WorldWideScience

Sample records for hybrid solar application

  1. Recent progress in stabilizing hybrid perovskites for solar cell applications

    Science.gov (United States)

    Chen, Jianqing; Cai, Xin; Yang, Donghui; Song, Dan; Wang, Jiajia; Jiang, Jinghua; Ma, Aibin; Lv, Shiquan; Hu, Michael Z.; Ni, Chaoying

    2017-07-01

    Hybrid inorganic-organic perovskites have quickly evolved as a promising group of materials for solar cells and optoelectronic applications mainly owing to the inexpensive materials, relatively simple and versatile fabrication and high power conversion efficiency (PCE). The certified energy conversion efficiency for perovskite solar cell (PSC) has reached above 20%, which is compatible to the current best for commercial applications. However, long-term stabilities of the materials and devices remain to be the biggest challenging issue for realistic implementation of the PSCs. This article discusses the key issues related to the stability of perovskite absorbing layer including crystal structural stability, chemical stability under moisture, oxygen, illumination and interface reaction, effects of electron-transporting materials (ETM), hole-transporting materials (HTM), contact electrodes, ion migration and preparation conditions. Towards the end, prospective strategies for improving the stability of PSCs are also briefly discussed and summarized. We focus on recent understanding of the stability of materials and devices and our perspectives about the strategies for the stability improvement.

  2. Cadmium Sulfide Nanoparticles Synthesized by Microwave Heating for Hybrid Solar Cell Applications

    Directory of Open Access Journals (Sweden)

    Claudia Martínez-Alonso

    2014-01-01

    Full Text Available Cadmium sulfide nanoparticles (CdS-n are excellent electron acceptor for hybrid solar cell applications. However, the particle size and properties of the CdS-n products depend largely on the synthesis methodologies. In this work, CdS-n were synthetized by microwave heating using thioacetamide (TA or thiourea (TU as sulfur sources. The obtained CdS-n(TA showed a random distribution of hexagonal particles and contained TA residues. The latter could originate the charge carrier recombination process and cause a low photovoltage (Voc, 0.3 V in the hybrid solar cells formed by the inorganic particles and poly(3-hexylthiophene (P3HT. Under similar synthesis conditions, in contrast, CdS-n synthesized with TU consisted of spherical particles with similar size and contained carbonyl groups at their surface. CdS-n(TU could be well dispersed in the nonpolar P3HT solution, leading to a Voc of about 0.6–0.8 V in the resulting CdS-n(TU : P3HT solar cells. The results of this work suggest that the reactant sources in microwave methods can affect the physicochemical properties of the obtained inorganic semiconductor nanoparticles, which finally influenced the photovoltaic performance of related hybrid solar cells.

  3. A thin-film silicon/silicon hetero-junction hybrid solar cell for photoelectrochemical water-reduction applications

    NARCIS (Netherlands)

    Vasudevan, R.A.; Thanawala, Z; Han, L.; Buijs, Thom; Tan, H.; Deligiannis, D.; Perez Rodriguez, P.; Digdaya, I.A.; Smith, W.A.; Zeman, M.; Smets, A.H.M.

    2016-01-01

    A hybrid tandem solar cell consisting of a thin-film, nanocrystalline silicon top junction and a siliconheterojunction bottom junction is proposed as a supporting solar cell for photoelectrochemical applications.Tunneling recombination junction engineering is shown to be an important consideration

  4. Organic and hybrid solar cells

    CERN Document Server

    Huang, Hui

    2014-01-01

    This book delivers a comprehensive evaluation of organic and hybrid solar cells and identifies their fundamental principles and numerous applications. Great attention is given to the charge transport mechanism, donor and acceptor materials, interfacial materials, alternative electrodes, device engineering and physics, and device stability. The authors provide an industrial perspective on the future of photovoltaic technologies.

  5. Development of a syngas-fired catalytic combustion system for hybrid solar-thermal applications

    International Nuclear Information System (INIS)

    Gupta, Mayank; Pramanik, Santanu; Ravikrishna, R.V.

    2016-01-01

    Highlights: • Syngas-fired combustor concept as hybrid heat source for solar thermal application. • Experimental characterization of catalytic combustor under fuel-rich conditions. • Stable operation, quick startup, and high turn-down ratio demonstrated. • Reacting flow CFD simulations of single channel of catalytic monolith. - Abstract: This paper describes the development and operation of a catalytic combustion system for use with syngas as an important component of a hybrid heating source for solar-thermal power generation. The reactor consists of a cylindrical ceramic monolith with porous alumina washcoat in which platinum is distributed as the catalyst. Two fuel-rich equivalence ratios were studied over a range of flow rates. The fuel-rich conditions permit low temperature combustion without the problem of hotspots likely to occur under fuel-lean conditions with hydrogen-containing fuels. Experimental data of temperature and species concentration at the exit of the reactor have been reported for a maximum fuel thermal input of 34 kW. The system exhibited quick start-up with a light-off time of around 60 s and a steady-state time of around 200 s as determined from the transient temperature profiles. The experimental results have also been complemented with detailed two-dimensional numerical simulations for improved understanding of the combustion characteristics in the reactor. The simulations suggest that the combustion system can be operated at a turn-down ratios far in excess of 1.67, which is the maximum value that has been investigated in the present setup. Stable operation, quick startup, and high turn-down ratio are some of the key features that enable the proposed combustion system to accommodate the transients in solar-thermal applications.

  6. Modelling and simulation of a hybrid solar heating system for greenhouse applications using Matlab/Simulink

    International Nuclear Information System (INIS)

    Kıyan, Metin; Bingöl, Ekin; Melikoğlu, Mehmet; Albostan, Ayhan

    2013-01-01

    Highlights: • Matlab/Simulink modelling of a solar hybrid greenhouse. • Estimation of greenhouse gas emission reductions. • Feasibility and cost analysis of the system. - Abstract: Solar energy is a major renewable energy source and hybrid solar systems are gaining increased academic and industrial attention due to the unique advantages they offer. In this paper, a mathematical model has been developed to investigate the thermal behavior of a greenhouse heated by a hybrid solar collector system. This hybrid system contains an evacuated tube solar heat collector unit, an auxiliary fossil fuel heating unit, a hot water storage unit, control and piping units. A Matlab/Simulink based model and software has been developed to predict the storage water temperature, greenhouse indoor temperature and the amount of auxiliary fuel, as a function of various design parameters of the greenhouse such as location, dimensions, and meteorological data of the region. As a case study, a greenhouse located in Şanlıurfa/Turkey has been simulated based on recent meteorological data and aforementioned hybrid system. The results of simulations performed on an annual basis indicate that revising the existing fossil fuel system with the proposed hybrid system, is economically feasible for most cases, however it requires a slightly longer payback period than expected. On the other hand, by reducing the greenhouse gas emissions significantly, it has a considerable positive environmental impact. The developed dynamic simulation method can be further used for designing heating systems for various solar greenhouses and optimizing the solar collector and thermal storage sizes

  7. A Bicontinuous Double Gyroid Hybrid Solar Cell

    KAUST Repository

    Crossland, Edward J. W.; Kamperman, Marleen; Nedelcu, Mihaela; Ducati, Caterina; Wiesner, Ulrich; Smilgies, Detlef -M.; Toombes, Gilman E. S.; Hillmyer, Marc A.; Ludwigs, Sabine; Steiner, Ullrich; Snaith, Henry J.

    2009-01-01

    We report the first successful application of an ordered bicontinuous gyroid semiconducting network in a hybrid bulk heterojunction solar cell. The freestanding gyroid network is fabricated by electrochemical deposition into the 10 nm wide voided

  8. Plug and Play Solar Power: Simplifying the Integration of Solar Energy in Hybrid Applications; Cooperative Research and Development Final Report, CRADA Number CRD-13-523

    Energy Technology Data Exchange (ETDEWEB)

    Lundstrom, Blake R. [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-07-05

    The Commonwealth Scientific and Industrial Research Organisation (CSIRO) is Australia's national science agency. CSIRO received funding from the Australian Solar Institute (ASI) for the United States-Australia Solar Energy Collaboration (USASEC) project 1-USO032 Plug and Play Solar Power: Simplifying the Integration of Solar Energy in Hybrid Applications (Broader Project). The Australian Solar Institute (ASI) operated from August 2009 to December 2012 before being merged into the Australian Renewable Energy Agency (ARENA). The Broader Project sought to simplify the integration, accelerate the deployment, and lower the cost of solar energy in hybrid distributed generation applications by creating plug and play solar technology. CSIRO worked with the National Renewable Energy Laboratory (NREL) as set out in a Joint Work Statement to review communications protocols relevant to plug-and-play technology and perform prototype testing in its Energy System Integration Facility (ESIF). For the avoidance of doubt, this CRADA did not cover the whole of the Broader Project and only related to the work described in the Joint Work Statement, which was carried out by NREL.

  9. Fuzzy Controller for a Voltage-Regulated Solar-Powered MPPT System for Hybrid Power System Applications

    Directory of Open Access Journals (Sweden)

    Jaw-Kuen Shiau

    2015-04-01

    Full Text Available This paper presents the design of a fuzzy-logic-based voltage-regulated solar power maximum power point tracking (MPPT system for applications involving hybrid power systems. The system contains a solar power system and battery as the primary and secondary power sources, respectively. The solar system alone supplies power to the electric motor and maintains the output voltage at a predetermined level when it has sufficient power. When the solar power is insufficient, the solar system is operated at its maximum power point (MPP and the battery is engaged to compensate for the insufficiency. First, a variant of the incremental conductance MPP condition was established. Under the MPP condition, the voltage-regulated MPPT system was formulated as a feedback control system, where the MPP condition and voltage regulation requirements were used as the system inputs. Next, a fuzzy controller was developed to perform the voltage-regulated MPPT function for the hybrid power system. A simulation model based on Matrix laboratory (MATLAB/SIMULINK (a block diagram environment for multi-domain simulation and model-based design and a piecewise linear electric circuit simulation (PLECS tool for controlling the dc motor velocity was developed to verify the voltage-regulated solar power MPPT system.

  10. Small Hybrid Solar Power System

    OpenAIRE

    Kane, El Hadj Malick; Larrain, Diego; Favrat, Daniel

    2001-01-01

    This paper introduces a novel of mini-hybrid solar power plant integrating a field of solar concentrators, two superposed Organic Rankine Cycles (ORC) and a (bio)Diesel engine. Turbines for the organic Rankine Cycles are hermetic scroll expander-generators. Sun tracking solar collectors are composed of rows of flat mirror bands (CEP) arranged in a plane, which focus the solar energy onto a collector tube similar to those used in SEGS plant in California. The wast...

  11. Small Hybrid Solar Power System

    OpenAIRE

    Kane, El Hadj Malick; Favrat, Daniel; Larrain, Diego; Allani, Yassine

    2003-01-01

    This paper introduces a novel of mini-hybrid solar power plant integrating a field of solar concentrators, two superposed Organic Rankine Cycles (ORC) and a (bio)Diesel engine. Turbines for the organic Rankine Cycles are hermetic scroll expander-generators. Sun tracking solar collectors are composed of rows of flat mirror bands (CEP) arranged in a plane, which focus the solar energy onto a collector tube similar to those used in SEGS plant in California. The waste heat from both...

  12. Design and preliminary operation of a hybrid syngas/solar PV/battery power system for off-grid applications: A case study in Thailand

    DEFF Research Database (Denmark)

    Kohsri, Sompol; Meechai, Apichart; Prapainainar, Chaiwat

    2018-01-01

    , in this study a customized hybrid power system integrating solar, biomass (syngas) power and battery storage system is evaluated a pilot scale for micro off-grid application. This paper shows that for a reliability of a hybrid syngas/solar PV system along with rechargeable batteries, the syngas generator can......Due to the irregular nature of solar resource, solar photovoltaic (PV) system alone cannot satisfy load on a 24/7 demand basis, especially with increasing regional population in developing countries such as Thailand. A hybrid solar PV/biomass based along with battery storage system has been drawing....... Furthermore, the generator has to be always synchronized during the commissioning time. Battery state of charge (SOC) in percent (%) connecting with syngas is greater than solar PV and the charging time appears significantly shorter than that one. All possible combinations between an innovation and existing...

  13. Hybrid solar lighting distribution systems and components

    Science.gov (United States)

    Muhs, Jeffrey D [Lenoir City, TN; Earl, Dennis D [Knoxville, TN; Beshears, David L [Knoxville, TN; Maxey, Lonnie C [Powell, TN; Jordan, John K [Oak Ridge, TN; Lind, Randall F [Lenoir City, TN

    2011-07-05

    A hybrid solar lighting distribution system and components having at least one hybrid solar concentrator, at least one fiber receiver, at least one hybrid luminaire, and a light distribution system operably connected to each hybrid solar concentrator and each hybrid luminaire. A controller operates all components.

  14. Study on Production of Silicon Nanoparticles from Quartz Sand for Hybrid Solar Cell Applications

    Science.gov (United States)

    Arunmetha, S.; Vinoth, M.; Srither, S. R.; Karthik, A.; Sridharpanday, M.; Suriyaprabha, R.; Manivasakan, P.; Rajendran, V.

    2018-01-01

    Nano silicon (nano Si) particles were directly prepared from natural mineral quartz sand and thereafter used to fabricate the hybrid silicon solar cells. Here, in this preparation technique, two process stages were involved. In the first stage, the alkaline extraction and acid precipitation processes were applied on quartz sand to fetch silica nanoparticles. In the second stage, magnesiothermic and modified magnesiothermic reduction reactions were applied on nano silica particles to prepare nano Si particles. The effect of two distinct reduction methodologies on nano Si particle preparation was compared. The magnesiothermic and modified magnesiothermic reductions in the silica to silicon conversion process were studied with the help of x-ray diffraction (XRD) with intent to study the phase changes during the reduction reaction as well as its crystalline nature in the pure silicon phase. The particles consist of a combination of fine particles with spherical morphology. In addition to this, the optical study indicated an increase in visible light absorption and also increases the performance of the solar cell. The obtained nano Si particles were used as an active layer to fabricate the hybrid solar cells (HSCs). The obtained results confirmed that the power conversion efficiency (PCE) of the magnesiothermically modified nano Si cells (1.06%) is much higher as compared to the nano Si cells that underwent magnesiothermic reduction (1.02%). Thus, this confirms the increased PCE of the investigated nano Si solar cell up to 1.06%. It also revealed that nano Si behaved as an electron acceptor and transport material. The present study provided valuable insights and direction for the preparation of nano Si particles from quartz sand, including the influence of process methods. The prepared nano Si particles can be utilized for HSCs and an array of portable electronic devices.

  15. Feasibility study for a standalone solar-wind-based hybrid energy system for application in Ethiopia

    International Nuclear Information System (INIS)

    Bekele, Getachew; Palm, Bjoern

    2010-01-01

    The aim of this paper is to investigate the possibility of supplying electricity from a solar-wind hybrid system to a remotely located model community detached from the main electricity grid in Ethiopia. The wind energy potential of four typical locations has been assessed in a previous article. The solar potential has also been investigated and the results are presented in detail in an accompanying article awaiting publication. For one of the sites, Addis Ababa, the results of the investigation are given here in detail. For the other sites, the results are given as sensitivity diagrams only. Based on the findings of the studies into energy potential, a feasibility study has been carried out on how to supply electricity to a model community of 200 families, which comprises 1000 people in total. The community is equipped with a community school and a health post. The electric load consists of both primary and deferrable types and comprises lighting, water pumps, radio receivers, and some clinical equipment. A software tool, Hybrid Optimization Model for Electric Renewables (HOMER) is used for the analysis. The result of the analysis is a list of feasible power supply systems, sorted according to their net present cost. Furthermore, sensitivity diagrams, showing the influence of wind speeds, PV costs, and diesel prices on the optimum solutions are also provided. (author)

  16. Feasibility study for a standalone solar-wind-based hybrid energy system for application in Ethiopia

    Energy Technology Data Exchange (ETDEWEB)

    Bekele, Getachew; Palm, Bjoern [Department of Energy Technology, KTH, Stockholm (Sweden)

    2010-02-15

    The aim of this paper is to investigate the possibility of supplying electricity from a solar-wind hybrid system to a remotely located model community detached from the main electricity grid in Ethiopia. The wind energy potential of four typical locations has been assessed in a previous article. The solar potential has also been investigated and the results are presented in detail in an accompanying article awaiting publication. For one of the sites, Addis Ababa, the results of the investigation are given here in detail. For the other sites, the results are given as sensitivity diagrams only. Based on the findings of the studies into energy potential, a feasibility study has been carried out on how to supply electricity to a model community of 200 families, which comprises 1000 people in total. The community is equipped with a community school and a health post. The electric load consists of both primary and deferrable types and comprises lighting, water pumps, radio receivers, and some clinical equipment. A software tool, Hybrid Optimization Model for Electric Renewables (HOMER) is used for the analysis. The result of the analysis is a list of feasible power supply systems, sorted according to their net present cost. Furthermore, sensitivity diagrams, showing the influence of wind speeds, PV costs, and diesel prices on the optimum solutions are also provided. (author)

  17. Use of Solar Energy Hybrid Dryer with Techno-Ergonomic Application to Increase Productivity of Dodol Wokers in Buleleng, Bali

    Science.gov (United States)

    Santosa, I. G.; Sutarna, I. N.

    2018-01-01

    Penglatan Village is one of dodol industrial centres in Buleleng Regency, Bali. Dodol is a balinese traditional snack that usually used for religion ceremonies offering or “sesajen”. Dodol’s making processes had several layer of stages, from making dough, stirring dough, packaging and drying dodol. Because the drying process is done with traditional work tools, this process cause several ergonomic problems. Based on preliminary research, the complaints that felt by dodol workers are pain in the neck, shoulders, back, waist, head, and hands. Therefore, productivity of workers are decreasing. This problem solved by designing a hybrid solar drying tools with the application of techno-ergonomic, appropriate technology concept (TTG) and from ergonomic science with the application of SHIP concept (systemic, holistic, interdisciplinary, participatory). This research use 20 people as sample. The sample performance is observed while working traditionally and using techno-ergonomic hybrid solar dryer tools. The measurements conducted three times which are First Period (PI), Second Period (PII), and Third Period (PIII) with interspersed time for rest. WOP (washing out period) is intended to eliminate residual effects. The data were analyzed with SPSS program with significance level of 0.05. Hopefully, with this solution will improve worker productivity.

  18. Hybrid Perovskites: Prospects for Concentrator Solar Cells.

    Science.gov (United States)

    Lin, Qianqian; Wang, Zhiping; Snaith, Henry J; Johnston, Michael B; Herz, Laura M

    2018-04-01

    Perovskite solar cells have shown a meteoric rise of power conversion efficiency and a steady pace of improvements in their stability of operation. Such rapid progress has triggered research into approaches that can boost efficiencies beyond the Shockley-Queisser limit stipulated for a single-junction cell under normal solar illumination conditions. The tandem solar cell architecture is one concept here that has recently been successfully implemented. However, the approach of solar concentration has not been sufficiently explored so far for perovskite photovoltaics, despite its frequent use in the area of inorganic semiconductor solar cells. Here, the prospects of hybrid perovskites are assessed for use in concentrator solar cells. Solar cell performance parameters are theoretically predicted as a function of solar concentration levels, based on representative assumptions of charge-carrier recombination and extraction rates in the device. It is demonstrated that perovskite solar cells can fundamentally exhibit appreciably higher energy-conversion efficiencies under solar concentration, where they are able to exceed the Shockley-Queisser limit and exhibit strongly elevated open-circuit voltages. It is therefore concluded that sufficient material and device stability under increased illumination levels will be the only significant challenge to perovskite concentrator solar cell applications.

  19. A hybrid air conditioner driven by a hybrid solar collector

    Science.gov (United States)

    Al-Alili, Ali

    The objective of this thesis is to search for an efficient way of utilizing solar energy in air conditioning applications. The current solar Air Conditioners (A/C)s suffer from low Coefficient of Performance (COP) and performance degradation in hot and humid climates. By investigating the possible ways of utilizing solar energy in air conditioning applications, the bottlenecks in these approaches were identified. That resulted in proposing a novel system whose subsystem synergy led to a COP higher than unity. The proposed system was found to maintain indoor comfort at a higher COP compared to the most common solar A/Cs, especially under very hot and humid climate conditions. The novelty of the proposed A/C is to use a concentrating photovoltaic/thermal collector, which outputs thermal and electrical energy simultaneously, to drive a hybrid A/C. The performance of the hybrid A/C, which consists of a desiccant wheel, an enthalpy wheel, and a vapor compression cycle (VCC), was investigated experimentally. This work also explored the use of a new type of desiccant material, which can be regenerated with a low temperature heat source. The experimental results showed that the hybrid A/C is more effective than the standalone VCC in maintaining the indoor conditions within the comfort zone. Using the experimental data, the COP of the hybrid A/C driven by a hybrid solar collector was found to be at least double that of the current solar A/Cs. The innovative integration of its subsystems allows each subsystem to do what it can do best. That leads to lower energy consumption which helps reduce the peak electrical loads on electric utilities and reduces the consumer operating cost since less energy is purchased during the on peak periods and less solar collector area is needed. In order for the proposed A/C to become a real alternative to conventional systems, its performance and total cost were optimized using the experimentally validated model. The results showed that for an

  20. Analysis of a Hybrid PV/Thermal Solar-Assisted Heat Pump System for Sports Center Water Heating Application

    Directory of Open Access Journals (Sweden)

    Y. Bai

    2012-01-01

    Full Text Available The application of solar energy provides an alternative way to replace the primary source of energy, especially for large-scale installations. Heat pump technology is also an effective means to reduce the consumption of fossil fuels. This paper presents a practical case study of combined hybrid PV/T solar assisted heat pump (SAHP system for sports center hot water production. The initial design procedure was first presented. The entire system was then modeled with the TRNSYS 16 computation environment and the energy performance was evaluated based on year round simulation results. The results show that the system COP can reach 4.1 under the subtropical climate of Hong Kong, and as compared to the conventional heating system, a high fractional factor of energy saving at 67% can be obtained. The energy performances of the same system under different climatic conditions, that include three other cities in France, were analyzed and compared. Economic implications were also considered in this study.

  1. Hybrid structure of polyaniline/ZnO nanograss and its application in dye-sensitized solar cell with performance improvement

    Energy Technology Data Exchange (ETDEWEB)

    Zhu Shibu; Wei Wei; Chen Xiangnan [Key Laboratory of Advanced Technologies of Materials (Ministry of Education), School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031 (China); Jiang Man, E-mail: jiangman1021@163.com [Key Laboratory of Advanced Technologies of Materials (Ministry of Education), School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031 (China); Zhou Zuowan, E-mail: zwzhou@at-c.net [Key Laboratory of Advanced Technologies of Materials (Ministry of Education), School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031 (China)

    2012-06-15

    Polyaniline (PANI) hybridized ZnO photoanode for dye-sensitized solar cell (DSSC) was primarily prepared via a two-step process which involved hydrothermal growth of ZnO nanograss on the fluorine-doped tin oxide (FTO) substrate and subsequently chemisorption of PANI on the surfaces of the ZnO nanorods. The PANI hybridized ZnO nanograss films were characterized by scanning electron microscope (SEM), X-ray diffraction (XRD) and Fourier transform infrared spectra (FT-IR), and the results indicated that there were chemical interactions between PANI and ZnO. Both pure ZnO nanograss and PANI hybridized ZnO nanograss were applied to DSSC. The results of photoelectrochemical measurement showed that the photocurrent density of PANI (100 mg/L) hybridized ZnO nanograss photoanode was significantly enhanced, and the overall light-conversion efficiency increased by 60%. The electrochemical impedance spectra (EIS) displayed that the electron densities in photoanodes of PANI hybridized ZnO nanograss were larger than that in pure ZnO nanograss. This is ascribed to more effective charge separation and faster interfacial charge transferring occurred in the hybrid photoanode. - Graphical abstract: Operational principle of the DSSC: the introduced hybridizing PANI layer performs effective charge separation and faster interfacial charge transferring. Highlights: Black-Right-Pointing-Pointer PANI/ZnO nanograss hybrid materials as photoanode in Dye-sensitized solar cell. Black-Right-Pointing-Pointer Photoelectric conversion efficiency after hybridization was enhanced by 60%. Black-Right-Pointing-Pointer PANI hybridizing ZnO nanograss induced a rapid charge separation.

  2. Hybrid structure of polyaniline/ZnO nanograss and its application in dye-sensitized solar cell with performance improvement

    International Nuclear Information System (INIS)

    Zhu Shibu; Wei Wei; Chen Xiangnan; Jiang Man; Zhou Zuowan

    2012-01-01

    Polyaniline (PANI) hybridized ZnO photoanode for dye-sensitized solar cell (DSSC) was primarily prepared via a two-step process which involved hydrothermal growth of ZnO nanograss on the fluorine-doped tin oxide (FTO) substrate and subsequently chemisorption of PANI on the surfaces of the ZnO nanorods. The PANI hybridized ZnO nanograss films were characterized by scanning electron microscope (SEM), X-ray diffraction (XRD) and Fourier transform infrared spectra (FT-IR), and the results indicated that there were chemical interactions between PANI and ZnO. Both pure ZnO nanograss and PANI hybridized ZnO nanograss were applied to DSSC. The results of photoelectrochemical measurement showed that the photocurrent density of PANI (100 mg/L) hybridized ZnO nanograss photoanode was significantly enhanced, and the overall light-conversion efficiency increased by 60%. The electrochemical impedance spectra (EIS) displayed that the electron densities in photoanodes of PANI hybridized ZnO nanograss were larger than that in pure ZnO nanograss. This is ascribed to more effective charge separation and faster interfacial charge transferring occurred in the hybrid photoanode. - Graphical abstract: Operational principle of the DSSC: the introduced hybridizing PANI layer performs effective charge separation and faster interfacial charge transferring. Highlights: ► PANI/ZnO nanograss hybrid materials as photoanode in Dye-sensitized solar cell. ► Photoelectric conversion efficiency after hybridization was enhanced by 60%. ► PANI hybridizing ZnO nanograss induced a rapid charge separation.

  3. Synthesis of a conjugated pyrrolopyridazinedione-benzodithiophene (PPD-BDT) copolymer and its application in organic and hybrid solar cells.

    Science.gov (United States)

    Knall, Astrid-Caroline; Jones, Andrew O F; Kunert, Birgit; Resel, Roland; Reishofer, David; Zach, Peter W; Kirkus, Mindaugas; McCulloch, Iain; Rath, Thomas

    2017-01-01

    Herein, we describe the synthesis and characterization of a conjugated donor-acceptor copolymer consisting of a pyrrolopyridazinedione (PPD) acceptor unit, and a benzodithiophene (BDT) donor unit. The polymerization was done via a Stille cross-coupling polycondensation. The resulting PPD-BDT copolymer revealed an optical bandgap of 1.8 eV and good processability from chlorobenzene solutions. In an organic solar cell in combination with PC 70 BM, the polymer led to a power conversion efficiency of 4.5%. Moreover, the performance of the copolymer was evaluated in polymer/nanocrystal hybrid solar cells using non-toxic CuInS 2 nanocrystals as inorganic phase, which were prepared from precursors directly in the polymer matrix without using additional capping ligands. The PPD-BDT/CuInS 2 hybrid solar cells showed comparably high photovoltages and a power conversion efficiency of 2.2%.

  4. Synthesis of a conjugated pyrrolopyridazinedione–benzodithiophene (PPD–BDT) copolymer and its application in organic and hybrid solar cells

    KAUST Repository

    Knall, Astrid-Caroline

    2017-03-30

    Herein, we describe the synthesis and characterization of a conjugated donor–acceptor copolymer consisting of a pyrrolopyridazinedione (PPD) acceptor unit, and a benzodithiophene (BDT) donor unit. The polymerization was done via a Stille cross-coupling polycondensation. The resulting PPD–BDT copolymer revealed an optical bandgap of 1.8 eV and good processability from chlorobenzene solutions. In an organic solar cell in combination with PC70BM, the polymer led to a power conversion efficiency of 4.5%. Moreover, the performance of the copolymer was evaluated in polymer/nanocrystal hybrid solar cells using non-toxic CuInS2 nanocrystals as inorganic phase, which were prepared from precursors directly in the polymer matrix without using additional capping ligands. The PPD–BDT/CuInS2 hybrid solar cells showed comparably high photovoltages and a power conversion efficiency of 2.2%.Graphical abstract

  5. A novel syngas-fired hybrid heating source for solar-thermal applications: Energy and exergy analysis

    International Nuclear Information System (INIS)

    Pramanik, Santanu; Ravikrishna, R.V.

    2016-01-01

    Highlights: • Biomass-derived syngas as a hybrid energy source for solar thermal power plants. • A novel combustor concept using rich-catalytic and MILD combustion technologies. • Hybrid energy source for a solar-driven supercritical CO 2 -based Brayton cycle. • Comprehensive energetic and exergetic analysis of the combined system. - Abstract: A hybrid heating source using biomass-derived syngas is proposed to enable continuous operation of standalone solar thermal power generation plants. A novel, two-stage, low temperature combustion system is proposed that has the potential to provide stable combustion of syngas with near-zero NO x emissions. The hybrid heating system consists of a downdraft gasifier, a two-stage combustion system, and other auxiliaries. When integrated with a solar cycle, the entire system can be referred to as the integrated gasification solar combined cycle (IGSCC). The supercritical CO 2 Brayton cycle (SCO 2 ) is selected for the solar cycle due to its high efficiency. The thermodynamic performance evaluation of the individual unit and the combined system has been conducted from both energy and exergy considerations. The effect of parameters such as gasification temperature, biomass moisture content, equivalence ratio, and pressure ratio is studied. The efficiency of the IGSCC exhibited a non-monotonic behavior. A maximum thermal efficiency of 36.5% was achieved at an overall equivalence ratio of 0.22 and pressure ratio of 2.75 when the gasifier was operating at T g = 1073 K with biomass containing 20% moisture. The efficiency increased to 40.8% when dry biomass was gasified at a temperature of 973 K. The exergy analysis revealed that the maximum exergy destruction occurred in the gasification system, followed by the combustion system, SCO 2 cycle, and regenerator. The exergy analysis also showed that 8.72% of the total exergy is lost in the exhaust; however, this can be utilized for drying of the biomass.

  6. Performance Assessment of a Hybrid Solar-Geothermal Air Conditioning System for Residential Application: Energy, Exergy, and Sustainability Analysis

    Directory of Open Access Journals (Sweden)

    Yasser Abbasi

    2016-01-01

    Full Text Available This paper investigates the performance of a ground source heat pump that is coupled with a photovoltaic system to provide cooling and heating demands of a zero-energy residential building. Exergy and sustainability analyses have been conducted to evaluate the exergy destruction rate and SI of different compartments of the hybrid system. The effects of monthly thermal load variations on the performance of the hybrid system are investigated. The hybrid system consists of a vertical ground source heat exchanger, rooftop photovoltaic panels, and a heat pump cycle. Exergetic efficiency of the solar-geothermal heat pump system does not exceed 10 percent, and most exergy destruction takes place in photovoltaic panel, condenser, and evaporator. Although SI of PV system remains constant during a year, SI of GSHP varies depending on cooling and heating mode. The results also show that utilization of this hybrid system can reduce CO2 emissions by almost 70 tons per year.

  7. Synthesis and application of solar cells of poly (3-decylthiophene/N/titanium dioxide hybrid

    Directory of Open Access Journals (Sweden)

    2011-05-01

    Full Text Available An organic-inorganic nanocomposite material of poly (3-decylthiophene and titanium dioxide doped with N (P3DT/N/TiO2 were synthesized. Structures were characterized using X-ray diffraction (XRD, infrared spectroscopy (IR, transmission electron microscopy (TEM, and X-ray photoelectron spectroscopy (XPS. Optical and electrochemical properties were determined using UV-visible spectroscopy, fluorescence spectroscopy, and cyclic voltammetry. These tests indicated that P3DT/N/TiO2 was a new p-n semiconductor photoelectric material, and the solar cell prepared with P3DT/N/TiO2 performed well.

  8. Hybrid Microgrid Model based on Solar Photovoltaics with Batteries and Fuel Cells system for intermittent applications

    Science.gov (United States)

    Patterson, Maxx

    Microgrids are a subset of the modern power structure; using distributed generation (DG) to supply power to communities rather than vast regions. The reduced scale mitigates loss allowing the power produced to do more with better control, giving greater security, reliability, and design flexibility. This paper explores the performance and cost viability of a hybrid grid-tied microgrid that utilizes Photovoltaic (PV), batteries, and fuel cell (FC) technology. The concept proposes that each community home is equipped with more PV than is required for normal operation. As the homes are part of a microgrid, excess or unused energy from one home is collected for use elsewhere within the microgrid footprint. The surplus power that would have been discarded becomes a community asset, and is used to run intermittent services. In this paper, the modeled community does not have parking adjacent to each home allowing for the installment of a privately owned slower Level 2 charger, making EV ownership option untenable. A solution is to provide a Level 3 DC Quick Charger (DCQC) as the intermittent service. The addition of batteries and Fuel Cells are meant to increase load leveling, reliability, and instill limited island capability.

  9. Application of DC-AC Hybrid Grid and Solar Photovoltaic Generation with Battery Storage Using Smart Grid

    Directory of Open Access Journals (Sweden)

    Shoaib Rauf

    2017-01-01

    Full Text Available Smart grid for the past few years has been the prime focus of research in power systems. The aim is to eliminate load shedding and problematic blackout conditions, further offering cheap and continuous supply of electricity for both large and small consumers. Another benefit is to integrate renewable energy resources with existing dump grid in more efficient and cost-effective manner. In past few years, growing demand for sustainable energy increases the consumption of solar PV. Since generation from solar PV is in DC and most of the appliances at home could be operated on DC, AC-DC hybrid distribution system with energy management system is proposed in this paper. EMS helps to shift or control the auxiliary load and compel the users to operate specific load at certain time slots. These techniques further help to manage the excessive load during peak and off peak hours. It demonstrates the practical implementation of DC-AC network with integration of solar PV and battery storage with existing infrastructure. The results show a remarkable improvement using hybrid AC-DC framework in terms of reliability and efficiency. All this functioning together enhances the overall efficiency; hence, a secure, economical, reliable, and intelligent system leads to a smart grid.

  10. A Bicontinuous Double Gyroid Hybrid Solar Cell

    KAUST Repository

    Crossland, Edward J. W.

    2009-08-12

    We report the first successful application of an ordered bicontinuous gyroid semiconducting network in a hybrid bulk heterojunction solar cell. The freestanding gyroid network is fabricated by electrochemical deposition into the 10 nm wide voided channels of a self-assembled, selectively degradable block copolymer film. The highly ordered pore structure is ideal for uniform infiltration of an organic hole transporting material, and solid-state dye-sensitized solar cells only 400 nm thick exhibit up to 1.7% power conversion efficiency. This patterning technique can be readily extended to other promising heterojunction systems and is a major step toward realizing the full potential of self-assembly in the next generation of device technologies. © 2009 American Chemical Society.

  11. Nanotetrapods: quantum dot hybrid for bulk heterojunction solar cells

    Science.gov (United States)

    2013-01-01

    Hybrid thin film solar cell based on all-inorganic nanoparticles is a new member in the family of photovoltaic devices. In this work, a novel and performance-efficient inorganic hybrid nanostructure with continuous charge transportation and collection channels is demonstrated by introducing CdTe nanotetropods (NTs) and CdSe quantum dots (QDs). Hybrid morphology is characterized, demonstrating an interpenetration and compacted contact of NTs and QDs. Electrical measurements show enhanced charge transfer at the hybrid bulk heterojunction interface of NTs and QDs after ligand exchange which accordingly improves the performance of solar cells. Photovoltaic and light response tests exhibit a combined optic-electric contribution from both CdTe NTs and CdSe QDs through a formation of interpercolation in morphology as well as a type II energy level distribution. The NT and QD hybrid bulk heterojunction is applicable and promising in other highly efficient photovoltaic materials such as PbS QDs. PMID:24139059

  12. Hybrid emitter all back contact solar cell

    Science.gov (United States)

    Loscutoff, Paul; Rim, Seung

    2016-04-12

    An all back contact solar cell has a hybrid emitter design. The solar cell has a thin dielectric layer formed on a backside surface of a single crystalline silicon substrate. One emitter of the solar cell is made of doped polycrystalline silicon that is formed on the thin dielectric layer. The other emitter of the solar cell is formed in the single crystalline silicon substrate and is made of doped single crystalline silicon. The solar cell includes contact holes that allow metal contacts to connect to corresponding emitters.

  13. Review of Polymer, Dye-Sensitized, and Hybrid Solar Cells

    Directory of Open Access Journals (Sweden)

    S. N. F. Mohd-Nasir

    2014-01-01

    Full Text Available The combination of inorganic nanoparticles semiconductor, conjugated polymer, and dye-sensitized in a layer of solar cell is now recognized as potential application in developing flexible, large area, and low cost photovoltaic devices. Several conjugated low bandgap polymers, dyes, and underlayer materials based on the previous studies are quoted in this paper, which can provide guidelines in designing low cost photovoltaic solar cells. All of these materials are designed to help harvest more sunlight in a wider range of the solar spectrum besides enhancing the rate of charge transfer in a device structure. This review focuses on developing solid-state dye-synthesized, polymer, and hybrid solar cells.

  14. Surface tailoring of newly developed amorphous Znsbnd Sisbnd O thin films as electron injection/transport layer by plasma treatment: Application to inverted OLEDs and hybrid solar cells

    Science.gov (United States)

    Yang, Hongsheng; Kim, Junghwan; Yamamoto, Koji; Xing, Xing; Hosono, Hideo

    2018-03-01

    We report a unique amorphous oxide semiconductor Znsbnd Sisbnd O (a-ZSO) which has a small work function of 3.4 eV for as-deposited films. The surface modification of a-ZSO thin films by plasma treatments is examined to apply it to the electron injection/transport layer of organic devices. It turns out that the energy alignment and exciton dissociation efficiency at a-ZSO/organic semiconductor interface significantly changes by choosing different gas (oxygen or argon) for plasma treatments (after a-ZSO was exposed to atmospheric environment for 5 days). In situ ultraviolet photoelectron spectroscopy (UPS) measurement reveals that the work function of a-ZSO is increased to 4.0 eV after an O2-plasma treatment, while the work function of 3.5 eV is recovered after an Ar-plasma treatment which indicates this treatment is effective for surface cleaning. To study the effects of surface treatments to device performance, OLEDs and hybrid polymer solar cells with O2-plasma or Ar-plasma treated a-ZSO are compared. Effects of these surface treatments on performance of inverted OLEDs and hybrid polymer solar cells are examined. Ar-plasma treated a-ZSO works well as the electron injection layer in inverted OLEDs (Alq3/a-ZSO) because the injection barrier is small (∼ 0.1 eV). On the other hands, O2-plasma treated a-ZSO is more suitable for application to hybrid solar cells which is benefiting from higher exciton dissociation efficiency at polymer (P3HT)/ZSO interface.

  15. A hybrid solar and chemical looping combustion system for solar thermal energy storage

    International Nuclear Information System (INIS)

    Jafarian, Mehdi; Arjomandi, Maziar; Nathan, Graham J.

    2013-01-01

    Highlights: ► A novel solar–CLC hybrid system is proposed which integrates a CLC with solar thermal energy. ► The oxygen carrier particles are used as storage medium for thermal energy storage. ► A solar cavity reactor is proposed for fuel reactor. ► The absorbed solar energy is stored in the particles to produce a base heat load. -- Abstract: A novel hybrid of a solar thermal energy and a chemical looping combustion (CLC) system is proposed here, which employs the oxygen carrier particles in a CLC system to provide diurnal thermal energy storage for concentrated solar thermal energy. In taking advantage of the chemical and sensible energy storage systems that are an inherent part of a CLC system, this hybrid offers potential to achieve cost effective, base load power generation for solar energy. In the proposed system, three reservoirs have been added to a conventional CLC system to allow storage of the oxygen carrier particles, while a cavity solar receiver has been chosen for the fuel reactor. The performance of the system is evaluated using ASPEN PLUS software, with the model being validated using independent simulation result reported previously. Operating temperature, solar efficiency, solar fraction, exergy efficiency and the fraction of the solar thermal energy stored for a based load power generation application are reported.

  16. A Bicontinuous Double Gyroid Hybrid Solar Cell : Letter

    NARCIS (Netherlands)

    Crossland, E.J.W.; Kamperman, M.M.G.; Nedelcu, M.; Ducati, C.; Wiesner, U.; Smilgies, D.M.; Toombes, G.E.S.; Hillmyer, M.A.; Ludwigs, S.; Steiner, U.; Snaith, H.J.

    2009-01-01

    We report the first successful application of an ordered bicontinuous gyroid semiconducting network in a hybrid bulk heterojunction solar cell. The freestanding gyroid network is fabricated by electrochemical deposition into the 10 nm wide voided channels of a self-assembled, selectively degradable

  17. Photovoltaic solar panel for a hybrid PV/thermal system

    Energy Technology Data Exchange (ETDEWEB)

    Zakharchenko, R.; Licea-Jimenez, L.; Perez-Garcia, S.A.; Perez-Robles, J.F.; Gonzalez-Hernandez, J.; Vorobiev, Y. [CINVESTAV-Queretaro, (Mexico); Vorobiev, P. [Universidad Autonoma de Queretaro, (Mexico). Facultad de Ingenieria; Dehesa-Carrasco, U. [Instituto Tec. Del Istmo, Oaxaco (Mexico). Dep. de Ingenieria Electromecanica

    2004-05-01

    The hybrid PV-thermal system was studied, with the photovoltaic panel (PVP) area much smaller than that of the solar collector. Performance of the different panels in the system was investigated, in particular, those made of crystalline (c-) Si, {alpha}-Si and CuInSe{sub 2} as well as different materials and constructions for the thermal contact between the panel and the collector. Our conclusion is that the PVP for application in a hybrid system needs a special design providing efficient heat extraction from it. PVP was designed and made. Its study has shown that this design provides the high electrical and thermal efficiency of the hybrid system. (author)

  18. Optical band gap tuning and electrical properties of polyaniline and its nanocomposites for hybrid solar cell application

    Science.gov (United States)

    Singh, R.; Choudhary, R. B.; Kandulna, R.

    2018-05-01

    Hcl doped conducting polyaniline-CdS nanocomposite has been prepared via In-situ polymerization in which cadmium nitrate was used as a source for cadmium. The structural morphology was investigated using FESEM and the presence of fibrous polyaniline and CdS nanoparticles. The synthesis of CdS and polyaniline was confirmed using the XRD analysis. I-V characteristic was used to explore the electrical behavior of PANI and its nanocoposites. Optical properties were studied and minimum band gap with highest band absorbance was found for synergistic concentration PANI-CdS (10%) for solar cells application.

  19. Photophysical properties of novel small acceptor molecules and their application in hybrid small-molecular/polymeric organic solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Inal, Sahika; Castellani, Mauro; Neher, Dieter [Universitaet Potsdam, Institut fuer Physik und Astronomie, Potsdam-Golm (Germany); Sellinger, Alan [Institute of Materials Research and Engineering, Singapore (Singapore)

    2009-07-01

    Recent experimental investigations revealed that the photovoltaic properties of our devices are related to the balance between recombination and field-induced dissociation of interfacial excited states such as exciplexes or geminate polaron pairs. This balance was shown to be affected by the nanomorphology at the heterojunction. We have analyzed the photophysical properties of a new materials couple comprising an electron-donating PPV copolymer and a vinazene-based small molecule acceptor. Steady state and time-resolved photoluminescence (PL) spectroscopy in solution and in the solid state showed the formation of excimers within the acceptor. The associated long-range diffusion promise efficient energy harvesting at the heterojunction. On the other hand, blends of the PPV-derivative and the small molecule revealed strong exciplex formation. Therefore, bilayered hybrid small-molecular/polymeric solar cells have been fabricated by consequently spin-coating the macromolecular donor and the small molecule acceptor from two different solvents. The bilayer architecture limits recombination processes enabling high FFs of around 44% and a technologically important open circuit voltage of 1Volt.

  20. Hybrid solar cells : Perovskites under the Sun

    NARCIS (Netherlands)

    Loi, Maria Antonietta; Hummelen, Jan C.

    2013-01-01

    Mixed-halide organic–inorganic hybrid perovskites are reported to display electron–hole diffusion lengths over 1 μm. This observation provides important insight into the charge-carrier dynamics of this class of semiconductors and increases the expectations for highly efficient and cheap solar cells.

  1. Simulation of Hybrid Solar Dryer

    International Nuclear Information System (INIS)

    Yunus, Y M; Al-Kayiem, H H

    2013-01-01

    The efficient performance of a solar dryer is mainly depending on the good distribution of the thermal and flow field inside the dryer body. This paper presents simulation results of a solar dryer with a biomass burner as backup heater. The flow and thermal fields were simulated by CFD tools under different operational modes. GAMBIT software was used for the model and grid generation while FLUENT software was used to simulate the velocity and temperature distribution inside the dryer body. The CFD simulation procedure was validated by comparing the simulation results with experimental measurement. The simulation results show acceptable agreement with the experimental measurements. The simulations have shown high temperature spot with very low velocity underneath the solar absorber and this is an indication for the poor design. Many other observations have been visualized from the temperature and flow distribution which cannot be captured by experimental measurements.

  2. Hybrids of Solar Sail, Solar Electric, and Solar Thermal Propulsion for Solar-System Exploration

    Science.gov (United States)

    Wilcox, Brian H.

    2012-01-01

    Solar sails have long been known to be an attractive method of propulsion in the inner solar system if the areal density of the overall spacecraft (S/C) could be reduced to approx.10 g/sq m. It has also long been recognized that the figure (precise shape) of useful solar sails needs to be reasonably good, so that the reflected light goes mostly in the desired direction. If one could make large reflective surfaces with reasonable figure at an areal density of approx.10 g/sq m, then several other attractive options emerge. One is to use such sails as solar concentrators for solar-electric propulsion. Current flight solar arrays have a specific output of approx. 100W/kg at 1 Astronomical Unit (AU) from the sun, and near-term advances promise to significantly increase this figure. A S/C with an areal density of 10 g/sq m could accelerate up to 29 km/s per year as a solar sail at 1 AU. Using the same sail as a concentrator at 30 AU, the same spacecraft could have up to approx. 45 W of electric power per kg of total S/C mass available for electric propulsion (EP). With an EP system that is 50% power-efficient, exhausting 10% of the initial S/C mass per year as propellant, the exhaust velocity is approx. 119 km/s and the acceleration is approx. 12 km/s per year. This hybrid thus opens attractive options for missions to the outer solar system, including sample-return missions. If solar-thermal propulsion were perfected, it would offer an attractive intermediate between solar sailing in the inner solar system and solar electric propulsion for the outer solar system. In the example above, both the solar sail and solar electric systems don't have a specific impulse that is near-optimal for the mission. Solar thermal propulsion, with an exhaust velocity of the order of 10 km/s, is better matched to many solar system exploration missions. This paper derives the basic relationships between these three propulsion options and gives examples of missions that might be enabled by

  3. Performance Assessment of a Hybrid Solar-Geothermal Air Conditioning System for Residential Application: Energy, Exergy, and Sustainability Analysis

    OpenAIRE

    Abbasi, Yasser; Baniasadi, Ehsan; Ahmadikia, Hossein

    2016-01-01

    This paper investigates the performance of a ground source heat pump that is coupled with a photovoltaic system to provide cooling and heating demands of a zero-energy residential building. Exergy and sustainability analyses have been conducted to evaluate the exergy destruction rate and SI of different compartments of the hybrid system. The effects of monthly thermal load variations on the performance of the hybrid system are investigated. The hybrid system consists of a vertical ground sour...

  4. Hybrid Silicon Nanocone–Polymer Solar Cells

    KAUST Repository

    Jeong, Sangmoo

    2012-06-13

    Recently, hybrid Si/organic solar cells have been studied for low-cost Si photovoltaic devices because the Schottky junction between the Si and organic material can be formed by solution processes at a low temperature. In this study, we demonstrate a hybrid solar cell composed of Si nanocones and conductive polymer. The optimal nanocone structure with an aspect ratio (height/diameter of a nanocone) less than two allowed for conformal polymer surface coverage via spin-coating while also providing both excellent antireflection and light trapping properties. The uniform heterojunction over the nanocones with enhanced light absorption resulted in a power conversion efficiency above 11%. Based on our simulation study, the optimal nanocone structures for a 10 μm thick Si solar cell can achieve a short-circuit current density, up to 39.1 mA/cm 2, which is very close to the theoretical limit. With very thin material and inexpensive processing, hybrid Si nanocone/polymer solar cells are promising as an economically viable alternative energy solution. © 2012 American Chemical Society.

  5. Hybrid Silicon Nanocone–Polymer Solar Cells

    KAUST Repository

    Jeong, Sangmoo; Garnett, Erik C.; Wang, Shuang; Yu, Zongfu; Fan, Shanhui; Brongersma, Mark L.; McGehee, Michael D.; Cui, Yi

    2012-01-01

    Recently, hybrid Si/organic solar cells have been studied for low-cost Si photovoltaic devices because the Schottky junction between the Si and organic material can be formed by solution processes at a low temperature. In this study, we demonstrate a hybrid solar cell composed of Si nanocones and conductive polymer. The optimal nanocone structure with an aspect ratio (height/diameter of a nanocone) less than two allowed for conformal polymer surface coverage via spin-coating while also providing both excellent antireflection and light trapping properties. The uniform heterojunction over the nanocones with enhanced light absorption resulted in a power conversion efficiency above 11%. Based on our simulation study, the optimal nanocone structures for a 10 μm thick Si solar cell can achieve a short-circuit current density, up to 39.1 mA/cm 2, which is very close to the theoretical limit. With very thin material and inexpensive processing, hybrid Si nanocone/polymer solar cells are promising as an economically viable alternative energy solution. © 2012 American Chemical Society.

  6. Hybrid Solar: A Review on Photovoltaic and Thermal Power Integration

    Directory of Open Access Journals (Sweden)

    T. T. Chow

    2012-01-01

    Full Text Available The market of solar thermal and photovoltaic electricity generation is growing rapidly. New ideas on hybrid solar technology evolve for a wide range of applications, such as in buildings, processing plants, and agriculture. In the building sector in particular, the limited building space for the accommodation of solar devices has driven a demand on the use of hybrid solar technology for the multigeneration of active power and/or passive solar devices. The importance is escalating with the worldwide trend on the development of low-carbon/zero-energy buildings. Hybrid photovoltaic/thermal (PVT collector systems had been studied theoretically, numerically, and experimentally in depth in the past decades. Together with alternative means, a range of innovative products and systems has been put forward. The final success of the integrative technologies relies on the coexistence of robust product design/construction and reliable system operation/maintenance in the long run to satisfy the user needs. This paper gives a broad review on the published academic works, with an emphasis placed on the research and development activities in the last decade.

  7. Design and Analysis of Hybrid Solar Lighting and Full-Spectrum Solar Energy Systems

    International Nuclear Information System (INIS)

    Muhs, J.D.

    2001-01-01

    This paper describes a systems-level design and analysis of a new approach for improving the energy efficiency and affordability of solar energy in buildings, namely, hybrid solar lighting and full-spectrum solar energy systems. By using different portions of the solar spectrum simultaneously for multiple end-use applications in buildings, the proposed system offers unique advantages over other alternatives for using sunlight to displace electricity (conventional topside daylighting and solar technologies). Our preliminary work indicates that hybrid solar lighting, a method of collecting and distributing direct sunlight for lighting purposes, will alleviate many of the problems with passive daylighting systems of today, such as spatial and temporal variability, glare, excess illumination, cost, and energy efficiency. Similarly, our work suggests that the most appropriate use of the visible portion of direct, nondiffuse sunlight from an energy-savings perspective is to displace electric light rather than generate electricity. Early estimates detailed in this paper suggest an anticipated system cost of well under$2.0/Wp and 5-11(cents)/kWh for displaced and generated electricity in single-story commercial building applications. Based on a number of factors discussed in the paper, including sunlight availability, building use scenarios, time-of-day electric utility rates, cost, and efficacy of the displaced electric lights, the simple payback of this approach in many applications could eventually be well under 5 years

  8. A study on evaluating the power generation of solar-wind hybrid systems in Izmir, Turkey

    Energy Technology Data Exchange (ETDEWEB)

    Ulgen, K. [Ege Univ., Solar Energy Inst., Izmir (Turkey); Hepbasli, A. [Ege Univ., Dept. of Mechanical Engineering, Izmir (Turkey)

    2003-03-15

    Turkey is abundant in terms of renewable energy resources. Residential and industrial utilization of solar energy started in the 1980s, while the first Build-Operate-Transfer (BOT) windmill park, located at Alacati, Izmir, was commissioned in 1998. Additionally, power generation through solar-wind hybrid systems has recently appeared on the Turkish market. This study investigates the wind and solar thermal power availability in Izmir, located in the western part of Turkey. Simple models were developed to determine wind, solar, and hybrid power resources per unit area. Experimental data, consisting of hourly records over a 5 yr period, 1995-1999, were measured in the Solar/Wind Meteorological Station of the Solar Energy Institute at Ege University. Correlations between solar and wind power data were carried out on an hourly, a daily, and a monthly basis. It can be concluded that possible applications of hybrid systems could be considered for the efficient utilization of these resources. (Author)

  9. Assessment of regions priority for implementation of solar projects in Iran: New application of a hybrid multi-criteria decision making approach

    International Nuclear Information System (INIS)

    Vafaeipour, Majid; Hashemkhani Zolfani, Sarfaraz; Morshed Varzandeh, Mohammad Hossein; Derakhti, Arman; Keshavarz Eshkalag, Mahsa

    2014-01-01

    Highlights: • The economic, environmental, technical, social and risk criteria are considered. • Prioritization of regions for construction of solar power plants in Iran is assessed. • A hybrid MCDM approach ranked 25 scattered cities all around the country. • SWARA ranked the identified criteria, and WASPAS prioritized the alternatives. • Considering the ranked cities, a comprehensive GIS map of the country is provided. - Abstract: One of the promising ways to shift towards sustainable development has been the utilization of solar energy worldwide. Based on its geographical specifications, Iran enjoys high solar potential to implement feasible solar energy projects. However, to obtain the best productivity and payback, identification and prioritization of suitable regions for construction of expensive solar power plants is a delicate issue. In contrast with common assumptions, identifying appropriate geographical regions for implementation of such projects is not only associated with the amount of received solar radiation, but also there are many economic, environmental, technical, social and risk criteria (and their relevant sub-criteria) which must be taken into account. To address the complicated nature of the prioritization challenge caused by existence of various indicators, this paper applies a hybrid Multi-Criteria Decision Making (MCDM) approach and prioritizes 25 scattered cities all around the country for implementation of future solar power plants. For this, both quantitative and qualitative effective indicators are identified to be considered as the inputs to the utilized hybrid model. The Step-wise Weight Assessment Ratio Analysis (SWARA, proposed in 2010) method is employed to rank the identified criteria, and the Weighted Aggregates Sum Product Assessment (WASPAS, proposed in 2012) is applied to evaluate and prioritize the alternatives (cities) where Yazd city ranked first. Eventually via considering the ranked cities, a comprehensive GIS

  10. A novel design of DC-AC electrical machine rotary converter for hybrid solar and wind energy applications

    International Nuclear Information System (INIS)

    Mohammed, K G; Ramli, A Q; Amirulddin, U A U

    2013-01-01

    This paper proposes the design of a new bi-directional DC-AC rotary converter machine to convert a d.c. voltage to three-phase voltage and vice-versa using a two-stage energy conversion machine. The rotary converter consists of two main stages which are combined into single frame. These two stages are constructed from three main electromagnetic components. The first inner electromagnetic component represents the input stage that enables the DC power generated by solar energy from photo-voltaic cells to be transformed by the second and third components electro-magnetically to produce multi-phase voltages at the output stage. At the same time, extra kinetic energy from wind, which is sufficiently available, can be added to existing torque on the second electromagnetic component. Both of these input energies will add up to the final energy generated at the output terminals. Therefore, the machine will be able to convert solar and wind energies to the output terminals simultaneously. If the solar energy is low, the available wind energy will be able to provide energy to the output terminals and at the same time charges the batteries which are connected as backup system. At this moment, the machine behaves as wind turbine. The energy output from the machine benefits from two energy sources which are solar and wind. At night when the solar energy is not available and also the load is low, the wind energy is able to charge the batteries and at the same time provides output electrical power to the remaining the load. Therefore, the proposed system will have high usage of available renewable energy as compared to separated wind or solar systems. MATLAB codes are used to calculate the required dimensions, the magnetic and electrical circuits parameters to design of the new bi-directional rotary converter machine.

  11. Synthesis of a conjugated pyrrolopyridazinedione–benzodithiophene (PPD–BDT) copolymer and its application in organic and hybrid solar cells

    KAUST Repository

    Knall, Astrid-Caroline; Jones, Andrew O. F.; Kunert, Birgit; Resel, Roland; Reishofer, David; Zach, Peter W.; Kirkus, Mindaugas; McCulloch, Iain; Rath, Thomas

    2017-01-01

    -coupling polycondensation. The resulting PPD–BDT copolymer revealed an optical bandgap of 1.8 eV and good processability from chlorobenzene solutions. In an organic solar cell in combination with PC70BM, the polymer led to a power conversion efficiency of 4.5%. Moreover

  12. Passive and Hybrid Solar Energy Program

    Energy Technology Data Exchange (ETDEWEB)

    1980-11-01

    The background and scope of the program is presented in general terms. The Program Plan is summarized describing how individual projects are categorized into mission-oriented tasks according to market sector categories. The individual projects funded by DOE are presented as follows: residential buildings, commercial buildings, solar products, solar cities and towns, and agricultural buildings. A summary list of projects by institution (contractors) and indexed by market application area is included. (MHR)

  13. Characterization of Alternative Hybrid Solar Thermal Electric Systems

    International Nuclear Information System (INIS)

    Williams, T.A.

    1999-01-01

    Hybrid power towers offer a number of advantages over solar-only power tower systems for early commercial deployment of the technology. These advantages include enhanced modularity, reduced financial and technical risks, and lower energy costs. With the changes in the domestic and world markets for bulk power, hybrid power towers are likely to have the best opportunities for power projects. This paper discusses issues that are likely to be important to the deployment of hybrid power towers in the near future. A large number of alternative designs are possible, and it is likely that there is no single approach that can be considered best or optimal for all project opportunities. The preferred design will depend on the application, as well as the unique objectives and perspectives of the person evaluating the design

  14. Electrodeposition of zinc oxide/tetrasulfonated copper phthalocyanine hybrid thin film for dye-sensitized solar cell application

    Energy Technology Data Exchange (ETDEWEB)

    Luo Xinze [Key Laboratory of Polyoxometalates Science of Ministry of Education, College of Chemistry, Northeast Normal University, Changchun 130024 (China); College of Chemistry and Biological Science, Yili Normal University, Yining 835000, (China); Xu Lin, E-mail: linxu@nenu.edu.cn [Key Laboratory of Polyoxometalates Science of Ministry of Education, College of Chemistry, Northeast Normal University, Changchun 130024 (China); Xu Bingbing; Li Fengyan [Key Laboratory of Polyoxometalates Science of Ministry of Education, College of Chemistry, Northeast Normal University, Changchun 130024 (China)

    2011-05-15

    Hybrid film of zinc oxide (ZnO) and tetrasulfonated copper phthalocyanine (TSPcCu) was grown on an indium tin oxide (ITO) glass by one-step cathodic electrodeposition from aqueous mixtures of Zn(NO{sub 3}){sub 2}, TSPcCu and KCl. The addition of TSPcCu strongly influences the morphology and crystallographic orientation of the ZnO. The nanosheets stack of ZnO leads to a porous surface structure which is advantageous to further adsorb organic dyes. The photovoltaic properties were investigated by assembling the DSSC device based on both the only ZnO film and the ZnO/TSPcCu hybrid films. Photoelectrochemical analysis revealed that the optimized DSSC device with TSPcCu represented a more than three-fold improvement in power conversion efficiency than the device without TSPcCu. The DSSC based on ZnO/TSPcCu hybrid films demonstrates an open circuit voltage of 0.308 V, a short circuit current of 90 {mu}A cm{sup -2}, a fill factor of 0.26, and a power conversion efficiency of 0.14%.

  15. Electrodeposition of zinc oxide/tetrasulfonated copper phthalocyanine hybrid thin film for dye-sensitized solar cell application

    International Nuclear Information System (INIS)

    Luo Xinze; Xu Lin; Xu Bingbing; Li Fengyan

    2011-01-01

    Hybrid film of zinc oxide (ZnO) and tetrasulfonated copper phthalocyanine (TSPcCu) was grown on an indium tin oxide (ITO) glass by one-step cathodic electrodeposition from aqueous mixtures of Zn(NO 3 ) 2 , TSPcCu and KCl. The addition of TSPcCu strongly influences the morphology and crystallographic orientation of the ZnO. The nanosheets stack of ZnO leads to a porous surface structure which is advantageous to further adsorb organic dyes. The photovoltaic properties were investigated by assembling the DSSC device based on both the only ZnO film and the ZnO/TSPcCu hybrid films. Photoelectrochemical analysis revealed that the optimized DSSC device with TSPcCu represented a more than three-fold improvement in power conversion efficiency than the device without TSPcCu. The DSSC based on ZnO/TSPcCu hybrid films demonstrates an open circuit voltage of 0.308 V, a short circuit current of 90 μA cm -2 , a fill factor of 0.26, and a power conversion efficiency of 0.14%.

  16. Hybrid Solar Cells: Materials, Interfaces, and Devices

    Science.gov (United States)

    Mariani, Giacomo; Wang, Yue; Kaner, Richard B.; Huffaker, Diana L.

    Photovoltaic technologies could play a pivotal role in tackling future fossil fuel energy shortages, while significantly reducing our carbon dioxide footprint. Crystalline silicon is pervasively used in single junction solar cells, taking up 80 % of the photovoltaic market. Semiconductor-based inorganic solar cells deliver relatively high conversion efficiencies at the price of high material and manufacturing costs. A great amount of research has been conducted to develop low-cost photovoltaic solutions by incorporating organic materials. Organic semiconductors are conjugated hydrocarbon-based materials that are advantageous because of their low material and processing costs and a nearly unlimited supply. Their mechanical flexibility and tunable electronic properties are among other attractions that their inorganic counterparts lack. Recently, collaborations in nanotechnology research have combined inorganic with organic semiconductors in a "hybrid" effort to provide high conversion efficiencies at low cost. Successful integration of these two classes of materials requires a profound understanding of the material properties and an exquisite control of the morphology, surface properties, ligands, and passivation techniques to ensure an optimal charge carrier generation across the hybrid device. In this chapter, we provide background information of this novel, emerging field, detailing the various approaches for obtaining inorganic nanostructures and organic polymers, introducing a multitude of methods for combining the two components to achieve the desired morphologies, and emphasizing the importance of surface manipulation. We highlight several studies that have fueled new directions for hybrid solar cell research, including approaches for maximizing efficiencies by controlling the morphologies of the inorganic component, and in situ molecular engineering via electrochemical polymerization of a polymer directly onto the inorganic nanowire surfaces. In the end, we

  17. Techno-economic analysis of a wind-solar hybrid renewable energy system with rainwater collection feature for urban high-rise application

    International Nuclear Information System (INIS)

    Chong, W.T.; Naghavi, M.S.; Poh, S.C.; Mahlia, T.M.I.; Pan, K.C.

    2011-01-01

    harvesting technologies. → The system overcomes the inferior aspect on the low wind speed by introducing the power-augmentation-guide-vane (PAGV). → The PAGV is used to guide and create venturi effect to increase the wind speed before the wind-stream enters wind turbine. → This design can be blended into the building architecture without negative visual impact, and is safer for populated area. → The PAGV improves the wind turbine's starting behavior and prolongs its operating hour, thus reduces the payback period. -- Abstract: The technical and economic feasibility study of an innovative wind-solar hybrid renewable energy generation system with rainwater collection feature for electrical energy generation is presented in this paper. The power generated would supply part of the energy requirements of the high-rise building where the system is installed. The system integrates and optimizes several green technologies; including urban wind turbine, solar cell module and rain water collector. The design was conceptualized based on the experiences acquired during the development and testing of a suitable wind turbine for Malaysian applications. It is compact and can be built on top of high-rise buildings in order to provide on-site renewable power to the building. It overcomes the inferior aspect on the low wind speed by channeling and increasing the speed of the high altitude free-stream wind through the power-augmentation-guide-vane (PAGV) before it enters the wind turbine at the center portion. The shape or appearance of the PAGV that surrounds the wind turbine can be blended into the building architecture without negative visual impact (becomes part of the building). The design improves the starting behavior of wind turbines. It is also safer to people around and reduces noise pollution. The techno-economic analysis is carried out by applying the life cycle cost (LCC) method. The LCC method takes into consideration the complete range of costs and makes cash flows time

  18. Hybrid power system (hydro, solar and wind) for rural electricity generation

    International Nuclear Information System (INIS)

    Mahinda Kurukulasuriya

    2000-01-01

    Generation of affordable cheap electric energy for rural development by a hybrid power system (10-50 kW) of hydropower, solar and wind energies on self determining basis and computer application to determine its performance. In this paper the following topics were discussed, design of hybrid power system, its justification and economic analysis, manufacturing and installation of the system. (Author)

  19. A hybrid system for solar irradiance specification

    Science.gov (United States)

    Tobiska, W.; Bouwer, S.

    2006-12-01

    Space environment research and space weather operations require solar irradiances in a variety of time scales and spectral formats. We describe the development of solar irradiance characterization using four models and systems that are also used for space weather operations. The four models/systems include SOLAR2000 (S2K), SOLARFLARE (SFLR), APEX, and IDAR, which are used by Space Environment Technologies (SET) to provide solar irradiances from the soft X-rays through the visible spectrum. SFLR uses the GOES 0.1 0.8 nm X-rays in combination with a Mewe model subroutine to provide 0.1 30.0 nm irradiances at 0.1 nm spectral resolution, at 1 minute time resolution, and in a 6-hour XUV EUV spectral solar flare evolution forecast with a 7 minute latency and a 2 minute cadence. These irradiances have been calibrated with the SORCE XPS observations and we report on the inclusion of these irradiances into the S2K model. The APEX system is a real-time data retrieval system developed in conjunction with the University of Southern California Space Sciences Center (SSC) to provide SOHO SEM data processing and distribution. SSC provides the updated SEM data to the research community and SET provides the operational data to the space operations community. We describe how the SOHO SEM data, and especially the new S10.7 index, is being integrated directly into the S2K model for space weather operations. The IDAR system has been developed by SET to extract coronal hole boundaries, streamers, coronal loops, active regions, plage, network, and background (internetwork) features from solar images for comparison with solar magnetic features. S2K, SFLR, APEX, and IDAR outputs are integrated through the S2K solar irradiance platform that has become a hybrid system, i.e., a system that is able to produce irradiances using different processes, including empirical and physics-based models combined with real-time data integration.

  20. Growth of ZnSe nano-needles by pulsed laser deposition and their application in polymer/inorganic hybrid solar cells

    International Nuclear Information System (INIS)

    Chen, L.; Lai, J.S.; Fu, X.N.; Sun, J.; Ying, Z.F.; Wu, J.D.; Lu, H.; Xu, N.

    2013-01-01

    Using pulsed-laser deposition method, crystalline ZnSe nano-needles have been grown on catalyst-coated silicon (100) substrates. The crystalline ZnSe nano-needles with the middle diameters of about 20–80 nm, and the lengths ranging from 100 to 600 nm can be grown densely on 300–400 °C substrates. The as-grown ZnSe nano-needles were well crystalline and base-grown. They are potential electron-capturing materials in polymer/inorganic hybrid solar cells for their properties of good electron-conductance and high ratio surface area. Based on the ZnSe nano-needle cathode, a five-layer composite structure of polymer/inorganic hybrid solar cell has been designed and fabricated. The absorption spectra of the blend of regioregular poly(3-hexylthiophene-2,5-diyl) and phenyl-C61-butyric acid methyl ester (P3HT:PCBM), ZnSe nano-needles and the combination of P3HT:PCBM and ZnSe nano-needles were examined by ultraviolet–visible-infrared spectrophotometer, respectively. The absorption bands of the combination of P3HT:PCBM and ZnSe nano-needles fit well with the solar spectral distribution. - Highlights: ► Crystalline ZnSe nano-needles grown by pulsed laser deposition. ► A five-layer polymer/inorganic hybrid solar cell based on ZnSe nano-needles cathode. ► ZnSe nano-needles improve light absorption. ► Employment of ZnSe nano-needles increase the open-circuit voltage and fill factor

  1. Stillwater Hybrid Geo-Solar Power Plant Optimization Analyses

    Energy Technology Data Exchange (ETDEWEB)

    Wendt, Daniel S.; Mines, Gregory L.; Turchi, Craig S.; Zhu, Guangdong; Cohan, Sander; Angelini, Lorenzo; Bizzarri, Fabrizio; Consoli, Daniele; De Marzo, Alessio

    2015-09-02

    The Stillwater Power Plant is the first hybrid plant in the world able to bring together a medium-enthalpy geothermal unit with solar thermal and solar photovoltaic systems. Solar field and power plant models have been developed to predict the performance of the Stillwater geothermal / solar-thermal hybrid power plant. The models have been validated using operational data from the Stillwater plant. A preliminary effort to optimize performance of the Stillwater hybrid plant using optical characterization of the solar field has been completed. The Stillwater solar field optical characterization involved measurement of mirror reflectance, mirror slope error, and receiver position error. The measurements indicate that the solar field may generate 9% less energy than the design value if an appropriate tracking offset is not employed. A perfect tracking offset algorithm may be able to boost the solar field performance by about 15%. The validated Stillwater hybrid plant models were used to evaluate hybrid plant operating strategies including turbine IGV position optimization, ACC fan speed and turbine IGV position optimization, turbine inlet entropy control using optimization of multiple process variables, and mixed working fluid substitution. The hybrid plant models predict that each of these operating strategies could increase net power generation relative to the baseline Stillwater hybrid plant operations.

