WorldWideScience

Sample records for hybrid scenario based

  1. Scenario-based stochastic optimal operation of wind, photovoltaic, pump-storage hybrid system in frequency- based pricing

    International Nuclear Information System (INIS)

    Zare Oskouei, Morteza; Sadeghi Yazdankhah, Ahmad

    2015-01-01

    Highlights: • Two-stage objective function is proposed for optimization problem. • Hourly-based optimal contractual agreement is calculated. • Scenario-based stochastic optimization problem is solved. • Improvement of system frequency by utilizing PSH unit. - Abstract: This paper proposes the operating strategy of a micro grid connected wind farm, photovoltaic and pump-storage hybrid system. The strategy consists of two stages. In the first stage, the optimal hourly contractual agreement is determined. The second stage corresponds to maximizing its profit by adapting energy management strategy of wind and photovoltaic in coordination with optimum operating schedule of storage device under frequency based pricing for a day ahead electricity market. The pump-storage hydro plant is utilized to minimize unscheduled interchange flow and maximize the system benefit by participating in frequency control based on energy price. Because of uncertainties in power generation of renewable sources and market prices, generation scheduling is modeled by a stochastic optimization problem. Uncertainties of parameters are modeled by scenario generation and scenario reduction method. A powerful optimization algorithm is proposed using by General Algebraic Modeling System (GAMS)/CPLEX. In order to verify the efficiency of the method, the algorithm is applied to various scenarios with different wind and photovoltaic power productions in a day ahead electricity market. The numerical results demonstrate the effectiveness of the proposed approach.

  2. Hybrid Scenarios, Transmedia Storytelling, Expanded Ethnography

    Directory of Open Access Journals (Sweden)

    Daniel Domínguez Figaredo

    2012-10-01

    Full Text Available The transformation of social scenarios due to the impact of digital technologies, introduces new possibilities for ethnographic research. Once the initial approaches focused on the dichotomy of “physical-virtual spaces” have been overcame, it comes a stage of maturity that allows the ethnographers to open new avenues for conceptual and analytical methodology applied in techno-social scenarios. This article discusses the evolution of some key dimensions of ethnography according to the new social and epistemological framework. The discussion is based on the analysis of expanded practices that take place in the new techno-social spaces, defined as hybrid environments, where technologies are embedded in the physical life of the subjects. On the one hand, we consider the production of actions based on the assembly of ideas, meanings and objects through digital mediation devices. It is also analysed the transmedia component of the narratives that make sense to allow the experiments. Underlying the analysis, some elements are introduced for discussion on the scope of expanded ethnographic research, the influence of transmedia phenomenon in the notion of “field” and the methods for determining the significance through digital storytelling.

  3. Hybrid Map-Based Navigation Method for Unmanned Ground Vehicle in Urban Scenario

    Directory of Open Access Journals (Sweden)

    Huiyan Chen

    2013-07-01

    Full Text Available To reduce the data size of metric map and map matching computational cost in unmanned ground vehicle self-driving navigation in urban scenarios, a metric-topological hybrid map navigation system is proposed in this paper. According to the different positioning accuracy requirements, urban areas are divided into strong constraint (SC areas, such as roads with lanes, and loose constraint (LC areas, such as intersections and open areas. As direction of the self-driving vehicle is provided by traffic lanes and global waypoints in the road network, a simple topological map is fit for the navigation in the SC areas. While in the LC areas, the navigation of the self-driving vehicle mainly relies on the positioning information. Simultaneous localization and mapping technology is used to provide a detailed metric map in the LC areas, and a window constraint Markov localization algorithm is introduced to achieve accurate position using laser scanner. Furthermore, the real-time performance of the Markov algorithm is enhanced by using a constraint window to restrict the size of the state space. By registering the metric maps into the road network, a hybrid map of the urban scenario can be constructed. Real unmanned vehicle mapping and navigation tests demonstrated the capabilities of the proposed method.

  4. Optimizing the current ramp-up phase for the hybrid ITER scenario

    NARCIS (Netherlands)

    Hogeweij, G.M.D.; Artaud, J.F.; Casper, T.A.; Citrin, J.; Imbeaux, F.; Köchl, F.; Litaudon, X.; Voitsekhovitch, I.

    2013-01-01

    The current ramp-up phase for the ITER hybrid scenario is analysed with the CRONOS integrated modelling suite. The simulations presented in this paper show that the heating systems available at ITER allow, within the operational limits, the attainment of a hybrid q profile at the end of the current

  5. Magnetic Flux Conversion in the DIII-D Steady-State Hybrid Scenario

    Science.gov (United States)

    Taylor, N. Z.; Luce, T. C.; La Haye, R. J.; Petty, C. C.; Nazikian, R.

    2017-10-01

    The hybrid is a promising high confinement scenario for ITER. The broader current profile aids discharge sustainment by raising qmin > 1 thereby avoiding sawtooth-triggered 2/1 tearing modes. In DIII-D hybrid scenario discharges, the rate of poloidal magnetic energy consumption is more than the rate of energy flow from the poloidal field coils. This is evidence that there is a conversion of toroidal flux to poloidal flux, which may be responsible for the anomalous broadening of the current profile known as flux pumping. The rate of poloidal flux being provided and consumed was tracked with coil and kinetic flux states. During long stationary intervals (1.5 seconds) with constant stored magnetic energy, a significant flux state deficit rate >10 mV was observed. The inequality in the evolution of the flux states was observed in hybrids that were 100% non-inductive and with successful RMP ELM suppression. Work supported by the US DOE under DE-FC02-04ER54698 and DE-AC05-06OR23100.

  6. Numerical optimization of actuator trajectories for ITER hybrid scenario profile evolution

    International Nuclear Information System (INIS)

    Dongen, J van; Hogeweij, G M D; Felici, F; Geelen, P; Maljaars, E

    2014-01-01

    Optimal actuator trajectories for an ITER hybrid scenario ramp-up are computed using a numerical optimization method. For both L-mode and H-mode scenarios, the time trajectory of plasma current, EC heating and current drive distribution is determined that minimizes a chosen cost function, while satisfying constraints. The cost function is formulated to reflect two desired properties of the plasma q profile at the end of the ramp-up. The first objective is to maximize the ITG turbulence threshold by maximizing the volume-averaged s/q ratio. The second objective is to achieve a stationary q profile by having a flat loop voltage profile. Actuator and physics-derived constraints are included, imposing limits on plasma current, ramp rates, internal inductance and q profile. This numerical method uses the fast control-oriented plasma profile evolution code RAPTOR, which is successfully benchmarked against more complete CRONOS simulations for L-mode and H-mode mode ITER hybrid scenarios. It is shown that the optimized trajectories computed using RAPTOR also result in an improved ramp-up scenario for CRONOS simulations using the same input trajectories. Furthermore, the optimal trajectories are shown to vary depending on the precise timing of the L–H transition. (paper)

  7. The use of multi criteria analysis to compare the operating scenarios of the hybrid generation system of wind turbines, photovoltaic modules and a fuel cell

    Science.gov (United States)

    Ceran, Bartosz

    2017-11-01

    The paper presents the results of the use of multi-criteria analysis to compare hybrid power generation system collaboration scenarios (HSW) consisting of wind turbines, solar panels and energy storage electrolyzer - PEM type fuel cell with electricity system. The following scenarios were examined: the base S-I-hybrid system powers the off-grid mode receiver, S-II, S-III, S-IV scenarios-electricity system covers 25%, 50%, 75% of energy demand by the recipient. The effect of weights of the above-mentioned criteria on the final result of the multi-criteria analysis was examined.

  8. Web-based hybrid-dimensional Visualization and Exploration of Cytological Localization Scenarios

    Directory of Open Access Journals (Sweden)

    Kovanci Gökhan

    2016-10-01

    Full Text Available The CELLmicrocosmos 4.2 PathwayIntegration (CmPI is a tool which provides hybriddimensional visualization and analysis of intracellular protein and gene localizations in the context of a virtual 3D environment. This tool is developed based on Java/Java3D/JOGL and provides a standalone application compatible to all relevant operating systems. However, it requires Java and the local installation of the software. Here we present the prototype of an alternative web-based visualization approach, using Three.js and D3.js. In this way it is possible to visualize and explore CmPI-generated localization scenarios including networks mapped to 3D cell components by just providing a URL to a collaboration partner. This publication describes the integration of the different technologies - Three.js, D3.js and PHP - as well as an application case: a localization scenario of the citrate cycle. The CmPI web viewer is available at: http://CmPIweb.CELLmicrocosmos.org.

  9. Performance analysis of switching based hybrid FSO/RF transmission

    KAUST Repository

    Usman, Muneer; Yang, Hongchuan; Alouini, Mohamed-Slim

    2014-01-01

    Hybrid free space optical (FSO)/ radio frequency (RF) systems have emerged as a promising solution for high data rate wireless back haul.We present and analyze a switching based transmission scheme for hybrid FSO/RF system. Specifically, either FSO or RF link will be active at a certain time instance, with FSO link enjoying a higher priority. Analytical expressions have been obtained for the outage probability, average bit error rate and ergodic capacity for the resulting system. Numerical examples are presented to compare the performance of the hybrid scheme with FSO only scenario.

  10. Performance analysis of switching based hybrid FSO/RF transmission

    KAUST Repository

    Usman, Muneer

    2014-09-01

    Hybrid free space optical (FSO)/ radio frequency (RF) systems have emerged as a promising solution for high data rate wireless back haul.We present and analyze a switching based transmission scheme for hybrid FSO/RF system. Specifically, either FSO or RF link will be active at a certain time instance, with FSO link enjoying a higher priority. Analytical expressions have been obtained for the outage probability, average bit error rate and ergodic capacity for the resulting system. Numerical examples are presented to compare the performance of the hybrid scheme with FSO only scenario.

  11. A methodology for scenario development based on understanding of long-term evolution of geological disposal systems

    International Nuclear Information System (INIS)

    Wakasugi, Keiichiro; Ishiguro, Katsuhiko; Ebashi, Takeshi; Ueda, Hiroyoshi; Koyama, Toshihiro; Shiratsuchi, Hiroshi; Yashio, Shoko; Kawamura, Hideki

    2012-01-01

    We have developed a 'hybrid' scenario development method by combining bottom-up and top-down approaches and applied for the case of geological disposal of high-level waste. This approach provides a top-down perspective, by introducing a concept of safety functions for different periods and 'storyboards', which depict repository evolution with time on a range of spatial scales, and a bottom-up perspective, by identifying relationship between processes related to radionuclide migration and safety functions based on feature, event and process (FEP) management. Based on a trial study, we have specified work descriptions for each step of the hybrid scenario development methodology and confirmed that the storyboard provides a baseline and holistic overview for the FEP management and a common platform to involve close interaction with experts in various disciplines to understand the crossover phenomenological processes. We also confirmed that there is no conflict between the top-down approach and the bottom-up approach and the hybrid scenario development work frame fulfils the specified requirements for traceability, comprehensiveness, ease of understanding, integration of multidisciplinary knowledge and applicability to a staged approach to siting. (author)

  12. Bond graph model-based fault diagnosis of hybrid systems

    CERN Document Server

    Borutzky, Wolfgang

    2015-01-01

    This book presents a bond graph model-based approach to fault diagnosis in mechatronic systems appropriately represented by a hybrid model. The book begins by giving a survey of the fundamentals of fault diagnosis and failure prognosis, then recalls state-of-art developments referring to latest publications, and goes on to discuss various bond graph representations of hybrid system models, equations formulation for switched systems, and simulation of their dynamic behavior. The structured text: • focuses on bond graph model-based fault detection and isolation in hybrid systems; • addresses isolation of multiple parametric faults in hybrid systems; • considers system mode identification; • provides a number of elaborated case studies that consider fault scenarios for switched power electronic systems commonly used in a variety of applications; and • indicates that bond graph modelling can also be used for failure prognosis. In order to facilitate the understanding of fault diagnosis and the presented...

  13. Optimizing the current ramp-up phase for the hybrid ITER scenario

    International Nuclear Information System (INIS)

    Hogeweij, G.M.D.; Citrin, J.; Artaud, J.-F.; Imbeaux, F.; Litaudon, X.; Casper, T.A.; Köchl, F.; Voitsekhovitch, I.

    2013-01-01

    The current ramp-up phase for the ITER hybrid scenario is analysed with the CRONOS integrated modelling suite. The simulations presented in this paper show that the heating systems available at ITER allow, within the operational limits, the attainment of a hybrid q profile at the end of the current ramp-up. A reference ramp-up scenario is reached by a combination of NBI, ECCD (UPL) and LHCD. A heating scheme with only NBI and ECCD can also reach the target q profile; however, LHCD can play a crucial role in reducing the flux consumption during the ramp-up phase. The optimum heating scheme depends on the chosen transport model, and on assumptions of parameters like n e peaking, edge T e,i and Z eff . The sensitivity of the current diffusion on parameters that are not easily controlled, shows that development of real-time control is important to reach the target q profile. A first step in that direction has been indicated in this paper. Minimizing resistive flux consumption and optimizing the q profile turn out to be conflicting requirements. A trade-off between these two requirements has to be made. In this paper it is shown that fast current ramp with L-mode current overshoot is at the one extreme, i.e. the optimum q profile at the cost of increased resistive flux consumption, whereas early H-mode transition is at the other extreme. (paper)

  14. Tungsten transport in JET H-mode plasmas in hybrid scenario, experimental observations and modelling

    Czech Academy of Sciences Publication Activity Database

    Angioni, C.; Mantica, P.; Pütterich, T.; Valisa, M.; Baruzzo, M.; Belli, A.E.; Belo, P.; Casson, F.J.; Challis, C.; Drewelow, P.; Giroud, C.; Hawkes, N.; Hender, T.C.; Hobirk, J.; Koskela, T.; Lauro Taroni, L.; Maggi, C.F.; Mlynář, Jan; Odstrčil, T.; Reinke, M.L.; Romanelli, M.

    2014-01-01

    Roč. 54, č. 8 (2014), 083028-083028 ISSN 0029-5515 Institutional support: RVO:61389021 Keywords : heavy impurity transport * H-mode hybrid scenario * neoclassical and turbulent transport Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 3.062, year: 2014 http://iopscience.iop.org/0029-5515/54/8/083028/pdf/0029-5515_54_8_083028.pdf

  15. Energy scenarios: a prospective outlook

    International Nuclear Information System (INIS)

    Salomon, Thierry; Claustre, Raphael; Charru, Madeleine; Sukov, Stephane; Marignac, Yves; Fink, Meike; Bibas, Ruben; Le Saux, Gildas

    2011-01-01

    A set of articles discusses the use of energy scenarios: how useful they can be to describe a possible future and even to gather the involved actors, how they have been used in France in the past (for planning or prediction purposes, with sometimes some over-assessed or contradictory results, without considering any decline of nuclear energy, or by setting an impossible equation in the case of the Grenelle de l'Environnement), how the scenario framework impacts its content (depending on the approach type: standard, optimization, bottom-up, top-down, or hybrid). It also discusses the issue of choice of hypotheses on growth-based and de-growth-based scenarios, outlines how energy saving is a key for a sustainable evolution. Two German scenarios regarding electricity production (centralisation or decentralisation) and French regional scenarios for Nord-Pas-de-Calais are then briefly discussed

  16. Scenario-based strategizing

    DEFF Research Database (Denmark)

    Lehr, Thomas; Lorenz, Ullrich; Willert, Markus

    2017-01-01

    For over 40 years, scenarios have been promoted as a key technique for forming strategies in uncertain en- vironments. However, many challenges remain. In this article, we discuss a novel approach designed to increase the applicability of scenario-based strategizing in top management teams. Drawi...... Ministry) and a firm affected by disruptive change (Bosch, leading global supplier of technology and solutions)....

  17. Analysis of cloud-based solutions on EHRs systems in different scenarios.

    Science.gov (United States)

    Fernández-Cardeñosa, Gonzalo; de la Torre-Díez, Isabel; López-Coronado, Miguel; Rodrigues, Joel J P C

    2012-12-01

    Nowadays with the growing of the wireless connections people can access all the resources hosted in the Cloud almost everywhere. In this context, organisms can take advantage of this fact, in terms of e-Health, deploying Cloud-based solutions on e-Health services. In this paper two Cloud-based solutions for different scenarios of Electronic Health Records (EHRs) management system are proposed. We have researched articles published between the years 2005 and 2011 about the implementation of e-Health services based on the Cloud in Medline. In order to analyze the best scenario for the deployment of Cloud Computing two solutions for a large Hospital and a network of Primary Care Health centers have been studied. Economic estimation of the cost of the implementation for both scenarios has been done via the Amazon calculator tool. As a result of this analysis two solutions are suggested depending on the scenario: To deploy a Cloud solution for a large Hospital a typical Cloud solution in which are hired just the needed services has been assumed. On the other hand to work with several Primary Care Centers it's suggested the implementation of a network, which interconnects these centers with just one Cloud environment. Finally it's considered the fact of deploying a hybrid solution: in which EHRs with images will be hosted in the Hospital or Primary Care Centers and the rest of them will be migrated to the Cloud.

  18. Practical Switching-Based Hybrid FSO/RF Transmission and Its Performance Analysis

    KAUST Repository

    Usman, Muneer

    2014-10-01

    Hybrid free-space optical (FSO)/radio-frequency (RF) systems have emerged as a promising solution for high-data-rate wireless backhaul. We present and analyze a switching-based transmission scheme for the hybrid FSO/RF system. Specifically, either the FSO or RF link will be active at a certain time instance, with the FSO link enjoying a higher priority. We considered both a single-threshold case and a dual-threshold case for FSO link operation. Analytical expressions have been obtained for the outage probability, average bit error rate, and ergodic capacity for the resulting system. Numerical examples are presented to compare the performance of the hybrid scheme with the FSO-only scenario.

  19. Practical Switching-Based Hybrid FSO/RF Transmission and Its Performance Analysis

    KAUST Repository

    Usman, Muneer; Hong-Chuan Yang; Alouini, Mohamed-Slim

    2014-01-01

    Hybrid free-space optical (FSO)/radio-frequency (RF) systems have emerged as a promising solution for high-data-rate wireless backhaul. We present and analyze a switching-based transmission scheme for the hybrid FSO/RF system. Specifically, either the FSO or RF link will be active at a certain time instance, with the FSO link enjoying a higher priority. We considered both a single-threshold case and a dual-threshold case for FSO link operation. Analytical expressions have been obtained for the outage probability, average bit error rate, and ergodic capacity for the resulting system. Numerical examples are presented to compare the performance of the hybrid scheme with the FSO-only scenario.

  20. A Hybrid Recommender System Based on User-Recommender Interaction

    OpenAIRE

    Zhang, Heng-Ru; Min, Fan; He, Xu; Xu, Yuan-Yuan

    2015-01-01

    Recommender systems are used to make recommendations about products, information, or services for users. Most existing recommender systems implicitly assume one particular type of user behavior. However, they seldom consider user-recommender interactive scenarios in real-world environments. In this paper, we propose a hybrid recommender system based on user-recommender interaction and evaluate its performance with recall and diversity metrics. First, we define the user-recommender interaction...

  1. Optimized Hybrid Renewable Energy System of Isolated Islands in Smart-Grid Scenario - A Case Study in Indian Context

    OpenAIRE

    Aurobi Das; V. Balakrishnan

    2012-01-01

    This paper focuses on the integration of hybrid renewable energy resources available in remote isolated islands of Sundarban-24 Parganas-South of Eastern part of India to National Grid of conventional power supply to give a Smart-Grid scenario. Before grid-integration, feasibility of optimization of hybrid renewable energy system is monitored through an Intelligent Controller proposed to be installed at Moushuni Island of Sundarban. The objective is to ensure the reliability and efficiency of...

  2. A Hybrid Fault-Tolerant Strategy for Severe Sensor Failure Scenarios in Late-Stage Offshore DFIG-WT

    Directory of Open Access Journals (Sweden)

    Wei Li

    2017-12-01

    Full Text Available As the phase current sensors and rotor speed/position sensor are prone to fail in the late stage of an offshore doubly-fed induction generator based wind turbine (DFIG-WT, this paper investigates a hybrid fault-tolerant strategy for a severe sensor failure scenario. The phase current sensors in the back-to-back (BTB converter and the speed/position sensor are in the faulty states simultaneously. Based on the 7th-order doubly-fed induction generator (DFIG dynamic state space model, the extended Kalman filter (EKF algorithm is applied for rotor speed and position estimation. In addition, good robustness of this sensorless control algorithm to system uncertainties and measurement disturbances is presented. Besides, a single DC-link current sensor based phase current reconstruction scheme is utilized for deriving the phase current information according to the switching states. A duty ratio adjustment strategy is proposed to avoid missing the sampling points in a switching period, which is simple to implement. Furthermore, the additional active time of the targeted nonzero switching states is complemented so that the reference voltage vector remains in the same position as that before duty ratio adjustment. The validity of the proposed hybrid fault-tolerant sensorless control strategy is demonstrated by simulation results in Matlab/Simulink2017a by considering harsh operating environments.

  3. A hybrid modelling approach to develop scenarios for China's carbon dioxide emissions to 2050

    International Nuclear Information System (INIS)

    Gambhir, Ajay; Schulz, Niels; Napp, Tamaryn; Tong, Danlu; Munuera, Luis; Faist, Mark; Riahi, Keywan

    2013-01-01

    This paper describes a hybrid modelling approach to assess the future development of China's energy system, for both a “hypothetical counterfactual baseline” (HCB) scenario and low carbon (“abatement”) scenarios. The approach combines a technology-rich integrated assessment model (MESSAGE) of China's energy system with a set of sector-specific, bottom-up, energy demand models for the transport, buildings and industrial sectors developed by the Grantham Institute for Climate Change at Imperial College London. By exploring technology-specific solutions in all major sectors of the Chinese economy, we find that a combination of measures, underpinned by low-carbon power options based on a mix of renewables, nuclear and carbon capture and storage, would fundamentally transform the Chinese energy system, when combined with increasing electrification of demand-side sectors. Energy efficiency options in these demand sectors are also important. - Highlights: • Combining energy supply and demand models reveals low-carbon technology choices across China's economy. • China could reduce its CO 2 emissions to close to 3 Gt in 2050, costing around 2% of GDP. • Decarbonising the power sector underpins the energy system transformation. • Electrification of industrial processes, building heating and transport is required. • Energy efficiency across the demand side is also important

  4. Hybrid Indoor-Based WLAN-WSN Localization Scheme for Improving Accuracy Based on Artificial Neural Network

    Directory of Open Access Journals (Sweden)

    Zahid Farid

    2016-01-01

    Full Text Available In indoor environments, WiFi (RSS based localization is sensitive to various indoor fading effects and noise during transmission, which are the main causes of localization errors that affect its accuracy. Keeping in view those fading effects, positioning systems based on a single technology are ineffective in performing accurate localization. For this reason, the trend is toward the use of hybrid positioning systems (combination of two or more wireless technologies in indoor/outdoor localization scenarios for getting better position accuracy. This paper presents a hybrid technique to implement indoor localization that adopts fingerprinting approaches in both WiFi and Wireless Sensor Networks (WSNs. This model exploits machine learning, in particular Artificial Natural Network (ANN techniques, for position calculation. The experimental results show that the proposed hybrid system improved the accuracy, reducing the average distance error to 1.05 m by using ANN. Applying Genetic Algorithm (GA based optimization technique did not incur any further improvement to the accuracy. Compared to the performance of GA optimization, the nonoptimized ANN performed better in terms of accuracy, precision, stability, and computational time. The above results show that the proposed hybrid technique is promising for achieving better accuracy in real-world positioning applications.

  5. Mars base buildup scenarios

    International Nuclear Information System (INIS)

    Blacic, J.D.

    1985-01-01

    Two surface base build-up scenarios are presented in order to help visualize the mission and to serve as a basis for trade studies. In the first scenario, direct manned landings on the Martian surface occur early in the missions and scientific investigation is the main driver and rationale. In the second scenario, early development of an infrastructure to exploite the volatile resources of the Martian moons for economic purposes is emphasized. Scientific exploration of the surface is delayed at first, but once begun develops rapidly aided by the presence of a permanently manned orbital station

  6. Base case and perturbation scenarios

    Energy Technology Data Exchange (ETDEWEB)

    Edmunds, T

    1998-10-01

    This report describes fourteen energy factors that could affect electricity markets in the future (demand, process, source mix, etc.). These fourteen factors are believed to have the most influence on the State's energy environment. A base case, or most probable, characterization is given for each of these fourteen factors over a twenty year time horizon. The base case characterization is derived from quantitative and qualitative information provided by State of California government agencies, where possible. Federal government databases are nsed where needed to supplement the California data. It is envisioned that a initial selection of issue areas will be based upon an evaluation of them under base case conditions. For most of the fourteen factors, the report identities possible perturbations from base case values or assumptions that may be used to construct additional scenarios. Only those perturbations that are plausible and would have a significant effect on energy markets are included in the table. The fourteen factors and potential perturbations of the factors are listed in Table 1.1. These perturbations can be combined to generate internally consist.ent. combinations of perturbations relative to the base case. For example, a low natural gas price perturbation should be combined with a high natural gas demand perturbation. The factor perturbations are based upon alternative quantitative forecasts provided by other institutions (the Department of Energy - Energy Information Administration in some cases), changes in assumptions that drive the quantitative forecasts, or changes in assumptions about the structure of the California energy markets. The perturbations are intended to be used for a qualitative reexamination of issue areas after an initial evaluation under the base case. The perturbation information would be used as a "tiebreaker;" to make decisions regarding those issue areas that were marginally accepted or rejected under the base case. Hf a

  7. Lower hybrid heating and current drive in ignitor shear reversal scenarios

    Energy Technology Data Exchange (ETDEWEB)

    Barbato, E; Pinaccione, L [Italian Agengy for New Technologies, Energy and the Environment, Centro Ricerche Frascati, Rome (Italy). Dip. Energia

    1996-05-01

    Injection of Lower Hybrid (LH) Wave power at 8 GHz is considered into IGNITOR shear reversal scenarios, characterized by a reduced plasma current and density. Power deposition calculation are performed to establish whether LH waves can be used both as central heating and off axis current drive tool. It turns out that LH waves can be used (a) for central plasma heating purpose during the current vamp phase, to freeze the shear reversed configuration, at the power level of {approx}10 MW. (b) to drive a current in the outer part of the plasma at the power level of 20 MW. In this way around 1/3-1/6 of the total current in the proper plasma position (i.e. where q is minimum) is driven.

  8. Hybrid Broadband Ground-Motion Simulation Using Scenario Earthquakes for the Istanbul Area

    KAUST Repository

    Reshi, Owais A.

    2016-04-13

    Seismic design, analysis and retrofitting of structures demand an intensive assessment of potential ground motions in seismically active regions. Peak ground motions and frequency content of seismic excitations effectively influence the behavior of structures. In regions of sparse ground motion records, ground-motion simulations provide the synthetic seismic records, which not only provide insight into the mechanisms of earthquakes but also help in improving some aspects of earthquake engineering. Broadband ground-motion simulation methods typically utilize physics-based modeling of source and path effects at low frequencies coupled with high frequency semi-stochastic methods. I apply the hybrid simulation method by Mai et al. (2010) to model several scenario earthquakes in the Marmara Sea, an area of high seismic hazard. Simulated ground motions were generated at 75 stations using systematically calibrated model parameters. The region-specific source, path and site model parameters were calibrated by simulating a w4.1 Marmara Sea earthquake that occurred on November 16, 2015 on the fault segment in the vicinity of Istanbul. The calibrated parameters were then used to simulate the scenario earthquakes with magnitudes w6.0, w6.25, w6.5 and w6.75 over the Marmara Sea fault. Effects of fault geometry, hypocenter location, slip distribution and rupture propagation were thoroughly studied to understand variability in ground motions. A rigorous analysis of waveforms reveal that these parameters are critical for determining the behavior of ground motions especially in the near-field. Comparison of simulated ground motion intensities with ground-motion prediction quations indicates the need of development of the region-specific ground-motion prediction equation for Istanbul area. Peak ground motion maps are presented to illustrate the shaking in the Istanbul area due to the scenario earthquakes. The southern part of Istanbul including Princes Islands show high amplitudes

  9. Cosmological dynamics of a hybrid chameleon scenario

    OpenAIRE

    Nozari, Kourosh; Rashidi, N.

    2013-01-01

    We consider a hybrid scalar field which is non-minimally coupled to the matter and models a chameleon cosmology. By introducing an effective potential, we study the dependence of the effective potential's minimum and hybrid chameleon field's masses to the local matter density. In a dynamical system technique, we analyze the phase space of this two-field chameleon model, find its fixed points and study their stability. We show that the hybrid chameleon domination solution is a stable attractor...

  10. Strong toroidal effects on tokamak tearing mode stability in the hybrid and conventional scenarios

    International Nuclear Information System (INIS)

    Ham, C J; Connor, J W; Cowley, S C; Gimblett, C G; Hastie, R J; Hender, T C; Martin, T J

    2012-01-01

    The hybrid scenario is thought to be an important mode of operation for the ITER tokamak. Analytic and numerical calculations demonstrate that toroidal effects at finite β have a strong influence on tearing mode stability of hybrid modes. Indeed, they persist in the large aspect ratio limit, R/a → ∞. A similar strong coupling effect is found between the m = 1, n = 1 harmonic and the m = 2, n = 1 harmonic if the minimum safety factor is less than unity. In both cases the tearing stability index, Δ′ increases rapidly as β approaches ideal marginal stability, providing a potential explanation for the onset of linearly unstable tearing modes. The numerical calculations have used an improved version of the T7 code (Fitzpatrick et al 1993 Nucl. Fusion 33 1533), and complete agreement is obtained with the analytic theory for this demanding test of the code. (paper)

  11. Hybrid Optimization-Based Approach for Multiple Intelligent Vehicles Requests Allocation

    Directory of Open Access Journals (Sweden)

    Ahmed Hussein

    2018-01-01

    Full Text Available Self-driving cars are attracting significant attention during the last few years, which makes the technology advances jump fast and reach a point of having a number of automated vehicles on the roads. Therefore, the necessity of cooperative driving for these automated vehicles is exponentially increasing. One of the main issues in the cooperative driving world is the Multirobot Task Allocation (MRTA problem. This paper addresses the MRTA problem, specifically for the problem of vehicles and requests allocation. The objective is to introduce a hybrid optimization-based approach to solve the problem of multiple intelligent vehicles requests allocation as an instance of MRTA problem, to find not only a feasible solution, but also an optimized one as per the objective function. Several test scenarios were implemented in order to evaluate the efficiency of the proposed approach. These scenarios are based on well-known benchmarks; thus a comparative study is conducted between the obtained results and the suboptimal results. The analysis of the experimental results shows that the proposed approach was successful in handling various scenarios, especially with the increasing number of vehicles and requests, which displays the proposed approach efficiency and performance.

  12. Scenario-based roadmapping assessing nuclear technology development paths for future nuclear energy system scenarios

    International Nuclear Information System (INIS)

    Van Den Durpel, Luc; Roelofs, Ferry; Yacout, Abdellatif

    2009-01-01

    Nuclear energy may play a significant role in a future sustainable energy mix. The transition from today's nuclear energy system towards a future more sustainable nuclear energy system will be dictated by technology availability, energy market competitiveness and capability to achieve sustainability through the nuclear fuel cycle. Various scenarios have been investigated worldwide each with a diverse set of assumptions on the timing and characteristics of new nuclear energy systems. Scenario-based roadmapping combines the dynamic scenario-analysis of nuclear energy systems' futures with the technology roadmap information published and analysed in various technology assessment reports though integrated within the nuclear technology roadmap Nuclear-Roadmap.net. The advantages of this combination is to allow mutual improvement of scenario analysis and nuclear technology roadmapping providing a higher degree of confidence in the assessment of nuclear energy system futures. This paper provides a description of scenario-based roadmapping based on DANESS and Nuclear-Roadmap.net. (author)

  13. Performance Assessment of a Solar-Assisted Desiccant-Based Air Handling Unit Considering Different Scenarios

    Directory of Open Access Journals (Sweden)

    Giovanni Angrisani

    2016-09-01

    Full Text Available In this paper, three alternative layouts (scenarios of an innovative solar-assisted hybrid desiccant-based air handling unit (AHU are investigated through dynamic simulations. Performance is evaluated with respect to a reference system and compared to those of the innovative plant without modifications. For each scenario, different collector types, surfaces and tilt angles are considered. The effect of the solar thermal energy surplus exploitation for other low-temperature uses is also investigated. The first alternative scenario consists of the recovery of the heat rejected by the condenser of the chiller to pre-heat the regeneration air. The second scenario considers the pre-heating of regeneration air with the warmer regeneration air exiting the desiccant wheel (DW. The last scenario provides pre-cooling of the process air before entering the DW. Results reveal that the plants with evacuated solar collectors (SC can ensure primary energy savings (15%–24% and avoid equivalent CO2 emissions (14%–22%, about 10 percentage points more than those with flat-plate collectors, when the solar thermal energy is used only for air conditioning and the collectors have the best tilt angle. If all of the solar thermal energy is considered, the best results with evacuated tube collectors are approximately 73% in terms of primary energy saving, 71% in terms of avoided equivalent CO2 emissions and a payback period of six years.

  14. Conventional, hybrid, plug-in hybrid or electric vehicles? State-based comparative carbon and energy footprint analysis in the United States

    International Nuclear Information System (INIS)

    Onat, Nuri Cihat; Kucukvar, Murat; Tatari, Omer

    2015-01-01

    Highlights: • Driving patterns and electricity generation mix influence vehicle preferences. • EVs are found to be least carbon-intensive vehicle option in 24 states. • HEVs are found to be the most energy-efficient option in 45 states. • EVs across the board are unfavorable in the marginal electricity mix scenario. • Use of renewable energy to power EVs/PHEVs is crucial. - Abstract: Electric vehicles (EVs), plug-in hybrid electric vehicles (PHEVs), and hybrid electric vehicles (HEVs) are often considered as better options in terms of greenhouse gas emissions and energy consumption compared to internal combustion vehicles. However, making any decision among these vehicle options is not a straightforward process due to temporal and spatial variations, such as the sources of the electricity used and regional driving patterns. In this study, we compared these vehicle options across 50 states, taking into account state-specific average and marginal electricity generation mixes, regional driving patterns, and vehicle and battery manufacturing impacts. Furthermore, a policy scenario proposing the widespread use of solar energy to charge EVs and PHEVs is evaluated. Based on the average electricity generation mix scenario, EVs are found to be least carbon-intensive vehicle option in 24 states, while HEVs are found to be the most energy-efficient option in 45 states. In the marginal electricity mix scenario, widespread adoption of EVs is found to be an unwise strategy given the existing and near-future marginal electricity generation mix. On the other hand, EVs can be superior to other alternatives in terms of energy-consumption, if the required energy to generate 1 kW h of electricity is below 1.25 kW h

  15. The scenario-based generalization of radiation therapy margins

    International Nuclear Information System (INIS)

    Fredriksson, Albin; Bokrantz, Rasmus

    2016-01-01

    We give a scenario-based treatment plan optimization formulation that is equivalent to planning with geometric margins if the scenario doses are calculated using the static dose cloud approximation. If the scenario doses are instead calculated more accurately, then our formulation provides a novel robust planning method that overcomes many of the difficulties associated with previous scenario-based robust planning methods. In particular, our method protects only against uncertainties that can occur in practice, it gives a sharp dose fall-off outside high dose regions, and it avoids underdosage of the target in ‘easy’ scenarios. The method shares the benefits of the previous scenario-based robust planning methods over geometric margins for applications where the static dose cloud approximation is inaccurate, such as irradiation with few fields and irradiation with ion beams. These properties are demonstrated on a suite of phantom cases planned for treatment with scanned proton beams subject to systematic setup uncertainty. (paper)

  16. Designing and Evaluating Conative Game-Based Learning Scenarios

    DEFF Research Database (Denmark)

    Schønau-Fog, Henrik

    2014-01-01

    It is an essential prerequisite to design for motivation in game-based learning applications, tools and activities. However, how is it possible to design and evaluate motivational game-based learning scenarios in a systematic process-oriented manner based on conation and player engagement? While...... of ‘continuation desire’ such as interfacing with the scenario, exploration and socialising. This paper aims to combine the concepts of Player Engagement, Conation and Continuation Desire by focusing on the conative aspects which are the essential drivers for the desire to continue any learning activity......-based learning scenarios....

  17. Scenarios and business models for mobile network operators utilizing the hybrid use concept of the UHF broadcasting spectrum

    Directory of Open Access Journals (Sweden)

    S. Yrjölä

    2016-09-01

    Full Text Available This paper explores and presents scenarios and business models for mobile network operators (MNOs in the novel hybrid use spectrum sharing concept of the Ultra High Frequency broadcasting spectrum (470-790 MHz used for Digital Terrestrial TV (DTT and Mobile Broadband (MBB. More flexible use of the band could lead to higher efficiency in delivering fast growing and converging MBB, media and TV content to meet changing consumer needs. On one hand, this could be beneficial for broadcasters (BC, e.g., by preserving the spectrum, by providing additional revenues, or by lowering cost of the spectrum and, on the other hand, for MNOs to gain faster access to new potentially lower cost, licensed, below 1GHz spectrum to cope with booming data traffic. As a collaborative benefit, the concept opens up new business opportunities for delivering TV and media content using MBB network with means to introduce this flexibly. This paper highlights the importance of developing sound business models for the new spectrum use concept, as they need to provide clear benefits to the key stakeholders to be adopted in real life. The paper applies a future and action oriented approach to the MBB using the concept to derive scenarios and business models for MNOs for accessing hybrid UHF bands. In order to address the convergence and transformation coming with the concept, business models are first developed for the current situation with separate exclusive spectrum bands. Novel business scenarios are then developed for the introduction of the new flexible hybrid UHF spectrum concept. The created business model indicates that the MNOs could benefit significantly from the new UHF bands, which would enable them to cope with increasing data traffic asymmetry, and to offer differentiation through personalized broadcasting and new media services. Moreover, it could significantly re-shape the business ecosystem around both the broadcasting and the mobile broadband by introducing

  18. Verifying real-time systems against scenario-based requirements

    DEFF Research Database (Denmark)

    Larsen, Kim Guldstrand; Li, Shuhao; Nielsen, Brian

    2009-01-01

    We propose an approach to automatic verification of real-time systems against scenario-based requirements. A real-time system is modeled as a network of Timed Automata (TA), and a scenario-based requirement is specified as a Live Sequence Chart (LSC). We define a trace-based semantics for a kernel...... subset of the LSC language. By equivalently translating an LSC chart into an observer TA and then non-intrusively composing this observer with the original system model, the problem of verifying a real-time system against a scenario-based requirement reduces to a classical real-time model checking...

  19. OBEST: The Object-Based Event Scenario Tree Methodology

    International Nuclear Information System (INIS)

    WYSS, GREGORY D.; DURAN, FELICIA A.

    2001-01-01

    Event tree analysis and Monte Carlo-based discrete event simulation have been used in risk assessment studies for many years. This report details how features of these two methods can be combined with concepts from object-oriented analysis to develop a new risk assessment methodology with some of the best features of each. The resultant Object-Based Event Scenarios Tree (OBEST) methodology enables an analyst to rapidly construct realistic models for scenarios for which an a priori discovery of event ordering is either cumbersome or impossible (especially those that exhibit inconsistent or variable event ordering, which are difficult to represent in an event tree analysis). Each scenario produced by OBEST is automatically associated with a likelihood estimate because probabilistic branching is integral to the object model definition. The OBEST method uses a recursive algorithm to solve the object model and identify all possible scenarios and their associated probabilities. Since scenario likelihoods are developed directly by the solution algorithm, they need not be computed by statistical inference based on Monte Carlo observations (as required by some discrete event simulation methods). Thus, OBEST is not only much more computationally efficient than these simulation methods, but it also discovers scenarios that have extremely low probabilities as a natural analytical result--scenarios that would likely be missed by a Monte Carlo-based method. This report documents the OBEST methodology, the demonstration software that implements it, and provides example OBEST models for several different application domains, including interactions among failing interdependent infrastructure systems, circuit analysis for fire risk evaluation in nuclear power plants, and aviation safety studies

  20. Air quality impacts of plug-in hybrid electric vehicles in Texas: evaluating three battery charging scenarios

    International Nuclear Information System (INIS)

    Thompson, Tammy M; King, Carey W; Webber, Michael E; Allen, David T

    2011-01-01

    The air quality impacts of replacing approximately 20% of the gasoline-powered light duty vehicle miles traveled (VMT) with electric VMT by the year 2018 were examined for four major cities in Texas: Dallas/Ft Worth, Houston, Austin, and San Antonio. Plug-in hybrid electric vehicle (PHEV) charging was assumed to occur on the electric grid controlled by the Electricity Reliability Council of Texas (ERCOT), and three charging scenarios were examined: nighttime charging, charging to maximize battery life, and charging to maximize driver convenience. A subset of electricity generating units (EGUs) in Texas that were found to contribute the majority of the electricity generation needed to charge PHEVs at the times of day associated with each scenario was modeled using a regional photochemical model (CAMx). The net impacts of the PHEVs on the emissions of precursors to the formation of ozone included an increase in NO x emissions from EGUs during times of day when the vehicle is charging, and a decrease in NO x from mobile emissions. The changes in maximum daily 8 h ozone concentrations and average exposure potential at twelve air quality monitors in Texas were predicted on the basis of these changes in NO x emissions. For all scenarios, at all monitors, the impact of changes in vehicular emissions, rather than EGU emissions, dominated the ozone impact. In general, PHEVs lead to an increase in ozone during nighttime hours (due to decreased scavenging from both vehicles and EGU stacks) and a decrease in ozone during daytime hours. A few monitors showed a larger increase in ozone for the convenience charging scenario versus the other two scenarios. Additionally, cumulative ozone exposure results indicate that nighttime charging is most likely to reduce a measure of ozone exposure potential versus the other two scenarios.

  1. A scenario-based procedure for seismic risk analysis

    International Nuclear Information System (INIS)

    Kluegel, J.-U.; Mualchin, L.; Panza, G.F.

    2006-12-01

    A new methodology for seismic risk analysis based on probabilistic interpretation of deterministic or scenario-based hazard analysis, in full compliance with the likelihood principle and therefore meeting the requirements of modern risk analysis, has been developed. The proposed methodology can easily be adjusted to deliver its output in a format required for safety analysts and civil engineers. The scenario-based approach allows the incorporation of all available information collected in a geological, seismotectonic and geotechnical database of the site of interest as well as advanced physical modelling techniques to provide a reliable and robust deterministic design basis for civil infrastructures. The robustness of this approach is of special importance for critical infrastructures. At the same time a scenario-based seismic hazard analysis allows the development of the required input for probabilistic risk assessment (PRA) as required by safety analysts and insurance companies. The scenario-based approach removes the ambiguity in the results of probabilistic seismic hazard analysis (PSHA) which relies on the projections of Gutenberg-Richter (G-R) equation. The problems in the validity of G-R projections, because of incomplete to total absence of data for making the projections, are still unresolved. Consequently, the information from G-R must not be used in decisions for design of critical structures or critical elements in a structure. The scenario-based methodology is strictly based on observable facts and data and complemented by physical modelling techniques, which can be submitted to a formalised validation process. By means of sensitivity analysis, knowledge gaps related to lack of data can be dealt with easily, due to the limited amount of scenarios to be investigated. The proposed seismic risk analysis can be used with confidence for planning, insurance and engineering applications. (author)

  2. Optimization of OH coil recharging scenario of quasi-steady operation in tokamak fusion reactor by lower hybrid wave current drive

    International Nuclear Information System (INIS)

    Sugihara, M.; Fujisawa, N.; Nishio, S.; Iida, H.

    1984-01-01

    Using simple physical model equations optimum plasma and rf parameters for an OH coil recharging scenario of quasi-steady operation in tokamak fusion reactors by lower hybrid wave current drive are studied. In this operation scenario, the minimization of the recharge time of OH coils or stored energy for it will be essential and can be realized by driving sufficient current without increasing the plasma temperature too much. Low density and broad spectrum are shown to be favorable for the minimization. In the case of FER (Fusion Experimental Reactor under design study in JAERI) baseline parameters, the minimum recharge time is 3-5 s/V s. (orig.)

  3. Full steady state LH scenarios in Tore Supra

    International Nuclear Information System (INIS)

    Kazarian-Vibert, F.; Litaudon, X.; Arslanbekov, R.; Hoang, G.T.; Moreau, D.; Peysson, Y.

    1995-01-01

    Lower Hybrid discharge have been realised in Tore Supra using feed-back control of the primary circuit voltage such that the loop voltage was maintained exactly to zero near the plasma surface. This new scenario allows the plasma current to float and quickly reach an equilibrium value determined by the current drive efficiency and Lower Hybrid power. Recent experimental results show that, with the new constant flux scenario the coupled plasma and primary currents reach a steady state in less than 10 s which is a good agreement with theoretical expectations. A complete analysis of this scenario is presented. (authors). 8 refs., 3 figs

  4. Free-boundary simulations of ITER advanced scenarios

    International Nuclear Information System (INIS)

    Besseghir, K.

    2013-06-01

    The successful operation of ITER advanced scenarios is likely to be a major step forward in the development of controlled fusion as a power production source. ITER advanced scenarios raise specific challenges that are not encountered in presently-operated tokamaks. In this thesis, it is argued that ITER advanced operation may benefit from optimal control techniques. Optimal control ensures high performance operation while guaranteeing tokamak integrity. The application of optimal control techniques for ITER operation is assessed and it is concluded that robust optimisation is appropriate for ITER operation of advanced scenarios. Real-time optimisation schemes are discussed and it is concluded that the necessary conditions of optimality tracking approach may potentially be appropriate for ITER operation, thus offering a viable closed-loop optimal control approach. Simulations of ITER advanced operation are necessary in order to assess the present ITER design and uncover the main difficulties that may be encountered during advanced operation. The DINA-CH and CRONOS full tokamak simulator is used to simulate the operation of the ITER hybrid and steady-state scenarios. It is concluded that the present ITER design is appropriate for performing a hybrid scenario pulse lasting more than 1000 sec, with a flat-top plasma current of 12 MA, and a fusion gain of Q ≅ 8. Similarly, a steady-state scenario without internal transport barrier, with a flat-top plasma current of 10 MA, and with a fusion gain of Q ≅ 5 can be realised using the present ITER design. The sensitivity of the advanced scenarios with respect to transport models and physical assumption is assessed using CRONOS. It is concluded that the hybrid scenario and the steady-state scenario are highly sensitive to the L-H transition timing, to the value of the confinement enhancement factor, to the heating and current drive scenario during ramp-up, and, to a lesser extent, to the density peaking and pedestal

  5. Free-boundary simulations of ITER advanced scenarios

    Energy Technology Data Exchange (ETDEWEB)

    Besseghir, K.

    2013-06-15

    The successful operation of ITER advanced scenarios is likely to be a major step forward in the development of controlled fusion as a power production source. ITER advanced scenarios raise specific challenges that are not encountered in presently-operated tokamaks. In this thesis, it is argued that ITER advanced operation may benefit from optimal control techniques. Optimal control ensures high performance operation while guaranteeing tokamak integrity. The application of optimal control techniques for ITER operation is assessed and it is concluded that robust optimisation is appropriate for ITER operation of advanced scenarios. Real-time optimisation schemes are discussed and it is concluded that the necessary conditions of optimality tracking approach may potentially be appropriate for ITER operation, thus offering a viable closed-loop optimal control approach. Simulations of ITER advanced operation are necessary in order to assess the present ITER design and uncover the main difficulties that may be encountered during advanced operation. The DINA-CH and CRONOS full tokamak simulator is used to simulate the operation of the ITER hybrid and steady-state scenarios. It is concluded that the present ITER design is appropriate for performing a hybrid scenario pulse lasting more than 1000 sec, with a flat-top plasma current of 12 MA, and a fusion gain of Q ≅ 8. Similarly, a steady-state scenario without internal transport barrier, with a flat-top plasma current of 10 MA, and with a fusion gain of Q ≅ 5 can be realised using the present ITER design. The sensitivity of the advanced scenarios with respect to transport models and physical assumption is assessed using CRONOS. It is concluded that the hybrid scenario and the steady-state scenario are highly sensitive to the L-H transition timing, to the value of the confinement enhancement factor, to the heating and current drive scenario during ramp-up, and, to a lesser extent, to the density peaking and pedestal

  6. Plasma heating and hot ion sustaining in mirror based hybrids

    International Nuclear Information System (INIS)

    Moiseenko, V. E.; Ågren, O.

    2012-01-01

    Possibilities of plasma heating and sloshing ion sustaining in mirror based hybrids are briefly reviewed. Sloshing ions, i.e. energetic ions with a velocity distribution concentrated to a certain pitch-angle, play an important role in plasma confinement and generation of fusion neutrons in mirror machines. Neutral beam injection (NBI) is first discussed as a method to generate sloshing ions. Numerical results of NBI modeling for a stellarator-mirror hybrid are analyzed. The sloshing ions could alternatively be sustained by RF heating. Fast wave heating schemes, i.e. magnetic beach, minority and second harmonic heating, are addressed and their similarities and differences are described. Characteristic features of wave propagation in mirror hybrid devices including both fundamental harmonic minority and second harmonic heating are examined. Minority heating is efficient for a wide range of minority concentration and plasma densities; it allows one to place the antenna aside from the hot ion location. A simple-design strap antenna suitable for this has good performance. However, this scenario is appropriate only for light minority ions. The second harmonic heating can be applied for the heavy ion component. Arrangements are similar for minority and second harmonic heating. The efficiency of second harmonic heating is influenced by a weaker wave damping than for minority heating. Numerical calculations show that in a hybrid reactor scaled mirror machine the deuterium sloshing ions could be heated within the minority heating scheme, while the tritium ions could be sustained by second harmonic heating.

  7. Graphene-based hybrid plasmonic modulator

    International Nuclear Information System (INIS)

    Shin, Jin-Soo; Kim, Jin-Soo; Tae Kim, Jin

    2015-01-01

    A graphene-based hybrid plasmonic modulator is designed based on an asymmetric double-electrode plasmonic waveguide structure. The photonic device consists of a monolayer graphene, a thin metal strip, and a thin dielectric layer that is inserted between the grapheme and the metal strip. By electrically tuning the graphene’s refractive index, the propagation loss of the hybrid long-range surface plasmon polariton strip mode in the proposed graphene-based hybrid plasmonic waveguide is switchable, and hence the intensity of the guided modes is modulated. The highest modulation depth is observed at the graphene’s epsilon-near-zero region. The device characteristics are characterized over the entire C-band (1.530–1.565 μm). (paper)

  8. Combination of equilibrium models and hybrid life cycle-input–output analysis to predict the environmental impacts of energy policy scenarios

    International Nuclear Information System (INIS)

    Igos, Elorri; Rugani, Benedetto; Rege, Sameer; Benetto, Enrico; Drouet, Laurent; Zachary, Daniel S.

    2015-01-01

    Highlights: • The environmental impacts of two energy policy scenarios in Luxembourg are assessed. • Computable General Equilibrium (CGE) and Partial Equilibrium (PE) models are used. • Results from coupling of CGE and PE are integrated in hybrid Life Cycle Assessment. • Impacts due to energy related production and imports are likely to grow over time. • Carbon mitigation policies seem to not substantially decrease the impacts’ trend. - Abstract: Nowadays, many countries adopt an active agenda to mitigate the impact of greenhouse gas emissions by moving towards less polluting energy generation technologies. The environmental costs, directly or indirectly generated to achieve such a challenging objective, remain however largely underexplored. Until now, research has focused either on pure economic approaches such as Computable General Equilibrium (CGE) and partial equilibrium (PE) models, or on (physical) energy supply scenarios. These latter could be used to evaluate the environmental impacts of various energy saving or cleaner technologies via Life Cycle Assessment (LCA) methodology. These modelling efforts have, however, been pursued in isolation, without exploring the possible complementarities and synergies. In this study, we have undertaken a practical combination of these approaches into a common framework: on the one hand, by coupling a CGE with a PE model, and, on the other hand, by linking the outcomes from the coupling with a hybrid input–output−process based life cycle inventory. The methodological framework aimed at assessing the environmental consequences of two energy policy scenarios in Luxembourg between 2010 and 2025. The study highlights the potential of coupling CGE and PE models but also the related methodological difficulties (e.g. small number of available technologies in Luxembourg, intrinsic limitations of the two approaches, etc.). The assessment shows both environmental synergies and trade-offs due to the implementation of

  9. Assessment of a Hybrid Retrofit Gas Water Heater

    Energy Technology Data Exchange (ETDEWEB)

    Hoeschele, Marc [Davis Energy Group, Davis, CA (United States); Weitzel, Elizabeth [Davis Energy Group, Davis, CA (United States); Backman, Christine [Davis Energy Group, Davis, CA (United States)

    2017-02-28

    This project completed a modeling evaluation of a hybrid gas water heater that combines a reduced capacity tankless unit with a downsized storage tank. This product would meet a significant market need by providing a higher efficiency gas water heater solution for retrofit applications while maintaining compatibility with the 1/2 inch gas lines and standard B vents found in most homes. The TRNSYS simulation tool was used to model a base case 0.60 EF atmospheric gas storage water, a 0.82 EF non-condensing gas tankless water heater, an existing (high capacity) hybrid unit on the market, and an alternative hybrid unit with lower storage volume and reduced gas input requirements. Simulations were completed under a 'peak day' sizing scenario with 183 gpd hot water loads in a Minnesota winter climate case. Full-year simulations were then completed in three climates (ranging from Phoenix to Minneapolis) for three hot water load scenarios (36, 57, and 96 gpd). Model projections indicate that the alternative hybrid offers an average 4.5% efficiency improvement relative to the 0.60 EF gas storage unit across all scenarios modeled. The alternative hybrid water heater evaluated does show promise, but the current low cost of natural gas across much of the country and the relatively small incremental efficiency improvement poses challenges in initially building a market demand for the product.

  10. Assessment of a Hybrid Retrofit Gas Water Heater

    Energy Technology Data Exchange (ETDEWEB)

    Hoeschele, Marc [Alliance for Residential Building Innovation (ARBI), Davis, CA (United States); Weitzel, Elizabeth [Alliance for Residential Building Innovation (ARBI), Davis, CA (United States); Backman, Christine [Alliance for Residential Building Innovation (ARBI), Davis, CA (United States)

    2017-02-01

    This project completed a modeling evaluation of a hybrid gas water heater that combines a reduced capacity tankless unit with a downsized storage tank. This product would meet a significant market need by providing a higher efficiency gas water heater solution for retrofit applications while maintaining compatibility with the 1/2 inch gas lines and standard B vents found in most homes. The TRNSYS simulation tool was used to model a base case 0.60 EF atmospheric gas storage water, a 0.82 EF non-condensing gas tankless water heater, an existing (high capacity) hybrid unit on the market, and an alternative hybrid unit with lower storage volume and reduced gas input requirements. Simulations were completed under a 'peak day' sizing scenario with 183 gpd hot water loads in a Minnesota winter climate case. Full-year simulations were then completed in three climates (ranging from Phoenix to Minneapolis) for three hot water load scenarios (36, 57, and 96 gpd). Model projections indicate that the alternative hybrid offers an average 4.5% efficiency improvement relative to the 0.60 EF gas storage unit across all scenarios modeled. The alternative hybrid water heater evaluated does show promise, but the current low cost of natural gas across much of the country and the relatively small incremental efficiency improvement poses challenges in initially building a market demand for the product.

  11. Creative Classrooms through Game-Based Role-Play Scenarios

    DEFF Research Database (Denmark)

    Gjedde, Lisa

    2014-01-01

    studies a framework that anchors the curriculum in game-based role-play scenarios and offers affordances for the learners to immerse themselves in the multiple perspectives of the roles. In this way of introducing problem based learning in immersive narrative environments, the learners are provided......-based role-play scenarios as a learning tool that can integrate the curriculum in meaningful context, and how it has impacted on the interaction and creative learning experiences in the class....

  12. Lower hybrid heating and current drive in Iter operation scenarios and outline system design

    International Nuclear Information System (INIS)

    1994-11-01

    Lower Hybrid Waves (LHW) are considered a valid method of plasma heating and the best demonstrated current drive method. Current drive by LHW possesses the unique feature, as compared to the other methods, to retain a good current drive efficiency in plasma regions of low to medium temperature, or in low-β phases of the discharges. This makes them an essential element to realize the so called 'advanced steady-state Tokamak scenarios' in which a hollow current density profile (deep shear reversal) - established during the ramp-up of the plasma current - offers the prospects of improved confinement and an MHD-stable route to continuous burn. This report contains both modelling and design studies of an LHW system for ITER. It aims primarily at the definition of concepts and parameters for steady-state operation using LHW combined with Fast Waves (FW), or other methods of generating a central seed current for high bootstrap current operation. However simulations addressing the use of LHW for current profile control in the high current pulsed operation scenario are also presented. The outline design of a LHW system which covers the needs for both pulsed and steady-state operation is described in detail. (author). 28 refs., 49 figs

  13. Scenario-based table top simulations

    DEFF Research Database (Denmark)

    Broberg, Ole; Edwards, Kasper; Nielsen, J.

    2012-01-01

    This study developed and tested a scenario-based table top simulation method in a user-driven innovation setting. A team of researchers worked together with a user group of five medical staff members from the existing clinic. Table top simulations of a new clinic were carried out in a simple model...

  14. A hybrid renewable energy system for a North American off-grid community

    International Nuclear Information System (INIS)

    Rahman, Md. Mustafizur; Khan, Md. Mohib-Ul-Haque; Ullah, Mohammad Ahsan; Zhang, Xiaolei; Kumar, Amit

    2016-01-01

    Canada has many isolated communities that are not connected to the electrical grid. Most of these communities meet their electricity demand through stand-alone diesel generators. Diesel generators have economic and environmental concerns that can be minimized by using hybrid renewable energy technologies. This study aims to assess the implementation of a hybrid energy system for an off-grid community in Canada and to propose the best hybrid energy combination to reliably satisfy electricity demand. Seven scenarios were developed: 1) 100% renewable resources, 2) 80% renewable resources, 3) 65% renewable resources, 4) 50% renewable resources, 5) 35% renewable resources, 6) 21% renewable resources, and 7) battery-diesel generators (0% renewable resources). A case study for the remote community of Sandy Lake, Ontario, was conducted. Hybrid systems were chosen to meet the requirements of a 4.4 MWh/day primary load with a 772 kW peak load. Sensitivity analyses were carried out to assess the impact of solar radiation, wind speed, diesel price, CO 2 penalty cost, and project interest rate on optimum results. A GHG (greenhouse gas) abatement cost was assessed for each scenario. Considering GHG emission penalty cost, the costs of electricity for the seven scenarios are $1.48/kWh, $0.62/kWh, $0.54/kWh, $0.42/kWh, $0.39/kWh, $0.37/kWh, and $0.36/kWh. - Highlights: • Modeling of hybrid renewable energy systems for an off-grid community. • Seven scenarios were developed based on various renewable energy fractions. • Cost of electricity is the highest for 100% renewable fraction scenario. • CO 2 emissions are reduced by 1232 tonnes/yr by switching from diesel to renewables. • The electricity cost is most sensitive to diesel price based on sensitivity analysis.

  15. Overview description of the base scenario derived from FEP analysis

    International Nuclear Information System (INIS)

    Locke, J.; Bailey, L.

    1998-01-01

    This report forms part of a suite of documents describing the Nirex model development programme. The programme is designed to provide a clear audit trail from the identification of significant features, events and processes (FEPs) to the models and modelling processes employed within a detailed performance assessment. A scenario approach to performance assessment has been adopted. It is proposed that potential evolutions of a deep geological radioactive waste repository can be represented by a base scenario and a number of variant scenarios. It is intended that assessment of the base scenario would form the core of any future performance assessment. The base scenario is chosen to be broad-ranging and to represent the natural evolution of the repository system and its surrounding environment. The base scenario is defined to include all those FEPs which are certain to occur and those which are judged likely to occur for a significant period of the assessment - timescale. Variant scenarios are defined by FEPs which represent a significant perturbation to the natural system evolution, for example the occurrence of a large seismic event. The structuring of FEPs on a Master Directed Diagram (MDD), provides a systematic framework for identifying those FEPs which form part of the natural evolution of the system and those which may define alternative potential evolutions of the repository system. In order to construct a description of the base scenario, FEPs have been grouped into a series of conceptual models. Conceptual models are groups of FEPs, identified from the MDD, representing a specific component or process within the disposal system. It has been found appropriate to define conceptual models in terms of the three main components of the disposal system: the repository engineered system, the surrounding geosphere and the biosphere. For each of these components, conceptual models provide a description of the relevant subsystem in terms of its initial characteristics

  16. A Test Setup for Quality Assurance of Front End Hybrids

    CERN Document Server

    Axer, Markus; Camps, Clemens; Commichau, Volker; Flügge, Günter; Franke, Torsten; Hangarter, Klaus; Ilgin, Can; Mnich, Joachim; Niehusmann, Jan; Poettgens, Michael; Schorn, Peter; Schulte, Reiner; Struczinski, Wolfgang

    2001-01-01

    The APV Readout Control (ARC) Test Setup is a compact, cost efficient test and diagnostic tool which is suited for full operation and characterisation of FE hybrids and Si-Detector modules. This note gives an overview of the construction and the features of the test facility. Based on the ARC setup and the experience gained with one prototype FE hybrid, possible quality assurance scenarios for short and long term tests of FE hybrids are also presented.

  17. Scenario Analysis of Natural Gas Consumption in China Based on Wavelet Neural Network Optimized by Particle Swarm Optimization Algorithm

    Directory of Open Access Journals (Sweden)

    Deyun Wang

    2018-04-01

    Full Text Available Natural gas consumption has increased with an average annual growth rate of about 10% between 2012 and 2017. Total natural gas consumption accounted for 6.4% of consumed primary energy resources in 2016, up from 5.4% in 2012, making China the world’s third-largest gas user. Therefore, accurately predicting natural gas consumption has become very important for market participants to organize indigenous production, foreign supply contracts and infrastructures in a better way. This paper first presents the main factors affecting China’s natural gas consumption, and then proposes a hybrid forecasting model by combining the particle swarm optimization algorithm and wavelet neural network (PSO-WNN. In PSO-WNN model, the initial weights and wavelet parameters are optimized using PSO algorithm and updated through a dynamic learning rate to improve the training speed, forecasting precision and reduce fluctuation of WNN. The experimental results show the superiority of the proposed model compared with ANN and WNN based models. Then, this study conducts the scenario analysis of the natural gas consumption from 2017 to 2025 in China based on three scenarios, namely low scenario, reference scenario and high scenario, and the results illustrate that the China’s natural gas consumption is going to be 342.70, 358.27, 366.42 million tce (“standard” tons coal equivalent in 2020, and 407.01, 437.95, 461.38 million tce in 2025 under the low, reference and high scenarios, respectively. Finally, this paper provides some policy suggestions on natural gas exploration and development, infrastructure construction and technical innovations to promote a sustainable development of China’s natural gas industry.

  18. Scenario Based E-Learning in Electrical Engineering Education

    Science.gov (United States)

    Tambunan, Hamonangan; Dalimunte, Amirhud; Silitonga, Marsangkap

    2017-01-01

    The scenario based e-learning in Electrical Engineering Education Learning (EEEL) was developed by covering the scope and characteristics of all subjects and the competence unit of graduates in the field of pedagogy, professional, social and personality, with url addresed http://jpte-ft-unimed.edu20.org. The scenario incorporates the concept of…

  19. An ontology for automated scenario-based training

    NARCIS (Netherlands)

    Peeters, M.M.M.; Bosch, K. van den; Neerincx, M.A.; Meyer, J.J.Ch.

    2014-01-01

    An intelligent system for automated scenario-based training (SBT) needs knowledge about the training domain, events taking place in the simulated environment, the behaviour of the participating characters, and teaching strategies for effective learning. This knowledge base should be theoretically

  20. Reservoir Inflow Prediction under GCM Scenario Downscaled by Wavelet Transform and Support Vector Machine Hybrid Models

    Directory of Open Access Journals (Sweden)

    Gusfan Halik

    2015-01-01

    Full Text Available Climate change has significant impacts on changing precipitation patterns causing the variation of the reservoir inflow. Nowadays, Indonesian hydrologist performs reservoir inflow prediction according to the technical guideline of Pd-T-25-2004-A. This technical guideline does not consider the climate variables directly, resulting in significant deviation to the observation results. This research intends to predict the reservoir inflow using the statistical downscaling (SD of General Circulation Model (GCM outputs. The GCM outputs are obtained from the National Center for Environmental Prediction/National Center for Atmospheric Research Reanalysis (NCEP/NCAR Reanalysis. A new proposed hybrid SD model named Wavelet Support Vector Machine (WSVM was utilized. It is a combination of the Multiscale Principal Components Analysis (MSPCA and nonlinear Support Vector Machine regression. The model was validated at Sutami Reservoir, Indonesia. Training and testing were carried out using data of 1991–2008 and 2008–2012, respectively. The results showed that MSPCA produced better extracting data than PCA. The WSVM generated better reservoir inflow prediction than the one of technical guideline. Moreover, this research also applied WSVM for future reservoir inflow prediction based on GCM ECHAM5 and scenario SRES A1B.

  1. A hybrid solar photovoltaic-wind turbine-Rankine cycle for electricity generation in Turkish Republic of Northern Cyprus

    Directory of Open Access Journals (Sweden)

    Samuel Asumadu-Sarkodie

    2016-12-01

    Full Text Available This paper presents an energy demand model by designing a hybrid solar-wind-thermal power generation system of the Turkish Republic of Northern Cyprus, a promising substitute for the expensive battery banks. The study models the future energy demand of Turkish Republic of Northern Cyprus based on the IPCC emissions scenario A1B and A2 by designing a new hybrid solar-wind-thermal power system that satisfies the current and future requirements of firm capacity during peak periods. The study suggests an improvement in a hybrid solar-wind-thermal power system performance by predicting reliable outputs that can integrate renewable energy technologies to conventional power generation. The energy consumption prediction model emphasizes the energy requirement that has a growing demand from 300 to 400 GWh in scenario A1B and 150–450 GWh in scenario A2 from 2010 to 2050. The proposed design can meet 400 GWh of electricity demand in TRNC based on IPCC scenario A1B and 450 GWh of electricity demand in TRNC based on IPCC scenario A2. The percentage contribution of solar, wind and thermal energy for 2010, 2020, 2030, 2040 and 2050 are presented along with CO2 emissions and water consumption for each of the years.

  2. Predictive integrated modelling for ITER scenarios

    International Nuclear Information System (INIS)

    Artaud, J.F.; Imbeaux, F.; Aniel, T.; Basiuk, V.; Eriksson, L.G.; Giruzzi, G.; Hoang, G.T.; Huysmans, G.; Joffrin, E.; Peysson, Y.; Schneider, M.; Thomas, P.

    2005-01-01

    The uncertainty on the prediction of ITER scenarios is evaluated. 2 transport models which have been extensively validated against the multi-machine database are used for the computation of the transport coefficients. The first model is GLF23, the second called Kiauto is a model in which the profile of dilution coefficient is a gyro Bohm-like analytical function, renormalized in order to get profiles consistent with a given global energy confinement scaling. The package of codes CRONOS is used, it gives access to the dynamics of the discharge and allows the study of interplay between heat transport, current diffusion and sources. The main motivation of this work is to study the influence of parameters such plasma current, heat, density, impurities and toroidal moment transport. We can draw the following conclusions: 1) the target Q = 10 can be obtained in ITER hybrid scenario at I p = 13 MA, using either the DS03 two terms scaling or the GLF23 model based on the same pedestal; 2) I p = 11.3 MA, Q = 10 can be reached only assuming a very peaked pressure profile and a low pedestal; 3) at fixed Greenwald fraction, Q increases with density peaking; 4) achieving a stationary q-profile with q > 1 requires a large non-inductive current fraction (80%) that could be provided by 20 to 40 MW of LHCD; and 5) owing to the high temperature the q-profile penetration is delayed and q = 1 is reached about 600 s in ITER hybrid scenario at I p = 13 MA, in the absence of active q-profile control. (A.C.)

  3. Global climate-oriented transportation scenarios

    International Nuclear Information System (INIS)

    Harvey, L.D.D.

    2013-01-01

    This paper develops scenarios whereby CO 2 emissions from the transportation sector are eliminated worldwide by the end of this century. Data concerning the energy intensity and utilization of different passenger and freight transportation modes in 2005, and per capita income, in 10 different socio-economic regions of the world are combined with scenarios of population and per capita GDP to generate scenarios of future transportation energy demand. The impact of various technical options (improvements in the energy intensity of all transportation modes, changes in the proportions of vehicles with different drive trains, and a shift to biomass or hydrogen for the non-electricity energy requirements) and behavioural options (a shift to less energy-intensive LDV market segments, a reduction in total passenger-km of travel per capita, and an increase in the share of less energy-intensive passenger and freight modes of transport) is assessed. To eliminate transportation fossil fuel emissions within this century while limiting the demand for electricity, biofuels or hydrogen to manageable levels requires the simultaneous application of all the technical and behavioural measures considered here, with improvements in vehicle efficiencies and a shift to plug-in hybrid and battery-electric drive trains for light duty vehicles being the most important measures. - Highlights: ► Scenarios are developed whereby transportation CO 2 emissions reach zero by 2100. ► These scenarios address concerns about peak oil and global warming. ► A comprehensive mix of technical and behavioural changes is considered in 10 world regions. ► Efficiency improvements and a shift to plug-in hybrid vehicles are the most important measures

  4. Different scenarios to reduce greenhouse gas emissions of thermal power stations in Canada

    International Nuclear Information System (INIS)

    Zabihian, F.; Fung, A.S.

    2009-01-01

    The purpose of this paper is to examine greenhouse gas (GHG) emission reduction potentials in the Canadian electricity generation sector through fuel switching and the adoption of advanced power generation systems. To achieve this purpose, six different scenarios were introduced. In the first scenario existing power stations' fuel was switched to natural gas. Existing power plants were replaced by natural gas combined cycle (NGCC), integrated gasification combined cycle (IGCC), solid oxide fuel cell (SOFC), hybrid SOFC, and SOFC-IGCC hybrid power stations in scenarios number 2 to 6, respectively. (author)

  5. Genome-Wide Prediction of the Performance of Three-Way Hybrids in Barley

    Directory of Open Access Journals (Sweden)

    Zuo Li

    2017-03-01

    Full Text Available Predicting the grain yield performance of three-way hybrids is challenging. Three-way crosses are relevant for hybrid breeding in barley ( L. and maize ( L. adapted to East Africa. The main goal of our study was to implement and evaluate genome-wide prediction approaches of the performance of three-way hybrids using data of single-cross hybrids for a scenario in which parental lines of the three-way hybrids originate from three genetically distinct subpopulations. We extended the ridge regression best linear unbiased prediction (RRBLUP and devised a genomic selection model allowing for subpopulation-specific marker effects (GSA-RRBLUP: general and subpopulation-specific additive RRBLUP. Using an empirical barley data set, we showed that applying GSA-RRBLUP tripled the prediction ability of three-way hybrids from 0.095 to 0.308 compared with RRBLUP, modeling one additive effect for all three subpopulations. The experimental findings were further substantiated with computer simulations. Our results emphasize the potential of GSA-RRBLUP to improve genome-wide hybrid prediction of three-way hybrids for scenarios of genetically diverse parental populations. Because of the advantages of the GSA-RRBLUP model in dealing with hybrids from different parental populations, it may also be a promising approach to boost the prediction ability for hybrid breeding programs based on genetically diverse heterotic groups.

