alias, Mohd Sharizal; Alarousu, Erkki; Ooi, Boon S.; Burlakov, Victor; Goriely, Alain; Eddaoudi, Mohamed; Bakr, Osman; Mohammed, Omar F.

    2016-01-01

    Hybrid organic-inorganic perovskite crystals have recently become one of the most important classes of photoactive materials in the solar cell and optoelectronic communities. Albeit improvements have focused on state-of-the-art technology including

  8. Analysis of a Hybrid Solar-Assisted Trigeneration System

    Directory of Open Access Journals (Sweden)

    Elisa Marrasso

    2016-09-01

    Full Text Available A hybrid solar-assisted trigeneration system is analyzed in this paper. The system is composed of a 20 m2 solar field of evacuated tube collectors, a natural gas fired micro combined heat and power system delivering 12.5 kW of thermal power, an absorption heat pump (AHP with a nominal cooling power of 17.6 kW, two storage tanks (hot and cold and an electric auxiliary heater (AH. The plant satisfies the energy demand of an office building located in Naples (Southern Italy. The electric energy of the cogenerator is used to meet the load and auxiliaries electric demand; the interactions with the grid are considered in cases of excess or over requests. This hybrid solution is interesting for buildings located in cities or historical centers with limited usable roof surface to install a conventional solar heating and cooling (SHC system able to achieve high solar fraction (SF. The results of dynamic simulation show that a tilt angle of 30° maximizes the SF of the system on annual basis achieving about 53.5%. The influence on the performance of proposed system of the hot water storage tank (HST characteristics (volume, insulation is also studied. It is highlighted that the SF improves when better insulated and bigger HSTs are considered. A maximum SF of about 58.2% is obtained with a 2000 L storage, whereas the lower thermal losses take place with a better insulated 1000 L tank.

  9. FY 2000 report on the results of the development of technology for commercialization of the photovoltaic power system - Development of production technology of thin film solar cells. Development of production technology of low-cost/large-area modules (Development of production technology of application type new structure thin film solar cells/Development of production technology of amorphous silicon-thin film polycrystal silicon hybrid thin film solar cells); 2000 nendo New sunshine keikaku seika hokokusho. Taiyoko hatsuden system jitsuyoka gijutsu kaihatsu, Hakumaku taiyodenchi no seizo gijutsu kaihatsu, Tei cost dai menseki mojuru seizo gijutsu kaihatsu (Oyogata shinkozo hakumaku taiyodenchi no seizo gijutsu kaihatsu, Amorufasusilicon hakumaku takessho silicon hybrid hakumaku taiyodenchi no seizo gijutsu kaihatsu)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    For the purpose of developing the application type new structure thin film solar cell that is low-cost, high-efficient and practical, a developmental study was made of production technology of amorphous silicon/thin film polycrystal silicon hybrid thin film solar cells, and the FY 2000 results were reported. In the study of the heightening of efficiency of the small area hybrid cell, a structure was adopted in which a transparent intermediate layer was installed between a-Si cell and bottom poly-Si cell, and the initial efficiency of 14.0% was obtained in the small area cell 1cm square. As to the large area hybrid module, the initial efficiency of 11.7% and maximum output of 44.9W were achieved in the large area substrate module with a size of 910 x 455mm. In the indoor/outdoor evaluation of the output of hybrid modules, conducted were the outdoor measurement and the output measurement made every season under the mock spectral light in two-light simulator. In summer, F.F. was improved by spectral gain and anneal effect, and the effective output about 8% higher was recognized in the module after stabilization. (NEDO)

  10. Plastic solar cells

    International Nuclear Information System (INIS)

    Brabec, C.J.; Sariciftci, N.S.; Hummelen, J.C.

    2001-01-01

    Recent developments in conjugated-polymer-based photovoltaic elements are reviewed. The photophysics of such photoactive devices is based on the photo-induced charge transfer from donor-type semiconducting conjugated polymers to acceptor-type conjugated polymers or acceptor molecules such as Buckminsterfullerene, C 60 . This photo-induced charge transfer is reversible, ultrafast (within 100 fs) with a quantum efficiency approaching unity, and the charge-separated state is metastable (up to milliseconds at 80 K). Being similar to the first steps in natural photosynthesis, this photo-induced electron transfer leads to a number of potentially interesting applications, which include sensitization of the photoconductivity and photovoltaic phenomena. Examples of photovoltaic architectures are presented and their potential in terrestrial solar energy conversion discussed. Recent progress in the realization of improved photovoltaic elements with 3% power conversion efficiency is reported. (orig.)

  11. Surface Passivation for Silicon Heterojunction Solar Cells

    NARCIS (Netherlands)

    Deligiannis, D.

    2017-01-01

    Silicon heterojunction solar cells (SHJ) are currently one of the most promising solar cell technologies in the world. The SHJ solar cell is based on a crystalline silicon (c-Si) wafer, passivated on both sides with a thin intrinsic hydrogenated amorphous silicon (a-Si:H) layer. Subsequently, p-type

  12. Challenges in amorphous silicon solar cell technology

    NARCIS (Netherlands)

    Swaaij, van R.A.C.M.M.; Zeman, M.; Korevaar, B.A.; Smit, C.; Metselaar, J.W.; Sanden, van de M.C.M.

    2000-01-01

    Hydrogenated amorphous silicon is nowadays extensively used for a range of devices, amongst others solar cells, Solar cell technology has matured over the last two decades and resulted in conversion efficiencies in excess of 15%. In this paper the operation of amorphous silicon solar cells is

  13. A hybrid desalination system using humidification-dehumidification and solar stills integrated with evacuated solar water heater

    International Nuclear Information System (INIS)

    Sharshir, S.W.; Peng, Guilong; Yang, Nuo; Eltawil, Mohamed A.; Ali, Mohamed Kamal Ahmed; Kabeel, A.E.

    2016-01-01

    Highlights: • Evacuated solar water heater integrated with humidification-dehumidification system. • Reuse of warm water drained from humidification-dehumidification to feed solar stills. • The thermal performance of hybrid system is increased by 50% and maximum yield is 63.3 kg/day. • The estimated price of the freshwater produced from the hybrid system is $0.034/L. - Abstract: This paper offers a hybrid solar desalination system comprising a humidification-dehumidification and four solar stills. The developed hybrid desalination system reuses the drain warm water from humidification-dehumidification to feed solar stills to stop the massive warm water loss during desalination. Reusing the drain warm water increases the gain output ratio of the system by 50% and also increased the efficiency of single solar still to about 90%. Furthermore, the production of a single solar still as a part of the hybrid system was more than that of the conventional one by approximately 200%. The daily water production of the conventional one, single solar still, four solar still, humidification- dehumidification and hybrid system were 3.2, 10.5, 42, 24.3 and 66.3 kg/day, respectively. Furthermore, the cost per unit liter of distillate from conventional one, humidification- dehumidification and hybrid system were around $0.049, $0.058 and $0.034, respectively.

  14. Design and Analysis of Hybrid Solar Lighting and Full-Spectrum Solar Energy Systems

    International Nuclear Information System (INIS)

    Muhs, J.D.

    2001-01-01

    This paper describes a systems-level design and analysis of a new approach for improving the energy efficiency and affordability of solar energy in buildings, namely, hybrid solar lighting and full-spectrum solar energy systems. By using different portions of the solar spectrum simultaneously for multiple end-use applications in buildings, the proposed system offers unique advantages over other alternatives for using sunlight to displace electricity (conventional topside daylighting and solar technologies). Our preliminary work indicates that hybrid solar lighting, a method of collecting and distributing direct sunlight for lighting purposes, will alleviate many of the problems with passive daylighting systems of today, such as spatial and temporal variability, glare, excess illumination, cost, and energy efficiency. Similarly, our work suggests that the most appropriate use of the visible portion of direct, nondiffuse sunlight from an energy-savings perspective is to displace electric light rather than generate electricity. Early estimates detailed in this paper suggest an anticipated system cost of well under$2.0/Wp and 5-11(cents)/kWh for displaced and generated electricity in single-story commercial building applications. Based on a number of factors discussed in the paper, including sunlight availability, building use scenarios, time-of-day electric utility rates, cost, and efficacy of the displaced electric lights, the simple payback of this approach in many applications could eventually be well under 5 years

  15. Evaluation of hybrid solar – biomass dryer with no load

    Directory of Open Access Journals (Sweden)

    Yassen Tadahmun Ahmed

    2014-07-01

    Full Text Available Experimental study was carried out to investigate the performance of designed and fabricated hybrid solar-biomass dryer without load. The solar side was a natural convection mixed mode, while the biomass side was a hot air produced from a burner/gas to gas heat exchanger. The experiments have been conducted to test the dryer temperature, inlet and outlet relative humidity, outlet velocity, and biomass feeding rate. In the solar mode the maximum dryer temperature was 63°C. Behaviours of the velocity in the dryer was found to follow solar radiation available to the dryer. The velocity was in the range of 0.6 – 1.35 m/s through the 0.0176 m2 area of the outlet when the solar radiation was in the range of 150 – 880 W/m2. Two feeding rates of wood were used to investigate the dryer performance through the night. The results showed that at feeding rate 278 g/hr, the drying air mean temperature was 62 ºC. This temperature was more suitable than the measured drying air temperature at feeding rate 490 g/hr. Also the 62 °C drying environment is more stable and feasible for drying almost all types of products.

  16. Investigations on the performance of a double pass, hybrid - type (PV/T) solar air heater

    Energy Technology Data Exchange (ETDEWEB)

    Srinivas, M.; Jayaraj, S. [Department of Mechanical Engineering, National Institute of Technology, Calicut-673601 (India)

    2013-07-01

    A solar hybrid energy system having photovoltaic and thermal (PV/T) devices, which produces both thermal and electrical energies simultaneously is considered for analysis. A double pass hybrid solar air (PV/T) heater with slats is designed and fabricated to study its thermal and electrical performance. Air as a heat removing fluid is made to flow through upper and lower channels of the collector. The collector is designed in such a way that the absorber plate is partially covered by solar cells. The raise in temperature of the solar cell is expected to decrease its electrical performance. Thin metallic strips called slats are attached longitudinally at the bottom side of the absorber plate to improve the system performance by increasing the cooling rate of the absorber plate. Thermal and electrical performances of the whole system at varying cooling conditions are presented. An artificial neural network model is used for forecasting the system performance at any desired conditions. The proposed model can be successfully used for evaluating the effect of different operating parameters under different ambient conditions for predicting the overall performance of the system.

  17. Three-Terminal Amorphous Silicon Solar Cells

    Directory of Open Access Journals (Sweden)

    Cheng-Hung Tai

    2011-01-01

    Full Text Available Many defects exist within amorphous silicon since it is not crystalline. This provides recombination centers, thus reducing the efficiency of a typical a-Si solar cell. A new structure is presented in this paper: a three-terminal a-Si solar cell. The new back-to-back p-i-n/n-i-p structure increased the average electric field in a solar cell. A typical a-Si p-i-n solar cell was also simulated for comparison using the same thickness and material parameters. The 0.28 μm-thick three-terminal a-Si solar cell achieved an efficiency of 11.4%, while the efficiency of a typical a-Si p-i-n solar cell was 9.0%. Furthermore, an efficiency of 11.7% was achieved by thickness optimization of the three-terminal solar cell.