  2. Practical investigation for road lighting using renewable energy sources "Sizing and modelling of solar/wind hybrid system for road lighting application"

    Directory of Open Access Journals (Sweden)

    Maged A. Abu Adma

    2017-12-01

    Full Text Available This study explains a design of a fully independent -off grid- hybrid solar and wind road lighting system according to geography and weather conditions recorded from the Egyptian National Research Institute of Astronomy and Geophysics.Presenting here the virtual simulation by using Matlab/Simulink & real-time implementation of road lighting system consists of 150 W photovoltaic cell, 420 W wind generator, 100 Ah acid gel battery and LED lighting luminar 30 W -12 VDC . Over three different stages; 1.Operating the system with PV only as power source, 2. Switching to Wind generator only configuration and 3.  Running the hybrid design with both PV & Wind power sources ; load characteristics and output real-time data will be recorded, evaluated ,compared  and validated against the virtual simulation generated by Matlab/Simulink model.The results of this research will be used to investigate the advantages of using a hybrid system to counteract the limitations of solar and wind as solo renewable energy sources due to adverse weather conditions ,the efficiency of the proposed system as an alternative for the current conventional road lighting poles as well as the accuracy of the virtual model data in order to be used for future adaptation of the model for different geographical locations.

  3. Hybrid Perovskite/Perovskite Heterojunction Solar Cells.

    Science.gov (United States)

    Hu, Yinghong; Schlipf, Johannes; Wussler, Michael; Petrus, Michiel L; Jaegermann, Wolfram; Bein, Thomas; Müller-Buschbaum, Peter; Docampo, Pablo

    2016-06-28

    Recently developed organic-inorganic hybrid perovskite solar cells combine low-cost fabrication and high power conversion efficiency. Advances in perovskite film optimization have led to an outstanding power conversion efficiency of more than 20%. Looking forward, shifting the focus toward new device architectures holds great potential to induce the next leap in device performance. Here, we demonstrate a perovskite/perovskite heterojunction solar cell. We developed a facile solution-based cation infiltration process to deposit layered perovskite (LPK) structures onto methylammonium lead iodide (MAPI) films. Grazing-incidence wide-angle X-ray scattering experiments were performed to gain insights into the crystallite orientation and the formation process of the perovskite bilayer. Our results show that the self-assembly of the LPK layer on top of an intact MAPI layer is accompanied by a reorganization of the perovskite interface. This leads to an enhancement of the open-circuit voltage and power conversion efficiency due to reduced recombination losses, as well as improved moisture stability in the resulting photovoltaic devices.

  4. HYBRID INDIRECT SOLAR COOKER WITH LATENT HEAT STORAGE

    OpenAIRE

    Benazeer Hassan K. Ibrahim *, Victor Jose

    2016-01-01

    Solar cooking is the simplest, safest, most convenient way to cook food without consuming fuels or heating up the kitchen. All the conventional solar cooker designs have the disadvantage of inability to cook during off-shine and night hours.This disadvantage can be eliminated if the solar cooker is designed with thermal storage arrangement. In this paper, a hybrid solar cooker with evacuated tube collector and latent thermal storage unit and alternate electric heatingsource is simulated. The...

  5. Hybrid solar and hydro-power for Austria

    Energy Technology Data Exchange (ETDEWEB)

    Weyss, N

    1978-02-01

    It is proposed that integrating solar powerplants into the Austrian electricity networks could cost less than conventional thermal plants, and provide a high degree of independence to the country. The following aspects are discussed; the seasonal distribution of sunshine, solar power plants, land requirements, economic feasibility, solar/fossil hybrid operation, integration strategy, Malta-B as a calculating unit, solar-hydraulic baseload throughout the year, concrete requirements, solar-hydraulic possibilities within the next 50 years, cement for solar plants, and energy accounting. (MHR)

  6. Energy Efficient Hybrid Dual Axis Solar Tracking System

    Directory of Open Access Journals (Sweden)

    Rashid Ahammed Ferdaus

    2014-01-01

    Full Text Available This paper describes the design and implementation of an energy efficient solar tracking system from a normal mechanical single axis to a hybrid dual axis. For optimizing the solar tracking mechanism electromechanical systems were evolved through implementation of different evolutional algorithms and methodologies. To present the tracker, a hybrid dual-axis solar tracking system is designed, built, and tested based on both the solar map and light sensor based continuous tracking mechanism. These light sensors also compare the darkness and cloudy and sunny conditions assisting daily tracking. The designed tracker can track sun’s apparent position at different months and seasons; thereby the electrical controlling device requires a real time clock device for guiding the tracking system in seeking solar position for the seasonal motion. So the combination of both of these tracking mechanisms made the designed tracker a hybrid one. The power gain and system power consumption are compared with a static and continuous dual axis solar tracking system. It is found that power gain of hybrid dual axis solar tracking system is almost equal to continuous dual axis solar tracking system, whereas the power saved in system operation by the hybrid tracker is 44.44% compared to the continuous tracking system.

  7. Performance evaluation of hybrid modified micro-channel solar cell ...

    African Journals Online (AJOL)

    user

    International Journal of Engineering, Science and Technology ... of hybrid PVT solar air heater had been proposed in the past. ...... president of Bag Energy Research Society (BERS:www.bers.in) which is responsible for energy education in ...

  8. Perovskite Materials: Solar Cell and Optoelectronic Applications

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Bin [ORNL; Geohegan, David B [ORNL; Xiao, Kai [ORNL

    2017-01-01

    Hybrid organometallic trihalide perovskites are promising candidates in the applications for next-generation, high-performance, low-cost optoelectronic devices, including photovoltaics, light emitting diodes, and photodetectors. Particularly, the solar cells based on this type of materials have reached 22% lab scale power conversion efficiency in only about seven years, comparable to the other thin film photovoltaic technologies. Hybrid perovskite materials not only exhibit superior optoelectronic properties, but also show many interesting physical properties such as ion migration and defect physics, which may allow the exploration of more device functionalities. In this article, the fundamental understanding of the interrelationships between crystal structure, electronic structure, and material properties is discussed. Various chemical synthesis and processing methods for superior device performance in solar cells and optoelectronic devices are reviewed.

  9. Methodological comparison on hybrid nano organic solar cell fabrication

    Science.gov (United States)

    Vairavan, Rajendaran; Hambali, Nor Azura Malini Ahmad; Wahid, Mohamad Halim Abd; Retnasamy, Vithyacharan; Shahimin, Mukhzeer Mohamad

    2018-02-01

    The development of low cost solar cells has been the main focus in recent years. This has lead to the generation of photovoltaic cells based on hybrid of nanoparticle-organic polymer materials. This type of hybrid photovoltaic cells can overcome the problem of polymeric devices having low optical absorption and carrier mobilities. The hybrid cell has the potential of bridging the efficiency gap, which in present in organic and inorganic semiconductor materials. This project focuses on obtaining an hybrid active layer consisting of nanoparticles and organic polymer, to understand the parameter involved in obtaining this active layer and finally to investigate if the addition of nano particles in to the active layer could enhance the output of the hybrid solar cell. The hybrid active layer have will be deposited using the spin coating technique by using CdTe, CdS nano particles mixed with poly (2-methoxy,5-(2-ethyl-hexyloxy)-p-phenylvinylene)MEH-PPV.

  10. Hybrid Magnetics and Power Applications

    DEFF Research Database (Denmark)

    Mo, Wai Keung; Paasch, Kasper

    2017-01-01

    A hybrid magnetic approach, merging two different magnetic core properites such as ferrite and iron powder cores, is an effective solution for power converter applications. It can offer similar magnetic properties to that of magnetic powder cores but showing less copper loss than powder cores....... In order to prevent ferrite core saturation, placing an effective air gap within the ferrite core is a key method to obtain optimum hybrid magnetic performance. Furthermore, a relatively large inductance at low loading current is an excellent way to minimze power loss in order to achieve high efficiency...

  11. ANALYSING SOLAR-WIND HYBRID POWER GENERATING SYSTEM

    Directory of Open Access Journals (Sweden)

    Mustafa ENGİN

    2005-02-01

    Full Text Available In this paper, a solar-wind hybrid power generating, system that will be used for security lighting was designed. Hybrid system was installed and solar cells, wind turbine, battery bank, charge regulators and inverter performance values were measured through the whole year. Using measured values of overall system efficiency, reliability, demanded energy cost per kWh were calculated, and percentage of generated energy according to resources were defined. We also include in the paper a discussion of new strategies to improve hybrid power generating system performance and demanded energy cost per kWh.

  12. Hybrid Model of Inhomogeneous Solar Wind Plasma Heating by Alfven Wave Spectrum: Parametric Studies

    Science.gov (United States)

    Ofman, L.

    2010-01-01

    Observations of the solar wind plasma at 0.3 AU and beyond show that a turbulent spectrum of magnetic fluctuations is present. Remote sensing observations of the corona indicate that heavy ions are hotter than protons and their temperature is anisotropic (T(sub perpindicular / T(sub parallel) >> 1). We study the heating and the acceleration of multi-ion plasma in the solar wind by a turbulent spectrum of Alfvenic fluctuations using a 2-D hybrid numerical model. In the hybrid model the protons and heavy ions are treated kinetically as particles, while the electrons are included as neutralizing background fluid. This is the first two-dimensional hybrid parametric study of the solar wind plasma that includes an input turbulent wave spectrum guided by observation with inhomogeneous background density. We also investigate the effects of He++ ion beams in the inhomogeneous background plasma density on the heating of the solar wind plasma. The 2-D hybrid model treats parallel and oblique waves, together with cross-field inhomogeneity, self-consistently. We investigate the parametric dependence of the perpendicular heating, and the temperature anisotropy in the H+-He++ solar wind plasma. It was found that the scaling of the magnetic fluctuations power spectrum steepens in the higher-density regions, and the heating is channeled to these regions from the surrounding lower-density plasma due to wave refraction. The model parameters are applicable to the expected solar wind conditions at about 10 solar radii.

  13. Solar energy: Technology and applications

    Science.gov (United States)

    Williams, J. R.

    1974-01-01

    It is pointed out that in 1970 the total energy consumed in the U.S. was equal to the energy of sunlight received by only 0.15% of the land area of the continental U.S. The utilization of solar energy might, therefore, provide an approach for solving the energy crisis produced by the consumption of irreplaceable fossil fuels at a steadily increasing rate. Questions regarding the availability of solar energy are discussed along with the design of solar energy collectors and various approaches for heating houses and buildings by utilizing solar radiation. Other subjects considered are related to the heating of water partly or entirely with solar energy, the design of air conditioning systems based on the use of solar energy, electric power generation by a solar thermal and a photovoltaic approach, solar total energy systems, industrial and agricultural applications of solar energy, solar stills, the utilization of ocean thermal power, power systems based on the use of wind, and solar-energy power systems making use of geosynchronous power plants.

  14. Solar hydrogen hybrid system with carbon storage

    International Nuclear Information System (INIS)

    Zini, G.; Marazzi, R.; Pedrazzi, S.; Tartarini, P.

    2009-01-01

    A complete solar hydrogen hybrid system has been developed to convert, store and use energy from renewable energy sources. The theoretical model has been implemented in a dynamic model-based software environment and applied to real data to simulate its functioning over a one-year period. Results are used to study system design and performance. A photovoltaic sub-system directly drives a residential load and, if a surplus of energy is available, an electrolyzer to produce hydrogen which is stored in a cluster of nitrogen-cooled tanks filled with AX-21 activated carbons. When the power converted from the sun is not sufficient to cover load needs, hydrogen is desorbed from activated carbon tanks and sent to the fuel-cell sub-system so to obtain electrical energy. A set of sub-systems (bus-bar, buck- and boost-converters, inverter, control circuits), handle the electrical power according to a Programmable Logic Control unit so that the load can be driven with adequate Quality of Service. Hydrogen storage is achieved through physisorption (weak van der Waals interactions) between carbon atoms and hydrogen molecules occurring at low temperature (77 K) in carbon porous solids at relatively low pressures. Storage modeling has been developed using a Langmuir-Freundlich 1st type isotherm and experimental data available in literature. Physisorption storage provides safer operations along with good gravimetric (10.8% at 6 MPa) and volumetric (32.5 g/l at 6 MPa) storage capacities at costs that can be comparable to, or smaller than, ordinary storage techniques (compression or liquefaction). Several test runs have been performed on residential user data-sets: the system is capable of providing grid independence and can be designed to yield a surplus production of hydrogen which can be used to recharge electric car batteries or fill tanks for non-stationary uses. (author)

  15. Passive and hybrid solar technologies program summary

    Science.gov (United States)

    1985-05-01

    The goal of the national energy policy is to foster an adequate supply of energy at reasonable prices. This policy recognizes that adequate supply requires flexibility, with no undue reliance on any single source of supply. The goal of reasonable prices suggests economic efficiency so that consumers, individuals, commercial and industrial users alike, are not penalized by government regulation or subside. The strategies for achieving this energy policy goal are: (1) to minimize federal regulation in energy pricing while maintaining public health and safety and environmental quality, and (2) to promote a balanced and mixed energy resource system through research and development. One of the keys to energy sufficiently is the scientific application of passive solar energy techniques.

  16. A load predictive energy management system for supercapacitor-battery hybrid energy storage system in solar application using the Support Vector Machine

    International Nuclear Information System (INIS)

    Chia, Yen Yee; Lee, Lam Hong; Shafiabady, Niusha; Isa, Dino

    2015-01-01

    Highlights: • A novel energy management system (EMS) for supercapacitor-battery hybrid energy storage system is implemented. • It is a load predictive EMS which is implemented using Support Vector Machine (SVM). • An optimum SVM load prediction model is obtained, which yields 100% accuracy in 0.004866 s of training time. • The implemented load predictive EMS is compared with the conventional sequential programming control. • This methodology reduces the number of power electronics used and prolong battery lifespan. - Abstract: This paper presents the use of a Support Vector Machine load predictive energy management system to control the energy flow between a solar energy source, a supercapacitor-battery hybrid energy storage combination and the load. The supercapacitor-battery hybrid energy storage system is deployed in a solar energy system to improve the reliability of delivered power. The combination of batteries and supercapacitors makes use of complementary characteristic that allow the overlapping of a battery’s high energy density with a supercapacitors’ high power density. This hybrid system produces a straightforward benefit over either individual system, by taking advantage of each characteristic. When the supercapacitor caters for the instantaneous peak power which prolongs the battery lifespan, it also minimizes the system cost and ensures a greener system by reducing the number of batteries. The resulting performance is highly dependent on the energy controls implemented in the system to exploit the strengths of the energy storage devices and minimize its weaknesses. It is crucial to use energy from the supercapacitor and therefore minimize jeopardizing the power system reliability especially when there is a sudden peak power demand. This study has been divided into two stages. The first stage is to obtain the optimum SVM load prediction model, and the second stage carries out the performance comparison of the proposed SVM-load predictive

  17. A Solar Sailcraft Simulation Application

    Science.gov (United States)

    Celeda, Tomáš

    2013-01-01

    An application was created to encourage students' practical knowledge of gravitational fields, the law of conservation of energy and other phenomena, such as gravitational slingshots. The educational software simulates the flight of a solar sail spacecraft between two planets of the Solar System using the laws of gravity and radiation…

  18. Solar-Biomass hybrid system for process heat supply in medium scale hotels in Sri Lanka

    OpenAIRE

    Abeywardana, Asela M.A.J.

    2016-01-01

    This study aimed at evaluating and demonstrating the feasibility of using Concentrated Solar Thermal technology combined with biomass energy technology as a hybrid renewable energy system to supply the process heat requirements in small scale industries in Sri Lanka. Particularly, the focus was to apply the concept to the expanding hotel industry, for covering the thermal energy demand of a medium scale hotel. Solar modules utilize the rooftop area of the building to a valuable application. L...

  19. Nonimaging optics maximizing exergy for hybrid solar system

    Science.gov (United States)

    Winston, Roland; Jiang, Lun; Abdelhamid, Mahmoud; Widyolar, Bennett K.; Ferry, Jonathan; Cygan, David; Abbasi, Hamid; Kozlov, Alexandr; Kirk, Alexander; Elarde, Victor; Osowski, Mark

    2016-09-01

    The project team of University of California at Merced (UC-Merced), Gas Technology Institute (GTI) and MicroLink Devices Inc. (MicroLink) are developing a hybrid solar system using a nonimaging compound parabolic concentrator (CPC) that maximizes the exergy by delivering direct electricity and on-demand heat. The hybrid solar system technology uses secondary optics in a solar receiver to achieve high efficiency at high temperature, collects heat in particles and uses reflective liftoff cooled double junction (2J) InGaP/GaAs solar cells with backside infrared (IR) reflectors on the secondary optical element to raise exergy efficiency. The nonimaging optics provides additional concentration towards the high temperature thermal stream and enables it to operate efficiently at 650 °C while the solar cell is maintained at 40 °C to operate as efficiently as possible.

  20. Modelling the solar wind interaction with Mercury by a quasi-neutral hybrid model

    Directory of Open Access Journals (Sweden)

    E. Kallio

    2003-11-01

    Full Text Available Quasi-neutral hybrid model is a self-consistent modelling approach that includes positively charged particles and an electron fluid. The approach has received an increasing interest in space plasma physics research because it makes it possible to study several plasma physical processes that are difficult or impossible to model by self-consistent fluid models, such as the effects associated with the ions’ finite gyroradius, the velocity difference between different ion species, or the non-Maxwellian velocity distribution function. By now quasi-neutral hybrid models have been used to study the solar wind interaction with the non-magnetised Solar System bodies of Mars, Venus, Titan and comets. Localized, two-dimensional hybrid model runs have also been made to study terrestrial dayside magnetosheath. However, the Hermean plasma environment has not yet been analysed by a global quasi-neutral hybrid model. In this paper we present a new quasi-neutral hybrid model developed to study various processes associated with the Mercury-solar wind interaction. Emphasis is placed on addressing advantages and disadvantages of the approach to study different plasma physical processes near the planet. The basic assumptions of the approach and the algorithms used in the new model are thoroughly presented. Finally, some of the first three-dimensional hybrid model runs made for Mercury are presented. The resulting macroscopic plasma parameters and the morphology of the magnetic field demonstrate the applicability of the new approach to study the Mercury-solar wind interaction globally. In addition, the real advantage of the kinetic hybrid model approach is to study the property of individual ions, and the study clearly demonstrates the large potential of the approach to address these more detailed issues by a quasi-neutral hybrid model in the future.Key words. Magnetospheric physics (planetary magnetospheres; solar wind-magnetosphere interactions – Space plasma

  1. Development of thin-film Si HYBRID solar module

    Energy Technology Data Exchange (ETDEWEB)

    Nakajima, Akihiko; Gotoh, Masahiro; Sawada, Toru; Fukuda, Susumu; Yoshimi, Masashi; Yamamoto, Kenji; Nomura, Takuji [Kaneka Corporation, 2-1-1, Hieitsuji, Otsu, Shiga 520-0104 (Japan)

    2009-06-15

    The device current-voltage (I-V) characteristics of thin-film silicon stacked tandem solar modules (HYBRID modules), consisting of a hydrogenated amorphous silicon (a-Si:H) cell and a thin-film crystalline silicon solar cell ({mu}c-Si), have been investigated under various spectral irradiance distributions. The performance of the HYBRID module varied periodically in natural sunlight due to the current-limiting property of the HYBRID module and the environmental effects. The behavior based on the current-limiting property was demonstrated by the modelling of the I-V curves using the linear interpolation method for each component cell. The improvement of the performance for the HYBRID module in natural sunlight will also be discussed from the viewpoint of the device design of the component cells. (author)

  2. A hybrid solar chemical looping combustion system with a high solar share

    International Nuclear Information System (INIS)

    Jafarian, Mehdi; Arjomandi, Maziar; Nathan, Graham J.

    2014-01-01

    Highlights: • A novel hybrid solar chemical looping combustion system is presented. • This hybrid CLC system integrates a CLC plant with a solar thermal energy plant. • The oxygen carrier particles are used for chemical and sensible thermal energy storage. • A solar cavity reactor is proposed for fuel reactor. • The calculations show a total solar share of around 60% can be achieved. - Abstract: A novel hybrid solar chemical looping combustion (Hy-Sol-CLC) is presented, in which the oxygen carrier particles in a CLC system are employed to provide thermal energy storage for concentrated solar thermal energy. This hybrid aims to take advantage of key features of a chemical looping combustion (CLC) system that are desirable for solar energy systems, notably their inherent chemical and sensible energy storage systems, the relatively low temperature of the “fuel” reactor (to which the concentrated solar thermal energy is added in a hybrid) relative to that of the final temperature of the product gas and the potential to operate the fuel reactor at a different pressure to the heated gas stream. By this approach, it is aimed to achieve high efficiency of the solar energy, infrastructure sharing, economic synergy, base load power generation and a high solar fraction of the total energy. In the proposed Hy-Sol-CLC system, a cavity solar receiver has been chosen for fuel reactor while for the storage of the oxygen carrier particles two reservoirs have been added to a conventional CLC. A heat exchanger is also proposed to provide independent control of the temperatures of the storage reservoirs from those of solar fuel and air reactors. The system is simulated using Aspen Plus software for the average diurnal profile of normal irradiance for Port Augusta, South Australia. The operating temperature of the fuel reactor, solar absorption efficiency, solar share, fraction of the solar thermal energy stored within the solar reactor, the fractions of sensible and

  3. Hybrid density functional theory study of Cu(In1−xGaxSe2 band structure for solar cell application

    Directory of Open Access Journals (Sweden)

    Xu-Dong Chen

    2014-08-01

    Full Text Available Cu(In1−xGaxSe2 (CIGS alloy based thin film photovoltaic solar cells have attracted more and more attention due to its large optical absorption coefficient, long term stability, low cost and high efficiency. However, the previous theoretical investigation of this material with first principle calculation cannot fulfill the requirement of experimental development, especially the accurate description of band structure and density of states. In this work, we use first principle calculation based on hybrid density functional theory to investigate the feature of CIGS, with B3LYP applied in the CuIn1−xGaxSe2 stimulation of the band structure and density of states. We report the simulation of the lattice parameter, band gap and chemical composition. The band gaps of CuGaSe2, CuIn0.25Ga0.75Se2, CuIn0.5Ga0.5Se2, CuIn0.75Ga0.25Se2 and CuInSe2 are obtained as 1.568 eV, 1.445 eV, 1.416 eV, 1.275 eV and 1.205 eV according to our calculation, which agree well with the available experimental values. The band structure of CIGS is also in accordance with the current theory.

  4. Analysis of hybrid energy systems for application in southern Ghana

    International Nuclear Information System (INIS)

    Adaramola, Muyiwa S.; Agelin-Chaab, Martin; Paul, Samuel S.

    2014-01-01

    Highlights: • The option of using hybrid energy for electricity in remote areas of Ghana is examined. • The cost of electricity produced by the hybrid system is found to be $0.281/kW h. • The levelized cost of electricity increase by 9% when the PV price is increased from $3000/kW to $7500/kW. - Abstract: Due to advances in renewable energy technologies and increase in oil price, hybrid renewable energy systems are becoming increasingly attractive for power generation applications in remote areas. This paper presents an economic analysis of the feasibility of utilizing a hybrid energy system consisting of solar, wind and diesel generators for application in remote areas of southern Ghana using levelized cost of electricity (LCOE) and net present cost of the system. The annual daily average solar global radiation at the selected site is 5.4 kW h/m 2 /day and the annual mean wind speed is 5.11 m/s. The National Renewable Energy Laboratory’s Hybrid Optimization Model for Electric Renewable (HOMER) software was employed to carry out the present study. Both wind data and the actual load data have been used in the simulation model. It was found that a PV array of 80 kW, a 100 kW wind turbine, two generators with combined capacity of 100 kW, a 60 kW converter/inverter and a 60 Surrette 4KS25P battery produced a mix of 791.1 MW h of electricity annually. The cost of electricity for this hybrid system is found to be $0.281/kW h. Sensitivity analysis on the effect of changes in wind speed, solar global radiation and diesel price on the optimal energy was investigated and the impact of solar PV price on the LCOE for a selected hybrid energy system was also presented

  5. Harmonic analysis and suppression in hybrid wind & PV solar system

    Science.gov (United States)

    Gupta, Tripti; Namekar, Swapnil

    2018-04-01

    The growing demand of electricity has led to produce power through non-conventional source of energy such as solar energy, wind energy, hydro power, energy through biogas and biomass etc. Hybrid system is taken to complement the shortcoming of either sources of energy. The proposed system is grid connected hybrid wind and solar system. A 2.1 MW Doubly fed Induction Generator (DFIG) has been taken for analysis of wind farm whose rotor part is connected to two back-to-back converters. A 250 KW Photovoltaic (PV) array taken to analyze solar farm where inverter is required to convert power from DC to AC since electricity generated through solar PV is in the form of DC. Stability and reliability of the system is very important when the system is grid connected. Harmonics is the major Power quality issue which degrades the quality of power at load side. Harmonics in hybrid system arise through the use of power conversion unit. The other causes of harmonics are fluctuation in wind speed and solar irradiance. The power delivered to grid must be free from harmonics and within the limits specified by Indian grid codes. In proposed work, harmonic analysis of the hybrid system is performed in Electrical Transient Analysis program (ETAP) and single tuned harmonic filter is designed to maintain the utility grid harmonics within limits.

  6. The possibility of developing hybrid PV/T solar system

    Science.gov (United States)

    Dobrnjac, M.; Zivkovic, P.; Babic, V.

    2017-05-01

    An alternative and cost-effective solution to developing integrated PV system is to use hybrid photovoltaic/thermal (PV/T) solar system. The temperature of PV modules increases due to the absorbed solar radiation that is not converted into electricity, causing a decrease in their efficiency. In hybrid PV/T solar systems the reduction of PV module temperature can be combined with a useful fluid heating. In this paper we present the possibility of developing a new hybrid PV/T solar system. Hybrid PV/T system can provide electrical and thermal energy, thus achieving a higher energy conversion rate of the absorbed solar radiation. We developed PV/T prototype consisted of commercial PV module and thermal panel with our original solution of aluminium absorber with special geometric shapes. The main advantages of our combined PV/T system are: removing of heat from the PV panel; extending the lifetime of photovoltaic cells; excess of the removing heat from PV part is used to heat the fluid in the thermal part of the panel; the possibility of using on the roof and facade constructions because less weight.

  7. Hybrid solar central receiver for combined cycle power plant

    Science.gov (United States)

    Bharathan, Desikan; Bohn, Mark S.; Williams, Thomas A.

    1995-01-01

    A hybrid combined cycle power plant including a solar central receiver for receiving solar radiation and converting it to thermal energy. The power plant includes a molten salt heat transfer medium for transferring the thermal energy to an air heater. The air heater uses the thermal energy to preheat the air from the compressor of the gas cycle. The exhaust gases from the gas cycle are directed to a steam turbine for additional energy production.

  8. Thermodynamic evaluation of solar-geothermal hybrid power plants in northern Chile

    International Nuclear Information System (INIS)

    Cardemil, José Miguel; Cortés, Felipe; Díaz, Andrés; Escobar, Rodrigo

    2016-01-01

    Highlights: • Thermodynamic evaluation of geothermal-solar hybrid systems. • A multi-parameter analysis for different cycle configurations. • Performance comparison between two operation modes. • Overview of the technical applicability of the hybridization. - Abstract: A thermodynamic model was developed using Engineering Equation Solver (EES) to evaluate the performance of single and double-flash geothermal power plants assisted by a parabolic trough solar concentrating collector field, considering four different geothermal reservoir conditions. The benefits of delivering solar thermal energy for either the superheating or evaporating processes were analyzed in order to achieve the maximum 2"n"d law efficiency for the hybrid schemes and reduce the geothermal resource consumption for a constant power production. The results of the hybrid single-flash demonstrate that the superheating process generates additional 0.23 kWe/kWth, while supplying solar heat to evaporate the geothermal brine only delivers 0.16 kWe/kWth. The double-flash hybrid plant simulation results allow obtaining 0.29 kWe/kWth and 0.17 kW/kWth by integrating solar energy at the superheater and evaporator, respectively. In this context, the hybrid single-flash power plant is able to produce at least 20% additional power output, depending on the characteristics of the geothermal resource. Moreover, all of the cases analyzed herein increased the exergy efficiency of the process by at least 3%. The developed model also allowed assessing the reduction on the consumption of the geothermal fluid from the reservoir when the plant power output stays constant, up to 16% for the hybrid single-flash, and 19% for the hybrid double-flash. Based on the results obtained in this study, the solar-geothermal hybrid scheme increases the power generation compared with geothermal-only power plants, being an attractive solution for improved management of the geothermal reservoir depletion rates. The study shows

  9. Technical and economic assessment of solar hybrid repowering. Final report

    Energy Technology Data Exchange (ETDEWEB)

    None

    1978-09-01

    Public Service Company of New Mexico (PNM) has performed a Technical and Economic Assessment of Solar Hybrid Repowering under funding by the Department of Energy (DOE), the Electric Power Research Institute (EPRI), Western Energy Supply and Transmission (WEST) Associates, and a number of southwestern utilities. Solar hybrid repowering involves placement of solar hardware adjacent to and connected to existing gas- and oil-fueled electric generation units to displace some of or all the fossil fuel normally used during daylight hours. The subject study assesses the technical economic viability of the solar hybrid repowering concept within the southwestern United States and the PNM system. This document is a final report on the study and its results. The study was divided into the six primary tasks to allow a systematic investigation of the concept: (1) market survey and cost/benefit analysis, (2) study unit selection, (3) conceptual design and cost estimates, (4) unit economic analysis, (5) program planning, future phases, and (6) program management. Reeves Station No. 2 at Albuquerque, New Mexico, was selected for repowering with a design goal of 50 percent (25 MWe). The solar system design is based on the 10 MW solar central receiver pilot plant preliminary design for Barstow, California. SAN--1608-4-2 contains the technical drawings. (WHK)

  10. A hybrid reconfigurable solar and wind energy system

    Science.gov (United States)

    Gadkari, Sagar A.

    We study the feasibility of a novel hybrid solar-wind hybrid system that shares most of its infrastructure and components. During periods of clear sunny days the system will generate electricity from the sun using a parabolic concentrator. The concentrator is formed by individual mirror elements and focuses the light onto high intensity vertical multi-junction (VMJ) cells. During periods of high wind speeds and at night, the same concentrator setup will be reconfigured to channel the wind into a wind turbine which will be used to harness wind energy. In this study we report on the feasibility of this type of solar/wind hybrid energy system. The key mechanisms; optics, cooling mechanism of VMJ cells and air flow through the system were investigated using simulation tools. The results from these simulations, along with a simple economic analysis giving the levelized cost of energy for such a system are presented. An iterative method of design refinement based on the simulation results was used to work towards a prototype design. The levelized cost of the system achieved in the economic analysis shows the system to be a good alternative for a grid isolated site and could be used as a standalone system in regions of lower demand. The new approach to solar wind hybrid system reported herein will pave way for newer generation of hybrid systems that share common infrastructure in addition to the storage and distribution of energy.

  11. Graphene-based transparent electrodes for hybrid solar cells

    Directory of Open Access Journals (Sweden)

    Pengfei eLi

    2014-11-01

    Full Text Available The graphene-based transparent and conductive films were demonstrated to be cost-effective electrodes working in organic-inorganic hybrid Schottky solar cells. Large area graphene films were produced by chemical vapor deposition (CVD on copper foils and transferred onto glass as transparent electrodes. The hybrid solar cell devices consist of solution processed poly (3, 4-ethlenedioxythiophene: poly (styrenesulfonate (PEDOT: PSS which is sandwiched between silicon wafer and graphene electrode. The solar cells based on graphene electrodes, especially those doped with HNO3, has comparable performance to the reference devices using commercial indium tin oxide (ITO. Our work suggests that graphene-based transparent electrode is a promising candidate to replace ITO.

  12. Thermal analysis of a hybrid solar energy saving system inside a greenhouse

    International Nuclear Information System (INIS)

    Ntinas, G.K.; Fragos, V.P.; Nikita-Martzopoulou, Ch.

    2014-01-01

    Highlights: • A hybrid solar system consisted of water filled polyethylene sleeves was examined. • The thermal behaviour of the system was studied based on the sleeves energy balance. • Water temperature and heat exchanges of the sleeves were dynamically estimated. • Experimental data used to validate the predictions of the mathematical model. • The use of the system led to an energy saving of 23% inside a heated greenhouse. - Abstract: The intensive greenhouse energy requirements are a major operational and economical problem for producers around the world. Energy conservation techniques and innovative applications of solar energy for heating are being employed in greenhouse operation to reduce heating costs during cold periods. The present study investigated the development of a mathematical model to predict the thermal efficiency of a novel hybrid solar energy saving system inside a heated greenhouse. The solar system consisted of a transparent water-filled polyethylene sleeve and two perforated air-filled polyethylene tubes on the top peripheral sides of it. Above the sleeve and between the two tubes, rockwool substrates were placed for hydroponic cultivation of tomato crop. In order to validate this model, experiments were carried out in two identical parts of a polyethylene arched-type greenhouse to obtain data during winter. By comparing the measured and the predicted values, a correlation of 95% was found, indicating that the model can simulate the water temperature inside the hybrid solar sleeves. Moreover, the additional energy provided by the hybrid solar system reached approximately 23% during the examined period, depending on solar radiation levels

  13. A Review of Hybrid Solar PV and Wind Energy System

    Directory of Open Access Journals (Sweden)

    Rashid Al Badwawi

    2015-07-01

    Full Text Available Due to the fact that solar and wind power is intermittent and unpredictable in nature, higher penetration of their types in existing power system could cause and create high technical challenges especially to weak grids or stand-alone systems without proper and enough storage capacity. By integrating the two renewable resources into an optimum combination, the impact of the variable nature of solar and wind resources can be partially resolved and the overall system becomes more reliable and economical to run. This paper provides a review of challenges and opportunities / solutions of hybrid solar PV and wind energy integration systems. Voltage and frequency fluctuation, and harmonics are major power quality issues for both grid-connected and stand-alone systems with bigger impact in case of weak grid. This can be resolved to a large extent by having proper design, advanced fast response control facilities, and good optimization of the hybrid systems. The paper gives a review of the main research work reported in the literature with regard to optimal sizing design, power electronics topologies and control. The paper presents a review of the state of the art of both grid-connected and stand-alone hybrid solar and wind systems.

  14. Gas Turbine/Solar Parabolic Trough Hybrid Designs: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Turchi, C. S.; Ma, Z.; Erbes, M.

    2011-03-01

    A strength of parabolic trough concentrating solar power (CSP) plants is the ability to provide reliable power by incorporating either thermal energy storage or backup heat from fossil fuels. Yet these benefits have not been fully realized because thermal energy storage remains expensive at trough operating temperatures and gas usage in CSP plants is less efficient than in dedicated combined cycle plants. For example, while a modern combined cycle plant can achieve an overall efficiency in excess of 55%; auxiliary heaters in a parabolic trough plant convert gas to electricity at below 40%. Thus, one can argue the more effective use of natural gas is in a combined cycle plant, not as backup to a CSP plant. Integrated solar combined cycle (ISCC) systems avoid this pitfall by injecting solar steam into the fossil power cycle; however, these designs are limited to about 10% total solar enhancement. Without reliable, cost-effective energy storage or backup power, renewable sources will struggle to achieve a high penetration in the electric grid. This paper describes a novel gas turbine / parabolic trough hybrid design that combines solar contribution of 57% and higher with gas heat rates that rival that for combined cycle natural gas plants. The design integrates proven solar and fossil technologies, thereby offering high reliability and low financial risk while promoting deployment of solar thermal power.

  15. Hybrid soft computing approaches research and applications

    CERN Document Server

    Dutta, Paramartha; Chakraborty, Susanta

    2016-01-01

    The book provides a platform for dealing with the flaws and failings of the soft computing paradigm through different manifestations. The different chapters highlight the necessity of the hybrid soft computing methodology in general with emphasis on several application perspectives in particular. Typical examples include (a) Study of Economic Load Dispatch by Various Hybrid Optimization Techniques, (b) An Application of Color Magnetic Resonance Brain Image Segmentation by ParaOptiMUSIG activation Function, (c) Hybrid Rough-PSO Approach in Remote Sensing Imagery Analysis,  (d) A Study and Analysis of Hybrid Intelligent Techniques for Breast Cancer Detection using Breast Thermograms, and (e) Hybridization of 2D-3D Images for Human Face Recognition. The elaborate findings of the chapters enhance the exhibition of the hybrid soft computing paradigm in the field of intelligent computing.

  16. Nanocomposite-Based Bulk Heterojunction Hybrid Solar Cells

    Directory of Open Access Journals (Sweden)

    Bich Phuong Nguyen

    2014-01-01

    Full Text Available Photovoltaic devices based on nanocomposites composed of conjugated polymers and inorganic nanocrystals show promise for the fabrication of low-cost third-generation thin film photovoltaics. In theory, hybrid solar cells can combine the advantages of the two classes of materials to potentially provide high power conversion efficiencies of up to 10%; however, certain limitations on the current within a hybrid solar cell must be overcome. Current limitations arise from incompatibilities among the various intradevice interfaces and the uncontrolled aggregation of nanocrystals during the step in which the nanocrystals are mixed into the polymer matrix. Both effects can lead to charge transfer and transport inefficiencies. This paper highlights potential strategies for resolving these obstacles and presents an outlook on the future directions of this field.

  17. Mushroom dehydration in a hybrid-solar dryer

    International Nuclear Information System (INIS)

    Reyes, Alejandro; Mahn, Andrea; Cubillos, Francisco; Huenulaf, Pedro

    2013-01-01

    Highlights: ► Mushrooms (Paris variety) were dehydrated in a hybrid solar dryer. ► Effective diffusivity was estimated by the Constant Diffusivity Model. ► Drying kinetics were adjusted by a semi-theoretical and the empirical Page model. ► Temperature, thickness and air recycle significantly affected critical moisture. ► The input of solar energy resulted in 3.5–12.5% electrical energy saving. - Abstract: Mushrooms (Paris variety) were dehydrated in a hybrid solar dryer (HSD) provided with a 3 m 2 solar panel and electric resistances. Mushrooms were cut in 8 mm or 4 mm thickness slices. At the outlet of the tray dryer 80–90% air was recycled and the air temperature was adjusted to the pre-defined levels (50 or 60 °C). At the outlet of the solar panel the air temperature raised between 2 and 20 °C above the ambient temperature, depending mainly of solar radiation level. Temperature, slices thickness and air recycle level had statistically significant effects on critical moisture content (X c ), as well as on the time necessary to reach a moisture content of 0.1 (wb). The color parameters of dehydrated mushroom indicate a notorious darkening, in all runs. Rehydration assays at 35 °C showed that in less than 30 min rehydrated mushrooms reached a moisture content of 0.8 (wb). Effective diffusivity (D eff ) was estimated by the Simplified Constant Diffusivity Model (SCDM), and it ranged between 6E−10 and 40E−10 m 2 /s, with R 2 higher than 0.98, agreeing with literature. The adjustment of experimental drying kinetics with the empirical Page’s model resulted in R 2 higher than 0.997. Finally, the input of solar energy resulted in 3.5–12.5% energy saving. These values could even be improved by increasing the agro-product load in the HSD

  18. A comparative study on three types of solar utilization technologies for buildings: Photovoltaic, solar thermal and hybrid photovoltaic/thermal systems

    International Nuclear Information System (INIS)

    Huide, Fu; Xuxin, Zhao; Lei, Ma; Tao, Zhang; Qixing, Wu; Hongyuan, Sun

    2017-01-01

    Highlights: • Models of Solar thermal, Photovoltaic and Photovoltaic/thermal systems are developed. • Experiments are performed to validate the simulation results. • Annual performances of the three solar systems used in china are predicted. • Energy comparison between the three solar systems is analyzed. - Abstract: Buildings need energy including heat and electricity, and both of them can be provided by the solar systems. Solar thermal and photovoltaic systems absorb the solar energy and can supply the heat and electricity for buildings, respectively. However, for the urban residential buildings, the limited available area makes installation of the solar thermal collectors and photovoltaic modules together impossible. A hybrid photovoltaic/thermal system can simultaneously generate heat and electricity, which is deemed to be quite suitable for the urban residential buildings application. And yet, for a rural house of China, the available area for installation of the solar collectors is large but daily domestic hot water demand of a rural family is generally not exceeded 300 L. If only the hybrid photovoltaic/thermal collectors are installed on the whole available area, this will lead to an overproduction of the thermal energy, especially in summer. Moreover, buildings requiring for the heat and electricity are different in different regions and different seasons. In this paper, simulation models of the solar thermal, photovoltaic and hybrid photovoltaic/thermal systems are presented, and experiments are also performed to validate the simulation results. Using the validated models, performances of the three solar systems for residential applications were predicted. And energy comparison between the three solar systems used in Hongkong, Lhasa, Shanghai and Beijing of China, respectively, were also studied. Results show that, for the urban residential building with limited available installation space, a hybrid photovoltaic/thermal system may have the

  19. Low cost, efficient hybrid solar cells

    OpenAIRE

    Malinkiewicz, Olga

    2017-01-01

    Actualmente, existen diversas estrategias para producir energía limpia mediante fuentes renovables, pero es la explotación directa de la energía del Sol la que se presenta como una solución ideal, siendo la mayor fuente de energía verde en la Tierra. La potencia de la energía solar que llega a la Tierra cada año es del orden de 86000 TW (Terawatt, 1012 Watt). Esto representa 4800 veces la demanda energética anual del mundo, estimada en 18 TW. Además, todos los depósitos de energía fósil recon...

  20. Organic / IV, III-V Semiconductor Hybrid Solar Cells

    Directory of Open Access Journals (Sweden)

    Pang-Leen Ong

    2010-03-01

    Full Text Available We present a review of the emerging class of hybrid solar cells based on organic-semiconductor (Group IV, III-V, nanocomposites, which states separately from dye synthesized, polymer-metal oxides and organic-inorganic (Group II-VI nanocomposite photovoltaics. The structure of such hybrid cell comprises of an organic active material (p-type deposited by coating, printing or spraying technique on the surface of bulk or nanostructured semiconductor (n-type forming a heterojunction between the two materials. Organic components include various photosensitive monomers (e.g., phtalocyanines or porphyrines, conjugated polymers, and carbon nanotubes. Mechanisms of the charge separation at the interface and their transport are discussed. Also, perspectives on the future development of such hybrid cells and comparative analysis with other classes of photovoltaics of third generation are presented.

  1. Analysis of a Hybrid Solar-Assisted Trigeneration System

    Directory of Open Access Journals (Sweden)

    Elisa Marrasso

    2016-09-01

    Full Text Available A hybrid solar-assisted trigeneration system is analyzed in this paper. The system is composed of a 20 m2 solar field of evacuated tube collectors, a natural gas fired micro combined heat and power system delivering 12.5 kW of thermal power, an absorption heat pump (AHP with a nominal cooling power of 17.6 kW, two storage tanks (hot and cold and an electric auxiliary heater (AH. The plant satisfies the energy demand of an office building located in Naples (Southern Italy. The electric energy of the cogenerator is used to meet the load and auxiliaries electric demand; the interactions with the grid are considered in cases of excess or over requests. This hybrid solution is interesting for buildings located in cities or historical centers with limited usable roof surface to install a conventional solar heating and cooling (SHC system able to achieve high solar fraction (SF. The results of dynamic simulation show that a tilt angle of 30° maximizes the SF of the system on annual basis achieving about 53.5%. The influence on the performance of proposed system of the hot water storage tank (HST characteristics (volume, insulation is also studied. It is highlighted that the SF improves when better insulated and bigger HSTs are considered. A maximum SF of about 58.2% is obtained with a 2000 L storage, whereas the lower thermal losses take place with a better insulated 1000 L tank.

  2. Wind/Hybrid Electricity Applications

    Energy Technology Data Exchange (ETDEWEB)

    McDaniel, Lori [Iowa Department of Natural Resources, Des Moines, IA (United States)

    2001-03-01

    Wind energy is widely recognized as the most efficient and cost effective form of new renewable energy available in the Midwest. New utility-scale wind farms (arrays of large turbines in high wind areas producing sufficient energy to serve thousands of homes) rival the cost of building new conventional forms of combustion energy plants, gas, diesel and coal power plants. Wind energy is not subject to the inflationary cost of fossil fuels. Wind energy can also be very attractive to residential and commercial electric customers in high wind areas who would like to be more self-sufficient for their energy needs. And wind energy is friendly to the environment at a time when there is increasing concern about pollution and climate change. However, wind energy is an intermittent source of power. Most wind turbines start producing small amounts of electricity at about 8-10 mph (4 meters per second) of wind speed. The turbine does not reach its rated output until the wind reaches about 26-28 mph (12 m/s). So what do you do for power when the output of the wind turbine is not sufficient to meet the demand for energy? This paper will discuss wind hybrid technology options that mix wind with other power sources and storage devices to help solve this problem. This will be done on a variety of scales on the impact of wind energy on the utility system as a whole, and on the commercial and small-scale residential applications. The average cost and cost-benefit of each application along with references to manufacturers will be given. Emerging technologies that promise to shape the future of renewable energy will be explored as well.

  3. Modelling the solar wind interaction with Mercury by a quasi-neutral hybrid model

    Directory of Open Access Journals (Sweden)

    E. Kallio

    Full Text Available Quasi-neutral hybrid model is a self-consistent modelling approach that includes positively charged particles and an electron fluid. The approach has received an increasing interest in space plasma physics research because it makes it possible to study several plasma physical processes that are difficult or impossible to model by self-consistent fluid models, such as the effects associated with the ions’ finite gyroradius, the velocity difference between different ion species, or the non-Maxwellian velocity distribution function. By now quasi-neutral hybrid models have been used to study the solar wind interaction with the non-magnetised Solar System bodies of Mars, Venus, Titan and comets. Localized, two-dimensional hybrid model runs have also been made to study terrestrial dayside magnetosheath. However, the Hermean plasma environment has not yet been analysed by a global quasi-neutral hybrid model.

    In this paper we present a new quasi-neutral hybrid model developed to study various processes associated with the Mercury-solar wind interaction. Emphasis is placed on addressing advantages and disadvantages of the approach to study different plasma physical processes near the planet. The basic assumptions of the approach and the algorithms used in the new model are thoroughly presented. Finally, some of the first three-dimensional hybrid model runs made for Mercury are presented.

    The resulting macroscopic plasma parameters and the morphology of the magnetic field demonstrate the applicability of the new approach to study the Mercury-solar wind interaction globally. In addition, the real advantage of the kinetic hybrid model approach is to study the property of individual ions, and the study clearly demonstrates the large potential of the approach to address these more detailed issues by a quasi-neutral hybrid model in the future.

    Key words. Magnetospheric physics

  4. A hybrid desalination system using humidification-dehumidification and solar stills integrated with evacuated solar water heater

    International Nuclear Information System (INIS)

    Sharshir, S.W.; Peng, Guilong; Yang, Nuo; Eltawil, Mohamed A.; Ali, Mohamed Kamal Ahmed; Kabeel, A.E.

    2016-01-01

    Highlights: • Evacuated solar water heater integrated with humidification-dehumidification system. • Reuse of warm water drained from humidification-dehumidification to feed solar stills. • The thermal performance of hybrid system is increased by 50% and maximum yield is 63.3 kg/day. • The estimated price of the freshwater produced from the hybrid system is $0.034/L. - Abstract: This paper offers a hybrid solar desalination system comprising a humidification-dehumidification and four solar stills. The developed hybrid desalination system reuses the drain warm water from humidification-dehumidification to feed solar stills to stop the massive warm water loss during desalination. Reusing the drain warm water increases the gain output ratio of the system by 50% and also increased the efficiency of single solar still to about 90%. Furthermore, the production of a single solar still as a part of the hybrid system was more than that of the conventional one by approximately 200%. The daily water production of the conventional one, single solar still, four solar still, humidification- dehumidification and hybrid system were 3.2, 10.5, 42, 24.3 and 66.3 kg/day, respectively. Furthermore, the cost per unit liter of distillate from conventional one, humidification- dehumidification and hybrid system were around $0.049, $0.058 and $0.034, respectively.

  5. Solar hybrid cooling system for high-tech offices in subtropical climate - Radiant cooling by absorption refrigeration and desiccant dehumidification

    International Nuclear Information System (INIS)

    Fong, K.F.; Chow, T.T.; Lee, C.K.; Lin, Z.; Chan, L.S.

    2011-01-01

    Highlights: → A solar hybrid cooling system is proposed for high-tech offices in subtropical climate. → An integration of radiant cooling, absorption refrigeration and desiccant dehumidification. → Year-round cooling and energy performances were evaluated through dynamic simulation. → Its annual primary energy consumption was lower than conventional system up to 36.5%. → The passive chilled beams were more energy-efficient than the active chilled beams. - Abstract: A solar hybrid cooling design is proposed for high cooling load demand in hot and humid climate. For the typical building cooling load, the system can handle the zone cooling load (mainly sensible) by radiant cooling with the chilled water from absorption refrigeration, while the ventilation load (largely latent) by desiccant dehumidification. This hybrid system utilizes solar energy for driving the absorption chiller and regenerating the desiccant wheel. Since a high chilled water temperature generated from the absorption chiller is not effective to handle the required latent load, desiccant dehumidification is therefore involved. It is an integration of radiant cooling, absorption refrigeration and desiccant dehumidification, which are powered up by solar energy. In this study, the application potential of the solar hybrid cooling system was evaluated for the high-tech offices in the subtropical climate through dynamic simulation. The high-tech offices are featured with relatively high internal sensible heat gains due to the intensive office electric equipment. The key performance indicators included the solar fraction and the primary energy consumption. Comparative study was also carried out for the solar hybrid cooling system using two common types of chilled ceilings, the passive chilled beams and active chilled beams. It was found that the solar hybrid cooling system was technically feasible for the applications of relatively higher cooling load demand. The annual primary energy

  6. A review on recent size optimization methodologies for standalone solar and wind hybrid renewable energy system

    International Nuclear Information System (INIS)

    Al-falahi, Monaaf D.A.; Jayasinghe, S.D.G.; Enshaei, H.

    2017-01-01

    Highlights: • Possible combinations and configurations for standalone PV-WT HES were discussed. • Most recently used assessment parameters for standalone PV-WT HES were explained. • Optimization algorithms and software tools were comprehensively reviewed. • The recent trend of using hybrid algorithms over single algorithms was discussed. • Optimization algorithms for sizing standalone PV-WT HES were critically compared. - Abstract: Electricity demand in remote and island areas are generally supplied by diesel or other fossil fuel based generation systems. Nevertheless, due to the increasing cost and harmful emissions of fossil fuels there is a growing trend to use standalone hybrid renewable energy systems (HRESs). Due to the complementary characteristics, matured technologies and availability in most areas, hybrid systems with solar and wind energy have become the popular choice in such applications. However, the intermittency and high net present cost are the challenges associated with solar and wind energy systems. In this context, optimal sizing is a key factor to attain a reliable supply at a low cost through these standalone systems. Therefore, there has been a growing interest to develop algorithms for size optimization in standalone HRESs. The optimal sizing methodologies reported so far can be broadly categorized as classical algorithms, modern techniques and software tools. Modern techniques, based on single artificial intelligence (AI) algorithms, are becoming more popular than classical algorithms owing to their capabilities in solving complex optimization problems. Moreover, in recent years, there has been a clear trend to use hybrid algorithms over single algorithms mainly due to their ability to provide more promising optimization results. This paper aims to present a comprehensive review on recent developments in size optimization methodologies, as well as a critical comparison of single algorithms, hybrid algorithms, and software tools

  7. Hybrid Metamaterials for Solar Biofuel Generation

    Science.gov (United States)

    2014-10-30

    transfer. The designed charge separation domain will be benignly expressed in bacteria as a chimera with naturally occurring protein domains which...form useful to humankind. Biosolar energy research has begun to modify photosynthetic bacteria , algae, or plants to carry out more efficient...commercial applications. Figure 7 shows four oriented metamaterial polarizers/ lenses without light illuminating the backside (Fig. 7A) and with light

  8. What Is Moving in Hybrid Halide Perovskite Solar Cells?

    Science.gov (United States)

    2016-01-01

    and fuel cell applications. We expound on the implications of these effects for the photovoltaic action. The temporal behavior displayed by hybrid perovskites introduces a sensitivity in materials characterization to the time and length scale of the measurement, as well as the history of each sample. It also poses significant challenges for accurate materials modeling and device simulations. There are large differences between the average and local crystal structures, and the nature of charge transport is too complex to be described by common one-dimensional drift-diffusion models. Herein, we critically discuss the atomistic origin of the dynamic processes and the associated chemical disorder intrinsic to crystalline hybrid perovskite semiconductors. PMID:26859250

  9. Evaluation of hybrid solar – biomass dryer with no load

    Directory of Open Access Journals (Sweden)

    Yassen Tadahmun Ahmed

    2014-07-01

    Full Text Available Experimental study was carried out to investigate the performance of designed and fabricated hybrid solar-biomass dryer without load. The solar side was a natural convection mixed mode, while the biomass side was a hot air produced from a burner/gas to gas heat exchanger. The experiments have been conducted to test the dryer temperature, inlet and outlet relative humidity, outlet velocity, and biomass feeding rate. In the solar mode the maximum dryer temperature was 63°C. Behaviours of the velocity in the dryer was found to follow solar radiation available to the dryer. The velocity was in the range of 0.6 – 1.35 m/s through the 0.0176 m2 area of the outlet when the solar radiation was in the range of 150 – 880 W/m2. Two feeding rates of wood were used to investigate the dryer performance through the night. The results showed that at feeding rate 278 g/hr, the drying air mean temperature was 62 ºC. This temperature was more suitable than the measured drying air temperature at feeding rate 490 g/hr. Also the 62 °C drying environment is more stable and feasible for drying almost all types of products.

  10. Development of a solar-hydrogen hybrid energy system

    International Nuclear Information System (INIS)

    Sebastian, P.J.; Gamboa, S.A.; Vejar, Set; Campos, J.

    2009-01-01

    Full text: The details of the development of a PV-hydrogen hybrid energy system is presented. An arrangement of photovoltaic modules (125 W/module) was established to provide 9 kW installed power in a three-phase configuration at 127 Vrms/phase. A 5 kW fuel cell system (hydrogen/oxygen) operate as a dynamic backup of the photovoltaic system. The autonomous operation of the hybrid power system implies the production of hydrogen by electrolysis. The hydrogen is produced by water electrolysis using an electrolyzer of 1 kW power. The electrical energy used to produce hydrogen is supplied from solar panels by using 1kW of photovoltaic modules. The photovoltaic modules are installed in a sun-tracker arrangement for increasing the energy conversion efficiency. The hydrogen is stored in solar to electric commercial metal hydride based containers and supplied to the fuel cell. The hybrid system is monitored by internet and some dynamic characteristics such as demanding power, energy and power factor could be analyzed independently from the system. Some energy saving recommendations has been implemented as a pilot program at CIE-UNAM to improve the efficient use of clean energy in normal operating conditions in offices and laboratories. (author)

  11. Design and application of rural hydro-solar hybrid power system%农村水能与太阳能混合发电系统的设计与应用

    Institute of Scientific and Technical Information of China (English)

    张仁贡

    2012-01-01

    According to the generation innovation model with two renewable energy mixed for rural hydropower and solar energy power, this paper discussed the design of a hybrid-type hybrid power generation system. Based on the system characteristics, the general design plan was designed. Focused on mixed DC systems harmonic suppression and reactive power compensation in construction technology, photovoltaic technology, shared-key technologies such as computer monitoring technology in hybrid power system design process were applied. Core technology made the application of photovoltaic power stations provide DC power supply for hydropower station and provided for the power grid harmonic suppression and reactive power compensation. The share-type technologies that share-type hydropower station computer monitoring technology and photovoltaic power stations shared local control unit, data communication networks, workstations, and servers, were cost-saving. Practices and calculations show that rural hydropower and solar hybrid power system designed saves a initial investment cost over 50%, and generates long-term harmonic suppression and reactive power compensation benefits; installed capacity per kW can save the normal vectors 0.4 kg and carbon dioxide emissions 0.997 kg. And the power system can realize protection and social benefits such as land and natural resource conservation.%针对农村水能和太阳能2种可再生能源混合发电创新模式,该文设计了一种互补型的混合发电系统.在系统特点分析的基础上,构架了总体设计方案.在混合发电系统的设计过程中重点应用了混合直流系统构建技术、光伏谐波抑制与无功补偿技术、共享型微机监控技术等关键技术.核心技术的应用使光伏电站可为水电站提供直流电源和无功补偿、为电网提供谐波抑制;同时通过共享型微机监控技术使水电站和光伏电站共享现有控制单元、数据通讯网络、工作站及服务

  12. Hybrid Laminates for Application in North Conditions

    Science.gov (United States)

    Antipov, V. V.; Oreshko, E. I.; Erasov, V. S.; Serebrennikova, N. Yu.

    2016-11-01

    A hybrid aluminum-lithium alloy/SIAL laminate as a possible material for application in structures operated in North conditions is considered. The finite-element method is used for a buckling stability analysis of hybrid panels, bars, and plates. A technique allowing one to compare the buckling stability of multilayered hybrid plates is offered. Compression tests were run on a hybrid laminate wing panel as a prototype of the top panel of TU-204SM airplane made from a high-strength B95T2 aluminum alloy. It turned out that the lighter composite panel had a higher load-carrying capacity than the aluminum one. Results of investigation into the properties the hybrid aluminum-lithium alloy/SIAL laminate and an analysis of scientific-technical data on this subject showed that this composite material could be used in the elements of airframes, including those operated in north conditions.

  13. Three Sides Billboard Wind-Solar Hybrid System Design

    Directory of Open Access Journals (Sweden)

    Bai Xuefeng

    2015-01-01

    Full Text Available With the high development of world economy, the demand of energy is increasing all the time, As energy shortage and environment problem are increasing outstanding, Renewable energy has been attracting more and more attention. A kind of three sides billboard supply by wind-Solar hybrid system has been designed in this paper, the overall structure of the system, components, working principle and control strategy has been analyzed from the system perspective. The software and hardware of the system are debugged together and the result is acquired. System function is better and has achieved the expected results.

  14. Performance analysis of a hybrid photovoltaic thermal solar air heater

    International Nuclear Information System (INIS)

    Othman, Mohd Yusof; Yatim, Baharudin; Abu Bakar, Mohd Nazari; Sopian, Kamaruzzaman

    2006-01-01

    A photovoltaic (PV/T) air heater is a collector that combines thermal and photovoltaic systems in one single hybrid generating unit. It generators both thermal and electrical energies simultaneously. A new design of a double-pass photovoltaic-thermal solar air collector with CPC and fins was successfully developed and fabricated at Universiti Kebangsaam Malaysia. This collector tested under actual environmental conditions to study its performance over a range of operating conditions. The test set-up, instrumentation and measurement are described further. It was found that the performance of the collector was in agreement with the theoretical prediction. Results of the outdoors test are presented and discussed(Author)

  15. Design of a hybrid power system based on solar cell and vibration energy harvester

    Science.gov (United States)

    Zhang, Bin; Li, Mingxue; Zhong, Shaoxuan; He, Zhichao; Zhang, Yufeng

    2018-03-01

    Power source has become a serious restriction of wireless sensor network. High efficiency, self-energized and long-life renewable source is the optimum solution for unmanned sensor network applications. However, single renewable power source can be easily affected by ambient environment, which influences stability of the system. In this work, a hybrid power system consists of a solar panel, a vibration energy harvester and a lithium battery is demonstrated. The system is able to harvest multiple types of ambient energy, which extends its applicability and feasibility. Experiments have been conducted to verify performance of the system.

  16. Hybrid solar cells composed of perovskite and polymer photovoltaic structures

    Science.gov (United States)

    Phaometvarithorn, Apatsanan; Chuangchote, Surawut; Kumnorkaew, Pisist; Wootthikanokkhan, Jatuphorn

    2018-06-01

    Organic/inorganic lead halide perovskite solar cells have recently attracted much attention in photovoltaic research, due to the devices show promising ways to achieve high efficiencies. The perovskite devices with high efficiencies, however, are typically fabricated in tandem solar cell which is complicated. In this research work, we introduce a solar cell device with the combination of CH3NH3PbI3-xClx perovskite and bulk heterojunction PCDTBT:PC70BM polymer without any tandem structure. The new integrated perovskite/polymer hybrid structure of ITO/PEDOT:PSS/perovskite/PCDTBT:PC70BM/PC70BM/TiOx/Al provides higher power conversion efficiency (PCE) of devices compared with conventional perovskite cell structure. With the optimized PCDTBT:PC70BM thickness of ∼70 nm, the highest PCE of 11.67% is achieved. Variation of conducting donor polymers in this new structure is also preliminary demonstrated. This study provides an attractively innovative structure and a promising design for further development of the new-generation solar cells.

  17. Assessing the potential of hybrid fossil–solar thermal plants for energy policy making: Brayton cycles

    International Nuclear Information System (INIS)

    Bernardos, Eva; López, Ignacio; Rodríguez, Javier; Abánades, Alberto

    2013-01-01

    This paper proposes a first study in-depth of solar–fossil hybridization from a general perspective. It develops a set of useful parameters for analyzing and comparing hybrid plants, it studies the case of hybridizing Brayton cycles with current solar technologies and shows a tentative extrapolation of the results to integrated combined cycle systems (ISCSS). In particular, three points have been analyzed: the technical requirements for solar technologies to be hybridized with Brayton cycles, the temperatures and pressures at which hybridization would produce maximum power per unit of fossil fuel, and their mapping to current solar technologies and Brayton cycles. Major conclusions are that a hybrid plant works in optimum conditions which are not equal to those of the solar or power blocks considered independently, and that hybridizing at the Brayton cycle of a combined cycle could be energetically advantageous. -- Highlights: •We model a generic solar–fossil hybrid Brayton cycle. •We calculate the operating conditions for maximum ratio power/fuel consumption. •Best hybrid plant conditions are not the same as solar or power blocks separately. •We study potential for hybridization with current solar technologies. •Hybridization at the Brayton in a combined cycle may achieve high power/fuel ratio

  18. An experimental study on energy generation with a photovoltaic (PV)-solar thermal hybrid system

    International Nuclear Information System (INIS)

    Erdil, Erzat; Ilkan, Mustafa; Egelioglu, Fuat

    2008-01-01

    A hybrid system, composed of a photovoltaic (PV) module and a solar thermal collector is constructed and tested for energy collection at a geographic location of Cyprus. Normally, it is required to install a PV system occupying an area of about 10 m 2 in order to produce electrical energy; 7 kWh/day, required by a typical household. In this experimental study, we used only two PV modules of area approximately 0.6 m 2 (i.e., 1.3x0.47 m 2 ) each. PV modules absorb a considerable amount of solar radiation that generate undesirable heat. This thermal energy, however, may be utilized in water pre-heating applications. The proposed hybrid system produces about 2.8 kWh thermal energy daily. Various attachments that are placed over the hybrid modules lead to a total of 11.5% loss in electrical energy generation. This loss, however, represents only 1% of the 7 kWh energy that is consumed by a typical household in northern Cyprus. The pay-back period for the modification is less than 2 years. The low investment cost and the relatively short pay-back period make this hybrid system economically attractive

  19. Optical and mechanical tolerances in hybrid concentrated thermal-PV solar trough.

    Science.gov (United States)

    Diaz, Liliana Ruiz; Cocilovo, Byron; Miles, Alexander; Pan, Wei; Blanche, Pierre-Alexandre; Norwood, Robert A

    2018-05-14

    Hybrid thermal-PV solar trough collectors combine concentrated photovoltaics and concentrated solar power technology to harvest and store solar energy. In this work, the optical and mechanical requirements for optimal efficiency are analyzed using non-sequential ray tracing techniques. The results are used to generate opto-mechanical tolerances that can be compared to those of traditional solar collectors. We also explore ideas on how to relieve tracking tolerances for single-axis solar collectors. The objective is to establish a basis for tolerances required for the fabrication and manufacturing of hybrid solar trough collectors.

  20. Solar energy application, economics, and public perception

    CERN Document Server

    Adaramola, Muyiwa

    2015-01-01

    Due to climate change, the rise in energy demand, and issues of energy security, more countries are being forced to reexamine their energy policies and consider more renewable sources of energy. Solar power is expected to play a significant role in the changing face of energy economies, due in a large part to the recent technological advances in the field and the significant decrease in cost. This book describes these advances and examines the current state of solar power from a variety of angles. The various sections of the book cover the following topics: an overview of hybrid solar energy s

  1. Design, Construction and Effectiveness Analysis of Hybrid Automatic Solar Tracking System for Amorphous and Crystalline Solar Cells

    OpenAIRE

    Bhupendra Gupta

    2013-01-01

    - This paper concerns the design and construction of a Hybrid solar tracking system. The constructed device was implemented by integrating it with Amorphous & Crystalline Solar Panel, three dimensional freedom mechanism and microcontroller. The amount of power available from a photovoltaic panel is determined by three parameters, the type of solar tracker, materials of solar panel and the intensity of the sunlight. The objective of this paper is to present analysis on the use of two differ...

  2. Solar Trigeneration: a Transitory Simulation of HVAC Systems Using Different Typologies of Hybrid Panels

    Directory of Open Access Journals (Sweden)

    Alejandro del Amo Sancho

    2014-03-01

    Full Text Available The high energy demand on buildings requires efficient installations and the integration of renewable energy to achieve the goal of reducing energy consumption using traditional energy sources. Usually, solar energy generation and heating loads have different profiles along a day and their maximums take place at different moments. In addition, in months in which solar production is higher, the heating demands are the minimum (hot water is consumed only domestically in summer. Cooling machines (absorption and adsorption allow using thermal energy to chill a fluid. This heat flow rate could be recovered from solar collectors or any other heat source. The aim of this study is to integrate different typologies of solar hybrid (photovoltaic and thermal collectors with cooling machines getting solar trigeneration and concluding the optimal combination for building applications. The heat recovered from the photovoltaic module is used to provide energy to these cooling machines getting a double effect: to get a better efficiency on PV modules and to cool the building. In this document the authors analyse these installations, their operating conditions, dimensions and parameters, in order to get the optimal installation in three different European cities. This work suggests that in a family house in Madrid, the optimal combination is to use CPVT with azimuthally tracking and absorption machine. In this case, the solar trigeneration system using 55 m2 of collector area saves the cooling loads and 79% of the heating load in the house round the year.

  3. Reduced energy offset via substitutional doping for efficient organic/inorganic hybrid solar cells.

    Science.gov (United States)

    Jin, Xiao; Sun, Weifu; Zhang, Qin; Ruan, Kelian; Cheng, Yuanyuan; Xu, Haijiao; Xu, Zhongyuan; Li, Qinghua

    2015-06-01

    Charge carrier transport in bulk heterojunction that is central to the device performance of solar cells is sensitively dependent on the energy level alignment of acceptor and donor. However, the effect of energy level regulation induced by nickel ions on the primary photoexcited electron transfer and the performance of P3HT/TiO2 hybrid solar cells remains being poorly understood and rarely studied. Here we demonstrate that the introduction of the versatile nickel ions into TiO2 nanocrystals can significantly elevate the conduction and valence band energy levels of the acceptor, thus resulting in a remarkable reduction of energy level offset between the conduction band of acceptor and lowest unoccupied molecular orbital of donor. By applying transient photoluminescence and femtosecond transient absorption spectroscopies, we demonstrate that the electron transfer becomes more competitive after incorporating nickel ions. In particular, the electron transfer life time is shortened from 30.2 to 16.7 ps, i.e., more than 44% faster than pure TiO2 acceptor, thus leading to a notable increase of power conversion efficiency in organic/inorganic hybrid solar cells. This work underscores the promising virtue of engineering the reduction of 'excess' energy offset to accelerate electron transport and demonstrates the potential of nickel ions in applications of solar energy conversion and photon detectors.

  4. Solar central receiver hybrid power system. Phase I study

    Energy Technology Data Exchange (ETDEWEB)

    None

    1978-11-01

    A management plan is presented for implementation during the Solar Central Receiver Hybrid Power System - Phase I study project. The project plan and the management controls that will be used to assure technically adequate, timely and cost effective performance of the work required to prepare the designated end products are described. Bechtel in-house controls and those to be used in directing the subcontractors are described. Phase I of the project consists of tradeoff studies, parametric analyses, and engineering studies leading to conceptual definition and evaluation of a commercial hybrid power system that has the potential for supplying economically competitive electric power to a utility grid in the 1985-1990 time frame. The scope also includes the preparation of a development plan for the resolution of technical uncertainties and the preparation of plans and a proposal for Phase II of the program. The technical approach will be based on a central receiver solar energy collection scheme which supplies thermal energy to a combined cycle, generating system, consisting of a gas turbine cycle combined with a steam bottoming cycle by means of a heat recovery steam generator.

  5. Exergoeconomic Assessment of Solar Absorption and Absorption–Compression Hybrid Refrigeration in Building Cooling

    Directory of Open Access Journals (Sweden)

    Yue Jing

    2018-02-01

    Full Text Available The paper mainly deals with the match of solar refrigeration, i.e., solar/natural gas-driven absorption chiller (SNGDAC, solar vapor compression–absorption integrated refrigeration system with parallel configuration (SVCAIRSPC, and solar absorption-subcooled compression hybrid cooling system (SASCHCS, and building cooling based on the exergoeconomics. Three types of building cooling are considered: Type 1 is the single-story building, type 2 includes the two-story and three-story buildings, and type 3 is the multi-story buildings. Besides this, two Chinese cities, Guangzhou and Turpan, are taken into account as well. The product cost flow rate is employed as the primary decision variable. The result exhibits that SNGDAC is considered as a suitable solution for type 1 buildings in Turpan, owing to its negligible natural gas consumption and lowest product cost flow rate. SVCAIRSPC is more applicable for type 2 buildings in Turpan because of its higher actual cooling capacity of absorption subsystem and lower fuel and product cost flow rate. Additionally, SASCHCS shows the most extensive cost-effectiveness, namely, its exergy destruction and product cost flow rate are both the lowest when used in all types of buildings in Guangzhou or type 3 buildings in Turpan. This paper is helpful to promote the application of solar cooling.