  6. Long-pulse hybrid scenario development in JT-60U

    International Nuclear Information System (INIS)

    Oyama, N.; Isayama, A.; Matsunaga, G.; Suzuki, T.; Takenaga, H.; Sakamoto, Y.; Nakano, T.; Kamada, Y.; Ide, S.

    2009-01-01

    The performance and sustained duration of long-pulse discharges for the 'ITER hybrid scenario' have been improved in JT-60U. The modification of power supply systems for three perpendicular neutral beam (NB) injections provides a long period of central NB heating up to 30 s, which is important for keeping the internal transport barrier (ITB). The peaked density profile in the core plasma can be maintained even when the density at the pedestal increased in the latter phase of the discharge due to the increase in the divertor recycling. Then, the peaked pressure profile attributed to the ITB can be kept constant through the discharge with the peaked power deposition profile. In these long-pulse discharges, MHD activity with toroidal mode number n = 1 is observed even when neoclassical tearing modes (NTMs) are suppressed. When the amplitude of the mode in the peripheral region becomes large, the pedestal pressure is degraded. The mode amplitude is sensitive to the toroidal magnetic field (or edge safety factor) and heating power. After the adjustment of the toroidal magnetic field so as to reduce the mode amplitude, a high normalized beta (β N ) of 2.6 and a high thermal confinement enhancement factor (H H98(y,2) > 1) are sustained for 25 s (∼14τ R , where τ R is the current diffusion time) under the ITER relevant small toroidal rotation condition. The peaked pressure profile in low safety factor plasma (safety factor at 95% flux surface q 95 ∼ 3.2) is stable against NTMs up to β N ∼ 3. A high β N H H98(y,2) of 2.6 gives a high G-factor ( β N H H98(y,2) /q 95 2 ) of 0.25 and a peaked pressure profile gives a large bootstrap current fraction (f BS > 0.43).

  7. Modeling, design and analysis of a stand-alone hybrid power generation system using solar/urine

    International Nuclear Information System (INIS)

    Wu, Wei; Zhou, Ya-Yan; Lin, Mu-Hsuan; Hwang, Jenn-Jiang

    2013-01-01

    Highlights: • The stand-alone hybrid power system is presented. • The urine-to-hydrogen processor is proposed. • Scenario analysis of the hybrid power dispatching and the urine/solar demands is investigated. • The design, modeling and optimization of the hybrid power system is addressed by Aspen Plus and Matlab. - Abstract: The urine turned to hydrogen as an energy conversion process is integrated into a stand-alone hybrid (PV/FC/battery) power generation system. The optimization and simulation of a new urine-to-hydrogen processor is evaluated in Aspen Plus environment. In our approach, the PV generator aims to reduce urine consumption and the lithium-ion battery can compensate the power gap due to the fuel processing delay. Based on prescribed patterns of solar irradiation and the daily load demand of a 30-persons classroom, scenario analyses of the hybrid power dispatching and operational feasibility is addressed

  8. Hybrid attacks on model-based social recommender systems

    Science.gov (United States)

    Yu, Junliang; Gao, Min; Rong, Wenge; Li, Wentao; Xiong, Qingyu; Wen, Junhao

    2017-10-01

    With the growing popularity of the online social platform, the social network based approaches to recommendation emerged. However, because of the open nature of rating systems and social networks, the social recommender systems are susceptible to malicious attacks. In this paper, we present a certain novel attack, which inherits characteristics of the rating attack and the relation attack, and term it hybrid attack. Furtherly, we explore the impact of the hybrid attack on model-based social recommender systems in multiple aspects. The experimental results show that, the hybrid attack is more destructive than the rating attack in most cases. In addition, users and items with fewer ratings will be influenced more when attacked. Last but not the least, the findings suggest that spammers do not depend on the feedback links from normal users to become more powerful, the unilateral links can make the hybrid attack effective enough. Since unilateral links are much cheaper, the hybrid attack will be a great threat to model-based social recommender systems.

  9. Rule-based energy management strategies for hybrid vehicles

    NARCIS (Netherlands)

    Hofman, T.; Druten, van R.M.; Serrarens, A.F.A.; Steinbuch, M.

    2007-01-01

    Int. J. of Electric and Hybrid Vehicles (IJEHV), The highest control layer of a (hybrid) vehicular drive train is termed the Energy Management Strategy (EMS). In this paper an overview of different control methods is given and a new rule-based EMS is introduced based on the combination of Rule-Based

  10. Building America Case Study: Assessment of a Hybrid Retrofit Gas Water Heater

    Energy Technology Data Exchange (ETDEWEB)

    2017-06-19

    This project completed a modeling evaluation of a hybrid gas water heater that combines a reduced capacity tankless unit with a downsized storage tank. This product would meet a significant market need by providing a higher efficiency gas water heater solution for retrofit applications while maintaining compatibility with the half-inch gas lines and standard B vents found in most homes. The TRNSYS simulation tool was used to model a base case 0.60 EF atmospheric gas storage water, a 0.82 EF non-condensing gas tankless water heater, an existing (high capacity) hybrid unit on the market, and an alternative hybrid unit with lower storage volume and reduced gas input requirements. Simulations were completed under a 'peak day' sizing scenario with 183 gpd hot water loads in a Minnesota winter climate case. Full-year simulations were then completed in three climates (ranging from Phoenix to Minneapolis) for three hot water load scenarios (36, 57, and 96 gpd). Model projections indicate that the alternative hybrid offers an average 4.5% efficiency improvement relative to the 0.60 EF gas storage unit across all scenarios modeled. The alternative hybrid water heater evaluated does show promise, but the current low cost of natural gas across much of the country and the relatively small incremental efficiency improvement poses challenges in initially building a market demand for the product.

  11. Large Ensemble Analytic Framework for Consequence-Driven Discovery of Climate Change Scenarios

    Science.gov (United States)

    Lamontagne, Jonathan R.; Reed, Patrick M.; Link, Robert; Calvin, Katherine V.; Clarke, Leon E.; Edmonds, James A.

    2018-03-01

    An analytic scenario generation framework is developed based on the idea that the same climate outcome can result from very different socioeconomic and policy drivers. The framework builds on the Scenario Matrix Framework's abstraction of "challenges to mitigation" and "challenges to adaptation" to facilitate the flexible discovery of diverse and consequential scenarios. We combine visual and statistical techniques for interrogating a large factorial data set of 33,750 scenarios generated using the Global Change Assessment Model. We demonstrate how the analytic framework can aid in identifying which scenario assumptions are most tied to user-specified measures for policy relevant outcomes of interest, specifically for our example high or low mitigation costs. We show that the current approach for selecting reference scenarios can miss policy relevant scenario narratives that often emerge as hybrids of optimistic and pessimistic scenario assumptions. We also show that the same scenario assumption can be associated with both high and low mitigation costs depending on the climate outcome of interest and the mitigation policy context. In the illustrative example, we show how agricultural productivity, population growth, and economic growth are most predictive of the level of mitigation costs. Formulating policy relevant scenarios of deeply and broadly uncertain futures benefits from large ensemble-based exploration of quantitative measures of consequences. To this end, we have contributed a large database of climate change futures that can support "bottom-up" scenario generation techniques that capture a broader array of consequences than those that emerge from limited sampling of a few reference scenarios.

  12. Hybrid Bloch brane

    Energy Technology Data Exchange (ETDEWEB)

    Bazeia, D.; Lima, Elisama E.M.; Losano, L. [Universidade Federal da Paraiba, Departamento de Fisica, Joao Pessoa, PB (Brazil)

    2017-02-15

    This work reports on models described by two real scalar fields coupled with gravity in the five-dimensional spacetime, with a warped geometry involving one infinite extra dimension. Through a mechanism that smoothly changes a thick brane into a hybrid brane, one investigates the appearance of hybrid branes hosting internal structure, characterized by the splitting on the energy density and the volcano potential, induced by the parameter which controls interactions between the two scalar fields. In particular, we investigate distinct symmetric and asymmetric hybrid brane scenarios. (orig.)

  13. Based on user interest level of modeling scenarios and browse content

    Science.gov (United States)

    Zhao, Yang

    2017-08-01

    User interest modeling is the core of personalized service, taking into account the impact of situational information on user preferences, the user behavior days of financial information. This paper proposes a method of user interest modeling based on scenario information, which is obtained by calculating the similarity of the situation. The user's current scene of the approximate scenario set; on the "user - interest items - scenarios" three-dimensional model using the situation pre-filtering method of dimension reduction processing. View the content of the user interested in the theme, the analysis of the page content to get each topic of interest keywords, based on the level of vector space model user interest. The experimental results show that the user interest model based on the scenario information is within 9% of the user's interest prediction, which is effective.

  14. Yield performance and stability of CMS-based triticale hybrids.

    Science.gov (United States)

    Mühleisen, Jonathan; Piepho, Hans-Peter; Maurer, Hans Peter; Reif, Jochen Christoph

    2015-02-01

    CMS-based triticale hybrids showed only marginal midparent heterosis for grain yield and lower dynamic yield stability compared to inbred lines. Hybrids of triticale (×Triticosecale Wittmack) are expected to possess outstanding yield performance and increased dynamic yield stability. The objectives of the present study were to (1) examine the optimum choice of the biometrical model to compare yield stability of hybrids versus lines, (2) investigate whether hybrids exhibit a more pronounced grain yield performance and yield stability, and (3) study optimal strategies to predict yield stability of hybrids. Thirteen female and seven male parental lines and their 91 factorial hybrids as well as 30 commercial lines were evaluated for grain yield in up to 20 environments. Hybrids were produced using a cytoplasmic male sterility (CMS)-inducing cytoplasm that originated from Triticumtimopheevii Zhuk. We found that the choice of the biometrical model can cause contrasting results and concluded that a group-by-environment interaction term should be added to the model when estimating stability variance of hybrids and lines. midparent heterosis for grain yield was on average 3 % with a range from -15.0 to 11.5 %. No hybrid outperformed the best inbred line. Hybrids had, on average, lower dynamic yield stability compared to the inbred lines. Grain yield performance of hybrids could be predicted based on midparent values and general combining ability (GCA)-predicted values. In contrast, stability variance of hybrids could be predicted only based on GCA-predicted values. We speculated that negative effects of the used CMS cytoplasm might be the reason for the low performance and yield stability of the hybrids. For this purpose a detailed study on the reasons for the drawback of the currently existing CMS system in triticale is urgently required comprising also the search of potentially alternative hybridization systems.

  15. Plug-In Hybrid Electric Vehicle Value Proposition Study: Interim Report: Phase I Scenario Evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Sikes, Karen R [ORNL; Markel, Lawrence C [ORNL; Hadley, Stanton W [ORNL; Hinds, Shaun [Sentech, Inc.; DeVault, Robert C [ORNL

    2009-01-01

    Plug-in hybrid electric vehicles (PHEVs) offer significant improvements in fuel economy, convenient low-cost recharging capabilities, potential environmental benefits, and decreased reliance on imported petroleum. However, the cost associated with new components (e.g., advanced batteries) to be introduced in these vehicles will likely result in a price premium to the consumer. This study aims to overcome this market barrier by identifying and evaluating value propositions that will increase the qualitative value and/or decrease the overall cost of ownership relative to the competing conventional vehicles and hybrid electric vehicles (HEVs) of 2030 During this initial phase of this study, business scenarios were developed based on economic advantages that either increase the consumer value or reduce the consumer cost of PHEVs to assure a sustainable market that can thrive without the aid of state and Federal incentives or subsidies. Once the characteristics of a thriving PHEV market have been defined for this timeframe, market introduction steps, such as supportive policies, regulations and temporary incentives, needed to reach this level of sustainability will be determined. PHEVs have gained interest over the past decade for several reasons, including their high fuel economy, convenient low-cost recharging capabilities, potential environmental benefits and reduced use of imported petroleum, potentially contributing to President Bush's goal of a 20% reduction in gasoline use in ten years, or 'Twenty in Ten'. PHEVs and energy storage from advanced batteries have also been suggested as enabling technologies to improve the reliability and efficiency of the electric power grid. However, PHEVs will likely cost significantly more to purchase than conventional or other hybrid electric vehicles (HEVs), in large part because of the cost of batteries. Despite the potential long-term savings to consumers and value to stakeholders, the initial cost of PHEVs

  16. Tough hybrid ceramic-based material with high strength

    International Nuclear Information System (INIS)

    Guo, Shuqi; Kagawa, Yutaka; Nishimura, Toshiyuki

    2012-01-01

    This study describes a tough and strong hybrid ceramic material consisting of platelet-like zirconium compounds and metal. A mixture of boron carbide and excess zirconium powder was heated to 1900 °C using a liquid-phase reaction sintering technique to produce a platelet-like ZrB 2 -based hybrid ceramic bonded by a thin zirconium layer. The platelet-like ZrB 2 grains were randomly present in the as-sintered hybrid ceramic. Relative to non-hybrid ceramics, the fracture toughness and flexural strength of the hybrid ceramic increased by approximately 2-fold.

  17. A framework for modeling scenario-based barrier island storm impacts

    Science.gov (United States)

    Mickey, Rangley; Long, Joseph W.; Dalyander, P. Soupy; Plant, Nathaniel G.; Thompson, David M.

    2018-01-01

    Methods for investigating the vulnerability of existing or proposed coastal features to storm impacts often rely on simplified parametric models or one-dimensional process-based modeling studies that focus on changes to a profile across a dune or barrier island. These simple studies tend to neglect the impacts to curvilinear or alongshore varying island planforms, influence of non-uniform nearshore hydrodynamics and sediment transport, irregular morphology of the offshore bathymetry, and impacts from low magnitude wave events (e.g. cold fronts). Presented here is a framework for simulating regionally specific, low and high magnitude scenario-based storm impacts to assess the alongshore variable vulnerabilities of a coastal feature. Storm scenarios based on historic hydrodynamic conditions were derived and simulated using the process-based morphologic evolution model XBeach. Model results show that the scenarios predicted similar patterns of erosion and overwash when compared to observed qualitative morphologic changes from recent storm events that were not included in the dataset used to build the scenarios. The framework model simulations were capable of predicting specific areas of vulnerability in the existing feature and the results illustrate how this storm vulnerability simulation framework could be used as a tool to help inform the decision-making process for scientists, engineers, and stakeholders involved in coastal zone management or restoration projects.

  18. Transmission network expansion planning based on hybridization model of neural networks and harmony search algorithm

    Directory of Open Access Journals (Sweden)

    Mohammad Taghi Ameli

    2012-01-01

    Full Text Available Transmission Network Expansion Planning (TNEP is a basic part of power network planning that determines where, when and how many new transmission lines should be added to the network. So, the TNEP is an optimization problem in which the expansion purposes are optimized. Artificial Intelligence (AI tools such as Genetic Algorithm (GA, Simulated Annealing (SA, Tabu Search (TS and Artificial Neural Networks (ANNs are methods used for solving the TNEP problem. Today, by using the hybridization models of AI tools, we can solve the TNEP problem for large-scale systems, which shows the effectiveness of utilizing such models. In this paper, a new approach to the hybridization model of Probabilistic Neural Networks (PNNs and Harmony Search Algorithm (HSA was used to solve the TNEP problem. Finally, by considering the uncertain role of the load based on a scenario technique, this proposed model was tested on the Garver’s 6-bus network.

  19. Development of bio-hybrid material based on Salmonella ...

    African Journals Online (AJOL)

    The immobilization of a whole microbial cell is an important process used in nanotechnology of biosensors and other related fields, especially the development of bio-hybrid materials based on live organisms and inorganic compounds. Here, we described an essay to develop a bio-hybrid material based on Salmonella ...

  20. Heavy impurity confinement in hybrid operation scenario plasmas with a rotating 1/1 continuous mode

    Science.gov (United States)

    Raghunathan, M.; Graves, J. P.; Nicolas, T.; Cooper, W. A.; Garbet, X.; Pfefferlé, D.

    2017-12-01

    In future tokamaks like ITER with tungsten walls, it is imperative to control tungsten accumulation in the core of operational plasmas, especially since tungsten accumulation can lead to radiative collapse and disruption. We investigate the behavior of tungsten trace impurities in a JET-like hybrid scenario with both axisymmetric and saturated 1/1 ideal helical core in the presence of strong plasma rotation. For this purpose, we obtain the equilibria from VMEC and use VENUS-LEVIS, a guiding-center orbit-following code, to follow heavy impurity particles. In this work, VENUS-LEVIS has been modified to account for strong plasma flows with associated neoclassical effects arising from such flows. We find that the combination of helical core and plasma rotation augments the standard neoclassical inward pinch compared to axisymmetry, and leads to a strong inward pinch of impurities towards the magnetic axis despite the strong outward diffusion provided by the centrifugal force, as frequently observed in experiments.

  1. Probabilistic Wind Power Ramp Forecasting Based on a Scenario Generation Method

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Qin [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Florita, Anthony R [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Krishnan, Venkat K [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Hodge, Brian S [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Cui, Mingjian [University of Texas at Dallas; Feng, Cong [University of Texas at Dallas; Wang, Zhenke [University of Texas at Dallas; Zhang, Jie [University of Texas at Dallas

    2018-02-01

    Wind power ramps (WPRs) are particularly important in the management and dispatch of wind power and currently drawing the attention of balancing authorities. With the aim to reduce the impact of WPRs for power system operations, this paper develops a probabilistic ramp forecasting method based on a large number of simulated scenarios. An ensemble machine learning technique is first adopted to forecast the basic wind power forecasting scenario and calculate the historical forecasting errors. A continuous Gaussian mixture model (GMM) is used to fit the probability distribution function (PDF) of forecasting errors. The cumulative distribution function (CDF) is analytically deduced. The inverse transform method based on Monte Carlo sampling and the CDF is used to generate a massive number of forecasting error scenarios. An optimized swinging door algorithm is adopted to extract all the WPRs from the complete set of wind power forecasting scenarios. The probabilistic forecasting results of ramp duration and start-time are generated based on all scenarios. Numerical simulations on publicly available wind power data show that within a predefined tolerance level, the developed probabilistic wind power ramp forecasting method is able to predict WPRs with a high level of sharpness and accuracy.

  2. Mars Scenario-Based Visioning: Logistical Optimization of Transportation Architectures

    Science.gov (United States)

    1999-01-01

    The purpose of this conceptual design investigation is to examine transportation forecasts for future human Wu missions to Mars. - Scenario-Based Visioning is used to generate possible future demand projections. These scenarios are then coupled with availability, cost, and capacity parameters for indigenously designed Mars Transfer Vehicles (solar electric, nuclear thermal, and chemical propulsion types) and Earth-to-Orbit launch vehicles (current, future, and indigenous) to provide a cost-conscious dual-phase launch manifest to meet such future demand. A simulator named M-SAT (Mars Scenario Analysis Tool) is developed using this method. This simulation is used to examine three specific transportation scenarios to Mars: a limited "flaus and footprints" mission, a More ambitious scientific expedition similar to an expanded version of the Design Reference Mission from NASA, and a long-term colonization scenario. Initial results from the simulation indicate that chemical propulsion systems might be the architecture of choice for all three scenarios. With this mind, "what if' analyses were performed which indicated that if nuclear production costs were reduced by 30% for the colonization scenario, then the nuclear architecture would have a lower life cycle cost than the chemical. Results indicate that the most cost-effective solution to the Mars transportation problem is to plan for segmented development, this involves development of one vehicle at one opportunity and derivatives of that vehicle at subsequent opportunities.

  3. Integrated environmental assessment of future energy scenarios based on economic equilibrium models

    International Nuclear Information System (INIS)

    Igos, E.; Rugani, B.; Rege, S.; Benetto, E.; Drouet, L.; Zachary, D.; Haas, T.

    2014-01-01

    The future evolution of energy supply technologies strongly depends on (and affects) the economic and environmental systems, due to the high dependency of this sector on the availability and cost of fossil fuels, especially on the small regional scale. This paper aims at presenting the modeling system and preliminary results of a research project conducted on the scale of Luxembourg to assess the environmental impact of future energy scenarios for the country, integrating outputs from partial and computable general equilibrium models within hybrid Life Cycle Assessment (LCA) frameworks. The general equilibrium model for Luxembourg, LUXGEM, is used to evaluate the economic impacts of policy decisions and other economic shocks over the time horizon 2006-2030. A techno-economic (partial equilibrium) model for Luxembourg, ETEM, is used instead to compute operation levels of various technologies to meet the demand for energy services at the least cost along the same timeline. The future energy demand and supply are made consistent by coupling ETEM with LUXGEM so as to have the same macro-economic variables and energy shares driving both models. The coupling results are then implemented within a set of Environmentally-Extended Input-Output (EE-IO) models in historical time series to test the feasibility of the integrated framework and then to assess the environmental impacts of the country. Accordingly, a dis-aggregated energy sector was built with the different ETEM technologies in the EE-IO to allow hybridization with Life Cycle Inventory (LCI) and enrich the process detail. The results show that the environmental impact slightly decreased overall from 2006 to 2009. Most of the impacts come from some imported commodities (natural gas, used to produce electricity, and metalliferous ores and metal scrap). The main energy production technology is the combined-cycle gas turbine plant 'Twinerg', representing almost 80% of the domestic electricity production in Luxembourg

  4. Upgrade of hybrid fibre coax networks towards bi-directional access

    NARCIS (Netherlands)

    Khoe, G.D.; Wolters, R.P.C.; Boom, van den H.P.A.; Prati, G.

    1997-01-01

    In this paper we describe an upgrade scenario for Hybrid Fibre Coax (HFC) CATV Networks towards hi-directional access. The communication system described has been newly designed, and is based on the use of Direct Sequence- Code Division Multiple-Access (DS-CDMA). Due to its spread-spectrum

  5. Quinoline-Based Hybrid Compounds with Antimalarial Activity

    Directory of Open Access Journals (Sweden)

    Xhamla Nqoro

    2017-12-01

    Full Text Available The application of quinoline-based compounds for the treatment of malaria infections is hampered by drug resistance. Drug resistance has led to the combination of quinolines with other classes of antimalarials resulting in enhanced therapeutic outcomes. However, the combination of antimalarials is limited by drug-drug interactions. In order to overcome the aforementioned factors, several researchers have reported hybrid compounds prepared by reacting quinoline-based compounds with other compounds via selected functionalities. This review will focus on the currently reported quinoline-based hybrid compounds and their preclinical studies.

  6. Improved Battery Parameter Estimation Method Considering Operating Scenarios for HEV/EV Applications

    Directory of Open Access Journals (Sweden)

    Jufeng Yang

    2016-12-01

    Full Text Available This paper presents an improved battery parameter estimation method based on typical operating scenarios in hybrid electric vehicles and pure electric vehicles. Compared with the conventional estimation methods, the proposed method takes both the constant-current charging and the dynamic driving scenarios into account, and two separate sets of model parameters are estimated through different parts of the pulse-rest test. The model parameters for the constant-charging scenario are estimated from the data in the pulse-charging periods, while the model parameters for the dynamic driving scenario are estimated from the data in the rest periods, and the length of the fitted dataset is determined by the spectrum analysis of the load current. In addition, the unsaturated phenomenon caused by the long-term resistor-capacitor (RC network is analyzed, and the initial voltage expressions of the RC networks in the fitting functions are improved to ensure a higher model fidelity. Simulation and experiment results validated the feasibility of the developed estimation method.

  7. Scenario-based approach to risk analysis in support of cyber security

    Energy Technology Data Exchange (ETDEWEB)

    Gertman, D. I.; Folkers, R.; Roberts, J. [Idaho National Laboratory, Roberts and Folkers Associates, LLC, Idaho Falls, ID 83404 (United States)

    2006-07-01

    The US infrastructure is continually challenged by hostile nation states and others who would do us harm. Cyber vulnerabilities and weaknesses are potential targets and are the result of years of construction and technological improvement in a world less concerned with security than is currently the case. As a result, cyber attack presents a class of challenges for which we are just beginning to prepare. What has been done in the nuclear, chemical and energy sectors as a means of anticipating and preparing for randomly occurring accidents and off-normal events is to develop scenarios as a means by which to prioritize and quantify risk and to take action. However, the number of scenarios risk analysts can develop is almost limitless. How do we ascertain which scenario has the greatest merit? One of the more important contributions of probabilistic risk analysis (PRA) has been to quantify the initiating event probability associated with various classes of accidents; and to quantify the occurrence of various conditions, i.e., end-states, as a function of these important accident sequences. Typically, various classes of conditions are represented by scenarios and are quantified in terms of cut sets and binned into end states. For example, the nuclear industry has a well-defined set of initiating events that are studied in assessing risk. The maturation of risk analysis for cyber security from accounting for barriers or looking at conditions statically to one of ascertaining the probability associated with certain events is, in part, dependent upon the adoption of a scenario-based approach. For example, scenarios take into account threats to personnel and public safety; economic damage, and compromises to major operational and safety functions. Scenarios reflect system, equipment, and component configurations as well as key human-system interactions related to event detection, diagnosis, mitigation and restoration of systems. As part of a cyber attack directed toward

  8. Scenario-based approach to risk analysis in support of cyber security

    International Nuclear Information System (INIS)

    Gertman, D. I.; Folkers, R.; Roberts, J.

    2006-01-01

    The US infrastructure is continually challenged by hostile nation states and others who would do us harm. Cyber vulnerabilities and weaknesses are potential targets and are the result of years of construction and technological improvement in a world less concerned with security than is currently the case. As a result, cyber attack presents a class of challenges for which we are just beginning to prepare. What has been done in the nuclear, chemical and energy sectors as a means of anticipating and preparing for randomly occurring accidents and off-normal events is to develop scenarios as a means by which to prioritize and quantify risk and to take action. However, the number of scenarios risk analysts can develop is almost limitless. How do we ascertain which scenario has the greatest merit? One of the more important contributions of probabilistic risk analysis (PRA) has been to quantify the initiating event probability associated with various classes of accidents; and to quantify the occurrence of various conditions, i.e., end-states, as a function of these important accident sequences. Typically, various classes of conditions are represented by scenarios and are quantified in terms of cut sets and binned into end states. For example, the nuclear industry has a well-defined set of initiating events that are studied in assessing risk. The maturation of risk analysis for cyber security from accounting for barriers or looking at conditions statically to one of ascertaining the probability associated with certain events is, in part, dependent upon the adoption of a scenario-based approach. For example, scenarios take into account threats to personnel and public safety; economic damage, and compromises to major operational and safety functions. Scenarios reflect system, equipment, and component configurations as well as key human-system interactions related to event detection, diagnosis, mitigation and restoration of systems. As part of a cyber attack directed toward

  9. Reliable Freestanding Position-Based Routing in Highway Scenarios

    Science.gov (United States)

    Galaviz-Mosqueda, Gabriel A.; Aquino-Santos, Raúl; Villarreal-Reyes, Salvador; Rivera-Rodríguez, Raúl; Villaseñor-González, Luis; Edwards, Arthur

    2012-01-01

    Vehicular Ad Hoc Networks (VANETs) are considered by car manufacturers and the research community as the enabling technology to radically improve the safety, efficiency and comfort of everyday driving. However, before VANET technology can fulfill all its expected potential, several difficulties must be addressed. One key issue arising when working with VANETs is the complexity of the networking protocols compared to those used by traditional infrastructure networks. Therefore, proper design of the routing strategy becomes a main issue for the effective deployment of VANETs. In this paper, a reliable freestanding position-based routing algorithm (FPBR) for highway scenarios is proposed. For this scenario, several important issues such as the high mobility of vehicles and the propagation conditions may affect the performance of the routing strategy. These constraints have only been partially addressed in previous proposals. In contrast, the design approach used for developing FPBR considered the constraints imposed by a highway scenario and implements mechanisms to overcome them. FPBR performance is compared to one of the leading protocols for highway scenarios. Performance metrics show that FPBR yields similar results when considering freespace propagation conditions, and outperforms the leading protocol when considering a realistic highway path loss model. PMID:23202159

  10. Remote inflation as hybrid-like sneutrino/MSSM inflation

    International Nuclear Information System (INIS)

    Matsuda, Tomohiro

    2009-01-01

    A new scenario of hybrid-like inflation is considered for sneutrino and MSSM fields. Contrary to the usual hybrid inflation model, the direct coupling between a trigger field and the sneutrino/MSSM inflaton field is not necessary for the scenario. The dissipation and the radiation from the sneutrino/MSSM inflaton can be written explicitly by using the Yukawa couplings. Remote inflation does not require the shift symmetry or cancellation in solving the η problem.

  11. SCENARIO PLANNING AS LEARNING

    Directory of Open Access Journals (Sweden)

    Antonio Lourenço Junior

    2010-10-01

    Full Text Available Scenario Planning has been increasingly used, from its introduction to the decision process as effective tools to test decisions, and improve performance in a dynamic environment (Chermack, 2005. The purpose of this article is to demonstrate the potential of an experimental Scenario Planning Model to mobilize, encourage and add more content to the organization’s decision making process – mainly with respect to Strategic Plans of two governmental institutions, a pharmaceutical company and a technology education foundation.  This study describes the application stages of a hybrid scenario-planning model – herein referred to as Planning as Learning – via action-research, showing the scenarios resulting from the experiment and describes the main results of an assessment of such practice. In order to do that, two well-established Scenario Planning models (Prospective school and Shell’s model were analyzed. They were used as a reference for the proposition and application of an experimental model in the two study objects. A questionnaire was used to assess the technique impact. It was possible to obtain high levels of reliability. In-depth interviews were also conducted with the participants. At the end, the results confirmed the model efficiency as a basis for decision making in the competitive environment in which the two institutions are inserted, also to encourage the learning process as a group, as observed throughout the work.

  12. Optimal energy management for a flywheel-based hybrid vehicle

    NARCIS (Netherlands)

    Berkel, van K.; Hofman, T.; Vroemen, B.G.; Steinbuch, M.

    2011-01-01

    This paper presents the modeling and design of an optimal Energy Management Strategy (EMS) for a flywheel-based hybrid vehicle, that does not use any electrical motor/generator, or a battery, for its hybrid functionalities. The hybrid drive train consists of only low-cost components, such as a

  13. vNet Zero Energy for Radio Base Stations- Balearic Scenario

    DEFF Research Database (Denmark)

    Sabater, Pere; Mihovska, Albena Dimitrova; Pol, Andreu Moia

    2016-01-01

    The Balearic Islands have one of the best telecommunications infrastructures in Spain, with more than 1500 Radio Base Stations (RBS) covering a total surface of 4.991,66 km². This archipelago has high energy consumption, with high CO2 emissions, due to an electrical energy production system mainly...... based on coal and fossil fuels which is not an environmentally sustainable scenario. The aim of this study is to identify the processes that would reduce the energy consumption and greenhouse gas emissions, designing a target scenario featuring "zero CO2 emissions" and "100% renewable energies" in RBS....... The energy costs, CO2 emissions and data traffic data used for the study are generated by a sample of RBS from the Balearic Islands. The results are shown in terms of energy performance for a normal and net zero emissions scenarios....

  14. An Architectural Decision Tool Based on Scenarios and Non-functional Requirements

    OpenAIRE

    Mr. Mahesh Parmar; Prof. W.U. Khan; Dr. Binod Kumar

    2011-01-01

    Software architecture design is often based on architects intuition and previous experience. Little methodological support is available, but there are still no effective solutions to guide the architectural design. The most difficult activity is the transformation from non-functional requirement specification into software architecture. To achieve above things proposed “An Architectural Decision Tool Based on Scenarios and Nonfunctional Requirementsâ€. In this proposed tool scenarios are fi...

  15. Fusion-fission hybrid reactors

    International Nuclear Information System (INIS)

    Greenspan, E.

    1984-01-01

    This chapter discusses the range of characteristics attainable from hybrid reactor blankets; blanket design considerations; hybrid reactor designs; alternative fuel hybrid reactors; multi-purpose hybrid reactors; and hybrid reactors and the energy economy. Hybrid reactors are driven by a fusion neutron source and include fertile and/or fissile material. The fusion component provides a copious source of fusion neutrons which interact with a subcritical fission component located adjacent to the plasma or pellet chamber. Fissile fuel and/or energy are the main products of hybrid reactors. Topics include high F/M blankets, the fissile (and tritium) breeding ratio, effects of composition on blanket properties, geometrical considerations, power density and first wall loading, variations of blanket properties with irradiation, thermal-hydraulic and mechanical design considerations, safety considerations, tokamak hybrid reactors, tandem-mirror hybrid reactors, inertial confinement hybrid reactors, fusion neutron sources, fissile-fuel and energy production ability, simultaneous production of combustible and fissile fuels, fusion reactors for waste transmutation and fissile breeding, nuclear pumped laser hybrid reactors, Hybrid Fuel Factories (HFFs), and scenarios for hybrid contribution. The appendix offers hybrid reactor fundamentals. Numerous references are provided

  16. Design, analysis and modeling of a novel hybrid powertrain system based on hybridized automated manual transmission

    Science.gov (United States)

    Wu, Guang; Dong, Zuomin

    2017-09-01

    Hybrid electric vehicles are widely accepted as a promising short to mid-term technical solution due to noticeably improved efficiency and lower emissions at competitive costs. In recent years, various hybrid powertrain systems were proposed and implemented based on different types of conventional transmission. Power-split system, including Toyota Hybrid System and Ford Hybrid System, are well-known examples. However, their relatively low torque capacity, and the drive of alternative and more advanced designs encouraged other innovative hybrid system designs. In this work, a new type of hybrid powertrain system based hybridized automated manual transmission (HAMT) is proposed. By using the concept of torque gap filler (TGF), this new hybrid powertrain type has the potential to overcome issue of torque gap during gearshift. The HAMT design (patent pending) is described in details, from gear layout and design of gear ratios (EV mode and HEV mode) to torque paths at different gears. As an analytical tool, mutli-body model of vehicle equipped with this HAMT was built to analyze powertrain dynamics at various steady and transient modes. A gearshift was decomposed and analyzed based basic modes. Furthermore, a Simulink-SimDriveline hybrid vehicle model was built for the new transmission, driveline and vehicle modular. Control strategy has also been built to harmonically coordinate different powertrain components to realize TGF function. A vehicle launch simulation test has been completed under 30% of accelerator pedal position to reveal details during gearshift. Simulation results showed that this HAMT can eliminate most torque gap that has been persistent issue of traditional AMT, improving both drivability and performance. This work demonstrated a new type of transmission that features high torque capacity, high efficiency and improved drivability.

  17. The Design and Effect of Automated Directions During Scenario-based Training

    NARCIS (Netherlands)

    Peeters, Marieke; Bosch, Karel van den; Meyer, John-Jules Ch.; Neerincx, Mark A.

    2014-01-01

    During scenario-based training, the scenario is dynamically adapted in real time to control the storyline and increase its effectiveness. A team of experienced staff members is required to manage and perform the adaptations. They manipulate the storyline and the level of support during their

  18. The design and effect of automated directions during scenario-based training

    NARCIS (Netherlands)

    Peeters, M.M.M.; Bosch, K. van den; Meyer, J.J.C.; Neerincx, M.A.

    2014-01-01

    During scenario-based training, the scenario is dynamically adapted in real time to control the storyline and increase its effectiveness. A team of experienced staff members is required to manage and perform the adaptations. They manipulate the storyline and the level of support during their

  19. WATER AVAILABILITY IN SOUTHERN PORTUGAL FOR DIFFERENT CLIMATE CHANGE SCENARIOS SUBJECTED TO BIAS CORRECTION

    Directory of Open Access Journals (Sweden)

    Sandra Mourato

    2014-01-01

    Full Text Available Regional climate models provided precipitation and temperature time series for control (1961–1990 and scenario (2071–2100 periods. At southern Portu gal, the climate models in the control period systematically present higher temp eratures and lower precipitation than the observations. Therefore, the direct inpu t of climate model data into hydrological models might result in more severe scenarios for future water availability. Three bias correction methods (Delta Change, Dire ct Forcing and Hybrid are analysed and their performances in water availability impac t studies are assessed. The Delta Change method assumes that the observed series variab ility is maintained in the scenario period and is corrected by the evolution predicted by the climate models. The Direct Forcing method maintains the scenario series variabi lity, which is corrected by the bias found in the control period, and the Hybrid method maintains the control model series variability, which is corrected by the bias found in the control period and by the evolution predicted by the climate models. To assess the climate impacts in the water resources expected for the scenario period, a physically based spatially distributed hydrological model, SHETRAN, is used for runoff pro jections in a southern Portugal basin. The annual and seasonal runoff shows a runoff d ecrease in the scenario period, increasing the water shor tage that is already experienc ed. The overall annual reduction varies between –80% and –35%. In general, the results show that the runoff reductions obtained with climate models corrected with the Delt a Change method are highest but with a narrow range that varies between –80% and –5 2%.

  20. Applying the global RCP-SSP-SPA scenario framework at sub-national scale: A multi-scale and participatory scenario approach.

    Science.gov (United States)

    Kebede, Abiy S; Nicholls, Robert J; Allan, Andrew; Arto, Iñaki; Cazcarro, Ignacio; Fernandes, Jose A; Hill, Chris T; Hutton, Craig W; Kay, Susan; Lázár, Attila N; Macadam, Ian; Palmer, Matthew; Suckall, Natalie; Tompkins, Emma L; Vincent, Katharine; Whitehead, Paul W

    2018-09-01

    To better anticipate potential impacts of climate change, diverse information about the future is required, including climate, society and economy, and adaptation and mitigation. To address this need, a global RCP (Representative Concentration Pathways), SSP (Shared Socio-economic Pathways), and SPA (Shared climate Policy Assumptions) (RCP-SSP-SPA) scenario framework has been developed by the Intergovernmental Panel on Climate Change Fifth Assessment Report (IPCC-AR5). Application of this full global framework at sub-national scales introduces two key challenges: added complexity in capturing the multiple dimensions of change, and issues of scale. Perhaps for this reason, there are few such applications of this new framework. Here, we present an integrated multi-scale hybrid scenario approach that combines both expert-based and participatory methods. The framework has been developed and applied within the DECCMA 1 project with the purpose of exploring migration and adaptation in three deltas across West Africa and South Asia: (i) the Volta delta (Ghana), (ii) the Mahanadi delta (India), and (iii) the Ganges-Brahmaputra-Meghna (GBM) delta (Bangladesh/India). Using a climate scenario that encompasses a wide range of impacts (RCP8.5) combined with three SSP-based socio-economic scenarios (SSP2, SSP3, SSP5), we generate highly divergent and challenging scenario contexts across multiple scales against which robustness of the human and natural systems within the deltas are tested. In addition, we consider four distinct adaptation policy trajectories: Minimum intervention, Economic capacity expansion, System efficiency enhancement, and System restructuring, which describe alternative future bundles of adaptation actions/measures under different socio-economic trajectories. The paper highlights the importance of multi-scale (combined top-down and bottom-up) and participatory (joint expert-stakeholder) scenario methods for addressing uncertainty in adaptation decision

  1. A Hybrid Architecture for Vision-Based Obstacle Avoidance

    Directory of Open Access Journals (Sweden)

    Mehmet Serdar Güzel

    2013-01-01

    Full Text Available This paper proposes a new obstacle avoidance method using a single monocular vision camera as the only sensor which is called as Hybrid Architecture. This architecture integrates a high performance appearance-based obstacle detection method into an optical flow-based navigation system. The hybrid architecture was designed and implemented to run both methods simultaneously and is able to combine the results of each method using a novel arbitration mechanism. The proposed strategy successfully fused two different vision-based obstacle avoidance methods using this arbitration mechanism in order to permit a safer obstacle avoidance system. Accordingly, to establish the adequacy of the design of the obstacle avoidance system, a series of experiments were conducted. The results demonstrate the characteristics of the proposed architecture, and the results prove that its performance is somewhat better than the conventional optical flow-based architecture. Especially, the robot employing Hybrid Architecture avoids lateral obstacles in a more smooth and robust manner than when using the conventional optical flow-based technique.

  2. Agent-based power sharing scheme for active hybrid power sources

    Science.gov (United States)

    Jiang, Zhenhua

    The active hybridization technique provides an effective approach to combining the best properties of a heterogeneous set of power sources to achieve higher energy density, power density and fuel efficiency. Active hybrid power sources can be used to power hybrid electric vehicles with selected combinations of internal combustion engines, fuel cells, batteries, and/or supercapacitors. They can be deployed in all-electric ships to build a distributed electric power system. They can also be used in a bulk power system to construct an autonomous distributed energy system. An important aspect in designing an active hybrid power source is to find a suitable control strategy that can manage the active power sharing and take advantage of the inherent scalability and robustness benefits of the hybrid system. This paper presents an agent-based power sharing scheme for active hybrid power sources. To demonstrate the effectiveness of the proposed agent-based power sharing scheme, simulation studies are performed for a hybrid power source that can be used in a solar car as the main propulsion power module. Simulation results clearly indicate that the agent-based control framework is effective to coordinate the various energy sources and manage the power/voltage profiles.

  3. Probabilistic Wind Power Ramp Forecasting Based on a Scenario Generation Method: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Qin [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Florita, Anthony R [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Krishnan, Venkat K [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Hodge, Brian S [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Cui, Mingjian [Univ. of Texas-Dallas, Richardson, TX (United States); Feng, Cong [Univ. of Texas-Dallas, Richardson, TX (United States); Wang, Zhenke [Univ. of Texas-Dallas, Richardson, TX (United States); Zhang, Jie [Univ. of Texas-Dallas, Richardson, TX (United States)

    2017-08-31

    Wind power ramps (WPRs) are particularly important in the management and dispatch of wind power, and they are currently drawing the attention of balancing authorities. With the aim to reduce the impact of WPRs for power system operations, this paper develops a probabilistic ramp forecasting method based on a large number of simulated scenarios. An ensemble machine learning technique is first adopted to forecast the basic wind power forecasting scenario and calculate the historical forecasting errors. A continuous Gaussian mixture model (GMM) is used to fit the probability distribution function (PDF) of forecasting errors. The cumulative distribution function (CDF) is analytically deduced. The inverse transform method based on Monte Carlo sampling and the CDF is used to generate a massive number of forecasting error scenarios. An optimized swinging door algorithm is adopted to extract all the WPRs from the complete set of wind power forecasting scenarios. The probabilistic forecasting results of ramp duration and start time are generated based on all scenarios. Numerical simulations on publicly available wind power data show that within a predefined tolerance level, the developed probabilistic wind power ramp forecasting method is able to predict WPRs with a high level of sharpness and accuracy.

  4. M3BA: A Mobile, Modular, Multimodal Biosignal Acquisition Architecture for Miniaturized EEG-NIRS-Based Hybrid BCI and Monitoring.

    Science.gov (United States)

    von Luhmann, Alexander; Wabnitz, Heidrun; Sander, Tilmann; Muller, Klaus-Robert

    2017-06-01

    For the further development of the fields of telemedicine, neurotechnology, and brain-computer interfaces, advances in hybrid multimodal signal acquisition and processing technology are invaluable. Currently, there are no commonly available hybrid devices combining bioelectrical and biooptical neurophysiological measurements [here electroencephalography (EEG) and functional near-infrared spectroscopy (NIRS)]. Our objective was to design such an instrument in a miniaturized, customizable, and wireless form. We present here the design and evaluation of a mobile, modular, multimodal biosignal acquisition architecture (M3BA) based on a high-performance analog front-end optimized for biopotential acquisition, a microcontroller, and our openNIRS technology. The designed M3BA modules are very small configurable high-precision and low-noise modules (EEG input referred noise @ 500 SPS 1.39 μV pp , NIRS noise equivalent power NEP 750 nm = 5.92 pW pp , and NEP 850 nm = 4.77 pW pp ) with full input linearity, Bluetooth, 3-D accelerometer, and low power consumption. They support flexible user-specified biopotential reference setups and wireless body area/sensor network scenarios. Performance characterization and in-vivo experiments confirmed functionality and quality of the designed architecture. Telemedicine and assistive neurotechnology scenarios will increasingly include wearable multimodal sensors in the future. The M3BA architecture can significantly facilitate future designs for research in these and other fields that rely on customized mobile hybrid biosignal modal biosignal acquisition architecture (M3BA), multimodal, near-infrared spectroscopy (NIRS), wireless body area network (WBAN), wireless body sensor network (WBSN).

  5. Hybrid uncertainty-based design optimization and its application to hybrid rocket motors for manned lunar landing

    Directory of Open Access Journals (Sweden)

    Hao Zhu

    2017-04-01

    Full Text Available Design reliability and robustness are getting increasingly important for the general design of aerospace systems with many inherently uncertain design parameters. This paper presents a hybrid uncertainty-based design optimization (UDO method developed from probability theory and interval theory. Most of the uncertain design parameters which have sufficient information or experimental data are classified as random variables using probability theory, while the others are defined as interval variables with interval theory. Then a hybrid uncertainty analysis method based on Monte Carlo simulation and Taylor series interval analysis is developed to obtain the uncertainty propagation from the design parameters to system responses. Three design optimization strategies, including deterministic design optimization (DDO, probabilistic UDO and hybrid UDO, are applied to the conceptual design of a hybrid rocket motor (HRM used as the ascent propulsion system in Apollo lunar module. By comparison, the hybrid UDO is a feasible method and can be effectively applied to the general design of aerospace systems.

  6. Hybrid uncertainty-based design optimization and its application to hybrid rocket motors for manned lunar landing

    Institute of Scientific and Technical Information of China (English)

    Zhu Hao; Tian Hui; Cai Guobiao

    2017-01-01

    Design reliability and robustness are getting increasingly important for the general design of aerospace systems with many inherently uncertain design parameters. This paper presents a hybrid uncertainty-based design optimization (UDO) method developed from probability theory and interval theory. Most of the uncertain design parameters which have sufficient information or experimental data are classified as random variables using probability theory, while the others are defined as interval variables with interval theory. Then a hybrid uncertainty analysis method based on Monte Carlo simulation and Taylor series interval analysis is developed to obtain the uncer-tainty propagation from the design parameters to system responses. Three design optimization strategies, including deterministic design optimization (DDO), probabilistic UDO and hybrid UDO, are applied to the conceptual design of a hybrid rocket motor (HRM) used as the ascent propulsion system in Apollo lunar module. By comparison, the hybrid UDO is a feasible method and can be effectively applied to the general design of aerospace systems.

  7. Event-triggered hybrid control based on multi-Agent systems for Microgrids

    DEFF Research Database (Denmark)

    Dou, Chun-xia; Liu, Bin; Guerrero, Josep M.

    2014-01-01

    This paper is focused on a multi-agent system based event-triggered hybrid control for intelligently restructuring the operating mode of an microgrid (MG) to ensure the energy supply with high security, stability and cost effectiveness. Due to the microgrid is composed of different types...... of distributed energy resources, thus it is typical hybrid dynamic network. Considering the complex hybrid behaviors, a hierarchical decentralized coordinated control scheme is firstly constructed based on multi-agent sys-tem, then, the hybrid model of the microgrid is built by using differential hybrid Petri...

  8. Rapid Development of Scenario-Based Simulations and Tutoring Systems

    National Research Council Canada - National Science Library

    Mohammed, John L; Sorensen, Barbara; Ong, James C; Li, Jian

    2005-01-01

    .... Scenario-based training, in which trainees practice handling specific situations using faithful simulations of the equipment they will use on the job has proven to be an extremely effective method...

  9. Deterministic earthquake scenarios for the city of Sofia

    CERN Document Server

    Slavov, S I; Panza, G F; Paskaleva, I; Vaccari, P

    2002-01-01

    The city of Sofia is exposed to a high seismic risk. Macroseismic intensities in the range of VIII-X (MSK) can be expected in the city. The earthquakes, that can influence the hazard at Sofia, originate either beneath the city or are caused by seismic sources located within a radius of 40km. The city of Sofia is also prone to the remote Vrancea seismic zone in Romania, and particularly vulnerable are the long - period elements of the built environment. The high seismic risk and the lack of instrumental recordings of the regional seismicity makes the use of appropriate credible earthquake scenarios and ground motion modelling approaches for defining the seismic input for the city of Sofia necessary. Complete synthetic seismic signals, due to several earthquake scenarios, were computed along chosen geological profiles crossing the city, applying a hybrid technique, based on the modal summation technique and finite differences. The modelling takes into account simultaneously the geotechnical properties of the si...

  10. Survey on the fusion/fission-hybrid-reactors, a literature review

    International Nuclear Information System (INIS)

    A survey, based on existing literature, of the work being pursued worldwide on fusion - fission (hybrid) reactor systems is presented. Six areas are reviewed: Plasma physics parameters; Blankets concepts; Fuel cycles; Reactor conceptual designs; Safety and environmental problems; System studies and economic perspectives. Attention has been restricted to systems using magnetically confined plasmas, mainly to mirror and Tokamak - type concepts. The aim is to provide sufficient information, even if not exhaustive, on hybrid reactor concepts in order to help understand what may be expected from their possible development and the ways in which hybrids could affect the future energy scenario. Some concluding remarks are made which represent the personal view of the authors only

  11. Integrated modelling of economic-energy-environment scenarios - The impact of China and India's economic growth on energy use and CO2 emissions

    International Nuclear Information System (INIS)

    Roques, F.; Sassi, O.; Guivarch, C.; Waisman, H.; Crassous, R.; Hourcade, J.Ch.

    2009-03-01

    A hybrid framework coupling the bottom-up energy sector WEM model with the top-down general equilibrium model IMACLIM-R is implemented to capture the macro-economic feedbacks of Chinese and Indian economic growth on energy and emissions scenarios. The iterative coupling procedure captures the detailed representation of energy use and supply while ensuring the micro-economic and macro-economic consistency of the different scenarios studied. The dual representation of the hybrid model facilitates the incorporation of energy sector expertise in internally consistent scenarios. The paper describes how the hybrid model was used to assess the effect of uncertainty on economic growth in China and India in the energy and emissions scenarios of the International Energy Agency. (authors)

  12. Hybrid modelling framework by using mathematics-based and information-based methods

    International Nuclear Information System (INIS)

    Ghaboussi, J; Kim, J; Elnashai, A

    2010-01-01

    Mathematics-based computational mechanics involves idealization in going from the observed behaviour of a system into mathematical equations representing the underlying mechanics of that behaviour. Idealization may lead mathematical models that exclude certain aspects of the complex behaviour that may be significant. An alternative approach is data-centric modelling that constitutes a fundamental shift from mathematical equations to data that contain the required information about the underlying mechanics. However, purely data-centric methods often fail for infrequent events and large state changes. In this article, a new hybrid modelling framework is proposed to improve accuracy in simulation of real-world systems. In the hybrid framework, a mathematical model is complemented by information-based components. The role of informational components is to model aspects which the mathematical model leaves out. The missing aspects are extracted and identified through Autoprogressive Algorithms. The proposed hybrid modelling framework has a wide range of potential applications for natural and engineered systems. The potential of the hybrid methodology is illustrated through modelling highly pinched hysteretic behaviour of beam-to-column connections in steel frames.

  13. NextSTEP Hybrid Life Support

    Data.gov (United States)

    National Aeronautics and Space Administration — NextSTEP Phase I Hybrid Life Support Systems (HLSS) effort assessed options, performance, and reliability for various mission scenarios using contractor-developed...

  14. Synthetic wind speed scenarios generation for probabilistic analysis of hybrid energy systems

    International Nuclear Information System (INIS)

    Chen, Jun; Rabiti, Cristian

    2017-01-01

    Hybrid energy systems consisting of multiple energy inputs and multiple energy outputs have been proposed to be an effective element to enable ever increasing penetration of clean energy. In order to better understand the dynamic and probabilistic behavior of hybrid energy systems, this paper proposes a model combining Fourier series and autoregressive moving average (ARMA) to characterize historical weather measurements and to generate synthetic weather (e.g., wind speed) data. In particular, Fourier series is used to characterize the seasonal trend in historical data, while ARMA is applied to capture the autocorrelation in residue time series (e.g., measurements with seasonal trends subtracted). The generated synthetic wind speed data is then utilized to perform probabilistic analysis of a particular hybrid energy system configuration, which consists of nuclear power plant, wind farm, battery storage, natural gas boiler, and chemical plant. Requirements on component ramping rate, economic and environmental impacts of hybrid energy systems, and the effects of deploying different sizes of batteries in smoothing renewable variability, are all investigated. - Highlights: • Computational model to synthesize artificial wind speed data with consistent characteristics with database. • Fourier series to capture seasonal trends in the database. • Monte Carlo simulation and probabilistic analysis of hybrid energy systems. • Investigation of the effect of battery in smoothing variability of wind power generation.

  15. Coordination of Heat Pumps, Electric Vehicles and AGC for Efficient LFC in a Smart Hybrid Power System via SCA-Based Optimized FOPID Controllers

    Directory of Open Access Journals (Sweden)

    Rahmat Khezri

    2018-02-01

    Full Text Available Due to the high price of fossil fuels, the increased carbon footprint in conventional generation units and the intermittent functionality of renewable units, alternative sources must contribute to the load frequency control (LFC of the power system. To tackle the challenge, dealing with controllable loads, the ongoing study aims at efficient LFC in smart hybrid power systems. To achieve this goal, heat pumps (HPs and electric vehicles (EVs are selected as the most effective controllable loads to contribute to the LFC issue. In this regard, the EVs can be controlled in a bidirectional manner as known charging and discharging states under a smart structure. In addition, regarding the HPs, the power consumption is controllable. As the main task, this paper proposes a fractional order proportional integral differential (FOPID controller for coordinated control of power consumption in HPs, the discharging state in EVs and automatic generation control (AGC. The parameters of the FOPID controllers are optimized simultaneously by the sine cosine algorithm (SCA, which is a new method for optimization problems. In the sequel, four scenarios, including step and random load changes, aggregated intermittent generated power from wind turbines, a random load change scenario and a sensitivity analysis scenario, are selected to demonstrate the efficiency of the proposed SCA-based FOPID controllers in a hybrid two-area power system.

  16. Hybrid optical CDMA-FSO communications network under spatially correlated gamma-gamma scintillation.

    Science.gov (United States)

    Jurado-Navas, Antonio; Raddo, Thiago R; Garrido-Balsells, José María; Borges, Ben-Hur V; Olmos, Juan José Vegas; Monroy, Idelfonso Tafur

    2016-07-25

    In this paper, we propose a new hybrid network solution based on asynchronous optical code-division multiple-access (OCDMA) and free-space optical (FSO) technologies for last-mile access networks, where fiber deployment is impractical. The architecture of the proposed hybrid OCDMA-FSO network is thoroughly described. The users access the network in a fully asynchronous manner by means of assigned fast frequency hopping (FFH)-based codes. In the FSO receiver, an equal gain-combining technique is employed along with intensity modulation and direct detection. New analytical formalisms for evaluating the average bit error rate (ABER) performance are also proposed. These formalisms, based on the spatially correlated gamma-gamma statistical model, are derived considering three distinct scenarios, namely, uncorrelated, totally correlated, and partially correlated channels. Numerical results show that users can successfully achieve error-free ABER levels for the three scenarios considered as long as forward error correction (FEC) algorithms are employed. Therefore, OCDMA-FSO networks can be a prospective alternative to deliver high-speed communication services to access networks with deficient fiber infrastructure.

  17. Scenario-based verification of real-time systems using UPPAAL

    DEFF Research Database (Denmark)

    Li, Shuhao; Belaguer, Sandie; David, Alexandre

    2010-01-01

    Abstract This paper proposes two approaches to tool-supported automatic verification of dense real-time systems against scenario-based requirements, where a system is modeled as a network of timed automata (TAs) or as a set of driving live sequence charts (LSCs), and a requirement is specified...... as a separate monitored LSC chart. We make timed extensions to a kernel subset of the LSC language and define a trace-based semantics. By translating a monitored LSC chart to a behavior-equivalent observer TA and then non-intrusively composing this observer with the original TA modeled real-time system......, the problem of scenario-based verification reduces to a computation tree logic (CTL) real-time model checking problem. In case the real time system is modeled as a set of driving LSC charts, we translate these driving charts and the monitored chart into a behavior-equivalent network of TAs by using a “one...

  18. Future Scenarios of Land Change Based on Empirical Data and Demographic Trends

    Science.gov (United States)

    Sleeter, Benjamin M.; Wilson, Tamara S.; Sharygin, Ethan; Sherba, Jason T.

    2017-11-01

    Changes in land use and land cover (LULC) have important and fundamental interactions with the global climate system. Top-down global scale projections of land use change have been an important component of climate change research; however, their utility at local to regional scales is often limited. The goal of this study was to develop an approach for projecting changes in LULC based on land use histories and demographic trends. We developed a set of stochastic, empirical-based projections of LULC change for the state of California, for the period 2001-2100. Land use histories and demographic trends were used to project a "business-as-usual" (BAU) scenario and three population growth scenarios. For the BAU scenario, we projected developed lands would more than double by 2100. When combined with cultivated areas, we projected a 28% increase in anthropogenic land use by 2100. As a result, natural lands were projected to decline at a rate of 139 km2 yr-1; grasslands experienced the largest net decline, followed by shrublands and forests. The amount of cultivated land was projected to decline by approximately 10%; however, the relatively modest change masked large shifts between annual and perennial crop types. Under the three population scenarios, developed lands were projected to increase 40-90% by 2100. Our results suggest that when compared to the BAU projection, scenarios based on demographic trends may underestimate future changes in LULC. Furthermore, regardless of scenario, the spatial pattern of LULC change was likely to have the greatest negative impacts on rangeland ecosystems.

  19. Future scenarios of land change based on empirical data and demographic trends

    Science.gov (United States)

    Sleeter, Benjamin M.; Wilson, Tamara; Sharygin, Ethan; Sherba, Jason

    2017-01-01

    Changes in land use and land cover (LULC) have important and fundamental interactions with the global climate system. Top-down global scale projections of land use change have been an important component of climate change research; however, their utility at local to regional scales is often limited. The goal of this study was to develop an approach for projecting changes in LULC based on land use histories and demographic trends. We developed a set of stochastic, empirical-based projections of LULC change for the state of California, for the period 2001–2100. Land use histories and demographic trends were used to project a “business-as-usual” (BAU) scenario and three population growth scenarios. For the BAU scenario, we projected developed lands would more than double by 2100. When combined with cultivated areas, we projected a 28% increase in anthropogenic land use by 2100. As a result, natural lands were projected to decline at a rate of 139 km2 yr−1; grasslands experienced the largest net decline, followed by shrublands and forests. The amount of cultivated land was projected to decline by approximately 10%; however, the relatively modest change masked large shifts between annual and perennial crop types. Under the three population scenarios, developed lands were projected to increase 40–90% by 2100. Our results suggest that when compared to the BAU projection, scenarios based on demographic trends may underestimate future changes in LULC. Furthermore, regardless of scenario, the spatial pattern of LULC change was likely to have the greatest negative impacts on rangeland ecosystems.

  20. Energy Management Strategies based on efficiency map for Fuel Cell Hybrid Vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Feroldi, Diego; Serra, Maria; Riera, Jordi [Institut de Robotica i Informatica Industrial (CSIC-UPC), C. Llorens i Artigas 4, 08028 Barcelona (Spain)

    2009-05-15

    The addition of a fast auxiliary power source like a supercapacitor bank in fuel cell-based vehicles has a great potential because permits a significant reduction of the hydrogen consumption and an improvement of the vehicle efficiency. The Energy Management Strategies, commanding the power split between the power sources in the hybrid arrangement to fulfil the power requirement, perform a fundamental role to achieve this objective. In this work, three strategies based on the knowledge of the fuel cell efficiency map are proposed. These strategies are attractive due to the relative simplicity of the real time implementation and the good performance. The strategies are tested both in a simulation environment and in an experimental setup using a 1.2-kW PEM fuel cell. The results, in terms of hydrogen consumption, are compared with an optimal case, which is assessed trough an advantageous technique also introduced in this work and with a pure fuel cell vehicle as well. This comparative reveals high efficiency and good performance, allowing to save up to 26% of hydrogen in urban scenarios. (author)

  1. An evaluation of the hybrid car technology for the Mexico Mega City

    Science.gov (United States)

    Jazcilevich, Aron D.; Reynoso, Agustin Garcia; Grutter, Michel; Delgado, Javier; Ayala, Ulises Diego; Lastra, Manuel Suarez; Zuk, Miriam; Oropeza, Rogelio Gonzalez; Lents, Jim; Davis, Nicole

    The introduction of hybrid electric vehicle (HEV) technology in the private car fleet of Mexico City is evaluated in terms of private costs, energy, public health and CO 2 emission benefits. In addition to constructing plausible scenarios for urban expansion, emission, car fleet, and fuel consumption for year 2026 and comparing them with a 2004 base case, a time series is built to obtain accumulated economic benefits. Experimental techniques were used to build a vehicle library for a car simulator that included a Prius 2002, chosen as the HEV technology representative for this work. The simulator is used to estimate the emissions and fuel consumption of the car fleet scenarios. In the context of an urban scenario for year 2026, a complex air quality model obtains the concentrations of criterion pollutants corresponding to these scenarios. Using a technology penetration model, the hybridized fleet starts unfolding in year 2009 reaching to 20% in 2026. In this year, the hybridized fleet resulted in reductions of about 10% of CO 2 emissions, and yielded reductions in daytime mean concentrations of up to 7% in ozone and 3.4% in PM 2.5 compared to the 2004 base case. These reductions are concentrated in the densely populated areas of Mexico City. By building a time series of costs and benefits it is shown that, depending on fuel prices and using a 5% return rate, positive accumulated benefits (CO 2 benefits + energy benefits + public health benefits - private costs) will start generating in year 2015 reaching between 2.8 and 4.5 billion US Dlls in 2026. Another modernized private fleet consisting exclusively of Tier I and II cars did not yield appreciable results, signaling that a change in private car technology towards HEV's is needed to obtain significant accumulated benefits.

  2. Electrochemical DNA Hybridization Sensors Based on Conducting Polymers

    Science.gov (United States)

    Rahman, Md. Mahbubur; Li, Xiao-Bo; Lopa, Nasrin Siraj; Ahn, Sang Jung; Lee, Jae-Joon

    2015-01-01

    Conducting polymers (CPs) are a group of polymeric materials that have attracted considerable attention because of their unique electronic, chemical, and biochemical properties. This is reflected in their use in a wide range of potential applications, including light-emitting diodes, anti-static coating, electrochromic materials, solar cells, chemical sensors, biosensors, and drug-release systems. Electrochemical DNA sensors based on CPs can be used in numerous areas related to human health. This review summarizes the recent progress made in the development and use of CP-based electrochemical DNA hybridization sensors. We discuss the distinct properties of CPs with respect to their use in the immobilization of probe DNA on electrode surfaces, and we describe the immobilization techniques used for developing DNA hybridization sensors together with the various transduction methods employed. In the concluding part of this review, we present some of the challenges faced in the use of CP-based DNA hybridization sensors, as well as a future perspective. PMID:25664436

  3. Electrochemical DNA Hybridization Sensors Based on Conducting Polymers

    Directory of Open Access Journals (Sweden)

    Md. Mahbubur Rahman

    2015-02-01

    Full Text Available Conducting polymers (CPs are a group of polymeric materials that have attracted considerable attention because of their unique electronic, chemical, and biochemical properties. This is reflected in their use in a wide range of potential applications, including light-emitting diodes, anti-static coating, electrochromic materials, solar cells, chemical sensors, biosensors, and drug-release systems. Electrochemical DNA sensors based on CPs can be used in numerous areas related to human health. This review summarizes the recent progress made in the development and use of CP-based electrochemical DNA hybridization sensors. We discuss the distinct properties of CPs with respect to their use in the immobilization of probe DNA on electrode surfaces, and we describe the immobilization techniques used for developing DNA hybridization sensors together with the various transduction methods employed. In the concluding part of this review, we present some of the challenges faced in the use of CP-based DNA hybridization sensors, as well as a future perspective.

  4. Allocating resources and products in multi-hybrid multi-cogeneration: What fractions of heat and power are renewable in hybrid fossil-solar CHP?

    International Nuclear Information System (INIS)

    Beretta, Gian Paolo; Iora, Paolo; Ghoniem, Ahmed F.

    2014-01-01

    A general method for the allocation of resources and products in multi-resource/multi-product facilities is developed with particular reference to the important two-resource/two-product case of hybrid fossil and solar/heat and power cogeneration. For a realistic case study, we show how the method allows to assess what fractions of the power and heat should be considered as produced from the solar resource and hence identified as renewable. In the present scenario where the hybridization of fossil power plants by solar-integration is gaining increasing attention, such assessment is of great importance in the fair and balanced development of local energy policies based on granting incentives to renewables resources. The paper extends to the case of two-resource/two-product hybrid cogeneration, as well as to general multi-resource/multi-generation, three of the allocation methods already available for single-resource/two-product cogeneration and for two-resource/single-product hybrid facilities, namely, the ExRR (Exergy-based Reversible-Reference) method, the SRSPR (Single Resource Separate Production Reference) method, and the STALPR (Self-Tuned-Average-Local-Productions-Reference) method. For the case study considered we show that, unless the SRSPR reference efficiencies are constantly updated, the differences between the STALPR and SRSPR methods become important as hybrid and cogeneration plants take up large shares of the local energy production portfolio. - Highlights: • How much of the heat and power in hybrid solar-fossil cogeneration are renewable? • We define and compare three allocation methods for hybrid cogeneration. • Classical and exergy allocation are based on prescribed reference efficiencies. • Adaptive allocation is based on the actual average efficiencies in the local area. • Differences among methods grow as hybrid CHP (heat and power cogeneration) gains large market fractions

  5. A scenario based approach for flexible resource loading under uncertainty

    NARCIS (Netherlands)

    Wullink, Gerhard; Gademann, Noud; Hans, Elias W.; van Harten, Aart

    2003-01-01

    Order acceptance decisions in manufacture-to-order environments are often made based on incomplete or uncertain information. To promise reliable due dates and to manage resource capacity adequately, resource capacity loading is an indispensable supporting tool. We propose a scenario based approach

  6. Design and evaluation of a data-driven scenario generation framework for game-based training

    NARCIS (Netherlands)

    Luo, L.; Yin, H.; Cai, W.; Zhong, J.; Lees, M.

    Generating suitable game scenarios that can cater for individual players has become an emerging challenge in procedural content generation. In this paper, we propose a data-driven scenario generation framework for game-based training. An evolutionary scenario generation process is designed with a

  7. Genetic algorithm based optimization on modeling and design of hybrid renewable energy systems

    International Nuclear Information System (INIS)

    Ismail, M.S.; Moghavvemi, M.; Mahlia, T.M.I.

    2014-01-01

    Highlights: • Solar data was analyzed in the location under consideration. • A program was developed to simulate operation of the PV hybrid system. • Genetic algorithm was used to optimize the sizes of the hybrid system components. • The costs of the pollutant emissions were considered in the optimization. • It is cost effective to power houses in remote areas with such hybrid systems. - Abstract: A sizing optimization of a hybrid system consisting of photovoltaic (PV) panels, a backup source (microturbine or diesel), and a battery system minimizes the cost of energy production (COE), and a complete design of this optimized system supplying a small community with power in the Palestinian Territories is presented in this paper. A scenario that depends on a standalone PV, and another one that depends on a backup source alone were analyzed in this study. The optimization was achieved via the usage of genetic algorithm. The objective function minimizes the COE while covering the load demand with a specified value for the loss of load probability (LLP). The global warming emissions costs have been taken into account in this optimization analysis. Solar radiation data is firstly analyzed, and the tilt angle of the PV panels is then optimized. It was discovered that powering a small rural community using this hybrid system is cost-effective and extremely beneficial when compared to extending the utility grid to supply these remote areas, or just using conventional sources for this purpose. This hybrid system decreases both operating costs and the emission of pollutants. The hybrid system that realized these optimization purposes is the one constructed from a combination of these sources

  8. New MPPT algorithm based on hybrid dynamical theory

    KAUST Repository

    Elmetennani, Shahrazed

    2014-11-01

    This paper presents a new maximum power point tracking algorithm based on the hybrid dynamical theory. A multiceli converter has been considered as an adaptation stage for the photovoltaic chain. The proposed algorithm is a hybrid automata switching between eight different operating modes, which has been validated by simulation tests under different working conditions. © 2014 IEEE.

  9. New MPPT algorithm based on hybrid dynamical theory

    KAUST Repository

    Elmetennani, Shahrazed; Laleg-Kirati, Taous-Meriem; Benmansour, K.; Boucherit, M. S.; Tadjine, M.

    2014-01-01

    This paper presents a new maximum power point tracking algorithm based on the hybrid dynamical theory. A multiceli converter has been considered as an adaptation stage for the photovoltaic chain. The proposed algorithm is a hybrid automata switching between eight different operating modes, which has been validated by simulation tests under different working conditions. © 2014 IEEE.

  10. Scenario-based teaching in undergraduate medical education

    Directory of Open Access Journals (Sweden)

    Patel K

    2016-12-01

    Full Text Available Kunj Patel, Omar El Tokhy Faculty of Medicine, Imperial College London, London, UKWe read with great interest the study by Frost et al1 which highlights the importance of scenario-based teaching (SBT of clinical communication in medical undergraduate pediatrics teaching. SBT involves students navigating a storyline based around a complex problem, running in parallel with case-based learning. We were impressed by the results of the SBT program at Cardiff University School of Medicine. As medical students currently on our pediatric rotation at Imperial College London, we have experienced at first hand the benefits of SBT. Throughout the placement, it continues to help us tackle the complexities which arise when communicating with children and their families. We have noted its particular benefit in breaking bad news to families. Without effective teaching on this particular scenario, a failure to grasp this skill could exacerbate patient and parent concerns. Much like the authors of this study highlight,1 we believe specific teaching on communication skills should be a mandatory part of medical undergraduate education at every institution. Imperial College School of Medicine has developed a similar teaching style which has been unparalleled in its benefit to us during our pediatric rotation. Although there is scant literature available specifically addressing communicating with children and parents at undergraduate level, the use of SBT throughout undergraduate medical teaching should not be underestimated. Read the original paper by Frost et al

  11. Polyacrylamide-based inorganic hybrid flocculants with self-degradable property

    Energy Technology Data Exchange (ETDEWEB)

    Wei, Xinfang [Materials and Metallurgical College, Northeastern University, Shenyang 110819 (China); Hebei Provincial Laboratory for Dielectric and Electrolyte Materials, Northeastern University at Qinhuangdao, Qinhuangdao 066004 (China); Tao, Junshi; Li, Mingzhi; Zhu, Bishan; Li, Xuan; Ma, Zhiyu; Zhao, Tingjie; Wang, Bingzhu; Suo, Biao [Hebei Provincial Laboratory for Dielectric and Electrolyte Materials, Northeastern University at Qinhuangdao, Qinhuangdao 066004 (China); Wang, Haiwang, E-mail: whwdbdx@126.com [Materials and Metallurgical College, Northeastern University, Shenyang 110819 (China); State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004 (China); Hebei Provincial Laboratory for Dielectric and Electrolyte Materials, Northeastern University at Qinhuangdao, Qinhuangdao 066004 (China); Yang, Jun, E-mail: jyang@ipe.ac.cn [State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190 (China); Ye, Li, E-mail: yeli@iccas.ac.cn [Beijing National Laboratory for Molecular Sciences, Institute of Chemistry Chinese Academy of Sciences, Beijing 100190 (China); Qi, Xiwei, E-mail: qxw@mail.neuq.edu.cn [Materials and Metallurgical College, Northeastern University, Shenyang 110819 (China); Hebei Provincial Laboratory for Dielectric and Electrolyte Materials, Northeastern University at Qinhuangdao, Qinhuangdao 066004 (China)

    2017-05-01

    Polyacrylamide (PAM)-based inorganic hybrid materials are of great potential as flocculants in soil-liquid separation. Herein, we reported the design of inorganic soil-TiO{sub 2}-PAM hybrid materials using a unique process, which involved coating of titanium dioxide (TiO{sub 2}) nanoparticles on the surface of inorganic soils and subsequent polymerization of acrylamide (AM) on these nanoparticles under visible light. Inorganic soils including kaolin, bentonite, montmorillonite and diatomaceous earth were used to control the volume and to reduce the cost, and the TiO{sub 2} nanoparticles accelerated PAM degradation. The nanoparticles initiated AM polymerization directly under visible light, thus providing a facile strategy for the synthesis of new organic-inorganic hybrid flocculants. The obtained hybrid materials were characterized using Fourier transform infrared spectroscopy and transmission electron microscopy. The degradation of PAM initiated by UV irradiation exceeded 24% in 2 h, depending on its initial concentration. - Highlights: • A new polyacrylamide (PAM)-based inorganic hybrid flocculants with self-degradable property was developed. • TiO{sub 2} nanoparticles show a unique surface-initiated property under the condition of visible light. • We designed a facile strategy for the synthesis of inorganic soil@TiO{sub 2}@PAM hybrid materials.