  18. Optimalization activity of ZnO NR/TiO2 NR-P3HT as an active layer based on hybrid bulk heterojunction on dye sensitized solar cell (DSSC)

    International Nuclear Information System (INIS)

    Saputri, Liya Nikmatul Maula Zulfa; Ramelan, Ari Handono; Hanif, Qonita Awliya; Hasanah, Yesi Ihdina Fityatal; Prajanira, Lau Bekti; Wahyuningsih, Sayekti

    2016-01-01

    Dye sensitized solar cell (DSSC) with metal inorganic and conjugated organic polymer mixture, ZnO NR/TiO 2 NR-P3HT as an active layer based on hybrid bulk heterojunction has been studied. The hybrid material was used to optimize DSSC performs for better efficiency than only TiO 2 as an electrode. Synthesis of TiO 2 nanorods (NR) was conducted by ball milling 1000 rpm for 4 hours and strong base reaction by hydrothermal process at 120 °C overnight. And the ZnO NR was synthesized from Zn(NO 3 ) 2 .4H 2 O precusor by hydrotermal process at 90 °C for 5 hours and calcined on various temperature s of 400, 600, and 800 °C. ZnO NR was coated into an Tndium Tin Oxide (TTO) glass to collecting electron s effectively, where TiO 2 NR were incorporated with poly(3 -hexylthiophene) (P3HT) on various concentration s of 5, 10, 15 mg/mL to obtain a larger surface area. Material characterization were performed by X -Ray Diffraction (XRD) and Uv-Vis spectrophotometer. For an application of DSSC were measured by T-V Keithley Multimeter and the efficiency of DSSC at various P3HT’s concentrations of 5, 10, 15 mg/mL were 7.44 × 10 −3 , 0.0114, 0.0104, respectively. The maximum efficiency of DSSC was showed when TiO 2 NR-P3HT’s concentration was 10 mg/mL.

  19. Optimalization activity of ZnO NR/TiO2 NR-P3HT as an active layer based on hybrid bulk heterojunction on dye sensitized solar cell (DSSC)

    Energy Technology Data Exchange (ETDEWEB)

    Saputri, Liya Nikmatul Maula Zulfa; Ramelan, Ari Handono; Hanif, Qonita Awliya; Hasanah, Yesi Ihdina Fityatal; Prajanira, Lau Bekti; Wahyuningsih, Sayekti, E-mail: sayektiw@mipa.uns.ac.id [Chemistry Department, Faculty of Mathematics and Natural Sciences, Sebelas Maret University, Ir.Sutami 36A Kentingan Surakarta 57/26, Central Java (Indonesia)

    2016-04-19

    Dye sensitized solar cell (DSSC) with metal inorganic and conjugated organic polymer mixture, ZnO NR/TiO{sub 2} NR-P3HT as an active layer based on hybrid bulk heterojunction has been studied. The hybrid material was used to optimize DSSC performs for better efficiency than only TiO{sub 2} as an electrode. Synthesis of TiO{sub 2} nanorods (NR) was conducted by ball milling 1000 rpm for 4 hours and strong base reaction by hydrothermal process at 120 °C overnight. And the ZnO NR was synthesized from Zn(NO{sub 3}){sub 2}.4H{sub 2}O precusor by hydrotermal process at 90 °C for 5 hours and calcined on various temperature s of 400, 600, and 800 °C. ZnO NR was coated into an Tndium Tin Oxide (TTO) glass to collecting electron s effectively, where TiO{sup 2} NR were incorporated with poly(3 -hexylthiophene) (P3HT) on various concentration s of 5, 10, 15 mg/mL to obtain a larger surface area. Material characterization were performed by X -Ray Diffraction (XRD) and Uv-Vis spectrophotometer. For an application of DSSC were measured by T-V Keithley Multimeter and the efficiency of DSSC at various P3HT’s concentrations of 5, 10, 15 mg/mL were 7.44 × 10{sup −3}, 0.0114, 0.0104, respectively. The maximum efficiency of DSSC was showed when TiO{sup 2} NR-P3HT’s concentration was 10 mg/mL.

  20. Three Sides Billboard Wind-Solar Hybrid System Design

    Directory of Open Access Journals (Sweden)

    Bai Xuefeng

    2015-01-01

    Full Text Available With the high development of world economy, the demand of energy is increasing all the time, As energy shortage and environment problem are increasing outstanding, Renewable energy has been attracting more and more attention. A kind of three sides billboard supply by wind-Solar hybrid system has been designed in this paper, the overall structure of the system, components, working principle and control strategy has been analyzed from the system perspective. The software and hardware of the system are debugged together and the result is acquired. System function is better and has achieved the expected results.

  1. Performance analysis of a hybrid photovoltaic thermal solar air heater

    International Nuclear Information System (INIS)

    Othman, Mohd Yusof; Yatim, Baharudin; Abu Bakar, Mohd Nazari; Sopian, Kamaruzzaman

    2006-01-01

    A photovoltaic (PV/T) air heater is a collector that combines thermal and photovoltaic systems in one single hybrid generating unit. It generators both thermal and electrical energies simultaneously. A new design of a double-pass photovoltaic-thermal solar air collector with CPC and fins was successfully developed and fabricated at Universiti Kebangsaam Malaysia. This collector tested under actual environmental conditions to study its performance over a range of operating conditions. The test set-up, instrumentation and measurement are described further. It was found that the performance of the collector was in agreement with the theoretical prediction. Results of the outdoors test are presented and discussed(Author)

  2. Renewable Energy Systems: Development and Perspectives of a Hybrid Solar-Wind System

    Directory of Open Access Journals (Sweden)

    C. Shashidhar

    2012-02-01

    Full Text Available Considering the intermittent natural energy resources and the seasonal un-balance, a phtovoltaic-wind hybrid electrical power supply system was developed to accommodate remote locations where a conventional grid connection is inconvenient or expensive. However, the hybrid system can also be applied with grid connection and owners are allowed to sell excessive power back to the electric utility. The proposed set-up consists of a photo-voltaic solar-cell array, a mast mounted wind generator, lead-acid storage batteries, an inverter unit to convert DC to AC, electrical lighting loads, electrical heating loads, several fuse and junction boxes and associated wiring, and test instruments for measuring voltages, currents, power factors, and harmonic contamination data throughout the system. The proposed hybrid solar-wind power generating system can be extensively used to illustrate electrical concepts in hands-on laboratories and also for demonstrations in the Industrial Technology curriculum. This paper describes an analysis of local PV-wind hybrid systems for supplying electricity to a private house, farmhouse or small company with electrical power depending on the site needs. The major system components, work principle and specific working condition are presented.

  3. Work Station For Inverting Solar Cells

    Science.gov (United States)

    Feder, H.; Frasch, W.

    1982-01-01

    Final work station along walking-beam conveyor of solar-array assembly line turns each pretabbed solar cell over, depositing it back-side-up onto landing pad, which centers cell without engaging collector surface. Solar cell arrives at inverting work station collector-side-up with two interconnect tabs attached to collector side. Cells are inverted so that second soldering operation takes place in plain view of operator. Inversion protects collector from damage when handled at later stages of assembly.

  4. Extended Temperature Solar Cell Technology Development

    Science.gov (United States)

    Landis, Geoffrey A.; Jenkins, Phillip; Scheiman, David; Rafaelle, Ryne

    2004-01-01

    Future NASA missions will require solar cells to operate both in regimes closer to the sun, and farther from the sun, where the operating temperatures will be higher and lower than standard operational conditions. NASA Glenn is engaged in testing solar cells under extended temperature ranges, developing theoretical models of cell operation as a function of temperature, and in developing technology for improving the performance of solar cells for both high and low temperature operation.

  5. Assessing the potential of hybrid fossil–solar thermal plants for energy policy making: Brayton cycles

    International Nuclear Information System (INIS)

    Bernardos, Eva; López, Ignacio; Rodríguez, Javier; Abánades, Alberto

    2013-01-01

    This paper proposes a first study in-depth of solar–fossil hybridization from a general perspective. It develops a set of useful parameters for analyzing and comparing hybrid plants, it studies the case of hybridizing Brayton cycles with current solar technologies and shows a tentative extrapolation of the results to integrated combined cycle systems (ISCSS). In particular, three points have been analyzed: the technical requirements for solar technologies to be hybridized with Brayton cycles, the temperatures and pressures at which hybridization would produce maximum power per unit of fossil fuel, and their mapping to current solar technologies and Brayton cycles. Major conclusions are that a hybrid plant works in optimum conditions which are not equal to those of the solar or power blocks considered independently, and that hybridizing at the Brayton cycle of a combined cycle could be energetically advantageous. -- Highlights: •We model a generic solar–fossil hybrid Brayton cycle. •We calculate the operating conditions for maximum ratio power/fuel consumption. •Best hybrid plant conditions are not the same as solar or power blocks separately. •We study potential for hybridization with current solar technologies. •Hybridization at the Brayton in a combined cycle may achieve high power/fuel ratio

  6. Symposium GC: Nanoscale Charge Transport in Excitonic Solar Cells

    Energy Technology Data Exchange (ETDEWEB)

    Bommisetty, Venkat [Univ. of South Dakota, Vermillion, SD (United States)

    2011-06-23

    This paper provides a summary only and table of contents of the sessions. Excitonic solar cells, including all-organic, hybrid organic-inorganic and dye-sensitized solar cells (DSSCs), offer strong potential for inexpensive and large-area solar energy conversion. Unlike traditional inorganic semiconductor solar cells, where all the charge generation and collection processes are well understood, these excitonic solar cells contain extremely disordered structures with complex interfaces which results in large variations in nanoscale electronic properties and has a strong influence on carrier generation, transport, dissociation and collection. Detailed understanding of these processes is important for fabrication of highly efficient solar cells. Efforts to improve efficiency are underway at a large number of research groups throughout the world focused on inorganic and organic semiconductors, photonics, photophysics, charge transport, nanoscience, ultrafast spectroscopy, photonics, semiconductor processing, device physics, device structures, interface structure etc. Rapid progress in this multidisciplinary area requires strong synergetic efforts among researchers from diverse backgrounds. Such effort can lead to novel methods for development of new materials with improved photon harvesting and interfacial treatments for improved carrier transport, process optimization to yield ordered nanoscale morphologies with well defined electronic structures.

