Hybridizing Evolutionary Algorithms with Opportunistic Local Search
DEFF Research Database (Denmark)
Gießen, Christian
2013-01-01
There is empirical evidence that memetic algorithms (MAs) can outperform plain evolutionary algorithms (EAs). Recently the first runtime analyses have been presented proving the aforementioned conjecture rigorously by investigating Variable-Depth Search, VDS for short (Sudholt, 2008). Sudholt...... raised the question if there are problems where VDS performs badly. We answer this question in the affirmative in the following way. We analyze MAs with VDS, which is also known as Kernighan-Lin for the TSP, on an artificial problem and show that MAs with a simple first-improvement local search...... outperform VDS. Moreover, we show that the performance gap is exponential. We analyze the features leading to a failure of VDS and derive a new local search operator, coined Opportunistic Local Search, that can easily overcome regions of the search space where local optima are clustered. The power...
A hybrid monkey search algorithm for clustering analysis.
Chen, Xin; Zhou, Yongquan; Luo, Qifang
2014-01-01
Clustering is a popular data analysis and data mining technique. The k-means clustering algorithm is one of the most commonly used methods. However, it highly depends on the initial solution and is easy to fall into local optimum solution. In view of the disadvantages of the k-means method, this paper proposed a hybrid monkey algorithm based on search operator of artificial bee colony algorithm for clustering analysis and experiment on synthetic and real life datasets to show that the algorithm has a good performance than that of the basic monkey algorithm for clustering analysis.
A Hybrid Monkey Search Algorithm for Clustering Analysis
Directory of Open Access Journals (Sweden)
Xin Chen
2014-01-01
Full Text Available Clustering is a popular data analysis and data mining technique. The k-means clustering algorithm is one of the most commonly used methods. However, it highly depends on the initial solution and is easy to fall into local optimum solution. In view of the disadvantages of the k-means method, this paper proposed a hybrid monkey algorithm based on search operator of artificial bee colony algorithm for clustering analysis and experiment on synthetic and real life datasets to show that the algorithm has a good performance than that of the basic monkey algorithm for clustering analysis.
A Hybrid Backtracking Search Optimization Algorithm with Differential Evolution
Directory of Open Access Journals (Sweden)
Lijin Wang
2015-01-01
Full Text Available The backtracking search optimization algorithm (BSA is a new nature-inspired method which possesses a memory to take advantage of experiences gained from previous generation to guide the population to the global optimum. BSA is capable of solving multimodal problems, but it slowly converges and poorly exploits solution. The differential evolution (DE algorithm is a robust evolutionary algorithm and has a fast convergence speed in the case of exploitive mutation strategies that utilize the information of the best solution found so far. In this paper, we propose a hybrid backtracking search optimization algorithm with differential evolution, called HBD. In HBD, DE with exploitive strategy is used to accelerate the convergence by optimizing one worse individual according to its probability at each iteration process. A suit of 28 benchmark functions are employed to verify the performance of HBD, and the results show the improvement in effectiveness and efficiency of hybridization of BSA and DE.
A hybrid search algorithm for swarm robots searching in an unknown environment.
Li, Shoutao; Li, Lina; Lee, Gordon; Zhang, Hao
2014-01-01
This paper proposes a novel method to improve the efficiency of a swarm of robots searching in an unknown environment. The approach focuses on the process of feeding and individual coordination characteristics inspired by the foraging behavior in nature. A predatory strategy was used for searching; hence, this hybrid approach integrated a random search technique with a dynamic particle swarm optimization (DPSO) search algorithm. If a search robot could not find any target information, it used a random search algorithm for a global search. If the robot found any target information in a region, the DPSO search algorithm was used for a local search. This particle swarm optimization search algorithm is dynamic as all the parameters in the algorithm are refreshed synchronously through a communication mechanism until the robots find the target position, after which, the robots fall back to a random searching mode. Thus, in this searching strategy, the robots alternated between two searching algorithms until the whole area was covered. During the searching process, the robots used a local communication mechanism to share map information and DPSO parameters to reduce the communication burden and overcome hardware limitations. If the search area is very large, search efficiency may be greatly reduced if only one robot searches an entire region given the limited resources available and time constraints. In this research we divided the entire search area into several subregions, selected a target utility function to determine which subregion should be initially searched and thereby reduced the residence time of the target to improve search efficiency.
Solving Timetabling Problems by Hybridizing Genetic Algorithms and Taboo Search
Rahoual, Malek; Saad, Rachid
2006-01-01
International audience; As demand for Education increases and diversifies, so does the difficulty of designing workable timetables for schools and academic institutions. Besides the intractability of the basic problem, there is an increasing variety of constraints that come into play. In this paper we present a hybrid of two metaheuristics (genetic algorithm and tabu search) to tackle the problem in its most general setting. Promising experimental results are shown.
A fast hybrid algorithm for exoplanetary transit searches
Cameron, A C; Street, R A; Lister, T A; West, R G; Wilson, D M; Pont, F; Christian, D J; Clarkson, W I; Enoch, B; Evans, A; Fitzsimmons, A; Haswell, C A; Hellier, C; Hodgkin, S T; Horne, K; Irwin, J; Kane, S R; Keenan, F P; Norton, A J; Parley, N R; Osborne, J; Ryans, R; Skillen, I; Wheatley, P J
2006-01-01
We present a fast and efficient hybrid algorithm for selecting exoplanetary candidates from wide-field transit surveys. Our method is based on the widely-used SysRem and Box Least-Squares (BLS) algorithms. Patterns of systematic error that are common to all stars on the frame are mapped and eliminated using the SysRem algorithm. The remaining systematic errors caused by spatially localised flat-fielding and other errors are quantified using a boxcar-smoothing method. We show that the dimensions of the search-parameter space can be reduced greatly by carrying out an initial BLS search on a coarse grid of reduced dimensions, followed by Newton-Raphson refinement of the transit parameters in the vicinity of the most significant solutions. We illustrate the method's operation by applying it to data from one field of the SuperWASP survey, comprising 2300 observations of 7840 stars brighter than V=13.0. We identify 11 likely transit candidates. We reject stars that exhibit significant ellipsoidal variations indicat...
A Hybrid Quantum Search Engine: A Fast Quantum Algorithm for Multiple Matches
Younes, A; Miller, J; Younes, Ahmed; Rowe, Jon; Miller, Julian
2003-01-01
In this paper we will present a quantum algorithm which works very efficiently in case of multiple matches within the search space and in the case of few matches, the algorithm performs classically. This allows us to propose a hybrid quantum search engine that integrates Grover's algorithm and the proposed algorithm here to have general performance better that any pure classical or quantum search algorithm.
Igeta, Hideki; Hasegawa, Mikio
Chaotic dynamics have been effectively applied to improve various heuristic algorithms for combinatorial optimization problems in many studies. Currently, the most used chaotic optimization scheme is to drive heuristic solution search algorithms applicable to large-scale problems by chaotic neurodynamics including the tabu effect of the tabu search. Alternatively, meta-heuristic algorithms are used for combinatorial optimization by combining a neighboring solution search algorithm, such as tabu, gradient, or other search method, with a global search algorithm, such as genetic algorithms (GA), ant colony optimization (ACO), or others. In these hybrid approaches, the ACO has effectively optimized the solution of many benchmark problems in the quadratic assignment problem library. In this paper, we propose a novel hybrid method that combines the effective chaotic search algorithm that has better performance than the tabu search and global search algorithms such as ACO and GA. Our results show that the proposed chaotic hybrid algorithm has better performance than the conventional chaotic search and conventional hybrid algorithms. In addition, we show that chaotic search algorithm combined with ACO has better performance than when combined with GA.
Energy Technology Data Exchange (ETDEWEB)
Sheng, Zheng, E-mail: 19994035@sina.com [College of Meteorology and Oceanography, PLA University of Science and Technology, Nanjing 211101 (China); Wang, Jun; Zhou, Bihua [National Defense Key Laboratory on Lightning Protection and Electromagnetic Camouflage, PLA University of Science and Technology, Nanjing 210007 (China); Zhou, Shudao [College of Meteorology and Oceanography, PLA University of Science and Technology, Nanjing 211101 (China); Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Nanjing University of Information Science and Technology, Nanjing 210044 (China)
2014-03-15
This paper introduces a novel hybrid optimization algorithm to establish the parameters of chaotic systems. In order to deal with the weaknesses of the traditional cuckoo search algorithm, the proposed adaptive cuckoo search with simulated annealing algorithm is presented, which incorporates the adaptive parameters adjusting operation and the simulated annealing operation in the cuckoo search algorithm. Normally, the parameters of the cuckoo search algorithm are kept constant that may result in decreasing the efficiency of the algorithm. For the purpose of balancing and enhancing the accuracy and convergence rate of the cuckoo search algorithm, the adaptive operation is presented to tune the parameters properly. Besides, the local search capability of cuckoo search algorithm is relatively weak that may decrease the quality of optimization. So the simulated annealing operation is merged into the cuckoo search algorithm to enhance the local search ability and improve the accuracy and reliability of the results. The functionality of the proposed hybrid algorithm is investigated through the Lorenz chaotic system under the noiseless and noise condition, respectively. The numerical results demonstrate that the method can estimate parameters efficiently and accurately in the noiseless and noise condition. Finally, the results are compared with the traditional cuckoo search algorithm, genetic algorithm, and particle swarm optimization algorithm. Simulation results demonstrate the effectiveness and superior performance of the proposed algorithm.
Sheng, Zheng; Wang, Jun; Zhou, Shudao; Zhou, Bihua
2014-03-01
This paper introduces a novel hybrid optimization algorithm to establish the parameters of chaotic systems. In order to deal with the weaknesses of the traditional cuckoo search algorithm, the proposed adaptive cuckoo search with simulated annealing algorithm is presented, which incorporates the adaptive parameters adjusting operation and the simulated annealing operation in the cuckoo search algorithm. Normally, the parameters of the cuckoo search algorithm are kept constant that may result in decreasing the efficiency of the algorithm. For the purpose of balancing and enhancing the accuracy and convergence rate of the cuckoo search algorithm, the adaptive operation is presented to tune the parameters properly. Besides, the local search capability of cuckoo search algorithm is relatively weak that may decrease the quality of optimization. So the simulated annealing operation is merged into the cuckoo search algorithm to enhance the local search ability and improve the accuracy and reliability of the results. The functionality of the proposed hybrid algorithm is investigated through the Lorenz chaotic system under the noiseless and noise condition, respectively. The numerical results demonstrate that the method can estimate parameters efficiently and accurately in the noiseless and noise condition. Finally, the results are compared with the traditional cuckoo search algorithm, genetic algorithm, and particle swarm optimization algorithm. Simulation results demonstrate the effectiveness and superior performance of the proposed algorithm.
Enhanced hybrid search algorithm for protein structure prediction using the 3D-HP lattice model.
Zhou, Changjun; Hou, Caixia; Zhang, Qiang; Wei, Xiaopeng
2013-09-01
The problem of protein structure prediction in the hydrophobic-polar (HP) lattice model is the prediction of protein tertiary structure. This problem is usually referred to as the protein folding problem. This paper presents a method for the application of an enhanced hybrid search algorithm to the problem of protein folding prediction, using the three dimensional (3D) HP lattice model. The enhanced hybrid search algorithm is a combination of the particle swarm optimizer (PSO) and tabu search (TS) algorithms. Since the PSO algorithm entraps local minimum in later evolution extremely easily, we combined PSO with the TS algorithm, which has properties of global optimization. Since the technologies of crossover and mutation are applied many times to PSO and TS algorithms, so enhanced hybrid search algorithm is called the MCMPSO-TS (multiple crossover and mutation PSO-TS) algorithm. Experimental results show that the MCMPSO-TS algorithm can find the best solutions so far for the listed benchmarks, which will help comparison with any future paper approach. Moreover, real protein sequences and Fibonacci sequences are verified in the 3D HP lattice model for the first time. Compared with the previous evolutionary algorithms, the new hybrid search algorithm is novel, and can be used effectively to predict 3D protein folding structure. With continuous development and changes in amino acids sequences, the new algorithm will also make a contribution to the study of new protein sequences.
Directory of Open Access Journals (Sweden)
A. A. Almazroi
2011-01-01
Full Text Available Problem statement: String matching algorithm had been an essential means for searching biological sequence database. With the constant expansion in scientific data such as DNA and Protein; the development of enhanced algorithms have even become more critical as the major concern had always been how to raise the performances of these search algorithms to meet challenges of scientific information. Approach: Therefore a new hybrid algorithm comprising Berry Ravindran (BR and Alpha Skip Search (ASS is presented. The concept is based on BR shift function and combines with ASS to ensure improved performance. Results: The results obtained in percentages from the proposed hybrid algorithm displayed superior results in terms of number of attempts and number of character comparisons than the original algorithms when various types of data namely DNA, Protein and English text are applied to appraise the hybrid performances. The enhancement of the proposed hybrid algorithm performs better at 71%, 60% and 63% when compared to Berry-Ravindran in DNA, Protein and English text correspondingly. Moreover the rate of enhancement over Alpha Skip Search algorithm in DNA, Protein and English text are 48%, 28% and 36% respectively. Conclusion: The new proposed hybrid algorithm is relevant for searching biological science sequence database and also other string search systems.
HYBRID APPROACH FOR OPTIMAL CLUSTER HEAD SELECTION IN WSN USING LEACH AND MONKEY SEARCH ALGORITHMS
Directory of Open Access Journals (Sweden)
T. SHANKAR
2017-02-01
Full Text Available Wireless Sensor Networks (WSNs are being widely used with low-cost, lowpower, multifunction sensors based on the development of wireless communication, which has enabled a wide variety of new applications. In WSN, the main concern is that it contains a limited power battery and is constrained in energy consumption hence energy and lifetime are of paramount importance. To achieve high energy efficiency and prolong network lifetime in WSNs, clustering techniques have been widely adopted. The proposed algorithm is hybridization of well-known Low-Energy Adaptive Clustering Hierarchy (LEACH algorithm with a distinctive Monkey Search (MS algorithm, which is an optimization algorithm used for optimal cluster head selection. The proposed hybrid algorithm exhibit high throughput, residual energy and improved lifetime. Comparison of the proposed hybrid algorithm is made with the well-known cluster-based protocols for WSNs, namely, LEACH and monkey search algorithm, individually.
A hybrid cuckoo search algorithm with Nelder Mead method for solving global optimization problems.
Ali, Ahmed F; Tawhid, Mohamed A
2016-01-01
Cuckoo search algorithm is a promising metaheuristic population based method. It has been applied to solve many real life problems. In this paper, we propose a new cuckoo search algorithm by combining the cuckoo search algorithm with the Nelder-Mead method in order to solve the integer and minimax optimization problems. We call the proposed algorithm by hybrid cuckoo search and Nelder-Mead method (HCSNM). HCSNM starts the search by applying the standard cuckoo search for number of iterations then the best obtained solution is passing to the Nelder-Mead algorithm as an intensification process in order to accelerate the search and overcome the slow convergence of the standard cuckoo search algorithm. The proposed algorithm is balancing between the global exploration of the Cuckoo search algorithm and the deep exploitation of the Nelder-Mead method. We test HCSNM algorithm on seven integer programming problems and ten minimax problems and compare against eight algorithms for solving integer programming problems and seven algorithms for solving minimax problems. The experiments results show the efficiency of the proposed algorithm and its ability to solve integer and minimax optimization problems in reasonable time.
Wang, Yan; Huang, Song; Ji, Zhicheng
2017-07-01
This paper presents a hybrid particle swarm optimization and gravitational search algorithm based on hybrid mutation strategy (HGSAPSO-M) to optimize economic dispatch (ED) including distributed generations (DGs) considering market-based energy pricing. A daily ED model was formulated and a hybrid mutation strategy was adopted in HGSAPSO-M. The hybrid mutation strategy includes two mutation operators, chaotic mutation, Gaussian mutation. The proposed algorithm was tested on IEEE-33 bus and results show that the approach is effective for this problem.
Kanagaraj, G.; Ponnambalam, S. G.; Jawahar, N.; Mukund Nilakantan, J.
2014-10-01
This article presents an effective hybrid cuckoo search and genetic algorithm (HCSGA) for solving engineering design optimization problems involving problem-specific constraints and mixed variables such as integer, discrete and continuous variables. The proposed algorithm, HCSGA, is first applied to 13 standard benchmark constrained optimization functions and subsequently used to solve three well-known design problems reported in the literature. The numerical results obtained by HCSGA show competitive performance with respect to recent algorithms for constrained design optimization problems.
Hybrid fuzzy charged system search algorithm based state estimation in distribution networks
Directory of Open Access Journals (Sweden)
Sachidananda Prasad
2017-06-01
Full Text Available This paper proposes a new hybrid charged system search (CSS algorithm based state estimation in radial distribution networks in fuzzy framework. The objective of the optimization problem is to minimize the weighted square of the difference between the measured and the estimated quantity. The proposed method of state estimation considers bus voltage magnitude and phase angle as state variable along with some equality and inequality constraints for state estimation in distribution networks. A rule based fuzzy inference system has been designed to control the parameters of the CSS algorithm to achieve better balance between the exploration and exploitation capability of the algorithm. The efficiency of the proposed fuzzy adaptive charged system search (FACSS algorithm has been tested on standard IEEE 33-bus system and Indian 85-bus practical radial distribution system. The obtained results have been compared with the conventional CSS algorithm, weighted least square (WLS algorithm and particle swarm optimization (PSO for feasibility of the algorithm.
Zainuddin, Zarita; Lai, Kee Huong; Ong, Pauline
2013-04-01
Artificial neural networks (ANNs) are powerful mathematical models that are used to solve complex real world problems. Wavelet neural networks (WNNs), which were developed based on the wavelet theory, are a variant of ANNs. During the training phase of WNNs, several parameters need to be initialized; including the type of wavelet activation functions, translation vectors, and dilation parameter. The conventional k-means and fuzzy c-means clustering algorithms have been used to select the translation vectors. However, the solution vectors might get trapped at local minima. In this regard, the evolutionary harmony search algorithm, which is capable of searching for near-optimum solution vectors, both locally and globally, is introduced to circumvent this problem. In this paper, the conventional k-means and fuzzy c-means clustering algorithms were hybridized with the metaheuristic harmony search algorithm. In addition to obtaining the estimation of the global minima accurately, these hybridized algorithms also offer more than one solution to a particular problem, since many possible solution vectors can be generated and stored in the harmony memory. To validate the robustness of the proposed WNNs, the real world problem of epileptic seizure detection was presented. The overall classification accuracy from the simulation showed that the hybridized metaheuristic algorithms outperformed the standard k-means and fuzzy c-means clustering algorithms.
Local Search Algorithm with Hybrid Neighborhood and Its Application to Job Shop Scheduling Problem
Institute of Scientific and Technical Information of China (English)
黄文奇; 曾立平
2004-01-01
A new local search method with hybrid neighborhood for Job shop scheduling problem is developed. The proposed hybrid neighborhood is not only efficient in local search, but also can help overcome entrapments while search procedure get trapped at local optima and carry the search to areas of the feasible set with better prospect. New strategies used for breaking out of entrapments are presented and they are helpful for the procedure to improve local optima. A performance comparison of the proposed method with some best-performing algorithms on all 10-job, 10-machine benchmark problems and the other two problems generated by Fisher and Thompson ( ie. , FT6 and FT20) is made. The experiment results show the better optimal performance of the proposed algorithm.
A Hybrid Search Algorithm for Midterm Optimal Scheduling of Thermal Power Plants
Directory of Open Access Journals (Sweden)
Shengli Liao
2015-01-01
Full Text Available A hybrid search algorithm consisting of three stages is presented to solve the midterm schedule for thermal power plants (MTSFTPP problem, where the primary objective is to achieve equal accumulated operating hours of installed capacity (EAOHIC for all thermal power plants during the selected period. First, feasible spaces are produced and narrowed based on constraints on the number of units and power load factors. Second, an initial feasible solution is obtained by a heuristic method that considers operating times and boundary conditions. Finally, the progressive optimality algorithm (POA, which we refer to as the vertical search algorithm (VSA, is used to solve the MTSFTPP problem. A method for avoiding convergence to a local minimum, called the lateral search algorithm (LSA, is presented. The LSA provides an updated solution that is used as a new feasible starting point for the next search in the VSA. The combination of the LSA and the VSA is referred to as the hybrid search algorithm (HSA, which is simple and converges quickly to the global minimum. The results of two case studies show that the algorithm is very effective in solving the MTSFTPP problem accurately and in real time.
Jianwen Guo; Zhenzhong Sun; Hong Tang; Xuejun Jia; Song Wang; Xiaohui Yan; Guoliang Ye; Guohong Wu
2016-01-01
All equipment must be maintained during its lifetime to ensure normal operation. Maintenance is one of the critical roles in the success of manufacturing enterprises. This paper proposed a preventive maintenance period optimization model (PMPOM) to find an optimal preventive maintenance period. By making use of the advantages of particle swarm optimization (PSO) and cuckoo search (CS) algorithm, a hybrid optimization algorithm of PSO and CS is proposed to solve the PMPOM problem. The test fun...
2014-01-01
An effective hybrid cuckoo search algorithm (CS) with improved shuffled frog-leaping algorithm (ISFLA) is put forward for solving 0-1 knapsack problem. First of all, with the framework of SFLA, an improved frog-leap operator is designed with the effect of the global optimal information on the frog leaping and information exchange between frog individuals combined with genetic mutation with a small probability. Subsequently, in order to improve the ...
Design of Digital IIR Filter with Conflicting Objectives Using Hybrid Gravitational Search Algorithm
Directory of Open Access Journals (Sweden)
D. S. Sidhu
2015-01-01
Full Text Available In the recent years, the digital IIR filter design as a single objective optimization problem using evolutionary algorithms has gained much attention. In this paper, the digital IIR filter design is treated as a multiobjective problem by minimizing the magnitude response error, linear phase response error and optimal order simultaneously along with meeting the stability criterion. Hybrid gravitational search algorithm (HGSA has been applied to design the digital IIR filter. GSA technique is hybridized with binary successive approximation (BSA based evolutionary search method for exploring the search space locally. The relative performance of GSA and hybrid GSA has been evaluated by applying these techniques to standard mathematical test functions. The above proposed hybrid search techniques have been applied effectively to solve the multiparameter and multiobjective optimization problem of low-pass (LP, high-pass (HP, band-pass (BP, and band-stop (BS digital IIR filter design. The obtained results reveal that the proposed technique performs better than other algorithms applied by other researchers for the design of digital IIR filter with conflicting objectives.
Directory of Open Access Journals (Sweden)
Santosh Kumar Singh
2017-06-01
Full Text Available This paper presents a new hybrid method based on Gravity Search Algorithm (GSA and Recursive Least Square (RLS, known as GSA-RLS, to solve the harmonic estimation problems in the case of time varying power signals in presence of different noises. GSA is based on the Newton’s law of gravity and mass interactions. In the proposed method, the searcher agents are a collection of masses that interact with each other using Newton’s laws of gravity and motion. The basic GSA algorithm strategy is combined with RLS algorithm sequentially in an adaptive way to update the unknown parameters (weights of the harmonic signal. Simulation and practical validation are made with the experimentation of the proposed algorithm with real time data obtained from a heavy paper industry. A comparative performance of the proposed algorithm is evaluated with other recently reported algorithms like, Differential Evolution (DE, Particle Swarm Optimization (PSO, Bacteria Foraging Optimization (BFO, Fuzzy-BFO (F-BFO hybridized with Least Square (LS and BFO hybridized with RLS algorithm, which reveals that the proposed GSA-RLS algorithm is the best in terms of accuracy, convergence and computational time.
Research on the adaptive hybrid search tree anti-collision algorithm in RFID system
Institute of Scientific and Technical Information of China (English)
靳晓芳
2016-01-01
Due to more tag-collisions result in failed transmissions, tag anti-collision is a very vital issue in the radio frequency identification ( RFID) system.However, so far decreases in communication time and increases in throughput are very limited.In order to solve these problems, this paper presents a novel tag anti-collision scheme, namely adaptive hybrid search tree ( AHST) , by combining two al-gorithms of the adaptive binary-tree disassembly ( ABD) and the combination query tree ( CQT) , in which ABD has superior tag identification velocity and CQT has optimum performance in system throughput and search timeslots.From the theoretical analysis and numerical simulations, the pro-posed algorithm can colligate the advantages of above algorithms, improve the system throughput and reduce the searching timeslots dramatically.
Directory of Open Access Journals (Sweden)
Jianwen Guo
2016-01-01
Full Text Available All equipment must be maintained during its lifetime to ensure normal operation. Maintenance is one of the critical roles in the success of manufacturing enterprises. This paper proposed a preventive maintenance period optimization model (PMPOM to find an optimal preventive maintenance period. By making use of the advantages of particle swarm optimization (PSO and cuckoo search (CS algorithm, a hybrid optimization algorithm of PSO and CS is proposed to solve the PMPOM problem. The test functions show that the proposed algorithm exhibits more outstanding performance than particle swarm optimization and cuckoo search. Experiment results show that the proposed algorithm has advantages of strong optimization ability and fast convergence speed to solve the PMPOM problem.
Adabor, Emmanuel S; Acquaah-Mensah, George K; Oduro, Francis T
2015-02-01
Bayesian Networks have been used for the inference of transcriptional regulatory relationships among genes, and are valuable for obtaining biological insights. However, finding optimal Bayesian Network (BN) is NP-hard. Thus, heuristic approaches have sought to effectively solve this problem. In this work, we develop a hybrid search method combining Simulated Annealing with a Greedy Algorithm (SAGA). SAGA explores most of the search space by undergoing a two-phase search: first with a Simulated Annealing search and then with a Greedy search. Three sets of background-corrected and normalized microarray datasets were used to test the algorithm. BN structure learning was also conducted using the datasets, and other established search methods as implemented in BANJO (Bayesian Network Inference with Java Objects). The Bayesian Dirichlet Equivalence (BDe) metric was used to score the networks produced with SAGA. SAGA predicted transcriptional regulatory relationships among genes in networks that evaluated to higher BDe scores with high sensitivities and specificities. Thus, the proposed method competes well with existing search algorithms for Bayesian Network structure learning of transcriptional regulatory networks.
Quality of Service Routing in Manet Using a Hybrid Intelligent Algorithm Inspired by Cuckoo Search
Directory of Open Access Journals (Sweden)
S. Rajalakshmi
2015-01-01
Full Text Available A hybrid computational intelligent algorithm is proposed by integrating the salient features of two different heuristic techniques to solve a multiconstrained Quality of Service Routing (QoSR problem in Mobile Ad Hoc Networks (MANETs is presented. The QoSR is always a tricky problem to determine an optimum route that satisfies variety of necessary constraints in a MANET. The problem is also declared as NP-hard due to the nature of constant topology variation of the MANETs. Thus a solution technique that embarks upon the challenges of the QoSR problem is needed to be underpinned. This paper proposes a hybrid algorithm by modifying the Cuckoo Search Algorithm (CSA with the new position updating mechanism. This updating mechanism is derived from the differential evolution (DE algorithm, where the candidates learn from diversified search regions. Thus the CSA will act as the main search procedure guided by the updating mechanism derived from DE, called tuned CSA (TCSA. Numerical simulations on MANETs are performed to demonstrate the effectiveness of the proposed TCSA method by determining an optimum route that satisfies various Quality of Service (QoS constraints. The results are compared with some of the existing techniques in the literature; therefore the superiority of the proposed method is established.
Quality of Service Routing in Manet Using a Hybrid Intelligent Algorithm Inspired by Cuckoo Search.
Rajalakshmi, S; Maguteeswaran, R
2015-01-01
A hybrid computational intelligent algorithm is proposed by integrating the salient features of two different heuristic techniques to solve a multiconstrained Quality of Service Routing (QoSR) problem in Mobile Ad Hoc Networks (MANETs) is presented. The QoSR is always a tricky problem to determine an optimum route that satisfies variety of necessary constraints in a MANET. The problem is also declared as NP-hard due to the nature of constant topology variation of the MANETs. Thus a solution technique that embarks upon the challenges of the QoSR problem is needed to be underpinned. This paper proposes a hybrid algorithm by modifying the Cuckoo Search Algorithm (CSA) with the new position updating mechanism. This updating mechanism is derived from the differential evolution (DE) algorithm, where the candidates learn from diversified search regions. Thus the CSA will act as the main search procedure guided by the updating mechanism derived from DE, called tuned CSA (TCSA). Numerical simulations on MANETs are performed to demonstrate the effectiveness of the proposed TCSA method by determining an optimum route that satisfies various Quality of Service (QoS) constraints. The results are compared with some of the existing techniques in the literature; therefore the superiority of the proposed method is established.
Hybrid water flow-like algorithm with Tabu search for traveling salesman problem
Bostamam, Jasmin M.; Othman, Zulaiha
2016-08-01
This paper presents a hybrid Water Flow-like Algorithm with Tabu Search for solving travelling salesman problem (WFA-TS-TSP).WFA has been proven its outstanding performances in solving TSP meanwhile TS is a conventional algorithm which has been used since decades to solve various combinatorial optimization problem including TSP. Hybridization between WFA with TS provides a better balance of exploration and exploitation criteria which are the key elements in determining the performance of one metaheuristic. TS use two different local search namely, 2opt and 3opt separately. The proposed WFA-TS-TSP is tested on 23 sets on the well-known benchmarked symmetric TSP instances. The result shows that the proposed WFA-TS-TSP has significant better quality solutions compared to WFA. The result also shows that the WFA-TS-TSP with 3-opt obtained the best quality solution. With the result obtained, it could be concluded that WFA has potential to be further improved by using hybrid technique or using better local search technique.
An improved hybrid encoding cuckoo search algorithm for 0-1 knapsack problems.
Feng, Yanhong; Jia, Ke; He, Yichao
2014-01-01
Cuckoo search (CS) is a new robust swarm intelligence method that is based on the brood parasitism of some cuckoo species. In this paper, an improved hybrid encoding cuckoo search algorithm (ICS) with greedy strategy is put forward for solving 0-1 knapsack problems. First of all, for solving binary optimization problem with ICS, based on the idea of individual hybrid encoding, the cuckoo search over a continuous space is transformed into the synchronous evolution search over discrete space. Subsequently, the concept of confidence interval (CI) is introduced; hence, the new position updating is designed and genetic mutation with a small probability is introduced. The former enables the population to move towards the global best solution rapidly in every generation, and the latter can effectively prevent the ICS from trapping into the local optimum. Furthermore, the greedy transform method is used to repair the infeasible solution and optimize the feasible solution. Experiments with a large number of KP instances show the effectiveness of the proposed algorithm and its ability to achieve good quality solutions.
Abdul Rani, Khairul Najmy; Abdulmalek, Mohamedfareq; A. Rahim, Hasliza; Siew Chin, Neoh; Abd Wahab, Alawiyah
2017-04-01
This research proposes the various versions of modified cuckoo search (MCS) metaheuristic algorithm deploying the strength Pareto evolutionary algorithm (SPEA) multiobjective (MO) optimization technique in rectangular array geometry synthesis. Precisely, the MCS algorithm is proposed by incorporating the Roulette wheel selection operator to choose the initial host nests (individuals) that give better results, adaptive inertia weight to control the positions exploration of the potential best host nests (solutions), and dynamic discovery rate to manage the fraction probability of finding the best host nests in 3-dimensional search space. In addition, the MCS algorithm is hybridized with the particle swarm optimization (PSO) and hill climbing (HC) stochastic techniques along with the standard strength Pareto evolutionary algorithm (SPEA) forming the MCSPSOSPEA and MCSHCSPEA, respectively. All the proposed MCS-based algorithms are examined to perform MO optimization on Zitzler-Deb-Thiele’s (ZDT’s) test functions. Pareto optimum trade-offs are done to generate a set of three non-dominated solutions, which are locations, excitation amplitudes, and excitation phases of array elements, respectively. Overall, simulations demonstrates that the proposed MCSPSOSPEA outperforms other compatible competitors, in gaining a high antenna directivity, small half-power beamwidth (HPBW), low average side lobe level (SLL) suppression, and/or significant predefined nulls mitigation, simultaneously.
Institute of Scientific and Technical Information of China (English)
LI Xiang; LIU Guang-ying; QI Jian-xun
2007-01-01
To evaluate the credit risk of customers in power market precisely, the new chaotic searching and fuzzy neural network (FNN)hybrid algorithm were proposed. By combining with the chaotic searching,the learning ability of the FNN was markedly enhanced. Customers'actual credit flaw data of power supply enterprises were collected to carry on the real evaluation, which can be treated as example for the model. The result shows that the proposed method surpasses the traditional statistical models in regard to the precision of forecasting and has a practical value. Compared with the results of ordinary FNN and ANN. the precision of the proposed algorithm call be enhanced by 2.2% and 4.5%. respectively.
Hooke–Jeeves Method-used Local Search in a Hybrid Global Optimization Algorithm
Directory of Open Access Journals (Sweden)
V. D. Sulimov
2014-01-01
Full Text Available Modern methods for optimization investigation of complex systems are based on development and updating the mathematical models of systems because of solving the appropriate inverse problems. Input data desirable for solution are obtained from the analysis of experimentally defined consecutive characteristics for a system or a process. Causal characteristics are the sought ones to which equation coefficients of mathematical models of object, limit conditions, etc. belong. The optimization approach is one of the main ones to solve the inverse problems. In the main case it is necessary to find a global extremum of not everywhere differentiable criterion function. Global optimization methods are widely used in problems of identification and computation diagnosis system as well as in optimal control, computing to-mography, image restoration, teaching the neuron networks, other intelligence technologies. Increasingly complicated systems of optimization observed during last decades lead to more complicated mathematical models, thereby making solution of appropriate extreme problems significantly more difficult. A great deal of practical applications may have the problem con-ditions, which can restrict modeling. As a consequence, in inverse problems the criterion functions can be not everywhere differentiable and noisy. Available noise means that calculat-ing the derivatives is difficult and unreliable. It results in using the optimization methods without calculating the derivatives.An efficiency of deterministic algorithms of global optimization is significantly restrict-ed by their dependence on the extreme problem dimension. When the number of variables is large they use the stochastic global optimization algorithms. As stochastic algorithms yield too expensive solutions, so this drawback restricts their applications. Developing hybrid algo-rithms that combine a stochastic algorithm for scanning the variable space with deterministic local search
Aorigele; Zeng, Weiming; Hong, Xiaomin
2016-01-01
Gene expression data composed of thousands of genes play an important role in classification platforms and disease diagnosis. Hence, it is vital to select a small subset of salient features over a large number of gene expression data. Lately, many researchers devote themselves to feature selection using diverse computational intelligence methods. However, in the progress of selecting informative genes, many computational methods face difficulties in selecting small subsets for cancer classification due to the huge number of genes (high dimension) compared to the small number of samples, noisy genes, and irrelevant genes. In this paper, we propose a new hybrid algorithm HICATS incorporating imperialist competition algorithm (ICA) which performs global search and tabu search (TS) that conducts fine-tuned search. In order to verify the performance of the proposed algorithm HICATS, we have tested it on 10 well-known benchmark gene expression classification datasets with dimensions varying from 2308 to 12600. The performance of our proposed method proved to be superior to other related works including the conventional version of binary optimization algorithm in terms of classification accuracy and the number of selected genes. PMID:27579323
Solving the Vehicle Routing Problem with Stochastic Demands via Hybrid Genetic Algorithm-Tabu Search
Directory of Open Access Journals (Sweden)
Z. Ismail
2008-01-01
Full Text Available This study considers a version of the stochastic vehicle routing problem where customer demands are random variables with known probability distribution. A new scheme based on a hybrid GA and Tabu Search heuristic is proposed for this problem under a priori approach with preventive restocking. The relative performance of the proposed HGATS is compared to each GA and TS alone, on a set of randomly generated problems following some discrete probability distributions. The problem data are inspired by real case of VRPSD in waste collection. Results from the experiment show the advantages of the proposed algorithm that are its robustness and better solution qualities resulted.
Genetic Algorithms and Local Search
Whitley, Darrell
1996-01-01
The first part of this presentation is a tutorial level introduction to the principles of genetic search and models of simple genetic algorithms. The second half covers the combination of genetic algorithms with local search methods to produce hybrid genetic algorithms. Hybrid algorithms can be modeled within the existing theoretical framework developed for simple genetic algorithms. An application of a hybrid to geometric model matching is given. The hybrid algorithm yields results that improve on the current state-of-the-art for this problem.
Hybrid Genetic-cuckoo Search Algorithm for Solving Runway Dependent Aircraft Landing Problem
Directory of Open Access Journals (Sweden)
Peigang Guo
2013-07-01
Full Text Available As the demand for air transportation continues to grow, some flights cannot land at their preferred landing times because the airport is near its runway capacity. Therefore, devising a method for tackling the Aircraft Landing Problem (ALP in order to optimize the usage of existing runways at airports is the focus of this study. This study, a hybrid Genetic-Cuckoo Search (GCS algorithm for optimization the ALP with runway is proposed. The numerical results showed that the proposed GCS algorithm can effectively and efficiently determine the runway allocation, sequence and landing time for arriving aircraft for the three test cases by minimizing total delays under the separation constraints in comparison with the outcomes yielded by previous studies.
Directory of Open Access Journals (Sweden)
Yanhong Feng
2014-01-01
Full Text Available An effective hybrid cuckoo search algorithm (CS with improved shuffled frog-leaping algorithm (ISFLA is put forward for solving 0-1 knapsack problem. First of all, with the framework of SFLA, an improved frog-leap operator is designed with the effect of the global optimal information on the frog leaping and information exchange between frog individuals combined with genetic mutation with a small probability. Subsequently, in order to improve the convergence speed and enhance the exploitation ability, a novel CS model is proposed with considering the specific advantages of Lévy flights and frog-leap operator. Furthermore, the greedy transform method is used to repair the infeasible solution and optimize the feasible solution. Finally, numerical simulations are carried out on six different types of 0-1 knapsack instances, and the comparative results have shown the effectiveness of the proposed algorithm and its ability to achieve good quality solutions, which outperforms the binary cuckoo search, the binary differential evolution, and the genetic algorithm.
Feng, Yanhong; Wang, Gai-Ge; Feng, Qingjiang; Zhao, Xiang-Jun
2014-01-01
An effective hybrid cuckoo search algorithm (CS) with improved shuffled frog-leaping algorithm (ISFLA) is put forward for solving 0-1 knapsack problem. First of all, with the framework of SFLA, an improved frog-leap operator is designed with the effect of the global optimal information on the frog leaping and information exchange between frog individuals combined with genetic mutation with a small probability. Subsequently, in order to improve the convergence speed and enhance the exploitation ability, a novel CS model is proposed with considering the specific advantages of Lévy flights and frog-leap operator. Furthermore, the greedy transform method is used to repair the infeasible solution and optimize the feasible solution. Finally, numerical simulations are carried out on six different types of 0-1 knapsack instances, and the comparative results have shown the effectiveness of the proposed algorithm and its ability to achieve good quality solutions, which outperforms the binary cuckoo search, the binary differential evolution, and the genetic algorithm.
Lim, Wee Loon; Wibowo, Antoni; Desa, Mohammad Ishak; Haron, Habibollah
2016-01-01
The quadratic assignment problem (QAP) is an NP-hard combinatorial optimization problem with a wide variety of applications. Biogeography-based optimization (BBO), a relatively new optimization technique based on the biogeography concept, uses the idea of migration strategy of species to derive algorithm for solving optimization problems. It has been shown that BBO provides performance on a par with other optimization methods. A classical BBO algorithm employs the mutation operator as its diversification strategy. However, this process will often ruin the quality of solutions in QAP. In this paper, we propose a hybrid technique to overcome the weakness of classical BBO algorithm to solve QAP, by replacing the mutation operator with a tabu search procedure. Our experiments using the benchmark instances from QAPLIB show that the proposed hybrid method is able to find good solutions for them within reasonable computational times. Out of 61 benchmark instances tested, the proposed method is able to obtain the best known solutions for 57 of them.
Directory of Open Access Journals (Sweden)
Wee Loon Lim
2016-01-01
Full Text Available The quadratic assignment problem (QAP is an NP-hard combinatorial optimization problem with a wide variety of applications. Biogeography-based optimization (BBO, a relatively new optimization technique based on the biogeography concept, uses the idea of migration strategy of species to derive algorithm for solving optimization problems. It has been shown that BBO provides performance on a par with other optimization methods. A classical BBO algorithm employs the mutation operator as its diversification strategy. However, this process will often ruin the quality of solutions in QAP. In this paper, we propose a hybrid technique to overcome the weakness of classical BBO algorithm to solve QAP, by replacing the mutation operator with a tabu search procedure. Our experiments using the benchmark instances from QAPLIB show that the proposed hybrid method is able to find good solutions for them within reasonable computational times. Out of 61 benchmark instances tested, the proposed method is able to obtain the best known solutions for 57 of them.
Model-based Layer Estimation using a Hybrid Genetic/Gradient Search Optimization Algorithm
Energy Technology Data Exchange (ETDEWEB)
Chambers, D; Lehman, S; Dowla, F
2007-05-17
A particle swarm optimization (PSO) algorithm is combined with a gradient search method in a model-based approach for extracting interface positions in a one-dimensional multilayer structure from acoustic or radar reflections. The basic approach is to predict the reflection measurement using a simulation of one-dimensional wave propagation in a multi-layer, evaluate the error between prediction and measurement, and then update the simulation parameters to minimize the error. Gradient search methods alone fail due to the number of local minima in the error surface close to the desired global minimum. The PSO approach avoids this problem by randomly sampling the region of the error surface around the global minimum, but at the cost of a large number of evaluations of the simulator. The hybrid approach uses the PSO at the beginning to locate the general area around the global minimum then switches to the gradient search method to zero in on it. Examples of the algorithm applied to the detection of interior walls of a building from reflected ultra-wideband radar signals are shown. Other possible applications are optical inspection of coatings and ultrasonic measurement of multilayer structures.
Directory of Open Access Journals (Sweden)
Yuliang Su
2015-04-01
Full Text Available A turning machine tool is a kind of new type of machine tool that is equipped with more than one spindle and turret. The distinctive simultaneous and parallel processing abilities of turning machine tool increase the complexity of process planning. The operations would not only be sequenced and satisfy precedence constraints, but also should be scheduled with multiple objectives such as minimizing machining cost, maximizing utilization of turning machine tool, and so on. To solve this problem, a hybrid genetic algorithm was proposed to generate optimal process plans based on a mixed 0-1 integer programming model. An operation precedence graph is used to represent precedence constraints and help generate a feasible initial population of hybrid genetic algorithm. Encoding strategy based on data structure was developed to represent process plans digitally in order to form the solution space. In addition, a local search approach for optimizing the assignments of available turrets would be added to incorporate scheduling with process planning. A real-world case is used to prove that the proposed approach could avoid infeasible solutions and effectively generate a global optimal process plan.
Directory of Open Access Journals (Sweden)
S. Meenakshi Sundaram
2014-04-01
Full Text Available The aim of this research is to evaluate the performance of OLSR using swarm intelligence and HPSO with Gravitational search algorithm to lower the jitter time, data drop and end to end delay and improve the network throughput. Simulation was carried out for multimedia traffic and video streamed network traffic using OPNET Simulator. Routing is exchanging of information from one host to another in a network. Routing forwards packets to destination using an efficient path. Path efficiency is measured through metrics like hop number, traffic and security. Each host node acts as a specialized router in Ad-hoc networks. A table driven proactive routing protocol Optimized Link State Protocol (OLSR has available topology information and routes. OLSR’s efficiency depends on Multipoint relay selection. Various studies were conducted to decrease control traffic overheads through modification of existing OLSR routing protocol and traffic shaping based on packet priority. This study proposes a modification of OLSR using swarm intelligence, Hybrid Particle Swarm Optimization (HPSO using Gravitational Search Algorithm (GSA and evaluation of performance of jitter, end to end delay, data drop and throughput. Simulation was carried out to investigate the proposed method for the network’s multimedia traffic.
Guo, Peng; Cheng, Wenming; Wang, Yi
2015-11-01
This article considers the parallel machine scheduling problem with step-deteriorating jobs and sequence-dependent setup times. The objective is to minimize the total tardiness by determining the allocation and sequence of jobs on identical parallel machines. In this problem, the processing time of each job is a step function dependent upon its starting time. An individual extended time is penalized when the starting time of a job is later than a specific deterioration date. The possibility of deterioration of a job makes the parallel machine scheduling problem more challenging than ordinary ones. A mixed integer programming model for the optimal solution is derived. Due to its NP-hard nature, a hybrid discrete cuckoo search algorithm is proposed to solve this problem. In order to generate a good initial swarm, a modified Biskup-Hermann-Gupta (BHG) heuristic called MBHG is incorporated into the population initialization. Several discrete operators are proposed in the random walk of Lévy flights and the crossover search. Moreover, a local search procedure based on variable neighbourhood descent is integrated into the algorithm as a hybrid strategy in order to improve the quality of elite solutions. Computational experiments are executed on two sets of randomly generated test instances. The results show that the proposed hybrid algorithm can yield better solutions in comparison with the commercial solver CPLEX® with a one hour time limit, the discrete cuckoo search algorithm and the existing variable neighbourhood search algorithm.
Directory of Open Access Journals (Sweden)
V. D. Sulimov
2014-01-01
Full Text Available Modern methods for solving practical problems relating to trouble free, efficient and pro-longed operation of complex systems are presumed the application of computational diagnos-tics. Input data for diagnosing usually contain the results of experimental measurements of the system certain investigatory characteristics; among them may be registered parameters of oscillatory motion or impact process. The diagnostic procedure is founded on the solution of the corresponding inverse spectral problem; the problem in many cases may be reduced to a minimization of an appropriate error criterion. Eigenvalues from the direct problem for the mathematical model and useful measured data for the system are used in order to construct the corresponding criterion. When solving these inverse problems, consideration must be given to following special features: the error criterion may be represented by nondifferentiable and multiextremal function.Consideration is being given to problems of identification of anomalies in the phase constitution of the coolant circulating throw the reactor primary circuit. Main dynamical char-acteristics of the object under diagnosing are considered as continuous functions of the bounded set of control variables. Possible occurrence of anomalies in the phase constitution of the coolant can be detected owing to changes in dynamical characteristics of the two-phase flow. It is suggested that criterion functions are continuous, Lipschitzian, multiextremal and not everywhere differentiable. Two novel hybrid algorithms are proposed with scanning a search space by use of the modern stochastic Multi-Particle Collision Algorithm on base of analogy with absorbtion and scattering processes for nuclear particles. The local search is im-plemented using the hyperbolic smoothing function method for the first algorithm, and the linearization method with two-parametric smoothing approximations of criteria for the second one. Some results on solving
Davendra, Donald; Zelinka, Ivan; Senkerik, Roman; Jasek, Roman; Bialic-Davendra, Magdalena
2012-11-01
One of the new emerging application strategies for optimization is the hybridization of existing metaheuristics. The research combines the unique paradigms of solution space sampling of SOMA and memory retention capabilities of Scatter Search for the task of capacitated vehicle routing problem. The new hybrid heuristic is tested on the Taillard sets and obtains good results.
A hybrid adaptive large neighborhood search algorithm applied to a lot-sizing problem
DEFF Research Database (Denmark)
Muller, Laurent Flindt; Spoorendonk, Simon
This paper presents a hybrid of a general heuristic framework that has been successfully applied to vehicle routing problems and a general purpose MIP solver. The framework uses local search and an adaptive procedure which choses between a set of large neighborhoods to be searched. A mixed integer...
Hybrid Artificial Bee Colony Algorithm and Particle Swarm Search for Global Optimization
Directory of Open Access Journals (Sweden)
Wang Chun-Feng
2014-01-01
Full Text Available Artificial bee colony (ABC algorithm is one of the most recent swarm intelligence based algorithms, which has been shown to be competitive to other population-based algorithms. However, there is still an insufficiency in ABC regarding its solution search equation, which is good at exploration but poor at exploitation. To overcome this problem, we propose a novel artificial bee colony algorithm based on particle swarm search mechanism. In this algorithm, for improving the convergence speed, the initial population is generated by using good point set theory rather than random selection firstly. Secondly, in order to enhance the exploitation ability, the employed bee, onlookers, and scouts utilize the mechanism of PSO to search new candidate solutions. Finally, for further improving the searching ability, the chaotic search operator is adopted in the best solution of the current iteration. Our algorithm is tested on some well-known benchmark functions and compared with other algorithms. Results show that our algorithm has good performance.
Institute of Scientific and Technical Information of China (English)
NIAN Xiaoyu; WANG Zhenlei; QIAN Feng
2013-01-01
To find the optimal operational condition when the properties of feedstock changes in the cracking furnace online,a hybrid algorithm named differential evolution group search optimization (DEGSO) is proposed,which is based on the differential evolution (DE) and the group search optimization (GSO).The DEGSO combines the advantages of the two algorithms:the high computing speed of DE and the good performance of the GSO for preventing the best particle from converging to local optimum.A cooperative method is also proposed for switching between these two algorithms.If the fitness value of one algorithm keeps invariant in several generations and less than the preset threshold,it is considered to fall into the local optimization and the other algorithm is chosen.Experiments on benchmark functions show that.the hybrid algorithm outperforms GSO in accuracy,global searching ability and efficiency.The optimization of ethylene and propylene yields is illustrated as a case by DEGSO.After optimization,the yield of ethylene and propylene is increased remarkably,which provides the proper operational condition of the ethylene cracking furnace.
Abdullahi, Mohammed; Ngadi, Md Asri
2016-01-01
Cloud computing has attracted significant attention from research community because of rapid migration rate of Information Technology services to its domain. Advances in virtualization technology has made cloud computing very popular as a result of easier deployment of application services. Tasks are submitted to cloud datacenters to be processed on pay as you go fashion. Task scheduling is one the significant research challenges in cloud computing environment. The current formulation of task scheduling problems has been shown to be NP-complete, hence finding the exact solution especially for large problem sizes is intractable. The heterogeneous and dynamic feature of cloud resources makes optimum task scheduling non-trivial. Therefore, efficient task scheduling algorithms are required for optimum resource utilization. Symbiotic Organisms Search (SOS) has been shown to perform competitively with Particle Swarm Optimization (PSO). The aim of this study is to optimize task scheduling in cloud computing environment based on a proposed Simulated Annealing (SA) based SOS (SASOS) in order to improve the convergence rate and quality of solution of SOS. The SOS algorithm has a strong global exploration capability and uses fewer parameters. The systematic reasoning ability of SA is employed to find better solutions on local solution regions, hence, adding exploration ability to SOS. Also, a fitness function is proposed which takes into account the utilization level of virtual machines (VMs) which reduced makespan and degree of imbalance among VMs. CloudSim toolkit was used to evaluate the efficiency of the proposed method using both synthetic and standard workload. Results of simulation showed that hybrid SOS performs better than SOS in terms of convergence speed, response time, degree of imbalance, and makespan.
Directory of Open Access Journals (Sweden)
Mohammed Abdullahi
Full Text Available Cloud computing has attracted significant attention from research community because of rapid migration rate of Information Technology services to its domain. Advances in virtualization technology has made cloud computing very popular as a result of easier deployment of application services. Tasks are submitted to cloud datacenters to be processed on pay as you go fashion. Task scheduling is one the significant research challenges in cloud computing environment. The current formulation of task scheduling problems has been shown to be NP-complete, hence finding the exact solution especially for large problem sizes is intractable. The heterogeneous and dynamic feature of cloud resources makes optimum task scheduling non-trivial. Therefore, efficient task scheduling algorithms are required for optimum resource utilization. Symbiotic Organisms Search (SOS has been shown to perform competitively with Particle Swarm Optimization (PSO. The aim of this study is to optimize task scheduling in cloud computing environment based on a proposed Simulated Annealing (SA based SOS (SASOS in order to improve the convergence rate and quality of solution of SOS. The SOS algorithm has a strong global exploration capability and uses fewer parameters. The systematic reasoning ability of SA is employed to find better solutions on local solution regions, hence, adding exploration ability to SOS. Also, a fitness function is proposed which takes into account the utilization level of virtual machines (VMs which reduced makespan and degree of imbalance among VMs. CloudSim toolkit was used to evaluate the efficiency of the proposed method using both synthetic and standard workload. Results of simulation showed that hybrid SOS performs better than SOS in terms of convergence speed, response time, degree of imbalance, and makespan.
Abdullahi, Mohammed; Ngadi, Md Asri
2016-01-01
Cloud computing has attracted significant attention from research community because of rapid migration rate of Information Technology services to its domain. Advances in virtualization technology has made cloud computing very popular as a result of easier deployment of application services. Tasks are submitted to cloud datacenters to be processed on pay as you go fashion. Task scheduling is one the significant research challenges in cloud computing environment. The current formulation of task scheduling problems has been shown to be NP-complete, hence finding the exact solution especially for large problem sizes is intractable. The heterogeneous and dynamic feature of cloud resources makes optimum task scheduling non-trivial. Therefore, efficient task scheduling algorithms are required for optimum resource utilization. Symbiotic Organisms Search (SOS) has been shown to perform competitively with Particle Swarm Optimization (PSO). The aim of this study is to optimize task scheduling in cloud computing environment based on a proposed Simulated Annealing (SA) based SOS (SASOS) in order to improve the convergence rate and quality of solution of SOS. The SOS algorithm has a strong global exploration capability and uses fewer parameters. The systematic reasoning ability of SA is employed to find better solutions on local solution regions, hence, adding exploration ability to SOS. Also, a fitness function is proposed which takes into account the utilization level of virtual machines (VMs) which reduced makespan and degree of imbalance among VMs. CloudSim toolkit was used to evaluate the efficiency of the proposed method using both synthetic and standard workload. Results of simulation showed that hybrid SOS performs better than SOS in terms of convergence speed, response time, degree of imbalance, and makespan. PMID:27348127
Directory of Open Access Journals (Sweden)
Weizhen Rao
2016-01-01
Full Text Available The classical model of vehicle routing problem (VRP generally minimizes either the total vehicle travelling distance or the total number of dispatched vehicles. Due to the increased importance of environmental sustainability, one variant of VRPs that minimizes the total vehicle fuel consumption has gained much attention. The resulting fuel consumption VRP (FCVRP becomes increasingly important yet difficult. We present a mixed integer programming model for the FCVRP, and fuel consumption is measured through the degree of road gradient. Complexity analysis of FCVRP is presented through analogy with the capacitated VRP. To tackle the FCVRP’s computational intractability, we propose an efficient two-objective hybrid local search algorithm (TOHLS. TOHLS is based on a hybrid local search algorithm (HLS that is also used to solve FCVRP. Based on the Golden CVRP benchmarks, 60 FCVRP instances are generated and tested. Finally, the computational results show that the proposed TOHLS significantly outperforms the HLS.
Directory of Open Access Journals (Sweden)
Ronaldo Vieira Cruz
2010-01-01
Full Text Available This article focuses on the problem of parameter estimation of the uncoupled, linear, short-period aerodynamic derivatives of a “Twin Squirrel” helicopter in level flight and constant speed. A flight test campaign is described with respect to maneuver specification, flight test instrumentation, and experimental data collection used to estimate the aerodynamic derivatives. The identification problem is solved in the time domain using the output-error approach, with a combination of Genetic Algorithm (GA and Levenberg-Marquardt optimization algorithms. The advantages of this hybrid GA and gradient-search methodology in helicopter system identification are discussed.