  12. A Scenario-Based Protocol Checker for Public-Key Authentication Scheme

    Science.gov (United States)

    Saito, Takamichi

    Security protocol provides communication security for the internet. One of the important features of it is authentication with key exchange. Its correctness is a requirement of the whole of the communication security. In this paper, we introduce three attack models realized as their attack scenarios, and provide an authentication-protocol checker for applying three attack-scenarios based on the models. We also utilize it to check two popular security protocols: Secure SHell (SSH) and Secure Socket Layer/Transport Layer Security (SSL/TLS).

  13. A novel method for energy harvesting simulation based on scenario generation

    Science.gov (United States)

    Wang, Zhe; Li, Taoshen; Xiao, Nan; Ye, Jin; Wu, Min

    2018-06-01

    Energy harvesting network (EHN) is a new form of computer networks. It converts ambient energy into usable electric energy and supply the electrical energy as a primary or secondary power source to the communication devices. However, most of the EHN uses the analytical probability distribution function to describe the energy harvesting process, which cannot accurately identify the actual situation for the lack of authenticity. We propose an EHN simulation method based on scenario generation in this paper. Firstly, instead of setting a probability distribution in advance, it uses optimal scenario reduction technology to generate representative scenarios in single period based on the historical data of the harvested energy. Secondly, it uses homogeneous simulated annealing algorithm to generate optimal daily energy harvesting scenario sequences to get a more accurate simulation of the random characteristics of the energy harvesting network. Then taking the actual wind power data as an example, the accuracy and stability of the method are verified by comparing with the real data. Finally, we cite an instance to optimize the network throughput, which indicate the feasibility and effectiveness of the method we proposed from the optimal solution and data analysis in energy harvesting simulation.

  14. An activity theory perspective of how scenario-based simulations support learning: a descriptive analysis.

    Science.gov (United States)

    Battista, Alexis

    2017-01-01

    The dominant frameworks for describing how simulations support learning emphasize increasing access to structured practice and the provision of feedback which are commonly associated with skills-based simulations. By contrast, studies examining student participants' experiences during scenario-based simulations suggest that learning may also occur through participation. However, studies directly examining student participation during scenario-based simulations are limited. This study examined the types of activities student participants engaged in during scenario-based simulations and then analyzed their patterns of activity to consider how participation may support learning. Drawing from Engeström's first-, second-, and third-generation activity systems analysis, an in-depth descriptive analysis was conducted. The study drew from multiple qualitative methods, namely narrative, video, and activity systems analysis, to examine student participants' activities and interaction patterns across four video-recorded simulations depicting common motivations for using scenario-based simulations (e.g., communication, critical patient management). The activity systems analysis revealed that student participants' activities encompassed three clinically relevant categories, including (a) use of physical clinical tools and artifacts, (b) social interactions, and (c) performance of structured interventions. Role assignment influenced participants' activities and the complexity of their engagement. Importantly, participants made sense of the clinical situation presented in the scenario by reflexively linking these three activities together. Specifically, student participants performed structured interventions, relying upon the use of physical tools, clinical artifacts, and social interactions together with interactions between students, standardized patients, and other simulated participants to achieve their goals. When multiple student participants were present, such as in a

  15. Scenario-Based Analysis on the Structural Change of Land Uses in China

    Directory of Open Access Journals (Sweden)

    Qian Xu

    2013-01-01

    Full Text Available Land Use/Land Cover change (LUCC is a key aspect of global environmental change, which has a significant impact on climate change. In the background of increasing global warming resulting from greenhouse effect, to understand the impact of land use change on climate change is necessary and meaningful. In this study, we choose China as the study area and explore the possible land use change trends based on the AgLU module and ERB module of global change assessment model (GCAM model and Global Change Assessment Model. We design three scenarios based on socioeconomic development and simulated the corresponding structure change of land use according to the three scenarios with different parameters. Then we simulate the different emission of CO2 under different scenarios based on the simulation results of structure change of land use. At last, we choose the most suitable scenario that could control the emission of CO2 best and obtain the relatively better land use structure change for adaption of climate change. Through this research we can provide a theoretical basis for the future land use planning to adapt to climate change.

  16. Making use of scenarios : supporting scenario use in product design

    NARCIS (Netherlands)

    Anggreeni, Irene

    2010-01-01

    The discipline of Scenario-Based Product Design (SBPD) guides the use of scenarios in a product design process. As concrete narratives, scenarios could facilitate making explicit how users would use the designed product in their activities, allowing usability studies to be an integrated part of the

  17. Appropriate feed-in tariff of solar–coal hybrid power plant for China’s Inner Mongolia Region

    International Nuclear Information System (INIS)

    Zhao, Yawen; Hong, Hui; Jin, Hongguang

    2016-01-01

    Highlights: • The potential for the first 10 MWe level solar–coal hybrid power plant is estimated. • Economic feasibility analysis is performed based on the discounted cash flow model. • The appropriate feed-in tariff prices of different scenarios are provided. • The results provide suggestions for the development of solar–coal hybrid technology. - Abstract: Middle-temperature solar heat can be used to preheat feed water before it enters the boiler in a coal-fired power plant. Previous studies have shown that this approach can improve the performance of coal-fired power plants. The present study estimates the first solar–coal hybrid power plant in the Inner Mongolia Region. It will have a potential net solar power output of 10 MW on the basis of the operating data of a traditional 200 MW coal-fired power plant. Economic feasibility analysis is then performed on the solar–coal hybrid power plant. The appropriate feed-in tariff prices are provided on the basis of different financing scenarios, solar field cost, collector area size, and other conditions. The results obtained in this study are expected to provide suggestions for the further development of solar–coal hybrid technology.

  18. Conceptual design of distillation-based hybrid separation processes.

    Science.gov (United States)

    Skiborowski, Mirko; Harwardt, Andreas; Marquardt, Wolfgang

    2013-01-01

    Hybrid separation processes combine different separation principles and constitute a promising design option for the separation of complex mixtures. Particularly, the integration of distillation with other unit operations can significantly improve the separation of close-boiling or azeotropic mixtures. Although the design of single-unit operations is well understood and supported by computational methods, the optimal design of flowsheets of hybrid separation processes is still a challenging task. The large number of operational and design degrees of freedom requires a systematic and optimization-based design approach. To this end, a structured approach, the so-called process synthesis framework, is proposed. This article reviews available computational methods for the conceptual design of distillation-based hybrid processes for the separation of liquid mixtures. Open problems are identified that must be addressed to finally establish a structured process synthesis framework for such processes.

  19. Land use change modeling through scenario-based cellular automata Markov: improving spatial forecasting.

    Science.gov (United States)

    Jahanishakib, Fatemeh; Mirkarimi, Seyed Hamed; Salmanmahiny, Abdolrassoul; Poodat, Fatemeh

    2018-05-08

    Efficient land use management requires awareness of past changes, present actions, and plans for future developments. Part of these requirements is achieved using scenarios that describe a future situation and the course of changes. This research aims to link scenario results with spatially explicit and quantitative forecasting of land use development. To develop land use scenarios, SMIC PROB-EXPERT and MORPHOL methods were used. It revealed eight scenarios as the most probable. To apply the scenarios, we considered population growth rate and used a cellular automata-Markov chain (CA-MC) model to implement the quantified changes described by each scenario. For each scenario, a set of landscape metrics was used to assess the ecological integrity of land use classes in terms of fragmentation and structural connectivity. The approach enabled us to develop spatial scenarios of land use change and detect their differences for choosing the most integrated landscape pattern in terms of landscape metrics. Finally, the comparison between paired forecasted scenarios based on landscape metrics indicates that scenarios 1-1, 2-2, 3-2, and 4-1 have a more suitable integrity. The proposed methodology for developing spatial scenarios helps executive managers to create scenarios with many repetitions and customize spatial patterns in real world applications and policies.

  20. Vehicle Sideslip Angle Estimation Based on Hybrid Kalman Filter

    Directory of Open Access Journals (Sweden)

    Jing Li

    2016-01-01

    Full Text Available Vehicle sideslip angle is essential for active safety control systems. This paper presents a new hybrid Kalman filter to estimate vehicle sideslip angle based on the 3-DoF nonlinear vehicle dynamic model combined with Magic Formula tire model. The hybrid Kalman filter is realized by combining square-root cubature Kalman filter (SCKF, which has quick convergence and numerical stability, with square-root cubature based receding horizon Kalman FIR filter (SCRHKF, which has robustness against model uncertainty and temporary noise. Moreover, SCKF and SCRHKF work in parallel, and the estimation outputs of two filters are merged by interacting multiple model (IMM approach. Experimental results show the accuracy and robustness of the hybrid Kalman filter.

  1. Cost of generating tritium internal and external to a tokamak hybrid reactor

    International Nuclear Information System (INIS)

    Crotzer, M.E.; Heck, F.M.; Steinke, K.C.

    1981-01-01

    The costs associated with producing tritium internal and external to a thorium-based tokamak hybrid are estimated for a number of scenarios and the resulting impact on the symbiotic system cost of electricity calculated. For tritium generation within the hybrid, both continuous and batch production is analyzed. For external production, the lithium-bearing blanket is replaced with thorium and the tritium is generated in the client fission reactors. Continuous tritium production within the hybrid is found to increase the cost of electricity from 1.4 to 4.0 mills/kW-h. Batch tritium production can increase the cost of electricity by 10 mills/kW-h. Producing tritium outside the hybrid, and thereby enhancing client support, increases the cost of electricity from 1.8 to 4.1 mills/kW-h

  2. Country-Level Population and Downscaled Projections Based on the SRES B2 Scenario, 1990-2100

    Data.gov (United States)

    National Aeronautics and Space Administration — The Country-Level Population and Downscaled Projections Based on Special Report on Emissions Scenarios (SRES) B2 Scenario, 1990-2100, were based on the UN 1998...

  3. Investigating the Efficiency of Scenario Based Learning and Reflective Learning Approaches in Teacher Education

    Science.gov (United States)

    Hursen, Cigdem; Fasli, Funda Gezer

    2017-01-01

    The main purpose of this research is to investigate the efficiency of scenario based learning and reflective learning approaches in teacher education. The impact of applications of scenario based learning and reflective learning on prospective teachers' academic achievement and views regarding application and professional self-competence…

  4. Analysis of JT-60SA operational scenarios

    Science.gov (United States)

    Garzotti, L.; Barbato, E.; Garcia, J.; Hayashi, N.; Voitsekhovitch, I.; Giruzzi, G.; Maget, P.; Romanelli, M.; Saarelma, S.; Stankiewitz, R.; Yoshida, M.; Zagórski, R.

    2018-02-01

    Reference scenarios for the JT-60SA tokamak have been simulated with one-dimensional transport codes to assess the stationary state of the flat-top phase and provide a profile database for further physics studies (e.g. MHD stability, gyrokinetic analysis) and diagnostics design. The types of scenario considered vary from pulsed standard H-mode to advanced non-inductive steady-state plasmas. In this paper we present the results obtained with the ASTRA, CRONOS, JINTRAC and TOPICS codes equipped with the Bohm/gyro-Bohm, CDBM and GLF23 transport models. The scenarios analysed here are: a standard ELMy H-mode, a hybrid scenario and a non-inductive steady state plasma, with operational parameters from the JT-60SA research plan. Several simulations of the scenarios under consideration have been performed with the above mentioned codes and transport models. The results from the different codes are in broad agreement and the main plasma parameters generally agree well with the zero dimensional estimates reported previously. The sensitivity of the results to different transport models and, in some cases, to the ELM/pedestal model has been investigated.

  5. THE SCENARIOS APPROACH TO ATTENUATION-BASED REMEDIES FOR INORGANIC AND RADIONUCLIDE CONTAMINANTS

    Energy Technology Data Exchange (ETDEWEB)

    Vangelas, K.; Rysz, M.; Truex, M.; Brady, P.; Newell, C.; Denham, M.

    2011-08-04

    Guidance materials based on use of conceptual model scenarios were developed to assist evaluation and implementation of attenuation-based remedies for groundwater and vadose zones contaminated with inorganic and radionuclide contaminants. The Scenarios approach is intended to complement the comprehensive information provided in the US EPA's Technical Protocol for Monitored Natural Attenuation (MNA) of Inorganic Contaminants by providing additional information on site conceptual models and extending the evaluation to consideration of Enhanced Attenuation approaches. The conceptual models incorporate the notion of reactive facies, defined as units with hydrogeochemical properties that are different from surrounding units and that react with contaminants in distinct ways. The conceptual models also incorporate consideration of biogeochemical gradients, defined as boundaries between different geochemical conditions that have been induced by waste disposal or other natural phenomena. Gradients can change over time when geochemical conditions from one area migrate into another, potentially affecting contaminant mobility. A recognition of gradients allows the attenuation-affecting conditions of a site to be projected into the future. The Scenarios approach provides a stepwise process to identify an appropriate category of conceptual model and refine it for a specific site. Scenario materials provide links to pertinent sections in the EPA technical protocol and present information about contaminant mobility and important controlling mechanism for attenuation-based remedies based on the categories of conceptual models.

  6. Hybrid-Based Dense Stereo Matching

    Science.gov (United States)

    Chuang, T. Y.; Ting, H. W.; Jaw, J. J.

    2016-06-01

    Stereo matching generating accurate and dense disparity maps is an indispensable technique for 3D exploitation of imagery in the fields of Computer vision and Photogrammetry. Although numerous solutions and advances have been proposed in the literature, occlusions, disparity discontinuities, sparse texture, image distortion, and illumination changes still lead to problematic issues and await better treatment. In this paper, a hybrid-based method based on semi-global matching is presented to tackle the challenges on dense stereo matching. To ease the sensitiveness of SGM cost aggregation towards penalty parameters, a formal way to provide proper penalty estimates is proposed. To this end, the study manipulates a shape-adaptive cross-based matching with an edge constraint to generate an initial disparity map for penalty estimation. Image edges, indicating the potential locations of occlusions as well as disparity discontinuities, are approved by the edge drawing algorithm to ensure the local support regions not to cover significant disparity changes. Besides, an additional penalty parameter 𝑃𝑒 is imposed onto the energy function of SGM cost aggregation to specifically handle edge pixels. Furthermore, the final disparities of edge pixels are found by weighting both values derived from the SGM cost aggregation and the U-SURF matching, providing more reliable estimates at disparity discontinuity areas. Evaluations on Middlebury stereo benchmarks demonstrate satisfactory performance and reveal the potency of the hybrid-based dense stereo matching method.

  7. Carbon-constrained scenarios. Final report

    International Nuclear Information System (INIS)

    2009-05-01

    This report provides the results of the study entitled 'Carbon-Constrained Scenarios' that was funded by FONDDRI from 2004 to 2008. The study was achieved in four steps: (i) Investigating the stakes of a strong carbon constraint for the industries participating in the study, not only looking at the internal decarbonization potential of each industry but also exploring the potential shifts of the demand for industrial products. (ii) Developing an hybrid modelling platform based on a tight dialog between the sectoral energy model POLES and the macro-economic model IMACLIM-R, in order to achieve a consistent assessment of the consequences of an economy-wide carbon constraint on energy-intensive industrial sectors, while taking into account technical constraints, barriers to the deployment of new technologies and general economic equilibrium effects. (iii) Producing several scenarios up to 2050 with different sets of hypotheses concerning the driving factors for emissions - in particular the development styles. (iv) Establishing an iterative dialog between researchers and industry representatives on the results of the scenarios so as to improve them, but also to facilitate the understanding and the appropriate use of these results by the industrial partners. This report provides the results of the different scenarios computed in the course of the project. It is a partial synthesis of the work that has been accomplished and of the numerous exchanges that this study has induced between modellers and stakeholders. The first part was written in April 2007 and describes the first reference scenario and the first mitigation scenario designed to achieve stabilization at 450 ppm CO 2 at the end of the 21. century. This scenario has been called 'mimetic' because it has been build on the assumption that the ambitious climate policy would coexist with a progressive convergence of development paths toward the current paradigm of industrialized countries: urban sprawl, general

  8. Trends in scenario development methodologies and integration in NUMO's approach

    International Nuclear Information System (INIS)

    Ebashi, Takeshi; Ishiguro, Katsuhiko; Wakasugi, Keiichiro; Kawamura, Hideki; Gaus, Irina; Vomvoris, Stratis; Martin, Andrew J.; Smith, Paul

    2011-01-01

    The development of scenarios for quantitative or qualitative analysis is a key element of the assessment of the safety of geological disposal systems. As an outcome of an international workshop attended by European and the Japanese implementers, a number of features common to current methodologies could be identified, as well as trends in their evolution over time. In the late nineties, scenario development was often described as a bottom-up process, whereby scenarios were said to be developed in essence from FEP databases. Nowadays, it is recognised that, in practice, the approaches actually adopted are better described as top-down or 'hybrid', taking as their starting point an integrated (top-down) understanding of the system under consideration including uncertainties in initial state, sometimes assisted by the development of 'storyboards'. A bottom-up element remains (hence the term 'hybrid') to the extent that FEP databases or FEP catalogues (including interactions) are still used, but the focus is generally on completeness checking, which occurs parallel to the main assessment process. Recent advances focus on the consistent treatment of uncertainties throughout the safety assessment and on the integration of operational safety and long term safety. (author)

  9. Increasing Interest in Cognitive Psychology Using Scenario-Based Assessment

    Science.gov (United States)

    Cormack, Sophie

    2014-01-01

    Students often perceive cognitive psychology as an abstract and difficult subject with little intrinsic interest. When student feedback identified problems with the traditional essay assessment in a cognitive psychology module, action research led to the development of a forensic scenario-based assessment which successfully increased student…

  10. The Scenario Model Intercomparison Project (ScenarioMIP) for CMIP6

    Energy Technology Data Exchange (ETDEWEB)

    O' Neill, Brian C.; Tebaldi, Claudia; van Vuuren, Detlef P.; Eyring, Veronika; Friedlingstein, Pierre; Hurtt, George; Knutti, Reto; Kriegler, Elmar; Lamarque, Jean-Francois; Lowe, Jason; Meehl, Gerald A.; Moss, Richard; Riahi, Keywan; Sanderson, Benjamin M.

    2016-01-01

    Projections of future climate change play a fundamental role in improving understanding of the climate system as well as characterizing societal risks and response options. The Scenario Model Intercomparison Project (ScenarioMIP) is the primary activity within Phase 6 of the Coupled Model Intercomparison Project (CMIP6) that will provide multi-model climate projections based on alternative scenarios of future emissions and land use changes produced with integrated assessment models. In this paper, we describe ScenarioMIP's objectives, experimental design, and its relation to other activities within CMIP6. The ScenarioMIP design is one component of a larger scenario process that aims to facilitate a wide range of integrated studies across the climate science, integrated assessment modeling, and impacts, adaptation, and vulnerability communities, and will form an important part of the evidence base in the forthcoming Intergovernmental Panel on Climate Change (IPCC) assessments. At the same time, it will provide the basis for investigating a number of targeted science and policy questions that are especially relevant to scenario-based analysis, including the role of specific forcings such as land use and aerosols, the effect of a peak and decline in forcing, the consequences of scenarios that limit warming to below 2 °C, the relative contributions to uncertainty from scenarios, climate models, and internal variability, and long-term climate system outcomes beyond the 21st century. To serve this wide range of scientific communities and address these questions, a design has been identified consisting of eight alternative 21st century scenarios plus one large initial condition ensemble and a set of long-term extensions, divided into two tiers defined by relative priority. Some of these scenarios will also provide a basis for variants planned to be run in other CMIP6-Endorsed MIPs to investigate questions related to specific forcings. Harmonized, spatially

  11. On the complexity of the Saccharomyces bayanus taxon: hybridization and potential hybrid speciation.

    Directory of Open Access Journals (Sweden)

    Laura Pérez-Través

    Full Text Available Although the genus Saccharomyces has been thoroughly studied, some species in the genus has not yet been accurately resolved; an example is S. bayanus, a taxon that includes genetically diverse lineages of pure and hybrid strains. This diversity makes the assignation and classification of strains belonging to this species unclear and controversial. They have been subdivided by some authors into two varieties (bayanus and uvarum, which have been raised to the species level by others. In this work, we evaluate the complexity of 46 different strains included in the S. bayanus taxon by means of PCR-RFLP analysis and by sequencing of 34 gene regions and one mitochondrial gene. Using the sequence data, and based on the S. bayanus var. bayanus reference strain NBRC 1948, a hypothetical pure S. bayanus was reconstructed for these genes that showed alleles with similarity values lower than 97% with the S. bayanus var. uvarum strain CBS 7001, and of 99-100% with the non S. cerevisiae portion in S. pastorianus Weihenstephan 34/70 and with the new species S. eubayanus. Among the S. bayanus strains under study, different levels of homozygosity, hybridization and introgression were found; however, no pure S. bayanus var. bayanus strain was identified. These S. bayanus hybrids can be classified into two types: homozygous (type I and heterozygous hybrids (type II, indicating that they have been originated by different hybridization processes. Therefore, a putative evolutionary scenario involving two different hybridization events between a S. bayanus var. uvarum and unknown European S. eubayanus-like strains can be postulated to explain the genomic diversity observed in our S. bayanus var. bayanus strains.

  12. Graphene-based transparent electrodes for hybrid solar cells

    Directory of Open Access Journals (Sweden)

    Pengfei eLi

    2014-11-01

    Full Text Available The graphene-based transparent and conductive films were demonstrated to be cost-effective electrodes working in organic-inorganic hybrid Schottky solar cells. Large area graphene films were produced by chemical vapor deposition (CVD on copper foils and transferred onto glass as transparent electrodes. The hybrid solar cell devices consist of solution processed poly (3, 4-ethlenedioxythiophene: poly (styrenesulfonate (PEDOT: PSS which is sandwiched between silicon wafer and graphene electrode. The solar cells based on graphene electrodes, especially those doped with HNO3, has comparable performance to the reference devices using commercial indium tin oxide (ITO. Our work suggests that graphene-based transparent electrode is a promising candidate to replace ITO.

  13. Credibilistic multi-period portfolio optimization based on scenario tree

    Science.gov (United States)

    Mohebbi, Negin; Najafi, Amir Abbas

    2018-02-01

    In this paper, we consider a multi-period fuzzy portfolio optimization model with considering transaction costs and the possibility of risk-free investment. We formulate a bi-objective mean-VaR portfolio selection model based on the integration of fuzzy credibility theory and scenario tree in order to dealing with the markets uncertainty. The scenario tree is also a proper method for modeling multi-period portfolio problems since the length and continuity of their horizon. We take the return and risk as well cardinality, threshold, class, and liquidity constraints into consideration for further compliance of the model with reality. Then, an interactive dynamic programming method, which is based on a two-phase fuzzy interactive approach, is employed to solve the proposed model. In order to verify the proposed model, we present an empirical application in NYSE under different circumstances. The results show that the consideration of data uncertainty and other real-world assumptions lead to more practical and efficient solutions.

  14. Tactical decision games - developing scenario-based training for decision-making in distributed teams

    NARCIS (Netherlands)

    Lauche, K.; Crichton, M.; Bayerl, P.S.

    2009-01-01

    Team training should reflect the increasing complexity of decision-making environments. Guidelines for scenario-based training were adopted for a distributed setting and tested in a pilot training session with a distributed team in the offshore oil industry. Participants valued the scenario as

  15. SCENARIO-BASED eLEARNING AND STEM EDUCATION: A QUALITATIVE STUDY EXPLORING THE PERSPECTIVES OF EDUCATORS

    Directory of Open Access Journals (Sweden)

    David E. Proudfoot

    2017-06-01

    Full Text Available There are a variety of extra curricular activities and programs that aim to promote Science, Technology, Engineering, and Mathematics (STEM education, but there are limited examples of extending STEM curriculum by employing scenario-based eLearning opportunities in a mobile lab learning environment. Following students participation in a first of its kind STEM Mobile Lab program that uses a scenario-based eLearning approach for instruction, twelve educators from four Title I elementary schools were asked about their perceptions of the influence of the Mobile Lab program on the STEM education of their students. The semi-structured interview protocol contained questions intended to explore participants’ perceptions regarding the influence of a scenario-based eLearning Mobile STEM Lab program on the STEM interest and achievement of students. The study found that a scenario-based eLearning Mobile STEM Lab can influence STEM interest and achievement of elementary students. This promising finding leads to a recommendation for educators to use this approach and similar programs to make students more interested in science and improve their grades. Efforts by educators to design and implement scenario-based eLearning opportunities lead to increased learner engagement.

  16. Comprehensive exergetic and economic comparison of PWR and hybrid fossil fuel-PWR power plants

    International Nuclear Information System (INIS)

    Sayyaadi, Hoseyn; Sabzaligol, Tooraj

    2010-01-01

    A typical 1000 MW Pressurized Water Reactor (PWR) nuclear power plant and two similar hybrid 1000 MW PWR plants operate with natural gas and coal fired fossil fuel superheater-economizers (Hybrid PWR-Fossil fuel plants) are compared exergetically and economically. Comparison is performed based on energetic and economic features of three systems. In order to compare system at their optimum operating point, three workable base case systems including the conventional PWR, and gas and coal fired hybrid PWR-Fossil fuel power plants considered and optimized in exergetic and exergoeconomic optimization scenarios, separately. The thermodynamic modeling of three systems is performed based on energy and exergy analyses, while an economic model is developed according to the exergoeconomic analysis and Total Revenue Requirement (TRR) method. The objective functions based on exergetic and exergoeconomic analyses are developed. The exergetic and exergoeconomic optimizations are performed using the Genetic Algorithm (GA). Energetic and economic features of exergetic and exergoeconomic optimized conventional PWR and gas and coal fired Hybrid PWR-Fossil fuel power plants are compared and discussed comprehensively.

  17. Using scenario based programming to develop embedded control software

    NARCIS (Netherlands)

    Bettiol, F.

    2015-01-01

    A new paradigm to develop embedded software is waking up the interest of companies. Its name is Scenario Based Programming and it claims to be a good approach to develop embedded software. Live Sequence Charts (LSC), a visual language supporting the paradigm, enables the developers to specify a

  18. Dark energy in hybrid inflation

    International Nuclear Information System (INIS)

    Gong, Jinn-Ouk; Kim, Seongcheol

    2007-01-01

    The situation that a scalar field provides the source of the accelerated expansion of the Universe while rolling down its potential is common in both the simple models of the primordial inflation and the quintessence-based dark energy models. Motivated by this point, we address the possibility of causing the current acceleration via the primordial inflation using a simple model based on hybrid inflation. We trigger the onset of the motion of the quintessence field via the waterfall field, and find that the fate of the Universe depends on the true vacuum energy determined by choosing the parameters. We also briefly discuss the variation of the equation of state and the possible implementation of our scenario in supersymmetric theories

  19. Estimates of future climate based on SRES emission scenarios

    Energy Technology Data Exchange (ETDEWEB)

    Godal, Odd; Sygna, Linda; Fuglestvedt, Jan S.; Berntsen, Terje

    2000-02-14

    The preliminary emission scenarios in the Special Report on Emission Scenario (SRES) developed by the Intergovernmental Panel on Climate Change (IPCC), will eventually replace the old IS92 scenarios. By running these scenarios in a simple climate model (SCM) we estimate future temperature increase between 1.7 {sup o}C and 2.8 {sup o}C from 1990 to to 2100. The global sea level rise over the same period is between 0.33 m and 0.45 m. Compared to the previous IPCC scenarios (IS92) the SRES scenarios generally results in changes in both development over time and level of emissions, concentrations, radiative forcing, and finally temperature change and sea level rise. The most striking difference between the IS92 scenarios and the SRES scenarios is the lower level of SO{sub 2} emissions. The range in CO{sub 2} emissions is also expected to be narrower in the new scenarios. The SRES scenarios result in a narrower range both for temperature change and sea level rise from 1990 to 2100 compared to the range estimated for the IS92 scenarios. (author)

  20. Interactive Scenario Visualization for User-Based Service Development

    NARCIS (Netherlands)

    van 't Klooster, J.W.J.R.; van Beijnum, Bernhard J.F.; Eliens, A.P.W.; Hermens, Hermanus J.

    2012-01-01

    Scenarios are commonly used to develop new systems in multidisciplinary projects. However, written scenarios are sequential, not dynamic and often too abstract or difficult to understand for end users. The goal of this paper hence is to extend the use of scenarios in design methodologies, using an

  1. Assessment and modeling of inductive and non-inductive scenarios for ITER

    International Nuclear Information System (INIS)

    Boucher, D.; Vayakis, G.; Moreau, D.

    1999-01-01

    This paper presents recent developments in modeling and simulations of ITER performances and scenarios. The first part presents an improved modeling of coupled divertor/main plasma operation including the simulation of the measurements involved in the control loop. The second part explores the fusion performances predicted under non-inductive operation with internal transport barrier. The final part covers a detailed scenario for non-inductive operation using a reverse shear configuration with lower hybrid and fast wave current drive. (author)

  2. Stochastic Unit Commitment Based on Multi-Scenario Tree Method Considering Uncertainty

    Directory of Open Access Journals (Sweden)

    Kyu-Hyung Jo

    2018-03-01

    Full Text Available With the increasing penetration of renewable energy, it is difficult to schedule unit commitment (UC in a power system because of the uncertainty associated with various factors. In this paper, a new solution procedure based on a multi-scenario tree method (MSTM is presented and applied to the proposed stochastic UC problem. In this process, the initial input data of load and wind power are modeled as different levels using the mean absolute percentage error (MAPE. The load and wind scenarios are generated using Monte Carlo simulation (MCS that considers forecasting errors. These multiple scenarios are applied in the MSTM for solving the stochastic UC problem, including not only the load and wind power uncertainties, but also sudden outages of the thermal unit. When the UC problem has been formulated, the simulation is conducted for 24-h period by using the short-term UC model, and the operating costs and additional reserve requirements are thus obtained. The effectiveness of the proposed solution approach is demonstrated through a case study based on a modified IEEE-118 bus test system.

  3. Integrative Scenario Development

    Directory of Open Access Journals (Sweden)

    Joerg A. Priess

    2014-03-01

    Full Text Available Scenarios are employed to address a large number of future environmental and socioeconomic challenges. We present a conceptual framework for the development of scenarios to integrate the objectives of different stakeholder groups. Based on the framework, land-use scenarios were developed to provide a common base for further research. At the same time, these scenarios assisted regional stakeholders to bring forward their concerns and arrive at a shared understanding of challenges between scientific and regional stakeholders, which allowed them to eventually support regional decision making. The focus on the integration of views and knowledge domains of different stakeholder groups, such as scientists and practitioners, required rigorous and repeated measures of quality control. The application of the integrative concept provided products for both stakeholder groups, and the process of scenario development facilitated cooperation and learning within both the scientist and practitioner groups as well as between the two groups.

  4. Hybrid, plug-in hybrid, or electric—What do car buyers want?

    International Nuclear Information System (INIS)

    Axsen, Jonn; Kurani, Kenneth S.

    2013-01-01

    We use a survey to compare consumers’ stated interest in conventional gasoline (CV), hybrid (HEV), plug-in hybrid (PHEV) and pure electric vehicles (EV) of varying designs and prices. Data are from 508 households representing new vehicle buyers in San Diego County, California in 2011. The mixed-mode survey collected information about access to residential recharge infrastructure, three days of driving patterns, and desired vehicle designs and motivations via design games. Across the higher and lower price scenarios, a majority of consumers designed and selected some form of PHEV for their next new vehicle, smaller numbers designed an HEV or a conventional vehicle, and only a few percent designed an EV. Of those who did not design an EV, the most frequent concerns with EVs were limited range, charger availability, and higher vehicle purchase prices. Positive interest in HEVs, PHEVs and EVs was associated with vehicle images of intelligence, responsibility, and support of the environment and nation (United States). The distribution of vehicle designs suggests that cheaper, smaller battery PHEVs may achieve more short-term market success than larger battery PHEVs or EV. New car buyers’ present interests align with less expensive first steps in a transition to electric-drive vehicles. - Highlights: • We assess consumer interest in various electric-drive vehicle designs. • Web-based design games completed by 508 households from San Diego, California. • Plug-in hybrids are most popular, followed by hybrids and conventional vehicles. • Only a few percent opted for a pure electric vehicle. • Electric-drive associated with intelligence, responsibility, and environment

  5. Modern Policyholder Preferences and Scenario-Based Projections

    DEFF Research Database (Denmark)

    Jensen, Ninna Reitzel

    This PhD thesis covers aspects of policyholder preferences and life insurance projections based on economic scenarios. Both topics are relevant to policyholders as well as to the life insurance and pension industry—and equally important, the topics give rise to a variety of interesting mathematical...... is important for designing competitive life insurance and savings products and for providing sound advice to policyholders. Preferences come in many shapes and forms. In this thesis, we focus on separation of risk and time preferences and preferences for smooth investment. The latter is modeled with something...

  6. FAST Plasma Scenarios and Equilibrium Configurations

    International Nuclear Information System (INIS)

    Calabro, G.; Crisanti, F.; Ramogida, G.; Cardinali, A.; Cucchiaro, A.; Maddaluno, G.; Pizzuto, A.; Pericoli Ridolfini, V.; Tuccillo, A.A.; Zonca, F.; Albanese, R.; Granucci, G.; Nowak, S.

    2008-01-01

    In this paper we present the Fusion Advanced Studies Torus (FAST) plasma scenarios and equilibrium configurations, designed to reproduce the ITER ones (with scaled plasma current) and suitable to fulfil plasma conditions for integrated studies of burning plasma physics, Plasma Wall interaction, ITER relevant operation problems and Steady State scenarios. The attention is focused on FAST flexibility in terms of both performance and physics that can be investigated: operations are foreseen at a wide range of parameters from high performance H-Mode (toroidal field, B T , up to 8.5 T; plasma current, I P , up to 8 MA) to advanced tokamak (AT) operation (I P =3 MA) as well as full non inductive current scenario (I P =2 MA). The coupled heating power is provided with 30MW delivered by an Ion Cyclotron Resonance Heating (ICRH) system (30-90MHz), 6 MW by a Lower Hybrid (LH) system (3.7 or 5 GHz) for the long pulse AT scenario, 4 MW by an Electron Cyclotron Resonant Heating (ECRH) system (170 GHz-B T =6T) for MHD and electron heating localized control and, eventually, with 10 MW by a Negative Ion Beam (NNBI), which the ports are designed to accommodate. In the reference H-mode scenario FAST preserves (with respect to ITER) fast ions induced as well as turbulence fluctuation spectra, thus, addressing the cross-scale couplings issue of micro- to meso-scale physics. The noninductive scenario at I P =2MA is obtained with 60-70 % of bootstrap and the remaining by LHCD. Predictive simulations of the H-mode scenarios described above have been performed by means of JETTO code, using a semi-empirical mixed Bohm/gyro-Bohm transport model. Plasma position and Shape Control studies are also presented for the reference scenario

  7. A novel hybrid approach based on Particle Swarm Optimization and Ant Colony Algorithm to forecast energy demand of Turkey

    International Nuclear Information System (INIS)

    Kıran, Mustafa Servet; Özceylan, Eren; Gündüz, Mesut; Paksoy, Turan

    2012-01-01

    Highlights: ► PSO and ACO algorithms are hybridized for forecasting energy demands of Turkey. ► Linear and quadratic forms are developed to meet the fluctuations of indicators. ► GDP, population, export and import have significant impacts on energy demand. ► Quadratic form provides better fit solution than linear form. ► Proposed approach gives lower estimation error than ACO and PSO, separately. - Abstract: This paper proposes a new hybrid method (HAP) for estimating energy demand of Turkey using Particle Swarm Optimization (PSO) and Ant Colony Optimization (ACO). Proposed energy demand model (HAPE) is the first model which integrates two mentioned meta-heuristic techniques. While, PSO, developed for solving continuous optimization problems, is a population based stochastic technique; ACO, simulating behaviors between nest and food source of real ants, is generally used for discrete optimizations. Hybrid method based PSO and ACO is developed to estimate energy demand using gross domestic product (GDP), population, import and export. HAPE is developed in two forms which are linear (HAPEL) and quadratic (HAPEQ). The future energy demand is estimated under different scenarios. In order to show the accuracy of the algorithm, a comparison is made with ACO and PSO which are developed for the same problem. According to obtained results, relative estimation errors of the HAPE model are the lowest of them and quadratic form (HAPEQ) provides better-fit solutions due to fluctuations of the socio-economic indicators.

  8. Scenario based approach for multiple source Tsunami Hazard assessment for Sines, Portugal

    Science.gov (United States)

    Wronna, M.; Omira, R.; Baptista, M. A.

    2015-08-01

    In this paper, we present a scenario-based approach for tsunami hazard assessment for the city and harbour of Sines - Portugal, one of the test-sites of project ASTARTE. Sines holds one of the most important deep-water ports which contains oil-bearing, petrochemical, liquid bulk, coal and container terminals. The port and its industrial infrastructures are facing the ocean southwest towards the main seismogenic sources. This work considers two different seismic zones: the Southwest Iberian Margin and the Gloria Fault. Within these two regions, we selected a total of six scenarios to assess the tsunami impact at the test site. The tsunami simulations are computed using NSWING a Non-linear Shallow Water Model With Nested Grids. In this study, the static effect of tides is analysed for three different tidal stages MLLW (mean lower low water), MSL (mean sea level) and MHHW (mean higher high water). For each scenario, inundation is described by maximum values of wave height, flow depth, drawback, runup and inundation distance. Synthetic waveforms are computed at virtual tide gauges at specific locations outside and inside the harbour. The final results describe the impact at Sines test site considering the single scenarios at mean sea level, the aggregate scenario and the influence of the tide on the aggregate scenario. The results confirm the composite of Horseshoe and Marques Pombal fault as the worst case scenario. It governs the aggregate scenario with about 60 % and inundates an area of 3.5 km2.

  9. Development of optimization-based probabilistic earthquake scenarios for the city of Tehran

    Science.gov (United States)

    Zolfaghari, M. R.; Peyghaleh, E.

    2016-01-01

    This paper presents the methodology and practical example for the application of optimization process to select earthquake scenarios which best represent probabilistic earthquake hazard in a given region. The method is based on simulation of a large dataset of potential earthquakes, representing the long-term seismotectonic characteristics in a given region. The simulation process uses Monte-Carlo simulation and regional seismogenic source parameters to generate a synthetic earthquake catalogue consisting of a large number of earthquakes, each characterized with magnitude, location, focal depth and fault characteristics. Such catalogue provides full distributions of events in time, space and size; however, demands large computation power when is used for risk assessment, particularly when other sources of uncertainties are involved in the process. To reduce the number of selected earthquake scenarios, a mixed-integer linear program formulation is developed in this study. This approach results in reduced set of optimization-based probabilistic earthquake scenario, while maintaining shape of hazard curves and full probabilistic picture by minimizing the error between hazard curves driven by full and reduced sets of synthetic earthquake scenarios. To test the model, the regional seismotectonic and seismogenic characteristics of northern Iran are used to simulate a set of 10,000-year worth of events consisting of some 84,000 earthquakes. The optimization model is then performed multiple times with various input data, taking into account probabilistic seismic hazard for Tehran city as the main constrains. The sensitivity of the selected scenarios to the user-specified site/return period error-weight is also assessed. The methodology could enhance run time process for full probabilistic earthquake studies like seismic hazard and risk assessment. The reduced set is the representative of the contributions of all possible earthquakes; however, it requires far less

  10. Novel hybrid adaptive controller for manipulation in complex perturbation environments.

    Directory of Open Access Journals (Sweden)

    Alex M C Smith

    Full Text Available In this paper we present a hybrid control scheme, combining the advantages of task-space and joint-space control. The controller is based on a human-like adaptive design, which minimises both control effort and tracking error. Our novel hybrid adaptive controller has been tested in extensive simulations, in a scenario where a Baxter robot manipulator is affected by external disturbances in the form of interaction with the environment and tool-like end-effector perturbations. The results demonstrated improved performance in the hybrid controller over both of its component parts. In addition, we introduce a novel method for online adaptation of learning parameters, using the fuzzy control formalism to utilise expert knowledge from the experimenter. This mechanism of meta-learning induces further improvement in performance and avoids the need for tuning through trial testing.

  11. Scenario-based approach adopted in the ELECTRA project for deriving innovative control room functionality

    DEFF Research Database (Denmark)

    Marinelli, Mattia; Heussen, Kai; Prostejovsky, Alexander Maria

    2017-01-01

    Here, the authors analyse the operator point of view of the Web-of-Cells concept defined in the EU project ELECTRA, by identifying operator tasks into the supervision of a highly automated power system, and the information requirements to facilitate appropriate operator situation awareness...... have been identified based on the Web-of-Cells control concept. The authors considered scenarios that challenge traditional control schemes, scenarios that caused major failures (i.e. blackouts), and scenarios that can be expected to appear in the future. For each scenario, information concerning...

  12. DNA hybridization sensor based on pentacene thin film transistor.

    Science.gov (United States)

    Kim, Jung-Min; Jha, Sandeep Kumar; Chand, Rohit; Lee, Dong-Hoon; Kim, Yong-Sang

    2011-01-15

    A DNA hybridization sensor using pentacene thin film transistors (TFTs) is an excellent candidate for disposable sensor applications due to their low-cost fabrication process and fast detection. We fabricated pentacene TFTs on glass substrate for the sensing of DNA hybridization. The ss-DNA (polyA/polyT) or ds-DNA (polyA/polyT hybrid) were immobilized directly on the surface of the pentacene, producing a dramatic change in the electrical properties of the devices. The electrical characteristics of devices were studied as a function of DNA immobilization, single-stranded vs. double-stranded DNA, DNA length and concentration. The TFT device was further tested for detection of λ-phage genomic DNA using probe hybridization. Based on these results, we propose that a "label-free" detection technique for DNA hybridization is possible through direct measurement of electrical properties of DNA-immobilized pentacene TFTs. Copyright © 2010 Elsevier B.V. All rights reserved.

  13. Scenario-based design: a method for connecting information system design with public health operations and emergency management.

    Science.gov (United States)

    Reeder, Blaine; Turner, Anne M

    2011-12-01

    Responding to public health emergencies requires rapid and accurate assessment of workforce availability under adverse and changing circumstances. However, public health information systems to support resource management during both routine and emergency operations are currently lacking. We applied scenario-based design as an approach to engage public health practitioners in the creation and validation of an information design to support routine and emergency public health activities. Using semi-structured interviews we identified the information needs and activities of senior public health managers of a large municipal health department during routine and emergency operations. Interview analysis identified 25 information needs for public health operations management. The identified information needs were used in conjunction with scenario-based design to create 25 scenarios of use and a public health manager persona. Scenarios of use and persona were validated and modified based on follow-up surveys with study participants. Scenarios were used to test and gain feedback on a pilot information system. The method of scenario-based design was applied to represent the resource management needs of senior-level public health managers under routine and disaster settings. Scenario-based design can be a useful tool for engaging public health practitioners in the design process and to validate an information system design. Copyright © 2011 Elsevier Inc. All rights reserved.

  14. Participatory scenario planning in place-based social-ecological research

    DEFF Research Database (Denmark)

    Rozas, Elisa Oteros; Martín-López, Berta; Daw, Tim M.

    2015-01-01

    Participatory scenario planning (PSP) is an increasingly popular tool in place-based environmental research for evaluating alternative futures of social-ecological systems. Although a range of guidelines on PSP methods are available in the scientific and grey literature, there is a need to reflect......, hence facilitating the appropriate uptake of such scenario tools in the future. We analyzed 23 PSP case studies conducted by the authors in a wide range of social-ecological settings by exploring seven aspects: (1) the context; (2) the original motivations and objectives; (3) the methodological approach...... of PSP, particularly when tailored to shared objectives between local people and researchers, has enriched environmental management and scientific research through building common understanding and fostering learning about future planning of social-ecological systems. However, PSP still requires greater...

  15. Prediction of China's coal production-environmental pollution based on a hybrid genetic algorithm-system dynamics model

    International Nuclear Information System (INIS)

    Yu Shiwei; Wei Yiming

    2012-01-01

    This paper proposes a hybrid model based on genetic algorithm (GA) and system dynamics (SD) for coal production–environmental pollution load in China. GA has been utilized in the optimization of the parameters of the SD model to reduce implementation subjectivity. The chain of “Economic development–coal demand–coal production–environmental pollution load” of China in 2030 was predicted, and scenarios were analyzed. Results show that: (1) GA performs well in optimizing the parameters of the SD model objectively and in simulating the historical data; (2) The demand for coal energy continuously increases, although the coal intensity has actually decreased because of China's persistent economic development. Furthermore, instead of reaching a turning point by 2030, the environmental pollution load continuously increases each year even under the scenario where coal intensity decreased by 20% and investment in pollution abatement increased by 20%; (3) For abating the amount of “three types of wastes”, reducing the coal intensity is more effective than reducing the polluted production per tonne of coal and increasing investment in pollution control. - Highlights: ► We propos a GA-SD model for China's coal production-pollution prediction. ► Genetic algorithm (GA) can objectively and accurately optimize parameters of system dynamics (SD) model. ► Environmental pollution in China is projected to grow in our scenarios by 2030. ► The mechanism of reducing waste production per tonne of coal mining is more effective than others.

  16. JET RF dominated scenarios and ion ITB experiments with low external momentum input

    International Nuclear Information System (INIS)

    Crisanti, F.; Esposito, B.; Gormezano, C.; Buratti, P.; Cardinali, A.; Giovannozzi, E.; Sozzi, C.; Becoulet, A.; Rimini, F.; Garbet, X.; Guirlet, R.; Joffrin, E.; Litaudon, X.; Brambilla, M.; Baar, M. de; Luna, E. de la; Vries, P. de; Giroud, C.; Mantica, P.; Mantsinen, M.; Salmi, A.; Eester, D. van

    2005-01-01

    Advanced Tokamak scenarios include two different regimes: the 'steady state' (characterized by the presence of an Internal Transport Barrier (ITB)) and the 'hybrid scenario' (characterized by central q > 1 and a large region with magnetic shear close to zero). So far both the regimes, at least for the ion species, have always been obtained in presence of strong injection of external momentum by Neutrals Beam Injection (NBI) heating. By using Lower Hybrid Current Drive (LHCD) to sustain the central q slightly above one and with a large plasma region having the magnetic shear s close to zero, an 'hybrid scenario' has been established, for the first time, in discharges with dominant Ion Cyclotron Resonance Heating (ICRH) and with a normalized beta close to two. By starting from a configuration with reversed magnetic shear (sustained only by LHCD) and with a well established ITB on the electron species, an ITB also on the ions species has been obtained by using ICRH in an ion minority heating scheme, ( 3 He)D. No external momentum input was provided by the NBI, except for the diagnostic charge-exchange and the MSE beams. In these discharges the evaluated ExB shearing rate was always very small (in the noisy range) and lower than analytical evaluations of the turbulence growth rate. (author)

  17. Design of an optimized photovoltaic and microturbine hybrid power system for a remote small community: Case study of Palestine

    International Nuclear Information System (INIS)

    Ismail, M.S.; Moghavvemi, M.; Mahlia, T.M.I.

    2013-01-01

    Highlights: • Solar data was analyzed in the location under consideration. • A program was developed to simulate the operation of the PV-microturbine hybrid system. • Different scenarios were analyzed to select and design the optimal system. • It is cost effective to power houses in remote areas with such hybrid systems. • The hybrid system had lower CO 2 emissions compared to a microturbine only operation. - Abstract: Hybrid systems are defined as systems that utilize more than one energy source to supply a certain load. The implementation of a hybrid system that is based upon Photovoltaic (PV) to supply power to remote and isolated locations is considered a viable option. This is especially true for areas that receive sufficient amounts of annual solar radiation. While analysis of hybrid systems that depend on diesel generators as backup sources can be found in many previous research works, detailed techno economic analysis of hybrid systems that depend on microturbines as backup sources are less addressed. A techno-economic analysis and the design of a complete hybrid system that comprises of Photovoltaic (PV) panels, a battery system, and a microturbine as a backup power source for a remote community is presented in this paper. The investigation of the feasibility of using the microturbines as backup sources in the hybrid systems is one of the purposes of this study. A scenario depending on PV standalone system and other scenario depending on microturbine only were also studied in this paper. The comparison between different scenarios with regards to the cost of energy and pollutant emissions was also conducted. A simulation program was developed to optimize both the sizes of the PV system and the battery bank, and consequently determine the detailed specifications of the different components that make up the hybrid system. The optimization of the PV tilt angle that maximizes the annual energy production was also carried out. The effect of the

  18. Role of the lower hybrid spectrum in the current drive modeling for DEMO scenarios

    Science.gov (United States)

    Cardinali, A.; Castaldo, C.; Cesario, R.; Santini, F.; Amicucci, L.; Ceccuzzi, S.; Galli, A.; Mirizzi, F.; Napoli, F.; Panaccione, L.; Schettini, G.; Tuccillo, A. A.

    2017-07-01

    The active control of the radial current density profile is one of the major issues of thermonuclear fusion energy research based on magnetic confinement. The lower hybrid current drive could in principle be used as an efficient tool. However, previous understanding considered the electron temperature envisaged in a reactor at the plasma periphery too large to allow penetration of the coupled radio frequency (RF) power due to strong Landau damping. In this work, we present new numerical results based on quasilinear theory, showing that the injection of power spectra with different {n}// widths of the main lobe produce an RF-driven current density profile spanning most of the outer radial half of the plasma ({n}// is the refractive index in a parallel direction to the confinement magnetic field). Plasma kinetic profiles envisaged for the DEMO reactor are used as references. We demonstrate the robustness of the modeling results concerning the key role of the spectral width in determining the lower hybrid-driven current density profile. Scans of plasma parameters are extensively carried out with the aim of excluding the possibility that any artefact of the utilised numerical modeling would produce any novelty. We neglect here the parasitic effect of spectral broadening produced by linear scattering due to plasma density fluctuations, which mainly occurs for low magnetic field devices. This effect will be analyzed in other work that completes the report on the present breakthrough.

  19. Nuclear Hybrid Energy Systems Regional Studies: West Texas & Northeastern Arizona

    Energy Technology Data Exchange (ETDEWEB)

    Garcia, Humberto E. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Chen, Jun [Idaho National Lab. (INL), Idaho Falls, ID (United States); Kim, Jong Suk [Idaho National Lab. (INL), Idaho Falls, ID (United States); McKellar, Michael George [Idaho National Lab. (INL), Idaho Falls, ID (United States); Deason, Wesley R [Idaho National Lab. (INL), Idaho Falls, ID (United States); Vilim, Richard B. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Bragg-Sitton, Shannon M. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Boardman, Richard D. [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-04-01

    The primary objective of this study is to conduct a preliminary dynamic analysis of two realistic hybrid energy systems (HES) including a nuclear reactor as the main baseload heat generator (denoted as nuclear HES or nuclear hybrid energy systems [[NHES]) and to assess the local (e.g., HES owners) and system (e.g., the electric grid) benefits attainable by the application of NHES in scenarios with multiple commodity production and high penetration of renewable energy. It is performed for regional cases not generic examples based on available resources, existing infrastructure, and markets within the selected regions. This study also briefly addresses the computational capabilities developed to conduct such analyses, reviews technical gaps, and suggests some research paths forward.

  20. Environmental and economic impacts of fertilizer drawn forward osmosis and nanofiltration hybrid system

    KAUST Repository

    Kim, Jung Eun; Phuntsho, Sherub; Chekli, Laura; Hong, Seungkwan; Ghaffour, NorEddine; Leiknes, TorOve; Choi, Joon Yong; Shon, Ho Kyong

    2017-01-01

    Environmental and economic impacts of the fertilizer drawn forward osmosis (FDFO) and nanofiltration (NF) hybrid system were conducted and compared with conventional reverse osmosis (RO) hybrid scenarios using microfiltration (MF) or ultrafiltration

  1. A hybrid agent-based approach for modeling microbiological systems.

    Science.gov (United States)

    Guo, Zaiyi; Sloot, Peter M A; Tay, Joc Cing

    2008-11-21

    Models for systems biology commonly adopt Differential Equations or Agent-Based modeling approaches for simulating the processes as a whole. Models based on differential equations presuppose phenomenological intracellular behavioral mechanisms, while models based on Multi-Agent approach often use directly translated, and quantitatively less precise if-then logical rule constructs. We propose an extendible systems model based on a hybrid agent-based approach where biological cells are modeled as individuals (agents) while molecules are represented by quantities. This hybridization in entity representation entails a combined modeling strategy with agent-based behavioral rules and differential equations, thereby balancing the requirements of extendible model granularity with computational tractability. We demonstrate the efficacy of this approach with models of chemotaxis involving an assay of 10(3) cells and 1.2x10(6) molecules. The model produces cell migration patterns that are comparable to laboratory observations.

  2. Food scenarios 2025

    DEFF Research Database (Denmark)

    Sundbo, Jon

    2016-01-01

    This article presents the results of a future study of the food sector. Two scenarios have been developed using a combination of: 1) a summary of the relevant scientific knowledge, 2) systematic scenario writing, 3) an expert-based Delphi technique, and 4) an expert seminar assessment. The two...... scenarios present possible futures at global, national (Denmark) and regional (Zealand, Denmark) levels. The main scenario is called ‘Food for ordinary days and celebrations’ (a combination of ‘High-technological food production − The functional society’ and ‘High-gastronomic food − The experience society...

  3. Mind Map Our Way into Effective Student Questioning: a Principle-Based Scenario

    Science.gov (United States)

    Stokhof, Harry; de Vries, Bregje; Bastiaens, Theo; Martens, Rob

    2017-07-01

    Student questioning is an important self-regulative strategy and has multiple benefits for teaching and learning science. Teachers, however, need support to align student questioning to curricular goals. This study tests a prototype of a principle-based scenario that supports teachers in guiding effective student questioning. In the scenario, mind mapping is used to provide both curricular structure as well as support for student questioning. The fidelity of structure and the process of implementation were verified by interviews, video data and a product collection. Results show that the scenario was relevant for teachers, practical in use and effective for guiding student questioning. Results also suggest that shared responsibility for classroom mind maps contributed to more intensive collective knowledge construction.

  4. Light programmable organic transistor memory device based on hybrid dielectric

    Science.gov (United States)

    Ren, Xiaochen; Chan, Paddy K. L.

    2013-09-01

    We have fabricated the transistor memory devices based on SiO2 and polystyrene (PS) hybrid dielectric. The trap states densities with different semiconductors have been investigated and a maximum 160V memory window between programming and erasing is realized. For DNTT based transistor, the trapped electron density is limited by the number of mobile electrons in semiconductor. The charge transport mechanism is verified by light induced Vth shift effect. Furthermore, in order to meet the low operating power requirement of portable electronic devices, we fabricated the organic memory transistor based on AlOx/self-assembly monolayer (SAM)/PS hybrid dielectric, the effective capacitance of hybrid dielectric is 210 nF cm-2 and the transistor can reach saturation state at -3V gate bias. The memory window in transfer I-V curve is around 1V under +/-5V programming and erasing bias.

  5. Towards a user's guide to scenarios - a report on scenario types and scenario techniques

    Energy Technology Data Exchange (ETDEWEB)

    Boerjeson, Lena; Hoejer, Mattias; Dreborg, Karl-Henrik; Finnveden, Goeran [Royal Inst. of Technology, Stockholm (Sweden). Environmental Strategies Research - fms; Ekvall, Tomas [Chalmers Univ. of Technology, Goeteborg (Sweden). Dept. of Energy and Environment

    2005-11-01

    Futures studies consist of a vast variation of studies and approaches. The aim of this paper is to contribute to the understanding of for what purposes scenarios are useful and what methods and procedures are useful for furthering these purposes. We present a scenario typology with an aim to better suit the context in which the scenarios are used. The scenario typology is combined with a new way of looking at scenario techniques, i.e. practical methods and procedures for scenario development. Finally, we look at the usefulness of scenarios in the light of the scenario typology and the scenario techniques. As a start, we distinguish between three main categories of scenario studies. The classification is based on the principal questions we believe a user may want to pose about the future. The resolution is then increased by letting each category contain two different scenario types. These are distinguished by different angles of approach of the questions defining the categories. The first question, What will happen?, is responded to by Predictive scenarios. In fact, the response to a question like this will always be conditional, e.g. of a stable and peaceful world, or by a certain continuous development of some kind. We have utilized this fact when defining the two predictive scenario types, Forecasts and What-if scenarios. The second question, What can happen?, is responded to by Explorative scenarios. The scenarios are thus explorations of what might happen in the future, regardless of beliefs of what is likely to happen or opinions of what is desirable. This category is further divided into external and strategic scenarios. The final question, How can a specific target be reached?, is responded to by Normative scenarios. Such studies are explicitly normative, since they take a target as a starting point. They are often directed towards how the target could be reached. This category is divided into preserving and transforming scenarios. If the user wants to

  6. A Problem-Based Learning Scenario That Can Be Used in Science Teacher Education

    Science.gov (United States)

    Sezgin Selçuk, Gamze

    2015-01-01

    The purpose of this study is to introduce a problem-based learning (PBL) scenario that elementary school science teachers in middle school (5th-8th grades) can use in their in-service training. The scenario treats the subjects of heat, temperature and thermal expansion within the scope of the 5th and 6th grade science course syllabi and has been…

  7. A Novel Hybrid Mental Spelling Application Based on Eye Tracking and SSVEP-Based BCI

    Directory of Open Access Journals (Sweden)

    Piotr Stawicki

    2017-04-01

    Full Text Available Steady state visual evoked potentials (SSVEPs-based Brain-Computer interfaces (BCIs, as well as eyetracking devices, provide a pathway for re-establishing communication for people with severe disabilities. We fused these control techniques into a novel eyetracking/SSVEP hybrid system, which utilizes eye tracking for initial rough selection and the SSVEP technology for fine target activation. Based on our previous studies, only four stimuli were used for the SSVEP aspect, granting sufficient control for most BCI users. As Eye tracking data is not used for activation of letters, false positives due to inappropriate dwell times are avoided. This novel approach combines the high speed of eye tracking systems and the high classification accuracies of low target SSVEP-based BCIs, leading to an optimal combination of both methods. We evaluated accuracy and speed of the proposed hybrid system with a 30-target spelling application implementing all three control approaches (pure eye tracking, SSVEP and the hybrid system with 32 participants. Although the highest information transfer rates (ITRs were achieved with pure eye tracking, a considerable amount of subjects was not able to gain sufficient control over the stand-alone eye-tracking device or the pure SSVEP system (78.13% and 75% of the participants reached reliable control, respectively. In this respect, the proposed hybrid was most universal (over 90% of users achieved reliable control, and outperformed the pure SSVEP system in terms of speed and user friendliness. The presented hybrid system might offer communication to a wider range of users in comparison to the standard techniques.

  8. Scenario analysis of energy-based low-carbon development in China.

    Science.gov (United States)

    Zhou, Yun; Hao, Fanghua; Meng, Wei; Fu, Jiafeng

    2014-08-01

    China's increasing energy consumption and coal-dominant energy structure have contributed not only to severe environmental pollution, but also to global climate change. This article begins with a brief review of China's primary energy use and associated environmental problems and health risks. To analyze the potential of China's transition to low-carbon development, three scenarios are constructed to simulate energy demand and CO₂ emission trends in China up to 2050 by using the Long-range Energy Alternatives Planning System (LEAP) model. Simulation results show that with the assumption of an average annual Gross Domestic Product (GDP) growth rate of 6.45%, total primary energy demand is expected to increase by 63.4%, 48.8% and 12.2% under the Business as Usual (BaU), Carbon Reduction (CR) and Integrated Low Carbon Economy (ILCE) scenarios in 2050 from the 2009 levels. Total energy-related CO₂ emissions will increase from 6.7 billiontons in 2009 to 9.5, 11, 11.6 and 11.2 billiontons; 8.2, 9.2, 9.6 and 9 billiontons; 7.1, 7.4, 7.2 and 6.4 billiontons in 2020, 2030, 2040 and 2050 under the BaU, CR and ILCE scenarios, respectively. Total CO₂ emission will drop by 19.6% and 42.9% under the CR and ILCE scenarios in 2050, compared with the BaU scenario. To realize a substantial cut in energy consumption and carbon emissions, China needs to make a long-term low-carbon development strategy targeting further improvement of energy efficiency, optimization of energy structure, deployment of clean coal technology and use of market-based economic instruments like energy/carbon taxation. Copyright © 2014. Published by Elsevier B.V.

  9. A study on the control of a hybrid MTDC system supplying a passive network

    DEFF Research Database (Denmark)

    Kotb, Omar; Ghandhari, Mehrdad; Eriksson, Robert

    2014-01-01

    A hybrid Multi-Terminal DC (MTDC) system can combine the benefits of both Line Commutated Converter (LCC) and Voltage Source Converter (VSC) technologies in the form of reduced losses and flexibility to connect to weak and passive grids. In this paper, an analysis of control strategies used...... in a hybrid MTDC system is presented. A case study of a four terminal hybrid MTDC system supplying a passive AC network was considered for simulation study. A control scheme based on voltage margin was developed to cope with the condition of main DC voltage controlling station tripping. Two various control...... scenarios for controlling the VSCs connected to the passive network were presented and compared. The system performance was studied through EMTP-RV simulations under different disturbances. The results show the ability of selected converter control modes and proposed control schemes to operate the hybrid...

  10. Techno-economic analysis of an optimized photovoltaic and diesel generator hybrid power system for remote houses in a tropical climate

    International Nuclear Information System (INIS)

    Ismail, M.S.; Moghavvemi, M.; Mahlia, T.M.I.

    2013-01-01

    Highlights: ► We analyzed solar data in the location under consideration. ► We developed a program to simulate the operation of the PV-diesel generator hybrid system. ► We analyzed different scenarios to select and design the optimal system. ► It is cost effective to power houses in remote areas with such hybrid systems. ► The hybrid system had lower CO 2 emissions compared to a diesel generator only operation. - Abstract: A techno-economic analysis and the design of a complete hybrid system, consisting of photovoltaic (PV) panels, a battery system and a diesel generator as a backup power source for a typical Malaysian village household is presented in this paper. The specifications of the different components constructing the hybrid system were also determined. A scenario depending on a standalone PV and other scenario depending on a diesel generator only were also analyzed. A simulation program was developed to simulate the operation of these different scenarios. The scenario that achieves the minimum cost while meeting the load requirement was selected. The optimal tilt angle of the PV panels in order to increase the generated energy was obtained using genetic algorithm. In addition, sensitivity analysis was undertaken to evaluate the effect of change of some parameters on the cost of energy. The results indicated that the optimal scenario is the one that consists of a combination of the PV panels, battery bank and a diesel generator. Powering a rural house using this hybrid system is advantageous as it decreases operating cost, increases efficiencies, and reduces pollutant emissions

  11. Silane-based hybrid materials for biomedical applications

    NARCIS (Netherlands)

    Kros, A.; Jansen, J.A.; Holder, S.J.; Nolte, R.J.M.; Sommerdijk, N.A.J.M.

    2002-01-01

    In this paper, the preparation of different hybrid silane materials is presented and their possible use in biomedical applications is discussed. The first example describes the development of biocompatible coatings based on sol-gel silicates, which can be used as a protective coating for implantable

  12. Scenario Based Network Infrastructure Planning

    DEFF Research Database (Denmark)

    Knudsen, Thomas Phillip; Pedersen, Jens Myrup; Madsen, Ole Brun

    2005-01-01

    The paper presents a method for IT infrastructure planning that take into account very long term developments in usages. The method creates a scenario for a final, time independent stage in the planning process. The method abstracts relevant modelling factors from available information...

  13. Novel hybrid materials based on the vanadium oxide nanobelts

    Energy Technology Data Exchange (ETDEWEB)

    Zabrodina, G.S., E-mail: kudgs@mail.ru [G.A. Razuvaev Institute of Organometallic Chemistry of Russian Academy of Sciences, Nizhny Novgorod 603950 (Russian Federation); Lobachevsky State University, Nizhny Novgorod 603950 (Russian Federation); Makarov, S.G.; Kremlev, K.V. [G.A. Razuvaev Institute of Organometallic Chemistry of Russian Academy of Sciences, Nizhny Novgorod 603950 (Russian Federation); Lobachevsky State University, Nizhny Novgorod 603950 (Russian Federation); Yunin, P.A.; Gusev, S.A. [Institute for Physics of Microstructures Russian Academy of Sciences, Nizhny Novgorod 603087 (Russian Federation); Kaverin, B.S.; Kaverina, L.B. [G.A. Razuvaev Institute of Organometallic Chemistry of Russian Academy of Sciences, Nizhny Novgorod 603950 (Russian Federation); Ketkov, S.Yu. [G.A. Razuvaev Institute of Organometallic Chemistry of Russian Academy of Sciences, Nizhny Novgorod 603950 (Russian Federation); Lobachevsky State University, Nizhny Novgorod 603950 (Russian Federation)

    2016-04-15

    Graphical abstract: - Highlights: • Flat and curved vanadium oxide nanobelts have been synthesized. • Hybrid material was prepared via decoration of flexible nanobelts with zinc phthalocyanine. • Investigations of the thermal stability, morphologies and structures were carried out. - Abstract: Novel hybrid materials based on zinc phthalocyanine and nanostructured vanadium oxides have attracted extensive attention for the development of academic research and innovative industrial applications such as flexible electronics, optical sensors and heterogeneous catalysts. Vanadium oxides nanobelts were synthesized via a hydrothermal treatment V{sub 2}O{sub 5}·nH{sub 2}O gel with surfactants (TBAB, CTAB) used as structure-directing agents, where CTAB – cetyltrimethylammonium bromide, TBAB – tetrabutylammonium bromide. Hybrid materials were prepared decoration of (CTA){sub 0.33}V{sub 2}O{sub 5} flexible nanobelts with cationic zinc phthalocyanine by the ion-exchange route. Investigations of the thermal stability, morphologies and structures of the (CTA){sub 0.33}V{sub 2}O{sub 5}, (TBA){sub 0.16}V{sub 2}O{sub 5} nanobelts and zinc phthalocyanine exchange product were carried out. The hybrid materials based on the nanostructured vanadium oxide and zinc phthalocyanine were tested as photocatalysts for oxidation of citronellol and 2-mercaptoethanol by dioxygen.

  14. Identification and Prediction of Large Pedestrian Flow in Urban Areas Based on a Hybrid Detection Approach

    Directory of Open Access Journals (Sweden)

    Kaisheng Zhang

    2016-12-01

    Full Text Available Recently, population density has grown quickly with the increasing acceleration of urbanization. At the same time, overcrowded situations are more likely to occur in populous urban areas, increasing the risk of accidents. This paper proposes a synthetic approach to recognize and identify the large pedestrian flow. In particular, a hybrid pedestrian flow detection model was constructed by analyzing real data from major mobile phone operators in China, including information from smartphones and base stations (BS. With the hybrid model, the Log Distance Path Loss (LDPL model was used to estimate the pedestrian density from raw network data, and retrieve information with the Gaussian Progress (GP through supervised learning. Temporal-spatial prediction of the pedestrian data was carried out with Machine Learning (ML approaches. Finally, a case study of a real Central Business District (CBD scenario in Shanghai, China using records of millions of cell phone users was conducted. The results showed that the new approach significantly increases the utility and capacity of the mobile network. A more reasonable overcrowding detection and alert system can be developed to improve safety in subway lines and other hotspot landmark areas, such as the Bundle, People’s Square or Disneyland, where a large passenger flow generally exists.

  15. Hybrid inflation in the complex plane

    International Nuclear Information System (INIS)

    Buchmueller, W.; Domcke, V.; Kamada, K.; Schmitz, K.

    2014-04-01

    Supersymmetric hybrid inflation is an exquisite framework to connect inflationary cosmology to particle physics at the scale of grand unification. Ending in a phase transition associated with spontaneous symmetry breaking, it can naturally explain the generation of entropy, matter and dark matter. Coupling F-term hybrid inflation to soft supersymmetry breaking distorts the rotational invariance in the complex inflaton plane - an important fact, which has been neglected in all previous studies. Based on the δN formalism, we analyze the cosmological perturbations for the first time in the full two-field model, also taking into account the fast-roll dynamics at and after the end of inflation. As a consequence of the two-field nature of hybrid inflation, the predictions for the primordial fluctuations depend not only on the parameters of the Lagrangian, but are eventually fixed by the choice of the inflationary trajectory. Recognizing hybrid inflation as a two-field model resolves two shortcomings often times attributed to it: The fine-tuning problem of the initial conditions is greatly relaxed and a spectral index in accordance with the PLANCK data can be achieved in a large part of the parameter space without the aid of supergravity corrections. Our analysis can be easily generalized to other (including large-field) scenarios of inflation in which soft supersymmetry breaking transforms an initially single-field model into a multi-field model.

  16. Scenarios which may lead to the rise of an asteroid-based technical civilisation

    Science.gov (United States)

    Kecskes, Csaba

    2002-05-01

    In a previous paper, the author described a hypothetical development path of technical civilisations which has the following stages: planet dwellers, asteroid dwellers, interstellar travellers, interstellar space dwellers. In this paper, several scenarios are described which may cause the rise of an asteroid-based technical civilisation. Before such a transition may take place, certain space technologies must be developed fully (now these exist only in very preliminary forms): closed-cycle biological life support systems, space manufacturing systems, electrical propulsion systems. After mastering these technologies, certain events may provide the necessary financial means and social impetus for the foundation of the first asteroid-based colonies. In the first scenario, a rich minority group becomes persecuted and they decide to leave the Earth. In the second scenario, a "cold war"-like situation exists and the leaders of the superpowers order the creation of asteroid-based colonies to show off their empires' technological (and financial) grandiosity. In the third scenario, the basic situation is similar to the second one, but in this case the asteroids are not just occupied by the colonists. With several decades of hard work, an asteroid can be turned into a kinetic energy weapon which can provide the same (or greater) threat as the nuclear arsenal of a present superpower. In the fourth scenario, some military asteroids are moved to Earth-centred orbits and utilised as "solar power satellites" (SPS). This would be a quite economical solution because a "military asteroid" already contains most of the important components of an SPS (large solar collector arrays, power distribution devices, orbit modifying rocket engine), one should add only a large microwave transmitter.

  17. Simulation and Analysis of the Hybrid Operating Mode in ITER

    International Nuclear Information System (INIS)

    Kessel, C.E.; Budny, R.V.; Indireshkumar, K.