  7. The interplay of nanostructure and efficiency of polymer solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Chunhong, Yin

    2008-12-04

    The aim of this thesis is to achieve a deep understanding of the working mechanism of polymer based solar cells and to improve the device performance. Two types of the polymer based solar cells are studied here: the polymer-polymer solar cells, and the polymer-small molecule solar cell which has polymer as electron donor incorporating with organic small molecule as electron acceptor. For the polymer-polymer devices, I compared the photocurrent characteristics of bilayer and blend devices as well as the blend devices with different nano-morphology, which is fine tuned by applying solvents with different boiling points. The main conclusion based on the complementary measurements is that the performance-limiting step is the field-dependent generation of free charge carriers, while bimolecular recombination and charge extraction do not compromise device performance. Regarding polymer-small molecular hybrid solar cells I combined the hole-transporting polymer M3EH-PPV with a novel small molecule electron acceptor vinazene. This molecule can be either deposited from solution or by thermal evaporation, allowing for a large variety of layer architectures to be realized. I then demonstrated that the layer architecture has a large influence on the photovoltaic properties. Solar cells with very high fill factors of up to 57 % and an open circuit voltage of 1V without thermal treatment of the devices were achieved. In the past, fill factors of solar cells exceeding 50 % have only been observed when using fullerene-derivatives as the electron-acceptor. The finding that proper processing of polymer-vinazene devices leads to similar high values is a major step towards the design of efficient polymer-based solar cells. (orig.)

  8. Thermochromic halide perovskite solar cells

    Science.gov (United States)

    Lin, Jia; Lai, Minliang; Dou, Letian; Kley, Christopher S.; Chen, Hong; Peng, Fei; Sun, Junliang; Lu, Dylan; Hawks, Steven A.; Xie, Chenlu; Cui, Fan; Alivisatos, A. Paul; Limmer, David T.; Yang, Peidong

    2018-03-01

    Smart photovoltaic windows represent a promising green technology featuring tunable transparency and electrical power generation under external stimuli to control the light transmission and manage the solar energy. Here, we demonstrate a thermochromic solar cell for smart photovoltaic window applications utilizing the structural phase transitions in inorganic halide perovskite caesium lead iodide/bromide. The solar cells undergo thermally-driven, moisture-mediated reversible transitions between a transparent non-perovskite phase (81.7% visible transparency) with low power output and a deeply coloured perovskite phase (35.4% visible transparency) with high power output. The inorganic perovskites exhibit tunable colours and transparencies, a peak device efficiency above 7%, and a phase transition temperature as low as 105 °C. We demonstrate excellent device stability over repeated phase transition cycles without colour fade or performance degradation. The photovoltaic windows showing both photoactivity and thermochromic features represent key stepping-stones for integration with buildings, automobiles, information displays, and potentially many other technologies.

  9. Thermochromic halide perovskite solar cells.

    Science.gov (United States)

    Lin, Jia; Lai, Minliang; Dou, Letian; Kley, Christopher S; Chen, Hong; Peng, Fei; Sun, Junliang; Lu, Dylan; Hawks, Steven A; Xie, Chenlu; Cui, Fan; Alivisatos, A Paul; Limmer, David T; Yang, Peidong

    2018-03-01

    Smart photovoltaic windows represent a promising green technology featuring tunable transparency and electrical power generation under external stimuli to control the light transmission and manage the solar energy. Here, we demonstrate a thermochromic solar cell for smart photovoltaic window applications utilizing the structural phase transitions in inorganic halide perovskite caesium lead iodide/bromide. The solar cells undergo thermally-driven, moisture-mediated reversible transitions between a transparent non-perovskite phase (81.7% visible transparency) with low power output and a deeply coloured perovskite phase (35.4% visible transparency) with high power output. The inorganic perovskites exhibit tunable colours and transparencies, a peak device efficiency above 7%, and a phase transition temperature as low as 105 °C. We demonstrate excellent device stability over repeated phase transition cycles without colour fade or performance degradation. The photovoltaic windows showing both photoactivity and thermochromic features represent key stepping-stones for integration with buildings, automobiles, information displays, and potentially many other technologies.

  10. Semiconductor materials for solar photovoltaic cells

    CERN Document Server

    Wong-Ng, Winnie; Bhattacharya, Raghu

    2016-01-01

    This book reviews the current status of semiconductor materials for conversion of sunlight to electricity, and highlights advances in both basic science and manufacturing.  Photovoltaic (PV) solar electric technology will be a significant contributor to world energy supplies when reliable, efficient PV power products are manufactured in large volumes at low cost.  Expert chapters cover the full range of semiconductor materials for solar-to-electricity conversion, from crystalline silicon and amorphous silicon to cadmium telluride, copper indium gallium sulfide selenides, dye sensitized solar cells, organic solar cells, and environmentally friendly copper zinc tin sulfide selenides. The latest methods for synthesis and characterization of solar cell materials are described, together with techniques for measuring solar cell efficiency. Semiconductor Materials for Solar Photovoltaic Cells presents the current state of the art as well as key details about future strategies to increase the efficiency and reduce ...

  11. Optical and mechanical tolerances in hybrid concentrated thermal-PV solar trough.

    Science.gov (United States)

    Diaz, Liliana Ruiz; Cocilovo, Byron; Miles, Alexander; Pan, Wei; Blanche, Pierre-Alexandre; Norwood, Robert A

    2018-05-14

    Hybrid thermal-PV solar trough collectors combine concentrated photovoltaics and concentrated solar power technology to harvest and store solar energy. In this work, the optical and mechanical requirements for optimal efficiency are analyzed using non-sequential ray tracing techniques. The results are used to generate opto-mechanical tolerances that can be compared to those of traditional solar collectors. We also explore ideas on how to relieve tracking tolerances for single-axis solar collectors. The objective is to establish a basis for tolerances required for the fabrication and manufacturing of hybrid solar trough collectors.

  12. Nanostructures for Organic Solar Cells

    DEFF Research Database (Denmark)

    Goszczak, Arkadiusz Jarosław

    2016-01-01

    The experimental work in this thesis is focused on the fabrication of nanostructures that can be implemented in organic solar cell (OSC) architecture for enhancement of the device performance. Solar devices made from organic material are gaining increased attention, compared to their inorganic...... counterparts, due to the promising advantages, such as transparency, flexibility, ease of processing etc. But their efficiencies cannot be compared to the inorganic ones. Boosting the efficiency of OSCs by nanopatterning has thus been puzzling many researchers within the past years. Therefore various methods...... have been proposed to be used for developing efficient nanostructures for OSC devices such as, plasmonic structures, nanowires (NWs), gratings, nanorods etc. The nanostructuring methods applied though, do not offer the possibility of a cheap, rapid, reproducible and scalable fabrication. It is the aim...

  13. Hybrid fuel cells technologies for electrical microgrids

    Energy Technology Data Exchange (ETDEWEB)

    San Martin, Jose Ignacio; Zamora, Inmaculada; San Martin, Jose Javier; Aperribay, Victor; Eguia, Pablo [Department of Electrical Engineering, University of the Basque Country, Alda. de Urquijo, s/n, 48013 Bilbao (Spain)

    2010-09-15

    Hybrid systems are characterized by containing two or more electrical generation technologies, in order to optimize the global efficiency of the processes involved. These systems can present different operating modes. Besides, they take into account aspects that not only concern the electrical and thermal efficiencies, but also the reduction of pollutant emissions. There is a wide range of possible configurations to form hybrid systems, including hydrogen, renewable energies, gas cycles, vapour cycles or both. Nowadays, these technologies are mainly used for energy production in electrical microgrids. Some examples of these technologies are: hybridization processes of fuel cells with wind turbines and photovoltaic plants, cogeneration and trigeneration processes that can be configured with fuel cell technologies, etc. This paper reviews and analyses the main characteristics of electrical microgrids and the systems based on fuel cells for polygeneration and hybridization processes. (author)

  14. Solar central receiver hybrid power system. Phase I study

    Energy Technology Data Exchange (ETDEWEB)

    None

    1978-11-01

    A management plan is presented for implementation during the Solar Central Receiver Hybrid Power System - Phase I study project. The project plan and the management controls that will be used to assure technically adequate, timely and cost effective performance of the work required to prepare the designated end products are described. Bechtel in-house controls and those to be used in directing the subcontractors are described. Phase I of the project consists of tradeoff studies, parametric analyses, and engineering studies leading to conceptual definition and evaluation of a commercial hybrid power system that has the potential for supplying economically competitive electric power to a utility grid in the 1985-1990 time frame. The scope also includes the preparation of a development plan for the resolution of technical uncertainties and the preparation of plans and a proposal for Phase II of the program. The technical approach will be based on a central receiver solar energy collection scheme which supplies thermal energy to a combined cycle, generating system, consisting of a gas turbine cycle combined with a steam bottoming cycle by means of a heat recovery steam generator.

  15. Surface modification with MK-2 organic dye in a ZnO/P3HT hybrid solar cell: Impact on device performance

    Directory of Open Access Journals (Sweden)

    Yu Jin Kim

    2014-07-01

    Full Text Available The photovoltaic performance of a hybrid ZnO/P3HT heterojunction was improved by modifying the device surface with the MK-2 dye. This organic dye enhanced the compatibility between the polymer and the metal oxide, increased the exciton separation efficiency, and improved the molecular ordering in the charge transport network. The resulting device displayed a substantial enhancement in the photocurrent, open circuit voltage, and fill factor, leading to a 12-fold increase in the power conversion efficiency relative to the unmodified device, from 0.13% to 1.53%.

  16. Combined cycle solar central receiver hybrid power system study. Volume III. Appendices. Final technical report

    Energy Technology Data Exchange (ETDEWEB)

    None

    1979-11-01

    A design study for a 100 MW gas turbine/steam turbine combined cycle solar/fossil-fuel hybrid power plant is presented. This volume contains the appendices: (a) preconceptual design data; (b) market potential analysis methodology; (c) parametric analysis methodology; (d) EPGS systems description; (e) commercial-scale solar hybrid power system assessment; and (f) conceptual design data lists. (WHK)

  17. A hybrid mammalian cell cycle model

    Directory of Open Access Journals (Sweden)

    Vincent Noël

    2013-08-01

    Full Text Available Hybrid modeling provides an effective solution to cope with multiple time scales dynamics in systems biology. Among the applications of this method, one of the most important is the cell cycle regulation. The machinery of the cell cycle, leading to cell division and proliferation, combines slow growth, spatio-temporal re-organisation of the cell, and rapid changes of regulatory proteins concentrations induced by post-translational modifications. The advancement through the cell cycle comprises a well defined sequence of stages, separated by checkpoint transitions. The combination of continuous and discrete changes justifies hybrid modelling approaches to cell cycle dynamics. We present a piecewise-smooth version of a mammalian cell cycle model, obtained by hybridization from a smooth biochemical model. The approximate hybridization scheme, leading to simplified reaction rates and binary event location functions, is based on learning from a training set of trajectories of the smooth model. We discuss several learning strategies for the parameters of the hybrid model.

  18. Dye solar cells: a different approach to solar energy

    CSIR Research Space (South Africa)

    Le Roux, Lukas J

    2008-11-01

    Full Text Available An attractive and cheaper alternative to siliconbased photovoltaic (PV) cells for the conversion of solar light into electrical energy is to utilise dyeadsorbed, large-band-gap metal oxide materials such as TiO2 to absorb the solar light...