  6. Combined cycle solar central receiver hybrid power system study. Volume III. Appendices. Final technical report

    Energy Technology Data Exchange (ETDEWEB)

    None

    1979-11-01

    A design study for a 100 MW gas turbine/steam turbine combined cycle solar/fossil-fuel hybrid power plant is presented. This volume contains the appendices: (a) preconceptual design data; (b) market potential analysis methodology; (c) parametric analysis methodology; (d) EPGS systems description; (e) commercial-scale solar hybrid power system assessment; and (f) conceptual design data lists. (WHK)

  7. Polymeric materials for solar thermal applications

    CERN Document Server

    Köhl, Michael; Papillon, Philippe; Wallner, Gernot M; Saile, Sandrin

    2012-01-01

    Bridging the gap between basic science and technological applications, this is the first book devoted to polymers for solar thermal applications.Clearly divided into three major parts, the contributions are written by experts on solar thermal applications and polymer scientists alike. The first part explains the fundamentals of solar thermal energy especially for representatives of the plastics industry and researchers. Part two then goes on to provide introductory information on polymeric materials and processing for solar thermal experts. The third part combines both of these fields, dis

  8. Application of solar energy; Proceedings of the Third Southeastern Conference, Huntsville, Ala., April 17-19, 1978

    Science.gov (United States)

    Wu, S. T. (Editor); Christensen, D. L.; Head, R. R.

    1978-01-01

    Demonstration projects, systems-subsystems simulation programs, applications (heating, cooling, agricultural, industrial), and climatic data testing (standards, economics, institutional) are the topics of the book. Economics of preheating water for commercial use and collecting, processing, and dissemination of data for the national demonstration program are discussed. Computer simulation of a solar energy system and graphical representation of solar collector performance are considered. Attention is given to solar driven heat pumps, solar cooling equipment, hybrid passive/active solar systems, and solar farm buildings. Evaluation of a thermographic scanning device for solar energy and conservation applications, use of meteorological data in system evaluation, and biomass conversion potential are presented.

  9. Modelling of a Hybrid Energy System for Autonomous Application

    Directory of Open Access Journals (Sweden)

    Yang He

    2013-10-01

    Full Text Available A hybrid energy system (HES is a trending power supply solution for autonomous devices. With the help of an accurate system model, the HES development will be efficient and oriented. In spite of various precise unit models, a HES system is hardly developed. This paper proposes a system modelling approach, which applies the power flux conservation as the governing equation and adapts and modifies unit models of solar cells, piezoelectric generators, a Li-ion battery and a super-capacitor. A generalized power harvest, storage and management strategy is also suggested to adapt to various application scenarios.

  10. Hybrid photovoltaic–thermal solar collectors dynamic modeling

    International Nuclear Information System (INIS)

    Amrizal, N.; Chemisana, D.; Rosell, J.I.

    2013-01-01

    Highlights: ► A hybrid photovoltaic/thermal dynamic model is presented. ► The model, once calibrated, can predict the power output for any set of climate data. ► The physical electrical model includes explicitly thermal and irradiance dependences. ► The results agree with those obtained through steady-state characterization. ► The model approaches the junction cell temperature through the system energy balance. -- Abstract: A hybrid photovoltaic/thermal transient model has been developed and validated experimentally. The methodology extends the quasi-dynamic thermal model stated in the EN 12975 in order to involve the electrical performance and consider the dynamic behavior minimizing constraints when characterizing the collector. A backward moving average filtering procedure has been applied to improve the model response for variable working conditions. Concerning the electrical part, the model includes the thermal and radiation dependences in its variables. The results revealed that the characteristic parameters included in the model agree reasonably well with the experimental values obtained from the standard steady-state and IV characteristic curve measurements. After a calibration process, the model is a suitable tool to predict the thermal and electrical performance of a hybrid solar collector, for a specific weather data set.

  11. Applications of solar reforming technology

    Energy Technology Data Exchange (ETDEWEB)

    Spiewak, I. [Weizmann Inst. of Science, Rehovoth (Israel); Tyner, C.E. [Sandia National Labs., Albuquerque, NM (United States); Langnickel, U. [Deutsche Forschungsanstalt fuer Luft- und Raumfahrt e.V. (DLR), Koeln (Germany)

    1993-11-01

    Research in recent years has demonstrated the efficient use of solar thermal energy for driving endothermic chemical reforming reactions in which hydrocarbons are reacted to form synthesis gas (syngas). Closed-loop reforming/methanation systems can be used for storage and transport of process heat and for short-term storage for peaking power generation. Open-loop systems can be used for direct fuel production; for production of syngas feedstock for further processing to specialty chemicals and plastics and bulk ammonia, hydrogen, and liquid fuels; and directly for industrial processes such as iron ore reduction. In addition, reforming of organic chemical wastes and hazardous materials can be accomplished using the high-efficiency destruction capabilities of steam reforming. To help identify the most promising areas for future development of this technology, we discuss in this paper the economics and market potential of these applications.

  12. Graphene hybridization for energy storage applications.

    Science.gov (United States)

    Li, Xianglong; Zhi, Linjie

    2018-05-08

    Graphene has attracted considerable attention due to its unique two-dimensional structure, high electronic mobility, exceptional thermal conductivity, excellent optical transmittance, good mechanical strength, and ultrahigh surface area. To meet the ever increasing demand for portable electronic products, electric vehicles, smart grids, and renewable energy integrations, hybridizing graphene with various functions and components has been demonstrated to be a versatile and powerful strategy to significantly enhance the performance of various energy storage systems such as lithium-ion batteries, supercapacitors and beyond, because such hybridization can result in synergistic effects that combine the best merits of involved components and confer new functions and properties, thereby improving the charge/discharge efficiencies and capabilities, energy/power densities, and cycle life of these energy storage systems. This review will focus on diverse graphene hybridization principles and strategies for energy storage applications, and the proposed outline is as follows. First, graphene and its fundamental properties, followed by graphene hybrids and related hybridization motivation, are introduced. Second, the developed hybridization formulas of using graphene for lithium-ion batteries are systematically categorized from the viewpoint of material structure design, bulk electrode construction, and material/electrode collaborative engineering; the latest representative progress on anodes and cathodes of lithium-ion batteries will be reviewed following such classifications. Third, similar hybridization formulas for graphene-based supercapacitor electrodes will be summarized and discussed as well. Fourth, the recently emerging hybridization formulas for other graphene-based energy storage devices will be briefed in combination with typical examples. Finally, future prospects and directions on the exploration of graphene hybridization toward the design and construction of

  13. TNB Experience in Developing Solar Hybrid Station at RPS Kemar, Gerik, Perak Darul Ridzuan

    International Nuclear Information System (INIS)

    Aziz, K A; Shamsudin, K N

    2013-01-01

    This paper will discuss on TNB experience in developing Solar Hybrid Station at RPS Kemar, Gerik, Perak. TNB has been approached by KKLW to submit proposal to provide electricity in the rural area namely RPS Kemar. Looking at area and source available, Solar Hybrid System was the best method in order to provide electricity at this area. This area is far from national grid sources. Solar Hybrid System is the best method to produce electrical power using the renewable energy from Solar PV, Battery and Diesel Generator Set. Nowadays, price of petroleum is slightly high due to higher demand from industry. Solar energy is good alternative in this country to practice in order to reduce cost for produce of electrical energy. Generally, Solar will produce energy during daytime and when become cloudy and dark, automatically battery and diesel generator set will recover the system through the hybrid controller system.

  14. Solar energy sciences and engineering applications

    CERN Document Server

    Enteria, Napoleon

    2013-01-01

    Solar energy is available all over the world in different intensities. Theoretically, the solar energy available on the surface of the earth is enough to support the energy requirements of the entire planet. However, in reality, progress and development of solar science and technology depends to a large extent on human desires and needs. This is due to the various barriers to overcome and to deal with the economics of practical utilization of solar energy.This book will introduce the rapid development and progress in the field of solar energy applications for science and technology: the advanc

  15. Industrial application of PV/T solar energy systems

    International Nuclear Information System (INIS)

    Kalogirou, S.A.; Tripanagnostopoulos, Y.

    2007-01-01

    Hybrid photovoltaic/thermal (PV/T) systems consist of PV modules and heat extraction units mounted together. These systems can simultaneously provide electrical and thermal energy, thus achieving a higher energy conversion rate of the absorbed solar radiation than plain photovoltaics. Industries show high demand of energy for both heat and electricity and the hybrid PV/T systems could be used in order to meet this requirement. In this paper the application aspects in the industry of PV/T systems with water heat extraction is presented. The systems are analyzed with TRNSYS program for three locations Nicosia, Athens and Madison that are located at different latitudes. The system comprises 300 m 2 of hybrid PV/T collectors producing both electricity and thermal energy and a 10 m 3 water storage tank. The work includes the study of an industrial process heat system operated at two load supply temperatures of 60 deg. C and 80 deg. C. The results show that the electrical production of the system, employing polycrystalline solar cells, is more than the amorphous ones but the solar thermal contribution is slightly lower. A non-hybrid PV system produces about 25% more electrical energy but the present system covers also, depending on the location, a large percentage of the thermal energy requirement of the industry considered. The economic viability of the systems is proven, as positive life cycle savings are obtained in the case of hybrid systems and the savings are increased for higher load temperature applications. Additionally, although amorphous silicon panels are much less efficient than the polycrystalline ones, better economic figures are obtained due to their lower initial cost, i.e., they have better cost/benefit ratio

  16. Techno-Economic Assessment of Concentrating Solar Power and Wind Hybridization in Jordan

    Directory of Open Access Journals (Sweden)

    Osama Ayadi

    2018-03-01

    A strong complementarity between wind and direct normal solar radiation was observed in the selected location in Jordan, which emphasizes the attractiveness of the selected hybrid system. The optimal configuration of the CSP-wind hybrid system was obtained with a solar field of a 2.6 solar multiple and a 5 hours energy storage. The achieved capacity factor was 94%, and the LCOE is lower than those resulted for standalone CSP plants.

  17. Perspective: Hybrid solar cells: How to get the polymer to cooperate?

    Directory of Open Access Journals (Sweden)

    Jonas Weickert

    2013-08-01

    Full Text Available Lately, a lot of attention has been paid to metal oxide-organic hybrid solar cells. In these devices, conjugated polymers replace the typically transparent hole transporter as usually used in solid-state dye-sensitized solar cells in order to maximize the photon absorption efficiency. However, to unleash the full potential of hybrid solar cells it is imperative to push the photocurrent contribution of the absorbing polymer.

  18. Solar Pumped Lasers and Their Applications

    Science.gov (United States)

    Lee, Ja H.

    1991-01-01

    Since 1980, NASA has been pursuing high power solar lasers as part of the space power beaming program. Materials in liquid, solid, and gas phases have been evaluated against the requirements for solar pumping. Two basic characteristics of solar insolation, namely its diffuse irradiance and 5800 K blackbody-like spectrum, impose rather stringent requirements for laser excitation. However, meeting these requirements is not insurmountable as solar thermal energy technology has progressed today, and taking advantage of solar pumping lasers is becoming increasingly attractive. The high density photons of concentrated solar energy have been used for mainly electric power generation and thermal processing of materials by the DOE Solar Thermal Technologies Program. However, the photons can interact with materials through many other direct kinetic paths, and applications of the concentrated photons could be extended to processes requiring photolysis, photosynthesis, and photoexcitation. The use of solar pumped lasers on Earth seems constrained by economics and sociopolitics. Therefore, prospective applications may be limited to those that require use of quantum effects and coherency of the laser in order to generate extremely high value products and services when conventional and inexpensive means are ineffective or impossible. The new applications already proposed for concentrated solar photons, such as destruction of hazardous waste, production of renewable fuel, production of fertilizer, and air/water pollution controls, may benefit from the use of inexpensive solar pumped laser matched with the photochemical kinetics of these processes.

  19. Demonstrative study for the wind and solar hybrid power system. 2; Furyoku taiyoko hybrid hatsuden system ni kansuru jissho kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    Kimura, Y; Sakuma, H; Ushiyama, I [Ashikaga Institute of Technology, Tochigi (Japan)

    1996-10-27

    In order to verify the complementary relationship between wind and solar energy, the long-term field test of the hybrid power system was conducted at the natural energy square of Ashikaga Institute of Technology. The solar cell blade windmill composed of a Savonius windmill and flexible solar cells applied to swept buckets was also prepared. As a result, the wind power generation was promising mainly in the winter period including the late fall and early spring, while solar one was stable all the year through although it was slightly poor in winter. Stable power generation was thus achieved by combining wind energy with solar energy. As the whole data of other wind and solar power generation systems at the square were analyzed for every month, the same conclusion as the solar cell blade windmill was obtained as follows: the wind power generation in Ashikaga area is promising in Nov.-March from the field test result for 16 months, solar power generation is stable all the year through, the hybrid power system is effective in Nov.-April, and the solar cell blade windmill is equivalent to the hybrid power system. 3 refs., 5 figs.

  20. Design, fabrication and performance of a hybrid photovoltaic/thermal (PV/T) active solar still

    International Nuclear Information System (INIS)

    Kumar, Shiv; Tiwari, Arvind

    2010-01-01

    Two solar stills (single slope passive and single slope photovoltaic/thermal (PV/T) active solar still) were fabricated and tested at solar energy park, IIT New Delhi (India) for composite climate. Photovoltaic operated DC water pump was used between solar still and photovoltaic (PV) integrated flat plate collector to re-circulate the water through the collectors and transfer it to the solar still. The newly designed hybrid (PV/T) active solar still is self-sustainable and can be used in remote areas, need to transport distilled water from a distance and not connected to grid, but blessed with ample solar energy. Experiments were performed for 0.05, 0.10, and 0.15 m water depth, round the year 2006-2007 for both the stills. It has been observed that maximum daily yield of 2.26 kg and 7.22 kg were obtained from passive and hybrid active solar still, respectively at 0.05 m water depth. The daily yield from hybrid active solar still is around 3.2 and 5.5 times higher than the passive solar still in summer and winter month, respectively. The study has shown that this design of the hybrid active solar still also provides higher electrical and overall thermal efficiency, which is about 20% higher than the passive solar still.

  1. Enhanced photovoltaic properties of perovskite solar cells by TiO2 homogeneous hybrid structure.

    Science.gov (United States)

    Su, Pengyu; Fu, Wuyou; Yao, Huizhen; Liu, Li; Ding, Dong; Feng, Fei; Feng, Shuang; Xue, Yebin; Liu, Xizhe; Yang, Haibin

    2017-10-01

    In this paper, we fabricated a TiO 2 homogeneous hybrid structure for application in perovskite solar cells (PSCs) under ambient conditions. Under the standard air mass 1.5 global (AM 1.5G) illumination, PSCs based on homogeneous hybrid structure present a maximum power conversion efficiency of 5.39% which is higher than that of pure TiO 2 nanosheets. The enhanced properties can be explained by the better contact of TiO 2 nanosheets/nanoparticles with CH 3 NH 3 PbI 3 and fewer pinholes in electron transport materials. The advent of such unique structure opens up new avenues for the future development of high-efficiency photovoltaic cells.

  2. Nanostructural optimization of silicon/PEDOT:PSS hybrid solar cells for performance improvement

    International Nuclear Information System (INIS)

    Wang, Yanzhou; Shao, Pengfei; Li, Yali; Li, Junshuai; He, Deyan; Chen, Qiang

    2017-01-01

    In this paper, an inverted silicon (Si) nanopyramid (iSiNP) surface structure with low aspect ratio and remarkable antireflection is developed through sequential treatments of NaOH and HF/CH 3 COOH/HNO 3 solutions to Si nanowire (SiNW)-textured Si wafers, which are prepared by traditional electroless chemical etching. The iSiNP/PEDOT:PSS hybrid solar cell is fabricated through conformally spin-coating poly(3.4-ethylene dioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) onto the iSiNPs; it exhibits enhanced device performance owing to the improved junction and contact quality as compared to the SiNW/PEDOT:PSS counterpart. A power conversion efficiency (PCE) of 9.6% mainly contributed from an increased fill factor (FF) of 0.61 and improved open circuit voltage ( V oc ) of 0.53 V is delivered by the iSiNP/PEDOT:PSS solar cell. As a comparison, the SiNW/PEDOT:PSS structure delivers a 7.1% PCE with a FF of 0.45 and V oc of 0.46 V. Considering the submicro-scale characteristic dimensions, iSiNPs are expected to be applicable to highly efficient thin film Si/PEDOT:PSS hybrid solar cells. (paper)

  3. Generalised Computability and Applications to Hybrid Systems

    DEFF Research Database (Denmark)

    Korovina, Margarita V.; Kudinov, Oleg V.

    2001-01-01

    We investigate the concept of generalised computability of operators and functionals defined on the set of continuous functions, firstly introduced in [9]. By working in the reals, with equality and without equality, we study properties of generalised computable operators and functionals. Also we...... propose an interesting application to formalisation of hybrid systems. We obtain some class of hybrid systems, which trajectories are computable in the sense of computable analysis. This research was supported in part by the RFBR (grants N 99-01-00485, N 00-01- 00810) and by the Siberian Branch of RAS (a...... grant for young researchers, 2000)...

  4. Influence of Hybrid Perovskite Fabrication Methods on Film Formation, Electronic Structure, and Solar Cell Performance

    Science.gov (United States)

    Schnier, Tobias; Emara, Jennifer; Olthof, Selina; Meerholz, Klaus

    2017-01-01

    Hybrid organic/inorganic halide perovskites have lately been a topic of great interest in the field of solar cell applications, with the potential to achieve device efficiencies exceeding other thin film device technologies. Yet, large variations in device efficiency and basic physical properties are reported. This is due to unintentional variations during film processing, which have not been sufficiently investigated so far. We therefore conducted an extensive study of the morphology and electronic structure of a large number of CH3NH3PbI3 perovskite where we show how the preparation method as well as the mixing ratio of educts methylammonium iodide and lead(II) iodide impact properties like film formation, crystal structure, density of states, energy levels, and ultimately the solar cell performance. PMID:28287555

  5. Hybrid solar collector using nonimaging optics and photovoltaic components

    Science.gov (United States)

    Winston, Roland; Yablonovitch, Eli; Jiang, Lun; Widyolar, Bennett K.; Abdelhamid, Mahmoud; Scranton, Gregg; Cygan, David; Kozlov, Alexandr

    2015-08-01

    The project team of University of California at Merced (UC-M), Gas Technology Institute, and Dr. Eli Yablonovitch of University of California at Berkeley developed a novel hybrid concentrated solar photovoltaic thermal (PV/T) collector using nonimaging optics and world record single-junction Gallium arsenide (GaAs) PV components integrated with particle laden gas as thermal transfer and storage media, to simultaneously generate electricity and high temperature dispatchable heat. The collector transforms a parabolic trough, commonly used in CSP plants, into an integrated spectrum-splitting device. This places a spectrum-sensitive topping element on a secondary reflector that is registered to the thermal collection loop. The secondary reflector transmits higher energy photons for PV topping while diverting the remaining lower energy photons to the thermal media, achieving temperatures of around 400°C even under partial utilization of the solar spectrum. The collector uses the spectral selectivity property of Gallium arsenide (GaAs) cells to maximize the exergy output of the system, resulting in an estimated exergy efficiency of 48%. The thermal media is composed of fine particles of high melting point material in an inert gas that increases heat transfer and effectively stores excess heat in hot particles for later on-demand use.

  6. Photoanodic Hybrid Semiconductor–Molecular Heterojunction for Solar Water Oxidation

    KAUST Repository

    Joya, Khurram Saleem

    2015-06-29

    Inorganic photo-responsive semiconducting materials have been employed in photoelectrochemical(PEC) water oxidation devicesin pursuit of solar to fuel conversion.[1]The reaction kinetics in semiconductors is limited by poor contact at the interfaces, and charge transfer is impeded by surface defects and the grain boundaries.[2]It has shown that successful surface functionalization of the photo-responsive semiconducting materials with co-catalysts can maximize the charge separation, hole delivery and its effective consumption, and enhances the efficiency and performane of the PEC based water oxidation assembly.[3]We present here unique modification of photoanodic hematite (α-Fe2O3) and bismuth vanadate (BiVO4) with molecular co-catalysts for enhanced photoelectrochemical water oxidation (Figure 1). These hybrid inorganic–organometallic heterojunctions manifest impressive cathodic shifts in the onset potentials, and the photocurrent densities have been enhanced by > 90% at all potentials relative to uncatalyzed α-Fe2O3 or BiVO4, and other catalyst-semiconductor based heterojunctions.This is a novel development in the solar to fuel conversion field, and is crucially important for designing a tandem device where light interfere very little with the catalyst layer on top of semiconducting light absorber.

  7. Photovoltaic Solar Energy : From Fundamentals to Applications

    NARCIS (Netherlands)

    Reinders, Angelina H.M.E.; Verlinden, P.J.; van Sark, W.G.J.H.M.; Freundlich, A.

    2016-01-01

    Solar PV is now the third most important renewable energy source, after hydro and wind power, in terms of global installed capacity. Bringing together the expertise of international PV specialists Photovoltaic Solar Energy: From Fundamentals to Applications provides a comprehensive and up-to-date

  8. Hybrid Applications Of Artificial Intelligence

    Science.gov (United States)

    Borchardt, Gary C.

    1988-01-01

    STAR, Simple Tool for Automated Reasoning, is interactive, interpreted programming language for development and operation of artificial-intelligence application systems. Couples symbolic processing with compiled-language functions and data structures. Written in C language and currently available in UNIX version (NPO-16832), and VMS version (NPO-16965).

  9. Solar energy applications in Nigeria

    Energy Technology Data Exchange (ETDEWEB)

    Ilenikhena, P.A.; Ezemonye, L.I.N.

    2010-09-15

    Solar radiation being abundantly present in Nigeria was one area of focus in renewable energy sources. Researches were carried out and technologies produced for direct harnessing of the energy in six energy centres across the country. Some state governments in collaboration with non-governmental agencies also sponsored solar energy projects in some villages that are not connected to the national grid.

  10. Solar hybrid power plants: Solar energy contribution in reaching full dispatchability and firmness

    Science.gov (United States)

    Servert, Jorge F.; López, Diego; Cerrajero, Eduardo; Rocha, Alberto R.; Pereira, Daniel; Gonzalez, Lucía

    2016-05-01

    Renewable energies for electricity generation have always been considered as a risk for the electricity system due to its lack of dispatchability and firmness. Renewable energies penetration is constrained to strong grids or else its production must be limited to ensure grid stability, which is kept by the usage of hydropower energy or fossil-fueled power plants. CSP technology has an opportunity to arise not only as a dispatchable and firm technology, but also as an alternative that improves grid stability. To achieve that objective, solar hybrid configurations are being developed, being the most representative three different solutions: SAPG, ISCC and HYSOL. A reference scenario in Kingdom of Saudi Arabia (KSA) has been defined to compare these solutions, which have been modelled, simulated and evaluated in terms of dispatchability and firmness using ratios defined by the authors. The results show that: a) SAPG obtains the highest firmness KPI values, but no operation constraints have been considered for the coal boiler and the solar energy contribution is limited to 1.7%, b) ISCC provides dispatchable and firm electricity production but its solar energy contribution is limited to a 6.4%, and c) HYSOL presents the higher solar energy contribution of all the technologies considered: 66.0% while providing dispatchable and firm generation in similar conditions as SAPG and ISCC.

  11. Modeling and optimization of batteryless hybrid PV (photovoltaic)/Diesel systems for off-grid applications

    International Nuclear Information System (INIS)

    Tsuanyo, David; Azoumah, Yao; Aussel, Didier; Neveu, Pierre

    2015-01-01

    This paper presents a new model and optimization procedure for off-grid hybrid PV (photovoltaic)/Diesel systems operating without battery storage. The proposed technico-economic model takes into account the variability of both the solar irradiation and the electrical loads. It allows optimizing the design and the operation of the hybrid systems by searching their lowest LCOE (Levelized Cost of Electricity). Two cases have been investigated: identical Diesel generators and Diesel generators with different sizes, and both are compared to conventional standalone Diesel generator systems. For the same load profile, the optimization results show that the LCOE of the optimized batteryless hybrid solar PV/Diesel (0.289 €/kWh for the hybrid system with identical Diesel generators and 0.284 €/kWh for the hybrid system with different sizes of Diesel generators) is lower than the LCOE obtained with standalone Diesel generators (0.32 €/kWh for the both cases). The obtained results are then confirmed by HOMER (Hybrid Optimization Model for Electric Renewables) software. - Highlights: • A technico-economic model for optimal design and operation management of batteryless hybrid systems is developed. • The model allows optimizing design and operation of hybrid systems by ensuring their lowest LCOE. • The model was validated by HOMER. • Batteryless hybrid system are suitable for off-grid applications

  12. Emerging large-scale solar heating applications

    International Nuclear Information System (INIS)

    Wong, W.P.; McClung, J.L.

    2009-01-01

    Currently the market for solar heating applications in Canada is dominated by outdoor swimming pool heating, make-up air pre-heating and domestic water heating in homes, commercial and institutional buildings. All of these involve relatively small systems, except for a few air pre-heating systems on very large buildings. Together these applications make up well over 90% of the solar thermal collectors installed in Canada during 2007. These three applications, along with the recent re-emergence of large-scale concentrated solar thermal for generating electricity, also dominate the world markets. This paper examines some emerging markets for large scale solar heating applications, with a focus on the Canadian climate and market. (author)

  13. Emerging large-scale solar heating applications

    Energy Technology Data Exchange (ETDEWEB)

    Wong, W.P.; McClung, J.L. [Science Applications International Corporation (SAIC Canada), Ottawa, Ontario (Canada)

    2009-07-01

    Currently the market for solar heating applications in Canada is dominated by outdoor swimming pool heating, make-up air pre-heating and domestic water heating in homes, commercial and institutional buildings. All of these involve relatively small systems, except for a few air pre-heating systems on very large buildings. Together these applications make up well over 90% of the solar thermal collectors installed in Canada during 2007. These three applications, along with the recent re-emergence of large-scale concentrated solar thermal for generating electricity, also dominate the world markets. This paper examines some emerging markets for large scale solar heating applications, with a focus on the Canadian climate and market. (author)

  14. Perspectives for solar thermal applications in Taiwan

    International Nuclear Information System (INIS)

    Chang, Keh-Chin; Lin, Wei-Min; Leu, Tzong-Shyng; Chung, Kung-Ming

    2016-01-01

    Taiwan has long depended on imported fossil energy. The government is thus actively promoting the use of renewable energy. Since 2000, domestic installations of solar water heaters have increased substantially because of the long-term subsidies provided for such systems. However, data on the annual installation area of solar collectors in recent years indicated that the solar thermal industry in Taiwan has reached a bottleneck. The long-term policy providing subsidies must thus be revised. It is proposed that future thermal applications in Taiwan should focus on building-integrated solar thermal, photovoltaic/thermal, and industrial heating processes. Regarding building-integrated solar thermal systems, the current subsidy model can be continued (according to area of solar collectors); nevertheless, the application of photovoltaic/thermal and industrial heating systems must be determined according to the thermal output of such systems. - Highlights: •The long-term subsidization for solar water heaters has lost effectiveness. •Solar thermal applications include BIST, PV/T and industrial heating process. •A performance-based subsidy policy should be implemented.

  15. Optimization of Renewable Energy Hybrid System for Grid Connected Application

    Directory of Open Access Journals (Sweden)

    Mustaqimah Mustaqimah

    2012-10-01

    Full Text Available ABSTRACT. Hybrid energy systems are pollution free, takes low cost and less gestation period, user and social friendly. Such systems are important sources of energy for shops, schools, and clinics in village communities especially in remote areas. Hybrid systems can provide electricity at a comparatively economic price in many remote areas. This paper presents a method to jointly determine the sizing and operation control of hybrid energy systems. The model, PV wind hydro and biomass hybrid system connects to grid. The system configuration of the hybrid is derived based on a theoretical domestic load at a typical location and local solar radiation, wind and water flow rate data and biomass availability. The hybrid energy system is proposed for 10 of teacher’s houses of Industrial Training Institute, Mersing. It is predicted 10 kW load consumption per house. The hybrid energy system consists of wind, solar, biomass, hydro, and grid power. Approximately energy consumption is 860 kWh/day with a 105 kW peak demand load. The proposed hybrid renewable consists of solar photovoltaic (PV panels, wind turbine, hydro turbine and biomass. Battery and inverter are included as part of back-up and storage system. It provides the economic sensitivity of hybridization and the economic and environmental benefits of using a blend of technologies. It also presents the trade off that is involved in optimizing a hybrid energy system to harness and utilize the available renewable energy resources efficiently.

  16. Solar air heaters and their applications

    Science.gov (United States)

    Selcuk, M. K.

    1977-01-01

    The solar air heater appears to be the most logical choice, as far as the ultimate application of heating air to maintain a comfortable environment is concerned. One disadvantage of solar air heaters is the need for handling larger volumes of air than liquids due to the low density of air as a working substance. Another disadvantage is the low thermal capacity of air. In cases where thermal storage is needed, water is superior to air. Design variations of solar air heaters are discussed along with the calculation of the efficiency of a flat plate solar air heater, the performance of various collector types, and the applications of solar air heaters. Attention is given to collectors with nonporous absorber plates, collectors with porous absorbers, the performance of flat plate collectors with finned absorbers, a wire mesh absorber, and an overlapped glass plate air heater.

  17. Silicon Nanowire/Polymer Hybrid Solar Cell-Supercapacitor: A Self-Charging Power Unit with a Total Efficiency of 10.5.

    Science.gov (United States)

    Liu, Ruiyuan; Wang, Jie; Sun, Teng; Wang, Mingjun; Wu, Changsheng; Zou, Haiyang; Song, Tao; Zhang, Xiaohong; Lee, Shuit-Tong; Wang, Zhong Lin; Sun, Baoquan

    2017-07-12

    An integrated self-charging power unit, combining a hybrid silicon nanowire/polymer heterojunction solar cell with a polypyrrole-based supercapacitor, has been demonstrated to simultaneously harvest solar energy and store it. By efficiency enhancement of the hybrid nanowire solar cells and a dual-functional titanium film serving as conjunct electrode of the solar cell and supercapacitor, the integrated system is able to yield a total photoelectric conversion to storage efficiency of 10.5%, which is the record value in all the integrated solar energy conversion and storage system. This system may not only serve as a buffer that diminishes the solar power fluctuations from light intensity, but also pave its way toward cost-effective high efficiency self-charging power unit. Finally, an integrated device based on ultrathin Si substrate is demonstrated to expand its feasibility and potential application in flexible energy conversion and storage devices.

  18. An efficient fast response and high-gain solar-blind flexible ultraviolet photodetector employing hybrid geometry

    Science.gov (United States)

    Hussain, Amreen A.; Pal, Arup R.; Patil, Dinkar S.

    2014-05-01

    We report high performance flexible hybrid ultraviolet photodetector with solar-blind sensitivity using nanocomposite film of plasma polymerized aniline-titanium dioxide. A facile solvent-free plasma technique is used to synthesize superior quality hybrid material with high yield. The hybrid photodetector exhibited high photoconductive gain of the order of ˜105 and fast speed with response and recovery time of 22.87 ms and 34.23 ms. This is an excellent result towards getting a balance in the response speed and photoconductive gain trade-off of the photodetectors reported so far. In addition, the device has the advantages of enhanced photosensitivity ((Ilight - Idark)/Idark) of the order of ˜102 and high responsivity of ˜104 AW-1. All the merits substantiates that, to prepare hybrid material, plasma based method holds potential to be an easy way for realizing large scale nanostructured photodetectors for practical applications.

  19. Numerical analysis of using hybrid photovoltaic-thermal solar water heater in Iran

    Directory of Open Access Journals (Sweden)

    M Mohammadi Sarduei

    2017-05-01

    Full Text Available Introduction Electrical performance of solar cells decreases with increasing cell temperature, basically because of growth of the internal charge carrier recombination rates, caused by increased carrier concentrations. Hybrid Photovoltaic/thermal (PVT systems produce electrical and thermal energy simultaneously. PVT solar collectors convert the heat generated in the solar cells to low temperature useful heat energy and so they provide a lower working temperature for solar cells which subsequently leads to a higher electrical efficiency. Recently, in Iran, the reforming government policy in subsidy and increasing fossil fuels price led to growing an interest in use of renewable energies for residual and industrial applications. In spite of this, the PV power generator investment is not economically feasible, so far. Hybrid PVT devices are well known as an alternative method to improve energy performance and therefore economic feasibility of the conventional PV systems. The aim of this study is to investigate the performance of a PVT solar water heater in four different cities of Iran using TRNSYS program. Materials and Methods The designed PVT solar water system consists of two separate water flow circuits namely closed cycle and open circuit. The closed cycle circuit was comprised of a solar PVT collector (with nominal power of 880 W and area of 5.6 m2, a heat exchanger in the tank (with volume of 300 L, a pump and connecting pipes. The water stream in the collector absorbs the heat accumulated in the solar cells and delivers it to the water in the tank though the heat exchanger. An on/off controller system was used to activate the pump when the collector outlet temperature was higher than that of the tank in the closed cycle circuit. The water in the open circuit, comes from city water at low temperature, enters in the lower part of the storage tank where the heat transfer occurs between the two separate circuits. An auxiliary heater, connected

  20. Investigation of thermodynamic performances for two solar-biomass hybrid combined cycle power generation systems

    International Nuclear Information System (INIS)

    Liu, Qibin; Bai, Zhang; Wang, Xiaohe; Lei, Jing; Jin, Hongguang

    2016-01-01

    Highlights: • Two solar-biomass hybrid combined cycle power generation systems are proposed. • The characters of the two proposed systems are compared. • The on-design and off-design properties of the system are numerically investigated. • The favorable performances of thermochemical hybrid routine are validated. - Abstract: Two solar-biomass hybrid combined cycle power generation systems are proposed in this work. The first system employs the thermochemical hybrid routine, in which the biomass gasification is driven by the concentrated solar energy, and the gasified syngas as a solar fuel is utilized in a combined cycle for generating power. The second system adopts the thermal integration concept, and the solar energy is directly used to heat the compressed air in the topping Brayton cycle. The thermodynamic performances of the developed systems are investigated under the on-design and off-design conditions. The advantages of the hybrid utilization technical mode are demonstrated. The solar energy can be converted and stored into the chemical fuel by the solar-biomass gasification, with the net solar-to-fuel efficiency of 61.23% and the net solar share of 19.01% under the specific gasification temperature of 1150 K. Meanwhile, the proposed system with the solar thermochemical routine shows more favorable behaviors, the annual system overall energy efficiency and the solar-to-electric efficiency reach to 29.36% and 18.49%, while the with thermal integration concept of 28.03% and 15.13%, respectively. The comparison work introduces a promising approach for the efficient utilization of the abundant solar and biomass resources in the western China, and realizes the mitigation of CO_2 emission.

  1. Optical and electrical effects of plasmonic nanoparticles in high-efficiency hybrid solar cells.

    Science.gov (United States)

    Fu, Wei-Fei; Chen, Xiaoqiang; Yang, Xi; Wang, Ling; Shi, Ye; Shi, Minmin; Li, Han-Ying; Jen, Alex K-Y; Chen, Jun-Wu; Cao, Yong; Chen, Hong-Zheng

    2013-10-28

    Plasmonics have been proven to be an effective way to harness more incident light to achieve high efficiency in photovoltaic devices. Herein, we explore the possibility that plasmonics can be utilized to enhance light trapping and power conversion efficiency (PCE) for polymer-quantum dot (QD) hybrid solar cells (HSCs). Based on a low band-gap polymer poly[2,6-(4,4-bis-(2-ethylhexyl)-4H-cyclopenta[2,1-b;3,4-b']-dithiophene)-alt-4,7-(2,1,3-benzothiadiazole)] (PCPDTBT) and a CdSe QD bulk-heterojunction (BHJ) system, gold nanoparticles were doped at different locations of the devices. Successfully, an improved PCE of 3.20 ± 0.22% and 3.16 ± 0.15% was achieved by doping the hole transporting layer and the active layer, respectively, which are among the highest values reported for CdSe QD based HSCs. A detailed study of processing, characterization, microscopy, and device fabrication is conducted to understand the underlying mechanism for the enhanced device performance. The success of this work provides a simple and generally applicable approach to enhance light harnessing of polymer-QD hybrid solar cells.

  2. Optimization of hybrid system (wind-solar energy) for pumping water ...

    African Journals Online (AJOL)

    This paper presents an optimization method for a hybrid (wind-solar) autonomous system designed for pumping water. This method is based on mathematical models demonstrated for the analysis and control of the performance of the various components of the hybrid system. These models provide an estimate of ...

  3. Next generation solar energy. From fundamentals to applications

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2011-07-01

    Within the International Conference between 12th and 14th December, 2011 in Erlangen (Federal Republic of Germany) the following lectures were presented: (1) The opto-electronic physics required to approach the Shockley-Queisser efficiency limit (E. Yablonovitch); (2) The Shockley-Queisser-limit and beyond (G.H. Bauer); (3) Designing composite nanomaterials for photovoltaic devices (B. Rech); (4) Light-Material interactions in energy conversion (H. Atwater); (5) Functional imaging of hybrid nanostructures - Visualizing mechanisms of solar energy utilization (L. Lauhon); (6) Are photosynthetic proteins suitable for PV applications (Y. Rosenwaks); (7) Detailed balance limit in photovoltaic systems (U. Rau); (8) Plasmonics and nanophotonics for next generation photovoltaics (E. Garnett); (9) Dispersion, wave propagation and efficiency analysis of nanowire solar cells (B. Witzigmann); (10) Application of nanostructures to next generation photovoltaics - Opportunities and challenges from an industrial research perspective (L. Tsakalakos); (11) Triplet states in organic and organometallic photovoltaic cells (K.S. Schanze); (12) New photoelectrode architectures (J.T. Hupp); (13) Dendrimers for optoelectronic and photovoltaic applications (P. Ceroni); (14) Photon management with luminescent materials (J. Goldschmidt); (15) Economical aspects of next generation solar cell technologies (W. Hoffmann); (16) Scalability in solar energy conversion - First-row transition metal-based chromophores for dye-sensitized solar cells (J. McCusker); (17) Designing organic materials for photovoltaic devices (A. Harriman); (18) Molecular photovoltaics - What can we learn from model studies (B. Albinsson); (19) Porphyrin-sensitised titanium dioxide solar cells (D. Officer); (20) Light-harvesting: Charge separation, and charge-transportation properties of novel materials for organic photovoltaics (H. Imahori); (21) Phthalocyanines for molecular photovoltaics (T. Torres); (22) Photophysics of

  4. Solar applications analysis for energy storage

    Science.gov (United States)

    Blanchard, T.

    1980-01-01

    The role of energy storage as it relates to solar energy systems is considered. Storage technologies to support solar energy applications, the status of storage technologies, requirements and specifications for storage technologies, and the adequacy of the current storage research and development program to meet these requirements are among the factors discussed. Emphasis is placed on identification of where the greatest potential exists for energy storage in support of those solar energy systems which could have a significant impact on the U.S. energy mix.

  5. Plasmon-enhanced Solar Fuel Production with Gold-metal Oxide Hybrid Nanomaterials

    DEFF Research Database (Denmark)

    Engelbrekt, Christian; Law, Matt; Zhang, Jingdong

    , provide new catalytic routes and expands the scope of solar photocatalysis. We prepare metal oxide SNPs, gold PNPs and their hybrids through mild aqueous syntheses to develop efficient photocatalyst for solar fuel production. Focus is placed on the synergetic interplay between SNPs and PNPs, understanding...

  6. Perylenes as sensitizers in hybrid solar cells : how molecular size influences performance

    NARCIS (Netherlands)

    Li, Chen; Liu, Zhihong; Schoneboom, Jan; Eickemeyer, Felix; Pschirer, Neil G.; Erk, Peter; Herrmann, Andreas; Mullen, Klaus; Schöneboom, Jan; Grätzel, Michael; Janssen, René

    2009-01-01

    Dye-sensitized solar cells (DSCs), one kind of hybrid solar cells, are being intensively developed due to their high efficiency and low cost. One of the main factors to improve the efficiency is the minimization of the recombination of holes and electrons at the TiO(2)/dye/electrolyte interface. To

  7. Hybrid solar cells from regioregular polythiophene and ZnO nanoparticles

    NARCIS (Netherlands)

    Beek, W.J.E.; Wienk, M.M.; Janssen, R.A.J.

    2006-01-01

    Blends of nanocryst. zinc oxide nanoparticles (nc-ZnO) and regioregular poly(3-hexylthiophene) (P3HT) processed from soln. have been used to construct hybrid polymer-metal oxide bulk-heterojunction solar cells. Thermal annealing of the spin-cast films significantly improves the solar-energy

  8. Behavior of hybrid concentrated photovoltaic-thermoelectric generator under variable solar radiation

    DEFF Research Database (Denmark)

    Mahmoudi Nezhad, Sajjad; Rezaniakolaei, Alireza; Rosendahl, Lasse Aistrup

    2018-01-01

    diversely versus changing the solar radiation and module temperature. Moreover, the thermal response of the TEG stabilizes temperature fluctuation of the hybrid module when the solar radiation rapidly changes. In this work, impact of the thermal contact resistance on the temperature profile and system...... and solved by finite volume algorithm. In spite of temperatures profile in the hybrid CPV-TEG module, as results of variation of solar irradiation, power generation and efficiency of the CPV and TEG under the transient condition are presented. The results show that efficiency of the TEG and CPV varies...

  9. Hybrid solar-hydraulic electric power supply systems; Sistemas de fornecimento de energia eletrica hibrido solar hidraulico

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, Doriana Marinho Novaes; Silva, Selenio Rocha; Alvim Filho, Aymore de Castro [Minas Gerais Univ., Belo Horizonte, MG (Brazil). Centro de Pesquisa e Desenvolvimento em Engenharia Eletrica]. E-mails: doriana@cpdee.ufmg.br; selenios@eee.ufmg.br; aymore@cpdee.ufmg.br; Martinez, Carlos Barreira [Minas Gerais Univ., Belo Horizonte, MG (Brazil). Dept. de Engenharia Hidraulica e Recursos Hidricos]. E-mail: martinez@cce.ufmg.br

    2000-07-01

    This work presents a comparative study among the direct solar energy utilization options ,through solar panels, coupled to the frequency inverter. These system store energy through batteries or through a reversible and hybrid solar/hydraulic system, coupled to a rectifier and a frequency inverter. There are two basic configurations for the systems being the first one composed of solar panels linked to a battery system , delivering electric energy through a three phase inverter. The second one is composed of solar panels connected to a small battery system and to a water reservoir that has the goal of operating as a reversible system during at night, or during load peak periods. In this ,it is presented a methodology for the designing and economic analysis, comparing this hybrid alternative, to the inverter plus batteries options. This methodology to the correct Energy Conversion System,which is economically advantageous due to the availability of the region. At the end, it is presented a 'case study' where viability of use , for the hybrid solar/hydraulic system in an isolated area, is verified. (author)

  10. Compositional engineering of acceptors for highly efficient bulk heterojunction hybrid organic solar cells.

    Science.gov (United States)

    Amber Yousaf, S; Ikram, M; Ali, S

    2018-10-01

    The wet chemical synthesis of chromium oxide (Cr 2 O 3 ) nanoparticles (NPs) and its application in active layer of inverted bulk heterojunction organic solar cells is documented in this research. Chromium oxide NPs of 10-30 nm size range having a band gap of 2.9 eV were successfully synthesized. These NPs were used in inverted organic solar cells in amalgamation with P3HT:PCBM and PTB7:PCBM polymers. The fabricated hybrid devices improves PCE significantly for P3HT:PCBM and PTB7:PCBM systems. The photophysical energy levels, optoelectrical properties and microscopic images have been systematically studied for the fabricated devices. The introduction of Cr 2 O 3 nanoparticles (NPs) enhances light harvesting and tunes energy levels into improved electrical parameters. A clear red shift and improved absorption have been observed for ternary blended devices compared to that observed with controlled organic solar cells. Apparently, when the amount of NPs in the binary polymer blend exceeds the required optimum level, there is a breakdown of the bulk heterojunction leading to lowering of the optical and electrical performance of the devices. Copyright © 2018 Elsevier Inc. All rights reserved.

  11. Solar Hybrid Hydrogen Production in Sunbelt and Shipping to Japan as a Liquid fuel of Methanol

    International Nuclear Information System (INIS)

    Tamaura, Y.; Hasegawa, N.; Kaneko, H.; Utamura, M.; Katayama, Y.; Onozaki, M.; Hasuike, H.

    2006-01-01

    Solar hybrid methanol (SH-methanol) production (6000 t/day) from natural gas and coal using H 2 and O 2 gases, which are produced by electrolysis with solar thermal power (Tokyo Tech Beam-down concentration solar power generation with molten salt heat-storage system) at Sunbelt in Australia was studied from the economical view point. This system is the combined system of O 2 -burning coal gasification (C+1/2O 2 =CO), natural gas reforming by O 2 -partial oxidation (CH 4 + 1/2O 2 = CO + 2H 2 ), and water decomposition by electrolysis with solar thermal power (H 2 O = H 2 + 1/2O 2 ). In this production system, the SH-methanol is produced with zero CO 2 emission, shipped to Japan by oil tanker, and can be used as solar hybrid hydrogen in Japan for fuel cell. The solar hybrid methanol production cost of 24 yen/kg (58 US dollars bbl crude oil equivalent, April, 2006) is obtained with the solar power cost of the Tokyo Tech Beam-down solar concentration solar power generation with molten salt heat-storage. This cost is lower than the crude oil (67 US dollars bbl crude oil equivalent, April, 2006) and LPG (72 US dollars/ bbl crude oil equivalent, January, 2006). (authors)

  12. Self-powered textile for wearable electronics by hybridizing fiber-shaped nanogenerators, solar cells, and supercapacitors.

    Science.gov (United States)

    Wen, Zhen; Yeh, Min-Hsin; Guo, Hengyu; Wang, Jie; Zi, Yunlong; Xu, Weidong; Deng, Jianan; Zhu, Lei; Wang, Xin; Hu, Chenguo; Zhu, Liping; Sun, Xuhui; Wang, Zhong Lin

    2016-10-01

    Wearable electronics fabricated on lightweight and flexible substrate are believed to have great potential for portable devices, but their applications are limited by the life span of their batteries. We propose a hybridized self-charging power textile system with the aim of simultaneously collecting outdoor sunshine and random body motion energies and then storing them in an energy storage unit. Both of the harvested energies can be easily converted into electricity by using fiber-shaped dye-sensitized solar cells (for solar energy) and fiber-shaped triboelectric nanogenerators (for random body motion energy) and then further stored as chemical energy in fiber-shaped supercapacitors. Because of the all-fiber-shaped structure of the entire system, our proposed hybridized self-charging textile system can be easily woven into electronic textiles to fabricate smart clothes to sustainably operate mobile or wearable electronics.

  13. A hybrid numerical prediction scheme for solar radiation estimation in un-gauged catchments.

    Science.gov (United States)

    Shamim, M. A.; Bray, M.; Ishak, A. M.; Remesan, R.; Han, D.

    2009-09-01

    The importance of solar radiation on earth's surface is depicted in its wide range of applications in the fields of meteorology, agricultural sciences, engineering, hydrology, crop water requirements, climatic changes and energy assessment. It is quite random in nature as it has to go through different processes of assimilation and dispersion while on its way to earth. Compared to other meteorological parameters, solar radiation is quite infrequently measured, for example, the worldwide ratio of stations collecting solar radiation to those collecting temperature is 1:500 (Badescu, 2008). Researchers, therefore, have to rely on indirect techniques of estimation that include nonlinear models, artificial intelligence (e.g. neural networks), remote sensing and numerical weather predictions (NWP). This study proposes a hybrid numerical prediction scheme for solar radiation estimation in un-gauged catchments. It uses the PSU/NCAR's Mesoscale Modelling system (MM5) (Grell et al., 1995) to parameterise the cloud effect on extraterrestrial radiation by dividing the atmosphere into four layers of very high (6-12 km), high (3-6 km), medium (1.5-3) and low (0-1.5) altitudes from earth. It is believed that various cloud forms exist within each of these layers. An hourly time series of upper air pressure and relative humidity data sets corresponding to all of these layers is determined for the Brue catchment, southwest UK, using MM5. Cloud Index (CI) was then determined using (Yang and Koike, 2002): 1 p?bi [ (Rh - Rh )] ci =------- max 0.0,---------cri dp pbi - ptipti (1- Rhcri) where, pbi and pti represent the air pressure at the top and bottom of each layer and Rhcri is the critical value of relative humidity at which a certain cloud type is formed. Output from a global clear sky solar radiation model (MRM v-5) (Kambezidis and Psiloglu, 2008) is used along with meteorological datasets of temperature and precipitation and astronomical information. The analysis is aided by the

  14. Potency of Solar Energy Applications in Indonesia

    Directory of Open Access Journals (Sweden)

    Noer Abyor Handayani

    2012-07-01

    Full Text Available Currently, 80% of conventional energy is used to fulfill general public's needs andindustries. The depletion of oil and gas reserves and rapid growth in conventional energyconsumption have continuously forced us to discover renewable energy sources, like solar, wind,biomass, and hydropower, to support economic development in the future. Solar energy travels at aspeed of 186,000 miles per second. Only a small part of the radiant energy that the sun emits intospace ever reaches the Earth, but that is more than enough to supply all our energy demand.Indonesia is a tropical country and located in the equator line, so it has an abundant potential ofsolar energy. Most of Indonesian area get enough intensity of solar radiation with the average dailyradiation around 4 kWh/m2. Basically, the solar systems use solar collectors and concentrators forcollecting, storing, and using solar radiation to be applied for the benefit of domestics, commercials,and industrials. Common applications for solar thermal energy used in industry are the SWHs, solardryers, space heating, cooling systems and water desalination.

  15. Solar Energy: Its Technologies and Applications

    Science.gov (United States)

    Auh, P. C.

    1978-06-01

    Solar heat, as a potential source of clean energy, is available to all of us. Extensive R and D efforts are being made to effectively utilize this renewable energy source. A variety of different technologies for utilizing solar energy have been proven to be technically feasible. Here, some of the most promising technologies and their applications are briefly described. These are: Solar Heating and Cooling of Buildings (SHACOB), Solar Thermal Energy Conversion (STC), Wind Energy Conversion (WECS), Bioconversion to Fuels (BCF), Ocean Thermal Energy Conversion (OTEC), and Photovoltaic Electric Power Systems (PEPS). Special emphasis is placed on the discussion of the SHACOB technologies, since the technologies are being expeditiously developed for the near commercialization.

  16. Exergoeconomic and enviroeconomic analyses of hybrid double slope solar still loaded with nanofluids

    International Nuclear Information System (INIS)

    Sahota, Lovedeep; Tiwari, G.N.

    2017-01-01

    Highlights: • Two systems of double slope solar still loaded with three different water based nanofluid have been studied. • Concentration of assisting metallic nanoparticles and basin fluid has been optimized for the annual analysis. • Based on annual performance exergoeconomic and enviroeconomic analysis for both systems has been performed. - Abstract: In recent times, incorporation of nanotechnology in solar distillation systems for potable water production is a new approach harvesting solar thermal energy. In present manuscript, concentration of assisting nanoparticles and basin fluid (basefluid/nanofluid) mass have been optimized for hybrid solar still operating (a) without heat exchanger (system A), and (b) with helically coiled heat exchanger (system B). Corresponding to the optimized parameters, overall thermal energy, exergy, productivity (yield), and cost analysis of the proposed hybrid systems loaded with water based nanofluids have been carried out; and found to be significantly improved by incorporating copper oxide-water based nanofluid. Moreover, on the basis of overall thermal energy and exergy, the amount of carbon dioxide mitigated per annum is found to be 14.95 tones and 3.17 tones respectively for the hybrid system (A); whereas, it is found to be 24.61 tones and 2.36 tones respectively for the hybrid system (B) incorporating copper oxide-water based nanofluid. Annual performance of the proposed hybrid systems has been compared with the conventional solar still (system C).

  17. Combined cycle solar central receiver hybrid power system study. Final technical report. Volume II

    Energy Technology Data Exchange (ETDEWEB)

    None

    1979-11-01

    This study develops the conceptual design for a commercial-scale (nominal 100 MWe) central receiver solar/fossil fuel hybrid power system with combined cycle energy conversion. A near-term, metallic heat pipe receiver and an advanced ceramic tube receiver hybrid system are defined through parametric and market potential analyses. Comparative evaluations of the cost of power generation, the fuel displacement potential, and the technological readiness of these two systems indicate that the near-term hybrid system has better potential for commercialization by 1990. Based on the assessment of the conceptual design, major cost and performance improvements are projected for the near-term system. Constraints preventing wide-spread use were not identified. Energy storage is not required for this system and analyses show no economic advantages with energy storage provisions. It is concluded that the solar hybrid system is a cost effective alternative to conventional gas turbines and combined cycle generating plants, and has potential for intermediate-load market penetration at 15% annual fuel escalation rate. Due to their flexibility, simple solar/nonsolar interfacing, and short startup cycles, these hybrid plants have significant operating advantages. Utility company comments suggest that hybrid power systems will precede stand-alone solar plants.

  18. Solar cells for space applications (part 2)

    International Nuclear Information System (INIS)

    Gomez, T.J.

    1992-01-01

    This lecture focusses on qualification and verification tests and procedures on solar cells designed for space applications. The series of tests should produce orbital performance under determined illumination, temperature and irradiance. Tests are divided in outdoor and laboratory experiments. Environmental tests include durability, qualification (mechanical and electrical), I-V curves, Spectral response

  19. Wind Solar Hybrid System Rectifier Stage Topology Simulation

    OpenAIRE

    Anup M. Gakare; Subhash Kamdi

    2014-01-01

    This paper presents power-control strategies of a grid-connected hybrid generation system with versatile power transfer. The hybrid system allows maximum utilization of freely available renewable sources like wind and photovoltaic energies. This paper presents a new system configuration of the multi input rectifier stage for a hybrid wind and photovoltaic energy system. This configuration allows the two sources to supply the load simultaneously depending on the availability of...

  20. Fiscal 1998 New Sunshine Program achievement report. Development for practical application of photovoltaic system - Development of thin-film solar cell manufacturing technology (Development of low-cost large-area module manufacturing technology - Development of application type novel-structure thin-film solar cell manufacturing technology - Development of amorphous silicon/thin-film polycrystalline silicon hybrid thin-film solar cell manufacturing technology); 1998 nendo taiyoko hatsuden system jitsuyoka gijutsu kaihatsu seika hokokusho. Usumaku taiyo denchi no seizo gijutsu kaihatsu / tei cost daimenseki module seizo gijutsu kaihatsu (oyogata shinkozo usumaku taiyo denchi no seizo gijutsu kaihatsu / amorphous silicon/usumaku takessho silicon hybrid usumaku taiyo denchi no seizo gijutsu kaihatsu)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    The project aims to manufacture the above for the development of low-cost high-efficiency practical cells. Technologies were developed to homogeneously fabricate films with an average efficiency of 10% or more in a 100mm times 85mm area in a STAR (naturally surface texture and enhanced absorption with a back reflector) structure thin-film polycrystalline silicon (poly-Si) solar cell. The texture shape was improved for a higher light trapping effect and a STAR structure cell highly sensitive to long wavelengths and fit for use for a hybrid cell bottom layer was obtained. Various cells were examined for temperature characteristics, and it was found that thin-film poly-Si cells present a temperature coefficient equal to or less than that of bulk single-crystal silicon systems, and hybrid cells a temperature coefficient similar to that of a-Si systems. The technology was applied to a hybrid solar cell in which an a-Si cell was placed on STAR structure thin film poly-Si cells, and a resultant 3-layer a-Si/poly-Si/poly-Si cell exhibited a stabilization factor of 12.0% after 550 hours of optical irradiation. (NEDO)

  1. Electrical production for domestic and industrial applications using hybrid PV-wind system

    International Nuclear Information System (INIS)

    Essalaimeh, S.; Al-Salaymeh, A.; Abdullat, Y.

    2013-01-01

    Highlights: ► Modeling and building hybrid system of PV and wind turbine. ► Investigation of the electrical generation under Amman–Jordan’s climate. ► Configuration of theoretical and actual characteristics of the hybrid system. ► Testing effects of dust, inclination and load on the electrical generation. ► Financial analysis for various applications. - Abstract: The present work shows an experimental investigation of using a combination of solar and wind energies as hybrid system for electrical generation under the Jordanian climate conditions. The generated electricity has been utilized for different types of applications and mainly for space heating and cooling. The system has also integration with grid connection to have more reliable system. Measurements included the solar radiation intensity, the ambient temperature, the wind speed and the output power from the solar PV panels and wind turbine. The performance characteristic of the PV panels has been obtained by varying the load value through a variable resistance. Some major factors have been studied and practically measured; one of them is the dust effect on electrical production efficiency for photovoltaic panels. Another factor is the inclination of the PV panels, where varying the angle of inclination has a seasonal importance for gathering the maximum solar intensity. Through mathematical calculation and the collected and measured data, a simple payback period has been calculated of the hybrid system in order to study the economical aspects of installing such a system under Jordanian climate conditions and for different usages and local tariffs including domestic, industrial and commercial applications. It was found through this work that the generated electricity of hybrid system and under Jordanian climate conditions can be utilized for electrical heating and cooling through split units and resistive heaters.

  2. Application of Genomic In Situ Hybridization in Horticultural Science

    Directory of Open Access Journals (Sweden)

    Fahad Ramzan

    2017-01-01

    Full Text Available Molecular cytogenetic techniques, such as in situ hybridization methods, are admirable tools to analyze the genomic structure and function, chromosome constituents, recombination patterns, alien gene introgression, genome evolution, aneuploidy, and polyploidy and also genome constitution visualization and chromosome discrimination from different genomes in allopolyploids of various horticultural crops. Using GISH advancement as multicolor detection is a significant approach to analyze the small and numerous chromosomes in fruit species, for example, Diospyros hybrids. This analytical technique has proved to be the most exact and effective way for hybrid status confirmation and helps remarkably to distinguish donor parental genomes in hybrids such as Clivia, Rhododendron, and Lycoris ornamental hybrids. The genome characterization facilitates in hybrid selection having potential desirable characteristics during the early hybridization breeding, as this technique expedites to detect introgressed sequence chromosomes. This review study epitomizes applications and advancements of genomic in situ hybridization (GISH techniques in horticultural plants.

  3. On practicality of a hybrid car with solar cells; Taiyo denchi wo tosaishita hybrid car no jitsuyosei ni tsuite

    Energy Technology Data Exchange (ETDEWEB)

    Sasaki, K; Nagayoshi, H; Kamisako, K [Tokyo University of Agriculture and Technology, Tokyo (Japan)

    1997-11-25

    The paper stated a development of a hybrid car which is a parallel type with gasoline engine and electric motor as driving source (connecting each according to the situation) and is also equipped with solar cells. Specifications are gasoline engine of 1200cc, induction motor of 5.5kW, lead battery of 288V and 7.2kWh, monocrystal silicon solar cells of 180W maximum output, and body weight of 1100kg. The rear wheel is driven by electric motor, and the front wheel by gasoline engine. The car is loaded with battery charge use solar cells on hood and roof. To enhance cleaning degree, 1.6kW solar cells are installed as an installed power system and used for battery charge. Even by an electric motor with output less than that of the usual electric car, harmful exhaust gas emitted in start-up can be controlled. This is because the electric motor can be used in accelerating. It was confirmed that the power required for it could be supplied by solar cells installed on the car. The hybrid car is practically useful for prevention of local air pollution. 5 refs., 4 figs., 2 tabs.

  4. Performance Analysis of Solar-Wind-Diesel-Battery Hybrid Energy System for KLIA Sepang Station of Malaysia

    Science.gov (United States)

    Shezan, S. K. A.; Saidur, R.; Hossain, A.; Chong, W. T.; Kibria, M. A.

    2015-09-01

    A large number of populations of the world live in rural or remote areas those are geographically isolated. Power supply and uninterrupted fuel transportation to produce electrical power for these remote areas poses a great challenge. Using renewable energy in hybrid energy system might be a pathway to solve this problem. Malaysia is a large hilly land with the gift of renewable energy resources. There is a good chance to utilize these renewable resources to produce electrical power and to limit the dependency on the fossil fuel as well as reduce the carbon emissions. In this perspective, a research is carried out to analyze the performance of a solar-wind-diesel-battery hybrid energy system for a remote area named “KLIA Sepang station” in the state of Selangor, Malaysia. In this study, a 56 kW hybrid energy system has been proposed that is capable to support more than 50 households and 6 shops in that area. Real time field data of solar radiation and wind speed is used for the simulation and optimization of operations using “Homer” renewable energy software. The proposed system can reduce CO2 emission by about 16 tons per year compared to diesel generator only. In the same time the Cost of energy (COE) of the optimized system is USD 5.126/kWh.The proposed hybrid energy system might be applicable for other parts of the world where the climate conditions are similar.

  5. Design and performance evaluation of a new hybrid solar dryer for banana

    International Nuclear Information System (INIS)

    Amer, B.M.A.; Hossain, M.A.; Gottschalk, K.

    2010-01-01

    A hybrid solar dryer was designed and constructed using direct solar energy and a heat exchanger. The dryer consists of solar collector, reflector, heat exchanger cum heat storage unit and drying chamber. The drying chamber was located under the collector. The dryer was operated during normal sunny days as a solar dryer, and during cloudy day as a hybrid solar dryer. Drying was also carried out at night with stored heat energy in water which was collected during the time of sun-shine and with electric heaters located at water tank. The efficiency of the solar dryer was raised by recycling about 65% of the drying air in the solar dryer and exhausting a small amount of it outside the dryer. Under Mid-European summer conditions it can raise up the air temperature from 30 to 40 deg. C above the ambient temperature. The solar dryer was tested for drying of ripe banana slices. The capacity of the dryer was to dry about 30 kg of banana slices in 8 h in sunny day from an initial moisture content of 82% to the final moisture content of 18% (wb). In the same time it reduced to only 62% (wb) moisture content in open sun drying method. The colour, aroma and texture of the solar dried products were better than the sun drying products.

  6. Experimental investigation of a Hybrid Solar Drier and Water Heater System

    International Nuclear Information System (INIS)

    Mohajer, Alireza; Nematollahi, Omid; Joybari, Mahmood Mastani; Hashemi, Seyed Ahmad; Assari, Mohammad Reza

    2013-01-01

    Highlights: • A Hybrid Solar Drier and Water Heater System experimentally investigated. • Using collected data, GIS maps were plotted for solar energy of Khuzestan Province. • System is presented which facilitates a dual-purpose solar collector. • The system includes a 100 l water storage tank, a solar dryer with 5 trays. • Experiments were carried out to dry vegetables (parsley, dill and coriander). - Abstract: Drying process is of great importance in food industries. One of the best methods of food drying is using solar dryers. For initial estimation of solar energy, calculations were made for statistical information measured by Renewable Energy Organization of Iran. Using collected data, GIS maps were plotted for solar energy of Khuzestan Province, Iran. In this study, a new hybrid system is presented which facilitates a dual-purpose solar collector to simultaneously support a dryer system and provide consumptive hot water. The system includes a 100 l water storage tank, a solar dryer with 5 trays, and a dual-purpose collector. Experiments were carried out to dry a mixture of vegetables (parsley, dill and coriander) at constant air and water flow rates. Besides, an electrical heater has been used as an auxiliary source for heating. The results indicated that the system optimally dried the vegetables and simultaneously provided the consumptive hot water

  7. Parameterization models for solar radiation and solar technology applications

    International Nuclear Information System (INIS)

    Khalil, Samy A.

    2008-01-01

    Solar radiation is very important for the evaluation and wide use of solar renewable energy systems. The development of calibration procedures for broadband solar radiation photometric instrumentation and the improvement of broadband solar radiation measurement accuracy have been done. An improved diffuse sky reference and photometric calibration and characterization software for outdoor pyranometer calibrations are outlined. Parameterizations for direct beam, total hemispherical and diffuse sky radiation and solar radiation technology are briefly reviewed. The uncertainties for various broadband solar radiations of solar energy and atmospheric effects are discussed. The varying responsivities of solar radiation with meteorological, statistical and climatological parameters and possibility atmospheric conditions was examined

  8. Parameterization models for solar radiation and solar technology applications

    Energy Technology Data Exchange (ETDEWEB)

    Khalil, Samy A. [National Research Institute of Astronomy and Geophysics, Solar and Space Department, Marsed Street, Helwan, 11421 Cairo (Egypt)

    2008-08-15

    Solar radiation is very important for the evaluation and wide use of solar renewable energy systems. The development of calibration procedures for broadband solar radiation photometric instrumentation and the improvement of broadband solar radiation measurement accuracy have been done. An improved diffuse sky reference and photometric calibration and characterization software for outdoor pyranometer calibrations are outlined. Parameterizations for direct beam, total hemispherical and diffuse sky radiation and solar radiation technology are briefly reviewed. The uncertainties for various broadband solar radiations of solar energy and atmospheric effects are discussed. The varying responsivities of solar radiation with meteorological, statistical and climatological parameters and possibility atmospheric conditions was examined. (author)

  9. Thermodynamic evaluation of a novel solar-biomass hybrid power generation system

    International Nuclear Information System (INIS)

    Bai, Zhang; Liu, Qibin; Lei, Jing; Wang, Xiaohe; Sun, Jie; Jin, Hongguang

    2017-01-01

    Highlights: • A solar-biomass hybrid power system with zero carbon dioxide emission is proposed. • The internal mechanisms of the solar-biomass utilization are discussed. • The on-design and off-design properties of the system are numerically investigated. • The configurations of the proposed system are optimized. - Abstract: A solar-biomass hybrid power generation system, which integrates a solar thermal energy collection subsystem, a biomass steam boiler and a steam turbine power generation block, is developed for efficiently utilizing renewable energies. The solar thermal energy is concentrated by parabolic trough collectors and is used to heat the feed-water to the superheated steam of 371 °C, then the generated solar steam is further heated to a higher temperature level of 540 °C via a second-stage heating process in a biomass boiler, the system power generation capacity is about 50 MW. The hybrid process of the solar energy and biomass contributes to ameliorating the system thermodynamic performances and reducing of the exergy loss within the steam generation process. The off-design evaluation results indicate that the annual net solar-to-electric efficiency of the hybrid power system is improved to 18.13%, which is higher than that of the typical parabolic trough solar power system as 15.79%. The levelized cost of energy drops to 0.077 $/(kW h) from 0.192 $/(kW h). The annual biomass consumption rate is reduced by 22.53% in comparison with typical biomass power systems. The research findings provide a promising approach for the efficient utilization of the abundant renewable energies resources and the reduction of carbon dioxide emission.

  10. Hybrid Switch Reluctance Drives For Pump Applications

    DEFF Research Database (Denmark)

    Jakobsen, Uffe

    be the single phase hybrid switched reluctance motor (HSRM). Due to the simple construction of the single phase HSRM, manufacturing may be simplified compared to a three phase permanent magnet motor and consumption of copper may be lowered when compared to both the induction motor and some three phase permanent...... magnet synchronous motor (PMSM), the HSRM needs information about rotor position to be properly controlled. For BLDC, PMSM, induction motors, and the normal SRM position sensorless methods are relatively well established and have been used for some time. For the single phase switched reluctance motor......The initial research problem is to investigate an alternative motor drive to the existing permanent magnet synchronous and brushless DC-motor drives for pump applications. A review of different motor types showed that a possible candidate for another low cost permanent magnet motor may...

  11. METALLIC AND HYBRID NANOSTRUCTURES: FUNDAMENTALS AND APPLICATIONS

    Energy Technology Data Exchange (ETDEWEB)

    Murph, S.

    2012-05-02

    This book chapter presents an overview of research conducted in our laboratory on preparation, optical and physico-chemical properties of metallic and nanohybrid materials. Metallic nanoparticles, particularly gold, silver, platinum or a combination of those are the main focus of this review manuscript. These metallic nanoparticles were further functionalized and used as templates for creation of complex and ordered nanomaterials with tailored and tunable structural, optical, catalytic and surface properties. Controlling the surface chemistry on/off metallic nanoparticles allows production of advanced nanoarchitectures. This includes coupled or encapsulated core-shell geometries, nano-peapods, solid or hollow, monometallic/bimetallic, hybrid nanoparticles. Rational assemblies of these nanostructures into one-, two- and tridimensional nano-architectures is described and analyzed. Their sensing, environmental and energy related applications are reviewed.

  12. Solar-Diesel Hybrid Power System Optimization and Experimental Validation

    Science.gov (United States)

    Jacobus, Headley Stewart

    As of 2008 1.46 billion people, or 22 percent of the World's population, were without electricity. Many of these people live in remote areas where decentralized generation is the only method of electrification. Most mini-grids are powered by diesel generators, but new hybrid power systems are becoming a reliable method to incorporate renewable energy while also reducing total system cost. This thesis quantifies the measurable Operational Costs for an experimental hybrid power system in Sierra Leone. Two software programs, Hybrid2 and HOMER, are used during the system design and subsequent analysis. Experimental data from the installed system is used to validate the two programs and to quantify the savings created by each component within the hybrid system. This thesis bridges the gap between design optimization studies that frequently lack subsequent validation and experimental hybrid system performance studies.

  13. FY 2000 report on the results of the development of technology for commercialization of the photovoltaic power system - Development of production technology of thin film solar cells. Development of production technology of low-cost/large-area modules (Development of production technology of application type new structure thin film solar cells/Development of production technology of amorphous silicon-thin film polycrystal silicon hybrid thin film solar cells); 2000 nendo New sunshine keikaku seika hokokusho. Taiyoko hatsuden system jitsuyoka gijutsu kaihatsu, Hakumaku taiyodenchi no seizo gijutsu kaihatsu, Tei cost dai menseki mojuru seizo gijutsu kaihatsu (Oyogata shinkozo hakumaku taiyodenchi no seizo gijutsu kaihatsu, Amorufasusilicon hakumaku takessho silicon hybrid hakumaku taiyodenchi no seizo gijutsu kaihatsu)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    For the purpose of developing the application type new structure thin film solar cell that is low-cost, high-efficient and practical, a developmental study was made of production technology of amorphous silicon/thin film polycrystal silicon hybrid thin film solar cells, and the FY 2000 results were reported. In the study of the heightening of efficiency of the small area hybrid cell, a structure was adopted in which a transparent intermediate layer was installed between a-Si cell and bottom poly-Si cell, and the initial efficiency of 14.0% was obtained in the small area cell 1cm square. As to the large area hybrid module, the initial efficiency of 11.7% and maximum output of 44.9W were achieved in the large area substrate module with a size of 910 x 455mm. In the indoor/outdoor evaluation of the output of hybrid modules, conducted were the outdoor measurement and the output measurement made every season under the mock spectral light in two-light simulator. In summer, F.F. was improved by spectral gain and anneal effect, and the effective output about 8% higher was recognized in the module after stabilization. (NEDO)

  14. The cost - effective solar energy applications in Canada

    International Nuclear Information System (INIS)

    Pape, A.