Directory of Open Access Journals (Sweden)
M. Balasubbareddy
2015-12-01
Full Text Available A novel optimization algorithm is proposed to solve single and multi-objective optimization problems with generation fuel cost, emission, and total power losses as objectives. The proposed method is a hybridization of the conventional cuckoo search algorithm and arithmetic crossover operations. Thus, the non-linear, non-convex objective function can be solved under practical constraints. The effectiveness of the proposed algorithm is analyzed for various cases to illustrate the effect of practical constraints on the objectives' optimization. Two and three objective multi-objective optimization problems are formulated and solved using the proposed non-dominated sorting-based hybrid cuckoo search algorithm. The effectiveness of the proposed method in confining the Pareto front solutions in the solution region is analyzed. The results for single and multi-objective optimization problems are physically interpreted on standard test functions as well as the IEEE-30 bus test system with supporting numerical and graphical results and also validated against existing methods.
Lipinski, Piotr
This paper concerns the quadratic three-dimensional assignment problem (Q3AP), an extension of the quadratic assignment problem (QAP), and proposes an efficient hybrid evolutionary algorithm combining stochastic optimization and local search with a number of crossover operators, a number of mutation operators and an auto-adaptation mechanism. Auto-adaptation manages the pool of evolutionary operators applying different operators in different computation phases to better explore the search space and to avoid premature convergence. Local search additionally optimizes populations of candidate solutions and accelerates evolutionary search. It uses a many-core graphics processor to optimize a number of solutions in parallel, which enables its incorporation into the evolutionary algorithm without excessive increases in the computation time. Experiments performed on benchmark Q3AP instances derived from the classic QAP instances proposed by Nugent et al. confirmed that the proposed algorithm is able to find optimal solutions to Q3AP in a reasonable time and outperforms best known results found in the literature.
Hybrid ants-like search algorithms for P2P media streaming distribution in ad hoc networks
Institute of Scientific and Technical Information of China (English)
无
2007-01-01
Media streaming delivery in wireless ad hoc networks is challenging due to the stringent resource restrictions, potential high loss rate and the decentralized architecture. To support long and high-quality streams, one viable approach is that a media stream is partitioned into segments, and then the segments are replicated in a network and served in a peer-to-peer (P2P)fashion. However, the searching strategy for segments is one key problem with the approach. This paper proposes a hybrid ants-like search algorithm (HASA) for P2P media streaming distribution in ad hoc networks. It takes the advantages of random walks and ants-like algorithms for searching in unstructured P2P networks, such as low transmitting latency, less jitter times, and low unnecessary traffic. We quantify the performance of our scheme in terms of response time, jitter times, and network messages for media streaming distribution. Simulation results showed that it can effectively improve the search efficiency for P2P media streaming distribution in ad hoc networks.
Salehi, Mojtaba; Bahreininejad, Ardeshir
2011-08-01
Optimization of process planning is considered as the key technology for computer-aided process planning which is a rather complex and difficult procedure. A good process plan of a part is built up based on two elements: (1) the optimized sequence of the operations of the part; and (2) the optimized selection of the machine, cutting tool and Tool Access Direction (TAD) for each operation. In the present work, the process planning is divided into preliminary planning, and secondary/detailed planning. In the preliminary stage, based on the analysis of order and clustering constraints as a compulsive constraint aggregation in operation sequencing and using an intelligent searching strategy, the feasible sequences are generated. Then, in the detailed planning stage, using the genetic algorithm which prunes the initial feasible sequences, the optimized operation sequence and the optimized selection of the machine, cutting tool and TAD for each operation based on optimization constraints as an additive constraint aggregation are obtained. The main contribution of this work is the optimization of sequence of the operations of the part, and optimization of machine selection, cutting tool and TAD for each operation using the intelligent search and genetic algorithm simultaneously.
Directory of Open Access Journals (Sweden)
Jiani Heng
2016-01-01
Full Text Available Power load forecasting always plays a considerable role in the management of a power system, as accurate forecasting provides a guarantee for the daily operation of the power grid. It has been widely demonstrated in forecasting that hybrid forecasts can improve forecast performance compared with individual forecasts. In this paper, a hybrid forecasting approach, comprising Empirical Mode Decomposition, CSA (Cuckoo Search Algorithm, and WNN (Wavelet Neural Network, is proposed. This approach constructs a more valid forecasting structure and more stable results than traditional ANN (Artificial Neural Network models such as BPNN (Back Propagation Neural Network, GABPNN (Back Propagation Neural Network Optimized by Genetic Algorithm, and WNN. To evaluate the forecasting performance of the proposed model, a half-hourly power load in New South Wales of Australia is used as a case study in this paper. The experimental results demonstrate that the proposed hybrid model is not only simple but also able to satisfactorily approximate the actual power load and can be an effective tool in planning and dispatch for smart grids.
Directory of Open Access Journals (Sweden)
DAHIYA, P.
2015-05-01
Full Text Available This paper presents the application of hybrid opposition based disruption operator in gravitational search algorithm (DOGSA to solve automatic generation control (AGC problem of four area hydro-thermal-gas interconnected power system. The proposed DOGSA approach combines the advantages of opposition based learning which enhances the speed of convergence and disruption operator which has the ability to further explore and exploit the search space of standard gravitational search algorithm (GSA. The addition of these two concepts to GSA increases its flexibility for solving the complex optimization problems. This paper addresses the design and performance analysis of DOGSA based proportional integral derivative (PID and fractional order proportional integral derivative (FOPID controllers for automatic generation control problem. The proposed approaches are demonstrated by comparing the results with the standard GSA, opposition learning based GSA (OGSA and disruption based GSA (DGSA. The sensitivity analysis is also carried out to study the robustness of DOGSA tuned controllers in order to accommodate variations in operating load conditions, tie-line synchronizing coefficient, time constants of governor and turbine. Further, the approaches are extended to a more realistic power system model by considering the physical constraints such as thermal turbine generation rate constraint, speed governor dead band and time delay.
Decoherence in Search Algorithms
Abal, G; Marquezino, F L; Oliveira, A C; Portugal, R
2009-01-01
Recently several quantum search algorithms based on quantum walks were proposed. Those algorithms differ from Grover's algorithm in many aspects. The goal is to find a marked vertex in a graph faster than classical algorithms. Since the implementation of those new algorithms in quantum computers or in other quantum devices is error-prone, it is important to analyze their robustness under decoherence. In this work we analyze the impact of decoherence on quantum search algorithms implemented on two-dimensional grids and on hypercubes.
A Hybrid Chaotic Quantum Evolutionary Algorithm
DEFF Research Database (Denmark)
Cai, Y.; Zhang, M.; Cai, H.
2010-01-01
A hybrid chaotic quantum evolutionary algorithm is proposed to reduce amount of computation, speed up convergence and restrain premature phenomena of quantum evolutionary algorithm. The proposed algorithm adopts the chaotic initialization method to generate initial population which will form...... and enhance the global search ability. A large number of tests show that the proposed algorithm has higher convergence speed and better optimizing ability than quantum evolutionary algorithm, real-coded quantum evolutionary algorithm and hybrid quantum genetic algorithm. Tests also show that when chaos...... is introduced to quantum evolutionary algorithm, the hybrid chaotic search strategy is superior to the carrier chaotic strategy, and has better comprehensive performance than the chaotic mutation strategy in most of cases. Especially, the proposed algorithm is the only one that has 100% convergence rate in all...
Directory of Open Access Journals (Sweden)
Z. Masomi Zohrabad
2016-12-01
Full Text Available Power networks continue to grow following the annual growth of energy demand. As constructing new energy generation facilities bears a high cost, minimizing power grid losses becomes essential to permit low cost energy transmission in larger distances and additional areas. This study aims to model an optimization problem for an IEEE 30-bus power grid using a Tabu search algorithm based on an improved hybrid Harmony Search (HS method to reduce overall grid losses. The proposed algorithm is applied to find the best location for the installation of a Unified Power Flow Controller (UPFC. The results obtained from installation of the UPFC in the grid are presented by displaying outputs.
Directory of Open Access Journals (Sweden)
V. Sakthivel
2015-12-01
Full Text Available The design of low complexity sharp transition width Modified Discrete Fourier Transform (MDFT filter bank with perfect reconstruction (PR is proposed in this work. The current trends in technology require high data rates and speedy processing along with reduced power consumption, implementation complexity and chip area. Filters with sharp transition width are required for various applications in wireless communication. Frequency response masking (FRM technique is used to reduce the implementation complexity of sharp MDFT filter banks with PR. Further, to reduce the implementation complexity, the continuous coefficients of the filters in the MDFT filter banks are represented in discrete space using canonic signed digit (CSD. The multipliers in the filters are replaced by shifters and adders. The number of non-zero bits is reduced in the conversion process to minimize the number of adders and shifters required for the filter implementation. Hence the performances of the MDFT filter bank with PR may degrade. In this work, the performances of the MDFT filter banks with PR are improved using a hybrid Harmony-Gravitational search algorithm.
Energy transmission modes based on Tabu search and particle swarm hybrid optimization algorithm
Institute of Scientific and Technical Information of China (English)
LI xiang; CUI Ji-feng; QI Jian-xun; YANG Shang-dong
2007-01-01
In China, economic centers are far from energy storage bases, so it is significant to select a proper energy transferring mode to improve the efficiency of energy usage, To solve this problem, an optimal allocation model based on energy transfer mode was proposed after objective function for optimizing energy using efficiency Was established, and then, a new Tabu search and power transmission was gained.Based on the above discussion, some proposals were put forward for optimal allocation of energy transfer modes in China. By comparing other three traditional methodsthat are based on regional price differences. freight rates and annual cost witll the proposed method, the result indicates that the economic efficiency of the energy transfer Can be enhanced by 3.14%, 5.78% and 6.01%, respectively.
A Hybrid Algorithm for Optimizing Multi- Modal Functions
Institute of Scientific and Technical Information of China (English)
Li Qinghua; Yang Shida; Ruan Youlin
2006-01-01
A new genetic algorithm is presented based on the musical performance. The novelty of this algorithm is that a new genetic algorithm, mimicking the musical process of searching for a perfect state of harmony, which increases the robustness of it greatly and gives a new meaning of it in the meantime, has been developed. Combining the advantages of the new genetic algorithm, simplex algorithm and tabu search, a hybrid algorithm is proposed. In order to verify the effectiveness of the hybrid algorithm, it is applied to solving some typical numerical function optimization problems which are poorly solved by traditional genetic algorithms. The experimental results show that the hybrid algorithm is fast and reliable.
Hybrid Keyword Search Auctions
Goel, Ashish; Munagala, Kamesh
2008-01-01
Search auctions have become a dominant source of revenue generation on the Internet. Such auctions have typically used per-click bidding and pricing. We propose the use of hybrid auctions where an advertiser can make a per-impression as well as a per-click bid, and the auctioneer then chooses one of the two as the pricing mechanism. We assume that the advertiser and the auctioneer both have separate beliefs (called priors) on the click-probability of an advertisement. We first prove that the ...
A Hybrid Evolutionary Algorithm for Discrete Optimization
Directory of Open Access Journals (Sweden)
J. Bhuvana
2015-03-01
Full Text Available Most of the real world multi-objective problems demand us to choose one Pareto optimal solution out of a finite set of choices. Flexible job shop scheduling problem is one such problem whose solutions are required to be selected from a discrete solution space. In this study we have designed a hybrid genetic algorithm to solve this scheduling problem. Hybrid genetic algorithms combine both the aspects of the search, exploration and exploitation of the search space. Proposed algorithm, Hybrid GA with Discrete Local Search, performs global search through the GA and exploits the locality through discrete local search. Proposed hybrid algorithm not only has the ability to generate Pareto optimal solutions and also identifies them with less computation. Five different benchmark test instances are used to evaluate the performance of the proposed algorithm. Results observed shown that the proposed algorithm has produced the known Pareto optimal solutions through exploration and exploitation of the search space with less number of functional evaluations.
Hybrid keyword search auctions
Goel, Ashish
2009-01-01
Search auctions have become a dominant source of revenue generation on the Internet. Such auctions have typically used per-click bidding and pricing. We propose the use of hybrid auctions where an advertiser can make a per-impression as well as a per-click bid, and the auctioneer then chooses one of the two as the pricing mechanism. We assume that the advertiser and the auctioneer both have separate beliefs (called priors) on the click-probability of an advertisement. We first prove that the hybrid auction is truthful, assuming that the advertisers are risk-neutral. We then show that this auction is superior to the existing per-click auction in multiple ways: 1. We show that risk-seeking advertisers will choose only a per-impression bid whereas risk-averse advertisers will choose only a per-click bid, and argue that both kind of advertisers arise naturally. Hence, the ability to bid in a hybrid fashion is important to account for the risk characteristics of the advertisers. 2. For obscure keywords, the auctioneer is unlikely to have a very sharp prior on the click-probabilities. In such situations, we show that having the extra information from the advertisers in the form of a per-impression bid can result in significantly higher revenue. 3. An advertiser who believes that its click-probability is much higher than the auctioneer\\'s estimate can use per-impression bids to correct the auctioneer\\'s prior without incurring any extra cost. 4. The hybrid auction can allow the advertiser and auctioneer to implement complex dynamic programming strategies to deal with the uncertainty in the click-probability using the same basic auction. The per-click and per-impression bidding schemes can only be used to implement two extreme cases of these strategies. As Internet commerce matures, we need more sophisticated pricing models to exploit all the information held by each of the participants. We believe that hybrid auctions could be an important step in this direction. The
Hybrid Keyword Search Auctions
Goel, Ashish
2008-01-01
Search auctions have become a dominant source of revenue generation on the Internet. Such auctions have typically used per-click bidding and pricing. We propose the use of hybrid auctions where an advertiser can make a per-impression as well as a per-click bid, and the auctioneer then chooses one of the two as the pricing mechanism. We assume that the advertiser and the auctioneer both have separate beliefs (called priors) on the click-probability of an advertisement. We first prove that the hybrid auction is truthful, assuming that the advertisers are risk-neutral. We then show that this auction is superior to the existing per-click auction in multiple ways: 1) It takes into account the risk characteristics of the advertisers. 2) For obscure keywords, the auctioneer is unlikely to have a very sharp prior on the click-probabilities. In such situations, the hybrid auction can result in significantly higher revenue. 3) An advertiser who believes that its click-probability is much higher than the auctioneer's es...
Multithreaded Implementation of Hybrid String Matching Algorithm
Directory of Open Access Journals (Sweden)
Akhtar Rasool
2012-03-01
Full Text Available Reading and taking reference from many books and articles, and then analyzing the Navies algorithm, Boyer Moore algorithm and Knuth Morris Pratt (KMP algorithm and a variety of improved algorithms, summarizes various advantages and disadvantages of the pattern matching algorithms. And on this basis, a new algorithm – Multithreaded Hybrid algorithm is introduced. The algorithm refers to Boyer Moore algorithm, KMP algorithm and the thinking of improved algorithms. Utilize the last character of the string, the next character and the method to compare from side to side, and then advance a new hybrid pattern matching algorithm. And it adjusted the comparison direction and the order of the comparison to make the maximum moving distance of each time to reduce the pattern matching time. The algorithm reduces the comparison number and greatlyreduces the moving number of the pattern and improves the matching efficiency. Multithreaded implementation of hybrid, pattern matching algorithm performs the parallel string searching on different text data by executing a number of threads simultaneously. This approach is advantageous from all other string-pattern matching algorithm in terms of time complexity. This again improves the overall string matching efficiency.
Directory of Open Access Journals (Sweden)
R. Manjith
2014-05-01
Full Text Available The Partial Transmit Sequence which reduces the PAPR (Peak-to-Average Power Ratio in Multiple Input Multiple Output Orthogonal Frequency Division Multiplexing (MIMO-OFDM system using a novel optimization algorithm is proposed in this study. This novel optimization algorithm is based on a hybrid of Bacterial Foraging Optimization (BFO and Modified Cuckoo Search algorithm (MCS and is thus called HBFOMCS. In HBFOMCS, reproduction of individuals in a new generation is created, not only by swim and tumble operation as in BFO, but also by MCS. The natural reproduction step of BFO is swapped by the concept of searching best solutions as in MCS which then increases the possibility of generating the elite individuals for next generation. These enhanced reproduction step constitute the ready-to-perform population for the new generation once the initial population is performed by swim and tumble operation. Afterwards, discover probability is applied to abandon the worst solution due to the nature of MCS. HBFOMCS is applied to optimize the best combination from a set of allowed phase factors in Partial Transmit Sequence (PTS technique. The performance of HBFOMCS is compared with BFO, Cuckoo Search (CS and Modified cuckoo search MCS in the PAPR reduction in MIMO-OFDM system, accordingly proving its proficiency.
HOPSPACK: Hybrid Optimization Parallel Search Package.
Energy Technology Data Exchange (ETDEWEB)
Gray, Genetha Anne.; Kolda, Tamara G.; Griffin, Joshua; Taddy, Matt; Martinez-Canales, Monica L.
2008-12-01
In this paper, we describe the technical details of HOPSPACK (Hybrid Optimization Parallel SearchPackage), a new software platform which facilitates combining multiple optimization routines into asingle, tightly-coupled, hybrid algorithm that supports parallel function evaluations. The frameworkis designed such that existing optimization source code can be easily incorporated with minimalcode modification. By maintaining the integrity of each individual solver, the strengths and codesophistication of the original optimization package are retained and exploited.4
Tuo, Shouheng; Yong, Longquan; Deng, Fang’an; Li, Yanhai; Lin, Yong; Lu, Qiuju
2017-01-01
Harmony Search (HS) and Teaching-Learning-Based Optimization (TLBO) as new swarm intelligent optimization algorithms have received much attention in recent years. Both of them have shown outstanding performance for solving NP-Hard optimization problems. However, they also suffer dramatic performance degradation for some complex high-dimensional optimization problems. Through a lot of experiments, we find that the HS and TLBO have strong complementarity each other. The HS has strong global exploration power but low convergence speed. Reversely, the TLBO has much fast convergence speed but it is easily trapped into local search. In this work, we propose a hybrid search algorithm named HSTLBO that merges the two algorithms together for synergistically solving complex optimization problems using a self-adaptive selection strategy. In the HSTLBO, both HS and TLBO are modified with the aim of balancing the global exploration and exploitation abilities, where the HS aims mainly to explore the unknown regions and the TLBO aims to rapidly exploit high-precision solutions in the known regions. Our experimental results demonstrate better performance and faster speed than five state-of-the-art HS variants and show better exploration power than five good TLBO variants with similar run time, which illustrates that our method is promising in solving complex high-dimensional optimization problems. The experiment on portfolio optimization problems also demonstrate that the HSTLBO is effective in solving complex read-world application. PMID:28403224
Solving the Quadratic Assignment Problem by a Hybrid Algorithm
Directory of Open Access Journals (Sweden)
Aldy Gunawan
2011-01-01
Full Text Available This paper presents a hybrid algorithm to solve the Quadratic Assignment Problem (QAP. The proposed algorithm involves using the Greedy Randomized Adaptive Search Procedure (GRASP to obtain an initial solution, and then using a combined Simulated Annealing (SA and Tabu Search (TS algorithm to improve the solution. Experimental results indicate that the hybrid algorithm is able to obtain good quality solutions for QAPLIB test problems within reasonable computation time.
A Fast Hybrid Algorithm for the Exact String Matching Problem
Directory of Open Access Journals (Sweden)
Abdulwahab A. Al-mazroi
2011-01-01
Full Text Available Problem statement: Due to huge amount and complicated nature of data being generated recently, the usage of one algorithm for string searching was not sufficient to ensure faster search and matching of patterns. So there is the urgent need to integrate two or more algorithms to form a hybrid algorithm (called BRSS to ensure speedy results. Approach: This study proposes the combination of two algorithms namely Berry-Ravindran and Skip Search Algorithms to form a hybrid algorithm in order to boost search performance. Results: The proposed hybrid algorithm contributes to better results by reducing the number of attempts, number of character comparisons and searching time. The performance of the hybrid was tested using different types of data-DNA, Protein and English text. The percentage of the improvements of the hybrid algorithm compared to Berry-Ravindran in DNA, Protein and English text are 50%, 43% and 44% respectively. The percentage of the improvements over Skip Search algorithm in DNA, Protein and English text are 20%, 30% and 18% respectively. The criteria applied for evaluation are number of attempts, number of character comparisons and searching time. Conclusion: The study shows how the integration of two algorithms gives better results than the original algorithms even the same data size and pattern lengths are applied as test evaluation on each of the algorithms.
Mahto, Tarkeshwar; Mukherjee, V.
2016-09-01
In the present work, a two-area thermal-hybrid interconnected power system, consisting of a thermal unit in one area and a hybrid wind-diesel unit in other area is considered. Capacitive energy storage (CES) and CES with static synchronous series compensator (SSSC) are connected to the studied two-area model to compensate for varying load demand, intermittent output power and area frequency oscillation. A novel quasi-opposition harmony search (QOHS) algorithm is proposed and applied to tune the various tunable parameters of the studied power system model. Simulation study reveals that inclusion of CES unit in both the areas yields superb damping performance for frequency and tie-line power deviation. From the simulation results it is further revealed that inclusion of SSSC is not viable from both technical as well as economical point of view as no considerable improvement in transient performance is noted with its inclusion in the tie-line of the studied power system model. The results presented in this paper demonstrate the potential of the proposed QOHS algorithm and show its effectiveness and robustness for solving frequency and power drift problems of the studied power systems. Binary coded genetic algorithm is taken for sake of comparison.
Directory of Open Access Journals (Sweden)
Mahdi Maktabdar Oghaz
Full Text Available Color is one of the most prominent features of an image and used in many skin and face detection applications. Color space transformation is widely used by researchers to improve face and skin detection performance. Despite the substantial research efforts in this area, choosing a proper color space in terms of skin and face classification performance which can address issues like illumination variations, various camera characteristics and diversity in skin color tones has remained an open issue. This research proposes a new three-dimensional hybrid color space termed SKN by employing the Genetic Algorithm heuristic and Principal Component Analysis to find the optimal representation of human skin color in over seventeen existing color spaces. Genetic Algorithm heuristic is used to find the optimal color component combination setup in terms of skin detection accuracy while the Principal Component Analysis projects the optimal Genetic Algorithm solution to a less complex dimension. Pixel wise skin detection was used to evaluate the performance of the proposed color space. We have employed four classifiers including Random Forest, Naïve Bayes, Support Vector Machine and Multilayer Perceptron in order to generate the human skin color predictive model. The proposed color space was compared to some existing color spaces and shows superior results in terms of pixel-wise skin detection accuracy. Experimental results show that by using Random Forest classifier, the proposed SKN color space obtained an average F-score and True Positive Rate of 0.953 and False Positive Rate of 0.0482 which outperformed the existing color spaces in terms of pixel wise skin detection accuracy. The results also indicate that among the classifiers used in this study, Random Forest is the most suitable classifier for pixel wise skin detection applications.
Maktabdar Oghaz, Mahdi; Maarof, Mohd Aizaini; Zainal, Anazida; Rohani, Mohd Foad; Yaghoubyan, S Hadi
2015-01-01
Color is one of the most prominent features of an image and used in many skin and face detection applications. Color space transformation is widely used by researchers to improve face and skin detection performance. Despite the substantial research efforts in this area, choosing a proper color space in terms of skin and face classification performance which can address issues like illumination variations, various camera characteristics and diversity in skin color tones has remained an open issue. This research proposes a new three-dimensional hybrid color space termed SKN by employing the Genetic Algorithm heuristic and Principal Component Analysis to find the optimal representation of human skin color in over seventeen existing color spaces. Genetic Algorithm heuristic is used to find the optimal color component combination setup in terms of skin detection accuracy while the Principal Component Analysis projects the optimal Genetic Algorithm solution to a less complex dimension. Pixel wise skin detection was used to evaluate the performance of the proposed color space. We have employed four classifiers including Random Forest, Naïve Bayes, Support Vector Machine and Multilayer Perceptron in order to generate the human skin color predictive model. The proposed color space was compared to some existing color spaces and shows superior results in terms of pixel-wise skin detection accuracy. Experimental results show that by using Random Forest classifier, the proposed SKN color space obtained an average F-score and True Positive Rate of 0.953 and False Positive Rate of 0.0482 which outperformed the existing color spaces in terms of pixel wise skin detection accuracy. The results also indicate that among the classifiers used in this study, Random Forest is the most suitable classifier for pixel wise skin detection applications.
Optimal Fungal Space Searching Algorithms.
Asenova, Elitsa; Lin, Hsin-Yu; Fu, Eileen; Nicolau, Dan V; Nicolau, Dan V
2016-10-01
Previous experiments have shown that fungi use an efficient natural algorithm for searching the space available for their growth in micro-confined networks, e.g., mazes. This natural "master" algorithm, which comprises two "slave" sub-algorithms, i.e., collision-induced branching and directional memory, has been shown to be more efficient than alternatives, with one, or the other, or both sub-algorithms turned off. In contrast, the present contribution compares the performance of the fungal natural algorithm against several standard artificial homologues. It was found that the space-searching fungal algorithm consistently outperforms uninformed algorithms, such as Depth-First-Search (DFS). Furthermore, while the natural algorithm is inferior to informed ones, such as A*, this under-performance does not importantly increase with the increase of the size of the maze. These findings suggest that a systematic effort of harvesting the natural space searching algorithms used by microorganisms is warranted and possibly overdue. These natural algorithms, if efficient, can be reverse-engineered for graph and tree search strategies.
Borbely, Eva
2007-01-01
A quantum algorithm is a set of instructions for a quantum computer, however, unlike algorithms in classical computer science their results cannot be guaranteed. A quantum system can undergo two types of operation, measurement and quantum state transformation, operations themselves must be unitary (reversible). Most quantum algorithms involve a series of quantum state transformations followed by a measurement. Currently very few quantum algorithms are known and no general design methodology e...
New Hybrid Genetic Algorithm for Vertex Cover Problems
Institute of Scientific and Technical Information of China (English)
霍红卫; 许进
2003-01-01
This paper presents a new hybrid genetic algorithm for the vertex cover problems in which scan-repair and local improvement techniques are used for local optimization. With the hybrid approach, genetic algorithms are used to perform global exploration in a population, while neighborhood search methods are used to perform local exploitation around the chromosomes. The experimental results indicate that hybrid genetic algorithms can obtain solutions of excellent quality to the problem instances with different sizes. The pure genetic algorithms are outperformed by the neighborhood search heuristics procedures combined with genetic algorithms.
Rogers, David
1991-01-01
G/SPLINES are a hybrid of Friedman's Multivariable Adaptive Regression Splines (MARS) algorithm with Holland's Genetic Algorithm. In this hybrid, the incremental search is replaced by a genetic search. The G/SPLINE algorithm exhibits performance comparable to that of the MARS algorithm, requires fewer least squares computations, and allows significantly larger problems to be considered.
Directory of Open Access Journals (Sweden)
Haruna Chiroma
Full Text Available Global warming is attracting attention from policy makers due to its impacts such as floods, extreme weather, increases in temperature by 0.7°C, heat waves, storms, etc. These disasters result in loss of human life and billions of dollars in property. Global warming is believed to be caused by the emissions of greenhouse gases due to human activities including the emissions of carbon dioxide (CO2 from petroleum consumption. Limitations of the previous methods of predicting CO2 emissions and lack of work on the prediction of the Organization of the Petroleum Exporting Countries (OPEC CO2 emissions from petroleum consumption have motivated this research.The OPEC CO2 emissions data were collected from the Energy Information Administration. Artificial Neural Network (ANN adaptability and performance motivated its choice for this study. To improve effectiveness of the ANN, the cuckoo search algorithm was hybridised with accelerated particle swarm optimisation for training the ANN to build a model for the prediction of OPEC CO2 emissions. The proposed model predicts OPEC CO2 emissions for 3, 6, 9, 12 and 16 years with an improved accuracy and speed over the state-of-the-art methods.An accurate prediction of OPEC CO2 emissions can serve as a reference point for propagating the reorganisation of economic development in OPEC member countries with the view of reducing CO2 emissions to Kyoto benchmarks--hence, reducing global warming. The policy implications are discussed in the paper.
Chiroma, Haruna; Abdul-kareem, Sameem; Khan, Abdullah; Nawi, Nazri Mohd; Gital, Abdulsalam Ya'u; Shuib, Liyana; Abubakar, Adamu I; Rahman, Muhammad Zubair; Herawan, Tutut
2015-01-01
Global warming is attracting attention from policy makers due to its impacts such as floods, extreme weather, increases in temperature by 0.7°C, heat waves, storms, etc. These disasters result in loss of human life and billions of dollars in property. Global warming is believed to be caused by the emissions of greenhouse gases due to human activities including the emissions of carbon dioxide (CO2) from petroleum consumption. Limitations of the previous methods of predicting CO2 emissions and lack of work on the prediction of the Organization of the Petroleum Exporting Countries (OPEC) CO2 emissions from petroleum consumption have motivated this research. The OPEC CO2 emissions data were collected from the Energy Information Administration. Artificial Neural Network (ANN) adaptability and performance motivated its choice for this study. To improve effectiveness of the ANN, the cuckoo search algorithm was hybridised with accelerated particle swarm optimisation for training the ANN to build a model for the prediction of OPEC CO2 emissions. The proposed model predicts OPEC CO2 emissions for 3, 6, 9, 12 and 16 years with an improved accuracy and speed over the state-of-the-art methods. An accurate prediction of OPEC CO2 emissions can serve as a reference point for propagating the reorganisation of economic development in OPEC member countries with the view of reducing CO2 emissions to Kyoto benchmarks--hence, reducing global warming. The policy implications are discussed in the paper.
Izquierdo, Joaquín; Montalvo, Idel; Campbell, Enrique; Pérez-García, Rafael
2016-08-01
Selecting the most appropriate heuristic for solving a specific problem is not easy, for many reasons. This article focuses on one of these reasons: traditionally, the solution search process has operated in a given manner regardless of the specific problem being solved, and the process has been the same regardless of the size, complexity and domain of the problem. To cope with this situation, search processes should mould the search into areas of the search space that are meaningful for the problem. This article builds on previous work in the development of a multi-agent paradigm using techniques derived from knowledge discovery (data-mining techniques) on databases of so-far visited solutions. The aim is to improve the search mechanisms, increase computational efficiency and use rules to enrich the formulation of optimization problems, while reducing the search space and catering to realistic problems.
Hybrid Genetic Algorithms for University Course Timetabling
Directory of Open Access Journals (Sweden)
Meysam Shahvali Kohshori
2012-03-01
Full Text Available University course timetabling is one of the important and time consuming issues that each University is involved with it at the beginning of each. This problem is in class of NP-hard problem and is very difficult to solve by classic algorithms. Therefore optimization techniques are used to solve them and produce optimal or near optimal feasible solutions instead of exact solutions. Genetic algorithms, because of multidirectional search property of them, are considered as an efficient approach for solving this type of problems. In this paper three new hybrid genetic algorithms for solving the university course timetabling problem (UCTP are proposed: FGARI, FGASA and FGATS. In proposed algorithms, fuzzy logic is used to measure violation of soft constraints in fitness function to deal with inherent uncertainly and vagueness involved in real life data. Also, randomized iterative local search, simulated annealing and tabu search are applied, respectively, to improve exploitive search ability and prevent genetic algorithm to be trapped in local optimum. The experimental results indicate that the proposed algorithms are able to produce promising results for the UCTP.
Quantum walks and search algorithms
Portugal, Renato
2013-01-01
This book addresses an interesting area of quantum computation called quantum walks, which play an important role in building quantum algorithms, in particular search algorithms. Quantum walks are the quantum analogue of classical random walks. It is known that quantum computers have great power for searching unsorted databases. This power extends to many kinds of searches, particularly to the problem of finding a specific location in a spatial layout, which can be modeled by a graph. The goal is to find a specific node knowing that the particle uses the edges to jump from one node to the next. This book is self-contained with main topics that include: Grover's algorithm, describing its geometrical interpretation and evolution by means of the spectral decomposition of the evolution operater Analytical solutions of quantum walks on important graphs like line, cycles, two-dimensional lattices, and hypercubes using Fourier transforms Quantum walks on generic graphs, describing methods to calculate the limiting d...
Hybrid Differential Dynamic Programming with Stochastic Search
Aziz, Jonathan; Parker, Jeffrey; Englander, Jacob
2016-01-01
Differential dynamic programming (DDP) has been demonstrated as a viable approach to low-thrust trajectory optimization, namely with the recent success of NASAs Dawn mission. The Dawn trajectory was designed with the DDP-based Static Dynamic Optimal Control algorithm used in the Mystic software. Another recently developed method, Hybrid Differential Dynamic Programming (HDDP) is a variant of the standard DDP formulation that leverages both first-order and second-order state transition matrices in addition to nonlinear programming (NLP) techniques. Areas of improvement over standard DDP include constraint handling, convergence properties, continuous dynamics, and multi-phase capability. DDP is a gradient based method and will converge to a solution nearby an initial guess. In this study, monotonic basin hopping (MBH) is employed as a stochastic search method to overcome this limitation, by augmenting the HDDP algorithm for a wider search of the solution space.
Improved hybrid optimization algorithm for 3D protein structure prediction.
Zhou, Changjun; Hou, Caixia; Wei, Xiaopeng; Zhang, Qiang
2014-07-01
A new improved hybrid optimization algorithm - PGATS algorithm, which is based on toy off-lattice model, is presented for dealing with three-dimensional protein structure prediction problems. The algorithm combines the particle swarm optimization (PSO), genetic algorithm (GA), and tabu search (TS) algorithms. Otherwise, we also take some different improved strategies. The factor of stochastic disturbance is joined in the particle swarm optimization to improve the search ability; the operations of crossover and mutation that are in the genetic algorithm are changed to a kind of random liner method; at last tabu search algorithm is improved by appending a mutation operator. Through the combination of a variety of strategies and algorithms, the protein structure prediction (PSP) in a 3D off-lattice model is achieved. The PSP problem is an NP-hard problem, but the problem can be attributed to a global optimization problem of multi-extremum and multi-parameters. This is the theoretical principle of the hybrid optimization algorithm that is proposed in this paper. The algorithm combines local search and global search, which overcomes the shortcoming of a single algorithm, giving full play to the advantage of each algorithm. In the current universal standard sequences, Fibonacci sequences and real protein sequences are certified. Experiments show that the proposed new method outperforms single algorithms on the accuracy of calculating the protein sequence energy value, which is proved to be an effective way to predict the structure of proteins.
BCI Control of Heuristic Search Algorithms
Cavazza, Marc; Aranyi, Gabor; Charles, Fred
2017-01-01
The ability to develop Brain-Computer Interfaces (BCI) to Intelligent Systems would offer new perspectives in terms of human supervision of complex Artificial Intelligence (AI) systems, as well as supporting new types of applications. In this article, we introduce a basic mechanism for the control of heuristic search through fNIRS-based BCI. The rationale is that heuristic search is not only a basic AI mechanism but also one still at the heart of many different AI systems. We investigate how users’ mental disposition can be harnessed to influence the performance of heuristic search algorithm through a mechanism of precision-complexity exchange. From a system perspective, we use weighted variants of the A* algorithm which have an ability to provide faster, albeit suboptimal solutions. We use recent results in affective BCI to capture a BCI signal, which is indicative of a compatible mental disposition in the user. It has been established that Prefrontal Cortex (PFC) asymmetry is strongly correlated to motivational dispositions and results anticipation, such as approach or even risk-taking, and that this asymmetry is amenable to Neurofeedback (NF) control. Since PFC asymmetry is accessible through fNIRS, we designed a BCI paradigm in which users vary their PFC asymmetry through NF during heuristic search tasks, resulting in faster solutions. This is achieved through mapping the PFC asymmetry value onto the dynamic weighting parameter of the weighted A* (WA*) algorithm. We illustrate this approach through two different experiments, one based on solving 8-puzzle configurations, and the other on path planning. In both experiments, subjects were able to speed up the computation of a solution through a reduction of search space in WA*. Our results establish the ability of subjects to intervene in heuristic search progression, with effects which are commensurate to their control of PFC asymmetry: this opens the way to new mechanisms for the implementation of hybrid
2nd International Conference on Harmony Search Algorithm
Geem, Zong
2016-01-01
The Harmony Search Algorithm (HSA) is one of the most well-known techniques in the field of soft computing, an important paradigm in the science and engineering community. This volume, the proceedings of the 2nd International Conference on Harmony Search Algorithm 2015 (ICHSA 2015), brings together contributions describing the latest developments in the field of soft computing with a special focus on HSA techniques. It includes coverage of new methods that have potentially immense application in various fields. Contributed articles cover aspects of the following topics related to the Harmony Search Algorithm: analytical studies; improved, hybrid and multi-objective variants; parameter tuning; and large-scale applications. The book also contains papers discussing recent advances on the following topics: genetic algorithms; evolutionary strategies; the firefly algorithm and cuckoo search; particle swarm optimization and ant colony optimization; simulated annealing; and local search techniques. This book ...
Hybrid ant colony algorithm for traveling salesman problem
Institute of Scientific and Technical Information of China (English)
无
2003-01-01
A hybrid approach based on ant colony algorithm for the traveling salesman problem is proposed, which is an improved algorithm characterized by adding a local search mechanism, a cross-removing strategy and candidate lists. Experimental results show that it is competitive in terms of solution quality and computation time.
A Hybrid Architecture Approach for Quantum Algorithms
Directory of Open Access Journals (Sweden)
Mohammad R.S. Aghaei
2009-01-01
Full Text Available Problem statement: In this study, a general plan of hybrid architecture for quantum algorithms is proposed. Approach: Analysis of the quantum algorithms shows that these algorithms were hybrid with two parts. First, the relationship of classical and quantum parts of the hybrid algorithms was extracted. Then a general plan of hybrid structure was designed. Results: This plan was illustrated the hybrid architecture and the relationship of classical and quantum parts of the algorithms. This general plan was used to increase implementation performance of quantum algorithms. Conclusion/Recommendations: Moreover, simulation results of quantum algorithms on the hybrid architecture proved that quantum algorithms can be implemented on the general plan as well.
A Review on Quantum Search Algorithms
Giri, Pulak Ranjan
2016-01-01
The use of superposition of states in quantum computation, known as quantum parallelism, has significant advantage in terms of speed over the classical computation. It can be understood from the early invented quantum algorithms such as Deutsch's algorithm, Deutsch-Jozsa algorithm and its variation as Bernstein-Vazirani algorithm, Simon algorithm, Shor's algorithms etc. Quantum parallelism also significantly speeds up the database search algorithm, which is important in computer science because it comes as a subroutine in many important algorithms. Quantum database search of Grover achieves the task of finding the target element in an unsorted database in a time quadratically faster than the classical computer. We review the Grover quantum search algorithms for a singe and multiple target elements in a database. The partial search algorithm of Grover and Radhakrishnan and its optimization by Korepin, called GRK algorithm are also discussed.
Efficient Algorithm for Rectangular Spiral Search
Brugarolas, Paul; Breckenridge, William
2008-01-01
An algorithm generates grid coordinates for a computationally efficient spiral search pattern covering an uncertain rectangular area spanned by a coordinate grid. The algorithm does not require that the grid be fixed; the algorithm can search indefinitely, expanding the grid and spiral, as needed, until the target of the search is found. The algorithm also does not require memory of coordinates of previous points on the spiral to generate the current point on the spiral.
A HYBRID HEURISTIC ALGORITHM FOR THE CLUSTERED TRAVELING SALESMAN PROBLEM
Directory of Open Access Journals (Sweden)
Mário Mestria
2016-04-01
Full Text Available ABSTRACT This paper proposes a hybrid heuristic algorithm, based on the metaheuristics Greedy Randomized Adaptive Search Procedure, Iterated Local Search and Variable Neighborhood Descent, to solve the Clustered Traveling Salesman Problem (CTSP. Hybrid Heuristic algorithm uses several variable neighborhood structures combining the intensification (using local search operators and diversification (constructive heuristic and perturbation routine. In the CTSP, the vertices are partitioned into clusters and all vertices of each cluster have to be visited contiguously. The CTSP is -hard since it includes the well-known Traveling Salesman Problem (TSP as a special case. Our hybrid heuristic is compared with three heuristics from the literature and an exact method. Computational experiments are reported for different classes of instances. Experimental results show that the proposed hybrid heuristic obtains competitive results within reasonable computational time.
An Effective Hybrid Optimization Algorithm for Capacitated Vehicle Routing Problem
Institute of Scientific and Technical Information of China (English)
无
2006-01-01
Capacitated vehicle routing problem (CVRP) is an important combinatorial optimization problem. However, it is quite difficult to achieve an optimal solution with the traditional optimization methods owing to the high computational complexity. A hybrid algorithm was developed to solve the problem, in which an artificial immune clonal algorithm (AICA) makes use of the global search ability to search the optimal results and simulated annealing (SA) algorithm employs certain probability to avoid becoming trapped in a local optimum. The results obtained from the computational study show that the proposed algorithm is a feasible and effective method for capacitated vehicle routing problem.
A New Class of Hybrid Particle Swarm Optimization Algorithm
Institute of Scientific and Technical Information of China (English)
Da-Qing Guo; Yong-Jin Zhao; Hui Xiong; Xiao Li
2007-01-01
A new class of hybrid particle swarm optimization (PSO) algorithm is developed for solving the premature convergence caused by some particles in standard PSO fall into stagnation. In this algorithm, the linearly decreasing inertia weight technique (LDIW) and the mutative scale chaos optimization algorithm (MSCOA) are combined with standard PSO, which are used to balance the global and local exploration abilities and enhance the local searching abilities, respectively. In order to evaluate the performance of the new method, three benchmark functions are used. The simulation results confirm the proposed algorithm can greatly enhance the searching ability and effectively improve the premature convergence.
MAKHA—A New Hybrid Swarm Intelligence Global Optimization Algorithm
Directory of Open Access Journals (Sweden)
Ahmed M.E. Khalil
2015-06-01
Full Text Available The search for efficient and reliable bio-inspired optimization methods continues to be an active topic of research due to the wide application of the developed methods. In this study, we developed a reliable and efficient optimization method via the hybridization of two bio-inspired swarm intelligence optimization algorithms, namely, the Monkey Algorithm (MA and the Krill Herd Algorithm (KHA. The hybridization made use of the efficient steps in each of the two original algorithms and provided a better balance between the exploration/diversification steps and the exploitation/intensification steps. The new hybrid algorithm, MAKHA, was rigorously tested with 27 benchmark problems and its results were compared with the results of the two original algorithms. MAKHA proved to be considerably more reliable and more efficient in tested problems.
A novel hybrid algorithm of GSA with Kepler algorithm for numerical optimization
Directory of Open Access Journals (Sweden)
Soroor Sarafrazi
2015-07-01
Full Text Available It is now well recognized that pure algorithms can be promisingly improved by hybridization with other techniques. One of the relatively new metaheuristic algorithms is Gravitational Search Algorithm (GSA which is based on the Newton laws. In this paper, to enhance the performance of GSA, a novel algorithm called “Kepler”, inspired by the astrophysics, is introduced. The Kepler algorithm is based on the principle of the first Kepler law. The hybridization of GSA and Kepler algorithm is an efficient approach to provide much stronger specialization in intensification and/or diversification. The performance of GSA–Kepler is evaluated by applying it to 14 benchmark functions with 20–1000 dimensions and the optimal approximation of linear system as a practical optimization problem. The results obtained reveal that the proposed hybrid algorithm is robust enough to optimize the benchmark functions and practical optimization problems.
Symbolic Algorithmic Analysis of Rectangular Hybrid Systems
Institute of Scientific and Technical Information of China (English)
Hai-Bin Zhang; Zhen-Hua Duan
2009-01-01
This paper investigates symbolic algorithmic analysis of rectangular hybrid systems. To deal with the symbolic reachability problem, a restricted constraint system called hybrid zone is formalized for the representation and manipulation of rectangular automata state-spaces. Hybrid zones are proved to be closed over symbolic reachability operations of rectangular hybrid systems. They are also applied to model-checking procedures for verifying some important classes of timed computation tree logic formulas. To represent hybrid zones, a data structure called difference constraint matrix is defined.These enable us to deal with the symbolic algorithmic analysis of rectangular hybrid systems in an efficient way.
A hybrid algorithm for unrelated parallel machines scheduling
Directory of Open Access Journals (Sweden)
Mohsen Shafiei Nikabadi
2016-09-01
Full Text Available In this paper, a new hybrid algorithm based on multi-objective genetic algorithm (MOGA using simulated annealing (SA is proposed for scheduling unrelated parallel machines with sequence-dependent setup times, varying due dates, ready times and precedence relations among jobs. Our objective is to minimize makespan (Maximum completion time of all machines, number of tardy jobs, total tardiness and total earliness at the same time which can be more advantageous in real environment than considering each of objectives separately. For obtaining an optimal solution, hybrid algorithm based on MOGA and SA has been proposed in order to gain both good global and local search abilities. Simulation results and four well-known multi-objective performance metrics, indicate that the proposed hybrid algorithm outperforms the genetic algorithm (GA and SA in terms of each objective and significantly in minimizing the total cost of the weighted function.
A Hybrid Demon Algorithm for the Two-Dimensional Orthogonal Strip Packing Problem
Directory of Open Access Journals (Sweden)
Bili Chen
2015-01-01
Full Text Available This paper develops a hybrid demon algorithm for a two-dimensional orthogonal strip packing problem. This algorithm combines a placement procedure based on an improved heuristic, local search, and demon algorithm involved in setting one parameter. The hybrid algorithm is tested on a wide set of benchmark instances taken from the literature and compared with other well-known algorithms. The computation results validate the quality of the solutions and the effectiveness of the proposed algorithm.
Quantum Algorithms: Database Search and its Variations
Patel, Apoorva
2011-01-01
The driving force in the pursuit for quantum computation is the exciting possibility that quantum algorithms can be more efficient than their classical analogues. Research on the subject has unraveled several aspects of how that can happen. Clever quantum algorithms have been discovered in recent years, although not systematically, and the field remains under active investigation. This article is an introduction to the quantum database search algorithm. Its extension to the quantum spatial search algorithm is also described.
求解动态车辆调度问题的混合禁忌搜索算法%HYBRID TABU SEARCH ALGORITHM FOR SOLVING DYNAMIC VEHICLE SCHEDULING
Institute of Scientific and Technical Information of China (English)
袁建清
2012-01-01
On the basis of analysing dynamic vehicle scheduling problem with time windows, a dynamic vehicle scheduling mathematical model based on time axis is proposed by introducing the concept of virtual point and time axis. A hybrid tabu algorithm based on C-W algorithm and tabu algorithm is designed to solve the problem, which uses the candidate solutions constructed with dynamic method and the dynamic tabu length selection strategy to improve convergence speed. Then the test instances are provided to demonstrate that the hybrid tabu search algorithm is effective and feasible in solving dynamic vehicle scheduling problem.%对带时间窗的动态车辆调度问题进行分析,引入虚拟点和时间轴概念,建立基于时间轴的动态车辆调度模型,并提出基于C-W节约法和禁忌搜索的混合禁忌搜索算法进行求解.算法中使用动态方法构造候选解和动态禁忌长度的选取策略来提高算法的收敛速度,最后通过测试实例验证了该混合算法解决动态车辆调度问题的有效性和可行性.
Tetris Agent Optimization Using Harmony Search Algorithm
Directory of Open Access Journals (Sweden)
Victor II M. Romero
2011-01-01
Full Text Available Harmony Search (HS algorithm, a relatively recent meta-heuristic optimization algorithm based on the music improvisation process of musicians, is applied to one of today's most appealing problems in the field of Computer Science, Tetris. Harmony Search algorithm was used as the underlying optimization algorithm to facilitate the learning process of an intelligent agent whose objective is to play the game of Tetris in the most optimal way possible, that is, to clear as many rows as possible. The application of Harmony Search algorithm to Tetris is a good illustration of the involvement of optimization process to decision-making problems. Experiment results show that Harmony Search algorithm found the best possible solution for the problem at hand given a random sequence of Tetrominos.
SOLUTION OF THE SATELLITE TRANSFER PROBLEM WITH HYBRID MEMETIC ALGORITHM
Directory of Open Access Journals (Sweden)
A. V. Panteleyev
2014-01-01
Full Text Available This paper presents a hybrid memetic algorithm (MA to solve the problem of finding the optimal program control of nonlinear continuous deterministic systems based on the concept of the meme, which is one of the promising solutions obtained in the course of implementing the procedure for searching the extremes. On the basis of the proposed algorithm the software complex is formed in C#. The solution of satellite transfer problem is presented.
A Hybrid Genetic Algorithm for the Job Shop Scheduling Problem
Gonçalves, José Fernando; Mendes, J. J. M.; Resende, Maurício G. C.
2005-01-01
This paper presents a hybrid genetic algorithm for the Job Shop Scheduling problem. The chromosome representation of the problem is based on random keys. The schedules are constructed using a priority rule in which the priorities are defined by the genetic algorithm. Schedules are constructed using a procedure that generates parameterized active schedules. After a schedule is obtained a local search heuristic is applied to improve the solution. The approach is tested on a set o...
A Novel Hybrid Algorithm for Task Graph Scheduling
Directory of Open Access Journals (Sweden)
Vahid Majid Nezhad
2011-03-01
Full Text Available One of the important problems in multiprocessor systems is Task Graph Scheduling. Task Graph Scheduling is an NP-Hard problem. Both learning automata and genetic algorithms are search tools which are used for solving many NP-Hard problems. In this paper a new hybrid method based on Genetic Algorithm and Learning Automata is proposed. The proposed algorithm begins with an initial population of randomly generated chromosomes and after some stages, each chromosome maps to an automaton. Experimental results show that superiority of the proposed algorithm over the current approaches.
A Novel Hybrid Algorithm for Task Graph Scheduling
Nezhad, Vahid Majid; Efimov, Evgueni
2011-01-01
One of the important problems in multiprocessor systems is Task Graph Scheduling. Task Graph Scheduling is an NP-Hard problem. Both learning automata and genetic algorithms are search tools which are used for solving many NP-Hard problems. In this paper a new hybrid method based on Genetic Algorithm and Learning Automata is proposed. The proposed algorithm begins with an initial population of randomly generated chromosomes and after some stages, each chromosome maps to an automaton. Experimental results show that superiority of the proposed algorithm over the current approaches.
The Rational Hybrid Monte Carlo Algorithm
Clark, M A
2006-01-01
The past few years have seen considerable progress in algorithmic development for the generation of gauge fields including the effects of dynamical fermions. The Rational Hybrid Monte Carlo (RHMC) algorithm, where Hybrid Monte Carlo is performed using a rational approximation in place the usual inverse quark matrix kernel is one of these developments. This algorithm has been found to be extremely beneficial in many areas of lattice QCD (chiral fermions, finite temperature, Wilson fermions etc.). We review the algorithm and some of these benefits, and we compare against other recent algorithm developements. We conclude with an update of the Berlin wall plot comparing costs of all popular fermion formulations.
The Rational Hybrid Monte Carlo algorithm
Clark, Michael
2006-12-01
The past few years have seen considerable progress in algorithmic development for the generation of gauge fields including the effects of dynamical fermions. The Rational Hybrid Monte Carlo (RHMC) algorithm, where Hybrid Monte Carlo is performed using a rational approximation in place the usual inverse quark matrix kernel is one of these developments. This algorithm has been found to be extremely beneficial in many areas of lattice QCD (chiral fermions, finite temperature, Wilson fermions etc.). We review the algorithm and some of these benefits, and we compare against other recent algorithm developements. We conclude with an update of the Berlin wall plot comparing costs of all popular fermion formulations.
Proposal of Tabu Search Algorithm Based on Cuckoo Search
Directory of Open Access Journals (Sweden)
Ahmed T. Sadiq Al-Obaidi
2014-03-01
Full Text Available This paper presents a new version of Tabu Search (TS based on Cuckoo Search (CS called (Tabu-Cuckoo Search TCS to reduce the effect of the TS problems. The proposed algorithm provides a more diversity to candidate solutions of TS. Two case studies have been solved using the proposed algorithm, 4-Color Map and Traveling Salesman Problem. The proposed algorithm gives a good result compare with the original, the iteration numbers are less and the local minimum or non-optimal solutions are less.
New algorithms for radio pulsar search
Smith, Kendrick M
2016-01-01
The computational cost of searching for new pulsars is a limiting factor for upcoming radio telescopes such as SKA. We introduce four new algorithms: an optimal constant-period search, a coherent tree search which permits optimal searching with O(1) cost per model, a semicoherent search which combines information from coherent subsearches while preserving as much phase information as possible, and a hierarchical search which interpolates between the coherent and semicoherent limits. Taken together, these algorithms improve the computational cost of pulsar search by several orders of magnitude. In this paper, we consider the simple case of a constant-acceleration phase model, but our methods should generalize to more complex search spaces.
A Hybrid Algorithm for Strip Packing Problem with Rotation Constraint
Directory of Open Access Journals (Sweden)
Chen Huan
2016-01-01
Full Text Available Strip packing is a well-known NP-hard problem and it was widely applied in engineering fields. This paper considers a two-dimensional orthogonal strip packing problem. Until now some exact algorithm and mainly heuristics were proposed for two-dimensional orthogonal strip packing problem. While this paper proposes a two-stage hybrid algorithm for it. In the first stage, a heuristic algorithm based on layering idea is developed to construct a solution. In the second stage, a great deluge algorithm is used to further search a better solution. Computational results on several classes of benchmark problems have revealed that the hybrid algorithm improves the results of layer-heuristic, and can compete with other heuristics from the literature.
Cost Optimization Using Hybrid Evolutionary Algorithm in Cloud Computing
Directory of Open Access Journals (Sweden)
B. Kavitha
2015-07-01
Full Text Available The main aim of this research is to design the hybrid evolutionary algorithm for minimizing multiple problems of dynamic resource allocation in cloud computing. The resource allocation is one of the big problems in the distributed systems when the client wants to decrease the cost for the resource allocation for their task. In order to assign the resource for the task, the client must consider the monetary cost and computational cost. Allocation of resources by considering those two costs is difficult. To solve this problem in this study, we make the main task of client into many subtasks and we allocate resources for each subtask instead of selecting the single resource for the main task. The allocation of resources for the each subtask is completed through our proposed hybrid optimization algorithm. Here, we hybrid the Binary Particle Swarm Optimization (BPSO and Binary Cuckoo Search algorithm (BCSO by considering monetary cost and computational cost which helps to minimize the cost of the client. Finally, the experimentation is carried out and our proposed hybrid algorithm is compared with BPSO and BCSO algorithms. Also we proved the efficiency of our proposed hybrid optimization algorithm.
Performance Simulations of Moving Target Search Algorithms
Directory of Open Access Journals (Sweden)
Peter K. K. Loh
2009-01-01
Full Text Available The design of appropriate moving target search (MTS algorithms for computer-generated bots poses serious challenges as they have to satisfy stringent requirements that include computation and execution efficiency. In this paper, we investigate the performance and behaviour of existing moving target search algorithms when applied to search-and-capture gaming scenarios. As part of the investigation, we also introduce a novel algorithm known as abstraction MTS. We conduct performance simulations with a game bot and moving target within randomly generated mazes of increasing sizes and reveal that abstraction MTS exhibits competitive performance even with large problem spaces.