  19. Quantum Dots for Solar Cell Application

    Science.gov (United States)

    Poudyal, Uma

    Solar energy has been anticipated as the most important and reliable source of renewable energy to address the ever-increasing energy demand. To harvest solar energy efficiently, diverse kinds of solar cells have been studied. Among these, quantum dot sensitized solar cells have been an interesting group of solar cells mainly due to tunable, size-dependent electronic and optical properties of quantum dots. Moreover, doping these quantum dots with transition metal elements such as Mn opens avenue for improved performance of solar cells as well as for spin based technologies. In this dissertation, Mn-doped CdSe QDs (Mn-CdSe) have been synthesized by Successive Ionic Layer Adsorption and Reaction (SILAR) method. They are used in solar cells to study the effect of Mn doping in the performance of solar cells. Incident photon to current-conversion efficiency (IPCE) is used to record the effect of Mn-doping. Intensity modulated photovoltage and photocurrent spectroscopy (IMVS/PS) has been used to study the carrier dynamics in these solar cells. Additionally, the magnetic properties of Mn-CdSe QDs is studied and its possible origin is discussed. Moreover, CdS/CdSe QDs have been used to study the effect of liquid, gel and solid electrolyte in the performance and stability of the solar cells. Using IPCE spectra, the time decay measurements are presented and the possible reactions between the QD and the electrolytes are explained.

  20. Hybrid photovoltaic-thermoelectric system for concentrated solar energy conversion: Experimental realization and modeling

    Science.gov (United States)

    Beeri, Ofer; Rotem, Oded; Hazan, Eden; Katz, Eugene A.; Braun, Avi; Gelbstein, Yaniv

    2015-09-01

    An experimental demonstration of the combined photovoltaic (PV) and thermoelectric conversion of concentrated sunlight (with concentration factor, X, up to ˜300) into electricity is presented. The hybrid system is based on a multi-junction PV cell and a thermoelectric generator (TEG). The latter increases the electric power of the system and dissipates some of the excessive heat. For X ≤ 200, the system's maximal efficiency, ˜32%, was mostly due to the contribution from the PV cell. With increasing X and system temperature, the PV cell's efficiency decreased while that of the TEG increased. Accordingly, the direct electrical contribution of the TEG started to dominate in the total system power, reaching ˜20% at X ≈ 290. Using a simple steady state finite element modeling, the cooling effect of the TEG on the hybrid system's efficiency was proved to be even more significant than its direct electrical contribution for high solar concentrations. As a result, the total efficiency contribution of the TEG reached ˜40% at X ≈ 200. This suggests a new system optimization concept that takes into account the PV cell's temperature dependence and the trade-off between the direct electrical generation and cooling capabilities of the TEG. It is shown that the hybrid system has a real potential to exceed 50% total efficiency by using more advanced PV cells and TE materials.

  1. Development in fiscal 1999 of technologies to put photovoltaic power generation systems into practical use. Development of thin film solar cell manufacturing technologies (Development of low-cost large-area module manufacturing technologies, and development of technologies to manufacture amorphous silicon/thin film poly-crystalline silicon hybrid thin film solar cells); 1999 nendo taiyoko hatsuden system jitsuyoka gijutsu kaihatsu seika hokokusho. Usumaku taiyo denchi no seizo gijutsu kaihatsu (tei cost daimenseki module seizo kaihatsu (oyogata shinkozo usumaku taiyo denchi no seizo gijutsu kaihatsu (amorphous silicon / usumaku takessho silicon hybrid usumaku taiyo denchi no seizo gijutsu kaihatsu))

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-01

    Developmental research has been performed on large-area low-cost manufacturing technologies on hybrid thin film solar cells of amorphous silicon and poly-crystalline silicon. This paper summarizes the achievements in fiscal 1999. The research has been performed on a texture construction formed naturally on silicon surface, and thin film poly-crystalline silicon cells with STAR structure having a rear side reflection layer to increase light absorption. The research achievements during the current fiscal year may be summarized as follows: the laser scribing technology for thin film poly-crystalline silicon was established, which is important for modularization, making fabrication of low-cost and large-area modules possible; a stabilization efficiency of 11.3% was achieved in a hybrid mini module comprising of ten-stage series integrated amorphous silicon and thin film poly-crystalline silicon; structures different hybrid modules were discussed, whereas an initial efficiency of 10.3% (38.78W) was achieved in a sub-module having a substrate size of 910 mm times 455 mm; and feasibility of forming large-area hybrid modules was demonstrated. (NEDO)

  2. Unconventional device concepts for polymer solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Veenstra, S.C.; Slooff, L.H.; Verhees, W.J.H.; Cobussen-Pool, E.M.; Lenzmann, F.O.; Kroon, J.M. [ECN Solar Energy, Petten (Netherlands); Sessolo, M.; Bolink, H.J. [Instituto de Ciencia Molecular, Universidad de Valencia, Valencia (Spain)

    2009-09-15

    The inclusion of metal-oxide layers in polymer solar cells enables the fabrication of a series of unconventional device architectures. These devices include: semi-transparent polymer solar cells, devices with inverted polarity, as well as devices with air stable electrodes. A proof-of-principle of these devices is presented. The anticipated benefits of these novel device structures over conventional polymer solar cells are discussed.

  3. Device operation of organic tandem solar cells

    NARCIS (Netherlands)

    Hadipour, A.; de Boer, B.; Blom, P. W. M.

    2008-01-01

    A generalized methodology is developed to obtain the current-voltage characteristic of polymer tandem solar cells by knowing the electrical performance of both sub cells. We demonstrate that the electrical characteristics of polymer tandem solar cells are correctly predicted for both the series and

  4. Solar Cells Using Quantum Funnels

    KAUST Repository

    Kramer, Illan J.

    2011-09-14

    Colloidal quantum dots offer broad tuning of semiconductor bandstructure via the quantum size effect. Devices involving a sequence of layers comprised of quantum dots selected to have different diameters, and therefore bandgaps, offer the possibility of funneling energy toward an acceptor. Here we report a quantum funnel that efficiently conveys photoelectrons from their point of generation toward an intended electron acceptor. Using this concept we build a solar cell that benefits from enhanced fill factor as a result of this quantum funnel. This concept addresses limitations on transport in soft condensed matter systems and leverages their advantages in large-area optoelectronic devices and systems. © 2011 American Chemical Society.

  5. Integration of Solar Cells on Top of CMOS Chips - Part II: CIGS Solar Cells

    NARCIS (Netherlands)

    Lu, J.; Liu, Wei; Kovalgin, Alexeij Y.; Sun, Yun; Schmitz, Jurriaan

    2011-01-01

    We present the monolithic integration of deepsubmicrometer complementary metal–oxide–semiconductor (CMOS) microchips with copper indium gallium (di)selenide (CIGS) solar cells. Solar cells are manufactured directly on unpackaged CMOS chips. The microchips maintain comparable electronic performance,

  6. Machine for welding solar cell connections

    Energy Technology Data Exchange (ETDEWEB)

    Lorans, D.Y.

    1977-08-09

    A machine for welding a connection wire over a solar cell electrode is described which comprises a base, a welding mount for the solar cell which is supported on the base, means for holding the solar cell on the welding mount, welding electrodes, means to lower the welding electrodes over the solar cell and the connection wire superimposed thereon, means for applying electric current pulses to said welding electrodes. It is characterized by the fact that it further comprises means for imparting to said mount an alternating transverse movement in relation to said base before and during the welding operation.

  7. Theoretical investigation on heterojunction solar cell

    International Nuclear Information System (INIS)

    Prema, K.; Geetha, K.

    1986-11-01

    The study of thin film solar cells has proved that the surface is rough. A two-dimensional method based on the integral equation technique to analyse thin film solar cells has been developed by DeMey et al. In this paper we present our analysis of a thin film solar cell using the above techniques. Variation of the minority carrier concentration, the saturation current and the junction current of the solar cell with surface roughness is presented. (author). 8 refs, 4 figs

  8. TNB Experience in Developing Solar Hybrid Station at RPS Kemar, Gerik, Perak Darul Ridzuan

    International Nuclear Information System (INIS)

    Aziz, K A; Shamsudin, K N

    2013-01-01

    This paper will discuss on TNB experience in developing Solar Hybrid Station at RPS Kemar, Gerik, Perak. TNB has been approached by KKLW to submit proposal to provide electricity in the rural area namely RPS Kemar. Looking at area and source available, Solar Hybrid System was the best method in order to provide electricity at this area. This area is far from national grid sources. Solar Hybrid System is the best method to produce electrical power using the renewable energy from Solar PV, Battery and Diesel Generator Set. Nowadays, price of petroleum is slightly high due to higher demand from industry. Solar energy is good alternative in this country to practice in order to reduce cost for produce of electrical energy. Generally, Solar will produce energy during daytime and when become cloudy and dark, automatically battery and diesel generator set will recover the system through the hybrid controller system.

  9. Techno-Economic Assessment of Concentrating Solar Power and Wind Hybridization in Jordan

    Directory of Open Access Journals (Sweden)

    Osama Ayadi

    2018-03-01

    A strong complementarity between wind and direct normal solar radiation was observed in the selected location in Jordan, which emphasizes the attractiveness of the selected hybrid system. The optimal configuration of the CSP-wind hybrid system was obtained with a solar field of a 2.6 solar multiple and a 5 hours energy storage. The achieved capacity factor was 94%, and the LCOE is lower than those resulted for standalone CSP plants.

  10. Integration of Solar Cells on Top of CMOS Chips Part I: a-Si Solar Cells

    NARCIS (Netherlands)

    Lu, J.; Kovalgin, Alexeij Y.; van der Werf, Karine H.M.; Schropp, Ruud E.I.; Schmitz, Jurriaan

    2011-01-01

    We present the monolithic integration of deepsubmicrometer complementary metal–oxide–semiconductor (CMOS) microchips with a-Si:H solar cells. Solar cells are manufactured directly on the CMOS chips. The microchips maintain comparable electronic performance, and the solar cells show efficiency values

  11. Numerical analysis of using hybrid photovoltaic-thermal solar water heater in Iran

    Directory of Open Access Journals (Sweden)

    M Mohammadi Sarduei

    2017-05-01

    Full Text Available Introduction Electrical performance of solar cells decreases with increasing cell temperature, basically because of growth of the internal charge carrier recombination rates, caused by increased carrier concentrations. Hybrid Photovoltaic/thermal (PVT systems produce electrical and thermal energy simultaneously. PVT solar collectors convert the heat generated in the solar cells to low temperature useful heat energy and so they provide a lower working temperature for solar cells which subsequently leads to a higher electrical efficiency. Recently, in Iran, the reforming government policy in subsidy and increasing fossil fuels price led to growing an interest in use of renewable energies for residual and industrial applications. In spite of this, the PV power generator investment is not economically feasible, so far. Hybrid PVT devices are well known as an alternative method to improve energy performance and therefore economic feasibility of the conventional PV systems. The aim of this study is to investigate the performance of a PVT solar water heater in four different cities of Iran using TRNSYS program. Materials and Methods The designed PVT solar water system consists of two separate water flow circuits namely closed cycle and open circuit. The closed cycle circuit was comprised of a solar PVT collector (with nominal power of 880 W and area of 5.6 m2, a heat exchanger in the tank (with volume of 300 L, a pump and connecting pipes. The water stream in the collector absorbs the heat accumulated in the solar cells and delivers it to the water in the tank though the heat exchanger. An on/off controller system was used to activate the pump when the collector outlet temperature was higher than that of the tank in the closed cycle circuit. The water in the open circuit, comes from city water at low temperature, enters in the lower part of the storage tank where the heat transfer occurs between the two separate circuits. An auxiliary heater, connected