    1999-01-01

    This paper outlines several cost-effective solar energy application in Canada, and estimates the GHG emission reduction potential for each. The applications include: (1) passive solar building design; (2) solar water heating applications; (3) solar photovoltaics for remote power; and (4) solar assisted space heating and cooling in industrial buildings. Each technology is briefly profiled in terms of functionality, cost characteristics, energy production characteristics and potential emission reduction benefits. Real-life examples of each application are also included. Finally, the paper concludes on the potential role of solar energy in the reduction of Canadian GHG emissions. (author)

  15. Organic Gelators as Growth Control Agents for Stable and Reproducible Hybrid Perovskite-Based Solar Cells

    KAUST Repository

    Masi, Sofia

    2017-03-03

    Low-molecular-weight organic gelators are widely used to influence the solidification of polymers, with applications ranging from packaging items, food containers to organic electronic devices, including organic photovoltaics. Here, this concept is extended to hybrid halide perovskite-based materials. In situ time-resolved grazing incidence wide-angle X-ray scattering measurements performed during spin coating reveal that organic gelators beneficially influence the nucleation and growth of the perovskite precursor phase. This can be exploited for the fabrication of planar n-i-p heterojunction devices with MAPbI3 (MA = CH3NH3+) that display a performance that not only is enhanced by ≈25% compared to solar cells where the active layer is produced without the use of a gelator but that also features a higher stability to moisture and a reduced hysteresis. Most importantly, the presented approach is straightforward and simple, and it provides a general method to render the film formation of hybrid perovskites more reliable and robust, analogous to the control that is afforded by these additives in the processing of commodity “plastics.”

  16. Thermodynamic analyses of solar thermal gasification of coal for hybrid solar-fossil power and fuel production

    International Nuclear Information System (INIS)

    Ng, Yi Cheng; Lipiński, Wojciech

    2012-01-01

    Thermodynamic analyses are performed for solar thermal steam and dry gasification of coal. The selected types of coal are anthracite, bituminous, lignite and peat. Two model conversion paths are considered for each combination of the gasifying agent and the coal type: production of the synthesis gas with its subsequent use in a combined cycle power plant to generate power, and production of the synthesis gas with its subsequent use to produce gasoline via the Fischer–Tropsch synthesis. Replacement of a coal-fired 35% efficient Rankine cycle power plant and a combustion-based integrated gasification combined cycle power plant by a solar-based integrated gasification combined cycle power plant leads to the reduction in specific carbon dioxide emissions by at least 47% and 27%, respectively. Replacement of a conventional gasoline production process via coal gasification and a subsequent Fischer–Tropsch synthesis with gasoline production via solar thermal coal gasification with a subsequent Fischer–Tropsch synthesis leads to the reduction in specific carbon dioxide emissions by at least 39%. -- Highlights: ► Thermodynamic analyses for steam and dry gasification of coal are presented. ► Hybrid solar-fossil paths to power and fuels are compared to those using only combustion. ► Hybrid power production can reduce specific CO 2 emissions by more than 27%. ► Hybrid fuel production can reduce specific CO 2 emissions by more than 39%.

  17. Application of porous silicon in solar cell

    Science.gov (United States)

    Maniya, Nalin H.; Ashokan, Jibinlal; Srivastava, Divesh N.

    2018-05-01

    Silicon is widely used in solar cell applications with over 95% of all solar cells produced worldwide composed of silicon. Nanostructured thin porous silicon (PSi) layer acting as anti-reflecting coating is used in photovoltaic solar cells due to its advantages including simple and low cost fabrication, highly textured surfaces enabling lowering of reflectance, controllability of thickness and porosity of layer, and high surface area. PSi layers have previously been reported to reduce the reflection of light and replaced the conventional anti-reflective coating layers on solar cells. This can essentially improve the efficiency and decrease the cost of silicon solar cells. Here, we investigate the reflectance of different PSi layers formed by varying current density and etching time. PSi layers were formed by a combination of current density including 60 and 80 mA/cm2 and time for fabrication as 2, 4, 6, and 8 seconds. The fabricated PSi layers were characterized using reflectance spectroscopy and field emission scanning electron microscopy. Thickness and pore size of PSi layer were increased with increase in etching time and current density, respectively. The reflectance of PSi layers was decreased with increase in etching time until 6 seconds and increased again after 6 seconds, which was observed across both the current density. Reduction in reflectance indicates the increase of absorption of light by silicon due to the thin PSi layer. In comparison with the reflectance of silicon wafer, PSi layer fabricated at 80 mA/cm2 for 6 seconds gave the best result with reduction in reflectance up to 57%. Thus, the application of PSi layer as an effective anti-reflecting coating for the fabrication of solar cell has been demonstrated.

  18. Renewable Energy Systems: Development and Perspectives of a Hybrid Solar-Wind System

    OpenAIRE

    C. Shashidhar; K. Bhanupriya; P. Alluvada; Bandana; J. B. V. Subrahmanyam

    2012-01-01

    Considering the intermittent natural energy resources and the seasonal un-balance, a phtovoltaic-wind hybrid electrical power supply system was developed to accommodate remote locations where a conventional grid connection is inconvenient or expensive. However, the hybrid system can also be applied with grid connection and owners are allowed to sell excessive power back to the electric utility. The proposed set-up consists of a photo-voltaic solar-cell array, a mast mounted wind generator, le...

  19. Optical Fiber/Nanowire Hybrid Structures for Efficient Three-Dimensional Dye-Sensitized Solar Cells

    KAUST Repository

    Weintraub, Benjamin

    2009-11-09

    Wired up: The energy conversion efficiency of three-dimensional dye-sensitized solar cells (DSSCs) in a hybrid structure that integrates optical fibers and nanowire arrays is greater than that of a two-dimensional device. Internal axial illumination enhances the energy conversion efficiency of a rectangular fiber-based hybrid structure (see picture) by a factor of up to six compared to light illumination normal to the fiber axis from outside the device.

  20. Compact hybrid cell based on a convoluted nanowire structure for harvesting solar and mechanical energy

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Chen; Wang, Zhong Lin [School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA 30332 (United States)

    2011-02-15

    A fully integrated, solid-state, compact hybrid cell (CHC) that comprises ''convoluted'' ZnO nanowire structures for concurrent harvesting of both solar and mechanical energy is demonstrated. The compact hybrid cell is based on a conjunction design of an organic solid-state dye-sensitized solar cell (DSSC) and piezoelectric nanogenerator in one compact structure. The CHC shows a significant increase in output power, clearly demonstrating its potential for simultaneously harvesting multiple types of energy for powering small electronic devices for independent, sustainable, and mobile operation. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  1. Gas cooled solar tower power plant (GAST) KWU approach to a 20 MW hybrid system

    Energy Technology Data Exchange (ETDEWEB)

    Mayer, Martin

    1980-07-01

    The gas cooled solar tower powerplant with a hybrid solar-fossil heating system in the form given here represents a significant step towards the industrial use of solar energy. The transition from fossil fuels to solar energy can be facilitated for the power plant operators if the transition is gradual and if conventional technology is used. Using solar energy and with a turbine inlet temperature of 800/sup 0/C the GAST power plant reaches an output of approximately 20 MW and a thermal efficiency of approximately 40% reference to the heat supplied by the receiver. In the absence of solar radiation the plant can be operated exclusively on fossil fuel. Increasing the turbine inlet temperature to 1000/sup 0/C enables an efficiency of about 47% to be reached in the GUD cycle.

  2. Flexible hybrid energy cell for simultaneously harvesting thermal, mechanical, and solar energies.

    Science.gov (United States)

    Yang, Ya; Zhang, Hulin; Zhu, Guang; Lee, Sangmin; Lin, Zong-Hong; Wang, Zhong Lin

    2013-01-22

    We report the first flexible hybrid energy cell that is capable of simultaneously or individually harvesting thermal, mechanical, and solar energies to power some electronic devices. For having both the pyroelectric and piezoelectric properties, a polarized poly(vinylidene fluoride) (PVDF) film-based nanogenerator (NG) was used to harvest thermal and mechanical energies. Using aligned ZnO nanowire arrays grown on the flexible polyester (PET) substrate, a ZnO-poly(3-hexylthiophene) (P3HT) heterojunction solar cell was designed for harvesting solar energy. By integrating the NGs and the solar cells, a hybrid energy cell was fabricated to simultaneously harvest three different types of energies. With the use of a Li-ion battery as the energy storage, the harvested energy can drive four red light-emitting diodes (LEDs).

  3. A review of concentrated photovoltaic-thermal (CPVT) hybrid solar systems with waste heat recovery (WHR)

    Institute of Scientific and Technical Information of China (English)

    Xing Ju; Chao Xu; Zhirong Liao; Xiaoze Du; Gaosheng Wei; Zhifeng Wang; Yongping Yang

    2017-01-01

    In conventional photovoltaic (PV) systems,a large portion of solar energy is dissipated as waste heat since the generating efficiency is usually less than 30%.As the dissipated heat can be recovered for various applications,the wasted heat recovery concentrator PV/thermal (WHR CPVT) hybrid systems have been developed.They can provide both electricity and usable heat by combining thermal systems with concentrator PV (CPV) module,which dramatically improves the overall conversion efficiency of solar energy.This paper systematically and comprehensively reviews the research and development ofWHR CPVT systems.WHR CPVT systems with innovative design configurations,different theoretical evaluation models and experimental test processes for several implementations are presented in an integrated manner.We aim to provide a global point of view on the research trends,market potential,technical obstacles,and the future work which is required in the development of WHR CPVT technology.Possibly,it will offer a generic guide to the investigators who are interested in the study of WHR CPVT systems.

  4. Methylammonium Bismuth Iodide as a Lead-Free, Stable Hybrid Organic-Inorganic Solar Absorber.

    Science.gov (United States)

    Hoye, Robert L Z; Brandt, Riley E; Osherov, Anna; Stevanović, Vladan; Stranks, Samuel D; Wilson, Mark W B; Kim, Hyunho; Akey, Austin J; Perkins, John D; Kurchin, Rachel C; Poindexter, Jeremy R; Wang, Evelyn N; Bawendi, Moungi G; Bulović, Vladimir; Buonassisi, Tonio

    2016-02-18

    Methylammonium lead halide (MAPbX3 ) perovskites exhibit exceptional carrier transport properties. But their commercial deployment as solar absorbers is currently limited by their intrinsic instability in the presence of humidity and their lead content. Guided by our theoretical predictions, we explored the potential of methylammonium bismuth iodide (MBI) as a solar absorber through detailed materials characterization. We synthesized phase-pure MBI by solution and vapor processing. In contrast to MAPbX3, MBI is air stable, forming a surface layer that does not increase the recombination rate. We found that MBI luminesces at room temperature, with the vapor-processed films exhibiting superior photoluminescence (PL) decay times that are promising for photovoltaic applications. The thermodynamic, electronic, and structural features of MBI that are amenable to these properties are also present in other hybrid ternary bismuth halide compounds. Through MBI, we demonstrate a lead-free and stable alternative to MAPbX3 that has a similar electronic structure and nanosecond lifetimes. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Russia and hybrid warfare: identifying critical elements in successful applications of hybrid tactics

    OpenAIRE

    Neville, Seth B.

    2015-01-01

    Approved for public release; distribution is unlimited With the Russian annexation of Crimea in 2014, hybrid war became a buzzword within political and academic circles. This thesis examines hybrid warfare applications using contemporary and historical examples. The analysis seeks to determine why a country was or was not successful in its execution of hybrid war, and it assesses the geo-political context of cost, benefit, and risk for an aggressor state contributing to its decision to eng...

  6. GEOTHERMAL / SOLAR HYBRID DESIGNS: USE OF GEOTHERMAL ENERGY FOR CSP FEEDWATER HEATING

    Energy Technology Data Exchange (ETDEWEB)

    Craig Turchi; Guangdong Zhu; Michael Wagner; Tom Williams; Dan Wendt

    2014-10-01

    This paper examines a hybrid geothermal / solar thermal plant design that uses geothermal energy to provide feedwater heating in a conventional steam-Rankine power cycle deployed by a concentrating solar power (CSP) plant. The geothermal energy represents slightly over 10% of the total thermal input to the hybrid plant. The geothermal energy allows power output from the hybrid plant to increase by about 8% relative to a stand-alone CSP plant with the same solar-thermal input. Geothermal energy is converted to electricity at an efficiency of 1.7 to 2.5 times greater than would occur in a stand-alone, binary-cycle geothermal plant using the same geothermal resource. While the design exhibits a clear advantage during hybrid plant operation, the annual advantage of the hybrid versus two stand-alone power plants depends on the total annual operating hours of the hybrid plant. The annual results in this draft paper are preliminary, and further results are expected prior to submission of a final paper.

  7. Use of a Geothermal-Solar Hybrid Power Plant to Mitigate Declines in Geothermal Resource Productivity

    Energy Technology Data Exchange (ETDEWEB)

    Dan Wendt; Greg Mines

    2014-09-01

    Many, if not all, geothermal resources are subject to decreasing productivity manifested in the form of decreasing brine temperature, flow rate, or both during the life span of the associated power generation project. The impacts of resource productivity decline on power plant performance can be significant; a reduction in heat input to a power plant not only decreases the thermal energy available for conversion to electrical power, but also adversely impacts the power plant conversion efficiency. The reduction in power generation is directly correlated to a reduction in revenues from power sales. Further, projects with Power Purchase Agreement (PPA) contracts in place may be subject to significant economic penalties if power generation falls below the default level specified. A potential solution to restoring the performance of a power plant operating from a declining productivity geothermal resource involves the use of solar thermal energy to restore the thermal input to the geothermal power plant. There are numerous technical merits associated with a renewable geothermal-solar hybrid plant in which the two heat sources share a common power block. The geo-solar hybrid plant could provide a better match to typical electrical power demand profiles than a stand-alone geothermal plant. The hybrid plant could also eliminate the stand-alone concentrated solar power plant thermal storage requirement for operation during times of low or no solar insolation. This paper identifies hybrid plant configurations and economic conditions for which solar thermal retrofit of a geothermal power plant could improve project economics. The net present value of the concentrated solar thermal retrofit of an air-cooled binary geothermal plant is presented as functions of both solar collector array cost and electricity sales price.

  8. Solar photovoltaics for development applications

    Energy Technology Data Exchange (ETDEWEB)

    Shepperd, L.W. [Florida Solar Energy Center, Cape Canaveral, FL (United States); Richards, E.H. [Sandia National Labs., Albuquerque, NM (United States)

    1993-08-01

    This document introduces photovoltaic technology to individuals and groups specializing in development activities. Examples of actual installations illustrate the many services supplied by photovoltaic systems in development applications, including water pumping, lighting, health care, refrigeration, communications, and a variety of productive uses. The various aspects of the technology are explored to help potential users evaluate whether photovoltaics can assist them in achieving their organizational goals. Basic system design, financing techniques, and the importance of infrastructure are included, along with additional sources of information and major US photovoltaic system suppliers.

  9. Innovative architecture design for high performance organic and hybrid multi-junction solar cells

    Science.gov (United States)

    Li, Ning; Spyropoulos, George D.; Brabec, Christoph J.

    2017-08-01

    The multi-junction concept is especially attractive for the photovoltaic (PV) research community owing to its potential to overcome the Schockley-Queisser limit of single-junction solar cells. Tremendous research interests are now focused on the development of high-performance absorbers and novel device architectures for emerging PV technologies, such as organic and perovskite PVs. It has been predicted that the multi-junction concept is able to boost the organic and perovskite PV technologies approaching the 20% and 30% benchmarks, respectively, showing a bright future of commercialization of the emerging PV technologies. In this contribution, we will demonstrate innovative architecture design for solution-processed, highly functional organic and hybrid multi-junction solar cells. A simple but elegant approach to fabricating organic and hybrid multi-junction solar cells will be introduced. By laminating single organic/hybrid solar cells together through an intermediate layer, the manufacturing cost and complexity of large-scale multi-junction solar cells can be significantly reduced. This smart approach to balancing the photocurrents as well as open circuit voltages in multi-junction solar cells will be demonstrated and discussed in detail.

  10. Adaptive hybrid mesh refinement for multiphysics applications

    International Nuclear Information System (INIS)

    Khamayseh, Ahmed; Almeida, Valmor de

    2007-01-01

    The accuracy and convergence of computational solutions of mesh-based methods is strongly dependent on the quality of the mesh used. We have developed methods for optimizing meshes that are comprised of elements of arbitrary polygonal and polyhedral type. We present in this research the development of r-h hybrid adaptive meshing technology tailored to application areas relevant to multi-physics modeling and simulation. Solution-based adaptation methods are used to reposition mesh nodes (r-adaptation) or to refine the mesh cells (h-adaptation) to minimize solution error. The numerical methods perform either the r-adaptive mesh optimization or the h-adaptive mesh refinement method on the initial isotropic or anisotropic meshes to equidistribute weighted geometric and/or solution error function. We have successfully introduced r-h adaptivity to a least-squares method with spherical harmonics basis functions for the solution of the spherical shallow atmosphere model used in climate modeling. In addition, application of this technology also covers a wide range of disciplines in computational sciences, most notably, time-dependent multi-physics, multi-scale modeling and simulation

  11. Applications of nonimaging optics for very high solar concentrations

    International Nuclear Information System (INIS)

    O'Gallagher, J.; Winston, R.

    1997-01-01

    Using the principles and techniques of nonimaging optics, solar concentrations that approach the theoretical maximum can be achieved. This has applications in solar energy collection wherever concentration is desired. In this paper, we survey recent progress in attaining and using high and ultrahigh solar fluxes. We review a number of potential applications for highly concentrated solar energy and the current status of the associated technology. By making possible new and unique applications for intense solar flux, these techniques have opened a whole new frontier for research and development of potentially economic uses of solar energy

  12. Significant efficiency enhancement of hybrid solar cells using core-shell nanowire geometry for energy harvesting.

    Science.gov (United States)

    Tsai, Shin-Hung; Chang, Hung-Chih; Wang, Hsin-Hua; Chen, Szu-Ying; Lin, Chin-An; Chen, Show-An; Chueh, Yu-Lun; He, Jr-Hau

    2011-12-27

    A novel strategy employing core-shell nanowire arrays (NWAs) consisting of Si/regioregular poly(3-hexylthiophene) (P3HT) was demonstrated to facilitate efficient light harvesting and exciton dissociation/charge collection for hybrid solar cells (HSCs). We experimentally demonstrate broadband and omnidirectional light-harvesting characteristics of core-shell NWA HSCs due to their subwavelength features, further supported by the simulation based on finite-difference time domain analysis. Meanwhile, core-shell geometry of NWA HSCs guarantees efficient charge separation since the thickness of the P3HT shells is comparable to the exciton diffusion length. Consequently, core-shell HSCs exhibit a 61% improvement of short-circuit current for a conversion efficiency (η) enhancement of 31.1% as compared to the P3HT-infiltrated Si NWA HSCs with layers forming a flat air/polymer cell interface. The improvement of crystal quality of P3HT shells due to the formation of ordering structure at Si interfaces after air mass 1.5 global (AM 1.5G) illumination was confirmed by transmission electron microscopy and Raman spectroscopy. The core-shell geometry with the interfacial improvement by AM 1.5G illumination promotes more efficient exciton dissociation and charge separation, leading to η improvement (∼140.6%) due to the considerable increase in V(oc) from 257 to 346 mV, J(sc) from 11.7 to 18.9 mA/cm(2), and FF from 32.2 to 35.2%, which is not observed in conventional P3HT-infiltrated Si NWA HSCs. The stability of the Si/P3HT core-shell NWA HSCs in air ambient was carefully examined. The core-shell geometry should be applicable to many other material systems of solar cells and thus holds high potential in third-generation solar cells.

  13. Solar central receiver hybrid power system, Phase I. Volume 3. Appendices. Final technical report, October 1978-August 1979

    Energy Technology Data Exchange (ETDEWEB)

    None

    1979-09-01

    A design study for a central receiver/fossil fuel hybrid power system using molten salts for heat transfer and heat storage is presented. This volume contains the appendices: (A) parametric salt piping data; (B) sample heat exchanger calculations; (C) salt chemistry and salt/materials compatibility evaluation; (D) heliostat field coordinates; (E) data lists; (F) STEAEC program input data; (G) hybrid receiver design drawings; (H) hybrid receiver absorber tube thermal math model; (I) piping stress analysis; (J) 100-MWe 18-hour storage solar central receiver hybrid power system capital cost worksheets; and (K) 500-MWe 18-hour solar central receiver hybrid power system cost breakdown. (WHK)

  14. Univariate Time Series Prediction of Solar Power Using a Hybrid Wavelet-ARMA-NARX Prediction Method

    Energy Technology Data Exchange (ETDEWEB)

    Nazaripouya, Hamidreza; Wang, Yubo; Chu, Chi-Cheng; Pota, Hemanshu; Gadh, Rajit

    2016-05-02

    This paper proposes a new hybrid method for super short-term solar power prediction. Solar output power usually has a complex, nonstationary, and nonlinear characteristic due to intermittent and time varying behavior of solar radiance. In addition, solar power dynamics is fast and is inertia less. An accurate super short-time prediction is required to compensate for the fluctuations and reduce the impact of solar power penetration on the power system. The objective is to predict one step-ahead solar power generation based only on historical solar power time series data. The proposed method incorporates discrete wavelet transform (DWT), Auto-Regressive Moving Average (ARMA) models, and Recurrent Neural Networks (RNN), while the RNN architecture is based on Nonlinear Auto-Regressive models with eXogenous inputs (NARX). The wavelet transform is utilized to decompose the solar power time series into a set of richer-behaved forming series for prediction. ARMA model is employed as a linear predictor while NARX is used as a nonlinear pattern recognition tool to estimate and compensate the error of wavelet-ARMA prediction. The proposed method is applied to the data captured from UCLA solar PV panels and the results are compared with some of the common and most recent solar power prediction methods. The results validate the effectiveness of the proposed approach and show a considerable improvement in the prediction precision.

  15. Hybrid high solar share gas turbine systems with innovative gas turbine cycles

    OpenAIRE

    Puppe, Michael; Giuliano, Stefano; Buck, Reiner; Krüger, Michael; Lammel, Oliver; Boje, Sven; Saidi, Karim; Gampe, Uwe; Felsmann, Christian; Freimark, Manfred; Langnickel, Ulrich

    2015-01-01

    In this paper results from an ongoing research project (HYGATE) are presented, which is performed to reduce the levelized cost of electricity (LCOE) and to increase the CO2 reduction potential of the solar-hybrid gas turbine plant concept (SHGT). Key improvements are the integration of thermal energy storage and the reduction of the operating temperature of the gas turbine to 950°C. As a result the solar receiver can provide the necessary temperature for solar-only operation of the plant at d...

  16. Photoanodic Hybrid Semiconductor–Molecular Heterojunction for Solar Water Oxidation

    KAUST Repository

    Joya, Khurram Saleem; Takanabe, Kazuhiro

    2015-01-01

    Inorganic photo-responsive semiconducting materials have been employed in photoelectrochemical(PEC) water oxidation devicesin pursuit of solar to fuel conversion.[1]The reaction kinetics in semiconductors is limited by poor contact at the interfaces

  17. Hybrid ZnO:polymer bulk heterojunction solar cells from a ZnO precursor

    NARCIS (Netherlands)

    Beek, W.J.E.; Slooff, L.H.; Wienk, M.M.; Kroon, J.M.; Janssen, R.A.J.; Kafafi, Z.H.

    2005-01-01

    We describe a simple and new method to create hybrid bulk heterojunction solar cells consisting of ZnO and conjugated polymers. A gel-forming ZnO precursor, blended with conjugated polymers, is converted into crystalline ZnO at temperatures as low as 110 °C. In-situ formation of ZnO in MDMO-PPV

  18. Highly Reproducible Sn-Based Hybrid Perovskite Solar Cells with 9% Efficiency

    NARCIS (Netherlands)

    Shao, Shuyan; Liu, Jian; Portale, Giuseppe; Fang, Hong-Hua; Blake, Graeme R.; ten Brink, Gert H.; Koster, L. Jan Anton; Loi, Maria Antonietta

    2018-01-01

    The low power conversion efficiency (PCE) of tin-based hybrid perovskite solar cells (HPSCs) is mainly attributed to the high background carrier density due to a high density of intrinsic defects such as Sn vacancies and oxidized species (Sn4+) that characterize Sn-based HPSCs. Herein, this study

  19. Modelling and Optimising the Value of a Hybrid Solar-Wind System

    Science.gov (United States)

    Nair, Arjun; Murali, Kartik; Anbuudayasankar, S. P.; Arjunan, C. V.

    2017-05-01

    In this paper, a net present value (NPV) approach for a solar hybrid system has been presented. The system, in question aims at supporting an investor by assessing an investment in solar-wind hybrid system in a given area. The approach follow a combined process of modelling the system, with optimization of major investment-related variables to maximize the financial yield of the investment. The consideration of solar wind hybrid supply presents significant potential for cost reduction. The investment variables concern the location of solar wind plant, and its sizing. The system demand driven, meaning that its primary aim is to fully satisfy the energy demand of the customers. Therefore, the model is a practical tool in the hands of investor to assess and optimize in financial terms an investment aiming at covering real energy demand. Optimization is performed by taking various technical, logical constraints. The relation between the maximum power obtained between individual system and the hybrid system as a whole in par with the net present value of the system has been highlighted.

  20. Microcontroller Based Solar Charge Controller for Power Application

    OpenAIRE

    Mr. Vikas Khare

    2012-01-01

    Photovoltaic cell converts solar energy directly into electricity. This paper describes a design of microcontroller based solar charge controller for power application.[2] The work of the Paper is to charge a 12 volt battery by using a 50 watt solar panel with maximum power. This circuit regulates the charging of battery in a solar system by monitoring battery voltage and switching the solar or other power source off when the battery reached a preset value.[1] The microprocessor based charge ...

  1. Study on optimal configuration of the grid-connected wind-solar-battery hybrid power system

    Science.gov (United States)

    Ma, Gang; Xu, Guchao; Ju, Rong; Wu, Tiantian

    2017-08-01

    The capacity allocation of each energy unit in the grid-connected wind-solar-battery hybrid power system is a significant segment in system design. In this paper, taking power grid dispatching into account, the research priorities are as follows: (1) We establish the mathematic models of each energy unit in the hybrid power system. (2) Based on dispatching of the power grid, energy surplus rate, system energy volatility and total cost, we establish the evaluation system for the wind-solar-battery power system and use a number of different devices as the constraint condition. (3) Based on an improved Genetic algorithm, we put forward a multi-objective optimisation algorithm to solve the optimal configuration problem in the hybrid power system, so we can achieve the high efficiency and economy of the grid-connected hybrid power system. The simulation result shows that the grid-connected wind-solar-battery hybrid power system has a higher comprehensive performance; the method of optimal configuration in this paper is useful and reasonable.

  2. Novel Integration of Perovskite Solar Cell and Supercapacitor Based on Carbon Electrode for Hybridizing Energy Conversion and Storage.

    Science.gov (United States)

    Liu, Zhiyong; Zhong, Yan; Sun, Bo; Liu, Xingyue; Han, Jinghui; Shi, Tielin; Tang, Zirong; Liao, Guanglan

    2017-07-12

    Power packs integrating both photovoltaic parts and energy storage parts have gained great scientific and technological attention due to the increasing demand for green energy and the tendency for miniaturization and multifunctionalization in electronics industry. In this study, we demonstrate novel integration of perovskite solar cell and solid-state supercapacitor for power packs. The perovskite solar cell is integrated with the supercapacitor based on common carbon electrodes to hybridize photoelectric conversion and energy storage. The power pack achieves a voltage of 0.84 V when the supercapacitor is charged by the perovskite solar cell under the AM 1.5G white light illumination with a 0.071 cm 2 active area, reaching an energy storage proportion of 76% and an overall conversion efficiency of 5.26%. When the supercapacitor is precharged at 1.0 V, an instant overall output efficiency of 22.9% can be achieved if the perovskite solar cell and supercapacitor are connected in series, exhibiting great potential in the applications of solar energy storage and flexible electronics such as portable and wearable devices.

  3. FY 2000 report on the results of the development of technology for commercialization of the photovoltaic power system - Development of production technology of thin film solar cells. Development of production technology of application type new structure thin film solar cells (Development of production technology of high efficiency hybrid thin films/sheet solar cells); 2000 nendo New sunshine keikaku seika hokokusho. Taiyoko hatsuden system jitsuyoka gijutsu kaihatsu, Hakumaku taiyodenchi no seizo gijutsu kaihatsu, Oyogata shinkozo hakumaku taiyodenchi no seizo gijutsu kaihatsu, (Kokoritsu hybrid gata hakumaku / sheet taiyodenchi no seizo gijutsu kaihatsu)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    For the purpose of realizing low cost and high efficiency hybrid thin films/sheet solar cells, the R and D were carried out, and the FY 2000 results were reported. As to the formation technology of the upper cell, the following technologies were developed and the results contributory to the heightening of efficiency were obtained: technology for improvement of cell characteristics by gap widening of p layer, technology for optimization of formation conditions of i layer corresponding to the hybrid solar cell, technology for heightening of current by the intermediate ZnO layer just under the upper cell. Relating to the development of formation technology of high quality microcrystal thin films, it was indicated that the microcrystal silicon thin film had the conformity effective also for polycrystal silicon, and at the same time, the conversion efficiency of 12.8% and release voltage of 0.579V were obtained by the cell using the cast polycrystal board. In the thin film/polycrystal sheet hybrid solar cell in which all these technologies were integrated, the conversion efficiency of 12.0% was achieved, and the possibility was verified of achieving the target efficiency of 14% by further improvement of FF. (NEDO)

  4. Electron transport limitation in P3HT:CdSe nanorods hybrid solar cells.

    Science.gov (United States)

    Lek, Jun Yan; Xing, Guichuan; Sum, Tze Chien; Lam, Yeng Ming

    2014-01-22

    Hybrid solar cells have the potential to be efficient solar-energy-harvesting devices that can combine the benefits of solution-processable organic materials and the extended absorption offered by inorganic materials. In this work, an understanding of the factors limiting the performance of hybrid solar cells is explored. Through photovoltaic-device characterization correlated with transient absorption spectroscopy measurements, it was found that the interfacial charge transfer between the organic (P3HT) and inorganic (CdSe nanorods) components is not the factor limiting the performance of these solar cells. The insulating original ligands retard the charge recombination between the charge-transfer states across the CdSe-P3HT interface, and this is actually beneficial for charge collection. These cells are, in fact, limited by the subsequent electron collection via CdSe nanoparticles to the electrodes. Hence, the design of a more continuous electron-transport pathway should greatly improve the performance of hybrid solar cells in the future.

  5. Potential Evaluation of Solar Heat Assisted Desiccant Hybrid Air Conditioning System

    Science.gov (United States)

    Tran, Thien Nha; Hamamoto, Yoshinori; Akisawa, Atsushi; Kashiwagi, Takao

    The solar thermal driven desiccant dehumidification-absorption cooling hybrid system has superior advantage in hot-humid climate regions. The reasonable air processing of desiccant hybrid air conditioning system and the utility of clean and free energy make the system environment friendly and energy efficient. The study investigates the performance of the desiccant dehumidification air conditioning systems with solar thermal assistant. The investigation is performed for three cases which are combinations of solar thermal and absorption cooling systems with different heat supply temperature levels. Two solar thermal systems are used in the study: the flat plate collector (FPC) and the vacuum tube with compound parabolic concentrator (CPC). The single-effect and high energy efficient double-, triple-effect LiBr-water absorption cooling cycles are considered for cooling systems. COP of desiccant hybrid air conditioning systems are determined. The evaluation of these systems is subsequently performed. The single effect absorption cooling cycle combined with the flat plate collector solar system is found to be the most energy efficient air conditioning system.

  6. Hybrid tandem solar cells with depleted-heterojunction quantum dot and polymer bulk heterojunction subcells

    KAUST Repository

    Kim, Taesoo

    2015-10-01

    We investigate hybrid tandem solar cells that rely on the combination of solution-processed depleted-heterojunction colloidal quantum dot (CQD) and bulk heterojunction polymer:fullerene subcells. The hybrid tandem solar cell is monolithically integrated and electrically connected in series with a suitable p-n recombination layer that includes metal oxides and a conjugated polyelectrolyte. We discuss the monolithic integration of the subcells, taking into account solvent interactions with underlayers and associated constraints on the tandem architecture, and show that an adequate device configuration consists of a low bandgap CQD bottom cell and a high bandgap polymer:fullerene top cell. Once we optimize the recombination layer and individual subcells, the hybrid tandem device reaches a VOC of 1.3V, approaching the sum of the individual subcell voltages. An impressive fill factor of 70% is achieved, further confirming that the subcells are efficiently connected via an appropriate recombination layer. © 2015.

  7. Renewable energy technology for off-grid power generation solar hybrid system

    International Nuclear Information System (INIS)

    Mohd Azhar Abd Rahman

    2006-01-01

    Off-grid power generation is meant to supply remote or rural area, where grid connection is almost impossible in terms of cost and geography, such as island, aborigine's villages, and areas where nature preservation is concern. Harnessing an abundance renewable energy sources using versatile hybrid power systems can offer the best, least-cost alternative solution for extending modern energy services to remote and isolated communities. The conventional method for off-grid power generation is using diesel generator with a renewable energy (RE) technology utilizing solar photovoltaic, wind, biomass, biogas and/or mini/micro hydro. A hybrid technology is a combination of multiple source of energy; such as RE and diesel generator and may also include energy storage such as battery. In our design, the concept of solar hybrid system is a combination of solar with diesel genset and battery as an energy storage. The main objective of the system are to reduce the cost of operation and maintenance, cost of logistic and carbon dioxide (CO 2 ) emission. The operational concept of solar hybrid system is that solar will be the first choice of supplying load and excess energy produced will be stored in battery. Genset will be a secondary source of energy. The system is controlled by a microprocessor-based controlled to manage the energy supplied and load demand. The solar hybrid system consists of one or two diesel generator with electronic control system, lead-acid battery system, solar PV, inverter module and system controller with remote monitoring capability. The benefits of solar hybrid system are: Improved reliability, Improved energy services, reduced emissions and pollution, provide continuous power supply, increased operational life, reduced cost, and more efficient use of power. Currently, such system has been installed at Middle and Top Station of Langkawi Cable Car, Langkawi and Aborigines Village Kg Denai, Rompin, Pahang. The technology is considered new in Malaysia

  8. Innovative configuration of a hybrid nuclear-solar tower power plant

    International Nuclear Information System (INIS)

    Popov, Dimityr; Borissova, Ana

    2017-01-01

    This paper proposes a combination of a nuclear and a CSP plant and performs a thermodynamic analysis of the potential benefit. Most of today's operating nuclear reactor systems are producing saturated steam at relatively low pressure. This, in turn, limits their thermodynamic efficiency. Superheating of nuclear steam with solar thermal energy has the potential to overcome this drawback. Accordingly, an innovative configuration of a hybrid nuclear-CSP plant is assembled and simulated. It brings together pressurized water reactor and solar tower. The solar heat is transferred to nuclear steam to raise its temperature. Continuous superheating is provided through thermal energy storage. The results from design point calculations show that solar superheating has the potential to increase nuclear plant electric efficiency significantly, pushing it to around 37.5%. Solar heat to electricity conversion efficiency reaches unprecedented rates of 56.2%, approaching the effectiveness of the modern combined cycle gas turbine plants. Off-design model was used to simulate 24-h operation for one year by simulating 8760 cases. Due to implementation of thermal energy storage non-stop operation is manageable. The increased efficiency leads to solar tower island installed cost reductions of up to 25% compared to the standalone CSP plant, particularly driven by the smaller solar field. - Highlights: • External superheating of nuclear steam with solar thermal energy is proposed. • Novel hybrid plant configuration is assembled, modeled and simulated. • Substantial increase of nuclear plant capacity and efficiency is reported. • Superior efficiency of solar heat to electricity conversion is achieved. • Substantial decrease of solar field investment cost is reported.

  9. Nanocluster production for solar cell applications

    International Nuclear Information System (INIS)

    Al Dosari, Haila M.; Ayesh, Ahmad I.

    2013-01-01

    This research focuses on the fabrication and characterization of silver (Ag) and silicon (Si) nanoclusters that might be used for solar cell applications. Silver and silicon nanoclusters have been synthesized by means of dc magnetron sputtering and inert gas condensation inside an ultra-high vacuum compatible system. We have found that nanocluster size distributions can be tuned by various source parameters, such as the sputtering discharge power, flow rate of argon inert gas, and aggregation length. Quadrupole mass filter and transmission electron microscopy were used to evaluate the size distribution of Ag and Si nanoclusters. Ag nanoclusters with average size in the range of 3.6–8.3 nm were synthesized (herein size refers to the nanocluster diameter), whereas Si nanoclusters' average size was controlled to range between 2.9 and 7.4 nm by controlling the source parameters. This work illustrates the ability of controlling the Si and Ag nanoclusters' sizes by proper optimization of the operation conditions. By controlling nanoclusters' sizes, one can alter their surface properties to suit the need to enhance solar cell efficiency. Herein, Ag nanoclusters were deposited on commercial polycrystalline solar cells. Short circuit current (I SC ), open circuit voltage (V OC ), fill factor, and efficiency (η) were obtained under light source with an intensity of 30 mW/cm 2 . A 22.7% enhancement in solar cell efficiency could be measured after deposition of Ag nanoclusters, which demonstrates that Ag nanoclusters generated in this work are useful to enhance solar cell efficiency

  10. Preliminary Feasibility Study of a Hybrid Solar and Modular Pumped Storage Hydro System at Biosphere 2

    Energy Technology Data Exchange (ETDEWEB)

    Lansey, Kevin [Univ. of Arizona, Tucson, AZ (United States); Hortsman, Chris [Univ. of Arizona, Tucson, AZ (United States)

    2016-10-01

    In this study, the preliminary feasibility of a hybrid solar and modular pumped storage system designed for high energy independence at Biosphere 2 is assessed. The system consists of an array of solar PV panels that generate electricity during the day to power both Biosphere 2 and a pump that sends water through a pipe to a tank at a high elevation. When solar power is not available, the water is released back down the pipe towards a tank at a lower elevation, where it passes through a hydraulic water turbine to generate hydroelectricity to power Biosphere 2. The hybrid system is sized to generate and store enough energy to enable Biosphere 2 to operate without a grid interconnection on an average day.

  11. High performance hybrid magnetic structure for biotechnology applications

    Science.gov (United States)

    Humphries, David E [El Cerrito, CA; Pollard, Martin J [El Cerrito, CA; Elkin, Christopher J [San Ramon, CA

    2009-02-03

    The present disclosure provides a high performance hybrid magnetic structure made from a combination of permanent magnets and ferromagnetic pole materials which are assembled in a predetermined array. The hybrid magnetic structure provides means for separation and other biotechnology applications involving holding, manipulation, or separation of magnetic or magnetizable molecular structures and targets. Also disclosed are further improvements to aspects of the hybrid magnetic structure, including additional elements and for adapting the use of the hybrid magnetic structure for use in biotechnology and high throughput processes.

  12. Fast and Accurate Hybrid Stream PCRTMSOLAR Radiative Transfer Model for Reflected Solar Spectrum Simulation in the Cloudy Atmosphere

    Science.gov (United States)

    Yang, Qiguang; Liu, Xu; Wu, Wan; Kizer, Susan; Baize, Rosemary R.

    2016-01-01

    A hybrid stream PCRTM-SOLAR model has been proposed for fast and accurate radiative transfer simulation. It calculates the reflected solar (RS) radiances with a fast coarse way and then, with the help of a pre-saved matrix, transforms the results to obtain the desired high accurate RS spectrum. The methodology has been demonstrated with the hybrid stream discrete ordinate (HSDO) radiative transfer (RT) model. The HSDO method calculates the monochromatic radiances using a 4-stream discrete ordinate method, where only a small number of monochromatic radiances are simulated with both 4-stream and a larger N-stream (N = 16) discrete ordinate RT algorithm. The accuracy of the obtained channel radiance is comparable to the result from N-stream moderate resolution atmospheric transmission version 5 (MODTRAN5). The root-mean-square errors are usually less than 5x10(exp -4) mW/sq cm/sr/cm. The computational speed is three to four-orders of magnitude faster than the medium speed correlated-k option MODTRAN5. This method is very efficient to simulate thousands of RS spectra under multi-layer clouds/aerosols and solar radiation conditions for climate change study and numerical weather prediction applications.

  13. Application and design of solar photovoltaic system

    International Nuclear Information System (INIS)

    Li Tianze; Lu Hengwei; Jiang Chuan; Hou Luan; Zhang Xia

    2011-01-01

    Solar modules, power electronic equipments which include the charge-discharge controller, the inverter, the test instrumentation and the computer monitoring, and the storage battery or the other energy storage and auxiliary generating plant make up of the photovoltaic system which is shown in the thesis. PV system design should follow to meet the load supply requirements, make system low cost, seriously consider the design of software and hardware, and make general software design prior to hardware design in the paper. To take the design of PV system for an example, the paper gives the analysis of the design of system software and system hardware, economic benefit, and basic ideas and steps of the installation and the connection of the system. It elaborates on the information acquisition, the software and hardware design of the system, the evaluation and optimization of the system. Finally, it shows the analysis and prospect of the application of photovoltaic technology in outer space, solar lamps, freeways and communications.

  14. Storing in carbon nano structures for hybrid systems solar hydrogen

    International Nuclear Information System (INIS)

    Marazzi, R.; Zini, G.; Tartarini, P.

    2009-01-01

    We have developed a hybrid energy system for converting energy from renewable sources and its storage in the form of hydrogen. The storage uses activated carbon and the methodology was modelled mathematically and simulated in numerical software. The results show that storage compression is cheaper storage for liquefaction. [it

  15. Novel brewing yeast hybrids: creation and application.

    Science.gov (United States)

    Krogerus, Kristoffer; Magalhães, Frederico; Vidgren, Virve; Gibson, Brian

    2017-01-01

    The natural interspecies Saccharomyces cerevisiae × Saccharomyces eubayanus hybrid yeast is responsible for global lager beer production and is one of the most important industrial microorganisms. Its success in the lager brewing environment is due to a combination of traits not commonly found in pure yeast species, principally low-temperature tolerance, and maltotriose utilization. Parental transgression is typical of hybrid organisms and has been exploited previously for, e.g., the production of wine yeast with beneficial properties. The parental strain S. eubayanus has only been discovered recently and newly created lager yeast strains have not yet been applied industrially. A number of reports attest to the feasibility of this approach and artificially created hybrids are likely to have a significant impact on the future of lager brewing. De novo S. cerevisiae × S. eubayanus hybrids outperform their parent strains in a number of respects, including, but not restricted to, fermentation rate, sugar utilization, stress tolerance, and aroma formation. Hybrid genome function and stability, as well as different techniques for generating hybrids and their relative merits are discussed. Hybridization not only offers the possibility of generating novel non-GM brewing yeast strains with unique properties, but is expected to aid in unraveling the complex evolutionary history of industrial lager yeast.

  16. Development of a hybrid sputtering/evaporation process for Cu(In,Ga)Se{sub 2} thin film solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Acciarri, M.; Binetti, S.; Le Donne, A.; Lorenzi, B.; Caccamo, L.; Miglio, L. [Dipartimento di Scienza dei Materiali e Solar Energy Research Center MIB-SOLAR, Universita di Milano Bicocca, Milan (Italy); Moneta, R.; Marchionna, S.; Meschia, M. [Voltasolar s.r.l, Turate (Italy)

    2011-08-15

    In this paper we report a new method for Cu(In,Ga)Se{sub 2} deposition for solar cell application. Differently from the common co-evaporation process, an alterative approach for thin film Cu(In,Ga)Se{sub 2} has been tested: the sputtering deposition of metal elements combined with the selenium evaporation. We have studied the relationships between the growth parameters of our hybrid sputtering/evaporation method and the chemical-physical properties of the CIGS films. The cells are completed with a CdS buffer layer deposited by chemical bath deposition and ZnO + ITO deposited by RF sputtering. Test solar cells of 0.5 cm{sup 2} have shown an efficiency of 10% and 2.5% on glass and stainless steel substrate respectively. (copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  17. Exergy evaluation of a typical 330 MW solar-hybrid coal-fired power plant in China

    International Nuclear Information System (INIS)

    Peng, Shuo; Wang, Zhaoguo; Hong, Hui; Xu, Da; Jin, Hongguang

    2014-01-01

    Highlights: • Exergy analysis of solar-hybrid coal-fired power plant has been processed. • EUD method is utilized to obtain detailed information on the exergy destruction in each process. • Off-design thermodynamic performances are discussed to identify the advantages. • Exergy destruction of several parts under varying solar radiation is examined. - Abstract: This study discusses the thermodynamic performance of a solar-hybrid coal-fired power plant that uses solar heat with temperature lower than 300 °C to replace the extracted steam from a steam turbine to heat the feed water. Through this process, the steam that was to be extracted can efficiently expand in the steam turbine to generate electricity. The flow rate of steam returning to the turbine retains only a small part of the main stream, allowing the steam turbine to run close to design conditions for all DNI. A solar-only thermal power plant without storage is also discussed to illustrate the advantages of a solar-hybrid coal-fired power plant. The off-design performances of both plants are compared based on the energy-utilization diagram method. The exergy destruction of the solar-hybrid coal-fired power plant is found to be lower than that of the solar-only thermal power plant. The comparison of two plants, which may provide detailed information on internal phenomena, highlights several advantages of the solar-hybrid coal-fired power plant in terms of off-design operation: lower exergy destruction in the solar feed water heater and steam turbine and higher exergy and solar-to-electricity efficiency. Preliminary technological economic performances of both plants are compared. The results obtained in this study indicate that a solar-hybrid coal-fired power plant could achieve better off-design performance and economic performance than a solar-only thermal power plant

  18. A novel adaptive sun tracker for spacecraft solar panel based on hybrid unsymmetric composite laminates

    Science.gov (United States)

    Wu, Zhangming; Li, Hao

    2017-11-01

    This paper proposes a novel adaptive sun tracker which is constructed by hybrid unsymmetric composite laminates. The adaptive sun tracker could be applied on spacecraft solar panels to increase their energy efficiency through decreasing the inclined angle between the sunlight and the solar panel normal. The sun tracker possesses a large rotation freedom and its rotation angle depends on the laminate temperature, which is affected by the light condition in the orbit. Both analytical model and finite element model (FEM) are developed for the sun tracker to predict its rotation angle in different light conditions. In this work, the light condition of the geosynchronous orbit on winter solstice is considered in the numerical prediction of the temperatures of the hybrid laminates. The final inclined angle between the sunlight and the solar panel normal during a solar day is computed using the finite element model. Parametric study of the adaptive sun tracker is conducted to improve its capacity and effectiveness of sun tracking. The improved adaptive sun tracker is lightweight and has a state-of-the-art design. In addition, the adaptive sun tracker does not consume any power of the solar panel, since it has no electrical driving devices. The proposed adaptive sun tracker provides a potential alternative to replace the traditional sophisticated electrical driving mechanisms for spacecraft solar panels.

  19. The Potential of hybrid solar-wind electricity generation in Ghana

    International Nuclear Information System (INIS)

    Tibiru, Ayirewura Vitus

    2013-07-01

    In this work the potential of harnessing electricity from solar and wind sources in Ghana is evaluated both quantitatively and qualitatively. In this regard solar, wind and other relevant data were collected (over a period of one year) from various parts of Ghana. Detailed assessment of the capacity or potential of power production from hybrid solar-wind sources is done with the use of empirical mathematical formulae and the PRO VITUS model incorporated in the 'ENERGY X' software. The various characteristics of wind, solar and available energy resources for the five locations over a one year period have been studied too. The annual mean wind speed at a height of 10 m above ground level for five locations namely Accra, Kumasi, Takoradi, Sunyani and Tamale are 2.38 ms"-"1 ± 0.05, 2.39 ms"-"1 ± 0.05, 2.38 ms"-"1 ± 0.06, 2.18 ms"-"1 ± 0.05 and 2.47 ± ms"-"1 respectively and their corresponding annual mean solar radiations are 228.71 Wm"-"2 ± 9.81, 187.69 Wm"-"2 ± 9.60, 236.58 Wm"-"2 ± 10.39, 200.99 Wm"-"2 ± 9.88 and 231.63 Wm"-"2 . Thus, the five sites hold potential for hybrid solar-wind energy exploitation. (au)

  20. Modeling and characteristics analysis of hybrid cooling-tower-solar-chimney system

    International Nuclear Information System (INIS)

    Zou, Zheng; He, Suoying

    2015-01-01

    Highlights: • A 3-D model for hybrid cooling-tower-solar-chimney system is developed. • The inclusion of heat exchangers into solar chimney boosts the power output. • The huge jump in power output is at the expense of heat dissipation capacity. • The heat exchanger as second heat source has greater impact on system performance. - Abstract: The hybrid cooling-tower-solar-chimney system (HCTSC), combining solar chimney with natural draft dry cooling tower, generates electricity and dissipates waste heat for the coupled geothermal power plant simultaneously. Based on a developed 3-D model, performance comparisons between the HCTSC system, solar chimney and natural draft dry cooling tower were performed in terms of power output of turbine and heat dissipation capacity. Results show that compared to the traditional solar chimney with similar geometric dimensions, HCTSC system can achieve over 20 times increase in the power output of turbine. However, this huge jump in power output is at the expense of heat dissipation capacity, which may lead to the malfunction of the coupled thermal power plant. By increasing the heat transfer area of the heat exchanger, the HCTSC system can manage to recover its heat dissipation capacity

  1. A hybrid computational approach to estimate solar global radiation: An empirical evidence from Iran

    International Nuclear Information System (INIS)

    Mostafavi, Elham Sadat; Ramiyani, Sara Saeidi; Sarvar, Rahim; Moud, Hashem Izadi; Mousavi, Seyyed Mohammad

    2013-01-01

    This paper presents an innovative hybrid approach for the estimation of the solar global radiation. New prediction equations were developed for the global radiation using an integrated search method of genetic programming (GP) and simulated annealing (SA), called GP/SA. The solar radiation was formulated in terms of several climatological and meteorological parameters. Comprehensive databases containing monthly data collected for 6 years in two cities of Iran were used to develop GP/SA-based models. Separate models were established for each city. The generalization of the models was verified using a separate testing database. A sensitivity analysis was conducted to investigate the contribution of the parameters affecting the solar radiation. The derived models make accurate predictions of the solar global radiation and notably outperform the existing models. -- Highlights: ► A hybrid approach is presented for the estimation of the solar global radiation. ► The proposed method integrates the capabilities of GP and SA. ► Several climatological and meteorological parameters are included in the analysis. ► The GP/SA models make accurate predictions of the solar global radiation.

  2. Hybrid Cooling System for Industrial Application | Ezekwe | Nigerian ...

    African Journals Online (AJOL)

    Hybrid Cooling System for Industrial Application. ... PROMOTING ACCESS TO AFRICAN RESEARCH ... more than five times over that achieved by using the gas (air) phase alone. ... EMAIL FREE FULL TEXT EMAIL FREE FULL TEXT

  3. Technical and economic assessment of solar hybrid repowering. Final report

    Energy Technology Data Exchange (ETDEWEB)

    None

    1978-09-01

    Drawings are presented for the repowering project described in SAN--1608-4-1. Reeves Sation No. 2 was selected for study for repowering at 50 percent (25 MWe) using the 10-MW solar central receiver pilot plant preliminary design for Barstow, California. (WHK)

  4. Technology development and application of solar energy in desalination: MEDRC contribution

    KAUST Repository

    Ghaffour, Noreddine

    2011-12-01

    Desalination has become one of the sources for water supply in several countries especially in the Middle East and North Africa region. There is a great potential to develop solar desalination technologies especially in this region where solar source is abundantly available. The success in implementing solar technologies in desalination at a commercial scale depends on the improvements to convert solar energy into electrical and/or thermal energies economically as desalination processes need these types of energies. Since desalination is energy intensive, the wider use of solar technologies in desalination will eventually increase the demand on these technologies, making it possible to go for mass production of photovoltaic (PV) cells, collectors and solar thermal power plants. This would ultimately lead to the reduction in the costs of these technologies. The energy consumed by desalination processes has been significantly reduced in the last decade meaning that, if solar technologies are to be used, less PV modules and area for collectors would be needed. The main aspects to be addressed to make solar desalination a viable option in remote location applications is to develop new materials or improve existing solar collectors and find the best combinations to couple the different desalination processes with appropriate solar collector. In the objective to promote solar desalination in MENA, the Middle East Desalination Research Center has concentrated on various aspects of solar desalination in the last twelve years by sponsoring 17 research projects on different technologies and Software packages development for coupling desalination and renewable energy systems to address the limitations of solar desalination and develop new desalination technologies and hybrid systems suitable for remote areas. A brief description of some of these projects is highlighted in this paper. The full details of all these projects are available the Centers website. © 2011 Elsevier

  5. Hybrid organic-inorganic heterojunctions for photovoltaic applications

    OpenAIRE

    Dietmüller, Roland

    2012-01-01

    Hybrid organic-inorganic bulk heterojunction solar cells based on silicon nanocrystals (Si-nc) have been realized and investigated. A photo-induced charge transfer could be demonstrated in composites made of silicon nanocrystals and poly(3-hexylthiophene) (P3HT) or [6,6]-phenyl-C61-butyric acid methyl ester (PCBM) via light-induced electron spin resonance measurements. With bulk heterojunction solar cells made of P3HT/Si-nc composites in a sandwich structure, open-circuit voltages of up to 0....

  6. A systematic approach of bottom-up assessment methodology for an optimal design of hybrid solar/wind energy resources – Case study at middle east region

    International Nuclear Information System (INIS)

    Ifaei, Pouya; Karbassi, Abdolreza; Jacome, Gabriel; Yoo, ChangKyoo

    2017-01-01

    Highlights: • Proposing DaSOSaCa flowchart as a novel hybrid solar/wind assessment approach. • Calculating four key parameters to generate synthetic wind hourly data for Iran. • Proposing technical and economic hybrid solar/wind GIS maps of Iran. • Revising renewable energies management plans of Iran by macroeconomic evaluation. - Abstract: In the current study, an algorithm-based data processing, sizing, optimization, sensitivity analysis and clustering approach (DaSOSaCa) is proposed as an efficient simultaneous solar/wind assessment methodology. Accordingly, data processing is performed to obtain reliable high quality meteorological data among various datasets, which are used for hybrid photovoltaic/wind turbine/storage/converter system optimal design for consequent sites in a large region. The optimal hybrid systems are consequently simulated to meet hourly power demand in various sites. The solar/wind fraction and net present cost of the systems are then used as the technical and economic clustering variables, respectively. The clustering results are finally used as input to obtain novel hybrid solar/wind GIS maps. Iran is selected as the case study to validate the proposed methodology and detail its applicability. Ten minute annual global horizontal radiation, wind speed, and temperature data are analyzed, and the optimal, robust hybrid systems are simulated for various sites in order to classify the country. The generated GIS maps show that Iran can be efficiently clustered into four technical and five economic clusters under optimal conditions. The clustering results prove that Iran is mainly a solar country with approximately 74% solar power fraction under optimum conditions. A macroeconomic evaluation using DaSOSaCa also reveals that the nominal discount rate is recommended to be greater than 20% considering the current economic situation for the renewable energy sector in Iran. An environmental analysis results show that an average 106.68 tonCO 2

  7. DESIGN AND THERMAL PERFORMANCE OF THE SOLAR BIOMASS HYBRID DRYER FOR CASHEW DRYING

    Directory of Open Access Journals (Sweden)

    Saravanan Dhanuskodi

    2014-12-01

    Full Text Available Drying of Cashew nut to remove testa is one of the most energy-intensive processes of cashew nut process industry. For this reason a hybrid dryer consisting of a solar flat plate collector, a biomass heater and a drying chamber is designed and fabricated. 40 kg of Cashew nut with initial moisture of 9 % is used in the experiment. The performance test of the dryer is carried out in two modes of operation: hybrid-forced convection and hybrid-natural convection. Drying time and drying efficiency during these two modes of operation are estimated and compared with the sun drying. The system is capable of attaining drying temperature between 50º and 70ºC. In the hybrid forced drying, the required moisture content of 3% is achieved within 7 hours and the average system efficiency is estimated as 5.08%. In the hybrid natural drying, the required moisture content is obtained in 9 hours and the average system efficiency is 3.17%. The fuel consumption during the drying process is 0.5 kg/hr and 0.75 kg/hr for forced mode and natural mode, respectively. The drying process in the hybrid forced mode of operation is twice faster than the sun drying. The dryer can be operated in any climatic conditions: as a solar dryer on normal sunny days, as a biomass dryer at night time and as a hybrid dryer on cloudy days. Based on the experimental study, it is concluded that the developed hybrid dryer is suitable for small scale cashew nut farmers in rural areas of developing countries.

  8. Planar structured perovskite solar cells by hybrid physical chemical vapor deposition with optimized perovskite film thickness

    Science.gov (United States)

    Wei, Xiangyang; Peng, Yanke; Jing, Gaoshan; Cui, Tianhong

    2018-05-01

    The thickness of perovskite absorber layer is a critical parameter to determine a planar structured perovskite solar cell’s performance. By modifying the spin coating speed and PbI2/N,N-dimethylformamide (DMF) solution concentration, the thickness of perovskite absorber layer was optimized to obtain high-performance solar cells. Using a PbI2/DMF solution of 1.3 mol/L, maximum power conversion efficiency (PCE) of a perovskite solar cell is 15.5% with a perovskite film of 413 nm at 5000 rpm, and PCE of 14.3% was also obtained for a solar cell with a perovskite film of 182 nm thick. It is derived that higher concentration of PbI2/DMF will result in better perovskite solar cells. Additionally, these perovskite solar cells are highly uniform. In 14 sets of solar cells, standard deviations of 11 sets of solar cells were less than 0.50% and the smallest standard deviation was 0.25%, which demonstrates the reliability and effectiveness of hybrid physical chemical vapor deposition (HPCVD) method.

  9. Development of practical application technology for photovoltaic power generation systems in fiscal 1997. Development of technologies to manufacture application type thin film solar cells with new structure (development of technologies to manufacture amorphous silicon and thin film poly-crystal silicon hybrid thin film solar cells); 1997 nendo taiyoko hatsuden system jitsuyoka gijutsu kaihatsu. Usumaku taiyo denchi no seizo gijutsu kaihatsu, oyogata shinkozo usumaku taiyo denchi no seizo gijutsu kaihatsu (amorphous silicon/usumaku takessho silicon hybrid usumaku taiyo denchi no seizo gijutsu kaihatsu)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-03-01

    Research and development was performed with an objective to manufacture amorphous silicon and thin film poly-crystal silicon hybrid solar cells with large area and at low cost, being a high-efficiency next generation solar cell. The research was performed based on a principle that low-cost substrates shall be used, that a manufacturing process capable of forming amorphous silicon films with large area shall be based on, and that silicon film with as thin as possible thickness shall be used. Fiscal 1997 has started research and development on making the cells hybrid with amorphous silicon cells. As a result of the research and development, such achievements have been attained as using texture structure on the rear layer in thin poly-crystal silicon film solar cells with a thickness of two microns, and having achieved conversion efficiency of 10.1% by optimizing the junction interface forming conditions. A photo-deterioration test was carried out on hybrid cells which combine the thin poly-crystal silicon film cells having STAR structure with the amorphous silicon cells. Stabilization efficiency of 11.5% was attained after light has been irradiated for 500 hours or longer. (NEDO)

  10. Sustainable electricity generation by solar pv/diesel hybrid system without storage for off grids areas

    International Nuclear Information System (INIS)

    Azoumah, Y; Yamegueu, D; Py, X

    2012-01-01

    Access to energy is known as a key issue for poverty reduction. The electrification rate of sub Saharan countries is one of the lowest among the developing countries. However this part of the world has natural energy resources that could help raising its access to energy, then its economic development. An original 'flexy energy' concept of hybrid solar pv/diesel/biofuel power plant, without battery storage, is developed in order to not only make access to energy possible for rural and peri-urban populations in Africa (by reducing the electricity generation cost) but also to make the electricity production sustainable in these areas. Some experimental results conducted on this concept prototype show that the sizing of a pv/diesel hybrid system by taking into account the solar radiation and the load/demand profile of a typical area may lead the diesel generator to operate near its optimal point (70-90 % of its nominal power). Results also show that for a reliability of a PV/diesel hybrid system, the rated power of the diesel generator should be equal to the peak load. By the way, it has been verified through this study that the functioning of a pv/Diesel hybrid system is efficient for higher load and higher solar radiation.

  11. Sustainable electricity generation by solar pv/diesel hybrid system without storage for off grids areas

    Science.gov (United States)

    Azoumah, Y.; Yamegueu, D.; Py, X.

    2012-02-01

    Access to energy is known as a key issue for poverty reduction. The electrification rate of sub Saharan countries is one of the lowest among the developing countries. However this part of the world has natural energy resources that could help raising its access to energy, then its economic development. An original "flexy energy" concept of hybrid solar pv/diesel/biofuel power plant, without battery storage, is developed in order to not only make access to energy possible for rural and peri-urban populations in Africa (by reducing the electricity generation cost) but also to make the electricity production sustainable in these areas. Some experimental results conducted on this concept prototype show that the sizing of a pv/diesel hybrid system by taking into account the solar radiation and the load/demand profile of a typical area may lead the diesel generator to operate near its optimal point (70-90 % of its nominal power). Results also show that for a reliability of a PV/diesel hybrid system, the rated power of the diesel generator should be equal to the peak load. By the way, it has been verified through this study that the functioning of a pv/Diesel hybrid system is efficient for higher load and higher solar radiation.

  12. Hybrid zinc oxide/graphene electrodes for depleted heterojunction colloidal quantum-dot solar cells.

    Science.gov (United States)

    Tavakoli, Mohammad Mahdi; Aashuri, Hossein; Simchi, Abdolreza; Fan, Zhiyong

    2015-10-07

    Recently, hybrid nanocomposites consisting of graphene/nanomaterial heterostructures have emerged as promising candidates for the fabrication of optoelectronic devices. In this work, we have employed a facile and in situ solution-based process to prepare zinc oxide/graphene quantum dots (ZnO/G QDs) in a hybrid structure. The prepared hybrid dots are composed of a ZnO core, with an average size of 5 nm, warped with graphene nanosheets. Spectroscopic studies show that the graphene shell quenches the photoluminescence intensity of the ZnO nanocrystals by about 72%, primarily due to charge transfer reactions and static quenching. A red shift in the absorption peak is also observed. Raman spectroscopy determines G-band splitting of the graphene shell into two separated sub-bands (G(+), G(-)) caused by the strain induced symmetry breaking. It is shown that the hybrid ZnO/G QDs can be used as a counter-electrode for heterojunction colloidal quantum-dot solar cells for efficient charge-carrier collection, as evidenced by the external quantum efficiency measurement. Under the solar simulated spectrum (AM 1.5G), we report enhanced power conversion efficiency (35%) with higher short current circuit (80%) for lead sulfide-based solar cells as compared to devices prepared by pristine ZnO nanocrystals.

  13. Life cycle cost analysis of single slope hybrid (PV/T) active solar still

    International Nuclear Information System (INIS)

    Kumar, Shiv; Tiwari, G.N.

    2009-01-01

    This paper presents the life cycle cost analysis of the single slope passive and hybrid photovoltaic (PV/T) active solar stills, based on the annual performance at 0.05 m water depth. Effects of various parameters, namely interest rate, life of the system and the maintenance cost have been taken into account. The comparative cost of distilled water produced from passive solar still (Rs. 0.70/kg) is found to be less than hybrid (PV/T) active solar still (Rs. 1.93/kg) for 30 years life time of the systems. The payback periods of the passive and hybrid (PV/T) active solar still are estimated to be in the range of 1.1-6.2 years and 3.3-23.9 years, respectively, based on selling price of distilled water in the range of Rs. 10/kg to Rs. 2/kg. The energy payback time (EPBT) has been estimated as 2.9 and 4.7 years, respectively. (author)

  14. Hybrid Solar Cell with TiO2 Film: BBOT Polymer and Copper Phthalocyanine as Sensitizer

    Directory of Open Access Journals (Sweden)

    Saptadip Saha

    2016-01-01

    Full Text Available An organic-inorganic hybrid solar cell was fabricated using Titanium dioxide (TiO2: 2,5-bis(5-tert-butyl-2-benzoxazolyl thiophene (BBOT film and Copper Phthalocyanine (CuPc as a sensitizer. BBOT was used in photodetector in other reported research works, but as per best of our knowledge, it was not implemented in solar cells till date. The blend of TiO2: BBOT blend was used to fabricate the film on ITO-coated glass and further a thin layer of CuPc was coated on the film. This was acted as photoanode and another ITO coated glass with a platinum coating was used as a counter electrode (cathode. An optimal blend of acetonitrile (solvent (50-100%, 1,3-dimethylimidazolium iodide (10-25%, iodine (2.5-10% and lithium iodide, pyridine derivative and thiocyanate was used as electrolytes in the hybrid solar cell. The different structural, optical and electrical characteristics were measured. The Hybrid solar cell showed a maximum conversion efficiency of 6.51%.

  15. Power fluctuations suppression of stand-alone hybrid generation combining solar photovoltaic/wind turbine and fuel cell systems

    International Nuclear Information System (INIS)

    Ahmed, Nabil A.; Miyatake, Masafumi; Al-Othman, A.K.

    2008-01-01

    In this paper a hybrid energy system combining variable speed wind turbine, solar photovoltaic and fuel cell generation systems is presented to supply continuous power to residential power applications as stand-alone loads. The wind and photovoltaic systems are used as main energy sources while the fuel cell is used as secondary or back-up energy source. Three individual dc-dc boost converters are used to control the power flow to the load. A simple and cost effective control with dc-dc converters is used for maximum power point tracking and hence maximum power extracting from the wind turbine and the solar photovoltaic systems. The hybrid system is sized to power a typical 2 kW/150 V dc load as telecommunication power plants or ac residential power applications in isolated islands continuously throughout the year. The results show that even when the sun and wind are not available; the system is reliable and available and it can supply high-quality power to the load. The simulation results which proved the accuracy of the proposed controllers are given to demonstrate the availability of the proposed system in this paper. Also, a complete description of the management and control system is presented

  16. Simulation of solar-powered ammonia-water integrated hybrid cooling system

    International Nuclear Information System (INIS)

    Chinnappa, J.C.V.; Wijeysundera, N.E.

    1992-01-01

    A number of solar-operated air-conditioning systems based on the H 2 O-LiBr absorption chiller were built, installed, and monitored. A systematic study at the University of Colorado has been published. This paper presents a simple cost-benefit analysis of the conventional vapor compression system (VCS), the vapor absorption system (VAS), and the integrated hybrid system (IHS). The cost of energy input to the VAS and the IHS were compared with the energy cost of the VCS that these solar-powered systems replace. It was found that cost savings can be realized with solar-powered systems, only after a critical overall solar fraction is exceeded. Typically, this value was about 0.7 for a VAS and about 0.12 for a IHS. These cost-benefit results provided the motivation for a more detailed study of the IHS. There has also been other efforts in this direction

  17. Hybrid-renewable processes for biofuels production: concentrated solar pyrolysis of biomass residues

    Energy Technology Data Exchange (ETDEWEB)

    George, Anthe [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Geier, Manfred [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Dedrick, Daniel E. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2014-10-01

    The viability of thermochemically-derived biofuels can be greatly enhanced by reducing the process parasitic energy loads. Integrating renewable power into biofuels production is one method by which these efficiency drains can be eliminated. There are a variety of such potentially viable "hybrid-renewable" approaches; one is to integrate concentrated solar power (CSP) to power biomass-to-liquid fuels (BTL) processes. Barriers to CSP integration into BTL processes are predominantly the lack of fundamental kinetic and mass transport data to enable appropriate systems analysis and reactor design. A novel design for the reactor has been created that can allow biomass particles to be suspended in a flow gas, and be irradiated with a simulated solar flux. Pyrolysis conditions were investigated and a comparison between solar and non-solar biomass pyrolysis was conducted in terms of product distributions and pyrolysis oil quality. A novel method was developed to analyse pyrolysis products, and investigate their stability.

  18. Effects of the Solar Wind Pressure on Mercury's Exosphere: Hybrid Simulations

    Science.gov (United States)

    Travnicek, P. M.; Schriver, D.; Orlando, T. M.; Hellinger, P.

    2017-12-01

    We study effects of the changed solar wind pressure on the precipitation of hydrogen on the Mercury's surface and on the formation of Mercury's magnetosphere. We carry out a set of global hybrid simulations of the Mercury's magnetosphere with the interplanetary magnetic field oriented in the equatorial plane. We change the solar wind pressure by changing the velocity of injected solar wind plasma (vsw = 2 vA,sw; vsw = 4 vA,sw; vsw = 6 vA,sw). For each of the cases we examine proton and electron precipitation on Mercury's surface and calculate yields of heavy ions released from Mercury's surface via various processes (namely: Photo-Stimulated Desorption, Solar Wind Sputtering, and Electron Stimulated Desorption). We study circulation of the released ions within the Mercury's magnetosphere for the three cases.

  19. ANN based optimization of a solar assisted hybrid cooling system in Turkey

    Energy Technology Data Exchange (ETDEWEB)

    Ozgur, Arif; Yetik, Ozge; Arslan, Oguz [Mechanical Eng. Dept., Engineering Faculty, Dumlupinar University (Turkey)], email: maozgur@dpu.edu.tr, email: ozgeyetik@dpu.edu.tr, email: oarslan@dpu.edu.tr

    2011-07-01

    This study achieved optimization of a solar assisted hybrid cooling system with refrigerants such as R717, R141b, R134a and R123 using an artificial neural network (ANN) model based on average total solar radiation, ambient temperature, generator temperature, condenser temperature, intercooler temperature and fluid types. ANN is a new tool; it works rapidly and can thus be a solution for design and optimization of complex power cycles. A unique flexible ANN algorithm was introduced to evaluate the solar ejector cooling systems because of the nonlinearity of neural networks. The conclusion was that the best COPs value obtained with the ANN is 1.35 and COPc is 3.03 when the average total solar radiation, ambient temperature, generator temperature, condenser temperature, intercooler temperature and algorithm are respectively 674.72 W/m2, 17.9, 80, 15 and 13 degree celsius and LM with 14 neurons in single hidden layer, for R717.