A SCALABLE HYBRID MODULAR MULTIPLICATION ALGORITHM
Institute of Scientific and Technical Information of China (English)
Meng Qiang; Chen Tao; Dai Zibin; Chen Quji
2008-01-01
Based on the analysis of several familiar large integer modular multiplication algorithms,this paper proposes a new Scalable Hybrid modular multiplication (SHyb) algorithm which has scalable operands, and presents an RSA algorithm model with scalable key size. Theoretical analysis shows that SHyb algorithm requires m2n/2+2m iterations to complete an mn-bit modular multiplication with the application of an n-bit modular addition hardware circuit. The number of the required iterations can be reduced to a half of that of the scalable Montgomery algorithm. Consequently, the application scope of the RSA cryptosystem is expanded and its operation speed is enhanced based on SHyb algorithm.
Search for New Quantum Algorithms
2006-05-01
Topological computing for beginners, (slide presentation), Lecture Notes for Chapter 9 - Physics 219 - Quantum Computation. (http...14 II.A.8. A QHS algorithm for Feynman integrals ......................................................18 II.A.9. Non-abelian QHS algorithms -- A...idea is that NOT all environmentally entangling transformations are equally likely. In particular, for spatially separated physical quantum
A SAA-based Novel Hybrid Intelligent Evolutionary Algorithm for Job Shop Scheduling Problem
Institute of Scientific and Technical Information of China (English)
无
2002-01-01
Through systematic analysis and comparison of the common features of SAA, ES and traditional LS (local search) algorithm, a new hybrid strategy of mixing SA, ES with LS, namely HIEA (Hybrid Intelligent Evolutionary Algorithm), is proposed in this paper. Viewed as a whole, the hybrid strategy is also an intelligent heuristic searching procedure. But it has some characteristics such as generality, robustness, etc., because it synthesizes advantages of SA, ES and LS, while the shortages of the three methods are overcome. This paper applies Markov chain theory to describe the hybrid strategy mathematically, and proves that the algorithm possesses the global asymptotical convergence and analyzes the performance of HIEA.
Bagherinejad, Jafar; Niknam, Azar
2017-06-01
In this paper, a leader-follower competitive facility location problem considering the reactions of the competitors is studied. A model for locating new facilities and determining levels of quality for the facilities of the leader firm is proposed. Moreover, changes in the location and quality of existing facilities in a competitive market where a competitor offers the same goods or services are taken into account. The competitor could react by opening new facilities, closing existing ones, and adjusting the quality levels of its existing facilities. The market share, captured by each facility, depends on its distance to customer and its quality that is calculated based on the probabilistic Huff's model. Each firm aims to maximize its profit subject to constraints on quality levels and budget of setting up new facilities. This problem is formulated as a bi-level mixed integer non-linear model. The model is solved using a combination of Tabu Search with an exact method. The performance of the proposed algorithm is compared with an upper bound that is achieved by applying Karush-Kuhn-Tucker conditions. Computational results show that our algorithm finds near the upper bound solutions in a reasonable time.
Search algorithms, hidden labour and information control
Directory of Open Access Journals (Sweden)
Paško Bilić
2016-06-01
Full Text Available The paper examines some of the processes of the closely knit relationship between Google’s ideologies of neutrality and objectivity and global market dominance. Neutrality construction comprises an important element sustaining the company’s economic position and is reflected in constant updates, estimates and changes to utility and relevance of search results. Providing a purely technical solution to these issues proves to be increasingly difficult without a human hand in steering algorithmic solutions. Search relevance fluctuates and shifts through continuous tinkering and tweaking of the search algorithm. The company also uses third parties to hire human raters for performing quality assessments of algorithmic updates and adaptations in linguistically and culturally diverse global markets. The adaptation process contradicts the technical foundations of the company and calculations based on the initial Page Rank algorithm. Annual market reports, Google’s Search Quality Rating Guidelines, and reports from media specialising in search engine optimisation business are analysed. The Search Quality Rating Guidelines document provides a rare glimpse into the internal architecture of search algorithms and the notions of utility and relevance which are presented and structured as neutral and objective. Intertwined layers of ideology, hidden labour of human raters, advertising revenues, market dominance and control are discussed throughout the paper.
Search algorithms, hidden labour and information control
Directory of Open Access Journals (Sweden)
Paško Bilić
2016-06-01
Full Text Available The paper examines some of the processes of the closely knit relationship between Google’s ideologies of neutrality and objectivity and global market dominance. Neutrality construction comprises an important element sustaining the company’s economic position and is reflected in constant updates, estimates and changes to utility and relevance of search results. Providing a purely technical solution to these issues proves to be increasingly difficult without a human hand in steering algorithmic solutions. Search relevance fluctuates and shifts through continuous tinkering and tweaking of the search algorithm. The company also uses third parties to hire human raters for performing quality assessments of algorithmic updates and adaptations in linguistically and culturally diverse global markets. The adaptation process contradicts the technical foundations of the company and calculations based on the initial Page Rank algorithm. Annual market reports, Google’s Search Quality Rating Guidelines, and reports from media specialising in search engine optimisation business are analysed. The Search Quality Rating Guidelines document provides a rare glimpse into the internal architecture of search algorithms and the notions of utility and relevance which are presented and structured as neutral and objective. Intertwined layers of ideology, hidden labour of human raters, advertising revenues, market dominance and control are discussed throughout the paper.
Image Compression Using Harmony Search Algorithm
Directory of Open Access Journals (Sweden)
Ryan Rey M. Daga
2012-09-01
Full Text Available Image compression techniques are important and useful in data storage and image transmission through the Internet. These techniques eliminate redundant information in an image which minimizes the physical space requirement of the image. Numerous types of image compression algorithms have been developed but the resulting image is still less than the optimal. The Harmony search algorithm (HSA, a meta-heuristic optimization algorithm inspired by the music improvisation process of musicians, was applied as the underlying algorithm for image compression. Experiment results show that it is feasible to use the harmony search algorithm as an algorithm for image compression. The HSA-based image compression technique was able to compress colored and grayscale images with minimal visual information loss.
Fitting PAC spectra with a hybrid algorithm
Energy Technology Data Exchange (ETDEWEB)
Alves, M. A., E-mail: mauro@sepn.org [Instituto de Aeronautica e Espaco (Brazil); Carbonari, A. W., E-mail: carbonar@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (Brazil)
2008-01-15
A hybrid algorithm (HA) that blends features of genetic algorithms (GA) and simulated annealing (SA) was implemented for simultaneous fits of perturbed angular correlation (PAC) spectra. The main characteristic of the HA is the incorporation of a selection criterion based on SA into the basic structure of GA. The results obtained with the HA compare favorably with fits performed with conventional methods.
An object-oriented cluster search algorithm
Energy Technology Data Exchange (ETDEWEB)
Silin, Dmitry; Patzek, Tad
2003-01-24
In this work we describe two object-oriented cluster search algorithms, which can be applied to a network of an arbitrary structure. First algorithm calculates all connected clusters, whereas the second one finds a path with the minimal number of connections. We estimate the complexity of the algorithm and infer that the number of operations has linear growth with respect to the size of the network.
Impulse denoising using Hybrid Algorithm
Directory of Open Access Journals (Sweden)
Ms.Arumugham Rajamani
2015-03-01
Full Text Available Many real time images facing a problem of salt and pepper noise contaminated,due to poor illumination and environmental factors. Many filters and algorithms are used to remove salt and pepper noise from the image, but it also removes image information. This paper proposes a new effective algorithm for diagnosing and removing salt and pepper noise is presented. The existing standard algorithms like Median Filter (MF, Weighted Median Filter (WMF, Standard Median Filter (SMF and so on, will yield poor performance particularly at high noise density. The suggested algorithm is compared with the above said standard algorithms using the metrics Mean Square Error (MSE and Peak Signal to Noise Ratio (PSNR value.The proposed algorithm exhibits more competitive performance results at all noise densities. The joint sorting and diagonal averaging algorithm has lower computational time,better quantitative results and improved qualitative result by a better visual appearance at all noise densities.
A new hybrid imperialist competitive algorithm on data clustering
Indian Academy of Sciences (India)
Taher Niknam; Elahe Taherian Fard; Shervin Ehrampoosh; Alireza Rousta
2011-06-01
Clustering is a process for partitioning datasets. This technique is very useful for optimum solution. -means is one of the simplest and the most famous methods that is based on square error criterion. This algorithm depends on initial states and converges to local optima. Some recent researches show that -means algorithm has been successfully applied to combinatorial optimization problems for clustering. In this paper, we purpose a novel algorithm that is based on combining two algorithms of clustering; -means and Modify Imperialist Competitive Algorithm. It is named hybrid K-MICA. In addition, we use a method called modiﬁed expectation maximization (EM) to determine number of clusters. The experimented results show that the new method carries out better results than the ACO, PSO, Simulated Annealing (SA), Genetic Algorithm (GA), Tabu Search (TS), Honey Bee Mating Optimization (HBMO) and -means.
Electroencephalography epilepsy classifications using hybrid cuckoo search and neural network
Pratiwi, A. B.; Damayanti, A.; Miswanto
2017-07-01
Epilepsy is a condition that affects the brain and causes repeated seizures. This seizure is episodes that can vary and nearly undetectable to long periods of vigorous shaking or brain contractions. Epilepsy often can be confirmed with an electrocephalography (EEG). Neural Networks has been used in biomedic signal analysis, it has successfully classified the biomedic signal, such as EEG signal. In this paper, a hybrid cuckoo search and neural network are used to recognize EEG signal for epilepsy classifications. The weight of the multilayer perceptron is optimized by the cuckoo search algorithm based on its error. The aim of this methods is making the network faster to obtained the local or global optimal then the process of classification become more accurate. Based on the comparison results with the traditional multilayer perceptron, the hybrid cuckoo search and multilayer perceptron provides better performance in term of error convergence and accuracy. The purpose methods give MSE 0.001 and accuracy 90.0 %.
A hybrid genetic algorithm based on mutative scale chaos optimization strategy
Institute of Scientific and Technical Information of China (English)
无
2002-01-01
In order to avoid such problems as low convergent speed and local optimal solution in simple genetic algorithms, a new hybrid genetic algorithm is proposed. In this algorithm, a mutative scale chaos optimization strategy is operated on the population after a genetic operation. And according to the searching process, the searching space of the optimal variables is gradually diminished and the regulating coefficient of the secondary searching process is gradually changed which will lead to the quick evolution of the population. The algorithm has such advantages as fast search, precise results and convenient using etc. The simulation results show that the performance of the method is better than that of simple genetic algorithms.
Harmony Search as a Metaheuristic Algorithm
Yang, Xin-She
2010-01-01
This first chapter intends to review and analyze the powerful new Harmony Search (HS) algorithm in the context of metaheuristic algorithms. I will first outline the fundamental steps of Harmony Search, and how it works. I then try to identify the characteristics of metaheuristics and analyze why HS is a good meta-heuristic algorithm. I then review briefly other popular metaheuristics such as par-ticle swarm optimization so as to find their similarities and differences from HS. Finally, I will discuss the ways to improve and develop new variants of HS, and make suggestions for further research including open questions.
Moment searching algorithm for bioluminescence tomography
Institute of Scientific and Technical Information of China (English)
Ludong Jin; Yan Wu; Jie Tian; Heyu Huang; Xiaochao Qu
2009-01-01
To avoid the ill-posedness in the inverse problem of bioluminescence tomography, a moment searching algorithm fusing the finite element method (FEM) with the moment concept in theoretical mechanics is developed. In the algorithm, the source's information is mapped to the surface photon flux density by FEM, and the source's position is modified with the feedback through the algorithm of barycenter searching, which makes full use of the position information of the photon flux density on surface. The position is modified in every iterative step and will finally converge to the real source's value theoretically.
The Ordered Clustered Travelling Salesman Problem: A Hybrid Genetic Algorithm
Directory of Open Access Journals (Sweden)
Zakir Hussain Ahmed
2014-01-01
Full Text Available The ordered clustered travelling salesman problem is a variation of the usual travelling salesman problem in which a set of vertices (except the starting vertex of the network is divided into some prespecified clusters. The objective is to find the least cost Hamiltonian tour in which vertices of any cluster are visited contiguously and the clusters are visited in the prespecified order. The problem is NP-hard, and it arises in practical transportation and sequencing problems. This paper develops a hybrid genetic algorithm using sequential constructive crossover, 2-opt search, and a local search for obtaining heuristic solution to the problem. The efficiency of the algorithm has been examined against two existing algorithms for some asymmetric and symmetric TSPLIB instances of various sizes. The computational results show that the proposed algorithm is very effective in terms of solution quality and computational time. Finally, we present solution to some more symmetric TSPLIB instances.
The ordered clustered travelling salesman problem: a hybrid genetic algorithm.
Ahmed, Zakir Hussain
2014-01-01
The ordered clustered travelling salesman problem is a variation of the usual travelling salesman problem in which a set of vertices (except the starting vertex) of the network is divided into some prespecified clusters. The objective is to find the least cost Hamiltonian tour in which vertices of any cluster are visited contiguously and the clusters are visited in the prespecified order. The problem is NP-hard, and it arises in practical transportation and sequencing problems. This paper develops a hybrid genetic algorithm using sequential constructive crossover, 2-opt search, and a local search for obtaining heuristic solution to the problem. The efficiency of the algorithm has been examined against two existing algorithms for some asymmetric and symmetric TSPLIB instances of various sizes. The computational results show that the proposed algorithm is very effective in terms of solution quality and computational time. Finally, we present solution to some more symmetric TSPLIB instances.
Genetic algorithms as global random search methods
Peck, Charles C.; Dhawan, Atam P.
1995-01-01
Genetic algorithm behavior is described in terms of the construction and evolution of the sampling distributions over the space of candidate solutions. This novel perspective is motivated by analysis indicating that the schema theory is inadequate for completely and properly explaining genetic algorithm behavior. Based on the proposed theory, it is argued that the similarities of candidate solutions should be exploited directly, rather than encoding candidate solutions and then exploiting their similarities. Proportional selection is characterized as a global search operator, and recombination is characterized as the search process that exploits similarities. Sequential algorithms and many deletion methods are also analyzed. It is shown that by properly constraining the search breadth of recombination operators, convergence of genetic algorithms to a global optimum can be ensured.
Institute of Scientific and Technical Information of China (English)
赵诗奎
2015-01-01
针对柔性作业车间调度问题(Flexible job shop scheduling problem，FJSP)，以优化最大完工时间为目标，提出一种融合两级邻域搜索和遗传算法的混合算法。基于通过利用机器空闲时间来减小最大完工时间的想法，构造邻域结构，对关键路径上的关键工序进行移动，实现邻域搜索，以改进当前解；设计针对FJSP问题特点的两级邻域搜索方式，第一级邻域搜索为跨机器移动工序，将工序移动到除当前加工机器之外的其他可选机器上，第二级邻域搜索为同机器移动工序，将工序在当前加工机器上进行移动；给出两级邻域搜索相应的保证可行解工序移动条件；兼顾FJSP问题求解算法的全局搜索能力和局部搜索能力，利用遗传算法实现全局搜索，两级邻域搜索实现局部搜索；采用国际通用的FJSP问题基准算例进行测试，验证了所提方法的有效性。%For the flexible job shop scheduling problem (FJSP), in order to optimize the maximum completion time, a hybrid algorithm mixed with bilevel neighborhood search and genetic algorithm is proposed. The neighborhood structure is constructed by using machine idle time to reduce the maximum completion time. In order to improve the current solution, critical operations of the critical path are moved to achieve neighborhood search. The method of bilevel neighborhood search is designed according to the characteristics of FJSP. The first level neighborhood search is the cross-machine moving operation, and the operation is moved to other optional machines in addition to current processing machine. The second level neighborhood search is the same-machine moving operation, and the operation is moved on current processing machine. Operation moving conditions corresponding to the bilevel neighborhood search are given to ensure feasible solutions. Both of global search ability and local search ability of FJSP solving algorithm are
Multi Population Hybrid Genetic Algorithms for University Course Timetabling Problem
Directory of Open Access Journals (Sweden)
Leila Jadidi
2012-06-01
Full Text Available University course timetabling is one of the important and time consuming issues that each University is involved with it at the beginning of each. This problem is in class of NP-hard problem and is very difficult to solve by classic algorithms. Therefore optimization techniques are used to solve them and produce optimal or near optimal feasible solutions instead of exact solutions. Genetic algorithms, because of multidirectional search property of them, are considered as an efficient approach for solving this type of problems. In this paper three new hybrid genetic algorithms for solving the university course timetabling problem (UCTP are proposed: FGARI, FGASA and FGATS. In proposed algorithms, fuzzy logic is used to measure violation of soft constraints in fitness function to deal with inherent uncertainly and vagueness involved in real life data. Also, randomized iterative local search, simulated annealing and tabu search are applied, respectively, to improve exploitive search ability and prevent genetic algorithm to be trapped in local optimum. The experimental results indicate that the proposed algorithms are able to produce promising results for the UCTP.
Multi Population Hybrid Genetic Algorithms for University Course Timetabling
Directory of Open Access Journals (Sweden)
Mehrnaz Shirani LIRI
2012-08-01
Full Text Available University course timetabling is one of the important and time consuming issues that each University is involved with at the beginning of each university year. This problem is in class of NP-hard problem and is very difficult to solve by classic algorithms. Therefore optimization techniques are used to solve them and produce optimal or almost optimal feasible solutions instead of exact solutions. Genetic algorithms, because of their multidirectional search property, are considered as an efficient approach for solving this type of problems. In this paper three new hybrid genetic algorithms for solving the university course timetabling problem (UCTP are proposed: FGARI, FGASA and FGATS. In the proposed algorithms, fuzzy logic is used to measure violation of soft constraints in fitness function to deal with inherent uncertainty and vagueness involved in real life data. Also, randomized iterative local search, simulated annealing and tabu search are applied, respectively, to improve exploitive search ability and prevent genetic algorithm to be trapped in local optimum. The experimental results indicate that the proposed algorithms are able to produce promising results for the UCTP
Algorithmic Methods for Sponsored Search Advertising
Feldman, Jon
2008-01-01
Modern commercial Internet search engines display advertisements along side the search results in response to user queries. Such sponsored search relies on market mechanisms to elicit prices for these advertisements, making use of an auction among advertisers who bid in order to have their ads shown for specific keywords. We present an overview of the current systems for such auctions and also describe the underlying game-theoretic aspects. The game involves three parties--advertisers, the search engine, and search users--and we present example research directions that emphasize the role of each. The algorithms for bidding and pricing in these games use techniques from three mathematical areas: mechanism design, optimization, and statistical estimation. Finally, we present some challenges in sponsored search advertising.
Search Algorithms for Conceptual Graph Databases
Directory of Open Access Journals (Sweden)
Abdurashid Mamadolimov
2013-03-01
Full Text Available We consider a database composed of a set of conceptual graphs. Using conceptual graphs and graphhomomorphism it is possible to build a basic query-answering mechanism based on semantic search.Graph homomorphism defines a partial order over conceptual graphs. Since graph homomorphismchecking is an NP-Complete problem, the main requirement for database organizing and managingalgorithms is to reduce the number of homomorphism checks. Searching is a basic operation for databasemanipulating problems. We consider the problem of searching for an element in a partially ordered set.The goal is to minimize the number of queries required to find a target element in the worst case. First weanalyse conceptual graph database operations. Then we propose a new algorithm for a subclass of lattices.Finally, we suggest a parallel search algorithm for a general poset.
Nuclear expert web search and crawler algorithm
Energy Technology Data Exchange (ETDEWEB)
Reis, Thiago; Barroso, Antonio C.O.; Baptista, Benedito Filho D., E-mail: thiagoreis@usp.br, E-mail: barroso@ipen.br, E-mail: bdbfilho@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)
2013-07-01
In this paper we present preliminary research on web search and crawling algorithm applied specifically to nuclear-related web information. We designed a web-based nuclear-oriented expert system guided by a web crawler algorithm and a neural network able to search and retrieve nuclear-related hyper textual web information in autonomous and massive fashion. Preliminary experimental results shows a retrieval precision of 80% for web pages related to any nuclear theme and a retrieval precision of 72% for web pages related only to nuclear power theme. (author)
Adaptive cuckoo search algorithm for unconstrained optimization.
Ong, Pauline
2014-01-01
Modification of the intensification and diversification approaches in the recently developed cuckoo search algorithm (CSA) is performed. The alteration involves the implementation of adaptive step size adjustment strategy, and thus enabling faster convergence to the global optimal solutions. The feasibility of the proposed algorithm is validated against benchmark optimization functions, where the obtained results demonstrate a marked improvement over the standard CSA, in all the cases.
Hybrid Genetic Algorithms with Fuzzy Logic Controller
Institute of Scientific and Technical Information of China (English)
无
2001-01-01
In this paper, a new implementation of genetic algorithms (GAs) is developed for the machine scheduling problem, which is abundant among the modern manufacturing systems. The performance measure of early and tardy completion of jobs is very natural as one's aim, which is usually to minimize simultaneously both earliness and tardiness of all jobs. As the problem is NP-hard and no effective algorithms exist, we propose a hybrid genetic algorithms approach to deal with it. We adjust the crossover and mutation probabilities by fuzzy logic controller whereas the hybrid genetic algorithm does not require preliminary experiments to determine probabilities for genetic operators. The experimental results show the effectiveness of the GAs method proposed in the paper.``
Computing gap free Pareto front approximations with stochastic search algorithms.
Schütze, Oliver; Laumanns, Marco; Tantar, Emilia; Coello, Carlos A Coello; Talbi, El-Ghazali
2010-01-01
Recently, a convergence proof of stochastic search algorithms toward finite size Pareto set approximations of continuous multi-objective optimization problems has been given. The focus was on obtaining a finite approximation that captures the entire solution set in some suitable sense, which was defined by the concept of epsilon-dominance. Though bounds on the quality of the limit approximation-which are entirely determined by the archiving strategy and the value of epsilon-have been obtained, the strategies do not guarantee to obtain a gap free approximation of the Pareto front. That is, such approximations A can reveal gaps in the sense that points f in the Pareto front can exist such that the distance of f to any image point F(a), a epsilon A, is "large." Since such gap free approximations are desirable in certain applications, and the related archiving strategies can be advantageous when memetic strategies are included in the search process, we are aiming in this work for such methods. We present two novel strategies that accomplish this task in the probabilistic sense and under mild assumptions on the stochastic search algorithm. In addition to the convergence proofs, we give some numerical results to visualize the behavior of the different archiving strategies. Finally, we demonstrate the potential for a possible hybridization of a given stochastic search algorithm with a particular local search strategy-multi-objective continuation methods-by showing that the concept of epsilon-dominance can be integrated into this approach in a suitable way.
Hybrid discrete particle swarm optimization algorithm for capacitated vehicle routing problem
Institute of Scientific and Technical Information of China (English)
无
2006-01-01
Capacitated vehicle routing problem (CVRP) is an NP-hard problem. For large-scale problems, it is quite difficult to achieve an optimal solution with traditional optimization methods due to the high computational complexity. A new hybrid approximation algorithm is developed in this work to solve the problem. In the hybrid algorithm, discrete particle swarm optimization (DPSO) combines global search and local search to search for the optimal results and simulated annealing (SA) uses certain probability to avoid being trapped in a local optimum. The computational study showed that the proposed algorithm is a feasible and effective approach for capacitated vehicle routing problem, especially for large scale problems.
Multicast Routing Based on Hybrid Genetic Algorithm
Institute of Scientific and Technical Information of China (English)
CAO Yuan-da; CAI Gui
2005-01-01
A new multicast routing algorithm based on the hybrid genetic algorithm (HGA) is proposed. The coding pattern based on the number of routing paths is used. A fitness function that is computed easily and makes algorithm quickly convergent is proposed. A new approach that defines the HGA's parameters is provided. The simulation shows that the approach can increase largely the convergent ratio, and the fitting values of the parameters of this algorithm are different from that of the original algorithms. The optimal mutation probability of HGA equals 0.50 in HGA in the experiment, but that equals 0.07 in SGA. It has been concluded that the population size has a significant influence on the HGA's convergent ratio when it's mutation probability is bigger. The algorithm with a small population size has a high average convergent rate. The population size has little influence on HGA with the lower mutation probability.
Directory of Open Access Journals (Sweden)
A. P. Karpenko
2014-01-01
Full Text Available We consider a class of stochastic search algorithms of global optimization which in various publications are called behavioural, intellectual, metaheuristic, inspired by the nature, swarm, multi-agent, population, etc. We use the last term.Experience in using the population algorithms to solve challenges of global optimization shows that application of one such algorithm may not always effective. Therefore now great attention is paid to hybridization of population algorithms of global optimization. Hybrid algorithms unite various algorithms or identical algorithms, but with various values of free parameters. Thus efficiency of one algorithm can compensate weakness of another.The purposes of the work are development of hybrid algorithm of global optimization based on known algorithms of harmony search (HS and swarm of particles (PSO, software implementation of algorithm, study of its efficiency using a number of known benchmark problems, and a problem of dimensional optimization of truss structure.We set a problem of global optimization, consider basic algorithms of HS and PSO, give a flow chart of the offered hybrid algorithm called PSO HS , present results of computing experiments with developed algorithm and software, formulate main results of work and prospects of its development.
A Hybrid Immigrants Scheme for Genetic Algorithms in Dynamic Environments
Institute of Scientific and Technical Information of China (English)
Shengxiang Yang; Renato Tinós
2007-01-01
Dynamic optimization problems are a kind of optimization problems that involve changes over time. They pose a serious challenge to traditional optimization methods as well as conventional genetic algorithms since the goal is no longer to search for the optimal solution(s) of a fixed problem but to track the moving optimum over time. Dynamic optimization problems have attracted a growing interest from the genetic algorithm community in recent years. Several approaches have been developed to enhance the performance of genetic algorithms in dynamic environments. One approach is to maintain the diversity of the population via random immigrants. This paper proposes a hybrid immigrants scheme that combines the concepts of elitism, dualism and random immigrants for genetic algorithms to address dynamic optimization problems. In this hybrid scheme, the best individual, i.e., the elite, from the previous generation and its dual individual are retrieved as the bases to create immigrants via traditional mutation scheme. These elitism-based and dualism-based immigrants together with some random immigrants are substituted into the current population, replacing the worst individuals in the population. These three kinds of immigrants aim to address environmental changes of slight, medium and significant degrees respectively and hence efficiently adapt genetic algorithms to dynamic environments that are subject to different severities of changes. Based on a series of systematically constructed dynamic test problems, experiments are carried out to investigate the performance of genetic algorithms with the hybrid immigrants scheme and traditional random immigrants scheme. Experimental results validate the efficiency of the proposed hybrid immigrants scheme for improving the performance of genetic algorithms in dynamic environments.
New Hybrid Algorithm for Question Answering
Directory of Open Access Journals (Sweden)
Jaspreet Kaur
2013-08-01
Full Text Available With technical advancement, Question Answering has emerged as the main area for the researchers. User is provided with specific answers instead of large number of documents or passages in question answering. Question answering proposes the solution to acquire efficient and exact answers to user question asked in natural language rather than language query. The major goal of this paper is to develop a hybrid algorithm for question answering. For this task different question answering systems for different languages were studied. After deep study, we are able to develop an algorithm that comprises the best features from excellent systems. An algorithm developed by us performs well.
A cuckoo search algorithm for multimodal optimization.
Cuevas, Erik; Reyna-Orta, Adolfo
2014-01-01
Interest in multimodal optimization is expanding rapidly, since many practical engineering problems demand the localization of multiple optima within a search space. On the other hand, the cuckoo search (CS) algorithm is a simple and effective global optimization algorithm which can not be directly applied to solve multimodal optimization problems. This paper proposes a new multimodal optimization algorithm called the multimodal cuckoo search (MCS). Under MCS, the original CS is enhanced with multimodal capacities by means of (1) the incorporation of a memory mechanism to efficiently register potential local optima according to their fitness value and the distance to other potential solutions, (2) the modification of the original CS individual selection strategy to accelerate the detection process of new local minima, and (3) the inclusion of a depuration procedure to cyclically eliminate duplicated memory elements. The performance of the proposed approach is compared to several state-of-the-art multimodal optimization algorithms considering a benchmark suite of fourteen multimodal problems. Experimental results indicate that the proposed strategy is capable of providing better and even a more consistent performance over existing well-known multimodal algorithms for the majority of test problems yet avoiding any serious computational deterioration.
Consultant-Guided Search Algorithms for the Quadratic Assignment Problem
Iordache, Serban
Consultant-Guided Search (CGS) is a recent swarm intelligence metaheuristic for combinatorial optimization problems, inspired by the way real people make decisions based on advice received from consultants. Until now, CGS has been successfully applied to the Traveling Salesman Problem. Because a good metaheuristic should be able to tackle efficiently a large variety of problems, it is important to see how CGS behaves when applied to other classes of problems. In this paper, we propose an algorithm for the Quadratic Assignment Problem (QAP), which hybridizes CGS with a local search procedure. Our experimental results show that CGS is able to compete in terms of solution quality with one of the best Ant Colony Optimization algorithms, the MAX-MIN Ant System.
Directory of Open Access Journals (Sweden)
Haisheng Song
2013-01-01
Full Text Available The back propagation neural network (BPNN algorithm can be used as a supervised classification in the processing of remote sensing image classification. But its defects are obvious: falling into the local minimum value easily, slow convergence speed, and being difficult to determine intermediate hidden layer nodes. Genetic algorithm (GA has the advantages of global optimization and being not easy to fall into local minimum value, but it has the disadvantage of poor local searching capability. This paper uses GA to generate the initial structure of BPNN. Then, the stable, efficient, and fast BP classification network is gotten through making fine adjustments on the improved BP algorithm. Finally, we use the hybrid algorithm to execute classification on remote sensing image and compare it with the improved BP algorithm and traditional maximum likelihood classification (MLC algorithm. Results of experiments show that the hybrid algorithm outperforms improved BP algorithm and MLC algorithm.
Improving Search Algorithms by Using Intelligent Coordinates
Wolpert, David H.; Tumer, Kagan; Bandari, Esfandiar
2004-01-01
We consider algorithms that maximize a global function G in a distributed manner, using a different adaptive computational agent to set each variable of the underlying space. Each agent eta is self-interested; it sets its variable to maximize its own function g (sub eta). Three factors govern such a distributed algorithm's performance, related to exploration/exploitation, game theory, and machine learning. We demonstrate how to exploit alI three factors by modifying a search algorithm's exploration stage: rather than random exploration, each coordinate of the search space is now controlled by a separate machine-learning-based player engaged in a noncooperative game. Experiments demonstrate that this modification improves simulated annealing (SA) by up to an order of magnitude for bin packing and for a model of an economic process run over an underlying network. These experiments also reveal interesting small-world phenomena.
Optimum Performance-Based Seismic Design Using a Hybrid Optimization Algorithm
Directory of Open Access Journals (Sweden)
S. Talatahari
2014-01-01
Full Text Available A hybrid optimization method is presented to optimum seismic design of steel frames considering four performance levels. These performance levels are considered to determine the optimum design of structures to reduce the structural cost. A pushover analysis of steel building frameworks subject to equivalent-static earthquake loading is utilized. The algorithm is based on the concepts of the charged system search in which each agent is affected by local and global best positions stored in the charged memory considering the governing laws of electrical physics. Comparison of the results of the hybrid algorithm with those of other metaheuristic algorithms shows the efficiency of the hybrid algorithm.
An Allele Real-Coded Quantum Evolutionary Algorithm Based on Hybrid Updating Strategy.
Zhang, Yu-Xian; Qian, Xiao-Yi; Peng, Hui-Deng; Wang, Jian-Hui
2016-01-01
For improving convergence rate and preventing prematurity in quantum evolutionary algorithm, an allele real-coded quantum evolutionary algorithm based on hybrid updating strategy is presented. The real variables are coded with probability superposition of allele. A hybrid updating strategy balancing the global search and local search is presented in which the superior allele is defined. On the basis of superior allele and inferior allele, a guided evolutionary process as well as updating allele with variable scale contraction is adopted. And H ε gate is introduced to prevent prematurity. Furthermore, the global convergence of proposed algorithm is proved by Markov chain. Finally, the proposed algorithm is compared with genetic algorithm, quantum evolutionary algorithm, and double chains quantum genetic algorithm in solving continuous optimization problem, and the experimental results verify the advantages on convergence rate and search accuracy.
An Allele Real-Coded Quantum Evolutionary Algorithm Based on Hybrid Updating Strategy
Directory of Open Access Journals (Sweden)
Yu-Xian Zhang
2016-01-01
Full Text Available For improving convergence rate and preventing prematurity in quantum evolutionary algorithm, an allele real-coded quantum evolutionary algorithm based on hybrid updating strategy is presented. The real variables are coded with probability superposition of allele. A hybrid updating strategy balancing the global search and local search is presented in which the superior allele is defined. On the basis of superior allele and inferior allele, a guided evolutionary process as well as updating allele with variable scale contraction is adopted. And Hε gate is introduced to prevent prematurity. Furthermore, the global convergence of proposed algorithm is proved by Markov chain. Finally, the proposed algorithm is compared with genetic algorithm, quantum evolutionary algorithm, and double chains quantum genetic algorithm in solving continuous optimization problem, and the experimental results verify the advantages on convergence rate and search accuracy.
Institute of Scientific and Technical Information of China (English)
Y Hashemi; H Shayeghi; M Moradzadeh; ASafari
2016-01-01
A mathematical approach was proposed to investigate the impact of high penetration of large-scale photovoltaic park (LPP) on small-signal stability of a power network and design of hybrid controller for these units. A systematic procedure was performed to obtain the complete model of a multi-machine power network including LPP. For damping of oscillations focusing on inter-area oscillatory modes, a hybrid controller for LPP was proposed. The performance of the suggested controller was tested using a 16-machine 5-area network. The results indicate that the proposed hybrid controller for LPP provides sufficient damping to the low-frequency modes of power system for a wide range of operating conditions. The method presented in this work effectively indentifies the impact of increased PV penetration and its controller on dynamic performance of multi-machine power network containing LPP. Simulation results demonstrate that the model presented can be used in designing of essential controllers for LPP.
Training Artificial Neural Networks by a Hybrid PSO-CS Algorithm
Directory of Open Access Journals (Sweden)
Jeng-Fung Chen
2015-06-01
Full Text Available Presenting a satisfactory and efficient training algorithm for artificial neural networks (ANN has been a challenging task in the supervised learning area. Particle swarm optimization (PSO is one of the most widely used algorithms due to its simplicity of implementation and fast convergence speed. On the other hand, Cuckoo Search (CS algorithm has been proven to have a good ability for finding the global optimum; however, it has a slow convergence rate. In this study, a hybrid algorithm based on PSO and CS is proposed to make use of the advantages of both PSO and CS algorithms. The proposed hybrid algorithm is employed as a new training method for feedforward neural networks (FNNs. To investigate the performance of the proposed algorithm, two benchmark problems are used and the results are compared with those obtained from FNNs trained by original PSO and CS algorithms. The experimental results show that the proposed hybrid algorithm outperforms both PSO and CS in training FNNs.
Improved Cuckoo Search Algorithm for Feed forward Neural Network Training
Ehsan Valian; Shahram Mohanna; Saeed Tavakoli
2011-01-01
The cuckoo search algorithm is a recently developed meta-heuristic optimization algorithm, which is suitable for solving optimization problems. To enhance the accuracy and convergence rate of this algorithm, an improved cuckoo search algorithm is proposed in this paper. Normally, the parameters of the cuckoo search are kept constant. This may lead to decreasing the efficiency of the algorithm. To cope with this issue, a proper strategy for tuning the cuckoo search parameters is pr...
Three hybridization models based on local search scheme for job shop scheduling problem
Balbi Fraga, Tatiana
2015-05-01
This work presents three different hybridization models based on the general schema of Local Search Heuristics, named Hybrid Successive Application, Hybrid Neighborhood, and Hybrid Improved Neighborhood. Despite similar approaches might have already been presented in the literature in other contexts, in this work these models are applied to analyzes the solution of the job shop scheduling problem, with the heuristics Taboo Search and Particle Swarm Optimization. Besides, we investigate some aspects that must be considered in order to achieve better solutions than those obtained by the original heuristics. The results demonstrate that the algorithms derived from these three hybrid models are more robust than the original algorithms and able to get better results than those found by the single Taboo Search.
THE QUASIPERIODIC AUTOMATED TRANSIT SEARCH ALGORITHM
Energy Technology Data Exchange (ETDEWEB)
Carter, Joshua A. [Harvard-Smithsonian Center for Astrophysics, 60 Garden St., Cambridge, MA 02138 (United States); Agol, Eric [Department of Astronomy, Box 351580, University of Washington, Seattle, WA 98195 (United States)
2013-03-10
We present a new algorithm for detecting transiting extrasolar planets in time-series photometry. The Quasiperiodic Automated Transit Search (QATS) algorithm relaxes the usual assumption of strictly periodic transits by permitting a variable, but bounded, interval between successive transits. We show that this method is capable of detecting transiting planets with significant transit timing variations without any loss of significance-{sup s}mearing{sup -}as would be incurred with traditional algorithms; however, this is at the cost of a slightly increased stochastic background. The approximate times of transit are standard products of the QATS search. Despite the increased flexibility, we show that QATS has a run-time complexity that is comparable to traditional search codes and is comparably easy to implement. QATS is applicable to data having a nearly uninterrupted, uniform cadence and is therefore well suited to the modern class of space-based transit searches (e.g., Kepler, CoRoT). Applications of QATS include transiting planets in dynamically active multi-planet systems and transiting planets in stellar binary systems.
Modified Parameters of Harmony Search Algorithm for Better Searching
Farraliza Mansor, Nur; Abal Abas, Zuraida; Samad Shibghatullah, Abdul; Rahman, Ahmad Fadzli Nizam Abdul
2017-08-01
The scheduling and rostering problems are deliberated as integrated due to they depend on each other whereby the input of rostering problems is a scheduling problems. In this research, the integrated scheduling and rostering bus driver problems are defined as maximising the balance of the assignment of tasks in term of distribution of shifts and routes. It is essential to achieve is fairer among driver because this can bring to increase in driver levels of satisfaction. The latest approaches still unable to address the fairness problem that has emerged, thus this research proposes a strategy to adopt an amendment of a harmony search algorithm in order to address the fairness issue and thus the level of fairness will be escalate. The harmony search algorithm is classified as a meta-heuristics algorithm that is capable of solving hard and combinatorial or discrete optimisation problems. In this respect, the three main operators in HS, namely the Harmony Memory Consideration Rate (HMCR), Pitch Adjustment Rate (PAR) and Bandwidth (BW) play a vital role in balancing local exploitation and global exploration. These parameters influence the overall performance of the HS algorithm, and therefore it is crucial to fine-tune them. The contributions to this research are the HMCR parameter using step function while the fret spacing concept on guitars that is associated with mathematical formulae is also applied in the BW parameter. The model of constant step function is introduced in the alteration of HMCR parameter. The experimental results revealed that our proposed approach is superior than parameter adaptive harmony search algorithm. In conclusion, this proposed approach managed to generate a fairer roster and was thus capable of maximising the balancing distribution of shifts and routes among drivers, which contributed to the lowering of illness, incidents, absenteeism and accidents.
A novel complex valued cuckoo search algorithm.
Zhou, Yongquan; Zheng, Hongqing
2013-01-01
To expand the information of nest individuals, the idea of complex-valued encoding is used in cuckoo search (PCS); the gene of individuals is denoted by plurality, so a diploid swarm is structured by a sequence plurality. The value of independent variables for objective function is determined by modules, and a sign of them is determined by angles. The position of nest is divided into two parts, namely, real part gene and imaginary gene. The updating relation of complex-valued swarm is presented. Six typical functions are tested. The results are compared with cuckoo search based on real-valued encoding; the usefulness of the proposed algorithm is verified.
Armentum: a hybrid direct search optimization methodology
Briones, Francisco Zorrilla
2016-07-01
Design of experiments (DOE) offers a great deal of benefits to any manufacturing organization, such as characterization of variables and sets the path for the optimization of the levels of these variables (settings) trough the Response surface methodology, leading to process capability improvement, efficiency increase, cost reduction. Unfortunately, the use of these methodologies is very limited due to various situations. Some of these situations involve the investment on production time, materials, personnel, equipment; most of organizations are not willing to invest in these resources or are not capable because of production demands, besides the fact that they will produce non-conformant product (scrap) during the process of experimentation. Other methodologies, in the form of algorithms, may be used to optimize a process. Known as direct search methods, these algorithms search for an optimum on an unknown function, trough the search of the best combination of the levels on the variables considered in the analysis. These methods have a very different application strategy, they search on the best combination of parameters, during the normal production run, calculating the change in the input variables and evaluating the results in small steps until an optimum is reached. These algorithms are very sensible to internal noise (variation of the input variables), among other disadvantages. In this paper it is made a comparison between the classical experimental design and one of these direct search methods, developed by Nelder and Mead (1965), known as the Nelder Mead simplex (NMS), trying to overcome the disadvantages and maximize the advantages of both approaches, trough a proposed combination of the two methodologies.
Chemical-text hybrid search engines.
Zhou, Yingyao; Zhou, Bin; Jiang, Shumei; King, Frederick J
2010-01-01
As the amount of chemical literature increases, it is critical that researchers be enabled to accurately locate documents related to a particular aspect of a given compound. Existing solutions, based on text and chemical search engines alone, suffer from the inclusion of "false negative" and "false positive" results, and cannot accommodate diverse repertoire of formats currently available for chemical documents. To address these concerns, we developed an approach called Entity-Canonical Keyword Indexing (ECKI), which converts a chemical entity embedded in a data source into its canonical keyword representation prior to being indexed by text search engines. We implemented ECKI using Microsoft Office SharePoint Server Search, and the resultant hybrid search engine not only supported complex mixed chemical and keyword queries but also was applied to both intranet and Internet environments. We envision that the adoption of ECKI will empower researchers to pose more complex search questions that were not readily attainable previously and to obtain answers at much improved speed and accuracy.
Elyasigomari, V; Lee, D A; Screen, H R C; Shaheed, M H
2017-03-01
For each cancer type, only a few genes are informative. Due to the so-called 'curse of dimensionality' problem, the gene selection task remains a challenge. To overcome this problem, we propose a two-stage gene selection method called MRMR-COA-HS. In the first stage, the minimum redundancy and maximum relevance (MRMR) feature selection is used to select a subset of relevant genes. The selected genes are then fed into a wrapper setup that combines a new algorithm, COA-HS, using the support vector machine as a classifier. The method was applied to four microarray datasets, and the performance was assessed by the leave one out cross-validation method. Comparative performance assessment of the proposed method with other evolutionary algorithms suggested that the proposed algorithm significantly outperforms other methods in selecting a fewer number of genes while maintaining the highest classification accuracy. The functions of the selected genes were further investigated, and it was confirmed that the selected genes are biologically relevant to each cancer type.
Algorithms for Academic Search and Recommendation Systems
DEFF Research Database (Denmark)
Amolochitis, Emmanouil
2014-01-01
In this work we present novel algorithms for academic search, recommendation and association rules mining. In the first part of the work we introduce a novel hierarchical heuristic scheme for re-ranking academic publications. The scheme is based on the hierarchical combination of a custom...... are part of a developed Movie Recommendation system, the first such system to be commercially deployed in Greece by a major Triple Play services provider. In the third part of the work we present the design of a quantitative association rule mining algorithm. The introduced mining algorithm processes...... a specific number of user histories in order to generate a set of association rules with a minimally required support and confidence value. We have introduced a post processor that uses the generated association rules and improves the quality (in terms of recall) of the original recommendation functionality....
A Hybrid Graph Representation for Recursive Backtracking Algorithms
Abu-Khzam, Faisal N.; Langston, Michael A.; Mouawad, Amer E.; Nolan, Clinton P.
Many exact algorithms for NP-hard graph problems adopt the old Davis-Putman branch-and-reduce paradigm. The performance of these algorithms often suffers from the increasing number of graph modifications, such as deletions, that reduce the problem instance and have to be "taken back" frequently during the search process. The use of efficient data structures is necessary for fast graph modification modules as well as fast take-back procedures. In this paper, we investigate practical implementation-based aspects of exact algorithms by providing a hybrid graph representation that addresses the take-back challenge and combines the advantage of {O}(1) adjacency-queries in adjacency-matrices with the advantage of efficient neighborhood traversal in adjacency-lists.
IMPROVED CUCKOO SEARCH ALGORITHM FOR FEEDFORWARD NEURAL NETWORK TRAINING
Ehsan Valian; Shahram Mohanna; Saeed Tavakoli
2011-01-01
The cuckoo search algorithm is a recently developed meta-heuristic optimization algorithm, which issuitable for solving optimization problems. To enhance the accuracy and convergence rate of thisalgorithm, an improved cuckoo search algorithm is proposed in this paper. Normally, the parameters ofthe cuckoo search are kept constant. This may lead to decreasing the efficiency of the algorithm. To copewith this issue, a proper strategy for tuning the cuckoo search parameters is presented. Then, i...
An Effective Hybrid Artificial Bee Colony Algorithm for Nonnegative Linear Least Squares Problems
Directory of Open Access Journals (Sweden)
Xiangyu Kong
2014-07-01
Full Text Available An effective hybrid artificial bee colony algorithm is proposed in this paper for nonnegative linear least squares problems. To further improve the performance of algorithm, orthogonal initialization method is employed to generate the initial swarm. Furthermore, to balance the exploration and exploitation abilities, a new search mechanism is designed. The performance of this algorithm is verified by using 27 benchmark functions and 5 nonnegative linear least squares test problems. And the comparison analyses are given between the proposed algorithm and other swarm intelligence algorithms. Numerical results demonstrate that the proposed algorithm displays a high performance compared with other algorithms for global optimization problems and nonnegative linear least squares problems.
The novel generating algorithm and properties of hybrid-P-ary generalized bridge functions
Institute of Scientific and Technical Information of China (English)
无
2006-01-01
In this paper, we develop novel non-sine functions, named hybrid-P-ary generalized bridge functions, based on the copy and shift methods. The generating algorithm of hybrid-P-ary generalized bridge functions is introduced based on the hybrid-P-ary generalized Walsh function's copy algorithm. The main property, product property, is also discussed. This function may be viewed as the generalization of the theory of bridge functions. And a lot of non-sine orthogonal functions are the special subset of these novel functions. The hybrid-P-ary generalized bridge functions can be used to search many unknown non-sine functions by defining different parameters.
White Noise in Quantum Random Walk Search Algorithm
Institute of Scientific and Technical Information of China (English)
MA Lei; DU Jiang-Feng; LI Yun; LI Hui; KWEK L. C.; OH C. H.
2006-01-01
@@ The quantum random walk is a possible approach to construct new quantum search algorithms. It has been shown by Shenvi et al. [Phys. Rev. A 67 (2003)52307] that a kind of algorithm can perform an oracle search on a database of N items with O(√N) calling to the oracle, yielding a speedup similar to other quantum search algorithms.
A Hybrid Genetic Algorithm for the Multiple Crossdocks Problem
Directory of Open Access Journals (Sweden)
Zhaowei Miao
2012-01-01
Full Text Available We study a multiple crossdocks problem with supplier and customer time windows, where any violation of time windows will incur a penalty cost and the flows through the crossdock are constrained by fixed transportation schedules and crossdock capacities. We prove this problem to be NP-hard in the strong sense and therefore focus on developing efficient heuristics. Based on the problem structure, we propose a hybrid genetic algorithm (HGA integrating greedy technique and variable neighborhood search method to solve the problem. Extensive experiments under different scenarios were conducted, and results show that HGA outperforms CPLEX solver, providing solutions in realistic timescales.
Aligning multiple protein sequences by parallel hybrid genetic algorithm.
Nguyen, Hung Dinh; Yoshihara, Ikuo; Yamamori, Kunihito; Yasunaga, Moritoshi
2002-01-01
This paper presents a parallel hybrid genetic algorithm (GA) for solving the sum-of-pairs multiple protein sequence alignment. A new chromosome representation and its corresponding genetic operators are proposed. A multi-population GENITOR-type GA is combined with local search heuristics. It is then extended to run in parallel on a multiprocessor system for speeding up. Experimental results of benchmarks from the BAliBASE show that the proposed method is superior to MSA, OMA, and SAGA methods with regard to quality of solution and running time. It can be used for finding multiple sequence alignment as well as testing cost functions.
A New Chaotic Genetic Hybrid Algorithm and Its Applications in Mechanical Optimization Design
Institute of Scientific and Technical Information of China (English)
WANG Zhong-min; DAI Yi
2010-01-01
A new chaotic genetic hybrid algorithm (CGHA) based on float point coding was put forward in this paper.Firstly, it used chaos optimization to search coarsely and produced a better initial population. Then, a power function carri-er was adopted to improve the ergodicity and the sufficiency of the chaos optimization. Secondly, the genetic algorithm (GA) was used to search finely and guaranteed the population's evolution. To avoid the search being trapped in local minimum, a chaos degenerate mutation operator was designed to make the search converge to a global optimum quickly. Finally, CGHA was used to solve a typical mechanical optimization problem of shear stress checking for a cylinder helix spring.Compared with traditional penalty function method, chaos-Powell hybrid algorithm and standard GA, CGHA shows better performance in solution precision and convergence speed than those of the algorithms. Therefore, CGHA is a new effective way to solve the problems in mechanical optimization design.
An Iterated Local Search Algorithm for a Place Scheduling Problem
Directory of Open Access Journals (Sweden)
Shicheng Hu
2013-01-01
Full Text Available We study the place scheduling problem which has many application backgrounds in realities. For the block manufacturing project with special manufacturing platform requirements, we propose a place resource schedule problem. First, the mathematical model for the place resource schedule problem is given. On the basis of resource-constrained project scheduling problem and packing problem, we develop a hybrid heuristic method which combines priority rules and three-dimensional best fit algorithm, in which the priority rules determine the scheduling order and the three-dimensional best fit algorithm solves the placement. After this method is used to get an initial solution, the iterated local search is employed to get an improvement. Finally, we use a set of simulation data to demonstrate the steps of the proposed method and verify its feasibility.
Application of Hybrid Quantum Tabu Search with Support Vector Regression (SVR for Load Forecasting
Directory of Open Access Journals (Sweden)
Cheng-Wen Lee
2016-10-01
Full Text Available Hybridizing chaotic evolutionary algorithms with support vector regression (SVR to improve forecasting accuracy is a hot topic in electricity load forecasting. Trapping at local optima and premature convergence are critical shortcomings of the tabu search (TS algorithm. This paper investigates potential improvements of the TS algorithm by applying quantum computing mechanics to enhance the search information sharing mechanism (tabu memory to improve the forecasting accuracy. This article presents an SVR-based load forecasting model that integrates quantum behaviors and the TS algorithm with the support vector regression model (namely SVRQTS to obtain a more satisfactory forecasting accuracy. Numerical examples demonstrate that the proposed model outperforms the alternatives.
A Hybrid Intelligent Algorithm for Optimal Birandom Portfolio Selection Problems
Directory of Open Access Journals (Sweden)
Qi Li
2014-01-01
Full Text Available Birandom portfolio selection problems have been well developed and widely applied in recent years. To solve these problems better, this paper designs a new hybrid intelligent algorithm which combines the improved LGMS-FOA algorithm with birandom simulation. Since all the existing algorithms solving these problems are based on genetic algorithm and birandom simulation, some comparisons between the new hybrid intelligent algorithm and the existing algorithms are given in terms of numerical experiments, which demonstrate that the new hybrid intelligent algorithm is more effective and precise when the numbers of the objective function computations are the same.
A Novel Complex Valued Cuckoo Search Algorithm
Directory of Open Access Journals (Sweden)
Yongquan Zhou
2013-01-01
Full Text Available To expand the information of nest individuals, the idea of complex-valued encoding is used in cuckoo search (PCS; the gene of individuals is denoted by plurality, so a diploid swarm is structured by a sequence plurality. The value of independent variables for objective function is determined by modules, and a sign of them is determined by angles. The position of nest is divided into two parts, namely, real part gene and imaginary gene. The updating relation of complex-valued swarm is presented. Six typical functions are tested. The results are compared with cuckoo search based on real-valued encoding; the usefulness of the proposed algorithm is verified.
Directory of Open Access Journals (Sweden)
Xiaomin Xu
2015-11-01
Full Text Available The uncertainty and regularity of wind power generation are caused by wind resources’ intermittent and randomness. Such volatility brings severe challenges to the wind power grid. The requirements for ultrashort-term and short-term wind power forecasting with high prediction accuracy of the model used, have great significance for reducing the phenomenon of abandoned wind power , optimizing the conventional power generation plan, adjusting the maintenance schedule and developing real-time monitoring systems. Therefore, accurate forecasting of wind power generation is important in electric load forecasting. The echo state network (ESN is a new recurrent neural network composed of input, hidden layer and output layers. It can approximate well the nonlinear system and achieves great results in nonlinear chaotic time series forecasting. Besides, the ESN is simpler and less computationally demanding than the traditional neural network training, which provides more accurate training results. Aiming at addressing the disadvantages of standard ESN, this paper has made some improvements. Combined with the complementary advantages of particle swarm optimization and tabu search, the generalization of ESN is improved. To verify the validity and applicability of this method, case studies of multitime scale forecasting of wind power output are carried out to reconstruct the chaotic time series of the actual wind power generation data in a certain region to predict wind power generation. Meanwhile, the influence of seasonal factors on wind power is taken into consideration. Compared with the classical ESN and the conventional Back Propagation (BP neural network, the results verify the superiority of the proposed method.
ENHANCED HYBRID PSO – ACO ALGORITHM FOR GRID SCHEDULING
Directory of Open Access Journals (Sweden)
P. Mathiyalagan
2010-07-01
Full Text Available Grid computing is a high performance computing environment to solve larger scale computational demands. Grid computing contains resource management, task scheduling, security problems, information management and so on. Task scheduling is a fundamental issue in achieving high performance in grid computing systems. A computational GRID is typically heterogeneous in the sense that it combines clusters of varying sizes, and different clusters typically contains processing elements with different level of performance. In this, heuristic approaches based on particle swarm optimization and ant colony optimization algorithms are adopted for solving task scheduling problems in grid environment. Particle Swarm Optimization (PSO is one of the latest evolutionary optimization techniques by nature. It has the better ability of global searching and has been successfully applied to many areas such as, neural network training etc. Due to the linear decreasing of inertia weight in PSO the convergence rate becomes faster, which leads to the minimal makespan time when used for scheduling. To make the convergence rate faster, the PSO algorithm is improved by modifying the inertia parameter, such that it produces better performance and gives an optimized result. The ACO algorithm is improved by modifying the pheromone updating rule. ACO algorithm is hybridized with PSO algorithm for efficient result and better convergence in PSO algorithm.
Cluster hybrid Monte Carlo simulation algorithms
Plascak, J. A.; Ferrenberg, Alan M.; Landau, D. P.