  12. A study on evaluating the power generation of solar-wind hybrid systems in Izmir, Turkey

    Energy Technology Data Exchange (ETDEWEB)

    Ulgen, K. [Ege Univ., Solar Energy Inst., Izmir (Turkey); Hepbasli, A. [Ege Univ., Dept. of Mechanical Engineering, Izmir (Turkey)

    2003-03-15

    Turkey is abundant in terms of renewable energy resources. Residential and industrial utilization of solar energy started in the 1980s, while the first Build-Operate-Transfer (BOT) windmill park, located at Alacati, Izmir, was commissioned in 1998. Additionally, power generation through solar-wind hybrid systems has recently appeared on the Turkish market. This study investigates the wind and solar thermal power availability in Izmir, located in the western part of Turkey. Simple models were developed to determine wind, solar, and hybrid power resources per unit area. Experimental data, consisting of hourly records over a 5 yr period, 1995-1999, were measured in the Solar/Wind Meteorological Station of the Solar Energy Institute at Ege University. Correlations between solar and wind power data were carried out on an hourly, a daily, and a monthly basis. It can be concluded that possible applications of hybrid systems could be considered for the efficient utilization of these resources. (Author)

  13. Design, fabrication and performance of a hybrid photovoltaic/thermal (PV/T) active solar still

    International Nuclear Information System (INIS)

    Kumar, Shiv; Tiwari, Arvind

    2010-01-01

    Two solar stills (single slope passive and single slope photovoltaic/thermal (PV/T) active solar still) were fabricated and tested at solar energy park, IIT New Delhi (India) for composite climate. Photovoltaic operated DC water pump was used between solar still and photovoltaic (PV) integrated flat plate collector to re-circulate the water through the collectors and transfer it to the solar still. The newly designed hybrid (PV/T) active solar still is self-sustainable and can be used in remote areas, need to transport distilled water from a distance and not connected to grid, but blessed with ample solar energy. Experiments were performed for 0.05, 0.10, and 0.15 m water depth, round the year 2006-2007 for both the stills. It has been observed that maximum daily yield of 2.26 kg and 7.22 kg were obtained from passive and hybrid active solar still, respectively at 0.05 m water depth. The daily yield from hybrid active solar still is around 3.2 and 5.5 times higher than the passive solar still in summer and winter month, respectively. The study has shown that this design of the hybrid active solar still also provides higher electrical and overall thermal efficiency, which is about 20% higher than the passive solar still.

  14. Hybrid perovskite solar cells: In situ investigation of solution-processed PbI2 reveals metastable precursors and a pathway to producing porous thin films

    KAUST Repository

    Barrit, Dounya

    2017-04-17

    The successful and widely used two-step process of producing the hybrid organic-inorganic perovskite CH3NH3PbI3, consists of converting a solution deposited PbI2 film by reacting it with CH3NH3I. Here, we investigate the solidification of PbI2 films from a DMF solution by performing in situ grazing incidence wide angle X-ray scattering (GIWAXS) measurements. The measurements reveal an elaborate sol–gel process involving three PbI2⋅DMF solvate complexes—including disordered and ordered ones—prior to PbI2 formation. The ordered solvates appear to be metastable as they transform into the PbI2 phase in air within minutes without annealing. Morphological analysis of air-dried and annealed films reveals that the air-dried PbI2 is substantially more porous when the coating process produces one of the intermediate solvates, making this more suitable for subsequent conversion into the perovskite phase. The observation of metastable solvates on the pathway to PbI2 formation open up new opportunities for influencing the two-step conversion of metal halides into efficient light harvesting or emitting perovskite semiconductors.

  15. A review on solar cells from Si-single crystals to porous materials and quantum dots.

    Science.gov (United States)

    Badawy, Waheed A

    2015-03-01

    Solar energy conversion to electricity through photovoltaics or to useful fuel through photoelectrochemical cells was still a main task for research groups and developments sectors. In this article we are reviewing the development of the different generations of solar cells. The fabrication of solar cells has passed through a large number of improvement steps considering the technological and economic aspects. The first generation solar cells were based on Si wafers, mainly single crystals. Permanent researches on cost reduction and improved solar cell efficiency have led to the marketing of solar modules having 12-16% solar conversion efficiency. Application of polycrystalline Si and other forms of Si have reduced the cost but on the expense of the solar conversion efficiency. The second generation solar cells were based on thin film technology. Thin films of amorphous Si, CIS (copper-indium-selenide) and t-Si were employed. Solar conversion efficiencies of about 12% have been achieved with a remarkable cost reduction. The third generation solar cells are based on nano-crystals and nano-porous materials. An advanced photovoltaic cell, originally developed for satellites with solar conversion efficiency of 37.3%, based on concentration of the solar spectrum up to 400 suns was developed. It is based on extremely thin concentration cells. New sensitizer or semiconductor systems are necessary to broaden the photo-response in solar spectrum. Hybrids of solar and conventional devices may provide an interim benefit in seeking economically valuable devices. New quantum dot solar cells based on CdSe-TiO2 architecture have been developed.

  16. A review on solar cells from Si-single crystals to porous materials and quantum dots

    Directory of Open Access Journals (Sweden)

    Waheed A. Badawy

    2015-03-01

    Full Text Available Solar energy conversion to electricity through photovoltaics or to useful fuel through photoelectrochemical cells was still a main task for research groups and developments sectors. In this article we are reviewing the development of the different generations of solar cells. The fabrication of solar cells has passed through a large number of improvement steps considering the technological and economic aspects. The first generation solar cells were based on Si wafers, mainly single crystals. Permanent researches on cost reduction and improved solar cell efficiency have led to the marketing of solar modules having 12–16% solar conversion efficiency. Application of polycrystalline Si and other forms of Si have reduced the cost but on the expense of the solar conversion efficiency. The second generation solar cells were based on thin film technology. Thin films of amorphous Si, CIS (copper–indium–selenide and t-Si were employed. Solar conversion efficiencies of about 12% have been achieved with a remarkable cost reduction. The third generation solar cells are based on nano-crystals and nano-porous materials. An advanced photovoltaic cell, originally developed for satellites with solar conversion efficiency of 37.3%, based on concentration of the solar spectrum up to 400 suns was developed. It is based on extremely thin concentration cells. New sensitizer or semiconductor systems are necessary to broaden the photo-response in solar spectrum. Hybrids of solar and conventional devices may provide an interim benefit in seeking economically valuable devices. New quantum dot solar cells based on CdSe–TiO2 architecture have been developed.

  17. Scaling up ITO-Free solar cells

    NARCIS (Netherlands)

    Galagan, Y.O.; Coenen, E.W.C.; Zimmermann, B.; Slooff, L.H.; Verhees, W.J.H.; Veenstra, S.C.; Kroon, J.M.; Jørgensen, M.; Krebs, F.C.; Andriessen, H.A.J.M.

    2014-01-01

    Indium-tin-oxide-free (ITO-free) polymer solar cells with composite electrodes containing current-collecting grids and a semitransparent poly(3,4-ethylenedioxythiophene):polystyrenesulfonate) (PEDOT:PSS) conductor are demonstrated. The up-scaling of the length of the solar cell from 1 to 6 cm and

  18. Dye-sensitised solar cell (artificial photosynthesis)

    CSIR Research Space (South Africa)

    Le Roux, Lukas J

    2005-07-01

    Full Text Available A novel system that harnesses solar energy is the nano-crystalline TiO dye-sensitised solar cell (DSC), in conjunction with several new concepts, such as nanotechnology and molecular devices. An efficient and low-cost cell can be produced by using...

  19. Predicted solar cell edge radiation effects

    International Nuclear Information System (INIS)

    Gates, M.T.

    1993-01-01

    The Advanced Solar Cell Orbital Test (ASCOT) will test six types of solar cells in a high energy proton environment. During the design of the experiment a question was raised about the effects of proton radiation incident on the edge of the solar cells and whether edge radiation shielding was required. Historical geosynchronous data indicated that edge radiation damage is not detectable over the normal end of life solar cell degradation; however because the ASCOT radiation environment has a much higher and more energetic fluence of protons, considerably more edge damage is expected. A computer analysis of the problem was made by modeling the expected radiation damage at the cell edge and using a network model of small interconnected solar cells to predict degradation in the cell's electrical output. The model indicated that the deepest penetration of edge radiation was at the top of the cell near the junction where the protons have access to the cell through the low density cell/cover adhesive layer. The network model indicated that the cells could tolerate high fluences at their edge as long as there was high electrical resistance between the edge radiated region and the contact system on top of the cell. The predicted edge radiation related loss was less than 2% of maximum power for GaAs/Ge solar cells. As a result, no edge radiation protection was used for ASCOT

  20. Fullerene surfactants and their use in polymer solar cells

    Science.gov (United States)

    Jen, Kwan-Yue; Yip, Hin-Lap; Li, Chang-Zhi

    2015-12-15

    Fullerene surfactant compounds useful as interfacial layer in polymer solar cells to enhance solar cell efficiency. Polymer solar cell including a fullerene surfactant-containing interfacial layer intermediate cathode and active layer.

  1. High Radiation Resistance IMM Solar Cell

    Science.gov (United States)

    Pan, Noren

    2015-01-01

    Due to high launch costs, weight reduction is a key driver for the development of new solar cell technologies suitable for space applications. This project is developing a unique triple-junction inverted metamorphic multijunction (IMM) technology that enables the manufacture of very lightweight, low-cost InGaAsP-based multijunction solar cells. This IMM technology consists of indium (In) and phosphorous (P) solar cell active materials, which are designed to improve the radiation-resistant properties of the triple-junction solar cell while maintaining high efficiency. The intrinsic radiation hardness of InP materials makes them of great interest for building solar cells suitable for deployment in harsh radiation environments, such as medium Earth orbit and missions to the outer planets. NASA Glenn's recently developed epitaxial lift-off (ELO) process also will be applied to this new structure, which will enable the fabrication of the IMM structure without the substrate.

  2. Organic Based Solar Cells with Morphology Control

    DEFF Research Database (Denmark)

    Andersen, Thomas Rieks

    The field of organic solar cells has in the last years gone through an impressive development with efficiencies reported up to 12 %. For organic solar cells to take the leap from primarily being a laboratory scale technology to being utilized as renewable energy source, several issues need...... Microscopy and as solar cells in a blend with PCBM. It was concluded that these particles did not show a potential large enough for continuous work due to a high material loss and low efficiency when applied in solar cells. The second method to achieve was preparation of pre-arranged morphology organic...... nanoparticles consisting of a blend of donor and acceptor in an aqueous dispersion, thereby addressing two of the issues remaining in the field of organic solar cells. This approach was used on six different polymers, which all had the ability to prepare aqueous nanoparticle inks. The morphology...