  20. Hourly forecasting of global solar radiation based on multiscale decomposition methods: A hybrid approach

    International Nuclear Information System (INIS)

    Monjoly, Stéphanie; André, Maïna; Calif, Rudy; Soubdhan, Ted

    2017-01-01

    This paper introduces a new approach for the forecasting of solar radiation series at 1 h ahead. We investigated on several techniques of multiscale decomposition of clear sky index K_c data such as Empirical Mode Decomposition (EMD), Ensemble Empirical Mode Decomposition (EEMD) and Wavelet Decomposition. From these differents methods, we built 11 decomposition components and 1 residu signal presenting different time scales. We performed classic forecasting models based on linear method (Autoregressive process AR) and a non linear method (Neural Network model). The choice of forecasting method is adaptative on the characteristic of each component. Hence, we proposed a modeling process which is built from a hybrid structure according to the defined flowchart. An analysis of predictive performances for solar forecasting from the different multiscale decompositions and forecast models is presented. From multiscale decomposition, the solar forecast accuracy is significantly improved, particularly using the wavelet decomposition method. Moreover, multistep forecasting with the proposed hybrid method resulted in additional improvement. For example, in terms of RMSE error, the obtained forecasting with the classical NN model is about 25.86%, this error decrease to 16.91% with the EMD-Hybrid Model, 14.06% with the EEMD-Hybid model and to 7.86% with the WD-Hybrid Model. - Highlights: • Hourly forecasting of GHI in tropical climate with many cloud formation processes. • Clear sky Index decomposition using three multiscale decomposition methods. • Combination of multiscale decomposition methods with AR-NN models to predict GHI. • Comparison of the proposed hybrid model with the classical models (AR, NN). • Best results using Wavelet-Hybrid model in comparison with classical models.

  1. The energetic performance of a novel hybrid solar thermal and chemical looping combustion plant

    International Nuclear Information System (INIS)

    Jafarian, Mehdi; Arjomandi, Maziar; Nathan, Graham J.

    2014-01-01

    Highlights: • A hybrid solar chemical looping combustion power cycle is reported. • The cycle is studied for two configurations, with and without an after-burner. • The oxygen carrier particles are used as storage medium for solar thermal energy. • Total solar shares of 41.4% and 60% are achieved with and without the after-burner. • Efficiencies of 50% and 44.0% are achieved with and without the after-burner. - Abstract: The overall energetic performance of a gas turbine combined cycle powered by a hybrid cycle between a solar thermal and a chemical looping combustion (CLC) system firing methane is reported for two configurations. In one case, the outlet from the air reactor is fed directly to a gas turbine, while in the other an after-burner, also firing methane, is added to increase the gas turbine inlet temperature. The cycle is simulated using Aspen Plus software for the average diurnal profile of normal irradiance for Port Augusta, South Australia. The first law efficiency, total solar absorption efficiency, average and peak fractional power boosts, total solar share, net solar to electrical efficiency, fraction of pressurised CO 2 , incremental CO 2 avoidance and the exergy efficiency for both cycles are reported. The calculations predict a first law efficiency of 50.0% for the cycle employing an after-burner, compared with 44.0% for that without the after-burner. However, this is achieved at the cost of decreasing the solar share from 60.0%, without the after-burner, to 41.4% with it. Also reported is the sensitivity analysis of performance to variations in key operating parameters. The sensitivity analysis shows that further improvements to the performance of the cycle are possible

  2. Utilization of space technology for terrestrial solar power applications

    Science.gov (United States)

    Yasui, R. K.; Patterson, R. E.

    1974-01-01

    A description is given of the evolution of photovoltaic power systems designed and built for terrestrial applications, giving attention to problem areas which are currently impeding the further development of such systems. The rooftop testing of surplus solar panels is considered along with solar powered seismic observatories, solar powered portable radio sets, and design considerations identified from past experience. Present activities discussed are related to a solar powered on-shore beacon flasher system, a solar powered buoy, and a solar powered beacon flasher buoy.

  3. Modeling and control of a small solar fuel cell hybrid energy system

    Institute of Scientific and Technical Information of China (English)

    LI Wei; ZHU Xin-jian; CAO Guang-yi

    2007-01-01

    This paper describes a solar photovoltaic fuel cell (PVEC) hybrid generation system consisting of a photovoltaic (PV) generator, a proton exchange membrane fuel cell (PEMFC), an electrolyser, a supercapacitor, a storage gas tank and power conditioning unit (PCU). The load is supplied from the PV generator with a fuel cell working in parallel. Excess PV energy when available is converted to hydrogen using an electrolyser for later use in the fuel cell. The individual mathematical model for each component is presented. Control strategy for the system is described. MATLAB/Simulink is used for the simulation of this highly nonlinear hybrid energy system. The simulation results are shown in the paper.

  4. Embedded Metal Electrode for Organic-Inorganic Hybrid Nanowire Solar Cells.

    Science.gov (United States)

    Um, Han-Don; Choi, Deokjae; Choi, Ahreum; Seo, Ji Hoon; Seo, Kwanyong

    2017-06-27

    We demonstrate here an embedded metal electrode for highly efficient organic-inorganic hybrid nanowire solar cells. The electrode proposed here is an effective alternative to the conventional bus and finger electrode which leads to a localized short circuit at a direct Si/metal contact and has a poor collection efficiency due to a nonoptimized electrode design. In our design, a Ag/SiO 2 electrode is embedded into a Si substrate while being positioned between Si nanowire arrays underneath poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS), facilitating suppressed recombination at the Si/Ag interface and notable improvements in the fabrication reproducibility. With an optimized microgrid electrode, our 1 cm 2 hybrid solar cells exhibit a power conversion efficiency of up to 16.1% with an open-circuit voltage of 607 mV and a short circuit current density of 34.0 mA/cm 2 . This power conversion efficiency is more than twice as high as that of solar cells using a conventional electrode (8.0%). The microgrid electrode significantly minimizes the optical and electrical losses. This reproducibly yields a superior quantum efficiency of 99% at the main solar spectrum wavelength of 600 nm. In particular, our solar cells exhibit a significant increase in the fill factor of 78.3% compared to that of a conventional electrode (61.4%); this is because of the drastic reduction in the metal/contact resistance of the 1 μm-thick Ag electrode. Hence, the use of our embedded microgrid electrode in the construction of an ideal carrier collection path presents an opportunity in the development of highly efficient organic-inorganic hybrid solar cells.

  5. Analysis of the solar/wind resources in Southern Spain for optimal sizing of hybrid solar-wind power generation systems

    Science.gov (United States)

    Quesada-Ruiz, S.; Pozo-Vazquez, D.; Santos-Alamillos, F. J.; Lara-Fanego, V.; Ruiz-Arias, J. A.; Tovar-Pescador, J.

    2010-09-01

    A drawback common to the solar and wind energy systems is their unpredictable nature and dependence on weather and climate on a wide range of time scales. In addition, the variation of the energy output may not match with the time distribution of the load demand. This can partially be solved by the use of batteries for energy storage in stand-alone systems. The problem caused by the variable nature of the solar and wind resources can be partially overcome by the use of energy systems that uses both renewable resources in a combined manner, that is, hybrid wind-solar systems. Since both resources can show complementary characteristics in certain location, the independent use of solar or wind systems results in considerable over sizing of the batteries system compared to the use of hybrid solar-wind systems. Nevertheless, to the day, there is no single recognized method for properly sizing these hybrid wind-solar systems. In this work, we present a method for sizing wind-solar hybrid systems in southern Spain. The method is based on the analysis of the wind and solar resources on daily scale, particularly, its temporal complementary characteristics. The method aims to minimize the size of the energy storage systems, trying to provide the most reliable supply.

  6. Nanowire Structured Hybrid Cell for Concurrently Scavenging Solar and Mechanical Energies

    KAUST Repository

    Xu, Chen

    2009-04-29

    Conversion cells for harvesting solar energy and mechanical energy are usually separate and independent entities that are designed and built following different physical principles. Developing a technology that harvests multiple-type energies in forms such as sun light and mechanical around the clock is desperately desired for fully utilizing the energies available in our living environment. We report a hybrid cell that is intended for simultaneously harvesting solar and mechanical energies. Using aligned ZnO nanowire arrays grown on surfaces of a flat substrate, a dye-sensitized solar cell is integrated with a piezoelectric nanogenerator. The former harvests solar energy irradiating on the top, and the latter harvests ultrasonic wave energy from the surrounding. The two energy harvesting approaches can work simultaneously or individually, and they can be integrated in parallel and serial for raising the output current and voltage, respectively, as well as power. It is found that the voltage output from the solar cell can be used to raise the output voltage of the nanogenerator, providing an effective approach for effectively storing and utilizing the power generated by the nanogenerator. Our study demonstrates a new approach for concurrently harvesting multiple types of energies using an integrated hybrid cell so that the energy resources can be effectively and complementary utilized whenever and wherever one or all of them is available. © 2009 American Chemical Society.

  7. Hybrid sunlight/LED illumination and renewable solar energy saving concepts for indoor lighting.

    Science.gov (United States)

    Tsuei, Chih-Hsuan; Sun, Wen-Shing; Kuo, Chien-Cheng

    2010-11-08

    A hybrid method for using sunlight and light-emitting diode (LED) illumination powered by renewable solar energy for indoor lighting is simulated and presented in this study. We can illuminate an indoor space and collect the solar energy using an optical switching system. When the system is turned off, the full spectrum of the sunlight is concentrated by a concentrator, to be absorbed by solar photovoltaic devices that provide the electricity to power the LEDs. When the system is turned on, the sunlight collected by the concentrator is split into visible and non-visible rays by a beam splitter. The visible rays pass through the light guide into a light box where it is mixed with LED light to ultimately provide uniform illumination by a diffuser. The non-visible rays are absorbed by the solar photovoltaic devices to provide electrical power for the LEDs. Simulation results show that the efficiency of the hybrid sunlight/LED illumination with the renewable solar energy saving design is better than that of LED and traditional lighting systems.

  8. Optical hybrid quantum teleportation and its applications

    Science.gov (United States)

    Takeda, Shuntaro; Okada, Masanori; Furusawa, Akira

    2017-08-01

    Quantum teleportation, a transfer protocol of quantum states, is the essence of many sophisticated quantum information protocols. There have been two complementary approaches to optical quantum teleportation: discrete variables (DVs) and continuous variables (CVs). However, both approaches have pros and cons. Here we take a "hybrid" approach to overcome the current limitations: CV quantum teleportation of DVs. This approach enabled the first realization of deterministic quantum teleportation of photonic qubits without post-selection. We also applied the hybrid scheme to several experiments, including entanglement swapping between DVs and CVs, conditional CV teleportation of single photons, and CV teleportation of qutrits. We are now aiming at universal, scalable, and fault-tolerant quantum computing based on these hybrid technologies.

  9. Production of solar chemicals: gaining selectivity with hybrid molecule/semiconductor assemblies.

    Science.gov (United States)

    Hennessey, Seán; Farràs, Pau

    2018-05-29

    Research on the production of solar fuels and chemicals has rocketed over the past decade, with a wide variety of systems proposed to harvest solar energy and drive chemical reactions. In this Feature Article we have focused on hybrid molecule/semiconductor assemblies in both powder and supported materials, summarising recent systems and highlighting the enormous possibilities offered by such assemblies to carry out highly demanding chemical reactions with industrial impact. Of relevance is the higher selectivity obtained in visible light-driven organic transformations when using molecular catalysts compared to photocatalytic materials.

  10. Development of a tube receiver for a solar-hybrid microturbine system

    OpenAIRE

    Amsbeck, Lars; Buck, Reiner; Heller, Peter; Jedamski, Jens; Uhlig, Ralf

    2008-01-01

    Solar-hybrid microturbine systems with cogeneration offer new possibilities for the generation of electricity and heat or air conditioning. The solar receiver is an important component of such a system. For a prototype system demo project a tube receiver for a 100kWe microturbine system is currently under development. The receiver is designed for air preheating up to 800°C at a pressure of 4.5 barabs. The challenge of the design is to find the right compromise between high efficiency, low pre...

  11. ADAPTIVE FULL-SPECTRUM SOLAR ENERGY SYSTEMS CROSS-CUTTING R&D ON ADAPTIVE FULL-SPECTRUM SOLAR ENERGY SYSTEMS FOR MORE EFFICIENT AND AFFORDABLE USE OF SOLAR ENERGY IN BUILDINGS AND HYBRID PHOTOBIOREACTORS

    Energy Technology Data Exchange (ETDEWEB)

    Byard D. Wood; Jeff D. Muhs

    2004-08-01

    This RD&D project is a three year team effort to develop a hybrid solar lighting (HSL) system that transports daylight from a paraboloidal dish concentrator to a luminaire via a bundle of small core or a large core polymer fiber optics. The luminaire can be a device to distribute sunlight into a space for the production of algae or it can be a device that is a combination of daylighting and electric lighting for space/task lighting. In this project, the sunlight is collected using a one-meter paraboloidal concentrator dish with two-axis tracking. For the second generation (alpha) system, the secondary mirror is an ellipsoidal mirror that directs the visible light into a bundle of small-core fibers. The IR spectrum is filtered out to minimize unnecessary heating at the fiber entrance region. This report describes the following investigations of various aspects of the system. Taken as a whole, they confirm significant progress towards the technical feasibility and commercial viability of this technology. (1) TRNSYS Modeling of a Hybrid Lighting System: Building Energy Loads and Chromaticity Analysis; (2) High Lumens Screening Test Setup for Optical Fibers; (3) Photo-Induced Heating in Plastic Optical Fiber Bundles; (4) Low-Cost Primary Mirror Development; (5) Potential Applications for Hybrid Solar Lighting; (6) Photobioreactor Population Experiments and Productivity Measurements; and (7) Development of a Microalgal CO2-Biofixation Photobioreactor.

  12. Design of hybrid nanoheterostructure systems for enhanced quantum and solar conversion efficiencies in dye-sensitized solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Kılıç, Bayram, E-mail: bkilic@yalova.edu.tr, E-mail: kbayramkilic@gmail.com [Department of Energy Systems Engineering, Faculty of Engineering, Yalova University, 77100 Yalova (Turkey); Telli, Hakan; Başaran, Ali; Pirge, Gursev [Turkish Air Force Academy, Institute of Aeronautics and Space Technologies, Istanbul (Turkey); Tüzemen, Sebahattin [Department of Physics, Faculty of Science, Ataturk University, Erzurum (Turkey)

    2015-04-07

    Dye sensitized solar cells (DSSCs) with an innovative design involving controlled-morphology vertically aligned (VA) ZnO nanowires within mesoporous TiO{sub 2} structures with ultrahigh surface area for implementation as photoanodes are herein reported. Although TiO{sub 2} nanostructures exhibit excellent power conversion efficiency, the electron transport rate is low owing to low electron mobility. To overcome this, ZnO nanowires with high electron mobility have been investigated as potential candidates for photoanodes. However, the power conversion efficiency of ZnO nanowires is still lower than that of TiO{sub 2} owing to their low internal surface area. Consequently, in this work, vertical growth of ZnO nanowires within mesoporous TiO{sub 2} structures is carried out to increase their solar power conversion efficiency. The photovoltaic performance of solar cells using ZnO nanowires, mesoporous TiO{sub 2}, and TiO{sub 2}/ZnO hybrid structures are compared. The VA TiO{sub 2}/ZnO hybrid structures are found to provide direct electron transfer compared with the tortuous pathway of zero-dimensional nanostructures, resulting in an increased conversion efficiency. It is demonstrated that the light scattering of the photoanode film is increased and electron recombination is decreased when an appropriate amount of mesoporous TiO{sub 2} is used as a substrate for ZnO nanowires. The DSSC fabricated with the TiO{sub 2}/ZnO hybrid photoanode prepared with 15.8 wt. % TiO{sub 2} showed the highest conversion efficiency of 7.30%, approximately 5%, 18%, and 40% higher than that of DSSCs fabricated with 3.99 wt. % TiO{sub 2}, pure TiO{sub 2}, and pure ZnO photoanodes, respectively.

  13. Assessing the Structural, Driver and Economic Impacts of Traffic Pole Mounted Wind Power Generator and Solar Panel Hybrid System

    Science.gov (United States)

    2012-06-01

    This project evaluates the physical and economic feasibility of using existing traffic infrastructure to mount wind power : generators. Some possible places to mount a light weight wind generator and solar panel hybrid system are: i) Traffic : signal...

  14. Ionic liquid and nanoparticle hybrid systems: Emerging applications.

    Science.gov (United States)

    He, Zhiqi; Alexandridis, Paschalis

    2017-06-01

    Having novel electronic and optical properties that emanate from their nano-scale dimensions, nanoparticles are central to numerous applications. Ionic liquids can confer to nanoparticle chemical protection and physicochemical property enhancement through intermolecular interactions and can consequently improve the stability and reusability of nanoparticle for various operations. With an aim to combine the novel properties of nanoparticles and ionic liquids, different structures have been generated, based on a balance of several intermolecular interactions. Such ionic liquid and nanoparticle hybrids are showing great potential in diverse applications. In this review, we first introduce various types of ionic liquid and nanoparticle hybrids, including nanoparticle colloidal dispersions in ionic liquids, ionic liquid-grafted nanoparticles, and nanoparticle-stabilized ionic liquid-based emulsions. Such hybrid materials exhibit interesting synergisms. We then highlight representative applications of ionic liquid and nanoparticle hybrids in the catalysis, electrochemistry and separations fields. Such hybrids can attain better stability and higher efficiency under a broad range of conditions. Novel and enhanced performance can be achieved in these applications by combining desired properties of ionic liquids and of nanoparticles within an appropriate hybrid nanostructure. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Gas Turbine/Solar Parabolic Trough Hybrid Design Using Molten Salt Heat Transfer Fluid: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Turchi, C. S.; Ma, Z.

    2011-08-01

    Parabolic trough power plants can provide reliable power by incorporating either thermal energy storage (TES) or backup heat from fossil fuels. This paper describes a gas turbine / parabolic trough hybrid design that combines a solar contribution greater than 50% with gas heat rates that rival those of natural gas combined-cycle plants. Previous work illustrated benefits of integrating gas turbines with conventional oil heat-transfer-fluid (HTF) troughs running at 390?C. This work extends that analysis to examine the integration of gas turbines with salt-HTF troughs running at 450 degrees C and including TES. Using gas turbine waste heat to supplement the TES system provides greater operating flexibility while enhancing the efficiency of gas utilization. The analysis indicates that the hybrid plant design produces solar-derived electricity and gas-derived electricity at lower cost than either system operating alone.

  16. Hybrid resonant organic-inorganic nanostructures for novel light emitting devices and solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Agranovich, Vladimir M. [Institute of Spectroscopy, Russian Academy of Science, Troitsk, Moscow (Russian Federation); Chemistry Department, University of Texas at Dallas, Texas (United States); Rupasov, Valery I. [ANTEOS, Inc., Shrewsbury, Massachusetts 01545 (United States); Silvestri, Leonardo [Dipartimento di Scienza dei Materiali, Universita degli Studi di Milano Bicocca, Milano (Italy)

    2010-06-15

    The energy transfer from an inorganic layer to an organic component of resonant hybrid organic/inorganic nanos-tructures can be used for creation of new type of LED. We mentioned the problem of electrical pumping which has to be solved. As was first suggested in 1979 by Dexter the transfer energy in opposite direction from organic part of nanostructure to semiconductor layer can be used for the creation of new type of solar cells. In this note we stress the importance of the idea by Dexter for photovoltaics and solar cells. We argue that the organic part in such hybrid structures can play a role of an effective organic collector of the light energy (copyright 2010 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  17. A solar receiver-storage modular cascade based on porous ceramic structures for hybrid sensible/thermochemical solar energy storage

    Science.gov (United States)

    Agrafiotis, Christos; de Oliveira, Lamark; Roeb, Martin; Sattler, Christian

    2016-05-01

    The current state-of-the-art solar heat storage concept in air-operated Solar Tower Power Plants is to store the solar energy provided during on-sun operation as sensible heat in porous solid materials that operate as recuperators during off-sun operation. The technology is operationally simple; however its storage capacity is limited to 1.5 hours. An idea for extending this capacity is to render this storage concept from "purely" sensible to "hybrid" sensible/ thermochemical one, via coating the porous heat exchange modules with oxides of multivalent metals for which their reduction/oxidation reactions are accompanied by significant heat effects, or by manufacturing them entirely of such oxides. In this way solar heat produced during on-sun operation can be used (in addition to sensibly heating the porous solid) to power the endothermic reduction of the oxide from its state with the higher metal valence to that of the lower; the thermal energy can be entirely recovered by the reverse exothermic oxidation reaction (in addition to sensible heat) during off-sun operation. Such sensible and thermochemical storage concepts were tested on a solar-irradiated receiver- heat storage module cascade for the first time. Parametric studies performed so far involved the comparison of three different SiC-based receivers with respect to their capability of supplying solar-heated air at temperatures sufficient for the reduction of the oxides, the effect of air flow rate on the temperatures achieved within the storage module, as well as the comparison of different porous storage media made of cordierite with respect to their sensible storage capacity.

  18. A review on the recent development of solar absorption and vapour compression based hybrid air conditioning with low temperature storage

    Directory of Open Access Journals (Sweden)

    Noor D. N.

    2016-01-01

    Full Text Available Conventional air conditioners or vapour compression systems are main contributors to energy consumption in modern buildings. There are common environmental issues emanating from vapour compression system such as greenhouse gas emission and heat wastage. These problems can be reduced by adaptation of solar energy components to vapour compression system. However, intermittence input of daily solar radiation was the main issue of solar energy system. This paper presents the recent studies on hybrid air conditioning system. In addition, the basic vapour compression system and components involved in the solar air conditioning system are discussed. Introduction of low temperature storage can be an interactive solution and improved economically which portray different modes of operating strategies. Yet, very few studies have examined on optimal operating strategies of the hybrid system. Finally, the findings of this review will help suggest optimization of solar absorption and vapour compression based hybrid air conditioning system for future work while considering both economic and environmental factors.

  19. Hybridization of concentrated solar power with biomass gasification in Brazil’s semiarid region

    International Nuclear Information System (INIS)

    Milani, Rodrigo; Szklo, Alexandre; Hoffmann, Bettina Susanne

    2017-01-01

    Highlights: • Assessment of three hybridization concepts between CSP and biomass gasification. • Modelling of a benchmark power plant for each of the hybridization concepts. • The method relies on using Aspentech Hysys and SAM for thermodynamic analysis. • Technical and economic performance of the three benchmark power plants as result. - Abstract: This study aims to propose and analyze different options for hybridizing Concentrated Solar Power (CSP) with biomass, through gasification for power generation. A hybrid CSP-biomass power plant through gasification is an innovative concept which allows the integration of combined cycle for power generation, sun-biomass hybridization and syngas storage. Therefore, this study addressed the proposition of the hybridization concept and the simulation of benchmark power plants for a suitable Brazilian site (high direct normal irradiation and low-cost biomass availability). Three power plant concepts are proposed and simulated in Aspentech Hysys and System Advisor Model (SAM): (i) Series design; (ii) Parallel design, and (iii) Steam Extraction design. For the same gasifier, the Series design holds the highest levelized cost, while the Parallel design presents the highest installed capacity, but the lowest capacity factor. Finally, the Steam Extraction design is placed between the other two proposed plants regarding the capacity factor and the annual energy generation.

  20. Structure of Mercury's magnetosphere for different pressure of the solar wind: Three dimensional hybrid simulations

    Czech Academy of Sciences Publication Activity Database

    Trávníček, Pavel; Hellinger, Petr; Schriver, D.

    2007-01-01

    Roč. 34, č. 5 (2007), L05104/1-L05104/5 ISSN 0094-8276 R&D Projects: GA ČR GA205/05/1011 Institutional research plan: CEZ:AV0Z30420517 Keywords : Global simulations * Mercury's magnetosphere * solar wind * hybrid simulations * ion drift driven rings Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 2.744, year: 2007

  1. Forecasting solar radiation using an optimized hybrid model by Cuckoo Search algorithm

    International Nuclear Information System (INIS)

    Wang, Jianzhou; Jiang, He; Wu, Yujie; Dong, Yao

    2015-01-01

    Due to energy crisis and environmental problems, it is very urgent to find alternative energy sources nowadays. Solar energy, as one of the great potential clean energies, has widely attracted the attention of researchers. In this paper, an optimized hybrid method by CS (Cuckoo Search) on the basis of the OP-ELM (Optimally Pruned Extreme Learning Machine), called CS-OP-ELM, is developed to forecast clear sky and real sky global horizontal radiation. First, MRSR (Multiresponse Sparse Regression) and LOO-CV (leave-one-out cross-validation) can be applied to rank neurons and prune the possibly meaningless neurons of the FFNN (Feed Forward Neural Network), respectively. Then, Direct strategy and Direct-Recursive strategy based on OP-ELM are introduced to build a hybrid model. Furthermore, CS (Cuckoo Search) optimized algorithm is employed to determine the proper weight coefficients. In order to verify the effectiveness of the developed method, hourly solar radiation data from six sites of the United States has been collected, and methods like ARMA (Autoregression moving average), BP (Back Propagation) neural network and OP-ELM can be compared with CS-OP-ELM. Experimental results show the optimized hybrid method CS-OP-ELM has the best forecasting performance. - Highlights: • An optimized hybrid method called CS-OP-ELM is proposed to forecast solar radiation. • CS-OP-ELM adopts multiple variables dataset as input variables. • Direct and Direct-Recursive strategy are introduced to build a hybrid model. • CS (Cuckoo Search) algorithm is used to determine the optimal weight coefficients. • The proposed method has the best performance compared with other methods

  2. Nickel oxide electrode interlayer in CH3 NH3 PbI3 perovskite/PCBM planar-heterojunction hybrid solar cells.

    Science.gov (United States)

    Jeng, Jun-Yuan; Chen, Kuo-Cheng; Chiang, Tsung-Yu; Lin, Pei-Ying; Tsai, Tzung-Da; Chang, Yun-Chorng; Guo, Tzung-Fang; Chen, Peter; Wen, Ten-Chin; Hsu, Yao-Jane

    2014-06-25

    This study successfully demonstrates the application of inorganic p-type nickel oxide (NiOx ) as electrode interlayer for the fabrication of NiOx /CH3 NH3 PbI3 perovskite/PCBM PHJ hybrid solar cells with a respectable solar-to-electrical PCE of 7.8%. The better energy level alignment and improved wetting of the NiOx electrode interlayer significantly enhance the overall photovoltaic performance. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Performance Analysis for One-Step-Ahead Forecasting of Hybrid Solar and Wind Energy on Short Time Scales

    Directory of Open Access Journals (Sweden)

    Jing Huang

    2018-05-01

    Full Text Available With ever increasing demand for electricity and the huge potential of renewable energy, an increasing number of renewable-energy sources are being used to generate electricity. However, due to the intermittency of renewable-energy generation, many researchers try to overcome the variable nature of renewable energy. A hybrid renewable-energy system is one possible way to introduce smoothing of the supply. Many hybrid renewable-energy studies focus on system optimization and management. This paper mainly researches the performance prediction accuracy of a hybrid solar and wind system. Through a mixed autoregressive and dynamical system model, we test the predictability of the hybrid system and compare it with individual solar and wind series forecasting. After error analysis, the predictability of the hybrid system shows a better performance than solar or wind for Adelaide global solar radiation and Starfish Hill wind farm data. The prediction errors were reduced by 13% to more than 30% according to various error analyses. This result indicates an advantage of the hybrid solar and wind system compared to solar and wind systems taken individually.

  4. Photothermally Activated Pyroelectric Polymer Films for Harvesting of Solar Heat with a Hybrid Energy Cell Structure.

    Science.gov (United States)

    Park, Teahoon; Na, Jongbeom; Kim, Byeonggwan; Kim, Younghoon; Shin, Haijin; Kim, Eunkyoung

    2015-12-22

    Photothermal effects in poly(3,4-ethylenedioxythiophene)s (PEDOTs) were explored for pyroelectric conversion. A poled ferroelectric film was coated on both sides with PEDOT via solution casting polymerization of EDOT, to give highly conductive and effective photothermal thin films of PEDOT. The PEDOT films not only provided heat source upon light exposure but worked as electrodes for the output energy from the pyroelectric layer in an energy harvester hybridized with a thermoelectric layer. Compared to a bare thermoelectric system under NIR irradiation, the photothermal-pyro-thermoelectric device showed more than 6 times higher thermoelectric output with the additional pyroelectric output. The photothermally driven pyroelectric harvesting film provided a very fast electric output with a high voltage output (Vout) of 15 V. The pyroelectric effect was significant due to the transparent and high photothermal PEDOT film, which could also work as an electrode. A hybrid energy harvester was assembled to enhance photoconversion efficiency (PCE) of a solar cell with a thermoelectric device operated by the photothermally generated heat. The PCE was increased more than 20% under sunlight irradiation (AM 1.5G) utilizing the transmitted light through the photovoltaic cell as a heat source that was converted into pyroelectric and thermoelectric output simultaneously from the high photothermal PEDOT electrodes. Overall, this work provides a dynamic and static hybrid energy cell to harvest solar energy in full spectral range and thermal energy, to allow solar powered switching of an electrochromic display.

  5. Analysis of the PEDOT:PSS/Si nanowire hybrid solar cell with a tail state model

    Science.gov (United States)

    Ho, Kuan-Ying; Li, Chi-Kang; Syu, Hong-Jhang; Lai, Yi; Lin, Ching-Fuh; Wu, Yuh-Renn

    2016-12-01

    In this paper, the electrical properties of the poly(3,4-ethylenedioxythiophene): poly(styrenesulfonate) (PEDOT:PSS)/silicon nanowire hybrid solar cell have been analyzed and an optimized structure is proposed. In addition, the planar PEDOT:PSS/c-Si hybrid solar cell is also modeled for comparison. We first developed a simulation software which is capable of modeling organic/inorganic hybrid solar cells by including Gaussian shape density of states into Poisson and drift-diffusion solver to present the tail states and trap states in the organic material. Therefore, the model can handle carrier transport, generation, and recombination in both organic and inorganic materials. Our results show that at the applied voltage near open-circuit voltage (Voc), the recombination rate becomes much higher at the PEDOT:PSS/Si interface region, which limits the fill factor and Voc. Hence, a modified structure with a p-type amorphous silicon (a-Si) layer attached on the interface of Si layer and an n+-type Si layer inserted near the bottom contact are proposed. The highest conversion efficiency of 16.10% can be achieved if both structures are applied.

  6. Full-spectrum photon management of solar cell structures for photovoltaic–thermoelectric hybrid systems

    International Nuclear Information System (INIS)

    Xu, Yuanpei; Xuan, Yimin; Yang, Lili

    2015-01-01

    Highlights: • A novel photon management method is proposed for hybrid photovoltaic–thermoelectric systems. • Composite structured surfaces enable creditable ultra-broadband anti-reflection property. • Incorporation of anti-reflection and light-trapping brings spectral absorption and transmission. • The efficient photon management of the structured surface is also omnidirectional. - Abstract: In this paper, a novel ultra-broadband photon management structure is proposed for crystalline silicon thin-film solar cells used in the photovoltaic–thermoelectric hybrid system. Nanostructures are employed on both front and back side. Optical behavior of the structure in ultra-broadband (300–2500 nm) are investigated through the Finite Difference Time Domain method. By combing moth-eye and inverted-parabolic surface, a new composite surface structure is proposed for anti-reflection in the ultra-broadband wavelengths. Front metallic nanoparticles, plasmonic back reflector and metallic gratings are studied for light-trapping and the effect of plasmonic back reflector is validated by the experimental data of the external quantum efficiency. The effects of incident angle are discussed for metallic gratings. Numerical computation shows that the incorporation of anti-reflection and light-trapping can obtain high absorption in the solar cell and ensure the rest incident light transmits to the thermoelectric generator efficiently. This work shows potential full-spectrum utilization of solar energy for various photovoltaic devices related with hybrid photovoltaic–thermoelectric systems

  7. Hybrid PV/diesel solar power system design using multi-level factor analysis optimization

    Science.gov (United States)

    Drake, Joshua P.

    Solar power systems represent a large area of interest across a spectrum of organizations at a global level. It was determined that a clear understanding of current state of the art software and design methods, as well as optimization methods, could be used to improve the design methodology. Solar power design literature was researched for an in depth understanding of solar power system design methods and algorithms. Multiple software packages for the design and optimization of solar power systems were analyzed for a critical understanding of their design workflow. In addition, several methods of optimization were studied, including brute force, Pareto analysis, Monte Carlo, linear and nonlinear programming, and multi-way factor analysis. Factor analysis was selected as the most efficient optimization method for engineering design as it applied to solar power system design. The solar power design algorithms, software work flow analysis, and factor analysis optimization were combined to develop a solar power system design optimization software package called FireDrake. This software was used for the design of multiple solar power systems in conjunction with an energy audit case study performed in seven Tibetan refugee camps located in Mainpat, India. A report of solar system designs for the camps, as well as a proposed schedule for future installations was generated. It was determined that there were several improvements that could be made to the state of the art in modern solar power system design, though the complexity of current applications is significant.

  8. Technicoeconomic optimization of a hybrid agricultural drier using supplement and solar energy

    International Nuclear Information System (INIS)

    Ezbakhe, El Bouardi H.; Ajzoul, T.

    2006-01-01

    Solar energy installations are very expensive, what carries out to research the simple and economic means. However the real problem of the industrial utilization of the solar energy is not posed in these terms. Better adapted solutions are generally not simple, and are sometimes independent of prioritised research of the best reverent price, will that these considerations are only developed on few examples as the solar heating of building. The drying, in general, is one of processes that was thermally most studied, wasn't economically developed. In this research work, we are interested in evaluating the economic profitability of a hybrid drier installation while leading a comparative study between two total costs. -The first one is relative to hybrid installation (solar-fossil) where air collectors and stock, which are considered as a solar size, were modelled. -The second one, used as a reference, is relative to the fossil dryer installation. It must satisfy the same energy demand than the first one. For this, we must establish the general equation of assessment of values relative to the drying operation; the energy value is not necessarily currency, but it could be done by any unspecified scale of reference. We retained that of thermodynamic origin. The object of these methods, when it acts only on one optimisation constraint, is to minimize the function-objective, organized by the total cost of the project, expressed in a certain domains of value (currency, energy). This total cost being given by the balanced sum of the investments and exploitation costs, considering a certain mode of calculation of depreciation over a supposed lifespan. In this paper, we mention three economic methods, only one will be used to evaluate the optimal dimensions of a hybrid installation dryer destined to agricultural products.(Author)

  9. Development of hybrid solar-assisted cooling/heating system

    KAUST Repository

    Huang, B.J.; Wu, J.H.; Hsu, H.Y.; Wang, J.H.

    2010-01-01

    A solar-assisted ejector cooling/heating system (SACH) was developed in this study. The SACH combines a pump-less ejector cooling system (ECS) with an inverter-type heat pump (R22) and is able to provide a stable capacity for space cooling. The ECS is driven by solar heat and is used to cool the condenser of the R22 heat pump to increase its COP and reduce the energy consumption of the compressor by regulating the rotational speed of the compressor through a control system. In a complete SACH system test run at outdoor temperature 35 °C, indoor temperature 25 °C and compressor speed 20-80 Hz, and the ECS operating at generator temperature 90 °C and condensing temperature 37 °C, the corresponding condensing temperature of the heat pump in the SACH is 24.5-42 °C, cooling capacity 1.02-2.44 kW, input power 0.20-0.98 kW, and cooling COPc 5.11-2.50. This indicates that the use of ECS in SACH can effectively reduce the condensing temperature of the heat pump by 12.6-7.3 °C and reduce the power consumption by 81.2-34.5%. The SACH can also supply heat from the heat pump. At ambient temperature from 5 °C to 35 °C, the heating COPh is in the range 2.0-3.3. © 2010 Elsevier Ltd. All rights reserved.

  10. Development of hybrid solar-assisted cooling/heating system

    KAUST Repository

    Huang, B.J.

    2010-08-01

    A solar-assisted ejector cooling/heating system (SACH) was developed in this study. The SACH combines a pump-less ejector cooling system (ECS) with an inverter-type heat pump (R22) and is able to provide a stable capacity for space cooling. The ECS is driven by solar heat and is used to cool the condenser of the R22 heat pump to increase its COP and reduce the energy consumption of the compressor by regulating the rotational speed of the compressor through a control system. In a complete SACH system test run at outdoor temperature 35 °C, indoor temperature 25 °C and compressor speed 20-80 Hz, and the ECS operating at generator temperature 90 °C and condensing temperature 37 °C, the corresponding condensing temperature of the heat pump in the SACH is 24.5-42 °C, cooling capacity 1.02-2.44 kW, input power 0.20-0.98 kW, and cooling COPc 5.11-2.50. This indicates that the use of ECS in SACH can effectively reduce the condensing temperature of the heat pump by 12.6-7.3 °C and reduce the power consumption by 81.2-34.5%. The SACH can also supply heat from the heat pump. At ambient temperature from 5 °C to 35 °C, the heating COPh is in the range 2.0-3.3. © 2010 Elsevier Ltd. All rights reserved.

  11. A novel fabrication of MEH-PPV/Al:ZnO nanorod arrays based ordered bulk heterojunction hybrid solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Malek, M.F., E-mail: firz_solarzelle@yahoo.com [NANO-ElecTronic Centre (NET), Faculty of Electrical Engineering, Universiti Teknologi MARA (UiTM), 40450 Shah Alam, Selangor (Malaysia); Sahdan, M.Z.; Mamat, M.H.; Musa, M.Z. [NANO-ElecTronic Centre (NET), Faculty of Electrical Engineering, Universiti Teknologi MARA (UiTM), 40450 Shah Alam, Selangor (Malaysia); Khusaimi, Z.; Husairi, S.S. [NANO-SciTech Centre (NST), Institute of Science (IOS), Universiti Teknologi MARA -UiTM, 40450 Shah Alam, Selangor (Malaysia); Md Sin, N.D. [NANO-ElecTronic Centre (NET), Faculty of Electrical Engineering, Universiti Teknologi MARA (UiTM), 40450 Shah Alam, Selangor (Malaysia); Rusop, M. [NANO-ElecTronic Centre (NET), Faculty of Electrical Engineering, Universiti Teknologi MARA (UiTM), 40450 Shah Alam, Selangor (Malaysia); NANO-SciTech Centre (NST), Institute of Science (IOS), Universiti Teknologi MARA - UiTM, 40450 Shah Alam, Selangor (Malaysia)

    2013-06-15

    Vertically aligned Al:ZnO nanorod arrays has been used as window layer in the fabrication of ordered bulk heterojuction hybrid solar cells. The utilization of the nanorod arrays will enhance the electron transport in vertical direction and also for light harvesting applications for high performance devices. The performance of this hybrid polymer/metal oxide photovoltaic devices based on MEH-PPV [poly(2-methoxy-5-(2-ethylhexyloxy)-1,4-phenylenevinylene)] and oriented Al:ZnO nanorod arrays is studied. The Al:ZnO nanorod arrays with a diameter of about 70–80 nm and thickness of approximately 500 nm were successfully grown on Al:ZnO-coated ITO substrate by sonicated sol–gel immersion technique. The photovoltaic performance of a short-circuit current density of 5.320 mA/cm{sup 2}, an open-circuit voltage of 195 mV and a fill factor of 27.71%, with a power conversion efficiency of about 0.287% under AM 1.5 illumination (100 mW/cm{sup 2}). To the best of our knowledge, preparation of aligned Al:ZnO nanorod arrays for this type of solar cell fabrication has not been reported by any research group.

  12. Renewable Energy Systems: Development and Perspectives of a Hybrid Solar-Wind System

    Directory of Open Access Journals (Sweden)

    C. Shashidhar

    2012-02-01

    Full Text Available Considering the intermittent natural energy resources and the seasonal un-balance, a phtovoltaic-wind hybrid electrical power supply system was developed to accommodate remote locations where a conventional grid connection is inconvenient or expensive. However, the hybrid system can also be applied with grid connection and owners are allowed to sell excessive power back to the electric utility. The proposed set-up consists of a photo-voltaic solar-cell array, a mast mounted wind generator, lead-acid storage batteries, an inverter unit to convert DC to AC, electrical lighting loads, electrical heating loads, several fuse and junction boxes and associated wiring, and test instruments for measuring voltages, currents, power factors, and harmonic contamination data throughout the system. The proposed hybrid solar-wind power generating system can be extensively used to illustrate electrical concepts in hands-on laboratories and also for demonstrations in the Industrial Technology curriculum. This paper describes an analysis of local PV-wind hybrid systems for supplying electricity to a private house, farmhouse or small company with electrical power depending on the site needs. The major system components, work principle and specific working condition are presented.

  13. Systematic power autonomy. Hybrid solar system makes Christine Schoen independent of oil and gas supply; Energieautark mit System. Eine Hybridsolaranlage macht Christine Schoen unabhaengig von Oel und Gas

    Energy Technology Data Exchange (ETDEWEB)

    Neumann, Hinrich; Podewils, Christoph

    2009-12-15

    Hybrid solar systems generate both heat and power; they are still rare because it is difficult to maintain the balance between heat and power generation. However, they have their advantages as is proved by the hybrid solar system of Christine Schoen. On the one hand, she heats her old house; on the other hand, she optimizes solar power generation in her system. (orig.)

  14. New MPPT algorithm for PV applications based on hybrid dynamical approach

    KAUST Repository

    Elmetennani, Shahrazed

    2016-10-24

    This paper proposes a new Maximum Power Point Tracking (MPPT) algorithm for photovoltaic applications using the multicellular converter as a stage of power adaptation. The proposed MPPT technique has been designed using a hybrid dynamical approach to model the photovoltaic generator. The hybrid dynamical theory has been applied taking advantage of the particular topology of the multicellular converter. Then, a hybrid automata has been established to optimize the power production. The maximization of the produced solar energy is achieved by switching between the different operative modes of the hybrid automata, which is conditioned by some invariance and transition conditions. These conditions have been validated by simulation tests under different conditions of temperature and irradiance. Moreover, the performance of the proposed algorithm has been then evaluated by comparison with standard MPPT techniques numerically and by experimental tests under varying external working conditions. The results have shown the interesting features that the hybrid MPPT technique presents in terms of performance and simplicity for real time implementation.

  15. New MPPT algorithm for PV applications based on hybrid dynamical approach

    KAUST Repository

    Elmetennani, Shahrazed; Laleg-Kirati, Taous-Meriem; Djemai, M.; Tadjine, M.

    2016-01-01

    This paper proposes a new Maximum Power Point Tracking (MPPT) algorithm for photovoltaic applications using the multicellular converter as a stage of power adaptation. The proposed MPPT technique has been designed using a hybrid dynamical approach to model the photovoltaic generator. The hybrid dynamical theory has been applied taking advantage of the particular topology of the multicellular converter. Then, a hybrid automata has been established to optimize the power production. The maximization of the produced solar energy is achieved by switching between the different operative modes of the hybrid automata, which is conditioned by some invariance and transition conditions. These conditions have been validated by simulation tests under different conditions of temperature and irradiance. Moreover, the performance of the proposed algorithm has been then evaluated by comparison with standard MPPT techniques numerically and by experimental tests under varying external working conditions. The results have shown the interesting features that the hybrid MPPT technique presents in terms of performance and simplicity for real time implementation.

  16. Hybrid chromophore/template nanostructures: a customizable platform material for solar energy storage and conversion.

    Science.gov (United States)

    Kolpak, Alexie M; Grossman, Jeffrey C

    2013-01-21

    Challenges with cost, cyclability, and/or low energy density have largely prevented the development of solar thermal fuels, a potentially attractive alternative energy technology based on molecules that can capture and store solar energy as latent heat in a closed cycle. In this paper, we present a set of novel hybrid photoisomer/template solar thermal fuels that can potentially circumvent these challenges. Using first-principles computations, we demonstrate that these fuels, composed of organic photoisomers bound to inexpensive carbon-based templates, can reversibly store solar energy at densities comparable to Li-ion batteries. Furthermore, we show that variation of the template material in combination with the photoisomer can be used to optimize many of the key performance metrics of the fuel-i.e., the energy density, the storage lifetime, the temperature of the output heat, and the efficiency of the solar-to-heat conversion. Our work suggests that the solar thermal fuels concept can be translated into a practical and highly customizable energy storage and conversion technology.

  17. Thermal Modeling of a Hybrid Thermoelectric Solar Collector with a Compound Parabolic Concentrator

    Science.gov (United States)

    Lertsatitthanakorn, C.; Jamradloedluk, J.; Rungsiyopas, M.

    2013-07-01

    In this study radiant light from the sun is used by a hybrid thermoelectric (TE) solar collector and a compound parabolic concentrator (CPC) to generate electricity and thermal energy. The hybrid TE solar collector system described in this report is composed of transparent glass, an air gap, an absorber plate, TE modules, a heat sink to cool the water, and a storage tank. Incident solar radiation falls on the CPC, which directs and reflects the radiation to heat up the absorber plate, creating a temperature difference across the TE modules. The water, which absorbs heat from the hot TE modules, flows through the heat sink to release its heat. The results show that the electrical power output and the conversion efficiency depend on the temperature difference between the hot and cold sides of the TE modules. A maximum power output of 1.03 W and a conversion efficiency of 0.6% were obtained when the temperature difference was 12°C. The thermal efficiency increased as the water flow rate increased. The maximum thermal efficiency achieved was 43.3%, corresponding to a water flow rate of 0.24 kg/s. These experimental results verify that using a TE solar collector with a CPC to produce both electrical power and thermal energy seems to be feasible. The thermal model and calculation method can be applied for performance prediction.

  18. Design and development of hybrid energy generator (photovoltaics) with solar tracker

    Science.gov (United States)

    Mohiuddin, A. K. M.; Sabarudin, Mohamad Syabil Bin; Khan, Ahsan Ali; Izan Ihsan, Sany

    2017-03-01

    This paper is the outcome of a small scale hybrid energy generator (hydro and photovoltaic) project. It contains the photovoltaics part of the project. The demand of energy resources is increasing day by day. That is why people nowadays tend to move on and changes their energy usage from using fossil fuels to a cleaner and green energy like hydro energy, solar energy etc. Nevertheless, energy is hard to come by for people who live in remote areas and also campsites in the remote areas which need continuous energy sources to power the facilities. Thus, the purpose of this project is to design and develop a small scale hybrid energy generator to help people that are in need of power. This main objective of this project is to develop and analyze the effectiveness of solar trackers in order to increase the electricity generation from solar energy. Software like Solidworks and Arduino is used to sketch and construct the design and also to program the microcontroller respectively. Experimental results show the effectiveness of the designed solar tracker sytem.

  19. Investigations on the performance of a double pass, hybrid - type (PV/T) solar air heater

    Energy Technology Data Exchange (ETDEWEB)

    Srinivas, M.; Jayaraj, S. [Department of Mechanical Engineering, National Institute of Technology, Calicut-673601 (India)

    2013-07-01

    A solar hybrid energy system having photovoltaic and thermal (PV/T) devices, which produces both thermal and electrical energies simultaneously is considered for analysis. A double pass hybrid solar air (PV/T) heater with slats is designed and fabricated to study its thermal and electrical performance. Air as a heat removing fluid is made to flow through upper and lower channels of the collector. The collector is designed in such a way that the absorber plate is partially covered by solar cells. The raise in temperature of the solar cell is expected to decrease its electrical performance. Thin metallic strips called slats are attached longitudinally at the bottom side of the absorber plate to improve the system performance by increasing the cooling rate of the absorber plate. Thermal and electrical performances of the whole system at varying cooling conditions are presented. An artificial neural network model is used for forecasting the system performance at any desired conditions. The proposed model can be successfully used for evaluating the effect of different operating parameters under different ambient conditions for predicting the overall performance of the system.

  20. Hybrid Nano composite Membranes for PEMFC Applications

    International Nuclear Information System (INIS)

    Niepceron, F.

    2008-03-01

    This work aims at validating a new concept of hybrid materials for the realization of proton exchange membranes, an essential constituent of PEM fuel cells. The originality of this nano-composite hybrid concept corresponds to a separation of the membrane's properties. We investigated the preparation of composite materials based on an inert, relatively low cost, polymer matrix (PVDF-HFP) providing the mechanical stability embedding inorganic fillers providing the necessary properties o f proton-conduction and water retention. The first step of this work consisted in the modification of fumed silica to obtain a proton-conducting filler. An ionic exchange capacity (CEI) equal to 3 meq/g was obtained by the original grafting of sodium poly(styrene-sulfonate) chains from the surface of particles. Nano-composite hybrid membranes PVDF-HFP/functionalized silica were accomplished by a film casting process. The coupling of the morphological and physicochemical analyses validated the percolation of the inorganic phase for 30 wt.% of particles. Beyond 40 % of loading, measured protonic conductivity is higher than the reference membrane Nafion 112. Finally, these membranes presented high performances, above 0.8 W/cm 2 , in single-cell fuel cell tests. A compromise is necessary according to the rate of loading between performances in fuel cell and mechanical properties of the membrane. 50 % appeared as best choice with, until 90 C, a remarkable thermal stability of the performances. (author)

  1. Solar energy scenarios in Brazil. Part two: Photovoltaics applications

    International Nuclear Information System (INIS)

    Martins, F.R.; Ruether, R.; Pereira, E.B.; Abreu, S.L.

    2008-01-01

    This paper discusses some energy scenarios for photovoltaic applications in Brazil engendered by using SWERA database in order to demonstrate its potential for feasibility analysis and application in the energy planning for electricity generation. It discusses two major different markets: hybrid PV-Diesel installations in mini-grids of the off-grid Brazilian electricity system in the Amazon region, and grid-connected PV in urban areas of the interconnected Brazilian electricity system. The potential for using PV is huge, and can be estimated in tens to hundreds of MWp in the Amazon region alone, even if only a fraction of the existing Diesel-fired plants with a total installed capacity of over 620 MVA would fit to run in an optimum Diesel/PV mix. Most of the major cities in Brazil present greater electricity demand in summertime with the demand peak happening in the daytime period. This energy profile match the actual solar resource assessment provided by SWERA Data Archive, enabling grid-connected PV systems to provide an important contribution to the utility's capacity

  2. Nanoscale Analysis of a Hierarchical Hybrid Solar Cell in 3D.

    Science.gov (United States)

    Divitini, Giorgio; Stenzel, Ole; Ghadirzadeh, Ali; Guarnera, Simone; Russo, Valeria; Casari, Carlo S; Bassi, Andrea Li; Petrozza, Annamaria; Di Fonzo, Fabio; Schmidt, Volker; Ducati, Caterina

    2014-05-01

    A quantitative method for the characterization of nanoscale 3D morphology is applied to the investigation of a hybrid solar cell based on a novel hierarchical nanostructured photoanode. A cross section of the solar cell device is prepared by focused ion beam milling in a micropillar geometry, which allows a detailed 3D reconstruction of the titania photoanode by electron tomography. It is found that the hierarchical titania nanostructure facilitates polymer infiltration, thus favoring intermixing of the two semiconducting phases, essential for charge separation. The 3D nanoparticle network is analyzed with tools from stochastic geometry to extract information related to the charge transport in the hierarchical solar cell. In particular, the experimental dataset allows direct visualization of the percolation pathways that contribute to the photocurrent.

  3. Design guideline for Si/organic hybrid solar cell with interdigitated back contact structure

    Science.gov (United States)

    Bimo Prakoso, Ari; Rusli; Li, Zeyu; Lu, Chenjin; Jiang, Changyun

    2018-03-01

    We study the design of Si/organic hybrid (SOH) solar cells with interdigitated back contact (IBC) structure. SOH solar cells formed between n-Si and poly(3,4-ethylenedioxythiophene): polystyrenesulphonate (PEDOT:PSS) is a promising concept that combines the excellent electronic properties of Si with the solution-based processing advantage of an organic polymer. The IBC cell structure is employed to minimize parasitic absorption losses in the organic polymer, eliminate grid shadowing losses, and allow excellent passivation of the front Si surface in one step over a large area. The influence of Si thickness, doping concentration and contact geometry are simulated in this study to optimize the performance of the SOH-IBC solar cell. We found that a high power conversion efficiency of >20% can be achieved for optimized SOH-IBC cell based on a thin c-Si substrate of 40 μm thickness.

  4. Photovoltaic Performance of a Nanowire/Quantum Dot Hybrid Nanostructure Array Solar Cell.

    Science.gov (United States)

    Wu, Yao; Yan, Xin; Zhang, Xia; Ren, Xiaomin

    2018-02-23

    An innovative solar cell based on a nanowire/quantum dot hybrid nanostructure array is designed and analyzed. By growing multilayer InAs quantum dots on the sidewalls of GaAs nanowires, not only the absorption spectrum of GaAs nanowires is extended by quantum dots but also the light absorption of quantum dots is dramatically enhanced due to the light-trapping effect of the nanowire array. By incorporating five layers of InAs quantum dots into a 500-nm high-GaAs nanowire array, the power conversion efficiency enhancement induced by the quantum dots is six times higher than the power conversion efficiency enhancement in thin-film solar cells which contain the same amount of quantum dots, indicating that the nanowire array structure can benefit the photovoltaic performance of quantum dot solar cells.

  5. Scenarios for solar thermal energy applications in Brazil

    International Nuclear Information System (INIS)

    Martins, F.R.; Abreu, S.L.; Pereira, E.B.

    2012-01-01

    The Solar and Wind Energy Resource Assessment (SWERA) database is used to prepare and discuss scenarios for solar thermal applications in Brazil. The paper discusses low temperature applications (small and large scale water heating) and solar power plants for electricity production (concentrated solar power plants and solar chimney plants) in Brazil. The results demonstrate the feasibility of large-scale application of solar energy for water heating and electricity generation in Brazil. Payback periods for water heating systems are typically below 4 years if they were used to replace residential electric showerheads in low-income families. Large-scale water heating systems also present high feasibility and many commercial companies are adopting this technology to reduce operational costs. The best sites to set up CSP plants are in the Brazilian semi-arid region where the annual energy achieves 2.2 MW h/m 2 and averages of daily solar irradiation are larger than 5.0 kW h/m 2 /day. The western area of Brazilian Northeastern region meets all technical requirements to exploit solar thermal energy for electricity generation based on solar chimney technology. Highlights: ► Scenarios for solar thermal applications are presented. ► Payback is typically below 4 years for small scale water heating systems. ► Large-scale water heating systems also present high feasibility. ► The Brazilian semi-arid region is the best sites for CSP and chimney tower plants.

  6. Controlling the morphology and efficiency of hybrid ZnO: Polythiophene solar cells via side chain functionalization

    NARCIS (Netherlands)

    Oosterhout, S.D.; Koster, L.J.A.; Bavel, van S.S.; Loos, J.; Stenzel, O.; Thiedmann, R.; Schmidt, V.; Campo, B.J.; Cleij, T.J.; Lutzen, L.; Vanderzande, D.J.M.; Wienk, M.M.; Janssen, R.A.J.

    2011-01-01

    The efficiency of polymer – metal oxide hybrid solar cells depends critically on the intimacy of mixing of the two semiconductors. The effect of side chain functionalization on the morphology and performance of conjugated polymer:ZnO solar cells is investigated. Using an ester-functionalized side

  7. Controlling the Morphology and Efficiency of Hybrid ZnO : Polythiophene Solar Cells Via Side Chain Functionalization

    NARCIS (Netherlands)

    Oosterhout, Stefan D.; Koster, L. Jan Anton; van Bavel, Svetlana S.; Loos, Joachim; Stenzel, Ole; Thiedmann, Ralf; Schmidt, Volker; Campo, Bert; Cleij, Thomas J.; Lutzen, Laurence; Vanderzande, Dirk; Wienk, Martijn M.; Janssen, Rene A. J.

    2011-01-01

    The efficiency of polymer - metal oxide hybrid solar cells depends critically on the intimacy of mixing of the two semiconductors. The effect of side chain functionalization on the morphology and performance of conjugated polymer:ZnO solar cells is investigated. Using an ester-functionalized side

  8. A novel integrated thermal-/membrane-based solar energy-driven hybrid desalination system: Concept description and simulation results

    KAUST Repository

    Kim, Youngdeuk; Thu, Kyaw; Ng, Kim Choon; Amy, Gary L.; Ghaffour, NorEddine

    2016-01-01

    water production and water recovery ratio of a solar-assisted 24-stage VMD-AD hybrid system are found to be about 21% and 23% higher, respectively, as compared to the VMD-only system. For the solar-assisted 24-stage VMD-AD desalination system having 150

  9. A GRID-CONNECTED HYBRID WIND-SOLAR POWER SYSTEM

    Directory of Open Access Journals (Sweden)

    MAAMAR TALEB

    2017-06-01

    Full Text Available A hybrid renewable energy system consisting of a photovoltaic generator and a wind driven DC machine is interconnected with the power utilities grid. The interconnection is done through the use of two separate single phase full wave controlled bridge converters. The bridge converters are operated in the “inverter mode of operation”. That is to guaranty the extraction of the real powers from the wind driven generator as well as from the photovoltaic generator and inject them into the power utilities grid. At any pretended surrounding weather conditions, maximum extraction of powers from both renewable energy sources is targeted. This is done through the realization of self-adjusted firing angle controllers responsible of triggering the semiconductor elements of the controlled converters. An active power filter is shunted with the proposed setup to guaranty the sinusoid quality of the power utilities line current. The overall performance of the proposed system has been simulated in MATLAB/SIMULINK environment. Quite satisfactory and encouraging results have been obtained.

  10. Geothermal Risk Reduction via Geothermal/Solar Hybrid Power Plants. Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Wendt, Daniel [Idaho National Lab. (INL), Idaho Falls, ID (United States); Mines, Greg [Idaho National Lab. (INL), Idaho Falls, ID (United States); Turchi, Craig [National Renewable Energy Lab. (NREL), Golden, CO (United States); Zhu, Guangdong [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2015-11-01

    There are numerous technical merits associated with a renewable geothermal-solar hybrid plant concept. The performance of air-cooled binary plants is lowest when ambient temperatures are high due to the decrease in air-cooled binary plant performance that occurs when the working fluid condensing temperature, and consequently the turbine exhaust pressure, increases. Electrical power demand is generally at peak levels during periods of elevated ambient temperature and it is therefore especially important to utilities to be able to provide electrical power during these periods. The time periods in which air-cooled binary geothermal power plant performance is lowest generally correspond to periods of high solar insolation. Use of solar heat to increase air-cooled geothermal power plant performance during these periods can improve the correlation between power plant output and utility load curves. While solar energy is a renewable energy source with long term performance that can be accurately characterized, on shorter time scales of hours or days it can be highly intermittent. Concentrating solar power (CSP), aka solar-thermal, plants often incorporate thermal energy storage to ensure continued operation during cloud events or after sunset. Hybridization with a geothermal power plant can eliminate the need for thermal storage due to the constant availability of geothermal heat. In addition to the elimination of the requirement for solar thermal storage, the ability of a geothermal/solar-thermal hybrid plant to share a common power block can reduce capital costs relative to separate, stand-alone geothermal and solar-thermal power plant installations. The common occurrence of long-term geothermal resource productivity decline provides additional motivation to consider the use of hybrid power plants in geothermal power production. Geothermal resource productivity decline is a source of significant risk in geothermal power generation. Many, if not all, geothermal resources

  11. Silicon-organic pigment material hybrids for photovoltaic application

    Energy Technology Data Exchange (ETDEWEB)

    Mayer, T.; Weiler, U.; Jaegermann, W. [Institute of Materials Science, Darmstadt University of Technology, Petersenstreet 23, D-64287 Darmstadt (Germany); Kelting, C.; Schlettwein, D. [Institute for Applied Physics, Justus Liebig University Giessen, Heinrich-Buff-Ring 16, D-35392 Giessen (Germany); Makarov, S.; Woehrle, D. [Institute of Organic and Macromolecular Chemistry, University Bremen, Leobener Street NW II, D-28359 Bremen (Germany); Abdallah, O.; Kunst, M. [Department Solar Energy, Hahn-Meitner-Institute, D-14109 Berlin (Germany)

    2007-12-14

    Hybrid materials of silicon and organic dyes have been investigated for possible application as photovoltaic material in thin film solar cells. High conversion efficiency is expected from the combination of the advantages of organic dyes for light absorption and those of silicon for charge carrier separation and transport. Low temperature remote hot wire chemical vapor deposition (HWCVD) was developed for microcrystalline silicon ({mu}c-Si) deposition using SiH{sub 4}/H{sub 2} mixtures. As model dyes zinc phthalocyanines have been evaporated from Knudsen type sources. Layers of dye on {mu}c-Si and {mu}c-Si on dye films, and composites of simultaneously and sequentially deposited Si and dye have been prepared and characterized. Raman, absorption, and photoemission spectroscopy prove the stability of the organic molecules against the rough HWCVD-Si process. Transient microwave conductivity (TRMC) indicates good electronic quality of the {mu}c-Si matrix. Energy transfer from dye to Si is indicated indirectly by luminescence and directly by photoconductivity measurements. F{sub x}ZnPc pigments with x=0,4,8,16 have been synthesized, purified and adsorbed onto H-terminated Si(1 1 1) for electronic state line up determination by photoelectron spectroscopy. For x=4 and 8 the dye frontier orbitals line up symmetrically versus the Si energy gap offering similar energetic driving forces for electron and hole injection, which is considered optimum for bulk sensitization and indicates a direction to improve the optoelectronic coupling of the organic dyes to silicon. (author)

  12. Mushrooms dehydration in a hybrid-solar dryer, using a phase change material

    International Nuclear Information System (INIS)

    Reyes, Alejandro; Mahn, Andrea; Vásquez, Francisco

    2014-01-01

    Highlights: • Mushroom slices were dehydrated in a hybrid solar dryer. • Drying and dehydrated kinetics were adjusted with models. • Effective diffusivity, were estimated considering or not shrinkage. • Paraffin wax as a phase change material was used in an accumulator of solar energy. - Abstract: Mushrooms were dehydrated in a hybrid solar dryer provided with a solar panel of a total exposed surface of 10 m 2 , electric resistances and paraffin wax as a phase change material. Mushrooms were cut in 8 mm or 12 mm slices. At the outlet of the drying chamber the air was recycled (70% or 80%) and the air temperature was adjusted to 60 °C. At the outlet of the solar panel the air temperature rose up to 30 °C above the ambient temperature, depending on solar radiation level. The effective diffusivity, estimated by the Simplified Constant Diffusivity Model, considering or not shrinkage, fluctuated between 2.5 · 10 −10 m 2 /s and 8.4 · 10 −10 m 2 /s with R 2 higher than 0.99, agreeing with values reported in literature. The empirical Page’s model resulted in a better adjustment, with R 2 above 0.998. In all runs the dehydrated mushrooms showed a notorious darkening and shrinkage. Rehydration assays at 30 °C showed that in less than 30 min rehydrated mushrooms reached a moisture content of 1.91 (dry basis). Rehydrated mushrooms had a higher hardness compared with fresh mushrooms. The Simplified Constant Diffusivity Model and the Peleg’s model adjusted to the rehydration data with RMSE values below 0.080. Thermal efficiency fluctuated between 22% and 62%, while the efficiency of the accumulator panel varied between 10% and 21%. The accumulator allowed reducing the electric energy input

  13. Self-assembled hybrid materials based on conjugated polymers and semiconductors nano-crystals for plastic solar cells

    International Nuclear Information System (INIS)

    Girolamo, J. de

    2007-11-01

    This work is devoted to the elaboration of self-assembled hybrid materials based on poly(3- hexyl-thiophene) and CdSe nano-crystals for photovoltaic applications. For that, complementary molecular recognition units were introduced as side chain groups on the polymer and at the nano-crystals' surface. Diamino-pyrimidine groups were introduced by post-functionalization of a precursor copolymer, namely poly(3-hexyl-thiophene-co-3- bromo-hexyl-thiophene) whereas thymine groups were introduced at the nano-crystals' surface by a ligand exchange reaction with 1-(6-mercapto-hexyl)thymine. However, due to their different solubility, the mixing of the two components by solution processes is difficult. A 'one-pot' procedure was developed, but this method led to insoluble aggregates without control of the hybrid composition. To overcome the solubility problem, the layer-by-layer method was used to prepare the films. This method allows a precise control of the deposition process. Experimental parameters were tested in order to evaluate their impact on the resulting film. The films morphology was investigated by microscopy and X-Ray diffraction techniques. These analyses reveal an interpenetrated structure of nano-crystals within the polymer matrix rather than a multilayered structure. Electrochemical and spectro electrochemical studies were performed on the hybrid material deposited by the LBL process. Finally the materials were tested in a solar cell configuration and the I=f(V) curves reveals a clear photovoltaic behaviour. (author)

  14. Solar photovoltaic (PV) energy; latest developments in the building integrated and hybrid PV systems

    International Nuclear Information System (INIS)

    Zahedi, A.

    2006-01-01

    Environmental concerns are growing and interest in environmental issues is increasing and the idea of generating electricity with less pollution is becoming more and more attractive. Unlike conventional generation systems, fuel of the solar photovoltaic energy is available at no cost. And solar photovoltaic energy systems generate electricity pollution-free and can easily be installed on the roof of residential as well as on the wall of commercial buildings as grid-connected PV application. In addition to grid-connected rooftop PV systems, solar photovoltaic energy offers a solution for supplying electricity to remote located communities and facilities, those not accessible by electricity companies. The interest in solar photovoltaic energy is growing worldwide. Today, more than 3500MW of photovoltaic systems have been installed all over the world. Since 1970, the PV price has continuously dropped [8]. This price drop has encouraged worldwide application of small-scale residential PV systems. These recent developments have led researchers concerned with the environment to undertake extensive research projects for harnessing renewable energy sources including solar energy. The usage of solar photovoltaic as a source of energy is considered more seriously making future of this technology looks promising. The objective of this contribution is to present the latest developments in the area of solar photovoltaic energy systems. A further objective of this contribution is to discuss the long-term prospect of the solar photovoltaic energy as a sustainable energy supply. [Author

  15. Fabrication of polymer/cadmium sulfide hybrid solar cells [P3HT:CdS and PCPDTBT:CdS] by spray deposition.

    Science.gov (United States)

    Kumar, Neetesh; Dutta, Viresh

    2014-11-15

    This paper investigates fabrication of surfactant free CdS nanoparticles (NPs) and application in the fabrication of P3HT:CdS and PCPDTBT:CdS bulk-heterojunction hybrid solar cells using high-throughput, large-area, low cost spray deposition technique. Both the hybrid active layers and hole transport layers are deposited by spray technique. The CdS/Poly(3-hexylthiophene-2,5-diyl) (P3HT) and CdS/Poly[2,6-(4,4-bis-(2-ethylhexyl)-4H-cyclopenta[2,1-b;3,4-b']dithiophene)-alt-4,7(2,1,3-benzothiadiazole)] (PCPDTBT) hybrid devices are fabricated by spray deposition process at optimized conditions (i.e. film thickness, spray solution volume, distance between sample and spray nozzle, substrate temperature, etc.). The power conversion efficiency of η=0.6% and 1.02% is obtained for P3HT:CdS and PCPDTBT:CdS hybrid devices, respectively. Spray coating holds significant promise as a technique capable of fabricating large-area, high performance hybrid solar cells. Copyright © 2014 Elsevier Inc. All rights reserved.

  16. Economic efficiency of application of solar window

    Science.gov (United States)

    Shapoval, Stepan

    2017-12-01

    Priority and qualitatively new direction in the fuel and energy sector is renewable energy. This paper describes a feasibility study of using solar window in the system of solar heat supply. The article presents literature data about the effectiveness of the use of solar systems in other countries. The results confirm a sufficient efficiency of solar heat supply with using solar Windows. Insights based on practical experience and mathematical calculations, which are aimed at a detailed explanation of economic efficiency of the proposed construction.

  17. Low CO2-emissions hybrid solar combined-cycle power system with methane membrane reforming

    International Nuclear Information System (INIS)

    Li, Yuanyuan; Zhang, Na; Cai, Ruixian

    2013-01-01

    Based on the principle of cascade utilization of multiple energy resources, a gas-steam combined cycle power system integrated with solar thermo-chemical fuel conversion and CO 2 capture has been proposed and analyzed. The collected solar heat at 550 °C drives the endothermic methane reforming and is converted to the produced syngas chemical exergy, and then released as high-temperature thermal energy via combustion for power generation, achieving its high-efficiency heat-power conversion. The reforming reaction is integrated with a hydrogen separation membrane, which continuously withdraws hydrogen from the reaction zone and enables nearly full methane conversion. The CO 2 enriched gas being concentrated in the retentate zone is collected and processed with pre-combustion decarbonization. The system is thermodynamically simulated using the ASPEN PLUS code. The results show that with 91% CO 2 captured, the specific CO 2 emission is 25 g/kWh. An exergy efficiency of 58% and thermal efficiency of 51.6% can be obtained. A fossil fuel saving ratio of 31.2% is achievable with a solar thermal share of 28.2%, and the net solar-to-electricity efficiency based on the gross solar heat incident on the collector is about 36.4% compared with the same gas-steam combined cycle system with an equal CO 2 removal ratio obtained by post-combustion decarbonization. - Highlights: ► A solar-assisted hybrid combined cycle power system has been proposed and analyzed. ► The system integrates power generation with solar-driven reforming and CO 2 capture. ► solar heat upgrading and high-efficiency heat-to-power conversion are achieved. ► membrane reforming enables high CH 4 conversion and pre-combustion CO 2 capture. ► The system thermodynamic performances have been investigated and compared

  18. Allocating resources and products in multi-hybrid multi-cogeneration: What fractions of heat and power are renewable in hybrid fossil-solar CHP?

    International Nuclear Information System (INIS)

    Beretta, Gian Paolo; Iora, Paolo; Ghoniem, Ahmed F.