2002-06-01
We show that addition of Metropolis single spin flips to the Wolff cluster-flipping Monte Carlo procedure leads to a dramatic increase in performance for the spin-1/2 Ising model. We also show that adding Wolff cluster flipping to the Metropolis or heat bath algorithms in systems where just cluster flipping is not immediately obvious (such as the spin-3/2 Ising model) can substantially reduce the statistical errors of the simulations. A further advantage of these methods is that systematic errors introduced by the use of imperfect random-number generation may be largely healed by hybridizing single spin flips with cluster flipping.
A Hybrid Artificial Neural Network-based Scheduling Knowledge Acquisition Algorithm
Institute of Scientific and Technical Information of China (English)
WANG Weida; WANG Wei; LIU Wenjian
2006-01-01
It is a key issue that constructing successful knowledge base to satisfy an efficient adaptive scheduling for the complex manufacturing system. Therefore, a hybrid artificial neural network (ANN)-based scheduling knowledge acquisition algorithm is presented in this paper. We combined genetic algorithm (GA) with simulated annealing (SA) to develop a hybrid optimization method, in which GA was introduced to present parallel search architecture and SA was introduced to increase escaping probability from local optima and ability to neighbor search. The hybrid method was utilized to resolve the optimal attributes subset of manufacturing system and determine the optimal topology and parameters of ANN under different scheduling objectives; ANN was used to evaluate the fitness of chromosome in the method and generate the scheduling knowledge after obtaining the optimal attributes subset, optimal ANN's topology and parameters. The experimental results demonstrate that the proposed algorithm produces significant performance improvements over other machine learning-based algorithms.
Directory of Open Access Journals (Sweden)
Orhan TÜRKBEY
2002-02-01
Full Text Available Memetic algorithms, which use local search techniques, are hybrid structured algorithms like genetic algorithms among evolutionary algorithms. In this study, for Quadratic Assignment Problem (QAP, a memetic structured algorithm using a local search heuristic like 2-opt is developed. Developed in the algorithm, a crossover operator that has not been used before for QAP is applied whereas, Eshelman procedure is used in order to increase thesolution variability. The developed memetic algorithm is applied on test problems taken from QAP-LIB, the results are compared with the present techniques in the literature.
A Content-Based Search Algorithm for Motion Estimation
Institute of Scientific and Technical Information of China (English)
无
2000-01-01
The basic search algorithm toimplement Motion Estimation (ME) in the H. 263 encoder is a full search.It is simple but time-consuming. Traditional search algorithms are fast, but may cause a fall in image quality or an increase in bit-rate in low bit-rate applications. A fast search algorithm for ME with consideration on image content is proposed in this paper. Experiments show that the proposed algorithm can offer up to 70 percent savings in execution time with almost no sacrifice in PSNR and bit-rate, compared with the full search.
Improved Gravitational Search Algorithm (GSA Using Fuzzy Logic
Directory of Open Access Journals (Sweden)
Omid Mokhlesi
2013-04-01
Full Text Available Researchers tendency to use different collective intelligence as the search methods to optimize complex engineering problems has increased because of the high performance of this algorithms. Gravitational search algorithm (GSA is among these algorithms. This algorithm is inspired by Newton's laws of physics and gravitational attraction. Random masses are agents who have searched for the space. This paper presents a new Fuzzy Population GSA model called FPGSA. The proposed method is a combination of parametric fuzzy controller and gravitational search algorithm. The space being searched using this combined reasonable and accurate method. In the collective intelligence algorithms, population size influences the final answer so that for a large population, a better response is obtained but the algorithm execution time is longer. To overcome this problem, a new parameter called the dispersion coefficient is added to the algorithm. Implementation results show that by controlling this factor, system performance can be improved.
Wolf Search Algorithm for Solving Optimal Reactive Power Dispatch Problem
Directory of Open Access Journals (Sweden)
Kanagasabai Lenin
2015-03-01
Full Text Available This paper presents a new bio-inspired heuristic optimization algorithm called the Wolf Search Algorithm (WSA for solving the multi-objective reactive power dispatch problem. Wolf Search algorithm is a new bio – inspired heuristic algorithm which based on wolf preying behaviour. The way wolves search for food and survive by avoiding their enemies has been imitated to formulate the algorithm for solving the reactive power dispatches. And the speciality of wolf is possessing both individual local searching ability and autonomous flocking movement and this special property has been utilized to formulate the search algorithm .The proposed (WSA algorithm has been tested on standard IEEE 30 bus test system and simulation results shows clearly about the good performance of the proposed algorithm .
Hybrid Genetic Algorithm with Multiparents Crossover for Job Shop Scheduling Problems
Directory of Open Access Journals (Sweden)
Noor Hasnah Moin
2015-01-01
Full Text Available The job shop scheduling problem (JSSP is one of the well-known hard combinatorial scheduling problems. This paper proposes a hybrid genetic algorithm with multiparents crossover for JSSP. The multiparents crossover operator known as extended precedence preservative crossover (EPPX is able to recombine more than two parents to generate a single new offspring distinguished from common crossover operators that recombine only two parents. This algorithm also embeds a schedule generation procedure to generate full-active schedule that satisfies precedence constraints in order to reduce the search space. Once a schedule is obtained, a neighborhood search is applied to exploit the search space for better solutions and to enhance the GA. This hybrid genetic algorithm is simulated on a set of benchmarks from the literatures and the results are compared with other approaches to ensure the sustainability of this algorithm in solving JSSP. The results suggest that the implementation of multiparents crossover produces competitive results.
Performance Evaluation of Full Search Equivalent Pattern Matching Algorithms.
Wanli Ouyang; Tombari, F; Mattoccia, S; Di Stefano, L; Wai-Kuen Cham
2012-01-01
Pattern matching is widely used in signal processing, computer vision, and image and video processing. Full search equivalent algorithms accelerate the pattern matching process and, in the meantime, yield exactly the same result as the full search. This paper proposes an analysis and comparison of state-of-the-art algorithms for full search equivalent pattern matching. Our intention is that the data sets and tests used in our evaluation will be a benchmark for testing future pattern matching algorithms, and that the analysis concerning state-of-the-art algorithms could inspire new fast algorithms. We also propose extensions of the evaluated algorithms and show that they outperform the original formulations.
Eroglu, Duygu Yilmaz; Ozmutlu, H Cenk
2014-01-01
We developed mixed integer programming (MIP) models and hybrid genetic-local search algorithms for the scheduling problem of unrelated parallel machines with job sequence and machine-dependent setup times and with job splitting property. The first contribution of this paper is to introduce novel algorithms which make splitting and scheduling simultaneously with variable number of subjobs. We proposed simple chromosome structure which is constituted by random key numbers in hybrid genetic-local search algorithm (GAspLA). Random key numbers are used frequently in genetic algorithms, but it creates additional difficulty when hybrid factors in local search are implemented. We developed algorithms that satisfy the adaptation of results of local search into the genetic algorithms with minimum relocation operation of genes' random key numbers. This is the second contribution of the paper. The third contribution of this paper is three developed new MIP models which are making splitting and scheduling simultaneously. The fourth contribution of this paper is implementation of the GAspLAMIP. This implementation let us verify the optimality of GAspLA for the studied combinations. The proposed methods are tested on a set of problems taken from the literature and the results validate the effectiveness of the proposed algorithms.
Ouroboros: A Tool for Building Generic, Hybrid, Divide& Conquer Algorithms
Energy Technology Data Exchange (ETDEWEB)
Johnson, J R; Foster, I
2003-05-01
A hybrid divide and conquer algorithm is one that switches from a divide and conquer to an iterative strategy at a specified problem size. Such algorithms can provide significant performance improvements relative to alternatives that use a single strategy. However, the identification of the optimal problem size at which to switch for a particular algorithm and platform can be challenging. We describe an automated approach to this problem that first conducts experiments to explore the performance space on a particular platform and then uses the resulting performance data to construct an optimal hybrid algorithm on that platform. We implement this technique in a tool, ''Ouroboros'', that automatically constructs a high-performance hybrid algorithm from a set of registered algorithms. We present results obtained with this tool for several classical divide and conquer algorithms, including matrix multiply and sorting, and report speedups of up to six times achieved over non-hybrid algorithms.
Design of Passive Analog Electronic Circuits Using Hybrid Modified UMDA algorithm
Directory of Open Access Journals (Sweden)
J. Slezak
2015-04-01
Full Text Available Hybrid evolutionary passive analog circuits synthesis method based on modified Univariate Marginal Distribution Algorithm (UMDA and a local search algorithm is proposed in the paper. The modification of the UMDA algorithm which allows to specify the maximum number of the nodes and the maximum number of the components of the synthesized circuit is proposed. The proposed hybrid approach efficiently reduces the number of the objective function evaluations. The modified UMDA algorithm is used for synthesis of the topology and the local search algorithm is used for determination of the parameters of the components of the designed circuit. As an example the proposed method is applied to a problem of synthesis of the fractional capacitor circuit.
Comparison of Three Web Search Algorithms
Institute of Scientific and Technical Information of China (English)
Ying Bao; Zi-hu Zhu
2006-01-01
In this paper we discuss three important kinds of Markov chains used in Web search algorithms-the maximal irreducible Markov chain, the minimal irreducible Markov chain and the middle irreducible Markov chain. We discuss the stationary distributions, the convergence rates and the Maclaurin series of the stationary distributions of the three kinds of Markov chains. Among other things, our results show that the maximal and minimal Markov chains have the same stationary distribution and that the stationary distribution of the middle Markov chain reflects the real Web structure more objectively. Our results also prove that the maximal and middle Markov chains have the same convergence rate and that the maximal Markov chain converges faster than the minimal Markov chain when the damping factor α＞ 1/(√2).
Grover quantum searching algorithm based on weighted targets
Institute of Scientific and Technical Information of China (English)
Li Panchi; Li Shiyong
2008-01-01
The current Grover quantum searching algorithm cannot identify the difference in importance of the search targets when it is applied to an unsorted quantum database, and the probability for each search target is equal. To solve this problem, a Grover searching algorithm based on weighted targets is proposed. First, each target is endowed a weight coefficient according to its importance. Applying these different weight coefficients, the targets are represented as quantum superposition states. Second, the novel Grover searching algorithm based on the quantum superposition of the weighted targets is constructed. Using this algorithm, the probability of getting each target can be approximated to the corresponding weight coefficient, which shows the flexibility of this algorithm.Finally, the validity of the algorithm is proved by a simple searching example.
Space-efficient parallel algorithms for combinatorial search problems
DEFF Research Database (Denmark)
Pietrcaprina, Andrea; Pucci, Geppino; Silvestri, Francesco;
2015-01-01
We present space-efficient parallel strategies for two fundamental combinatorial search problems, namely, backtrack search and branch-and-bound , both involving the visit of an n-node tree of height h under the assumption that a node can be accessed only through its father or its children. For both...... problems we propose efficient algorithms that run on a p-processor distributed-memory machine. For backtrack search, we give a deterministic algorithm running in O(n/p+hlogp) time, and a Las Vegas algorithm requiring optimal O(n/p+h) time, with high probability. Building on the backtrack search algorithm...
Extended Mixture of MLP Experts by Hybrid of Conjugate Gradient Method and Modified Cuckoo Search
Salimi, Hamid; Soltanshahi, Mohammad Ali; Hatami, Javad
2012-01-01
This paper investigates a new method for improving the learning algorithm of Mixture of Experts (ME) model using a hybrid of Modified Cuckoo Search (MCS) and Conjugate Gradient (CG) as a second order optimization technique. The CG technique is combined with Back-Propagation (BP) algorithm to yield a much more efficient learning algorithm for ME structure. In addition, the experts and gating networks in enhanced model are replaced by CG based Multi-Layer Perceptrons (MLPs) to provide faster and more accurate learning. The CG is considerably depends on initial weights of connections of Artificial Neural Network (ANN), so, a metaheuristic algorithm, the so-called Modified Cuckoo Search is applied in order to select the optimal weights. The performance of proposed method is compared with Gradient Decent Based ME (GDME) and Conjugate Gradient Based ME (CGME) in classification and regression problems. The experimental results show that hybrid MSC and CG based ME (MCS-CGME) has faster convergence and better performa...
Improved Degree Search Algorithms in Unstructured P2P Networks
Directory of Open Access Journals (Sweden)
Guole Liu
2012-01-01
Full Text Available Searching and retrieving the demanded correct information is one important problem in networks; especially, designing an efficient search algorithm is a key challenge in unstructured peer-to-peer (P2P networks. Breadth-first search (BFS and depth-first search (DFS are the current two typical search methods. BFS-based algorithms show the perfect performance in the aspect of search success rate of network resources, while bringing the huge search messages. On the contrary, DFS-based algorithms reduce the search message quantity and also cause the dropping of search success ratio. To address the problem that only one of performances is excellent, we propose two memory function degree search algorithms: memory function maximum degree algorithm (MD and memory function preference degree algorithm (PD. We study their performance including the search success rate and the search message quantity in different networks, which are scale-free networks, random graph networks, and small-world networks. Simulations show that the two performances are both excellent at the same time, and the performances are improved at least 10 times.
Choice of a PISA selector in a hybrid algorithmic structure for the FJSSP
Directory of Open Access Journals (Sweden)
Mariano Frutos
2015-04-01
Full Text Available This paper analyzes the choice of a PISA selector for a Hybrid Algorithm integrating it as a Multi-Objective Evolutionary Algorithm (MOEA with a path-dependent search algorithm. The interaction between these components provides an efficient procedure for solving Multi-Objective Problems (MOPs in operations scheduling. In order to choose the selector, we consider both NSGA and SPEA as well as their successors (NSGAII and SPEAII. NSGAII and SPEAII are shown to be the most efficient candidates. On the other hand, for the path-dependent search at the end of each evolutionary phase we use the multi-objective version of Simulated Annealing.
Zhang, Zhihua; Sheng, Zheng; Shi, Hanqing; Fan, Zhiqiang
2016-01-01
Using the RFC technique to estimate refractivity parameters is a complex nonlinear optimization problem. In this paper, an improved cuckoo search (CS) algorithm is proposed to deal with this problem. To enhance the performance of the CS algorithm, a parameter dynamic adaptive operation and crossover operation were integrated into the standard CS (DACS-CO). Rechenberg's 1/5 criteria combined with learning factor were used to control the parameter dynamic adaptive adjusting process. The crossover operation of genetic algorithm was utilized to guarantee the population diversity. The new hybrid algorithm has better local search ability and contributes to superior performance. To verify the ability of the DACS-CO algorithm to estimate atmospheric refractivity parameters, the simulation data and real radar clutter data are both implemented. The numerical experiments demonstrate that the DACS-CO algorithm can provide an effective method for near-real-time estimation of the atmospheric refractivity profile from radar clutter.
Directory of Open Access Journals (Sweden)
Zhihua Zhang
2016-01-01
Full Text Available Using the RFC technique to estimate refractivity parameters is a complex nonlinear optimization problem. In this paper, an improved cuckoo search (CS algorithm is proposed to deal with this problem. To enhance the performance of the CS algorithm, a parameter dynamic adaptive operation and crossover operation were integrated into the standard CS (DACS-CO. Rechenberg’s 1/5 criteria combined with learning factor were used to control the parameter dynamic adaptive adjusting process. The crossover operation of genetic algorithm was utilized to guarantee the population diversity. The new hybrid algorithm has better local search ability and contributes to superior performance. To verify the ability of the DACS-CO algorithm to estimate atmospheric refractivity parameters, the simulation data and real radar clutter data are both implemented. The numerical experiments demonstrate that the DACS-CO algorithm can provide an effective method for near-real-time estimation of the atmospheric refractivity profile from radar clutter.
A Hybrid Aggressive Space Mapping Algorithm for EM Optimization
DEFF Research Database (Denmark)
Bakr, M.; Bandler, J. W.; Georgieva, N.;
1999-01-01
We present a novel, Hybrid Aggressive Space Mapping (HASM) optimization algorithm. HASM is a hybrid approach exploiting both the Trust Region Aggressive Space Mapping (TRASM) algorithm and direct optimization. It does not assume that the final space-mapped design is the true optimal design and is...
New MPPT algorithm based on hybrid dynamical theory
Elmetennani, Shahrazed
2014-11-01
This paper presents a new maximum power point tracking algorithm based on the hybrid dynamical theory. A multiceli converter has been considered as an adaptation stage for the photovoltaic chain. The proposed algorithm is a hybrid automata switching between eight different operating modes, which has been validated by simulation tests under different working conditions. © 2014 IEEE.
Directory of Open Access Journals (Sweden)
Li Mao
2016-01-01
Full Text Available Artificial bee colony (ABC algorithm has good performance in discovering the optimal solutions to difficult optimization problems, but it has weak local search ability and easily plunges into local optimum. In this paper, we introduce the chemotactic behavior of Bacterial Foraging Optimization into employed bees and adopt the principle of moving the particles toward the best solutions in the particle swarm optimization to improve the global search ability of onlooker bees and gain a hybrid artificial bee colony (HABC algorithm. To obtain a global optimal solution efficiently, we make HABC algorithm converge rapidly in the early stages of the search process, and the search range contracts dynamically during the late stages. Our experimental results on 16 benchmark functions of CEC 2014 show that HABC achieves significant improvement at accuracy and convergence rate, compared with the standard ABC, best-so-far ABC, directed ABC, Gaussian ABC, improved ABC, and memetic ABC algorithms.
A CONTACT SEARCHING ALGORITHM FOR CONTACT-IMPACT PROBLEMS
Institute of Scientific and Technical Information of China (English)
Wang Fujun; Cheng Jiangang; Yao Zhenhan
2000-01-01
A new contact searching algorithm for contact-impact systems is proposed in this paper. In terms of the cell structure and the linked-list, this algorithm solves the problem of sorting and searching contacts in three dimensions by transforming it to a retrieving process from two one-dimensional arrays, and binary searching is no longer required. Using this algorithm, the cost of contact searching is reduced to the order of O(N) instead of O(Nlog2N) for traditional ones, where N is the node number in the system. Moreover, this algorithm can handle contact systems with arbitrary mesh layouts. Due to the simplicity of this algorithm it can be easily implemented in a dynamic explicit finite element Program. Our numerical experimental result shows that this algorithm is reliable and efficient for contact searching of three dimensional systems.
An immune-tabu hybrid algorithm for thermal unit commitment of electric power systems
Institute of Scientific and Technical Information of China (English)
Wei LI; Hao-yu PENG; Wei-hang ZHU; De-ren SHENG; Jian-hong CHEN
2009-01-01
This paper presents a new method based on an immune-tabu hybrid algorithm to solve the thermal unit commitment (TUC) problem in power plant optimization. The mathematical model of the TUC problem is established by analyzing the generating units in modern power plants. A novel immune-tabu hybrid algorithm is proposed to solve this complex problem. In the algorithm, the objective function of the TUC problem is considered as an antigen and the solutions are considered as antibodies,which are determined by the affinity computation. The code length of an antibody is shortened by encoding the continuous operating time, and the optimum searching speed is improved. Each feasible individual in the immune algorithm (IA) is used as the initial solution of the tabu search (TS) algorithm after certain generations of IA iteration. As examples, the proposed method has been applied to several thermal unit systems for a period of 24 h. The computation results demonstrate the good global optimum searching performance of the proposed immune-tabu hybrid algorithm. The presented algorithm can also be used to solve other optimization problems in fields such as the chemical industry and the power industry.
A quantum search algorithm based on partial adiabatic evolution
Institute of Scientific and Technical Information of China (English)
Zhang Ying-Yu; Hu He-Ping; Lu Song-Feng
2011-01-01
This paper presents and implements a specified partial adiabatic search algorithm on a quantum circuit. It studies the minimum energy gap between the first excited state and the ground state of the system Hamiltonian and it finds that, in the case of M=1, the algorithm has the same performance as the local adiabatic algorithm. However, the algorithm evolves globally only within a small interval, which implies that it keeps the advantages of global adiabatic algorithms without losing the speedup of the local adiabatic search algorithm.
Improved symbiotic organisms search algorithm for solving unconstrained function optimization
Directory of Open Access Journals (Sweden)
Sukanta Nama
2016-09-01
Full Text Available Recently, Symbiotic Organisms Search (SOS algorithm is being used for solving complex problems of optimization. This paper proposes an Improved Symbiotic Organisms Search (I-SOS algorithm for solving different complex unconstrained global optimization problems. In the improved algorithm, a random weighted reflective parameter and predation phase are suggested to enhance the performance of the algorithm. The performances of this algorithm are compared with the other state-of-the-art algorithms. The parametric study of the common control parameter has also been performed.
Hybrid partheno-genetic algorithm and its application in flow-shop problem
Institute of Scientific and Technical Information of China (English)
李树刚; 吴智铭; 庞小红
2004-01-01
In order to solve the constraint satisfied problem in the genetic algorithm, the partheno-genetic algorithm is designed. And then the schema theorem of the partheno-genetic algorithm is proposed to show that the high rank schemas at the subsequent generation decrease exponentially even though its fitness is more optimal than the average one in the population and the low rank schemas at the subsequent generation increase exponentially when its fitness is more optimal than the average one in the population. In order to overcome the shortcoming that the optimal high rank schema can be deserted arbitrarily, the HGA (hybrid partheno-genetic algorithm) is proposed, that is, the hill-climbing algorithm is integrated to search for a better individual. Finally, the results of the simulation for facility layout problem and no-wait schedule problem are given. It is shown that the hybrid partheno- genetic algorithm is of high efficiency.
HYBRID OPTIMIZING GRIFFON-VULTURE ALGORITHM BASED ON SWARM INTELLIGENCE MECHANISMS
Directory of Open Access Journals (Sweden)
Chastikova V. A.
2014-06-01
Full Text Available Griffon-vultures with input parameters minimal value for compound functions optimization that change during the time searching hybrid algorithm offered in this article. Researches of its efficiency and comparing analysis with some other systems have been performed
Tactical Synthesis Of Efficient Global Search Algorithms
Nedunuri, Srinivas; Smith, Douglas R.; Cook, William R.
2009-01-01
Algorithm synthesis transforms a formal specification into an efficient algorithm to solve a problem. Algorithm synthesis in Specware combines the formal specification of a problem with a high-level algorithm strategy. To derive an efficient algorithm, a developer must define operators that refine the algorithm by combining the generic operators in the algorithm with the details of the problem specification. This derivation requires skill and a deep understanding of the problem and the algorithmic strategy. In this paper we introduce two tactics to ease this process. The tactics serve a similar purpose to tactics used for determining indefinite integrals in calculus, that is suggesting possible ways to attack the problem.
Application of Hybrid Genetic Algorithm Routine in Optimizing Food and Bioengineering Processes.
Tumuluru, Jaya Shankar; McCulloch, Richard
2016-11-09
Optimization is a crucial step in the analysis of experimental results. Deterministic methods only converge on local optimums and require exponentially more time as dimensionality increases. Stochastic algorithms are capable of efficiently searching the domain space; however convergence is not guaranteed. This article demonstrates the novelty of the hybrid genetic algorithm (HGA), which combines both stochastic and deterministic routines for improved optimization results. The new hybrid genetic algorithm developed is applied to the Ackley benchmark function as well as case studies in food, biofuel, and biotechnology processes. For each case study, the hybrid genetic algorithm found a better optimum candidate than reported by the sources. In the case of food processing, the hybrid genetic algorithm improved the anthocyanin yield by 6.44%. Optimization of bio-oil production using HGA resulted in a 5.06% higher yield. In the enzyme production process, HGA predicted a 0.39% higher xylanase yield. Hybridization of the genetic algorithm with a deterministic algorithm resulted in an improved optimum compared to statistical methods.
2015-01-01
Bankruptcy prediction has been extensively investigated by data mining techniques since it is a critical issue in the accounting and finance field. In this paper, a new hybrid algorithm combining switching particle swarm optimization (SPSO) and support vector machine (SVM) is proposed to solve the bankruptcy prediction problem. In particular, a recently developed SPSO algorithm is exploited to search the optimal parameter values of radial basis function (RBF) kernel of the SVM. The new algori...
An efficient cuckoo search algorithm for numerical function optimization
Ong, Pauline; Zainuddin, Zarita
2013-04-01
Cuckoo search algorithm which reproduces the breeding strategy of the best known brood parasitic bird, the cuckoos has demonstrated its superiority in obtaining the global solution for numerical optimization problems. However, the involvement of fixed step approach in its exploration and exploitation behavior might slow down the search process considerably. In this regards, an improved cuckoo search algorithm with adaptive step size adjustment is introduced and its feasibility on a variety of benchmarks is validated. The obtained results show that the proposed scheme outperforms the standard cuckoo search algorithm in terms of convergence characteristic while preserving the fascinating features of the original method.
Convergence and Cycling in Walker-type Saddle Search Algorithms
Levitt, Antoine
2016-01-01
Algorithms for computing local minima of smooth objective functions enjoy a mature theory as well as robust and efficient implementations. By comparison, the theory and practice of saddle search is destitute. In this paper we present results for idealized versions of the dimer and gentlest ascent (GAD) saddle search algorithms that show-case the limitations of what is theoretically achievable within the current class of saddle search algorithms: (1) we present an improved estimate on the region of attraction of saddles; and (2) we construct quasi-periodic solutions which indicate that it is impossible to obtain globally convergent variants of dimer and GAD type algorithms.
An improved harmony search algorithm for power economic load dispatch
Energy Technology Data Exchange (ETDEWEB)
Coelho, Leandro dos Santos [Pontifical Catholic Univ. of Parana, PUCPR, Industrial and Systems Engineering Graduate Program, PPGEPS, Imaculada Conceicao, 1155, 80215-901 Curitiba, PR (Brazil); Mariani, Viviana Cocco [Pontifical Catholic Univ. of Parana, PUCPR, Dept. of Mechanical Engineering, PPGEM, Imaculada Conceicao, 1155, 80215-901 Curitiba, PR (Brazil)
2009-10-15
A meta-heuristic algorithm called harmony search (HS), mimicking the improvisation process of music players, has been recently developed. The HS algorithm has been successful in several optimization problems. The HS algorithm does not require derivative information and uses stochastic random search instead of a gradient search. In addition, the HS algorithm is simple in concept, few in parameters, and easy in implementation. This paper presents an improved harmony search (IHS) algorithm based on exponential distribution for solving economic dispatch problems. A 13-unit test system with incremental fuel cost function taking into account the valve-point loading effects is used to illustrate the effectiveness of the proposed IHS method. Numerical results show that the IHS method has good convergence property. Furthermore, the generation costs of the IHS method are lower than those of the classical HS and other optimization algorithms reported in recent literature. (author)
An improved harmony search algorithm for power economic load dispatch
Energy Technology Data Exchange (ETDEWEB)
Santos Coelho, Leandro dos [Pontifical Catholic University of Parana, PUCPR, Industrial and Systems Engineering Graduate Program, PPGEPS, Imaculada Conceicao, 1155, 80215-901 Curitiba, PR (Brazil)], E-mail: leandro.coelho@pucpr.br; Mariani, Viviana Cocco [Pontifical Catholic University of Parana, PUCPR, Department of Mechanical Engineering, PPGEM, Imaculada Conceicao, 1155, 80215-901 Curitiba, PR (Brazil)], E-mail: viviana.mariani@pucpr.br
2009-10-15
A meta-heuristic algorithm called harmony search (HS), mimicking the improvisation process of music players, has been recently developed. The HS algorithm has been successful in several optimization problems. The HS algorithm does not require derivative information and uses stochastic random search instead of a gradient search. In addition, the HS algorithm is simple in concept, few in parameters, and easy in implementation. This paper presents an improved harmony search (IHS) algorithm based on exponential distribution for solving economic dispatch problems. A 13-unit test system with incremental fuel cost function taking into account the valve-point loading effects is used to illustrate the effectiveness of the proposed IHS method. Numerical results show that the IHS method has good convergence property. Furthermore, the generation costs of the IHS method are lower than those of the classical HS and other optimization algorithms reported in recent literature.
DEFF Research Database (Denmark)
Riaz, M. Tahir; Gutierrez Lopez, Jose Manuel; Pedersen, Jens Myrup
2011-01-01
The paper presents a hybrid Genetic and Simulated Annealing algorithm for implementing Chordal Ring structure in optical backbone network. In recent years, topologies based on regular graph structures gained a lot of interest due to their good communication properties for physical topology...... of the networks. There have been many use of evolutionary algorithms to solve the problems which are in combinatory complexity nature, and extremely hard to solve by exact approaches. Both Genetic and Simulated annealing algorithms are similar in using controlled stochastic method to search the solution....... The paper combines the algorithms in order to analyze the impact of implementation performance....
Genetic-Algorithm Tool For Search And Optimization
Wang, Lui; Bayer, Steven
1995-01-01
SPLICER computer program used to solve search and optimization problems. Genetic algorithms adaptive search procedures (i.e., problem-solving methods) based loosely on processes of natural selection and Darwinian "survival of fittest." Algorithms apply genetically inspired operators to populations of potential solutions in iterative fashion, creating new populations while searching for optimal or nearly optimal solution to problem at hand. Written in Think C.
Variable Neighborhood Search Based Algorithm for University Course Timetabling Problem
Kralev, Velin; Kraleva, Radoslava
2016-01-01
In this paper a variable neighborhood search approach as a method for solving combinatoric optimization problems is presented. A variable neighborhood search based algorithm for solving the problem concerning the university course timetable design has been developed. This algorithm is used to solve the real problem regarding the university course timetable design. It is compared with other algorithms that are tested on the same sets of input data. The object and the methodology of study are p...
Analysis of the string searching algorithms with the ALGator system
2014-01-01
Searching for patterns in texts is a very important task in numerous scientific fields. Using computer programs makes the procedure fast and efficient, however, it requires optimised algorithms or procedures. In this thesis we look at ten different algorithms with different characteristics and applications, from level of difficulty of implementation and search time to dependency on system capacity or storage usage. Because we wish to illustrate the practical operation of algorithms, we show h...
Variable Neighborhood Search Based Algorithm for University Course Timetabling Problem
Kralev, Velin; Kraleva, Radoslava
2016-01-01
In this paper a variable neighborhood search approach as a method for solving combinatoric optimization problems is presented. A variable neighborhood search based algorithm for solving the problem concerning the university course timetable design has been developed. This algorithm is used to solve the real problem regarding the university course timetable design. It is compared with other algorithms that are tested on the same sets of input data. The object and the methodology of study are p...
A HYBRID THINNING ALGORITHM FOR BINARY TOPOGRAPHY MAP
Institute of Scientific and Technical Information of China (English)
无
2001-01-01
A hybrid thinning algorithm for binary topography maps is proposed on the basis of parallel thinning templates in this paper.The algorithm has a high processing speed and the strong ability of noise immunity and preservation of connectivity and skeleton symmetry. Experimental results show that the algorithm can solve t he thinning problem of binary maps effectively.
Elliptical Antenna Array Synthesis Using Backtracking Search Optimisation Algorithm
Directory of Open Access Journals (Sweden)
Kerim Guney
2016-04-01
Full Text Available The design of the elliptical antenna arrays is relatively new research area in the antenna array community. Backtracking search optimisation algorithm (BSA is employed for the synthesis of elliptical antenna arrays having different number of array elements. For this aim, BSA is used to calculate the optimum angular position and amplitude values of the array elements. BSA is a population-based iterative evolutionary algorithm. The remarkable properties of BSA are that it has a good optimisation performance, simple implementation structure, and few control parameters. The results of BSA are compared with those of self-adaptive differential evolution algorithm, firefly algorithm, biogeography based optimisation algorithm, and genetic algorithm. The results show that BSA can reach better solutions than the compared optimisation algorithms. Iterative performances of BSA are also compared with those of bacterial foraging algorithm and differential search algorithm.
An Improved Harmony Search Algorithm for Power Distribution Network Planning
Directory of Open Access Journals (Sweden)
Wei Sun
2015-01-01
Full Text Available Distribution network planning because of involving many variables and constraints is a multiobjective, discrete, nonlinear, and large-scale optimization problem. Harmony search (HS algorithm is a metaheuristic algorithm inspired by the improvisation process of music players. HS algorithm has several impressive advantages, such as easy implementation, less adjustable parameters, and quick convergence. But HS algorithm still has some defects such as premature convergence and slow convergence speed. According to the defects of the standard algorithm and characteristics of distribution network planning, an improved harmony search (IHS algorithm is proposed in this paper. We set up a mathematical model of distribution network structure planning, whose optimal objective function is to get the minimum annual cost and constraint conditions are overload and radial network. IHS algorithm is applied to solve the complex optimization mathematical model. The empirical results strongly indicate that IHS algorithm can effectively provide better results for solving the distribution network planning problem compared to other optimization algorithms.
A New Hybrid MGBPSO-GSA Variant for Improving Function Optimization Solution in Search Space
Directory of Open Access Journals (Sweden)
Narinder Singh
2017-03-01
Full Text Available In this article, a newly hybrid nature-inspired approach (MGBPSO-GSA is developed with a combination of Mean Gbest Particle Swarm Optimization (MGBPSO and Gravitational Search Algorithm (GSA. The basic inspiration is to integrate the ability of exploitation in MGBPSO with the ability of exploration in GSA to synthesize the strength of both approaches. As a result, the presented approach has the automatic balance capability between local and global searching abilities. The performance of the hybrid approach is tested on a variety of classical functions, ie, unimodal, multimodal, and fixed-dimension multimodal functions. Furthermore, Iris data set, Heart data set, and economic dispatch problems are used to compare the hybrid approach with several metaheuristics. Experimental statistical solutions prove empirically that the new hybrid approach outperforms significantly a number of metaheuristics in terms of solution stability, solution quality, capability of local and global optimum, and convergence speed.
An N/4 fixed-point duality quantum search algorithm
Institute of Scientific and Technical Information of China (English)
无
2010-01-01
Here a fixed-point duality quantum search algorithm is proposed.This algorithm uses iteratively non-unitary operations and measurements to search an unsorted database.Once the marked item is found,the algorithm stops automatically.This algorithm uses a constant non-unitary operator,and requires N/4 steps on average(N is the number of data from the database) to locate the marked state.The implementation of this algorithm in a usual quantum computer is also demonstrated.
Integrating Genetic Algorithm, Tabu Search Approach for Job Shop Scheduling
Thamilselvan, R
2009-01-01
This paper presents a new algorithm based on integrating Genetic Algorithms and Tabu Search methods to solve the Job Shop Scheduling problem. The idea of the proposed algorithm is derived from Genetic Algorithms. Most of the scheduling problems require either exponential time or space to generate an optimal answer. Job Shop scheduling (JSS) is the general scheduling problem and it is a NP-complete problem, but it is difficult to find the optimal solution. This paper applies Genetic Algorithms and Tabu Search for Job Shop Scheduling problem and compares the results obtained by each. With the implementation of our approach the JSS problems reaches optimal solution and minimize the makespan.
Combined heat and power economic dispatch by harmony search algorithm
Energy Technology Data Exchange (ETDEWEB)
Vasebi, A.; Bathaee, S.M.T. [Power System Research Laboratory, Department of Electrical and Electronic Engineering, K.N.Toosi University of Technology, 322-Mirdamad Avenue West, 19697 Tehran (Iran); Fesanghary, M. [Department of Mechanical Engineering, Amirkabir University of Technology, 424-Hafez Avenue, Tehran (Iran)
2007-12-15
The optimal utilization of multiple combined heat and power (CHP) systems is a complicated problem that needs powerful methods to solve. This paper presents a harmony search (HS) algorithm to solve the combined heat and power economic dispatch (CHPED) problem. The HS algorithm is a recently developed meta-heuristic algorithm, and has been very successful in a wide variety of optimization problems. The method is illustrated using a test case taken from the literature as well as a new one proposed by authors. Numerical results reveal that the proposed algorithm can find better solutions when compared to conventional methods and is an efficient search algorithm for CHPED problem. (author)
Cuckoo search and firefly algorithm theory and applications
2014-01-01
Nature-inspired algorithms such as cuckoo search and firefly algorithm have become popular and widely used in recent years in many applications. These algorithms are flexible, efficient and easy to implement. New progress has been made in the last few years, and it is timely to summarize the latest developments of cuckoo search and firefly algorithm and their diverse applications. This book will review both theoretical studies and applications with detailed algorithm analysis, implementation and case studies so that readers can benefit most from this book. Application topics are contributed by many leading experts in the field. Topics include cuckoo search, firefly algorithm, algorithm analysis, feature selection, image processing, travelling salesman problem, neural network, GPU optimization, scheduling, queuing, multi-objective manufacturing optimization, semantic web service, shape optimization, and others. This book can serve as an ideal reference for both graduates and researchers in computer scienc...
A global heuristically search algorithm for DNA encoding
Institute of Scientific and Technical Information of China (English)
Zhang Kai; Pan Linqiang; Xu Jin
2007-01-01
A new efficient algorithm is developed to design DNA words with equal length for DNA computing. The algorithm uses a global heuristic optimizing search approach and converts constraints to a carry number to accelerate the convergence, which can generate a DNA words set satisfying some thermodynamic and combinatorial constraints. Based on the algorithm, a software for DNA words design is developed.
A Hybrid Differential Invasive Weed Algorithm for Congestion Management
Basak, Aniruddha; Pal, Siddharth; Pandi, V. Ravikumar; Panigrahi, B. K.; Das, Swagatam
This work is dedicated to solve the problem of congestion management in restructured power systems. Nowadays we have open access market which pushes the power system operation to their limits for maximum economic benefits but at the same time making the system more susceptible to congestion. In this regard congestion management is absolutely vital. In this paper we try to remove congestion by generation rescheduling where the cost involved in the rescheduling process is minimized. The proposed algorithm is a hybrid of Invasive Weed Optimization (IWO) and Differential Evolution (DE). The resultant hybrid algorithm was applied on standard IEEE 30 bus system and observed to beat existing algorithms like Simple Bacterial foraging (SBF), Genetic Algorithm (GA), Invasive Weed Optimization (IWO), Differential Evolution (DE) and hybrid algorithms like Hybrid Bacterial Foraging and Differential Evolution (HBFDE) and Adaptive Bacterial Foraging with Nelder Mead (ABFNM).
Scheduling in a Meta Search Engine by Genetic Algorithm
Institute of Scientific and Technical Information of China (English)
无
2001-01-01
The meta search engines provide service to the users bydispensing the users' requests to the existing search engines. The existing search engines sele cted by meta search engine determine the searching quality. Because the performa nce of the existing search engines and the users' requests are changed dynamical ly, it is not favorable for the fixed search engines to optimize the holistic pe rformance of the meta search engine. This paper applies the genetic algorithm (G A) to realize the scheduling strategy of agent manager in our meta search engine , GSE(general search engine), which can simulate the evolution process of living things more lively and more efficiently. By using GA, the combination of search engines can be optimized and hence the holistic performance of GSE can be impro ved dramatically.
A hybrid GA-TS algorithm for open vehicle routing optimization of coal mines material
Energy Technology Data Exchange (ETDEWEB)
Yu, S.W.; Ding, C.; Zhu, K.J. [China University of Geoscience, Wuhan (China)
2011-08-15
In the open vehicle routing problem (OVRP), the objective is to minimize the number of vehicles and the total distance (or time) traveled. This study primarily focuses on solving an open vehicle routing problem (OVRP) by applying a novel hybrid genetic algorithm and the Tabu search (GA-TS), which combines the GA's parallel computing and global optimization with TS's Tabu search skill and fast local search. Firstly, the proposed algorithm uses natural number coding according to the customer demands and the captivity of the vehicle for globe optimization. Secondly, individuals of population do TS local search with a certain degree of probability, namely, do the local routing optimization of all customer sites belong to one vehicle. The mechanism not only improves the ability of global optimization, but also ensures the speed of operation. The algorithm was used in Zhengzhou Coal Mine and Power Supply Co., Ltd.'s transport vehicle routing optimization.
A PRODUCT HYBRID GMRES ALGORITHM FOR NONSYMMETRIC LINEAR SYSTEMS
Institute of Scientific and Technical Information of China (English)
Bao-jiang Zhong
2005-01-01
It has been observed that the residual polynomials resulted from successive restarting cycles of GMRES(m) may differ from one another meaningfully. In this paper, it is further shown that the polynomials can complement one another harmoniously in reducing the iterative residual. This characterization of GMRES(m) is exploited to formulate an efficient hybrid iterative scheme, which can be widely applied to existing hybrid algorithms for solving large nonsymmetric systems of linear equations. In particular, a variant of the hybrid GMRES algorithm of Nachtigal, Reichel and Trefethen (1992) is presented. It is described how the new algorithm may offer significant performance improvements over the original one.
A Fast Hybrid Algorithm of Global Optimization for Feedforward Neural Networks
Institute of Scientific and Technical Information of China (English)
JIANG Minghu; ZHANG Bo; ZHU Xiaoyan; JINAG Mingyan
2001-01-01
This paper presents the hybrid algorithm of global optimization of dynamic learning rate for multilayer feedforward neural networks (MLFNN).The effect of inexact line search on conjugacy was studied, based on which a generalized conjugate gradient method was proposed, showing global convergence for error backpagation of MLFNN. It overcomes the drawback of conventional BP and Polak-Ribieve conjugate gradient algorithms that maybe plunge into local minima. The hybrid algorithm's recognition rate is higher than that of Polak-Ribieve algorithm and convergence BP for test data, its training time is less than that of Fletcher-Reeves algorithm and far less than that of convergence BP, and it has a less complicated and stronger robustness to real speech data.
Hybrid Algorithm for Optimal Load Sharing in Grid Computing
Directory of Open Access Journals (Sweden)
A. Krishnan
2012-01-01
Full Text Available Problem statement: Grid Computing is the fast growing industry, which shares the resources in the organization in an effective manner. Resource sharing requires more optimized algorithmic structure, otherwise the waiting time and response time are increased and the resource utilization is reduced. Approach: In order to avoid such reduction in the performances of the grid system, an optimal resource sharing algorithm is required. In recent days, many load sharing technique are proposed, which provides feasibility but there are many critical issues are still present in these algorithms. Results: In this study a hybrid algorithm for optimization of load sharing is proposed. The hybrid algorithm contains two components which are Hash Table (HT and Distributed Hash Table (DHT. Conclusion: The results of the proposed study show that the hybrid algorithm will optimize the task than existing systems.
A hybrid genetic algorithm to optimize simple distillation column sequences
Institute of Scientific and Technical Information of China (English)
GAN YongSheng; Andreas Linninger
2004-01-01
Based on the principles of Genetic Algorithms (GAs), a hybrid genetic algorithm used to optimize simple distillation column sequences was established. A new data structure, a novel arithmetic crossover operator and a dynamic mutation operator were proposed. Together with the feasibility test of distillation columns, they are capable to obtain the optimum simple column sequence at one time without the limitation of the number of mixture components, ideal or non-ideal mixtures and sloppy or sharp splits. Compared with conventional algorithms, this hybrid genetic algorithm avoids solving complicated nonlinear equations and demands less derivative information and computation time. Result comparison between this genetic algorithm and Underwood method and Doherty method shows that this hybrid genetic algorithm is reliable.
Optimization of Shallow Foundation Using Gravitational Search Algorithm
Directory of Open Access Journals (Sweden)
Mohammad Khajehzadeh
2012-01-01
Full Text Available In this study an effective method for nonlinear constrained optimization of shallow foundation is presented. A newly developed heuristic global optimization algorithm called Gravitational Search Algorithm (GSA is introduced and applied for the optimization of foundation. The algorithm is classified as random search algorithm and does not require initial values and uses a random search instead of a gradient search, so derivative information is unnecessary. The optimization procedure controls all geotechnical and structural design constraints while reducing the overall cost of the foundation. To verify the efficiency of the proposed method, two design examples of spread footing are illustrated. To further validate the effectiveness and robustness of the GSA, these examples are solved using genetic algorithm. The results indicate that the proposed method could provide solutions of high quality, accuracy and efficiency for optimum design of foundation.
Computing a Clique Tree with the Algorithm Maximal Label Search
Directory of Open Access Journals (Sweden)
Anne Berry
2017-01-01
Full Text Available The algorithm MLS (Maximal Label Search is a graph search algorithm that generalizes the algorithms Maximum Cardinality Search (MCS, Lexicographic Breadth-First Search (LexBFS, Lexicographic Depth-First Search (LexDFS and Maximal Neighborhood Search (MNS. On a chordal graph, MLS computes a PEO (perfect elimination ordering of the graph. We show how the algorithm MLS can be modified to compute a PMO (perfect moplex ordering, as well as a clique tree and the minimal separators of a chordal graph. We give a necessary and sufficient condition on the labeling structure of MLS for the beginning of a new clique in the clique tree to be detected by a condition on labels. MLS is also used to compute a clique tree of the complement graph, and new cliques in the complement graph can be detected by a condition on labels for any labeling structure. We provide a linear time algorithm computing a PMO and the corresponding generators of the maximal cliques and minimal separators of the complement graph. On a non-chordal graph, the algorithm MLSM, a graph search algorithm computing an MEO and a minimal triangulation of the graph, is used to compute an atom tree of the clique minimal separator decomposition of any graph.
Optimized quantum random-walk search algorithm for multi-solution search
Institute of Scientific and Technical Information of China (English)
张宇超; 鲍皖苏; 汪翔; 付向群
2015-01-01
This study investigates the multi-solution search of the optimized quantum random-walk search algorithm on the hypercube. Through generalizing the abstract search algorithm which is a general tool for analyzing the search on the graph to the multi-solution case, it can be applied to analyze the multi-solution case of quantum random-walk search on the graph directly. Thus, the computational complexity of the optimized quantum random-walk search algorithm for the multi-solution search is obtained. Through numerical simulations and analysis, we obtain a critical value of the proportion of solutions q. For a given q, we derive the relationship between the success rate of the algorithm and the number of iterations when q is no longer than the critical value.
A Hybrid Algorithm for Satellite Data Transmission Schedule Based on Genetic Algorithm
Institute of Scientific and Technical Information of China (English)
LI Yun-feng; WU Xiao-yue
2008-01-01
A hybrid scheduling algorithm based on genetic algorithm is proposed in this paper for reconnaissance satellite data transmission. At first, based on description of satellite data transmission request, satellite data transmission task modal and satellite data transmission scheduling problem model are established. Secondly, the conflicts in scheduling are discussed. According to the meaning of possible conflict, the method to divide possible conflict task set is given. Thirdly, a hybrid algorithm which consists of genetic algorithm and heuristic information is presented. The heuristic information comes from two concepts, conflict degree and conflict number. Finally, an example shows the algorithm's feasibility and performance better than other traditional algorithms.
A new classification algorithm based on RGH-tree search
Institute of Scientific and Technical Information of China (English)
无
2007-01-01
In this paper, we put forward a new classification algorithm based on RGH-Tree search and perform the classification analysis and comparison study. This algorithm can save computing resource and increase the classification efficiency. The experiment shows that this algorithm can get better effect in dealing with three dimensional multi-kind data. We find that the algorithm has better generalization ability for small training set and big testing result.
Development of hybrid genetic algorithms for product line designs.
Balakrishnan, P V Sundar; Gupta, Rakesh; Jacob, Varghese S
2004-02-01
In this paper, we investigate the efficacy of artificial intelligence (AI) based meta-heuristic techniques namely genetic algorithms (GAs), for the product line design problem. This work extends previously developed methods for the single product design problem. We conduct a large scale simulation study to determine the effectiveness of such an AI based technique for providing good solutions and bench mark the performance of this against the current dominant approach of beam search (BS). We investigate the potential advantages of pursuing the avenue of developing hybrid models and then implement and study such hybrid models using two very distinct approaches: namely, seeding the initial GA population with the BS solution, and employing the BS solution as part of the GA operator's process. We go on to examine the impact of two alternate string representation formats on the quality of the solutions obtained by the above proposed techniques. We also explicitly investigate a critical managerial factor of attribute importance in terms of its impact on the solutions obtained by the alternate modeling procedures. The alternate techniques are then evaluated, using statistical analysis of variance, on a fairy large number of data sets, as to the quality of the solutions obtained with respect to the state-of-the-art benchmark and in terms of their ability to provide multiple, unique product line options.
Decoherence in optimized quantum random-walk search algorithm
Zhang, Yu-Chao; Bao, Wan-Su; Wang, Xiang; Fu, Xiang-Qun
2015-08-01
This paper investigates the effects of decoherence generated by broken-link-type noise in the hypercube on an optimized quantum random-walk search algorithm. When the hypercube occurs with random broken links, the optimized quantum random-walk search algorithm with decoherence is depicted through defining the shift operator which includes the possibility of broken links. For a given database size, we obtain the maximum success rate of the algorithm and the required number of iterations through numerical simulations and analysis when the algorithm is in the presence of decoherence. Then the computational complexity of the algorithm with decoherence is obtained. The results show that the ultimate effect of broken-link-type decoherence on the optimized quantum random-walk search algorithm is negative. Project supported by the National Basic Research Program of China (Grant No. 2013CB338002).
Merged Search Algorithms for Radio Frequency Identification Anticollision
Directory of Open Access Journals (Sweden)
Bih-Yaw Shih
2012-01-01
The arbitration algorithm for RFID system is used to arbitrate all the tags to avoid the collision problem with the existence of multiple tags in the interrogation field of a transponder. A splitting algorithm which is called Binary Search Tree (BST is well known for multitags arbitration. In the current study, a splitting-based schema called Merged Search Tree is proposed to capture identification codes correctly for anticollision. Performance of the proposed algorithm is compared with the original BST according to time and power consumed during the arbitration process. The results show that the proposed model can reduce searching time and power consumed to achieve a better performance arbitration.
Combinatorial search from algorithms to systems
Hamadi, Youssef
2013-01-01
This book details key techniques in constraint networks, dealing in particular with constraint satisfaction, search, satisfiability, and applications in machine learning and constraint programming. Includes case studies.
Parameter Extraction of Solar Photovoltaic Modules Using Gravitational Search Algorithm
Directory of Open Access Journals (Sweden)
R. Sarjila
2016-01-01
Full Text Available Parameter extraction of a solar photovoltaic system is a nonlinear problem. Many optimization algorithms are implemented for this purpose, which failed in giving better results at low irradiance levels. This article presents a novel method for parameter extraction using gravitational search algorithm. The proposed method evaluates the parameters of different PV panels at various irradiance levels. A critical evaluation and comparison of gravitational search algorithm with other optimization techniques such as genetic algorithm are given. Extensive simulation analyses are carried out on the proposed method and show that GSA is much suitable for parameter extraction problem.
Beam Pattern Synthesis Based on Hybrid Optimization Algorithm
Institute of Scientific and Technical Information of China (English)
YU Yan-li; WANG Ying-min; LI Lei
2010-01-01
As conventional methods for beam pattern synthesis can not always obtain the desired optimum pattern for the arbitrary underwater acoustic sensor arrays, a hybrid numerical synthesis method based on adaptive principle and genetic algorithm was presented in this paper. First, based on the adaptive theory, a given array was supposed as an adaptive array and its sidelobes were reduced by assigning a number of interference signals in the sidelobe region. An initial beam pattern was obtained after several iterations and adjustments of the interference intensity, and based on its parameters, a desired pattern was created. Then, an objective function based on the difference between the designed and desired patterns can be constructed. The pattern can be optimized by using the genetic algorithm to minimize the objective function. A design example for a double-circular array demonstrates the effectiveness of this method. Compared with the approaches existing before, the proposed method can reduce the sidelobe effectively and achieve less synthesis magnitude error in the mainlobe.The method can search for optimum attainable pattern for the specific elements if the desired pattern can not be found.
BF-PSO-TS: Hybrid Heuristic Algorithms for Optimizing Task Schedulingon Cloud Computing Environment
Directory of Open Access Journals (Sweden)
Hussin M. Alkhashai
2016-06-01
Full Text Available Task Scheduling is a major problem in Cloud computing because the cloud provider has to serve many users. Also, a good scheduling algorithm helps in the proper and efficient utilization of the resources. So, task scheduling is considered as one of the major issues on the Cloud computing systems. The objective of this paper is to assign the tasks to multiple computing resources. Consequently, the total cost of execution is to be minimum and load to be shared between these computing resources. Therefore, two hybrid algorithms based on Particle Swarm Optimization (PSO have been introduced to schedule the tasks; Best-Fit-PSO (BFPSO and PSO-Tabu Search (PSOTS. According to BFPSO algorithm, Best-Fit (BF algorithm has been merged into the PSO algorithm to improve the performance. The main principle of the modified BFSOP algorithm is that BF algorithm is used to generate the initial population of the standard PSO algorithm instead of being initiated randomly. According to the proposed PSOTS algorithm, the Tabu-Search (TS has been used to improve the local research by avoiding the trap of the local optimality which could be occurred using the standard PSO algorithm. The two proposed algorithms (i.e., BFPSO and PSOTS have been implemented using Cloudsim and evaluated comparing to the standard PSO algorithm using five problems with different number of independent tasks and resources. The performance parameters have been considered are the execution time (Makspan, cost, and resources utilization. The implementation results prove that the proposed hybrid algorithms (i.e., BFPSO, PSOTS outperform the standard PSO algorithm.
THE USE OF GENETIC ALGORITHM IN DIMENSIONING HYBRID AUTONOMOUS SYSTEMS
Directory of Open Access Journals (Sweden)
RUS T.
2016-03-01
Full Text Available In this paper is presented the working principle of genetic algorithms used to dimension autonomous hybrid systems. It is presented a study case in which is dimensioned and optimized an autonomous hybrid system for a residential house located in Cluj-Napoca. After the autonomous hybrid system optimization is performed, it is achieved a reduction of the total cost of system investment, a reduction of energy produced in excess and a reduction of CO2 emissions.
Directory of Open Access Journals (Sweden)
K. Kumaravel
2015-05-01
Full Text Available Wireless Mesh Network (WMN uses the latest technology which helps in providing end users a high quality service referred to as the Internet’s “last mile”. Also considering WMN one of the most important technologies that are employed is multicast communication. Among the several issues routing which is significantly an important issue is addressed by every WMN technologies and this is done during the process of data transmission. The IEEE 802.11s Standard entails and sets procedures which need to be followed to facilitate interconnection and thus be able to devise an appropriate WMN. There has been introduction of several protocols by many authors which are mainly devised on the basis of machine learning and artificial intelligence. Multi-path routing may be considered as one such routing method which facilitates transmission of data over several paths, proving its capabilities as a useful strategy for achieving reliability in WMN. Though, multi-path routing in any manner cannot really guarantee deterministic transmission. As here there are multiple paths available for enabling data transmission from source to destination node. The algorithm that had been employed before in the studies conducted did not take in to consideration routing metrics which include energy aware metrics that are used for path selection during transferring of data. The following study proposes use of the hybrid multipath routing algorithm while taking in to consideration routing metrics which include energy, minimal loss for efficient path selection and transferring of data. Proposed algorithm here has two phases. In the first phase prim’s algorithm has been proposed so that in networks route discovery may be possible. For the second one the Hybrid firefly algorithm which is based on harmony search has been employed for selection of the most suitable and best through proper analysis of metrics which include energy awareness and minimal loss for every path that has
Study of the Artificial Fish Swarm Algorithm for Hybrid Clustering
Directory of Open Access Journals (Sweden)
Hongwei Zhao
2015-06-01
Full Text Available The basic Artificial Fish Swarm (AFS Algorithm is a new type of an heuristic swarm intelligence algorithm, but it is difficult to optimize to get high precision due to the randomness of the artificial fish behavior, which belongs to the intelligence algorithm. This paper presents an extended AFS algorithm, namely the Cooperative Artificial Fish Swarm (CAFS, which significantly improves the original AFS in solving complex optimization problems. K-medoids clustering algorithm is being used to classify data, but the approach is sensitive to the initial selection of the centers with low quality of the divided cluster. A novel hybrid clustering method based on the CAFS and K-medoids could be used for solving clustering problems. In this work, first, CAFS algorithm is used for optimizing six widely-used benchmark functions, coming up with comparative results produced by AFS and CAFS, then Particle Swarm Optimization (PSO is studied. Second, the hybrid algorithm with K-medoids and CAFS algorithms is used for data clustering on several benchmark data sets. The performance of the hybrid algorithm based on K-medoids and CAFS is compared with AFS and CAFS algorithms on a clustering problem. The simulation results show that the proposed CAFS outperforms the other two algorithms in terms of accuracy and robustness.