    2005-01-01

    The hybrid operating mode in ITER is examined with 0D systems analysis, 1.5D discharge scenario simulations using TSC and TRANSP, and the ideal MHD stability is discussed. The hybrid mode has the potential to provide very long pulses and significant neutron fluence if the physics regime can be produced in ITER. This paper reports progress in establishing the physics basis and engineering limitation for the hybrid mode in ITER

  18. Multi-Agent System based Event-Triggered Hybrid Controls for High-Security Hybrid Energy Generation Systems

    DEFF Research Database (Denmark)

    Dou, Chun-Xia; Yue, Dong; Guerrero, Josep M.

    2017-01-01

    This paper proposes multi-agent system based event- triggered hybrid controls for guaranteeing energy supply of a hybrid energy generation system with high security. First, a mul-ti-agent system is constituted by an upper-level central coordi-nated control agent combined with several lower......-level unit agents. Each lower-level unit agent is responsible for dealing with internal switching control and distributed dynamic regula-tion for its unit system. The upper-level agent implements coor-dinated switching control to guarantee the power supply of over-all system with high security. The internal...

  19. Nuclear Hybrid Energy Systems - Regional Studies. West Texas and Northeastern Arizona

    Energy Technology Data Exchange (ETDEWEB)

    Garcia, Humberto E. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Chen, Jun [Idaho National Lab. (INL), Idaho Falls, ID (United States); Kim, Jong S. [Idaho National Lab. (INL), Idaho Falls, ID (United States); McKellar, Michael G. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Deason, Wesley R. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Vilim, Richard B. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Bragg-Sitton, Shannon M. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Boardman, Richard D. [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-04-01

    The primary objective of this study is to conduct a preliminary dynamic analysis of two realistic hybrid energy systems (HES) including a nuclear reactor as the main baseload heat generator (denoted as nuclear HES or nuclear hybrid energy systems [NHES]) and to assess the local (e.g., HES owners) and system (e.g., the electric grid) benefits attainable by the application of NHES in scenarios with multiple commodity production and high penetration of renewable energy. It is performed for regional cases - not generic examples - based on available resources, existing infrastructure, and markets within the selected regions. This study also briefly addresses the computational capabilities developed to conduct such analyses, reviews technical gaps, and suggests some research paths forward.

  20. Minimum long-term cost solution for remote telecommunication stations on the basis of photovoltaic-based hybrid power systems

    International Nuclear Information System (INIS)

    Kaldellis, J.K.; Ninou, I.; Zafirakis, D.

    2011-01-01

    In the case of the telecommunication (T/C) services' expansion to rural and remote areas, the market generally responds with the minimum investments required. Considering the existing situation, cost-effective operation of the T/C infrastructure installed in these regions (i.e. remote T/C stations) becomes critical. However, since in most cases grid-connection is not feasible, the up-to-now electrification solution for remote T/C stations is based on the operation of costly, oil consuming and heavy polluting diesel engines. Instead, the use of photovoltaic (PV)-based hybrid power stations is currently examined, using as a case study a representative remote T/C station of the Greek territory. In this context, the present study is concentrated on the detailed cost-benefit analysis of the proposed solution. More precisely, the main part of the analysis is devoted to develop a complete electricity production cost model, accordingly applied for numerous oil consumption and service period scenarios. Note that in all cases examined, zero load rejections is a prerequisite while minimum long-term cost solutions designated are favorably compared with the diesel-only solution. Finally, a sensitivity analysis, demonstrating the impact of the main economic parameters on the energy production cost of optimum sized PV-diesel hybrid power stations, is also provided. - Research highlights: → Expansion of telecommunication (T/C) in remote areas is vital for their development. → Off-grid T/C stations employed in such areas operate on diesel engines. → The use of PV-diesel-battery hybrid power stations is currently examined. → A detailed long-term electricity production cost model is developed. → Cost-effectiveness of the proposed system is reflected for numerous configurations.

  1. Hybrid cognitive engine for radio systems adaptation

    KAUST Repository

    Alqerm, Ismail

    2017-07-20

    Network efficiency and proper utilization of its resources are essential requirements to operate wireless networks in an optimal fashion. Cognitive radio aims to fulfill these requirements by exploiting artificial intelligence techniques to create an entity called cognitive engine. Cognitive engine exploits awareness about the surrounding radio environment to optimize the use of radio resources and adapt relevant transmission parameters. In this paper, we propose a hybrid cognitive engine that employs Case Based Reasoning (CBR) and Decision Trees (DTs) to perform radio adaptation in multi-carriers wireless networks. The engine complexity is reduced by employing DTs to improve the indexing methodology used in CBR cases retrieval. The performance of our hybrid engine is validated using software defined radios implementation and simulation in multi-carrier environment. The system throughput, signal to noise and interference ratio, and packet error rate are obtained and compared with other schemes in different scenarios.

  2. Multilingual and Multicultural Task-Based Learning Scenarios: A Pilot Study from the MAGICC Project

    Science.gov (United States)

    Álvarez, Inma; Pérez-Cavana, María Luisa

    2015-01-01

    In this article we report on the results of a pilot study on the use of task-based multilingual and multicultural professional scenarios for higher education teachers and learners at BA and MA level. The scenarios reflect new learning outcomes and assessment criteria for the presently under-conceptualised domain of communication in multilingual…

  3. Hybrid optical CDMA-FSO communications network under spatially correlated gamma-gamma scintillation

    DEFF Research Database (Denmark)

    Jurado-Navas, Antonio; Raddo, Thiago R.; Garrido-Balsells, José María

    2016-01-01

    In this paper, we propose a new hybrid network solution based on asynchronous optical code-division multiple-access (OCDMA) and free-space optical (FSO) technologies for last-mile access networks, where fiber deployment is impractical. The architecture of the proposed hybrid OCDMA-FSO network...... is thoroughly described. The users access the network in a fully asynchronous manner by means of assigned fast frequency hopping (FFH)-based codes. In the FSO receiver, an equal gain-combining technique is employed along with intensity modulation and direct detection. New analytical formalisms for evaluating...... can successfully achieve error-free ABER levels for the three scenarios considered as long as forward error correction (FEC) algorithms are employed. Therefore, OCDMA-FSO networks can be a prospective alternative to deliver high-speed communication services to access networks with deficient fiber...

  4. Using Scenario-based Business Modelling to Explore the 5G Telecommunication Market

    DEFF Research Database (Denmark)

    Moqaddamerad, Sara; Ahokangas, Petri; Matinmikko, Marja

    2017-01-01

    Innovative technologies often alter established value chains and make traditional strategic planning methods inadequate. In this paper, we present the use of scenario-based business modelling to explore the market for the fifth generation mobile communication networks (5G). We discuss four...... scenarios that have been developed in a collaborative effort among different actors in the market. We then describe the approach to build business models and discuss lessons learned and benefits from the novel approach. This approach complements traditional techniques through providing a powerful platform...

  5. Evaluating adaptation options for urban flooding based on new high-end emission scenario regional climate model simulations

    DEFF Research Database (Denmark)

    Arnbjerg-Nielsen, Karsten; Leonardsen, L.; Madsen, Henrik

    2015-01-01

    Climate change adaptation studies on urban flooding are often based on a model chain approach from climate forcing scenarios to analysis of adaptation measures. Previous analyses of climate change impacts in Copenhagen, Denmark, were supplemented by 2 high-end scenario simulations. These include...... a regional climate model projection forced to a global temperature increase of 6 degrees C in 2100 as well as a projection based on a high radiative forcing scenario (RCP8.5). With these scenarios, projected impacts of extreme precipitation increase significantly. For extreme sea surges, the impacts do...... by almost 4 and 8 times the current EAD for the RCP8.5 and 6 degrees C scenario, respectively. For both hazards, business-as-usual is not a possible scenario, since even in the absence of policy-driven changes, significant autonomous adaptation is likely to occur. Copenhagen has developed an adaptation plan...

  6. Process-based evaluation of the ÖKS15 Austrian climate scenarios: First results

    Science.gov (United States)

    Mendlik, Thomas; Truhetz, Heimo; Jury, Martin; Maraun, Douglas

    2017-04-01

    The climate scenarios for Austria from the ÖKS15 project consists of 13 downscaled and bias-corrected RCMs from the EURO-CORDEX project. This dataset is meant for the broad public and is now available at the central national archive for climate data (CCCA Data Center). Because of this huge public outreach it is absolutely necessary to objectively discuss the limitations of this dataset and to publish these limitations, which should also be understood by a non-scientific audience. Even though systematical climatological biases have been accounted for by the Scaled-Distribution-Mapping (SDM) bias-correction method, it is not guaranteed that the model biases have been removed for the right reasons. If climate scenarios do not get the patterns of synoptic variability right, biases will still prevail in certain weather patterns. Ultimately this will have consequences for the projected climate change signals. In this study we derive typical weather types in the Alpine Region based on patterns from mean sea level pressure from ERA-INTERIM data and check the occurrence of these synoptic phenomena in EURO-CORDEX data and their corresponding driving GCMs. Based on these weather patterns we analyze the remaining biases of the downscaled and bias-corrected scenarios. We argue that such a process-based evaluation is not only necessary from a scientific point of view, but can also help the broader public to understand the limitations of downscaled climate scenarios, as model errors can be interpreted in terms of everyday observable weather.

  7. Gas allocation plans based on failures scenarios: PETROBRAS-Gas and Power Sector

    Energy Technology Data Exchange (ETDEWEB)

    Faertes, Denise; Vieira, Flavia; Saker, Leonardo; Heil, Luciana [PETROBRAS, Rio de Janeiro, RJ (Brazil); Galvao, Joao [DNV, Rio de Janeiro, RJ (Brazil)

    2009-07-01

    The purpose of this paper is to present gas allocation plans developed for PETROBRAS Gas and Power Sector, considering failure to supply scenarios that could occur along gas supply network. Those scenarios, as well as the associated contingency plans, were identified and validated by an experienced team, composed by engineers and operators from different PETROBRAS sectors. The key issue of concern was the anticipation of possible undesired scenarios that could imply on contract shortfalls, the evaluation of possible maneuvers, taking into account best gas delivery allocation. Different software were used for the simulation of best gas supply allocation and for the verification of delivery pressure and conditions for final consumers. The ability of being capable of dealing with undesired or crisis scenarios, based on suitable anticipation levels, is, nowadays, a highly valuable attribute to be presented by competitive corporations, for best crisis management and prompt recovery response. Those plans are being used by Gas and Power Gas Operation Control Centre and as an input for reliability modeling of gas supply chain. (author)

  8. Extending a Hybrid Tag-Based Recommender System with Personalization

    DEFF Research Database (Denmark)

    Durao, Frederico; Dolog, Peter

    2010-01-01

    extension for a hybrid tag-based recommender system, which suggests similar Web pages based on the similarity of their tags. The semantic extension aims at discovering tag relations which are not considered in basic syntax similarity. With the goal of generating more semantically grounded recommendations......, the proposal extends a hybrid tag-based recommender system with a semantic factor, which looks for tag relations in different semantic sources. In order to evaluate the benefits acquired with the semantic extension, we have compared the new findings with results from a previous experiment involving 38 people......Tagging activity has been recently identified as a potential source of knowledge about personal interests, preferences, goals, and other attributes known from user models. Tags themselves can be therefore used for finding personalized recommendations of items. This paper proposes a semantic...

  9. Thermodynamics and process analysis for future economic scenarios

    International Nuclear Information System (INIS)

    Ayres, R.U.

    1995-01-01

    Economists are increasingly interested in forecasting future costs and benefits of policies for dealing with materials/energy fluxes, polluting emissions and environmental impacts on various scales, from sectoral to global. Computable general equilibrium (CGE) models are currently popular because they project demand and industrial structure into the future, along an equilibrium path. But they are applicable only to the extent that structural changes occur in or near equilibrium, independent of radical technological (or social) change. The alternative tool for analyzing economic implications of scenario assumptions is to use Leontief-type Input-Output (I-O) models. I-O models are unable to endogenize structural shifts (changing I-O coefficients). However, this can be a virtue when considering radical rather than incremental shifts. Postulated I-O tables can be used independently to check the internal consistency of scenarios. Or I-O models can be used to generate scenarios by linking them to econometric 'macro-drivers' (which can, in principle, be CGE models). Explicit process analysis can be integrated, in principle, with I-O models. This hybrid scheme provides a natural means of satisfying physical constraints, especially the first and second laws of thermodynamics. This is important, to avoid constructing scenarios based on physically impossible processes. Process analysis is really the only available tool for constructing physically plausible alternative future I-O tables, and generating materials/energy and waste emissions coefficients. Explicit process analysis also helps avoid several problems characteristic of 'pure' CGE or I-O models, viz. (1) aggregation errors (2) inability to handle arbitrary combinations of co-product and co-input relationships and (3) inability to reflect certain non-linearities such as internal feedback loops. 4 figs., 2 tabs., 38 refs

  10. Nanocomposite-Based Bulk Heterojunction Hybrid Solar Cells

    Directory of Open Access Journals (Sweden)

    Bich Phuong Nguyen

    2014-01-01

    Full Text Available Photovoltaic devices based on nanocomposites composed of conjugated polymers and inorganic nanocrystals show promise for the fabrication of low-cost third-generation thin film photovoltaics. In theory, hybrid solar cells can combine the advantages of the two classes of materials to potentially provide high power conversion efficiencies of up to 10%; however, certain limitations on the current within a hybrid solar cell must be overcome. Current limitations arise from incompatibilities among the various intradevice interfaces and the uncontrolled aggregation of nanocrystals during the step in which the nanocrystals are mixed into the polymer matrix. Both effects can lead to charge transfer and transport inefficiencies. This paper highlights potential strategies for resolving these obstacles and presents an outlook on the future directions of this field.

  11. The world in scenarios

    International Nuclear Information System (INIS)

    De Jong, A.; Roodenburg, H.

    1992-01-01

    As an introduction to this special issue 'Worlds of difference: Scenarios's for the economy, energy and the environment 1990-2015', an outline is given of the future of the world and the Netherlands, based on four scenarios. These scenarios are published in 'Scanning the future' in May 1992 by the CPB, the Dutch Central Planning Bureau. The Global Shift (GS) scenario is characterized by a very dynamic technological development, the free market perspective, strong economic growth in the Asian economies, and a relative economic regression in Western Europe. In the European Renaissance (ER) scenario the technological development is less dynamic and more gradual than in the GS scenario. The Balanced Growth (BG) scenario is dominated by a sustainable economic development and a strong technological dynamic development. The Global Crisis (GC) scenario shows a downward spiral in many areas, stagnating developments and fragile economies as results of the trends in the eighties. The first three scenarios are elaborated for the Netherlands. Also attention is paid to the aims and meaning of long-term scenarios. 2 figs., 2 tabs., 3 refs

  12. Paraffin-based hybrid rocket engines applications: A review and a market perspective

    Science.gov (United States)

    Mazzetti, Alessandro; Merotto, Laura; Pinarello, Giordano

    2016-09-01

    Hybrid propulsion technology for aerospace applications has received growing attention in recent years due to its important advantages over competitive solutions. Hybrid rocket engines have a great potential for several aeronautics and aerospace applications because of their safety, reliability, low cost and high performance. As a consequence, this propulsion technology is feasible for a number of innovative missions, including space tourism. On the other hand, hybrid rocket propulsion's main drawback, i.e. the difficulty in reaching high regression rate values using standard fuels, has so far limited the maturity level of this technology. The complex physico-chemical processes involved in hybrid rocket engines combustion are of major importance for engine performance prediction and control. Therefore, further investigation is ongoing in order to achieve a more complete understanding of such phenomena. It is well known that one of the most promising solutions for overcoming hybrid rocket engines performance limits is the use of liquefying fuels. Such fuels can lead to notably increased solid fuel regression rate due to the so-called "entrainment phenomenon". Among liquefying fuels, paraffin-based formulations have great potentials as solid fuels due to their low cost, availability (as they can be derived from industrial waste), low environmental impact and high performance. Despite the vast amount of literature available on this subject, a precise focus on market potential of paraffins for hybrid propulsion aerospace applications is lacking. In this work a review of hybrid rocket engines state of the art was performed, together with a detailed analysis of the possible applications of such a technology. A market study was carried out in order to define the near-future foreseeable development needs for hybrid technology application to the aforementioned missions. Paraffin-based fuels are taken into account as the most promising segment for market development

  13. Biocomposites and hybrid biomaterials based on calcium orthophosphates

    Science.gov (United States)

    Dorozhkin, Sergey V.

    2011-01-01

    The state-of-the-art of biocomposites and hybrid biomaterials based on calcium orthophosphates that are suitable for biomedical applications is presented in this review. Since these types of biomaterials offer many significant and exciting possibilities for hard tissue regeneration, this subject belongs to a rapidly expanding area of biomedical research. Through successful combinations of the desired properties of matrix materials with those of fillers (in such systems, calcium orthophosphates might play either role), innovative bone graft biomaterials can be designed. Various types of biocomposites and hybrid biomaterials based on calcium orthophosphates, either those already in use or being investigated for biomedical applications, are extensively discussed. Many different formulations, in terms of the material constituents, fabrication technologies, structural and bioactive properties as well as both in vitro and in vivo characteristics, have already been proposed. Among the others, the nanostructurally controlled biocomposites, those containing nanodimensional compounds, biomimetically fabricated formulations with collagen, chitin and/or gelatin as well as various functionally graded structures seem to be the most promising candidates for clinical applications. The specific advantages of using biocomposites and hybrid biomaterials based on calcium orthophosphates in the selected applications are highlighted. As the way from the laboratory to the hospital is a long one, and the prospective biomedical candidates have to meet many different necessities, this review also examines the critical issues and scientific challenges that require further research and development. PMID:23507726

  14. Hybrid Droop Control Strategy Applied to Grid-Supporting Converters in DC Microgrids

    DEFF Research Database (Denmark)

    Han, Renke; Meng, Lexuan; Guerrero, Josep M.

    2017-01-01

    The paper proposes a hybrid droop control strategy to enhance the stability and increase maximum constant power loads (CPLs) capability of DC microgrids in a realistic scenario. By capturing the detailed model of inner control loops and hybrid droop control and general dc MG topology, a thorough...

  15. Smooth hybrid inflation and non-thermal Type II leptogenesis

    International Nuclear Information System (INIS)

    Sil, Arunansu

    2013-01-01

    We consider a smooth hybrid inflation scenario based on a supersymmetricSU(2) L ⊗ SU(2) R ⊗ U(1) B-L model. The Higgs triplets involved in the model play a key role in inflation as well as in explaining the observed baryon asymmetry of the universe. We show that the baryon asymmetry can originate via non-thermal triplet leptogenesis from the decay of SU(2) B-L triplets, whose tiny vacuum expectation values also provide masses for the light neutrinos. (author)

  16. Tactical decision games - developing scenario-based training for decision-making in distributed teams

    OpenAIRE

    Lauche, K.; Crichton, M.; Bayerl, P.S.

    2009-01-01

    Team training should reflect the increasing complexity of decision-making environments. Guidelines for scenario-based training were adopted for a distributed setting and tested in a pilot training session with a distributed team in the offshore oil industry. Participants valued the scenario as challenging and useful, but also highlighted problems of distributed communication. The findings were used to improve the training as well as current use of the technology in the organisation. Research ...

  17. Genomic Prediction of Sunflower Hybrids Oil Content

    Directory of Open Access Journals (Sweden)

    Brigitte Mangin

    2017-09-01

    Full Text Available Prediction of hybrid performance using incomplete factorial mating designs is widely used in breeding programs including different heterotic groups. Based on the general combining ability (GCA of the parents, predictions are accurate only if the genetic variance resulting from the specific combining ability is small and both parents have phenotyped descendants. Genomic selection (GS can predict performance using a model trained on both phenotyped and genotyped hybrids that do not necessarily include all hybrid parents. Therefore, GS could overcome the issue of unknown parent GCA. Here, we compared the accuracy of classical GCA-based and genomic predictions for oil content of sunflower seeds using several GS models. Our study involved 452 sunflower hybrids from an incomplete factorial design of 36 female and 36 male lines. Re-sequencing of parental lines allowed to identify 468,194 non-redundant SNPs and to infer the hybrid genotypes. Oil content was observed in a multi-environment trial (MET over 3 years, leading to nine different environments. We compared GCA-based model to different GS models including female and male genomic kinships with the addition of the female-by-male interaction genomic kinship, the use of functional knowledge as SNPs in genes of oil metabolic pathways, and with epistasis modeling. When both parents have descendants in the training set, the predictive ability was high even for GCA-based prediction, with an average MET value of 0.782. GS performed slightly better (+0.2%. Neither the inclusion of the female-by-male interaction, nor functional knowledge of oil metabolism, nor epistasis modeling improved the GS accuracy. GS greatly improved predictive ability when one or both parents were untested in the training set, increasing GCA-based predictive ability by 10.4% from 0.575 to 0.635 in the MET. In this scenario, performing GS only considering SNPs in oil metabolic pathways did not improve whole genome GS prediction but

  18. Measuring Engagement in Later Life Activities: Rasch-Based Scenario Scales for Work, Caregiving, Informal Helping, and Volunteering

    Science.gov (United States)

    Ludlow, Larry H.; Matz-Costa, Christina; Johnson, Clair; Brown, Melissa; Besen, Elyssa; James, Jacquelyn B.

    2014-01-01

    The development of Rasch-based "comparative engagement scenarios" based on Guttman's facet theory and sentence mapping procedures is described. The scenario scales measuring engagement in work, caregiving, informal helping, and volunteering illuminate the lived experiences of role involvement among older adults and offer multiple…

  19. Gravity localization on hybrid branes

    Directory of Open Access Journals (Sweden)

    D.F.S. Veras

    2016-03-01

    Full Text Available This work deals with gravity localization on codimension-1 brane worlds engendered by compacton-like kinks, the so-called hybrid branes. In such scenarios, the thin brane behavior is manifested when the extra dimension is outside the compact domain, where the energy density is non-trivial, instead of asymptotically as in the usual thick brane models. The zero mode is trapped in the brane, as required. The massive modes, although not localized in the brane, have important phenomenological implications such as corrections to the Newton's law. We study such corrections in the usual thick domain wall and in the hybrid brane scenarios. By means of suitable numerical methods, we attain the mass spectrum for the graviton and the corresponding wavefunctions. The spectra possess the usual linearly increasing behavior from the Kaluza–Klein theories. Further, we show that the 4D gravitational force is slightly increased at short distances. The first eigenstate contributes highly for the correction to the Newton's law. The subsequent normalized solutions have diminishing contributions. Moreover, we find out that the phenomenology of the hybrid brane is not different from the usual thick domain wall. The use of numerical techniques for solving the equations of the massive modes is useful for matching possible phenomenological measurements in the gravitational law as a probe to warped extra dimensions.

  20. Route-Based Control of Hybrid Electric Vehicles: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Gonder, J. D.

    2008-01-01

    Today's hybrid electric vehicle controls cannot always provide maximum fuel savings over all drive cycles. Route-based controls could improve HEV fuel efficiency by 2%-4% and help save nearly 6.5 million gallons of fuel annually.

  1. Environmental performance of advanced hybrid energy storage systems for electric vehicle applications

    International Nuclear Information System (INIS)

    Sanfélix, Javier; Messagie, Maarten; Omar, Noshin; Van Mierlo, Joeri; Hennige, Volker

    2015-01-01

    Highlights: • The environmental impact of advanced energy storage systems is assessed. • The methodology used is Life Cycle Assessment following the ISO 14040 and 14044. • Twelve impact categories are assessed to avoid burden shifting. • Increasing the efficiency and extending the lifetime benefits the environmental performance. • The results show that there are hot spots where to act and reduce the overall impact. - Abstract: In this paper the environmental performance of an advanced hybrid energy storage system, comprising high power and high energy lithium iron phosphate cells, is compared with a stand alone battery concept composed of lithium manganese oxide cells. The methodology used to analyse the environmental impacts is Life Cycle Assessment (LCA). The manufacturing, use phase and end-of-life of the battery packs are assessed for twelve impact categories. The functional unit is 1 km driven under European average conditions. The present study assesses the environmental performance of the two battery packs for two scenarios: scenario 1 with a vehicle total drive range of 150,000 km and scenario 2 with total driving range of the car of 300,000 km. The results of scenario 1 show that the increased efficiency of the hybrid system reduces, in general, the environmental impact during the use stage, although the manufacturing stage has higher impact than the benchmark. Scenario 2 shows how the extended lifetime of the hybrid system benefits the emissions per km driven

  2. Optimum Performance-Based Seismic Design Using a Hybrid Optimization Algorithm

    Directory of Open Access Journals (Sweden)

    S. Talatahari

    2014-01-01

    Full Text Available A hybrid optimization method is presented to optimum seismic design of steel frames considering four performance levels. These performance levels are considered to determine the optimum design of structures to reduce the structural cost. A pushover analysis of steel building frameworks subject to equivalent-static earthquake loading is utilized. The algorithm is based on the concepts of the charged system search in which each agent is affected by local and global best positions stored in the charged memory considering the governing laws of electrical physics. Comparison of the results of the hybrid algorithm with those of other metaheuristic algorithms shows the efficiency of the hybrid algorithm.

  3. Hybrid High-Fidelity Modeling of Radar Scenarios Using Atemporal, Discrete-Event, and Time-Step Simulation

    Science.gov (United States)

    2016-12-01

    10 Figure 1.8 High-efficiency and high-fidelity radar system simulation flowchart . 15 Figure 1.9...Methodology roadmaps: experimental-design flowchart showing hybrid sensor models integrated from three simulation categories, followed by overall...simulation display and output produced by Java Simkit program . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 Figure 4.5 Hybrid

  4. An event driven hybrid identity management approach to privacy enhanced e-health.

    Science.gov (United States)

    Sánchez-Guerrero, Rosa; Almenárez, Florina; Díaz-Sánchez, Daniel; Marín, Andrés; Arias, Patricia; Sanvido, Fabio

    2012-01-01

    Credential-based authorization offers interesting advantages for ubiquitous scenarios involving limited devices such as sensors and personal mobile equipment: the verification can be done locally; it offers a more reduced computational cost than its competitors for issuing, storing, and verification; and it naturally supports rights delegation. The main drawback is the revocation of rights. Revocation requires handling potentially large revocation lists, or using protocols to check the revocation status, bringing extra communication costs not acceptable for sensors and other limited devices. Moreover, the effective revocation consent--considered as a privacy rule in sensitive scenarios--has not been fully addressed. This paper proposes an event-based mechanism empowering a new concept, the sleepyhead credentials, which allows to substitute time constraints and explicit revocation by activating and deactivating authorization rights according to events. Our approach is to integrate this concept in IdM systems in a hybrid model supporting delegation, which can be an interesting alternative for scenarios where revocation of consent and user privacy are critical. The delegation includes a SAML compliant protocol, which we have validated through a proof-of-concept implementation. This article also explains the mathematical model describing the event-based model and offers estimations of the overhead introduced by the system. The paper focus on health care scenarios, where we show the flexibility of the proposed event-based user consent revocation mechanism.

  5. MAS Based Event-Triggered Hybrid Control for Smart Microgrids

    DEFF Research Database (Denmark)

    Dou, Chunxia; Liu, Bin; Guerrero, Josep M.

    2013-01-01

    This paper is focused on an advanced control for autonomous microgrids. In order to improve the performance regarding security and stability, a hierarchical decentralized coordinated control scheme is proposed based on multi-agents structure. Moreover, corresponding to the multi-mode and the hybrid...... haracteristics of microgrids, an event-triggered hybrid control, including three kinds of switching controls, is designed to intelligently reconstruct operation mode when the security stability assessment indexes or the constraint conditions are violated. The validity of proposed control scheme is demonstrated...

  6. Innovative Educational Scenarios in Game Based Teaching and Learning

    Directory of Open Access Journals (Sweden)

    Ion Smeureanu

    2017-08-01

    Full Text Available The didactical game can be considered part of an educational scenario in teaching and learning. This article aims to show how fundamental concepts from the economicmathematical modeling area can be visualized, how to organize knowledge in coherent scenarios, presented in an educational game manner, to gain the attention and influence students' spirit of competition. At the same time, benefitting from the 3D visualizations, the graphical interfaces for navigating in multidimensional spaces or projections are defined and thus imagination used for mental models construction is stimulated and human intuition is capitalized in the process of knowledge discovery, assisted by computer with analytic algorithms type. Exploration becomes a game feature and can be pursued both numerically and visually. 3D environments give realism to visualizations that are found in games, facilitating realimaginary relationship throughout the game and enhancing learning motivation. The innovative character of teaching is given by the method in which the teacher creates his own educational scenario by considering specific learning objectives, age particularities of students, time and space-related resources, the technical requirements of the game and the evaluation method. The paper makes several references to such projects, developed by the authors and implemented in working with students. Game based on demonstration (using simulation, modelling or visualization coordinates users to obtain relevant information; the multiple representations of knowledge are so used and compared through a multitude of examples.

  7. Analysis and design of permanent magnet biased magnetic bearing based on hybrid factor

    Directory of Open Access Journals (Sweden)

    Jinji Sun

    2016-03-01

    Full Text Available In this article, hybrid factor is proposed for hybrid magnetic bearing. The hybrid factor is defined as the ratio of the force produced by the permanent magnet and the forces produced by the permanent magnet and current in hybrid magnetic bearing. It is deduced from a certain radial hybrid magnetic bearing using its important parameters such as the current stiffness and displacement stiffness at first and then the dynamic model of magnetically suspended rotor system is established. The relationship between structural parameters and control system parameters is analyzed based on the hybrid factor. Some influencing factors of hybrid factor in hybrid magnetic bearing, such as the size of the permanent magnet, length of air gap, and area of the stator poles, are analyzed in this article. It can be concluded that larger hybrid factor can be caused by the smaller power loss according to the definition of hybrid factor mentioned above. Meanwhile, the hybrid factor has a maximum value, which is related to control system parameters such as proportional factor expect for structural parameters. Finally, the design steps of parameters of hybrid magnetic bearing can be concluded.

  8. Near infrared photodetector based on polymer and indium nitride nanorod organic/inorganic hybrids

    International Nuclear Information System (INIS)

    Lai, Wei-Jung; Li, Shao-Sian; Lin, Chih-Cheng; Kuo, Chun-Chiang; Chen, Chun-Wei; Chen, Kuei-Hsien; Chen, Li-Chyong

    2010-01-01

    We propose a nanostructured near infrared photodetector based on indium nitride (InN) nanorod/poly(3-hexylthiophene) hybrids. The current-voltage characteristic of the hybrid device demonstrates the typical p-n heterojunction diode behavior, consisting of p-type polymer and n-type InN nanorods. The device shows a photoresponse range of 900-1260 nm under various reverse biases. An external quantum efficiency of 3.4% at 900 nm operated at -10 V reverse bias was obtained, which is comparable with devices based on lead sulfide and lead selenide hybrid systems.

  9. A Survey on Evolutionary Algorithm Based Hybrid Intelligence in Bioinformatics

    Directory of Open Access Journals (Sweden)

    Shan Li

    2014-01-01

    Full Text Available With the rapid advance in genomics, proteomics, metabolomics, and other types of omics technologies during the past decades, a tremendous amount of data related to molecular biology has been produced. It is becoming a big challenge for the bioinformatists to analyze and interpret these data with conventional intelligent techniques, for example, support vector machines. Recently, the hybrid intelligent methods, which integrate several standard intelligent approaches, are becoming more and more popular due to their robustness and efficiency. Specifically, the hybrid intelligent approaches based on evolutionary algorithms (EAs are widely used in various fields due to the efficiency and robustness of EAs. In this review, we give an introduction about the applications of hybrid intelligent methods, in particular those based on evolutionary algorithm, in bioinformatics. In particular, we focus on their applications to three common problems that arise in bioinformatics, that is, feature selection, parameter estimation, and reconstruction of biological networks.

  10. Virtual screening applications: a study of ligand-based methods and different structure representations in four different scenarios.

    Science.gov (United States)

    Hristozov, Dimitar P; Oprea, Tudor I; Gasteiger, Johann

    2007-01-01

    Four different ligand-based virtual screening scenarios are studied: (1) prioritizing compounds for subsequent high-throughput screening (HTS); (2) selecting a predefined (small) number of potentially active compounds from a large chemical database; (3) assessing the probability that a given structure will exhibit a given activity; (4) selecting the most active structure(s) for a biological assay. Each of the four scenarios is exemplified by performing retrospective ligand-based virtual screening for eight different biological targets using two large databases--MDDR and WOMBAT. A comparison between the chemical spaces covered by these two databases is presented. The performance of two techniques for ligand--based virtual screening--similarity search with subsequent data fusion (SSDF) and novelty detection with Self-Organizing Maps (ndSOM) is investigated. Three different structure representations--2,048-dimensional Daylight fingerprints, topological autocorrelation weighted by atomic physicochemical properties (sigma electronegativity, polarizability, partial charge, and identity) and radial distribution functions weighted by the same atomic physicochemical properties--are compared. Both methods were found applicable in scenario one. The similarity search was found to perform slightly better in scenario two while the SOM novelty detection is preferred in scenario three. No method/descriptor combination achieved significant success in scenario four.

  11. From hybrid to quadratic inflation with high-scale supersymmetry breaking

    Directory of Open Access Journals (Sweden)

    Constantinos Pallis

    2014-09-01

    Full Text Available Motivated by the reported discovery of inflationary gravity waves by the Bicep2 experiment, we propose an inflationary scenario in supergravity, based on the standard superpotential used in hybrid inflation. The new model yields a tensor-to-scalar ratio r≃0.14 and scalar spectral index ns≃0.964, corresponding to quadratic (chaotic inflation. The important new ingredients are the high-scale, (1.6–10⋅1013 GeV, soft supersymmetry breaking mass for the gauge singlet inflaton field and a shift symmetry imposed on the Kähler potential. The end of inflation is accompanied, as in the earlier hybrid inflation models, by the breaking of a gauge symmetry at (1.2–7.1⋅1016 GeV, comparable to the grand-unification scale.

  12. Scenario-based analyses of energy system development and its environmental implications in Thailand

    International Nuclear Information System (INIS)

    Shrestha, Ram M.; Malla, Sunil; Liyanage, Migara H.

    2007-01-01

    Thailand is one of the fastest growing energy-intensive economies in Southeast Asia. To formulate sound energy policies in the country, it is important to understand the impact of energy use on the environment over the long-period. This study examines energy system development and its associated greenhouse gas and local air pollutant emissions under four scenarios in Thailand through the year 2050. The four scenarios involve different growth paths for economy, population, energy efficiency and penetration of renewable energy technologies. The paper assesses the changes in primary energy supply mix, sector-wise final energy demand, energy import dependency and CO 2 , SO 2 and NO x emissions under four scenarios using end-use based Asia-Pacific Integrated Assessment Model (AIM/Enduse) of Thailand. (author)

  13. A hybrid society model for simulating residential electricity consumption

    International Nuclear Information System (INIS)

    Xu, Minjie; Hu, Zhaoguang; Wu, Junyong; Zhou, Yuhui

    2008-01-01

    In this paper, a hybrid social model of econometric model and social influence model is proposed for evaluating the influence of pricing policy and public education policy on residential habit of electricity using in power resources management. And, a hybrid society simulation platform based on the proposed model, called residential electricity consumption multi-agent systems (RECMAS), is designed for simulating residential electricity consumption by multi-agent system. RECMAS is composed of consumer agent, power supplier agent, and policy maker agent. It provides the policy makers with a useful tool to evaluate power price policies and public education campaigns in different scenarios. According to an influenced diffusion mechanism, RECMAS can simulate the residential electricity demand-supply chain and analyze impacts of the factors on residential electricity consumption. Finally, the proposed method is used to simulate urban residential electricity consumption in China. (author)

  14. A hybrid society model for simulating residential electricity consumption

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Minjie [School of Electrical Engineering, Beijing Jiaotong University, Beijing (China); State Power Economic Research Institute, Beijing (China); Hu, Zhaoguang [State Power Economic Research Institute, Beijing (China); Wu, Junyong; Zhou, Yuhui [School of Electrical Engineering, Beijing Jiaotong University, Beijing (China)

    2008-12-15

    In this paper, a hybrid social model of econometric model and social influence model is proposed for evaluating the influence of pricing policy and public education policy on residential habit of electricity using in power resources management. And, a hybrid society simulation platform based on the proposed model, called residential electricity consumption multi-agent systems (RECMAS), is designed for simulating residential electricity consumption by multi-agent system. RECMAS is composed of consumer agent, power supplier agent, and policy maker agent. It provides the policy makers with a useful tool to evaluate power price policies and public education campaigns in different scenarios. According to an influenced diffusion mechanism, RECMAS can simulate the residential electricity demand-supply chain and analyze impacts of the factors on residential electricity consumption. Finally, the proposed method is used to simulate urban residential electricity consumption in China. (author)

  15. Subsonic Ultra Green Aircraft Research: Phase 2. Volume 2; Hybrid Electric Design Exploration

    Science.gov (United States)

    Bradley, Marty K.; Droney, Christopher K.

    2015-01-01

    This report summarizes the hybrid electric concept design, analysis, and modeling work accomplished by the Boeing Subsonic Ultra Green Aircraft Research (SUGAR) team, consisting of Boeing Research and Technology, Boeing Commercial Airplanes, General Electric, and Georgia Tech.Performance and sizing tasks were conducted for hybrid electric versions of a conventional tube-and-wing aircraft and a hybrid wing body. The high wing Truss Braced Wing (TBW) SUGAR Volt was updated based on results from the TBW work (documented separately) and new engine performance models. Energy cost and acoustic analyses were conducted and technology roadmaps were updated for hybrid electric and battery technology. NOx emissions were calculated for landing and takeoff (LTO) and cruise. NPSS models were developed for hybrid electric components and tested using an integrated analysis of superconducting and non-superconducting hybrid electric engines. The hybrid electric SUGAR Volt was shown to produce significant emissions and fuel burn reductions beyond those achieved by the conventionally powered SUGAR High and was able to meet the NASA goals for fuel burn. Total energy utilization was not decreased but reduced energy cost can be achieved for some scenarios. The team was not able to identify a technology development path to meet NASA's noise goals

  16. Event-based knowledge elicitation of operating room management decision-making using scenarios adapted from information systems data.

    Science.gov (United States)

    Dexter, Franklin; Wachtel, Ruth E; Epstein, Richard H

    2011-01-07

    No systematic process has previously been described for a needs assessment that identifies the operating room (OR) management decisions made by the anesthesiologists and nurse managers at a facility that do not maximize the efficiency of use of OR time. We evaluated whether event-based knowledge elicitation can be used practically for rapid assessment of OR management decision-making at facilities, whether scenarios can be adapted automatically from information systems data, and the usefulness of the approach. A process of event-based knowledge elicitation was developed to assess OR management decision-making that may reduce the efficiency of use of OR time. Hypothetical scenarios addressing every OR management decision influencing OR efficiency were created from published examples. Scenarios are adapted, so that cues about conditions are accurate and appropriate for each facility (e.g., if OR 1 is used as an example in a scenario, the listed procedure is a type of procedure performed at the facility in OR 1). Adaptation is performed automatically using the facility's OR information system or anesthesia information management system (AIMS) data for most scenarios (43 of 45). Performing the needs assessment takes approximately 1 hour of local managers' time while they decide if their decisions are consistent with the described scenarios. A table of contents of the indexed scenarios is created automatically, providing a simple version of problem solving using case-based reasoning. For example, a new OR manager wanting to know the best way to decide whether to move a case can look in the chapter on "Moving Cases on the Day of Surgery" to find a scenario that describes the situation being encountered. Scenarios have been adapted and used at 22 hospitals. Few changes in decisions were needed to increase the efficiency of use of OR time. The few changes were heterogeneous among hospitals, showing the usefulness of individualized assessments. Our technical advance is the

  17. Event-based knowledge elicitation of operating room management decision-making using scenarios adapted from information systems data

    Directory of Open Access Journals (Sweden)

    Epstein Richard H

    2011-01-01

    Full Text Available Abstract Background No systematic process has previously been described for a needs assessment that identifies the operating room (OR management decisions made by the anesthesiologists and nurse managers at a facility that do not maximize the efficiency of use of OR time. We evaluated whether event-based knowledge elicitation can be used practically for rapid assessment of OR management decision-making at facilities, whether scenarios can be adapted automatically from information systems data, and the usefulness of the approach. Methods A process of event-based knowledge elicitation was developed to assess OR management decision-making that may reduce the efficiency of use of OR time. Hypothetical scenarios addressing every OR management decision influencing OR efficiency were created from published examples. Scenarios are adapted, so that cues about conditions are accurate and appropriate for each facility (e.g., if OR 1 is used as an example in a scenario, the listed procedure is a type of procedure performed at the facility in OR 1. Adaptation is performed automatically using the facility's OR information system or anesthesia information management system (AIMS data for most scenarios (43 of 45. Performing the needs assessment takes approximately 1 hour of local managers' time while they decide if their decisions are consistent with the described scenarios. A table of contents of the indexed scenarios is created automatically, providing a simple version of problem solving using case-based reasoning. For example, a new OR manager wanting to know the best way to decide whether to move a case can look in the chapter on "Moving Cases on the Day of Surgery" to find a scenario that describes the situation being encountered. Results Scenarios have been adapted and used at 22 hospitals. Few changes in decisions were needed to increase the efficiency of use of OR time. The few changes were heterogeneous among hospitals, showing the usefulness of

  18. Solving SAT Problem Based on Hybrid Differential Evolution Algorithm

    Science.gov (United States)

    Liu, Kunqi; Zhang, Jingmin; Liu, Gang; Kang, Lishan

    Satisfiability (SAT) problem is an NP-complete problem. Based on the analysis about it, SAT problem is translated equally into an optimization problem on the minimum of objective function. A hybrid differential evolution algorithm is proposed to solve the Satisfiability problem. It makes full use of strong local search capacity of hill-climbing algorithm and strong global search capability of differential evolution algorithm, which makes up their disadvantages, improves the efficiency of algorithm and avoids the stagnation phenomenon. The experiment results show that the hybrid algorithm is efficient in solving SAT problem.

  19. The feasibility of sharing simulation-based evaluation scenarios in anesthesiology.

    Science.gov (United States)

    Berkenstadt, Haim; Kantor, Gareth S; Yusim, Yakov; Gafni, Naomi; Perel, Azriel; Ezri, Tiberiu; Ziv, Amitai

    2005-10-01

    We prospectively assessed the feasibility of international sharing of simulation-based evaluation tools despite differences in language, education, and anesthesia practice, in an Israeli study, using validated scenarios from a multi-institutional United States (US) study. Thirty-one Israeli junior anesthesia residents performed four simulation scenarios. Training sessions were videotaped and performance was assessed using two validated scoring systems (Long and Short Forms) by two independent raters. Subjects scored from 37 to 95 (70 +/- 12) of 108 possible points with the "Long Form" and "Short Form" scores ranging from 18 to 35 (28.2 +/- 4.5) of 40 possible points. Scores >70% of the maximal score were achieved by 61% of participants in comparison to only 5% in the original US study. The scenarios were rated as very realistic by 80% of the participants (grade 4 on a 1-4 scale). Reliability of the original assessment tools was demonstrated by internal consistencies of 0.66 for the Long and 0.75 for the Short Form (Cronbach alpha statistic). Values in the original study were 0.72-0.76 for the Long and 0.71-0.75 for the Short Form. The reliability did not change when a revised Israeli version of the scoring was used. Interrater reliability measured by Pearson correlation was 0.91 for the Long and 0.96 for the Short Form (P Israel. The higher scores achieved by Israeli residents may be related to the fact that most Israeli residents are immigrants with previous training in anesthesia. Simulation-based assessment tools developed in a multi-institutional study in the United States can be used in Israel despite the differences in language, education, and medical system.

  20. Mobile source CO2 mitigation through smart growth development and vehicle fleet hybridization.

    Science.gov (United States)

    Stone, Brian; Mednick, Adam C; Holloway, Tracey; Spak, Scott N

    2009-03-15

    This paper presents the results of a study on the effectiveness of smart growth development patterns and vehicle fleet hybridization in reducing mobile source emissions of carbon dioxide (CO2) across 11 major metropolitan regions of the Midwestern U.S. over a 50-year period. Through the integration of a vehicle travel activity modeling framework developed by researchers atthe Oak Ridge National Laboratory with small area population projections, we model mobile source emissions of CO2 associated with alternative land development and technology change scenarios between 2000 and 2050. Our findings suggest that under an aggressive smart growth scenario, growth in emissions expected to occur under a business as usual scenario is reduced by 34%, while the full dissemination of hybrid-electric vehicles throughout the light vehicle fleet is found to offset the expected growth in emissions by 97%. Our results further suggest that high levels of urban densification could achieve reductions in 2050 CO2 emissions equivalent to those attainable through the full dissemination of hybrid-electric vehicle technologies.

  1. Environmental and exergy benefit of nanofluid-based hybrid PV/T systems

    International Nuclear Information System (INIS)

    Hassani, Samir; Saidur, R.; Mekhilef, Saad; Taylor, Robert A.

    2016-01-01

    Highlights: • Environmental and ExPBT analysis of different PV/T configurations is presented. • The exergy payback time of nanofluid-based hybrid PV/T system is about 2 years. • Nanofluid-based hybrid PV/T system is a reliable solution for pollution prevention. • Nanofluid-based hybrid PV/T system is highly recommended at high solar concentration. - Abstract: Photovoltaic/thermal (PV/T) solar systems, which produce both electrical and thermal energy simultaneously, represent a method to achieve very high conversion rates of sunlight into useful energy. In recent years, nanofluids have been proposed as efficient coolants and optical filter for PV/T systems. Aim of this paper is to theoretically analyze the life cycle exergy of three different configurations of nanofluids-based PV/T hybrid systems, and compare their performance to a standard PV and PV/T system. Electrical and thermal performance of the analyzed solar collectors was investigated numerically. The life cycle exergy analysis revealed that the nanofluids-based PV/T system showed the best performance compared to a standard PV and PV/T systems. At the optimum value of solar concentration C, nanofluid-based PV/T configuration with optimized optical and thermal properties produces ∼1.3 MW h/m 2 of high-grade exergy annually with the lowest exergy payback time of 2 years, whereas these are ∼0.36, ∼0.79 MW h/m 2 and 3.48, 2.55 years for standard PV and PV/T systems, respectively. In addition, the nanofluids-based PV/T system can prevent the emissions of about 448 kg CO 2 eq m −2 yr −1 . Overall, it was found that the nanofluids-based PV/T with optimized optical and thermal properties has potential for further development in a high-concentration solar system.

  2. Launch Vehicles Based on Advanced Hybrid Rocket Motors: An Enabling Technology for the Commercial Small and Micro Satellite Planetary Science

    Science.gov (United States)

    Karabeyoglu, Arif; Tuncer, Onur; Inalhan, Gokhan

    2016-07-01

    Mankind is relient on chemical propulsion systems for space access. Nevertheless, this has been a stagnant area in terms of technological development and the technology base has not changed much almost for the past forty years. This poses a vicious circle for launch applications such that high launch costs constrain the demand and low launch freqencies drive costs higher. This also has been a key limiting factor for small and micro satellites that are geared towards planetary science. Rather this be because of the launch frequencies or the costs, the access of small and micro satellites to orbit has been limited. With today's technology it is not possible to escape this circle. However the emergence of cost effective and high performance propulsion systems such as advanced hybrid rockets can decrease launch costs by almost an order or magnitude. This paper briefly introduces the timeline and research challenges that were overcome during the development of advanced hybrid LOX/paraffin based rockets. Experimental studies demonstrated effectiveness of these advanced hybrid rockets which incorporate fast burning parafin based fuels, advanced yet simple internal balistic design and carbon composite winding/fuel casting technology that enables the rocket motor to be built from inside out. A feasibility scenario is studied using these rocket motors as building blocks for a modular launch vehicle capable of delivering micro satellites into low earth orbit. In addition, the building block rocket motor can be used further solar system missions providing the ability to do standalone small and micro satellite missions to planets within the solar system. This enabling technology therefore offers a viable alternative in order to escape the viscous that has plagued the space launch industry and that has limited the small and micro satellite delivery for planetary science.

  3. Interspecific Hybridization in Pilot Whales and Asymmetric Genetic Introgression in Northern Globicephala melas under the Scenario of Global Warming.

    Science.gov (United States)

    Miralles, Laura; Oremus, Marc; Silva, Mónica A; Planes, Serge; Garcia-Vazquez, Eva

    2016-01-01

    Pilot whales are two cetacean species (Globicephala melas and G. macrorhynchus) whose distributions are correlated with water temperature and partially overlap in some areas like the North Atlantic Ocean. In the context of global warming, distribution range shifts are expected to occur in species affected by temperature. Consequently, a northward displacement of the tropical pilot whale G. macrorynchus is expected, eventually leading to increased secondary contact areas and opportunities for interspecific hybridization. Here, we describe genetic evidences of recurrent hybridization between pilot whales in northeast Atlantic Ocean. Based on mitochondrial DNA sequences and microsatellite loci, asymmetric introgression of G. macrorhynchus genes into G. melas was observed. For the latter species, a significant correlation was found between historical population growth rate estimates and paleotemperature oscillations. Introgressive hybridization, current temperature increases and lower genetic variation in G. melas suggest that this species could be at risk in its northern range. Under increasing environmental and human-mediated stressors in the North Atlantic Ocean, it seems recommendable to develop a conservation program for G. melas.

  4. Seismic performance evaluation of an MR elastomer-based smart base isolation system using real-time hybrid simulation

    International Nuclear Information System (INIS)

    Eem, S H; Jung, H J; Koo, J H

    2013-01-01

    Recently, magneto-rheological (MR) elastomer-based base isolation systems have been actively studied as alternative smart base isolation systems because MR elastomers are capable of adjusting their modulus or stiffness depending on the magnitude of the applied magnetic field. By taking advantage of the MR elastomers’ stiffness-tuning ability, MR elastomer-based smart base isolation systems strive to alleviate limitations of existing smart base isolation systems as well as passive-type base isolators. Until now, research on MR elastomer-based base isolation systems primarily focused on characterization, design, and numerical evaluations of MR elastomer-based isolators, as well as experimental tests with simple structure models. However, their applicability to large civil structures has not been properly studied yet because it is quite challenging to numerically emulate the complex behavior of MR elastomer-based isolators and to conduct experiments with large-size structures. To address these difficulties, this study employs the real-time hybrid simulation technique, which combines physical testing and computational modeling. The primary goal of the current hybrid simulation study is to evaluate seismic performances of an MR elastomer-based smart base isolation system, particularly its adaptability to distinctly different seismic excitations. In the hybrid simulation, a single-story building structure (non-physical, computational model) is coupled with a physical testing setup for a smart base isolation system with associated components (such as laminated MR elastomers and electromagnets) installed on a shaking table. A series of hybrid simulations is carried out under two seismic excitations having different dominant frequencies. The results show that the proposed smart base isolation system outperforms the passive base isolation system in reducing the responses of the structure for the excitations considered in this study. (paper)

  5. Case for the fusion hybrid

    International Nuclear Information System (INIS)

    Rose, R.P.

    1981-01-01

    The use of nuclear fusion to produce fuel for nuclear fission power stations is discussed in the context of a crucial need for future energy options. The fusion hybrid is first considered as an element in the future of nuclear fission power to provide long term assurance of adequate fuel supplies for both breeder and convertor reactors. Generic differences in neutronic characteristics lead to a fuel production potential of fusion-fission hybrid systems which is significantly greater than that obtainable with fission systems alone. Furthermore, cost benefit studies show a variety of scenarios in which the hybrid offers sufficient potential to justify development costs ranging in the tens of billions of dollars. The hybrid is then considered as an element in the ultimate development of fusion electric power. The hybrid offers a near term application of fusion where experience with the requisite technologies can be derived as a vital step in mapping a credible route to eventual commercial feasibility of pure fusion systems. Finally, the criteria for assessment of future energy options are discussed with prime emphasis on the need for rational comparision of alternatives

  6. Performance analysis of hybrid PV/diesel/battery system using HOMER: A case study Sabah, Malaysia

    International Nuclear Information System (INIS)

    Halabi, Laith M.; Mekhilef, Saad; Olatomiwa, Lanre; Hazelton, James

    2017-01-01

    Highlights: • The performance of two decentralized power stations in Malaysia has been studied. • All possible scenarios of hybrid PV/diesel/battery system have been analyzed. • A comparison with the optimum design was included in this work using HOMER. • Sensitivity analysis showing the impact of main factors on the system was examined. • The advantages/disadvantages of utilizing each scenario are showed and clarified. - Abstract: This study considered two decentralized power stations in Sabah, Malaysia; each contains different combination of photovoltaic (PV), diesel generators, system converters, and storage batteries. The work was built upon previous related site surveys and data collections from each site. Verification of the site data sets, simulation of different operational scenarios, and a comparison with the optimum design were all considered in the work. This includes all possible standalone diesel generators, hybrid PV/diesel/battery, and 100% PV/battery scenarios for the proposed stations. HOMER software has been used in the modeling entire systems. The operational behaviors of different PV penetration levels were analyzed to accurately quantify the impact of PV integration. The performance of these stations was analyzed based on technical, economic and environmental constraints, besides, placing emphasis on comparative cost analysis between different operational scenarios. The results satisfied the load demand with the minimum total net present cost (NPC) and levelized cost of energy (LCOE). Moreover, sensitivity analysis was carried out to represents the effects of changing main parameters, such as; fuel, PV, battery prices, and load demand (load growth) on the system performance. Comparison of all operational behaviors scenarios was carried out to elucidate the advantages/disadvantages of utilizing each scenario. The impact of different PV penetration levels on the system performance and the generation of harmful emissions is also

  7. Base Station Antenna Pattern Distortion in Practical Urban Deployment Scenarios

    DEFF Research Database (Denmark)

    Rodriguez Larrad, Ignacio; Nguyen, Huan Cong; Sørensen, Troels Bundgaard

    2014-01-01

    In real urban deployments, base station antennas are typically not placed in free space conditions. Therefore, the radiation pattern can be affected by mounting structures and nearby obstacles located in the proximity of the antenna (near-field), which are often not taken into consideration. Also...... presents a combination of near-field and far-field simulations aimed to provide an overview of the distortion experienced by the base station antenna pattern in two different urban deployment scenarios: rooftop and telecommunications tower. The study illustrates how, in comparison with the near...

  8. Craniomandibular form and body size variation of first generation mouse hybrids: A model for hominin hybridization.

    Science.gov (United States)

    Warren, Kerryn A; Ritzman, Terrence B; Humphreys, Robyn A; Percival, Christopher J; Hallgrímsson, Benedikt; Ackermann, Rebecca Rogers

    2018-03-01

    Hybridization occurs in a number of mammalian lineages, including among primate taxa. Analyses of ancient genomes have shown that hybridization between our lineage and other archaic hominins in Eurasia occurred numerous times in the past. However, we still have limited empirical data on what a hybrid skeleton looks like, or how to spot patterns of hybridization among fossils for which there are no genetic data. Here we use experimental mouse models to supplement previous studies of primates. We characterize size and shape variation in the cranium and mandible of three wild-derived inbred mouse strains and their first generation (F 1 ) hybrids. The three parent taxa in our analysis represent lineages that diverged over approximately the same period as the human/Neanderthal/Denisovan lineages and their hybrids are variably successful in the wild. Comparisons of body size, as quantified by long bone measurements, are also presented to determine whether the identified phenotypic effects of hybridization are localized to the cranium or represent overall body size changes. The results indicate that hybrid cranial and mandibular sizes, as well as limb length, exceed that of the parent taxa in all cases. All three F 1 hybrid crosses display similar patterns of size and form variation. These results are generally consistent with earlier studies on primates and other mammals, suggesting that the effects of hybridization may be similar across very different scenarios of hybridization, including different levels of hybrid fitness. This paper serves to supplement previous studies aimed at identifying F 1 hybrids in the fossil record and to introduce further research that will explore hybrid morphologies using mice as a proxy for better understanding hybridization in the hominin fossil record. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. European Climate - Energy Security Nexus. A model based scenario analysis

    International Nuclear Information System (INIS)

    Criqui, Patrick; Mima, Silvana

    2011-01-01

    In this research, we have provided an overview of the climate-security nexus in the European sector through a model based scenario analysis with POLES model. The analysis underline that under stringent climate policies, Europe take advantage of a double dividend in its capacity to develop a new cleaner energy model and in lower vulnerability to potential shocks on the international energy markets. (authors)

  10. Desirability and feasibility of sustainable urban transport systems. An expert-based strategic scenario approach

    Energy Technology Data Exchange (ETDEWEB)

    Nijkamp, P.; Ouwersloot, H.; Rienstra, S.A. [Department of Spatial Economics, Faculty of Economics and Econometrics, Vrije Universiteit, Amsterdam (Netherlands)

    1995-09-01

    Current trends in transport indicate that the system is moving away from sustainability and that major changes are necessary to make the transport system more compatible with environmental sustainability. Main problems may occur in urban transport, where not many promising solutions are expected, while the problems are severe. In view of the great number of uncertainties, we will in our paper resort to scenarios. In the paper, expert scenarios, which lead to a sustainable transport system are constructed by applying the recently developed `Spider model`. Based on a set of distinct characteristics, leading to eight axes in the spatial, institutional, economic and social-psychological field, an evaluation framework is constructed, which visualizes the driving forces that largely influence the future of the transport system. Next, expected and desired scenarios are constructed by means of opinions of Dutch transport experts - both average scenarios and scenarios of segments of the respondents - which have been investigated by means of a survey. The expected scenarios indicate that many current trends will continue, while the transport system is largely the same as the current one. The desired scenarios on the other hand, suggest the emergence and the need for a more collective system, in which also many new modes are operating. In the paper the resulting urban transport systems are also discussed. By calculating the CO2 emissions in the average expected and desired scenario, it appears that the expected scenario does not lead to a large scale reduction of those emissions; the desired scenario however, may lead to a large scale reduction of the emissions. The conclusion is that the differences in expert opinion are small and that the road towards a sustainable (urban) transport system is still far away, although the compact city concept may perhaps offer some solution. 6 figs., 2 tabs., 18 refs.

  11. Estimation of volt second saving by application of lower hybrid waves on JET

    International Nuclear Information System (INIS)

    Van Houtte, D.

    1987-12-01

    Volt-second saving by application of lower hybrid current discharges on JET is assessed and the extent of the duration time of the flat top current is estimated. A data base obtained mainly on PETULA is compared with theory. Together with an optimization of LH and plasma parameters, a hybrid (OH-LH) current drive operating scenario for volt-second saving is proposed for JET. An RF-assisted ohmic heating current rises up on JET enables volt-second to be saved enough to achieve a longer plasma current flat top than could be achieved by ohmic heating alone. This plasma current, up to I p = 7MA, should last as long as the toroidal and equilibrium field allows it

  12. A Hybrid Metaheuristic-Based Approach for the Aerodynamic Optimization of Small Hybrid Wind Turbine Rotors

    DEFF Research Database (Denmark)

    Herbert-Acero, José F.; Martínez-Lauranchet, Jaime; Probst, Oliver

    2014-01-01

    of the sectional blade aerodynamics. The framework considers an innovative nested-hybrid solution procedure based on two metaheuristics, the virtual gene genetic algorithm and the simulated annealing algorithm, to provide a near-optimal solution to the problem. The objective of the study is to maximize...

  13. The Economic Potential of Two Nuclear-Renewable Hybrid Energy Systems

    Energy Technology Data Exchange (ETDEWEB)

    Ruth, Mark [National Renewable Energy Lab. (NREL), Golden, CO (United States); Cutler, Dylan [National Renewable Energy Lab. (NREL), Golden, CO (United States); Flores-Espino, Francisco [National Renewable Energy Lab. (NREL), Golden, CO (United States); Stark, Greg [National Renewable Energy Lab. (NREL), Golden, CO (United States); Jenkin, Thomas [National Renewable Energy Lab. (NREL), Golden, CO (United States); Simpkins, Travis [National Renewable Energy Lab. (NREL), Golden, CO (United States); Macknick, Jordan [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2016-08-01

    This report is one of a series of reports that investigate the technical and economic aspects of Nuclear-Renewable Hybrid Energy Systems. It provides the results of an analysis of two scenarios. The first is a Texas-synthetic gasoline scenario and the second is an Arizona-desalination scenario. The analysis focuses on the economics of the N-R HESs and how they compare to other options, including configurations without all the subsystems in each N-R HES and alternatives in which natural gas provides the energy.

  14. Event-based scenario manager for multibody dynamics simulation of heavy load lifting operations in shipyards

    Directory of Open Access Journals (Sweden)

    Sol Ha

    2016-01-01

    Full Text Available This paper suggests an event-based scenario manager capable of creating and editing a scenario for shipbuilding process simulation based on multibody dynamics. To configure various situation in shipyards and easily connect with multibody dynamics, the proposed method has two main concepts: an Actor and an Action List. The Actor represents the anatomic unit of action in the multibody dynamics and can be connected to a specific component of the dynamics kernel such as the body and joint. The user can make a scenario up by combining the actors. The Action List contains information for arranging and executing the actors. Since the shipbuilding process is a kind of event-based sequence, all simulation models were configured using Discrete EVent System Specification (DEVS formalism. The proposed method was applied to simulations of various operations in shipyards such as lifting and erection of a block and heavy load lifting operation using multiple cranes.

  15. Radiation dose evaluation based on exposure scenario during the operation of radioactive waste disposal facility

    International Nuclear Information System (INIS)

    Yoon, Jeong Hyoun; Kim Chang Lak; Choi, Heui Joo; Park, Joo Wan

    1999-01-01

    Radiation dose to worker in disposal facility was calculated by using point kernel MICROSHIELD V5.02 computer code based on exposure scenarios. An conceptual design model for disposal vaults in disposal facility was used for object of shielding calculation model. Selected radionuclides and their activities among radioactive wastes from nuclear power plants were assumed as radiation sources for the exposure calculation. Annual radiation doses to crane workers and to people working on disposal vaults were calculated according to exposure time and distance from the sources with conservative operation scenarios. The scenarios used for this study were based on assumption for representing disposal activities in a future Korean near surface disposal facility. Calculated exposure rates to worker during normal disposal work were very low comparing with annual allowable limit for radiation worker

  16. Scenario Analysis of Soil and Water Conservation in Xiejia Watershed Based on Improved CSLE Model

    Science.gov (United States)

    Liu, Jieying; Yu, Ming; Wu, Yong; Huang, Yao; Nie, Yawen

    2018-01-01

    According to the existing research results and related data, use the scenario analysis method, to evaluate the effects of different soil and water conservation measures on soil erosion in a small watershed. Based on the analysis of soil erosion scenarios and model simulation budgets in the study area, it is found that all scenarios simulated soil erosion rates are lower than the present situation of soil erosion in 2013. Soil and water conservation measures are more effective in reducing soil erosion than soil and water conservation biological measures and soil and water conservation tillage measures.

  17. Real-Time Energy Management Control for Hybrid Electric Powertrains

    Directory of Open Access Journals (Sweden)

    Mohamed Zaher

    2013-01-01

    Full Text Available This paper focuses on embedded control of a hybrid powertrain concepts for mobile vehicle applications. Optimal robust control approach is used to develop a real-time energy management strategy. The main idea is to store the normally wasted mechanical regenerative energy in energy storage devices for later usage. The regenerative energy recovery opportunity exists in any condition where the speed of motion is in the opposite direction to the applied force or torque. This is the case when the vehicle is braking, decelerating, the motion is driven by gravitational force, or load driven. There are three main concepts for energy storing devices in hybrid vehicles: electric, hydraulic, and mechanical (flywheel. The real-time control challenge is to balance the system power demands from the engine and the hybrid storage device, without depleting the energy storage device or stalling the engine in any work cycle. In the worst-case scenario, only the engine is used and the hybrid system is completely disabled. A rule-based control algorithm is developed and is tuned for different work cycles and could be linked to a gain scheduling algorithm. A gain scheduling algorithm identifies the cycle being performed by the work machine and its position via GPS and maps both of them to the gains.

  18. Microarray-based whole-genome hybridization as a tool for determining procaryotic species relatedness

    Energy Technology Data Exchange (ETDEWEB)

    Wu, L.; Liu, X.; Fields, M.W.; Thompson, D.K.; Bagwell, C.E.; Tiedje, J. M.; Hazen, T.C.; Zhou, J.

    2008-01-15

    The definition and delineation of microbial species are of great importance and challenge due to the extent of evolution and diversity. Whole-genome DNA-DNA hybridization is the cornerstone for defining procaryotic species relatedness, but obtaining pairwise DNA-DNA reassociation values for a comprehensive phylogenetic analysis of procaryotes is tedious and time consuming. A previously described microarray format containing whole-genomic DNA (the community genome array or CGA) was rigorously evaluated as a high-throughput alternative to the traditional DNA-DNA reassociation approach for delineating procaryotic species relationships. DNA similarities for multiple bacterial strains obtained with the CGA-based hybridization were comparable to those obtained with various traditional whole-genome hybridization methods (r=0.87, P<0.01). Significant linear relationships were also observed between the CGA-based genome similarities and those derived from small subunit (SSU) rRNA gene sequences (r=0.79, P<0.0001), gyrB sequences (r=0.95, P<0.0001) or REP- and BOX-PCR fingerprinting profiles (r=0.82, P<0.0001). The CGA hybridization-revealed species relationships in several representative genera, including Pseudomonas, Azoarcus and Shewanella, were largely congruent with previous classifications based on various conventional whole-genome DNA-DNA reassociation, SSU rRNA and/or gyrB analyses. These results suggest that CGA-based DNA-DNA hybridization could serve as a powerful, high-throughput format for determining species relatedness among microorganisms.

  19. Preparation and Characterization of Graphene-Based Magnetic Hybrid Nano composite

    International Nuclear Information System (INIS)

    Jashiela Wani Jusin; Madzlan Aziz

    2016-01-01

    Graphene-based magnetic hybrid nano composite has the advantage of exhibiting better performance as platform or supporting materials to develop novel properties of composite by increasing selectivity of the targeted adsorbate. The hybrid nano material was prepared by mixing and hydrolysing iron (II) and iron (III) salt precursors in the presence of GO dispersion through coprecipitation method followed by in situ chemical reduction of GO. The effect of weight loading ratio of Fe to GO (4:1, 2.5:1, 1:1 and 1:4) on structural properties of the hybrid nano materials was investigated. The presence of characteristic peaks in FTIR spectra indicated that GO has been successfully oxidized from graphite while the decrease in oxygenated functional groups and peaks intensity evidenced the formation of hybrid nano materials through the subsequent reduction process. The presence of characteristic peaks in XRD pattern denoted that magnetite nanoparticles disappeared at higher loading of GO. TEM micrograph showed that the best distribution of iron oxide particles on the surface of hybrid nano material occurred when the loading ratio of Fe to GO was fixed at 2:5 to 1. The reduced graphene oxide (RGO) sheets in the hybrid materials showed less wrinkled sheet like structure compared to GO due to exfoliation and reduction process during the synthesis. The layered morphology of GO degrades at higher concentrations of iron oxide. (author)

  20. Optimizing Decision Preparedness by Adapting Scenario Complexity and Automating Scenario Generation

    Science.gov (United States)

    Dunne, Rob; Schatz, Sae; Flore, Stephen M.; Nicholson, Denise

    2011-01-01

    Klein's recognition-primed decision (RPD) framework proposes that experts make decisions by recognizing similarities between current decision situations and previous decision experiences. Unfortunately, military personnel arQ often presented with situations that they have not experienced before. Scenario-based training (S8T) can help mitigate this gap. However, SBT remains a challenging and inefficient training approach. To address these limitations, the authors present an innovative formulation of scenario complexity that contributes to the larger research goal of developing an automated scenario generation system. This system will enable trainees to effectively advance through a variety of increasingly complex decision situations and experiences. By adapting scenario complexities and automating generation, trainees will be provided with a greater variety of appropriately calibrated training events, thus broadening their repositories of experience. Preliminary results from empirical testing (N=24) of the proof-of-concept formula are presented, and future avenues of scenario complexity research are also discussed.

  1. A Hybrid Wavelet-Based Method for the Peak Detection of Photoplethysmography Signals

    Directory of Open Access Journals (Sweden)

    Suyi Li

    2017-01-01

    Full Text Available The noninvasive peripheral oxygen saturation (SpO2 and the pulse rate can be extracted from photoplethysmography (PPG signals. However, the accuracy of the extraction is directly affected by the quality of the signal obtained and the peak of the signal identified; therefore, a hybrid wavelet-based method is proposed in this study. Firstly, we suppressed the partial motion artifacts and corrected the baseline drift by using a wavelet method based on the principle of wavelet multiresolution. And then, we designed a quadratic spline wavelet modulus maximum algorithm to identify the PPG peaks automatically. To evaluate this hybrid method, a reflective pulse oximeter was used to acquire ten subjects’ PPG signals under sitting, raising hand, and gently walking postures, and the peak recognition results on the raw signal and on the corrected signal were compared, respectively. The results showed that the hybrid method not only corrected the morphologies of the signal well but also optimized the peaks identification quality, subsequently elevating the measurement accuracy of SpO2 and the pulse rate. As a result, our hybrid wavelet-based method profoundly optimized the evaluation of respiratory function and heart rate variability analysis.

  2. A Hybrid Wavelet-Based Method for the Peak Detection of Photoplethysmography Signals.

    Science.gov (United States)

    Li, Suyi; Jiang, Shanqing; Jiang, Shan; Wu, Jiang; Xiong, Wenji; Diao, Shu

    2017-01-01

    The noninvasive peripheral oxygen saturation (SpO 2 ) and the pulse rate can be extracted from photoplethysmography (PPG) signals. However, the accuracy of the extraction is directly affected by the quality of the signal obtained and the peak of the signal identified; therefore, a hybrid wavelet-based method is proposed in this study. Firstly, we suppressed the partial motion artifacts and corrected the baseline drift by using a wavelet method based on the principle of wavelet multiresolution. And then, we designed a quadratic spline wavelet modulus maximum algorithm to identify the PPG peaks automatically. To evaluate this hybrid method, a reflective pulse oximeter was used to acquire ten subjects' PPG signals under sitting, raising hand, and gently walking postures, and the peak recognition results on the raw signal and on the corrected signal were compared, respectively. The results showed that the hybrid method not only corrected the morphologies of the signal well but also optimized the peaks identification quality, subsequently elevating the measurement accuracy of SpO 2 and the pulse rate. As a result, our hybrid wavelet-based method profoundly optimized the evaluation of respiratory function and heart rate variability analysis.