  3. Photoanodic Hybrid Semiconductor–Molecular Heterojunction for Solar Water Oxidation

    KAUST Repository

    Joya, Khurram Saleem

    2015-06-29

    Inorganic photo-responsive semiconducting materials have been employed in photoelectrochemical(PEC) water oxidation devicesin pursuit of solar to fuel conversion.[1]The reaction kinetics in semiconductors is limited by poor contact at the interfaces, and charge transfer is impeded by surface defects and the grain boundaries.[2]It has shown that successful surface functionalization of the photo-responsive semiconducting materials with co-catalysts can maximize the charge separation, hole delivery and its effective consumption, and enhances the efficiency and performane of the PEC based water oxidation assembly.[3]We present here unique modification of photoanodic hematite (α-Fe2O3) and bismuth vanadate (BiVO4) with molecular co-catalysts for enhanced photoelectrochemical water oxidation (Figure 1). These hybrid inorganic–organometallic heterojunctions manifest impressive cathodic shifts in the onset potentials, and the photocurrent densities have been enhanced by > 90% at all potentials relative to uncatalyzed α-Fe2O3 or BiVO4, and other catalyst-semiconductor based heterojunctions.This is a novel development in the solar to fuel conversion field, and is crucially important for designing a tandem device where light interfere very little with the catalyst layer on top of semiconducting light absorber.

  4. Bonder for Solar-Cell Strings

    Science.gov (United States)

    Garwood, G.; Frasch, W.

    1982-01-01

    String bonder for solar-cell arrays eliminates tedious manual assembly procedure that could damage cell face. Vacuum arm picks up face-down cell from cell-inverting work station and transfers it to string conveyor without changing cell orientation. Arm is activated by signal from microprocessor.

  5. Solar hybrid power plants: Solar energy contribution in reaching full dispatchability and firmness

    Science.gov (United States)

    Servert, Jorge F.; López, Diego; Cerrajero, Eduardo; Rocha, Alberto R.; Pereira, Daniel; Gonzalez, Lucía

    2016-05-01

    Renewable energies for electricity generation have always been considered as a risk for the electricity system due to its lack of dispatchability and firmness. Renewable energies penetration is constrained to strong grids or else its production must be limited to ensure grid stability, which is kept by the usage of hydropower energy or fossil-fueled power plants. CSP technology has an opportunity to arise not only as a dispatchable and firm technology, but also as an alternative that improves grid stability. To achieve that objective, solar hybrid configurations are being developed, being the most representative three different solutions: SAPG, ISCC and HYSOL. A reference scenario in Kingdom of Saudi Arabia (KSA) has been defined to compare these solutions, which have been modelled, simulated and evaluated in terms of dispatchability and firmness using ratios defined by the authors. The results show that: a) SAPG obtains the highest firmness KPI values, but no operation constraints have been considered for the coal boiler and the solar energy contribution is limited to 1.7%, b) ISCC provides dispatchable and firm electricity production but its solar energy contribution is limited to a 6.4%, and c) HYSOL presents the higher solar energy contribution of all the technologies considered: 66.0% while providing dispatchable and firm generation in similar conditions as SAPG and ISCC.

  6. Tandem photovoltaic solar cells and increased solar energy conversion efficiency

    Science.gov (United States)

    Loferski, J. J.

    1976-01-01

    Tandem photovoltaic cells, as proposed by Jackson (1955) to increase the efficiency of solar energy conversion, involve the construction of a system of stacked p/n homojunction photovoltaic cells composed of different semiconductors. It had been pointed out by critics, however, that the total power which could be extracted from the cells in the stack placed side by side was substantially greater than the power obtained from the stacked cells. A reexamination of the tandem cell concept in view of the development of the past few years is conducted. It is concluded that the use of tandem cell systems in flat plate collectors, as originally envisioned by Jackson, may yet become feasible as a result of the development of economically acceptable solar cells for large scale terrestrial power generation.

  7. Solar Cell Panel and the Method for Manufacturing the Same

    Science.gov (United States)

    Richards, Benjamin C. (Inventor); Sarver, Charles F. (Inventor); Naidenkova, Maria (Inventor)

    2016-01-01

    According to an aspect of an embodiment of the present disclosure, there is provided a solar cell panel and a method for manufacturing the same. The solar cell panel comprises: a solar cell for generating electric power from sunlight; a coverglass for covering the solar cell; transparent shims, which are disposed between the solar cell and the coverglass at the points where the distance between the solar cell and the coverglass needs to be controlled, and form a space between the solar cell and the coverglass; and adhesive layer, which fills the space between the solar cell and the coverglass and has the thickness the same as that of the transparent shims.

  8. Industrial n-type solar cells with >20% cell efficiency

    Energy Technology Data Exchange (ETDEWEB)

    Romijn, I.G.; Anker, J.; Burgers, A.R.; Gutjahr, A.; Koppes, M.; Kossen, E.J.; Lamers, M.W.P.E.; Heurtault, Benoit; Saynova-Oosterling, D.S.; Tool, C.J.J. [ECN Solar Energy, Petten (Netherlands)

    2013-03-15

    To realize high efficiencies at low costs, ECN has developed the n-Pasha solar cell concept. The n-Pasha cell concept is a bifacial solar cell concept on n-Cz base material, with which average efficiencies of above 20% have been demonstrated. In this paper recent developments at ECN to improve the cost of ownership (lower Euro/Wp) of the n-Pasha cell concept are discussed. Two main drivers for the manufacturing costs of n-type solar cells are addressed: the n-type Cz silicon material and the silver consumption. We show that a large resistivity range between 2 and 8 cm can be tolerated for high cell efficiency, and that the costs due to the silver metallization can be significantly reduced while increasing the solar cell efficiency. Combining the improved efficiency and cost reduction makes the n-Pasha cell concept a very cost effective solution to manufacture high efficient solar cells and modules.

  9. Recent Advances in Organic Solar Cells

    Directory of Open Access Journals (Sweden)

    Thomas Kietzke

    2007-01-01

    Full Text Available Solar cells based on organic semiconductors have attracted much attention. The thickness of the active layer of organic solar cells is typically only 100 nm thin, which is about 1000 times thinner than for crystalline silicon solar cells and still 10 times thinner than for current inorganic thin film cells. The low material consumption per area and the easy processing of organic semiconductors offer a huge potential for low cost large area solar cells. However, to compete with inorganic solar cells the efficiency of organic solar cells has to be improved by a factor of 2-3. Several organic semiconducting materials have been investigated so far, but the optimum material still has to be designed. Similar as for organic light emitting devices (OLED small molecules are competing with polymers to become the material of choice. After a general introduction into the device structures and operational principles of organic solar cells the three different basic types (all polymer based, all small molecules based and small molecules mixed with polymers are described in detail in this review. For each kind the current state of research is described and the best of class reported efficiencies are listed.

  10. Semiconductor quantum dot-sensitized solar cells.

    Science.gov (United States)

    Tian, Jianjun; Cao, Guozhong

    2013-10-31

    Semiconductor quantum dots (QDs) have been drawing great attention recently as a material for solar energy conversion due to their versatile optical and electrical properties. The QD-sensitized solar cell (QDSC) is one of the burgeoning semiconductor QD solar cells that shows promising developments for the next generation of solar cells. This article focuses on recent developments in QDSCs, including 1) the effect of quantum confinement on QDSCs, 2) the multiple exciton generation (MEG) of QDs, 3) fabrication methods of QDs, and 4) nanocrystalline photoelectrodes for solar cells. We also make suggestions for future research on QDSCs. Although the efficiency of QDSCs is still low, we think there will be major breakthroughs in developing QDSCs in the future.

  11. The exposure of CIGS solar cells to different electrical biases in a damp-heat illumination environment

    NARCIS (Netherlands)

    Theelen, M.; Steijvers, H.; Bakker, K.; Vink, J.; Mortazavi, S.; Mulder, A.; Barreau, N.; Roosen, D.; Haverkamp, E.

    2016-01-01

    Two hybrid degradation setups, allowing exposure of solar cells and modules to elevated temperatures and humidity as well as illumination have been built. CIGS solar cells were placed in the degradation setups, allowing real time monitoring of their electrical properties. Under open circuit

  12. Development and Prospect of Nanoarchitectured Solar Cells

    OpenAIRE

    Zhang, Bo; Xie, Wenxu; Xiang, Yong

    2015-01-01

    This paper gives an overview of the development and prospect of nanotechnologies utilized in the solar cell applications. Even though it is not clearly pointed out, nanostructures indeed have been used in the fabrication of conventional solar cells for a long time. However, in those circumstances, only very limited benefits of nanostructures have been used to improve cell performance. During the last decade, the development of the photovoltaic device theory and nanofabrication technology enab...

  13. NREL Scientists Report First Solar Cell Producing More Electrons In

    Science.gov (United States)

    measured in operating quantum dot solar cells at low light intensity; these cells showed significant power Photocurrent Than Solar Photons Entering Cell | News | NREL NREL Scientists Report First Solar Cell Producing More Electrons In Photocurrent Than Solar Photons Entering Cell News Release: NREL

  14. Assessment of market possibilities for solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Djukanovic, S. [Advanced School of Business Novi Sad (Czechoslovakia)

    2004-07-01

    Global heating increases profitability of solar energy application in the Balkans. The most important market segments for wider solar cells utilization in Yugoslavia (Serbia and Montenegro) are solar pumps for irrigation in agriculture, traffic lights, lighting of weekend houses, air-conditioning, telecommunications, electric vehicles, solar hydro-electric power plants, sports centers and schools and orthodox monasteries. In addition to these applications of solar modules of relatively high capacity, a wide scope of applications of mini solar modules in consumer goods is given serious consideration (flashlights, bicycle lights, fan caps, beach hats, solar parasols, toys for children, solar watches, minicomputers, walkmans and alike). In this paper is projected gradually increase of solar cells applications in Yugoslavia, from 772 kW in 2006., to 3,901 kW installed photovoltaic power in 2010. year. The largest parts of this projected 3.9 MW in 2010., ought to be solar pumps (498 kW), telecommunications (470 kW) and traffic lights (468 kW). (orig.)

  15. Brazilian hybrid electric fuel cell bus

    Energy Technology Data Exchange (ETDEWEB)

    Miranda, P.E.V.; Carreira, E.S. [Coppe-Federal Univ. of Rio de Janeiro (Brazil). Hydrogen Lab.

    2010-07-01

    The first prototype of a hybrid electric fuel cell bus developed with Brazilian technology is unveiled. It is a 12 m urban-type, low-floor, air-conditioned bus that possesses three doors, air suspension, 29 seats and reversible wheelchair site. The bus body was built based on a double-deck type monoblock vehicle that is able to sustain important load on its roof. This allowed positioning of the type 3 hydrogen tanks and the low weight traction batteries on the roof of the vehicles without dynamic stabilization problems. A novel hybrid energy configuration was designed in such a way that the low-power (77 kWe) fuel cell works on steady-state operation mode, not responding directly to the traction motor load demand. The rate of kinetic energy regeneration upon breaking was optimized by the use of an electric hybrid system with predominance of batteries and also by utilizing supercapacitors. The electric-electronic devices and the security control softwares for the auxiliary and traction systems were developed in-house. The innovative hybrid-electric traction system configuration led to the possibility to decrease the fuel cell power, with positive impact on weight and system volume reduction, as well as to significantly decrease the hydrogen consumption. (orig.)