    2014-01-01

    A general method for the allocation of resources and products in multi-resource/multi-product facilities is developed with particular reference to the important two-resource/two-product case of hybrid fossil and solar/heat and power cogeneration. For a realistic case study, we show how the method allows to assess what fractions of the power and heat should be considered as produced from the solar resource and hence identified as renewable. In the present scenario where the hybridization of fossil power plants by solar-integration is gaining increasing attention, such assessment is of great importance in the fair and balanced development of local energy policies based on granting incentives to renewables resources. The paper extends to the case of two-resource/two-product hybrid cogeneration, as well as to general multi-resource/multi-generation, three of the allocation methods already available for single-resource/two-product cogeneration and for two-resource/single-product hybrid facilities, namely, the ExRR (Exergy-based Reversible-Reference) method, the SRSPR (Single Resource Separate Production Reference) method, and the STALPR (Self-Tuned-Average-Local-Productions-Reference) method. For the case study considered we show that, unless the SRSPR reference efficiencies are constantly updated, the differences between the STALPR and SRSPR methods become important as hybrid and cogeneration plants take up large shares of the local energy production portfolio. - Highlights: • How much of the heat and power in hybrid solar-fossil cogeneration are renewable? • We define and compare three allocation methods for hybrid cogeneration. • Classical and exergy allocation are based on prescribed reference efficiencies. • Adaptive allocation is based on the actual average efficiencies in the local area. • Differences among methods grow as hybrid CHP (heat and power cogeneration) gains large market fractions

  19. Hybrid principle with applications to synthesis

    International Nuclear Information System (INIS)

    Nanneh, M.M.

    1991-01-01

    The theory of hybrid principles is presented together with the transformation rule for converting odd-parity approximations into even-parity approximations. This rule leads to a method which provides rigorous upper and lower bounds for the disadvantage factor for a reactor lattice cell. With these bounds very precise benchmarks have been constructed for representative lattices. It is found that a combination of even and odd-parity solutions for the neutron flux is much more efficient than solutions based on either the even-parity or odd-parity. This is the basis of one synthesis scheme. In another synthesis method, a hybrid principle with trial functions for both the even- and odd- parity angular flux is used in conjunction with a classical principle with an odd-parity trial function. The synthesis process is efficient because the largest set of equations to be solved, i.e. the frame work, involves as few as one unknown per node of the finite element mesh. The effectiveness of the synthesis method is demonstrated for a thick shield problem. (author)

  20. Quantum Dots for Solar Cell Application

    Science.gov (United States)

    Poudyal, Uma

    Solar energy has been anticipated as the most important and reliable source of renewable energy to address the ever-increasing energy demand. To harvest solar energy efficiently, diverse kinds of solar cells have been studied. Among these, quantum dot sensitized solar cells have been an interesting group of solar cells mainly due to tunable, size-dependent electronic and optical properties of quantum dots. Moreover, doping these quantum dots with transition metal elements such as Mn opens avenue for improved performance of solar cells as well as for spin based technologies. In this dissertation, Mn-doped CdSe QDs (Mn-CdSe) have been synthesized by Successive Ionic Layer Adsorption and Reaction (SILAR) method. They are used in solar cells to study the effect of Mn doping in the performance of solar cells. Incident photon to current-conversion efficiency (IPCE) is used to record the effect of Mn-doping. Intensity modulated photovoltage and photocurrent spectroscopy (IMVS/PS) has been used to study the carrier dynamics in these solar cells. Additionally, the magnetic properties of Mn-CdSe QDs is studied and its possible origin is discussed. Moreover, CdS/CdSe QDs have been used to study the effect of liquid, gel and solid electrolyte in the performance and stability of the solar cells. Using IPCE spectra, the time decay measurements are presented and the possible reactions between the QD and the electrolytes are explained.

  1. Direct solar energy and its applications

    International Nuclear Information System (INIS)

    Hamdani, A.J.

    1997-01-01

    Solar energy, which was a utopian dream forty years ago, is today already on the market, particularly for specialized uses and in remote areas. Even solar cells are now on the eve of becoming economically competitive. After a brief account of solar-cell theory, this paper gives the essential details of Photovoltaic Module Manufacturing Technologies, Single Crystal Technology, Fabrication of Wafers, Fabrication of Solar Cell, Photovoltaic Module, Multi Crystalline Silicon, Amorphous Silicon Cell. Semi-conductor based Thin-Film Technology (other than silicon), Copper-Indium Di selenide (IS), Gallium Arsenide, Multi-Junction Devices, as well as Technologies for Improving Conversion Efficiencies, Criteria for high-efficiency Cells and Module Fabrication. It concludes with a section on Direct Utilisation of solar energy, in which a brief description is presented on Solar Thermal Devices, Solar Water Heaters, Calculating hot-water requirements, Solar Stills, Solar Drying, Concentrator Collectors and, finally Measurement of the Solar Resource. At the end, there is a useful Appendix on World-Wide Photovoltaic Cell/Module Manufacturing Capacity Expansion Profile. (author)

  2. Design of Hybrid Solar and Wind Energy Harvester for Fishing Boat

    Science.gov (United States)

    Banjarnahor, D. A.; Hanifan, M.; Budi, E. M.

    2017-07-01

    In southern beach of West Java, Indonesia, there are many villagers live as fishermen. They use small boats for fishing, in one to three days. Therefore, they need a fish preservation system. Fortunately, the area has high potential of solar and wind energy. This paper presents the design of a hybrid solar and wind energy harvester to power a refrigerator in the fishing boat. The refrigerator should keep the fish in 2 - 4 °C. The energy needed is 720 Wh daily. In the area, the daily average wind velocity is 4.27 m/s and the sun irradiation is 672 W/m2. The design combined two 100W solar panels and a 300W wind turbine. The testing showed that the solar panels can harvest 815 - 817 Wh of energy, while the wind turbine can harvest 43 - 62 Wh of energy daily. Therefore, the system can fulfil the energy requirement in fishing boat, although the solar panels were more dominant. To install the wind turbine on the fishing-boat, a computational design had been conducted. The boat hydrostatic dimension was measured to determine its stability condition. To reach a stable equilibrium condition, the wind turbine should be installed no more than 1.7 m of height.

  3. Applications of Fluorogens with Rotor Structures in Solar Cells.

    Science.gov (United States)

    Ong, Kok-Haw; Liu, Bin

    2017-05-29

    Solar cells are devices that convert light energy into electricity. To drive greater adoption of solar cell technologies, higher cell efficiencies and reductions in manufacturing cost are necessary. Fluorogens containing rotor structures may be helpful in addressing some of these challenges due to their unique twisted structures and photophysics. In this review, we discuss the applications of rotor-containing molecules as dyes for luminescent down-shifting layers and luminescent solar concentrators, where their aggregation-induced emission properties and large Stokes shifts are highly desirable. We also discuss the applications of molecules containing rotors in third-generation solar cell technologies, namely dye-sensitized solar cells and organic photovoltaics, where the twisted 3-dimensional rotor structures are used primarily for aggregation control. Finally, we discuss perspectives on the future role of molecules containing rotor structures in solar cell technologies.

  4. Modeling, design and analysis of a stand-alone hybrid power generation system using solar/urine

    International Nuclear Information System (INIS)

    Wu, Wei; Zhou, Ya-Yan; Lin, Mu-Hsuan; Hwang, Jenn-Jiang

    2013-01-01

    Highlights: • The stand-alone hybrid power system is presented. • The urine-to-hydrogen processor is proposed. • Scenario analysis of the hybrid power dispatching and the urine/solar demands is investigated. • The design, modeling and optimization of the hybrid power system is addressed by Aspen Plus and Matlab. - Abstract: The urine turned to hydrogen as an energy conversion process is integrated into a stand-alone hybrid (PV/FC/battery) power generation system. The optimization and simulation of a new urine-to-hydrogen processor is evaluated in Aspen Plus environment. In our approach, the PV generator aims to reduce urine consumption and the lithium-ion battery can compensate the power gap due to the fuel processing delay. Based on prescribed patterns of solar irradiation and the daily load demand of a 30-persons classroom, scenario analyses of the hybrid power dispatching and operational feasibility is addressed

  5. Thermodynamic analysis of a novel hybrid wind-solar-compressed air energy storage system

    International Nuclear Information System (INIS)

    Ji, Wei; Zhou, Yuan; Sun, Yu; Zhang, Wu; An, Baolin; Wang, Junjie

    2017-01-01

    Highlights: • We present a novel hybrid wind-solar-compressed air energy storage system. • Wind and solar power are transformed into stable electric energy and hot water. • The system output electric power is 8053 kWh with an exergy efficiency of 65.4%. • Parametric sensitivity analysis is presented to optimize system performance. - Abstract: Wind and solar power have embraced a strong development in recent years due to the energy crisis in China. However, owing to their nature of fluctuation and intermittency, some power grid management problems can be caused. Therefore a novel hybrid wind-solar-compressed air energy storage (WS-CAES) system was proposed to solve the problems. The WS-CAES system can store unstable wind and solar power for a stable output of electric energy and hot water. Also, combined with organic Rankin cycle (ORC), the cascade utilization of energy with different qualities was achieved in the WS-CAES system. Aiming to obtain the optimum performance, the analysis of energy, exergy and parametric sensitivity were all conducted for this system. Furthermore, exergy destruction ratio of each component in the WS-CAES system was presented. The results show that the electric energy storage efficiency, round trip efficiency and exergy efficiency can reach 87.7%, 61.2% and 65.4%, respectively. Meanwhile, the parameters analysis demonstrates that the increase of ambient temperature has a negative effect on the system performance, while the increase of turbine inlet temperature has a positive effect. However, when the air turbine inlet pressure varies, there is a tradeoff between the system performance and the energy storage density.

  6. Simulation of Hybrid Photovoltaic Solar Assisted Loop Heat Pipe/Heat Pump System

    Directory of Open Access Journals (Sweden)

    Nannan Dai

    2017-02-01

    Full Text Available A hybrid photovoltaic solar assisted loop heat pipe/heat pump (PV-SALHP/HP water heater system has been developed and numerically studied. The system is the combination of loop heat pipe (LHP mode and heat pump (HP mode, and the two modes can be run separately or compositely according to the weather conditions. The performances of independent heat pump (HP mode and hybrid loop heat pipe/heat pump (LHP/HP mode were simulated and compared. Simulation results showed that on typical sunny days in spring or autumn, using LHP/HP mode could save 40.6% power consumption than HP mode. In addition, the optimal switchover from LHP mode to HP mode was analyzed in different weather conditions for energy saving and the all-year round operating performances of the system were also simulated. The simulation results showed that hybrid LHP/HP mode should be utilized to save electricity on sunny days from March to November and the system can rely on LHP mode alone without any power consumption in July and August. When solar radiation and ambient temperature are low in winter, HP mode should be used

  7. The experimental study of a hybrid solar photo-Fenton and photovoltaic system for water purification

    International Nuclear Information System (INIS)

    Jin, Yanchao; Wang, Yiping; Huang, Qunwu; Zhu, Li; Cui, Yong; Cui, Lingyun; Lin, Chunyan

    2017-01-01

    Highlights: • A new solar photo-Fenton and photovoltaic system was performed for the first time. • Acid Red 26, Malachite Green and Reactive Blue 4 were discolored using the system. • The PV panel of the hybrid system could work under lower temperature. • The system achieved self-sufficient energy and could work autonomously. • Solar spectrum could be made full use for power generation and water purification. - Abstract: A new hybrid system that integrated a photovoltaic (PV) panel with a solar photo-Fenton (SPF) reactor was constructed to treat wastewater and generate electricity for the first time. The decolorization and photovoltaic performances of the hybrid system were tested outdoors by discoloring three dyes: Acid Red 26 (AR26), Malachite Green (MG) and Reactive Blue 4 (RB4). Lab scale experiments also had been done to confirm the impact of temperature on the SPF process. The lab scale results show that SPF process was more efficiency for decoloring the different dyes, compared with dark Fenton. The SPF followed a pseudo-first-order reaction and the reaction rate constant was improved about 3.5, 4.5 and 0.61 times for AR26, RB4 and MG respectively as the wastewater temperature increased from 20 to 50 °C. The decolorization difficulty of the three dyes followed this order: MG > AR26 > RB4. The results of the hybrid systems tested outdoors show that 200 mg/L MG had achieved 98.6% color removal after 3 h of treatment at a low catalyst dose (Fe"2"+ = 5 mg/L) under sunlight. For 100 mg/L MG, 99.3% color removal was observed after 70 min. The treatment time required for decolorization of AR26 and RB4 was more shorter. In the present of the water layer, the wastewater temperature was increased and that of the hybrid system was decreased. The average output power of the hybrid system was more than 12 W and sufficient to drive the system during all of the outdoor experiments. Our results suggest that the system could realize decolorization of different

  8. Application of solar energy to air conditioning systems

    Science.gov (United States)

    Nash, J. M.; Harstad, A. J.

    1976-01-01

    The results of a survey of solar energy system applications of air conditioning are summarized. Techniques discussed are both solar powered (absorption cycle and the heat engine/Rankine cycle) and solar related (heat pump). Brief descriptions of the physical implications of various air conditioning techniques, discussions of status, proposed technological improvements, methods of utilization and simulation models are presented, along with an extensive bibliography of related literature.

  9. Comparison of thermal solar collector technologies and their applications

    OpenAIRE

    Alarcón Villamil, Alexander; Hortúa, Jairo Eduardo; López, Andrea

    2013-01-01

    This paper presents the operation of different thermal solar collector technologies and their main characteristics. It starts by providing a brief description of the importance of using solar collectors as an alternative to reduce the environmental impact caused by the production of non-renewable sources like coal and oil. Subsequently, it focuses on each solar concentrator technology and finishes with a theoretical analysis hub application in different industrial processes. En este artícu...

  10. Hybrid solar-electric oven construction prototype; Construccion de prototipo de horno hibrido solar-electrico

    Energy Technology Data Exchange (ETDEWEB)

    Hernandez Roman, M. A; Pineda Pinon, J; Arcos Pichardo, A [CICATA, Santiago de Queretaro, Queretaro (Mexico)

    2013-03-15

    The oven construction consists of a solar collector system of cylindrical parabolic type, a heating through electrical resistance and a curing chamber. The warm fluid is air, which is injected into the chamber through forced draft. The temperature required in the system is within a range of 150 to 300 degrees Celsius. [Spanish] La construccion del horno consta de un sistema de captacion solar del tipo cilindrico parabolico, un sistema de calentamiento a traves de resistencias electricas y una camara de curado. El fluido a calentar es aire, el cual es inyectado dentro de la camara a traves de tiro forzado. La temperatura solicitada en el sistema es dentro de un rango de 150 a 300 grados centigrados.

  11. Study and modeling of energy performance of a hybrid photovoltaic/thermal solar collector: Configuration suitable for an indirect solar dryer

    International Nuclear Information System (INIS)

    Slimani, Mohamed El Amine; Amirat, Madjid; Bahria, Sofiane; Kurucz, Ildikó; Aouli, M’heni; Sellami, Rabah

    2016-01-01

    Highlights: • The simulation results are in compliance with the experimental measurements indicated in the previous literature. • The accuracy of the numerical model is due to the presented energy analysis and also to the well-adopted correlations. • A comparative study between two solar photovoltaic/thermal air collectors was carried out. • The thermal efficiency of the analyzed hybrid collector increased by 30.85% compared to the basic configuration. • The air temperature supplied by a double-pass photovoltaic/thermal collector is very suitable for solar drying. - Abstract: In this paper, a configuration of photovoltaic-thermal hybrid solar collector embeddable in an indirect solar dryer system is studied. In the present structure of the solar photovoltaic/thermal air collector, the air goes through a double pass below and above the photovoltaic module. A system of electrical and thermal balance equations is developed and analyzed governing various electric and heat transfer parameters in the solar hybrid air collector. The numerical model planned for this study gives a good precision of results, which are close to the experimental ones (of previous literature), and makes it possible to have a good assessment of energy performance regarding the studied configuration (temperature, electric and thermal powers, electrical and thermal efficiencies, etc.). The numerical results show the energy effectiveness of this hybrid collector configuration and particularly its interesting use in an indirect solar dryer system that provides a more suitable air temperature for drying agricultural products. The values of the electrical, thermal and overall energy efficiencies reaches 10.5%, 70% and 90% respectively, with a mass flow rate of 0.0155 kg/s and weather data sample for the month of June in the Algiers site. The results presented in this study also reveal how important the effect of certain parameters and operating conditions on the performance of the hybrid

  12. Model validation of solar PV plant with hybrid data dynamic simulation based on fast-responding generator method

    Directory of Open Access Journals (Sweden)

    Zhao Dawei

    2016-01-01

    Full Text Available In recent years, a significant number of large-scale solar photovoltaic (PV plants have been put into operation or been under planning around the world. The model accuracy of solar PV plant is the key factor to investigate the mutual influences between solar PV plants and a power grid. However, this problem has not been well solved, especially in how to apply the real measurements to validate the models of the solar PV plants. Taking fast-responding generator method as an example, this paper presents a model validation methodology for solar PV plant via the hybrid data dynamic simulation. First, the implementation scheme of hybrid data dynamic simulation suitable for DIgSILENT PowerFactory software is proposed, and then an analysis model of solar PV plant integration based on IEEE 9 system is established. At last, model validation of solar PV plant is achieved by employing hybrid data dynamic simulation. The results illustrate the effectiveness of the proposed method in solar PV plant model validation.

  13. SOLAR ENERGY APPLICATION IN HOUSES HEATING SYSTEMS IN RUSSIA

    Directory of Open Access Journals (Sweden)

    Zhanna Mingaleva

    2017-06-01

    Full Text Available The solar energy is widely used around the world for electricity generation and heating systems in municipal services. But its use is complicated in the number of territories with uneven receipts of solar radiation on the earth’s surface and large number of cloudy days during a year. A hypothesis on the possibility of application of individual solar collectors for heating of houses in the number of cities of Russia has been tested. The existing designs of solar collectors and checking the possibility of their application in northern territories of Russia are investigated. The analysis was carried out taking into account features of relief and other climatic conditions of the Perm and Sverdlovsk regions. As the result of research, the basic recommended conditions for application of solar batteries in houses of the northern Russian cities have been resumed.

  14. Silane-based hybrid materials for biomedical applications

    NARCIS (Netherlands)

    Kros, A.; Jansen, J.A.; Holder, S.J.; Nolte, R.J.M.; Sommerdijk, N.A.J.M.

    2002-01-01

    In this paper, the preparation of different hybrid silane materials is presented and their possible use in biomedical applications is discussed. The first example describes the development of biocompatible coatings based on sol-gel silicates, which can be used as a protective coating for implantable

  15. In situ hybridization; principles and applications: review article

    Directory of Open Access Journals (Sweden)

    Zahra Nozhat

    2015-06-01

    Full Text Available In situ hybridization (ISH is a method that uses labeled complementary single strand DNA or RNA to localize specific DNA or RNA sequences in an intact cell or in a fixed tissue section. The main steps of ISH consist of: probe selection, tissue or sample preparation, pre-hybridization treatment, hybridization and washing, detection and control procedure. Probe selection is one of the important aspects of successful hybridization. ISH sensitivity and specificity can be influenced by: probe construct, efficiency of labeling, percentage of GC, probe length and signal detection systems. Different methods such as nick translation, random priming, end tailing and T4 DNA polymerase replacement are used for probe generation. Both radioactive and non-radioactive labels can be used in order to probe labeling. Nucleic acid maintenance in samples, prevention of morphological changes of samples and probe penetration into tissue section are the main aims of sample preparation step. Then, a small amount of solution containing probe, is added on slides containing tissue sections for hybridization process, then slides are incubated overnight. Next day, washes are carried out to remove the probes which are not bound to target DNA or RNA. Finally, in order to be sure that the observed labeling is specific to the target sequence, using several control procedures is very important. Various techniques based on ISH consist of: Fluorescence in situ hybridization (FISH, chromogenic in situ hybridization (CISH, genomic in situ hybridization (GISH, comparative genomic hybridization (CGH, spectral karyotyping (SKY and multiplex fluorescence in situ hybridization (MFISH. One of the most common techniques of ISH is fluorescence in situ hybridization. FISH can be used to: 1 detect small deletions and duplications that are not visible using microscope analysis, 2 detect how many chromosomes of a certain type are present in each cell and 3 confirm rearrangements that are

  16. Solar energy applications in transportation facilities : a literature review.

    Science.gov (United States)

    1978-01-01

    This report presents the results of a survey of the literature and other sources to determine the types of application that have been made of solar energy in the transportation field. The use of solar energy for powering automatic traffic counters, v...

  17. Survey of EPA facilities for solar thermal energy applications

    Science.gov (United States)

    Nelson, E. V.; Overly, P. T.; Bell, D. M.

    1980-01-01

    A study was done to assess the feasibility of applying solar thermal energy systems to EPA facilities. A survey was conducted to determine those EPA facilities where solar energy could best be used. These systems were optimized for each specific application and the system/facility combinations were ranked on the basis of greatest cost effectiveness.

  18. SOLAR ENERGY APPLICATION IN WASTE TREATMENT- A REVIEW

    African Journals Online (AJOL)

    This review is an exposure on the various ways that solar energy can be harnessed for numerous waste treatment processes. Almost all forms of waste treatment require energy which is scarcely available considering the global energy crisis. The objective of this study is to enumerate the solar energy applications in waste ...

  19. Applications of ``PV Optics`` for solar cell and module design

    Energy Technology Data Exchange (ETDEWEB)

    Sopori, B.L.; Madjdpour, J.; Chen, W. [National Renewable Energy Lab., Golden, CO (United States)

    1998-09-01

    This paper describes some applications of a new optics software package, PV Optics, developed for the optical design of solar cells and modules. PV Optics is suitable for the analysis and design of both thick and thin solar cells. It also includes a feature for calculation of metallic losses related to contacts and back reflectors.

  20. Infiltration and Selective Interactions at the Interface in Polymer-Oxide Hybrid Solar Cells

    Science.gov (United States)

    Ferragut, R.; Aghion, S.; Moia, F.; Binda, M.; Canesi, E. V.; Lanzani, G.; Petrozza, A.

    2013-06-01

    Positron annihilation spectroscopy was used to characterize polymer-based hybrid solar cells formed by poly(3-hexylthiophene) (P3HT) finely infiltrated in a porous TiO2 skeleton. A step-change improvement in the device performance is enabled by engineering the hybrid interface by the insertion of a proper molecular interlayer namely 4-mercaptopyridine (4-MP). In order to obtain depth-resolved data, positrons were implanted in the sample using a variable-energy positron beam. The characteristics of the partially filled nanoporous structures were evaluated in terms of the depth profile of the positronium yield and the S-parameter. A quantitative evaluation of the pore filling in the deep region is given from the analysis of Coincidence Doppler Broadening taken at fixed implantation energy. We note a remarkable difference in terms of the positronium yield when the 4-MP interlayer is introduced, which means a better covering of P3HT on the porous surface.

  1. Fuzzy logic controller versus classical logic controller for residential hybrid solar-wind-storage energy system

    Energy Technology Data Exchange (ETDEWEB)

    Derrouazin, A., E-mail: derrsid@gmail.com [University Hassiba BenBouali of Chlef, LGEER,Chlef (Algeria); Université de Lorraine, LMOPS, EA 4423, 57070 Metz (France); CentraleSupélec, LMOPS, 57070 Metz (France); Aillerie, M., E-mail: aillerie@metz.supelec.fr; Charles, J. P. [Université de Lorraine, LMOPS, EA 4423, 57070 Metz (France); CentraleSupélec, LMOPS, 57070 Metz (France); Mekkakia-Maaza, N. [Université des sciences et de la Technologie d’Oran, Mohamed Boudiaf-USTO MB,LMSE, Oran Algérie (Algeria)

    2016-07-25

    Several researches for management of diverse hybrid energy systems and many techniques have been proposed for robustness, savings and environmental purpose. In this work we aim to make a comparative study between two supervision and control techniques: fuzzy and classic logics to manage the hybrid energy system applied for typical housing fed by solar and wind power, with rack of batteries for storage. The system is assisted by the electric grid during energy drop moments. A hydrogen production device is integrated into the system to retrieve surplus energy production from renewable sources for the household purposes, intending the maximum exploitation of these sources over years. The models have been achieved and generated signals for electronic switches command of proposed both techniques are presented and discussed in this paper.

  2. Complete modeling and software implementation of a virtual solar hydrogen hybrid system

    International Nuclear Information System (INIS)

    Pedrazzi, S.; Zini, G.; Tartarini, P.

    2010-01-01

    A complete mathematical model and software implementation of a solar hydrogen hybrid system has been developed and applied to real data. The mathematical model has been derived from sub-models taken from literature with appropriate modifications and improvements. The model has been implemented as a stand-alone virtual energy system in a model-based, multi-domain software environment. A test run has then been performed on typical residential user data-sets over a year-long period. Results show that the virtual hybrid system can bring about complete grid independence; in particular, hydrogen production balance is positive (+1.25 kg) after a year's operation with a system efficiency of 7%.

  3. Fuzzy logic controller versus classical logic controller for residential hybrid solar-wind-storage energy system

    International Nuclear Information System (INIS)

    Derrouazin, A.; Aillerie, M.; Charles, J. P.; Mekkakia-Maaza, N.

    2016-01-01

    Several researches for management of diverse hybrid energy systems and many techniques have been proposed for robustness, savings and environmental purpose. In this work we aim to make a comparative study between two supervision and control techniques: fuzzy and classic logics to manage the hybrid energy system applied for typical housing fed by solar and wind power, with rack of batteries for storage. The system is assisted by the electric grid during energy drop moments. A hydrogen production device is integrated into the system to retrieve surplus energy production from renewable sources for the household purposes, intending the maximum exploitation of these sources over years. The models have been achieved and generated signals for electronic switches command of proposed both techniques are presented and discussed in this paper.

  4. Nanostructured refractory thin films for solar applications

    Science.gov (United States)

    Ollier, E.; Dunoyer, N.; Dellea, O.; Szambolics, H.

    2014-08-01

    Selective solar absorbers are key elements of all solar thermal systems. Solar thermal panels and Concentrated Solar Power (CSP) systems aim respectively at producing heat and electricity. In both cases, a surface receives the solar radiation and is designed to have the highest optical absorption (lowest optical reflectivity) of the solar radiation in the visible wavelength range where the solar intensity is the highest. It also has a low emissivity in the infrared (IR) range in order to avoid radiative thermal losses. Current solutions in the state of the art usually consist in deposited interferential thin films or in cermets [1]. Structured surfaces have been proposed and have been simulated because they are supposed to be more efficient when the solar radiation is not normal to the receiving surface and because they could potentially be fabricated with refractory materials able to sustain high operating temperatures. This work presents a new method to fabricate micro/nanostructured surfaces on molybdenum (refractory metal with a melting temperature of 2623°C). This method now allows obtaining a refractory selective surface with an excellent optical selectivity and a very high absorption in the visible range. This high absorption performance was obtained by achieving a double structuration at micro and nano scales thanks to an innovative process flow.

  5. Hybrid Organic-Inorganic Perovskites Open a New Era for Low-Cost, High Efficiency Solar Cells

    Directory of Open Access Journals (Sweden)

    Guiming Peng

    2015-01-01

    Full Text Available The ramping solar energy to electricity conversion efficiencies of hybrid organic-inorganic perovskite solar cells during the last five years have opened new doors to low-cost solar energy. The record power conversion efficiency has climbed to 19.3% in August 2014 and then jumped to 20.1% in November. In this review, the main achievements for perovskite solar cells categorized from a viewpoint of device structure are overviewed. The challenges and prospects for future development of this field are also briefly presented.

  6. Hybrid nanomaterial and its applications: IR sensing and energy harvesting

    Science.gov (United States)

    Tseng, Yi-Hsuan

    In this dissertation, a hybrid nanomaterial, single-wall carbon nanotubes-copper sulfide nanoparticles (SWNTs-CuS NPs), was synthesized and its properties were analyzed. Due to its unique optical and thermal properties, the hybrid nanomaterial exhibited great potential for infrared (IR) sensing and energy harvesting. The hybrid nanomaterial was synthesized with the non-covalent bond technique to functionalize the surface of the SWNTs and bind the CuS nanoparticles on the surface of the SWNTs. For testing and analyzing the hybrid nanomaterial, SWNTs-CuS nanoparticles were formed as a thin film structure using the vacuum filtration method. Two conductive wires were bound on the ends of the thin film to build a thin film device for measurements and analyses. Measurements found that the hybrid nanomaterial had a significantly increased light absorption (up to 80%) compared to the pure SWNTs. Moreover, the hybrid nanomaterial thin film devices exhibited a clear optical and thermal switching effect, which could be further enhanced up to ten times with asymmetric illumination of light and thermal radiation on the thin film devices instead of symmetric illumination. A simple prototype thermoelectric generator enabled by the hybrid nanomaterials was demonstrated, indicating a new route for achieving thermoelectricity. In addition, CuS nanoparticles have great optical absorption especially in the near-infrared region. Therefore, the hybrid nanomaterial thin films also have the potential for IR sensing applications. The first application to be covered in this dissertation is the IR sensing application. IR thin film sensors based on the SWNTs-CuS nanoparticles hybrid nanomaterials were fabricated. The IR response in the photocurrent of the hybrid thin film sensor was significantly enhanced, increasing the photocurrent by 300% when the IR light illuminates the thin film device asymmetrically. The detection limit could be as low as 48mW mm-2. The dramatically enhanced

  7. A self-sustaining high-strength wastewater treatment system using solar-bio-hybrid power generation.

    Science.gov (United States)

    Bustamante, Mauricio; Liao, Wei

    2017-06-01

    This study focuses on system analysis of a self-sustaining high-strength wastewater treatment concept combining solar technologies, anaerobic digestion, and aerobic treatment to reclaim water. A solar bio-hybrid power generation unit was adopted to power the wastewater treatment. Concentrated solar power (CSP) and photovoltaics (PV) were combined with biogas energy from anaerobic digestion. Biogas is also used to store the extra energy generated by the hybrid power unit and ensure stable and continuous wastewater treatment. It was determined from the energy balance analysis that the PV-bio hybrid power unit is the preferred energy unit to realize the self-sustaining high-strength wastewater treatment. With short-term solar energy storage, the PV-bio-hybrid power unit in Phoenix, AZ requires solar collection area (4032m 2 ) and biogas storage (35m 3 ), while the same unit in Lansing, MI needs bigger solar collection area and biogas storage (5821m 2 and 105m 3 , respectively) due to the cold climate. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. A low sludge generated anode by hybrid solar electrocoagulation for the removal of lead

    Science.gov (United States)

    Hussin, F.; Aroua, M. K.

    2017-06-01

    In this work, perforated zinc is proposed as a new anode for lead removal by hybrid solar electrocoagulation. The characteristics of the sludge were investigated to understand the behaviour of lead removal during electrocoagulation. Sludge products formed were characterised using X-ray diffraction (XRD), X-ray fluorescence (XRF) and Field Emission Scanning Electron Microscopy (FESEM). In addition, the pH variation during electrocoagulation and effects on the sludge products were examined. At optimum conditions showed that the perforated zinc electrode produced better performance with high removal efficiency, low sludge volume index and less energy consumption.

  9. Enhanced performance of hybrid solar cells using longer arms of quantum cadmium selenide tetrapods

    KAUST Repository

    Lee, Kyu-Sung

    2011-12-01

    We demonstrate that enhanced device performance of hybrid solar cells based on tetrapod (TP)-shaped cadmium selenide (CdSe) nanoparticles and conjugated polymer of poly (3-hexylthiophene) (P3HT) can be obtained by using longer armed tetrapods which aids in better spatial connectivity, thus decreasing charge hopping events which lead to better charge transport. Longer tetrapods with 10 nm arm length lead to improved power conversion efficiency of 1.12% compared to 0.80% of device having 5 nm short-armed tetrapods:P3HT photoactive blends.

  10. Enhanced performance of hybrid solar cells using longer arms of quantum cadmium selenide tetrapods

    KAUST Repository

    Lee, Kyu-Sung; Kim, Inho; Gullapalli, Sravani; Wong, Michael S.; Jabbour, Ghassan E.

    2011-01-01

    We demonstrate that enhanced device performance of hybrid solar cells based on tetrapod (TP)-shaped cadmium selenide (CdSe) nanoparticles and conjugated polymer of poly (3-hexylthiophene) (P3HT) can be obtained by using longer armed tetrapods which aids in better spatial connectivity, thus decreasing charge hopping events which lead to better charge transport. Longer tetrapods with 10 nm arm length lead to improved power conversion efficiency of 1.12% compared to 0.80% of device having 5 nm short-armed tetrapods:P3HT photoactive blends.

  11. Disorder Improves Light Absorption in Thin Film Silicon Solar Cells with Hybrid Light Trapping Structure

    Directory of Open Access Journals (Sweden)

    Yanpeng Shi

    2016-01-01

    Full Text Available We present a systematic simulation study on the impact of disorder in thin film silicon solar cells with hybrid light trapping structure. For the periodical structures introducing certain randomness in some parameters, the nanophotonic light trapping effect is demonstrated to be superior to their periodic counterparts. The nanophotonic light trapping effect can be associated with the increased modes induced by the structural disorders. Our study is a systematic proof that certain disorder is conceptually an advantage for nanophotonic light trapping concepts in thin film solar cells. The result is relevant to the large field of research on nanophotonic light trapping which currently investigates and prototypes a number of new concepts including disordered periodic and quasiperiodic textures. The random effect on the shape of the pattern (position, height, and radius investigated in this paper could be a good approach to estimate the influence of experimental inaccuracies for periodic or quasi-periodic structures.

  12. Power and mass optimization of the hybrid solar panel and thermoelectric generators

    International Nuclear Information System (INIS)

    Kwan, Trevor Hocksun; Wu, Xiaofeng

    2016-01-01

    Highlights: • The dynamics of the hybrid PV/TEG system operating in outer space is studied. • A generalized thermodynamic model of the hybrid PV/TEG system is given. • This model is then simplified to consider the outer space scenario. • The design of the hybrid PV/TEG system is optimized using the NSGA-II algorithm. • The optimized hybrid system is more efficient than its monolithic counterparts. - Abstract: The thermoelectric generator (TEG) has been widely considered as an electrical power source in many ground applications because of its clean and noiseless characteristics. Moreover, the hybrid photovoltaic cell and TEG (PV/TEG) system has also received wide attention due to its improved power conversion efficiency over its monolithic counterparts. This paper presents a study of the dynamics and the operation of the hybrid PV/TEG system in an outer space environment where a unified thermodynamic model of this system is presented. Moreover, the multi-objective NSGA-II genetic algorithm is utilized to optimize the design of the TEG both in terms of optimal output power and in terms of mass. Specifically, the design of the single stage and the two stage variant of the aforementioned TEG are considered. Simulation results indicate that the optimized PV/TEG system does indeed achieve better efficiencies than that of the monolithic counterparts. Furthermore, it is shown that the single stage TEG is more beneficial than the two stage TEG in terms of achieving optimal performance.

  13. Tuning back contact property via artificial interface dipoles in Si/organic hybrid solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Dan [Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201 (China); Department of Physics and Institute of Solid-state electronics physical, Ningbo University, Ningbo 315211 (China); Sheng, Jiang, E-mail: shengjiang@nimte.ac.cn; Wu, Sudong; Zhu, Juye; Chen, Shaojie; Gao, Pingqi; Ye, Jichun, E-mail: jichun.ye@nimte.ac.cn [Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201 (China)

    2016-07-25

    Back contact property plays a key role in the charge collection efficiency of c-Si/poly(3,4-ethylthiophene):poly(styrenesulfonate) hybrid solar cells (Si-HSCs), as an alternative for the high-efficiency and low-cost photovoltaic devices. In this letter, we utilize the water soluble poly (ethylene oxide) (PEO) to modify the Al/Si interface to be an Ohmic contact via interface dipole tuning, decreasing the work function of the Al film. This Ohmic contact improves the electron collection efficiency of the rear electrode, increasing the short circuit current density (J{sub sc}). Furthermore, the interface dipoles make the band bending downward to increase the total barrier height of built-in electric field of the solar cell, enhancing the open circuit voltage (V{sub oc}). The PEO solar cell exhibits an excellent performance, 12.29% power conversion efficiency, a 25.28% increase from the reference solar cell without a PEO interlayer. The simple and water soluble method as a promising alternative is used to develop the interfacial contact quality of the rear electrode for the high photovoltaic performance of Si-HSCs.

  14. Proceedings of the 29. annual national conference of the Solar Energy Society of Canada Inc.: innovation and application

    International Nuclear Information System (INIS)

    Brunger, A.P.; Brunger, G.A.

    2004-08-01

    The solar energy sector has experienced rapid growth in the past 3 decades in response to energy and environmental concerns. This conference provided a forum to discuss the economic, environmental and socio-economic benefits of solar technology, including the potential to reduce greenhouse gas emissions. It is expected that the barriers to widespread use of solar energy in Canada will be removed as the issue of climate change is addressed and as the cost of renewable energy technologies decreases. Several presentations proposed action plans to accelerate the deployment of solar energy through the application of innovative building technologies and sustainable energy policies. The conference included technical presentations for all levels of audience. The sessions of the workshop were entitled: sustainable buildings; solar energy in developing countries; energy efficiency; hybrid systems; other renewable energy topics; policy, legislation and infrastructure; photovoltaic applications; grid-connection topics; photovoltaic components and manufacturing; photovoltaics modeling and testing; solar resource assessment; solar thermal applications; solar thermal; design tools and education; and windows. All 52 papers presented at the conference were catalogued separately for inclusion in this database. (author)

  15. Using hybrid expert system approaches for engineering applications

    Science.gov (United States)

    Allen, R. H.; Boarnet, M. G.; Culbert, C. J.; Savely, R. T.

    1987-01-01

    In this paper, the use of hybrid expert system shells and hybrid (i.e., algorithmic and heuristic) approaches for solving engineering problems is reported. Aspects of various engineering problem domains are reviewed for a number of examples with specific applications made to recently developed prototype expert systems. Based on this prototyping experience, critical evaluations of and comparisons between commercially available tools, and some research tools, in the United States and Australia, and their underlying problem-solving paradigms are made. Characteristics of the implementation tool and the engineering domain are compared and practical software engineering issues are discussed with respect to hybrid tools and approaches. Finally, guidelines are offered with the hope that expert system development will be less time consuming, more effective, and more cost-effective than it has been in the past.

  16. Can hybrid solar-fossil power plants mitigate CO2 at lower cost than PV or CSP?

    Science.gov (United States)

    Moore, Jared; Apt, Jay

    2013-03-19

    Fifteen of the United States and several nations require a portion of their electricity come from solar energy. We perform an engineering-economic analysis of hybridizing concentrating solar thermal power with fossil fuel in an Integrated Solar Combined Cycle (ISCC) generator. We construct a thermodynamic model of an ISCC plant in order to examine how much solar and fossil electricity is produced and how such a power plant would operate, given hourly solar resource data and hourly electricity prices. We find that the solar portion of an ISCC power plant has a lower levelized cost of electricity than stand-alone solar power plants given strong solar resource in the US southwest and market conditions that allow the capacity factor of the solar portion of the power plant to be above 21%. From a local government perspective, current federal subsidies distort the levelized cost of electricity such that photovoltaic electricity is slightly less expensive than the solar electricity produced by the ISCC. However, if the cost of variability and additional transmission lines needed for stand-alone solar power plants are taken into account, the solar portion of an ISCC power plant may be more cost-effective.

  17. Lead-Free Hybrid Perovskite Absorbers for Viable Application: Can We Eat the Cake and Have It too?

    Science.gov (United States)

    Liang, Lusheng; Gao, Peng

    2018-02-01

    Many years since the booming of research on perovskite solar cells (PSCs), the hybrid perovskite materials developed for photovoltaic application form three main categories since 2009: (i) high-performance unstable lead-containing perovskites, (ii) low-performance lead-free perovskites, and (iii) moderate performance and stable lead-containing perovskites. The search for alternative materials to replace lead leads to the second group of perovskite materials. To date, a number of these compounds have been synthesized and applied in photovoltaic devices. Here, lead-free hybrid light absorbers used in PV devices are focused and their recent developments in related solar cell applications are reviewed comprehensively. In the first part, group 14 metals (Sn and Ge)-based perovskites are introduced with more emphasis on the optimization of Sn-based PSCs. Then concerns on halide hybrids of group 15 metals (Bi and Sb) are raised, which are mainly perovskite derivatives. At the same time, transition metal Cu-based perovskites are also referred. In the end, an outlook is given on the design strategy of lead-free halide hybrid absorbers for photovoltaic applications. It is believed that this timely review can represent our unique view of the field and shed some light on the direction of development of such promising materials.

  18. Photo-thermal characteristics of hybrid nanofluids based on Therminol-55 oil for concentrating solar collectors

    Science.gov (United States)

    Gulzar, Ovais; Qayoum, Adnan; Gupta, Rajat

    2018-03-01

    Hybrid nanofluids are the new generation efficient heat transfer fluids allowing greater control over the properties of base fluid as compared to mono-nanofluids. In this study, attempt has been made for increasing the efficiency for photo-thermal conversion by heat transfer fluid for high temperature solar collectors. Therminol-55, a high temperature heat transfer fluid is doped with Al2O3 and TiO2 nanoparticles with an aim to improve the thermal and optical properties. Effects of concentration and type of nanoparticle on photo-thermal conversion properties and absorbance in Therminol-55 have been studied. Spectrophotometric analysis has been carried for all nanofluids, namely, Al2O3-Therminol-55, TiO2-Therminol-55 and hybrid (Al2O3-TiO2)-Therminol-55 nanofluids with varying concentrations of 0.05, 0.075, 0.1, 0.25, 0.5 wt%. It was found that TiO2 nanofluids possess the maximum absorbance with minimal effect of nanoparticle concentration above 0.1 wt% followed by hybrid (Al2O3-TiO2) nanofluid (HNF) with strong dependence of concentration. Al2O3-Therminol-55 nanofluids exhibited least absorbance. The peak values of absorbance are 0.47, 2.15 and 2.144 in the visible region for Al2O3-Therminol-55, TiO2-Therminol-55 and hybrid (Al2O3-TiO2)-Therminol-55 nanofluids, respectively. It was observed that hybrid nanofluids show both bathochromic and hyperchromic shifts. Further, performance testing has been carried out using artificial source of light and it has been observed that hybrid nanofluids provide efficient photo-thermal conversion as compared to TiO2 and Al2O3-Therminol-55 nanofluids. Maximum temperatures of 152.9, 149.6, 158.6 °C were observed for 0.5 wt% Al2O3-Therminol-55, 0.1 wt% TiO2-Therminol-55, and 0.5 wt% hybrid (Al2O3-TiO2) nanofluid, respectively, against 125.8 °C of Therminol-55. Hybrid nanofluids based on Therminol-55 could be a potential candidate for high temperature concentrating collectors based on the superior properties over mono-nanofluids and

  19. Performance comparison of two low-CO2 emission solar/methanol hybrid combined cycle power systems

    International Nuclear Information System (INIS)

    Li, Yuanyuan; Zhang, Na; Lior, Noam

    2015-01-01

    Highlights: • Two novel solar hybrid combined cycle systems have been proposed and analyzed. • The power systems integrate solar-driven thermo-chemical conversion and CO 2 capture. • Exergy efficiency of about 55% and specific CO 2 emissions of 34 g/kW h are predicted. • Systems CO 2 emissions are 36.8% lower compared to a combined cycle with CO 2 capture. • The fossil fuel demand is ∼30% lower with a solar share of ∼20%. - Abstract: Two novel hybrid combined cycle power systems that use solar heat and methanol, and integrate CO 2 capture, are proposed and analyzed, one based on solar-driven methanol decomposition and the other on solar-driven methanol reforming. The high methanol conversion rates at relatively low temperatures offer the advantage of using the solar heat at only 200–300 °C to drive the syngas production by endothermic methanol conversions and its conversion to chemical energy. Pre-combustion decarbonization is employed to produce CO 2 -free fuel from the fully converted syngas, which is then burned to produce heat at the high temperature for power generation in the proposed advanced combined cycle systems. To improve efficiency, the systems’ configurations were based on the principle of cascade use of multiple heat sources of different temperatures. The thermodynamic performance of the hybrid power systems at its design point is simulated and evaluated. The results show that the hybrid systems can attain an exergy efficiency of about 55%, and specific CO 2 emissions as low as 34 g/kW h. Compared to a gas/steam combined cycle with flue gas CO 2 capture, the proposed solar-assisted system CO 2 emissions are 36.8% lower, and a fossil fuel saving ratio of ∼30% is achievable with a solar thermal share of ∼20%. The system integration predicts high efficiency conversion of solar heat and low-energy-penalty CO 2 capture, with the additional advantage that solar heat is at relatively low temperature where its collection is cheaper and

  20. Some hybrid models applicable to dose-response relationships

    International Nuclear Information System (INIS)

    Kumazawa, Shigeru

    1992-01-01

    A new type of models of dose-response relationships has been studied as an initial stage to explore a reliable extrapolation of the relationships decided by high dose data to the range of low dose covered by radiation protection. The approach is to use a 'hybrid scale' of linear and logarithmic scales; the first model is that the normalized surviving fraction (ρ S > 0) in a hybrid scale decreases linearly with dose in a linear scale, and the second is that the induction in a log scale increases linearly with the normalized dose (τ D > 0) in a hybrid scale. The hybrid scale may reflect an overall effectiveness of a complex system against adverse events caused by various agents. Some data of leukemia in the atomic bomb survivors and of rodent experiments were used to show the applicability of hybrid scale models. The results proved that proposed models fit these data not less than the popular linear-quadratic models, providing the possible interpretation of shapes of dose-response curves, e.g. shouldered survival curves varied by recovery time. (author)

  1. Adaptive optics system application for solar telescope

    Science.gov (United States)

    Lukin, V. P.; Grigor'ev, V. M.; Antoshkin, L. V.; Botugina, N. N.; Emaleev, O. N.; Konyaev, P. A.; Kovadlo, P. G.; Krivolutskiy, N. P.; Lavrionova, L. N.; Skomorovski, V. I.

    2008-07-01

    The possibility of applying adaptive correction to ground-based solar astronomy is considered. Several experimental systems for image stabilization are described along with the results of their tests. Using our work along several years and world experience in solar adaptive optics (AO) we are assuming to obtain first light to the end of 2008 for the first Russian low order ANGARA solar AO system on the Big Solar Vacuum Telescope (BSVT) with 37 subapertures Shack-Hartmann wavefront sensor based of our modified correlation tracker algorithm, DALSTAR video camera, 37 elements deformable bimorph mirror, home made fast tip-tip mirror with separate correlation tracker. Too strong daytime turbulence is on the BSVT site and we are planning to obtain a partial correction for part of Sun surface image.

  2. Solar Stirling for deep space applications

    International Nuclear Information System (INIS)

    Mason, Lee S.

    2000-01-01

    A study was performed to quantify the performance of solar thermal power systems for deep space planetary missions. The study incorporated projected advances in solar concentrator and energy conversion technologies. These technologies included inflatable structures, lightweight primary concentrators, high efficiency secondary concentrators, and high efficiency Stirling convertors. Analyses were performed to determine the mass and deployed area of multihundred watt solar thermal power systems for missions out to 40 astronomical units. Emphasis was given to system optimization, parametric sensitivity analyses, and concentrator configuration comparisons. The results indicated that solar thermal power systems are a competitive alternative to radioisotope systems out to 10 astronomical units without the cost or safety implications associated with nuclear sources

  3. Potency of Solar Energy Applications in Indonesia

    OpenAIRE

    Handayani, Noer Abyor; Ariyanti, Dessy

    2012-01-01

    Currently, 80% of conventional energy is used to fulfill general public's needs andindustries. The depletion of oil and gas reserves and rapid growth in conventional energyconsumption have continuously forced us to discover renewable energy sources, like solar, wind,biomass, and hydropower, to support economic development in the future. Solar energy travels at aspeed of 186,000 miles per second. Only a small part of the radiant energy that the sun emits intospace ever reaches the Earth, but t...

  4. Passivating ZnO Surface States by C60 Pyrrolidine Tris-Acid for Hybrid Solar Cells Based on Poly(3-hexylthiophene/ZnO Nanorod Arrays

    Directory of Open Access Journals (Sweden)

    Peng Zhong

    2017-12-01

    Full Text Available Construction of ordered electron acceptors is a feasible way to solve the issue of phase separation in polymer solar cells by using vertically-aligned ZnO nanorod arrays (NRAs. However, the inert charge transfer between conducting polymer and ZnO limits the performance enhancement of this type of hybrid solar cells. In this work, a fullerene derivative named C60 pyrrolidine tris-acid is used to modify the interface of ZnO/poly(3-hexylthiophene (P3HT. Results indicate that the C60 modification passivates the surface defects of ZnO and improves its intrinsic fluorescence. The quenching efficiency of P3HT photoluminescence is enhanced upon C60 functionalization, suggesting a more efficient charge transfer occurs across the modified P3HT/ZnO interface. Furthermore, the fullerene modified hybrid solar cell based on P3HT/ZnO NRAs displays substantially-enhanced performance as compared to the unmodified one and the devices with other modifiers, which is contributed to retarded recombination and enhanced exciton separation as evidenced by electrochemical impedance spectra. Therefore, fullerene passivation is a promising method to ameliorate the connection between conjugated polymers and metal oxides, and is applicable in diverse areas, such as solar cells, transistors, and light-emitting dioxides.

  5. Battery requirements and technologies for micro hybrid applications

    Energy Technology Data Exchange (ETDEWEB)

    Karden, Eckhard; Ploumen, Serve; Spijker, Engbert [Ford Forschungszentrum Aachen GmbH (Germany); Kok, Daniel [Ford Dunton Engineering Center, Basildon, Essex (United Kingdom)

    2010-07-01

    Micro hybrids are part of all European carmakers' CO{sub 2} roadmaps and will get high market share, becoming a standard fit for mainstream powertrains. Starting from vehicle level, the paper outlines system requirements and typical technical solutions. A case study demonstrates potential and limitations of regenerative braking in micro hybrid systems. The lead/acid battery dynamic charge acceptance (DCA) is a major limitation for efficient energy recuperation, and hence fuel and CO{sub 2} saving in micro hybrids. Strengths and weaknesses of the lead/acid battery are discussed with respect to both classical automotive as well as the new micro hybrid applications. The latter impose characteristic high demands on the starting - lighting - ignition (SLI) battery or the storage system that is going to replace it, namely extensive shallow cycling at partial state of charge (PSOC) and significantly improved DCA. Delivering these additional functions robustly and reliably at minimum on-cost for high-volume applications is the key challenge that the automotive lead/acid battery industry is currently confronted with. (orig.)

  6. Formation of a hybrid-type proto-atmosphere on Mars accreting in the solar nebula

    Science.gov (United States)

    Saito, Hiroaki; Kuramoto, Kiyoshi

    2018-03-01

    Recent studies of the chronology of Martian meteorites suggest that the growth of Mars was almost complete within a few Myr after the birth of the Solar system. During such rapid accretion, proto-Mars likely gravitationally maintained both the solar nebula component and the impact degassing component, containing H2O vapour and reduced gas species, as a proto-atmosphere to be called a hybrid-type proto-atmosphere. Here we numerically analyse the mass and composition of the degassed component and the atmospheric thermal structure sustained by accretional heating. Our results predict that a growing Mars possibly acquired a massive and hot hybrid-type proto-atmosphere with surface pressure and temperature greater than several kbar and 2000 K, respectively, which is sufficient to produce a deep magma ocean. In such a high-temperature and high-pressure environment, a significant amount of H2O, CH4, CO, and H2 is expected to be partitioned into the planetary interior, although this would strongly depend on the dynamics of the magma ocean and mantle solidification. The dissolved H2O may explain the wet Martian mantle implied from basaltic Martian meteorites. Along with the remnant reduced atmosphere after the hydrodynamic atmospheric escape, dissolved reduced gas species may have maintained an earliest Martian surface environment that allowed prebiotic chemical evolution and liquid H2O activities.

  7. An alternative route towards monodisperse CdS quantum dots for hybrid solar cells

    International Nuclear Information System (INIS)

    Cao, Fengfeng; Wang, Hao; Xia, Zhouhui; Dai, Xiao; Cong, Shan; Dong, Chao; Sun, Baoquan; Lou, Yanhui; Sun, Yinghui; Zhao, Jie; Zou, Guifu

    2015-01-01

    Monodisperse CdS quantum dots (QDs) are synthesized by thermal decomposition of organic complexes in the system of the cost-effective commercial 0 # diesel at 200 °C. The prepared CdS QDs have a good dispersion and high crystallization. When the CdS QDs are doped into the blends of poly(3-hexylthiophene) (P3HT) and 1-(3-methoxycarbonyl)-propyl-1-phenyl-(6, 6)C61 (PCBM) for hybrid solar cells (HSCs), the HSCs achieve about 25% increase of power conversion efficiency in comparison to the reference device without the CdS QDs. The improvement of the cell performance mainly attributes to the increased short-circuit current density arising from the absorption enhancement in the wavelength range of 350–550 nm by introducing the synthesized CdS QDs into the P3HT: PCBM active layer. - Highlights: • Monodisperse CdS quantum dots. • A cost-effective route to synthesize crystalline CdS quantum dots. • CdS quantum dots based hybrid solar cells with power conversion efficiency enhancement

  8. An alternative route towards monodisperse CdS quantum dots for hybrid solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Cao, Fengfeng; Wang, Hao [College of Physics, Optoelectronics and Energy and Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215006 (China); Xia, Zhouhui [Institute of Functional Nano and Soft Materials, Soochow University, Suzhou 215123 (China); Dai, Xiao; Cong, Shan [College of Physics, Optoelectronics and Energy and Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215006 (China); Dong, Chao [Department of Chemistry and Biology, University of New Mexico, ABQ 87120 (United States); Sun, Baoquan [Institute of Functional Nano and Soft Materials, Soochow University, Suzhou 215123 (China); Lou, Yanhui, E-mail: yhlou@suda.edu.cn [College of Physics, Optoelectronics and Energy and Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215006 (China); Sun, Yinghui; Zhao, Jie [College of Physics, Optoelectronics and Energy and Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215006 (China); Zou, Guifu, E-mail: zouguifu@suda.edu.cn [College of Physics, Optoelectronics and Energy and Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215006 (China)

    2015-01-15

    Monodisperse CdS quantum dots (QDs) are synthesized by thermal decomposition of organic complexes in the system of the cost-effective commercial 0{sup #} diesel at 200 °C. The prepared CdS QDs have a good dispersion and high crystallization. When the CdS QDs are doped into the blends of poly(3-hexylthiophene) (P3HT) and 1-(3-methoxycarbonyl)-propyl-1-phenyl-(6, 6)C61 (PCBM) for hybrid solar cells (HSCs), the HSCs achieve about 25% increase of power conversion efficiency in comparison to the reference device without the CdS QDs. The improvement of the cell performance mainly attributes to the increased short-circuit current density arising from the absorption enhancement in the wavelength range of 350–550 nm by introducing the synthesized CdS QDs into the P3HT: PCBM active layer. - Highlights: • Monodisperse CdS quantum dots. • A cost-effective route to synthesize crystalline CdS quantum dots. • CdS quantum dots based hybrid solar cells with power conversion efficiency enhancement.

  9. Silver nanowire-graphene hybrid transparent conductive electrodes for highly efficient inverted organic solar cells

    Science.gov (United States)

    Ye, Neng; Yan, Jielin; Xie, Shuang; Kong, Yuhan; Liang, Tao; Chen, Hongzheng; Xu, Mingsheng

    2017-07-01

    Silver nanowires (AgNWs) and graphene are both promising candidates as a transparent conductive electrode (TCE) to replace expensive and fragile indium tin oxide (ITO) TCE. A synergistically optimized performance is expected when the advantages of AgNWs and graphene are combined. In this paper, the AgNW-graphene hybrid electrode is constructed by depositing a graphene layer on top of the network of AgNWs. Compared with the pristine AgNWs electrode, the AgNW-graphene TCE exhibits reduced sheet resistance, lower surface roughness, excellent long-term stability, and corrosion resistance in corrosive liquids. The graphene layer covering the AgNWs provides additional conduction pathways for electron transport and collection by the electrode. Benefiting from these advantages of the hybrid electrodes, we achieve a power conversion efficiency of 8.12% of inverted organic solar cells using PTB7:PC71BM as the active layer, which is compared to that of the solar cells based on standard ITO TCE but about 10% higher than that based on AgNWs TCE.

  10. Autonomic Management of Application Workflows on Hybrid Computing Infrastructure

    Directory of Open Access Journals (Sweden)

    Hyunjoo Kim

    2011-01-01

    Full Text Available In this paper, we present a programming and runtime framework that enables the autonomic management of complex application workflows on hybrid computing infrastructures. The framework is designed to address system and application heterogeneity and dynamics to ensure that application objectives and constraints are satisfied. The need for such autonomic system and application management is becoming critical as computing infrastructures become increasingly heterogeneous, integrating different classes of resources from high-end HPC systems to commodity clusters and clouds. For example, the framework presented in this paper can be used to provision the appropriate mix of resources based on application requirements and constraints. The framework also monitors the system/application state and adapts the application and/or resources to respond to changing requirements or environment. To demonstrate the operation of the framework and to evaluate its ability, we employ a workflow used to characterize an oil reservoir executing on a hybrid infrastructure composed of TeraGrid nodes and Amazon EC2 instances of various types. Specifically, we show how different applications objectives such as acceleration, conservation and resilience can be effectively achieved while satisfying deadline and budget constraints, using an appropriate mix of dynamically provisioned resources. Our evaluations also demonstrate that public clouds can be used to complement and reinforce the scheduling and usage of traditional high performance computing infrastructure.

  11. A hybrid tandem solar cell based on hydrogenated amorphous silicon and dye-sensitized TiO{sub 2} film

    Energy Technology Data Exchange (ETDEWEB)

    Hao Sancun [Institute of Materials Physical Chemistry, Huaqiao University, Quanzhou, 362021 (China); Institute of Photo-Electronics of Nankai University, Tianjin 300071 (China); Jiangsu Shuangdeng Group Co. Ltd, Thaizhou, Jiangsu, 225526 (China); Wu Jihuai, E-mail: jhwu@hqu.edu.cn [Institute of Materials Physical Chemistry, Huaqiao University, Quanzhou, 362021 (China); Sun Zhonglin [Institute of Photo-Electronics of Nankai University, Tianjin 300071 (China)

    2012-01-01

    Hydrogenated amorphous silicon film (a-Si:H) as top cell is introduced to dye-sensitized titanium dioxide nanocrystalline solar cell (DSSC) as bottom cell to assemble a hybrid tandem solar cell. The hybrid tandem solar cell fabricated with the thicknesses a-Si:H layer of 235 nm, ZnO/Pt interlayer of 100 nm and DSSC layer of 8.5 {mu}m achieves a photo-to-electric energy conversion efficiency of 8.31%, a short circuit current density of 10.61 mA{center_dot}cm{sup -2} and an open-circuit voltage of 1.45 V under a simulated solar light irradiation of 100 mW{center_dot}cm{sup -2}.

  12. Application of diffusion research to solar energy policy issues

    Energy Technology Data Exchange (ETDEWEB)

    Roessner, J. D.; Posner, D.; Shoemaker, F.; Shama, A.

    1979-03-01

    This paper examines two types of information requirements that appear to be basic to DOE solar-energy-policy decisions: (1) how can the future market success of solar energy technologies be estimated, and (2) what factors influence the adoption of solar energy technologies, and what specific programs could promote solar energy adoption most effectively. This paper assesses the ability of a body of research, referred to here as diffusion research, to supply information that could partially satisfy these requirements. This assessment proceeds, first, by defining in greater detail a series of policy issues that face DOE. These are divided into cost reduction and performance improvement issues which include issues confronting the technology development component of the solar energy program, and barriers and incentives issues which are most relevant to problems of solar energy application. Second, these issues are translated into a series of questions that the diffusion approach can help resolve. Third, various elements within diffusion research are assessed in terms of their abilities to answer policy questions. Finally, the strengths and limitations of current knowledge about the diffusion of innovations are summarized, the applicability of both existing knowledge and the diffusion approach to the identified solar-energy-policy issues are discussed, and ways are suggested in which diffusion approaches can be modified and existing knowledge employed to meet short- and long-term goals of DOE. The inquiry covers the field of classical diffusion research, market research and consumer behavior, communication research, and solar-energy market-penetration modeling.

  13. Solar pumped laser and its application to hydrogen production

    International Nuclear Information System (INIS)

    Imasaki, K.; Saiki, T.; Li, D.; Motokosi, S.; Nakatsuka, M.

    2007-01-01

    Solar pumped laser has been studied. Recently, a small ceramic laser pumped by pseudo solar light shows high efficiency of more than 40% which exceeds a solar cell. Such solar pumped laser can concentrate the large area of solar energy in a focused spot of small area. This fact implies the application of such laser for clean and future renewable energy source as hydrogen. For this purpose, 100 W level laboratory solar laser HELIOS is completed using disk ceramic active mirror laser to achieve high temperature. This laser is a kind of MOPA system. Oscillator of additional small laser is used. Laser light is generated in oscillator and is amplified in ceramic disks of solar pumped. The temperature from this system is to be more than 1500 K. We will use a simple graphite cavity for laser power absorption and to get a high temperature. We are also designing a 10 MW CW laser based on this technology. This may be expected an application of solar energy for hydrogen production with total efficiency of 30%

  14. A numerical approach for size optimization and performance prediction of solar P V-hybrid power systems

    International Nuclear Information System (INIS)

    Zahedi, A.; Calia, N.

    2001-10-01

    Iran is blessed with an abundance of sunlight almost all year round. so obviously, with the right planning and strategies that are coupled to the right technology and development in the market, the potential for the new renewable energies, specially solar photovoltaic, as an alternative source of power looks promising and is constantly gaining popularity. Development and application of new renewable energy in Iran, however, is still in its infancy and will require active support by government, utilities and financing institutions. some experts might argue that Iran has plenty of natural resources like oil and gas. We should not forget, however, that even in countries with cheap fossil energy, the P V system is an economical option in supplying electricity for remote located communities and facilities. But there are good reasons suggesting that like many other countries in the world, Iran also needs to be active in utilization of sun energy. The objectives of this paper are: to give a comprehensive overview on the current solar photovoltaic energy technology. (Authors of this paper believe that Photovoltaic is the most appropriate renewable energy technology for Iran); to present the results obtained from a study which has been carried out on the size optimization, cost calculation of the photovoltaic systems for climate conditions of Iran. The method presented in this paper can be used for systems of any size and application. A further objective of this paper is to present a numerical approach for evaluating the performance of P V-Hybrid power systems. A method is developed to predict the performance of all components integrated into a P V-hybrid system. The system under investigation is a hybrid power system, in which the integrated components are P V array, a battery bank for backing up the system and a diesel generator set for supporting the battery bank. State of charge of batteries is used as a measure for the performance of the system. The running time of

  15. Dimensioning and efficiency evaluation of hybrid solar systems for energy production

    Directory of Open Access Journals (Sweden)

    Elia Stefano

    2008-01-01

    Full Text Available Nowadays hybrid panels for joint production of thermal and electrical energy are available on the market. The main contribution of this work is to evaluate the performances of hybrid systems and to determine the field of application. Mathematical models of panels are considered to evaluate thermal and electrical behavior of the problem. A software produced by the authors is shown that calculates the energy production of these devices in several operating situations; a comparison to that of photovoltaic and thermal systems is performed. Moreover, the economic validity of a such investment is evaluated. Finally a simplified criterion has been developed to calculate the best subdivision of the available deployment surface among thermal, photovoltaic, and hybrid panels.

  16. A global three dimensional hybrid simulation of the interaction between a weakly magnetized obstacle and the solar wind

    Czech Academy of Sciences Publication Activity Database

    Trávníček, Pavel; Hellinger, Petr; Schiver, D.

    2003-01-01

    Roč. 679, CP679 (2003), s. 485-488 ISSN 1551-7616. [Solar wind ten. Pisa, 17.06.2002-21.06.2002] Grant - others:ESA(NL) Prodex14529/00/NL/SFe; NSF(US) INT-0010111 Institutional research plan: CEZ:AV0Z3042911 Keywords : magnetized obstacle * solar wind * global hybrid simulations Subject RIV: BL - Plasma and Gas Discharge Physics

  17. Simulations of hybrid system varying solar radiation and microturbine response time

    Directory of Open Access Journals (Sweden)

    Yolanda Fernández Ribaya

    2015-07-01

    Full Text Available Hybrid power systems, such as combinations of renewable power sources with intermittent power production and non-renewable power sources, theoretically increase the reliability and thus integration of renewable sources in the electrical system. However, a recent increase in the number of hybrid installations has sparked interest in the effects of their connection to the grid, especially in remote areas. This paper analyses a photovoltaic-gas microturbine hybrid system dimensioned to be installed in La Paz (Mexico.The research presented in this paper studies and quantifies the effects on the total electric power produced, varying both the solar radiation and the gas microturbine response time. The gas microturbine and the photovoltaic panels are modelled using Matlab/Simulink software, obtaining a platform where different tests to simulate real conditions have been executed. They consist of diverse ramps of irradiance that replicate solar radiation variations, and different microturbine response times reproduced by the time constants of a first order transfer function that models the microturbine dynamic response. The results obtained show that when radiation varies quickly it does not produce significant differences in the power guarantee or the microturbine gas consumption, to any microturbine response time. However, these two parameters are highly variable with smooth radiance variations. The maximum total power variation decreases greatly as the radiation variation gets lower. In addition, by decreasing the microturbine response time, it is possible to appreciably increase the power guarantee although the maximum power variation and gas consumption increase. Only in cases of low radiation variation is there no appreciable difference in the maximum power variation obtained by the different turbine response times.

  18. Simulations of hybrid system varying solar radiation and microturbine response time

    Energy Technology Data Exchange (ETDEWEB)

    Fernández Ribaya, Yolanda, E-mail: fernandezryolanda@uniovi.es; Álvarez, Eduardo; Paredes Sánchez, José Pablo; Xiberta Bernat, Jorge [Department of Energy E.I.M.E.M., University of Oviedo. 13 Independencia Street 2" n" d floor, 36004, Oviedo (Spain)

    2015-07-15

    Hybrid power systems, such as combinations of renewable power sources with intermittent power production and non-renewable power sources, theoretically increase the reliability and thus integration of renewable sources in the electrical system. However, a recent increase in the number of hybrid installations has sparked interest in the effects of their connection to the grid, especially in remote areas. This paper analyses a photovoltaic-gas microturbine hybrid system dimensioned to be installed in La Paz (Mexico).The research presented in this paper studies and quantifies the effects on the total electric power produced, varying both the solar radiation and the gas microturbine response time. The gas microturbine and the photovoltaic panels are modelled using Matlab/Simulink software, obtaining a platform where different tests to simulate real conditions have been executed. They consist of diverse ramps of irradiance that replicate solar radiation variations, and different microturbine response times reproduced by the time constants of a first order transfer function that models the microturbine dynamic response. The results obtained show that when radiation varies quickly it does not produce significant differences in the power guarantee or the microturbine gas consumption, to any microturbine response time. However, these two parameters are highly variable with smooth radiance variations. The maximum total power variation decreases greatly as the radiation variation gets lower. In addition, by decreasing the microturbine response time, it is possible to appreciably increase the power guarantee although the maximum power variation and gas consumption increase. Only in cases of low radiation variation is there no appreciable difference in the maximum power variation obtained by the different turbine response times.

  19. Improved performance of colloidal CdSe quantum dot-sensitized solar cells by hybrid passivation.

    Science.gov (United States)

    Huang, Jing; Xu, Bo; Yuan, Chunze; Chen, Hong; Sun, Junliang; Sun, Licheng; Agren, Hans

    2014-11-12

    A hybrid passivation strategy is employed to modify the surface of colloidal CdSe quantum dots (QDs) for quantum dot-sensitized solar cells (QDSCs), by using mercaptopropionic acid (MPA) and iodide anions through a ligand exchange reaction in solution. This is found to be an effective way to improve the performance of QDSCs based on colloidal QDs. The results show that MPA can increase the coverage of the QDs on TiO2 electrodes and facilitate the hole extraction from the photoxidized QDs, and simultaneously, that the iodide anions can remedy the surface defects of the CdSe QDs and thus reduce the recombination loss in the device. This hybrid passivation treatment leads to a significant enhancement of the power conversion efficiency of the QDSCs by 41%. Furthermore, an optimal ratio of iodide ions to MPA was determined for favorable hybrid passivation; results show that excessive iodine anions are detrimental to the loading of the QDs. This study demonstrates that the improvement in QDSC performance can be realized by using a combination of different functional ligands to passivate the QDs, and that ligand exchange in solution can be an effective approach to introduce different ligands.

  20. Hybrid photovoltaic-thermoelectric system for concentrated solar energy conversion: Experimental realization and modeling

    Science.gov (United States)

    Beeri, Ofer; Rotem, Oded; Hazan, Eden; Katz, Eugene A.; Braun, Avi; Gelbstein, Yaniv

    2015-09-01

    An experimental demonstration of the combined photovoltaic (PV) and thermoelectric conversion of concentrated sunlight (with concentration factor, X, up to ˜300) into electricity is presented. The hybrid system is based on a multi-junction PV cell and a thermoelectric generator (TEG). The latter increases the electric power of the system and dissipates some of the excessive heat. For X ≤ 200, the system's maximal efficiency, ˜32%, was mostly due to the contribution from the PV cell. With increasing X and system temperature, the PV cell's efficiency decreased while that of the TEG increased. Accordingly, the direct electrical contribution of the TEG started to dominate in the total system power, reaching ˜20% at X ≈ 290. Using a simple steady state finite element modeling, the cooling effect of the TEG on the hybrid system's efficiency was proved to be even more significant than its direct electrical contribution for high solar concentrations. As a result, the total efficiency contribution of the TEG reached ˜40% at X ≈ 200. This suggests a new system optimization concept that takes into account the PV cell's temperature dependence and the trade-off between the direct electrical generation and cooling capabilities of the TEG. It is shown that the hybrid system has a real potential to exceed 50% total efficiency by using more advanced PV cells and TE materials.

  1. Conceptual Design of Hybrid Safety Features for NPP by Utilizing Solar Updraft Tower

    Energy Technology Data Exchange (ETDEWEB)

    Song, Sub Lee [Handong Global University, Pohang (Korea, Republic of); Choi, Young Jae; Kim, Yong Jin [KAIST, Daejeon (Korea, Republic of); Park, Hyo Chan; Park, Youn Won [BEES, Daejeon (Korea, Republic of)

    2016-05-15

    In this study, hybrid safety features for NPP with solar updraft tower (SUT) is conceptually suggested to cope with loss of ultimate heat sink accident. The hybrid safety features utilizing SUT target NPPs in seashore of Arabian Gulf. Usually NPPs are constructed near seashore to utilize sea water as an ultimate heat sink. Residual heat or decay heat of nuclear reactor will diffuse into the ocean through the condenser. NPPs in Middle East are expected to be placed in seashore of Arabian Gulf. The NPP site of Barakah is an actual example. For NPPs in seashore of Arabian Gulf, an additional safety concern should be considered. Arabian Gulf is the largest oil transporting route in the world. The oil spill risk in Arabian Gulf will be the largest simultaneously. Unfortunately, not like other oceans, Arabian Gulf is a kind of closed ocean which does not have strong ocean currents connected to out of the gulf. If once oil spill is occurred, its influence can be propagated more than our expectation. The spilled oil also can affect to NPPs in seashore by covering surfaces of condenser. It will directly cause loss of ultimate heat sink. The hybrid safety features of SUT system are expected to aid normal operation of safety system and mitigate consequence of severe accident. Detail analysis and technology development is ongoing now.