  3. A Hybrid Wavelet-Based Method for the Peak Detection of Photoplethysmography Signals

    Science.gov (United States)

    Jiang, Shanqing; Jiang, Shan; Wu, Jiang; Xiong, Wenji

    2017-01-01

    The noninvasive peripheral oxygen saturation (SpO2) and the pulse rate can be extracted from photoplethysmography (PPG) signals. However, the accuracy of the extraction is directly affected by the quality of the signal obtained and the peak of the signal identified; therefore, a hybrid wavelet-based method is proposed in this study. Firstly, we suppressed the partial motion artifacts and corrected the baseline drift by using a wavelet method based on the principle of wavelet multiresolution. And then, we designed a quadratic spline wavelet modulus maximum algorithm to identify the PPG peaks automatically. To evaluate this hybrid method, a reflective pulse oximeter was used to acquire ten subjects' PPG signals under sitting, raising hand, and gently walking postures, and the peak recognition results on the raw signal and on the corrected signal were compared, respectively. The results showed that the hybrid method not only corrected the morphologies of the signal well but also optimized the peaks identification quality, subsequently elevating the measurement accuracy of SpO2 and the pulse rate. As a result, our hybrid wavelet-based method profoundly optimized the evaluation of respiratory function and heart rate variability analysis. PMID:29250135

  4. Online energy management strategy of fuel cell hybrid electric vehicles based on data fusion approach

    Science.gov (United States)

    Zhou, Daming; Al-Durra, Ahmed; Gao, Fei; Ravey, Alexandre; Matraji, Imad; Godoy Simões, Marcelo

    2017-10-01

    Energy management strategy plays a key role for Fuel Cell Hybrid Electric Vehicles (FCHEVs), it directly affects the efficiency and performance of energy storages in FCHEVs. For example, by using a suitable energy distribution controller, the fuel cell system can be maintained in a high efficiency region and thus saving hydrogen consumption. In this paper, an energy management strategy for online driving cycles is proposed based on a combination of the parameters from three offline optimized fuzzy logic controllers using data fusion approach. The fuzzy logic controllers are respectively optimized for three typical driving scenarios: highway, suburban and city in offline. To classify patterns of online driving cycles, a Probabilistic Support Vector Machine (PSVM) is used to provide probabilistic classification results. Based on the classification results of the online driving cycle, the parameters of each offline optimized fuzzy logic controllers are then fused using Dempster-Shafer (DS) evidence theory, in order to calculate the final parameters for the online fuzzy logic controller. Three experimental validations using Hardware-In-the-Loop (HIL) platform with different-sized FCHEVs have been performed. Experimental comparison results show that, the proposed PSVM-DS based online controller can achieve a relatively stable operation and a higher efficiency of fuel cell system in real driving cycles.

  5. Scenario-based fitted Q-iteration for adaptive control of water reservoir systems under uncertainty

    Science.gov (United States)

    Bertoni, Federica; Giuliani, Matteo; Castelletti, Andrea

    2017-04-01

    Over recent years, mathematical models have largely been used to support planning and management of water resources systems. Yet, the increasing uncertainties in their inputs - due to increased variability in the hydrological regimes - are a major challenge to the optimal operations of these systems. Such uncertainty, boosted by projected changing climate, violates the stationarity principle generally used for describing hydro-meteorological processes, which assumes time persisting statistical characteristics of a given variable as inferred by historical data. As this principle is unlikely to be valid in the future, the probability density function used for modeling stochastic disturbances (e.g., inflows) becomes an additional uncertain parameter of the problem, which can be described in a deterministic and set-membership based fashion. This study contributes a novel method for designing optimal, adaptive policies for controlling water reservoir systems under climate-related uncertainty. The proposed method, called scenario-based Fitted Q-Iteration (sFQI), extends the original Fitted Q-Iteration algorithm by enlarging the state space to include the space of the uncertain system's parameters (i.e., the uncertain climate scenarios). As a result, sFQI embeds the set-membership uncertainty of the future inflow scenarios in the action-value function and is able to approximate, with a single learning process, the optimal control policy associated to any scenario included in the uncertainty set. The method is demonstrated on a synthetic water system, consisting of a regulated lake operated for ensuring reliable water supply to downstream users. Numerical results show that the sFQI algorithm successfully identifies adaptive solutions to operate the system under different inflow scenarios, which outperform the control policy designed under historical conditions. Moreover, the sFQI policy generalizes over inflow scenarios not directly experienced during the policy design

  6. Method-Based Higher Education in Sustainability: The Potential of the Scenario Method

    Directory of Open Access Journals (Sweden)

    Richard Beecroft

    2014-05-01

    Full Text Available Both sustainability and education are challenging process-oriented objectives. When the aim is to combine both notions, as in Higher Education in Sustainability (HES, it is indispensable to first establish a common ground between them. In this paper, we characterise this common ground in terms of four aspects: future orientation, normativity, global perspective, and theory engaged in practice. Based on an analysis of the common ground, one method that is well-established in a wide range of sustainability sciences shows high potential for use in HES because it covers all four aspects in detail: the scenario method. We argue that a didactical reconstruction of the scenario method is necessary to utilise its potential and develop adequate forms of teaching in higher education. The scenario method is used to construct and analyse a set of alternative future developments to support decisions that have to be made in the present. Didactical reconstruction reveals a spectrum of objectives for which the scenario method can be employed: (1 projection; (2 teleological planning and (3 an explorative search for possibilities not yet considered. By studying and experimenting with this spectrum of objectives, students in HES can develop fundamental reflexive competencies in addressing the future in different ways that are relevant for both sustainability and education.

  7. Realism in paediatric emergency simulations: A prospective comparison of in situ, low fidelity and centre-based, high fidelity scenarios.

    Science.gov (United States)

    O'Leary, Fenton; Pegiazoglou, Ioannis; McGarvey, Kathryn; Novakov, Ruza; Wolfsberger, Ingrid; Peat, Jennifer

    2018-02-01

    To measure scenario participant and faculty self-reported realism, engagement and learning for the low fidelity, in situ simulations and compare this to high fidelity, centre-based simulations. A prospective survey of scenario participants and faculty completing in situ and centre-based paediatric simulations. There were 382 responses, 276 from scenario participants and 106 from faculty with 241 responses from in situ and 141 from centre-based simulations. Scenario participant responses showed significantly higher ratings for the centre-based simulations for respiratory rate (P = 0.007), pulse (P = 0.036), breath sounds (P = 0.002), heart sounds (P realism for engagement and learning. © 2017 The Authors Emergency Medicine Australasia published by John Wiley & Sons Australia, Ltd on behalf of Australasian College for Emergency Medicine and Australasian Society for Emergency Medicine.

  8. Development of hybrid artificial intelligent based handover decision algorithm

    Directory of Open Access Journals (Sweden)

    A.M. Aibinu

    2017-04-01

    Full Text Available The possibility of seamless handover remains a mirage despite the plethora of existing handover algorithms. The underlying factor responsible for this has been traced to the Handover decision module in the Handover process. Hence, in this paper, the development of novel hybrid artificial intelligent handover decision algorithm has been developed. The developed model is made up of hybrid of Artificial Neural Network (ANN based prediction model and Fuzzy Logic. On accessing the network, the Received Signal Strength (RSS was acquired over a period of time to form a time series data. The data was then fed to the newly proposed k-step ahead ANN-based RSS prediction system for estimation of prediction model coefficients. The synaptic weights and adaptive coefficients of the trained ANN was then used to compute the k-step ahead ANN based RSS prediction model coefficients. The predicted RSS value was later codified as Fuzzy sets and in conjunction with other measured network parameters were fed into the Fuzzy logic controller in order to finalize handover decision process. The performance of the newly developed k-step ahead ANN based RSS prediction algorithm was evaluated using simulated and real data acquired from available mobile communication networks. Results obtained in both cases shows that the proposed algorithm is capable of predicting ahead the RSS value to about ±0.0002 dB. Also, the cascaded effect of the complete handover decision module was also evaluated. Results obtained show that the newly proposed hybrid approach was able to reduce ping-pong effect associated with other handover techniques.

  9. Fusion-Fission Hybrid for Fissile Fuel Production without Processing

    Energy Technology Data Exchange (ETDEWEB)

    Fratoni, M; Moir, R W; Kramer, K J; Latkowski, J F; Meier, W R; Powers, J J

    2012-01-02

    Two scenarios are typically envisioned for thorium fuel cycles: 'open' cycles based on irradiation of {sup 232}Th and fission of {sup 233}U in situ without reprocessing or 'closed' cycles based on irradiation of {sup 232}Th followed by reprocessing, and recycling of {sup 233}U either in situ or in critical fission reactors. This study evaluates a third option based on the possibility of breeding fissile material in a fusion-fission hybrid reactor and burning the same fuel in a critical reactor without any reprocessing or reconditioning. This fuel cycle requires the hybrid and the critical reactor to use the same fuel form. TRISO particles embedded in carbon pebbles were selected as the preferred form of fuel and an inertial laser fusion system featuring a subcritical blanket was combined with critical pebble bed reactors, either gas-cooled or liquid-salt-cooled. The hybrid reactor was modeled based on the earlier, hybrid version of the LLNL Laser Inertial Fusion Energy (LIFE1) system, whereas the critical reactors were modeled according to the Pebble Bed Modular Reactor (PBMR) and the Pebble Bed Advanced High Temperature Reactor (PB-AHTR) design. An extensive neutronic analysis was carried out for both the hybrid and the fission reactors in order to track the fuel composition at each stage of the fuel cycle and ultimately determine the plant support ratio, which has been defined as the ratio between the thermal power generated in fission reactors and the fusion power required to breed the fissile fuel burnt in these fission reactors. It was found that the maximum attainable plant support ratio for a thorium fuel cycle that employs neither enrichment nor reprocessing is about 2. This requires tuning the neutron energy towards high energy for breeding and towards thermal energy for burning. A high fuel loading in the pebbles allows a faster spectrum in the hybrid blanket; mixing dummy carbon pebbles with fuel pebbles enables a softer spectrum in

  10. Development of bio-hybrid material based on Salmonella ...

    African Journals Online (AJOL)

    Teodoro

    2016-07-13

    Jul 13, 2016 ... Full Length Research Paper. Development of bio-hybrid material based on. Salmonella Typhimurium and layered double hydroxides. Slah Hidouri .... the LDH with co-precipitation synthesis method was successfully done according the study given by Hidouri et al. (2011), Abdelkader et al. (2011), Hidouri et ...

  11. A Probability-Based Hybrid User Model for Recommendation System

    Directory of Open Access Journals (Sweden)

    Jia Hao

    2016-01-01

    Full Text Available With the rapid development of information communication technology, the available information or knowledge is exponentially increased, and this causes the well-known information overload phenomenon. This problem is more serious in product design corporations because over half of the valuable design time is consumed in knowledge acquisition, which highly extends the design cycle and weakens the competitiveness. Therefore, the recommender systems become very important in the domain of product domain. This research presents a probability-based hybrid user model, which is a combination of collaborative filtering and content-based filtering. This hybrid model utilizes user ratings and item topics or classes, which are available in the domain of product design, to predict the knowledge requirement. The comprehensive analysis of the experimental results shows that the proposed method gains better performance in most of the parameter settings. This work contributes a probability-based method to the community for implement recommender system when only user ratings and item topics are available.

  12. Silicon based quantum dot hybrid qubits

    Science.gov (United States)

    Kim, Dohun

    2015-03-01

    The charge and spin degrees of freedom of an electron constitute natural bases for constructing quantum two level systems, or qubits, in semiconductor quantum dots. The quantum dot charge qubit offers a simple architecture and high-speed operation, but generally suffers from fast dephasing due to strong coupling of the environment to the electron's charge. On the other hand, quantum dot spin qubits have demonstrated long coherence times, but their manipulation is often slower than desired for important future applications. This talk will present experimental progress of a `hybrid' qubit, formed by three electrons in a Si/SiGe double quantum dot, which combines desirable characteristics (speed and coherence) in the past found separately in qubits based on either charge or spin degrees of freedom. Using resonant microwaves, we first discuss qubit operations near the `sweet spot' for charge qubit operation. Along with fast (>GHz) manipulation rates for any rotation axis on the Bloch sphere, we implement two independent tomographic characterization schemes in the charge qubit regime: traditional quantum process tomography (QPT) and gate set tomography (GST). We also present resonant qubit operations of the hybrid qubit performed on the same device, DC pulsed gate operations of which were recently demonstrated. We demonstrate three-axis control and the implementation of dynamic decoupling pulse sequences. Performing QPT on the hybrid qubit, we show that AC gating yields π rotation process fidelities higher than 93% for X-axis and 96% for Z-axis rotations, which demonstrates efficient quantum control of semiconductor qubits using resonant microwaves. We discuss a path forward for achieving fidelities better than the threshold for quantum error correction using surface codes. This work was supported in part by ARO (W911NF-12-0607), NSF (PHY-1104660), DOE (DE-FG02-03ER46028), and by the Laboratory Directed Research and Development program at Sandia National Laboratories

  13. Novel route of synthesis for cellulose fiber-based hybrid polyurethane

    Science.gov (United States)

    Ikhwan, F. H.; Ilmiati, S.; Kurnia Adi, H.; Arumsari, R.; Chalid, M.

    2017-07-01

    Polyurethanes, obtained by the reaction of a diisocyanate compound with bifunctional or multifunctional reagent such as diols or polyols, have been studied intensively and well developed. The wide range modifier such as chemical structures and molecular weight to build polyurethanes led to designs of materials that may easily meet the functional product demand and to the extraordinary spreading of these materials in market. Properties of the obtained polymer are related to the chemical structure of polyurethane backbone. A number polyurethanes prepared from biomass-based monomers have been reported. Cellulose fiber, as a biomass material is containing abundant hydroxyl, promising material as chain extender for building hybrid polyurethanes. In previous researches, cellulose fiber was used as filler in synthesis of polyurethane composites. This paper reported a novel route of hybrid polyurethane synthesis, which a cellulose fiber was used as chain extender. The experiment performed by reacting 4,4’-Methylenebis (cyclohexyl isocyanate) (HMDI) and polyethylene glycol with variation of molecular weight to obtained pre-polyurethane, continued by adding micro fiber cellulose (MFC) with variation of type and composition in the mixture. The experiment was evaluated by NMR, FTIR, SEM and STA measurement. NMR and FTIR confirmed the reaction of the hybrid polyurethane. STA showed hybrid polyurethane has good thermal stability. SEM showed good distribution and dispersion of sorghum-based MFC.

  14. From scenarios to components

    NARCIS (Netherlands)

    Fahland, D.

    2010-01-01

    Scenario-based modeling has evolved as an accepted paradigm for developing complex systems of various kinds. Its main purpose is to ensure that a system provides desired behavior to its users. A scenario is generally understood as a behavioral requirement, denoting a course of actions that shall

  15. A Model-Based Approach for Bridging Virtual and Physical Sensor Nodes in a Hybrid Simulation Framework

    Directory of Open Access Journals (Sweden)

    Mohammad Mozumdar

    2014-06-01

    Full Text Available The Model Based Design (MBD approach is a popular trend to speed up application development of embedded systems, which uses high-level abstractions to capture functional requirements in an executable manner, and which automates implementation code generation. Wireless Sensor Networks (WSNs are an emerging very promising application area for embedded systems. However, there is a lack of tools in this area, which would allow an application developer to model a WSN application by using high level abstractions, simulate it mapped to a multi-node scenario for functional analysis, and finally use the refined model to automatically generate code for different WSN platforms. Motivated by this idea, in this paper we present a hybrid simulation framework that not only follows the MBD approach for WSN application development, but also interconnects a simulated sub-network with a physical sub-network and then allows one to co-simulate them, which is also known as Hardware-In-the-Loop (HIL simulation.

  16. Mind map our way into effective student questioning: A principle-based scenario

    NARCIS (Netherlands)

    Stokhof, Harry; De Vries, Bregje; Bastiaens, Theo; Martens, Rob

    2017-01-01

    Student questioning is an important self-regulative strategy and has multiple benefits for teaching and learning science. Teachers, however, need support to align student questioning to curricular goals. This study tests a prototype of a principle-based scenario that supports teachers in guiding

  17. Multi-Scenario Use Case based Demonstration of Buildings Cybersecurity Framework Webtool

    Energy Technology Data Exchange (ETDEWEB)

    Gourisetti, Sri Nikhil G.; Mylrea, Michael E.; Gervais, Easton L.; Bhadra, Sraddhanjoli

    2017-11-27

    The purpose of this paper is to demonstrate the cybersecurity and software capabilities of Buildings Cybersecurity Framework (BCF) webtool. The webtool is designed based on BCF document and existing NIST standards. It’s capabilities and features are depicted through a building usecase with four different investment scenarios geared towards improving the cybersecurity posture of the building. BCF webtool also facilitates implementation of the goals outlined in Presidential Executive Order (EO) on Strengthening the Cybersecurity of Federal Networks and Critical Infrastructure (May 2017. In realization of the EO goals, BCF includes five core elements: Identify, Protect, Detect, Respond, and Recover, to help determine various policy and process level vulnerabilities and provide mitigation strategies. With the BCF webtool, an organization can perform a cybersecurity self-assessment; determine the current cybersecurity posture; define investment based goals to achieve a target state; connect the cybersecurity posture with business processes, functions, and continuity; and finally, develop plans to answer critical organizational cybersecurity questions. In this paper, the webtool and its core capabilities are depicted by performing an extensive comparative assessment over four different scenarios.

  18. Small-scale hybrid plant integrated with municipal energy supply system

    International Nuclear Information System (INIS)

    Bakken, B.H.; Fossum, M.; Belsnes, M.M.

    2001-01-01

    This paper describes a research program started in 2001 to optimize environmental impact and cost of a small-scale hybrid plant based on candidate resources, transportation technologies and conversion efficiency, including integration with existing energy distribution systems. Special attention is given to a novel hybrid energy concept fuelled by municipal solid waste. The commercial interest for the model is expected to be more pronounced in remote communities and villages, including communities subject to growing prosperity. To enable optimization of complex energy distribution systems with multiple energy sources and carriers a flexible and robust methodology must be developed. This will enable energy companies and consultants to carry out comprehensive feasibility studies prior to investment, including technological, economic and environmental aspects. Governmental and municipal bodies will be able to pursue scenario studies involving energy systems and their impact on the environment, and measure the consequences of possible regulation regimes on environmental questions. This paper describes the hybrid concept for conversion of municipal solid waste in terms of energy supply, as well as the methodology for optimizing such integrated energy systems. (author)

  19. Hybrid reactors: Nuclear breeding or energy production?

    International Nuclear Information System (INIS)

    Piera, Mireia; Lafuente, Antonio; Abanades, Alberto; Martinez-Val, J.M.

    2010-01-01

    After reviewing the long-standing tradition on hybrid research, an assessment model is presented in order to characterize the hybrid performance under different objectives. In hybrids, neutron multiplication in the subcritical blanket plays a major role, not only for energy production and nuclear breeding, but also for tritium breeding, which is fundamental requirement in fusion-fission hybrids. All three objectives are better achieved with high values of the neutron multiplication factor (k-eff) with the obvious and fundamental limitation that it cannot reach criticality under any event, particularly, in the case of a loss of coolant accident. This limitation will be very important in the selection of the coolant. Some general considerations will be proposed, as guidelines for assessing the hybrid potential in a given scenario. Those guidelines point out that hybrids can be of great interest for the future of nuclear energy in a framework of Sustainable Development, because they can contribute to the efficient exploitation of nuclear fuels, with very high safety features. Additionally, a proposal is presented on a blanket specially suited for fusion-fission hybrids, although this reactor concept is still under review, and new work is needed for identifying the most suitable blanket composition, which can vary depending on the main objective of the hybrid.

  20. De-optical-line-terminal hybrid access-aggregation optical network for time-sensitive services based on software-defined networking orchestration

    Science.gov (United States)

    Bai, Wei; Yang, Hui; Xiao, Hongyun; Yu, Ao; He, Linkuan; Zhang, Jie; Li, Zhen; Du, Yi

    2017-11-01

    With the increase in varieties of services in network, time-sensitive services (TSSs) appear and bring forward an impending need for delay performance. Ultralow-latency communication has become one of the important development goals for many scenarios in the coming 5G era (e.g., robotics and driverless cars). However, the conventional methods, which decrease delay by promoting the available resources and the network transmission speed, have limited effect; a new breakthrough for ultralow-latency communication is necessary. We propose a de-optical-line-terminal (De-OLT) hybrid access-aggregation optical network (DAON) for TSS based on software-defined networking (SDN) orchestration. In this network, low-latency all-optical communication based on optical burst switching can be achieved by removing OLT. For supporting this network and guaranteeing the quality of service for TSSs, we design SDN-driven control method and service provision method. Numerical results demonstrate the proposed DAON promotes network service efficiency and avoids traffic congestion.

  1. Sneutrino Hybrid Inflation

    International Nuclear Information System (INIS)

    Antusch, Stefan

    2006-01-01

    We review the scenario of sneutrino hybrid inflation, where one of the singlet sneutrinos, the superpartners of the right-handed neutrinos, plays the role of the inflaton. In a minimal model of sneutrino hybrid inflation, the spectral index is given by ns ≅ 1 + 2γ. With γ = 0.025 ± 0.01 constrained by WMAP, a running spectral index vertical bar dns/dlnk vertical bar << vertical barγvertical bar and a tensor-to-scalar ratio r << γ2 are predicted. Small neutrino masses arise from the seesaw mechanism, with heavy masses for the singlet (s)neutrinos generated by the vacuum expectation value of the waterfall field after inflation. The baryon asymmetry of the universe can be explained by non-thermal leptogenesis via sneutrino inflaton decay, with low reheat temperature TRH ≅ 106 GeV

  2. Applying hybridity: rhythms of the Hajj, Tumblr, and Snowden.

    Directory of Open Access Journals (Sweden)

    Paul O'Connor

    2013-12-01

    Full Text Available Hybridity has long been a contested term, critiqued as elitist and contradictory. This paper begins by arguing that hybridity has been debated too often and applied too seldom. It takes the premise that hybridity is an everyday fact of life and accordingly it should be articulated in academic works as a mode of analysis. In acknowledging works that call for the utilization of hybridity’s analytical potential this work applies hybridity to the analysis of three disparate topics, the modern pilgrimage to Mecca or hajj, the social networking and blogging platform Tumblr, and the Edward Snowden affair. Hybridity is contrasted with Lefebvre’s rhythmanalysis and applied as a conjoined conceptual focus on these issues. In each scenario a variety of hybrid connections are presented and situated in Bauman’s liquid modernity. These representations of hybridity highlight the manifold dimensions of the concept itself, that it can be superficial, political, celebrated, progressive, and mundane. Rather than dismiss the conceptual complexities of hybridity this paper calls for a harnessing of the broad scope of inference that hybridity presents in application. Working with hybridity thus provides a way to link topics and work organically between multiple disciplines.

  3. Hybrid LSA-ANN Based Home Energy Management Scheduling Controller for Residential Demand Response Strategy

    Directory of Open Access Journals (Sweden)

    Maytham S. Ahmed

    2016-09-01

    Full Text Available Demand response (DR program can shift peak time load to off-peak time, thereby reducing greenhouse gas emissions and allowing energy conservation. In this study, the home energy management scheduling controller of the residential DR strategy is proposed using the hybrid lightning search algorithm (LSA-based artificial neural network (ANN to predict the optimal ON/OFF status for home appliances. Consequently, the scheduled operation of several appliances is improved in terms of cost savings. In the proposed approach, a set of the most common residential appliances are modeled, and their activation is controlled by the hybrid LSA-ANN based home energy management scheduling controller. Four appliances, namely, air conditioner, water heater, refrigerator, and washing machine (WM, are developed by Matlab/Simulink according to customer preferences and priority of appliances. The ANN controller has to be tuned properly using suitable learning rate value and number of nodes in the hidden layers to schedule the appliances optimally. Given that finding proper ANN tuning parameters is difficult, the LSA optimization is hybridized with ANN to improve the ANN performances by selecting the optimum values of neurons in each hidden layer and learning rate. Therefore, the ON/OFF estimation accuracy by ANN can be improved. Results of the hybrid LSA-ANN are compared with those of hybrid particle swarm optimization (PSO based ANN to validate the developed algorithm. Results show that the hybrid LSA-ANN outperforms the hybrid PSO based ANN. The proposed scheduling algorithm can significantly reduce the peak-hour energy consumption during the DR event by up to 9.7138% considering four appliances per 7-h period.

  4. Hybrid Dark Matter

    OpenAIRE

    Chao, Wei

    2018-01-01

    Dark matter can be produced in the early universe via the freeze-in or freeze-out mechanisms. Both scenarios were investigated in references, but the production of dark matters via the combination of these two mechanisms are not addressed. In this paper we propose a hybrid dark matter model where dark matters have two components with one component produced thermally and the other one produced non-thermally. We present for the first time the analytical calculation for the relic abundance of th...

  5. A lifestyle-based scenario for US buildings: implications for energy use

    International Nuclear Information System (INIS)

    Diamond, Rick

    2003-01-01

    Can lifestyle-based scenarios provide insight into the nature of energy use in our future buildings? Participants in a design charrette brainstormed ideas about the future of US homes and workplaces. The teams started from several descriptions of daily lifestyles, and developed specific building characteristics as the place settings for these narratives. In addition to characterizing the physical environment, the teams also identified the forces that would be influential in making these changes. Further reflection was made on the possible unintended consequences of these changes. The energy implications of these changes were characterized with respect to magnitude and direction. While acknowledging the speculative nature of the exercise, the rationale was to broaden the discussion on future energy use by looking at future scenarios in the context of everyday life

  6. Performance Analysis of ZigBee Wireless Networks for AAL through Hybrid Ray Launching and Collaborative Filtering

    Directory of Open Access Journals (Sweden)

    Peio Lopez-Iturri

    2016-01-01

    Full Text Available This paper presents a novel hybrid simulation method based on the combination of an in-house developed 3D ray launching algorithm and a collaborative filtering (CF technique, which will be used to analyze the performance of ZigBee-based wireless sensor networks (WSNs to enable ambient assisted living (AAL. The combination of Low Definition results obtained by means of a deterministic ray launching method and the application of a CF technique leads to a drastic reduction of the time and computational cost required to obtain accurate simulation results. The paper also reports that this kind of AAL indoor complex scenario with multiple wireless devices needs a thorough and personalized radioplanning analysis as radiopropagation has a strong dependence on the network topology and the specific morphology of the scenario. The wireless channel analysis performed by our hybrid method provides valuable insight into network design phases of complex wireless systems, typical in AAL-oriented environments. Thus, it results in optimizing network deployment, reducing overall interference levels, and increasing the overall system performance in terms of cost reduction, transmission rates, and energy efficiency.

  7. Assessing the Formation of Experience-Based Gender Expectations in an Implicit Learning Scenario

    Directory of Open Access Journals (Sweden)

    Anton Öttl

    2017-09-01

    Full Text Available The present study investigates the formation of new word-referent associations in an implicit learning scenario, using a gender-coded artificial language with spoken words and visual referents. Previous research has shown that when participants are explicitly instructed about the gender-coding system underlying an artificial lexicon, they monitor the frequency of exposure to male vs. female referents within this lexicon, and subsequently use this probabilistic information to predict the gender of an upcoming referent. In an explicit learning scenario, the auditory and visual gender cues are necessarily highlighted prior to acqusition, and the effects previously observed may therefore depend on participants' overt awareness of these cues. To assess whether the formation of experience-based expectations is dependent on explicit awareness of the underlying coding system, we present data from an experiment in which gender-coding was acquired implicitly, thereby reducing the likelihood that visual and auditory gender cues are used strategically during acquisition. Results show that even if the gender coding system was not perfectly mastered (as reflected in the number of gender coding errors, participants develop frequency based expectations comparable to those previously observed in an explicit learning scenario. In line with previous findings, participants are quicker at recognizing a referent whose gender is consistent with an induced expectation than one whose gender is inconsistent with an induced expectation. At the same time however, eyetracking data suggest that these expectations may surface earlier in an implicit learning scenario. These findings suggest that experience-based expectations are robust against manner of acquisition, and contribute to understanding why similar expectations observed in the activation of stereotypes during the processing of natural language stimuli are difficult or impossible to suppress.

  8. [Scenario analysis on sustainable development of Sino-Singapore Tianjin Eco-city based on emergy and system dynamics].

    Science.gov (United States)

    Li, Chun-fa; Cao, Ying-ying; Yang, Jian-cho; Yang, Qi-qi

    2015-08-01

    Dynamic evaluation of sustainable development is one of the key fundamental parts of the success of Sino-Singapore Tianjin Eco-city, which is the first eco-city in China constructed by international cooperation. Based on the analysis of nature and economy, function and structure, planning control indices and so on, we constructed a sustainable development evaluation index system and a system dynamics model of Sino-Singapore Tianjin Eco-city to explore dynamic trends of its population, material and currency by comprehensive utilization of emergy analysis and system dynamics method. Five scenarios were set up and simulated, including inertial scenario, scientific and technological scenario, economic scenario, environmental scenario and harmonious development scenario. Then, the sustainability of the 5 scenarios was evaluated and compared. The results showed that in the economy and environment sustainable development scenario, there was a steady growth trend of GDP, accumulation of both emergy and currency, and relatively lower values in emergy waste ratio, emergy ratio of waste, and emergy loading ratio. Although both sustainable evaluation indices, such as ESI and UEI, were relatively low, the economy and environment sustainable development scenario was still the best development scenario which was more active than others.

  9. A structured process to develop scenarios for use in evaluation of an evidence-based approach in clinical decision making

    Directory of Open Access Journals (Sweden)

    Manns PJ

    2012-11-01

    Full Text Available Patricia J Manns, Johanna DarrahDepartment of Physical Therapy, Faculty of Rehabilitation Medicine, University of Alberta, Edmonton, CanadaBackground and purpose: Scenarios are used as the basis from which to evaluate the use of the components of evidence-based practice in decision making, yet there are few examples of a standardized process of scenario writing. The aim of this paper is to describe a step-by-step scenario writing method used in the context of the authors’ curriculum research study.Methods: Scenario writing teams included one physical therapy clinician and one academic staff member. There were four steps in the scenario development process: (1 identify prevalent condition and brainstorm interventions; (2 literature search; (3 develop scenario framework; and (4 write scenario.Results: Scenarios focused only on interventions, not diagnostic or prognostic problems. The process led to two types of scenarios – ones that provided an intervention with strong research evidence and others where the intervention had weak evidence to support its use. The end product of the process was a scenario that incorporates aspects of evidence-based decision making and can be used as the basis for evaluation.Conclusion: The use of scenarios has been very helpful to capture therapists’ reasoning processes. The scenario development process was applied in an education context as part of a final evaluation of graduating clinical physical therapy students.Keywords: physical therapists, clinical decision making, evaluation, curriculum

  10. Application of risk-based multiple criteria decision analysis for selection of the best agricultural scenario for effective watershed management.

    Science.gov (United States)

    Javidi Sabbaghian, Reza; Zarghami, Mahdi; Nejadhashemi, A Pouyan; Sharifi, Mohammad Bagher; Herman, Matthew R; Daneshvar, Fariborz

    2016-03-01

    Effective watershed management requires the evaluation of agricultural best management practice (BMP) scenarios which carefully consider the relevant environmental, economic, and social criteria involved. In the Multiple Criteria Decision-Making (MCDM) process, scenarios are first evaluated and then ranked to determine the most desirable outcome for the particular watershed. The main challenge of this process is the accurate identification of the best solution for the watershed in question, despite the various risk attitudes presented by the associated decision-makers (DMs). This paper introduces a novel approach for implementation of the MCDM process based on a comparative neutral risk/risk-based decision analysis, which results in the selection of the most desirable scenario for use in the entire watershed. At the sub-basin level, each scenario includes multiple BMPs with scores that have been calculated using the criteria derived from two cases of neutral risk and risk-based decision-making. The simple additive weighting (SAW) operator is applied for use in neutral risk decision-making, while the ordered weighted averaging (OWA) and induced OWA (IOWA) operators are effective for risk-based decision-making. At the watershed level, the BMP scores of the sub-basins are aggregated to calculate each scenarios' combined goodness measurements; the most desirable scenario for the entire watershed is then selected based on the combined goodness measurements. Our final results illustrate the type of operator and risk attitudes needed to satisfy the relevant criteria within the number of sub-basins, and how they ultimately affect the final ranking of the given scenarios. The methodology proposed here has been successfully applied to the Honeyoey Creek-Pine Creek watershed in Michigan, USA to evaluate various BMP scenarios and determine the best solution for both the stakeholders and the overall stream health. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Analysis of fixed tilt and sun tracking photovoltaic–micro wind based hybrid power systems

    International Nuclear Information System (INIS)

    Sinha, Sunanda; Chandel, S.S.

    2016-01-01

    Graphical abstract: 6 kW_p photovoltaic–micro wind based hybrid power system analysis in a Indian Western Himalayan location. - Highlights: • Power generation by a roof mounted photovoltaic–micro wind hybrid system is explored. • Optimum hybrid configurations using fixed and sun tracking photovoltaic systems are determined. • Analysis of hybrid systems with optimally tilted and different sun tracking systems is presented. • Two axis sun tracking systems are found to generate 4.88–26.29% more energy than fixed tilt system. • Hybrid system installed at optimum tilt angle is found to be cost effective than a sun tracking system. - Abstract: In this study fixed tilt and sun tracking photovoltaic based micro wind hybrid power systems are analyzed along with determining the optimum configurations for a 6 kW_p roof mounted micro wind based hybrid system using fixed and tracking photovoltaic systems to enhance the power generation potential in a low windy Indian hilly terrain with good solar resource. The main objective of the study is to enhance power generation by focusing on photovoltaic component of the hybrid system. A comparative power generation analysis of different configurations of hybrid systems with fixed tilt, monthly optimum tilt, yearly optimum tilt and 6 different sun tracking photovoltaic systems is carried out using Hybrid Optimization Model for Electric Renewables. Monthly and seasonal optimum tilt angles determined for the location vary between 0° and 60° with annual optimum tilt angle as 29.25°. The optimum configurations for all sun tracking systems except for the two axis tracking system is found to be 7 kW_p photovoltaic system, one 5 kW_p wind turbine, 10 batteries and a 2 kW_p inverter. The optimum configuration for two axis tracking system and two types of fixed tilt systems, is found to be a 8 kW_p photovoltaic system, one 5 kW_p wind turbine, 10 batteries and a 2 kW_p inverter. The results show that horizontal axis with

  12. A White Paper on Global Wheat Health Based on Scenario Development and Analysis.

    Science.gov (United States)

    Savary, S; Djurle, A; Yuen, J; Ficke, A; Rossi, V; Esker, P D; Fernandes, J M C; Del Ponte, E M; Kumar, J; Madden, L V; Paul, P; McRoberts, N; Singh, P K; Huber, L; Pope de Vallavielle, C; Saint-Jean, S; Willocquet, L

    2017-10-01

    Scenario analysis constitutes a useful approach to synthesize knowledge and derive hypotheses in the case of complex systems that are documented with mainly qualitative or very diverse information. In this article, a framework for scenario analysis is designed and then, applied to global wheat health within a timeframe from today to 2050. Scenario analysis entails the choice of settings, the definition of scenarios of change, and the analysis of outcomes of these scenarios in the chosen settings. Three idealized agrosystems, representing a large fraction of the global diversity of wheat-based agrosystems, are considered, which represent the settings of the analysis. Several components of global changes are considered in their consequences on global wheat health: climate change and climate variability, nitrogen fertilizer use, tillage, crop rotation, pesticide use, and the deployment of host plant resistances. Each idealized agrosystem is associated with a scenario of change that considers first, a production situation and its dynamics, and second, the impacts of the evolving production situation on the evolution of crop health. Crop health is represented by six functional groups of wheat pathogens: the pathogens associated with Fusarium head blight; biotrophic fungi, Septoria-like fungi, necrotrophic fungi, soilborne pathogens, and insect-transmitted viruses. The analysis of scenario outcomes is conducted along a risk-analytical pattern, which involves risk probabilities represented by categorized probability levels of disease epidemics, and risk magnitudes represented by categorized levels of crop losses resulting from these levels of epidemics within each production situation. The results from this scenario analysis suggest an overall increase of risk probabilities and magnitudes in the three idealized agrosystems. Changes in risk probability or magnitude however vary with the agrosystem and the functional groups of pathogens. We discuss the effects of global

  13. Experimental analysis of SiC-based refractory concrete in hybrid rocket nozzles

    Science.gov (United States)

    D'Elia, Raffaele; Bernhart, Gérard; Hijlkema, Jouke; Cutard, Thierry

    2016-09-01

    Hybrid propulsion represents a good alternative to the more widely used liquid and solid systems. This technology combines some important specifications of the latters, as the possibility of re-ignition, thrust modulation, a higher specific impulse than solid systems, a greater simplicity and a lower cost than liquid systems. Nevertheless the highly oxidizing environment represents a major problem as regards the thermo-oxidation and ablative behavior of nozzle materials. The main goal of this research is to characterize a silicon carbide based micro-concrete with a maximum aggregates size of 800 μm, in a hybrid propulsion environment. The nozzle throat has to resist to a highly oxidizing polyethylene/nitrous oxide hybrid environment, under temperatures up to 2900 K. Three tests were performed on concrete-based nozzles in HERA Hybrid Rocket Motor (HRM) test bench at ONERA. Pressure chamber evolution and observations before and after tests are used to investigate the ablated surface at nozzle throat. Ablation behavior and crack generation are discussed and some improvements are proposed.

  14. Three hybridization models based on local search scheme for job shop scheduling problem

    Science.gov (United States)

    Balbi Fraga, Tatiana

    2015-05-01

    This work presents three different hybridization models based on the general schema of Local Search Heuristics, named Hybrid Successive Application, Hybrid Neighborhood, and Hybrid Improved Neighborhood. Despite similar approaches might have already been presented in the literature in other contexts, in this work these models are applied to analyzes the solution of the job shop scheduling problem, with the heuristics Taboo Search and Particle Swarm Optimization. Besides, we investigate some aspects that must be considered in order to achieve better solutions than those obtained by the original heuristics. The results demonstrate that the algorithms derived from these three hybrid models are more robust than the original algorithms and able to get better results than those found by the single Taboo Search.

  15. Novel acid-base hybrid membrane based on amine-functionalized reduced graphene oxide and sulfonated polyimide for vanadium redox flow battery

    International Nuclear Information System (INIS)

    Cao, Li; Sun, Qingqing; Gao, Yahui; Liu, Luntao; Shi, Haifeng

    2015-01-01

    A series of novel acid-base hybrid membranes (SPI/PEI-rGO) based on sulfonated polyimide (SPI) with polyethyleneimine-functionalized reduced graphene oxide (PEI-rGO) are prepared by a solution-casting method for vanadium redox flow battery (VRB). FT-IR and XPS results prove the successful fabrication of PEI-rGO and SPI/PEI-rGO hybrid membranes, which show a dense and homogeneous structure observed by SEM. The physicochemical properties such as water uptake, swelling ratio, ion exchange capacity, proton conductivity and vanadium ion permeability are well controlled by the incorporated PEI-rGO fillers. The interfacial-formed acid-base pairs between PEI-rGO and SPI matrix effectively reduce the swelling ratio and vanadium ion permeability, increasing the stability performance of the hybrid membranes. SPI/PEI-rGO-2 hybrid membrane exhibits a higher coulombic efficiency (CE, 95%) and energy efficiency (EE, 75.6%) at 40 mA cm −2 , as compared with Nafion 117 membrane (CE, 91% and EE, 66.8%). The self-discharge time of the VRB with SPI/PEI-rGO-2 hybrid membrane (80 h) is longer than that of Nafion 117 membrane (26 h), demonstrating the excellent blocking ability for vanadium ion. After 100 charge-discharge cycles, SPI/PEI-rGO-2 membrane exhibits the good stability under strong oxidizing and acid condition, proving that SPI/PEI-rGO acid-base hybrid membranes could be used as the promising candidates for VRB applications

  16. Hybrid statistics-simulations based method for atom-counting from ADF STEM images.

    Science.gov (United States)

    De Wael, Annelies; De Backer, Annick; Jones, Lewys; Nellist, Peter D; Van Aert, Sandra

    2017-06-01

    A hybrid statistics-simulations based method for atom-counting from annular dark field scanning transmission electron microscopy (ADF STEM) images of monotype crystalline nanostructures is presented. Different atom-counting methods already exist for model-like systems. However, the increasing relevance of radiation damage in the study of nanostructures demands a method that allows atom-counting from low dose images with a low signal-to-noise ratio. Therefore, the hybrid method directly includes prior knowledge from image simulations into the existing statistics-based method for atom-counting, and accounts in this manner for possible discrepancies between actual and simulated experimental conditions. It is shown by means of simulations and experiments that this hybrid method outperforms the statistics-based method, especially for low electron doses and small nanoparticles. The analysis of a simulated low dose image of a small nanoparticle suggests that this method allows for far more reliable quantitative analysis of beam-sensitive materials. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Cost Effectiveness Analysis of Quasi-In-Motion Wireless Power Transfer for Plug-In Hybrid Electric Transit Buses from Fleet Perspective

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Lijuan; Gonder, Jeff; Brooker, Aaron; Meintz, Andrew; Konan, Arnaud; Markel, Tony

    2016-05-16

    This study evaluated the costs and benefits associated with the use of stationary-wireless-power-transfer-enabled plug-in hybrid electric buses and determined the cost effectiveness relative to conventional buses and hybrid electric buses. A factorial design was performed over a number of different battery sizes, charging power levels, and f bus stop charging stations. The net present costs were calculated for each vehicle design and provided the basis for design evaluation. In all cases, given the assumed economic conditions, the conventional bus achieved the lowest net present cost while the optimal plug-in hybrid electric bus scenario beat out the hybrid electric comparison scenario. The parameter sensitivity was also investigated under favorable and unfavorable market penetration assumptions.

  18. Two new inorganic-organic hybrid materials based on inorganic ...

    Indian Academy of Sciences (India)

    fields such as catalysis, pharmacology, medicine, nan- otechnology, and molecular ... such POM-based hybrid materials: (a) organic ligands graft onto POMs directly; .... average value of 6.028, close to the ideal value of 6 for MoVI. The bond ...

  19. Hybrid resonance and long-time asymptotic of the solution to Maxwell's equations

    Energy Technology Data Exchange (ETDEWEB)

    Després, Bruno, E-mail: despres@ann.jussieu.fr [Laboratory Jacques Louis Lions, University Pierre et Marie Curie, Paris VI, Boîte courrier 187, 75252 Paris Cedex 05 (France); Weder, Ricardo, E-mail: weder@unam.mx [Departamento de Física Matemática, Instituto de Investigaciones en Matemáticas Aplicadas y en Sistemas, Universidad Nacional Autónoma de México, Apartado Postal 20-126, DF 01000 (Mexico)

    2016-03-22

    We study the long-time asymptotic of the solutions to Maxwell's equation in the case of an upper-hybrid resonance in the cold plasma model. We base our analysis in the transfer to the time domain of the recent results of B. Després, L.M. Imbert-Gérard and R. Weder (2014) [15], where the singular solutions to Maxwell's equations in the frequency domain were constructed by means of a limiting absorption principle and a formula for the heating of the plasma in the limit of vanishing collision frequency was obtained. Currently there is considerable interest in these problems, in particular, because upper-hybrid resonances are a possible scenario for the heating of plasmas, and since they can be a model for the diagnostics involving wave scattering in plasmas. - Highlights: • The upper-hybrid resonance in the cold plasma model is considered. • The long-time asymptotic of the solutions to Maxwell's equations is studied. • A method based in a singular limiting absorption principle is proposed.

  20. Real Time Energy Management Control Strategies for Hybrid Powertrains

    Science.gov (United States)

    Zaher, Mohamed Hegazi Mohamed

    In order to improve fuel efficiency and reduce emissions of mobile vehicles, various hybrid power-train concepts have been developed over the years. This thesis focuses on embedded control of hybrid powertrain concepts for mobile vehicle applications. Optimal robust control approach is used to develop a real time energy management strategy for continuous operations. The main idea is to store the normally wasted mechanical regenerative energy in energy storage devices for later usage. The regenerative energy recovery opportunity exists in any condition where the speed of motion is in opposite direction to the applied force or torque. This is the case when the vehicle is braking, decelerating, or the motion is driven by gravitational force, or load driven. There are three main concepts for regernerative energy storing devices in hybrid vehicles: electric, hydraulic, and flywheel. The real time control challenge is to balance the system power demand from the engine and the hybrid storage device, without depleting the energy storage device or stalling the engine in any work cycle, while making optimal use of the energy saving opportunities in a given operational, often repetitive cycle. In the worst case scenario, only engine is used and hybrid system completely disabled. A rule based control is developed and tuned for different work cycles and linked to a gain scheduling algorithm. A gain scheduling algorithm identifies the cycle being performed by the machine and its position via GPS, and maps them to the gains.

  1. Biaxially stretchable supercapacitors based on the buckled hybrid fiber electrode array

    Science.gov (United States)

    Zhang, Nan; Zhou, Weiya; Zhang, Qiang; Luan, Pingshan; Cai, Le; Yang, Feng; Zhang, Xiao; Fan, Qingxia; Zhou, Wenbin; Xiao, Zhuojian; Gu, Xiaogang; Chen, Huiliang; Li, Kewei; Xiao, Shiqi; Wang, Yanchun; Liu, Huaping; Xie, Sishen

    2015-07-01

    In order to meet the growing need for smart bionic devices and epidermal electronic systems, biaxial stretchability is essential for energy storage units. Based on porous single-walled carbon nanotube/poly(3,4-ethylenedioxythiophene) (SWCNT/PEDOT) hybrid fiber, we designed and fabricated a biaxially stretchable supercapacitor, which possesses a unique configuration of the parallel buckled hybrid fiber array. Owing to the reticulate SWCNT film and the improved fabrication technique, the hybrid fiber retained its porous architecture both outwardly and inwardly, manifesting a superior capacity of 215 F g-1. H3PO4-polyvinyl alcohol gel with an optimized component ratio was introduced as both binder and stretchable electrolyte, which contributed to the regularity and stability of the buckled fiber array. The buckled structure and the quasi one-dimensional character of the fibers endow the supercapacitor with 100% stretchability along all directions. In addition, the supercapacitor exhibited good transparency, as well as excellent electrochemical properties and stability after being stretched 5000 times.In order to meet the growing need for smart bionic devices and epidermal electronic systems, biaxial stretchability is essential for energy storage units. Based on porous single-walled carbon nanotube/poly(3,4-ethylenedioxythiophene) (SWCNT/PEDOT) hybrid fiber, we designed and fabricated a biaxially stretchable supercapacitor, which possesses a unique configuration of the parallel buckled hybrid fiber array. Owing to the reticulate SWCNT film and the improved fabrication technique, the hybrid fiber retained its porous architecture both outwardly and inwardly, manifesting a superior capacity of 215 F g-1. H3PO4-polyvinyl alcohol gel with an optimized component ratio was introduced as both binder and stretchable electrolyte, which contributed to the regularity and stability of the buckled fiber array. The buckled structure and the quasi one-dimensional character of the

  2. Analyses of the use of natural gas in solar power plants (CSP) hybridization in the Sao Francisco Basin (BA); Analise do uso de gas natural na hibridizacao de plantas termosolares (CSP) na Bacia do Sao Francisco (BA)

    Energy Technology Data Exchange (ETDEWEB)

    Malagueta, Diego Cunha; Penafiel, Rafael Andres Soria; Szklo, Alexandre Salem; Dutra, Ricardo M.; Schaeffer, Roberto [Coordenacao dos Programas de Pos-Graduacao de Engenharia (COPPE/UFRJ), RJ (Brazil)

    2012-07-01

    This study assessed the feasibility of Concentrated Solar Power plants (CSP) in Northeast, Brazil. It focused on parabolic trough solar power plants, which is the most mature CSP technology; and evaluated plants rated at 100 MWe, dry cooling systems (due to the low water availability in Northeast), and with and without hybridization based on natural gas (degree of hybridization varying from 25 to 75%). Hence, the capacity factor of the simulated plants hovered between 23 and 98%, according to the degree of hybridization and the choice of the thermodynamic cycle of the natural gas fueled thermal system: Rankine or combined cycle. The CSP plants were simulated at Bom Jesus da Lapa, in the semi-arid region of Bahia. Given the prospects for natural gas resources in the Sao Francisco Basin, different scenarios for the gas prices were tested. Moreover, two scenarios were tested for the cost of the CSP plants, one based on the current financial environment and the other based on incentive policies, such as fiscal incentives and loans. Findings show that while simple plants levelized costs (LCOE) hovered around 520 R$/MWh, for hybrid plants LCOE may reach 140 to 190 R$/MWh. Therefore, this study proposed incentive policies to promote the increasing investment in hybrid CSP plants. (author)

  3. Hybrid Force Control Based on ICMAC for an Astronaut Rehabilitative Training Robot

    Directory of Open Access Journals (Sweden)

    Lixun Zhang

    2012-08-01

    Full Text Available A novel Astronaut Rehabilitative Training Robot (ART based on a cable-driven mechanism is represented in this paper. ART, a typical passive force servo system, can help astronauts to bench press in a microgravity environment. The purpose of this paper is to design controllers to eliminate the surplus force caused by an astronaut's active movements. Based on the dynamics modelling of the cable-driven unit, a hybrid force controller based on improved credit assignment CMAC (ICMAC is presented. A planning method for the cable tension is proposed so that the dynamic load produced by the ART can realistically simulate the gravity and inertial force of the barbell in a gravity environment. Finally, MATLAB simulation results of the man-machine cooperation system are provided in order to verify the effectiveness of the proposed control strategy. The simulation results show that the hybrid control method based on the structure invariance principle can inhibit the surplus force and that ICMAC can improve the dynamic performance of the passive force servo system. Furthermore, the hybrid force controller based on ICMAC can ensure the stability of the system.

  4. Fuzzy Shannon Entropy: A Hybrid GIS-Based Landslide Susceptibility Mapping Method

    Directory of Open Access Journals (Sweden)

    Majid Shadman Roodposhti

    2016-09-01

    Full Text Available Assessing Landslide Susceptibility Mapping (LSM contributes to reducing the risk of living with landslides. Handling the vagueness associated with LSM is a challenging task. Here we show the application of hybrid GIS-based LSM. The hybrid approach embraces fuzzy membership functions (FMFs in combination with Shannon entropy, a well-known information theory-based method. Nine landslide-related criteria, along with an inventory of landslides containing 108 recent and historic landslide points, are used to prepare a susceptibility map. A random split into training (≈70% and testing (≈30% samples are used for training and validation of the LSM model. The study area—Izeh—is located in the Khuzestan province of Iran, a highly susceptible landslide zone. The performance of the hybrid method is evaluated using receiver operating characteristics (ROC curves in combination with area under the curve (AUC. The performance of the proposed hybrid method with AUC of 0.934 is superior to multi-criteria evaluation approaches using a subjective scheme in this research in comparison with a previous study using the same dataset through extended fuzzy multi-criteria evaluation with AUC value of 0.894, and was built on the basis of decision makers’ evaluation in the same study area.

  5. Optimal Power Flow Modelling and Analysis of Hybrid AC-DC Grids with Offshore Wind Power Plant

    DEFF Research Database (Denmark)

    Dhua, Debasish; Huang, Shaojun; Wu, Qiuwei

    2017-01-01

    In order to develop renewables based energy systems, the installation of the offshore wind power plants (WPPs) is globally encouraged. However, wind power generation is intermittent and uncertain. An accurate modelling and evaluation reduces investment and provide better operation. Hence......, the wind power production level also plays a major role in a hybrid system on transmission loss evaluation. The developed model is tested in Low, Medium and High wind power production levels to determine the objective function of the OPF solution. MATLAB Optimization Toolbox and MATLAB script are used......, it is essential to develop a suitable model and apply optimization algorithms for different application scenarios. The objective of this work is to develop a generalized model and evaluate the Optimal Power Flow (OPF) solutions in a hybrid AC/DC system including HVDC (LCC based) and offshore WPP (VSC based...

  6. Time-dependent plug-in hybrid electric vehicle charging based on national driving patterns and demographics

    International Nuclear Information System (INIS)

    Kelly, Jarod C.; MacDonald, Jason S.; Keoleian, Gregory A.

    2012-01-01

    Highlights: ► Analyzed National Household Travel Survey to simulate driving and charging patterns. ► Average compact PHEVs used 49 kW h of electricity and 6.8 L of gasoline per week. ► Percent of electrically driven miles increased from 64.3 in 2001 to 66.7 in 2009. ► Investigated demographic effects of sex, age, income, and household location. ► Analysis shows higher utility factors for females versus males and high age variation. -- Abstract: Plug-in hybrid electric vehicles (PHEVs) are one promising technology for addressing concerns around petroleum consumption, energy security and greenhouse gas emissions. However, there is much uncertainty in the impact that PHEVs can have on energy consumption and related emissions, as they are dependent on vehicle technology, driving patterns, and charging behavior. A methodology is used to simulate PHEV charging and gasoline consumption based on driving pattern data in USDOT’s National Household Travel Survey. The method uses information from each trip taken by approximately 170,000 vehicles to track their battery state of charge throughout the day, and to determine the timing and quantity of electricity and gasoline consumption for a fleet of PHEVs. Scenarios were developed to examine the effects of charging location, charging rate, time of charging and battery size. Additionally, demographic information was examined to see how driver and household characteristics influence consumption patterns. Results showed that a compact vehicle with a 10.4 kW h useable battery (approximately a 42 mile [68 km] all electric range) travels between 62.5% and 75.7% on battery electricity, depending on charging scenario. The percent of travel driven electrically (Utility Factor, UF) in a baseline charging scenario increased from 64.3% using 2001 NHTS data to 66.7% using 2009 data. The average UF was 63.5% for males and 72.9% for females and in both cases they are highly sensitive to age. Vehicle charging load profiles across

  7. Graphene-Based Materials for Lithium-Ion Hybrid Supercapacitors.

    Science.gov (United States)

    Ma, Yanfeng; Chang, Huicong; Zhang, Miao; Chen, Yongsheng

    2015-09-23

    Lithium-ion hybrid supercapacitors (LIHSs), also called Li-ion capacitors, have attracted much attention due to the combination of the rapid charge-discharge and long cycle life of supercapacitors and the high energy-storage capacity of lithium-ion batteries. Thus, LIHSs are expected to become the ultimate power source for hybrid and all-electric vehicles in the near future. As an electrode material, graphene has many advantages, including high surface area and porous structure, high electric conductivity, and high chemical and thermal stability, etc. Compared with other electrode materials, such as activated carbon, graphite, and metal oxides, graphene-based materials with 3D open frameworks show higher effective specific surface area, better control of channels, and higher conductivity, which make them better candidates for LIHS applications. Here, the latest advances in electrode materials for LIHSs are briefly summarized, with an emphasis on graphene-based electrode materials (including 3D graphene networks) for LIHS applications. An outlook is also presented to highlight some future directions. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. The variation of health effects based on the scenarios considering release parameters and meteorological data

    International Nuclear Information System (INIS)

    Jeong, Jong Tae; Ha, Jae Joo

    2000-01-01

    The variation of health effects resulting from the severe accidents of the YGN 3 and 4 nuclear power plants was examined based on scenarios considering the release parameters and meteorological data. The release parameters and meteorological data considered in making basic scenarios are release height, heat content, release time, warning time, wind speed, rainfall rate, and atmospheric stability class. The seasonal scenarios were also made in order to estimate the seasonal variation of health effects by considering seasonal characteristics of Korea. According to the results, there are large differences in consequence analysis from scenario to although an equal amount of radioactive materials is released to the atmosphere. Also, there are large differences in health effects from season to season due to distinct seasonal characteristics of Korea. Therefore, it is necessary to consider seasonal characteristics in developing optimum emergency response strategies

  9. Hybrid Macro-Micro Fluidics System for a Chip-Based Biosensor

    National Research Council Canada - National Science Library

    Tamanaha, C. R; Whitman, L. J; Colton, R.J

    2002-01-01

    We describe the engineering of a hybrid fluidics platform for a chip-based biosensor system that combines high-performance microfluidics components with powerful, yet compact, millimeter-scale pump and valve actuators...

  10. Plug-in hybrid electric vehicle impact study for the Progress Energy Carolinas Territory : condensed grid impact report for PHEV 2007 conference

    International Nuclear Information System (INIS)

    Waters, M.; Outlaw, T.; Boone, K.

    2007-01-01

    This presentation described a program designed to investigate the market viability of plug-in hybrid electric vehicles (PHEVs) and examine the impact of PHEVs on electricity generation systems. Three potential charging scenarios were examined: (1) uncontrolled; (2) delayed after 22:00, and (3) optimized off-peak. The study demonstrated that PHEVs have the capacity to provide greater value to users than conventional or standard hybrid vehicles, even when their higher initial cost is considered. Fuel savings were estimated at $600 more than savings estimated for standard hybrid vehicles. Developed market models were used to demonstrate that PHEVs will probably achieve sales market shares of 26 per cent by the year 2030. An estimated 670 GWh of electricity will be needed to charge the expected fleet. Results for the uncontrolled scenario showed additional peak demands. Delayed and off-peak scenarios were capable of massive penetrations of PHEVs without increases in transmission and distribution. Incremental emission rates for sulfur dioxide (SO 2 ) and nitrogen oxide (NO x ) decreased in off-peak scenarios. The study showed that all PHEV charging scenarios increased SO 2 emissions when compared to standard hybrids. NO x emissions were equal or slightly higher. It was concluded that PHEVs can also serve as a key component to alternative fuel strategies and provide significant reductions in oil imports. 30 refs., 2 tabs., 21 figs

  11. Multiway study of hybridization in nanoscale semiconductor labeled DNA based on fluorescence resonance energy transfer

    DEFF Research Database (Denmark)

    Gholami, Somayeh; Kompany Zare, Mohsen

    2013-01-01

    donor-QD acceptor) upon hybridization with a label free target was monitored by two-dimensional photoluminescence excitation spectroscopy (2D-PLE). Detection of a target oligonucleotide strand, using sandwiched nanoassembly in a separation-free format, was performed with the appearance of a new feature...... and model based analysis of 2D-PLE data was implemented by means of PAR-AFAC and hard trilinear decomposition (HTD), allowing to fit a proper model for FRET-based sandwich DNA hybridization systems. This study is the first successful application of a multiway chemometric technique to consider FRET based DNA...... hybridization in sandwiched nanoassemblies. A multi-equilibria model was properly fitted to the data and confirmed there is a competition between ternary and binary complex formation. Equilibrium constants of DNA hybridization in sandwiched nanoassemblies were estimated for the first time. Equilibrium constants...

  12. Tailored scenarios for streamflow climate change impacts based on the perturbation of precipitation and evapotranspiration

    Science.gov (United States)

    Ntegeka, Victor; Willems, Patrick; Baguis, Pierre; Roulin, Emmanuel

    2015-04-01

    It is advisable to account for a wide range of uncertainty by including the maximum possible number of climate models and scenarios for future impacts. As this is not always feasible, impact assessments are inevitably performed with a limited set of scenarios. The development of tailored scenarios is a challenge that needs more attention as the number of available climate change simulations grows. Whether these scenarios are representative enough for climate change impacts is a question that needs addressing. This study presents a methodology of constructing tailored scenarios for assessing runoff flows including extreme conditions (peak flows) from an ensemble of future climate change signals of precipitation and potential evapotranspiration (ETo) derived from the climate model simulations. The aim of the tailoring process is to formulate scenarios that can optimally represent the uncertainty spectrum of climate scenarios. These tailored scenarios have the advantage of being few in number as well as having a clear description of the seasonal variation of the climate signals, hence allowing easy interpretation of the implications of future changes. The tailoring process requires an analysis of the hydrological impacts from the likely future change signals from all available climate model simulations in a simplified (computationally less expensive) impact model. Historical precipitation and ETo time series are perturbed with the climate change signals based on a quantile perturbation technique that accounts for the changes in extremes. For precipitation, the change in wetday frequency is taken into account using a markov-chain approach. Resulting hydrological impacts from the perturbed time series are then subdivided into high, mean and low hydrological impacts using a quantile change analysis. From this classification, the corresponding precipitation and ETo change factors are back-tracked on a seasonal basis to determine precipitation-ETo covariation. The

  13. Active-charging based powertrain control in series hybrid electric vehicles for efficiency improvement and battery lifetime extension

    Science.gov (United States)

    Zhang, Xi; Mi, Chris Chunting; Yin, Chengliang

    2014-01-01

    This paper presents a powertrain control strategy for a series hybrid electric vehicle (SHEV) based on the integrated design of an active charging scenario and fixed-boundary-layer sliding mode controllers (FBLSMCs). An optimized charging curve for the battery is predetermined rather than subject to engine output and vehicle power demand, which is a total inverse of normal SHEV powertrain control process. This is aimed to remove surge and high-frequency charge current, keep the battery staying in a high state-of-charge (SOC) region and avoid persistently-high charge power, which are positive factors to battery lifetime extension. Then two robust chattering-free FBLSMCs are designed to locate the engine operation in the optimal efficiency area. One is in charge of engine speed control, and the other is for engine/generator torque control. Consequently, not only fuel economy is improved but also battery life expectancy could be extended. Finally, simulation and experimental results confirm the validity and application feasibility of the proposed strategy.

  14. A Cost–Effective Computer-Based, Hybrid Motorised and Gravity ...

    African Journals Online (AJOL)

    A Cost–Effective Computer-Based, Hybrid Motorised and Gravity-Driven Material Handling System for the Mauritian Apparel Industry. ... Thus, many companies are investing significantly in a Research & Development department in order to design new techniques to improve worker's efficiency, and to decrease the amount ...

  15. Impact of load management on the energy management strategy of a wind-short hydro hybrid system in frequency based pricing

    International Nuclear Information System (INIS)

    Malakar, T.; Goswami, S.K.; Sinha, A.K.

    2014-01-01

    Highlights: • This paper presents a new profit centric operating strategy of a hybrid power system under market environment. • The profit is ensured by optimal coordination of RES and load management approach. • The problem is formulated as dynamic optimization problem and solved using ABC algorithm. • Comparison shows that the proposed approach results more profit for the hybrid system. - Abstract: In the post restructuring era of electrical power system, each of the generating farm or utility has its own business strategy in terms of generation planning, load management and for other decisions. The basic objective of the utility is to maximize the operational profit for a given period of time. Generation scheduling for a utility with wind farm largely depends on the accuracy of wind power prediction. Therefore, it is important to explore the suitability of load management approach in coordination with the use of energy storage facility to compensate the uncertainty in wind power generation. This paper focuses mainly the operating strategy of a grid connected small hybrid power system to maximize its profit by adopting coordination between load management technique and utilization of storage plant under frequency based pricing. The optimum load scheduling has been implemented to utilities own local load. An hourly-discretized optimization algorithm is proposed and solved using artificial bee colony algorithm. To verify the effectiveness of the proposed method, the optimization problem is solved for varied wind power scenarios with different demand expectations cases in a day ahead Indian electricity market. It is noted that the proposed load management approach results more profit for the hybrid system because of better power management compared to the case when load scheduling has not been incorporated. The solution of the proposed optimization algorithm gives the strategies to be followed by the hybrid system how to operate its pump storage unit and to

  16. Scenario based approach to structural damage detection and its value in a risk and reliability perspective

    DEFF Research Database (Denmark)

    Hovgaard, Mads Knude; Hansen, Jannick Balleby; Brincker, Rune

    2013-01-01

    A scenario- and vibration based structural damage detection method is demonstrated though simulation. The method is Finite Element (FE) based. The value of the monitoring is calculated using structural reliability theory. A high cycle fatigue crack propagation model is assumed as the damage mecha......- and without monitoring. Monte Carlo Sampling (MCS) is used to estimate the probabilities and the tower of an onshore NREL 5MW wind turbine is given as a calculation case......A scenario- and vibration based structural damage detection method is demonstrated though simulation. The method is Finite Element (FE) based. The value of the monitoring is calculated using structural reliability theory. A high cycle fatigue crack propagation model is assumed as the damage...

  17. Spatiotemporal Simulation of Future Land Use/Cover Change Scenarios in the Tokyo Metropolitan Area

    Directory of Open Access Journals (Sweden)

    Ruci Wang

    2018-06-01

    Full Text Available Simulating future land use/cover changes is of great importance for urban planners and decision-makers, especially in metropolitan areas, to maintain a sustainable environment. This study examines the changes in land use/cover in the Tokyo metropolitan area (TMA from 2007 to 2017 as a first step in using supervised classification. Second, based on the map results, we predicted the expected patterns of change in 2027 and 2037 by employing a hybrid model composed of cellular automata and the Markov model. The next step was to decide the model inputs consisting of the modeling variables affecting the distribution of land use/cover in the study area, for instance distance to central business district (CBD and distance to railways, in addition to the classified maps of 2007 and 2017. Finally, we considered three scenarios for simulating land use/cover changes: spontaneous, sub-region development, and green space improvement. Simulation results show varied patterns of change according to the different scenarios. The sub-region development scenario is the most promising because it balances between urban areas, resources, and green spaces. This study provides significant insight for planners about change trends in the TMA and future challenges that might be encountered to maintain a sustainable region.

  18. Hybrid method based on embedded coupled simulation of vortex particles in grid based solution

    Science.gov (United States)

    Kornev, Nikolai

    2017-09-01

    The paper presents a novel hybrid approach developed to improve the resolution of concentrated vortices in computational fluid mechanics. The method is based on combination of a grid based and the grid free computational vortex (CVM) methods. The large scale flow structures are simulated on the grid whereas the concentrated structures are modeled using CVM. Due to this combination the advantages of both methods are strengthened whereas the disadvantages are diminished. The procedure of the separation of small concentrated vortices from the large scale ones is based on LES filtering idea. The flow dynamics is governed by two coupled transport equations taking two-way interaction between large and fine structures into account. The fine structures are mapped back to the grid if their size grows due to diffusion. Algorithmic aspects of the hybrid method are discussed. Advantages of the new approach are illustrated on some simple two dimensional canonical flows containing concentrated vortices.

  19. The negaWatt 2011 scenario

    International Nuclear Information System (INIS)

    2016-03-01

    This article presents the approach adopted for the negaWatt scenario and its obtained results. It is based on sobriety (energy savings), on energy efficiency, and on the use of renewable energies. After having outlined the different reasons for an energy transition (increasing energy consumption, critics and risks related to nuclear energy, and high potential of renewable energies), the scenario is presented with its main principles. The scenario identifies possibilities ranging from half to two thirds of energy saving in the different energy consuming sectors. The building sector is presented as a major issue. The transport is described as a sector to be addressed on the long term. The necessary change of the industry sector is highlighted. The agriculture sector is presented as being at the heart of transition. Energy usages are to become sober, efficient and renewable. The scenario is based on a high rate development of renewable energies, while fossil energies are to become marginal, nuclear is to be progressively and reasonably given up, and networks are to become compatible to ensure the scenario success. Thus, the scenario demonstrates the feasibility of a 100 pc sustainable assessment for primary energy, complies with stakes and objectives by 2050. The cost of energy transition is briefly discussed

  20. Automatic generation of smart earthquake-resistant building system: Hybrid system of base-isolation and building-connection

    Directory of Open Access Journals (Sweden)

    M. Kasagi

    2016-02-01

    Full Text Available A base-isolated building may sometimes exhibit an undesirable large response to a long-duration, long-period earthquake ground motion and a connected building system without base-isolation may show a large response to a near-fault (rather high-frequency earthquake ground motion. To overcome both deficiencies, a new hybrid control system of base-isolation and building-connection is proposed and investigated. In this new hybrid building system, a base-isolated building is connected to a stiffer free wall with oil dampers. It has been demonstrated in a preliminary research that the proposed hybrid system is effective both for near-fault (rather high-frequency and long-duration, long-period earthquake ground motions and has sufficient redundancy and robustness for a broad range of earthquake ground motions.An automatic generation algorithm of this kind of smart structures of base-isolation and building-connection hybrid systems is presented in this paper. It is shown that, while the proposed algorithm does not work well in a building without the connecting-damper system, it works well in the proposed smart hybrid system with the connecting damper system.

  1. Hybrid statistics-simulations based method for atom-counting from ADF STEM images

    Energy Technology Data Exchange (ETDEWEB)

    De wael, Annelies, E-mail: annelies.dewael@uantwerpen.be [Electron Microscopy for Materials Science (EMAT), University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp (Belgium); De Backer, Annick [Electron Microscopy for Materials Science (EMAT), University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp (Belgium); Jones, Lewys; Nellist, Peter D. [Department of Materials, University of Oxford, Parks Road, OX1 3PH Oxford (United Kingdom); Van Aert, Sandra, E-mail: sandra.vanaert@uantwerpen.be [Electron Microscopy for Materials Science (EMAT), University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp (Belgium)

    2017-06-15

    A hybrid statistics-simulations based method for atom-counting from annular dark field scanning transmission electron microscopy (ADF STEM) images of monotype crystalline nanostructures is presented. Different atom-counting methods already exist for model-like systems. However, the increasing relevance of radiation damage in the study of nanostructures demands a method that allows atom-counting from low dose images with a low signal-to-noise ratio. Therefore, the hybrid method directly includes prior knowledge from image simulations into the existing statistics-based method for atom-counting, and accounts in this manner for possible discrepancies between actual and simulated experimental conditions. It is shown by means of simulations and experiments that this hybrid method outperforms the statistics-based method, especially for low electron doses and small nanoparticles. The analysis of a simulated low dose image of a small nanoparticle suggests that this method allows for far more reliable quantitative analysis of beam-sensitive materials. - Highlights: • A hybrid method for atom-counting from ADF STEM images is introduced. • Image simulations are incorporated into a statistical framework in a reliable manner. • Limits of the existing methods for atom-counting are far exceeded. • Reliable counting results from an experimental low dose image are obtained. • Progress towards reliable quantitative analysis of beam-sensitive materials is made.

  2. Feedback control of current drive by using hybrid wave in tokamaks; Asservissement de la generation de courant par l`onde hybride dans un plasma de tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Wijnands, T.J. [Association Euratom-CEA, Centre d`Etudes Nucleaires de Cadarache, 13 - Saint-Paul-lez-Durance (France). Dept. de Recherches sur la Fusion Controlee]|[CEA Centre d`Etudes de Cadarache, 13 - Saint-Paul-lez-Durance (France). Direction des Sciences de la Matiere

    1997-03-01

    This work is focussed on an important and recent development in present day Controlled Nuclear Fusion Research and Tokamaks. The aim is to optimise the energy confinement for a certain magnetic configuration by adapting the radial distribution of the current. Of particular interest are feedback control scenarios with stationary modifications of the current profile using current, driven by Lower Hybrid waves. A new feedback control system has been developed for Tore Supra and has made a large number of new operation scenarios possible. In one of the experiments described here, there is no energy exchange between the poloidal field system and the plasma, the current is controlled by the power of the Lower Hybrid waves while the launched wave spectrum is used to optimise the current profile shape and the energy confinement. (author) 151 refs.

  3. Flooding Capability for River-based Scenarios

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Curtis L. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Prescott, Steven [Idaho National Lab. (INL), Idaho Falls, ID (United States); Ryan, Emerald [Idaho State Univ., Pocatello, ID (United States); Calhoun, Donna [Boise State Univ., ID (United States); Sampath, Ramprasad [Centroid Labs., Los Angeles, CA (United States); Anderson, S. Danielle [Idaho National Lab. (INL), Idaho Falls, ID (United States); Casteneda, Cody [Boise State Univ., ID (United States)

    2015-10-01

    This report describes the initial investigation into modeling and simulation tools for application of riverine flooding representation as part of the Risk-Informed Safety Margin Characterization (RISMC) Pathway external hazards evaluations. The report provides examples of different flooding conditions and scenarios that could impact river and watershed systems. Both 2D and 3D modeling approaches are described.

  4. Scenario analysis and path selection of low-carbon transformation in China based on a modified IPAT model.

    Directory of Open Access Journals (Sweden)

    Liang Chen

    Full Text Available This paper presents a forecast and analysis of population, economic development, energy consumption and CO2 emissions variation in China in the short- and long-term steps before 2020 with 2007 as the base year. The widely applied IPAT model, which is the basis for calculations, projections, and scenarios of greenhouse gases (GHGs reformulated as the Kaya equation, is extended to analyze and predict the relations between human activities and the environment. Four scenarios of CO2 emissions are used including business as usual (BAU, energy efficiency improvement scenario (EEI, low carbon scenario (LC and enhanced low carbon scenario (ELC. The results show that carbon intensity will be reduced by 40-45% as scheduled and economic growth rate will be 6% in China under LC scenario by 2020. The LC scenario, as the most appropriate and the most feasible scheme for China's low-carbon development in the future, can maximize the harmonious development of economy, society, energy and environmental systems. Assuming China's development follows the LC scenario, the paper further gives four paths of low-carbon transformation in China: technological innovation, industrial structure optimization, energy structure optimization and policy guidance.