Nearest neighbor search algorithm for GBD tree spatial data structure
Institute of Scientific and Technical Information of China (English)
Yutaka Ohsawa; Takanobu Kurihara; Ayaka Ohki
2007-01-01
This paper describes the nearest neighbor (NN) search algorithm on the GBD(generalized BD) tree. The GBD tree is a spatial data structure suitable for two- or three-dimensional data and has good performance characteristics with respect to the dynamic data environment. On GIS and CAD systems, the R-tree and its successors have been used. In addition, the NN search algorithm is also proposed in an attempt to obtain good performance from the R-tree. On the other hand, the GBD tree is superior to the R-tree with respect to exact match retrieval, because the GBD tree has auxiliary data that uniquely determines the position of the object in the structure. The proposed NN search algorithm depends on the property of the GBD tree described above. The NN search algorithm on the GBD tree was studied and the performance thereof was evaluated through experiments.
Optimization of machining processes using pattern search algorithm
Directory of Open Access Journals (Sweden)
Miloš Madić
2014-04-01
Full Text Available Optimization of machining processes not only increases machining efficiency and economics, but also the end product quality. In recent years, among the traditional optimization methods, stochastic direct search optimization methods such as meta-heuristic algorithms are being increasingly applied for solving machining optimization problems. Their ability to deal with complex, multi-dimensional and ill-behaved optimization problems made them the preferred optimization tool by most researchers and practitioners. This paper introduces the use of pattern search (PS algorithm, as a deterministic direct search optimization method, for solving machining optimization problems. To analyze the applicability and performance of the PS algorithm, six case studies of machining optimization problems, both single and multi-objective, were considered. The PS algorithm was employed to determine optimal combinations of machining parameters for different machining processes such as abrasive waterjet machining, turning, turn-milling, drilling, electrical discharge machining and wire electrical discharge machining. In each case study the optimization solutions obtained by the PS algorithm were compared with the optimization solutions that had been determined by past researchers using meta-heuristic algorithms. Analysis of obtained optimization results indicates that the PS algorithm is very applicable for solving machining optimization problems showing good competitive potential against stochastic direct search methods such as meta-heuristic algorithms. Specific features and merits of the PS algorithm were also discussed.
LAHS: A novel harmony search algorithm based on learning automata
Enayatifar, Rasul; Yousefi, Moslem; Abdullah, Abdul Hanan; Darus, Amer Nordin
2013-12-01
This study presents a learning automata-based harmony search (LAHS) for unconstrained optimization of continuous problems. The harmony search (HS) algorithm performance strongly depends on the fine tuning of its parameters, including the harmony consideration rate (HMCR), pitch adjustment rate (PAR) and bandwidth (bw). Inspired by the spur-in-time responses in the musical improvisation process, learning capabilities are employed in the HS to select these parameters based on spontaneous reactions. An extensive numerical investigation is conducted on several well-known test functions, and the results are compared with the HS algorithm and its prominent variants, including the improved harmony search (IHS), global-best harmony search (GHS) and self-adaptive global-best harmony search (SGHS). The numerical results indicate that the LAHS is more efficient in finding optimum solutions and outperforms the existing HS algorithm variants.
An improved harmony search algorithm with dynamically varying bandwidth
Kalivarapu, J.; Jain, S.; Bag, S.
2016-07-01
The present work demonstrates a new variant of the harmony search (HS) algorithm where bandwidth (BW) is one of the deciding factors for the time complexity and the performance of the algorithm. The BW needs to have both explorative and exploitative characteristics. The ideology is to use a large BW to search in the full domain and to adjust the BW dynamically closer to the optimal solution. After trying a series of approaches, a methodology inspired by the functioning of a low-pass filter showed satisfactory results. This approach was implemented in the self-adaptive improved harmony search (SIHS) algorithm and tested on several benchmark functions. Compared to the existing HS algorithm and its variants, SIHS showed better performance on most of the test functions. Thereafter, the algorithm was applied to geometric parameter optimization of a friction stir welding tool.
New Heuristic Distributed Parallel Algorithms for Searching and Planning
Institute of Scientific and Technical Information of China (English)
无
1995-01-01
This paper proposes new heuristic distributed parallel algorithms for searching and planning,which are based on the concepts of wave concurrent propagations and competitive activation mechanisms.These algorithms are characterized by simplicity and clearness of control strategies for earching,and distinguished abilities in many aspects,such as high speed processing,wide suitability for searching AND/OR implicit graphs,and ease in hardware implementation.
Free Search Algorithm Based Estimation in WSN Location
Institute of Scientific and Technical Information of China (English)
ZHOU Hui; LI Dan-mei; SHAO Shi-huang; XU Chen
2009-01-01
This paper proposes a novel intelligent estimation algorithm in Wireless Sensor Network nodes location based on Free Search, which converts parameter estimation to on-line optimization of nonlinear function and estimates the coordinates of senor nodes using the Free Search optimization. Compared to the least-squares estimation algorithms, the localization accuracy has been increased significantly, which has been verified by the simulation results.
Improved taboo search algorithm for designing DNA sequences
Institute of Scientific and Technical Information of China (English)
Kai Zhang; Jin Xu; Xiutang Geng; Jianhua Xiao; Linqiang Pan
2008-01-01
The design of DNA sequences is one of the most practical and important research topics in DNA computing.We adopt taboo search algorithm and improve the method for the systematic design of equal-length DNA sequences,which can satisfy certain combinatorial and thermodynamic constraints.Using taboo search algorithm,our method can avoid trapping into local optimization and can find a set of good DNA sequences satisfying required constraints.
A hybrid guided neighborhood search for the disjunctively constrained knapsack problem
Directory of Open Access Journals (Sweden)
Mhand Hifi
2015-12-01
Full Text Available In this paper, we investigate the use of a hybrid guided neighborhood search for solving the disjunctively constrained knapsack problem. The studied problem may be viewed as a combination of two NP-hard combinatorial optimization problems: the weighted-independent set and the classical binary knapsack. The proposed algorithm is a hybrid approach that combines both deterministic and random local searches. The deterministic local search is based on a descent method, where both building and exploring procedures are alternatively used for improving the solution at hand. In order to escape from a local optima, a random local search strategy is introduced which is based on a modified ant colony optimization system. During the search process, the ant colony optimization system tries to diversify and to enhance the solutions using some informations collected from the previous iterations. Finally, the proposed algorithm is computationally analyzed on a set of benchmark instances available in the literature. The provided results are compared to those realized by both the Cplex solver and a recent algorithm of the literature. The computational part shows that the obtained results improve most existing solution values.
Adiabatic quantum algorithm for search engine ranking
Garnerone, Silvano; Lidar, Daniel A
2011-01-01
We propose an adiabatic quantum algorithm to evaluate the PageRank vector, the most widely used tool in ranking the relative importance of internet pages. We present extensive numerical simulations which provide evidence that this quantum algorithm outputs any component of the PageRank vector-and thus the ranking of the corresponding webpage-in a time which scales polylogarithmically in the number of webpages. This would constitute an exponential speed-up with respect to all known classical algorithms designed to evaluate the PageRank.
Ant colony system (ACS with hybrid local search to solve vehicle routing problems
Directory of Open Access Journals (Sweden)
Suphan Sodsoon
2016-02-01
Full Text Available This research applied an Ant Colony System algorithm with a Hybrid Local Search to solve Vehicle Routing Problems (VRP from a single depot when the customers’ requirements are known. VRP is an NP-hard optimization problem and has usually been successfully solved optimum by heuristics. A fleet of vehicles of a specific capacity are used to serve a number of customers at minimum cost, without violating the constraints of vehicle capacity. There are meta-heuristic approaches to solve these problems, such as Simulated Annealing, Genetic Algorithm, Tabu Search and the Ant Colony System algorithm. In this case a hybrid local search was used (Cross-Exchange, Or-Opt and 2-Opt algorithm with an Ant Colony System algorithm. The Experimental Design was tested on 7 various problems from the data set online in the OR-Library. There are five different problems in which customers are randomly distributed with the depot in an approximately central location. The customers were grouped into clusters. The results are evaluated in terms of optimal routes using optimal distances. The experimental results are compared with those obtained from meta-heuristics and they show that the proposed method outperforms six meta-heuristics in the literature.
A Dynamic Multistage Hybrid Swarm Intelligence Optimization Algorithm for Function Optimization
Directory of Open Access Journals (Sweden)
Daqing Wu
2012-01-01
Full Text Available A novel dynamic multistage hybrid swarm intelligence optimization algorithm is introduced, which is abbreviated as DM-PSO-ABC. The DM-PSO-ABC combined the exploration capabilities of the dynamic multiswarm particle swarm optimizer (PSO and the stochastic exploitation of the cooperative artificial bee colony algorithm (CABC for solving the function optimization. In the proposed hybrid algorithm, the whole process is divided into three stages. In the first stage, a dynamic multiswarm PSO is constructed to maintain the population diversity. In the second stage, the parallel, positive feedback of CABC was implemented in each small swarm. In the third stage, we make use of the particle swarm optimization global model, which has a faster convergence speed to enhance the global convergence in solving the whole problem. To verify the effectiveness and efficiency of the proposed hybrid algorithm, various scale benchmark problems are tested to demonstrate the potential of the proposed multistage hybrid swarm intelligence optimization algorithm. The results show that DM-PSO-ABC is better in the search precision, and convergence property and has strong ability to escape from the local suboptima when compared with several other peer algorithms.
Optimization of Evolutionary Neural Networks Using Hybrid Learning Algorithms
Abraham, Ajith
2004-01-01
Evolutionary artificial neural networks (EANNs) refer to a special class of artificial neural networks (ANNs) in which evolution is another fundamental form of adaptation in addition to learning. Evolutionary algorithms are used to adapt the connection weights, network architecture and learning algorithms according to the problem environment. Even though evolutionary algorithms are well known as efficient global search algorithms, very often they miss the best local solutions in the complex s...
Directory of Open Access Journals (Sweden)
Xinli Xu
2013-01-01
Full Text Available A two-level batch chromosome coding scheme is proposed to solve the lot splitting problem with equipment capacity constraints in flexible job shop scheduling, which includes a lot splitting chromosome and a lot scheduling chromosome. To balance global search and local exploration of the differential evolution algorithm, a hybrid discrete differential evolution algorithm (HDDE is presented, in which the local strategy with dynamic random searching based on the critical path and a random mutation operator is developed. The performance of HDDE was experimented with 14 benchmark problems and the practical dye vat scheduling problem. The simulation results showed that the proposed algorithm has the strong global search capability and can effectively solve the practical lot splitting problems with equipment capacity constraints.
Algebraic Algorithm Design and Local Search
1996-12-01
clearly illustrate that casting algorithm design into an algebraic framework brings a lot of theoretical and practical knowledge to bear on the problem ...makes defining a suitable crossover operator easier. In (47), however, the traveling salesman problem was solved using a genetic algorithm with a... Knapsack and other 0-1 integer programs can be approached with this neighborhood. Problems where a subset of a particular size is desired can be
Routing Optimization Based on Taboo Search Algorithm for Logistic Distribution
Directory of Open Access Journals (Sweden)
Hongxue Yang
2014-04-01
Full Text Available Along with the widespread application of the electronic commerce in the modern business, the logistic distribution has become increasingly important. More and more enterprises recognize that the logistic distribution plays an important role in the process of production and sales. A good routing for logistic distribution can cut down transport cost and improve efficiency. In order to cut down transport cost and improve efficiency, a routing optimization based on taboo search for logistic distribution is proposed in this paper. Taboo search is a metaheuristic search method to perform local search used for logistic optimization. The taboo search is employed to accelerate convergence and the aspiration criterion is combined with the heuristics algorithm to solve routing optimization. Simulation experimental results demonstrate that the optimal routing in the logistic distribution can be quickly obtained by the taboo search algorithm
A Novel Self-Adaptive Harmony Search Algorithm
Directory of Open Access Journals (Sweden)
Kaiping Luo
2013-01-01
Full Text Available The harmony search algorithm is a music-inspired optimization technology and has been successfully applied to diverse scientific and engineering problems. However, like other metaheuristic algorithms, it still faces two difficulties: parameter setting and finding the optimal balance between diversity and intensity in searching. This paper proposes a novel, self-adaptive search mechanism for optimization problems with continuous variables. This new variant can automatically configure the evolutionary parameters in accordance with problem characteristics, such as the scale and the boundaries, and dynamically select evolutionary strategies in accordance with its search performance. The new variant simplifies the parameter setting and efficiently solves all types of optimization problems with continuous variables. Statistical test results show that this variant is considerably robust and outperforms the original harmony search (HS, improved harmony search (IHS, and other self-adaptive variants for large-scale optimization problems and constrained problems.
A Multiple-Neighborhood-Based Parallel Composite Local Search Algorithm for Timetable Problem
Institute of Scientific and Technical Information of China (English)
颜鹤; 郁松年
2004-01-01
This paper presents a parallel composite local search algorithm based on multiple search neighborhoods to solve a special kind of timetable problem. The new algorithm can also effectively solve those problems that can be solved by general local search algorithms. Experimental results show that the new algorithm can generate better solutions than general local search algorithms.
Reasoning about Grover's quantum search algorithm using probabilistic wp
Butler, M.J.; Hartel, P.H.
1999-01-01
Grover's search algorithm is designed to be executed on a quantum-mechanical computer. In this article, the probabilistic wp-calculus is used to model and reason about Grover's algorithm. It is demonstrated that the calculus provides a rigorous programming notation for modeling this and other quantu
International Timetabling Competition 2011: An Adaptive Large Neighborhood Search algorithm
DEFF Research Database (Denmark)
Sørensen, Matias; Kristiansen, Simon; Stidsen, Thomas Riis
2012-01-01
An algorithm based on Adaptive Large Neighborhood Search (ALNS) for solving the generalized High School Timetabling problem in XHSTT-format (Post et al (2012a)) is presented. This algorithm was among the nalists of round 2 of the International Timetabling Competition 2011 (ITC2011). For problem...
A Practical Stemming Algorithm for Online Search Assistance.
Ulmschneider, John E.; Doszkocs, Tamas
1983-01-01
Describes a two-phase stemming algorithm which consists of word root identification and automatic selection of word variants starting with same word root from inverted file. Use of algorithm in book catalog file is discussed. Ten references and example of subject search are appended. (EJS)
A Functional Programming Approach to AI Search Algorithms
Panovics, Janos
2012-01-01
The theory and practice of search algorithms related to state-space represented problems form the major part of the introductory course of Artificial Intelligence at most of the universities and colleges offering a degree in the area of computer science. Students usually meet these algorithms only in some imperative or object-oriented language…
An efficient hybrid evolutionary optimization algorithm based on PSO and SA for clustering
Institute of Scientific and Technical Information of China (English)
Taher NIKNAM; Babak AMIRI; Javad OLAMAEI; Ali AREFI
2009-01-01
The K-means algorithm is one of the most popular techniques in clustering. Nevertheless, the performance of the Kmeans algorithm depends highly on initial cluster centers and converges to local minima. This paper proposes a hybrid evolutionary programming based clustering algorithm, called PSO-SA, by combining particle swarm optimization (PSO) and simulated annealing (SA). The basic idea is to search around the global solution by SA and to increase the information exchange among particles using a mutation operator to escape local optima. Three datasets, Iris, Wisconsin Breast Cancer, and Riplcy's Glass, have been considered to show the effectiveness of the proposed clustering algorithm in providing optimal clusters. The simulation results show that the PSO-SA clustering algorithm not only has a better response but also converges more quickly than the K-means, PSO, and SA algorithms.
Hybrid pre training algorithm of Deep Neural Networks
Directory of Open Access Journals (Sweden)
Drokin I. S.
2016-01-01
Full Text Available This paper proposes a hybrid algorithm of pre training deep networks, using both marked and unmarked data. The algorithm combines and extends the ideas of Self-Taught learning and pre training of neural networks approaches on the one hand, as well as supervised learning and transfer learning on the other. Thus, the algorithm tries to integrate in itself the advantages of each approach. The article gives some examples of applying of the algorithm, as well as its comparison with the classical approach to pre training of neural networks. These examples show the effectiveness of the proposed algorithm.
A Fast Taboo Search Algorithm for the Job Shop Problem
Eugeniusz Nowicki; Czeslaw Smutnicki
1996-01-01
A fast and easily implementable approximation algorithm for the problem of finding a minimum makespan in a job shop is presented. The algorithm is based on a taboo search technique with a specific neighborhood definition which employs a critical path and blocks of operations notions. Computational experiments (up to 2,000 operations) show that the algorithm not only finds shorter makespans than the best approximation approaches but also runs in shorter time. It solves the well-known 10 \\times...
TOA estimation algorithm based on multi-search
Institute of Scientific and Technical Information of China (English)
无
2005-01-01
A new time of arrival (TOA) estimation algorithm is proposed. The algorithm computes the optimal sub-correlation length based on the SNR theory. So the robust of TOA acquirement is guaranteed very well. Then, according to the actual transmission environment and network system, the multi-search method is given. From the simulation result,the algorithm shows a very high application value in the realization of wireless location system (WLS).
Directory of Open Access Journals (Sweden)
Hao Yin
2014-01-01
Full Text Available For SLA-aware service composition problem (SSC, an optimization model for this algorithm is built, and a hybrid multiobjective discrete particle swarm optimization algorithm (HMDPSO is also proposed in this paper. According to the characteristic of this problem, a particle updating strategy is designed by introducing crossover operator. In order to restrain particle swarm’s premature convergence and increase its global search capacity, the swarm diversity indicator is introduced and a particle mutation strategy is proposed to increase the swarm diversity. To accelerate the process of obtaining the feasible particle position, a local search strategy based on constraint domination is proposed and incorporated into the proposed algorithm. At last, some parameters in the algorithm HMDPSO are analyzed and set with relative proper values, and then the algorithm HMDPSO and the algorithm HMDPSO+ incorporated by local search strategy are compared with the recently proposed related algorithms on different scale cases. The results show that algorithm HMDPSO+ can solve the SSC problem more effectively.
Hybridization of Adaptive Differential Evolution with an Expensive Local Search Method
Directory of Open Access Journals (Sweden)
Rashida Adeeb Khanum
2016-01-01
Full Text Available Differential evolution (DE is an effective and efficient heuristic for global optimization problems. However, it faces difficulty in exploiting the local region around the approximate solution. To handle this issue, local search (LS techniques could be hybridized with DE to improve its local search capability. In this work, we hybridize an updated version of DE, adaptive differential evolution with optional external archive (JADE with an expensive LS method, Broydon-Fletcher-Goldfarb-Shano (BFGS for solving continuous unconstrained global optimization problems. The new hybrid algorithm is denoted by DEELS. To validate the performance of DEELS, we carried out extensive experiments on well known test problems suits, CEC2005 and CEC2010. The experimental results, in terms of function error values, success rate, and some other statistics, are compared with some of the state-of-the-art algorithms, self-adaptive control parameters in differential evolution (jDE, sequential DE enhanced by neighborhood search for large-scale global optimization (SDENS, and differential ant-stigmergy algorithm (DASA. These comparisons reveal that DEELS outperforms jDE and SDENS except DASA on the majority of test instances.
Fault-tolerant search algorithms reliable computation with unreliable information
Cicalese, Ferdinando
2013-01-01
Why a book on fault-tolerant search algorithms? Searching is one of the fundamental problems in computer science. Time and again algorithmic and combinatorial issues originally studied in the context of search find application in the most diverse areas of computer science and discrete mathematics. On the other hand, fault-tolerance is a necessary ingredient of computing. Due to their inherent complexity, information systems are naturally prone to errors, which may appear at any level - as imprecisions in the data, bugs in the software, or transient or permanent hardware failures. This book pr
Optical-digital hybrid image search system in cloud environment
Ikeda, Kanami; Kodate, Kashiko; Watanabe, Eriko
2016-09-01
To improve the versatility and usability of optical correlators, we developed an optical-digital hybrid image search system consisting of digital servers and an optical correlator that can be used to perform image searches in the cloud environment via a web browser. This hybrid system employs a simple method to obtain correlation signals and has a distributed network design. The correlation signals are acquired by using an encoder timing signal generated by a rotating disk, and the distributed network design facilitates the replacement and combination of the digital correlation server and the optical correlator.
Computer algorithms in the search for unrelated stem cell donors.
Steiner, David
2012-01-01
Hematopoietic stem cell transplantation (HSCT) is a medical procedure in the field of hematology and oncology, most often performed for patients with certain cancers of the blood or bone marrow. A lot of patients have no suitable HLA-matched donor within their family, so physicians must activate a "donor search process" by interacting with national and international donor registries who will search their databases for adult unrelated donors or cord blood units (CBU). Information and communication technologies play a key role in the donor search process in donor registries both nationally and internationaly. One of the major challenges for donor registry computer systems is the development of a reliable search algorithm. This work discusses the top-down design of such algorithms and current practice. Based on our experience with systems used by several stem cell donor registries, we highlight typical pitfalls in the implementation of an algorithm and underlying data structure.
Computer Algorithms in the Search for Unrelated Stem Cell Donors
Directory of Open Access Journals (Sweden)
David Steiner
2012-01-01
Full Text Available Hematopoietic stem cell transplantation (HSCT is a medical procedure in the field of hematology and oncology, most often performed for patients with certain cancers of the blood or bone marrow. A lot of patients have no suitable HLA-matched donor within their family, so physicians must activate a “donor search process” by interacting with national and international donor registries who will search their databases for adult unrelated donors or cord blood units (CBU. Information and communication technologies play a key role in the donor search process in donor registries both nationally and internationaly. One of the major challenges for donor registry computer systems is the development of a reliable search algorithm. This work discusses the top-down design of such algorithms and current practice. Based on our experience with systems used by several stem cell donor registries, we highlight typical pitfalls in the implementation of an algorithm and underlying data structure.
Multiparty Quantum Key Agreement Based on Quantum Search Algorithm.
Cao, Hao; Ma, Wenping
2017-03-23
Quantum key agreement is an important topic that the shared key must be negotiated equally by all participants, and any nontrivial subset of participants cannot fully determine the shared key. To date, the embed modes of subkey in all the previously proposed quantum key agreement protocols are based on either BB84 or entangled states. The research of the quantum key agreement protocol based on quantum search algorithms is still blank. In this paper, on the basis of investigating the properties of quantum search algorithms, we propose the first quantum key agreement protocol whose embed mode of subkey is based on a quantum search algorithm known as Grover's algorithm. A novel example of protocols with 5 - party is presented. The efficiency analysis shows that our protocol is prior to existing MQKA protocols. Furthermore it is secure against both external attack and internal attacks.
Research on Quantum Searching Algorithms Based on Phase Shifts
Institute of Scientific and Technical Information of China (English)
ZHONG Pu-Cha; BAO Wan-Su
2008-01-01
@@ One iterative in Grover's original quantum search algorithm consists of two Hadamard-Walsh transformations, a selective amplitude inversion and a diffusion amplitude inversion. We concentrate on the relation among the probability of success of the algorithm, the phase shifts, the number of target items and the number of iterations via replacing the two amplitude inversions by phase shifts of an arbitrary φ = ψ(0 ≤φ, ψ≤ 2π). Then, according to the relation we find out the optimal phase shifts when the number of iterations is given. We present a new quantum search algorithm based on the optimal phase shifts of 1.018 after 0.5π /√M/N iterations. The new algorithm can obtain either a single target item or multiple target items in the search space with the probability of success at least 93.43%.
Institute of Scientific and Technical Information of China (English)
Xianbin Wen; Hua Zhang; Jianguang Zhang; Xu Jiao; Lei Wang
2009-01-01
A novel method that hybridizes genetic algorithm (GA) and expectation maximization (EM) algorithm for the classification of syn-thetic aperture radar (SAR) imagery is proposed by the finite Gaussian mixtures model (GMM) and multiscale autoregressive (MAR)model. This algorithm is capable of improving the global optimality and consistency of the classification performance. The experiments on the SAR images show that the proposed algorithm outperforms the standard EM method significantly in classification accuracy.
Conditionally-uniform Feasible Grid Search Algorithm
DEFF Research Database (Denmark)
Dziubinski, Matt P.
We present and evaluate a numerical optimization method (together with an algorithm for choosing the starting values) pertinent to the constrained optimization problem arising in the estimation of the GARCH models with inequality constraints, in particular the Simplied Component GARCH Model (SCGA...
SAR Image Segmentation Based On Hybrid PSOGSA Optimization Algorithm
Directory of Open Access Journals (Sweden)
Amandeep Kaur
2014-09-01
Full Text Available Image segmentation is useful in many applications. It can identify the regions of interest in a scene or annotate the data. It categorizes the existing segmentation algorithm into region-based segmentation, data clustering, and edge-base segmentation. Region-based segmentation includes the seeded and unseeded region growing algorithms, the JSEG, and the fast scanning algorithm. Due to the presence of speckle noise, segmentation of Synthetic Aperture Radar (SAR images is still a challenging problem. We proposed a fast SAR image segmentation method based on Particle Swarm Optimization-Gravitational Search Algorithm (PSO-GSA. In this method, threshold estimation is regarded as a search procedure that examinations for an appropriate value in a continuous grayscale interval. Hence, PSO-GSA algorithm is familiarized to search for the optimal threshold. Experimental results indicate that our method is superior to GA based, AFS based and ABC based methods in terms of segmentation accuracy, segmentation time, and Thresholding.
Search Engine Optimization through Spanning Forest Generation Algorithm
Directory of Open Access Journals (Sweden)
SATYA PAVAN KUMAR SOMAYAJULA
2011-09-01
Full Text Available Search engine technology has had to scale dramatically to keep up with the growth of the web. With the tremendous growth of information available to end users through the Web, search engines come to play ever a more critical role. Determining the user intent of Web searches is a difficult problem due to the sparse data available concerning the searcher. We qualitatively analyze samples of queries from seven transaction logs from three different Web search engines containing more than five million queries. The following are our research objectives: Isolate characteristics of informational, navigational, and transactional for Web searching queries by identifying characteristics of each query type that will lead toreal world classification. Validate the taxonomy by automatically classifying a large set of queries from a Web search engine. This paper we deal with now is semantic web search engines is the layeredarchitecture and we use this with relation based page rank algorithm.
Modified cuckoo search: A new gradient free optimisation algorithm
Energy Technology Data Exchange (ETDEWEB)
Walton, S., E-mail: 512465@swansea.ac.uk [College of Engineering, Swansea University, Swansea SA2 8PP, Wales (United Kingdom); Hassan, O.; Morgan, K.; Brown, M.R. [College of Engineering, Swansea University, Swansea SA2 8PP, Wales (United Kingdom)
2011-09-15
Highlights: > Modified cuckoo search (MCS) is a new gradient free optimisation algorithm. > MCS shows a high convergence rate, able to outperform other optimisers. > MCS is particularly strong at high dimension objective functions. > MCS performs well when applied to engineering problems. - Abstract: A new robust optimisation algorithm, which can be regarded as a modification of the recently developed cuckoo search, is presented. The modification involves the addition of information exchange between the top eggs, or the best solutions. Standard optimisation benchmarking functions are used to test the effects of these modifications and it is demonstrated that, in most cases, the modified cuckoo search performs as well as, or better than, the standard cuckoo search, a particle swarm optimiser, and a differential evolution strategy. In particular the modified cuckoo search shows a high convergence rate to the true global minimum even at high numbers of dimensions.
A hybrid algorithm for speckle noise reduction of ultrasound images.
Singh, Karamjeet; Ranade, Sukhjeet Kaur; Singh, Chandan
2017-09-01
Medical images are contaminated by multiplicative speckle noise which significantly reduce the contrast of ultrasound images and creates a negative effect on various image interpretation tasks. In this paper, we proposed a hybrid denoising approach which collaborate the both local and nonlocal information in an efficient manner. The proposed hybrid algorithm consist of three stages in which at first stage the use of local statistics in the form of guided filter is used to reduce the effect of speckle noise initially. Then, an improved speckle reducing bilateral filter (SRBF) is developed to further reduce the speckle noise from the medical images. Finally, to reconstruct the diffused edges we have used the efficient post-processing technique which jointly considered the advantages of both bilateral and nonlocal mean (NLM) filter for the attenuation of speckle noise efficiently. The performance of proposed hybrid algorithm is evaluated on synthetic, simulated and real ultrasound images. The experiments conducted on various test images demonstrate that our proposed hybrid approach outperforms the various traditional speckle reduction approaches included recently proposed NLM and optimized Bayesian-based NLM. The results of various quantitative, qualitative measures and by visual inspection of denoise synthetic and real ultrasound images demonstrate that the proposed hybrid algorithm have strong denoising capability and able to preserve the fine image details such as edge of a lesion better than previously developed methods for speckle noise reduction. The denoising and edge preserving capability of hybrid algorithm is far better than existing traditional and recently proposed speckle reduction (SR) filters. The success of proposed algorithm would help in building the lay foundation for inventing the hybrid algorithms for denoising of ultrasound images. Copyright © 2017 Elsevier B.V. All rights reserved.
Adaptive symbiotic organisms search (SOS algorithm for structural design optimization
Directory of Open Access Journals (Sweden)
Ghanshyam G. Tejani
2016-07-01
Full Text Available The symbiotic organisms search (SOS algorithm is an effective metaheuristic developed in 2014, which mimics the symbiotic relationship among the living beings, such as mutualism, commensalism, and parasitism, to survive in the ecosystem. In this study, three modified versions of the SOS algorithm are proposed by introducing adaptive benefit factors in the basic SOS algorithm to improve its efficiency. The basic SOS algorithm only considers benefit factors, whereas the proposed variants of the SOS algorithm, consider effective combinations of adaptive benefit factors and benefit factors to study their competence to lay down a good balance between exploration and exploitation of the search space. The proposed algorithms are tested to suit its applications to the engineering structures subjected to dynamic excitation, which may lead to undesirable vibrations. Structure optimization problems become more challenging if the shape and size variables are taken into account along with the frequency. To check the feasibility and effectiveness of the proposed algorithms, six different planar and space trusses are subjected to experimental analysis. The results obtained using the proposed methods are compared with those obtained using other optimization methods well established in the literature. The results reveal that the adaptive SOS algorithm is more reliable and efficient than the basic SOS algorithm and other state-of-the-art algorithms.
Intelligent Hybrid Cluster Based Classification Algorithm for Social Network Analysis
Directory of Open Access Journals (Sweden)
S. Muthurajkumar
2014-05-01
Full Text Available In this paper, we propose an hybrid clustering based classification algorithm based on mean approach to effectively classify to mine the ordered sequences (paths from weblog data in order to perform social network analysis. In the system proposed in this work for social pattern analysis, the sequences of human activities are typically analyzed by switching behaviors, which are likely to produce overlapping clusters. In this proposed system, a robust Modified Boosting algorithm is proposed to hybrid clustering based classification for clustering the data. This work is useful to provide connection between the aggregated features from the network data and traditional indices used in social network analysis. Experimental results show that the proposed algorithm improves the decision results from data clustering when combined with the proposed classification algorithm and hence it is proved that of provides better classification accuracy when tested with Weblog dataset. In addition, this algorithm improves the predictive performance especially for multiclass datasets which can increases the accuracy.
Hybrid Ant Algorithm and Applications for Vehicle Routing Problem
Xiao, Zhang; Jiang-qing, Wang
Ant colony optimization (ACO) is a metaheuristic method that inspired by the behavior of real ant colonies. ACO has been successfully applied to several combinatorial optimization problems, but it has some short-comings like its slow computing speed and local-convergence. For solving Vehicle Routing Problem, we proposed Hybrid Ant Algorithm (HAA) in order to improve both the performance of the algorithm and the quality of solutions. The proposed algorithm took the advantages of Nearest Neighbor (NN) heuristic and ACO for solving VRP, it also expanded the scope of solution space and improves the global ability of the algorithm through importing mutation operation, combining 2-opt heuristics and adjusting the configuration of parameters dynamically. Computational results indicate that the hybrid ant algorithm can get optimal resolution of VRP effectively.
Effect of qubit losses on Grover's quantum search algorithm
DEFF Research Database (Denmark)
Dasari, Durga; Mølmer, Klaus
2012-01-01
We investigate the performance of Grover's quantum search algorithm on a register that is subject to a loss of particles that carry qubit information. Under the assumption that the basic steps of the algorithm are applied correctly on the correspondingly shrinking register, we show...... that the algorithm converges to mixed states with 50% overlap with the target state in the bit positions still present. As an alternative to error correction, we present a procedure that combines the outcome of different trials of the algorithm to determine the solution to the full search problem. The procedure may...... be relevant for experiments where the algorithm is adapted as the loss of particles is registered and for experiments with Rydberg blockade interactions among neutral atoms, where monitoring of atom losses is not even necessary....
Quantum Algorithms with Fixed Points: The Case of Database Search
Grover, L K; Tulsi, T; Grover, Lov K.; Patel, Apoorva; Tulsi, Tathagat
2006-01-01
The standard quantum search algorithm lacks a feature, enjoyed by many classical algorithms, of having a fixed-point, i.e. a monotonic convergence towards the solution. Here we present two variations of the quantum search algorithm, which get around this limitation. The first replaces selective inversions in the algorithm by selective phase shifts of $\\frac{\\pi}{3}$. The second controls the selective inversion operations using two ancilla qubits, and irreversible measurement operations on the ancilla qubits drive the starting state towards the target state. Using $q$ oracle queries, these variations reduce the probability of finding a non-target state from $\\epsilon$ to $\\epsilon^{2q+1}$, which is asymptotically optimal. Similar ideas can lead to robust quantum algorithms, and provide conceptually new schemes for error correction.
Combined string searching algorithm based on knuth-morris- pratt and boyer-moore algorithms
Tsarev, R. Yu; Chernigovskiy, A. S.; Tsareva, E. A.; Brezitskaya, V. V.; Nikiforov, A. Yu; Smirnov, N. A.
2016-04-01
The string searching task can be classified as a classic information processing task. Users either encounter the solution of this task while working with text processors or browsers, employing standard built-in tools, or this task is solved unseen by the users, while they are working with various computer programmes. Nowadays there are many algorithms for solving the string searching problem. The main criterion of these algorithms’ effectiveness is searching speed. The larger the shift of the pattern relative to the string in case of pattern and string characters’ mismatch is, the higher is the algorithm running speed. This article offers a combined algorithm, which has been developed on the basis of well-known Knuth-Morris-Pratt and Boyer-Moore string searching algorithms. These algorithms are based on two different basic principles of pattern matching. Knuth-Morris-Pratt algorithm is based upon forward pattern matching and Boyer-Moore is based upon backward pattern matching. Having united these two algorithms, the combined algorithm allows acquiring the larger shift in case of pattern and string characters’ mismatch. The article provides an example, which illustrates the results of Boyer-Moore and Knuth-Morris- Pratt algorithms and combined algorithm’s work and shows advantage of the latter in solving string searching problem.
A Hybrid Metaheuristic DE/CS Algorithm for UCAV Three-Dimension Path Planning
Gaige Wang; Lihong Guo; Hong Duan; Heqi Wang; Luo Liu; Mingzhen Shao
2012-01-01
Three-dimension path planning for uninhabited combat air vehicle (UCAV) is a complicated high-dimension optimization problem, which primarily centralizes on optimizing the flight route considering the different kinds of constrains under complicated battle field environments. A new hybrid metaheuristic differential evolution (DE) and cuckoo search (CS) algorithm is proposed to solve the UCAV three-dimension path planning problem. DE is applied to optimize the process of selecting cuckoos of th...
Hybrid foraging search: Searching for multiple instances of multiple types of target.
Wolfe, Jeremy M; Aizenman, Avigael M; Boettcher, Sage E P; Cain, Matthew S
2016-02-01
This paper introduces the "hybrid foraging" paradigm. In typical visual search tasks, observers search for one instance of one target among distractors. In hybrid search, observers search through visual displays for one instance of any of several types of target held in memory. In foraging search, observers collect multiple instances of a single target type from visual displays. Combining these paradigms, in hybrid foraging tasks observers search visual displays for multiple instances of any of several types of target (as might be the case in searching the kitchen for dinner ingredients or an X-ray for different pathologies). In the present experiment, observers held 8-64 target objects in memory. They viewed displays of 60-105 randomly moving photographs of objects and used the computer mouse to collect multiple targets before choosing to move to the next display. Rather than selecting at random among available targets, observers tended to collect items in runs of one target type. Reaction time (RT) data indicate searching again for the same item is more efficient than searching for any other targets, held in memory. Observers were trying to maximize collection rate. As a result, and consistent with optimal foraging theory, they tended to leave 25-33% of targets uncollected when moving to the next screen/patch. The pattern of RTs shows that while observers were collecting a target item, they had already begun searching memory and the visual display for additional targets, making the hybrid foraging task a useful way to investigate the interaction of visual and memory search.
A Hybrid Constructive Algorithm for Single-Layer Feedforward Networks Learning.
Wu, Xing; Rózycki, Paweł; Wilamowski, Bogdan M
2015-08-01
Single-layer feedforward networks (SLFNs) have been proven to be a universal approximator when all the parameters are allowed to be adjustable. It is widely used in classification and regression problems. The SLFN learning involves two tasks: determining network size and training the parameters. Most current algorithms could not be satisfactory to both sides. Some algorithms focused on construction and only tuned part of the parameters, which may not be able to achieve a compact network. Other gradient-based optimization algorithms focused on parameters tuning while the network size has to be preset by the user. Therefore, trial-and-error approach has to be used to search the optimal network size. Because results of each trial cannot be reused in another trial, it costs much computation. In this paper, a hybrid constructive (HC)algorithm is proposed for SLFN learning, which can train all the parameters and determine the network size simultaneously. At first, by combining Levenberg-Marquardt algorithm and least-square method, a hybrid algorithm is presented for training SLFN with fixed network size. Then,with the hybrid algorithm, an incremental constructive scheme is proposed. A new randomly initialized neuron is added each time when the training entrapped into local minima. Because the training continued on previous results after adding new neurons, the proposed HC algorithm works efficiently. Several practical problems were given for comparison with other popular algorithms. The experimental results demonstrated that the HC algorithm worked more efficiently than those optimization methods with trial and error, and could achieve much more compact SLFN than those construction algorithms.
Fast search algorithms for computational protein design.
Traoré, Seydou; Roberts, Kyle E; Allouche, David; Donald, Bruce R; André, Isabelle; Schiex, Thomas; Barbe, Sophie
2016-05-01
One of the main challenges in computational protein design (CPD) is the huge size of the protein sequence and conformational space that has to be computationally explored. Recently, we showed that state-of-the-art combinatorial optimization technologies based on Cost Function Network (CFN) processing allow speeding up provable rigid backbone protein design methods by several orders of magnitudes. Building up on this, we improved and injected CFN technology into the well-established CPD package Osprey to allow all Osprey CPD algorithms to benefit from associated speedups. Because Osprey fundamentally relies on the ability of A* to produce conformations in increasing order of energy, we defined new A* strategies combining CFN lower bounds, with new side-chain positioning-based branching scheme. Beyond the speedups obtained in the new A*-CFN combination, this novel branching scheme enables a much faster enumeration of suboptimal sequences, far beyond what is reachable without it. Together with the immediate and important speedups provided by CFN technology, these developments directly benefit to all the algorithms that previously relied on the DEE/ A* combination inside Osprey* and make it possible to solve larger CPD problems with provable algorithms.
Sheikhan, Mansour; Abbasnezhad Arabi, Mahdi; Gharavian, Davood
2015-10-01
Artificial neural networks are efficient models in pattern recognition applications, but their performance is dependent on employing suitable structure and connection weights. This study used a hybrid method for obtaining the optimal weight set and architecture of a recurrent neural emotion classifier based on gravitational search algorithm (GSA) and its binary version (BGSA), respectively. By considering the features of speech signal that were related to prosody, voice quality, and spectrum, a rich feature set was constructed. To select more efficient features, a fast feature selection method was employed. The performance of the proposed hybrid GSA-BGSA method was compared with similar hybrid methods based on particle swarm optimisation (PSO) algorithm and its binary version, PSO and discrete firefly algorithm, and hybrid of error back-propagation and genetic algorithm that were used for optimisation. Experimental tests on Berlin emotional database demonstrated the superior performance of the proposed method using a lighter network structure.
Entropy-Based Search Algorithm for Experimental Design
Malakar, N. K.; Knuth, K. H.
2011-03-01
The scientific method relies on the iterated processes of inference and inquiry. The inference phase consists of selecting the most probable models based on the available data; whereas the inquiry phase consists of using what is known about the models to select the most relevant experiment. Optimizing inquiry involves searching the parameterized space of experiments to select the experiment that promises, on average, to be maximally informative. In the case where it is important to learn about each of the model parameters, the relevance of an experiment is quantified by Shannon entropy of the distribution of experimental outcomes predicted by a probable set of models. If the set of potential experiments is described by many parameters, we must search this high-dimensional entropy space. Brute force search methods will be slow and computationally expensive. We present an entropy-based search algorithm, called nested entropy sampling, to select the most informative experiment for efficient experimental design. This algorithm is inspired by Skilling's nested sampling algorithm used in inference and borrows the concept of a rising threshold while a set of experiment samples are maintained. We demonstrate that this algorithm not only selects highly relevant experiments, but also is more efficient than brute force search. Such entropic search techniques promise to greatly benefit autonomous experimental design.
Searching for the majority: algorithms of voluntary control.
Directory of Open Access Journals (Sweden)
Jin Fan
Full Text Available Voluntary control of information processing is crucial to allocate resources and prioritize the processes that are most important under a given situation; the algorithms underlying such control, however, are often not clear. We investigated possible algorithms of control for the performance of the majority function, in which participants searched for and identified one of two alternative categories (left or right pointing arrows as composing the majority in each stimulus set. We manipulated the amount (set size of 1, 3, and 5 and content (ratio of left and right pointing arrows within a set of the inputs to test competing hypotheses regarding mental operations for information processing. Using a novel measure based on computational load, we found that reaction time was best predicted by a grouping search algorithm as compared to alternative algorithms (i.e., exhaustive or self-terminating search. The grouping search algorithm involves sampling and resampling of the inputs before a decision is reached. These findings highlight the importance of investigating the implications of voluntary control via algorithms of mental operations.
A Parallel Genetic Simulated Annealing Hybrid Algorithm for Task Scheduling
Institute of Scientific and Technical Information of China (English)
SHU Wanneng; ZHENG Shijue
2006-01-01
In this paper combined with the advantages of genetic algorithm and simulated annealing, brings forward a parallel genetic simulated annealing hybrid algorithm (PGSAHA) and applied to solve task scheduling problem in grid computing .It first generates a new group of individuals through genetic operation such as reproduction, crossover, mutation, etc, and than simulated anneals independently all the generated individuals respectively.When the temperature in the process of cooling no longer falls, the result is the optimal solution on the whole.From the analysis and experiment result, it is concluded that this algorithm is superior to genetic algorithm and simulated annealing.
An Efficient Hybrid Algorithm for Mining Web Frequent Access Patterns
Institute of Scientific and Technical Information of China (English)
ZHAN Li-qiang; LIU Da-xin
2004-01-01
We propose an efficient hybrid algorithm WDHP in this paper for mining frequent access patterns.WDHP adopts the techniques of DHP to optimize its performance, which is using hash table to filter candidate set and trimming database.Whenever the database is trimmed to a size less than a specified threshold, the algorithm puts the database into main memory by constructing a tree, and finds frequent patterns on the tree.The experiment shows that WDHP outperform algorithm DHP and main memory based algorithm WAP in execution efficiency.
Multi-objective optimization design of bridge piers with hybrid heuristic algorithms
Institute of Scientific and Technical Information of China (English)
Francisco J. MARTINEZ-MARTIN; Femando GONZALEZ-VIDOSA; Antonio HOSPITALER; Victor YEPES
2012-01-01
This paper describes one approach to the design of reinforced concrete (RC) bridge piers,using a three-hybrid multiobjective simulated annealing (SA) algorithm with a neighborhood move based on the mutation operator from the genetic algorithms (GAs),namely MOSAMO1,MOSAMO2 and MOSAMO3.The procedure is applied to three objective functions:the economic cost,the reinforcing steel congestion and the embedded CO2 emissions.Additional results for a random walk and a descent local search multi-objective algorithm are presented.The evaluation of solutions follows the Spanish Code for structural concrete.The methodology was applied to a typical bridge pier of 23,97 m in height.This example involved 110 design variables.Results indicate that algorithm MOSAMO2 outperforms other algorithms regarding the definition of Pareto fronts.Further,the proposed procedure will help structural engineers to enhance their bridge pier designs.
A hybrid differential evolution algorithm for meta-task scheduling in grids
Institute of Scientific and Technical Information of China (English)
Kang Qinma; Jiang Changjun; He Hong; Huang Qiangsheng
2009-01-01
Task scheduling is one of the core steps to effectively exploit the capabilities of heterogeneous resources in the grid. This paper presents a new hybrid differential evolution (HDE) algorithm for finding an optimal or near-optimal schedule within reasonable time. The encoding scheme and the adaptation of classical differential evolution algorithm for dealing with discrete variables are discussed. A simple but effective local search is incorporated into differential evolution to stress exploitation. The performance of the proposed HDE algorithm is showed by being compared with a genetic algorithm (GA) on a known static benchmark for the problem. Experimental results indicate that the proposed algorithm has better performance than GA in terms of both solution quality and computational time, and thus it can be used to design efficient dynamic schedulers in batch mode for real grid systems.
Li, Jun-Qing; Pan, Quan-Ke; Duan, Pei-Yong
2016-06-01
In this paper, we propose an improved discrete artificial bee colony (DABC) algorithm to solve the hybrid flexible flowshop scheduling problem with dynamic operation skipping features in molten iron systems. First, each solution is represented by a two-vector-based solution representation, and a dynamic encoding mechanism is developed. Second, a flexible decoding strategy is designed. Next, a right-shift strategy considering the problem characteristics is developed, which can clearly improve the solution quality. In addition, several skipping and scheduling neighborhood structures are presented to balance the exploration and exploitation ability. Finally, an enhanced local search is embedded in the proposed algorithm to further improve the exploitation ability. The proposed algorithm is tested on sets of the instances that are generated based on the realistic production. Through comprehensive computational comparisons and statistical analysis, the highly effective performance of the proposed DABC algorithm is favorably compared against several presented algorithms, both in solution quality and efficiency.
Adiabatic quantum algorithm for search engine ranking.
Garnerone, Silvano; Zanardi, Paolo; Lidar, Daniel A
2012-06-08
We propose an adiabatic quantum algorithm for generating a quantum pure state encoding of the PageRank vector, the most widely used tool in ranking the relative importance of internet pages. We present extensive numerical simulations which provide evidence that this algorithm can prepare the quantum PageRank state in a time which, on average, scales polylogarithmically in the number of web pages. We argue that the main topological feature of the underlying web graph allowing for such a scaling is the out-degree distribution. The top-ranked log(n) entries of the quantum PageRank state can then be estimated with a polynomial quantum speed-up. Moreover, the quantum PageRank state can be used in "q-sampling" protocols for testing properties of distributions, which require exponentially fewer measurements than all classical schemes designed for the same task. This can be used to decide whether to run a classical update of the PageRank.
Adiabatic Quantum Algorithm for Search Engine Ranking
Garnerone, Silvano; Zanardi, Paolo; Lidar, Daniel A.
2012-06-01
We propose an adiabatic quantum algorithm for generating a quantum pure state encoding of the PageRank vector, the most widely used tool in ranking the relative importance of internet pages. We present extensive numerical simulations which provide evidence that this algorithm can prepare the quantum PageRank state in a time which, on average, scales polylogarithmically in the number of web pages. We argue that the main topological feature of the underlying web graph allowing for such a scaling is the out-degree distribution. The top-ranked log(n) entries of the quantum PageRank state can then be estimated with a polynomial quantum speed-up. Moreover, the quantum PageRank state can be used in “q-sampling” protocols for testing properties of distributions, which require exponentially fewer measurements than all classical schemes designed for the same task. This can be used to decide whether to run a classical update of the PageRank.
Private algorithms for the protected in social network search.
Kearns, Michael; Roth, Aaron; Wu, Zhiwei Steven; Yaroslavtsev, Grigory
2016-01-26
Motivated by tensions between data privacy for individual citizens and societal priorities such as counterterrorism and the containment of infectious disease, we introduce a computational model that distinguishes between parties for whom privacy is explicitly protected, and those for whom it is not (the targeted subpopulation). The goal is the development of algorithms that can effectively identify and take action upon members of the targeted subpopulation in a way that minimally compromises the privacy of the protected, while simultaneously limiting the expense of distinguishing members of the two groups via costly mechanisms such as surveillance, background checks, or medical testing. Within this framework, we provide provably privacy-preserving algorithms for targeted search in social networks. These algorithms are natural variants of common graph search methods, and ensure privacy for the protected by the careful injection of noise in the prioritization of potential targets. We validate the utility of our algorithms with extensive computational experiments on two large-scale social network datasets.
Optimization of a genetic algorithm for searching molecular conformer space
Brain, Zoe E.; Addicoat, Matthew A.
2011-11-01
We present two sets of tunings that are broadly applicable to conformer searches of isolated molecules using a genetic algorithm (GA). In order to find the most efficient tunings for the GA, a second GA - a meta-genetic algorithm - was used to tune the first genetic algorithm to reliably find the already known a priori correct answer with minimum computational resources. It is shown that these tunings are appropriate for a variety of molecules with different characteristics, and most importantly that the tunings are independent of the underlying model chemistry but that the tunings for rigid and relaxed surfaces differ slightly. It is shown that for the problem of molecular conformational search, the most efficient GA actually reduces to an evolutionary algorithm.
CSLM: Levenberg Marquardt based Back Propagation Algorithm Optimized with Cuckoo Search
Directory of Open Access Journals (Sweden)
Nazri Mohd. Nawi
2014-11-01
Full Text Available Training an artificial neural network is an optimization task, since it is desired to find optimal weight sets for a neural network during training process. Traditional training algorithms such as back propagation have some drawbacks such as getting stuck in local minima and slow speed of convergence. This study combines the best features of two algorithms; i.e. Levenberg Marquardt back propagation (LMBP and Cuckoo Search (CS for improving the convergence speed of artificial neural networks (ANN training. The proposed CSLM algorithm is trained on XOR and OR datasets. The experimental results show that the proposed CSLM algorithm has better performance than other similar hybrid variants used in this study.
Upper-Lower Bounds Candidate Sets Searching Algorithm for Bayesian Network Structure Learning
Directory of Open Access Journals (Sweden)
Guangyi Liu
2014-01-01
Full Text Available Bayesian network is an important theoretical model in artificial intelligence field and also a powerful tool for processing uncertainty issues. Considering the slow convergence speed of current Bayesian network structure learning algorithms, a fast hybrid learning method is proposed in this paper. We start with further analysis of information provided by low-order conditional independence testing, and then two methods are given for constructing graph model of network, which is theoretically proved to be upper and lower bounds of the structure space of target network, so that candidate sets are given as a result; after that a search and scoring algorithm is operated based on the candidate sets to find the final structure of the network. Simulation results show that the algorithm proposed in this paper is more efficient than similar algorithms with the same learning precision.
Adaptive backtracking search optimization algorithm with pattern search for numerical optimization
Institute of Scientific and Technical Information of China (English)
Shu Wang; Xinyu Da; Mudong Li; Tong Han
2016-01-01
Thebacktracking search optimization algorithm (BSA) is one of the most recently proposed population-based evolutionary algorithms for global optimization. Due to its memory ability and simple structure, BSA has powerful capa-bility to find global optimal solutions. However, the algorithm is stil insufficient in balancing the exploration and the exploita-tion. Therefore, an improved adaptive backtracking search optimization algorithm combined with modified Hooke-Jeeves pattern search is proposed for numerical global optimization. It has two main parts: the BSA is used for the exploration phase and the modified pattern search method completes the ex-ploitation phase. In particular, a simple but effective strategy of adapting one of BSA’s important control parameters is intro-duced. The proposed algorithm is compared with standard BSA, three state-of-the-art evolutionary algorithms and three superior algorithms in IEEE Congress on Evolutionary Com-putation 2014 (IEEE CEC2014) over six widely-used bench-marks and 22 real-parameter single objective numerical opti-mization benchmarks in IEEE CEC2014. The results of ex-periment and statistical analysis demonstrate the effective-ness and efficiency of the proposed algorithm.
A Hybrid Genetic Algorithm for the Traveling Salesman Problem with Pickup and Delivery
Institute of Scientific and Technical Information of China (English)
Fang-Geng Zhao; Jiang-Sheng Sun; Su-Jian Li; Wei-Min Liu
2009-01-01
In this paper,a hybrid genetic algorithm (CA) is proposed for the traveling salesman problem (TSP) with pickup and delivery (TSPPD).In our algorithm,a novel pheromone-based crossover operator is advanced that utilizes both local and global information to construct offspring.In addition,a local search procedure is integrated into the GA to accelerate convergence.The proposed GA has been tested on benchmark instances,and the computational results show that it gives better convergence than existing heuristics.
Mathematical Model and Hybrid Scatter Search for Cost Driven Job-shop Scheduling Problem
Directory of Open Access Journals (Sweden)
Bai Jie
2011-07-01
Full Text Available Job-shop scheduling problem (JSP is one of the most well-known machine scheduling problems and one of the strongly NP-hard combinatorial optimization problems. Cost optimization is an attractive and critical research and development area for both academic and industrial societies. This paper presents a cost driven model of the job-shop scheduling problem in which the solutions are driven by business inputs, such as the cost of the product transitions, revenue loss due to the machine idle time and earliness/tardiness penalty. And then, a new hybrid scatter search algorithm is proposed to solve the cost driven job-shop scheduling problem by introducing the simulated annealing (SA into the improvement method of scatter search (SS. In order to illustrate the effectiveness of the hybrid method, some test problems are generated, and the performance of the proposed method is compared with other evolutionary algorithms such as genetic algorithm and simulated annealing. The experimental simulation tests show that the hybrid method is quite effective at solving the cost driven job-shop scheduling problem.