  16. Scaling Up ITO-free solar cells

    DEFF Research Database (Denmark)

    Galagan, Yulia; Coenen, Erica W. C.; Zimmermann, Birger

    2014-01-01

    Indium-tin-oxide-free (ITO-free) polymer solar cells with composite electrodes containing current-collecting grids and a semitransparent poly(3,4-ethylenedioxythiophene):polystyrenesulfonate) (PEDOT:PSS) conductor are demonstrated. The up-scaling of the length of the solar cell from 1 to 6 cm...... resistances. The performance of ITO-free organic solar cells with different dimensions and different electrode resistances are evaluated for different light intensities. The current generation and electric potential distribution are found to not be uniformly distributed in large-area devices at simulated 1...

  17. Cheap electricity with autonomous solar cell systems

    International Nuclear Information System (INIS)

    Ouwens, C.D.

    1993-01-01

    A comparison has been made between the costs of an autonomous solar cell system and a centralized electricity supply system. In both cases investment costs are the main issue. It is shown that for households in densely populated sunny areas, the use of autonomous solar cell systems is - even with today's market prices - only as expensive or even cheaper than a grid connection, as long as efficient electric appliances are used. The modular nature of solar cell systems makes it possible to start with any number of appliances, depending on the amount of money available to be spent. (author)

  18. Silicon nanowire-based solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Stelzner, Th; Pietsch, M; Andrae, G; Falk, F; Ose, E; Christiansen, S [Institute of Photonic Technology, Albert-Einstein-Strasse 9, D-07745 Jena (Germany)], E-mail: thomas.stelzner@ipht-jena.de

    2008-07-23

    The fabrication of silicon nanowire-based solar cells on silicon wafers and on multicrystalline silicon thin films on glass is described. The nanowires show a strong broadband optical absorption, which makes them an interesting candidate to serve as an absorber in solar cells. The operation of a solar cell is demonstrated with n-doped nanowires grown on a p-doped silicon wafer. From a partially illuminated area of 0.6 cm{sup 2} open-circuit voltages in the range of 230-280 mV and a short-circuit current density of 2 mA cm{sup -2} were obtained.

  19. Silicon nanowire-based solar cells

    International Nuclear Information System (INIS)

    Stelzner, Th; Pietsch, M; Andrae, G; Falk, F; Ose, E; Christiansen, S

    2008-01-01

    The fabrication of silicon nanowire-based solar cells on silicon wafers and on multicrystalline silicon thin films on glass is described. The nanowires show a strong broadband optical absorption, which makes them an interesting candidate to serve as an absorber in solar cells. The operation of a solar cell is demonstrated with n-doped nanowires grown on a p-doped silicon wafer. From a partially illuminated area of 0.6 cm 2 open-circuit voltages in the range of 230-280 mV and a short-circuit current density of 2 mA cm -2 were obtained

  20. Coupling of Luminescent Solar Concentrators to Plasmonic Solar Cells

    Science.gov (United States)

    Wang, Shu-Yi

    To make inexpensive solar cells is a continuous goal for solar photovoltaic (PV) energy industry. Thin film solar cells of various materials have been developed and continue to emerge in order to replace bulk silicon solar cells. A thin film solar cell not only uses less material but also requires a less expensive refinery process. In addition, other advantages coming along with small thickness are higher open circuit voltage and higher conversion efficiency. However, thin film solar cells, especially those made of silicon, have significant optical losses. In order to address this problem, this thesis investigates the spectral coupling of thin films PV to luminescent solar concentrators (LSC). LSC are passive devices, consisting of plastic sheets embedded with fluorescent dyes which absorb part of the incoming radiation spectrum and emit at specific wavelength. The emitted light is concentrated by total internal reflection to the edge of the sheet, where the PVs are placed. Since the light emitted from the LSC edge is usually in a narrow spectral range, it is possible to employ diverse strategies to enhance PV absorption at the peak of the emission wavelength. Employing plasmonic nanostructures has been shown to enhance absorption of thin films via forward scattering, diffraction and localized surface plasmon. These two strategies are theoretically investigated here for improving the absorption and elevating the output power of a thin film solar cell. First, the idea of spectral coupling of luminescent solar concentrators to plasmonic solar cells is introduced to assess its potential for increasing the power output. This study is carried out employing P3HT/PC60BM organic solar cells and LSC with Lumogen Red dyes. A simplified spectral coupling analysis is employed to predict the power density, considering the output spectrum of the LSC equivalent to the emission spectrum of the dye and neglecting any angular dependence. Plasmonic tuning is conducted to enhance

  1. Development and Prospect of Nanoarchitectured Solar Cells

    Directory of Open Access Journals (Sweden)

    Bo Zhang

    2015-01-01

    Full Text Available This paper gives an overview of the development and prospect of nanotechnologies utilized in the solar cell applications. Even though it is not clearly pointed out, nanostructures indeed have been used in the fabrication of conventional solar cells for a long time. However, in those circumstances, only very limited benefits of nanostructures have been used to improve cell performance. During the last decade, the development of the photovoltaic device theory and nanofabrication technology enables studies of more complex nanostructured solar cells with higher conversion efficiency and lower production cost. The fundamental principles and important features of these advanced solar cell designs are systematically reviewed and summarized in this paper, with a focus on the function and role of nanostructures and the key factors affecting device performance. Among various nanostructures, special attention is given to those relying on quantum effect.

  2. Efficient Perovskite Solar Cells over a Broad Temperature Window : The Role of the Charge Carrier Extraction

    NARCIS (Netherlands)

    Shao, Shuyan; Liu, Jian; Fang, Hong-Hua; Qiu, Li; ten Brink, Gert H.; Hummelen, Jan C.; Koster, L. Jan Anton; Loi, Maria Antonietta

    2017-01-01

    The mechanism behind the temperature dependence of the device performance in hybrid perovskite solar cells (HPSCs) is investigated systematically. The power conversion efficiency (PCE) of the reference cell using [60] PCBM as electron extraction layer (EEL) drops significantly from 11.9% at 295 K to

  3. Investigation of thermodynamic performances for two solar-biomass hybrid combined cycle power generation systems

    International Nuclear Information System (INIS)

    Liu, Qibin; Bai, Zhang; Wang, Xiaohe; Lei, Jing; Jin, Hongguang

    2016-01-01

    Highlights: • Two solar-biomass hybrid combined cycle power generation systems are proposed. • The characters of the two proposed systems are compared. • The on-design and off-design properties of the system are numerically investigated. • The favorable performances of thermochemical hybrid routine are validated. - Abstract: Two solar-biomass hybrid combined cycle power generation systems are proposed in this work. The first system employs the thermochemical hybrid routine, in which the biomass gasification is driven by the concentrated solar energy, and the gasified syngas as a solar fuel is utilized in a combined cycle for generating power. The second system adopts the thermal integration concept, and the solar energy is directly used to heat the compressed air in the topping Brayton cycle. The thermodynamic performances of the developed systems are investigated under the on-design and off-design conditions. The advantages of the hybrid utilization technical mode are demonstrated. The solar energy can be converted and stored into the chemical fuel by the solar-biomass gasification, with the net solar-to-fuel efficiency of 61.23% and the net solar share of 19.01% under the specific gasification temperature of 1150 K. Meanwhile, the proposed system with the solar thermochemical routine shows more favorable behaviors, the annual system overall energy efficiency and the solar-to-electric efficiency reach to 29.36% and 18.49%, while the with thermal integration concept of 28.03% and 15.13%, respectively. The comparison work introduces a promising approach for the efficient utilization of the abundant solar and biomass resources in the western China, and realizes the mitigation of CO_2 emission.

  4. Indium oxide/n-silicon heterojunction solar cells

    Science.gov (United States)

    Feng, Tom; Ghosh, Amal K.

    1982-12-28

    A high photo-conversion efficiency indium oxide/n-silicon heterojunction solar cell is spray deposited from a solution containing indium trichloride. The solar cell exhibits an Air Mass One solar conversion efficiency in excess of about 10%.

  5. Ultrathin Cu2O as an efficient inorganic hole transporting material for perovskite solar cells

    KAUST Repository

    Yu, Weili

    2016-02-18

    We demonstrate that ultrathin P-type Cu2O thin films fabricated by a facile thermal oxidation method can serve as a promising hole-transporting material in perovskite solar cells. Following a two-step method, inorganic-organic hybrid perovskite solar cells were fabricated and a power conversion efficiency of 11.0% was achieved. We find that the thickness and properties of Cu2O layers must be precisely tuned in order to achieve the optimal solar cell performance. The good performance of such perovskite solar cells can be attributed to the unique properties of ultrathin Cu2O, including high hole mobility, good energy level alignment with CH3NH3PbI3, and longer lifetime of photo-excited carriers. Combining merits of low cost, facile synthesis, and high device performance, ultrathin Cu2O films fabricated via thermal oxidation hold promise for facilitating the developments of industrial-scale perovskite solar cells.

  6. Hybrid Tandem Solar Cells | Photovoltaic Research | NREL

    Science.gov (United States)

    expensive techniques, such as electron-beam lithography or deep-ultraviolet lithography. Then, a mold is defects form only shallow states that do not reduce performance significantly. Current work is focused on they are compatible with textured Si, enabling enhanced light trapping and lower processing costs. We

  7. Hybrid power system (hydro, solar and wind) for rural electricity generation

    International Nuclear Information System (INIS)

    Mahinda Kurukulasuriya

    2000-01-01

    Generation of affordable cheap electric energy for rural development by a hybrid power system (10-50 kW) of hydropower, solar and wind energies on self determining basis and computer application to determine its performance. In this paper the following topics were discussed, design of hybrid power system, its justification and economic analysis, manufacturing and installation of the system. (Author)

  8. Optimization of hybrid system (wind-solar energy) for pumping water ...

    African Journals Online (AJOL)

    This paper presents an optimization method for a hybrid (wind-solar) autonomous system designed for pumping water. This method is based on mathematical models demonstrated for the analysis and control of the performance of the various components of the hybrid system. These models provide an estimate of ...