  5. Link reliability based hybrid routing for tactical mobile ad hoc network

    Institute of Scientific and Technical Information of China (English)

    Xie Xiaochuan; Wei Gang; Wu Keping; Wang Gang; Jia Shilou

    2008-01-01

    Tactical mobile ad hoc network (MANET) is a collection of mobile nodes forming a temporary network,without the aid of pre-established network infrastructure. The routing protocol has a crucial impact on the networkperformance in battlefields. Link reliability based hybrid routing (LRHR) is proposed, which is a novel hybrid routing protocol, for tactical MANET. Contrary to the traditional single path routing strategy, multiple paths are established between a pair of source-destination nodes. In the hybrid routing strategy, the rate of topological change provides a natural mechanism for switching dynamically between table-driven and on-demand routing. The simulation results indicate that the performances of the protocol in packet delivery ratio, routing overhead, and average end-to-end delay are better than the conventional routing protocol.

  6. Energy management strategy for fuel cell-supercapacitor hybrid vehicles based on prediction of energy demand

    Science.gov (United States)

    Carignano, Mauro G.; Costa-Castelló, Ramon; Roda, Vicente; Nigro, Norberto M.; Junco, Sergio; Feroldi, Diego

    2017-08-01

    Offering high efficiency and producing zero emissions Fuel Cells (FCs) represent an excellent alternative to internal combustion engines for powering vehicles to alleviate the growing pollution in urban environments. Due to inherent limitations of FCs which lead to slow transient response, FC-based vehicles incorporate an energy storage system to cover the fast power variations. This paper considers a FC/supercapacitor platform that configures a hard constrained powertrain providing an adverse scenario for the energy management strategy (EMS) in terms of fuel economy and drivability. Focusing on palliating this problem, this paper presents a novel EMS based on the estimation of short-term future energy demand and aiming at maintaining the state of energy of the supercapacitor between two limits, which are computed online. Such limits are designed to prevent active constraint situations of both FC and supercapacitor, avoiding the use of friction brakes and situations of non-power compliance in a short future horizon. Simulation and experimentation in a case study corresponding to a hybrid electric bus show improvements on hydrogen consumption and power compliance compared to the widely reported Equivalent Consumption Minimization Strategy. Also, the comparison with the optimal strategy via Dynamic Programming shows a room for improvement to the real-time strategies.

  7. Sneutrino hybrid inflation and nonthermal leptogenesis

    International Nuclear Information System (INIS)

    Antusch, Stefan; Baumann, Jochen P.; Domcke, Valerie F.; Kostka, Philipp M.

    2010-01-01

    In sneutrino hybrid inflation the superpartner of one of the right-handed neutrinos involved in the seesaw mechanism plays the role of the inflaton field. It obtains its large mass after the ''waterfall'' phase transition which ends hybrid inflation. After this phase transition the oscillations of the sneutrino inflaton field may dominate the universe and efficiently produce the baryon asymmetry of the universe via nonthermal leptogenesis. We investigate the conditions under which inflation, with primordial perturbations in accordance with the latest WMAP results, as well as successful nonthermal leptogenesis can be realized simultaneously within the sneutrino hybrid inflation scenario. We point out which requirements successful inflation and leptogenesis impose on the seesaw parameters, i.e. on the Yukawa couplings and the mass of the right-handed (s)neutrino, and derive the predictions for the CMB observables in terms of the right-handed (s)neutrino mass and the other relevant model parameters

  8. Low carbon society scenario analysis of transport sector of an emerging economy—The AIM/Enduse modelling approach

    International Nuclear Information System (INIS)

    Selvakkumaran, Sujeetha; Limmeechokchai, Bundit

    2015-01-01

    The transport sector of a country is the backbone driving the economy forward. Thailand’s land transport sector is modelled using the AIM/Enduse, which is a recursive dynamic optimization model, based on bottom-up modelling principle. The travel demand is divided into two major categories which are passenger travel and freight travel. The objective of this paper is to analyse the mitigation possible through low carbon society (LCS) measures and emission tax (ET). Two scenario clusters are devised along with the BAU case. The LCS scenario cluster has three designed scenarios which are LCS-L, LCS-M and LCS-H. The emission tax (ET) cluster has four scenarios, where the taxes of 50, 100, 200 and 500 USD/t-CO 2 are implemented. Along with this the marginal abatement costs (MAC) of the counter-measures (CMs) and the co-benefits in terms of energy security, productivity and air pollutant mitigation are also assessed. Results show that LCS scenarios are possible of mitigating up to 1230 Mt-CO 2 cumulatively, from 2010 to 2050. In terms of MACs, new vehicles play a pivotal role, along with hybrid vehicles. The Average Abatement Cost (AAC) assessment shows that the AAC of LCS-H scenario is in the order of 100 USD/t-CO 2 . All the LCS and ET scenarios show an enhancement in energy security and also a threefold increase in productivity. There is distinct mitigation in terms of air pollutants from the transport sector as well. -- Highlights: •Thailand transport sector has been modelled using AIM/Enduse model. •Potential cumulative mitigation of CO 2 during 2010–2050 is approximately 30% when compared the BAU scenario. •Abatement cost curves show that various counter measures are practical in the transport sector. •Energy security is enhanced due to CO 2 mitigation in the LCS scenario

  9. Multimodal hybrid reasoning methodology for personalized wellbeing services.

    Science.gov (United States)

    Ali, Rahman; Afzal, Muhammad; Hussain, Maqbool; Ali, Maqbool; Siddiqi, Muhammad Hameed; Lee, Sungyoung; Ho Kang, Byeong

    2016-02-01

    A wellness system provides wellbeing recommendations to support experts in promoting a healthier lifestyle and inducing individuals to adopt healthy habits. Adopting physical activity effectively promotes a healthier lifestyle. A physical activity recommendation system assists users to adopt daily routines to form a best practice of life by involving themselves in healthy physical activities. Traditional physical activity recommendation systems focus on general recommendations applicable to a community of users rather than specific individuals. These recommendations are general in nature and are fit for the community at a certain level, but they are not relevant to every individual based on specific requirements and personal interests. To cover this aspect, we propose a multimodal hybrid reasoning methodology (HRM) that generates personalized physical activity recommendations according to the user׳s specific needs and personal interests. The methodology integrates the rule-based reasoning (RBR), case-based reasoning (CBR), and preference-based reasoning (PBR) approaches in a linear combination that enables personalization of recommendations. RBR uses explicit knowledge rules from physical activity guidelines, CBR uses implicit knowledge from experts׳ past experiences, and PBR uses users׳ personal interests and preferences. To validate the methodology, a weight management scenario is considered and experimented with. The RBR part of the methodology generates goal, weight status, and plan recommendations, the CBR part suggests the top three relevant physical activities for executing the recommended plan, and the PBR part filters out irrelevant recommendations from the suggested ones using the user׳s personal preferences and interests. To evaluate the methodology, a baseline-RBR system is developed, which is improved first using ranged rules and ultimately using a hybrid-CBR. A comparison of the results of these systems shows that hybrid-CBR outperforms the

  10. Evaluation of ecosystem service based on scenario simulation of land use in Yunnan Province

    Science.gov (United States)

    Zhang, Hong; Liao, Xiaoli; Zhai, Tianlin

    2018-04-01

    Climate change and rapid urbanization are important factors restricting future land use. Situational analysis, as an important foundation for the optimization of land use, needs to focus on the impact of climate factors and socio-economic factors. In this paper, the Markov model and the DLS (Simulation of Land System Dynamics) model are combined for the first time, and the land use pattern in 2020 is simulated based on the data of land use in 2000 and 2010 as well as the climate, soil, topography and socio-economic factors of Yunnan Province. In his paper, we took Yunnan Province as the case study area, and selected 12 driving factors by logistic regression method, then the land use demands and layout of Yunnan Province in 2020 has been forecasted and simulated under business as usual (BAU) scenario and farmland protection (FP) scenario and the changes in ecosystem service value has been calculated. The result shows that: (1) after the regression analysis and ROC (Relative Operating Characteristics) test, the 12 factors selected in this paper have a strong ability to explain the land use change in Yunnan Province. (2) Under the two scenarios, the significant reduction of arable land area is a common feature of land use change in Yunnan Province in the future, and its main land use type will be construction land. However, under FP scenario, the current situation where construction land encroach on arable land will be improved. Compared with the change from 2000 to 2010, the trend of arable land, forest land, water area, construction land and unused land will be the same under the two scenarios, whereas the change trend of grassland was opposite. (3) From 2000 to 2020, the value of ecosystem services in Yunnan Province is on the rise, but the ecosystem service value under FP scenario is higher than that of the ecosystem services under BAU scenario. In general, land use in 2020 in Yunnan Province continues the pattern of 2010, but there are also significant spatial

  11. A Case-Based Scenario with Interdisciplinary Guided-Inquiry in Chemistry and Biology: Experiences of First Year Forensic Science Students

    Science.gov (United States)

    Cresswell, Sarah L.; Loughlin, Wendy A.

    2017-01-01

    In this paper, insight into forensic science students' experiences of a case-based scenario with an interdisciplinary guided-inquiry experience in chemistry and biology is presented. Evaluation of student experiences and interest showed that the students were engaged with all aspects of the case-based scenario, including the curriculum theory…

  12. Lifecycle cost assessment and carbon dioxide emissions of diesel, natural gas, hybrid electric, fuel cell hybrid and electric transit buses

    International Nuclear Information System (INIS)

    Lajunen, Antti; Lipman, Timothy

    2016-01-01

    This paper evaluates the lifecycle costs and carbon dioxide emissions of different types of city buses. The simulation models of the different powertrains were developed in the Autonomie vehicle simulation software. The carbon dioxide emissions were calculated both for the bus operation and for the fuel and energy pathways from well to tank. Two different operating environment case scenarios were used for the primary energy sources, which were Finland and California (USA). The fuel and energy pathways were selected appropriately in relation to the operating environment. The lifecycle costs take into account the purchase, operating, maintenance, and possible carbon emission costs. Based on the simulation results, the energy efficiency of city buses can be significantly improved by the alternative powertrain technologies. Hybrid buses have moderately lower carbon dioxide emissions during the service life than diesel buses whereas fully-electric buses have potential to significantly reduce carbon dioxide emissions, by up to 75%. The lifecycle cost analysis indicates that diesel hybrid buses are already competitive with diesel and natural gas buses. The high costs of fuel cell and battery systems are the major challenges for the fuel cell hybrid buses in order to reduce lifecycle costs to more competitive levels. - Highlights: • Alternative powertrains can significantly improve energy efficiency of transit buses. • Operating environment has an important impact on the lifecycle costs of buses. • Diesel hybrid buses are already cost effective solution for public transportation. • The cost of fuel cell technology is the major challenge for fuel cell hybrid buses. • Fully-electric buses have potential to significantly reduce carbon dioxide emissions.

  13. Electrifying Australian transport: Hybrid life cycle analysis of a transition to electric light-duty vehicles and renewable electricity

    International Nuclear Information System (INIS)

    Wolfram, Paul; Wiedmann, Thomas

    2017-01-01

    Highlights: •This research assesses life-cycle carbon impacts of different powertrains. •We illustrate a transition to low-carbon vehicles in a hybrid IO-LCA model. •Different electricity and transport scenarios are integrated in the model. •With Australia’s current grid-mix, electric vehicles offer no mitigation potential. •Using renewable energy, electric vehicle carbon footprints can be cut by 66%. -- Abstract: Recent life cycle assessments confirmed the greenhouse gas emission reduction potential of renewable electricity and electric vehicle technologies. However, each technology is usually assessed separately and not within a consistent macro-economic, multi-sectoral framework. Here we present a multi-regional input-output based hybrid approach with integrated scenarios to facilitate the carbon footprint assessment of all direct and indirect effects of a transition to low-emission transportation and electricity generation technologies in Australia. The work takes into account on-road energy consumption values that are more realistic than official drive-cycle energy consumption figures used in previous work. Accounting for these factors as well as for Australia’s grid electricity, which heavily relies on coal power, electric vehicles are found to have a higher carbon footprint than conventional vehicles, whereas hybrid electric vehicles have the lowest. This means that – from a carbon footprint perspective – powertrain electrification is beneficial only to a certain degree at the current stage. This situation can be changed by increasing shares of renewable electricity in the grid. In our best-case scenario, where renewable energy accounts for 96% of the electricity mix in 2050, electric vehicle carbon footprints can be cut by 66% by 2050 relative to 2009. In the business-as-usual scenario (36% renewable electricity share by 2050), electric vehicles can reach a 56% reduction if fossil fuel power plants significantly increase their efficiencies

  14. Scenario-based Water Resources Management Using the Water Value Concept

    Science.gov (United States)

    Hassanzadeh, Elmira; Elshorbagy, Amin; Wheater, Howard

    2013-04-01

    The Saskatchewan River is the key water resource for the 3 prairie provinces of Alberta, Saskatchewan and Manitoba in Western Canada, and thus it is necessary to pursue long-term regional and watershed-based planning for the river basin. The water resources system is complex because it includes multiple components, representing various demand sectors, including the environment, which impose conflicting objectives, and multiple jurisdictions. The biophysical complexity is exacerbated by the socioeconomic dimensions associated for example with impacts of land and water management, value systems including environmental flows, and policy and governance dimensions.. We focus on the South Saskatchewan River Basin (SSRB) in Alberta and Saskatchewan, which is already fully allocated in southern Alberta and is subject to increasing demand due to rapid economic development and a growing population. Multiple sectors and water uses include agricultural, municipal, industrial, mining, hydropower, and environmental flow requirements. The significant spatial variability in the level of development and future needs for water places different values on water across the basin. Water resources planning and decision making must take these complexities into consideration, yet also deal with a new dimension—climate change and its possible future impacts on water resources systems. There is a pressing need to deal with water in terms of its value, rather than a mere commodity subject to traditional quantitative optimization. In this research, a value-based water resources system (VWRS) model is proposed to couple the hydrological and the societal aspects of water resources in one integrated modeling tool for the SSRB. The objective of this work is to develop the VWRS model as a negotiation, planning, and management tool that allows for the assessment of the availability, as well as the allocation scenarios, of water resources for competing users under varying conditions. The proposed

  15. Recent Advances of Graphene-based Hybrids with Magnetic Nanoparticles for Biomedical Applications.

    Science.gov (United States)

    Alegret, Nuria; Criado, Alejandro; Prato, Maurizio

    2017-01-01

    The utilization of graphene-based nanomaterials combined with magnetic nanoparticles offers key benefits in the modern biomedicine. In this minireview, we focus on the most recent advances in hybrids of magnetic graphene derivatives for biomedical applications. We initially analyze the several methodologies employed for the preparation of graphene-based composites with magnetic nanoparticles, more specifically the kind of linkage between the two components. In the last section, we focus on the biomedical applications where these magnetic-graphene hybrids are essential and pay special attention on how the addition of graphene improves the resulting devices in magnetic resonance imaging, controlled drug delivery, magnetic photothermal therapy and cellular separation and isolation. Finally, we highlight the use of these magnetic hybrids as multifunctional material that will lead to a next generation of theranostics. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  16. Anatomy of FD-term hybrid inflation

    International Nuclear Information System (INIS)

    Garbrecht, Bjoern; Pallis, Constantinos; Pilaftsis, Apostolos

    2006-01-01

    We analyze the cosmological implications of F-term hybrid inflation with a subdominant Fayet-Iliopoulos D-term whose presence explicitly breaks a D-parity in the inflaton-waterfall sector. This scenario of inflation, which is called F D -term hybrid model for brevity, can naturally predict lepton number violation at the electroweak scale, by tying the μ-parameter of the MSSM to an SO(3)-symmetric Majorana mass m N , via the vacuum expectation value of the inflaton field. We show how a negative Hubble-induced mass term in a next-to-minimal extension of supergravity helps to accommodate the present CMB data and considerably weaken the strict constraints on the theoretical parameters, resulting from cosmic string effects on the power spectrum P R . The usual gravitino overabundance constraint may be significantly relaxed in this model, once the enormous entropy release from the late decays of the ultraheavy waterfall gauge particles is properly considered. As the Universe enters a second thermalization phase involving a very low reheat temperature, which might be as low as about 0.3 TeV, thermal electroweak-scale resonant leptogenesis provides a viable mechanism for successful baryogenesis, while thermal right-handed sneutrinos emerge as new possible candidates for solving the cold dark matter problem. In addition, we discuss grand unified theory realizations of F D -term hybrid inflation devoid of cosmic strings and monopoles, based on the complete breaking of an SU(2) X subgroup. The F D -term hybrid model offers rich particle-physics phenomenology, which could be probed at high-energy colliders, as well as in low-energy experiments of lepton flavour or number violation

  17. Non-covalently functionalized carbon nanostructures for synthesizing carbon-based hybrid nanomaterials.

    Science.gov (United States)

    Li, Haiqing; Song, Sing I; Song, Ga Young; Kim, Il

    2014-02-01

    Carbon nanostructures (CNSs) such as carbon nanotubes, graphene sheets, and nanodiamonds provide an important type of substrate for constructing a variety of hybrid nanomaterials. However, their intrinsic chemistry-inert surfaces make it indispensable to pre-functionalize them prior to immobilizing additional components onto their surfaces. Currently developed strategies for functionalizing CNSs include covalent and non-covalent approaches. Conventional covalent treatments often damage the structure integrity of carbon surfaces and adversely affect their physical properties. In contrast, the non-covalent approach offers a non-destructive way to modify CNSs with desired functional surfaces, while reserving their intrinsic properties. Thus far, a number of surface modifiers including aromatic compounds, small-molecular surfactants, amphiphilic polymers, and biomacromolecules have been developed to non-covalently functionalize CNS surfaces. Mediated by these surface modifiers, various functional components such as organic species and inorganic nanoparticles were further decorated onto their surfaces, resulting in versatile carbon-based hybrid nanomaterials with broad applications in chemical engineering and biomedical areas. In this review, the recent advances in the generation of such hybrid nanostructures based on non-covalently functionalized CNSs will be reviewed.

  18. IPCC Special report on Emissions Scenarios (SRES)

    International Nuclear Information System (INIS)

    Anon

    2001-01-01

    This special report on emissions scenarios (SRES) is intended to reflect the most recent trends in driving forces of emissions; population projections economic development, and structural and technological change. It serves as an update to IS92 scenarios developed by IPCC in the early 1990s to illustrate a plausible range of future greenhouse gas emissions. This update is based on a review of the literature and the development of a database of over 400 global and regional scenarios; 190 of these extend from 1900 to 2100 and thus fed into the development of the narrative scenarios and storylines. Based on the literature review, a set of four alternative scenario families, having a total of 40 emission scenarios have been developed. Each scenario family includes a narrative storyline which describes a demographic, social. economic, technological, environmental and policy future. Characteristic features of each of the four families are summarized and a comparison is made between the IS92 and SRES. One of the main conclusions of this recent scenario construction effort is the realization that alternative combinations of main scenario driving forces can lead to similar levels of GHG emissions by the end of the 21st century, and that scenarios with different underlying assumptions can result in very similar climate change

  19. Hybrid paper-based potentiostat for low-cost point-of-need diagnostics

    CSIR Research Space (South Africa)

    Bezuidenhout, PH

    2017-10-01

    Full Text Available The focus of this paper is the manufacturing of a low-cost hybrid paper-based potentiostat. Potentiostats exhibit high sensitivity, and can be used for a variety of applications. The results highlight the functionality of a paper-based potentiostat...

  20. Preparation and characterization of hybrid materials based on polypyrrole and silver nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen Duc Nghia; Ngo Trinh Tung [Institute of Chemistry, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Road, Cau Giay District, Hanoi (Viet Nam)], E-mail: ducnghia264@fpt.vn

    2009-09-01

    Hybrid material is one of the most promising materials classed in the 21st century because of its unique properties and its advanced applications. In this work, hybrid materials based on polypyrrole (Ppy) and silver nanoparicles were prepared and characterized. The preparation of the hybrid material was performed by the chemical polymerization method. The structure, electrical and thermal properties of Ppy/Ag hybrid materials were characterized by XRD, SEM, and TGA and the conventional four probe method. The results showed that the Ag particles of 4-8 nm were agglomerated during the in-situ polymerization of PPy and formed some clusters with the diameter of 25 -150 nm. By the addition of Ag particles, the electrical conductivity of Ppy increased with increasing Ag concentration. The thermal stability of Ppy was significantly improved by modification with Ag particles.

  1. Preparation and characterization of hybrid materials based on polypyrrole and silver nanoparticles

    International Nuclear Information System (INIS)

    Nguyen Duc Nghia; Ngo Trinh Tung

    2009-01-01

    Hybrid material is one of the most promising materials classed in the 21st century because of its unique properties and its advanced applications. In this work, hybrid materials based on polypyrrole (Ppy) and silver nanoparicles were prepared and characterized. The preparation of the hybrid material was performed by the chemical polymerization method. The structure, electrical and thermal properties of Ppy/Ag hybrid materials were characterized by XRD, SEM, and TGA and the conventional four probe method. The results showed that the Ag particles of 4-8 nm were agglomerated during the in-situ polymerization of PPy and formed some clusters with the diameter of 25 -150 nm. By the addition of Ag particles, the electrical conductivity of Ppy increased with increasing Ag concentration. The thermal stability of Ppy was significantly improved by modification with Ag particles.

  2. An Improved Iris Recognition Algorithm Based on Hybrid Feature and ELM

    Science.gov (United States)

    Wang, Juan

    2018-03-01

    The iris image is easily polluted by noise and uneven light. This paper proposed an improved extreme learning machine (ELM) based iris recognition algorithm with hybrid feature. 2D-Gabor filters and GLCM is employed to generate a multi-granularity hybrid feature vector. 2D-Gabor filter and GLCM feature work for capturing low-intermediate frequency and high frequency texture information, respectively. Finally, we utilize extreme learning machine for iris recognition. Experimental results reveal our proposed ELM based multi-granularity iris recognition algorithm (ELM-MGIR) has higher accuracy of 99.86%, and lower EER of 0.12% under the premise of real-time performance. The proposed ELM-MGIR algorithm outperforms other mainstream iris recognition algorithms.

  3. Feedback control of current drive by using hybrid wave in tokamaks

    International Nuclear Information System (INIS)

    Wijnands, T.J.; CEA Centre d'Etudes de Cadarache, 13 - Saint-Paul-lez-Durance

    1997-03-01

    This work is focussed on an important and recent development in present day Controlled Nuclear Fusion Research and Tokamaks. The aim is to optimise the energy confinement for a certain magnetic configuration by adapting the radial distribution of the current. Of particular interest are feedback control scenarios with stationary modifications of the current profile using current, driven by Lower Hybrid waves. A new feedback control system has been developed for Tore Supra and has made a large number of new operation scenarios possible. In one of the experiments described here, there is no energy exchange between the poloidal field system and the plasma, the current is controlled by the power of the Lower Hybrid waves while the launched wave spectrum is used to optimise the current profile shape and the energy confinement. (author)

  4. Hybrid ICA-Seed-Based Methods for fMRI Functional Connectivity Assessment: A Feasibility Study

    Directory of Open Access Journals (Sweden)

    Robert E. Kelly

    2010-01-01

    Full Text Available Brain functional connectivity (FC is often assessed from fMRI data using seed-based methods, such as those of detecting temporal correlation between a predefined region (seed and all other regions in the brain; or using multivariate methods, such as independent component analysis (ICA. ICA is a useful data-driven tool, but reproducibility issues complicate group inferences based on FC maps derived with ICA. These reproducibility issues can be circumvented with hybrid methods that use information from ICA-derived spatial maps as seeds to produce seed-based FC maps. We report results from five experiments to demonstrate the potential advantages of hybrid ICA-seed-based FC methods, comparing results from regressing fMRI data against task-related a priori time courses, with “back-reconstruction” from a group ICA, and with five hybrid ICA-seed-based FC methods: ROI-based with (1 single-voxel, (2 few-voxel, and (3 many-voxel seed; and dual-regression-based with (4 single ICA map and (5 multiple ICA map seed.

  5. Fuzzy-Based Adaptive Hybrid Burst Assembly Technique for Optical Burst Switched Networks

    Directory of Open Access Journals (Sweden)

    Abubakar Muhammad Umaru

    2014-01-01

    Full Text Available The optical burst switching (OBS paradigm is perceived as an intermediate switching technology for future all-optical networks. Burst assembly that is the first process in OBS is the focus of this paper. In this paper, an intelligent hybrid burst assembly algorithm that is based on fuzzy logic is proposed. The new algorithm is evaluated against the traditional hybrid burst assembly algorithm and the fuzzy adaptive threshold (FAT burst assembly algorithm via simulation. Simulation results show that the proposed algorithm outperforms the hybrid and the FAT algorithms in terms of burst end-to-end delay, packet end-to-end delay, and packet loss ratio.

  6. Hybrid organic/inorganic position-sensitive detectors based on PEDOT:PSS/n-Si

    Science.gov (United States)

    Javadi, Mohammad; Gholami, Mahdiyeh; Torbatiyan, Hadis; Abdi, Yaser

    2018-03-01

    Various configurations like p-n junctions, metal-semiconductor Schottky barriers, and metal-oxide-semiconductor structures have been widely used in position-sensitive detectors. In this report, we propose a PEDOT:PSS/n-Si heterojunction as a hybrid organic/inorganic configuration for position-sensitive detectors. The influence of the thickness of the PEDOT:PSS layer, the wavelength of incident light, and the intensity of illumination on the device performance are investigated. The hybrid PSD exhibits very high sensitivity (>100 mV/mm), excellent nonlinearity (0.995) with a response time of heterojunction are very promising for developing a new class of position-sensitive detectors based on the hybrid organic/inorganic junctions.

  7. Construct and face validity of the educational computer-based environment (ECE) assessment scenarios for basic endoneurosurgery skills.

    Science.gov (United States)

    Cagiltay, Nergiz Ercil; Ozcelik, Erol; Sengul, Gokhan; Berker, Mustafa

    2017-11-01

    In neurosurgery education, there is a paradigm shift from time-based training to criterion-based model for which competency and assessment becomes very critical. Even virtual reality simulators provide alternatives to improve education and assessment in neurosurgery programs and allow for several objective assessment measures, there are not many tools for assessing the overall performance of trainees. This study aims to develop and validate a tool for assessing the overall performance of participants in a simulation-based endoneurosurgery training environment. A training program was developed in two levels: endoscopy practice and beginning surgical practice based on four scenarios. Then, three experiments were conducted with three corresponding groups of participants (Experiment 1, 45 (32 beginners, 13 experienced), Experiment 2, 53 (40 beginners, 13 experienced), and Experiment 3, 26 (14 novices, 12 intermediate) participants). The results analyzed to understand the common factors among the performance measurements of these experiments. Then, a factor capable of assessing the overall skill levels of surgical residents was extracted. Afterwards, the proposed measure was tested to estimate the experience levels of the participants. Finally, the level of realism of these educational scenarios was assessed. The factor formed by time, distance, and accuracy on simulated tasks provided an overall performance indicator. The prediction correctness was very high for the beginners than the one for experienced surgeons in Experiments 1 and 2. When non-dominant hand is used in a surgical procedure-based scenario, skill levels of surgeons can be better predicted. The results indicate that the scenarios in Experiments 1 and 2 can be used as an assessment tool for the beginners, and scenario-2 in Experiment 3 can be used as an assessment tool for intermediate and novice levels. It can be concluded that forming the balance between perceived action capacities and skills is

  8. Four Scenarios for Europe. Based on UNEP's third Global Environment Outlook

    International Nuclear Information System (INIS)

    Bakkes, J.; Gaponenko, N.; Mnatsakanian, R.

    2003-01-01

    The third Global Environment Outlook (GEO-3) was published on the eve of the Johannesburg summit (autumn 2002). GEO-3 looked back thirty years and forward thirty years. A set of what-if scenarios was used to explore the ways our society can advance, including implications for environmental and social goals. Characteristically, GEO-3 examines in a relatively deep fashion how its global scenarios can be interpreted in the context of each of the world's regions. This brochure presents the pan-European elaboration of the four GEO-3 scenarios. It focusses on the scenarios proper and their impacts in environmental terms. The scenarios are: The Markets First scenario envisages a world in which market-driven developments converge on the currently prevailing values and expectations in industrialized countries; In a Policy First world, strong actions are undertaken by governments in an attempt to achieve specific social and environmental goals; The Security First scenario assumes a world full of large disparities, where inequality and conflict, brought about by socio-economic and environmental stresses, prevail: and Sustainability First pictures a world in which a new development paradigm emerges in response to the challenge of sustainability supported by new, more equitable values and institutions. The second section describes 'the pan-European tale of the four futures' in a predominantly qualitative manner. Section 3 presents a regionally differentiated examination of the environmental implications of the scenarios. Details on input material, assumptions and methodologies applied, and actual results, can be found in Chapter 4 of GEO-3 'Outlook 2002-32' and in the Technical Background Report on GEO-3 Scenario Work

  9. Hybrid employment recommendation algorithm based on Spark

    Science.gov (United States)

    Li, Zuoquan; Lin, Yubei; Zhang, Xingming

    2017-08-01

    Aiming at the real-time application of collaborative filtering employment recommendation algorithm (CF), a clustering collaborative filtering recommendation algorithm (CCF) is developed, which applies hierarchical clustering to CF and narrows the query range of neighbour items. In addition, to solve the cold-start problem of content-based recommendation algorithm (CB), a content-based algorithm with users’ information (CBUI) is introduced for job recommendation. Furthermore, a hybrid recommendation algorithm (HRA) which combines CCF and CBUI algorithms is proposed, and implemented on Spark platform. The experimental results show that HRA can overcome the problems of cold start and data sparsity, and achieve good recommendation accuracy and scalability for employment recommendation.

  10. Realisable scenarios for a future electricity supply based 100% on renewable energies

    International Nuclear Information System (INIS)

    Czisch, G.; Giebel, G.

    2007-01-01

    In view of the resource and climate problems, it seems obvious that we must transform our energy system into one using only renewable energies. But questions arise how such a system should be structured, which techniques should be used and, of course, how costly it might be. These questions were the focus of a study which investigated the cost optimum of a future renewable electricity supply for Europe and its closer Asian and African neighbourhood. The resulting scenarios are based on a broad data basis of the electricity consumption and for renewable energies. A linear optimisation determines the best system configuration and temporal dispatch of all components. The outcome of the scenarios can be considered as being a scientific breakthrough since it proves that a totally renewable electricity supply is possible even with current technology and at the same time is affordable for our national economies. In the conservative base case scenario, wind power would dominate the production spread over the better wind areas within the whole supply area, connected with the demand centres via HVDC transmission. The transmission system, furthermore, powerfully integrates the existing storage hydropower to provide for backup co-equally assisted by biomass power and supported by solar thermal electricity. The main results of the different scenarios can be summarized as follows: 1) A totally renewable electricity supply for Europe and its neighbourhood is possible and affordable. 2) Electricity import from non-European neighbour countries can be a very valuable and substantial component of a future supply. 3) Smoothing effects by the use of sources at locations in different climate zones improve the security of the supply and reduce the costs. 4) A large-scale co-operation of many different countries opens up for the possibility to combine the goals of development policy and climate politics in a multilateral win-win strategy. To aid implementation, an international extension

  11. Detection of Defective Sensors in Phased Array Using Compressed Sensing and Hybrid Genetic Algorithm

    Directory of Open Access Journals (Sweden)

    Shafqat Ullah Khan

    2016-01-01

    Full Text Available A compressed sensing based array diagnosis technique has been presented. This technique starts from collecting the measurements of the far-field pattern. The system linking the difference between the field measured using the healthy reference array and the field radiated by the array under test is solved using a genetic algorithm (GA, parallel coordinate descent (PCD algorithm, and then a hybridized GA with PCD algorithm. These algorithms are applied for fully and partially defective antenna arrays. The simulation results indicate that the proposed hybrid algorithm outperforms in terms of localization of element failure with a small number of measurements. In the proposed algorithm, the slow and early convergence of GA has been avoided by combining it with PCD algorithm. It has been shown that the hybrid GA-PCD algorithm provides an accurate diagnosis of fully and partially defective sensors as compared to GA or PCD alone. Different simulations have been provided to validate the performance of the designed algorithms in diversified scenarios.

  12. Measurement based scenario analysis of short-range distribution system planning

    DEFF Research Database (Denmark)

    Chen, Peiyuan; Bak-Jensen, Birgitte; Chen, Zhe

    2009-01-01

    This paper focuses on short-range distribution system planning using a probabilistic approach. Empirical probabilistic distributions of load demand and distributed generations are derived from the historical measurement data and incorporated into the system planning. Simulations with various...... feasible scenarios are performed based on a local distribution system at Støvring in Denmark. Simulation results provide more accurate and insightful information for the decision-maker when using the probabilistic analysis than using the worst-case analysis, so that a better planning can be achieved....

  13. Hybrid simulation: bringing motivation to the art of teamwork training in the operating room.

    Science.gov (United States)

    Kjellin, A; Hedman, L; Escher, C; Felländer-Tsai, L

    2014-12-01

    Crew resource management-based operating room team training will be an evident part of future surgical training. Hybrid simulation in the operating room enables the opportunity for trainees to perform higher fidelity training of technical and non-technical skills in a realistic context. We focus on situational motivation and self-efficacy, two important factors for optimal learning in light of a prototype course for teams of residents in surgery and anesthesiology and nurses. Authentic operating room teams consisting of residents in anesthesia (n = 2), anesthesia nurses (n = 3), residents in surgery (n = 2), and scrub nurses (n = 6) were, during a one-day course, exposed to four different scenarios. Their situational motivation was self-assessed (ranging from 1 = does not correspond at all to 7 = corresponds exactly) immediately after training, and their self-efficacy (graded from 1 to 7) before and after training. Training was performed in a mock-up operating theater equipped with a hybrid patient simulator (SimMan 3G; Laerdal) and a laparoscopic simulator (Lap Mentor Express; Simbionix). The functionality of the systematic hybrid procedure simulation scenario was evaluated by an exit questionnaire (graded from 1 = disagree entirely to 5 = agree completely). The trainees were mostly intrinsically motivated, engaged for their own sake, and had a rather great degree of self-determination toward the training situation. Self-efficacy among the team members improved significantly from 4 to 6 (median). Overall evaluation showed very good result with a median grading of 5. We conclude that hybrid simulation is feasible and has the possibility to train an authentic operating team in order to improve individual motivation and confidence. © The Finnish Surgical Society 2014.

  14. Analysis on geometry-aware received signal strength based ...

    African Journals Online (AJOL)

    These handle different scenarios such as environment, adaptation, hybridization and the choice of context is dependent on user requirements. This paper present geometry-aware received signal strength (RSS) based positioning techniques where the influences of the geometries of the BSs (where location estimation ...

  15. Dynamic Power Management for Portable Hybrid Power-Supply Systems Utilizing Approximate Dynamic Programming

    Directory of Open Access Journals (Sweden)

    Jooyoung Park

    2015-05-01

    Full Text Available Recently, the optimization of power flows in portable hybrid power-supply systems (HPSSs has become an important issue with the advent of a variety of mobile systems and hybrid energy technologies. In this paper, a control strategy is considered for dynamically managing power flows in portable HPSSs employing batteries and supercapacitors. Our dynamic power management strategy utilizes the concept of approximate dynamic programming (ADP. ADP methods are important tools in the fields of stochastic control and machine learning, and the utilization of these tools for practical engineering problems is now an active and promising research field. We propose an ADP-based procedure based on optimization under constraints including the iterated Bellman inequalities, which can be solved by convex optimization carried out offline, to find the optimal power management rules for portable HPSSs. The effectiveness of the proposed procedure is tested through dynamic simulations for smartphone workload scenarios, and simulation results show that the proposed strategy can successfully cope with uncertain workload demands.

  16. Mass Optimization of Battery/Supercapacitors Hybrid Systems Based on a Linear Programming Approach

    Science.gov (United States)

    Fleury, Benoit; Labbe, Julien

    2014-08-01

    The objective of this paper is to show that, on a specific launcher-type mission profile, a 40% gain of mass is expected using a battery/supercapacitors active hybridization instead of a single battery solution. This result is based on the use of a linear programming optimization approach to perform the mass optimization of the hybrid power supply solution.

  17. Conceptual design study for a laser fusion hybrid

    International Nuclear Information System (INIS)

    Maniscalco, J.A.

    1976-09-01

    Lawrence Livermore Laboratory and Bechtel Corporation have been involved in a joint effort to conceptually design a laser fusion hybrid reactor. The design which has evolved is a depleted-uranium fueled fast-fission blanket which produces fissile plutonium and electricity. A major objective of the design study was to evaluate the feasibility of producing fissile fuel with laser fusion. This feasibility evaluation was carried out by analyzing the integrated engineering performance of the complete conceptual design and by identifying the required laser/pellet performance. The performance of the laser fusion hybrid has also been compared to a typical fast breeder reactor. The results show that the laser fusion hybrid produces enough fissile material to fuel more than six light water reactors (LWR's) of equivalent thermal power while operating in a regime which requires an order of magnitude less laser and pellet performance than pure laser fusion. In comparison to a fast breeder reactor the hybrid produces 10 times more fissile fuel. An economic analysis of the design shows that the cost of electricity in a combined hybrid-LWR scenario is insensitive to the capital cost of the hybrid, increasing by only 20 to 40 percent when the capital cost of the hybrid ranges from 2 to 3 times more than an LWR

  18. A Hybrid Genetic Algorithm for the Multiple Crossdocks Problem

    Directory of Open Access Journals (Sweden)

    Zhaowei Miao

    2012-01-01

    Full Text Available We study a multiple crossdocks problem with supplier and customer time windows, where any violation of time windows will incur a penalty cost and the flows through the crossdock are constrained by fixed transportation schedules and crossdock capacities. We prove this problem to be NP-hard in the strong sense and therefore focus on developing efficient heuristics. Based on the problem structure, we propose a hybrid genetic algorithm (HGA integrating greedy technique and variable neighborhood search method to solve the problem. Extensive experiments under different scenarios were conducted, and results show that HGA outperforms CPLEX solver, providing solutions in realistic timescales.

  19. Scenarios for remote gas production

    International Nuclear Information System (INIS)

    Tangen, Grethe; Molnvik, Mona J.

    2009-01-01

    The amount of natural gas resources accessible via proven production technology and existing infrastructure is declining. Therefore, smaller and less accessible gas fields are considered for commercial exploitation. The research project Enabling production of remote gas builds knowledge and technology aiming at developing competitive remote gas production based on floating LNG and chemical gas conversion. In this project, scenarios are used as basis for directing research related to topics that affect the overall design and operation of such plants. Selected research areas are safety, environment, power supply, operability and control. The paper summarises the scenario building process as a common effort among research institutes and industry. Further, it documents four scenarios for production of remote gas and outlines how the scenarios are applied to establish research strategies and adequate plans in a multidisciplinary project. To ensure relevance of the scenarios, it is important to adapt the building process to the current problem and the scenarios should be developed with extensive participation of key personnel.

  20. Scenario based optimization of a container vessel with respect to its projected operating conditions

    Science.gov (United States)

    Wagner, Jonas; Binkowski, Eva; Bronsart, Robert

    2014-06-01

    In this paper the scenario based optimization of the bulbous bow of the KRISO Container Ship (KCS) is presented. The optimization of the parametrically modeled vessel is based on a statistically developed operational profile generated from noon-to-noon reports of a comparable 3600 TEU container vessel and specific development functions representing the growth of global economy during the vessels service time. In order to consider uncertainties, statistical fluctuations are added. An analysis of these data lead to a number of most probable upcoming operating conditions (OC) the vessel will stay in the future. According to their respective likeliness an objective function for the evaluation of the optimal design variant of the vessel is derived and implemented within the parametrical optimization workbench FRIENDSHIP Framework. In the following this evaluation is done with respect to vessel's calculated effective power based on the usage of potential flow code. The evaluation shows, that the usage of scenarios within the optimization process has a strong influence on the hull form.

  1. Scenario group summary

    International Nuclear Information System (INIS)

    Thorndike, A.

    1976-01-01

    A scenario is given for ISABELLE which provides a plausible sequence of events from FY 1980 to 1990. No doubt reality will be quite different. The scenario is based on the construction schedule of the 1976 proposal. Assembly and testing of the accelerator will occur until the end of FY 1983, and the next six years will provide pp interactions for the initial high energy physics research. By 1990 any temporary conditions associated with start-up of ISABELLE should be a thing of the past and all experimental capabilities fully utilized

  2. Scenario group summary

    International Nuclear Information System (INIS)

    Thorndike, A.

    1976-01-01

    The scenario is given which provides a plausible sequence of events for ISABELLE from FY 1980 to 1990. No doubt reality will be quite different. The scenario is based on the construction schedule of the 1976 proposal. Assembly and testing of the accelerator will occur until the end of FY 1983, and the next six years will provide pp interactions for the initial high energy physics research. By 1990 any temporary conditions associated with start-up of ISABELLE should be a thing of the past and all experimental capabilities fully utilized

  3. Cloud computing-based energy optimization control framework for plug-in hybrid electric bus

    International Nuclear Information System (INIS)

    Yang, Chao; Li, Liang; You, Sixiong; Yan, Bingjie; Du, Xian

    2017-01-01

    Considering the complicated characteristics of traffic flow in city bus route and the nonlinear vehicle dynamics, optimal energy management integrated with clustering and recognition of driving conditions in plug-in hybrid electric bus is still a challenging problem. Motivated by this issue, this paper presents an innovative energy optimization control framework based on the cloud computing for plug-in hybrid electric bus. This framework, which includes offline part and online part, can realize the driving conditions clustering in offline part, and the energy management in online part. In offline part, utilizing the operating data transferred from a bus to the remote monitoring center, K-means algorithm is adopted to cluster the driving conditions, and then Markov probability transfer matrixes are generated to predict the possible operating demand of the bus driver. Next in online part, the current driving condition is real-time identified by a well-trained support vector machine, and Markov chains-based driving behaviors are accordingly selected. With the stochastic inputs, stochastic receding horizon control method is adopted to obtain the optimized energy management of hybrid powertrain. Simulations and hardware-in-loop test are carried out with the real-world city bus route, and the results show that the presented strategy could greatly improve the vehicle fuel economy, and as the traffic flow data feedback increases, the fuel consumption of every plug-in hybrid electric bus running in a specific bus route tends to be a stable minimum. - Highlights: • Cloud computing-based energy optimization control framework is proposed. • Driving cycles are clustered into 6 types by K-means algorithm. • Support vector machine is employed to realize the online recognition of driving condition. • Stochastic receding horizon control-based energy management strategy is designed for plug-in hybrid electric bus. • The proposed framework is verified by simulation and hard

  4. Origin of African Physacanthus (Acanthaceae via wide hybridization.

    Directory of Open Access Journals (Sweden)

    Erin A Tripp

    Full Text Available Gene flow between closely related species is a frequent phenomenon that is known to play important roles in organismal evolution. Less clear, however, is the importance of hybridization between distant relatives. We present molecular and morphological evidence that support origin of the plant genus Physacanthus via "wide hybridization" between members of two distantly related lineages in the large family Acanthaceae. These two lineages are well characterized by very different morphologies yet, remarkably, Physacanthus shares features of both. Chloroplast sequences from six loci indicate that all three species of Physacanthus contain haplotypes from both lineages, suggesting that heteroplasmy likely predated speciation in the genus. Although heteroplasmy is thought to be unstable and thus transient, multiple haplotypes have been maintained through time in Physacanthus. The most likely scenario to explain these data is that Physacanthus originated via an ancient hybridization event that involved phylogenetically distant parents. This wide hybridization has resulted in the establishment of an independently evolving clade of flowering plants.

  5. Sneutrino hybrid inflation and nonthermal leptogenesis

    Energy Technology Data Exchange (ETDEWEB)

    Antusch, Stefan; Baumann, Jochen P.; Domcke, Valerie F.; Kostka, Philipp M., E-mail: antusch@mppmu.mpg.de, E-mail: jbaumann@mppmu.mpg.de, E-mail: domcke@mppmu.mpg.de, E-mail: kostka@mppmu.mpg.de [Max-Planck-Institut für Physik (Werner-Heisenberg-Institut), Föhringer Ring 6, 80805 München (Germany)

    2010-10-01

    In sneutrino hybrid inflation the superpartner of one of the right-handed neutrinos involved in the seesaw mechanism plays the role of the inflaton field. It obtains its large mass after the ''waterfall'' phase transition which ends hybrid inflation. After this phase transition the oscillations of the sneutrino inflaton field may dominate the universe and efficiently produce the baryon asymmetry of the universe via nonthermal leptogenesis. We investigate the conditions under which inflation, with primordial perturbations in accordance with the latest WMAP results, as well as successful nonthermal leptogenesis can be realized simultaneously within the sneutrino hybrid inflation scenario. We point out which requirements successful inflation and leptogenesis impose on the seesaw parameters, i.e. on the Yukawa couplings and the mass of the right-handed (s)neutrino, and derive the predictions for the CMB observables in terms of the right-handed (s)neutrino mass and the other relevant model parameters.

  6. Adaptation of Hybrid FSO/RF Communication System Using Puncturing Technique

    Directory of Open Access Journals (Sweden)

    M. N. Khan

    2016-12-01

    Full Text Available Spectrum of radio frequency (RF communications is limited and expensive to install new applications. Free space optical (FSO communication is a viable technology which offers enormous bandwidth, license free installation, inexpensive deployment and error prone links. The FSO links degrade significantly due to the varying atmospheric and weather conditions (fog, cloud, snow, haze and combination of these. We propose a hybrid FSO/RF communication system which adapts the varying nature of atmosphere and weather. For the adaption of varying atmosphere and weather scenarios, we develop a novel optimization algorithm. The proposed algorithm is based on the well-known puncturing technique. We provide an extrinsic information transfer (EXIT chart for the binary and quaternary mapping scheme for the proposed communication system. We simulate the proposed algorithm for the hybrid communication system and analyze the system performance. The proposed algorithm is computationally less expensive and provide better performance gains over varying atmosphere and weather conditions. The algorithm is suitable for fast speed applications.

  7. Constrained Optimization Based on Hybrid Evolutionary Algorithm and Adaptive Constraint-Handling Technique

    DEFF Research Database (Denmark)

    Wang, Yong; Cai, Zixing; Zhou, Yuren

    2009-01-01

    A novel approach to deal with numerical and engineering constrained optimization problems, which incorporates a hybrid evolutionary algorithm and an adaptive constraint-handling technique, is presented in this paper. The hybrid evolutionary algorithm simultaneously uses simplex crossover and two...... mutation operators to generate the offspring population. Additionally, the adaptive constraint-handling technique consists of three main situations. In detail, at each situation, one constraint-handling mechanism is designed based on current population state. Experiments on 13 benchmark test functions...... and four well-known constrained design problems verify the effectiveness and efficiency of the proposed method. The experimental results show that integrating the hybrid evolutionary algorithm with the adaptive constraint-handling technique is beneficial, and the proposed method achieves competitive...

  8. Uranium resources and their implications for fission breeder and fusion hybrid development

    International Nuclear Information System (INIS)

    Max, C.E.

    1984-01-01

    Present estimates of uranium resources and reserves in the US and the non-Communist world are reviewed. The resulting implications are considered for two proposed breeder technologies: the liquid metal fast breeder reactor (LMFBR) and the fusion hybrid reactor. Using both simple arguments and detailed scenarios from the published literature, conditions are explored under which the LMFBR and fusion hybrid could respectively have the most impact, considering both fuel-supply and economic factors. The conclusions emphasize strong potential advantages of the fusion hybrid, due to its inherently large breeding rate. A discussion is presented of proposed US development strategies for the fusion hybrid, which at present is far behind the LMFBR in its practical application and maturity

  9. A tunable hybrid metamaterial absorber based on vanadium oxide films

    International Nuclear Information System (INIS)

    Wen Qiye; Zhang Huaiwu; Yang Qinghui; Long Yang; Jing Yulan; Lin Yuan; Chen Zhi; Zhang Peixin

    2012-01-01

    A tunable hybrid metamaterial absorber (MA) in the microwave band was designed, fabricated and characterized. The hybrid MA was realized by incorporating a VO 2 film into the conventional resonant MA. By thermally triggering the insulator-metal phase transition of the VO 2 film, the impedance match condition was broken and a deep amplitude modulation of about 63.3% to the electromagnetic wave absorption was achieved. A moderate blue-shift of the resonance frequency was observed which is promising for practical applications. This VO 2 -based MA exhibits many advantages such as strong tunability, frequency agility, simple fabrication and ease of scaling to the terahertz band. (paper)

  10. Coordinated control strategy for hybrid wind farms with DFIG-based and PMSG-based wind farms during network unbalance

    DEFF Research Database (Denmark)

    Yao, Jun; Liu, Ruikuo; Zhou, Te

    2017-01-01

    This paper investigates the coordinated control strategy for a hybrid wind farm with doubly fed induction generator (DFIG)-based and direct-driven permanent-magnet synchronous generator (PMSG)-based wind farms during network unbalance. The negative-sequence current output capabilities of DFIG...... to the controllable operating regions, a targets selection scheme for each control unit is proposed to improve the stability of the hybrid wind farms containing both DFIG-based and PMSG-based wind farms during network unbalance, especially to avoid DFIG-based wind farm tripping from connected power grid under severe...... grid voltage unbalance conditions. Finally, the proposed coordinated control strategy is validated by the simulation results of a 30-MW-DFIG-based wind farm and a 30-MW-PMSG-based wind farm under different operation conditions and experimental results on a laboratory-scale experimental rig under severe...

  11. Opposition-Based Memetic Algorithm and Hybrid Approach for Sorting Permutations by Reversals.

    Science.gov (United States)

    Soncco-Álvarez, José Luis; Muñoz, Daniel M; Ayala-Rincón, Mauricio

    2018-02-21

    Sorting unsigned permutations by reversals is a difficult problem; indeed, it was proved to be NP-hard by Caprara (1997). Because of its high complexity, many approximation algorithms to compute the minimal reversal distance were proposed until reaching the nowadays best-known theoretical ratio of 1.375. In this article, two memetic algorithms to compute the reversal distance are proposed. The first one uses the technique of opposition-based learning leading to an opposition-based memetic algorithm; the second one improves the previous algorithm by applying the heuristic of two breakpoint elimination leading to a hybrid approach. Several experiments were performed with one-hundred randomly generated permutations, single benchmark permutations, and biological permutations. Results of the experiments showed that the proposed OBMA and Hybrid-OBMA algorithms achieve the best results for practical cases, that is, for permutations of length up to 120. Also, Hybrid-OBMA showed to improve the results of OBMA for permutations greater than or equal to 60. The applicability of our proposed algorithms was checked processing permutations based on biological data, in which case OBMA gave the best average results for all instances.

  12. Plug-In Hybrid Electric Vehicle Value Proposition Study: Phase 1, Task 3: Technical Requirements and Procedure for Evaluation of One Scenario

    Energy Technology Data Exchange (ETDEWEB)

    Sikes, Karen R [ORNL; Hinds, Shaun [Sentech, Inc.; Hadley, Stanton W [ORNL; McGill, Ralph N [ORNL; Markel, Lawrence C [ORNL; Ziegler, Richard E [ORNL; Smith, David E [ORNL; Smith, Richard L [ORNL; Greene, David L [ORNL; Brooks, Daniel L [ORNL; Wiegman, Herman [GE Global Research; Miller, Nicholas [GE; Marano, Dr. Vincenzo [Ohio State University

    2008-07-01

    In Task 2, the project team designed the Phase 1 case study to represent the 'baseline' plug-in hybrid electric vehicle (PHEV) fleet of 2030 that investigates the effects of seventeen (17) value propositions (see Table 1 for complete list). By creating a 'baseline' scenario, a consistent set of assumptions and model parameters can be established for use in more elaborate Phase 2 case studies. The project team chose southern California as the Phase 1 case study location because the economic, environmental, social, and regulatory conditions are conducive to the advantages of PHEVs. Assuming steady growth of PHEV sales over the next two decades, PHEVs are postulated to comprise approximately 10% of the area's private vehicles (about 1,000,000 vehicles) in 2030. New PHEV models introduced in 2030 are anticipated to contain lithium-ion batteries and be classified by a blended mileage description (e.g., 100 mpg, 150 mpg) that demonstrates a battery size equivalence of a PHEV-30. Task 3 includes the determination of data, models, and analysis procedures required to evaluate the Phase 1 case study scenario. Some existing models have been adapted to accommodate the analysis of the business model and establish relationships between costs and value to the respective consumers. Other data, such as the anticipated California generation mix and southern California drive cycles, have also been gathered for use as inputs. The collection of models that encompasses the technical, economic, and financial aspects of Phase 1 analysis has been chosen and is described in this deliverable. The role of PHEV owners, utilities (distribution systems, generators, independent system operators (ISO), aggregators, or regional transmission operators (RTO)), facility owners, financing institutions, and other third parties are also defined.

  13. HybridPLAY: A New Technology to Foster Outdoors Physical Activity, Verbal Communication and Teamwork.

    Science.gov (United States)

    Díaz, Diego José; Boj, Clara; Portalés, Cristina

    2016-04-23

    This paper presents HybridPLAY, a novel technology composed of a sensor and mobile-based video games that transforms urban playgrounds into game scenarios. With this technology we aim to stimulate physical activity and playful learning by creating an entertaining environment in which users can actively participate and collaborate. HybridPLAY is different from other existing technologies that enhance playgrounds, as it is not integrated in them but can be attached to the different elements of the playgrounds, making its use more ubiquitous (i.e., not restricted to the playgrounds). HybridPLAY was born in 2007 as an artistic concept, and evolved after different phases of research and testing by almost 2000 users around the world (in workshops, artistic events, conferences, etc.). Here, we present the temporal evolution of HybridPLAY with the different versions of the sensors and the video games, and a detailed technical description of the sensors and the way interactions are produced. We also present the outcomes after the evaluation by users at different events and workshops. We believe that HybridPLAY has great potential to contribute to increased physical activity in kids, and also to improve the learning process and monitoring at school centres by letting users create the content of the apps, leading to new narratives and fostering creativity.

  14. Mesoscale hybrid calibration artifact

    Science.gov (United States)

    Tran, Hy D.; Claudet, Andre A.; Oliver, Andrew D.

    2010-09-07

    A mesoscale calibration artifact, also called a hybrid artifact, suitable for hybrid dimensional measurement and the method for make the artifact. The hybrid artifact has structural characteristics that make it suitable for dimensional measurement in both vision-based systems and touch-probe-based systems. The hybrid artifact employs the intersection of bulk-micromachined planes to fabricate edges that are sharp to the nanometer level and intersecting planes with crystal-lattice-defined angles.

  15. A change navigation-based, scenario planning process within a developing world context from an Afro-centric leadership perspective

    Directory of Open Access Journals (Sweden)

    Chris A. Geldenhuys

    2011-02-01

    Research purpose: This study aimed to investigate how scenario-based planning (a strictly cognitive management tool can be combined with organisational change navigation (a practice addressing the emotionality of change and how this integrated process should be aligned with the prerequisites imposed by a developing country context and an Afro-centric leadership perspective in order to make the process more context relevant and aligned. Motivation for the study: The integration of organisational change navigation with conventional scenario based planning, as well as the incorporation of the perquisites of a developing countries and an Afro-centric leadership perspective, will give organisations a more robust, holistic strategic management tool that will add significantly more value within a rapidly, radically and unpredictably changing world. Research design, approach and method: The adopted research approach comprised a combination of the sourcing of the latest thinking in the literature (the ‘theory’ as well as the views of seasoned practitioners of scenario planning (the ‘practice’ through an iterative research process, moving between theory and practice, back to practice and finally returning to theory in order to arrive at a validated expanded and enhanced scenario-based planning process which is both theory and practice ‘proof’. Main findings: A management tool incorporating the change navigation and the unique features of developing countries and Afro-centric leadership was formulated and empirically validated. This management tool is referred to as a change navigation based, scenario planning process (CNBSPP. Practical/managerial implications: CNBSPP is available for use by organisations wishing to apply a strategic planning tool that fits within a developing country context and an Afro-centric leadership approach. Contribution/value add: The research makes a unique contribution to the current level of knowledge by integrating two disciplines

  16. Highly Reproducible Sn-Based Hybrid Perovskite Solar Cells with 9% Efficiency

    NARCIS (Netherlands)

    Shao, Shuyan; Liu, Jian; Portale, Giuseppe; Fang, Hong-Hua; Blake, Graeme R.; ten Brink, Gert H.; Koster, L. Jan Anton; Loi, Maria Antonietta

    2018-01-01

    The low power conversion efficiency (PCE) of tin-based hybrid perovskite solar cells (HPSCs) is mainly attributed to the high background carrier density due to a high density of intrinsic defects such as Sn vacancies and oxidized species (Sn4+) that characterize Sn-based HPSCs. Herein, this study

  17. 25th anniversary article: hybrid nanostructures based on two-dimensional nanomaterials.

    Science.gov (United States)

    Huang, Xiao; Tan, Chaoliang; Yin, Zongyou; Zhang, Hua

    2014-04-09

    Two-dimensional (2D) nanomaterials, such as graphene and transition metal dichalcogenides (TMDs), receive a lot of attention, because of their intriguing properties and wide applications in catalysis, energy-storage devices, electronics, optoelectronics, and so on. To further enhance the performance of their application, these 2D nanomaterials are hybridized with other functional nanostructures. In this review, the latest studies of 2D nanomaterial-based hybrid nanostructures are discussed, focusing on their preparation methods, properties, and applications. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Development of novel biocompatible hybrid nanocomposites based on polyurethane-silica prepared by sol gel process

    Energy Technology Data Exchange (ETDEWEB)

    Rashti, Ali [Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran (Iran, Islamic Republic of); Yahyaei, Hossein [Department of Polymer Engineering and Color Technology, Amirkabir University of Technology, Tehran (Iran, Islamic Republic of); Firoozi, Saman [Department of Tissue Engineering & Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran (Iran, Islamic Republic of); Ramezani, Sara [Department of Neuroscience, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran (Iran, Islamic Republic of); Rahiminejad, Ali [Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran (Iran, Islamic Republic of); Karimi, Roya [Department of Tissue Engineering and Applied Cell Science, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran (Iran, Islamic Republic of); Farzaneh, Khadijeh [Tehran Heart Center, Tehran University of Medical Sciences, Tehran (Iran, Islamic Republic of); Mohseni, Mohsen [Department of Polymer Engineering and Color Technology, Amirkabir University of Technology, Tehran (Iran, Islamic Republic of); Ghanbari, Hossein, E-mail: hghanbari@tums.ac.ir [Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran (Iran, Islamic Republic of); Tehran Heart Center, Tehran University of Medical Sciences, Tehran (Iran, Islamic Republic of); Medical Biomaterials Research Center, Tehran University of Medical Sciences, Tehran (Iran, Islamic Republic of)

    2016-12-01

    Due to high biocompatibility, polyurethane has found many applications, particularly in development of biomedical devices. A new nanocomposite based on thermoset polyurethane and silica nanoparticles was synthesized using sol-gel method. Sol-gel process was fulfilled in two acidic and basic conditions by using tetraethylorthosilicate (TEOS) and trimethoxyisocyanatesilane as precursors. The hybrid films characterized for mechanical and surface properties using tensile strength, contact angle, ATR-FTIR and scanning electron microscopy. Biocompatibility and cytotoxicity of the hybrids were assessed using standard MTT, LDH and TUNEL assays. The results revealed that incorporation of silica nanoparticles was significantly improved tensile strength and mechanical properties of the hybrids. Based on the contact angle results, silica nanoparticles increased hydrophilicity of the hybrids. Biocompatibility by using human lung epithelial cell line (MRC-5) demonstrated that the hybrids were significantly less cytotoxic compared to pristine polymer as tested by MTT and LDH assays. TUNEL assay revealed no signs of apoptosis in all tested samples. The results of this study demonstrated that incorporation of silica nanoparticles into polyurethane lead to the enhancement of biocompatibility, indicating that these hybrids could potentially be used in biomedical field in particular as a new coating for medical implants. - Highlights: • Nanocomposites based on polyurethane and nanosilica prepared by sol-gel method fabricated • Addition of inorganic phase improved mechanical properties. • Nanosilica prepared by sol-gel method increased hydrophilicity. • By adding nanosilica to polyurethane biocompatibility increased significantly.

  19. Structural hybrid reliability index and its convergent solving method based on random–fuzzy–interval reliability model

    Directory of Open Access Journals (Sweden)

    Hai An

    2016-08-01

    Full Text Available Aiming to resolve the problems of a variety of uncertainty variables that coexist in the engineering structure reliability analysis, a new hybrid reliability index to evaluate structural hybrid reliability, based on the random–fuzzy–interval model, is proposed in this article. The convergent solving method is also presented. First, the truncated probability reliability model, the fuzzy random reliability model, and the non-probabilistic interval reliability model are introduced. Then, the new hybrid reliability index definition is presented based on the random–fuzzy–interval model. Furthermore, the calculation flowchart of the hybrid reliability index is presented and it is solved using the modified limit-step length iterative algorithm, which ensures convergence. And the validity of convergent algorithm for the hybrid reliability model is verified through the calculation examples in literature. In the end, a numerical example is demonstrated to show that the hybrid reliability index is applicable for the wear reliability assessment of mechanisms, where truncated random variables, fuzzy random variables, and interval variables coexist. The demonstration also shows the good convergence of the iterative algorithm proposed in this article.

  20. A diagnostic expert system for NPP based on hybrid knowledge approach

    International Nuclear Information System (INIS)

    Yang, Joon On; Chang, Soon Heung

    1989-01-01

    This paper describes a diagnostic expert system, HYPOSS (Hybrid Knowledge Based Plant Operation Supporting System), which has been developed to support operators' decision making during the transients of nuclear power plant. HYPOSS adopts the hybrid knowledge approach which combines shallow and deep knowledge to couple the merits of both approaches. In HYPOSS, four types of knowledge are used according to the steps of diagnosis procedure: structural, functional, behavioral and heuristic knowledge. The structural and functional knowledge is represented by three fundamental primitives and five types of functions respectively. The behavioral knowledge is represented using constraints. The inference procedure is based on the human problem solving behavior modeled in HYPOSS. For the validation of HYPOSS, several tests have been performed based on the data produced by a plant simulator. The results of validation studies showed a good applicability of HYPOSS to the anomaly diagnosis of nuclear power plant

  1. [The effect of a scenario-based simulation communication course on improving the communication skills of nurses].

    Science.gov (United States)

    Huang, Ya-Hsuan; Hsieh, Suh-Ing; Hsu, Li-Ling

    2014-04-01

    Limited disease knowledge is frequently the cause of disease-related anxiety in myocardial infarction patients. The ability to communicate effectively serves multiple purposes in the professional nursing practice. By communicating effectively with myocardial infarction patients, nurses may help reduce their anxiety by keeping them well informed about their disease and teaching them self-care strategies. This research evaluates the communication skills of nurses following scenario-based simulation education in the context of communication with myocardial infarction patients. This study used an experimental design and an educational intervention. The target population comprised nurses of medicine (clinical qualified level N to N2 for nursing) working at a municipal hospital in Taipei City, Taiwan. A total 122 participants were enrolled. Stratified block randomization divided participants into an experimental group and a control group. The experimental group received clinical scenario-based simulation education for communication. The control group received traditional class-based education for communication. Both groups received a pre-test and a Communication Skills Checklist post-test assessment. Results were analyzed using SPSS 17.0 for Windows software. A t-test showed significant increases in communication skills (p skills following the education intervention. The results indicate that clinical scenario-based simulation education for communication is significantly more effective than traditional class-based education in enhancing the ability of nurses to communicate effectively with myocardial infarction patients.

  2. A Quantum Hybrid PSO Combined with Fuzzy k-NN Approach to Feature Selection and Cell Classification in Cervical Cancer Detection

    Directory of Open Access Journals (Sweden)

    Abdullah M. Iliyasu

    2017-12-01

    Full Text Available A quantum hybrid (QH intelligent approach that blends the adaptive search capability of the quantum-behaved particle swarm optimisation (QPSO method with the intuitionistic rationality of traditional fuzzy k-nearest neighbours (Fuzzy k-NN algorithm (known simply as the Q-Fuzzy approach is proposed for efficient feature selection and classification of cells in cervical smeared (CS images. From an initial multitude of 17 features describing the geometry, colour, and texture of the CS images, the QPSO stage of our proposed technique is used to select the best subset features (i.e., global best particles that represent a pruned down collection of seven features. Using a dataset of almost 1000 images, performance evaluation of our proposed Q-Fuzzy approach assesses the impact of our feature selection on classification accuracy by way of three experimental scenarios that are compared alongside two other approaches: the All-features (i.e., classification without prior feature selection and another hybrid technique combining the standard PSO algorithm with the Fuzzy k-NN technique (P-Fuzzy approach. In the first and second scenarios, we further divided the assessment criteria in terms of classification accuracy based on the choice of best features and those in terms of the different categories of the cervical cells. In the third scenario, we introduced new QH hybrid techniques, i.e., QPSO combined with other supervised learning methods, and compared the classification accuracy alongside our proposed Q-Fuzzy approach. Furthermore, we employed statistical approaches to establish qualitative agreement with regards to the feature selection in the experimental scenarios 1 and 3. The synergy between the QPSO and Fuzzy k-NN in the proposed Q-Fuzzy approach improves classification accuracy as manifest in the reduction in number cell features, which is crucial for effective cervical cancer detection and diagnosis.

  3. Monitoring of beer fermentation based on hybrid electronic tongue.

    Science.gov (United States)

    Kutyła-Olesiuk, Anna; Zaborowski, Michał; Prokaryn, Piotr; Ciosek, Patrycja

    2012-10-01

    Monitoring of biotechnological processes, including fermentation is extremely important because of the rapidly occurring changes in the composition of the samples during the production. In the case of beer, the analysis of physicochemical parameters allows for the determination of the stage of fermentation process and the control of its possible perturbations. As a tool to control the beer production process a sensor array can be used, composed of potentiometric and voltammetric sensors (so-called hybrid Electronic Tongue, h-ET). The aim of this study is to apply electronic tongue system to distinguish samples obtained during alcoholic fermentation. The samples originate from batch of homemade beer fermentation and from two stages of the process: fermentation reaction and maturation of beer. The applied sensor array consists of 10 miniaturized ion-selective electrodes (potentiometric ET) and silicon based 3-electrode voltammetric transducers (voltammetric ET). The obtained results were processed using Partial Least Squares (PLS) and Partial Least Squares-Discriminant Analysis (PLS-DA). For potentiometric data, voltammetric data, and combined potentiometric and voltammetric data, comparison of the classification ability was conducted based on Root Mean Squared Error (RMSE), sensitivity, specificity, and coefficient F calculation. It is shown, that in the contrast to the separately used techniques, the developed hybrid system allowed for a better characterization of the beer samples. Data fusion in hybrid ET enables to obtain better results both in qualitative analysis (RMSE, specificity, sensitivity) and in quantitative analysis (RMSE, R(2), a, b). Copyright © 2012 Elsevier B.V. All rights reserved.

  4. Supply Chain Vulnerability Analysis Using Scenario-Based Input-Output Modeling: Application to Port Operations.

    Science.gov (United States)

    Thekdi, Shital A; Santos, Joost R

    2016-05-01

    Disruptive events such as natural disasters, loss or reduction of resources, work stoppages, and emergent conditions have potential to propagate economic losses across trade networks. In particular, disruptions to the operation of container port activity can be detrimental for international trade and commerce. Risk assessment should anticipate the impact of port operation disruptions with consideration of how priorities change due to uncertain scenarios and guide investments that are effective and feasible for implementation. Priorities for protective measures and continuity of operations planning must consider the economic impact of such disruptions across a variety of scenarios. This article introduces new performance metrics to characterize resiliency in interdependency modeling and also integrates scenario-based methods to measure economic sensitivity to sudden-onset disruptions. The methods will be demonstrated on a U.S. port responsible for handling $36.1 billion of cargo annually. The methods will be useful to port management, private industry supply chain planning, and transportation infrastructure management. © 2015 Society for Risk Analysis.

  5. Hybrid silica luminescent materials based on lanthanide-containing lyotropic liquid crystal with polarized emission

    Energy Technology Data Exchange (ETDEWEB)

    Selivanova, N.M., E-mail: natsel@mail.ru [Kazan National Research Technological University, 68 Karl Marx Str., Kazan 420015 (Russian Federation); Vandyukov, A.E.; Gubaidullin, A.T. [A.E. Arbuzov Institute of Organic and Physical Chemistry of the Kazan Scientific Center of the Russian Academy of Sciences, 8 Acad. Arbuzov Str., Kazan 420088 (Russian Federation); Galyametdinov, Y.G. [Kazan National Research Technological University, 68 Karl Marx Str., Kazan 420015 (Russian Federation)

    2014-11-14

    This paper represents the template method for synthesis of hybrid silica films based on Ln-containing lyotropic liquid crystal and characterized by efficient luminescence. Luminescence films were prepared in situ by the sol–gel processes. Lyotropic liquid crystal (LLC) mesophases C{sub 12}H{sub 25}O(CH{sub 2}CH{sub 2}O){sub 10}H/Ln(NO{sub 3}){sub 3}·6H{sub 2}O/H{sub 2}O containing Ln (III) ions (Dy, Tb, Eu) were used as template. Polarized optical microscopy, X-ray powder diffraction, and FT-IR-spectroscopy were used for characterization of liquid crystal mesophases and hybrid films. The morphology of composite films was studied by the atomic force microscopy method (AFM). The optical properties of the resulting materials were evaluated. It was found that hybrid silica films demonstrate significant increase of their lifetime in comparison with an LLC system. New effects of linearly polarized emission revealed for Ln-containing hybrid silica films. Polarization in lanthanide-containing hybrid composites indicates that silica precursor causes orientation of emitting ions. - Highlights: • We suggest a new simple approach for creating luminescence hybrid silica films. • Ln-containing hybrid silica films demonstrate yellow, green and red emissions. • Tb(III)-containing hybrid film have a high lifetime. • We report effects of linearly polarized emission in hybrid film.

  6. Physician consensus on preventability and predictability of readmissions based on standard case scenarios

    DEFF Research Database (Denmark)

    van Galen, L. S.; Cooksley, T; Merten, H

    2016-01-01

    Background: Policy makers struggle with unplanned readmissions as a quality indicator since integrating preventability in such indicators is difficult. Most studies on the preventability of readmissions questioned physicians whether they consider a given readmission to be preventable, from which...... conclusions on factors predicting preventable readmissions were derived. There is no literature on the interobserver agreement of physician judgement. Aim: To assess the degree of agreement among physicians regarding predictability and preventability of medical readmissions. Design: An online survey based...... on eight real-life case scenarios was distributed to European physicians. Methods: Physicians were requested to rate from the first four (index admission) scenarios whether they expected these patients to be readmitted within 30 days (the predictability). The remaining four cases, describing a readmission...