An Index Based Skip Search Multiple Pattern Matching Algorithm
Raju Bhukya; Balram Parmer,; Anand Kulkarni
2011-01-01
DNA Pattern matching, the problem of finding sub sequences within a long DNA sequence has many applications in computational biology. As the sequences can be long, matching can be an expensive operation, especially as approximate matching is allowed. Searching DNA related data is a common activity for molecular biologists. In this paper we explore the applicability of a new pattern matching technique called Index based Skip Search Multiple Pattern matching algorithm (ISMPM), for DNA sequences...
A Wave Implementation of the Optimal Database Search Algorithm
Patel, A
2004-01-01
Grover's database search algorithm, although discovered in the context of quantum computation, can be implemented using any system that allows superposition of states. A physical realization of this algorithm is described using coupled simple harmonic oscillators. Such classical wave implementations are far more stable against decoherence compared to their quantum counterparts. In addition to providing convenient demonstration models, they may have a role in diverse practical situations, such as catalysis and structure of genetic languages.
A New Hybrid Watermarking Algorithm for Images in Frequency Domain
Directory of Open Access Journals (Sweden)
AhmadReza Naghsh-Nilchi
2008-03-01
Full Text Available In recent years, digital watermarking has become a popular technique for digital images by hiding secret information which can protect the copyright. The goal of this paper is to develop a hybrid watermarking algorithm. This algorithm used DCT coefficient and DWT coefficient to embedding watermark, and the extracting procedure is blind. The proposed approach is robust to a variety of signal distortions, such as JPEG, image cropping and scaling.
Optimal Search Mechanism Analysis of Light Ray Optimization Algorithm
Institute of Scientific and Technical Information of China (English)
Jihong SHEN; Jialian LI; Bin WEI
2012-01-01
Based on Fermat's principle and the automatic optimization mechanism in the propagation process of light,an optimal searching algorithm named light ray optimization is presented,where the laws of refraction and reflection of light rays are integrated into searching process of optimization.In this algorithm,coordinate space is assumed to be the space that is full of media with different refractivities,then the space is divided by grids,and finally the searching path is assumed to be the propagation path of light rays.With the law of refraction,the search direction is deflected to the direction that makes the value of objective function decrease.With the law of reflection,the search direction is changed,which makes the search continue when it cannot keep going with refraction.Only the function values of objective problems are used and there is no artificial rule in light ray optimization,so it is simple and easy to realize.Theoretical analysis and the results of numerical experiments show that the algorithm is feasible and effective.
Directory of Open Access Journals (Sweden)
Yan Hong Chen
2016-01-01
Full Text Available This paper proposes a new electric load forecasting model by hybridizing the fuzzy time series (FTS and global harmony search algorithm (GHSA with least squares support vector machines (LSSVM, namely GHSA-FTS-LSSVM model. Firstly, the fuzzy c-means clustering (FCS algorithm is used to calculate the clustering center of each cluster. Secondly, the LSSVM is applied to model the resultant series, which is optimized by GHSA. Finally, a real-world example is adopted to test the performance of the proposed model. In this investigation, the proposed model is verified using experimental datasets from the Guangdong Province Industrial Development Database, and results are compared against autoregressive integrated moving average (ARIMA model and other algorithms hybridized with LSSVM including genetic algorithm (GA, particle swarm optimization (PSO, harmony search, and so on. The forecasting results indicate that the proposed GHSA-FTS-LSSVM model effectively generates more accurate predictive results.
A hybrid multi-objective evolutionary algorithm for wind-turbine blade optimization
Sessarego, M.; Dixon, K. R.; Rival, D. E.; Wood, D. H.
2015-08-01
A concurrent-hybrid non-dominated sorting genetic algorithm (hybrid NSGA-II) has been developed and applied to the simultaneous optimization of the annual energy production, flapwise root-bending moment and mass of the NREL 5 MW wind-turbine blade. By hybridizing a multi-objective evolutionary algorithm (MOEA) with gradient-based local search, it is believed that the optimal set of blade designs could be achieved in lower computational cost than for a conventional MOEA. To measure the convergence between the hybrid and non-hybrid NSGA-II on a wind-turbine blade optimization problem, a computationally intensive case was performed using the non-hybrid NSGA-II. From this particular case, a three-dimensional surface representing the optimal trade-off between the annual energy production, flapwise root-bending moment and blade mass was achieved. The inclusion of local gradients in the blade optimization, however, shows no improvement in the convergence for this three-objective problem.
Hybrid SOA-SQP algorithm for dynamic economic dispatch with valve-point effects
Energy Technology Data Exchange (ETDEWEB)
Sivasubramani, S.; Swarup, K.S. [Department of Electrical Engineering, Indian Institute of Technology Madras, Chennai 600036 (India)
2010-12-15
This paper proposes a hybrid technique combining a new heuristic algorithm named seeker optimization algorithm (SOA) and sequential quadratic programming (SQP) method for solving dynamic economic dispatch problem with valve-point effects. The SOA is based on the concept of simulating the act of human searching, where the search direction is based on the empirical gradient (EG) by evaluating the response to the position changes and the step length is based on uncertainty reasoning by using a simple fuzzy rule. In this paper, SOA is used as a base level search, which can give a good direction to the optimal global region and SQP as a local search to fine tune the solution obtained from SOA. Thus SQP guides SOA to find optimal or near optimal solution in the complex search space. Two test systems i.e., 5 unit with losses and 10 unit without losses, have been taken to validate the efficiency of the proposed hybrid method. Simulation results clearly show that the proposed method outperforms the existing method in terms of solution quality. (author)
A hybrid solar panel maximum power point search method that uses light and temperature sensors
Ostrowski, Mariusz
2016-04-01
Solar cells have low efficiency and non-linear characteristics. To increase the output power solar cells are connected in more complex structures. Solar panels consist of series of connected solar cells with a few bypass diodes, to avoid negative effects of partial shading conditions. Solar panels are connected to special device named the maximum power point tracker. This device adapt output power from solar panels to load requirements and have also build in a special algorithm to track the maximum power point of solar panels. Bypass diodes may cause appearance of local maxima on power-voltage curve when the panel surface is illuminated irregularly. In this case traditional maximum power point tracking algorithms can find only a local maximum power point. In this article the hybrid maximum power point search algorithm is presented. The main goal of the proposed method is a combination of two algorithms: a method that use temperature sensors to track maximum power point in partial shading conditions and a method that use illumination sensor to track maximum power point in equal illumination conditions. In comparison to another methods, the proposed algorithm uses correlation functions to determinate the relationship between values of illumination and temperature sensors and the corresponding values of current and voltage in maximum power point. In partial shading condition the algorithm calculates local maximum power points bases on the value of temperature and the correlation function and after that measures the value of power on each of calculated point choose those with have biggest value, and on its base run the perturb and observe search algorithm. In case of equal illumination algorithm calculate the maximum power point bases on the illumination value and the correlation function and on its base run the perturb and observe algorithm. In addition, the proposed method uses a special coefficient modification of correlation functions algorithm. This sub-algorithm
Hybrid Genetic Algorithm with PSO Effect for Combinatorial Optimisation Problems
Directory of Open Access Journals (Sweden)
M. H. Mehta
2012-12-01
Full Text Available In engineering field, many problems are hard to solve in some definite interval of time. These problems known as “combinatorial optimisation problems” are of the category NP. These problems are easy to solve in some polynomial time when input size is small but as input size grows problems become toughest to solve in some definite interval of time. Long known conventional methods are not able to solve the problems and thus proper heuristics is necessary. Evolutionary algorithms based on behaviours of different animals and species have been invented and studied for this purpose. Genetic Algorithm is considered a powerful algorithm for solving combinatorial optimisation problems. Genetic algorithms work on these problems mimicking the human genetics. It follows principle of “survival of the fittest” kind of strategy. Particle swarm optimisation is a new evolutionary approach that copies behaviour of swarm in nature. However, neither traditional genetic algorithms nor particle swarm optimisation alone has been completely successful for solving combinatorial optimisation problems. Here a hybrid algorithm is proposed in which strengths of both algorithms are merged and performance of proposed algorithm is compared with simple genetic algorithm. Results show that proposed algorithm works definitely better than the simple genetic algorithm.
Institute of Scientific and Technical Information of China (English)
SUN Fan; DU Wenli; QI Rongbin; QIAN Feng; ZHONG Weimin
2013-01-01
The solutions of dynamic optimization problems are usually very difficult due to their highly nonlinear and multidimensional nature.Genetic algorithm(GA)has been proved to be a feasible method when the gradient is difficult to calculate.Its advantage is that the control profiles at all time stages are optimized simultaneously,but its convergence is very slow in the later period of evolution and it is easily trapped in the local optimum.In this study,a hybrid improved genetic algorithm(HIGA)for solving dynamic optimization problems is proposed to overcome these defects.Simplex method(SM)is used to perform the local search in the neighborhood of the optimal solution.By using SM,the ideal searching direction of global optimal solution could be found as soon as possible and the convergence speed of the algorithm is improved.The hybrid algorithm presents some improvements,such as protecting the best individual,accepting immigrations,as well as employing adaptive crossover and Gaussian mutation operators.The efficiency of the proposed algorithm is demonstrated by solving several dynamic optimization problems.At last,HIGA is applied to the optimal production of secreted protein in a fed batch reactor and the optimal feed-rate found by HIGA is effective and relatively stable.
A random search algorithm for cyclic delivery synchronization problem
Directory of Open Access Journals (Sweden)
Katarzyna Gdowska
2017-09-01
Full Text Available Background: The paper is devoted to the cyclic delivery synchronization problem with vehicles serving fixed routes. Each vehicle is assigned to a fixed route: the series of supplier’s and logistic centers to be visited one after another. For each route the service frequency is fixed and known in advance. A vehicle loads at a supplier’s, then it delivers goods to a logistic center and either loads other goods there and delivers them to the next logistic center along the route or goes to another logistic center. Each logistic center can belong to several routes, so goods are delivered there with one vehicle and then they departure for the further journey with another truck. The objective of this cyclic delivery synchronization problem is to maximize the total number of synchronizations of vehicles arrivals in logistic centers and their load times, so that it is possible to organize their arrivals in repeatable blocks. Methods: Basing on the previously developed mathematical model for the cyclic delivery synchronization problem we built a random search algorithm for cyclic delivery synchronization problem. The random heuristic search utilizes objective-oriented randomizing. In the paper the newly-developed random search algorithm for cyclic delivery synchronization problem is presented. Results: A computational experiment consisted of employing the newly-developed random search algorithm for solving a series of cyclic delivery synchronization problems. Results obtained with the algorithm were compared with solutions computed with the exact method. Conclusions: The newly-developed random search algorithm for cyclic delivery synchronization problem gives results which are considerably close to the ones obtained with mixed-integer programming. The main advantage of the algorithm is reduction of computing time; it is relevant for utilization of this method in practice, especially for large-sized problems.
SUPERLINEAR CONVERGENCE OF THE DFP ALGORITHM WITHOUT EXACT LINE SEARCH
Institute of Scientific and Technical Information of China (English)
濮定国
2001-01-01
@@ Broyden algorithms are very efficient methods for solving the nonlinear programming problem: min {f(x); x ∈ Rn}. (1) With exact line search, Powell[1] proved that the rate of convergence of these algorithms is one-step Q-superlinear for a twice continuously differentiable and uniformly convex function,and pu[2] extended this result for LC1 function. Pu and Yu[3] proved that if the points which are given by these algorithms are convergent they are globally convergent for continuously differentiable functions without convexity.
Efficient Clustering of Web Search Results Using Enhanced Lingo Algorithm
Directory of Open Access Journals (Sweden)
M. Manikantan
2015-02-01
Full Text Available Web query optimization is the focus of recent research and development efforts. To fetch the required information, the users are using search engines and sometimes through the website interfaces. One approach is search engine optimization which is used by the website developers to popularize their website through the search engine results. Clustering is a main task of explorative data mining process and a common technique for grouping the web search results into a different category based on the specific web contents. A clustering search engine called Lingo used only snippets to cluster the documents. Though this method takes less time to cluster the documents, it could not be able to produce the clusters of good quality. This study focuses on clustering all documents using by applying semantic similarity between words and then by applying modified lingo algorithm in less time and produce good quality.
Hybrid Architectures for Evolutionary Computing Algorithms
2008-01-01
Clarkson Univ., at AFRL, summer 2005 (yellow) Genetic Algorithm FPGA Core Burns P1026/MAPLD 200524 GA Core Datapath – Top-level Module • EA parameters and...Statistics are read from I/O ports Burns P1026/MAPLD 200525 GA Core Datapath – Population Module • Array of individuals • Population size register...Permutation generator • Current permutation element register • Current index register Burns P1026/MAPLD 200526 GA Core Datapath – PRNG Module • When
Performance Assessment of Hybrid Data Fusion and Tracking Algorithms
DEFF Research Database (Denmark)
Sand, Stephan; Mensing, Christian; Laaraiedh, Mohamed
2009-01-01
This paper presents an overview on the performance of hybrid data fusion and tracking algorithms evaluated in the WHERE consortium. The focus is on three scenarios. For the small scale indoor scenario with ultra wideband (UWB) complementing cellular communication systems, the accuracy can vary in...
Hybrid Probabilistic Logics: Theoretical Aspects, Algorithms and Experiments
Michels, S.
2016-01-01
Steffen Michels Hybrid Probabilistic Logics: Theoretical Aspects, Algorithms and Experiments Probabilistic logics aim at combining the properties of logic, that is they provide a structured way of expressing knowledge and a mechanical way of reasoning about such knowledge, with the ability of prob
A Hybrid Aggressive Space Mapping Algorithm for EM Optimization
DEFF Research Database (Denmark)
Bakr, Mohamed H.; Bandler, John W.; Georgieva, N.;
1999-01-01
We propose a novel hybrid aggressive space-mapping (HASM) optimization algorithm. HASM exploits both the trust-region aggressive space-mapping (TRASM) strategy and direct optimization. Severe differences between the coarse and fine models and nonuniqueness of the parameter extraction procedure ma...
Hybrid Bee Ant Colony Algorithm for Effective Load Balancing And ...
African Journals Online (AJOL)
PROF. OLIVER OSUAGWA
Genetic Algorithm (MO-GA) for dynamic job scheduling ... selection of a data centre. 2.2 Load ... An artificial ant colony, that was capable of .... Scheduling in Hybrid Cloud,” International Journal of Engineering and Technology Volume 2. No.
A Cooperative Harmony Search Algorithm for Function Optimization
Directory of Open Access Journals (Sweden)
Gang Li
2014-01-01
Full Text Available Harmony search algorithm (HS is a new metaheuristic algorithm which is inspired by a process involving musical improvisation. HS is a stochastic optimization technique that is similar to genetic algorithms (GAs and particle swarm optimizers (PSOs. It has been widely applied in order to solve many complex optimization problems, including continuous and discrete problems, such as structure design, and function optimization. A cooperative harmony search algorithm (CHS is developed in this paper, with cooperative behavior being employed as a significant improvement to the performance of the original algorithm. Standard HS just uses one harmony memory and all the variables of the object function are improvised within the harmony memory, while the proposed algorithm CHS uses multiple harmony memories, so that each harmony memory can optimize different components of the solution vector. The CHS was then applied to function optimization problems. The results of the experiment show that CHS is capable of finding better solutions when compared to HS and a number of other algorithms, especially in high-dimensional problems.
Directory of Open Access Journals (Sweden)
Qiang Lü
Full Text Available BACKGROUND: Protein structure prediction (PSP, which is usually modeled as a computational optimization problem, remains one of the biggest challenges in computational biology. PSP encounters two difficult obstacles: the inaccurate energy function problem and the searching problem. Even if the lowest energy has been luckily found by the searching procedure, the correct protein structures are not guaranteed to obtain. RESULTS: A general parallel metaheuristic approach is presented to tackle the above two problems. Multi-energy functions are employed to simultaneously guide the parallel searching threads. Searching trajectories are in fact controlled by the parameters of heuristic algorithms. The parallel approach allows the parameters to be perturbed during the searching threads are running in parallel, while each thread is searching the lowest energy value determined by an individual energy function. By hybridizing the intelligences of parallel ant colonies and Monte Carlo Metropolis search, this paper demonstrates an implementation of our parallel approach for PSP. 16 classical instances were tested to show that the parallel approach is competitive for solving PSP problem. CONCLUSIONS: This parallel approach combines various sources of both searching intelligences and energy functions, and thus predicts protein conformations with good quality jointly determined by all the parallel searching threads and energy functions. It provides a framework to combine different searching intelligence embedded in heuristic algorithms. It also constructs a container to hybridize different not-so-accurate objective functions which are usually derived from the domain expertise.
An ant colony algorithm on continuous searching space
Xie, Jing; Cai, Chao
2015-12-01
Ant colony algorithm is heuristic, bionic and parallel. Because of it is property of positive feedback, parallelism and simplicity to cooperate with other method, it is widely adopted in planning on discrete space. But it is still not good at planning on continuous space. After a basic introduction to the basic ant colony algorithm, we will propose an ant colony algorithm on continuous space. Our method makes use of the following three tricks. We search for the next nodes of the route according to fixed-step to guarantee the continuity of solution. When storing pheromone, it discretizes field of pheromone, clusters states and sums up the values of pheromone of these states. When updating pheromone, it makes good resolutions measured in relative score functions leave more pheromone, so that ant colony algorithm can find a sub-optimal solution in shorter time. The simulated experiment shows that our ant colony algorithm can find sub-optimal solution in relatively shorter time.
Lin, Kuan-Cheng; Hsieh, Yi-Hsiu
2015-10-01
The classification and analysis of data is an important issue in today's research. Selecting a suitable set of features makes it possible to classify an enormous quantity of data quickly and efficiently. Feature selection is generally viewed as a problem of feature subset selection, such as combination optimization problems. Evolutionary algorithms using random search methods have proven highly effective in obtaining solutions to problems of optimization in a diversity of applications. In this study, we developed a hybrid evolutionary algorithm based on endocrine-based particle swarm optimization (EPSO) and artificial bee colony (ABC) algorithms in conjunction with a support vector machine (SVM) for the selection of optimal feature subsets for the classification of datasets. The results of experiments using specific UCI medical datasets demonstrate that the accuracy of the proposed hybrid evolutionary algorithm is superior to that of basic PSO, EPSO and ABC algorithms, with regard to classification accuracy using subsets with a reduced number of features.
Preparation of GHZ States via Grover's Quantum Searching Algorithm
Institute of Scientific and Technical Information of China (English)
ZENG Hao-Sheng; KUANG Le-Man
2000-01-01
We propose an approach to prepare GHZ(Greenberger, Horne, Zeilinger) states of an arbitrary multi-particle system in terms of Grover's fast quantum searching algorithm. The approach can be used to produce other entangled states with variou degrees of entanglement.
Grover search algorithm in an ion trap system
Institute of Scientific and Technical Information of China (English)
Zheng Shi-Biao
2005-01-01
Two schemes for the implementation of the two-qubit Grover search algorithm in the ion trap system are proposed.These schemes might be experimentally realizable with presently available techniques. The experimental implementation of the schemes would be an important step toward more complex quantum computation in the ion trap system.
Performance of genetic algorithms in search for water splitting perovskites
DEFF Research Database (Denmark)
Jain, A.; Castelli, Ivano Eligio; Hautier, G.
2013-01-01
We examine the performance of genetic algorithms (GAs) in uncovering solar water light splitters over a space of almost 19,000 perovskite materials. The entire search space was previously calculated using density functional theory to determine solutions that fulfill constraints on stability, band...
Wrapped Progressive Sampling Search for Optimizing Learning Algorithm Parameters
Bosch, Antal van den
2005-01-01
We present a heuristic meta-learning search method for finding a set of optimized algorithmic parameters for a range of machine learning algo- rithms. The method, wrapped progressive sampling, is a combination of classifier wrapping and progressive sampling of training data. A series of experiments
Wrapped Progressive Sampling Search for Optimizing Learning Algorithm Parameters
Bosch, Antal van den
2005-01-01
We present a heuristic meta-learning search method for finding a set of optimized algorithmic parameters for a range of machine learning algo- rithms. The method, wrapped progressive sampling, is a combination of classifier wrapping and progressive sampling of training data. A series of experiments
An enhanced dynamic hash TRIE algorithm for lexicon search
Yang, Lai; Xu, Lida; Shi, Zhongzhi
2012-11-01
Information retrieval (IR) is essential to enterprise systems along with growing orders, customers and materials. In this article, an enhanced dynamic hash TRIE (eDH-TRIE) algorithm is proposed that can be used in a lexicon search in Chinese, Japanese and Korean (CJK) segmentation and in URL identification. In particular, the eDH-TRIE algorithm is suitable for Unicode retrieval. The Auto-Array algorithm and Hash-Array algorithm are proposed to handle the auxiliary memory allocation; the former changes its size on demand without redundant restructuring, and the latter replaces linked lists with arrays, saving the overhead of memory. Comparative experiments show that the Auto-Array algorithm and Hash-Array algorithm have better spatial performance; they can be used in a multitude of situations. The eDH-TRIE is evaluated for both speed and storage and compared with the naïve DH-TRIE algorithms. The experiments show that the eDH-TRIE algorithm performs better. These algorithms reduce memory overheads and speed up IR.
Hybrid Active Noise Control using Adjoint LMS Algorithms
Energy Technology Data Exchange (ETDEWEB)
Nam, Hyun Do; Hong, Sik Ki [Dankook University (Korea, Republic of)
1998-07-01
A multi-channel hybrid active noise control(MCHANC) is derived by combining hybrid active noise control techniques and adjoint LMS algorithms, and this algorithm is applied to an active noise control system in a three dimensional enclosure. A MCHANC system uses feed forward and feedback filters simultaneously to cancel noises in an enclosure. The adjoint LMs algorithm, in which the error is filtered through an adjoint filter of the secondary channel, is also used to reduce the computational burden of adaptive filters. The overall attenuation performance and convergence characteristics of MCHANC algorithm is better than both multiple-channel feed forward algorithms and multiple-channel feedback algorithms. In a large enclosure, the acoustic reverberation can be very long, which means a very high order feed forward filter must be used to cancel the reverberation noises. Strong reverberation noises are generally narrow band and low frequency, which can be effectively predicted and canceled by a feedback adaptive filters. So lower order feed forward filter taps can be used in MCHANC algorithm which combines advantages of fast convergence and small excess mean square error. In this paper, computer simulations and real time implementations is carried out on a TMS320C31 processor to evaluate the performance of the MCHANC systems. (author). 11 refs., 11 figs., 1 tab.
An Improved Search Algorithm for Optimal Multiple-Sequence Alignment
Schroedl, S
2011-01-01
Multiple sequence alignment (MSA) is a ubiquitous problem in computational biology. Although it is NP-hard to find an optimal solution for an arbitrary number of sequences, due to the importance of this problem researchers are trying to push the limits of exact algorithms further. Since MSA can be cast as a classical path finding problem, it is attracting a growing number of AI researchers interested in heuristic search algorithms as a challenge with actual practical relevance. In this paper, we first review two previous, complementary lines of research. Based on Hirschbergs algorithm, Dynamic Programming needs O(kN^(k-1)) space to store both the search frontier and the nodes needed to reconstruct the solution path, for k sequences of length N. Best first search, on the other hand, has the advantage of bounding the search space that has to be explored using a heuristic. However, it is necessary to maintain all explored nodes up to the final solution in order to prevent the search from re-expanding them at hig...
A Hybrid Genetic Algorithm for Vehicle Routing Problem with Complex Constraints
Institute of Scientific and Technical Information of China (English)
CHEN Yan; LU Jun; LI Zeng-zhi
2006-01-01
Most research on the Vehicle Routing Problem (VRP) is focused on standard conditions, which is not suitable for specific cases. A Hybrid Genetic Algorithm is proposed to solve a Vehicle Routing Problem (VRP) with complex side constraints. A novel coding method is designed especially for side constraints. A greedy algorithm combined with a random algorithm is introduced to enable the diversity of the initial population, as well as a local optimization algorithm employed to improve the searching efficiency. In order to evaluate the performance, this mechanism has been implemented in an oil distribution center, the experimental and executing results show that the near global optimal solution can be easily and quickly obtained by this method, and the solution is definitely satisfactory in the VRP application.
Hybrid genetic algorithm in the Hopfield network for maximum 2-satisfiability problem
Kasihmuddin, Mohd Shareduwan Mohd; Sathasivam, Saratha; Mansor, Mohd. Asyraf
2017-08-01
Heuristic method was designed for finding optimal solution more quickly compared to classical methods which are too complex to comprehend. In this study, a hybrid approach that utilizes Hopfield network and genetic algorithm in doing maximum 2-Satisfiability problem (MAX-2SAT) was proposed. Hopfield neural network was used to minimize logical inconsistency in interpretations of logic clauses or program. Genetic algorithm (GA) has pioneered the implementation of methods that exploit the idea of combination and reproduce a better solution. The simulation incorporated with and without genetic algorithm will be examined by using Microsoft Visual 2013 C++ Express software. The performance of both searching techniques in doing MAX-2SAT was evaluate based on global minima ratio, ratio of satisfied clause and computation time. The result obtained form the computer simulation demonstrates the effectiveness and acceleration features of genetic algorithm in doing MAX-2SAT in Hopfield network.
A hybrid evolutionary algorithm for distribution feeder reconﬁguration
Indian Academy of Sciences (India)
Taher Niknam; Reza Khorshidi; Bahman Bahmani Firouzi
2010-04-01
Distribution feeder reconﬁguration (DFR) is formulated as a multiobjective optimization problem which minimizes real power losses, deviation of the node voltages and the number of switching operations and also balances the loads on the feeders. In the proposed method, the distance ($\\lambda_2$ norm) between the vectorvalued objective function and the worst-case vector-valued objective function in the feasible set is maximized. In the algorithm, the status of tie and sectionalizing switches are considered as the control variables. The proposed DFR problem is a non-differentiable optimization problem. Therefore, a new hybrid evolutionary algorithm based on combination of fuzzy adaptive particle swarm optimization (FAPSO) and ant colony optimization (ACO), called HFAPSO, is proposed to solve it. The performance of HFAPSO is evaluated and compared with other methods such as genetic algorithm (GA), ACO, the original PSO, Hybrid PSO and ACO (HPSO) considering different distribution test systems.
An Elite Decision Making Harmony Search Algorithm for Optimization Problem
Directory of Open Access Journals (Sweden)
Lipu Zhang
2012-01-01
Full Text Available This paper describes a new variant of harmony search algorithm which is inspired by a well-known item “elite decision making.” In the new algorithm, the good information captured in the current global best and the second best solutions can be well utilized to generate new solutions, following some probability rule. The generated new solution vector replaces the worst solution in the solution set, only if its fitness is better than that of the worst solution. The generating and updating steps and repeated until the near-optimal solution vector is obtained. Extensive computational comparisons are carried out by employing various standard benchmark optimization problems, including continuous design variables and integer variables minimization problems from the literature. The computational results show that the proposed new algorithm is competitive in finding solutions with the state-of-the-art harmony search variants.
A New Hybrid Algorithm for Association Rule Mining
Institute of Scientific and Technical Information of China (English)
ZHANG Min-cong; YAN Cun-liang; ZHU Kai-yu
2007-01-01
HA (hashing array), a new algorithm, for mining frequent itemsets of large database is proposed. It employs a structure hash array, ItemArray ( ) to store the information of database and then uses it instead of database in later iteration. By this improvement, only twice scanning of the whole database is necessary, thereby the computational cost can be reduced significantly. To overcome the performance bottleneck of frequent 2-itemsets mining, a modified algorithm of HA, DHA (direct-addressing hashing and array) is proposed, which combines HA with direct-addressing hashing technique. The new hybrid algorithm, DHA, not only overcomes the performance bottleneck but also inherits the advantages of HA. Extensive simulations are conducted in this paper to evaluate the performance of the proposed new algorithm, and the results prove the new algorithm is more efficient and reasonable.
ANOMALY DETECTION IN NETWORKING USING HYBRID ARTIFICIAL IMMUNE ALGORITHM
Directory of Open Access Journals (Sweden)
D. Amutha Guka
2012-01-01
Full Text Available Especially in today’s network scenario, when computers are interconnected through internet, security of an information system is very important issue. Because no system can be absolutely secure, the timely and accurate detection of anomalies is necessary. The main aim of this research paper is to improve the anomaly detection by using Hybrid Artificial Immune Algorithm (HAIA which is based on Artificial Immune Systems (AIS and Genetic Algorithm (GA. In this research work, HAIA approach is used to develop Network Anomaly Detection System (NADS. The detector set is generated by using GA and the anomalies are identified using Negative Selection Algorithm (NSA which is based on AIS. The HAIA algorithm is tested with KDD Cup 99 benchmark dataset. The detection rate is used to measure the effectiveness of the NADS. The results and consistency of the HAIA are compared with earlier approaches and the results are presented. The proposed algorithm gives best results when compared to the earlier approaches.
Nonlinear inversion of potential-field data using a hybrid-encoding genetic algorithm
Chen, C.; Xia, J.; Liu, J.; Feng, G.
2006-01-01
Using a genetic algorithm to solve an inverse problem of complex nonlinear geophysical equations is advantageous because it does not require computer gradients of models or "good" initial models. The multi-point search of a genetic algorithm makes it easier to find the globally optimal solution while avoiding falling into a local extremum. As is the case in other optimization approaches, the search efficiency for a genetic algorithm is vital in finding desired solutions successfully in a multi-dimensional model space. A binary-encoding genetic algorithm is hardly ever used to resolve an optimization problem such as a simple geophysical inversion with only three unknowns. The encoding mechanism, genetic operators, and population size of the genetic algorithm greatly affect search processes in the evolution. It is clear that improved operators and proper population size promote the convergence. Nevertheless, not all genetic operations perform perfectly while searching under either a uniform binary or a decimal encoding system. With the binary encoding mechanism, the crossover scheme may produce more new individuals than with the decimal encoding. On the other hand, the mutation scheme in a decimal encoding system will create new genes larger in scope than those in the binary encoding. This paper discusses approaches of exploiting the search potential of genetic operations in the two encoding systems and presents an approach with a hybrid-encoding mechanism, multi-point crossover, and dynamic population size for geophysical inversion. We present a method that is based on the routine in which the mutation operation is conducted in the decimal code and multi-point crossover operation in the binary code. The mix-encoding algorithm is called the hybrid-encoding genetic algorithm (HEGA). HEGA provides better genes with a higher probability by a mutation operator and improves genetic algorithms in resolving complicated geophysical inverse problems. Another significant
Sherer, Eric A; Sale, Mark E; Pollock, Bruce G; Belani, Chandra P; Egorin, Merrill J; Ivy, Percy S; Lieberman, Jeffrey A; Manuck, Stephen B; Marder, Stephen R; Muldoon, Matthew F; Scher, Howard I; Solit, David B; Bies, Robert R
2012-08-01
compounds. The root mean squared error and absolute mean prediction error of the best single-objective hybrid genetic algorithm candidates were a median of 0.2 points higher (range of 38.9 point decrease to 27.3 point increase) and 0.02 points lower (range of 0.98 point decrease to 0.74 point increase), respectively, than that of the final stepwise models. In addition, the best single-objective, hybrid genetic algorithm candidate models had successful convergence and covariance steps for each compound, used the same compartment structure as the manual stepwise approach for 6 of 7 (86 %) compounds, and identified 54 % (7 of 13) of covariates included by the manual stepwise approach and 16 covariate relationships not included by manual stepwise models. The model parameter values between the final manual stepwise and best single-objective, hybrid genetic algorithm models differed by a median of 26.7 % (q₁ = 4.9 % and q₃ = 57.1 %). Finally, the single-objective, hybrid genetic algorithm approach was able to identify models capable of estimating absorption rate parameters for four compounds that the manual stepwise approach did not identify. The single-objective, hybrid genetic algorithm represents a general pharmacokinetic model building methodology whose ability to rapidly search the feasible solution space leads to nearly equivalent or superior model fits to pharmacokinetic data.
A Hybrid Continuous Max-Sum Algorithm for Decentralised Coordination
Voice, Thomas; Stranders, Ruben; Rogers, Alex; Jennings, Nick
2010-01-01
Recent advances in decentralised coordination of multiple agents have led to the proposal of the max-sum algorithm for solving distributed constraint optimisation problems (DCOPs). The max-sum algorithm is fully decentralised, converges to optimality for problems with acyclic constraint graphs and otherwise performs well in empirical studies. However, it requires agents to have discrete state spaces, which are of practical size to conduct repeated searches over. In contrast, there are decentr...
Noise effects in the quantum search algorithm from the computational complexity point of view
Gawron, Piotr; Klamka, Jerzy; Winiarczyk, Ryszard
2011-01-01
We analyse the resilience of the quantum search algorithm in the presence of quantum noise modelled as trace preserving completely positive maps. We study the influence of noise on computational complexity of the quantum search algorithm. We show that only for small amounts of noise the quantum search algorithm is still more efficient than any classical algorithm.
Energy Technology Data Exchange (ETDEWEB)
Noh, Myung Hyun [POSCO, Incheon (Korea, Republic of); Hu, Jong Wan [Incheon National University, Incheon (Korea, Republic of)
2014-11-15
In this study, we investigate a method to detect tensile forces in cable-stayed structures using the combined sensitivity updating method and the advanced hybrid microgenetic algorithm. The proposed method allows us not only to avoid the trap of minimum at initial searching stage but also to find their final solutions in better numerical efficiency. The validity of the technique is numerically verified using a set of dynamic data obtained from a simulation of the cable model modeled using the finite element method. Then, the hybrid algorithm is applied to vibrating sagged cables in the laboratory scale test. The results obtained are in good agreement with the semi-analytical solutions and experimental results reported by other investigators. The results indicate that the new method is computationally efficient in characterizing the tensile force variation for cable-stayed structures.
Combining ptychographical algorithms with the Hybrid Input-Output (HIO) algorithm.
Konijnenberg, A P; Coene, W M J; Pereira, S F; Urbach, H P
2016-12-01
In this article we combine the well-known Ptychographical Iterative Engine (PIE) with the Hybrid Input-Output (HIO) algorithm. The important insight is that the HIO feedback function should be kept strictly separate from the reconstructed object, which is done by introducing a separate feedback function per probe position. We have also combined HIO with floating PIE (fPIE) and extended PIE (ePIE). Simulations indicate that the combined algorithm performs significantly better in many situations. Although we have limited our research to a combination with HIO, the same insight can be used to combine ptychographical algorithms with any phase retrieval algorithm that uses a feedback function.
A Hybrid of Modified PSO and Local Search on a Multi-robot Search System
Directory of Open Access Journals (Sweden)
Mohammad Naim Rastgoo
2015-07-01
Full Text Available Particle swarm optimization (PSO, a new population-based algorithm, has recently been used on multi-robot systems. Although this algorithm is applied to solve many optimization problems as well as multi-robot systems, it has some drawbacks when it is applied on multi-robot search systems to find a target in a search space containing big static obstacles. One of these defects is premature convergence. This means that one of the properties of basic PSO is that when particles are spread in a search space, as time increases they tend to converge in a small area. This shortcoming is also evident on a multi-robot search system, particularly when there are big static obstacles in the search space that prevent the robots from finding the target easily; therefore, as time increases, based on this property they converge to a small area that may not contain the target and become entrapped in that area. Another shortcoming is that basic PSO cannot guarantee the global convergence of the algorithm. In other words, initially particles explore different areas, but in some cases they are not good at exploiting promising areas, which will increase the search time. This study proposes a method based on the particle swarm optimization (PSO technique on a multi-robot system to find a target in a search space containing big static obstacles. This method is not only able to overcome the premature convergence problem but also establishes an efficient balance between exploration and exploitation and guarantees global convergence, reducing the search time by combining with a local search method, such as A-star. To validate the effectiveness and usefulness of algorithms, a simulation environment has been developed for conducting simulation-based experiments in different scenarios and for reporting experimental results. These experimental results have demonstrated that the proposed method is able to overcome the premature convergence problem and guarantee global
A comparison of neighbor search algorithms for large rigid molecules.
Artemova, Svetlana; Grudinin, Sergei; Redon, Stephane
2011-10-01
Fast determination of neighboring atoms is an essential step in molecular dynamics simulations or Monte Carlo computations, and there exists a variety of algorithms to efficiently compute neighbor lists. However, most of these algorithms are general, and not specifically designed for a given type of application. As a result, although their average performance is satisfactory, they might be inappropriate in some specific application domains. In this article, we study the case of detecting neighbors between large rigid molecules, which has applications in, e.g., rigid body molecular docking, Monte Carlo simulations of molecular self-assembly or diffusion, and rigid body molecular dynamics simulations. More precisely, we compare the traditional grid-based algorithm to a series of hierarchy-based algorithms that use bounding volumes to rapidly eliminate large groups of irrelevant pairs of atoms during the neighbor search. We compare the performance of these algorithms based on several parameters: the size of the molecules, the average distance between them, the cutoff distance, as well as the type of bounding volume used in the culling hierarchy (AABB, OBB, wrapped, or layered spheres). We demonstrate that for relatively large systems (> 100,000 atoms) the algorithm based on the hierarchy of wrapped spheres shows the best results and the traditional grid-based algorithm gives the worst timings. For small systems, however, the grid-based algorithm and the one based on the wrapped sphere hierarchy are beneficial. Copyright © 2011 Wiley Periodicals, Inc.
Directory of Open Access Journals (Sweden)
Guang-zhou Chen
2015-01-01
Full Text Available Parameter identification plays a crucial role for simulating and using model. This paper firstly carried out the sensitivity analysis of the 2-chlorophenol oxidation model in supercritical water using the Monte Carlo method. Then, to address the nonlinearity of the model, two improved differential search (DS algorithms were proposed to carry out the parameter identification of the model. One strategy is to adopt the Latin hypercube sampling method to replace the uniform distribution of initial population; the other is to combine DS with simplex method. The results of sensitivity analysis reveal the sensitivity and the degree of difficulty identified for every model parameter. Furthermore, the posteriori probability distribution of parameters and the collaborative relationship between any two parameters can be obtained. To verify the effectiveness of the improved algorithms, the optimization performance of improved DS in kinetic parameter estimation is studied and compared with that of the basic DS algorithm, differential evolution, artificial bee colony optimization, and quantum-behaved particle swarm optimization. And the experimental results demonstrate that the DS with the Latin hypercube sampling method does not present better performance, while the hybrid methods have the advantages of strong global search ability and local search ability and are more effective than the other algorithms.
Duan, Hai-Bin; Xu, Chun-Fang; Xing, Zhi-Hui
2010-02-01
In this paper, a novel hybrid Artificial Bee Colony (ABC) and Quantum Evolutionary Algorithm (QEA) is proposed for solving continuous optimization problems. ABC is adopted to increase the local search capacity as well as the randomness of the populations. In this way, the improved QEA can jump out of the premature convergence and find the optimal value. To show the performance of our proposed hybrid QEA with ABC, a number of experiments are carried out on a set of well-known Benchmark continuous optimization problems and the related results are compared with two other QEAs: the QEA with classical crossover operation, and the QEA with 2-crossover strategy. The experimental comparison results demonstrate that the proposed hybrid ABC and QEA approach is feasible and effective in solving complex continuous optimization problems.
Adaptive and Reliable Control Algorithm for Hybrid System Architecture
Directory of Open Access Journals (Sweden)
Osama Abdel Hakeem Abdel Sattar
2012-01-01
Full Text Available A stand-alone system is defined as an autonomous system that supplies electricity without being connected to the electric grid. Hybrid systems combined renewable energy source, that are never depleted (such solar (photovoltaic (PV, wind, hydroelectric, etc. , With other sources of energy, like Diesel. If these hybrid systems are optimally designed, they can be more cost effective and reliable than single systems. However, the design of hybrid systems is complex because of the uncertain renewable energy supplies, load demands and the non-linear characteristics of some components, so the design problem cannot be solved easily by classical optimisation methods. The use of heuristic techniques, such as the genetic algorithms, can give better results than classical methods. This paper presents to a hybrid system control algorithm and also dispatches strategy design in which wind is the primary energy resource with photovoltaic cells. The dimension of the design (max. load is 2000 kW and the sources is implemented as flow 1500 kw from wind, 500 kw from solar and diesel 2000 kw. The main task of the preposed algorithm is to take full advantage of the wind energy and solar energy when it is available and to minimize diesel fuel consumption.
Entropy-Based Search Algorithm for Experimental Design
Malakar, N K
2010-01-01
The scientific method relies on the iterated processes of inference and inquiry. The inference phase consists of selecting the most probable models based on the available data; whereas the inquiry phase consists of using what is known about the models to select the most relevant experiment. Optimizing inquiry involves searching the parameterized space of experiments to select the experiment that promises, on average, to be maximally informative. In the case where it is important to learn about each of the model parameters, the relevance of an experiment is quantified by Shannon entropy of the distribution of experimental outcomes predicted by a probable set of models. If the set of potential experiments is described by many parameters, we must search this high-dimensional entropy space. Brute force search methods will be slow and computationally expensive. We present an entropy-based search algorithm, called nested entropy sampling, to select the most informative experiment for efficient experimental design. ...
PCB Drill Path Optimization by Combinatorial Cuckoo Search Algorithm
Directory of Open Access Journals (Sweden)
Wei Chen Esmonde Lim
2014-01-01
Full Text Available Optimization of drill path can lead to significant reduction in machining time which directly improves productivity of manufacturing systems. In a batch production of a large number of items to be drilled such as printed circuit boards (PCB, the travel time of the drilling device is a significant portion of the overall manufacturing process. To increase PCB manufacturing productivity and to reduce production costs, a good option is to minimize the drill path route using an optimization algorithm. This paper reports a combinatorial cuckoo search algorithm for solving drill path optimization problem. The performance of the proposed algorithm is tested and verified with three case studies from the literature. The computational experience conducted in this research indicates that the proposed algorithm is capable of efficiently finding the optimal path for PCB holes drilling process.
PCB drill path optimization by combinatorial cuckoo search algorithm.
Lim, Wei Chen Esmonde; Kanagaraj, G; Ponnambalam, S G
2014-01-01
Optimization of drill path can lead to significant reduction in machining time which directly improves productivity of manufacturing systems. In a batch production of a large number of items to be drilled such as printed circuit boards (PCB), the travel time of the drilling device is a significant portion of the overall manufacturing process. To increase PCB manufacturing productivity and to reduce production costs, a good option is to minimize the drill path route using an optimization algorithm. This paper reports a combinatorial cuckoo search algorithm for solving drill path optimization problem. The performance of the proposed algorithm is tested and verified with three case studies from the literature. The computational experience conducted in this research indicates that the proposed algorithm is capable of efficiently finding the optimal path for PCB holes drilling process.
A Cooperative Coevolutionary Cuckoo Search Algorithm for Optimization Problem
Directory of Open Access Journals (Sweden)
Hongqing Zheng
2013-01-01
Full Text Available Taking inspiration from an organizational evolutionary algorithm for numerical optimization, this paper designs a kind of dynamic population and combining evolutionary operators to form a novel algorithm, a cooperative coevolutionary cuckoo search algorithm (CCCS, for solving both unconstrained, constrained optimization and engineering problems. A population of this algorithm consists of organizations, and an organization consists of dynamic individuals. In experiments, fifteen unconstrained functions, eleven constrained functions, and two engineering design problems are used to validate the performance of CCCS, and thorough comparisons are made between the CCCS and the existing approaches. The results show that the CCCS obtains good performance in the solution quality. Moreover, for the constrained problems, the good performance is obtained by only incorporating a simple constraint handling technique into the CCCS. The results show that the CCCS is quite robust and easy to use.
Efficient mining of association rules based on gravitational search algorithm
Directory of Open Access Journals (Sweden)
Fariba Khademolghorani
2011-07-01
Full Text Available Association rules mining are one of the most used tools to discover relationships among attributes in a database. A lot of algorithms have been introduced for discovering these rules. These algorithms have to mine association rules in two stages separately. Most of them mine occurrence rules which are easily predictable by the users. Therefore, this paper discusses the application of gravitational search algorithm for discovering interesting association rules. This evolutionary algorithm is based on the Newtonian gravity and the laws of motion. Furthermore, contrary to the previous methods, the proposed method in this study is able to mine the best association rules without generating frequent itemsets and is independent of the minimum support and confidence values. The results of applying this method in comparison with the method of mining association rules based upon the particle swarm optimization show that our method is successful.
Video Image Block-matching Motion Estimation Algorithm Based on Two-step Search
Institute of Scientific and Technical Information of China (English)
Wei-qi JIN; Yan CHEN; Ling-xue WANG; Bin LIU; Chong-liang LIU; Ya-zhong SHEN; Gui-qing ZHANG
2010-01-01
Aiming at the shortcoming that certain existing blocking-matching algorithms, such as full search, three-step search, and diamond search algorithms, usually can not keep a good balance between high accuracy and low computational complexity, a block-matching motion estimation algorithm based on two-step search is proposed in this paper. According to the fact that the gray values of adjacent pixels will not vary fast, the algorithm employs an interlaced search pattern in the search window to estimate the motion vector of the object-block. Simulation and actual experiments demonstrate that the proposed algorithm greatly outperforms the well-known three-step search and diamond search algorithms, no matter the motion vector is large or small. Compared with the full search algorithm, the proposed one achieves similar performance but requires much less computation, therefore, the algorithm is well qualified for real-time video image processing.
A consensus line search algorithm for molecular potential energy functions.
Rurainski, Alexander; Hildebrandt, Andreas; Lenhof, Hans-Peter
2009-07-15
Force field based energy minimization of molecular structures is a central task in computational chemistry and biology. Solving this problem usually requires efficient local minimization techniques, i.e., iterative two-step methods that search first for a descent direction and then try to estimate the step width. The second step, the so called line search, typically uses polynomial interpolation schemes to estimate the next trial step. However, dependent on local properties of the objective function alternative schemes may be more appropriate especially if the objective function shows singularities or exponential behavior. As the choice of the best interpolation scheme cannot be made a priori, we propose a new consensus line search approach that performs several different interpolation schemes at each step and then decides which one is the most reliable at the current position. Although a naive consensus approach would lead to severe performance impacts, our method does not require additional evaluations of the energy function, imposing only negligible computational overhead. Additionally, our method can be easily adapted to the local behavior of other objective functions by incorporating suitable interpolation schemes or omitting non-fitting schemes. The performance of our consensus line search approach has been evaluated and compared to established standard line search algorithms by minimizing the structures of a large set of molecules using different force fields. The proposed algorithm shows better performance in almost all test cases, i.e., it reduces the number of iterations and function and gradient evaluations, leading to significantly reduced run times.
Moon Search Algorithms for NASA's Dawn Mission to Asteroid Vesta
Memarsadeghi, Nargess; Mcfadden, Lucy A.; Skillman, David R.; McLean, Brian; Mutchler, Max; Carsenty, Uri; Palmer, Eric E.
2012-01-01
A moon or natural satellite is a celestial body that orbits a planetary body such as a planet, dwarf planet, or an asteroid. Scientists seek understanding the origin and evolution of our solar system by studying moons of these bodies. Additionally, searches for satellites of planetary bodies can be important to protect the safety of a spacecraft as it approaches or orbits a planetary body. If a satellite of a celestial body is found, the mass of that body can also be calculated once its orbit is determined. Ensuring the Dawn spacecraft's safety on its mission to the asteroid Vesta primarily motivated the work of Dawn's Satellite Working Group (SWG) in summer of 2011. Dawn mission scientists and engineers utilized various computational tools and techniques for Vesta's satellite search. The objectives of this paper are to 1) introduce the natural satellite search problem, 2) present the computational challenges, approaches, and tools used when addressing this problem, and 3) describe applications of various image processing and computational algorithms for performing satellite searches to the electronic imaging and computer science community. Furthermore, we hope that this communication would enable Dawn mission scientists to improve their satellite search algorithms and tools and be better prepared for performing the same investigation in 2015, when the spacecraft is scheduled to approach and orbit the dwarf planet Ceres.
Generalized pattern search algorithms with adaptive precision function evaluations
Energy Technology Data Exchange (ETDEWEB)
Polak, Elijah; Wetter, Michael
2003-05-14
In the literature on generalized pattern search algorithms, convergence to a stationary point of a once continuously differentiable cost function is established under the assumption that the cost function can be evaluated exactly. However, there is a large class of engineering problems where the numerical evaluation of the cost function involves the solution of systems of differential algebraic equations. Since the termination criteria of the numerical solvers often depend on the design parameters, computer code for solving these systems usually defines a numerical approximation to the cost function that is discontinuous with respect to the design parameters. Standard generalized pattern search algorithms have been applied heuristically to such problems, but no convergence properties have been stated. In this paper we extend a class of generalized pattern search algorithms to a form that uses adaptive precision approximations to the cost function. These numerical approximations need not define a continuous function. Our algorithms can be used for solving linearly constrained problems with cost functions that are at least locally Lipschitz continuous. Assuming that the cost function is smooth, we prove that our algorithms converge to a stationary point. Under the weaker assumption that the cost function is only locally Lipschitz continuous, we show that our algorithms converge to points at which the Clarke generalized directional derivatives are nonnegative in predefined directions. An important feature of our adaptive precision scheme is the use of coarse approximations in the early iterations, with the approximation precision controlled by a test. Such an approach leads to substantial time savings in minimizing computationally expensive functions.
An improved genetic algorithm for searching for pollution sources
Directory of Open Access Journals (Sweden)
Quan-min BU
2013-10-01
Full Text Available As an optimization method that has experienced rapid development over the past 20 years, the genetic algorithm has been successfully applied in many fields, but it requires repeated searches based on the characteristics of high-speed computer calculation and conditions of the known relationship between the objective function and independent variables. There are several hundred generations of evolvement, but the functional relationship is unknown in pollution source searches. Therefore, the genetic algorithm cannot be used directly. Certain improvements need to be made based on the actual situation, so that the genetic algorithm can adapt to the actual conditions of environmental problems, and can be used in environmental monitoring and environmental quality assessment. Therefore, a series of methods are proposed for the improvement of the genetic algorithm: (1 the initial generation of individual groups should be artificially set and move from lightly polluted areas to heavily polluted areas; (2 intervention measures should be introduced in the competition between individuals; (3 guide individuals should be added; and (4 specific improvement programs should be put forward. Finally, the scientific rigor and rationality of the improved genetic algorithm are proven through an example.
Hybrid Algorithm for the Optimization of Training Convolutional Neural Network
Directory of Open Access Journals (Sweden)
Hayder M. Albeahdili
2015-10-01
Full Text Available The training optimization processes and efficient fast classification are vital elements in the development of a convolution neural network (CNN. Although stochastic gradient descend (SGD is a Prevalence algorithm used by many researchers for the optimization of training CNNs, it has vast limitations. In this paper, it is endeavor to diminish and tackle drawbacks inherited from SGD by proposing an alternate algorithm for CNN training optimization. A hybrid of genetic algorithm (GA and particle swarm optimization (PSO is deployed in this work. In addition to SGD, PSO and genetic algorithm (PSO-GA are also incorporated as a combined and efficient mechanism in achieving non trivial solutions. The proposed unified method achieves state-of-the-art classification results on the different challenge benchmark datasets such as MNIST, CIFAR-10, and SVHN. Experimental results showed that the results outperform and achieve superior results to most contemporary approaches.
The theory of variational hybrid quantum-classical algorithms
McClean, Jarrod R; Babbush, Ryan; Aspuru-Guzik, Alán
2015-01-01
Many quantum algorithms have daunting resource requirements when compared to what is available today. To address this discrepancy, a quantum-classical hybrid optimization scheme known as "the quantum variational eigensolver" was developed with the philosophy that even minimal quantum resources could be made useful when used in conjunction with classical routines. In this work we extend the general theory of this algorithm and suggest algorithmic improvements for practical implementations. Specifically, we develop a variational adiabatic ansatz and explore unitary coupled cluster where we establish a connection from second order unitary coupled cluster to universal gate sets through relaxation of exponential splitting. We introduce the concept of quantum variational error suppression that allows some errors to be suppressed naturally in this algorithm on a pre-threshold quantum device. Additionally, we analyze truncation and correlated sampling in Hamiltonian averaging as ways to reduce the cost of this proced...
Hybrid Collision Detection Algorithm based on Image Space
Directory of Open Access Journals (Sweden)
XueLi Shen
2013-07-01
Full Text Available Collision detection is an important application in the field of virtual reality, and efficiently completing collision detection has become the research focus. For the poorly real-time defect of collision detection, this paper has presented an algorithm based on the hybrid collision detection, detecting the potential collision object sets quickly with the mixed bounding volume hierarchy tree, and then using the streaming pattern collision detection algorithm to make an accurate detection. With the above methods, it can achieve the purpose of balancing load of the CPU and GPU and speeding up the detection rate. The experimental results show that compared with the classic Rapid algorithm, this algorithm can effectively improve the efficiency of collision detection.
Detecting circumbinary planets: A new quasi-periodic search algorithm
Directory of Open Access Journals (Sweden)
Pollacco D.
2013-04-01
Full Text Available We present a search method based around the grouping of data residuals, suitable for the detection of many quasi-periodic signals. Combined with an efficient and easily implemented method to predict the maximum transit timing variations of a transiting circumbinary exoplanet, we form a fast search algorithm for such planets. We here target the Kepler dataset in particular, where all the transiting examples of circumbinary planets have been found to date. The method is presented and demonstrated on two known systems in the Kepler data.
An Algorithm Based on Tabu Search for Satisfiability Problem
Institute of Scientific and Technical Information of China (English)
黄文奇; 张德富; 汪厚祥
2002-01-01
In this paper, a computationally effective algorithm based on tabu search for solving the satisfiability problem (TSSAT) is proposed. Some novel and efficient heuristic strategies for generating candidate neighborhood of the current assignment and selecting variables to be flipped are presented. Especially, the aspiration criterion and tabu list structure of TSSAT are different from those of traditional tabu search. Computational experiments on a class of problem instances show that, TSSAT, in a reasonable amount of computer time, yields better results than Novelty which is currently among the fastest known. Therefore, TSSAT is feasible and effective.
Case and Relation (CARE based Page Rank Algorithm for Semantic Web Search Engines
Directory of Open Access Journals (Sweden)
N. Preethi
2012-05-01
Full Text Available Web information retrieval deals with a technique of finding relevant web pages for any given query from a collection of documents. Search engines have become the most helpful tool for obtaining useful information from the Internet. The next-generation Web architecture, represented by the Semantic Web, provides the layered architecture possibly allowing data to be reused across application. The proposed architecture use a hybrid methodology named Case and Relation (CARE based Page Rank algorithm which uses past problem solving experience maintained in the case base to form a best matching relations and then use them for generating graphs and spanning forests to assign a relevant score to the pages.