  2. Conceptual Design of Hybrid Safety Features for NPP by Utilizing Solar Updraft Tower

    International Nuclear Information System (INIS)

    Song, Sub Lee; Choi, Young Jae; Kim, Yong Jin; Park, Hyo Chan; Park, Youn Won

    2016-01-01

    In this study, hybrid safety features for NPP with solar updraft tower (SUT) is conceptually suggested to cope with loss of ultimate heat sink accident. The hybrid safety features utilizing SUT target NPPs in seashore of Arabian Gulf. Usually NPPs are constructed near seashore to utilize sea water as an ultimate heat sink. Residual heat or decay heat of nuclear reactor will diffuse into the ocean through the condenser. NPPs in Middle East are expected to be placed in seashore of Arabian Gulf. The NPP site of Barakah is an actual example. For NPPs in seashore of Arabian Gulf, an additional safety concern should be considered. Arabian Gulf is the largest oil transporting route in the world. The oil spill risk in Arabian Gulf will be the largest simultaneously. Unfortunately, not like other oceans, Arabian Gulf is a kind of closed ocean which does not have strong ocean currents connected to out of the gulf. If once oil spill is occurred, its influence can be propagated more than our expectation. The spilled oil also can affect to NPPs in seashore by covering surfaces of condenser. It will directly cause loss of ultimate heat sink. The hybrid safety features of SUT system are expected to aid normal operation of safety system and mitigate consequence of severe accident. Detail analysis and technology development is ongoing now

  3. Theoretical Study of Copper Complexes: Molecular Structure, Properties, and Its Application to Solar Cells

    Directory of Open Access Journals (Sweden)

    Jesus Baldenebro-Lopez

    2013-01-01

    Full Text Available We present a theoretical investigation of copper complexes with potential applications as sensitizers for solar cells. The density functional theory (DFT and time-dependent DFT were utilized, using the M06 hybrid meta-GGA functional with the LANL2DZ (D95V on first row and DZVP basis sets. This level of calculation was used to find the optimized molecular structure, the absorption spectra, the molecular orbitals energies, and the chemical reactivity parameters that arise from conceptual DFT. Solvent effects have been taken into account by an implicit approach, namely, the polarizable continuum model (PCM, using the nonequilibrium version of the IEF-PCM model.

  4. Solar EUV irradiance for space weather applications

    Science.gov (United States)

    Viereck, R. A.

    2015-12-01

    Solar EUV irradiance is an important driver of space weather models. Large changes in EUV and x-ray irradiances create large variability in the ionosphere and thermosphere. Proxies such as the F10.7 cm radio flux, have provided reasonable estimates of the EUV flux but as the space weather models become more accurate and the demands of the customers become more stringent, proxies are no longer adequate. Furthermore, proxies are often provided only on a daily basis and shorter time scales are becoming important. Also, there is a growing need for multi-day forecasts of solar EUV irradiance to drive space weather forecast models. In this presentation we will describe the needs and requirements for solar EUV irradiance information from the space weather modeler's perspective. We will then translate these requirements into solar observational requirements such as spectral resolution and irradiance accuracy. We will also describe the activities at NOAA to provide long-term solar EUV irradiance observations and derived products that are needed for real-time space weather modeling.

  5. Generalized rough sets hybrid structure and applications

    CERN Document Server

    Mukherjee, Anjan

    2015-01-01

    The book introduces the concept of “generalized interval valued intuitionistic fuzzy soft sets”. It presents the basic properties of these sets and also, investigates an application of generalized interval valued intuitionistic fuzzy soft sets in decision making with respect to interval of degree of preference. The concept of “interval valued intuitionistic fuzzy soft rough sets” is discussed and interval valued intuitionistic fuzzy soft rough set based multi criteria group decision making scheme is presented, which refines the primary evaluation of the whole expert group and enables us to select the optimal object in a most reliable manner. The book also details concept of interval valued intuitionistic fuzzy sets of type 2. It presents the basic properties of these sets. The book also introduces the concept of “interval valued intuitionistic fuzzy soft topological space (IVIFS topological space)” together with intuitionistic fuzzy soft open sets (IVIFS open sets) and intuitionistic fuzzy soft cl...

  6. Hybrid cloud and cluster computing paradigms for life science applications.

    Science.gov (United States)

    Qiu, Judy; Ekanayake, Jaliya; Gunarathne, Thilina; Choi, Jong Youl; Bae, Seung-Hee; Li, Hui; Zhang, Bingjing; Wu, Tak-Lon; Ruan, Yang; Ekanayake, Saliya; Hughes, Adam; Fox, Geoffrey

    2010-12-21

    Clouds and MapReduce have shown themselves to be a broadly useful approach to scientific computing especially for parallel data intensive applications. However they have limited applicability to some areas such as data mining because MapReduce has poor performance on problems with an iterative structure present in the linear algebra that underlies much data analysis. Such problems can be run efficiently on clusters using MPI leading to a hybrid cloud and cluster environment. This motivates the design and implementation of an open source Iterative MapReduce system Twister. Comparisons of Amazon, Azure, and traditional Linux and Windows environments on common applications have shown encouraging performance and usability comparisons in several important non iterative cases. These are linked to MPI applications for final stages of the data analysis. Further we have released the open source Twister Iterative MapReduce and benchmarked it against basic MapReduce (Hadoop) and MPI in information retrieval and life sciences applications. The hybrid cloud (MapReduce) and cluster (MPI) approach offers an attractive production environment while Twister promises a uniform programming environment for many Life Sciences applications. We used commercial clouds Amazon and Azure and the NSF resource FutureGrid to perform detailed comparisons and evaluations of different approaches to data intensive computing. Several applications were developed in MPI, MapReduce and Twister in these different environments.

  7. ADAPTIVE FULL-SPECTRUM SOLAR ENERGY SYSTEMS Cross-Cutting R & D on adaptive full-spectrum solar energy systems for more efficient and affordable use of solar energy in buildings and hybrid photobioreactors

    Energy Technology Data Exchange (ETDEWEB)

    Byard D. Wood; David L. Beshears

    2006-02-01

    This RD&D project is a three year team effort to develop a hybrid solar lighting (HSL) system that transports daylight from a paraboloidal dish concentrator to a luminaire via a bundle of polymer fiber optics. The luminaire can be a device to distribute sunlight into a space for the production of algae or it can be a device that is a combination of daylighting and electric lighting for space/task lighting. In this project, the sunlight is collected using a one-meter paraboloidal concentrator dish with two-axis tracking. For the third generation (beta) system, the secondary mirror is an ellipsoidal mirror that directs the visible light into a bundle of 3 mm diameter fibers. The IR spectrum is filtered out to minimize unnecessary heating at the fiber entrance region. This report describes the following investigations: Niche applications for HSL technology, Luminaire design characteristics for linear and point lighting fixtures, and Daylight affects on productivity.

  8. Using simulation to validate and optimize the design of a hybrid solar-GCHP system

    Energy Technology Data Exchange (ETDEWEB)

    Kummert, M.; Bernier, M. [Ecole Polytechnique, Montreal, PQ (Canada). Dept. de Genie Mecanique; Roy, M. [Martin Roy and Associates, Deux-Montagnes, PQ (Canada)

    2006-07-01

    A redevelopment project that involves the sustainable construction of 3 buildings with 187 affordable and environmentally sound housing units in a Montreal community was discussed. The HVAC system was part of the integrated design process that focused on reducing greenhouse gas emissions, potable water use, the production of waste water and the production of solid waste through retrofitting, reuse and waste diversion. Design options were limited by pre-existing equipment and funding opportunities. The design was also influenced by the building's management structure whereby financial benefits from the energy savings go to a non-profit, community-run utility company that will re-invest in new phases of the project. The project involved the installation of a hybrid solar geothermal heat pump system. The design was different from the usual approach because the solar thermal system was sized to provide domestic hot water but not to compensate the annual imbalance in the ground loads. It was noted that the average temperature in the ground will decrease with time, due to the imbalance. This presentation provided the results of detailed TRNSYS simulations that validated and optimized the design of the hybrid ground-coupled heating plant including solar thermal collectors in the 3 multi-unit buildings. The TRNSYS simulation used building loads that were calculated in an earlier stage of the design process with DOE-2. A global heat exchange coefficient for radiators and floor heating was estimated in order to use realistic temperature levels. An analysis of the long-term system performance of this unique design showed that on a yearly basis, 33 per cent of the total heating load can come from renewable energy sources. 18 refs., 2 tabs., 13 figs.

  9. Characterization and improved solar light activity of vanadium doped TiO2/diatomite hybrid catalysts

    International Nuclear Information System (INIS)

    Wang, Bin; Zhang, Guangxin; Leng, Xue; Sun, Zhiming; Zheng, Shuilin

    2015-01-01

    Highlights: • V-doped TiO 2 /diatomite composite photocatalyst was synthesized. • The physiochemical property and solar light photoactivity were characterized. • The presence and influence of V ions in TiO 2 matrix was systematically analyzed. • The photocatalysis for Rhodamine B were studied under solar light illumination. - Abstract: V-doped TiO 2 /diatomite composite photocatalysts with different vanadium concentrations were synthesized by a modified sol–gel method. The diatomite was responsible for the well dispersion of TiO 2 nanoparticles on the matrix and consequently inhibited the agglomeration. V-TiO 2 /diatomite hybrids showed red shift in TiO 2 absorption edge with enhanced absorption intensity. Most importantly, the dopant energy levels were formed in the TiO 2 bandgap due to V 4+ ions substituted to Ti 4+ sites. The 0.5% V-TiO 2 /diatomite photocatalyst displayed narrower bandgap (2.95 eV) compared to undoped sample (3.13 eV) and other doped samples (3.05 eV) with higher doping concentration. The photocatalytic activities of V doped TiO 2 /diatomite samples for the degradation of Rhodamine B under stimulated solar light illumination were significantly improved compared with the undoped sample. In our case, V 4+ ions incorporated in TiO 2 lattice were responsible for increased visible-light absorption and electron transfer to oxygen molecules adsorbed on the surface of TiO 2 to produce superoxide radicals ·O 2 – , while V 5+ species presented on the surface of TiO 2 particles in the form of V 2 O 5 contributed to e – –h + separation. In addition, due to the combination of diatomite as support, this hybrid photocatalyst could be separated from solution quickly by natural settlement and exhibited good reusability

  10. Higher order statistical moment application for solar PV potential analysis

    Science.gov (United States)

    Basri, Mohd Juhari Mat; Abdullah, Samizee; Azrulhisham, Engku Ahmad; Harun, Khairulezuan

    2016-10-01

    Solar photovoltaic energy could be as alternative energy to fossil fuel, which is depleting and posing a global warming problem. However, this renewable energy is so variable and intermittent to be relied on. Therefore the knowledge of energy potential is very important for any site to build this solar photovoltaic power generation system. Here, the application of higher order statistical moment model is being analyzed using data collected from 5MW grid-connected photovoltaic system. Due to the dynamic changes of skewness and kurtosis of AC power and solar irradiance distributions of the solar farm, Pearson system where the probability distribution is calculated by matching their theoretical moments with that of the empirical moments of a distribution could be suitable for this purpose. On the advantage of the Pearson system in MATLAB, a software programming has been developed to help in data processing for distribution fitting and potential analysis for future projection of amount of AC power and solar irradiance availability.

  11. Annual DOE active solar heating and cooling contractors' review meeting. Premeeting proceedings and project summaries

    Energy Technology Data Exchange (ETDEWEB)

    None,

    1981-09-01

    Ninety-three project summaries are presented which discuss the following aspects of active solar heating and cooling: Rankine solar cooling systems; absorption solar cooling systems; desiccant solar cooling systems; solar heat pump systems; solar hot water systems; special projects (such as the National Solar Data Network, hybrid solar thermal/photovoltaic applications, and heat transfer and water migration in soils); administrative/management support; and solar collector, storage, controls, analysis, and materials technology. (LEW)

  12. Cometary jets in interaction with the solar wind: a hybrid simulation study

    Science.gov (United States)

    Wiehle, Stefan; Motschmann, Uwe; Gortsas, Nikolaos; Mueller, Joachim; Kriegel, Hendrik; Koenders, Christoph; Glassmeier, Karl-Heinz

    The effect of a cometary jet on the solar wind interaction is studied using comet 67P/Churyumov-Gerasimenko as case study. This comet is the target of the Rosetta-mission which will arrive in 2014. Observations suggest that cometary outgassing is confined to only a few percent of the cometary surface; thus, the measurement of jets is expected. Most former comet simulations did not attend to this fact and used an isotropic outgassing scheme or simplified outgassing patterns. Here, a single sun-facing jet is set to be the only source of cometary gas produc-tion. Using an analytic profile, this outgassing jet was implemented in a hybrid simulation code which treats protons and cometary heavy ions as particles and electrons as massless fluid. In a simulation series, the geometric parameters of the jet were varied to study the effect of different opening angles while the integrated outgassing rate remained constant. It was shown that the resulting solar wind interaction is highly dependent on the geometry of the jet. The plasma-structures like the solar wind pile-up found in the situation with isotropic outgassing are moved more and more sunward as the opening angle of the jet decreases. Furthermore, the cometary ion tail shows some kind of splitting which is not known from isotropic models.

  13. Experimental studies on the hybrid system of heat and cold production from solar energy

    Directory of Open Access Journals (Sweden)

    Gil Stanislaw

    2017-01-01

    Full Text Available In recent years more and more energy is consumed in the European Union countries for summer air conditioning in buildings. This consumption will probably increase even more due to the predicted climate warming and the desire to improve the quality of life. At present final energy as heat and electricity is sourced mainly from fossil fuels. However, recently alternative renewable energy sources are increasingly taken into account as a result of efforts toward environmental protection and fuels savings. This paper presents results of the analysis of a hybrid solar-assisted heating and cooling system for buildings in the temperate climate of west and central Europe. Solar energy potential was estimated. The investigation was performed using a large scale laboratory installation, which contains an evacuated solar collector, a single-stage NH3-H2O absorption chiller and a hot water tank. The impact of the main system parameters on its performance was analyzed on the basis of energy balances.

  14. Thermal and electrical performance of a hybrid design of a solar-thermoelectric system

    International Nuclear Information System (INIS)

    Ong, K.S.; Naghavi, M.S.; Lim, Christopher

    2017-01-01

    Highlights: • Hybrid solar-thermoelectric system studied under outdoor conditions. • Electrical output voltage and hot water temperatures peaked around 15.30. • Total electrical efficiency was very low, about 0.16% at around 15.30 h. - Abstract: An evacuated tube heat pipe solar collector was fitted with four thermoelectric modules and four water cooling jackets on the condenser side to produce electricity and hot water simultaneously. Each cooling jacket had six mini water-flow channels inside it. Solar heat was absorbed and collected by the evaporator section. Experiments were conducted under outdoor environment with various water coolant flow rates. Once-through coolant water flow was adopted as a first step. Further investigations would be conducted to incorporate an insulated hot water storage tank to evaluate the system economic viability as a power producer and hot water generator. Temperatures were recorded along the evaporator and condenser sections of the heat pipe, thermoelectric junction temperatures and inlet/outlet water channels. This paper presents the experimental results obtained. Typical daily experimental results showed that electrical output voltage and hot water temperatures peaked around 15.30 before decreasing towards the evening. Total electrical efficiency was very low, about 0.16% at around 15.30 h.

  15. Investigation of Solar Hybrid Electric/Thermal System with Radiation Concentrator and Thermoelectric Generator

    Directory of Open Access Journals (Sweden)

    Edgar Arturo Chávez Urbiola

    2013-01-01

    Full Text Available An experimental study of a solar-concentrating system based on thermoelectric generators (TEGs was performed. The system included an electrical generating unit with 6 serially connected TEGs using a traditional semiconductor material, Bi2Te3, which was illuminated by concentrated solar radiation on one side and cooled by running water on the other side. A sun-tracking concentrator with a mosaic set of mirrors was used; its orientation towards the sun was achieved with two pairs of radiation sensors, a differential amplifier, and two servomotors. The hot side of the TEGs at midday has a temperature of around 200°C, and the cold side is approximately 50°C. The thermosiphon cooling system was designed to absorb the heat passing through the TEGs and provide optimal working conditions. The system generates 20 W of electrical energy and 200 W of thermal energy stored in water with a temperature of around 50°C. The hybrid system studied can be considered as an alternative to photovoltaic/thermal systems, especially in countries with abundant solar radiation, such as Mexico, China, and India.

  16. Hybrid heterojunction solar cell based on organic-inorganic silicon nanowire array architecture.

    Science.gov (United States)

    Shen, Xiaojuan; Sun, Baoquan; Liu, Dong; Lee, Shuit-Tong

    2011-12-07

    Silicon nanowire arrays (SiNWs) on a planar silicon wafer can be fabricated by a simple metal-assisted wet chemical etching method. They can offer an excellent light harvesting capability through light scattering and trapping. In this work, we demonstrated that the organic-inorganic solar cell based on hybrid composites of conjugated molecules and SiNWs on a planar substrate yielded an excellent power conversion efficiency (PCE) of 9.70%. The high efficiency was ascribed to two aspects: one was the improvement of the light absorption by SiNWs structure on the planar components; the other was the enhancement of charge extraction efficiency, resulting from the novel top contact by forming a thin organic layer shell around the individual silicon nanowire. On the contrary, the sole planar junction solar cell only exhibited a PCE of 6.01%, due to the lower light trapping capability and the less hole extraction efficiency. It indicated that both the SiNWs structure and the thin organic layer top contact were critical to achieve a high performance organic/silicon solar cell. © 2011 American Chemical Society

  17. Application of solar chargers to prospection instruments

    International Nuclear Information System (INIS)

    Caille, G.

    1960-01-01

    The use of conventional batteries has certain disadvantages, and for this reason high-voltage batteries have been gradually replaced in all prospection instruments by transistor supply systems, using less cumbersome sources of energy. All the same low voltages are still necessary, and in hot or damp countries the use of these batteries leads to consumptions out of all proportion to the services rendered. This is why the use of solar energy possesses real advantages. After a brief review of the basic ideas on semiconductors, this article describes a selenium solar battery which was developed by the Westinghouse brakes and signals society. (author) [fr

  18. Performance analysis of a solar photochemical photovoltaic hybrid system for decolorization of Acid Red 26 (AR 26)

    International Nuclear Information System (INIS)

    Cui, Lingyun; Zhu, Li; Huang, Qunwu; Wang, Yiping; Jin, Yanchao; Sun, Yong; Cui, Yong; Chen, Miao; Fan, Jiangyang

    2017-01-01

    To reduce the power energy consumption of wastewater treatment and make full use of the solar spectrum, a new water purification system that integrated homogeneous solar photochemical (SPC) and photovoltaics (PV) was constructed to treat wastewater and generate electricity for the first time. Hydrogen peroxide (H_2O_2) and potassium persulfate (K_2S_2O_8) were chosen as oxidants in the system and have a comparative analysis. The results show that solar/K_2S_2O_8 has a higher decolorization efficiency than solar/H_2O_2, the accumulated ultraviolet energy in solar/K_2S_2O_8, needed for complete decolorization, is far lower than in solar/H_2O_2. Also temperature has a positive effect on the dark-K_2S_2O_8 processes especially in the range of 40–60 °C, and it follows pseudo-first-order kinetic relationship. Meanwhile, to investigate the influence of flow channel on PV, the short circuit current (I_s_c) and maximum output power (P_m) were monitored. It indicates that the presence of flow channel effectively decreases the working temperature of PV modules, while the I_s_c and P_m have a different degree reduce. Luckily, the impact is not big. Additionally, P_m in experiment system, though lower than reference system, is sufficient to drive the whole system. - Highlights: • The hybrid system combing homogenous photochemical with photovoltaics was firstly performed. • Solar/K_2S_2O_8 and solar/H_2O_2 is comparative analysis in the decolorization of AR 26. • K_2S_2O_8 can be activated by heat and irradiation simultaneously in the hybrid system. • The PV panel of the hybrid system could work under lower temperature. • Solar spectrum could be made full use for power generation and water purification.

  19. Lessons learned: from dye-sensitized solar cells to all-solid-state hybrid devices.

    Science.gov (United States)

    Docampo, Pablo; Guldin, Stefan; Leijtens, Tomas; Noel, Nakita K; Steiner, Ullrich; Snaith, Henry J

    2014-06-25

    The field of solution-processed photovoltaic cells is currently in its second spring. The dye-sensitized solar cell is a widely studied and longstanding candidate for future energy generation. Recently, inorganic absorber-based devices have reached new record efficiencies, with the benefits of all-solid-state devices. In this rapidly changing environment, this review sheds light on recent developments in all-solid-state solar cells in terms of electrode architecture, alternative sensitizers, and hole-transporting materials. These concepts are of general applicability to many next-generation device platforms. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. A hybrid method based on a new clustering technique and multilayer perceptron neural networks for hourly solar radiation forecasting

    International Nuclear Information System (INIS)

    Azimi, R.; Ghayekhloo, M.; Ghofrani, M.

    2016-01-01

    Highlights: • A novel clustering approach is proposed based on the data transformation approach. • A novel cluster selection method based on correlation analysis is presented. • The proposed hybrid clustering approach leads to deep learning for MLPNN. • A hybrid forecasting method is developed to predict solar radiations. • The evaluation results show superior performance of the proposed forecasting model. - Abstract: Accurate forecasting of renewable energy sources plays a key role in their integration into the grid. This paper proposes a hybrid solar irradiance forecasting framework using a Transformation based K-means algorithm, named TB K-means, to increase the forecast accuracy. The proposed clustering method is a combination of a new initialization technique, K-means algorithm and a new gradual data transformation approach. Unlike the other K-means based clustering methods which are not capable of providing a fixed and definitive answer due to the selection of different cluster centroids for each run, the proposed clustering provides constant results for different runs of the algorithm. The proposed clustering is combined with a time-series analysis, a novel cluster selection algorithm and a multilayer perceptron neural network (MLPNN) to develop the hybrid solar radiation forecasting method for different time horizons (1 h ahead, 2 h ahead, …, 48 h ahead). The performance of the proposed TB K-means clustering is evaluated using several different datasets and compared with different variants of K-means algorithm. Solar datasets with different solar radiation characteristics are also used to determine the accuracy and processing speed of the developed forecasting method with the proposed TB K-means and other clustering techniques. The results of direct comparison with other well-established forecasting models demonstrate the superior performance of the proposed hybrid forecasting method. Furthermore, a comparative analysis with the benchmark solar

  1. Progress of nanofluid application in solar collectors: A review

    International Nuclear Information System (INIS)

    Verma, Sujit Kumar; Tiwari, Arun Kumar

    2015-01-01

    Highlights: • Nanoparticles are more suited and adapt to enhance the performance of solar systems. • Extinction coefficient and refractive index of nanofluids are found higher. • Optimum range of volume fraction for which enhancement in heat transfer coefficient is maximum. • Overall response of specific heat capacity of nanofluids is highly anomalous. - Abstract: In recent times solar energy has attracted the attention of scientists to a great deal. On the surface, there are two reasons for it: primarily, the scientists are interested in it with the intent to innovating new devices and secondly, developing new methods to harness it. Miniaturization of devices and energy efficiency are the major focal domains around which new materials are being worked on. The design of solar system may get some basic changes, if the new materials get applied successfully. Albeit, the nanofluids are a comparatively recent innovation which exhibit enhanced heat absorbing and heat transport ability. This paper intends to reinforce the working of nanofluids applied on solar system in the light of works done earlier; it further also explores the variable performance of the solar-system with and without application of nano-fluids. This work has been segmented into two parts: the first part focuses on presenting the experimental and numerical results for the thermal conductivity, viscosity, specific heat and the heat transfer coefficient reported by several authors. The second part deals with the application of nanofluids on different types of solar systems: solar collectors, photovoltaic systems, and solar thermoelectric and energy storage system. A study of the works earlier done seems to be suggesting that the nanofluids have great potential to enhance the functioning of various thermal systems. The recent results of the application of nanofluids in PV/T systems too have been consolidating. It can be safely assumed further that it might enhance the overall performance of the

  2. Stochastic linear hybrid systems: Modeling, estimation, and application

    Science.gov (United States)

    Seah, Chze Eng

    Hybrid systems are dynamical systems which have interacting continuous state and discrete state (or mode). Accurate modeling and state estimation of hybrid systems are important in many applications. We propose a hybrid system model, known as the Stochastic Linear Hybrid System (SLHS), to describe hybrid systems with stochastic linear system dynamics in each mode and stochastic continuous-state-dependent mode transitions. We then develop a hybrid estimation algorithm, called the State-Dependent-Transition Hybrid Estimation (SDTHE) algorithm, to estimate the continuous state and discrete state of the SLHS from noisy measurements. It is shown that the SDTHE algorithm is more accurate or more computationally efficient than existing hybrid estimation algorithms. Next, we develop a performance analysis algorithm to evaluate the performance of the SDTHE algorithm in a given operating scenario. We also investigate sufficient conditions for the stability of the SDTHE algorithm. The proposed SLHS model and SDTHE algorithm are illustrated to be useful in several applications. In Air Traffic Control (ATC), to facilitate implementations of new efficient operational concepts, accurate modeling and estimation of aircraft trajectories are needed. In ATC, an aircraft's trajectory can be divided into a number of flight modes. Furthermore, as the aircraft is required to follow a given flight plan or clearance, its flight mode transitions are dependent of its continuous state. However, the flight mode transitions are also stochastic due to navigation uncertainties or unknown pilot intents. Thus, we develop an aircraft dynamics model in ATC based on the SLHS. The SDTHE algorithm is then used in aircraft tracking applications to estimate the positions/velocities of aircraft and their flight modes accurately. Next, we develop an aircraft conformance monitoring algorithm to detect any deviations of aircraft trajectories in ATC that might compromise safety. In this application, the SLHS

  3. Possibilities for application of solar electricity in Macedonia

    International Nuclear Information System (INIS)

    Ristov, M.; Peshevski, V.; Kocev, K.

    1996-01-01

    In this paper solar global irradiation in R. Macedonia is estimated and some favorable fields for photovoltaic application are emphasized. By means of Angstrom's equation and using solar hour duration data for seven locations, mean daily horizontal surface solar energy is calculated. Obtained average value on whole territory is 4,2 kWh/m 2 day. On fixed tilt active surface (β=35 0 ) solar flux would be increased approximately 15%. Possible fields for photovoltaic systems applications are: rural electrification, water pumping in mountain areas and supplying of Tv and radio relay station. In case of small village standard electrification, due to inevitable distribution network over sizing, the price of electricity is around 2,5 $/kWh. If photovoltaic system is used for the same purpose, the electricity would amount 35 c/kWh. (author). 7 refs., 4 tabs., 1 ill

  4. An introduction to selective surfaces for solar applications

    Science.gov (United States)

    Neal, W. E. J.

    1983-12-01

    The desired characteristics of spectrally selective surfaces for solar thermal applications include a high-level absorption of radiation in the solar region of the spectrum (from 0.3 to 2.5 microns) combined with a low value of emission in the IR region (greater than two microns). There are three energy collector temperature ranges for specific solar applications, taking into account a range from 25 to 40 C for swimming pools, a range from 40 to 150 C for space and water heating and air conditioning, and temperatures above 150 C for the production of steam and the generation of electricity. Flat plate and low concentrating collectors with suitable selective surfaces can be employed in connection with the first two temperature ranges. Various types of selective surfaces are presented in a table, giving attention to the absorptive properties for solar radiation and the emissive properties in the IR region.

  5. AN APPLICATION FOR ELECTRICAL PRODUCTION WITH SOLAR TOWER SYSTEM

    Directory of Open Access Journals (Sweden)

    Reşat SELBAŞ

    2003-02-01

    Full Text Available The requirement of electric energy rises with increasing of the population and faster improvement demands. Energy necessity generally is provided by using fossil based fuel sources. In order to supply energy requirements, today, using alternative sources became necessary because of the problems such as decreasing of available fossil fuel sources and environment pollution from this fuel. The solar energy which has a wide range of application potential is the most hopeful and unlimited energy source without environment pollution in electric energy production. In this paper, the electric production methods from solar energy are studied and the most suitable method for solar energy plant is tried to find out. The selected method, known as Solar Tower in literature is an electric production method. In this study, technical and cost analysis of an application using this method are carried out.

  6. Study of non-domestic applications for active solar heating

    Energy Technology Data Exchange (ETDEWEB)

    Stammers, J.R.

    1997-11-01

    The UK Department of Trade and Industry (through ETSU) commissioned this study as part of its active solar programme. It was carried out from October 1996 to June 1997. The objective was to assess the potential for the use of active solar heating in non-domestic applications. The study was carried out by searching the literature, carrying out case studies and interviewing members of the solar industry and experts in other fields. There are currently about 45-50 active solar non-domestic schemes in operation in the UK, mostly for heating tap water in buildings of different types. The biggest potential for future non-domestic sales also lies in solar water heating for buildings. Most of the opportunities seem to be in the following building types: ablutions blocks in caravan and holiday camps, sheltered flats and hostels, nursing homes, office buildings, hotels and guest houses, and schools occupied during the summer. There are some other building types which might present niche markets for solar water heating. The market for active solar systems in space heating and cooling appears to be negligible. There is one other market for active solar heating in the non-domestic building sector. This is for warming water used to maintain stand-by generators at a temperature which allows them to kick in without delay in the event of a mains power failure. The main market is in buildings housing computers which control the provision of vital services, e.g. electricity, water and gas. (author)

  7. Redrawing the solar map of South Africa for photovoltaic applications

    Energy Technology Data Exchange (ETDEWEB)

    Munzhedzi, R.; Sebitosi, A.B. [Electrical Engineering, University of Cape Town, Private Bag, Rm 522.2 Menzies Building, Rondebosch 7701, Cape Town (South Africa)

    2009-01-15

    The South African solar map has been redrawn to make it applicable to photovoltaic installations. This has been done with the aim of reducing the cost of solar PV installations in South Africa through accurate energy resource assessment and competent system design. Climate data software as well as solar design software was used to aid this process. The new map provides an alternative to the map in current use, which only considers radiation, whereas many more factors affect the output of a panel, such as wind, cloud cover and humidity. All these are taken into account when drawing the new map. (author)

  8. Applicability of advanced automotive heat engines to solar thermal power

    Science.gov (United States)

    Beremand, D. G.; Evans, D. G.; Alger, D. L.

    The requirements of a solar thermal power system are reviewed and compared with the predicted characteristics of automobile engines under development. A good match is found in terms of power level and efficiency when the automobile engines, designed for maximum powers of 65-100 kW (87 to 133 hp) are operated to the nominal 20-40 kW electric output requirement of the solar thermal application. At these reduced power levels it appears that the automotive gas turbine and Stirling engines have the potential to deliver the 40+ percent efficiency goal of the solar thermal program.

  9. Hybrid utilization of solar energy. Part 2. Performance analyses of heating system with air hybrid collector; Taiyo energy no hybrid riyo ni kansuru kenkyu. 2. Kuki shunetsu hybrid collector wo mochiita danbo system no seino hyoka

    Energy Technology Data Exchange (ETDEWEB)

    Yoshinaga, M; Okumiya, M [Nagoya University, Nagoya (Japan)

    1996-10-27

    For the effective utilization of solar energy at houses, a heating system using an air hybrid collector (capable of simultaneously performing heat collection and photovoltaic power generation). As the specimen house, a wooden house of a total floor area of 120m{sup 2} was simulated. Collected air is fanned into a crushed stone heat accumulator (capable of storing one day`s collection) or into a living room. The output of solar cell arrays is put into a heat pump (capable of handling a maximum hourly load of 36,327kJ/h) via an inverter so as to drive the fan (corresponding to average insolation on the heat collecting plate of 10.7MJ/hm{sup 2} and heat collecting efficiency of 40%), and shortage in power if any is supplied from the system interconnection. A hybrid collector, as compared with the conventional air collector, is lower in thermal efficiency but the merit that it exhibits with respect to power generation is far greater than what is needed to counterbalance the demerit. When the hybrid system is in heating operation, there is an ideal heat cycle of collection, accumulation, and radiation when the load is light, but the balance between accumulation and radiation is disturbed when the load is heavy. 4 refs., 8 figs., 3 tabs.

  10. Developing the photovoltaic performance of dye-sensitized solar cells (DSSCs) using a SnO2-doped graphene oxide hybrid nanocomposite as a photo-anode

    Science.gov (United States)

    Sasikumar, Ragu; Chen, Tse-Wei; Chen, Shen-Ming; Rwei, Syang-Peng; Ramaraj, Sayee Kannan

    2018-05-01

    Tin(IV) oxide nanoparticles (SnO2 NPs) doped on the surface of graphene oxide (GO) sheets for application in Dye-Sensitized Solar Cells (DSSCs). The effective incorporation of SnO2 on the surface of GO sheets were confirmed by powder X-ray diffraction (PXRD), Fourier transform infra-red spectroscopy (FT-IR), thermogravimetric analysis (TGA), electrochemical impedance spectroscopy (EIS), and Raman spectroscopy. The morphology of the GO/SnO2 hybrid nanocomposite was confirmed by field emission scanning electron microscopy (FE-SEM) analysis. This current study involvement with the effect of different photo-anodes such as GO, SnO2, and GO/SnO2 hybrid nanocomposite on the power conversion efficiency (PCE) of the triiodide electrolyte based DSSCs. Remarkably, GO/SnO2 hybrid nanocomposite based photo-anode for DSSC observed PCE of 8.3% and it is about 12% higher than that of un-doped TiO2 photo-anode. The equivalent short-circuit photocurrent density (Jsc) of 16.67 mA cm-2, open circuit voltage (Voc) of 0.77 V, and fill factor (FF) of 0.65 respectively. The achieved results propose that the hybrid nanocomposite is an appropriate photo-anodic material for DSSCs applications.

  11. Design and analysis of a hybrid renewable energy plant with solar and wind power

    International Nuclear Information System (INIS)

    Kabalci, Ersan

    2013-01-01

    Highlights: • A distributed generation system is developed with separate solar plant and wind turbine. • The solar plant is controlled with MPPT infrastructure of Perturb and Observe algorithm. • Power generation of source sites are converted to DC with PI controlled buck converters and collected on a DC busbar. • Harvested DC power is converted to AC with a full bridge inverter and SPWM control is performed in inverter. • The total harmonic distortion (THD) ratio of the generated 3-phase line is obtained in the limit of standards. - Abstract: A hybrid renewable energy plant that is based on solar and wind energy conversion systems is designed and analysed in this paper. Each separate energy conversion system is controlled either using regular PI controller or extended PI controller with an auxiliary controller containing Perturb and Observe algorithm. The solar plant model is constituted by connecting 170 W photovoltaic (PV) panels serially and energy conversion is performed with maximum power point tracking (MPPT) algorithm that controls the modulator of buck converter. The MPPT algorithm utilized in the control step of converter is developed using Perturb and Observe (P and O) that is extended with PI controller. The wind energy plant is designed with a permanent magnet synchronous generator (PMSG), and the AC–DC conversion stage is constituted with an uncontrolled full-bridge rectifier. All the converter outputs are connected to a busbar over interphase transformers (IPTs). The DC bus-bar voltage is supplied to a full bridge inverter to generate three-phase AC voltages at the output of inverter. The three-phase inverter is controlled with sinusoidal pulse width modulation (SPWM) scheme, which is developed with phase shifted carrier signals. The total harmonic distortion (THD) ratios are obtained at proper values according to international standards such as IEC61000 and IEEE 519-1992. Measurement results and obtained three phase voltage are analysed

  12. Synthesis of a hybrid MIL-101(Cr)/ZTC composite for hydrogen storage applications

    CSIR Research Space (South Africa)

    Musyoka, Nicholas M

    2016-06-01

    Full Text Available Metal–organic frameworks (MOFs) hybrid composites have recently attracted considerable attention in hydrogen storage applications. In this study a hybrid composite of zeolite templated carbon (ZTC) and Cr-based MOF (MIL-101) was synthesised...

  13. Spatial modeling of the 3D morphology of hybrid polymer-ZnO solar cells, based on electron tomography data

    NARCIS (Netherlands)

    Stenzel, O.; Hassfeld, H.; Thiedmann, R.; Koster, L. J. A.; Oosterhout, S. D.; van Bavel, S. S.; Wienk, M. M.; Loos, J.; Janssen, R. A. J.; Schmidt, V.

    A spatial stochastic model is developed which describes the 3D nanomorphology of composite materials, being blends of two different (organic and inorganic) solid phases. Such materials are used, for example, in photoactive layers of hybrid polymer zinc oxide solar cells. The model is based on ideas

  14. N-type polymers as electron extraction layers in hybrid perovskite solar cells with improved ambient stability

    NARCIS (Netherlands)

    Shao, S.; Chen, Z.; Fang, H. -H.; ten Brink, G. H.; Bartesaghi, D.; Adjokatse, S.; Koster, L. J. A.; Kooi, B. J.; Facchetti, A.; Loi, M. A.

    2016-01-01

    We studied three n-type polymers of the naphthalenediimide-bithiophene family as electron extraction layers (EELs) in hybrid perovskite solar cells. The recombination mechanism in these devices is found to be heavily influenced by the EEL transport properties. The maximum efficiency of the devices

  15. Optimization of hybrid organic/inorganic poly(3-hexylthiophene-2,5-diyl)/silicon solar cells

    Science.gov (United States)

    Weingarten, Martin; Sanders, Simon; Stümmler, Dominik; Pfeiffer, Pascal; Vescan, Andrei; Kalisch, Holger

    2016-04-01

    In the last years, hybrid organic/silicon solar cells have attracted great interest in photovoltaic research due to their potential to become a low-cost alternative for the conventionally used silicon pn-junction solar cells. This work is focused on hybrid solar cells based on the polymer poly(3-hexylthiophene-2,5-diyl), which was deposited on n-doped crystalline silicon via spin-coating under ambient conditions. By employing an anisotropic etching step with potassium hydroxide (KOH), the reflection losses at the silicon surface were reduced. Hereby, the short-circuit current density of the hybrid devices was increased by 31%, leading to a maximum power conversion efficiency (PCE) of 13.1% compared to a PCE of 10.7% for the devices without KOH etching. In addition, the contacts were improved by replacing gold with the more conductive silver as top grid material to reduce the contact resistance and by introducing a thin (˜0.5 nm) lithium fluoride layer between the silicon and the aluminum backside contact to improve electron collection and hole blocking. Hereby, the open-circuit voltage and the fill factor of the hybrid solar cells were further improved and devices with very high PCE up to 14.2% have been realized.

  16. Hybrid Electric Energy Storages: Their Specific Features and Application (Review)

    Science.gov (United States)

    Popel', O. S.; Tarasenko, A. B.

    2018-05-01

    The article presents a review of various aspects related to development and practical use of hybrid electric energy storages (i.e., those uniting different energy storage technologies and devices in an integrated system) in transport and conventional and renewable power engineering applications. Such devices, which were initially developed for transport power installations, are increasingly being used by other consumers characterized by pronounced nonuniformities of their load schedule. A range of tasks solved using such energy storages is considered. It is shown that, owing to the advent of new types of energy storages and the extended spectrum of their performance characteristics, new possibilities for combining different types of energy storages and for developing hybrid systems have become available. This, in turn, opens up the possibility of making energy storages with better mass and dimension characteristics and achieving essentially lower operational costs. The possibility to secure more comfortable (base) operating modes of primary sources of energy (heat engines and renewable energy source based power installations) and to achieve a higher capacity utilization factor are unquestionable merits of hybrid energy storages. Development of optimal process circuit solutions, as well as energy conversion and control devices facilitating the fullest utilization of the properties of each individual energy storage included in the hybrid system, is among the important lines of research carried out in this field in Russia and abroad. Our review of existing developments has shown that there are no universal technical solutions in this field (the specific features of a consumer have an essential effect on the process circuit solutions and on the composition of a hybrid energy storage), a circumstance that dictates the need to extend the scope of investigations in this promising field.

  17. PV power system using hybrid converter for LED indictor applications

    International Nuclear Information System (INIS)

    Tseng, Sheng-Yu; Wang, Hung-Yuan; Chen, Chien-Chih

    2013-01-01

    Highlights: • This paper presents a LED indictor driving circuit with a PV arrays as its power source. • The perturb-and-observe method is adopted to extract the maximum power of PV arrays. • The proposed circuit structure has a less component counts and higher conversion efficiency. • A prototype of LED indictor driving circuit has been implemented to verify its feasibility. • The proposed hybrid converter is suitable for LED inductor applications. - Abstract: This paper presents a LED indictor driving circuit with a PV arrays as its power source. The LED indictor driving circuit includes battery charger and discharger (LED driving circuit). In this research, buck converter is used as a charger, and forward converter with active clamp circuit is adopted as a discharger to drive the LED indictor. Their circuit structures use switch integration technique to simplify them and to form the proposed hybrid converter, which has a less component counts, lighter weight, smaller size, and higher conversion efficiency. Moreover, the proposed hybrid converter uses a perturb-and-observe method to extract the maximum power from PV arrays. Finally, a prototype of an LED indictor driving circuit with output voltage of 10 V and output power of 20 W has been implemented to verify its feasibility. It is suitable for the LED inductor applications

  18. ZnO-based nanocrystalline powders with applications in hybrid photovoltaic cells

    Energy Technology Data Exchange (ETDEWEB)

    Damonte, L.C. [Dto. De Fisica, UNLP, IFLP-CCT-CONICET, C.C.67 (1900) La Plata (Argentina); Dto. De Fisica Aplicada, Universidad Politecnica de Valencia, Cami de Vera s/n (46071) Valencia (Spain); Donderis, V. [Dto. De Ingenieria Electrica, Universidad Politecnica de Valencia, Cami de Vera s/n (46071) Valencia (Spain); Ferrari, S.; Meyer, M. [Dto. De Fisica, UNLP, IFLP-CCT-CONICET, C.C.67 (1900) La Plata (Argentina); Orozco, J. [Dto. de Ingenieria Mecanica y Materiales, Universidad Politecnica de Valencia, Cami de Vera s/n (46071) Valencia (Spain); Hernandez-Fenollosa, M.A. [Dto. De Fisica Aplicada, Universidad Politecnica de Valencia, Cami de Vera s/n (46071) Valencia (Spain)

    2010-06-15

    In recent years there has been a growing interest in the development of hybrid photovoltaic cells consisting of new materials, such as devices based on the combination of a wide gap semiconductor and an organic dye (dye-sensitized solar cells, DSSC). In this paper we obtain nano-zinc oxide particles whose optical and electrical properties have been modified by the presence of small amounts of Al or In acting as dopants. The aim of this study is to improve the compatibility of each of the compounds present in the photovoltaic solar cell. The knowledge gained will provide input to guide the processes in the manufacture of hybrid solar cells. (author)

  19. Solar hot water systems application to the solar building test facility and the Tech House

    Science.gov (United States)

    Goble, R. L.; Jensen, R. N.; Basford, R. C.

    1976-01-01

    Projects which relate to the current national thrust toward demonstrating applied solar energy are discussed. The first project has as its primary objective the application of a system comprised of a flat plate collector field, an absorption air conditioning system, and a hot water heating system to satisfy most of the annual cooling and heating requirements of a large commercial office building. The other project addresses the application of solar collector technology to the heating and hot water requirements of a domestic residence. In this case, however, the solar system represents only one of several important technology items, the primary objective for the project being the application of space technology to the American home.

  20. Methodology to optimize the cost of deployment of a wind-solar hybrid system; Metodologia para otimizar o custo da implantacao de um sistema hibrido eolico-solar

    Energy Technology Data Exchange (ETDEWEB)

    Nogueira, Jose Wilson Lage [Universidade Federal do Rio Grande Norte (UERN), Natal, RN (Brazil). Dept. de Engenharia Mecanica], e-mail: wilson@ufrnet.br; Rocha, Brismark Goes da [Universidade do Estado do Rio Grande do Norte (UERN), Patu, RN (Brazil). Dept. de Matematica], e-mail: brismarkrocha@uern.br

    2008-07-01

    Purposes the application of a methodology to optimize the implantation cost of an wind-solar hybrid system, to potencies between 2.250 W and 3.750 W. The developed mathematical model was obtained through the Multiple Linear Regression technique, on the basis of the previous knowledge of variables: necessary capacity of storage, total daily energy demand, wind power, module power and module number. These variables are gotten by means of sizing. Parametric statistical: T-student tests had been used to detect the significant difference in the average of total cost to being considered the diameter of the wind. Parametric statistical T-student tests had been used to detect the significant difference in the average of total cost to being considered the diameter of the wind, F-Snedecor in the variance analysis to test if the coefficients of the considered model are significantly different of zero and test not-parametric statistical by Friedman, to verify if there is difference in the total cost, by being considered the photovoltaic module powers. In decision of hypothesis tests was considered a 5%-significant level. The configurations module powers showed significant differences in total cost of investment by considering an electrical motor of 3 HP. The configurations module powers showed significant differences in total cost of investment by considering an electrical motor of 5 HP only to wind speed of 4 m/s and 6 m/s in wind of 3 m, 4 m and 5 m of diameter. There was not significant difference in costs to diameters of winds of 3 m and 4 m. A computational program was developed to assist the study of several configurations that optimizes the implantation cost of an wind-solar through considered mathematical model. (author)

  1. Hybrid Tandem Quantum Dot/Organic Solar Cells with Enhanced Photocurrent and Efficiency via Ink and Interlayer Engineering

    KAUST Repository

    Kim, Taesoo

    2018-05-03

    Realization of colloidal quantum dot (CQD)/organic photovoltaic (OPV) tandem solar cells that integrate the strong infrared absorption of CQDs with large photovoltages of OPVs is an attractive option toward high-performing, low-cost thin film solar cells. To date, monolithic hybrid tandem integration of CQD/OPV solar cells has been restricted due to the CQD ink’s catastrophic damage to the organic subcell, thus forcing the low bandgap CQD to be used as front cell. This sub-optimal configuration limits the maximum achievable photocurrent in CQD/OPV hybrid tandem solar cells. In this work, we demonstrate hybrid tandem solar cells employing a low-bandgap CQD back cell on top of an organic front cell thanks to a modified CQD ink formulation and a robust interconnection layer (ICL) which together overcome the long-standing integration challenges for CQD and organic subcells. The resulting tandem architecture surpasses previously reported current densities by ~20-25% and yields a state-of-the-art power conversion efficiency (PCE) of 9.4%.

  2. Si Hybrid Solar Cells with 13% Efficiency via Concurrent Improvement in Optical and Electrical Properties by Employing Graphene Quantum Dots

    KAUST Repository

    Tsai, Meng Lin; Wei, Wan-Rou; Tang, Libin; Chang, Hung Chih; Tai, Shih Hsiang; Yang, Po Kang; Lau, Shu Ping; Chen, Lih Juann; He, Jr-Hau

    2015-01-01

    By employing graphene quantum dots (GQDs) in PEDOT:PSS, we have achieved an efficiency of 13.22% in Si/PEDOT:PSS hybrid solar cells. The efficiency enhancement is based on concurrent improvement in optical and electrical properties by the photon downconversion process and the improved conductivity of PEDOT:PSS via appropriate incorporation of GQDs. After introducing GQDs into PEDOT:PSS, the short circuit current and the fill factor of rear-contact optimized hybrid cells are increased from 32.11 to 36.26 mA/cm and 62.85% to 63.87%, respectively. The organic-inorganic hybrid solar cell obtained herein holds the promise for developing photon-managing, low-cost, and highly efficient photovoltaic devices.

  3. Si Hybrid Solar Cells with 13% Efficiency via Concurrent Improvement in Optical and Electrical Properties by Employing Graphene Quantum Dots

    KAUST Repository

    Tsai, Meng Lin

    2015-12-18

    By employing graphene quantum dots (GQDs) in PEDOT:PSS, we have achieved an efficiency of 13.22% in Si/PEDOT:PSS hybrid solar cells. The efficiency enhancement is based on concurrent improvement in optical and electrical properties by the photon downconversion process and the improved conductivity of PEDOT:PSS via appropriate incorporation of GQDs. After introducing GQDs into PEDOT:PSS, the short circuit current and the fill factor of rear-contact optimized hybrid cells are increased from 32.11 to 36.26 mA/cm and 62.85% to 63.87%, respectively. The organic-inorganic hybrid solar cell obtained herein holds the promise for developing photon-managing, low-cost, and highly efficient photovoltaic devices.

  4. End-to-End Trajectory for Conjunction Class Mars Missions Using Hybrid Solar-Electric/Chemical Transportation System

    Science.gov (United States)

    Chai, Patrick R.; Merrill, Raymond G.; Qu, Min

    2016-01-01

    NASA's Human Spaceflight Architecture Team is developing a reusable hybrid transportation architecture in which both chemical and solar-electric propulsion systems are used to deliver crew and cargo to exploration destinations. By combining chemical and solar-electric propulsion into a single spacecraft and applying each where it is most effective, the hybrid architecture enables a series of Mars trajectories that are more fuel efficient than an all chemical propulsion architecture without significant increases to trip time. The architecture calls for the aggregation of exploration assets in cislunar space prior to departure for Mars and utilizes high energy lunar-distant high Earth orbits for the final staging prior to departure. This paper presents the detailed analysis of various cislunar operations for the EMC Hybrid architecture as well as the result of the higher fidelity end-to-end trajectory analysis to understand the implications of the design choices on the Mars exploration campaign.

  5. A Lie algebraic condition for exponential stability of discrete hybrid systems and application to hybrid synchronization.

    Science.gov (United States)

    Zhao, Shouwei

    2011-06-01

    A Lie algebraic condition for global exponential stability of linear discrete switched impulsive systems is presented in this paper. By considering a Lie algebra generated by all subsystem matrices and impulsive matrices, when not all of these matrices are Schur stable, we derive new criteria for global exponential stability of linear discrete switched impulsive systems. Moreover, simple sufficient conditions in terms of Lie algebra are established for the synchronization of nonlinear discrete systems using a hybrid switching and impulsive control. As an application, discrete chaotic system's synchronization is investigated by the proposed method.

  6. Full Spectrum Diffused and Beamed Solar Energy Application Using Optical Fibre

    OpenAIRE

    Majumdar, M. R. Dutta; Das, Debasish

    2007-01-01

    Existing solar energy application systems use small fraction of full spectrum of solar energy. So attempts are made to show how full spectrum solar energy can be used for diffused and beamed form of incident solar energy. Luminescent Solar Concentrator (LSC) principle with optical fibre in diffused sun light and dielectric mirror separation technique with optical fibre in beamed form are discussed. Comparison of both the cases are done. Keywords: full spectrum, solar photonics, diffused solar...

  7. Molecular ferroelectric contributions to anomalous hysteresis in hybrid perovskite solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Frost, Jarvist M.; Butler, Keith T.; Walsh, Aron, E-mail: a.walsh@bath.ac.uk [Centre for Sustainable Chemical Technologies and Department of Chemistry, University of Bath, Claverton Down, Bath BA2 7AY (United Kingdom)

    2014-08-01

    We report a model describing the molecular orientation disorder in CH{sub 3}NH{sub 3}PbI{sub 3}, solving a classical Hamiltonian parametrised with electronic structure calculations, with the nature of the motions informed by ab initio molecular dynamics. We investigate the temperature and static electric field dependence of the equilibrium ferroelectric (molecular) domain structure and resulting polarisability. A rich domain structure of twinned molecular dipoles is observed, strongly varying as a function of temperature and applied electric field. We propose that the internal electrical fields associated with microscopic polarisation domains contribute to hysteretic anomalies in the current-voltage response of hybrid organic-inorganic perovskite solar cells due to variations in electron-hole recombination in the bulk.

  8. Anomalous photovoltaic effect in organic-inorganic hybrid perovskite solar cells.

    Science.gov (United States)

    Yuan, Yongbo; Li, Tao; Wang, Qi; Xing, Jie; Gruverman, Alexei; Huang, Jinsong

    2017-03-01

    Organic-inorganic hybrid perovskites (OIHPs) have been demonstrated to be highly successful photovoltaic materials yielding very-high-efficiency solar cells. We report the room temperature observation of an anomalous photovoltaic (APV) effect in lateral structure OIHP devices manifested by the device's open-circuit voltage ( V OC ) that is much larger than the bandgap of OIHPs. The persistent V OC is proportional to the electrode spacing, resembling that of ferroelectric photovoltaic devices. However, the APV effect in OIHP devices is not caused by ferroelectricity. The APV effect can be explained by the formation of tunneling junctions randomly dispersed in the polycrystalline films, which allows the accumulation of photovoltage at a macroscopic level. The formation of internal tunneling junctions as a result of ion migration is visualized with Kelvin probe force microscopy scanning. This observation points out a new avenue for the formation of large and continuously tunable V OC without being limited by the materials' bandgap.

  9. An overview of solar energy applications in buildings in Greece

    Science.gov (United States)

    Papamanolis, Nikos

    2016-09-01

    This work classifies and describes the main fields of solar energy exploitation in buildings in Greece, a country with high solar energy capacities. The study focuses on systems and technologies that apply to residential and commercial buildings following the prevailing design and construction practices (conventional buildings) and investigates the effects of the architectural and constructional characteristics of these buildings on the respective applications. In addition, it examines relevant applications in other building categories and in buildings with increased ecological sensitivity in their design and construction (green buildings). Through its findings, the study seeks to improve the efficiency and broaden the scope of solar energy applications in buildings in Greece to the benefit of their energy and environmental performance.

  10. Potential high efficiency solar cells: Applications from space photovoltaic research

    Science.gov (United States)

    Flood, D. J.

    1986-01-01

    NASA involvement in photovoltaic energy conversion research development and applications spans over two decades of continuous progress. Solar cell research and development programs conducted by the Lewis Research Center's Photovoltaic Branch have produced a sound technology base not only for the space program, but for terrestrial applications as well. The fundamental goals which have guided the NASA photovoltaic program are to improve the efficiency and lifetime, and to reduce the mass and cost of photovoltaic energy conversion devices and arrays for use in space. The major efforts in the current Lewis program are on high efficiency, single crystal GaAs planar and concentrator cells, radiation hard InP cells, and superlattice solar cells. A brief historical perspective of accomplishments in high efficiency space solar cells will be given, and current work in all of the above categories will be described. The applicability of space cell research and technology to terrestrial photovoltaics will be discussed.

  11. Near-term Forecasting of Solar Total and Direct Irradiance for Solar Energy Applications

    Science.gov (United States)

    Long, C. N.; Riihimaki, L. D.; Berg, L. K.

    2012-12-01

    variability. This new system could be a long term economical solution for solar energy applications.xample of SW Flux Analysis global hemispheric (light blue) and direct (yellow) clear-sky shortwave (SW) along with corresponding actual global hemispheric (blue) and direct (red) SW, and the corresponding fractional sky cover (black, right Y-axis). Note in afternoon about 40-50% of the global SW is available, yet most times there is no direct SW.

  12. Techno-economic assessment of a solar PV, fuel cell, and biomass gasifier hybrid energy system

    Directory of Open Access Journals (Sweden)

    Anand Singh

    2016-11-01

    Full Text Available The interest of power is expanding step by step all through the world. Because of constrained measure of fossil fuel, it is vital to outline some new non-renewable energy frameworks that can diminish the reliance on ordinary energy asset. A hybrid off-grid renewable energy framework might be utilized to reduction reliance on the traditional energy assets. Advancement of crossover framework is a procedure to choose the best mix of part and there cost that can give shabby, solid and successful option energy resource. In this paper sun oriented photovoltaic, fuel cell, biomass gasifier generator set, battery backup and power conditioning unit have been simulated and optimized for educational institute, energy centre, Maulana Azad National Institute of Technology, Bhopal in the Indian state of Madhya Pradesh. The area of the study range on the guide situated of 23°12′N latitude and 77°24′E longitude. In this framework, the essential wellspring of power is sun based solar photovoltaic system and biomass gasifier generator set while fuel cell and batteries are utilized as reinforcement supply. HOMER simulator has been utilized to recreate off the grid and it checks the specialized and financial criteria of this hybrid energy system. The execution of every segment of this framework is dissected lastly delicate examination has been performing to enhance the mixture framework at various conditions. In view of the recreation result, it is found that the cost of energy (COE of a biomass gasifier generator set, solar PV and fuel cell crossover energy system has been found to be 15.064 Rs/kWh and complete net present cost Rs.51,89003. The abundance power in the proposed framework is observed to be 36 kWh/year with zero rates unmet electrical burden.

  13. Techno-economic feasibility analysis of hydrogen fuel cell and solar photovoltaic hybrid renewable energy system for academic research building

    International Nuclear Information System (INIS)

    Singh, Anand; Baredar, Prashant; Gupta, Bhupendra

    2017-01-01

    Highlights: • A HFC and SPV HRES for stand-alone applications is proposed. • The FC program computes the optimum cost of HRES components. • HOMER pro software to calculate the optimum performance of HRES. - Abstract: A hydrogen fuel cell (HFC) and solar photovoltaic (SPV) hybrid renewable energy system (HRES) for stand-alone applications is proposed. This system arrangement of a hydrogen tank, battery, and an electrolyzer are used as like the energy storage. The economic viability of using HRES power to supply the electrical load demand of academic research building located at 23°12′N latitude and 77°24′E longitudes, India is examined. The fuzzy logic program computes the optimum value of capital and replacement cost of the components, which is then utilized in HOMER pro software to calculate the optimum performance of HRES. The results shows the HFC and battery bank are the most significant modules of the HRES to meet load demand at late night and early morning hours. The AC primary load consuming 20712.63 kWh/year out of total power generation of HRES which is 24570.72 kWh/year. The excess of electricity produced by HRES is 791.7709 kWh/year with the optimized cost of energy, unmet electrical load and capacity shortage of 0%.

  14. Improving charge transport in PbS quantum Dot to Al:ZnO layer by changing the size of Quantum dots in hybrid solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Mehrabian, Masood [Maragheh Univ. (Iran, Islamic Republic of). Faculty of Basic Science; Abdollahian, Parinaz [Maragheh Univ. (Iran, Islamic Republic of). Dept. of Materials Engineering

    2016-07-01

    PbS Quantum dots and P3HT are promising materials for photovoltaic applications due to their absorption in the NIR and visible region, respectively. Our previous experimental work showed that doping Al to ZnO lattice (Al:ZnO) could efficiently improve the cell performance. In this article, hybrid solar cells containing of two active areas with ITO/Al:ZnO/PbS QDs/P3HT and PCBM/Ag structure were fabricated and the effect of PbS QD size on photovoltaic properties was investigated. Optimised solar cell showed maximum power conversion efficiency of 2.45 % with short-circuit current of 9.36 mA/cm{sup 2} and open-circuit voltage of 0.59 V under 1 sun illumination (AM1.5).

  15. Controllable self-induced passivation of hybrid lead iodide perovskites toward high performance solar cells.

    Science.gov (United States)

    Chen, Qi; Zhou, Huanping; Song, Tze-Bin; Luo, Song; Hong, Ziruo; Duan, Hsin-Sheng; Dou, Letian; Liu, Yongsheng; Yang, Yang

    2014-07-09

    To improve the performance of the polycrystalline thin film devices, it requires a delicate control of its grain structures. As one of the most promising candidates among current thin film photovoltaic techniques, the organic/inorganic hybrid perovskites generally inherit polycrystalline nature and exhibit compositional/structural dependence in regard to their optoelectronic properties. Here, we demonstrate a controllable passivation technique for perovskite films, which enables their compositional change, and allows substantial enhancement in corresponding device performance. By releasing the organic species during annealing, PbI2 phase is presented in perovskite grain boundaries and at the relevant interfaces. The consequent passivation effects and underlying mechanisms are investigated with complementary characterizations, including scanning electron microscopy (SEM), X-ray diffraction (XRD), time-resolved photoluminescence decay (TRPL), scanning Kelvin probe microscopy (SKPM), and ultraviolet photoemission spectroscopy (UPS). This controllable self-induced passivation technique represents an important step to understand the polycrystalline nature of hybrid perovskite thin films and contributes to the development of perovskite solar cells judiciously.

  16. High-flux solar photon processes: Opportunities for applications

    Energy Technology Data Exchange (ETDEWEB)

    Steinfeld, J.I.; Coy, S.L.; Herzog, H.; Shorter, J.A.; Schlamp, M.; Tester, J.W.; Peters, W.A. [Massachusetts Inst. of Tech., Cambridge, MA (United States)

    1992-06-01

    The overall goal of this study was to identify new high-flux solar photon (HFSP) processes that show promise of being feasible and in the national interest. Electric power generation and hazardous waste destruction were excluded from this study at sponsor request. Our overall conclusion is that there is promise for new applications of concentrated solar photons, especially in certain aspects of materials processing and premium materials synthesis. Evaluation of the full potential of these and other possible applications, including opportunities for commercialization, requires further research and testing. 100 refs.

  17. Climate information for the application of solar energy

    International Nuclear Information System (INIS)

    Robles-Gil, S.

    1997-01-01

    In view of population growth, industrialization and urbanization which provoked increasing energy demand there has been an increasing interest in developing new technologies that use various renewable energy sources and have less environmental impact, such as solar, wind, tidal and biomass. Solar energy is one of the energy resources with a wide geographical distribution. Nowadays, its contribution to the world's energy supply is very small, but it is considered an important long term option which will satisfy, together with conventional energy sources, the future energy needs of the world. The main objective of this work is to report the actual uses of the principal types of solar energy systems, based on their climatic, technological and economical context. This is to improve the dissemination of information on the application of climate knowledge and data, especially by national meteorological services, with the purpose to improve the planning, design and operation of solar energy systems, as well as facilitate their more widespread use

  18. Charge and energy transfer interplay in hybrid sensitized solar cells mediated by graphene quantum dots

    International Nuclear Information System (INIS)

    Mihalache, Iuliana; Radoi, Antonio; Mihaila, Mihai; Munteanu, Cornel; Marin, Alexandru; Danila, Mihai; Kusko, Mihaela; Kusko, Cristian

    2015-01-01

    Highlights: • We report a one pot synthesis metod of GQD with controlled size and optoelectronic properties. • An improvement of common N3-DSSC characteristics is achieved when GQDs are used as co-sensitiser. • The role of GQD as cosensitisers in hybrid DSSC was investigated and the interplay between charge and energy transfer phenomena mediated by GQDs was demonstrated. • The GQDs presence determines an inhibition of the recombination processes at the TiO 2 /electrolyte interface. - Abstract: We explored the role of graphene quantum dots (GQDs) as co-sensitizers in hybrid dye sensitized solar cell (DSSC) architectures, focusing on various concurring mechanisms, such as: charge transfer, energy transfer and recombination rate, towards light harvesting improvement. GQDs were prepared by the hydrothermal method that allows the tuning of electronic levels and optical properties by employing appropriate precursors and synthesis conditions. The aim was to realize a type II alignment for TiO 2 /GQD/dye hybrid configuration, using standard N3 Ru-dye in order to improve charge transfer. When GQDs were used as co-sensitizers together with N3 Ru-dye, an improvement in power conversion efficiency was achieved, as shown by electrical measurements. The experimental analysis indicates that this improvement arises from the interplay of various mechanisms mediated by GQDs: (i) enhancement of charge separation and collection due to the cascaded alignment of the energy levels; (ii) energy transfer from GQDs to N3 Ru-dye due to the overlap between GQD photoluminescence and N3 Ru-dye absorption spectra; and (iii) reduction of the electron recombination to the redox couple due to the inhibition of the back electron transfer to the electrolyte by the GQDs

  19. The performance and applicability study of a fixed photovoltaic-solar water disinfection system

    International Nuclear Information System (INIS)

    Jin, Yanchao; Wang, Yiping; Huang, Qunwu; Zhu, Li; Cui, Yong; Cui, Lingyun

    2016-01-01

    Highlights: • A fixed photovoltaic-SODIS (solar water disinfection) system was constructed. • The system could generate electricity and produce clean water simultaneously. • The daily solar generated electricity was much more than the system consumption. • The system can be used for about 90% of whole year in Lhasa and Chennai. • Temperature enhanced the SODIS process for about 60% days of whole year in Chennai. - Abstract: The objective of the study is to construct and evaluate a fixed PV (photovoltaic) cell integrated with SODIS (solar water disinfection) system to treat drinking water and generate electricity under different climate through experimental and simulation methods. The photovoltaic and disinfection performances of the hybrid system were studied by the disinfection of Escherichia coli. The applicability of the system in Lhasa and Chennai was evaluated by analyzing the daily radiation and predicting the daily water temperature and the system electricity output. The results confirm that the temperature would dramatically enhance the SODIS process and shorten the disinfection time, when the water temperature was above 45 °C. The PV cell in the hybrid system could work under low temperature because of the water layer and the generated electricity was much more than the system consumption. The simulation results show that the days with maximum water temperature above 45 °C were more than 60% of whole year in Chennai. The generated electricity of the hybrid system was 49682.3 W h and 45615.9 W h a year in Lhasa and Chennai respectively. It was sufficient to drive the system of whole year. The number of days which realized drinking water treatment was 324 days in Lhasa and 315 days in Chennai a year.

  20. Optoelectronic Evaluation and Loss Analysis of PEDOT:PSS/Si Hybrid Heterojunction Solar Cells.

    Science.gov (United States)

    Yang, Zhenhai; Fang, Zebo; Sheng, Jiang; Ling, Zhaoheng; Liu, Zhaolang; Zhu, Juye; Gao, Pingqi; Ye, Jichun

    2017-12-01

    The organic/silicon (Si) hybrid heterojunction solar cells (HHSCs) have attracted considerable attention due to their potential advantages in high efficiency and low cost. However, as a newly arisen photovoltaic device, its current efficiency is still much worse than commercially available Si solar cells. Therefore, a comprehensive and systematical optoelectronic evaluation and loss analysis on this HHSC is therefore highly necessary to fully explore its efficiency potential. Here, a thoroughly optoelectronic simulation is provided on a typical planar polymer poly (3,4-ethylenedioxy thiophene):polystyrenesulfonate (PEDOT:PSS)/Si HHSC. The calculated spectra of reflection and external quantum efficiency (EQE) match well with the experimental results in a full-wavelength range. The losses in current density, which are contributed by both optical losses (i.e., reflection, electrode shield, and parasitic absorption) and electrical recombination (i.e., the bulk and surface recombination), are predicted via carefully addressing the electromagnetic and carrier-transport processes. In addition, the effects of Si doping concentrations and rear surface recombination velocities on the device performance are fully investigated. The results drawn in this study are beneficial to the guidance of designing high-performance PEDOT:PSS/Si HHSCs.

  1. Effect of hybrid carbon nanotubes-bimetallic composite particles on the performance of polymer solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Park, Sun-Young [Department of Material Processing, Korea Institute of Materials Science, Changwon 641-831 (Korea); Division of Applied Chemical Engineering, Department of Polymer Engineering, Pukyong National University, Busan 608-739 (Korea); Kim, Whi-Dong; Kim, Soo H. [Department of Nanosystem and Nanoprocess Engineering, Pusan National University, 30 Jangjeon-dong, Geumjeong-gu, Busan 609-735 (Korea); Kim, Do-Geun; Kim, Jong-Kuk; Jeong, Yong-Soo; Kang, Jae-Wook [Department of Material Processing, Korea Institute of Materials Science, Changwon 641-831 (Korea); Kim, Joo Hyun [Division of Applied Chemical Engineering, Department of Polymer Engineering, Pukyong National University, Busan 608-739 (Korea); Lee, Jae Keun [School of Mechanical Engineering, Pusan National University, 30 Jangjeon-dong, Geumjeong-gu, Busan 609-735 (Korea)

    2010-05-15

    Hybrid carbon nanotubes-bimetallic composite nanoparticles with sea urchin-like structures (SU-CNTs) were introduced to bulk heterojunction polymer-fullerene solar cells to improve their performance. The SU-CNTs were composed of multi-walled CNTs, which were grown radially over the entire surface of the bimetallic nanoparticles composed of Ni and Al. SU-CNTs with a precisely controlled length of {proportional_to}200{+-}40 nm were dispersed homogenously in a polymer active layer. Compared with a pristine device (i.e., without SU-CNTs), the SU-CNTs-doped organic photovoltaic (OPV) cells showed an improved short-circuit current density and power conversion efficiency from 7.5 to 9.5 mA/cm{sup 2} and 2.1{+-}0.1% to 2.2{+-}0.2% (max. 2.5%), respectively. The specially designed SU-CNTs have strong potential as an effective exciton dissociation medium in the polymer active layer to enhance the performance of organic solar cells. (author)

  2. Poly(3-hexylthiophene) films by electrospray deposition for crystalline silicon/organic hybrid junction solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Hiate, Taiga; Miyauchi, Naoto; Tang, Zeguo; Ishikawa, Ryo; Ueno, Keiji; Shirai, Hajime [Graduate School of Science and Engineering, Saitama University, 255 Shimo-Okubo, Sakura, Saitama 858-3676 (Japan)

    2012-10-15

    The electrospray deposition (ESD) of poly(3-hexylthiophene) (P3HT) and conductive poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) on P3HT for use in crystalline silicon/organic hybrid heterojunction solar cells on CZ crystalline silicon (c-Si) (100) wafer was investigated using real-time characterization by spectroscopic ellipsometry (SE). In contrast to the nonuniform deposition of products frequently obtained by conventional spin-coating, a uniform deposition of P3HT and PEDOT:PSS films were achieved on flat and textured hydrophobic c-Si(100) wafers by adjusting the deposition conditions. The c-Si/P3HT/PEDOT:PSS heterojunction solar cells exhibited efficiencies of 4.1 and 6.3% on flat and textured c-Si(100) wafers, respectively. These findings suggest that ESD is a promising method for the uniform deposition of P3HT and PEDOT:PSS films on flat and textured hydrophobic substrates. (copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  3. Satellite image analysis and a hybrid ESSS/ANN model to forecast solar irradiance in the tropics

    International Nuclear Information System (INIS)

    Dong, Zibo; Yang, Dazhi; Reindl, Thomas; Walsh, Wilfred M.