  7. Energy efficiency in hybrid mobile and wireless networks

    Energy Technology Data Exchange (ETDEWEB)

    Abbas, Ziaul Haq

    2012-07-01

    . Towards this direction, various solutions have been proposed, ranging from deployment strategies for base stations to cooperative techniques etc. However, as base stations have the largest share in a network's energy consumption, methods that allow lightly-loaded base stations sleep or be switched off are possible means as a feasible step towards green communications. In this dissertation, we tackle the above mentioned problems from two perspectives, i.e., mobile station's and operator's perspectives. More specifically, by taking into account the amount of transferred data in uplinks and downlinks individually for various components in a hybrid network, strategies are proposed to reduce mobile station's battery energy consumption. For this purpose, other parameters such as link distance and remaining battery energy can also be considered for handover decision making, in order to maximize energy efficiency of the mobile station. To optimize long-term energy consumption of the mobile stations operated in such scenarios, a Markov decision process-based methodology is proposed as our contribution to this topic. Moreover, from operator's perspective, a network energy conservation scheme which may switch off a base station is proposed for micro- or pico-cells scenarios. Both deterministic and probabilistic schemes are proposed for network energy conservation. The problems considered and the solutions proposed in this dissertation advance the frontiers of the research work within the theme of energy efficiency for mobile devices as well as hybrid mobile and wireless networks.(Author)

  8. Hybrid task priority-based motion control of a redundant free-floating space robot

    Directory of Open Access Journals (Sweden)

    Cheng ZHOU

    2017-12-01

    Full Text Available This paper presents a novel hybrid task priority-based motion planning algorithm of a space robot. The satellite attitude control task is defined as the primary task, while the least-squares-based non-strict task priority solution of the end-effector plus the multi-constraint task is viewed as the secondary task. Furthermore, a null-space task compensation strategy in the joint space is proposed to derive the combination of non-strict and strict task-priority motion planning, and this novel combination is termed hybrid task priority control. Thus, the secondary task is implemented in the primary task’s null-space. Besides, the transition of the state of multiple constraints between activeness and inactiveness will only influence the end-effector task without any effect on the primary task. A set of numerical experiments made in a real-time simulation system under Linux/RTAI shows the validity and feasibility of the proposed methodology. Keywords: Base attitude control, Hybrid task-priority, Motion planning, Multiple constraints, Redundant space robot

  9. Supporting conceptual product design by hybrid simulation of use processes with scenario structures

    NARCIS (Netherlands)

    Van der Vegte, W.F.; Horváth, I.

    2007-01-01

    The approach described in this paper aims to offer designers a new way to investigate use processes of products by integrating scenarios of expected user behaviour with simulations of physical artefact behaviour. Use is considered a key process in the life cycle of a product, being the phase in

  10. Hybrid Energy System Design of Micro Hydro-PV-biogas Based Micro-grid

    Science.gov (United States)

    Nishrina; Abdullah, A. G.; Risdiyanto, A.; Nandiyanto, ABD

    2017-03-01

    Hybrid renewable energy system is an arrangement of one or more sources of renewable energy and also conventional energy. This paper describes a simulation results of hybrid renewable power system based on the available potential in an educational institution in Indonesia. HOMER software was used to simulate and analyse both in terms of optimization and economic terms. This software was developed through 3 main principles; simulation, optimization, and sensitivity analysis. Generally, the presented results show that the software can demonstrate a feasible hybrid power system as well to be realized. The entire demand in case study area can be supplied by the system configuration and can be met by ¾ of electricity production. So, there are ¼ of generated energy became an excess electricity.

  11. Model-Based Military Scenario Management for Defence Capability

    National Research Council Canada - National Science Library

    Gori, Ronnie; Chen, Pin; Pozgay, Angela

    2004-01-01

    .... This paper describes initial work towards the development of an information model that links scenario and capability related information, and the results of capability analysis and experimentation...

  12. Photo-thermal characteristics of hybrid nanofluids based on Therminol-55 oil for concentrating solar collectors

    Science.gov (United States)

    Gulzar, Ovais; Qayoum, Adnan; Gupta, Rajat

    2018-03-01

    Hybrid nanofluids are the new generation efficient heat transfer fluids allowing greater control over the properties of base fluid as compared to mono-nanofluids. In this study, attempt has been made for increasing the efficiency for photo-thermal conversion by heat transfer fluid for high temperature solar collectors. Therminol-55, a high temperature heat transfer fluid is doped with Al2O3 and TiO2 nanoparticles with an aim to improve the thermal and optical properties. Effects of concentration and type of nanoparticle on photo-thermal conversion properties and absorbance in Therminol-55 have been studied. Spectrophotometric analysis has been carried for all nanofluids, namely, Al2O3-Therminol-55, TiO2-Therminol-55 and hybrid (Al2O3-TiO2)-Therminol-55 nanofluids with varying concentrations of 0.05, 0.075, 0.1, 0.25, 0.5 wt%. It was found that TiO2 nanofluids possess the maximum absorbance with minimal effect of nanoparticle concentration above 0.1 wt% followed by hybrid (Al2O3-TiO2) nanofluid (HNF) with strong dependence of concentration. Al2O3-Therminol-55 nanofluids exhibited least absorbance. The peak values of absorbance are 0.47, 2.15 and 2.144 in the visible region for Al2O3-Therminol-55, TiO2-Therminol-55 and hybrid (Al2O3-TiO2)-Therminol-55 nanofluids, respectively. It was observed that hybrid nanofluids show both bathochromic and hyperchromic shifts. Further, performance testing has been carried out using artificial source of light and it has been observed that hybrid nanofluids provide efficient photo-thermal conversion as compared to TiO2 and Al2O3-Therminol-55 nanofluids. Maximum temperatures of 152.9, 149.6, 158.6 °C were observed for 0.5 wt% Al2O3-Therminol-55, 0.1 wt% TiO2-Therminol-55, and 0.5 wt% hybrid (Al2O3-TiO2) nanofluid, respectively, against 125.8 °C of Therminol-55. Hybrid nanofluids based on Therminol-55 could be a potential candidate for high temperature concentrating collectors based on the superior properties over mono-nanofluids and

  13. Stochastic Dynamic AC Optimal Power Flow Based on a Multivariate Short-Term Wind Power Scenario Forecasting Model

    Directory of Open Access Journals (Sweden)

    Wenlei Bai

    2017-12-01

    Full Text Available The deterministic methods generally used to solve DC optimal power flow (OPF do not fully capture the uncertainty information in wind power, and thus their solutions could be suboptimal. However, the stochastic dynamic AC OPF problem can be used to find an optimal solution by fully capturing the uncertainty information of wind power. That uncertainty information of future wind power can be well represented by the short-term future wind power scenarios that are forecasted using the generalized dynamic factor model (GDFM—a novel multivariate statistical wind power forecasting model. Furthermore, the GDFM can accurately represent the spatial and temporal correlations among wind farms through the multivariate stochastic process. Fully capturing the uncertainty information in the spatially and temporally correlated GDFM scenarios can lead to a better AC OPF solution under a high penetration level of wind power. Since the GDFM is a factor analysis based model, the computational time can also be reduced. In order to further reduce the computational time, a modified artificial bee colony (ABC algorithm is used to solve the AC OPF problem based on the GDFM forecasting scenarios. Using the modified ABC algorithm based on the GDFM forecasting scenarios has resulted in better AC OPF’ solutions on an IEEE 118-bus system at every hour for 24 h.

  14. Resizing Technique-Based Hybrid Genetic Algorithm for Optimal Drift Design of Multistory Steel Frame Buildings

    Directory of Open Access Journals (Sweden)

    Hyo Seon Park

    2014-01-01

    Full Text Available Since genetic algorithm-based optimization methods are computationally expensive for practical use in the field of structural optimization, a resizing technique-based hybrid genetic algorithm for the drift design of multistory steel frame buildings is proposed to increase the convergence speed of genetic algorithms. To reduce the number of structural analyses required for the convergence, a genetic algorithm is combined with a resizing technique that is an efficient optimal technique to control the drift of buildings without the repetitive structural analysis. The resizing technique-based hybrid genetic algorithm proposed in this paper is applied to the minimum weight design of three steel frame buildings. To evaluate the performance of the algorithm, optimum weights, computational times, and generation numbers from the proposed algorithm are compared with those from a genetic algorithm. Based on the comparisons, it is concluded that the hybrid genetic algorithm shows clear improvements in convergence properties.

  15. Scenarios in society, society in scenarios: toward a social scientific analysis of storyline-driven environmental modeling

    International Nuclear Information System (INIS)

    Garb, Yaakov; Pulver, Simone; VanDeveer, Stacy D

    2008-01-01

    Scenario analysis, an approach to thinking about alternative futures based on storyline-driven modeling, has become increasingly common and important in attempts to understand and respond to the impacts of human activities on natural systems at a variety of scales. The construction of scenarios is a fundamentally social activity, yet social scientific perspectives have rarely been brought to bear on it. Indeed, there is a growing imbalance between the increasing technical sophistication of the modeling elements of scenarios and the continued simplicity of our understanding of the social origins, linkages, and implications of the narratives to which they are coupled. Drawing on conceptual and methodological tools from science and technology studies, sociology and political science, we offer an overview of what a social scientific analysis of scenarios might include. In particular, we explore both how scenarios intervene in social microscale and macroscale contexts and how aspects of such contexts are embedded in scenarios, often implicitly. Analyzing the social 'work' of scenarios (i) can enhance the understanding of scenario developers and modeling practitioners of the knowledge production processes in which they participate and (ii) can improve the utility of scenario products as decision-support tools to actual, rather than imagined, decision-makers.

  16. Investigation of Υ Dor - δ Sct hybrid stars based on high precission space photometry and complementary ground based spectroscopy

    International Nuclear Information System (INIS)

    Hareter, M.

    2013-01-01

    Stellar pulsation carries information on the physical condition within the star. While pressure modes (p modes) probe the outer layers of a star, gravity modes (g modes) penetrate deep into the radiative zone and thus carry valuable information on the physical conditions there. gamma Dor stars are stars that pulsate in such modes, apart from white dwarfs and slowly pulsating B (SPB) stars. Therefore, these stars are important test benches for stellar evolution and pulsation theory. delta Sct - gamma Dor hybrids are stars that pulsate like gamma Dor stars with g modes but also with p modes as the delta Sct stars do. This makes them even more suited for asteroseismology. The CoRoT long runs offer a great opportunity to analyse a large sample of stars observed homogeneously, uninterrupted and long time base of about 150 days, which is practically unachievable with ground based observation. Since space missions avoid the scintillation caused by the Earth's atmosphere, they allow to detect stellar oscillations on a sub-millimagnitude level even for stars as faint as 15th magnitude. The photometric data is supplemented by AAOmega classification spectroscopy, allowing to determine effective tem- peratures and surface gravity. With these data a statistical approach was adopted to describe the pulsation behaviour gamma Dor and delta Sct - gamma Dor hybrid stars. A temperature - period relation was found for gamma Dor and delta Sct stars, but none for delta Sct - gamma Dor hybrid stars, when considering their strongest g mode or p mode, respectively. The instability domain of hybrid stars is equal to that of delta Sct stars and is not con- fined to the overlapping region of the delta Sct and gamma Dor IS in the Hertzsprung- Russell diagram. Hybrid stars behave differently in the g mode regime than gamma Dor stars, which poses a serious question on how to define properly a delta Sct - gamma Dor hybrid. The convective flux blocking mechanism is supposed to work for stars

  17. Hybrid Neuro-Fuzzy Classifier Based On Nefclass Model

    Directory of Open Access Journals (Sweden)

    Bogdan Gliwa

    2011-01-01

    Full Text Available The paper presents hybrid neuro-fuzzy classifier, based on NEFCLASS model, which wasmodified. The presented classifier was compared to popular classifiers – neural networks andk-nearest neighbours. Efficiency of modifications in classifier was compared with methodsused in original model NEFCLASS (learning methods. Accuracy of classifier was testedusing 3 datasets from UCI Machine Learning Repository: iris, wine and breast cancer wisconsin.Moreover, influence of ensemble classification methods on classification accuracy waspresented.

  18. Model-based design approaches for plug-in hybrid vehicle design

    Energy Technology Data Exchange (ETDEWEB)

    Mendes, C.J. [CrossChasm Technologies, Cambridge, ON (Canada); Stevens, M.B.; Fowler, M.W. [Waterloo Univ., ON (Canada). Dept. of Chemical Engineering; Fraser, R.A. [Waterloo Univ., ON (Canada). Dept. of Mechanical Engineering; Wilhelm, E.J. [Paul Scherrer Inst., Villigen (Switzerland). Energy Systems Analysis

    2007-07-01

    A model-based design process for plug-in hybrid vehicles (PHEVs) was presented. The paper discussed steps between the initial design concept and a working vehicle prototype, and focused on an investigation of the software-in-the-loop (SIL), hardware-in-the-loop (HIL), and component-in-the-loop (CIL) design phases. The role and benefits of using simulation were also reviewed. A method for mapping and identifying components was provided along with a hybrid control strategy and component-level control optimization process. The role of simulation in component evaluation, architecture design, and de-bugging procedures was discussed, as well as the role simulation networks can play in speeding deployment times. The simulations focused on work performed on a 2005 Chevrolet Equinox converted to a fuel cell hybrid electric vehicle (FCHEV). Components were aggregated to create a complete virtual vehicle. A simplified vehicle model was implemented onto the on-board vehicle control hardware. Optimization metrics were estimated at 10 alpha values during each control loop iteration. The simulation was then used to tune the control system under a variety of drive cycles and conditions. A CIL technique was used to place a physical hybrid electric vehicle (HEV) component under the control of a real time HEV/PHEV simulation. It was concluded that controllers should have a standardized component description that supports integration into advanced testing procedures. 4 refs., 9 figs.

  19. Deterministic earthquake scenarios for the city of Sofia

    International Nuclear Information System (INIS)

    Slavov, S.; Paskaleva, I.; Kouteva, M.; Vaccari, P.; Panza, G.F.

    2002-08-01

    The city of Sofia is exposed to a high seismic risk. Macroseismic intensities in the range of VIII-X (MSK) can be expected in the city. The earthquakes, that can influence the hazard at Sofia, originate either beneath the city or are caused by seismic sources located within a radius of 40km. The city of Sofia is also prone to the remote Vrancea seismic zone in Romania, and particularly vulnerable are the long - period elements of the built environment. The high seismic risk and the lack of instrumental recordings of the regional seismicity makes the use of appropriate credible earthquake scenarios and ground motion modelling approaches for defining the seismic input for the city of Sofia necessary. Complete synthetic seismic signals, due to several earthquake scenarios, were computed along chosen geological profiles crossing the city, applying a hybrid technique, based on the modal summation technique and finite differences. The modelling takes into account simultaneously the geotechnical properties of the site, the position and geometry of the seismic source and the mechanical properties of the propagation medium. Acceleration, velocity and displacement time histories and related quantities of earthquake engineering interest (e.g. response spectra, ground motion amplification along the profiles) have been supplied. The approach applied in this study allows us to obtain the definition of the seismic input at low cost exploiting large quantities of existing data (e.g. geotechnical, geological, seismological). It may be efficiently used to estimate the ground motion for the purposes of microzonation, urban planning, retrofitting or insurance of the built environment, etc. (author)

  20. Optical fiber-based core-shell coaxially structured hybrid cells for self-powered nanosystems

    Energy Technology Data Exchange (ETDEWEB)

    Pan, Caofeng; Zhu, Guang [School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia (United States); Guo, Wenxi [School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia (United States); State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005 (China); Dong, Lin [School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia (United States); School of Materials Science and Enginnering, Zhenzhou University, Zhenghou 450001 (China); Wang, Zhong Lin [School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia (United States); Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing (China)

    2012-07-03

    An optical fiber-based 3D hybrid cell consisting of a coaxially structured dye-sensitized solar cell (DSSC) and a nanogenerator (NG) for simultaneously or independently harvesting solar and mechanical energy is demonstrated. The current output of the hybrid cell is dominated by the DSSC, and the voltage output is dominated by the NG; these can be utilized complementarily for different applications. The output of the hybrid cell is about 7.65 {mu}A current and 3.3 V voltage, which is strong enough to power nanodevices and even commercial electronic components. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  1. A global hybrid coupled model based on atmosphere-SST feedbacks

    Energy Technology Data Exchange (ETDEWEB)

    Cimatoribus, Andrea A.; Drijfhout, Sybren S. [Royal Netherlands Meteorological Institute, De Bilt (Netherlands); Dijkstra, Henk A. [Utrecht University, Institute for Marine and Atmospheric Research Utrecht, Utrecht (Netherlands)

    2012-02-15

    A global hybrid coupled model is developed, with the aim of studying the effects of ocean-atmosphere feedbacks on the stability of the Atlantic meridional overturning circulation. The model includes a global ocean general circulation model and a statistical atmosphere model. The statistical atmosphere model is based on linear regressions of data from a fully coupled climate model on sea surface temperature both locally and hemispherically averaged, being the footprint of Atlantic meridional overturning variability. It provides dynamic boundary conditions to the ocean model for heat, freshwater and wind-stress. A basic but consistent representation of ocean-atmosphere feedbacks is captured in the hybrid coupled model and it is more than 10 times faster than the fully coupled climate model. The hybrid coupled model reaches a steady state with a climate close to the one of the fully coupled climate model, and the two models also have a similar response (collapse) of the Atlantic meridional overturning circulation to a freshwater hosing applied in the northern North Atlantic. (orig.)

  2. The design of scenario-based training from the resilience engineering perspective: a study with grid electricians.

    Science.gov (United States)

    Saurin, Tarcisio Abreu; Wachs, Priscila; Righi, Angela Weber; Henriqson, Eder

    2014-07-01

    Although scenario-based training (SBT) can be an effective means to help workers develop resilience skills, it has not yet been analyzed from the resilience engineering (RE) perspective. This study introduces a five-stage method for designing SBT from the RE view: (a) identification of resilience skills, work constraints and actions for re-designing the socio-technical system; (b) design of template scenarios, allowing the simulation of the work constraints and the use of resilience skills; (c) design of the simulation protocol, which includes briefing, simulation and debriefing; (d) implementation of both scenarios and simulation protocol; and (e) evaluation of the scenarios and simulation protocol. It is reported how the method was applied in an electricity distribution company, in order to train grid electricians. The study was framed as an application of design science research, and five research outputs are discussed: method, constructs, model of the relationships among constructs, instantiations of the method, and theory building. Concerning the last output, the operationalization of the RE perspective on three elements of SBT is presented: identification of training objectives; scenario design; and debriefing. Copyright © 2013 Elsevier Ltd. All rights reserved.

  3. Conceptual design study for a laser fusion hybrid

    International Nuclear Information System (INIS)

    Maniscalco, J.A.

    1976-01-01

    Lawrence Livermore Laboratory and Bechtel Corporation have been involved in a joint effort to conceptually design a laser fusion hybrid reactor. The design which has evolved is a depleted-uranium fueled fast-fission blanket which produces fissile plutonium and electricity. A major objective of the design study was to evaluate the feasibility of producing fissile fuel with laser fusion. This feasibility evaluation was carried out by analyzing the integrated engineering performance of the complete conceptual design and by identifying the required laser/pellet performance. The performance of the laser fusion hybrid has also been compared to a typical fast breeder reactor. The results show that the laser fusion hybrid produces enough fissile material to fuel more than six light water reactors (LWRs) of equivalent thermal power while operating in a regime which requires an order of magnitude less laser and pellet performance than pure laser fusion. In comparison to a fast breeder reactor the hybrid produces 10 times more fissile fuel. An economic analysis of the design shows that the cost of electricity in a combined hybrid-LWR scenario increases by only 20 to 40 percent when the capital cost of the hybrid ranges from 2 to 3 times more than an LWR

  4. Study of PDMS conformation in PDMS-based hybrid materials prepared by gamma irradiation

    International Nuclear Information System (INIS)

    Lancastre, J.J.H.; Fernandes, N.; Margaça, F.M.A.; Miranda Salvado, I.M.; Ferreira, L.M.; Falcão, A.N.; Casimiro, M.H.

    2012-01-01

    Polydimethylsiloxane-silicate based hybrid materials have recognized properties (high flexibility, low elastic modulus or high mechanical strength) for which there are a large number of applications in development, such as for the bioapplications field. The hybrids addressed in the present study were prepared by gamma irradiation of a mixture of polydimethylsiloxane (PDMS) with tetraethylorthosilicate (TEOS) and zirconium propoxide (PrZr) without addition of any solvent or other product. The materials are homogeneous, transparent, monolithic and flexible. The structure dependence on the PrZr content is addressed. A combination of X-ray diffraction (XRD) and Infrared Spectroscopy (IR) was used. The results reveal that the polymer in the hybrids prepared with PrZr, in a content≤5 wt%, shows a structure similar to that in the irradiated pure polymer sample. In these samples the presence of ordered polymer regions is clearly found. For samples prepared with higher content of Zr almost no ordered polymer regions are observed. The addition of PrZr plays an important role on polymer conformation in these hybrid materials. - Highlights: ► PDMS-based hybrid materials were prepared by γ-irradiation. ► FTIR, ATR/FT-IR and XRD techniques were used to characterize the materials. ► Changes in FTIR bands reflect growth of crosslinking network. ► Above certain Zr concentration regions of Zr-silicate oxide are formed. ► Zr content determines conformation of the polymer chain network.

  5. Community disruptions and business costs for distant tsunami evacuations using maximum versus scenario-based zones

    Science.gov (United States)

    Wood, Nathan J.; Wilson, Rick I.; Ratliff, Jamie L.; Peters, Jeff; MacMullan, Ed; Krebs, Tessa; Shoaf, Kimberley; Miller, Kevin

    2017-01-01

    Well-executed evacuations are key to minimizing loss of life from tsunamis, yet they also disrupt communities and business productivity in the process. Most coastal communities implement evacuations based on a previously delineated maximum-inundation zone that integrates zones from multiple tsunami sources. To support consistent evacuation planning that protects lives but attempts to minimize community disruptions, we explore the implications of scenario-based evacuation procedures and use the California (USA) coastline as our case study. We focus on the land in coastal communities that is in maximum-evacuation zones, but is not expected to be flooded by a tsunami generated by a Chilean earthquake scenario. Results suggest that a scenario-based evacuation could greatly reduce the number of residents and employees that would be advised to evacuate for 24–36 h (178,646 and 159,271 fewer individuals, respectively) and these reductions are concentrated primarily in three counties for this scenario. Private evacuation spending is estimated to be greater than public expenditures for operating shelters in the area of potential over-evacuations ($13 million compared to $1 million for a 1.5-day evacuation). Short-term disruption costs for businesses in the area of potential over-evacuation are approximately $122 million for a 1.5-day evacuation, with one-third of this cost associated with manufacturing, suggesting that some disruption costs may be recouped over time with increased short-term production. There are many businesses and organizations in this area that contain individuals with limited mobility or access and functional needs that may have substantial evacuation challenges. This study demonstrates and discusses the difficulties of tsunami-evacuation decision-making for relatively small to moderate events faced by emergency managers, not only in California but in coastal communities throughout the world.

  6. Assessing the adaptive capacity of maize hybrids to climate change in an irrigated district of Southern Italy

    Science.gov (United States)

    Monaco, Eugenia; Bonfante, Antonello; De Mascellis, Roberto; Alfieri, Silvia Maria; Menenti, Massimo; De Lorenzi, Francesca

    2013-04-01

    Climate change will cause significant changes in water distribution and availability; as a consequence the water resources in some areas (like Mediterranean regions) will be limiting factors to the cultivation of some species, included cereals. So the perspective of climate change requires an analysis of the adaptation possibilities of food and fiber species currently cultivated. A powerful tool for adaptation is the relevant intra-specific biodiversity of crops. The knowledge, for different crop cultivars, of the responses to different environmental conditions (e.g. yield response functions to water regime) can be a tool to identify adaptation options to future climate. Moreover, simulation models of water flow in the soil-plant-atmosphere system can be coupled with future climate scenarios to predict the soil water regime also accounting for different irrigation scheduling options. In this work the adaptive capacity of maize hybrids (Zea mays L.) was evaluated in an irrigated district of Southern Italy (the "Destra Sele" plain, an area of about 18.000 ha), where maize is extensively grown for water buffalo feeding. Horticultural crops (tomato, fennel, artichoke) are grown, as well. The methodology applied is based on two complementary elements: - a database on climatic requirements of 30 maize hybrids: the yield response functions to water availability were determined from experimental data derived both from scientific literature and from field trials carried out by ISAFOM-CNR. These functions were applied to describe the behaviour of the hybrids with respect to the relative evapotranspiration deficit; - the simulation performed by the agro-hydrological model SWAP (soil-water-plant and atmosphere), to determine the future soil water regime at landscape scale. Two climate scenarios were studied: "past" (1961-1990) and "future" (2021-2050). Future climate scenarios were generated within the Italian National Project AGROSCENARI. Climate scenarios at low spatial

  7. Scenario based optimization of a container vessel with respect to its projected operating conditions

    Directory of Open Access Journals (Sweden)

    Wagner Jonas

    2014-06-01

    Full Text Available In this paper the scenario based optimization of the bulbous bow of the KRISO Container Ship (KCS is presented. The optimization of the parametrically modeled vessel is based on a statistically developed operational profile generated from noon-to-noon reports of a comparable 3600 TEU container vessel and specific development functions representing the growth of global economy during the vessels service time. In order to consider uncertainties, statistical fluctuations are added. An analysis of these data lead to a number of most probable upcoming operating conditions (OC the vessel will stay in the future. According to their respective likeliness an objective function for the evaluation of the optimal design variant of the vessel is derived and implemented within the parametrical optimization workbench FRIENDSHIP Framework. In the following this evaluation is done with respect to vessel’s calculated effective power based on the usage of potential flow code. The evaluation shows, that the usage of scenarios within the optimization process has a strong influence on the hull form.

  8. Scenario based optimization of a container vessel with respect to its projected operating conditions

    Directory of Open Access Journals (Sweden)

    Jonas Wagner

    2014-06-01

    Full Text Available In this paper the scenario based optimization of the bulbous bow of the KRISO Container Ship (KCS is presented. The optimization of the parametrically modeled vessel is based on a statistically developed operational profile generated from noon-to-noon reports of a comparable 3600 TEU container vessel and specific development functions representing the growth of global economy during the vessels service time. In order to consider uncertainties, statistical fluctuations are added. An analysis of these data lead to a number of most probable upcoming operating conditions (OC the vessel will stay in the future. According to their respective likeliness an objective function for the evaluation of the optimal design variant of the vessel is derived and implemented within the parametrical optimization workbench FRIENDSHIP Framework. In the following this evaluation is done with respect to vessel's calculated effective power based on the usage of potential flow code. The evaluation shows, that the usage of scenarios within the optimization process has a strong influence on the hull form.

  9. Using scenario-based training to promote information literacy among on-call consultant pediatricians.

    Science.gov (United States)

    Pettersson, Jonas; Bjorkander, Emil; Bark, Sirpa; Holmgren, Daniel; Wekell, Per

    2017-07-01

    Traditionally, teaching hospital staff to search for medical information relies heavily on educator-defined search methods. In contrast, the authors describe our experiences using real-time scenarios to teach on-call consultant pediatricians information literacy skills as part of a two-year continuing professional development program. Two information-searching workshops were held at Sahlgrenska University Hospital in Gothenburg, Sweden. During the workshops, pediatricians were presented with medical scenarios that were closely related to their clinical practice. Participants were initially encouraged to solve the problems using their own preferred search methods, followed by group discussions led by clinical educators and a medical librarian in which search problems were identified and overcome. The workshops were evaluated using questionnaires to assess participant satisfaction and the extent to which participants intended to implement changes in their clinical practice and reported actual change. A scenario-based approach to teaching clinicians how to search for medical information is an attractive alternative to traditional lectures. The relevance of such an approach was supported by a high level of participant engagement during the workshops and high scores for participant satisfaction, intended changes to clinical practice, and reported benefits in actual clinical practice.

  10. Developing scenarios to assess future landslide risks: a model-based approach applied to mountainous regions

    Science.gov (United States)

    Vacquie, Laure; Houet, Thomas

    2016-04-01

    In the last century, European mountain landscapes have experienced significant transformations. Natural and anthropogenic changes, climate changes, touristic and industrial development, socio-economic interactions, and their implications in terms of LUCC (land use and land cover changes) have directly influenced the spatial organization and vulnerability of mountain landscapes. This study is conducted as part of the SAMCO project founded by the French National Science Agency (ANR). It aims at developing a methodological approach, combining various tools, modelling platforms and methods, to identify vulnerable regions to landslide hazards accounting for futures LUCC. It presents an integrated approach combining participative scenarios and a LULC changes simulation models to assess the combined effects of LUCC and climate change on landslide risks in the Cauterets valley (French Pyrenees Mountains) up to 2100. Through vulnerability and risk mapping, the objective is to gather information to support landscape planning and implement land use strategies with local stakeholders for risk management. Four contrasting scenarios are developed and exhibit contrasting trajectories of socio-economic development. Prospective scenarios are based on national and international socio-economic contexts relying on existing assessment reports. The methodological approach integrates knowledge from local stakeholders to refine each scenario during their construction and to reinforce their plausibility and relevance by accounting for local specificities, e.g. logging and pastoral activities, touristic development, urban planning, etc. A process-based model, the Forecasting Scenarios for Mountains (ForeSceM) model, developed on the Dinamica Ego modelling platform is used to spatially allocate futures LUCC for each prospective scenario. Concurrently, a spatial decision support tool, i.e. the SYLVACCESS model, is used to identify accessible areas for forestry in scenario projecting logging

  11. Sizing wind/photovoltaic hybrids for households in inner Mongolia

    Energy Technology Data Exchange (ETDEWEB)

    Barley, C.D.; Lew, D.J.; Flowers, L.T. [National Renewable Energy Lab., Golden, CO (United States)

    1997-12-31

    Approximately 140,000 wind turbines currently provide electricity to about one-third of the non-grid-connected households in Inner Mongolia. However, these households often suffer from a lack of power during the low-wind summer months. This report describes an analysis of hybrid wind/photovoltaic (PV) systems for such households. The sizing of the major components is based on a subjective trade-off between the cost of the system and the percent unmet load, as determined by the Hybrid2 software in conjunction with a simplified time-series model. Actual resource data (wind speed and solar radiation) from the region are processed so as to best represent the scenarios of interest. Small wind turbines of both Chinese and U.S. manufacture are considered in the designs. The results indicate that combinations of wind and PV are more cost-effective than either one alone, and that the relative amount of PV in the design increases as the acceptable unmet load decreases and as the average wind speed decreases.

  12. An integrated optimization approach for a hybrid energy system in electric vehicles

    International Nuclear Information System (INIS)

    Hung, Yi-Hsuan; Wu, Chien-Hsun

    2012-01-01

    Highlights: ► Second-order control-oriented dynamics for a battery/supercapacitor EV is modeled. ► Multiple for-loop programming and global searchwith constraints are main design principles of integrated optimization algorithm (IOA). ► Optimal hybridization is derived based on maximizing energy storage capacity. ► Optimal energy management in three EV operation modes is searched based on minimizing total consumed power. ► Simulation results prove that 6+% of total energy is saved by the IOA method. -- Abstract: This paper develops a simple but innovative integrated optimization approach (IOA) for deriving the best solutions of component sizing and control strategies of a hybrid energy system (HES) which consists of a lithium battery and a supercapacitor module. To implement IOA, a multiple for-loop structure with a preset cost function is needed to globally calculate the best hybridization and energy management of the HES. For system hybridization, the optimal size ratio is evaluated by maximizing the HES energy stored capacity at various costs. For energy management, the optimal power distribution combined with a three-mode rule-based strategy is searched to minimize the total consumed energy. Combining above two for-loop structures and giving a time-dependent test scenario, the IOA is derived by minimizing the accumulated HES power. Simulation results show that 6% of the total HES energy can be saved in the IOA case compared with the original system in two driving cycles: ECE and UDDS, and two vehicle weights, respectively. It proves that the IOA effectively derives the maximum energy storage capacity and the minimum energy consumption of the HES at the same time. Experimental verification will be carried out in the near future.

  13. Earthquake Scenarios Based Upon the Data and Methodologies of the U.S. Geological Survey's National Seismic Hazard Mapping Project

    Science.gov (United States)

    Rukstales, K. S.; Petersen, M. D.; Frankel, A. D.; Harmsen, S. C.; Wald, D. J.; Quitoriano, V. R.; Haller, K. M.

    2011-12-01

    The U.S. Geological Survey's (USGS) National Seismic Hazard Mapping Project (NSHMP) utilizes a database of over 500 faults across the conterminous United States to constrain earthquake source models for probabilistic seismic hazard maps. Additionally, the fault database is now being used to produce a suite of deterministic ground motions for earthquake scenarios that are based on the same fault source parameters and empirical ground motion prediction equations used for the probabilistic hazard maps. Unlike the calculated hazard map ground motions, local soil amplification is applied to the scenario calculations based on the best available Vs30 (average shear-wave velocity down to 30 meters) mapping, or in some cases using topographic slope as a proxy. Systematic outputs include all standard USGS ShakeMap products, including GIS, KML, XML, and HAZUS input files. These data are available from the ShakeMap web pages with a searchable archive. The scenarios are being produced within the framework of a geographic information system (GIS) so that alternative scenarios can readily be produced by altering fault source parameters, Vs30 soil amplification, as well as the weighting of ground motion prediction equations used in the calculations. The alternative scenarios can then be used for sensitivity analysis studies to better characterize uncertainty in the source model and convey this information to decision makers. By providing a comprehensive collection of earthquake scenarios based upon the established data and methods of the USGS NSHMP, we hope to provide a well-documented source of data which can be used for visualization, planning, mitigation, loss estimation, and research purposes.

  14. Country-Level Population and Downscaled Projections Based on the SRES A1, B1, and A2 Scenarios, 1990-2100

    Data.gov (United States)

    National Aeronautics and Space Administration — The Country-Level Population and Downscaled Projections Based on Special Report on Emissions Scenarios (SRES) A1, B1, and A2 Scenarios, 1990-2100, were adopted in...

  15. Household preferences of hybrid home heating systems – A choice experiment application

    International Nuclear Information System (INIS)

    Ruokamo, Enni

    2016-01-01

    The residential heating sector presents considerable energy savings potential, as numerous heating solutions for reducing electricity consumption and utilizing renewable energy sources are available in the market. The aim of this paper is to examine determinants of household heating system choices and to use this information for policy planning purposes. This paper investigates residential homeowner attitudes regarding innovative hybrid home heating systems (HHHS) with choice experiment. Heating system scenarios are designed to represent the most relevant primary and supplementary heating alternatives currently available in Finland. The choice sets include six main heating alternatives (district heat, solid wood, wood pellet, electric storage heating, ground heat pump and exhaust air heat pump) that are described by five attributes (supplementary heating systems, investment costs, operating costs, comfort of use and environmental friendliness). The results imply that HHHSs generally appear to be accepted among households; however, several factors affect perceptions of these technologies. The results reveal differing household attitudes toward the main heating alternatives and show that such views are affected by socio-demographic characteristics (age, living environment, education, etc.). The results suggest that households view supplementary heating systems (especially solar-based) favorably. The other attributes studied also play a significant role in decision making. - Highlights: •Study of hybrid heating where supplementary and main heating systems are combined. •Choice experiment is applied to study the determinants of hybrid heating adoption. •Hybrid heating appears to be generally accepted among households. •Households exhibit differing attitudes toward hybrid heating. •Policy makers should not underestimate the potential of hybrid heating.

  16. Ultrafast Dynamic Pressure Sensors Based on Graphene Hybrid Structure.

    Science.gov (United States)

    Liu, Shanbiao; Wu, Xing; Zhang, Dongdong; Guo, Congwei; Wang, Peng; Hu, Weida; Li, Xinming; Zhou, Xiaofeng; Xu, Hejun; Luo, Chen; Zhang, Jian; Chu, Junhao

    2017-07-19

    Mechanical flexible electronic skin has been focused on sensing various physical parameters, such as pressure and temperature. The studies of material design and array-accessible devices are the building blocks of strain sensors for subtle pressure sensing. Here, we report a new and facile preparation of a graphene hybrid structure with an ultrafast dynamic pressure response. Graphene oxide nanosheets are used as a surfactant to prevent graphene restacking in aqueous solution. This graphene hybrid structure exhibits a frequency-independent pressure resistive sensing property. Exceeding natural skin, such pressure sensors, can provide transient responses from static up to 10 000 Hz dynamic frequencies. Integrated by the controlling system, the array-accessible sensors can manipulate a robot arm and self-rectify the temperature of a heating blanket. This may pave a path toward the future application of graphene-based wearable electronics.

  17. Probabilistic approach relative to fire scenarios study

    International Nuclear Information System (INIS)

    Chabot, Jean-Luc

    1998-01-01

    The main objective of this thesis is to develop a calculation method of the occurring probability of the fire scenarios (detection, setting of the intervention, extinction) taking into account the size and the impact of the fire on the surroundings. This new method is called 'hybrid simulation'. It includes in a unique modelling the processing of continuous and discrete phenomenon. Moreover, to correctly represent fire scenarios, it is necessary not to take only into account the 'continuous' growing of the fire itself but of also 'discrete' events like detection, fire fighting and extinction, human behaviour and related faults. For that purpose we couple a code modelling the physical aspects of the fire to Petri nets which is able to model these 'discrete' events, this coupling consists of driving the 'continuous' model by the occurring of the 'discrete' events. This new technique which can be used to cover 'discrete' and 'continuous' events in a single calculation represents a solution to dynamic reliability calculation problems, for which there is a continuously increasing demand for analysing reliability, availability of production and maintainability of complex industrial systems. (author) [fr

  18. The Use of Open-Ended Problem-Based Learning Scenarios in an Interdisciplinary Biotechnology Class: Evaluation of a Problem-Based Learning Course Across Three Years

    Directory of Open Access Journals (Sweden)

    Todd R. Steck

    2012-02-01

    Full Text Available Use of open-ended Problem-Based Learning (PBL in biology classrooms has been limited by the difficulty in designing problem scenarios such that the content learned in a course can be predicted and controlled, the lack of familiarity of this method of instruction by faculty, and the difficulty in assessment. Here we present the results of a study in which we developed a team-based interdisciplinary course that combined the fields of biology and civil engineering across three years. We used PBL scenarios as the only learning tool, wrote the problem scenarios, and developed the means to assess these courses and the results of that assessment. Our data indicates that PBL changed students’ perception of their learning in content knowledge and promoted a change in students’ learning styles. Although no  statistically significant improvement in problem-solving skills and critical thinking skills was observed, students reported substantial changes in their problem-based learning strategies and critical thinking skills.

  19. Contrasting safety assessments of a runway incursion scenario: Event sequence analysis versus multi-agent dynamic risk modelling

    International Nuclear Information System (INIS)

    Stroeve, Sybert H.; Blom, Henk A.P.; Bakker, G.J.

    2013-01-01

    In the safety literature it has been argued, that in a complex socio-technical system safety cannot be well analysed by event sequence based approaches, but requires to capture the complex interactions and performance variability of the socio-technical system. In order to evaluate the quantitative and practical consequences of these arguments, this study compares two approaches to assess accident risk of an example safety critical sociotechnical system. It contrasts an event sequence based assessment with a multi-agent dynamic risk model (MA-DRM) based assessment, both of which are performed for a particular runway incursion scenario. The event sequence analysis uses the well-known event tree modelling formalism and the MA-DRM based approach combines agent based modelling, hybrid Petri nets and rare event Monte Carlo simulation. The comparison addresses qualitative and quantitative differences in the methods, attained risk levels, and in the prime factors influencing the safety of the operation. The assessments show considerable differences in the accident risk implications of the performance of human operators and technical systems in the runway incursion scenario. In contrast with the event sequence based results, the MA-DRM based results show that the accident risk is not manifest from the performance of and relations between individual human operators and technical systems. Instead, the safety risk emerges from the totality of the performance and interactions in the agent based model of the safety critical operation considered, which coincides very well with the argumentation in the safety literature.

  20. Scoping studies of 233U breeding fusion fission hybrid

    International Nuclear Information System (INIS)

    Maniscalco, J.A.; Hansen, L.F.; Allen, W.O.

    1978-05-01

    Neutronic calculations have been carried out in order to design a laser fusion driven hybrid blanket which maximizes 233 U production per unit of thermal energy (greater than or equal to 1 kg/MW/sub T/-year) with acceptable fusion energy multiplication (M/sub F/ approximately 4). Two hybrid blankets, a thorium and a uranium-thorium blanket, are discussed in detail and their performance is evaluated by incorporating them into an existing hybrid design (the LLL/Bechtel design). The overall performance of the two laser fusion driven 233 U producers is discussed and estimates are given of (1) the number of equivalent thermal power fission reactors (LWR, HWR, SSCR and HTGR) that these fusion breeders can fuel, (2) their capital cost, and (3) the cost of electricity in the combined fusion breder-converter reactor scenario

  1. Scoping studies of 233U breeding fusion fission hybrid

    International Nuclear Information System (INIS)

    Maniscalco, J.A.; Hansen, L.F.; Allen, W.O.

    1978-01-01

    Neutronic calculations have been carried out in order to design a laser fusion driven hybrid blanket which maximizes 233 U production per unit of thermal energy (greater than or equal to 1 kg/MW/sub T/-year) with acceptable fusion energy multiplication (M/sub F/ approx. 4). Two hybrid blankets, a thorium and a uranium--thorium blanket, are discussed in detail and their performance is evaluated by incorporating them into an existing hybrid design (the LLL/Bechtel design). The overall performance of the two laser fusion driven 233 U producers is discussed and estimates are given of (1) the number of equivalent thermal power fission reactors (LWR, HWR, SSCR and HTGR) that these fusion breeders can fuel, (2) their capital cost, and (3) the cost of electricity in the combined fusion breeder-converter reactor scenario

  2. Potential vehicle fleet CO2 reductions and cost implications for various vehicle technology deployment scenarios in Europe

    International Nuclear Information System (INIS)

    Pasaoglu, Guzay; Honselaar, Michel; Thiel, Christian

    2012-01-01

    The continuous rise in demand for road transportation has a significant effect on Europe's oil dependency and emissions of greenhouse gases. Alternative fuels and vehicle technology can mitigate these effects. This study analyses power-train deployment scenarios for passenger cars and light commercial vehicles in EU-27 until 2050. It considers European policy developments on vehicle CO 2 emissions, bio-energy mandates and reductions in the CO 2 footprint of the European energy mix and translates these into comprehensive scenarios for the road transport sector. It quantifies and assesses the potential impact of these scenarios on well-to-wheel (WtW) CO 2 emission reductions primary energy demand evolution, and cost aspects for the prospective vehicle owners. The study reveals that, under the deployed scenarios, the use of bio-fuel blends, technological learning and the deployment of hybrids, battery electric, plug-in hybrid and fuel cell vehicles can decrease WtW CO 2 emissions in EU-27 passenger road transport by 35–57% (compared to 2010 levels) and primary energy demand by 29–51 Mtoe as they would benefit from a future assumed decarbonised electricity and hydrogen mix in Europe. Learning effects can lead to acceptable payback periods for vehicle owners of electric drive vehicles. - Highlights: ► Power-train penetration scenarios for 2010–2050 passenger road transport in Europe. ► A dedicated tool is developed to analyse H 2 production and distribution mix till 2050. ► Alternative vehicles can drastically reduce CO 2 emissions and energy demand. ► Electric vehicles could become cost competitive to conventional vehicles by 2030. ► Policies needed to create adequate momentum and guarantee decarbonised transport.

  3. Scenario-based potential effects of carbon trading in China: An integrated approach

    International Nuclear Information System (INIS)

    Zhang, Cheng; Wang, Qunwei; Shi, Dan; Li, Pengfei; Cai, Wanhuan

    2016-01-01

    Highlights: • Carbon dioxide shadow price shows a negative asymmetrical correlation with carbon dioxide emissions in China. • The implements of carbon trading can bring Porter Hypothesis effect significantly. • Provincial carbon trading can reduce carbon intensity by 19.79–25.24% in China. - Abstract: Using China’s provincial panel data and national panel data of OECD (Organization for Economic Co-operation and Development) and BRICS (Five major emerging national economies: Brazil, Russia, India, China and South Africa), this paper simulates the scenario-based potential effect of carbon trading in China. Analysis methods included Stochastic Frontier Analysis, Difference-in-differences Model, and Nonlinear Programming Technique. Results indicated that in a theory-based view of carbon trading, the shadow price of carbon dioxide generally rises, with a non-linear negative correlation with carbon dioxide emissions. In different regions, the shadow price of carbon dioxide presents a digressive tendency among eastern, central, and western areas, with divergent gaps between and within areas. When the greatest goal is assumed to reduce national carbon intensity as much as possible at the given national GDP (Gross Domestic Product) (Scenario I), carbon trading has the effect of reducing carbon intensity by 19.79%, with the consideration of Porter Hypothesis effect. If the rigid constraint of national GDP is relaxed, and the dual constraint of both economic growth and environment protection in each region is introduced (Scenario II), the resulting effect is a reduced carbon intensity of 25.24%. China’s general carbon intensity in 2012 was higher than goals set at the Copenhagen Conference, but lagged behind the goal of Twelfth Five-Year Plan for National Economy. This study provides realistic and significant technical support for the government to use in designing and deploying a national carbon trading market.

  4. Extension to linear dynamics for hybrid stress finite element formulation based on additional displacements

    Science.gov (United States)

    Sumihara, K.

    Based upon legitimate variational principles, one microscopic-macroscopic finite element formulation for linear dynamics is presented by Hybrid Stress Finite Element Method. The microscopic application of Geometric Perturbation introduced by Pian and the introduction of infinitesimal limit core element (Baby Element) have been consistently combined according to the flexible and inherent interpretation of the legitimate variational principles initially originated by Pian and Tong. The conceptual development based upon Hybrid Finite Element Method is extended to linear dynamics with the introduction of physically meaningful higher modes.

  5. Breaking and Fixing Origin-Based Access Control in Hybrid Web/Mobile Application Frameworks.

    Science.gov (United States)

    Georgiev, Martin; Jana, Suman; Shmatikov, Vitaly

    2014-02-01

    Hybrid mobile applications (apps) combine the features of Web applications and "native" mobile apps. Like Web applications, they are implemented in portable, platform-independent languages such as HTML and JavaScript. Like native apps, they have direct access to local device resources-file system, location, camera, contacts, etc. Hybrid apps are typically developed using hybrid application frameworks such as PhoneGap. The purpose of the framework is twofold. First, it provides an embedded Web browser (for example, WebView on Android) that executes the app's Web code. Second, it supplies "bridges" that allow Web code to escape the browser and access local resources on the device. We analyze the software stack created by hybrid frameworks and demonstrate that it does not properly compose the access-control policies governing Web code and local code, respectively. Web code is governed by the same origin policy, whereas local code is governed by the access-control policy of the operating system (for example, user-granted permissions in Android). The bridges added by the framework to the browser have the same local access rights as the entire application, but are not correctly protected by the same origin policy. This opens the door to fracking attacks, which allow foreign-origin Web content included into a hybrid app (e.g., ads confined in iframes) to drill through the layers and directly access device resources. Fracking vulnerabilities are generic: they affect all hybrid frameworks, all embedded Web browsers, all bridge mechanisms, and all platforms on which these frameworks are deployed. We study the prevalence of fracking vulnerabilities in free Android apps based on the PhoneGap framework. Each vulnerability exposes sensitive local resources-the ability to read and write contacts list, local files, etc.-to dozens of potentially malicious Web domains. We also analyze the defenses deployed by hybrid frameworks to prevent resource access by foreign-origin Web content

  6. Breaking and Fixing Origin-Based Access Control in Hybrid Web/Mobile Application Frameworks

    Science.gov (United States)

    Georgiev, Martin; Jana, Suman; Shmatikov, Vitaly

    2014-01-01

    Hybrid mobile applications (apps) combine the features of Web applications and “native” mobile apps. Like Web applications, they are implemented in portable, platform-independent languages such as HTML and JavaScript. Like native apps, they have direct access to local device resources—file system, location, camera, contacts, etc. Hybrid apps are typically developed using hybrid application frameworks such as PhoneGap. The purpose of the framework is twofold. First, it provides an embedded Web browser (for example, WebView on Android) that executes the app's Web code. Second, it supplies “bridges” that allow Web code to escape the browser and access local resources on the device. We analyze the software stack created by hybrid frameworks and demonstrate that it does not properly compose the access-control policies governing Web code and local code, respectively. Web code is governed by the same origin policy, whereas local code is governed by the access-control policy of the operating system (for example, user-granted permissions in Android). The bridges added by the framework to the browser have the same local access rights as the entire application, but are not correctly protected by the same origin policy. This opens the door to fracking attacks, which allow foreign-origin Web content included into a hybrid app (e.g., ads confined in iframes) to drill through the layers and directly access device resources. Fracking vulnerabilities are generic: they affect all hybrid frameworks, all embedded Web browsers, all bridge mechanisms, and all platforms on which these frameworks are deployed. We study the prevalence of fracking vulnerabilities in free Android apps based on the PhoneGap framework. Each vulnerability exposes sensitive local resources—the ability to read and write contacts list, local files, etc.—to dozens of potentially malicious Web domains. We also analyze the defenses deployed by hybrid frameworks to prevent resource access by foreign

  7. EDITORIAL: Where next with global environmental scenarios? Where next with global environmental scenarios?

    Science.gov (United States)

    O'Neill, Brian; Pulver, Simone; Van Deveer, Stacy; Garb, Yaakov

    2008-12-01

    -oriented scenario exercises also generate scenario products, but such products are recognized as meaningful mostly (or only) in the social context in which they were developed. It should be noted that those seeking to understand the functions, implications and utility of scenarios can approach analysis of scenarios and their impacts from either perspective—focusing attention on product outcomes and influence or assessing procedural and contextual dynamics and implications. Papers in this issue examine various aspects of scenario products, scenario processes and their interactions, with specific reference to global environmental change scenarios. Hulme and Dessai (2008) use the product-process distinction as a starting point for developing a framework to evaluate the success of scenario exercises. They identify 'prediction success', 'decision success' and 'learning success' as three evaluation metrics for scenarios, with the first two most relevant to scenario products and the last emphasizing procedural aspects of scenarios. They suggest that viewing scenarios primarily as products implies examining how closely actual outcomes have matched envisioned outcomes, while viewing them primarily as processes suggests evaluating the extent to which scenarios engaged participants and enabled their learning. O'Neill and Nakicenovic (2008) focus on Hulme and Dessai's evaluation metric, learning. Based on a review of six scenario/assessment exercises, they ask if and how scenario products have incorporated comparative assessments of results in order to enable cumulative learning across scenario efforts. The authors conclude that, although participating modelling teams have benefited greatly from the process of scenario activities and applied that learning to other scenario exercises in which they engage, learning from comparative assessments of scenario products has been rather limited; the latter due to the limited time and resources invested in comparative analysis. Pitcher (2009) speaks

  8. Modelling land use changes according to transportation scenarios using raster based GIS indicators

    DEFF Research Database (Denmark)

    Fuglsang, Morten; Münier, Bernd; Hansen, Henning Sten

    2012-01-01

    the cellular automata model LUCIA. An Eastern Danish case area was selected, comprising the Copenhagen metropolitan area and its hinterland. The different scenarios are described using a range of different GIS datasets. These include mapping of accessibility based on public and private transportation, urban....... In the EU-FP7 research project PASHMINA (Paradigm Shift modelling and innovative approaches), three storylines of future transportation paradigm shifts towards 2050 are created. These storylines are translated into spatial planning strategies and their implication on land use changes were modelled via...... in urban distribution that different spatial planning strategies may initiate, and thus change the shape of the urban landscape. The scenarios outline different planning strategies, leading to a more homogenous urban structure, targeted at a reduction of transportation work and thus energy consumption...

  9. Energy scenarios for hydrogen production in Mexico

    International Nuclear Information System (INIS)

    Ortega V, E.; Francois L, J. L.

    2009-10-01

    The hydrogen is a clean and very efficient fuel, its combustion does not produce gases of greenhouse effect, ozone precursors and residual acids. Also the hydrogen produced by friendly energy sources with the environment like nuclear energy could help to solve the global problems that it confronts the energy at present time. Presently work fuel cycles of hydrogen production technologies in Mexico are judged, by means of a structured methodology in the concept of sustainable development in its social, economic and environmental dimensions. The methodology is divided in three scenarios: base, Outlook 2030 and capture of CO 2 . The first scenario makes reference to cycles analysis in a current context for Mexico, the second taking in account the demand projections reported by the IAEA in its report Outlook and the third scenario, capture of CO 2 , the technologies are analyzed supposing a reduction in capture costs of 75%. Each scenario also has four cases (base, social, environmental and economic) by means of which the cycles are analyzed in the dimensions of sustainable development. For scenarios base and capture, results show that combination nuclear energy- reformed of gas it is the best alternative for cases base and economic. For social case, the evaluated better technology is the hydraulics, and for environmental case, the best option is represented by the regenerative thermochemistry cycles. The scenario Outlook 2030 show a favorable tendency of growth of renewable sources, being the aeolian energy the best technology evaluated in the cases base and environmental, the hydraulics technology in the social case and in the economic case the reformed of natural gas that uses nuclear heat. (Author)

  10. A DNA microarray-based methylation-sensitive (MS)-AFLP hybridization method for genetic and epigenetic analyses.

    Science.gov (United States)

    Yamamoto, F; Yamamoto, M

    2004-07-01

    We previously developed a PCR-based DNA fingerprinting technique named the Methylation Sensitive (MS)-AFLP method, which permits comparative genome-wide scanning of methylation status with a manageable number of fingerprinting experiments. The technique uses the methylation sensitive restriction enzyme NotI in the context of the existing Amplified Fragment Length Polymorphism (AFLP) method. Here we report the successful conversion of this gel electrophoresis-based DNA fingerprinting technique into a DNA microarray hybridization technique (DNA Microarray MS-AFLP). By performing a total of 30 (15 x 2 reciprocal labeling) DNA Microarray MS-AFLP hybridization experiments on genomic DNA from two breast and three prostate cancer cell lines in all pairwise combinations, and Southern hybridization experiments using more than 100 different probes, we have demonstrated that the DNA Microarray MS-AFLP is a reliable method for genetic and epigenetic analyses. No statistically significant differences were observed in the number of differences between the breast-prostate hybridization experiments and the breast-breast or prostate-prostate comparisons.

  11. Classification of Two Class Motor Imagery Tasks Using Hybrid GA-PSO Based K-Means Clustering.

    Science.gov (United States)

    Suraj; Tiwari, Purnendu; Ghosh, Subhojit; Sinha, Rakesh Kumar

    2015-01-01

    Transferring the brain computer interface (BCI) from laboratory condition to meet the real world application needs BCI to be applied asynchronously without any time constraint. High level of dynamism in the electroencephalogram (EEG) signal reasons us to look toward evolutionary algorithm (EA). Motivated by these two facts, in this work a hybrid GA-PSO based K-means clustering technique has been used to distinguish two class motor imagery (MI) tasks. The proposed hybrid GA-PSO based K-means clustering is found to outperform genetic algorithm (GA) and particle swarm optimization (PSO) based K-means clustering techniques in terms of both accuracy and execution time. The lesser execution time of hybrid GA-PSO technique makes it suitable for real time BCI application. Time frequency representation (TFR) techniques have been used to extract the feature of the signal under investigation. TFRs based features are extracted and relying on the concept of event related synchronization (ERD) and desynchronization (ERD) feature vector is formed.

  12. Evaluating climate change adaptation options for urban flooding in Copenhagen based on new high‐end emission scenario simulations

    DEFF Research Database (Denmark)

    Arnbjerg-Nielsen, Karsten; Leonhardsen, Lykke; Madsen, Henrik

    2014-01-01

    Climate change adaptation studies on urban flooding are often based on a model chain approach from climate forcing scenarios to analysis of adaptation measures. Previous analyses of impacts in Denmark using ensemble projections of the A1B scenario are supplemented by two high‐end scenario...... to change substantially. The impacts are assessed using Copenhagen as a case study. For both types of extremes large adaptation measures are essential in the global six degree scenario; dikes must be constructed to mitigate sea surge risk and a variety of measures to store or convey storm water must...... be implemented as well as new paradigms for city planning to mitigate the impact of change in extreme precipitation risk. For both hazards business‐as‐usual are not possible scenarios, because large autonomous adaptation will occur in lack of suitable policy‐driven changes. Copenhagen has developed an adaptation...

  13. Tsunamigenic scenarios for southern Peru and northern Chile seismic gap: Deterministic and probabilistic hybrid approach for hazard assessment

    Science.gov (United States)

    González-Carrasco, J. F.; Gonzalez, G.; Aránguiz, R.; Yanez, G. A.; Melgar, D.; Salazar, P.; Shrivastava, M. N.; Das, R.; Catalan, P. A.; Cienfuegos, R.

    2017-12-01

    Plausible worst-case tsunamigenic scenarios definition plays a relevant role in tsunami hazard assessment focused in emergency preparedness and evacuation planning for coastal communities. During the last decade, the occurrence of major and moderate tsunamigenic earthquakes along worldwide subduction zones has given clues about critical parameters involved in near-field tsunami inundation processes, i.e. slip spatial distribution, shelf resonance of edge waves and local geomorphology effects. To analyze the effects of these seismic and hydrodynamic variables over the epistemic uncertainty of coastal inundation, we implement a combined methodology using deterministic and probabilistic approaches to construct 420 tsunamigenic scenarios in a mature seismic gap of southern Peru and northern Chile, extended from 17ºS to 24ºS. The deterministic scenarios are calculated using a regional distribution of trench-parallel gravity anomaly (TPGA) and trench-parallel topography anomaly (TPTA), three-dimensional Slab 1.0 worldwide subduction zones geometry model and published interseismic coupling (ISC) distributions. As result, we find four higher slip deficit zones interpreted as major seismic asperities of the gap, used in a hierarchical tree scheme to generate ten tsunamigenic scenarios with seismic magnitudes fluctuates between Mw 8.4 to Mw 8.9. Additionally, we construct ten homogeneous slip scenarios as inundation baseline. For the probabilistic approach, we implement a Karhunen - Loève expansion to generate 400 stochastic tsunamigenic scenarios over the maximum extension of the gap, with the same magnitude range of the deterministic sources. All the scenarios are simulated through a non-hydrostatic tsunami model Neowave 2D, using a classical nesting scheme, for five coastal major cities in northern Chile (Arica, Iquique, Tocopilla, Mejillones and Antofagasta) obtaining high resolution data of inundation depth, runup, coastal currents and sea level elevation. The

  14. Accelerated Evaluation of Automated Vehicles Safety in Lane-Change Scenarios Based on Importance Sampling Techniques.

    Science.gov (United States)

    Zhao, Ding; Lam, Henry; Peng, Huei; Bao, Shan; LeBlanc, David J; Nobukawa, Kazutoshi; Pan, Christopher S

    2017-03-01

    Automated vehicles (AVs) must be thoroughly evaluated before their release and deployment. A widely used evaluation approach is the Naturalistic-Field Operational Test (N-FOT), which tests prototype vehicles directly on the public roads. Due to the low exposure to safety-critical scenarios, N-FOTs are time consuming and expensive to conduct. In this paper, we propose an accelerated evaluation approach for AVs. The results can be used to generate motions of the other primary vehicles to accelerate the verification of AVs in simulations and controlled experiments. Frontal collision due to unsafe cut-ins is the target crash type of this paper. Human-controlled vehicles making unsafe lane changes are modeled as the primary disturbance to AVs based on data collected by the University of Michigan Safety Pilot Model Deployment Program. The cut-in scenarios are generated based on skewed statistics of collected human driver behaviors, which generate risky testing scenarios while preserving the statistical information so that the safety benefits of AVs in nonaccelerated cases can be accurately estimated. The cross-entropy method is used to recursively search for the optimal skewing parameters. The frequencies of the occurrences of conflicts, crashes, and injuries are estimated for a modeled AV, and the achieved accelerated rate is around 2000 to 20 000. In other words, in the accelerated simulations, driving for 1000 miles will expose the AV with challenging scenarios that will take about 2 to 20 million miles of real-world driving to encounter. This technique thus has the potential to greatly reduce the development and validation time for AVs.

  15. A decision support system based on hybrid knowledge approach for nuclear power plant operation

    International Nuclear Information System (INIS)

    Yang, J.O.; Chang, S.H.

    1991-01-01

    This paper describes a diagnostic expert system, HYPOSS (Hybrid Knowledge Based Plant Operation Supporting System), which has been developed to support operators' decision making during the transients of nuclear power plant. HYPOSS adopts the hybrid knowledge approach which combines shallow and deep knowledge to couple the merits of both approaches. In HYPOSS, four types of knowledge are used according to the steps of diagnosis procedure: structural, functional, behavioral and heuristic knowledge. Frames and rules are adopted to represent the various knowledge types. Rule-based deduction and abduction are used for shallow and deep knowledge based reasoning respectively. The event-based operational guidelines are provided to the operator according to the diagnosed results

  16. Mixed oxidizer hybrid propulsion system optimization under uncertainty using applied response surface methodology and Monte Carlo simulation

    Science.gov (United States)

    Whitehead, James Joshua

    The analysis documented herein provides an integrated approach for the conduct of optimization under uncertainty (OUU) using Monte Carlo Simulation (MCS) techniques coupled with response surface-based methods for characterization of mixture-dependent variables. This novel methodology provides an innovative means of conducting optimization studies under uncertainty in propulsion system design. Analytic inputs are based upon empirical regression rate information obtained from design of experiments (DOE) mixture studies utilizing a mixed oxidizer hybrid rocket concept. Hybrid fuel regression rate was selected as the target response variable for optimization under uncertainty, with maximization of regression rate chosen as the driving objective. Characteristic operational conditions and propellant mixture compositions from experimental efforts conducted during previous foundational work were combined with elemental uncertainty estimates as input variables. Response surfaces for mixture-dependent variables and their associated uncertainty levels were developed using quadratic response equations incorporating single and two-factor interactions. These analysis inputs, response surface equations and associated uncertainty contributions were applied to a probabilistic MCS to develop dispersed regression rates as a function of operational and mixture input conditions within design space. Illustrative case scenarios were developed and assessed using this analytic approach including fully and partially constrained operational condition sets over all of design mixture space. In addition, optimization sets were performed across an operationally representative region in operational space and across all investigated mixture combinations. These scenarios were selected as representative examples relevant to propulsion system optimization, particularly for hybrid and solid rocket platforms. Ternary diagrams, including contour and surface plots, were developed and utilized to aid in

  17. ANCRE scenarios for energy transition. Report 2013

    International Nuclear Information System (INIS)

    Alazard-Toux, Nathalie; Des Courtils, Nicolas; Hache, Emmanuel; Liegeard, Alban; Lorne, Daphne; Duplan, Jean-Luc; Kalaydjian, Francois; Heintze, Eric; Tilagone, Richard; Henriot, Stephane; Forti, Laurent; Barthelemy, Pascal; Merlen, Elisabeth; Criqui, Patrick; Mathy, Sandrine; Menanteau, Philippe; Devezeaux De Lavergne, Jean-Guy; Avril, Sophie; Cavata, Christian; Le Duigou, Alain; Le Net, Elisabeth; Marcucci-Demeure, Jeanne; Safa, Henri; Topper, Benjamin; Touboul, Francoise; Carre, Franck; Joly, Jean-Pierre; Charbit, Francoise; Mermilliod, Nicole; Mermilliod, Nicole; Le Net, Elisabeth; Teissier, Olivier; Charrue, Herve; Colonna, Paul; Legrand, Jack; Vidal, Olivier; Goffe, Bruno; Mueller, Alex; Flamant, Gilles; Allard, Francis; Most, Jean-Michel; Matarasso, Pierre; Brault, Pascal; Lemoine, Lionel; Achard, Jean-Luc; Uster, Guillaume; Delsey, Jean; Lucchese, Paul; Tadrist, Lounes; Hadjsaid, Nouredine

    2014-01-01

    This report first gives an overview of the energy system by presenting the determining factors of energy demand and of CO 2 emissions per sector (housing and office building, transport, industry, agriculture, forestry and biomass), by analysing energy systems and CO 2 emissions (energy sources, energy vectors, networks and storage, energy and CO 2 assessment for France), and by describing the guidelines of the scenarios proposed by ANCRE. The three main scenarios are characterized by a stronger sobriety, an electricity-based de-carbonation (with a variant based on nuclear and renewable energies), and diversified vectors. They are notably compared to a trend-based reference scenario. Results are discussed in terms of energy consumption (primary and final energy, consumption by the different sectors), of energy production and CO 2 emissions. Scenarios are assessed in terms of economic, environmental and societal, political and strategic criteria. Some consequences for research topics and funding are identified

  18. Heterogeneous Catalysis of Polyoxometalate Based Organic–Inorganic Hybrids

    Directory of Open Access Journals (Sweden)

    Yuanhang Ren

    2015-03-01

    Full Text Available Organic–inorganic hybrid polyoxometalate (POM compounds are a subset of materials with unique structures and physical/chemical properties. The combination of metal-organic coordination complexes with classical POMs not only provides a powerful way to gain multifarious new compounds but also affords a new method to modify and functionalize POMs. In parallel with the many reports on the synthesis and structure of new hybrid POM compounds, the application of these compounds for heterogeneous catalysis has also attracted considerable attention. The hybrid POM compounds show noteworthy catalytic performance in acid, oxidation, and even in asymmetric catalytic reactions. This review summarizes the design and synthesis of organic–inorganic hybrid POM compounds and particularly highlights their recent progress in heterogeneous catalysis.

  19. Kalman Filtered Bio Heat Transfer Model Based Self-adaptive Hybrid Magnetic Resonance Thermometry.

    Science.gov (United States)

    Zhang, Yuxin; Chen, Shuo; Deng, Kexin; Chen, Bingyao; Wei, Xing; Yang, Jiafei; Wang, Shi; Ying, Kui

    2017-01-01

    To develop a self-adaptive and fast thermometry method by combining the original hybrid magnetic resonance thermometry method and the bio heat transfer equation (BHTE) model. The proposed Kalman filtered Bio Heat Transfer Model Based Self-adaptive Hybrid Magnetic Resonance Thermometry, abbreviated as KalBHT hybrid method, introduced the BHTE model to synthesize a window on the regularization term of the hybrid algorithm, which leads to a self-adaptive regularization both spatially and temporally with change of temperature. Further, to decrease the sensitivity to accuracy of the BHTE model, Kalman filter is utilized to update the window at each iteration time. To investigate the effect of the proposed model, computer heating simulation, phantom microwave heating experiment and dynamic in-vivo model validation of liver and thoracic tumor were conducted in this study. The heating simulation indicates that the KalBHT hybrid algorithm achieves more accurate results without adjusting λ to a proper value in comparison to the hybrid algorithm. The results of the phantom heating experiment illustrate that the proposed model is able to follow temperature changes in the presence of motion and the temperature estimated also shows less noise in the background and surrounding the hot spot. The dynamic in-vivo model validation with heating simulation demonstrates that the proposed model has a higher convergence rate, more robustness to susceptibility problem surrounding the hot spot and more accuracy of temperature estimation. In the healthy liver experiment with heating simulation, the RMSE of the hot spot of the proposed model is reduced to about 50% compared to the RMSE of the original hybrid model and the convergence time becomes only about one fifth of the hybrid model. The proposed model is able to improve the accuracy of the original hybrid algorithm and accelerate the convergence rate of MR temperature estimation.

  20. Road transport and power system scenarios for Northern Europe in 2030

    DEFF Research Database (Denmark)

    Juul, Nina; Meibom, Peter

    2012-01-01

    sensitivity on CO2 and oil prices, inclusion/exclusion of electric drive vehicles, and change in investment possibilities in flexible power plants. Plug-in hybrid electric vehicles are shown to be competitive in all scenarios except the low oil scenarios. The increased electricity consumption for the electric......Increasing focus on sustainability affects all parts of the energy system. The future integration of the power and road transport system due to the introduction of electric drive vehicles influences the economically optimal investments and optimal operation of the power system. This work presents...... vehicles is covered by wind power in Denmark and Norway and by coal production in Finland and Germany. The competition between wind power and coal is dependent on fuel price and CO2 price assumptions. Furthermore, introducing the flexibility of electric drive vehicles helps decrease cycling...

  1. Students' satisfaction to hybrid problem-based learning format for basic life support/advanced cardiac life support teaching.

    Science.gov (United States)

    Chilkoti, Geetanjali; Mohta, Medha; Wadhwa, Rachna; Saxena, Ashok Kumar; Sharma, Chhavi Sarabpreet; Shankar, Neelima

    2016-11-01

    Students are exposed to basic life support (BLS) and advanced cardiac life support (ACLS) training in the first semester in some medical colleges. The aim of this study was to compare students' satisfaction between lecture-based traditional method and hybrid problem-based learning (PBL) in BLS/ACLS teaching to undergraduate medical students. We conducted a questionnaire-based, cross-sectional survey among 118 1 st -year medical students from a university medical college in the city of New Delhi, India. We aimed to assess the students' satisfaction between lecture-based and hybrid-PBL method in BLS/ACLS teaching. Likert 5-point scale was used to assess students' satisfaction levels between the two teaching methods. Data were collected and scores regarding the students' satisfaction levels between these two teaching methods were analysed using a two-sided paired t -test. Most students preferred hybrid-PBL format over traditional lecture-based method in the following four aspects; learning and understanding, interest and motivation, training of personal abilities and being confident and satisfied with the teaching method ( P < 0.05). Implementation of hybrid-PBL format along with the lecture-based method in BLS/ACLS teaching provided high satisfaction among undergraduate medical students.

  2. An investigation of an uninterruptible power supply (UPS) based on supercapacitor and liquid nitrogen hybridization system

    International Nuclear Information System (INIS)

    Zhang, Xinjing; Xue, Haobai; Xu, Yujie; Chen, Haisheng; Tan, Chunqing

    2014-01-01

    Highlights: • A hybrid UPS based on supercapacitor and liquid nitrogen engine is proposed. • The dynamic modelling of the hybrid UPS system is conducted. • The dynamic working performance is obtained and analysed based on the simulation. • The hybrid UPS enjoys environmental benignity, long life and easy maintenance. • It is a highly possible solution to replace conventional UPS systems. - Abstract: An uninterruptible power supply (UPS) system based on supercapacitor and liquid nitrogen (LN 2 ) hybridization is first introduced in this paper. Of the newly designed UPS, the supercapacitor reacts instantaneously once the main supply fails, and it also starts the LN 2 power system to produce continuing electricity for the customer. This hybrid UPS system is of environment cleanness, long life time, easy maintenaince, etc. A 10 kW model is analyzed in this study. A two-stage nitrogen expander is designed with the rated speed of 900 rpm as the long time power generation device of the LN 2 cycle. The UPS starting process calculation is carried out. The results reveal that commercial supercapacitors could fulfill this request. This UPS could be a competent choice for the UPS application. Further discussion indicates the LN 2 power system could be used widely from UPS to low carbon vehicles

  3. AMITIS: A 3D GPU-Based Hybrid-PIC Model for Space and Plasma Physics

    Science.gov (United States)

    Fatemi, Shahab; Poppe, Andrew R.; Delory, Gregory T.; Farrell, William M.

    2017-05-01

    We have developed, for the first time, an advanced modeling infrastructure in space simulations (AMITIS) with an embedded three-dimensional self-consistent grid-based hybrid model of plasma (kinetic ions and fluid electrons) that runs entirely on graphics processing units (GPUs). The model uses NVIDIA GPUs and their associated parallel computing platform, CUDA, developed for general purpose processing on GPUs. The model uses a single CPU-GPU pair, where the CPU transfers data between the system and GPU memory, executes CUDA kernels, and writes simulation outputs on the disk. All computations, including moving particles, calculating macroscopic properties of particles on a grid, and solving hybrid model equations are processed on a single GPU. We explain various computing kernels within AMITIS and compare their performance with an already existing well-tested hybrid model of plasma that runs in parallel using multi-CPU platforms. We show that AMITIS runs ∼10 times faster than the parallel CPU-based hybrid model. We also introduce an implicit solver for computation of Faraday’s Equation, resulting in an explicit-implicit scheme for the hybrid model equation. We show that the proposed scheme is stable and accurate. We examine the AMITIS energy conservation and show that the energy is conserved with an error < 0.2% after 500,000 timesteps, even when a very low number of particles per cell is used.