  9. Advanced Nanomaterials for High-Efficiency Solar Cells

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Junhong [University of Wisconsin-Milwaukee

    2013-11-29

    Energy supply has arguably become one of the most important problems facing humankind. The exponential demand for energy is evidenced by dwindling fossil fuel supplies and record-high oil and gas prices due to global population growth and economic development. This energy shortage has significant implications to the future of our society, in addition to the greenhouse gas emission burden due to consumption of fossil fuels. Solar energy seems to be the most viable choice to meet our clean energy demand given its large scale and clean/renewable nature. However, existing methods to convert sun light into electricity are not efficient enough to become a practical alternative to fossil fuels. This DOE project aims to develop advanced hybrid nanomaterials consisting of semiconductor nanoparticles (quantum dots or QDs) supported on graphene for cost-effective solar cells with improved conversion efficiency for harvesting abundant, renewable, clean solar energy to relieve our global energy challenge. Expected outcomes of the project include new methods for low-cost manufacturing of hybrid nanostructures, systematic understanding of their properties that can be tailored for desired applications, and novel photovoltaic cells. Through this project, we have successfully synthesized a number of novel nanomaterials, including vertically-oriented graphene (VG) sheets, three-dimensional (3D) carbon nanostructures comprising few-layer graphene (FLG) sheets inherently connected with CNTs through sp{sup 2} carbons, crumpled graphene (CG)-nanocrystal hybrids, CdSe nanoparticles (NPs), CdS NPs, nanohybrids of metal nitride decorated on nitrogen-doped graphene (NG), QD-carbon nanotube (CNT) and QD-VG-CNT structures, TiO{sub 2}-CdS NPs, and reduced graphene oxide (RGO)-SnO{sub 2} NPs. We further assembled CdSe NPs onto graphene sheets and investigated physical and electronic interactions between CdSe NPs and the graphene. Finally we have demonstrated various applications of these

  10. PbSe Nanocrystal Excitonic Solar Cells

    KAUST Repository

    Choi, Joshua J.; Lim, Yee-Fun; Santiago-Berrios, Mitk’ El B.; Oh, Matthew; Hyun, Byung-Ryool; Sun, Liangfeng; Bartnik, Adam C.; Goedhart, Augusta; Malliaras, George G.; Abruña, Héctor D.; Wise, Frank W.; Hanrath, Tobias

    2009-01-01

    that Is distinct from previously reported Schottky devices and consistent with signatures of excitonic solar cells. Remarkably, despite the limitation of planar junction structure, and without film thickness optimization, the best performing device shows a 1-sun

  11. Black Silicon Solar Cells with Black Ribbons

    DEFF Research Database (Denmark)

    Davidsen, Rasmus Schmidt; Tang, Peter Torben; Mizushima, Io

    2016-01-01

    We present the combination of mask-less reactive ion etch (RIE) texturing and blackened interconnecting ribbons as a method for obtaining all-black solar panels, while using conventional, front-contacted solar cells. Black silicon made by mask-less reactive ion etching has total, average...... in the range 15.7-16.3%. The KOH-textured reference cell had an efficiency of 17.9%. The combination of black Si and black interconnecting ribbons may result in aesthetic, all-black panels based on conventional, front-contacted silicon solar cells....... reflectance below 0.5% across a 156x156 mm2 silicon (Si) wafer. Black interconnecting ribbons were realized by oxidizing copper resulting in reflectance below 3% in the visible wavelength range. Screen-printed Si solar cells were realized on 156x156 mm2 black Si substrates with resulting efficiencies...

  12. Diketopyrrolopyrrole polymers for organic solar cells

    NARCIS (Netherlands)

    Li, Wei Wei; Hendriks, K.H.; Wienk, M.M.; Janssen, R.A.J.

    2016-01-01

    Conspectus Conjugated polymers have been extensively studied for application in organic solar cells. In designing new polymers, particular attention has been given to tuning the absorption spectrum, molecular energy levels, crystallinity, and charge carrier mobility to enhance performance. As a

  13. Silicon Germanium Quantum Well Solar Cell

    Data.gov (United States)

    National Aeronautics and Space Administration — A single crystal SiGe has enormous potentials for high performance chips and solar cells. This project seeks to fabricate a rudimentary but 1st cut quantum-well...

  14. Hybrid utilization of solar energy. Part 2. Performance analyses of heating system with air hybrid collector; Taiyo energy no hybrid riyo ni kansuru kenkyu. 2. Kuki shunetsu hybrid collector wo mochiita danbo system no seino hyoka

    Energy Technology Data Exchange (ETDEWEB)

    Yoshinaga, M; Okumiya, M [Nagoya University, Nagoya (Japan)

    1996-10-27

    For the effective utilization of solar energy at houses, a heating system using an air hybrid collector (capable of simultaneously performing heat collection and photovoltaic power generation). As the specimen house, a wooden house of a total floor area of 120m{sup 2} was simulated. Collected air is fanned into a crushed stone heat accumulator (capable of storing one day`s collection) or into a living room. The output of solar cell arrays is put into a heat pump (capable of handling a maximum hourly load of 36,327kJ/h) via an inverter so as to drive the fan (corresponding to average insolation on the heat collecting plate of 10.7MJ/hm{sup 2} and heat collecting efficiency of 40%), and shortage in power if any is supplied from the system interconnection. A hybrid collector, as compared with the conventional air collector, is lower in thermal efficiency but the merit that it exhibits with respect to power generation is far greater than what is needed to counterbalance the demerit. When the hybrid system is in heating operation, there is an ideal heat cycle of collection, accumulation, and radiation when the load is light, but the balance between accumulation and radiation is disturbed when the load is heavy. 4 refs., 8 figs., 3 tabs.

  15. Effect of solar-terrestrial phenomena on solar cell's efficiency

    International Nuclear Information System (INIS)

    Zahee, K. B.; Ansari, W.A.; Raza, S.M.M.

    2012-01-01

    It is assumed that the solar cell efficiency of PV device is closely related to the solar irradiance, consider the solar parameter Global Solar Irradiance (G) and the meteorological parameters like daily data of Earth Skin Temperature (E), Average Temperature (T), Relative Humidity (H) and Dew Frost Point (D), for the coastal city Karachi and a non-coastal city Jacobabad, K and J is used as a subscripts for parameters of Karachi and Jacobabad respectively. All variables used here are dependent on the location (latitude and longitude) of our stations except G. To employ ARIMA modeling, the first eighteen years data is used for modeling and forecast is done for the last five years data. In most cases results show good correlation among monthly actual and monthly forecasted values of all the predictors. Next, multiple linear regression is employed to the data obtained by ARIMA modeling and models for mean monthly observed G values are constructed. For each station, two equations are constructed, the R values are above 93% for each model, showing adequacy of the fit. Our computations show that solar cell efficiency can be increased if better modeling for meteorological predictors governs the process. (author)

  16. Plasmon-enhanced Solar Fuel Production with Gold-metal Oxide Hybrid Nanomaterials

    DEFF Research Database (Denmark)

    Engelbrekt, Christian; Law, Matt; Zhang, Jingdong

    , provide new catalytic routes and expands the scope of solar photocatalysis. We prepare metal oxide SNPs, gold PNPs and their hybrids through mild aqueous syntheses to develop efficient photocatalyst for solar fuel production. Focus is placed on the synergetic interplay between SNPs and PNPs, understanding...

  17. Concentrated sunlight for organic solar cells

    DEFF Research Database (Denmark)

    Tromholt, Thomas

    2010-01-01

    . A high solar intensity study of inverted P3HT:PCBM solar cells is presented. Performance peak positions were found to be in the range of 1-5 suns, with smaller cells peaking at higher solar concentrations. Additionally, concentrated sunlight is demonstrated as a practical tool for accelerated stability...... were degraded resulting in acceleration factors in the range of 19-55. This shows that concentrated sunlight can be used as qualitatively to determine the lifetime of polymers under highly accelerated conditions....

  18. Analysis of fuel cell hybrid locomotives

    Energy Technology Data Exchange (ETDEWEB)

    Miller, Arnold R. [Vehicle Projects LLC, 621, 17th Street, Suite 2131, Denver, CO 80293 (United States); Peters, John; Smith, Brian E. [Transportation Technology Center Inc., 55500 DOT Road, Pueblo, CO 81007 (United States); Velev, Omourtag A. [AeroVironment Inc., 232 West Maple Avenue, Monrovia, CA 91016 (United States)

    2006-07-03

    Led by Vehicle Projects LLC, an international industry-government consortium is developing a 109t, 1.2MW road-switcher locomotive for commercial and military railway applications. As part of the feasibility and conceptual-design analysis, a study has been made of the potential benefits of a hybrid power plant in which fuel cells comprise the prime mover and a battery or flywheel provides auxiliary power. The potential benefits of a hybrid power plant are: (i) enhancement of transient power and hence tractive effort; (ii) regenerative braking; (iii) reduction of capital cost. Generally, the tractive effort of a locomotive at low speed is limited by wheel adhesion and not by available power. Enhanced transient power is therefore unlikely to benefit a switcher locomotive, but could assist applications that require high acceleration, e.g. subway trains with all axles powered. In most cases, the value of regeneration in locomotives is minimal. For low-speed applications such as switchers, the available kinetic energy and the effectiveness of traction motors as generators are both minimal. For high-speed heavy applications such as freight, the ability of the auxiliary power device to absorb a significant portion of the available kinetic energy is low. Moreover, the hybrid power plant suffers a double efficiency penalty, namely, losses occur in both absorbing and then releasing energy from the auxiliary device, which result in a net storage efficiency of no more than 50% for present battery technology. Capital cost in some applications may be reduced. Based on an observed locomotive duty cycle, a cost model shows that a hybrid power plant for a switcher may indeed reduce capital cost. Offsetting this potential benefit are the increased complexity, weight and volume of the power plant, as well as 20-40% increased fuel consumption that results from lower efficiency. Based on this analysis, the consortium has decided to develop a pure fuel cell road-switcher locomotive, that

  19. Hybrid tandem quantum dot/organic photovoltaic cells with complementary near infrared absorption

    KAUST Repository

    Kim, Taesoo

    2017-06-01

    Monolithically integrated hybrid tandem solar cells that effectively combine solution-processed colloidal quantum dot (CQD) and organic bulk heterojunction subcells to achieve tandem performance that surpasses the individual subcell efficiencies have not been demonstrated to date. In this work, we demonstrate hybrid tandem cells with a low bandgap PbS CQD subcell harvesting the visible and near-infrared photons and a polymer:fullerene—poly (diketopyrrolopyrrole-terthiophene) (PDPP3T):[6,6]-phenyl-C60-butyric acid methyl ester (PC61BM)—top cell absorbing effectively the red and near-infrared photons of the solar spectrum in a complementary fashion. The two subcells are connected in series via an interconnecting layer (ICL) composed of a metal oxide layer, a conjugated polyelectrolyte, and an ultrathin layer of Au. The ultrathin layer of Au forms nano-islands in the ICL, reducing the series resistance, increasing the shunt resistance, and enhancing the device fill-factor. The hybrid tandems reach a power conversion efficiency (PCE) of 7.9%, significantly higher than the PCE of the corresponding individual single cells, representing one of the highest efficiencies reported to date for hybrid tandem solar cells based on CQD and polymer subcells.

  20. Behavior of hybrid concentrated photovoltaic-thermoelectric generator under variable solar radiation

    DEFF Research Database (Denmark)

    Mahmoudi Nezhad, Sajjad; Rezaniakolaei, Alireza; Rosendahl, Lasse Aistrup

    2018-01-01

    diversely versus changing the solar radiation and module temperature. Moreover, the thermal response of the TEG stabilizes temperature fluctuation of the hybrid module when the solar radiation rapidly changes. In this work, impact of the thermal contact resistance on the temperature profile and system...... and solved by finite volume algorithm. In spite of temperatures profile in the hybrid CPV-TEG module, as results of variation of solar irradiation, power generation and efficiency of the CPV and TEG under the transient condition are presented. The results show that efficiency of the TEG and CPV varies...