    2014-01-01

    Highlights: • Satellite image analysis is performed and cloud cover index is classified using self-organizing maps (SOM). • The ESSS model is used to forecast cloud cover index. • Solar irradiance is estimated using multi-layer perceptron (MLP). • The proposed model shows better accuracy than other investigated models. - Abstract: We forecast hourly solar irradiance time series using satellite image analysis and a hybrid exponential smoothing state space (ESSS) model together with artificial neural networks (ANN). Since cloud cover is the major factor affecting solar irradiance, cloud detection and classification are crucial to forecast solar irradiance. Geostationary satellite images provide cloud information, allowing a cloud cover index to be derived and analysed using self-organizing maps (SOM). Owing to the stochastic nature of cloud generation in tropical regions, the ESSS model is used to forecast cloud cover index. Among different models applied in ANN, we favour the multi-layer perceptron (MLP) to derive solar irradiance based on the cloud cover index. This hybrid model has been used to forecast hourly solar irradiance in Singapore and the technique is found to outperform traditional forecasting models

  4. Integration of photovoltaic and concentrated solar thermal technologies for H2 production by the hybrid sulfur cycle

    Science.gov (United States)

    Liberatore, Raffaele; Ferrara, Mariarosaria; Lanchi, Michela; Turchetti, Luca

    2017-06-01

    It is widely agreed that hydrogen used as energy carrier and/or storage media may significantly contribute in the reduction of emissions, especially if produced by renewable energy sources. The Hybrid Sulfur (HyS) cycle is considered as one of the most promising processes to produce hydrogen through the water-splitting process. The FP7 project SOL2HY2 (Solar to Hydrogen Hybrid Cycles) investigates innovative material and process solutions for the use of solar heat and power in the HyS process. A significant part of the SOL2HY2 project is devoted to the analysis and optimization of the integration of the solar and chemical (hydrogen production) plants. In this context, this work investigates the possibility to integrate different solar technologies, namely photovoltaic, solar central receiver and solar troughs, to optimize their use in the HyS cycle for a green hydrogen production, both in the open and closed process configurations. The analysis carried out accounts for different combinations of geographical location and plant sizing criteria. The use of a sulfur burner, which can serve both as thermal backup and SO2 source for the open cycle, is also considered.

  5. Hybrid thin-film solar cells comprising mesoporous titanium dioxide and conjugated polymers; Hybride Duennschicht-Solarzellen aus mesoporoesem Titandioxid und konjugierten Polymeren

    Energy Technology Data Exchange (ETDEWEB)

    Schattauer, Sylvia

    2010-12-01

    The main objective of this thesis is to study the active components and their interactions in so called organic hybrid solar cells. These consist of a thin inorganic titanium dioxide layer, combined with a polymer layer. In general, the efficiency of these hybrid solar cells is determined by the light absorption in the donor polymer, the dissociation of excitons at the heterojunction between TiO{sub 2} and polymer, as well as the generation and extraction of free charge carriers. To optimize the solar cells, the physical interactions between the materials are modified and the influences of various preparation parameters are systematically investigated. Among others, important findings regarding the optimal use of materials and preparation conditions as well as detailed investigations of fundamental factors such as film morphology and polymer infiltration are presented in more detail. First, a variety of titanium dioxide layer were produced, from which a selection for use in hybrid solar cells was made. The obtained films show differences in surface structure, film morphology and crystallinity, depending on the way how the TiO{sub 2} layer has been prepared. All these properties of the TiO{sub 2} films may strongly affect the performance of the hybrid solar cells, by influencing e.g. the exciton diffusion length, the efficiency of exciton dissociation at the hybrid interface, and the carrier transport properties. Detailed investigations were made for mesoporous TiO{sub 2} layer following a new nanoparticle synthesis route, which allows to produce crystalline particles during the synthesis. As donor component, conjugated polymers, either derivatives of cyclohexylamino-poly(p-phenylene vinylene) (PPV) or a thiophene are used. The preparation routine also includes a thermal treatment of the TiO{sub 2} layers, revealing a temperature-dependent change in morphology, but not of the crystal structure. The effects on the solar cell properties have been documented and

  6. Application of carbon nanotubes in perovskite solar cells: A review

    Science.gov (United States)

    Oo, Thet Tin; Debnath, Sujan

    2017-11-01

    Solar power, as alternative renewable energy source, has gained momentum in global energy generation in recent time. Solar photovoltaics (PV) systems now fulfill a significant portion of electricity demand and the capacity of solar PV capacity is growing every year. PV cells efficiency has improved significantly following decades of research, evolving into third generations of PV cells. These third generation PV cells are set out to provide low-cost and efficient PV systems, further improving the commercial competitiveness of solar energy generation. Among these latest generations of PV cells, perovskite solar cells have gained attraction due to the simple manufacturing process and the immense growth in PV efficiency in a short period of research and development. Despite these advantages, perovskite solar cells are known for the weak stability and decomposition in exposure to humidity and high temperature, hindering the possibility of commercialization. This paper will discuss the role of carbon nanotubes (CNTs) in improving the efficiency and stability of perovskite solar cells, in various components such as perovskite layer and hole transport layer, as well as the application of CNTs in unique aspects. These includes the use of CNTs fiber in making the perovskite solar cells flexible, as well as simplification of perovskite PV production by using CNT flash evaporation printing process. Despite these advances, challenges remain in incorporation CNTs into perovskite such as lower conversion efficiency compared to rare earth metals and improvements need to be made. Thus, the paper will be also highlighting the CNTs materials suggested for further research and improvement of perovskite solar cells.

  7. Response of maize hybrids to varying potassium application in pakistan

    International Nuclear Information System (INIS)

    Haji, M.A.A.; Malik, A.U.; Ahmad, R.

    2009-01-01

    A field experiment was conducted in 2005 and 2006 to evaluate the growth, grain yield, N, P, K concentration in stalk, and quality parameters of three maize hybrids (Pioneer-30D55, Pioneer-3062 and Pioneer-3012) at different levels of potassium (0, 100, 150, 200, and 250 kg ha/sup -1/). Pioneer-30D55 surpassed other two hybrids in growth rate, grain yield (6.01 t ha /sup -1/), N (0.728%), P (0.078%), K (1.79%) concentration in stalk, crude starch (72.97%), protein (8.15%) and oil (4.46%) contents in grains. K application in all treatments significantly increased growth rate, grain yield, N, P, K concentration in stalk, and improved crude starch, protein and oil contents in grains over control. Maximum growth rate, grain yield (6.05 t ha-1), N (0.751% ), P (0.082%), K (1.86%) concentration in stalk, were recorded, when 200 kg K ha/sup -1/ was applied, and beyond this limit, tended to decline its growth rate, grain yield (6.02 t ha/sup -1/), N (0.743%), P (0.071%) and K (1.76%) concentration in stalk when 250 kg K ha-1 was applied, but continued to increase crude starch (72.65%), protein (8.31%) and oil (4.53%) contents in grains. Interactive effects of maize hybrids and potash application levels on growth, yield and N, P, K concentration in stalk, crude starch, oil, and protein contents in grains were, however, non significant. It was concluded that Pioneer-30D55 performed best with 200 kg K ha/sup -1/ when previous soil K status was 124.5 ppm. However, grain quality parameters were the best at 250 kg K ha/sup -1/ application. (author)

  8. Optimal Control of Hybrid Systems in Air Traffic Applications

    Science.gov (United States)

    Kamgarpour, Maryam

    Growing concerns over the scalability of air traffic operations, air transportation fuel emissions and prices, as well as the advent of communication and sensing technologies motivate improvements to the air traffic management system. To address such improvements, in this thesis a hybrid dynamical model as an abstraction of the air traffic system is considered. Wind and hazardous weather impacts are included using a stochastic model. This thesis focuses on the design of algorithms for verification and control of hybrid and stochastic dynamical systems and the application of these algorithms to air traffic management problems. In the deterministic setting, a numerically efficient algorithm for optimal control of hybrid systems is proposed based on extensions of classical optimal control techniques. This algorithm is applied to optimize the trajectory of an Airbus 320 aircraft in the presence of wind and storms. In the stochastic setting, the verification problem of reaching a target set while avoiding obstacles (reach-avoid) is formulated as a two-player game to account for external agents' influence on system dynamics. The solution approach is applied to air traffic conflict prediction in the presence of stochastic wind. Due to the uncertainty in forecasts of the hazardous weather, and hence the unsafe regions of airspace for aircraft flight, the reach-avoid framework is extended to account for stochastic target and safe sets. This methodology is used to maximize the probability of the safety of aircraft paths through hazardous weather. Finally, the problem of modeling and optimization of arrival air traffic and runway configuration in dense airspace subject to stochastic weather data is addressed. This problem is formulated as a hybrid optimal control problem and is solved with a hierarchical approach that decouples safety and performance. As illustrated with this problem, the large scale of air traffic operations motivates future work on the efficient

  9. Photocatalytic Hybrid Semiconductor-Metal Nanoparticles; from Synergistic Properties to Emerging Applications.

    Science.gov (United States)

    Waiskopf, Nir; Ben-Shahar, Yuval; Banin, Uri

    2018-04-14

    Hybrid semiconductor-metal nanoparticles (HNPs) manifest unique combined and often synergetic properties stemming from the materials combination. These structures exhibit spatial charge separation across the semiconductor-metal junction upon light absorption, enabling their use as photocatalysts. So far, the main impetus of photocatalysis research in HNPs addresses their functionality in solar fuel generation. Recently, it was discovered that HNPs are functional in efficient photocatalytic generation of reactive oxygen species (ROS). This has opened the path for their implementation in diverse biomedical and industrial applications where high spatially temporally resolved ROS formation is essential. Here, the latest studies on the synergistic characteristics of HNPs are summarized, including their optical, electrical, and chemical properties and their photocatalytic function in the field of solar fuel generation is briefly discussed. Recent studies are then focused concerning photocatalytic ROS formation with HNPs under aerobic conditions. The emergent applications of this capacity are then highlighted, including light-induced modulation of enzymatic activity, photodynamic therapy, antifouling, wound healing, and as novel photoinitiators for 3D-printing. The superb photophysical and photocatalytic properties of HNPs offer already clear advantages for their utility in scenarios requiring on-demand light-induced radical formation and the full potential of HNPs in this context is yet to be revealed. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Improved high temperature solar absorbers for use in Concentrating Solar Power central receiver applications.

    Energy Technology Data Exchange (ETDEWEB)

    Stechel, Ellen Beth; Ambrosini, Andrea; Hall, Aaron Christopher; Lambert, Timothy L.; Staiger, Chad Lynn; Bencomo, Marlene

    2010-09-01

    Concentrating solar power (CSP) systems use solar absorbers to convert the heat from sunlight to electric power. Increased operating temperatures are necessary to lower the cost of solar-generated electricity by improving efficiencies and reducing thermal energy storage costs. Durable new materials are needed to cope with operating temperatures >600 C. The current coating technology (Pyromark High Temperature paint) has a solar absorptance in excess of 0.95 but a thermal emittance greater than 0.8, which results in large thermal losses at high temperatures. In addition, because solar receivers operate in air, these coatings have long term stability issues that add to the operating costs of CSP facilities. Ideal absorbers must have high solar absorptance (>0.95) and low thermal emittance (<0.05) in the IR region, be stable in air, and be low-cost and readily manufacturable. We propose to utilize solution-based synthesis techniques to prepare intrinsic absorbers for use in central receiver applications.

  11. Review of thin film solar cell technology and applications for ultra-light spacecraft solar arrays

    Science.gov (United States)

    Landis, Geoffrey A.

    1991-01-01

    Developments in thin-film amorphous and polycrystalline photovoltaic cells are reviewed and discussed with a view to potential applications in space. Two important figures of merit are discussed: efficiency (i.e., what fraction of the incident solar energy is converted to electricity), and specific power (power to weight ratio).

  12. Interfacial engineering of CuO nanorod/ZnO nanowire hybrid nanostructure photoanode in dye-sensitized solar cell

    Science.gov (United States)

    Kilic, Bayram; Turkdogan, Sunay; Astam, Aykut; Baran, Sümeyra Seniha; Asgin, Mansur; Gur, Emre; Kocak, Yusuf

    2018-01-01

    Developing efficient and cost-effective photoanode plays a vital role determining the photocurrent and photovoltage in dye-sensitized solar cells (DSSCs). Here, we demonstrate DSSCs that achieve relatively high power conversion efficiencies (PCEs) by using one-dimensional (1D) zinc oxide (ZnO) nanowires and copper (II) oxide (CuO) nanorods hybrid nanostructures. CuO nanorod-based thin films were prepared by hydrothermal method and used as a blocking layer on top of the ZnO nanowires' layer. The use of 1D ZnO nanowire/CuO nanorod hybrid nanostructures led to an exceptionally high photovoltaic performance of DSSCs with a remarkably high open-circuit voltage (0.764 V), short current density (14.76 mA/cm2 under AM1.5G conditions), and relatively high solar to power conversion efficiency (6.18%) . The enhancement of the solar to power conversion efficiency can be explained in terms of the lag effect of the interfacial recombination dynamics of CuO nanorod-blocking layer on ZnO nanowires. This work shows more economically feasible method to bring down the cost of the nano-hybrid cells and promises for the growth of other important materials to further enhance the solar to power conversion efficiency.

  13. A novel integrated thermal-/membrane-based solar energy-driven hybrid desalination system: Concept description and simulation results.

    Science.gov (United States)

    Kim, Young-Deuk; Thu, Kyaw; Ng, Kim Choon; Amy, Gary L; Ghaffour, Noreddine

    2016-09-01

    In this paper, a hybrid desalination system consisting of vacuum membrane distillation (VMD) and adsorption desalination (AD) units, designated as VMD-AD cycle, is proposed. The synergetic integration of the VMD and AD is demonstrated where a useful effect of the AD cycle is channelled to boost the operation of the VMD process, namely the low vacuum environment to maintain the high pressure gradient across the microporous hydrophobic membrane. A solar-assisted multi-stage VMD-AD hybrid desalination system with temperature modulating unit is first designed, and its performance is then examined with a mathematical model of each component in the system and compared with the VMD-only system with temperature modulating and heat recovery units. The total water production and water recovery ratio of a solar-assisted 24-stage VMD-AD hybrid system are found to be about 21% and 23% higher, respectively, as compared to the VMD-only system. For the solar-assisted 24-stage VMD-AD desalination system having 150 m(2) of evacuated-tube collectors and 10 m(3) seawater storage tanks, both annual collector efficiency and solar fraction are close to 60%. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. A hybrid solar photovoltaic-wind turbine-Rankine cycle for electricity generation in Turkish Republic of Northern Cyprus

    Directory of Open Access Journals (Sweden)

    Samuel Asumadu-Sarkodie

    2016-12-01

    Full Text Available This paper presents an energy demand model by designing a hybrid solar-wind-thermal power generation system of the Turkish Republic of Northern Cyprus, a promising substitute for the expensive battery banks. The study models the future energy demand of Turkish Republic of Northern Cyprus based on the IPCC emissions scenario A1B and A2 by designing a new hybrid solar-wind-thermal power system that satisfies the current and future requirements of firm capacity during peak periods. The study suggests an improvement in a hybrid solar-wind-thermal power system performance by predicting reliable outputs that can integrate renewable energy technologies to conventional power generation. The energy consumption prediction model emphasizes the energy requirement that has a growing demand from 300 to 400 GWh in scenario A1B and 150–450 GWh in scenario A2 from 2010 to 2050. The proposed design can meet 400 GWh of electricity demand in TRNC based on IPCC scenario A1B and 450 GWh of electricity demand in TRNC based on IPCC scenario A2. The percentage contribution of solar, wind and thermal energy for 2010, 2020, 2030, 2040 and 2050 are presented along with CO2 emissions and water consumption for each of the years.

  15. A novel integrated thermal-/membrane-based solar energy-driven hybrid desalination system: Concept description and simulation results

    KAUST Repository

    Kim, Youngdeuk

    2016-05-03

    In this paper, a hybrid desalination system consisting of vacuum membrane distillation (VMD) and adsorption desalination (AD) units, designated as VMD-AD cycle, is proposed. The synergetic integration of the VMD and AD is demonstrated where a useful effect of the AD cycle is channelled to boost the operation of the VMD process, namely the low vacuum environment to maintain the high pressure gradient across the microporous hydrophobic membrane. A solar-assisted multi-stage VMD-AD hybrid desalination system with temperature modulating unit is first designed, and its performance is then examined with a mathematical model of each component in the system and compared with the VMD-only system with temperature modulating and heat recovery units. The total water production and water recovery ratio of a solar-assisted 24-stage VMD-AD hybrid system are found to be about 21% and 23% higher, respectively, as compared to the VMD-only system. For the solar-assisted 24-stage VMD-AD desalination system having 150 m2 of evacuated-tube collectors and 10 m3 seawater storage tanks, both annual collector efficiency and solar fraction are close to 60%.

  16. CuS/RGO hybrid photocatalyst for full solar spectrum photoreduction from UV/Vis to near-infrared light.

    Science.gov (United States)

    Wu, Jie; Liu, Baibai; Ren, Zhenxing; Ni, Mengying; Li, Can; Gong, Yinyan; Qin, Wei; Huang, Yongli; Sun, Chang Q; Liu, Xinjuan

    2018-05-01

    To make full use of the solar energy, it remains a great challenge for semiconductor photocatalysts to harvest the full solar light spectrum from ultraviolet (UV) to visible even the near infrared (NIR) wavelength. Here we show firstly the CuS/RGO (reduced graphene oxide) hybrid photocatalyst synthesized via a microwave assisted method with full solar light (UV-Vis-NIR) active for efficient Cr(VI) reduction. The CuS/RGO displays high absorption and catalytic activity in the UV, visible and even the NIR light regions. As co-catalyst, RGO can separate and inhibit the recombination of charge carriers, consequently improving the catalytic activity. Only 1wt% RGO emersions can reduce 90% of Cr(VI) under the radiation of light over the full spectrum. Findings may provide a new strategy and substance to expand the utilization range of solar light from UV to visible even the NIR energy. Copyright © 2017. Published by Elsevier Inc.

  17. Hybrid Optical Devices: The Case of the Unification of the Electrochromic Device and the Organic Solar Cell

    Directory of Open Access Journals (Sweden)

    Andre F. S. Guedes

    2016-06-01

    Full Text Available The development of Hybrid Optical Devices, using some flexible optically transparent substrate material and organic semiconductor materials, has been widely utilized by the organic electronic industry, when manufacturing new technological products. The Hybrid Optical Device is constituted by the union of the electrochromic device and the organic solar cell. The flexible organic photovoltaic solar cells, in this hybrid optical device, have been the Poly base (3-hexyl thiophene, P3HT, Phenyl-C61-butyric acid methyl ester, PCBM and Polyaniline, PANI, all being deposited in Indium Tin Oxide, ITO. In addition, the thin film, obtained by the deposition of PANI, and prepared in perchloric acid solution, has been identified through PANI-X1. In the flexible electrochromic device, the Poly base (3,4-ethylenedioxythiophene, PEDOT, has been prepared in Propylene Carbonate, PC, being deposited in Indium Tin Oxide, ITO. Also, both devices have been united by an electrolyte solution prepared with Vanadium Pentoxide, V2O5, Lithium Perchlorate, LiClO4, and Polymethylmethacrylate, PMMA. This device has been characterized through Electrical Measurements, such as UV-Vis Spectroscopy and Scanning Electron Microscopy (SEM. Thus, the result obtained through electrical measurements has demonstrated that the flexible organic photovoltaic solar cell presented the characteristic curve of standard solar cell after spin-coating and electrodeposition. Accordingly, the results obtained with optical and electrical characterization have revealed that the electrochromic device demonstrated some change in optical absorption, when subjected to some voltage difference. Moreover, the inclusion of the V2O5/PANI-X1 layer reduced the effects of degradation that this hybrid organic device caused, that is, solar irradiation. Studies on Scanning Electron Microscopy (SEM have found out that the surface of V2O5/PANI-X1 layers can be strongly conditioned by the surface morphology of the

  18. Domestic Efforts for SFCL Application and Hybrid SFCL

    International Nuclear Information System (INIS)

    Hyun, O. B.; KIm, H. R.; Yim, Y. S.; Sim, J.; Park, K. B.; Oh, I. S.

    2008-01-01

    We present domestic efforts for superconducting fault current limiter (SFCL) application in the Korea Electric Power Corporation (KEPCO) grid and pending points at issue. KEPCO's decision to upgrade the 154 kV/22.9 kV main transformer from 60 MVA to 100 MVA cast a problem of high fault current in the 22.9 kV distribution lines. The grid planners supported adopting an SFCL to control the fault current. This environment friendly to SFCL application must be highly dependent upon the successful development of SFCL having specifications that domestic utility required. The required conditions are (1) small size of not greater than twice of 22.9 kV gas insulated switch-gear (GIS), (2) sustainability of current limitation without the line breaking by circuit breakers (CB) for maximum 1.5 seconds. Also, optionally, recommended is (3) the reclosing capability. Conventional resistive SFCLs do not meet (1) ∼ (3) all together. A hybrid SFCL is an excellent solution to meet the conditions. The hybrid SFCL consists of HTS SFCL components for fault detection and line commutation, a fast switch (FS) to break the primary path, and a limiter. This characteristic structure not only enables excellent current limiting performances and the reclosing capability, but also allows drastic reduction of HTS volume and small size of the cryostat, resulting in economic feasibility and compactness of the equipment. External current limiter also enables long term limitation since it is far less sensitive to heat generation than HTS. Semi-active operation is another advantage of the hybrid structure. We will discuss more pending points at issues such as maintenance-free long term operation, small size to accommodate the in-house substation, passive and active control, back-up plans, diagnosis, and so on.

  19. Common Fluorescence In Situ Hybridization Applications in Cytology.

    Science.gov (United States)

    Savic, Spasenija; Bubendorf, Lukas

    2016-12-01

    - Fluorescence in situ hybridization (FISH) is a well-established method for detection of genomic aberrations in diagnostic, prognostic, and predictive marker testing. - To review common applications of FISH in cytology. - The published literature was reviewed. - Cytology is particularly well suited for all kinds of FISH applications, which is highlighted in respiratory tract cytology with an increasing demand for predictive FISH testing in lung cancer. Fluorescence in situ hybridization is the gold standard for detection of predictive anaplastic lymphoma kinase gene (ALK) rearrangements, and the same evaluation criteria as in histology apply to cytology. Several other gene rearrangements, including ROS proto-oncogene 1 receptor tyrosine kinase (ROS1), are becoming clinically important and share the same underlining cytogenetic mechanisms with ALK. MET amplification is one of the most common mechanisms of acquired resistance to epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors and can be targeted by crizotinib. As genomic aberrations are a hallmark of malignant cells, FISH is a valuable objective ancillary diagnostic tool. In urinary tract cytology, atypical urothelial cells equivocal for malignancy are a common diagnostic dilemma and multitarget FISH can help clarify such cells. Diagnosis of malignant mesothelioma remains one of the most challenging fields in effusion cytology, and ancillary FISH is useful in establishing the diagnosis. Fluorescence in situ hybridization is a morphology-based technique, and the prerequisite for reliable FISH results is a targeted evaluation of the cells in question (eg, cancer or atypical cells). Cytopathologists and cytotechnicians should therefore be involved in molecular testing in order to select the best material and to provide their morphologic expertise.

  20. SOLAR ENERGY AND ITS APPLICATIONS IN NIGERIA: Short ...

    African Journals Online (AJOL)

    ... make to our lives and economy, most especially during this time of erratic power supply by the National Electric Power Authority (NEPA). Some of the applications of solar energy in Nigeria are in Village electrification, residential / commercial building, water pumping and purification, agricultural utilization, heating sources, ...

  1. Application of nanomaterials in solar thermal energy storage

    Science.gov (United States)

    Shamshirgaran, Seyed Reza; Khalaji Assadi, Morteza; Viswanatha Sharma, Korada

    2018-06-01

    Solar thermal conversion technology harvests the sun's energy, rather than fossil fuels, to generate low-cost, low/zero-emission energy in the form of heating, cooling or electrical form for residential, commercial, and industrial sectors. The advent of nanofluids and nanocomposites or phase change materials, is a new field of study which is adapted to enhance the efficiency of solar collectors. The concepts of thermal energy storage technologies are investigated and the role of nanomaterials in energy conversion is discussed. This review revealed that although the exploitation of nanomaterials will boost the performance of solar collectors almost in all cases, this would be accompanied by certain challenges such as production cost, instability, agglomeration and erosion. Earlier studies have dealt with the enhancement of thermal conductivity and heat capacity; however, less attention has been given to the facing challenges. Moreover, no exact criteria can be found for the selection of appropriate nanomaterials and their properties for a specific application. In most research studies, the nanoparticles' material and properties have not been selected based on estimated values so that all the aspects of desired application could be considered simultaneously. The wide spread use of nanomaterials can lead to cost effective solutions as well. Therefore, it seems there should be a sense of techno-economic optimization in exploiting nanomaterials for solar thermal energy storage applications. The optimization should cover the key parameters, particularly nanoparticle type, size, loading and shape which depends on the sort of application and also dispersion technology.

  2. Application of nanomaterials in solar thermal energy storage

    Science.gov (United States)

    Shamshirgaran, Seyed Reza; Khalaji Assadi, Morteza; Viswanatha Sharma, Korada

    2017-12-01

    Solar thermal conversion technology harvests the sun's energy, rather than fossil fuels, to generate low-cost, low/zero-emission energy in the form of heating, cooling or electrical form for residential, commercial, and industrial sectors. The advent of nanofluids and nanocomposites or phase change materials, is a new field of study which is adapted to enhance the efficiency of solar collectors. The concepts of thermal energy storage technologies are investigated and the role of nanomaterials in energy conversion is discussed. This review revealed that although the exploitation of nanomaterials will boost the performance of solar collectors almost in all cases, this would be accompanied by certain challenges such as production cost, instability, agglomeration and erosion. Earlier studies have dealt with the enhancement of thermal conductivity and heat capacity; however, less attention has been given to the facing challenges. Moreover, no exact criteria can be found for the selection of appropriate nanomaterials and their properties for a specific application. In most research studies, the nanoparticles' material and properties have not been selected based on estimated values so that all the aspects of desired application could be considered simultaneously. The wide spread use of nanomaterials can lead to cost effective solutions as well. Therefore, it seems there should be a sense of techno-economic optimization in exploiting nanomaterials for solar thermal energy storage applications. The optimization should cover the key parameters, particularly nanoparticle type, size, loading and shape which depends on the sort of application and also dispersion technology.

  3. Hybrid planar lightwave circuits for defense and aerospace applications

    Science.gov (United States)

    Zhang, Hua; Bidnyk, Serge; Yang, Shiquan; Balakrishnan, Ashok; Pearson, Matt; O'Keefe, Sean

    2010-04-01

    We present innovations in Planar Lightwave Circuits (PLCs) that make them ideally suited for use in advanced defense and aerospace applications. We discuss PLCs that contain no micro-optic components, no moving parts, pose no spark or fire hazard, are extremely small and lightweight, and are capable of transporting and processing a range of optical signals with exceptionally high performance. This PLC platform is designed for on-chip integration of active components such as lasers and detectors, along with transimpedance amplifiers and other electronics. These active components are hybridly integrated with our silica-on-silicon PLCs using fully-automated robotics and image recognition technology. This PLC approach has been successfully applied to the design and fabrication of multi-channel transceivers for aerospace applications. The chips contain hybrid DFB lasers and high-efficiency detectors, each capable of running over 10 Gb/s, with mixed digital and analog traffic multiplexed to a single optical fiber. This highlyintegrated functionality is combined onto a silicon chip smaller than 4 x 10 mm, weighing failures after extreme temperature cycling through a range of > 125 degC, and more than 2,000 hours operating at 95 degC ambient air temperature. We believe that these recent advancements in planar lightwave circuits are poised to revolutionize optical communications and interconnects in the aerospace and defense industries.

  4. Recent progress in theranostic applications of hybrid gold nanoparticles.

    Science.gov (United States)

    Gharatape, Alireza; Salehi, Roya

    2017-09-29

    A significant area of research is theranostic applications of nanoparticles, which involves efforts to improve delivery and reduce side effects. Accordingly, the introduction of a safe, effective, and, most importantly, renewable strategy to target, deliver and image disease cells is important. This state-of-the-art review focuses on studies done from 2013 to 2016 regarding the development of hybrid gold nanoparticles as theranostic agents in the diagnosis and treatment of cancer and infectious disease. Several syntheses (chemical and green) methods of gold nanoparticles and their applications in imaging, targeting, and delivery are reviewed; their photothermal efficiency is discussed as is the toxicity of gold nanoparticles. Owing to the unique characterizations of hybrid gold nanoparticles and their potential to be developed as multifunctional, we predict they will present an undeniable role in clinical studies and provide treatment platforms for various diseases. Thus, their clearance and interactions with extra- and intra-cellular molecules need to be considered in future projects. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  5. Photovoltaic Performance of Inverted Polymer Solar Cells Using Hybrid Carbon Quantum Dots and Absorption Polymer Materials

    Science.gov (United States)

    Lim, Hwain; Lee, Kyu Seung; Liu, Yang; Kim, Hak Yong; Son, Dong Ick

    2018-05-01

    We report the synthesis and characterization of the carbon quantum dots (C-dots) easily obtained from citric acid and ethanediamine, and also investigated structural, optical and electrical properties. The C-dots have extraordinary optical and electrical features such as absorption of ultraviolet range and effective interface for charge separation and transport in active layer, which make them attractive materials for applications in photovoltaic devices (PV). The C-dots play important roles in charge extraction in the PV structures, they can be synthesized by a simple method and used to insert in active layer of polymer solar cells. In this study, we demonstrate that improve charge transport properties of inverted polymer solar cells (iPSCs) with C-dots and structural, optical and electrical properties of C-dots. As a result, iPSCs with C-dots showed enhancement of more than 30% compared with that of the contrast device in power conversion efficiency.

  6. An economic and environmental analysis of biomass-solar hybrid system for the textile industry in India

    OpenAIRE

    MAHADEVAN, MAHALAKSHMI; SALAI, LATHA

    2015-01-01

    This paper focuses on the design and analysis of a hybrid biomass-solar photovoltaic system for the textile industry with the goal of minimizing the cost and greenhouse gas emissions. The feasibility analysis of the hybrid system is performed based on the resource availability and the power generation potential of the existing biomass power plant near the textile plant at T.Kallupatti in Tamil Nadu, India. The power plant located at the site (9.66$^{\\circ}$N, 77.79$^{\\circ}$E) has an averag...

  7. Efficiency of the hybrid solar-wind systems for electricity supply to the stand-alone sites

    International Nuclear Information System (INIS)

    Abdullaev, D.A.; Isaev, R.I.

    2000-01-01

    The features of stand-alone sites and principles of their electricity supply is described there is going observation of the works about conditions of production and efficiency of using autonomy wind turbines and photovoltaics. Their unsufficiency is estimated. The advantages of hybrid systems and their realization schemes is described. The advantage of hybrid solar-wind Battery system (HSWBS) on the basis of own researches and the facts of other authors are given. The conception overall discounting cost is developed on HSWBS case. (Author)

  8. Improved efficiency in organic/inorganic hybrid solar cells by interfacial modification of ZnO nanowires with small molecules

    International Nuclear Information System (INIS)

    Chang, Sehoon; Park, Hyesung; Cheng, Jayce J; Rekemeyer, Paul H; Gradečak, Silvija

    2014-01-01

    We demonstrate improved photovoltaic performance of ZnO nanowire/poly(3-hexylthiophene) (P3HT) nanofiber hybrid devices using an interfacial modification of ZnO nanowires. Formation of cascade energy levels between the ZnO nanowire and P3HT nanofiber was achieved by interfacial modification of ZnO nanowires using small molecules tetraphenyldibenzoperiflanthene (DBP) and 3,4,9,10-perylenetetracarboxylic bisbenzimidazole (PTCBI). The successful demonstration of improved device performance owing to the cascade energy levels by small molecule modification is a promising approach toward highly efficient organic/inorganic hybrid solar cells. (paper)

  9. Colored ultra-thin hybrid photovoltaics with high quantum efficiency for decorative PV applications (Presentation Recording)

    Science.gov (United States)

    Guo, L. Jay

    2015-10-01

    adopted by other material systems as well. Based on these understandings, we have also developed colored perovskite PV by integrating an optical cavity with the perovskite semiconductors [4]. The principle and experimental results will be presented. 1. J. Y. Lee, K. T. Lee, S.Y. Seo, L. J. Guo, "Decorative power generating panels creating angle insensitive transmissive colors," Sci. Rep. 4, 4192, 2014. 2. K. T. Lee, J.Y. Lee, S.-Y. Seo, and L. J. Guo, "Colored ultra-thin hybrid photovoltaics with high quantum efficiency," Light: Science and Applications, 3, e215, 2014. 3. K. T. Lee, S.-Y. Seo, J.Y. Lee, and L. J. Guo, "Ultrathin metal-semiconductor-metal resonator for angle invariant visible band transmission filters," Appl. Phys. Lett. 104, 231112, (2014); and "Strong resonance effect in a lossy medium-based optical cavity for angle robust spectrum filters," Adv. Mater, 26, 6324-6328, 2014. 4. K. T. Lee, M. Fukuda, L. J. Guo, "Colored, see-through perovskite solar cells employing an optical cavity," Submitted, 2015

  10. A Hybrid Imperative and Functional Molecular Mechanics Application

    Directory of Open Access Journals (Sweden)

    Thomas Deboni

    1996-01-01

    Full Text Available Molecular mechanics applications model the interactions among large ensembles of discrete particles. They are used where probabilistic methods are inadequate, such as drug chemistry. This methodology is difficult to parallelize with good performance, due to its poor locality, uneven partitions, and dynamic behavior. Imperative programs have been written that attempt this on shared and distributed memory machines. Given such a program, the computational kernel can be rewritten in Sisal, a functional programming language, and integrated with the rest of the imperative program under the Sisal Foreign Language Interface. This allows minimal effort and maximal return from parallelization work, and leaves the work appropriate to imperative implementation in its original form. We describe such an effort, focusing on the parts of the application that are appropriate for Sisal implementation, the specifics of mixed-language programming, and the complex performance behavior of the resulting hybrid code.

  11. Application of solar radiation for heating and preparation of warm water in an individual house

    International Nuclear Information System (INIS)

    Kozak, Tadeeusz; Majchrzycka, Anna

    2009-01-01

    The paper is aimed at analysis of application of the solar collectors array for preparing of warm water and space heating in an individual house. Keywords: application of solar radiation, preparation of warm water, heating

  12. Hybrid lead halide perovskites for light energy conversion: Excited state properties and photovoltaic applications

    Science.gov (United States)

    Manser, Joseph S.

    travel 220 nm over the course of 2 ns after photoexcitation, with an extrapolated diffusion length greater than one micrometer over the full excited state lifetime. The solution-processability of metal halide perovskites necessarily raises questions as to the properties of the solvated precursors and their connection to the final solid-state perovskite phase. Through structural and steady-state and time-resolved absorption studies, the important link between the excited state properties of the precursor components, composed of solvated and solid-state halometallate complexes, and CH3NH3PbI3 is evinced. This connection provides insight into optical nonlinearities and electronic properties of the perovskite phase. Fundamental studies of CH 3NH3PbI3 ultimately serve as a foundation for application of this and other related materials in high-performance devices. In the final chapter, the operation of CH3NH3PbI 3 solar cells in a tandem architecture is presented. The quest for economic, large scale hydrogen production has motivated the search for new materials and device designs capable of splitting water using only energy from the sun. In light of this, we introduce an all solution-processed tandem water splitting assembly composed of a BiVO4 photoanode and a single-junction CH3NH3PbI3 hybrid perovskite solar cell. This unique configuration allows efficient solar photon management, with the metal oxide photoanode selectively harvesting high energy visible photons and the underlying perovskite solar cell capturing lower energy visible-near IR wavelengths in a single-pass excitation. Operating without external bias under standard terrestrial one sun illumination, the photoanode-photovoltaic architecture, in conjunction with an earthabundant cobalt phosphate catalyst, exhibits a solar-to-hydrogen conversion efficiency of 2.5% at neutral pH. The design of low-cost tandem water splitting assemblies employing single-junction hybrid perovskite materials establishes a potentially

  13. Toward Improved Modeling of Spectral Solar Irradiance for Solar Energy Applications: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Xie, Yu [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Sengupta, Manajit [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-10-19

    This study introduces the National Renewable Energy Laboratory's (NREL's) recent efforts to extend the capability of the Fast All-sky Radiation Model for Solar applications (FARMS) by computing spectral solar irradiances over both horizontal and inclined surfaces. A new model is developed by computing the optical thickness of the atmosphere using a spectral irradiance model for clear-sky conditions, SMARTS2. A comprehensive lookup table (LUT) of cloud bidirectional transmittance distribution functions (BTDFs) is precomputed for 2002 wavelength bands using an atmospheric radiative transfer model, libRadtran. The solar radiation transmitted through the atmosphere is given by considering all possible paths of photon transmission and the relevent scattering and absorption attenuation. Our results indicate that this new model has an accuracy that is similar to that of state-of-the-art radiative transfer models, but it is significantly more efficient.

  14. Hybrid polymer-inorganic photovoltaic cells

    NARCIS (Netherlands)

    Beek, W.J.E.; Janssen, R.A.J.; Merhari, L.

    2009-01-01

    Composite materials made from organic conjugated polymers and inorganic semiconductors such as metal oxides attract considerable interest for photovoltaic applications. Hybrid polymer-inorganic solar cells offer the opportunity to combine the beneficial properties of the two materials in charge

  15. Sol–gel derived solar selective coatings on SS 321 substrates for solar thermal applications

    Energy Technology Data Exchange (ETDEWEB)

    Subasri, R., E-mail: subasri@arci.res.in; Soma Raju, K.R.C.; Reddy, D.S.; Hebalkar, Neha Y.; Padmanabham, G.

    2016-01-01

    Sol–gel derived multilayered solar selective coatings were generated on AISI SS 321 substrates using Ag-TiO{sub 2} as the cermet layer, titania and silica as the dielectric layers with high and low refractive indices respectively. The phase compositions of the individual layers were independently confirmed using grazing angle incidence X-ray diffraction, which was corroborated by X-ray photoelectron spectroscopic analysis. Thickness of the layers was measured using variable angle spectroscopic ellipsometry. The solar absorbance was measured over the UV–Vis-NIR wavelength range. Thermal emissivity was determined using FTIR spectroscopic analysis. The durability of the coatings was ascertained using accelerated corrosion testing methods as well as by measuring the optical properties after thermal cycling experiments. The promising nature of hexavalent chrome-free, environmental friendly, multilayered solar selective coating was ascertained with respect to amenability to scale-up. - Highlights: • Sol–gel derived multilayered solar selective coatings developed on SS321 • Solar absorptance and thermal emittance at par with toxic chrome coating • Thermal stability and corrosion resistance of coatings studied • Coating performance found to be promising for large scale applications • Scale-up amenability investigated by coating generation on 1 m tubes.

  16. Sol–gel derived solar selective coatings on SS 321 substrates for solar thermal applications

    International Nuclear Information System (INIS)

    Subasri, R.; Soma Raju, K.R.C.; Reddy, D.S.; Hebalkar, Neha Y.; Padmanabham, G.

    2016-01-01

    Sol–gel derived multilayered solar selective coatings were generated on AISI SS 321 substrates using Ag-TiO_2 as the cermet layer, titania and silica as the dielectric layers with high and low refractive indices respectively. The phase compositions of the individual layers were independently confirmed using grazing angle incidence X-ray diffraction, which was corroborated by X-ray photoelectron spectroscopic analysis. Thickness of the layers was measured using variable angle spectroscopic ellipsometry. The solar absorbance was measured over the UV–Vis-NIR wavelength range. Thermal emissivity was determined using FTIR spectroscopic analysis. The durability of the coatings was ascertained using accelerated corrosion testing methods as well as by measuring the optical properties after thermal cycling experiments. The promising nature of hexavalent chrome-free, environmental friendly, multilayered solar selective coating was ascertained with respect to amenability to scale-up. - Highlights: • Sol–gel derived multilayered solar selective coatings developed on SS321 • Solar absorptance and thermal emittance at par with toxic chrome coating • Thermal stability and corrosion resistance of coatings studied • Coating performance found to be promising for large scale applications • Scale-up amenability investigated by coating generation on 1 m tubes

  17. Hybrid renewable energy system application for electricity and heat supply of a residential building

    Directory of Open Access Journals (Sweden)

    Nakomčić-Smaragdakis Branka B.

    2016-01-01

    Full Text Available Renewable and distributed energy systems could provide a solution to the burning issue of reliable and clean supply of energy, having in mind current state and future predictions for population growth and fossil fuel scarcity. Hybrid renewable energy systems are novelty in Serbia and warrant further detailed research. The aim of this paper is to analyze the application of renewable energy sources(RES for electricity and heat supply of a typical household in Serbia, as well as the cost-effectiveness of the proposed system. The influence of feed-in tariff change on the value of the investment is analyzed. Small, grid-connected hybrid system (for energy supply of a standard household, consisting of geothermal heat pump for heating/cooling, solar photovoltaic panels and small wind turbine for power supply is analyzed as a case study. System analysis was conducted with the help of RETScreen software. Results of techno-economics analysis have shown that investing in geothermal heat pump and photovoltaic panels is cost-effective, while that is not the case with small wind turbine.

  18. Emerging economic viability of grid defection in a northern climate using solar hybrid systems

    International Nuclear Information System (INIS)

    Kantamneni, Abhilash; Winkler, Richelle; Gauchia, Lucia; Pearce, Joshua M.

    2016-01-01

    High demand for photovoltaic (PV), battery, and small-scale combined heat and power (CHP) technologies are driving a virtuous cycle of technological improvements and cost reductions in off-grid electric systems that increasingly compete with the grid market. Using a case study in the Upper Peninsula of Michigan, this paper quantifies the economic viability of off-grid PV+battery+CHP adoption and evaluates potential implications for grid-based utility models. The analysis shows that already some households could save money by switching to a solar hybrid off-grid system in comparison to the effective electric rates they are currently paying. Across the region by 2020, 92% of seasonal households and ~75% of year-round households are projected to meet electricity demands with lower costs. Furthermore, ~65% of all Upper Peninsula single-family owner-occupied households will both meet grid parity and be able to afford the systems by 2020. The results imply that economic circumstances could spur a positive feedback loop whereby grid electricity prices continue to rise and increasing numbers of customers choose alternatives (sometimes referred to as a “utility death spiral”), particularly in areas with relatively high electric utility rates. Utility companies and policy makers must take the potential for grid defection seriously when evaluating energy supply strategies. - Highlights: •Quantifies the economic viability of off-grid hybrid photovoltaic (PV) systems. •PV is backed up with batteries and combined heat and power (CHP). •Case study in Michigan by household size (energy demand) and income. •By 2020, majority of single-family owner-occupied households can defect. •To prevent mass-scale grid defection policies needed for grid-tied PV systems.

  19. Characterization and improved solar light activity of vanadium doped TiO2/diatomite hybrid catalysts.

    Science.gov (United States)

    Wang, Bin; Zhang, Guangxin; Leng, Xue; Sun, Zhiming; Zheng, Shuilin

    2015-03-21

    V-doped TiO2/diatomite composite photocatalysts with different vanadium concentrations were synthesized by a modified sol-gel method. The diatomite was responsible for the well dispersion of TiO2 nanoparticles on the matrix and consequently inhibited the agglomeration. V-TiO2/diatomite hybrids showed red shift in TiO2 absorption edge with enhanced absorption intensity. Most importantly, the dopant energy levels were formed in the TiO2 bandgap due to V(4+) ions substituted to Ti(4+) sites. The 0.5% V-TiO2/diatomite photocatalyst displayed narrower bandgap (2.95 eV) compared to undoped sample (3.13 eV) and other doped samples (3.05 eV) with higher doping concentration. The photocatalytic activities of V doped TiO2/diatomite samples for the degradation of Rhodamine B under stimulated solar light illumination were significantly improved compared with the undoped sample. In our case, V(4+) ions incorporated in TiO2 lattice were responsible for increased visible-light absorption and electron transfer to oxygen molecules adsorbed on the surface of TiO2 to produce superoxide radicals ˙O2(-), while V(5+) species presented on the surface of TiO2 particles in the form of V2O5 contributed to e(-)-h(+) separation. In addition, due to the combination of diatomite as support, this hybrid photocatalyst could be separated from solution quickly by natural settlement and exhibited good reusability. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Performance evaluation of a solar energy assisted hybrid desiccant air conditioner integrated with HDH desalination system

    International Nuclear Information System (INIS)

    Kabeel, A.E.; Abdelgaied, Mohamed; Zakaria, Yehya

    2017-01-01

    Highlights: • The performance of a solar hybrid air conditioner integrated with HDH desalination system is numerically investigated. • For increase the regeneration air from 70 to 130 m 3 /h, the distillate water productivity increases from 2.988 to 4.78 L/h. • For increase the regeneration air from 70 to 130 m 3 /h, COP overall daily decreases from 4.66 to 3.386. • For increases the regeneration air temperature from 75 to 95 °C, the distillate water increases from 3.1752 to 5.011 L/h. • For increases the regeneration air temperature from 75 to 95 °C, COP overall daily decreases from 4.392 to 3.636. - Abstract: In this study, the performances of a solar energy assisted hybrid desiccant air conditioning system integrated with humidification–dehumidification (HDH) desalination system are numerically investigated. The aim of this study is to benefit from the temperature rise of the regeneration air outside of the desiccant conditioning system as well as the water vapor content in this regeneration air by feeding it to the humidification-dehumidification water desalination unit to produce distillate water. The distillate water productivity, human thermal comfort issues, and energy saving represent the main objective of the present numerical study. The simulated results developed for subsystems are validated with the published experimental results. The effects of regeneration air temperature and flow rate on supply cooled air temperature, distillate water productivity, the cooling coefficient of performance and overall daily coefficient of performance of the proposed system are investigated. The results show that (i) the distillate water productivity increases from 3.175 to 5.011 L/h and overall daily coefficient of performance decreases from 4.392 to 3.636 with increasing the regeneration air temperature from 75 to 95 as (ii) the increase in the regeneration air flow rate from 70 to 130 m 3 /h, increases the distillate water productivity from 2.988 to 4

  1. Applications of maximally concentrating optics for solar energy collection

    Science.gov (United States)

    O'Gallagher, J.; Winston, R.

    1985-11-01

    A new family of optical concentrators based on a general nonimaging design principle for maximizing the geometric concentration, C, for radiation within a given acceptance half angle ±θα has been developed. The maximum limit exceeds by factors of 2 to 10 that attainable by systems using focusing optics. The wide acceptance angles permitted using these techniques have several unique advantages for solar concentrators including the elimination of the diurnal tracking requirement at intermediate concentrations (up to ˜10x), collection of circumsolar and some diffuse radiation, and relaxed tolerances. Because of these advantages, these types of concentrators have applications in solar energy wherever concentration is desired, e.g. for a wide variety of both thermal and photovoltaic uses. The basic principles of nonimaging optical design are reviewed. Selected configurations for thermal collector applications are discussed and the use of nonimaging elements as secondary concentrators is illustrated in the context of higher concentration applications.

  2. A new hybrid bee pollinator flower pollination algorithm for solar PV parameter estimation

    International Nuclear Information System (INIS)

    Ram, J. Prasanth; Babu, T. Sudhakar; Dragicevic, Tomislav; Rajasekar, N.

    2017-01-01

    Highlights: • A new Bee Pollinator Flower Pollination Algorithm (BPFPA) is proposed for Solar PV Parameter extraction. • Standard RTC France data is used for the experimentation of BPFPA algorithm. • Four different PV modules are successfully tested via double diode model. • The BPFPA method is highly convincing in accuracy to convergence at faster rate. • The proposed BPFPA provides the best performance among the other recent techniques. - Abstract: The inaccurate I-V curve generation in solar PV modeling introduces less efficiency and on the other hand, accurate simulation of PV characteristics becomes a mandatory obligation before experimental validation. Although many optimization methods in literature have attempted to extract accurate PV parameters, all of these methods do not guarantee their convergence to the global optimum. Hence, the authors of this paper have proposed a new hybrid Bee pollinator Flower Pollination Algorithm (BPFPA) for the PV parameter extraction problem. The PV parameters for both single diode and double diode are extracted and tested under different environmental conditions. For brevity, the I_0_1, I_0_2, I_p_v for double diode and I_0_,I_p_v for single diode models are calculated analytically where the remaining parameters ‘R_s, R_p, a_1, a_2’ are optimized using BPFPA method. It is found that, the proposed Bee Pollinator method has all the scope to create exploration and exploitation in the control variable to yield a less RMSE value even under lower irradiated conditions. Further for performance validation, the parameters arrived via BPFPA method is compared with Genetic Algorithm (GA), Pattern Search (PS), Harmony Search (HS), Flower Pollination Algorithm (FPA) and Artificial Bee Swarm Optimization (ABSO). In addition, various outcomes of PV modeling and different parameters influencing the accurate PV modeling are critically analyzed.

  3. Energy management of fuel cell/solar cell/supercapacitor hybrid power source

    Energy Technology Data Exchange (ETDEWEB)

    Thounthong, Phatiphat; Sethakul, Panarit [Department of Teacher Training in Electrical Engineering, King Mongkut' s University of Technology North Bangkok, 1518, Piboolsongkram Road, Bangsue, Bangkok 10800 (Thailand); Chunkag, Viboon [Department of Electrical Engineering, King Mongkut' s University of Technology North Bangkok, 1518, Piboolsongkram Road, Bangsue, Bangkok 10800 (Thailand); Sikkabut, Suwat [Thai-French Innovation Institute, King Mongkut' s University of Technology North Bangkok, 1518, Piboolsongkram Road, Bangsue, Bangkok 10800 (Thailand); Pierfederici, Serge; Davat, Bernard [Groupe de Recherche en Electrotechnique et Electronique de Nancy (GREEN: UMR 7037), Nancy Universite, INPL-ENSEM, 2, Avenue de la Foret de Haye, Vandoeuvre-les-Nancy, Lorraine 54516 (France)

    2011-01-01

    This study presents an original control algorithm for a hybrid energy system with a renewable energy source, namely, a polymer electrolyte membrane fuel cell (PEMFC) and a photovoltaic (PV) array. A single storage device, i.e., a supercapacitor (ultracapacitor) module, is in the proposed structure. The main weak point of fuel cells (FCs) is slow dynamics because the power slope is limited to prevent fuel starvation problems, improve performance and increase lifetime. The very fast power response and high specific power of a supercapacitor complements the slower power output of the main source to produce the compatibility and performance characteristics needed in a load. The energy in the system is balanced by d.c.-bus energy regulation (or indirect voltage regulation). A supercapacitor module functions by supplying energy to regulate the d.c.-bus energy. The fuel cell, as a slow dynamic source in this system, supplies energy to the supercapacitor module in order to keep it charged. The photovoltaic array assists the fuel cell during daytime. To verify the proposed principle, a hardware system is realized with analog circuits for the fuel cell, solar cell and supercapacitor current control loops, and with numerical calculation (dSPACE) for the energy control loops. Experimental results with small-scale devices, namely, a PEMFC (1200 W, 46 A) manufactured by the Ballard Power System Company, a photovoltaic array (800 W, 31 A) manufactured by the Ekarat Solar Company and a supercapacitor module (100 F, 32 V) manufactured by the Maxwell Technologies Company, illustrate the excellent energy-management scheme during load cycles. (author)

  4. Designing interfaces of hydrogenase-nanomaterial hybrids for efficient solar conversion.

    Science.gov (United States)

    King, Paul W

    2013-01-01

    The direct conversion of sunlight into biofuels is an intriguing alternative to a continued reliance on fossil fuels. Natural photosynthesis has long been investigated both as a potential solution, and as a model for utilizing solar energy to drive a water-to-fuel cycle. The molecules and organizational structure provide a template to inspire the design of efficient molecular systems for photocatalysis. A clear design strategy is the coordination of molecular interactions that match kinetic rates and energetic levels to control the direction and flow of energy from light harvesting to catalysis. Energy transduction and electron-transfer reactions occur through interfaces formed between complexes of donor-acceptor molecules. Although the structures of several of the key biological complexes have been solved, detailed descriptions of many electron-transfer complexes are lacking, which presents a challenge to designing and engineering biomolecular systems for solar conversion. Alternatively, it is possible to couple the catalytic power of biological enzymes to light harvesting by semiconductor nanomaterials. In these molecules, surface chemistry and structure can be designed using ligands. The passivation effect of the ligand can also dramatically affect the photophysical properties of the semiconductor, and energetics of external charge-transfer. The length, degree of bond saturation (aromaticity), and solvent exposed functional groups of ligands can be manipulated to further tune the interface to control molecular assembly, and complex stability in photocatalytic hybrids. The results of this research show how ligand selection is critical to designing molecular interfaces that promote efficient self-assembly, charge-transfer and photocatalysis. This article is part of a Special Issue entitled: Metals in Bioenergetics and Biomimetics Systems. Copyright © 2013 Elsevier B.V. All rights reserved.

  5. Hybrid solar cells based on CuInS2 and organic buffer-sensitizer layers

    International Nuclear Information System (INIS)

    Bereznev, S.; Koeppe, R.; Konovalov, I.; Kois, J.; Guenes, S.; Opik, A.; Mellikov, E.; Sariciftci, N.S.

    2007-01-01

    Hybrid solar cells on the basis of CuInS 2 (CIS) photoabsorber on Cu-tape (CISCuT) in combination with organic buffer layers of Zn-phthalocyanine (ZnPc), ZnPc:fullerene (ZnPc:C 60 ) composite and conductive polymer buffer layers of poly(3,4-ethylenedioxythiophene) (PEDOT) doped with polystyrenesulfonate (PSS) were prepared using vacuum evaporation and spin-casting techniques. To prepare solar cells with an active area of 2 cm 2 , the appropriate deposition parameters and thickness of ZnPc, ZnPc:C 60 and PEDOT-PSS layers were selected experimentally. For preparation of semitransparent contact-window layers, chromium and gold were evaporated on the surface of ZnPc, ZnPc:C 60 and PEDOT-PSS films. It was found that an intermediate chromium layer improves PV properties of the structures with organic buffer layers. The photosensitivity at small illumination intensities of complete structures with ZnPc and ZnPc:C 60 layers increased more than one order of magnitude in comparison with the structures where the PEDOT-PSS buffer layer was deposited. The presence of C 60 in the composite-buffer layer results in increased photoconductivity. The best structure with composite ZnPc:C 60 buffer layer showed an open-circuit voltage of 560 mV, a short-circuit current density of around 10 mA/cm 2 and a photoconversion efficiency of around 3.3% under the light illumination with an intensity of 100 mW/cm 2 from a tungsten-halogen lamp. The low transmission of the semitransparent chromium-gold window layer is the reason for relatively low current density

  6. Theoretical Analysis of Two Novel Hybrid Thermoelectric-Photovoltaic Systems Based on Cu₂ZnSnS₄ Solar Cells.

    Science.gov (United States)

    Lorenzi, Bruno; Contento, Gaetano; Sabatelli, Vincenzo; Rizzo, Antonella; Narducci, Dario

    2017-03-01

    The development and commercialization of Photovoltaic (PV) cells with good cost-efficiency trade-off not using critical raw materials (CRMs) is one of the strategies chosen by the European Community (EC) to address the Energy Roadmap 2050. In this context Cu2ZnSnS4 (CZTS) solar cells are attracting a major interest since they have the potential to combine low price with relatively high conversion efficiencies. Although a ≈9% lab scale efficiency has already been reported for CZTS this technology is still far from being competitive in terms of cost per peak-power (€/Wp) with other common materials. One possible near-future solution to increase the CZTS competiveness comes from thermoelectrics. Actually it has already been shown that Hybrid Thermoelectric-Photovoltaic Systems (HTEPVs) based on CIGS, another kesterite very similar to CZTS, can lead to a significant efficiency improvement. However it has been also clarified how the optimal hybridization strategy cannot come from the simple coupling of solar cells with commercial TEGs, but special layouts have to be implemented. Furthermore, since solar cell performances are well known to decrease with temperature, thermal decoupling strategies of the PV and TEG sections have to be taken. To address these issues, we developed a model for two different HTEPV solutions, both coupled with CZTS solar cells. In the first case we considered a Thermally-Coupled HTEPV device (TC-HTEPV) in which the TEG is placed underneath the solar cell and in thermal contact with it. The second system consists instead of an Optically-Coupled but thermally decoupled device (OC-HTEPV) in which part of the solar spectrum is focused by a non-imaging optical concentrator on the TEG hot side. For both solutions the model returns conversion efficiencies higher than that of the CZTS solar cell alone. Specifically, increases of ≈30% are predicted for both kind of systems considered.

  7. Optimal integration of a hybrid solar-battery power source into smart home nanogrid with plug-in electric vehicle

    OpenAIRE

    Wu, Xiaohua; Hu, Xiaosong; Teng, Yanqiong; Qian, Shide; Cheng, Rui

    2017-01-01

    Hybrid solar-battery power source is essential in the nexus of plug-in electric vehicle (PEV), renewables, and smart building. This paper devises an optimization framework for efficient energy management and components sizing of a single smart home with home battery, PEV, and potovoltatic (PV) arrays. We seek to maximize the home economy, while satisfying home power demand and PEV driving. Based on the structure and system models of the smart home nanogrid, a convex programming (CP) problem i...

  8. Charge separation dynamics in a narrow band gap polymer-PbS nanocrystal blend for efficient hybrid solar cells

    NARCIS (Netherlands)

    Piliego, Claudia; Manca, Marianna; Kroon, Renee; Yarema, Maksym; Szendrei, Krisztina; Andersson, Mats R.; Heiss, Wolfgang; Loi, Maria A.

    2012-01-01

    We have demonstrated efficient hybrid solar cells based on lead sulfide (PbS) nanocrystals and a narrow band gap polymer, poly[{2,5-bis(2-hexyldecyl)-2,3,5,6-tetrahydro-3,6-dioxopyrrolo[3,4-c]pyrrole-1,4-diyl}-alt-{[2,2'-(1,4-phenylene)bis-thiophene]-5,5'-diyl}], (PDPPTPT). An opportune mixing of

  9. Experimental study of a solar-driven photo-electrochemical hybrid system for the decolorization of Acid Red 26

    International Nuclear Information System (INIS)

    Wang, Yiping; Chen, Miao; Huang, Qunwu; Cui, Yong; Jin, Yanchao; Cui, Lingyun; Wen, Chen

    2017-01-01

    Highlights: • A solar-driven photo-electrochemical system (S/EC/PS) was first constructed. • Solar spectrum was fully used for the dye decolorization, power supply and thermal. • The electricity needed for EC was offered by the hybrid system. • In comparison with S/PS, decolorization time of S/EC/PS shorten 50%. • PV panels has lower working temperature due to the water cooling. - Abstract: This study presents a new solar-driven hybrid system that integrated a photo-electrochemical reactor with a photovoltaics (PV) panel for azo dyes’ decolorization and electricity generation. Full spectrum of sunlight is utilized to optimize the color removal of Acid Red 26 (AR26) in this hybrid system. Persulfate (PS, S 2 O 4 2− ) was selected as the photochemical oxidant and Ti/IrO 2 -Ta 2 O 5 electrode was used as the anode. Experiments were made to evaluate the efficiency of decolorization and the performance of PV panels in different reaction conditions outdoors. The results showed that the synergistic effect of two processes was observed for the AR26 decolorization. Comparing with the solar/persulfate process or the electrochemical process alone, the complete color removal time by the hybrid system decreased up to 50% and 44.4% respectively. In this system, the water layer in the flow channel cooled PV panels by absorbing the far infrared spectrum of sunlight, and the increased temperature of wastewater from 7 °C to 16 °C enhanced the decolorization efficiency of AR26. Moreover, the generated electricity by PV panels could satisfy the energy demand of electrochemical oxidation.

  10. Multijunction Solar Cell Technology for Mars Surface Applications

    Science.gov (United States)

    Stella, Paul M.; Mardesich, Nick; Ewell, Richard C.; Mueller, Robert L.; Endicter, Scott; Aiken, Daniel; Edmondson, Kenneth; Fetze, Chris

    2006-01-01

    Solar cells used for Mars surface applications have been commercial space qualified AM0 optimized devices. Due to the Martian atmosphere, these cells are not optimized for the Mars surface and as a result operate at a reduced efficiency. A multi-year program, MOST (Mars Optimized Solar Cell Technology), managed by JPL and funded by NASA Code S, was initiated in 2004, to develop tools to modify commercial AM0 cells for the Mars surface solar spectrum and to fabricate Mars optimized devices for verification. This effort required defining the surface incident spectrum, developing an appropriate laboratory solar simulator measurement capability, and to develop and test commercial cells modified for the Mars surface spectrum. This paper discusses the program, including results for the initial modified cells. Simulated Mars surface measurements of MER cells and Phoenix Lander cells (2007 launch) are provided to characterize the performance loss for those missions. In addition, the performance of the MER rover solar arrays is updated to reflect their more than two (2) year operation.

  11. Novel applications of array comparative genomic hybridization in molecular diagnostics.

    Science.gov (United States)

    Cheung, Sau W; Bi, Weimin

    2018-05-31

    In 2004, the implementation of array comparative genomic hybridization (array comparative genome hybridization [CGH]) into clinical practice marked a new milestone for genetic diagnosis. Array CGH and single-nucleotide polymorphism (SNP) arrays enable genome-wide detection of copy number changes in a high resolution, and therefore microarray has been recognized as the first-tier test for patients with intellectual disability or multiple congenital anomalies, and has also been applied prenatally for detection of clinically relevant copy number variations in the fetus. Area covered: In this review, the authors summarize the evolution of array CGH technology from their diagnostic laboratory, highlighting exonic SNP arrays developed in the past decade which detect small intragenic copy number changes as well as large DNA segments for the region of heterozygosity. The applications of array CGH to human diseases with different modes of inheritance with the emphasis on autosomal recessive disorders are discussed. Expert commentary: An exonic array is a powerful and most efficient clinical tool in detecting genome wide small copy number variants in both dominant and recessive disorders. However, whole-genome sequencing may become the single integrated platform for detection of copy number changes, single-nucleotide changes as well as balanced chromosomal rearrangements in the near future.

  12. Hybrid Magnetic Core-Shell Nanophotocatalysts for Environmental Applications

    Energy Technology Data Exchange (ETDEWEB)

    Gaulden, Patrick [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Murph, Simona Hunyadi [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Univ. of Georgia, Athens, GA (United States). Dept. of Physics and Astronomy

    2016-07-29

    This research study describes a facile sol-gel method to creating hybrid iron (III) oxide/silica/titania nanomaterials decorated with gold nanoparticles for use in environmental applications. The multi-functional composition of the nanomaterials allows for photocatalyzed reactions to occur in both the visible and the UV range. The morphologies, elemental composition, and surface charge of the nanoparticles were determined by Scanning Electron Microscopy (SEM), Energy Dispersive X-ray Spectroscopy (EDS), and Phase Analysis Light Scattering (PALS), respectively. The photocatalytic activity of the synthesized hybrid nanoparticles for breaking down a model analyte, methyl orange (MO), was then evaluated using UV-Vis Spectroscopy. The efficiency of the photocatalyst under UV light irradiation was measured and compared to other well-studied nanophotocatalysts, namely titanium oxide and iron oxide nanoparticles. The concentration dependence of both the photocatalyst and the analyte was also investigated. By utilizing the known UV-active properties of TiO2, the magnetic properties of Fe2O3, the optical properties of gold in the visible range of the spectrum, and the high stability of silica, a novel, highly efficient photocatalyst that is active on a broad range of the spectrum (UV-Vis) can be created to destroy organic pollutants in wastewater streams.

  13. The Technical and Economic Study of Solar-Wind Hybrid Energy System in Coastal Area of Chittagong, Bangladesh

    Directory of Open Access Journals (Sweden)

    Shuvankar Podder

    2015-01-01

    Full Text Available The size optimization and economic evaluation of the solar-wind hybrid renewable energy system (RES to meet the electricity demand of 276 kWh/day with 40 kW peak load have been determined in this study. The load data has been collected from the motels situated in the coastal areas of Patenga, Chittagong. RES in standalone as well as grid connected mode have been considered. The optimal system configurations have been determined based on systems net present cost (NPC and cost of per unit energy (COE. A standalone solar-wind-battery hybrid system is feasible and economically comparable to the present cost of diesel based power plant if 8% annual capacity shortage is allowed. Grid tied solar-wind hybrid system, where more than 70% electricity contribution is from RES, is economically comparable to present grid electricity price. Moreover, grid tied RES results in more than 60% reduction in greenhouse gases emission compared to the conventional grid. Sensitivity analysis has been performed in this study to determine the effect of capital cost variation or renewable resources variation on the system economy. Simulation result of sensitivity analysis has showed that 20% reduction of installation cost results in nearly 9%–12% reductions in cost of per unit energy.

  14. Study of a solar PV-diesel-battery hybrid power system for a remotely located population near Rafha, Saudi Arabia

    International Nuclear Information System (INIS)

    Rehman, Shafiqur; Al-Hadhrami, Luai M.

    2010-01-01

    This study presents a PV-diesel hybrid power system with battery backup for a village being fed with diesel generated electricity to displace part of the diesel by solar. The hourly solar radiation data measured at the site along with PV modules mounted on fixed foundations, four generators of different rated powers, diesel prices of 0.2-1.2US$/l, different sizes of batteries and converters were used to find an optimal power system for the village. It was found that a PV array of 2000 kW and four generators of 1250, 750, 2250 and 250 kW; operating at a load factor of 70% required to run for 3317 h/yr, 4242 h/yr, 2820 h/yr and 3150 h/yr, respectively; to produce a mix of 17,640 MWh of electricity annually and 48.33 MWh per day. The cost of energy (COE) of diesel only and PV/diesel/battery power system with 21% solar penetration was found to be 0.190$/kWh and 0.219$/kWh respectively for a diesel price of 0.2$/l. The sensitivity analysis showed that at a diesel price of 0.6$/l the COE from hybrid system become almost the same as that of the diesel only system and above it, the hybrid system become more economical than the diesel only system. (author)

  15. Development of an innovative polygeneration process in hybrid solar-biomass system for combined power, cooling and desalination

    International Nuclear Information System (INIS)

    Sahoo, U.; Kumar, R.; Pant, P.C.; Chaudhary, R.

    2017-01-01

    Highlights: • Heat utilization from solar and biomass resources are considered for hybridization. • Modeling of polygeneration process in hybrid solar-biomass power plant is considered. • Thermodynamic evaluation are performed to identify the effect of various parameters. • Primary Energy Saving of polygeneration process is determined. - Abstract: In the polygeneration process simultaneous production of power, vapor absorption refrigeration (VAR) cooling and multi-effect humidification and dehumidification (MEHD) desalination system from different heat sources in hybrid solar-biomass (HSB) system with higher energy efficiency take place. It is one of the solutions to fulfill energy requirements from renewable sources and also helps in the reduction of carbon dioxide emissions. The VAR cooling system operates using the extracted heat taken from turbine and condenser heat of the VAR cooling system is used in desalination system for production of drinking water as per demand requirement. Though the production of electricity decreases due to extraction of heat from turbine for VAR cooling and desalination, the complete system meets the energy requirements & increases the primary energy savings (PES). The thermodynamic evaluation and optimization of HSB system in polygeneration process for combined power, cooling and desalination is investigated to identify the effects of various operating parameters. Primary energy savings (PES) of polygeneration process in HSB system is achieved to 50.5%. The energy output is increased to 78.12% from this system as compared to simple power plant.

  16. Self-assembled hybrid materials based on conjugated polymers and semiconductors nano-crystals for plastic solar cells; Architectures hybrides auto-assemblees a base de systemes polyconjugues et de nanocristaux de semi-conducteurs pour le photovoltaique plastique

    Energy Technology Data Exchange (ETDEWEB)

    Girolamo, J. de

    2007-11-15

    This work is devoted to the elaboration of self-assembled hybrid materials based on poly(3- hexyl-thiophene) and CdSe nano-crystals for photovoltaic applications. For that, complementary molecular recognition units were introduced as side chain groups on the polymer and at the nano-crystals' surface. Diamino-pyrimidine groups were introduced by post-functionalization of a precursor copolymer, namely poly(3-hexyl-thiophene-co-3- bromo-hexyl-thiophene) whereas thymine groups were introduced at the nano-crystals' surface by a ligand exchange reaction with 1-(6-mercapto-hexyl)thymine. However, due to their different solubility, the mixing of the two components by solution processes is difficult. A 'one-pot' procedure was developed, but this method led to insoluble aggregates without control of the hybrid composition. To overcome the solubility problem, the layer-by-layer method was used to prepare the films. This method allows a precise control of the deposition process. Experimental parameters were tested in order to evaluate their impact on the resulting film. The films morphology was investigated by microscopy and X-Ray diffraction techniques. These analyses reveal an interpenetrated structure of nano-crystals within the polymer matrix rather than a multilayered structure. Electrochemical and spectro electrochemical studies were performed on the hybrid material deposited by the LBL process. Finally the materials were tested in a solar cell configuration and the I=f(V) curves reveals a clear photovoltaic behaviour. (author)

  17. Assay of hybrid ribonuclease using a membrane filter-immobilized synthetic hybrid: application to the human leukemic cell

    International Nuclear Information System (INIS)

    Papaphilis, A.D.; Kamper, E.F.

    1985-01-01

    A method for assaying hybrid ribonuclease has been devised which utilizes as substrate the synthetic hybrid [ 3 H]polyriboadenylic acid [poly(rA)]:polydeoxythymidylic acid [poly(dT)] immobilized on the solid matrix of nitrocellulose filters. The hybridization on filter of [ 3 H]poly(rA) to poly(dT) has been explored in terms of efficacy of the process and the response of the product to RNase H. A pulse of uv irradiation of poly(dT) while in dry state on the filter increased its firm binding to the filter in a concentration-dependent manner, resulting in a concomitant increase of the yield of hybrid formation. The filter-immobilized hybrid was 95% resistant to RNase A but sensitive to RNase H. When stored in toluene in the cold the hybrid maintained its stability for over 6 months, as judged by its resistance to RNase A. The method offers a number of advantages over assays that use solution hybrids as substrat