  4. A Two-Account Life Insurance Model for Scenario-Based Valuation Including Event Risk

    Directory of Open Access Journals (Sweden)

    Ninna Reitzel Jensen

    2015-06-01

    Full Text Available Using a two-account model with event risk, we model life insurance contracts taking into account both guaranteed and non-guaranteed payments in participating life insurance as well as in unit-linked insurance. Here, event risk is used as a generic term for life insurance events, such as death, disability, etc. In our treatment of participating life insurance, we have special focus on the bonus schemes “consolidation” and “additional benefits”, and one goal is to formalize how these work and interact. Another goal is to describe similarities and differences between participating life insurance and unit-linked insurance. By use of a two-account model, we are able to illustrate general concepts without making the model too abstract. To allow for complicated financial markets without dramatically increasing the mathematical complexity, we focus on economic scenarios. We illustrate the use of our model by conducting scenario analysis based on Monte Carlo simulation, but the model applies to scenarios in general and to worst-case and best-estimate scenarios in particular. In addition to easy computations, our model offers a common framework for the valuation of life insurance payments across product types. This enables comparison of participating life insurance products and unit-linked insurance products, thus building a bridge between the two different ways of formalizing life insurance products. Finally, our model distinguishes itself from the existing literature by taking into account the Markov model for the state of the policyholder and, hereby, facilitating event risk.

  5. Weather forecasting based on hybrid neural model

    Science.gov (United States)

    Saba, Tanzila; Rehman, Amjad; AlGhamdi, Jarallah S.

    2017-11-01

    Making deductions and expectations about climate has been a challenge all through mankind's history. Challenges with exact meteorological directions assist to foresee and handle problems well in time. Different strategies have been investigated using various machine learning techniques in reported forecasting systems. Current research investigates climate as a major challenge for machine information mining and deduction. Accordingly, this paper presents a hybrid neural model (MLP and RBF) to enhance the accuracy of weather forecasting. Proposed hybrid model ensure precise forecasting due to the specialty of climate anticipating frameworks. The study concentrates on the data representing Saudi Arabia weather forecasting. The main input features employed to train individual and hybrid neural networks that include average dew point, minimum temperature, maximum temperature, mean temperature, average relative moistness, precipitation, normal wind speed, high wind speed and average cloudiness. The output layer composed of two neurons to represent rainy and dry weathers. Moreover, trial and error approach is adopted to select an appropriate number of inputs to the hybrid neural network. Correlation coefficient, RMSE and scatter index are the standard yard sticks adopted for forecast accuracy measurement. On individual standing MLP forecasting results are better than RBF, however, the proposed simplified hybrid neural model comes out with better forecasting accuracy as compared to both individual networks. Additionally, results are better than reported in the state of art, using a simple neural structure that reduces training time and complexity.

  6. Fuzzy logic-based analogue forecasting and hybrid modelling of horizontal visibility

    Science.gov (United States)

    Tuba, Zoltán; Bottyán, Zsolt

    2018-04-01

    Forecasting visibility is one of the greatest challenges in aviation meteorology. At the same time, high accuracy visibility forecasts can significantly reduce or make avoidable weather-related risk in aviation as well. To improve forecasting visibility, this research links fuzzy logic-based analogue forecasting and post-processed numerical weather prediction model outputs in hybrid forecast. Performance of analogue forecasting model was improved by the application of Analytic Hierarchy Process. Then, linear combination of the mentioned outputs was applied to create ultra-short term hybrid visibility prediction which gradually shifts the focus from statistical to numerical products taking their advantages during the forecast period. It gives the opportunity to bring closer the numerical visibility forecast to the observations even it is wrong initially. Complete verification of categorical forecasts was carried out; results are available for persistence and terminal aerodrome forecasts (TAF) as well in order to compare. The average value of Heidke Skill Score (HSS) of examined airports of analogue and hybrid forecasts shows very similar results even at the end of forecast period where the rate of analogue prediction in the final hybrid output is 0.1-0.2 only. However, in case of poor visibility (1000-2500 m), hybrid (0.65) and analogue forecasts (0.64) have similar average of HSS in the first 6 h of forecast period, and have better performance than persistence (0.60) or TAF (0.56). Important achievement that hybrid model takes into consideration physics and dynamics of the atmosphere due to the increasing part of the numerical weather prediction. In spite of this, its performance is similar to the most effective visibility forecasting methods and does not follow the poor verification results of clearly numerical outputs.

  7. HybridPLAY: A New Technology to Foster Outdoors Physical Activity, Verbal Communication and Teamwork

    Directory of Open Access Journals (Sweden)

    Diego José Díaz

    2016-04-01

    Full Text Available This paper presents HybridPLAY, a novel technology composed of a sensor and mobile-based video games that transforms urban playgrounds into game scenarios. With this technology we aim to stimulate physical activity and playful learning by creating an entertaining environment in which users can actively participate and collaborate. HybridPLAY is different from other existing technologies that enhance playgrounds, as it is not integrated in them but can be attached to the different elements of the playgrounds, making its use more ubiquitous (i.e., not restricted to the playgrounds. HybridPLAY was born in 2007 as an artistic concept, and evolved after different phases of research and testing by almost 2000 users around the world (in workshops, artistic events, conferences, etc.. Here, we present the temporal evolution of HybridPLAY with the different versions of the sensors and the video games, and a detailed technical description of the sensors and the way interactions are produced. We also present the outcomes after the evaluation by users at different events and workshops. We believe that HybridPLAY has great potential to contribute to increased physical activity in kids, and also to improve the learning process and monitoring at school centres by letting users create the content of the apps, leading to new narratives and fostering creativity.

  8. HybridPLAY: A New Technology to Foster Outdoors Physical Activity, Verbal Communication and Teamwork

    Science.gov (United States)

    Díaz, Diego José; Boj, Clara; Portalés, Cristina

    2016-01-01

    This paper presents HybridPLAY, a novel technology composed of a sensor and mobile-based video games that transforms urban playgrounds into game scenarios. With this technology we aim to stimulate physical activity and playful learning by creating an entertaining environment in which users can actively participate and collaborate. HybridPLAY is different from other existing technologies that enhance playgrounds, as it is not integrated in them but can be attached to the different elements of the playgrounds, making its use more ubiquitous (i.e., not restricted to the playgrounds). HybridPLAY was born in 2007 as an artistic concept, and evolved after different phases of research and testing by almost 2000 users around the world (in workshops, artistic events, conferences, etc.). Here, we present the temporal evolution of HybridPLAY with the different versions of the sensors and the video games, and a detailed technical description of the sensors and the way interactions are produced. We also present the outcomes after the evaluation by users at different events and workshops. We believe that HybridPLAY has great potential to contribute to increased physical activity in kids, and also to improve the learning process and monitoring at school centres by letting users create the content of the apps, leading to new narratives and fostering creativity. PMID:27120601

  9. A modeling method for hybrid energy behaviors in flexible machining systems

    International Nuclear Information System (INIS)

    Li, Yufeng; He, Yan; Wang, Yan; Wang, Yulin; Yan, Ping; Lin, Shenlong

    2015-01-01

    Increasingly environmental and economic pressures have led to great concerns regarding the energy consumption of machining systems. Understanding energy behaviors of flexible machining systems is a prerequisite for improving energy efficiency of these systems. This paper proposes a modeling method to predict energy behaviors in flexible machining systems. The hybrid energy behaviors not only depend on the technical specification related of machine tools and workpieces, but are significantly affected by individual production scenarios. In the method, hybrid energy behaviors are decomposed into Structure-related energy behaviors, State-related energy behaviors, Process-related energy behaviors and Assignment-related energy behaviors. The modeling method for the hybrid energy behaviors is proposed based on Colored Timed Object-oriented Petri Net (CTOPN). The former two types of energy behaviors are modeled by constructing the structure of CTOPN, whist the latter two types of behaviors are simulated by applying colored tokens and associated attributes. Machining on two workpieces in the experimental workshop were undertaken to verify the proposed modeling method. The results showed that the method can provide multi-perspective transparency on energy consumption related to machine tools, workpieces as well as production management, and is particularly suitable for flexible manufacturing system when frequent changes in machining systems are often encountered. - Highlights: • Energy behaviors in flexible machining systems are modeled in this paper. • Hybrid characteristics of energy behaviors are examined from multiple viewpoints. • Flexible modeling method CTOPN is used to predict the hybrid energy behaviors. • This work offers a multi-perspective transparency on energy consumption

  10. Scenario based approach for multiple source Tsunami Hazard assessment for Sines, Portugal

    OpenAIRE

    M. Wronna; R. Omira; M. A. Baptista

    2015-01-01

    In this paper, we present a scenario-based approach for tsunami hazard assessment for the city and harbour of Sines – Portugal, one of the test-sites of project ASTARTE. Sines holds one of the most important deep-water ports which contains oil-bearing, petrochemical, liquid bulk, coal and container terminals. The port and its industrial infrastructures are facing the ocean southwest towards the main seismogenic sources. This work considers two different seis...

  11. ZnO-based nanocrystalline powders with applications in hybrid photovoltaic cells

    Energy Technology Data Exchange (ETDEWEB)

    Damonte, L.C. [Dto. De Fisica, UNLP, IFLP-CCT-CONICET, C.C.67 (1900) La Plata (Argentina); Dto. De Fisica Aplicada, Universidad Politecnica de Valencia, Cami de Vera s/n (46071) Valencia (Spain); Donderis, V. [Dto. De Ingenieria Electrica, Universidad Politecnica de Valencia, Cami de Vera s/n (46071) Valencia (Spain); Ferrari, S.; Meyer, M. [Dto. De Fisica, UNLP, IFLP-CCT-CONICET, C.C.67 (1900) La Plata (Argentina); Orozco, J. [Dto. de Ingenieria Mecanica y Materiales, Universidad Politecnica de Valencia, Cami de Vera s/n (46071) Valencia (Spain); Hernandez-Fenollosa, M.A. [Dto. De Fisica Aplicada, Universidad Politecnica de Valencia, Cami de Vera s/n (46071) Valencia (Spain)

    2010-06-15

    In recent years there has been a growing interest in the development of hybrid photovoltaic cells consisting of new materials, such as devices based on the combination of a wide gap semiconductor and an organic dye (dye-sensitized solar cells, DSSC). In this paper we obtain nano-zinc oxide particles whose optical and electrical properties have been modified by the presence of small amounts of Al or In acting as dopants. The aim of this study is to improve the compatibility of each of the compounds present in the photovoltaic solar cell. The knowledge gained will provide input to guide the processes in the manufacture of hybrid solar cells. (author)

  12. Proposing a Hybrid Model Based on Robson's Classification for Better Impact on Trends of Cesarean Deliveries.

    Science.gov (United States)

    Hans, Punit; Rohatgi, Renu

    2017-06-01

    To construct a hybrid model classification for cesarean section (CS) deliveries based on the woman-characteristics (Robson's classification with additional layers of indications for CS, keeping in view low-resource settings available in India). This is a cross-sectional study conducted at Nalanda Medical College, Patna. All the women delivered from January 2016 to May 2016 in the labor ward were included. Results obtained were compared with the values obtained for India, from secondary analysis of WHO multi-country survey (2010-2011) by Joshua Vogel and colleagues' study published in "The Lancet Global Health." The three classifications (indication-based, Robson's and hybrid model) applied for categorization of the cesarean deliveries from the same sample of data and a semiqualitative evaluations done, considering the main characteristics, strengths and weaknesses of each classification system. The total number of women delivered during study period was 1462, out of which CS deliveries were 471. Overall, CS rate calculated for NMCH, hospital in this specified period, was 32.21% ( p  = 0.001). Hybrid model scored 23/23, and scores of Robson classification and indication-based classification were 21/23 and 10/23, respectively. Single-study centre and referral bias are the limitations of the study. Given the flexibility of the classifications, we constructed a hybrid model based on the woman-characteristics system with additional layers of other classification. Indication-based classification answers why, Robson classification answers on whom, while through our hybrid model we get to know why and on whom cesarean deliveries are being performed.

  13. Hybrid Approach To Steganography System Based On Quantum Encryption And Chaos Algorithms

    Directory of Open Access Journals (Sweden)

    ZAID A. ABOD

    2018-01-01

    Full Text Available A hybrid scheme for secretly embedding image into a dithered multilevel image is presented. This work inputs both a cover image and secret image, which are scrambling and divided into groups to embedded together based on multiple chaos algorithms (Lorenz map, Henon map and Logistic map respectively. Finally, encrypt the embedded images by using one of the quantum cryptography mechanisms, which is quantum one time pad. The experimental results show that the proposed hybrid system successfully embedded images and combine with the quantum cryptography algorithms and gives high efficiency for secure communication.

  14. Hybrid Imaging Labels: Providing the Link Between Mass Spectrometry-Based Molecular Pathology and Theranostics

    Science.gov (United States)

    Buckle, Tessa; van der Wal, Steffen; van Malderen, Stijn J.M.; Müller, Larissa; Kuil, Joeri; van Unen, Vincent; Peters, Ruud J.B.; van Bemmel, Margaretha E.M.; McDonnell, Liam A.; Velders, Aldrik H.; Koning, Frits; Vanhaeke, Frank; van Leeuwen, Fijs W. B.

    2017-01-01

    Background: Development of theranostic concepts that include inductively coupled plasma mass spectrometry (ICP-MS) and laser ablation ICP-MS (LA-ICP-MS) imaging can be hindered by the lack of a direct comparison to more standardly used methods for in vitro and in vivo evaluation; e.g. fluorescence or nuclear medicine. In this study a bimodal (or rather, hybrid) tracer that contains both a fluorescent dye and a chelate was used to evaluate the existence of a direct link between mass spectrometry (MS) and in vitro and in vivo molecular imaging findings using fluorescence and radioisotopes. At the same time, the hybrid label was used to determine whether the use of a single isotope label would allow for MS-based diagnostics. Methods: A hybrid label that contained both a DTPA chelate (that was coordinated with either 165Ho or 111In) and a Cy5 fluorescent dye was coupled to the chemokine receptor 4 (CXCR4) targeting peptide Ac-TZ14011 (hybrid-Cy5-Ac-TZ4011). This receptor targeting tracer was used to 1) validate the efficacy of (165Ho-based) mass-cytometry in determining the receptor affinity via comparison with fluorescence-based flow cytometry (Cy5), 2) evaluate the microscopic binding pattern of the tracer in tumor cells using both fluorescence confocal imaging (Cy5) and LA-ICP-MS-imaging (165Ho), 3) compare in vivo biodistribution patterns obtained with ICP-MS (165Ho) and radiodetection (111In) after intravenous administration of hybrid-Cy5-Ac-TZ4011 in tumor-bearing mice. Finally, LA-ICP-MS-imaging (165Ho) was linked to fluorescence-based analysis of excised tissue samples (Cy5). Results: Analysis with both mass-cytometry and flow cytometry revealed a similar receptor affinity, respectively 352 ± 141 nM and 245 ± 65 nM (p = 0.08), but with a much lower detection sensitivity for the first modality. In vitro LA-ICP-MS imaging (165Ho) enabled clear discrimination between CXCR4 positive and negative cells, but fluorescence microscopy was required to determine the

  15. A Hybrid Smartphone Indoor Positioning Solution for Mobile LBS

    Directory of Open Access Journals (Sweden)

    Heidi Kuusniemi

    2012-12-01

    Full Text Available Smartphone positioning is an enabling technology used to create new business in the navigation and mobile location-based services (LBS industries. This paper presents a smartphone indoor positioning engine named HIPE that can be easily integrated with mobile LBS. HIPE is a hybrid solution that fuses measurements of smartphone sensors with wireless signals. The smartphone sensors are used to measure the user’s motion dynamics information (MDI, which represent the spatial correlation of various locations. Two algorithms based on hidden Markov model (HMM problems, the grid-based filter and the Viterbi algorithm, are used in this paper as the central processor for data fusion to resolve the position estimates, and these algorithms are applicable for different applications, e.g., real-time navigation and location tracking, respectively. HIPE is more widely applicable for various motion scenarios than solutions proposed in previous studies because it uses no deterministic motion models, which have been commonly used in previous works. The experimental results showed that HIPE can provide adequate positioning accuracy and robustness for different scenarios of MDI combinations. HIPE is a cost-efficient solution, and it can work flexibly with different smartphone platforms, which may have different types of sensors available for the measurement of MDI data. The reliability of the positioning solution was found to increase with increasing precision of the MDI data.

  16. A hybrid smartphone indoor positioning solution for mobile LBS.

    Science.gov (United States)

    Liu, Jingbin; Chen, Ruizhi; Pei, Ling; Guinness, Robert; Kuusniemi, Heidi

    2012-12-12

    Smartphone positioning is an enabling technology used to create new business in the navigation and mobile location-based services (LBS) industries. This paper presents a smartphone indoor positioning engine named HIPE that can be easily integrated with mobile LBS. HIPE is a hybrid solution that fuses measurements of smartphone sensors with wireless signals. The smartphone sensors are used to measure the user's motion dynamics information (MDI), which represent the spatial correlation of various locations. Two algorithms based on hidden Markov model (HMM) problems, the grid-based filter and the Viterbi algorithm, are used in this paper as the central processor for data fusion to resolve the position estimates, and these algorithms are applicable for different applications, e.g., real-time navigation and location tracking, respectively. HIPE is more widely applicable for various motion scenarios than solutions proposed in previous studies because it uses no deterministic motion models, which have been commonly used in previous works. The experimental results showed that HIPE can provide adequate positioning accuracy and robustness for different scenarios of MDI combinations. HIPE is a cost-efficient solution, and it can work flexibly with different smartphone platforms, which may have different types of sensors available for the measurement of MDI data. The reliability of the positioning solution was found to increase with increasing precision of the MDI data.

  17. Single step synthesis of chitin/chitosan-based graphene oxide–ZnO hybrid composites for better electrical conductivity and optical properties

    International Nuclear Information System (INIS)

    Anandhavelu, S.; Thambidurai, S.

    2013-01-01

    Highlights: ► UV absorption at 260–360 nm confirmed strong binding of ZnO with chitosan–GO sheets. ► Chitin-based GO–ZnO shows higher electrical conductivity than chitosan-based GO–ZnO. ► Chitin-based GO–ZnO will useful in sensing, catalysis and energy storage applications. -- Abstract: We synthesized two composites/hybrid composites with a graphene oxide (GO)/mixed GO–ZnO filler using either a chitin or a chitosan matrix. Fourier transform infrared spectroscopy analysis confirmed that chitin had been converted to chitosan during matrix fabrication because only chitosan, ZnO and GO were shown to be present in the composites/hybrid composites. Raman spectroscopy indicated the display of D and G bands at 1345 cm −1 and 1584 cm −1 , respectively. UV absorption peaks appeared at 260–360 nm and 201 nm in both hybrid composites, which indicate a strong binding of ZnO within the chitosan–GO sheets. High resolution scanning electron microscopy and atomic force microscopy studies demonstrated that on a molecular scale ZnO was well dispersed in the hybrid composites. Impedance spectroscopy and a four-probe resistivity method were used for room temperature electrical conductivity measurements. The electrical conductivity of the chitin-based GO–ZnO hybrid composites was estimated to be ∼5.94 × 10 6 S/cm and was greater than that of the chitosan-based GO–ZnO hybrid composite (∼4.13 × 10 6 S/cm). The chitin-based GO–ZnO hybrid composite had a higher optical band gap (3.4 eV) than the chitosan-based GO–ZnO hybrid composite (3.0 eV). The current–voltage measurement showed that electrical sheets resistance of the chitosan-based composites decreased with formation of ZnO

  18. Hybrid breeding in wheat: technologies to improve hybrid wheat seed production.

    Science.gov (United States)

    Whitford, Ryan; Fleury, Delphine; Reif, Jochen C; Garcia, Melissa; Okada, Takashi; Korzun, Viktor; Langridge, Peter

    2013-12-01

    Global food security demands the development and delivery of new technologies to increase and secure cereal production on finite arable land without increasing water and fertilizer use. There are several options for boosting wheat yields, but most offer only small yield increases. Wheat is an inbred plant, and hybrids hold the potential to deliver a major lift in yield and will open a wide range of new breeding opportunities. A series of technological advances are needed as a base for hybrid wheat programmes. These start with major changes in floral development and architecture to separate the sexes and force outcrossing. Male sterility provides the best method to block self-fertilization, and modifying the flower structure will enhance pollen access. The recent explosion in genomic resources and technologies provides new opportunities to overcome these limitations. This review outlines the problems with existing hybrid wheat breeding systems and explores molecular-based technologies that could improve the hybrid production system to reduce hybrid seed production costs, a prerequisite for a commercial hybrid wheat system.

  19. Rational design of multifunctional devices based on molybdenum disulfide and graphene hybrid nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Lim, Yi Rang; Lee, Young Bum; Kim, Seong Ku; Kim, Seong Jun [Thin Film Materials Research Center, Korea Research Institute of Chemical Technology, Yuseong, Post Office Box 107, Daejeon 305-600 (Korea, Republic of); Kim, Yooseok; Jeon, Cheolho [Nano-Surface Research Group, Korea Basic Science Institute, Daejeon, 302-333 (Korea, Republic of); Song, Wooseok, E-mail: wssong@krict.re.kr [Thin Film Materials Research Center, Korea Research Institute of Chemical Technology, Yuseong, Post Office Box 107, Daejeon 305-600 (Korea, Republic of); Myung, Sung; Lee, Sun Sook; An, Ki-Seok [Thin Film Materials Research Center, Korea Research Institute of Chemical Technology, Yuseong, Post Office Box 107, Daejeon 305-600 (Korea, Republic of); Lim, Jongsun, E-mail: jslim@krict.re.kr [Thin Film Materials Research Center, Korea Research Institute of Chemical Technology, Yuseong, Post Office Box 107, Daejeon 305-600 (Korea, Republic of)

    2017-01-15

    Highlights: • We fabricated MoS{sub 2}-graphene hybrid thin films for multifunctional applications. • Large-area, uniform multilayer MoS{sub 2} was synthesized on TCVD-grown graphene. • The mobility and photocurrent of the hybrid devices were improved significantly. - Abstract: We rationally designed a new type of hybrid materials, molybdenum disulfide (MoS{sub 2}) synthesized by Mo pre-deposition followed by subsequent sulfurization process directly on thermal chemical vapor deposition (TCVD)-grown graphene, for applications in a multifunctional device. The synthesis of stoichiometric and uniform multilayer MoS{sub 2} and high-crystalline monolayer graphene was evaluated by X-ray photoelectron spectroscopy and Raman spectroscopy. To examine the electrical transport and photoelectrical properties of MoS{sub 2}-graphene hybrid films, field effect transistors (FETs) and visible-light photodetectors based on MoS{sub 2}-graphene were both fabricated. As a result, the extracted mobility for MoS{sub 2}-graphene hybrid FETs was two times higher than that of MoS{sub 2} FETs. In addition, the MoS{sub 2}-graphene photodetectors revealed a significant photocurrent with abrupt switching behavior under periodic illumination.

  20. Hybrid wireless-over-fiber transmission system based on multiple injection-locked FP LDs.

    Science.gov (United States)

    Li, Chung-Yi; Lu, Hai-Han; Chu, Chien-An; Ying, Cheng-Ling; Lu, Ting-Chien; Peng, Peng-Chun

    2015-07-27

    A hybrid wireless-over-fiber (WoF) transmission system based on multiple injection-locked Fabry-Perot laser diodes (FP LDs) is proposed and experimentally demonstrated. Unlike the traditional hybrid WoF transmission systems that require multiple distributed feedback (DFB) LDs to support different kinds of services, the proposed system employs multiple injection-locked FP LDs to provide different kinds of applications. Such a hybrid WoF transmission system delivers downstream intensity-modulated 20-GHz microwave (MW)/60-GHz millimeter-wave (MMW)/550-MHz cable television (CATV) signals and upstream phase-remodulated 20-GHz MW signal. Excellent bit error rate (BER), carrier-to-noise ratio (CNR), composite second-order (CSO), and composite triple-beat (CTB) are observed over a 40-km single-mode fiber (SMF) and a 4-m radio frequency (RF) wireless transport. Such a hybrid WoF transmission system has practical applications for fiber-wireless convergence to provide broadband integrated services, including telecommunication, data communication, and CATV services.

  1. Luminescent hybrid materials based on (8-hydroxyquinoline)-substituted metal-organic complexes and lead-borate glasses

    Science.gov (United States)

    Petrova, Olga B.; Anurova, Maria O.; Akkuzina, Alina A.; Saifutyarov, Rasim R.; Ermolaeva, Ekaterina V.; Avetisov, Roman I.; Khomyakov, Andrew V.; Taydakov, Ilya V.; Avetissov, Igor Ch.

    2017-07-01

    Novel luminescent organic-inorganic hybrid materials based on 8-hydroxyquinoline metal complexes (Liq, Kq, Naq, Rbq, Mgq2, Srq2, Znq2, Scq3, Alq3, Gaq3, and Inq3) have been synthesized by a high temperature exchange reaction with 80PbF2-20B2O3 inorganic low-melting glass. The mechanical and optical properties, transmission spectra, emission an excitation photoluminescence, and luminescence kinetic of hybrid materials were studied. All hybrid materials showed a wide luminescence band in the range 400-700 nm.

  2. A hybrid ensemble learning approach to star-galaxy classification

    Science.gov (United States)

    Kim, Edward J.; Brunner, Robert J.; Carrasco Kind, Matias

    2015-10-01

    There exist a variety of star-galaxy classification techniques, each with their own strengths and weaknesses. In this paper, we present a novel meta-classification framework that combines and fully exploits different techniques to produce a more robust star-galaxy classification. To demonstrate this hybrid, ensemble approach, we combine a purely morphological classifier, a supervised machine learning method based on random forest, an unsupervised machine learning method based on self-organizing maps, and a hierarchical Bayesian template-fitting method. Using data from the CFHTLenS survey (Canada-France-Hawaii Telescope Lensing Survey), we consider different scenarios: when a high-quality training set is available with spectroscopic labels from DEEP2 (Deep Extragalactic Evolutionary Probe Phase 2 ), SDSS (Sloan Digital Sky Survey), VIPERS (VIMOS Public Extragalactic Redshift Survey), and VVDS (VIMOS VLT Deep Survey), and when the demographics of sources in a low-quality training set do not match the demographics of objects in the test data set. We demonstrate that our Bayesian combination technique improves the overall performance over any individual classification method in these scenarios. Thus, strategies that combine the predictions of different classifiers may prove to be optimal in currently ongoing and forthcoming photometric surveys, such as the Dark Energy Survey and the Large Synoptic Survey Telescope.

  3. A Trichosporonales genome tree based on 27 haploid and three evolutionarily conserved 'natural' hybrid genomes.

    Science.gov (United States)

    Takashima, Masako; Sriswasdi, Sira; Manabe, Ri-Ichiroh; Ohkuma, Moriya; Sugita, Takashi; Iwasaki, Wataru

    2018-01-01

    To construct a backbone tree consisting of basidiomycetous yeasts, draft genome sequences from 25 species of Trichosporonales (Tremellomycetes, Basidiomycota) were generated. In addition to the hybrid genomes of Trichosporon coremiiforme and Trichosporon ovoides that we described previously, we identified an interspecies hybrid genome in Cutaneotrichosporon mucoides (formerly Trichosporon mucoides). This hybrid genome had a gene retention rate of ~55%, and its closest haploid relative was Cutaneotrichosporon dermatis. After constructing the C. mucoides subgenomes, we generated a phylogenetic tree using genome data from the 27 haploid species and the subgenome data from the three hybrid genome species. It was a high-quality tree with 100% bootstrap support for all of the branches. The genome-based tree provided superior resolution compared with previous multi-gene analyses. Although our backbone tree does not include all Trichosporonales genera (e.g. Cryptotrichosporon), it will be valuable for future analyses of genome data. Interest in interspecies hybrid fungal genomes has recently increased because they may provide a basis for new technologies. The three Trichosporonales hybrid genomes described in this study are different from well-characterized hybrid genomes (e.g. those of Saccharomyces pastorianus and Saccharomyces bayanus) because these hybridization events probably occurred in the distant evolutionary past. Hence, they will be useful for studying genome stability following hybridization and speciation events. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.

  4. Mechanical Behavior of Nanostructured Hybrids Based on Poly(Vinyl Alcohol/Bioactive Glass Reinforced with Functionalized Carbon Nanotubes

    Directory of Open Access Journals (Sweden)

    H. S. Mansur

    2012-01-01

    Full Text Available This study reports the synthesis and characterization of novel tridimensional porous hybrids based on PVA combined with bioactive glass and reinforced by chemically functionalized carbon nanotubes (CNT for potential use in bone tissue engineering. The functionalization of CNT was performed by introducing carboxylic groups in multiwall nanotubes. This process aimed at enhancing the affinity of CNTs with the water-soluble PVA polymer derived by the hydrogen bonds formed among alcohol (PVA and carboxylic groups (CNT–COOH. In the sequence, the CNT–COOH (0.25 wt% were used as the nanostructure modifier for the hybrid system based on PVA associated with the bioactive glass (BaG. The mechanical properties of the nanostructured hybrids reinforced with CNT–COOH were evaluated by axial compression tests, and they were compared to reference hybrid. The averaged yield stresses of macroporous hybrids were (2.3 ± 0.9 and (4.4 ± 1.0 MPa for the reference and the CNT reinforced materials, respectively. Moreover, yield strain and Young's modulus were significantly enhanced by about 30% for the CNT–COOH hybrids. Hence, as far as the mechanical properties are concerned, the results have clearly showed the feasibility of utilizing these new hybrids reinforced with functionalized CNT in repairing cancellous bone tissues.

  5. Luminescence resonance energy transfer-based nucleic acid hybridization assay on cellulose paper with upconverting phosphor as donors.

    Science.gov (United States)

    Zhou, Feng; Noor, M Omair; Krull, Ulrich J

    2014-03-04

    A bioassay based on DNA hybridization on cellulose paper is a promising format for gene fragment detection that may be suited for in-field and rapid diagnostic applications. We demonstrate for the first time that luminescence resonance energy transfer (LRET) associated with upconverting phosphors (UCPs) can be used to develop a paper-based DNA hybridization assay with high sensitivity, selectivity and fast response. UCPs with strong green emission were synthesized and subsequently functionalized with streptavidin (UCP-strep). UCP-strep particles were immobilized on cellulose paper, and then biotinylated single-stranded oligonucleotide probes were conjugated onto the UCPs via streptavidin-biotin linkage. The UCPs served as donors that were LRET-paired with Cy3-labeled target DNA. Selective DNA hybridization enabled the proximity required for LRET-sensitized emission from Cy3, which was used as the detection signal. Hybridization was complete within 2 min, and the limit of detection of the method was 34 fmol, which is a significant improvement in comparison to an analogous fluorescence resonance energy transfer (FRET) assay based on quantum dots. The assay exhibited excellent resistance to nonspecific adsorption of noncomplementary short/long DNA and protein. The selectivity of the assay was further evaluated by one base pair mismatched (1BPM) DNA detection, where a maximum signal ratio of 3.1:1 was achieved between fully complementary and 1BPM samples. This work represents a preliminary but significant step for the development of paper-based UCP-LRET nucleic acid hybridization assays, which offer potential for lowering the limit of detection of luminescent hybridization assays due to the negligible background signal associated with optical excitation by near-infrared (NIR) light.

  6. The Influence of Diesel Fuel Subsidies and Taxes on the Potential for Solar-Powered Hybrid Systems in Africa

    Directory of Open Access Journals (Sweden)

    Paul Bertheau

    2015-08-01

    Full Text Available Many people in African countries lack access to sufficient electricity supply due to missing infrastructure of the centralized conventional power generation system. In order to provide electricity to a wider part of the population, it is necessary to exploit the vast renewable resources in African countries. Therefore, this paper scrutinizes the economic advantages of photovoltaic-based hybrid systems over fossil fuel-based power generation. A simulation model is applied in order to calculate the cost advantage of hybrid systems compared to diesel-only systems for the entire continent on a long term basis by applying two scenarios: one based on world market diesel prices and the other one based on national diesel prices. The results indicate that average power generation costs per country can be reduced by up to 0.11 €/kWh considering world market diesel prices and by up to 0.48 €/kWh considering national diesel prices. Furthermore, the effect of diesel fuel subsidies and taxes on the renewable energy potential and the respective savings are examined. These findings may ameliorate the policy development according to fossil fuel subsidies and taxes and demonstrate the advantages of decentralized renewable hybrid systems especially in rural areas of Africa.

  7. Adaptive Hybrid Control of Vehicle Semiactive Suspension Based on Road Profile Estimation

    Directory of Open Access Journals (Sweden)

    Yechen Qin

    2015-01-01

    Full Text Available A new road estimation based suspension hybrid control strategy is proposed. Its aim is to adaptively change control gains to improve both ride comfort and road handling with the constraint of rattle space. To achieve this, analytical expressions for ride comfort, road handling, and rattle space with respect to road input are derived based on the hybrid control, and the problem is transformed into a MOOP (Multiobjective Optimization Problem and has been solved by NSGA-II (Nondominated Sorting Genetic Algorithm-II. A new road estimation and classification method, which is based on ANFIS (Adaptive Neurofuzzy Inference System and wavelet transforms, is then presented as a means of detecting the road profile level, and a Kalman filter is designed for observing unknown states. The results of simulations conducted with random road excitation show that the efficiency of the proposed control strategy compares favourably to that of a passive system.

  8. Differently-catalyzed silica-based precursors as functional additives for the epoxy-based hybrid materials

    Czech Academy of Sciences Publication Activity Database

    Perchacz, Magdalena; Beneš, Hynek; Zhigunov, Alexander; Serkis, Magdalena; Pavlova, Ewa

    2016-01-01

    Roč. 99, 2 September (2016), s. 434-446 ISSN 0032-3861 R&D Projects: GA ČR(CZ) GA14-05146S; GA MŠk(CZ) LO1507 Institutional support: RVO:61389013 Keywords : epoxy-silica hybrid material * solvent-free sol-gel process * silica-based precursor Subject RIV: CD - Macromolecular Chemistry Impact factor: 3.684, year: 2016

  9. Social Foundation of Scenario Planning

    DEFF Research Database (Denmark)

    Rowland, Nicholas James; Spaniol, Matthew Jon

    2017-01-01

    In this article, the authors establish that models of scenario planning typically involve a series of phases, stages, or steps that imply a sequenced (i.e., linear or chronological) process. Recursive models, in contrast, allow phases to repeat, thus, incorporating iteration. The authors acknowle......In this article, the authors establish that models of scenario planning typically involve a series of phases, stages, or steps that imply a sequenced (i.e., linear or chronological) process. Recursive models, in contrast, allow phases to repeat, thus, incorporating iteration. The authors...... from science and technology studies (STS) on knowledge production, the authors explain transition from one phase to the next and iteration between and within phases based on social negotiation. To this end, the authors examine the interplay between the “scenario development” phase and the “scenario use......” phase of a planning process with a non-governmental organization in Denmark. The upshot for facilitators is practical insight into how transition between phases and phase iteration in scenario planning can be identified, leveraged, and, thus, managed. The upshot for scholars is a related insight...

  10. A hybrid algorithm for instant optimization of beam weights in anatomy-based intensity modulated radiotherapy: a performance evaluation study

    International Nuclear Information System (INIS)

    Vaitheeswaran, Ranganathan; Sathiya Narayanan, V.K.; Bhangle, Janhavi R.; Nirhali, Amit; Kumar, Namita; Basu, Sumit; Maiya, Vikram

    2011-01-01

    The study aims to introduce a hybrid optimization algorithm for anatomy-based intensity modulated radiotherapy (AB-IMRT). Our proposal is that by integrating an exact optimization algorithm with a heuristic optimization algorithm, the advantages of both the algorithms can be combined, which will lead to an efficient global optimizer solving the problem at a very fast rate. Our hybrid approach combines Gaussian elimination algorithm (exact optimizer) with fast simulated annealing algorithm (a heuristic global optimizer) for the optimization of beam weights in AB-IMRT. The algorithm has been implemented using MATLAB software. The optimization efficiency of the hybrid algorithm is clarified by (i) analysis of the numerical characteristics of the algorithm and (ii) analysis of the clinical capabilities of the algorithm. The numerical and clinical characteristics of the hybrid algorithm are compared with Gaussian elimination method (GEM) and fast simulated annealing (FSA). The numerical characteristics include convergence, consistency, number of iterations and overall optimization speed, which were analyzed for the respective cases of 8 patients. The clinical capabilities of the hybrid algorithm are demonstrated in cases of (a) prostate and (b) brain. The analyses reveal that (i) the convergence speed of the hybrid algorithm is approximately three times higher than that of FSA algorithm (ii) the convergence (percentage reduction in the cost function) in hybrid algorithm is about 20% improved as compared to that in GEM algorithm (iii) the hybrid algorithm is capable of producing relatively better treatment plans in terms of Conformity Index (CI) (∼ 2% - 5% improvement) and Homogeneity Index (HI) (∼ 4% - 10% improvement) as compared to GEM and FSA algorithms (iv) the sparing of organs at risk in hybrid algorithm-based plans is better than that in GEM-based plans and comparable to that in FSA-based plans; and (v) the beam weights resulting from the hybrid algorithm are

  11. Design and Analysis of Self-Healing Tree-Based Hybrid Spectral Amplitude Coding OCDMA System

    Directory of Open Access Journals (Sweden)

    Waqas A. Imtiaz

    2017-01-01

    Full Text Available This paper presents an efficient tree-based hybrid spectral amplitude coding optical code division multiple access (SAC-OCDMA system that is able to provide high capacity transmission along with fault detection and restoration throughout the passive optical network (PON. Enhanced multidiagonal (EMD code is adapted to elevate system’s performance, which negates multiple access interference and associated phase induced intensity noise through efficient two-matrix structure. Moreover, system connection availability is enhanced through an efficient protection architecture with tree and star-ring topology at the feeder and distribution level, respectively. The proposed hybrid architecture aims to provide seamless transmission of information at minimum cost. Mathematical model based on Gaussian approximation is developed to analyze performance of the proposed setup, followed by simulation analysis for validation. It is observed that the proposed system supports 64 subscribers, operating at the data rates of 2.5 Gbps and above. Moreover, survivability and cost analysis in comparison with existing schemes show that the proposed tree-based hybrid SAC-OCDMA system provides the required redundancy at minimum cost of infrastructure and operation.

  12. Evading the Lyth bound in hybrid natural inflation

    International Nuclear Information System (INIS)

    Hebecker, A.; Kraus, S.C.; Westphal, Alexander

    2013-05-01

    Generically, the gravitational-wave or tensor-mode contribution to the primordial curvature spectrum of inflation is tiny if the field-range of the inflaton is much smaller than the Planck scale. We show that this pessimistic conclusion is naturally avoided in a rather broad class of small-field models. More specifically, we consider models where an axion-like shift symmetry keeps the inflaton potential flat (up to non-perturbative cosine-shaped modulations), but inflation nevertheless ends in a waterfall-regime, as is typical for hybrid inflation. In such hybrid natural inflation scenarios (examples are provided by Wilson line inflation and fluxbrane inflation), the slow-roll parameter ε can be sizable during an early period (relevant for the CMB spectrum). Subsequently, ε quickly becomes very small before the tachyonic instability eventually terminates the slow-roll regime. In this scenario, one naturally generates a considerable tensor-mode contribution in the curvature spectrum, collecting nevertheless the required amount of e-foldings during the final period of inflation. While non-observation of tensors by Planck is certainly not a problem, a discovery in the medium to long term future is realistic.

  13. Evading the Lyth bound in hybrid natural inflation

    Science.gov (United States)

    Hebecker, A.; Kraus, S. C.; Westphal, A.

    2013-12-01

    Generically, the gravitational-wave or tensor-mode contribution to the primordial curvature spectrum of inflation is tiny if the field range of the inflaton is much smaller than the Planck scale. We show that this pessimistic conclusion is naturally avoided in a rather broad class of small-field models. More specifically, we consider models where an axionlike shift symmetry keeps the inflaton potential flat (up to nonperturbative cosine-shaped modulations), but inflation nevertheless ends in a waterfall regime, as is typical for hybrid inflation. In such hybrid natural inflation scenarios (examples are provided by Wilson line inflation and fluxbrane inflation), the slow-roll parameter ɛ can be sizable during an early period (relevant for the cosmic microwave background spectrum). Subsequently, ɛ quickly becomes very small before the tachyonic instability eventually terminates the slow-roll regime. In this scenario, one naturally generates a considerable tensor-mode contribution in the curvature spectrum, collecting nevertheless the required amount of e-foldings during the final period of inflation. While nonobservation of tensors by Planck is certainly not a problem, a discovery in the medium- to long-term future is realistic.

  14. Evading the Lyth bound in hybrid natural inflation

    Energy Technology Data Exchange (ETDEWEB)

    Hebecker, A.; Kraus, S.C. [Heidelberg Univ. (Germany). Inst. fuer Theoretische Physik; Westphal, Alexander [Deutsches Elektronen-Synchrotron DESY, Hamburg (Germany). Theory Group

    2013-05-15

    Generically, the gravitational-wave or tensor-mode contribution to the primordial curvature spectrum of inflation is tiny if the field-range of the inflaton is much smaller than the Planck scale. We show that this pessimistic conclusion is naturally avoided in a rather broad class of small-field models. More specifically, we consider models where an axion-like shift symmetry keeps the inflaton potential flat (up to non-perturbative cosine-shaped modulations), but inflation nevertheless ends in a waterfall-regime, as is typical for hybrid inflation. In such hybrid natural inflation scenarios (examples are provided by Wilson line inflation and fluxbrane inflation), the slow-roll parameter {epsilon} can be sizable during an early period (relevant for the CMB spectrum). Subsequently, {epsilon} quickly becomes very small before the tachyonic instability eventually terminates the slow-roll regime. In this scenario, one naturally generates a considerable tensor-mode contribution in the curvature spectrum, collecting nevertheless the required amount of e-foldings during the final period of inflation. While non-observation of tensors by Planck is certainly not a problem, a discovery in the medium to long term future is realistic.

  15. Assessing the Psychometric Properties of a Scenario-Based Measure of Achievement Guilt and Shame

    Science.gov (United States)

    Thompson, Ted; Sharp, Jessica; Alexander, James

    2008-01-01

    In this study, the psychometric properties of the scenario-based Achievement Guilt and Shame Scale (AGSS) were established. The AGSS and scales assessing interpersonal guilt and shame, high standards, overgeneralization, self-criticism, self-esteem, academic self-concept, fear of failure, and tendency to respond in a socially desirable manner were…

  16. Hybrid Network Simulation for the ATLAS Trigger and Data Acquisition (TDAQ) System

    CERN Document Server

    Bonaventura, Matias Alejandro; The ATLAS collaboration; Castro, Rodrigo Daniel; Foguelman, Daniel Jacob

    2015-01-01

    The poster shows the ongoing research in the ATLAS TDAQ group in collaboration with the University of Buenos Aires in the area of hybrid data network simulations. he Data Network and Processing Cluster filters data in real-time, achieving a rejection factor in the order of 40000x and has real-time latency constrains. The dataflow between the processing units (TPUs) and Readout System (ROS) presents a “TCP Incast”-type network pathology which TCP cannot handle it efficiently. A credits system is in place which limits rate of queries and reduces latency. This large computer network, and the complex dataflow has been modelled and simulated using a PowerDEVS, a DEVS-based simulator. The simulation has been validated and used to produce what-if scenarios in the real network. Network Simulation with Hybrid Flows: Speedups and accuracy, combined • For intensive network traffic, Discrete Event simulation models (packet-level granularity) soon becomes prohibitive: Too high computing demands. • Fluid Flow simul...

  17. Swarm Intelligence-Based Hybrid Models for Short-Term Power Load Prediction

    Directory of Open Access Journals (Sweden)

    Jianzhou Wang

    2014-01-01

    Full Text Available Swarm intelligence (SI is widely and successfully applied in the engineering field to solve practical optimization problems because various hybrid models, which are based on the SI algorithm and statistical models, are developed to further improve the predictive abilities. In this paper, hybrid intelligent forecasting models based on the cuckoo search (CS as well as the singular spectrum analysis (SSA, time series, and machine learning methods are proposed to conduct short-term power load prediction. The forecasting performance of the proposed models is augmented by a rolling multistep strategy over the prediction horizon. The test results are representative of the out-performance of the SSA and CS in tuning the seasonal autoregressive integrated moving average (SARIMA and support vector regression (SVR in improving load forecasting, which indicates that both the SSA-based data denoising and SI-based intelligent optimization strategy can effectively improve the model’s predictive performance. Additionally, the proposed CS-SSA-SARIMA and CS-SSA-SVR models provide very impressive forecasting results, demonstrating their strong robustness and universal forecasting capacities in terms of short-term power load prediction 24 hours in advance.

  18. Improved Hybrid Opponent System for Professional Military Training

    Directory of Open Access Journals (Sweden)

    Michael Pelosi

    2017-10-01

    Full Text Available Described herein is a general-purpose software engineering architecture for autonomous, computer controlled opponent implementation in modern maneuver warfare simulation and training. The implementation has been developed, refined, and tested in the user crucible for several years. The approach represents a hybrid application of various well-known AI techniques, including domain modeling, agent modeling, and object-oriented programming. Inspired by computer chess approaches, the methodology combines this theoretical foundation with a hybrid and scalable portfolio of additional techniques. The result remains simple enough to be maintainable, comprehensible for the code writers as well as the end-users, and robust enough to handle a wide spectrum of possible mission scenarios and circumstances without modification.

  19. Bandwidth based methodology for designing a hybrid energy storage system for a series hybrid electric vehicle with limited all electric mode

    Science.gov (United States)

    Shahverdi, Masood

    The cost and fuel economy of hybrid electrical vehicles (HEVs) are significantly dependent on the power-train energy storage system (ESS). A series HEV with a minimal all-electric mode (AEM) permits minimizing the size and cost of the ESS. This manuscript, pursuing the minimal size tactic, introduces a bandwidth based methodology for designing an efficient ESS. First, for a mid-size reference vehicle, a parametric study is carried out over various minimal-size ESSs, both hybrid (HESS) and non-hybrid (ESS), for finding the highest fuel economy. The results show that a specific type of high power battery with 4.5 kWh capacity can be selected as the winning candidate to study for further minimization. In a second study, following the twin goals of maximizing Fuel Economy (FE) and improving consumer acceptance, a sports car class Series-HEV (SHEV) was considered as a potential application which requires even more ESS minimization. The challenge with this vehicle is to reduce the ESS size compared to 4.5 kWh, because the available space allocation is only one fourth of the allowed battery size in the mid-size study by volume. Therefore, an advanced bandwidth-based controller is developed that allows a hybridized Subaru BRZ model to be realized with a light ESS. The result allows a SHEV to be realized with 1.13 kWh ESS capacity. In a third study, the objective is to find optimum SHEV designs with minimal AEM assumption which cover the design space between the fuel economies in the mid-size car study and the sports car study. Maximizing FE while minimizing ESS cost is more aligned with customer acceptance in the current state of market. The techniques applied to manage the power flow between energy sources of the power-train significantly affect the results of this optimization. A Pareto Frontier, including ESS cost and FE, for a SHEV with limited AEM, is introduced using an advanced bandwidth-based control strategy teamed up with duty ratio control. This controller

  20. Biomass Scenario Model Scenario Library: Definitions, Construction, and Description

    Energy Technology Data Exchange (ETDEWEB)

    Inman, D.; Vimmerstedt, L.; Bush, B.; Peterson, S.

    2014-04-01

    Understanding the development of the biofuels industry in the United States is important to policymakers and industry. The Biomass Scenario Model (BSM) is a system dynamics model of the biomass-to-biofuels system that can be used to explore policy effects on biofuels development. Because of the complexity of the model, as well as the wide range of possible future conditions that affect biofuels industry development, we have not developed a single reference case but instead developed a set of specific scenarios that provide various contexts for our analyses. The purpose of this report is to describe the scenarios that comprise the BSM scenario library. At present, we have the following policy-focused scenarios in our library: minimal policies, ethanol-focused policies, equal access to policies, output-focused policies, technological diversity focused, and the point-of-production- focused. This report describes each scenario, its policy settings, and general insights gained through use of the scenarios in analytic studies.

  1. The Role of Combined ICRF and NBI Heating in JET Hybrid Plasmas in Quest for High D-T Fusion Yield

    Directory of Open Access Journals (Sweden)

    Mantsinen Mervi

    2017-01-01

    Full Text Available Combined ICRF and NBI heating played a key role in achieving the world-record fusion yield in the first deuterium-tritium campaign at the JET tokamak in 1997. The current plans for JET include new experiments with deuterium-tritium (D-T plasmas with more ITER-like conditions given the recently installed ITER-like wall (ILW. In the 2015-2016 campaigns, significant efforts have been devoted to the development of high-performance plasma scenarios compatible with ILW in preparation of the forthcoming D-T campaign. Good progress was made in both the inductive (baseline and the hybrid scenario: a new record JET ILW fusion yield with a significantly extended duration of the high-performance phase was achieved. This paper reports on the progress with the hybrid scenario which is a candidate for ITER longpulse operation (∼1000 s thanks to its improved normalized confinement, reduced plasma current and higher plasma beta with respect to the ITER reference baseline scenario. The combined NBI+ICRF power in the hybrid scenario was increased to 33 MW and the record fusion yield, averaged over 100 ms, to 2.9x1016 neutrons/s from the 2014 ILW fusion record of 2.3x1016 neutrons/s. Impurity control with ICRF waves was one of the key means for extending the duration of the high-performance phase. The main results are reviewed covering both key core and edge plasma issues.

  2. Real-geographic-scenario-based virtual social environments: integrating geography with social research

    OpenAIRE

    Min Chen; Li He; Hui Lin; Chunxiao Zhang; Mingyuan Hu

    2013-01-01

    Existing online virtual worlds, or electronic environments, are of great significance to social science research, but are somewhat lacking in rigour. One reason is that users might not participate in those virtual worlds in the way they act in real daily life, communicating with each other in familiar environments and interacting with natural phenomena under the constraints of the human–land relationship. To help solve this problem we propose the real-geographic-scenario-based virtual social ...

  3. A Risk Metric Assessment of Scenario-Based Market Risk Measures for Volatility and Risk Estimation: Evidence from Emerging Markets

    Directory of Open Access Journals (Sweden)

    Sitima Innocent

    2015-03-01

    Full Text Available The study evaluated the sensitivity of the Value- at- Risk (VaR and Expected Shortfalls (ES with respect to portfolio allocation in emerging markets with an index portfolio of a developed market. This study utilised different models for VaR and ES techniques using various scenario-based models such as Covariance Methods, Historical Simulation and the GARCH (1, 1 for the predictive ability of these models in both relatively stable market conditions and extreme market conditions. The results showed that Expected Shortfall has less risk tolerance than VaR based on the same scenario-based market risk measures

  4. Interfacial micromorphological differences in hybrid layer formation between water- and solvent-based dentin bonding systems.

    Science.gov (United States)

    Gregoire, Geneviève L; Akon, Bernadette A; Millas, Arlette

    2002-06-01

    Many dentin bonding systems of different compositions, and in particular containing different solvents, have been introduced to the market. Their effect on the quality of the interface requires clarification by means of comparative trials. This study investigated micromorphological differences in hybrid layer formation with a variety of commercially available water- or solvent-based dentin bonding products and their recommended compomers. Five bonding systems were used on groups of 10 teeth each as follows: group I, acetone-based system used with 36% phosphoric acid; group II, a different acetone-based system containing nano-sized particles for filler loading and used with a non-rinsing conditioner containing maleic acid; group III, the acetone-based system of group II used with 36% phosphoric acid (the only difference in the treatment for groups II and III was the acid etching system); group IV, a mixed-solvent-based system (water/ethanol) used with 37% phosphoric acid; and group V, a water-based system used with 37% phosphoric acid. Each bonding system was covered with the recommended compomer. Class I occlusal preparations were made in extracted teeth and restored with one of the above systems. Five specimens of each group were studied with optical microscopy after staining. Scanning electron microscopy was used to examine the interface of the bonding system/dentin of the other 5 teeth in each group. The optical microscopy measurements were made with a 10 x 10 reticle. A micron mark with scale was used for the scanning electron microscope. All measurements were made in microm. The following criteria were used to define a good interface: absence of voids between the different parts of the interface, uniformity of the hybrid layer, good opening of the tubuli orifices, and tag adherence to the tubuli walls. Morphological differences were found at the interface depending on dentin treatment and adhesive composition. The acetone-containing systems were associated

  5. Efficient fluorescent deep-blue and hybrid white emitting devices based on carbazole/benzimidazole compound

    KAUST Repository

    Yang, Xiaohui

    2011-07-28

    We report the synthesis, photophysics, and electrochemical characterization of carbazole/benzimidazole-based compound (Cz-2pbb) and efficient fluorescent deep-blue light emitting devices based on Cz-2pbb with the peak external quantum efficiency of 4.1% and Commission Internationale dÉnclairage coordinates of (0.16, 0.05). Efficient deep-blue emission as well as high triplet state energy of Cz-2pbb enables fabrication of hybrid white organic light emitting diodes with a single emissive layer. Hybrid white emitting devices based on Cz-2pbb show the peak external quantum efficiency exceeding 10% and power efficiency of 14.8 lm/W at a luminance of 500 cd/m2. © 2011 American Chemical Society.

  6. Deep Belief Network Based Hybrid Model for Building Energy Consumption Prediction

    Directory of Open Access Journals (Sweden)

    Chengdong Li

    2018-01-01

    Full Text Available To enhance the prediction performance for building energy consumption, this paper presents a modified deep belief network (DBN based hybrid model. The proposed hybrid model combines the outputs from the DBN model with the energy-consuming pattern to yield the final prediction results. The energy-consuming pattern in this study represents the periodicity property of building energy consumption and can be extracted from the observed historical energy consumption data. The residual data generated by removing the energy-consuming pattern from the original data are utilized to train the modified DBN model. The training of the modified DBN includes two steps, the first one of which adopts the contrastive divergence (CD algorithm to optimize the hidden parameters in a pre-train way, while the second one determines the output weighting vector by the least squares method. The proposed hybrid model is applied to two kinds of building energy consumption data sets that have different energy-consuming patterns (daily-periodicity and weekly-periodicity. In order to examine the advantages of the proposed model, four popular artificial intelligence methods—the backward propagation neural network (BPNN, the generalized radial basis function neural network (GRBFNN, the extreme learning machine (ELM, and the support vector regressor (SVR are chosen as the comparative approaches. Experimental results demonstrate that the proposed DBN based hybrid model has the best performance compared with the comparative techniques. Another thing to be mentioned is that all the predictors constructed by utilizing the energy-consuming patterns perform better than those designed only by the original data. This verifies the usefulness of the incorporation of the energy-consuming patterns. The proposed approach can also be extended and applied to some other similar prediction problems that have periodicity patterns, e.g., the traffic flow forecasting and the electricity consumption

  7. Hybrid Materials Based on Magnetic Layered Double Hydroxides: A Molecular Perspective.

    Science.gov (United States)

    Abellán, Gonzalo; Martí-Gastaldo, Carlos; Ribera, Antonio; Coronado, Eugenio

    2015-06-16

    Design of functional hybrids lies at the very core of synthetic chemistry as it has enabled the development of an unlimited number of solids displaying unprecedented or even improved properties built upon the association at the molecular level of quite disparate components by chemical design. Multifunctional hybrids are a particularly appealing case among hybrid organic/inorganic materials. Here, chemical knowledge is used to deploy molecular components bearing different functionalities within a single solid so that these properties can coexist or event interact leading to unprecedented phenomena. From a molecular perspective, this can be done either by controlled assembly of organic/inorganic molecular tectons into an extended architecture of hybrid nature or by intercalation of organic moieties within the empty channels or interlamellar space offered by inorganic solids with three-dimensional (MOFs, zeolites, and mesoporous hosts) or layered structures (phosphates, silicates, metal dichalcogenides, or anionic clays). This Account specifically illustrates the use of layered double hydroxides (LDHs) in the preparation of magnetic hybrids, in line with the development of soft inorganic chemistry processes (also called "Chimie Douce"), which has significantly contributed to boost the preparation hybrid materials based on solid-state hosts and subsequent development of applications. Several features sustain the importance of LDHs in this context. Their magnetism can be manipulated at a molecular level by adequate choice of constituting metals and interlayer separation for tuning the nature and extent of magnetic interactions across and between planes. They display unparalleled versatility in accommodating a broad range of anionic species in their interlamellar space that encompasses not only simple anions but chemical systems of increasing dimensionality and functionalities. Their swelling characteristics allow for their exfoliation in organic solvents with high

  8. Can scenario-planning support community-based natural resource management? Experiences from three countries in Latin America

    Directory of Open Access Journals (Sweden)

    Kerry A. Waylen

    2015-12-01

    Full Text Available Community-based natural resource management (CBNRM is a concept critical to managing social-ecological systems but whose implementation needs strengthening. Scenario planning is one approach that may offer benefits relevant to CBNRM but whose potential is not yet well understood. Therefore, we designed, trialed, and evaluated a scenario-planning method intended to support CBNRM in three cases, located in Colombia, Mexico, and Argentina. Implementing scenario planning was judged as worthwhile in all three cases, although aspects of it were challenging to facilitate. The benefits generated were relevant to strengthening CBNRM: encouraging the participation of local people and using their knowledge, enhanced consideration of and adaptation to future change, and supporting the development of systems thinking. Tracing exactly when and how these benefits arose was challenging, but two elements of the method seemed particularly useful. First, using a systematic approach to discuss how drivers of change may affect local social-ecological systems helped to foster systems thinking and identify connections between issues. Second, explicitly focusing on how to use and respond to scenarios helped identify specific practical activities, or "response options," that would support CBNRM despite the pressures of future change. Discussions about response options also highlighted the need for support by other actors, e.g., policy groups: this raised the question of when and how other actors and other sources of knowledge should be involved in scenario planning, so as to encourage their buy-in to actions identified by the process. We suggest that other CBNRM initiatives may benefit from adapting and applying scenario planning. However, these initiatives should be carefully monitored because further research is required to understand how and when scenario-planning methods may produce benefits, as well as their strengths and weaknesses versus other methods.

  9. Investigation of parameters that affect the success rate of microarray-based allele-specific hybridization assays.

    Directory of Open Access Journals (Sweden)

    Lena Poulsen

    Full Text Available BACKGROUND: The development of microarray-based genetic tests for diseases that are caused by known mutations is becoming increasingly important. The key obstacle to developing functional genotyping assays is that such mutations need to be genotyped regardless of their location in genomic regions. These regions include large variations in G+C content, and structural features like hairpins. METHODS/FINDINGS: We describe a rational, stable method for screening and combining assay conditions for the genetic analysis of 42 Phenylketonuria-associated mutations in the phenylalanine hydroxylase gene. The mutations are located in regions with large variations in G+C content (20-75%. Custom-made microarrays with different lengths of complementary probe sequences and spacers were hybridized with pooled PCR products of 12 exons from each of 38 individual patient DNA samples. The arrays were washed with eight buffers with different stringencies in a custom-made microfluidic system. The data were used to assess which parameters play significant roles in assay development. CONCLUSIONS: Several assay development methods found suitable probes and assay conditions for a functional test for all investigated mutation sites. Probe length, probe spacer length, and assay stringency sufficed as variable parameters in the search for a functional multiplex assay. We discuss the optimal assay development methods for several different scenarios.

  10. Problem and Project Based Learning in Hybrid Spaces:Nomads and Artisans

    OpenAIRE

    Ryberg, Thomas; Davidsen, Jacob; Hodgson, Vivien

    2016-01-01

    There is a need within networked learning to understand and conceptualise the interplay between digital and physical spaces or what we could term hybrid spaces. Therefore, we discuss a recent study of students from two different programmes who are engaged in long-term, group-based problem and project based learning. Based on interviews, workshops and observations of students’ actual group practices in open, shared and flexible spaces in Aalborg University (AAU), we identify and discuss how st...

  11. Scenario planning.

    Science.gov (United States)

    Enzmann, Dieter R; Beauchamp, Norman J; Norbash, Alexander

    2011-03-01

    In facing future developments in health care, scenario planning offers a complementary approach to traditional strategic planning. Whereas traditional strategic planning typically consists of predicting the future at a single point on a chosen time horizon and mapping the preferred plans to address such a future, scenario planning creates stories about multiple likely potential futures on a given time horizon and maps the preferred plans to address the multiple described potential futures. Each scenario is purposefully different and specifically not a consensus worst-case, average, or best-case forecast; nor is scenario planning a process in probabilistic prediction. Scenario planning focuses on high-impact, uncertain driving forces that in the authors' example affect the field of radiology. Uncertainty is the key concept as these forces are mapped onto axes of uncertainty, the poles of which have opposed effects on radiology. One chosen axis was "market focus," with poles of centralized health care (government control) vs a decentralized private market. Another axis was "radiology's business model," with one pole being a unified, single specialty vs a splintered, disaggregated subspecialty. The third axis was "technology and science," with one pole representing technology enabling to radiology vs technology threatening to radiology. Selected poles of these axes were then combined to create 3 scenarios. One scenario, termed "entrepreneurialism," consisted of a decentralized private market, a disaggregated business model, and threatening technology and science. A second scenario, termed "socialized medicine," had a centralized market focus, a unified specialty business model, and enabling technology and science. A third scenario, termed "freefall," had a centralized market focus, a disaggregated business model, and threatening technology and science. These scenarios provide a range of futures that ultimately allow the identification of defined "signposts" that can

  12. Scenario-Based Digital Forensics Challenges in Cloud Computing

    Directory of Open Access Journals (Sweden)

    Erik Miranda Lopez

    2016-10-01

    Full Text Available The aim of digital forensics is to extract information to answer the 5Ws (Why, When, Where, What, and Who from the data extracted from the evidence. In order to achieve this, most digital forensic processes assume absolute control of digital evidence. However, in a cloud environment forensic investigation, this is not always possible. Additionally, the unique characteristics of cloud computing create new technical, legal and architectural challenges when conducting a forensic investigation. We propose a hypothetical scenario to uncover and explain the challenges forensic practitioners face during cloud investigations. Additionally, we also provide solutions to address the challenges. Our hypothetical case scenario has shown that, in the long run, better live forensic tools, development of new methods tailored for cloud investigations and new procedures and standards are indeed needed. Furthermore, we have come to the conclusion that forensic investigations biggest challenge is not technical but legal.

  13. Future waste treatment and energy systems – examples of joint scenarios

    International Nuclear Information System (INIS)

    Münster, M.; Finnveden, G.; Wenzel, H.

    2013-01-01

    Highlights: • Approach for use of scenarios dealing with both waste management and energy issues. • Overall scenarios for the common project and sub-scenarios in parts of the project. • Combining different types of scenarios to the tools of different disciplines. • Use of explorative external scenarios based on marginals for consequential LCA. - Abstract: Development and use of scenarios for large interdisciplinary projects is a complicated task. This article provides practical examples of how it has been carried out in two projects addressing waste management and energy issues respectively. Based on experiences from the two projects, recommendations are made for an approach concerning development of scenarios in projects dealing with both waste management and energy issues. Recommendations are given to develop and use overall scenarios for the project and leave room for sub-scenarios in parts of the project. Combining different types of scenarios is recommended, too, in order to adapt to the methods and tools of different disciplines, such as developing predictive scenarios with general equilibrium tools and analysing explorative scenarios with energy system analysis tools. Furthermore, as marginals identified in differing future background systems determine the outcomes of consequential life cycle assessments (LCAs), it is considered advisable to develop and use explorative external scenarios based on possible marginals as a framework for consequential LCAs. This approach is illustrated using an on-going Danish research project

  14. Global Food Demand Scenarios for the 21st Century

    Science.gov (United States)

    Biewald, Anne; Weindl, Isabelle; Popp, Alexander; Lotze-Campen, Hermann

    2015-01-01

    Long-term food demand scenarios are an important tool for studying global food security and for analysing the environmental impacts of agriculture. We provide a simple and transparent method to create scenarios for future plant-based and animal-based calorie demand, using time-dependent regression models between calorie demand and income. The scenarios can be customized to a specific storyline by using different input data for gross domestic product (GDP) and population projections and by assuming different functional forms of the regressions. Our results confirm that total calorie demand increases with income, but we also found a non-income related positive time-trend. The share of animal-based calories is estimated to rise strongly with income for low-income groups. For high income groups, two ambiguous relations between income and the share of animal-based products are consistent with historical data: First, a positive relation with a strong negative time-trend and second a negative relation with a slight negative time-trend. The fits of our regressions are highly significant and our results compare well to other food demand estimates. The method is exemplarily used to construct four food demand scenarios until the year 2100 based on the storylines of the IPCC Special Report on Emissions Scenarios (SRES). We find in all scenarios a strong increase of global food demand until 2050 with an increasing share of animal-based products, especially in developing countries. PMID:26536124

  15. Advanced Electrical Machines and Machine-Based Systems for Electric and Hybrid Vehicles

    Directory of Open Access Journals (Sweden)

    Ming Cheng

    2015-09-01

    Full Text Available The paper presents a number of advanced solutions on electric machines and machine-based systems for the powertrain of electric vehicles (EVs. Two types of systems are considered, namely the drive systems designated to the EV propulsion and the power split devices utilized in the popular series-parallel hybrid electric vehicle architecture. After reviewing the main requirements for the electric drive systems, the paper illustrates advanced electric machine topologies, including a stator permanent magnet (stator-PM motor, a hybrid-excitation motor, a flux memory motor and a redundant motor structure. Then, it illustrates advanced electric drive systems, such as the magnetic-geared in-wheel drive and the integrated starter generator (ISG. Finally, three machine-based implementations of the power split devices are expounded, built up around the dual-rotor PM machine, the dual-stator PM brushless machine and the magnetic-geared dual-rotor machine. As a conclusion, the development trends in the field of electric machines and machine-based systems for EVs are summarized.

  16. Simulation based design strategy for EMC compliance of components in hybrid vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Maass, Uwe; Ndip, Ivan; Hoene, Eckard; Guttowski, Stephan [Fraunhofer-Institut fuer Zuverlaessigkeit und Mikrointegration (IZM), Berlin (Germany); Tschoban, Christian; Lang, Klaus-Dieter [Technische Univ. Berlin (Germany)

    2012-11-01

    The design of components for the power train of hybrid vehicles needs to take into account EMC compliance standards related to hazardous electromagnetic fields. Using a simulation based design strategy allows for virtual EMC tests in parallel to the mechanical / electrical power design and thus reduces (re-)design time and costs. Taking as an example a high-voltage battery for a hybrid vehicle the emitted magnetic fields outside the battery are examined. The simulation stategy is based on 3D EM simulations using a full-wave and an eddy current solver. The simulation models are based on the actual CAD data from the mechanical construction resulting in and a high geometrical aspect ratio. The impact of simulation specific aspects such as boundary conditions and excitation is given. It was found that using field simulations it is possible to identify noise sources and coupling paths as well as aid the construction of the battery. (orig.)

  17. Dynamic Garment Simulation based on Hybrid Bounding Volume Hierarchy

    Directory of Open Access Journals (Sweden)

    Zhu Dongyong

    2016-12-01

    Full Text Available In order to solve the computing speed and efficiency problem of existing dynamic clothing simulation, this paper presents a dynamic garment simulation based on a hybrid bounding volume hierarchy. It firstly uses MCASG graph theory to do the primary segmentation for a given three-dimensional human body model. And then it applies K-means cluster to do the secondary segmentation to collect the human body’s upper arms, lower arms, upper legs, lower legs, trunk, hip and woman’s chest as the elementary units of dynamic clothing simulation. According to different shapes of these elementary units, it chooses the closest and most efficient hybrid bounding box to specify these units, such as cylinder bounding box and elliptic cylinder bounding box. During the process of constructing these bounding boxes, it uses the least squares method and slices of the human body to get the related parameters. This approach makes it possible to use the least amount of bounding boxes to create close collision detection regions for the appearance of the human body. A spring-mass model based on a triangular mesh of the clothing model is finally constructed for dynamic simulation. The simulation result shows the feasibility and superiority of the method described.

  18. Trust Based Algorithm for Candidate Node Selection in Hybrid MANET-DTN

    Directory of Open Access Journals (Sweden)

    Jan Papaj

    2014-01-01

    Full Text Available The hybrid MANET - DTN is a mobile network that enables transport of the data between groups of the disconnected mobile nodes. The network provides benefits of the Mobile Ad-Hoc Networks (MANET and Delay Tolerant Network (DTN. The main problem of the MANET occurs if the communication path is broken or disconnected for some short time period. On the other side, DTN allows sending data in the disconnected environment with respect to higher tolerance to delay. Hybrid MANET - DTN provides optimal solution for emergency situation in order to transport information. Moreover, the security is the critical factor because the data are transported by mobile devices. In this paper, we investigate the issue of secure candidate node selection for transportation of the data in a disconnected environment for hybrid MANET- DTN. To achieve the secure selection of the reliable mobile nodes, the trust algorithm is introduced. The algorithm enables select reliable nodes based on collecting routing information. This algorithm is implemented to the simulator OPNET modeler.

  19. Over-Sampling Codebook-Based Hybrid Minimum Sum-Mean-Square-Error Precoding for Millimeter-Wave 3D-MIMO

    KAUST Repository

    Mao, Jiening

    2018-05-23

    Abstract: Hybrid precoding design is challenging for millimeter-wave (mmWave) massive MIMO. Most prior hybrid precoding schemes are designed to maximize the sum spectral efficiency (SSE), while seldom investigate the bit-error-rate (BER). Therefore, this letter designs an over-sampling codebook (OSC)-based hybrid minimum sum-mean-square-error (min-SMSE) precoding to optimize the BER. Specifically, given the effective baseband channel consisting of the real channel and analog precoding, we first design the digital precoder/combiner based on min-SMSE criterion to optimize the BER. To further reduce the SMSE between the transmit and receive signals, we propose an OSC-based joint analog precoder/combiner (JAPC) design. Simulation results show that the proposed scheme can achieve the better performance than its conventional counterparts.

  20. Over-Sampling Codebook-Based Hybrid Minimum Sum-Mean-Square-Error Precoding for Millimeter-Wave 3D-MIMO

    KAUST Repository

    Mao, Jiening; Gao, Zhen; Wu, Yongpeng; Alouini, Mohamed-Slim

    2018-01-01

    Hybrid precoding design is challenging for millimeter-wave (mmWave) massive MIMO. Most prior hybrid precoding schemes are designed to maximize the sum spectral efficiency (SSE), while seldom investigate the bit-error-rate (BER). Therefore, this letter designs an over-sampling codebook (OSC)-based hybrid minimum sum-mean-square-error (min-SMSE) precoding to optimize the BER. Specifically, given the effective baseband channel consisting of the real channel and analog precoding, we first design the digital precoder/combiner based on min-SMSE criterion to optimize the BER. To further reduce the SMSE between the transmit and receive signals, we propose an OSC-based joint analog precoder/combiner (JAPC) design. Simulation results show that the proposed scheme can achieve the better performance than its conventional counterparts.