Application of hybrid clustering using parallel k-means algorithm and DIANA algorithm
Umam, Khoirul; Bustamam, Alhadi; Lestari, Dian
2017-03-01
DNA is one of the carrier of genetic information of living organisms. Encoding, sequencing, and clustering DNA sequences has become the key jobs and routine in the world of molecular biology, in particular on bioinformatics application. There are two type of clustering, hierarchical clustering and partitioning clustering. In this paper, we combined two type clustering i.e. K-Means (partitioning clustering) and DIANA (hierarchical clustering), therefore it called Hybrid clustering. Application of hybrid clustering using Parallel K-Means algorithm and DIANA algorithm used to clustering DNA sequences of Human Papillomavirus (HPV). The clustering process is started with Collecting DNA sequences of HPV are obtained from NCBI (National Centre for Biotechnology Information), then performing characteristics extraction of DNA sequences. The characteristics extraction result is store in a matrix form, then normalize this matrix using Min-Max normalization and calculate genetic distance using Euclidian Distance. Furthermore, the hybrid clustering is applied by using implementation of Parallel K-Means algorithm and DIANA algorithm. The aim of using Hybrid Clustering is to obtain better clusters result. For validating the resulted clusters, to get optimum number of clusters, we use Davies-Bouldin Index (DBI). In this study, the result of implementation of Parallel K-Means clustering is data clustered become 5 clusters with minimal IDB value is 0.8741, and Hybrid Clustering clustered data become 13 sub-clusters with minimal IDB values = 0.8216, 0.6845, 0.3331, 0.1994 and 0.3952. The IDB value of hybrid clustering less than IBD value of Parallel K-Means clustering only that perform at 1ts stage. Its means clustering using Hybrid Clustering have the better result to clustered DNA sequence of HPV than perform parallel K-Means Clustering only.
Multiphase Return Trajectory Optimization Based on Hybrid Algorithm
Directory of Open Access Journals (Sweden)
Yi Yang
2016-01-01
Full Text Available A hybrid trajectory optimization method consisting of Gauss pseudospectral method (GPM and natural computation algorithm has been developed and utilized to solve multiphase return trajectory optimization problem, where a phase is defined as a subinterval in which the right-hand side of the differential equation is continuous. GPM converts the optimal control problem to a nonlinear programming problem (NLP, which helps to improve calculation accuracy and speed of natural computation algorithm. Through numerical simulations, it is found that the multiphase optimal control problem could be solved perfectly.
Development of Navigation Control Algorithm for AGV Using D* search Algorithm
Directory of Open Access Journals (Sweden)
Jeong Geun Kim
2013-06-01
Full Text Available In this paper, we present a navigation control algorithm for Automatic Guided Vehicles (AGV that move in industrial environments including static and moving obstacles using D* algorithm. This algorithm has ability to get paths planning in unknown, partially known and changing environments efficiently. To apply the D* search algorithm, the grid map represent the known environment is generated. By using the laser scanner LMS-151 and laser navigation sensor NAV-200, the grid map is updated according to the changing of environment and obstacles. When the AGV finds some new map information such as new unknown obstacles, it adds the information to its map and re-plans a new shortest path from its current coordinates to the given goal coordinates. It repeats the process until it reaches the goal coordinates. This algorithm is verified through simulation and experiment. The simulation and experimental results show that the algorithm can be used to move the AGV successfully to reach the goal position while it avoids unknown moving and static obstacles. [Keywords— navigation control algorithm; Automatic Guided Vehicles (AGV; D* search algorithm
RH+: A Hybrid Localization Algorithm for Wireless Sensor Networks
Basaran, Can; Baydere, Sebnem; Kucuk, Gurhan
Today, localization of nodes in Wireless Sensor Networks (WSNs) is a challenging problem. Especially, it is almost impossible to guarantee that one algorithm giving optimal results for one topology will give optimal results for any other random topology. In this study, we propose a centralized, range- and anchor-based, hybrid algorithm called RH+ that aims to combine the powerful features of two orthogonal techniques: Classical Multi-Dimensional Scaling (CMDS) and Particle Spring Optimization (PSO). As a result, we find that our hybrid approach gives a fast-converging solution which is resilient to range-errors and very robust to topology changes. Across all topologies we studied, the average estimation error is less than 0.5m. when the average node density is 10 and only 2.5% of the nodes are beacons.
A hybrid variational-perturbational nuclear motion algorithm
Fábri, Csaba; Furtenbacher, Tibor; Császár, Attila G.
2014-09-01
A hybrid variational-perturbational nuclear motion algorithm based on the perturbative treatment of the Coriolis coupling terms of the Eckart-Watson kinetic energy operator following a variational treatment of the rest of the operator is described. The algorithm has been implemented in the quantum chemical code DEWE. Performance of the hybrid treatment is assessed by comparing selected numerically exact variational vibration-only and rovibrational energy levels of the C2H4, C2D4, and CH4 molecules with their perturbatively corrected counterparts. For many of the rotational-vibrational states examined, numerical tests reveal excellent agreement between the variational and even the first-order perturbative energy levels, whilst the perturbative approach is able to reduce the computational cost of the matrix-vector product evaluations, needed by the iterative Lanczos eigensolver, by almost an order of magnitude.
Tabu Search Algorithm to Solve the Intermodal Terminal Location Problem
Directory of Open Access Journals (Sweden)
E. Karimi∗
2015-03-01
Full Text Available Establishment of appropriate terminals is effective as the main gate entrance to international, national and local transportation network for economic performance, traffic safety and reduction of environmental pollution. This paper focuses on intermodal terminal location problem. The main objective of this problem is to determine which of the terminals of a set of candidate terminals should be opened such that the total cost be minimized. In this problem, demands of customers will ship directly (without the use of terminals between the origin and destination of customers, or intermodaly (by using two terminals or even by combination of both methods. Since this problem is NP-hard, metaheuristics algorithms such as tabu search (TS is used to solve it. The algorithm is compared with greedy randomized adaptive search procedure (GRASP on instance of this problem. Results show the efficiency of TS in comparision with GRASP.
Evolutionary pattern search algorithms for unconstrained and linearly constrained optimization
Energy Technology Data Exchange (ETDEWEB)
HART,WILLIAM E.
2000-06-01
The authors describe a convergence theory for evolutionary pattern search algorithms (EPSAs) on a broad class of unconstrained and linearly constrained problems. EPSAs adaptively modify the step size of the mutation operator in response to the success of previous optimization steps. The design of EPSAs is inspired by recent analyses of pattern search methods. The analysis significantly extends the previous convergence theory for EPSAs. The analysis applies to a broader class of EPSAs,and it applies to problems that are nonsmooth, have unbounded objective functions, and which are linearly constrained. Further, they describe a modest change to the algorithmic framework of EPSAs for which a non-probabilistic convergence theory applies. These analyses are also noteworthy because they are considerably simpler than previous analyses of EPSAs.
Complete Boolean Satisfiability Solving Algorithms Based on Local Search
Institute of Scientific and Technical Information of China (English)
Wen-Sheng Guo; Guo-Wu Yang; William N.N.Hung; Xiaoyu Song
2013-01-01
Boolean satisfiability (SAT) is a well-known problem in computer science,artificial intelligence,and operations research.This paper focuses on the satisfiability problem of Model RB structure that is similar to graph coloring problems and others.We propose a translation method and three effective complete SAT solving algorithms based on the characterization of Model RB structure.We translate clauses into a graph with exclusive sets and relative sets.In order to reduce search depth,we determine search order using vertex weights and clique in the graph.The results show that our algorithms are much more effective than the best SAT solvers in numerous Model RB benchmarks,especially in those large benchmark instances.
Ramazani, Saba; Jackson, Delvin L.; Selmic, Rastko R.
2013-05-01
In search and surveillance operations, deploying a team of mobile agents provides a robust solution that has multiple advantages over using a single agent in efficiency and minimizing exploration time. This paper addresses the challenge of identifying a target in a given environment when using a team of mobile agents by proposing a novel method of mapping and movement of agent teams in a cooperative manner. The approach consists of two parts. First, the region is partitioned into a hexagonal beehive structure in order to provide equidistant movements in every direction and to allow for more natural and flexible environment mapping. Additionally, in search environments that are partitioned into hexagons, mobile agents have an efficient travel path while performing searches due to this partitioning approach. Second, we use a team of mobile agents that move in a cooperative manner and utilize the Tabu Random algorithm to search for the target. Due to the ever-increasing use of robotics and Unmanned Aerial Vehicle (UAV) platforms, the field of cooperative multi-agent search has developed many applications recently that would benefit from the use of the approach presented in this work, including: search and rescue operations, surveillance, data collection, and border patrol. In this paper, the increased efficiency of the Tabu Random Search algorithm method in combination with hexagonal partitioning is simulated, analyzed, and advantages of this approach are presented and discussed.
Institute of Scientific and Technical Information of China (English)
周永华; 毛宗源
2003-01-01
In solving constrained optimization problems with genetic algorithms, more emphases are laid on handling constraints than increasing the search capability of algorithms, which often leed to unsatisfied results as reported inmost literatures. This paper proposes a new evolutionary algorithm for constrained optimization, emphasizing moreon increasing the search capability of the algorithm by means of hybrid crossovers and intermittent mutation while adopting a simple constraint handling technique called direct comparison. Numerical experiments and comparisons show the ettectiveness of the proposed algorithm.
A Mathematical and Sociological Analysis of Google Search Algorithm
2013-01-16
it is the most used computational algorithm in the world. More and more websites such as Facebook, Amazon, Netflix , and etc.. use similar search...matrix completion is a research topic in mathematics which is recently actively studied. It starts from the well-known Netflix problem. Indeed... Netflix (cf. [36]) made available publicly such a set of data with about 105 known entries of its movie rating matrix of size about 5 × 105 times 2 × 105
Optimization of machining processes using pattern search algorithm
Miloš Madić; Miroslav Radovanović
2014-01-01
Optimization of machining processes not only increases machining efficiency and economics, but also the end product quality. In recent years, among the traditional optimization methods, stochastic direct search optimization methods such as meta-heuristic algorithms are being increasingly applied for solving machining optimization problems. Their ability to deal with complex, multi-dimensional and ill-behaved optimization problems made them the preferred optimization tool by most researchers a...
A Hybrid Metaheuristic DE/CS Algorithm for UCAV Three-Dimension Path Planning
Directory of Open Access Journals (Sweden)
Gaige Wang
2012-01-01
Full Text Available Three-dimension path planning for uninhabited combat air vehicle (UCAV is a complicated high-dimension optimization problem, which primarily centralizes on optimizing the flight route considering the different kinds of constrains under complicated battle field environments. A new hybrid metaheuristic differential evolution (DE and cuckoo search (CS algorithm is proposed to solve the UCAV three-dimension path planning problem. DE is applied to optimize the process of selecting cuckoos of the improved CS model during the process of cuckoo updating in nest. The cuckoos can act as an agent in searching the optimal UCAV path. And then, the UCAV can find the safe path by connecting the chosen nodes of the coordinates while avoiding the threat areas and costing minimum fuel. This new approach can accelerate the global convergence speed while preserving the strong robustness of the basic CS. The realization procedure for this hybrid metaheuristic approach DE/CS is also presented. In order to make the optimized UCAV path more feasible, the B-Spline curve is adopted for smoothing the path. To prove the performance of this proposed hybrid metaheuristic method, it is compared with basic CS algorithm. The experiment shows that the proposed approach is more effective and feasible in UCAV three-dimension path planning than the basic CS model.
A hybrid metaheuristic DE/CS algorithm for UCAV three-dimension path planning.
Wang, Gaige; Guo, Lihong; Duan, Hong; Wang, Heqi; Liu, Luo; Shao, Mingzhen
2012-01-01
Three-dimension path planning for uninhabited combat air vehicle (UCAV) is a complicated high-dimension optimization problem, which primarily centralizes on optimizing the flight route considering the different kinds of constrains under complicated battle field environments. A new hybrid metaheuristic differential evolution (DE) and cuckoo search (CS) algorithm is proposed to solve the UCAV three-dimension path planning problem. DE is applied to optimize the process of selecting cuckoos of the improved CS model during the process of cuckoo updating in nest. The cuckoos can act as an agent in searching the optimal UCAV path. And then, the UCAV can find the safe path by connecting the chosen nodes of the coordinates while avoiding the threat areas and costing minimum fuel. This new approach can accelerate the global convergence speed while preserving the strong robustness of the basic CS. The realization procedure for this hybrid metaheuristic approach DE/CS is also presented. In order to make the optimized UCAV path more feasible, the B-Spline curve is adopted for smoothing the path. To prove the performance of this proposed hybrid metaheuristic method, it is compared with basic CS algorithm. The experiment shows that the proposed approach is more effective and feasible in UCAV three-dimension path planning than the basic CS model.
Application of hybrid coded genetic algorithm in fuzzy neural network controller
Institute of Scientific and Technical Information of China (English)
无
2000-01-01
Presents the fuzzy neural network optimized by hybrid coded genetic algorithm of decimal encoding and bi nary encoding, the searching ability and stability of genetic algorithms enhanced by using binary encoding during the crossover operation and decimal encoding during the mutation operation, and the way of accepting new individuals by probability adopted, by which a new individual is accepted and its parent is discarded when its fitness is higher than that of its parent, and a new individual is accepted by probability when its fitness is lower than that of its parent. And concludes with calculations made with an example that these improvements enhance the speed of genetic algorithms to optimize the fuzzy neural network controller.
Intelligent Scheduling of Public Traffic Vehicles Based on a Hybrid Genetic Algorithm
Institute of Scientific and Technical Information of China (English)
ZHANG Feizhou; CAO Xuejun; YANG Dongkai
2008-01-01
A genetic algorithm (GA) and a hybrid genetic algorithm (HGA) were used for optimal scheduling of public vehicles based on their actual operational environments.The performance for three kinds of vehicular levels were compared using one-point and two-point crossover operations.The vehicle scheduling times are improved by the intelligent characteristics of the GA.The HGA,which integrates the genetic algorithm with a tabu search,further improves the convergence performance and the optimization by avoiding the premature convergence of the GA.The results show that intelligent scheduling of public vehicles based on the HGA overcomes the shortcomings of traditional scheduling methods.The vehicle operation management efficiency is improved by this essential technology for intelligent scheduling of public vehicles.
A HYBRID FIREFLY ALGORITHM WITH FUZZY-C MEAN ALGORITHM FOR MRI BRAIN SEGMENTATION
Directory of Open Access Journals (Sweden)
Mutasem K. Alsmadi
2014-01-01
Full Text Available Image processing is one of the essential tasks to extract suspicious region and robust features from the Magnetic Resonance Imaging (MRI. A numbers of the segmentation algorithms were developed in order to satisfy and increasing the accuracy of brain tumor detection. In the medical image processing brain image segmentation is considered as a complex and challenging part. Fuzzy c-means is unsupervised method that has been implemented for clustering of the MRI and different purposes such as recognition of the pattern of interest and image segmentation. However; fuzzy c-means algorithm still suffers many drawbacks, such as low convergence rate, getting stuck in the local minima and vulnerable to initialization sensitivity. Firefly algorithm is a new population-based optimization method that has been used successfully for solving many complex problems. This paper proposed a new dynamic and intelligent clustering method for brain tumor segmentation using the hybridization of Firefly Algorithm (FA with Fuzzy C-Means algorithm (FCM. In order to automatically segment MRI brain images and improve the capability of the FCM to automatically elicit the proper number and location of cluster centres and the number of pixels in each cluster in the abnormal (multiple sclerosis lesions MRI images. The experimental results proved the effectiveness of the proposed FAFCM in enhancing the performance of the traditional FCM clustering. Moreover; the superiority of the FAFCM with other state-of-the-art segmentation methods is shown qualitatively and quantitatively. Conclusion: A novel efficient and reliable clustering algorithm presented in this work, which is called FAFCM based on the hybridization of the firefly algorithm with fuzzy c-mean clustering algorithm. Automatically; the hybridized algorithm has the capability to cluster and segment MRI brain images.
Arc-Search Infeasible Interior-Point Algorithm for Linear Programming
Yang, Yaguang
2014-01-01
Mehrotra's algorithm has been the most successful infeasible interior-point algorithm for linear programming since 1990. Most popular interior-point software packages for linear programming are based on Mehrotra's algorithm. This paper proposes an alternative algorithm, arc-search infeasible interior-point algorithm. We will demonstrate, by testing Netlib problems and comparing the test results obtained by arc-search infeasible interior-point algorithm and Mehrotra's algorithm, that the propo...
Optimization of Antennas using a Hybrid Genetic-Algorithm Space-Mapping Algorithm
DEFF Research Database (Denmark)
Pantoja, M.F.; Bretones, A.R.; Meincke, Peter;
2006-01-01
A hybrid global-local optimization technique for the design of antennas is presented. It consists of the subsequent application of a Genetic Algorithm (GA) that employs coarse models in the simulations and a space mapping (SM) that refines the solution found in the previous stage. The technique...
Directory of Open Access Journals (Sweden)
Jinghua Li
2015-03-01
Full Text Available In order to enhance the efficiency of offshore companies, a multi-objective scheduling system based on hybrid non-dominated sorting genetic algorithm was proposed. An optimized model for multi-objective and multi-execution mode was constructed under the condition of taking time, cost, and resource into account, and then the mathematical model for the same was established. Moreover, the key techniques of the proposed system were elaborated, and the flowchart was designed. Aiming at the weaknesses of non-dominated sorting genetic algorithm which is short for non-dominated sorting genetic algorithm-II in the facet of local search and computational efficiency, Pareto-dominated simulated annealing algorithm was applied in search global solution. Finally, by simulation examples and industrial application, the robustness and outperformance of the improved algorithm were verified.
A Hybrid Model Ranking Search Result for Research Paper Searching on Social Bookmarking
Directory of Open Access Journals (Sweden)
pijitra jomsri
2015-11-01
Full Text Available Social bookmarking and publication sharing systems are essential tools for web resource discovery. The performance and capabilities of search results from research paper bookmarking system are vital. Many researchers use social bookmarking for searching papers related to their topics of interest. This paper proposes a combination of similarity based indexing “tag title and abstract” and static ranking to improve search results. In this particular study, the year of the published paper and type of research paper publication are combined with similarity ranking called (HybridRank. Different weighting scores are employed. The retrieval performance of these weighted combination rankings are evaluated using mean values of NDCG. The results suggest that HybridRank and similarity rank with weight 75:25 has the highest NDCG scores. From the preliminary result of experiment, the combination ranking technique provide more relevant research paper search results. Furthermore the chosen heuristic ranking can improve the efficiency of research paper searching on social bookmarking websites.
Concise quantum associative memories with nonlinear search algorithm
Energy Technology Data Exchange (ETDEWEB)
Tchapet Njafa, J.P.; Nana Engo, S.G. [Laboratory of Photonics, Department of Physics, University of Ngaoundere (Cameroon)
2016-02-15
The model of Quantum Associative Memories (QAM) we propose here consists in simplifying and generalizing that of Rigui Zhou et al. [1] which uses the quantum matrix with the binary decision diagram put forth by David Rosenbaum [2] and the Abrams and Lloyd's nonlinear search algorithm [3]. Our model gives the possibility to retrieve one of the sought states in multi-values retrieving scheme when a measurement is done on the first register in O(c-r) time complexity. It is better than Grover's algorithm and its modified form which need O(√((2{sup n})/(m))) steps when they are used as the retrieval algorithm. n is the number of qubits of the first register and m the number of x values for which f(x) = 1. As the nonlinearity makes the system highly susceptible to the noise, an analysis of the influence of the single qubit noise channels on the Nonlinear Search Algorithm of our model of QAM shows a fidelity of about 0.7 whatever the number of qubits existing in the first register, thus demonstrating the robustness of our model. (copyright 2016 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)
3rd International Conference on Harmony Search Algorithm
2017-01-01
This book presents state-of-the-art technical contributions based around one of the most successful evolutionary optimization algorithms published to date: Harmony Search. Contributions span from novel technical derivations of this algorithm to applications in the broad fields of civil engineering, energy, transportation & mobility and health, among many others and focus not only on its cross-domain applicability, but also on its core evolutionary operators, including elements inspired from other meta-heuristics. The global scientific community is witnessing an upsurge in groundbreaking, new advances in all areas of computational intelligence, with a particular flurry of research focusing on evolutionary computation and bio-inspired optimization. Observed processes in nature and sociology have provided the basis for innovative algorithmic developments aimed at leveraging the inherent capability to adapt characterized by various animals, including ants, fireflies, wolves and humans. However, it is the beha...
Ant colony search algorithm for optimal reactive power optimization
Directory of Open Access Journals (Sweden)
Lenin K.
2006-01-01
Full Text Available The paper presents an (ACSA Ant colony search Algorithm for Optimal Reactive Power Optimization and voltage control of power systems. ACSA is a new co-operative agents’ approach, which is inspired by the observation of the behavior of real ant colonies on the topic of ant trial formation and foraging methods. Hence, in the ACSA a set of co-operative agents called "Ants" co-operates to find good solution for Reactive Power Optimization problem. The ACSA is applied for optimal reactive power optimization is evaluated on standard IEEE, 30, 57, 191 (practical test bus system. The proposed approach is tested and compared to genetic algorithm (GA, Adaptive Genetic Algorithm (AGA.
Quantum discord and entanglement in grover search algorithm
Ye, Bin; Zhang, Tingzhong; Qiu, Liang; Wang, Xuesong
2016-06-01
Imperfections and noise in realistic quantum computers may seriously affect the accuracy of quantum algorithms. In this article we explore the impact of static imperfections on quantum entanglement as well as non-entangled quantum correlations in Grover's search algorithm. Using the metrics of concurrence and geometric quantum discord, we show that both the evolution of entanglement and quantum discord in Grover algorithm can be restrained with the increasing strength of static imperfections. For very weak imperfections, the quantum entanglement and discord exhibit periodic behavior, while the periodicity will most certainly be destroyed with stronger imperfections. Moreover, entanglement sudden death may occur when the strength of static imperfections is greater than a certain threshold.
A search algorithm for quantum state engineering and metrology
Knott, P. A.
2016-07-01
In this paper we present a search algorithm that finds useful optical quantum states which can be created with current technology. We apply the algorithm to the field of quantum metrology with the goal of finding states that can measure a phase shift to a high precision. Our algorithm efficiently produces a number of novel solutions: we find experimentally ready schemes to produce states that show significant improvements over the state-of-the-art, and can measure with a precision that beats the shot noise limit by over a factor of 4. Furthermore, these states demonstrate a robustness to moderate/high photon losses, and we present a conceptually simple measurement scheme that saturates the Cramér-Rao bound.
Penguins Search Optimisation Algorithm for Association Rules Mining
Directory of Open Access Journals (Sweden)
Youcef Gheraibia
2016-06-01
Full Text Available Association Rules Mining (ARM is one of the most popular and well-known approaches for the decision-making process. All existing ARM algorithms are time consuming and generate a very large number of association rules with high overlapping. To deal with this issue, we propose a new ARM approach based on penguins search optimization algorithm (Pe-ARM for short. Moreover, an efficient measure is incorporated into the main process to evaluate the amount of overlapping among the generated rules. The proposed approach also ensures a good diversification over the whole solutions space. To demonstrate the effectiveness of the proposed approach, several experiments have been carried out on different datasets and specifically on the biological ones. The results reveal that the proposed approach outperforms the well-known ARM algorithms in both execution time and solution quality.
A Harmony Search Algorithm approach for optimizing traffic signal timings
Directory of Open Access Journals (Sweden)
Mauro Dell'Orco
2013-07-01
Full Text Available In this study, a bi-level formulation is presented for solving the Equilibrium Network Design Problem (ENDP. The optimisation of the signal timing has been carried out at the upper-level using the Harmony Search Algorithm (HSA, whilst the traffic assignment has been carried out through the Path Flow Estimator (PFE at the lower level. The results of HSA have been first compared with those obtained using the Genetic Algorithm, and the Hill Climbing on a two-junction network for a fixed set of link flows. Secondly, the HSA with PFE has been applied to the medium-sized network to show the applicability of the proposed algorithm in solving the ENDP. Additionally, in order to test the sensitivity of perceived travel time error, we have used the HSA with PFE with various level of perceived travel time. The results showed that the proposed method is quite simple and efficient in solving the ENDP.
A hybrid ACO/PSO based algorithm for QoS multicast routing problem
Directory of Open Access Journals (Sweden)
Manoj Kumar Patel
2014-03-01
Full Text Available Many Internet multicast applications such as videoconferencing, distance education, and online simulation require to send information from a source to some selected destinations. These applications have stringent Quality-of-Service (QoS requirements that include delay, loss rate, bandwidth, and delay jitter. This leads to the problem of routing multicast traffic satisfying QoS requirements. The above mentioned problem is known as the QoS constrained multicast routing problem and is NP Complete. In this paper, we present a swarming agent based intelligent algorithm using a hybrid Ant Colony Optimization (ACO/Particle Swarm Optimization (PSO technique to optimize the multicast tree. The algorithm starts with generating a large amount of mobile agents in the search space. The ACO algorithm guides the agents’ movement by pheromones in the shared environment locally, and the global maximum of the attribute values are obtained through the random interaction between the agents using PSO algorithm. The performance of the proposed algorithm is evaluated through simulation. The simulation results reveal that our algorithm performs better than the existing algorithms.
Hybrid column generation and large neighborhood search for the dial-a-ride problem
Parragh, Sophie N.; Schmid, Verena
2013-01-01
Demographic change towards an ever aging population entails an increasing demand for specialized transportation systems to complement the traditional public means of transportation. Typically, users place transportation requests, specifying a pickup and a drop off location and a fleet of minibuses or taxis is used to serve these requests. The underlying optimization problem can be modeled as a dial-a-ride problem. In the dial-a-ride problem considered in this paper, total routing costs are minimized while respecting time window, maximum user ride time, maximum route duration, and vehicle capacity restrictions. We propose a hybrid column generation and large neighborhood search algorithm and compare different hybridization strategies on a set of benchmark instances from the literature. PMID:23471127
Hybrid column generation and large neighborhood search for the dial-a-ride problem.
Parragh, Sophie N; Schmid, Verena
2013-01-01
Demographic change towards an ever aging population entails an increasing demand for specialized transportation systems to complement the traditional public means of transportation. Typically, users place transportation requests, specifying a pickup and a drop off location and a fleet of minibuses or taxis is used to serve these requests. The underlying optimization problem can be modeled as a dial-a-ride problem. In the dial-a-ride problem considered in this paper, total routing costs are minimized while respecting time window, maximum user ride time, maximum route duration, and vehicle capacity restrictions. We propose a hybrid column generation and large neighborhood search algorithm and compare different hybridization strategies on a set of benchmark instances from the literature.
Optimal IIR filter design using Gravitational Search Algorithm with Wavelet Mutation
Directory of Open Access Journals (Sweden)
S.K. Saha
2015-01-01
Full Text Available This paper presents a global heuristic search optimization technique, which is a hybridized version of the Gravitational Search Algorithm (GSA and Wavelet Mutation (WM strategy. Thus, the Gravitational Search Algorithm with Wavelet Mutation (GSAWM was adopted for the design of an 8th-order infinite impulse response (IIR filter. GSA is based on the interaction of masses situated in a small isolated world guided by the approximation of Newtonian’s laws of gravity and motion. Each mass is represented by four parameters, namely, position, active, passive and inertia mass. The position of the heaviest mass gives the near optimal solution. For better exploitation in multidimensional search spaces, the WM strategy is applied to randomly selected particles that enhance the capability of GSA for finding better near optimal solutions. An extensive simulation study of low-pass (LP, high-pass (HP, band-pass (BP and band-stop (BS IIR filters unleashes the potential of GSAWM in achieving better cut-off frequency sharpness, smaller pass band and stop band ripples, smaller transition width and higher stop band attenuation with assured stability.
A Methodology for the Hybridization Based in Active Components: The Case of cGA and Scatter Search
Alba, Enrique; Leguizamón, Guillermo
2016-01-01
This work presents the results of a new methodology for hybridizing metaheuristics. By first locating the active components (parts) of one algorithm and then inserting them into second one, we can build efficient and accurate optimization, search, and learning algorithms. This gives a concrete way of constructing new techniques that contrasts the spread ad hoc way of hybridizing. In this paper, the enhanced algorithm is a Cellular Genetic Algorithm (cGA) which has been successfully used in the past to find solutions to such hard optimization problems. In order to extend and corroborate the use of active components as an emerging hybridization methodology, we propose here the use of active components taken from Scatter Search (SS) to improve cGA. The results obtained over a varied set of benchmarks are highly satisfactory in efficacy and efficiency when compared with a standard cGA. Moreover, the proposed hybrid approach (i.e., cGA+SS) has shown encouraging results with regard to earlier applications of our methodology. PMID:27403153
A Methodology for the Hybridization Based in Active Components: The Case of cGA and Scatter Search.
Villagra, Andrea; Alba, Enrique; Leguizamón, Guillermo
2016-01-01
This work presents the results of a new methodology for hybridizing metaheuristics. By first locating the active components (parts) of one algorithm and then inserting them into second one, we can build efficient and accurate optimization, search, and learning algorithms. This gives a concrete way of constructing new techniques that contrasts the spread ad hoc way of hybridizing. In this paper, the enhanced algorithm is a Cellular Genetic Algorithm (cGA) which has been successfully used in the past to find solutions to such hard optimization problems. In order to extend and corroborate the use of active components as an emerging hybridization methodology, we propose here the use of active components taken from Scatter Search (SS) to improve cGA. The results obtained over a varied set of benchmarks are highly satisfactory in efficacy and efficiency when compared with a standard cGA. Moreover, the proposed hybrid approach (i.e., cGA+SS) has shown encouraging results with regard to earlier applications of our methodology.
A Methodology for the Hybridization Based in Active Components: The Case of cGA and Scatter Search
Directory of Open Access Journals (Sweden)
Andrea Villagra
2016-01-01
Full Text Available This work presents the results of a new methodology for hybridizing metaheuristics. By first locating the active components (parts of one algorithm and then inserting them into second one, we can build efficient and accurate optimization, search, and learning algorithms. This gives a concrete way of constructing new techniques that contrasts the spread ad hoc way of hybridizing. In this paper, the enhanced algorithm is a Cellular Genetic Algorithm (cGA which has been successfully used in the past to find solutions to such hard optimization problems. In order to extend and corroborate the use of active components as an emerging hybridization methodology, we propose here the use of active components taken from Scatter Search (SS to improve cGA. The results obtained over a varied set of benchmarks are highly satisfactory in efficacy and efficiency when compared with a standard cGA. Moreover, the proposed hybrid approach (i.e., cGA+SS has shown encouraging results with regard to earlier applications of our methodology.
Application of Tabu Search Algorithm in Job Shop Scheduling
Directory of Open Access Journals (Sweden)
Betrianis Betrianis
2010-10-01
Full Text Available Tabu Search is one of local search methods which is used to solve the combinatorial optimization problem. This method aimed is to make the searching process of the best solution in a complex combinatorial optimization problem(np hard, ex : job shop scheduling problem, became more effective, in a less computational time but with no guarantee to optimum solution.In this paper, tabu search is used to solve the job shop scheduling problem consists of 3 (three cases, which is ordering package of September, October and November with objective of minimizing makespan (Cmax. For each ordering package, there is a combination for initial solution and tabu list length. These result then compared with 4 (four other methods using basic dispatching rules such as Shortest Processing Time (SPT, Earliest Due Date (EDD, Most Work Remaining (MWKR dan First Come First Served (FCFS. Scheduling used Tabu Search Algorithm is sensitive for variables changes and gives makespan shorter than scheduling used by other four methods.
Development of hybrid artificial intelligent based handover decision algorithm
Directory of Open Access Journals (Sweden)
A.M. Aibinu
2017-04-01
Full Text Available The possibility of seamless handover remains a mirage despite the plethora of existing handover algorithms. The underlying factor responsible for this has been traced to the Handover decision module in the Handover process. Hence, in this paper, the development of novel hybrid artificial intelligent handover decision algorithm has been developed. The developed model is made up of hybrid of Artificial Neural Network (ANN based prediction model and Fuzzy Logic. On accessing the network, the Received Signal Strength (RSS was acquired over a period of time to form a time series data. The data was then fed to the newly proposed k-step ahead ANN-based RSS prediction system for estimation of prediction model coefficients. The synaptic weights and adaptive coefficients of the trained ANN was then used to compute the k-step ahead ANN based RSS prediction model coefficients. The predicted RSS value was later codified as Fuzzy sets and in conjunction with other measured network parameters were fed into the Fuzzy logic controller in order to finalize handover decision process. The performance of the newly developed k-step ahead ANN based RSS prediction algorithm was evaluated using simulated and real data acquired from available mobile communication networks. Results obtained in both cases shows that the proposed algorithm is capable of predicting ahead the RSS value to about ±0.0002 dB. Also, the cascaded effect of the complete handover decision module was also evaluated. Results obtained show that the newly proposed hybrid approach was able to reduce ping-pong effect associated with other handover techniques.
Optimal Solution for VLSI Physical Design Automation Using Hybrid Genetic Algorithm
Directory of Open Access Journals (Sweden)
I. Hameem Shanavas
2014-01-01
Full Text Available In Optimization of VLSI Physical Design, area minimization and interconnect length minimization is an important objective in physical design automation of very large scale integration chips. The objective of minimizing the area and interconnect length would scale down the size of integrated chips. To meet the above objective, it is necessary to find an optimal solution for physical design components like partitioning, floorplanning, placement, and routing. This work helps to perform the optimization of the benchmark circuits with the above said components of physical design using hierarchical approach of evolutionary algorithms. The goal of minimizing the delay in partitioning, minimizing the silicon area in floorplanning, minimizing the layout area in placement, minimizing the wirelength in routing has indefinite influence on other criteria like power, clock, speed, cost, and so forth. Hybrid evolutionary algorithm is applied on each of its phases to achieve the objective. Because evolutionary algorithm that includes one or many local search steps within its evolutionary cycles to obtain the minimization of area and interconnect length. This approach combines a hierarchical design like genetic algorithm and simulated annealing to attain the objective. This hybrid approach can quickly produce optimal solutions for the popular benchmarks.
A Cuckoo Search Algorithm for Scheduling Multiskilled Workforce
Directory of Open Access Journals (Sweden)
Hui Nie
2014-05-01
Full Text Available Based on the situation of the construction and software industry, this paper presents a multi-skilled human resource scheduling model which considers the skill and the salary of the workforce at different levels. It introduces a novel cuckoo search (CS-based approach to optimize the objective function which combines the minimization of the makespan and the project cost. The proposed approach takes the priority coding scheme to code for each job, and adopts the serial schedule generation scheme to sequentially allocate the start time and resources for one job with highest priority at a time. To match the discrete nature of the solution, the Lévy flight operator of CS algorithm, which is originally suitable for continuous variable, has been modified. The CS-based approach has been implemented by using MATLAB R2010b and tested by a project taken from the literature, which contains 18 jobs and 6 multi-skilled workers. The results yielded by the CS-based approach have been found to significantly outperform genetic algorithm. This demonstrates that the cuckoo search algorithm based approach is suitable for scheduling the complicated resource constrained project with multi-skilled workforces
Ding, Zhe; Xu, Zhanqi; Zeng, Xiaodong; Ma, Tao; Yang, Fan
2014-04-01
By adopting the orthogonal frequency division multiplexing technology, spectrum-sliced elastic optical path networks can offer flexible bandwidth to each connection request and utilize the spectrum resources efficiently. The routing and spectrum assignment (RSA) problems in SLICE networks are solved by using heuristic algorithms in most prior studies and addressed by intelligent algorithms in few investigations. The performance of RSA algorithms can be further improved if we could combine such two types of algorithms. Therefore, we propose three hybrid RSA algorithms: DACE-GMSF, DACE-GLPF, and DACE-GEMkPSF, which are the combination of the heuristic algorithm and coevolution based on distance-adaptive policy. In the proposed algorithms, we first groom the connection requests, then sort the connection requests by using the heuristic algorithm (most subcarriers first, longest path first, and extended most k paths' slots first), and finally search the approximately optimal solution with the coevolutionary policy. We present a model of the RSA problem by using integral linear programming, and key elements in the proposed algorithms are addressed in detail. Simulations under three topologies show that the proposed hybrid RSA algorithms can save spectrum resources efficiently.
Energy Technology Data Exchange (ETDEWEB)
Niknam, Taher [Electronic and Electrical Engineering Department, Shiraz University of Technology, Shiraz (Iran)
2009-08-15
This paper introduces a robust searching hybrid evolutionary algorithm to solve the multi-objective Distribution Feeder Reconfiguration (DFR). The main objective of the DFR is to minimize the real power loss, deviation of the nodes' voltage, the number of switching operations, and balance the loads on the feeders. Because of the fact that the objectives are different and no commensurable, it is difficult to solve the problem by conventional approaches that may optimize a single objective. This paper presents a new approach based on norm3 for the DFR problem. In the proposed method, the objective functions are considered as a vector and the aim is to maximize the distance (norm2) between the objective function vector and the worst objective function vector while the constraints are met. Since the proposed DFR is a multi objective and non-differentiable optimization problem, a new hybrid evolutionary algorithm (EA) based on the combination of the Honey Bee Mating Optimization (HBMO) and the Discrete Particle Swarm Optimization (DPSO), called DPSO-HBMO, is implied to solve it. The results of the proposed reconfiguration method are compared with the solutions obtained by other approaches, the original DPSO and HBMO over different distribution test systems. (author)
A Novel Hybrid Data Clustering Algorithm Based on Artificial Bee Colony Algorithm and K-Means
Institute of Scientific and Technical Information of China (English)
TRAN Dang Cong; WU Zhijian; WANG Zelin; DENG Changshou
2015-01-01
To improve the performance of K-means clustering algorithm, this paper presents a new hybrid ap-proach of Enhanced artificial bee colony algorithm and K-means (EABCK). In EABCK, the original artificial bee colony algorithm (called ABC) is enhanced by a new mu-tation operation and guided by the global best solution (called EABC). Then, the best solution is updated by K-means in each iteration for data clustering. In the experi-ments, a set of benchmark functions was used to evaluate the performance of EABC with other comparative ABC variants. To evaluate the performance of EABCK on data clustering, eleven benchmark datasets were utilized. The experimental results show that EABC and EABCK out-perform other comparative ABC variants and data clus-tering algorithms, respectively.
A Fast Measurement based fixed-point Quantum Search Algorithm
Mani, Ashish
2011-01-01
Generic quantum search algorithm searches for target entity in an unsorted database by repeatedly applying canonical Grover's quantum rotation transform to reach near the vicinity of the target entity represented by a basis state in the Hilbert space associated with the qubits. Thus, when qubits are measured, there is a high probability of finding the target entity. However, the number of times quantum rotation transform is to be applied for reaching near the vicinity of the target is a function of the number of target entities present in the unsorted database, which is generally unknown. A wrong estimate of the number of target entities can lead to overshooting or undershooting the targets, thus reducing the success probability. Some proposals have been made to overcome this limitation. These proposals either employ quantum counting to estimate the number of solutions or fixed point schemes. This paper proposes a new scheme for stopping the application of quantum rotation transformation on reaching near the ...
Ant Colony Search Algorithm for Solving Unit Commitment Problem
Directory of Open Access Journals (Sweden)
M.Surya Kalavathi
2013-07-01
Full Text Available In this paper Ant Colony Search Algorithm is proposed to solve thermal unit commitment problem. Ant colony search (ACS studies are inspired from the behavior of real ant colonies that are used to solve function or combinatorial optimization problems. In the ACSA a set of cooperating agents called ants cooperates to find good solution of unit commitment problem of thermal units. The UC problem is to determine a minimal cost turn-on and turn-off schedule of a set of electrical power generating units to meet a load demand while satisfying a set of operational constraints. This proposed approach is a tested on 10 unit power system and compared to conventional methods.
Local Search Algorithms for the Generalized Traveling Salesman Problem
Karapetyan, Daniel
2010-01-01
The Generalized Traveling Salesman Problem (GTSP) is a well-known combinatorial optimization problem with a host of applications. It is an extension of the Traveling Salesman Problem (TSP) where the set of cities is divided into so-called clusters, and the salesman have to visit each cluster exactly once. While GTSP is a very important combinatorial optimization problem and is well-studied in many aspects, researches still did not pay enough attention to GTSP specific local search and mostly use simple TSP heuristics with basic adaptations for GTSP\\@. This paper aims at thorough and deep investigation of the neighborhoods specific for GTSP and algorithms that can explore these neighborhoods quickly. We formalize the procedure of adaptation of a TSP neighborhood for GTSP and propose efficient algorithms to explore the obtained neighborhoods. We also generalize all other existing and some new GTSP neighborhoods. Apart from these theoretical results, we also provide the results of a thorough experimental analysi...
Memoryless cooperative graph search based on the simulated annealing algorithm
Institute of Scientific and Technical Information of China (English)
Hou Jian; Yan Gang-Feng; Fan Zhen
2011-01-01
We have studied the problem of reaching a globally optimal segment for a graph-like environment with a single or a group of autonomous mobile agents. Firstly, two efficient simulated-annealing-like algorithms are given for a single agent to solve the problem in a partially known environment and an unknown environment, respectively. It shows that under both proposed control strategies, the agent will eventually converge to a globally optimal segment with probability 1Secondly, we use multi-agent searching to simultaneously reduce the computation complexity and accelerate convergence based on the algorithms we have given for a single agent. By exploiting graph partition, a gossip consensus method based scheme is presented to update the key parameter-radius of the graph, ensuring that the agents spend much less time finding a globally optimal segment.
A Rapidly Convergence Algorithm for Linear Search and its Application
Institute of Scientific and Technical Information of China (English)
Jianliang Li; Hua Zhu; Xianzhong Zhou; Wenjing Song
2006-01-01
The essence of the linear search is one-dimension nonlinear minimization problem, which is an important part of the multi-nonlinear optimization, it will be spend the most of operation count for solving optimization problem. To improve the efficiency, we set about from quadratic interpolation, combine the adwantage of the quadratic convergence rate of Newton's method and adopt the idea of Anderson-Bj(o)rck extrapolation, then we present a rapidly convergence algorithm and give its corresponding convergence conclusions. Finally we did the numerical experiments with the some well-known test functions for optimization and the application test of the ANN learning examples. The experiment results showed the validity of the algorithm.
Quantum Error Correction Protects Quantum Search Algorithms Against Decoherence.
Botsinis, Panagiotis; Babar, Zunaira; Alanis, Dimitrios; Chandra, Daryus; Nguyen, Hung; Ng, Soon Xin; Hanzo, Lajos
2016-12-07
When quantum computing becomes a wide-spread commercial reality, Quantum Search Algorithms (QSA) and especially Grover's QSA will inevitably be one of their main applications, constituting their cornerstone. Most of the literature assumes that the quantum circuits are free from decoherence. Practically, decoherence will remain unavoidable as is the Gaussian noise of classic circuits imposed by the Brownian motion of electrons, hence it may have to be mitigated. In this contribution, we investigate the effect of quantum noise on the performance of QSAs, in terms of their success probability as a function of the database size to be searched, when decoherence is modelled by depolarizing channels' deleterious effects imposed on the quantum gates. Moreover, we employ quantum error correction codes for limiting the effects of quantum noise and for correcting quantum flips. More specifically, we demonstrate that, when we search for a single solution in a database having 4096 entries using Grover's QSA at an aggressive depolarizing probability of 10(-3), the success probability of the search is 0.22 when no quantum coding is used, which is improved to 0.96 when Steane's quantum error correction code is employed. Finally, apart from Steane's code, the employment of Quantum Bose-Chaudhuri-Hocquenghem (QBCH) codes is also considered.
Diagnosis of Parkinson's disease Using Tabu Search Algorithm
Directory of Open Access Journals (Sweden)
Amin Einipour
2016-05-01
Full Text Available Parkinson's disease is the second most common disease of the brain and nerves. The diseas is a progressive disease meaning that over time it becomes more difficult to treat. Although so far no definitive treatment for this disease but there are good drugs which if the condition is diagnosed early can help improve the lives of people affected. In recent years provided computer methods as medical decision support systems for fast and low-cost detection of the disease which uses speech disorders and accurate and fast analysis to be diagnosed Parkinson's disease early in the disease course. The purpose of this paper is development of a decision support system for the detection of Parkinson's disease. In the proposed system, relevant knowledge is the most important part of it. To obtain such knowledge, Tabu Search algorithm to be used. Tabu Search is able to search in a large space data of course, this search is also associated with a certain intelligence. Results on Parkinson's disease data set from UCI machine learning repository show that the proposed approach would be capable of diagnosis with high accuracy.
Quantum Error Correction Protects Quantum Search Algorithms Against Decoherence
Botsinis, Panagiotis; Babar, Zunaira; Alanis, Dimitrios; Chandra, Daryus; Nguyen, Hung; Ng, Soon Xin; Hanzo, Lajos
2016-12-01
When quantum computing becomes a wide-spread commercial reality, Quantum Search Algorithms (QSA) and especially Grover’s QSA will inevitably be one of their main applications, constituting their cornerstone. Most of the literature assumes that the quantum circuits are free from decoherence. Practically, decoherence will remain unavoidable as is the Gaussian noise of classic circuits imposed by the Brownian motion of electrons, hence it may have to be mitigated. In this contribution, we investigate the effect of quantum noise on the performance of QSAs, in terms of their success probability as a function of the database size to be searched, when decoherence is modelled by depolarizing channels’ deleterious effects imposed on the quantum gates. Moreover, we employ quantum error correction codes for limiting the effects of quantum noise and for correcting quantum flips. More specifically, we demonstrate that, when we search for a single solution in a database having 4096 entries using Grover’s QSA at an aggressive depolarizing probability of 10-3, the success probability of the search is 0.22 when no quantum coding is used, which is improved to 0.96 when Steane’s quantum error correction code is employed. Finally, apart from Steane’s code, the employment of Quantum Bose-Chaudhuri-Hocquenghem (QBCH) codes is also considered.
Tractable Algorithms for Proximity Search on Large Graphs
2010-07-01
Education never ends, Watson. It is a series of lessons with the greatest for the last. — Sir Arthur Conan Doyle’s Sherlock Holmes . 2.1 Introduction A...Doyle’s Sherlock Holmes . 5.1 Introduction In this thesis, our main goal is to design fast algorithms for proximity search in large graphs. In chapter 3...Conan Doyle’s Sherlock Holmes . In this thesis our main focus is on investigating some useful random walk based prox- imity measures. We have started
Multiobjective Optimization Method Based on Adaptive Parameter Harmony Search Algorithm
Directory of Open Access Journals (Sweden)
P. Sabarinath
2015-01-01
Full Text Available The present trend in industries is to improve the techniques currently used in design and manufacture of products in order to meet the challenges of the competitive market. The crucial task nowadays is to find the optimal design and machining parameters so as to minimize the production costs. Design optimization involves more numbers of design variables with multiple and conflicting objectives, subjected to complex nonlinear constraints. The complexity of optimal design of machine elements creates the requirement for increasingly effective algorithms. Solving a nonlinear multiobjective optimization problem requires significant computing effort. From the literature it is evident that metaheuristic algorithms are performing better in dealing with multiobjective optimization. In this paper, we extend the recently developed parameter adaptive harmony search algorithm to solve multiobjective design optimization problems using the weighted sum approach. To determine the best weightage set for this analysis, a performance index based on least average error is used to determine the index of each weightage set. The proposed approach is applied to solve a biobjective design optimization of disc brake problem and a newly formulated biobjective design optimization of helical spring problem. The results reveal that the proposed approach is performing better than other algorithms.
Charged System Search Algorithm Utilized for Structural Damage Detection
Directory of Open Access Journals (Sweden)
Zahra Tabrizian
2014-01-01
Full Text Available This paper presents damage detection and assessment methodology based on the changes in dynamic parameters of a structural system. The method is applied at an element level using a finite element model. According to continuum damage mechanics, damage is represented by a reduction factor of the element stiffness. A recently developed metaheuristic optimization algorithm known as the charged system search (CSS is utilized for locating and quantifying the damaged areas of the structure. In order to demonstrate the abilities of this method, three examples are included comprising of a 10-elements cantilever beam, a Bowstring plane truss, and a 39-element three-story three-bay plane frame. The possible damage types in structures by considering several damage scenarios and using incomplete modal data are modeled. Finally, results are obtained from the CSS algorithm by detecting damage in these structures and compared to the results of the PSOPC algorithm. In addition, the effect of noise is shown in the results of the CSS algorithm by suitable diagrams. As is illustrated, this method has acceptable results in the structural detection damage with low computational time.
Structural design optimization of vehicle components using Cuckoo Search Algorithm
Energy Technology Data Exchange (ETDEWEB)
Yildiz, Ali Riza [Bursa Technical Univ., Bursa (Turkey). Dept. of Mechanical Engineering; Durgun, Ismail
2012-07-01
In order to meet today's vehicle design requirements and to improve the cost and fuel efficiency, there is an increasing interest to design light-weight and cost-effective vehicle components. In this research, a new optimization algorithm, called the Cuckoo Search Algorithm (CS) algorithm, is introduced for solving structural design optimization problems. This research is the first application of the CS to the shape design optimization problems in the literature. The CS algorithm is applied to the structural design optimization of a vehicle component to illustrate how the present approach can be applied for solving structural design problems. Results show the ability of the CS to find better optimal structural design. [German] Um heutige Anforderungen an das Fahrzeugdesign zu beruecksichtigen und um die Kosten- und Kraftstoffeffektivitaet zu erhoehen, nimmt das Interesse am Design leichter und kosteneffektiver Fahrzeugkomponenten weiterhin zu. In der diesem Beitrag zugrunde liegenden Studie wurde ein neuer Optimierungsalgorithmus angewendet, der so genannte Cuckoo Suchalgorithmus (CS). Es handelt sich um die erste CS-Applikation fuer das Formdesign in der Literatur. Der CS-Algorithmus wird hierbei zur Strukturdesignoptimierung einer Fahrzeugkomponente angewendet, um zu zeigen, wie er bei der Loesung von Strukturdesignaufgaben angewendet werden kann. Die Ergebnisse zeigen, wie damit ein verbessertes Design erreicht werden kann.
Induction Motor Parameter Identification Using a Gravitational Search Algorithm
Directory of Open Access Journals (Sweden)
Omar Avalos
2016-04-01
Full Text Available The efficient use of electrical energy is a topic that has attracted attention for its environmental consequences. On the other hand, induction motors represent the main component in most industries. They consume the highest energy percentages in industrial facilities. This energy consumption depends on the operation conditions of the induction motor imposed by its internal parameters. Since the internal parameters of an induction motor are not directly measurable, an identification process must be conducted to obtain them. In the identification process, the parameter estimation is transformed into a multidimensional optimization problem where the internal parameters of the induction motor are considered as decision variables. Under this approach, the complexity of the optimization problem tends to produce multimodal error surfaces for which their cost functions are significantly difficult to minimize. Several algorithms based on evolutionary computation principles have been successfully applied to identify the optimal parameters of induction motors. However, most of them maintain an important limitation: They frequently obtain sub-optimal solutions as a result of an improper equilibrium between exploitation and exploration in their search strategies. This paper presents an algorithm for the optimal parameter identification of induction motors. To determine the parameters, the proposed method uses a recent evolutionary method called the gravitational search algorithm (GSA. Different from most of the existent evolutionary algorithms, the GSA presents a better performance in multimodal problems, avoiding critical flaws such as the premature convergence to sub-optimal solutions. Numerical simulations have been conducted on several models to show the effectiveness of the proposed scheme.
Directory of Open Access Journals (Sweden)
Johan Soewanda
2007-01-01
Full Text Available This paper discusses the application of Robust Hybrid Genetic Algorithm to solve a flow-shop scheduling problem. The proposed algorithm attempted to reach minimum makespan. PT. FSCM Manufacturing Indonesia Plant 4's case was used as a test case to evaluate the performance of the proposed algorithm. The proposed algorithm was compared to Ant Colony, Genetic-Tabu, Hybrid Genetic Algorithm, and the company's algorithm. We found that Robust Hybrid Genetic produces statistically better result than the company's, but the same as Ant Colony, Genetic-Tabu, and Hybrid Genetic. In addition, Robust Hybrid Genetic Algorithm required less computational time than Hybrid Genetic Algorithm
Indian Academy of Sciences (India)
NOR AZLINA AB AZIZ; ZUWAIRIE IBRAHIM; MARIZAN MUBIN; SHAHDAN SUDIN
2017-07-01
An adaptive gravitational search algorithm (GSA) that switches between synchronous and asynchronous update is presented in this work. The proposed adaptive switching synchronous–asynchronous GSA (ASw-GSA) improves GSA through manipulation of its iteration strategy. The iteration strategy is switched from synchronous to asynchronous update and vice versa. The switching is conducted so that the population is adaptively switched between convergence and divergence. Synchronous update allows convergence, while switching to asynchronous update causes disruption to the population’s convergence.The ASw-GSA agents switch their iteration strategy when the best found solution is not improved after a period of time. The period is based on a switching threshold. The threshold determines how soon is the switching, and also the frequency of switching in ASw-GSA. ASw-GSA has been comprehensively evaluated based on CEC2014’s benchmark functions. The effect of the switchingthreshold has been studied and it is found that, in comparison with multiple and early switches, one-time switching towards the end of the search is better and substantially enhances the performance of ASw-GSA. The proposed ASw-GSA is also compared to original GSA, particle swarm optimization (PSO),genetic algorithm (GA), bat-inspired algorithm (BA) and grey wolf optimizer (GWO). The statistical analysis results show that ASw-GSA performs significantly better than GA and BA and as well as PSO,the original GSA and GWO.12
Effective pathfinding for four-wheeled robot based on combining Theta* and hybrid A* algorithms
Directory of Open Access Journals (Sweden)
Віталій Геннадійович Михалько
2016-07-01
Full Text Available Effective pathfinding algorithm based on Theta* and Hybrid A* algorithms was developed for four-wheeled robot. Pseudocode for algorithm was showed and explained. Algorithm and simulator for four-wheeled robot were implemented using Java programming language. Algorithm was tested on U-obstacles, complex maps and for parking problem
Evolving Quantum Oracles with Hybrid Quantum-inspired Evolutionary Algorithm
Ding, S; Yang, Q; Ding, Shengchao; Jin, Zhi; Yang, Qing
2006-01-01
Quantum oracles play key roles in the studies of quantum computation and quantum information. But implementing quantum oracles efficiently with universal quantum gates is a hard work. Motivated by genetic programming, this paper proposes a novel approach to evolve quantum oracles with a hybrid quantum-inspired evolutionary algorithm. The approach codes quantum circuits with numerical values and combines the cost and correctness of quantum circuits into the fitness function. To speed up the calculation of matrix multiplication in the evaluation of individuals, a fast algorithm of matrix multiplication with Kronecker product is also presented. The experiments show the validity and the effects of some parameters of the presented approach. And some characteristics of the novel approach are discussed too.
Genetic Algorithm Based Hybrid Fuzzy System for Assessing Morningness
Directory of Open Access Journals (Sweden)
Animesh Biswas
2014-01-01
Full Text Available This paper describes a real life case example on the assessment process of morningness of individuals using genetic algorithm based hybrid fuzzy system. It is observed that physical and mental performance of human beings in different time slots of a day are majorly influenced by morningness orientation of those individuals. To measure the morningness of people various self-reported questionnaires were developed by different researchers in the past. Among them reduced version of Morningness-Eveningness Questionnaire is mostly accepted. Almost all of the linguistic terms used in questionnaires are fuzzily defined. So, assessing them in crisp environments with their responses does not seem to be justifiable. Fuzzy approach based research works for assessing morningness of people are very few in the literature. In this paper, genetic algorithm is used to tune the parameters of a Mamdani fuzzy inference model to minimize error with their predicted outputs for assessing morningness of people.
Healing Temperature of Hybrid Structures Based on Genetic Algorithm
Institute of Scientific and Technical Information of China (English)
赵中伟; 陈志华; 刘红波
2016-01-01
The healing temperature of suspen-dome with stacked arches(SDSA)and arch-supported single-layer lattice shell structures was investigated based on the genetic algorithm. The temperature field of arch under solar radiation was derived by FLUENT to investigate the influence of solar radiation on the determination of the healing temperature. Moreover, a multi-scale model was established to apply the complex temperature field under solar radiation. The change in the mechanical response of these two kinds of structures with the healing temperature was discussed. It can be concluded that solar radiation has great influence on the healing temperature, and the genetic algorithm can be effectively used in the optimization of the healing temperature for hybrid structures.
Realization of R-tree for GIS on hybrid clustering algorithm
Institute of Scientific and Technical Information of China (English)
HUANG Ji-xian; BAO Guang-shu; LI Qing-song
2005-01-01
The characteristic of geographic information system(GIS) spatial data operation is that query is much more frequent than insertion and deletion, and a new hybrid spatial clustering method used to build R-tree for GIS spatial data was proposed in this paper. According to the aggregation of clustering method, R-tree was used to construct rules and specialty of spatial data. HCR-tree was the R-tree built with HCR algorithm. To test the efficiency of HCR algorithm, it was applied not only to the data organization of static R-tree but also to the nodes splitting of dynamic R-tree. The results show that R-tree with HCR has some advantages such as higher searching efficiency, less disk accesses and so on.
Solving the vehicle routing problem by a hybrid meta-heuristic algorithm
Yousefikhoshbakht, Majid; Khorram, Esmaile
2012-08-01
The vehicle routing problem (VRP) is one of the most important combinational optimization problems that has nowadays received much attention because of its real application in industrial and service problems. The VRP involves routing a fleet of vehicles, each of them visiting a set of nodes such that every node is visited by exactly one vehicle only once. So, the objective is to minimize the total distance traveled by all the vehicles. This paper presents a hybrid two-phase algorithm called sweep algorithm (SW) + ant colony system (ACS) for the classical VRP. At the first stage, the VRP is solved by the SW, and at the second stage, the ACS and 3-opt local search are used for improving the solutions. Extensive computational tests on standard instances from the literature confirm the effectiveness of the presented approach.
Kumar, Manjeet; Rawat, Tarun Kumar; Aggarwal, Apoorva
2017-03-01
In this paper, a new meta-heuristic optimization technique, called interior search algorithm (ISA) with Lèvy flight is proposed and applied to determine the optimal parameters of an unknown infinite impulse response (IIR) system for the system identification problem. ISA is based on aesthetics, which is commonly used in interior design and decoration processes. In ISA, composition phase and mirror phase are applied for addressing the nonlinear and multimodal system identification problems. System identification using modified-ISA (M-ISA) based method involves faster convergence, single parameter tuning and does not require derivative information because it uses a stochastic random search using the concepts of Lèvy flight. A proper tuning of control parameter has been performed in order to achieve a balance between intensification and diversification phases. In order to evaluate the performance of the proposed method, mean square error (MSE), computation time and percentage improvement are considered as the performance measure. To validate the performance of M-ISA based method, simulations has been carried out for three benchmarked IIR systems using same order and reduced order system. Genetic algorithm (GA), particle swarm optimization (PSO), cat swarm optimization (CSO), cuckoo search algorithm (CSA), differential evolution using wavelet mutation (DEWM), firefly algorithm (FFA), craziness based particle swarm optimization (CRPSO), harmony search (HS) algorithm, opposition based harmony search (OHS) algorithm, hybrid particle swarm optimization-gravitational search algorithm (HPSO-GSA) and ISA are also used to model the same examples and simulation results are compared. Obtained results confirm the efficiency of the proposed method.
VLSI Implementation of Hybrid Algorithm Architecture for Speech Enhancement
Directory of Open Access Journals (Sweden)
Jigar Shah
2012-07-01
Full Text Available The speech enhancement techniques are required to improve the speech signal quality without causing any offshoot in many applications. Recently the growing use of cellular and mobile phones, hands free systems, VoIP phones, voice messaging service, call service centers etc. require efficient real time speech enhancement and detection strategies to make them superior over conventional speech communication systems. The speech enhancement algorithms are required to deal with additive noise and convolutive distortion that occur in any wireless communication system. Also the single channel (one microphone signal is available in real environments. Hence a single channel hybrid algorithm is used which combines minimum mean square error-log spectral amplitude (MMSE-LSA algorithm for additive noise removal and the relative spectral amplitude (RASTA algorithm for reverberation cancellation. The real time and embedded implementation on directly available DSP platforms like TMS320C6713 shows some defects. Hence the VLSI implementation using semi-custom (e.g. FPGA or full-custom approach is required. One such architecture is proposed in this paper.
SASS: a symmetry adapted stochastic search algorithm exploiting site symmetry.
Wheeler, Steven E; Schleyer, Paul V R; Schaefer, Henry F
2007-03-14
A simple symmetry adapted search algorithm (SASS) exploiting point group symmetry increases the efficiency of systematic explorations of complex quantum mechanical potential energy surfaces. In contrast to previously described stochastic approaches, which do not employ symmetry, candidate structures are generated within simple point groups, such as C2, Cs, and C2v. This facilitates efficient sampling of the 3N-6 Pople's dimensional configuration space and increases the speed and effectiveness of quantum chemical geometry optimizations. Pople's concept of framework groups [J. Am. Chem. Soc. 102, 4615 (1980)] is used to partition the configuration space into structures spanning all possible distributions of sets of symmetry equivalent atoms. This provides an efficient means of computing all structures of a given symmetry with minimum redundancy. This approach also is advantageous for generating initial structures for global optimizations via genetic algorithm and other stochastic global search techniques. Application of the SASS method is illustrated by locating 14 low-lying stationary points on the cc-pwCVDZ ROCCSD(T) potential energy surface of Li5H2. The global minimum structure is identified, along with many unique, nonintuitive, energetically favorable isomers.
Coherence depletion in the Grover quantum search algorithm
Shi, Hai-Long; Liu, Si-Yuan; Wang, Xiao-Hui; Yang, Wen-Li; Yang, Zhan-Ying; Fan, Heng
2017-03-01
We investigate the role of quantum coherence depletion (QCD) in the Grover search algorithm (GA) by using several typical measures of quantum coherence and quantum correlations. By using the relative entropy of coherence measure (Cr), we show that the success probability depends on the QCD. The same phenomenon is also found by using the l1 norm of coherence measure (Cl1).In the limit case, the cost performance is defined to characterize the behavior about QCD in enhancing the success probability of GA, which is only related to the number of searcher items and the scale of the database, regardless of using Cr or Cl 1. In the generalized Grover search algorithm (GGA), the QCD for a class of states increases with the required optimal measurement time. In comparison, the quantification of other quantum correlations in GA, such as pairwise entanglement, multipartite entanglement, pairwise discord, and genuine multipartite discord, cannot be directly related to the success probability or the optimal measurement time. Additionally, we do not detect pairwise nonlocality or genuine tripartite nonlocality in GA since Clauser-Horne-Shimony-Holt inequality and Svetlichny's inequality are not violated.
Gravitation search algorithm: Application to the optimal IIR filter design
Directory of Open Access Journals (Sweden)
Suman Kumar Saha
2014-01-01
Full Text Available This paper presents a global heuristic search optimization technique known as Gravitation Search Algorithm (GSA for the design of 8th order Infinite Impulse Response (IIR, low pass (LP, high pass (HP, band pass (BP and band stop (BS filters considering various non-linear characteristics of the filter design problems. This paper also adopts a novel fitness function in order to improve the stop band attenuation to a great extent. In GSA, law of gravity and mass interactions among different particles are adopted for handling the non-linear IIR filter design optimization problem. In this optimization technique, searcher agents are the collection of masses and interactions among them are governed by the Newtonian gravity and the laws of motion. The performances of the GSA based IIR filter designs have proven to be superior as compared to those obtained by real coded genetic algorithm (RGA and standard Particle Swarm Optimization (PSO. Extensive simulation results affirm that the proposed approach using GSA outperforms over its counterparts not only in terms of quality output, i.e., sharpness at cut-off, smaller pass band ripple, higher stop band attenuation, but also the fastest convergence speed with assured stability.
Nature-inspired optimization algorithms
Yang, Xin-She
2014-01-01
Nature-Inspired Optimization Algorithms provides a systematic introduction to all major nature-inspired algorithms for optimization. The book's unified approach, balancing algorithm introduction, theoretical background and practical implementation, complements extensive literature with well-chosen case studies to illustrate how these algorithms work. Topics include particle swarm optimization, ant and bee algorithms, simulated annealing, cuckoo search, firefly algorithm, bat algorithm, flower algorithm, harmony search, algorithm analysis, constraint handling, hybrid methods, parameter tuning
Ma, Li; Fan, Suohai
2017-03-14
The random forests algorithm is a type of classifier with prominent universality, a wide application range, and robustness for avoiding overfitting. But there are still some drawbacks to random forests. Therefore, to improve the performance of random forests, this paper seeks to improve imbalanced data processing, feature selection and parameter optimization. We propose the CURE-SMOTE algorithm for the imbalanced data classification problem. Experiments on imbalanced UCI data reveal that the combination of Clustering Using Representatives (CURE) enhances the original synthetic minority oversampling technique (SMOTE) algorithms effectively compared with the classification results on the original data using random sampling, Borderline-SMOTE1, safe-level SMOTE, C-SMOTE, and k-means-SMOTE. Additionally, the hybrid RF (random forests) algorithm has been proposed for feature selection and parameter optimization, which uses the minimum out of bag (OOB) data error as its objective function. Simulation results on binary and higher-dimensional data indicate that the proposed hybrid RF algorithms, hybrid genetic-random forests algorithm, hybrid particle swarm-random forests algorithm and hybrid fish swarm-random forests algorithm can achieve the minimum OOB error and show the best generalization ability. The training set produced from the proposed CURE-SMOTE algorithm is closer to the original data distribution because it contains minimal noise. Thus, better classification results are produced from this feasible and effective algorithm. Moreover, the hybrid algorithm's F-value, G-mean, AUC and OOB scores demonstrate that they surpass the performance of the original RF algorithm. Hence, this hybrid algorithm provides a new way to perform feature selection and parameter optimization.
Directory of Open Access Journals (Sweden)
Narong Wichapa
2018-01-01
Full Text Available Infectious waste disposal remains one of the most serious problems in the medical, social and environmental domains of almost every country. Selection of new suitable locations and finding the optimal set of transport routes for a fleet of vehicles to transport infectious waste material, location routing problem for infectious waste disposal, is one of the major problems in hazardous waste management. Determining locations for infectious waste disposal is a difficult and complex process, because it requires combining both intangible and tangible factors. Additionally, it depends on several criteria and various regulations. This facility location problem for infectious waste disposal is complicated, and it cannot be addressed using any stand-alone technique. Based on a case study, 107 hospitals and 6 candidate municipalities in Upper-Northeastern Thailand, we considered criteria such as infrastructure, geology and social & environmental criteria, evaluating global priority weights using the fuzzy analytical hierarchy process (Fuzzy AHP. After that, a new multi-objective facility location problem model which hybridizes fuzzy AHP and goal programming (GP, namely the HGP model, was tested. Finally, the vehicle routing problem (VRP for a case study was formulated, and it was tested using a hybrid genetic algorithm (HGA which hybridizes the push forward insertion heuristic (PFIH, genetic algorithm (GA and three local searches including 2-opt, insertion-move and interexchange-move. The results show that both the HGP and HGA can lead to select new suitable locations and to find the optimal set of transport routes for vehicles delivering infectious waste material. The novelty of the proposed methodologies, HGP, is the simultaneous combination of relevant factors that are difficult to interpret and cost factors in order to determine new suitable locations, and HGA can be applied to determine the transport routes which provide a minimum number of vehicles
Zhou, Xu; Liu, Yanheng; Li, Bin
2016-03-01
Detecting community is a challenging task in analyzing networks. Solving community detection problem by evolutionary algorithm is a heated topic in recent years. In this paper, a multi-objective discrete cuckoo search algorithm with local search (MDCL) for community detection is proposed. To the best of our knowledge, it is first time to apply cuckoo search algorithm for community detection. Two objective functions termed as negative ratio association and ratio cut are to be minimized. These two functions can break through the modularity limitation. In the proposed algorithm, the nest location updating strategy and abandon operator of cuckoo are redefined in discrete form. A local search strategy and a clone operator are proposed to obtain the optimal initial population. The experimental results on synthetic and real-world networks show that the proposed algorithm has better performance than other algorithms and can discover the higher quality community structure without prior information.
Hybrid chaotic quantum evolutionary algorithm%混合混沌量子进化算法
Institute of Scientific and Technical Information of China (English)
蔡延光; 张敏捷; 蔡颢; 章云
2012-01-01
针对量子进化算法计算量大、收敛速度慢以及容易出现早熟等问题,提出混合混沌量子进化算法.该算法采用混沌初始化方法产生初始种群,使种群具有较好的多样性；采用简单量子旋转门更新当前种群中的非最优个体,降低算法的计算量；提出混合混沌搜索策略以提高算法的收敛速度和全局搜索能力.大量的测试表明,与量子进化算法、实数编码量子进化算法和混合量子遗传算法相比,所提出的算法具有较快的收敛速度和较好的寻优能力.大量的测试也表明,若将混沌引入量子进化算法,则混合混沌搜索策略的综合性能明显优于载波混沌策略,在大多数情况下优于混沌变异策略.本文提出的算法是惟一的每次测试都收敛的算法,且实现简单,便于工程应用.将其用于求解城市道路的交通信号配时优化问题,实际效果令人满意.%In order to reduce amount of computation, speed up convergence and restrain premature phenomena of quantum evolutionary algorithm, a hybrid chaotic quantum evolutionary algorithm is presented. The algorithm uses the chaotic initialization method to generate initial population that have better diversity, the simple quantum rotation gate to update non-optimal individuals of population to reduce amount of computation, and the hybrid chaotic search strategy to speed up its convergence and enhance its global search ability. A large number of tests show that the proposed algorithm has higher convergence speed and better optimizing ability than quantum evolutionary algorithm, real-coded quantum evolutionary algorithm and hybrid quantum genetic algorithm. Tests also show that when chaos is introduced to quantum evolutionary algorithm, the hybrid chaotic search strategy is superior to the carrier chaotic strategy, and has better comprehensive performance than the chaotic mutation strategy in most of cases. The proposed algorithm is the only one all
Search for hybrid baryons with CLAS12 experimental setup
Energy Technology Data Exchange (ETDEWEB)
Lanza, Lucille [Univ. degli Studi di Roma Tor Vergata (Italy); Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States)
2017-03-01
It is crucial to study the meson electroproduction in the kinematic region dominated by the formation of resonances. CLAS12 setup in Hall B at Jefferson Lab is particularly suitable for this task, since it is able to detect scattered electrons at low polar angles thanks to the Forward Tagger (FT) component. The process that we propose to study is ep → e'K^{+}Λ, where the electron beam will be provided by the CEBAF accelerator with energies of 6.6, 8.8, and 11 GeV. This thesis work describes the setup and calibration of the FT calorimeter and the studies related to the search of hybrid baryons through the measurement of the K^{+} Λ electroproduction cross section.
Stride Search: a general algorithm for storm detection in high-resolution climate data
Bosler, Peter A.; Roesler, Erika L.; Taylor, Mark A.; Mundt, Miranda R.
2016-04-01
This article discusses the problem of identifying extreme climate events such as intense storms within large climate data sets. The basic storm detection algorithm is reviewed, which splits the problem into two parts: a spatial search followed by a temporal correlation problem. Two specific implementations of the spatial search algorithm are compared: the commonly used grid point search algorithm is reviewed, and a new algorithm called Stride Search is introduced. The Stride Search algorithm is defined independently of the spatial discretization associated with a particular data set. Results from the two algorithms are compared for the application of tropical cyclone detection, and shown to produce similar results for the same set of storm identification criteria. Differences between the two algorithms arise for some storms due to their different definition of search regions in physical space. The physical space associated with each Stride Search region is constant, regardless of data resolution or latitude, and Stride Search is therefore capable of searching all regions of the globe in the same manner. Stride Search's ability to search high latitudes is demonstrated for the case of polar low detection. Wall clock time required for Stride Search is shown to be smaller than a grid point search of the same data, and the relative speed up associated with Stride Search increases as resolution increases.
A study of image reconstruction algorithms for hybrid intensity interferometers
Crabtree, Peter N.; Murray-Krezan, Jeremy; Picard, Richard H.
2011-09-01
Phase retrieval is explored for image reconstruction using outputs from both a simulated intensity interferometer (II) and a hybrid system that combines the II outputs with partially resolved imagery from a traditional imaging telescope. Partially resolved imagery provides an additional constraint for the iterative phase retrieval process, as well as an improved starting point. The benefits of this additional a priori information are explored and include lower residual phase error for SNR values above 0.01, increased sensitivity, and improved image quality. Results are also presented for image reconstruction from II measurements alone, via current state-of-the-art phase retrieval techniques. These results are based on the standard hybrid input-output (HIO) algorithm, as well as a recent enhancement to HIO that optimizes step lengths in addition to step directions. The additional step length optimization yields a reduction in residual phase error, but only for SNR values greater than about 10. Image quality for all algorithms studied is quite good for SNR>=10, but it should be noted that the studied phase-recovery techniques yield useful information even for SNRs that are much lower.
Research of the test generation algorithm based on search state dominance for combinational circuit
Institute of Scientific and Technical Information of China (English)
无
2006-01-01
On the basis of EST (Equivalent STate hashing) algorithm, this paper researches a kind of test generation algorithm based on search state dominance for combinational circuit. According to the dominance relation of the E-frontier ( evaluation frontier), we can prove that this algorithm can terminate unnecessary searching step of test pattern earlier than the EST algorithm through some examples, so this algorithm can reduce the time of test generation. The test patterns calculated can detect faults given through simulation.
Categorization and Searching of Color Images Using Mean Shift Algorithm
Directory of Open Access Journals (Sweden)
Prakash PANDEY
2009-07-01
Full Text Available Now a day’s Image Searching is still a challenging problem in content based image retrieval (CBIR system. Most CBIR system operates on all images without pre-sorting the images. The image search result contains many unrelated image. The aim of this research is to propose a new object based indexing system Based on extracting salient region representative from the image, categorizing the image into different types and search images that are similar to given query images.In our approach, the color features are extracted using the mean shift algorithm, a robust clustering technique, Dominant objects are obtained by performing region grouping of segmented thumbnails. The category for an image is generated automatically by analyzing the image for the presence of a dominant object. The images in the database are clustered based on region feature similarity using Euclidian distance. Placing an image into a category can help the user to navigate retrieval results more effectively. Extensive experimental results illustrate excellent performance.
USER RECOMMENDATION ALGORITHM IN SOCIAL TAGGING SYSTEM BASED ON HYBRID USER TRUST
Directory of Open Access Journals (Sweden)
Norwati Mustapha
2013-01-01
Full Text Available With the rapid growth of web 2.0 technologies, tagging become much more important today to facilitate personal organization and also provide a possibility for users to search information or discover new things with Collaborative Tagging Systems. However, the simplistic and user-centered design of this kind of systems cause the task of finding personally interesting users is becoming quite out of reach for the common user. Collaborative Filtering (CF seems to be the most popular technique in recommender systems to deal with information overload issue but CF suffers from accuracy limitation. This is because CF always been at-tack by malicious users that will make it suffers in finding the truly interesting users. With this problem in mind, this study proposes a hybrid User Trust method to enhance CF in order to increase accuracy of user recommendation in social tagging system. This method is a combination of developing trust network based on user interest similarity and trust network from social network analysis. The user interest similarity is de-rived from personalized user tagging information. The hybrid User Trust method is able to find the most trusted users and selected as neighbours to generate recommendations. Experimental results show that the hybrid method outperforms the traditional CF algorithm. In addition, it indicated that the hybrid method give more accurate recommendation than the existing CF based on user trust.
Optimal Polygonal Approximation of Digital Planar Curves Using Genetic Algorithm and Tabu Search
Institute of Scientific and Technical Information of China (English)
无
2000-01-01
Three heuristic algorithms for optimal polygonal approximation of digital planar curves is presented.With Genetic Algorithm (GA), improved Genetic Algorithm (IGA) based on Pareto optimal solution and Tabu Search (TS), a near optimal polygonal approximation was obtained.Compared to the famous Teh-chin algorithm, our algorithms have obtained the approximated polygons with less number of vertices and less approximation error.Compared to the dynamic programming algorithm, the processing time of our algorithms are much less expensive.
Institute of Scientific and Technical Information of China (English)
马亮; 郭进; 陈光伟; 郭瑞
2015-01-01
为了提高动态配流模型的通用性和稳定性，基于约束程序累积调度和字典序多目标优化，以作业之间实施逻辑和优先级关系、班计划和列车编组计划要求、资源容量限制等为约束，按照配流成功的出发列车优先级总和最大、车辆平均中停时最小和资源利用率最高3个目标的优先级，建立适应于不同解体方式的动态配流字典序多目标累积调度的3层模型。为提高算法效率，设计了约束传播和多点构建性搜索混合的带初始解迭代算法，每层先通过约束传播算法化简模型，再通过带约束传播的多点构建性搜索算法快速求解，以决策出优化的作业排程和配流方案。实验表明，模型扩展性更强、更稳定、更符合现场实际；算法效率高，能够满足现场对计划编制和调整的实施性需求。%To improve the versatility and stability of the dynamic wagon-flow allocation model,the dynamic wagon-flow allocation lexicographic multi-objective cumulative scheduling model is set up to maximize the sum of priority of the departure trains,minimize the average residence time of the cars,and maximize the resource utilization,based on the theory of constraint programming cumulative scheduling and lexicographic multi-objective optimization.In this model,the precedence and logical relationship among traffic jobs,the demands of the train shift plan and the train formation plan,and the capacity limit of the resources are all taken into account as constraints.The model is then be adapted for different disassembly modes and is divided into three sub-layers,according to the lexicographic or-der of the three objectives.Then,the optimized schemes of job scheduling and wagon-flow allocation are received by solving the model iteratively,using the hybrid algorithm of constraint propagation and multi-point constructive search.In each sub-layer,the search space is initially reduced by constraint
Searching for the right word: Hybrid visual and memory search for words.
Boettcher, Sage E P; Wolfe, Jeremy M
2015-05-01
In "hybrid search" (Wolfe Psychological Science, 23(7), 698-703, 2012), observers search through visual space for any of multiple targets held in memory. With photorealistic objects as the stimuli, response times (RTs) increase linearly with the visual set size and logarithmically with the memory set size, even when over 100 items are committed to memory. It is well-established that pictures of objects are particularly easy to memorize (Brady, Konkle, Alvarez, & Oliva Proceedings of the National Academy of Sciences, 105, 14325-14329, 2008). Would hybrid-search performance be similar if the targets were words or phrases, in which word order can be important, so that the processes of memorization might be different? In Experiment 1, observers memorized 2, 4, 8, or 16 words in four different blocks. After passing a memory test, confirming their memorization of the list, the observers searched for these words in visual displays containing two to 16 words. Replicating Wolfe (Psychological Science, 23(7), 698-703, 2012), the RTs increased linearly with the visual set size and logarithmically with the length of the word list. The word lists of Experiment 1 were random. In Experiment 2, words were drawn from phrases that observers reported knowing by heart (e.g., "London Bridge is falling down"). Observers were asked to provide four phrases, ranging in length from two words to no less than 20 words (range 21-86). All words longer than two characters from the phrase, constituted the target list. Distractor words were matched for length and frequency. Even with these strongly ordered lists, the results again replicated the curvilinear function of memory set size seen in hybrid search. One might expect to find serial position effects, perhaps reducing the RTs for the first (primacy) and/or the last (recency) members of a list (Atkinson & Shiffrin, 1968; Murdock Journal of Experimental Psychology, 64, 482-488, 1962). Surprisingly, we showed no reliable effects of word order
Directory of Open Access Journals (Sweden)
Lu-Chuan Ceng
2014-01-01
Full Text Available We present a hybrid iterative algorithm for finding a common element of the set of solutions of a finite family of generalized mixed equilibrium problems, the set of solutions of a finite family of variational inequalities for inverse strong monotone mappings, the set of fixed points of an infinite family of nonexpansive mappings, and the set of solutions of a variational inclusion in a real Hilbert space. Furthermore, we prove that the proposed hybrid iterative algorithm has strong convergence under some mild conditions imposed on algorithm parameters. Here, our hybrid algorithm is based on Korpelevič’s extragradient method, hybrid steepest-descent method, and viscosity approximation method.
AN IMPROVED GENETIC ALGORITHM FOR SEARCHING OPTIMAL PARAMETERS IN n—DIMENSIONAL SPACE
Institute of Scientific and Technical Information of China (English)
TangBin; HuGuangrui
2002-01-01
An improved genetic algorithm for searching optimal parameters in n-dimensional space is presented,which encodes movement direction and distance and searches from coarse to precise.The algorithm can realize global optimization and improve the search efficiency,and can be applied effectively in industrial optimization ,data mining and pattern recognition.
AN IMPROVED GENETIC ALGORITHM FOR SEARCHING OPTIMAL PARAMETERS IN n-DIMENSIONAL SPACE
Institute of Scientific and Technical Information of China (English)
Tang Bin; Hu Guangrui
2002-01-01
An improved genetic algorithm for searching optimal parameters in n-dimensional space is presented, which encodes movement direction and distance and searches from coarse to precise. The algorithm can realize global optimization and improve the search efficiency, and can be applied effectively in industrial optimization, data mining and pattern recognition.
Analysis of Multivariate Experimental Data Using A Simplified Regression Model Search Algorithm
Ulbrich, Norbert Manfred
2013-01-01
A new regression model search algorithm was developed in 2011 that may be used to analyze both general multivariate experimental data sets and wind tunnel strain-gage balance calibration data. The new algorithm is a simplified version of a more complex search algorithm that was originally developed at the NASA Ames Balance Calibration Laboratory. The new algorithm has the advantage that it needs only about one tenth of the original algorithm's CPU time for the completion of a search. In addition, extensive testing showed that the prediction accuracy of math models obtained from the simplified algorithm is similar to the prediction accuracy of math models obtained from the original algorithm. The simplified algorithm, however, cannot guarantee that search constraints related to a set of statistical quality requirements are always satisfied in the optimized regression models. Therefore, the simplified search algorithm is not intended to replace the original search algorithm. Instead, it may be used to generate an alternate optimized regression model of experimental data whenever the application of the original search algorithm either fails or requires too much CPU time. Data from a machine calibration of NASA's MK40 force balance is used to illustrate the application of the new regression model search algorithm.
Finding people, papers, and posts: Vertical search algorithms and evaluation
2015-01-01
There is a growing diversity of information access applications. While general web search has been dominant in the past few decades, a wide variety of so-called vertical search tasks and applications have come to the fore. Vertical search is an often used term for search that targets specific content. Examples include YouTube video search, Facebook graph search, Spotify music recommendation, product search, expertise retrieval, and scientific literature search. In a vertical search applicatio...
Xu, Ye; Wang, Ling; Wang, Shengyao; Liu, Min
2014-09-01
In this article, an effective hybrid immune algorithm (HIA) is presented to solve the distributed permutation flow-shop scheduling problem (DPFSP). First, a decoding method is proposed to transfer a job permutation sequence to a feasible schedule considering both factory dispatching and job sequencing. Secondly, a local search with four search operators is presented based on the characteristics of the problem. Thirdly, a special crossover operator is designed for the DPFSP, and mutation and vaccination operators are also applied within the framework of the HIA to perform an immune search. The influence of parameter setting on the HIA is investigated based on the Taguchi method of design of experiment. Extensive numerical testing results based on 420 small-sized instances and 720 large-sized instances are provided. The effectiveness of the HIA is demonstrated by comparison with some existing heuristic algorithms and the variable neighbourhood descent methods. New best known solutions are obtained by the HIA for 17 out of 420 small-sized instances and 585 out of 720 large-sized instances.
Directory of Open Access Journals (Sweden)
Yalin Wang
2013-01-01
Full Text Available The grinding-classification is the prerequisite process for full recovery of the nonrenewable minerals with both production quality and quantity objectives concerned. Its natural formulation is a constrained multiobjective optimization problem of complex expression since the process is composed of one grinding machine and two classification machines. In this paper, a hybrid differential evolution (DE algorithm with multi-population is proposed. Some infeasible solutions with better performance are allowed to be saved, and they participate randomly in the evolution. In order to exploit the meaningful infeasible solutions, a functionally partitioned multi-population mechanism is designed to find an optimal solution from all possible directions. Meanwhile, a simplex method for local search is inserted into the evolution process to enhance the searching strategy in the optimization process. Simulation results from the test of some benchmark problems indicate that the proposed algorithm tends to converge quickly and effectively to the Pareto frontier with better distribution. Finally, the proposed algorithm is applied to solve a multiobjective optimization model of a grinding and classification process. Based on the technique for order performance by similarity to ideal solution (TOPSIS, the satisfactory solution is obtained by using a decision-making method for multiple attributes.
Directory of Open Access Journals (Sweden)
Shariba Islam Tusiy
2015-02-01
Full Text Available This work is related on two well-known algorithm, Improved Cuckoo Search and Artificial Bee Colony Algorithm which are inspired from nature. Improved Cuckoo Search (ICS algorithm is based on Lévy flight and behavior of some birds and fruit flies and they have some assumptions and each assumption is highly observed to maintain their characteristics. Besides Artificial Bee Colony (ABC algorithm is based on swarm intelligence, which is based on bee colony with the way the bees maintain their life in that colony. Bees’ characteristics are the main part of this algorithm. This is a theoretical result of this topic and a quantitative research paper.
SNPs Selection using Gravitational Search Algorithm and Exhaustive Search for Association Mapping
Kusuma, W. A.; Hasibuan, L. S.; Istiadi, M. A.
2016-01-01
Single Nucleotide Polymorphisms (SNPs) are known having association to phenotipic variations. The study of linking SNPs to interest phenotype is refer to Association Mapping (AM), which is classified as a combinatorial problem. Exhaustive Search (ES) approach is able to be implemented to select targeted SNPs exactly since it evaluate all possible combinations of SNPs, but it is not efficient in terms of computer resources and computation time. Heuristic Search (HS) approach is an alternative to improve the performance of ES in those terms, but it still suffers high false positive SNPs in each combinations. Gravitational Search Algorithm (GSA) is a new HS algorithm that yields better performance than other nature inspired HS. This paper proposed a new method which combined GSA and ES to identify the most appropriate combination of SNPs linked to interest phenotype. Testing was conducted using dataset without epistasis and dataset with epistasis. Using dataset without epistasis with 7 targeted SNPs, the proposed method identified 7 SNPs - 6 True Positive (TP) SNPs and 1 False Positive (FP) SNP- with association value of 0.83. In addition, the proposed method could identified 3 SNPs- 2 TP SNP and 1 FP SNP with association value of 0.87 by using dataset with epistases and 5 targeted SNPs. The results showed that the method is robust in reducing redundant SNPs and identifying main markers.
Viewpoint Selection Using Hybrid Simplex Search and Particle Swarm Optimization for Volume Rendering
Directory of Open Access Journals (Sweden)
Zhang You-sai,,,
2012-09-01
Full Text Available In this paper we proposed a novel method of viewpoint selection using the hybrid Nelder-Mead (NM simplex search and particle swarm optimization (PSO to improve the efficiency and the intelligent level of volume rendering. This method constructed the viewpoint quality evaluation function in the form of entropy by utilizing the luminance and structure features of the two-dimensional projective image of volume data. During the process of volume rendering, the hybrid NM-PSO algorithm intended to locate the globally optimal viewpoint or a set of the optimized viewpoints automatically and intelligently. Experimental results have shown that this method avoids redundant interactions and evidently improves the efficiency of volume rendering. The optimized viewpoints can focus on the important structural features or the region of interest in volume data and exhibit definite correlation with the perception character of human visual system. Compared with the methods based on PSO or NM simplex search, our method has the better performance of convergence rate, convergence accuracy and robustness.
Bansal, Shonak; Singh, Arun Kumar; Gupta, Neena
2016-07-01
In real-life, multi-objective engineering design problems are very tough and time consuming optimization problems due to their high degree of nonlinearities, complexities and inhomogeneity. Nature-inspired based multi-objective optimization algorithms are now becoming popular for solving multi-objective engineering design problems. This paper proposes original multi-objective Bat algorithm (MOBA) and its extended form, namely, novel parallel hybrid multi-objective Bat algorithm (PHMOBA) to generate shortest length Golomb ruler called optimal Golomb ruler (OGR) sequences at a reasonable computation time. The OGRs found their application in optical wavelength division multiplexing (WDM) systems as channel-allocation algorithm to reduce the four-wave mixing (FWM) crosstalk. The performances of both the proposed algorithms to generate OGRs as optical WDM channel-allocation is compared with other existing classical computing and nature-inspired algorithms, including extended quadratic congruence (EQC), search algorithm (SA), genetic algorithms (GAs), biogeography based optimization (BBO) and big bang-big crunch (BB-BC) optimization algorithms. Simulations conclude that the proposed parallel hybrid multi-objective Bat algorithm works efficiently as compared to original multi-objective Bat algorithm and other existing algorithms to generate OGRs for optical WDM systems. The algorithm PHMOBA to generate OGRs, has higher convergence and success rate than original MOBA. The efficiency improvement of proposed PHMOBA to generate OGRs up to 20-marks, in terms of ruler length and total optical channel bandwidth (TBW) is 100 %, whereas for original MOBA is 85 %. Finally the implications for further research are also discussed.
Bansal, Shonak; Singh, Arun Kumar; Gupta, Neena
2017-02-01
In real-life, multi-objective engineering design problems are very tough and time consuming optimization problems due to their high degree of nonlinearities, complexities and inhomogeneity. Nature-inspired based multi-objective optimization algorithms are now becoming popular for solving multi-objective engineering design problems. This paper proposes original multi-objective Bat algorithm (MOBA) and its extended form, namely, novel parallel hybrid multi-objective Bat algorithm (PHMOBA) to generate shortest length Golomb ruler called optimal Golomb ruler (OGR) sequences at a reasonable computation time. The OGRs found their application in optical wavelength division multiplexing (WDM) systems as channel-allocation algorithm to reduce the four-wave mixing (FWM) crosstalk. The performances of both the proposed algorithms to generate OGRs as optical WDM channel-allocation is compared with other existing classical computing and nature-inspired algorithms, including extended quadratic congruence (EQC), search algorithm (SA), genetic algorithms (GAs), biogeography based optimization (BBO) and big bang-big crunch (BB-BC) optimization algorithms. Simulations conclude that the proposed parallel hybrid multi-objective Bat algorithm works efficiently as compared to original multi-objective Bat algorithm and other existing algorithms to generate OGRs for optical WDM systems. The algorithm PHMOBA to generate OGRs, has higher convergence and success rate than original MOBA. The efficiency improvement of proposed PHMOBA to generate OGRs up to 20-marks, in terms of ruler length and total optical channel bandwidth (TBW) is 100 %, whereas for original MOBA is 85 %. Finally the implications for further research are also discussed.
Evaluation of hybrids algorithms for mass detection in digitalized mammograms
Energy Technology Data Exchange (ETDEWEB)
Cordero, Jose; Garzon Reyes, Johnson, E-mail: josecorderog@hotmail.com [Grupo de Optica y Espectroscopia GOE, Centro de Ciencia Basica, Universidad Pontifica Bolivariana de Medellin (Colombia)
2011-01-01
The breast cancer remains being a significant public health problem, the early detection of the lesions can increase the success possibilities of the medical treatments. The mammography is an image modality effective to early diagnosis of abnormalities, where the medical image is obtained of the mammary gland with X-rays of low radiation, this allows detect a tumor or circumscribed mass between two to three years before that it was clinically palpable, and is the only method that until now achieved reducing the mortality by breast cancer. In this paper three hybrids algorithms for circumscribed mass detection on digitalized mammograms are evaluated. In the first stage correspond to a review of the enhancement and segmentation techniques used in the processing of the mammographic images. After a shape filtering was applied to the resulting regions. By mean of a Bayesian filter the survivors regions were processed, where the characteristics vector for the classifier was constructed with few measurements. Later, the implemented algorithms were evaluated by ROC curves, where 40 images were taken for the test, 20 normal images and 20 images with circumscribed lesions. Finally, the advantages and disadvantages in the correct detection of a lesion of every algorithm are discussed.
Validation and incremental value of the hybrid algorithm for CTO PCI.
Pershad, Ashish; Eddin, Moneer; Girotra, Sudhakar; Cotugno, Richard; Daniels, David; Lombardi, William
2014-10-01
To evaluate the outcomes and benefits of using the hybrid algorithm for chronic total occlusion (CTO) percutaneous coronary intervention (PCI). The hybrid algorithm harmonizes antegrade and retrograde techniques for performing CTO PCI. It has the potential to increase success rates and improve efficiency for CTO PCI. No previous data have analyzed the impact of this algorithm on CTO PCI success rates and procedural efficiency. Retrospective analysis of contemporary CTO PCI performed at two high-volume centers with adoption of the hybrid technique was compared to previously published CTO outcomes in a well matched group of patients and lesion subsets. After adoption of the hybrid algorithm, technical success was significantly higher in the post hybrid algorithm group 189/198 (95.4%) vs the pre-algorithm group 367/462 (79.4%) (P CTO PCI. © 2014 Wiley Periodicals, Inc.
Visual tracking method based on cuckoo search algorithm
Gao, Ming-Liang; Yin, Li-Ju; Zou, Guo-Feng; Li, Hai-Tao; Liu, Wei
2015-07-01
Cuckoo search (CS) is a new meta-heuristic optimization algorithm that is based on the obligate brood parasitic behavior of some cuckoo species in combination with the Lévy flight behavior of some birds and fruit flies. It has been found to be efficient in solving global optimization problems. An application of CS is presented to solve the visual tracking problem. The relationship between optimization and visual tracking is comparatively studied and the parameters' sensitivity and adjustment of CS in the tracking system are experimentally studied. To demonstrate the tracking ability of a CS-based tracker, a comparative study of tracking accuracy and speed of the CS-based tracker with six "state-of-art" trackers, namely, particle filter, meanshift, PSO, ensemble tracker, fragments tracker, and compressive tracker are presented. Comparative results show that the CS-based tracker outperforms the other trackers.
Ergodesk-desktop Ergonomics Using the New Quadratic Search Algorithm
Directory of Open Access Journals (Sweden)
A. Baskar
2014-10-01
Full Text Available Ergonomics is nothing but the rules governing the workplace. ErgoDesk is the ultimate drug-free way to look after your spine and health. This research provides an interesting and realistic solution towards achieving the goal maintaining good health. Physical stress at the work environment can reduce efficiency of the individuals at work. Ergonomics is described as the rules to be adapted by one, at work environment. The main focus of ergonomics is to reduce the physical stress caused by factors like improper body mechanics, repetitive motor movements, static positions, vibrations, lighting and impact or contact with objects. Henceforth, through this paper, we present a distinct tool called the “ERGODESK”, which could be useful for monitoring a computer user’s posture and activities. In this study, we present a real time feedback system for detecting people and their postures and generating summaries of postures and activities over a specified period of time. The system runs reliably on different people and under any lighting. The fundamental challenge, to detect the change in user’s posture most accurately in the least time, has been analysed and a solution in form of new Quadratic Search Algorithm has been proposed. The system captures an image of the user at regular intervals of time, carries out certain pre-processing steps and then checks for a change in user’s posture by comparing it with a reference image acquired previously in series of steps as per the New Quadratic Search algorithm. Then the user is notified about the change of his ergonomic posture.
Directory of Open Access Journals (Sweden)
Sai Ram Inkollu
2016-09-01
Full Text Available This paper presents a novel technique for optimizing the FACTS devices, so as to maintain the voltage stability in the power transmission systems. Here, the particle swarm optimization algorithm (PSO and the adaptive gravitational search algorithm (GSA technique are proposed for improving the voltage stability of the power transmission systems. In the proposed approach, the PSO algorithm is used for optimizing the gravitational constant and to improve the searching performance of the GSA. Using the proposed technique, the optimal settings of the FACTS devices are determined. The proposed algorithm is an effective method for finding out the optimal location and the sizing of the FACTS controllers. The optimal locations and the power ratings of the FACTS devices are determined based on the voltage collapse rating as well as the power loss of the system. Here, two FACTS devices are used to evaluate the performance of the proposed algorithm, namely, the unified power flow controller (UPFC and the interline power flow controller (IPFC. The Newton–Raphson load flow study is used for analyzing the power flow in the transmission system. From the power flow analysis, bus voltages, active power, reactive power, and power loss of the transmission systems are determined. Then, the voltage stability is enhanced while satisfying a given set of operating and physical constraints. The proposed technique is implemented in the MATLAB platform and consequently, its performance is evaluated and compared with the existing GA based GSA hybrid technique. The performance of the proposed technique is tested with the benchmark system of IEEE 30 bus using two FACTS devices such as, the UPFC and the IPFC.
Segmentation of MRI Brain Images with an Improved Harmony Searching Algorithm.
Yang, Zhang; Shufan, Ye; Li, Guo; Weifeng, Ding
2016-01-01
The harmony searching (HS) algorithm is a kind of optimization search algorithm currently applied in many practical problems. The HS algorithm constantly revises variables in the harmony database and the probability of different values that can be used to complete iteration convergence to achieve the optimal effect. Accordingly, this study proposed a modified algorithm to improve the efficiency of the algorithm. First, a rough set algorithm was employed to improve the convergence and accuracy of the HS algorithm. Then, the optimal value was obtained using the improved HS algorithm. The optimal value of convergence was employed as the initial value of the fuzzy clustering algorithm for segmenting magnetic resonance imaging (MRI) brain images. Experimental results showed that the improved HS algorithm attained better convergence and more accurate results than those of the original HS algorithm. In our study, the MRI image segmentation effect of the improved algorithm was superior to that of the original fuzzy clustering method.
Directory of Open Access Journals (Sweden)
Ming Yu
2015-12-01
Full Text Available This article proposes a sequential fault diagnosis method to handle asynchronous distinct faults using diagnostic hybrid bond graph and composite harmony search. The faults under consideration include fault mode, abrupt fault, and intermittent fault. The faults can occur in different time instances, which add to the difficulty of decision making for fault diagnosis. This is because the earlier occurred fault can exhibit fault symptom which masks the fault symptom of latter occurred fault. In order to solve this problem, a sequential identification algorithm is developed in which the identification task is reactivated based on two conditions. The first condition is that the latter occurred fault has at least one inconsistent coherence vector element which is consistent in coherence vector of the earlier occurred fault, and the second condition is that the existing fault coherence vector has the ability to hide other faults and the second-level residual exceeds the threshold. A new composite harmony search which is capable of handling continuous variables and binary variables simultaneously is proposed for identification purpose. Experiments on a mobile robot system are conducted to assess the proposed sequential fault diagnosis algorithm.
Directory of Open Access Journals (Sweden)
Hyo Seon Park
2014-01-01
Full Text Available Since genetic algorithm-based optimization methods are computationally expensive for practical use in the field of structural optimization, a resizing technique-based hybrid genetic algorithm for the drift design of multistory steel frame buildings is proposed to increase the convergence speed of genetic algorithms. To reduce the number of structural analyses required for the convergence, a genetic algorithm is combined with a resizing technique that is an efficient optimal technique to control the drift of buildings without the repetitive structural analysis. The resizing technique-based hybrid genetic algorithm proposed in this paper is applied to the minimum weight design of three steel frame buildings. To evaluate the performance of the algorithm, optimum weights, computational times, and generation numbers from the proposed algorithm are compared with those from a genetic algorithm. Based on the comparisons, it is concluded that the hybrid genetic algorithm shows clear improvements in convergence properties.
Review of tandem repeat search tools: a systematic approach to evaluating algorithmic performance
National Research Council Canada - National Science Library
Lim, Kian Guan; Kwoh, Chee Keong; Hsu, Li Yang; Wirawan, Adrianto
2013-01-01
.... Over the last 10-15 years, numerous tools have been developed for searching tandem repeats, but differences in the search algorithms adopted and difficulties with parameter settings have confounded...
Global multipartite entanglement dynamics in Grover's search algorithm
Pan, Minghua; Qiu, Daowen; Zheng, Shenggen
2017-09-01
Entanglement is considered to be one of the primary reasons for why quantum algorithms are more efficient than their classical counterparts for certain computational tasks. The global multipartite entanglement of the multiqubit states in Grover's search algorithm can be quantified using the geometric measure of entanglement (GME). Rossi et al. (Phys Rev A 87:022331, 2013) found that the entanglement dynamics is scale invariant for large n. Namely, the GME does not depend on the number n of qubits; rather, it only depends on the ratio of iteration k to the total iteration. In this paper, we discuss the optimization of the GME for large n. We prove that "the GME is scale invariant" does not always hold. We show that there is generally a turning point that can be computed in terms of the number of marked states and their Hamming weights during the curve of the GME. The GME is scale invariant prior to the turning point. However, the GME is not scale invariant after the turning point since it also depends on n and the marked states.
A Novel Quantum Inspired Cuckoo Search Algorithm for Bin Packing Problem
Directory of Open Access Journals (Sweden)
Abdesslem Layeb
2012-05-01
Full Text Available The Bin Packing Problem (BPP is one of the most known combinatorial optimization problems. This problem consists to pack a set of items into a minimum number of bins. There are several variants of this problem; the most basic problem is the one-dimensional bin packing problem (1-BPP. In this paper, we present a new approach based on the quantum inspired cuckoo search algorithm to deal with the 1-BPP problem. The contribution consists in defining an appropriate quantum representation based on qubit representation to represent bin packing solutions. The second contribution is proposition of a new hybrid quantum measure operation which uses first fit heuristic to pack no filled objects by the standard measure operation. The obtained results are very encouraging and show the feasibility and effectiveness of the proposed approach.
Q-Learning-Based Adjustable Fixed-Phase Quantum Grover Search Algorithm
Guo, Ying; Shi, Wensha; Wang, Yijun; Hu, Jiankun
2017-02-01
We demonstrate that the rotation phase can be suitably chosen to increase the efficiency of the phase-based quantum search algorithm, leading to a dynamic balance between iterations and success probabilities of the fixed-phase quantum Grover search algorithm with Q-learning for a given number of solutions. In this search algorithm, the proposed Q-learning algorithm, which is a model-free reinforcement learning strategy in essence, is used for performing a matching algorithm based on the fraction of marked items λ and the rotation phase α. After establishing the policy function α = π(λ), we complete the fixed-phase Grover algorithm, where the phase parameter is selected via the learned policy. Simulation results show that the Q-learning-based Grover search algorithm (QLGA) enables fewer iterations and gives birth to higher success probabilities. Compared with the conventional Grover algorithms, it avoids the optimal local situations, thereby enabling success probabilities to approach one.
Hybrid Monte Carlo algorithm with fat link fermion actions
Kamleh, Waseem; Williams, Anthony G; 10.1103/PhysRevD.70.014502
2004-01-01
The use of APE smearing or other blocking techniques in lattice fermion actions can provide many advantages. There are many variants of these fat link actions in lattice QCD currently, such as flat link irrelevant clover (FLIC) fermions. The FLIC fermion formalism makes use of the APE blocking technique in combination with a projection of the blocked links back into the special unitary group. This reunitarization is often performed using an iterative maximization of a gauge invariant measure. This technique is not differentiable with respect to the gauge field and thus prevents the use of standard Hybrid Monte Carlo simulation algorithms. The use of an alternative projection technique circumvents this difficulty and allows the simulation of dynamical fat link fermions with standard HMC and its variants. The necessary equations of motion for FLIC fermions are derived, and some initial simulation results are presented. The technique is more general however, and is straightforwardly applicable to other smearing ...
A hybrid algorithm for parallel molecular dynamics simulations
Mangiardi, Chris M
2016-01-01
This article describes an algorithm for hybrid parallelization and SIMD vectorization of molecular dynamics simulations with short-ranged forces. The parallelization method combines domain decomposition with a thread-based parallelization approach. The goal of the work is to enable efficient simulations of very large (tens of millions of atoms) and inhomogeneous systems on many-core processors with hundreds or thousands of cores and SIMD units with large vector sizes. In order to test the efficiency of the method, simulations of a variety of configurations with up to 74 million atoms have been performed. Results are shown that were obtained on multi-core systems with AVX and AVX-2 processors as well as Xeon-Phi co-processors.
A hybrid nested partitions algorithm for banking facility location problems
Xia, Li
2010-07-01
The facility location problem has been studied in many industries including banking network, chain stores, and wireless network. Maximal covering location problem (MCLP) is a general model for this type of problems. Motivated by a real-world banking facility optimization project, we propose an enhanced MCLP model which captures the important features of this practical problem, namely, varied costs and revenues, multitype facilities, and flexible coverage functions. To solve this practical problem, we apply an existing hybrid nested partitions algorithm to the large-scale situation. We further use heuristic-based extensions to generate feasible solutions more efficiently. In addition, the upper bound of this problem is introduced to study the quality of solutions. Numerical results demonstrate the effectiveness and efficiency of our approach. © 2010 IEEE.
A NEW HYBRID ALGORITHM FOR BUSINESS INTELLIGENCE RECOMMENDER SYSTEM
Directory of Open Access Journals (Sweden)
P.Prabhu
2014-03-01
Full Text Available Business Intelligence is a set of methods, process and technologies that transform raw data into meaningful and useful information. Recommender system is one of business intelligence system that is used to obtain knowledge to the active user for better decision making. Recommender systems apply data mining techniques to the problem of making personalized recommendations for information. Due to the growth in the number of information and the users in recent years offers challenges in recommender systems. Collaborative, content, demographic and knowledge-based are four different types of recommendations systems. In this paper, a new hybrid algorithm is proposed for recommender system which combines knowledge based, profile of the users and most frequent item mining technique to obtain intelligence.
A study of speech emotion recognition based on hybrid algorithm
Zhu, Ju-xia; Zhang, Chao; Lv, Zhao; Rao, Yao-quan; Wu, Xiao-pei
2011-10-01
To effectively improve the recognition accuracy of the speech emotion recognition system, a hybrid algorithm which combines Continuous Hidden Markov Model (CHMM), All-Class-in-One Neural Network (ACON) and Support Vector Machine (SVM) is proposed. In SVM and ACON methods, some global statistics are used as emotional features, while in CHMM method, instantaneous features are employed. The recognition rate by the proposed method is 92.25%, with the rejection rate to be 0.78%. Furthermore, it obtains the relative increasing of 8.53%, 4.69% and 0.78% compared with ACON, CHMM and SVM methods respectively. The experiment result confirms the efficiency of distinguishing anger, happiness, neutral and sadness emotional states.
A hybrid algorithm for parallel molecular dynamics simulations
Mangiardi, Chris M.; Meyer, R.
2017-10-01
This article describes algorithms for the hybrid parallelization and SIMD vectorization of molecular dynamics simulations with short-range forces. The parallelization method combines domain decomposition with a thread-based parallelization approach. The goal of the work is to enable efficient simulations of very large (tens of millions of atoms) and inhomogeneous systems on many-core processors with hundreds or thousands of cores and SIMD units with large vector sizes. In order to test the efficiency of the method, simulations of a variety of configurations with up to 74 million atoms have been performed. Results are shown that were obtained on multi-core systems with Sandy Bridge and Haswell processors as well as systems with Xeon Phi many-core processors.
A hybrid algorithm for flexible job-shop scheduling problem with setup times
Directory of Open Access Journals (Sweden)
Ameni Azzouz
2017-01-01
Full Text Available Job-shop scheduling problem is one of the most important fields in manufacturing optimization where a set of n jobs must be processed on a set of m specified machines. Each job consists of a specific set of operations, which have to be processed according to a given order. The Flexible Job Shop problem (FJSP is a generalization of the above-mentioned problem, where each operation can be processed by a set of resources and has a processing time depending on the resource used. The FJSP problems cover two difficulties, namely, machine assignment problem and operation sequencing problem. This paper addresses the flexible job-shop scheduling problem with sequence-dependent setup times to minimize two kinds of objectives function: makespan and bi-criteria objective function. For that, we propose a hybrid algorithm based on genetic algorithm (GA and variable neighbourhood search (VNS to solve this problem. To evaluate the performance of our algorithm, we compare our results with other methods existing in literature. All the results show the superiority of our algorithm against the available ones in terms of solution quality.
Polynomial search and global modeling: Two algorithms for modeling chaos.
Mangiarotti, S; Coudret, R; Drapeau, L; Jarlan, L
2012-10-01
Global modeling aims to build mathematical models of concise description. Polynomial Model Search (PoMoS) and Global Modeling (GloMo) are two complementary algorithms (freely downloadable at the following address: http://www.cesbio.ups-tlse.fr/us/pomos_et_glomo.html) designed for the modeling of observed dynamical systems based on a small set of time series. Models considered in these algorithms are based on ordinary differential equations built on a polynomial formulation. More specifically, PoMoS aims at finding polynomial formulations from a given set of 1 to N time series, whereas GloMo is designed for single time series and aims to identify the parameters for a selected structure. GloMo also provides basic features to visualize integrated trajectories and to characterize their structure when it is simple enough: One allows for drawing the first return map for a chosen Poincaré section in the reconstructed space; another one computes the Lyapunov exponent along the trajectory. In the present paper, global modeling from single time series is considered. A description of the algorithms is given and three examples are provided. The first example is based on the three variables of the Rössler attractor. The second one comes from an experimental analysis of the copper electrodissolution in phosphoric acid for which a less parsimonious global model was obtained in a previous study. The third example is an exploratory case and concerns the cycle of rainfed wheat under semiarid climatic conditions as observed through a vegetation index derived from a spatial sensor.
A New Cross Based Gradient Descent Search Algorithm for Block Matching in MPEG-4 Encoder
Institute of Scientific and Technical Information of China (English)
WANGZhenzhou; LIGuiling
2003-01-01
Motion estimation is an important part of the Moving pictures expert group-4 (MPEG-4) encoder, due to its significant impact on the bit rate and the output quality of the encoder sequence. Unfortunately this feature occupies a significant part of the encoding time especially when using the straightforward Full Search algorithm. For frame based video encoding, a lot of fast algorithms have been proposed, which have proved to be efficient in encoding In this paper We proposed a new algorithm named Cross based gradient descent search (CBGDS) algorithm, which is significantly faster than FS and gives similar quality of the output sequence. At the same time, We compare our algorithm with some other algorithms, such as Three step search (TSS), Improved three step search (ITSS), New three step search (NTSS), Four step search (4SS), Diamond search (DS), Block based gradient descent search (BBGDS) and Cellular search (CS). As the experimental results show, our algorithm has its advantage over the others. For objects based video encoding, most of the existing fast algorithms are not suitable because the arbitrarily shaped objects have more local minima. So we incorporate the alpha information and propose a new algorithm, which is compatible with the previously proposed efficient motion estimation method for arbitrarily shaped video objects.