WorldWideScience

Sample records for hybrid resonance frequency

  1. Resonant frequency calculations using a hybrid perturbation-Galerkin technique

    Science.gov (United States)

    Geer, James F.; Andersen, Carl M.

    1991-01-01

    A two-step hybrid perturbation Galerkin technique is applied to the problem of determining the resonant frequencies of one or several degrees of freedom nonlinear systems involving a parameter. In one step, the Lindstedt-Poincare method is used to determine perturbation solutions which are formally valid about one or more special values of the parameter (e.g., for large or small values of the parameter). In step two, a subset of the perturbation coordinate functions determined in step one is used in Galerkin type approximation. The technique is illustrated for several one degree of freedom systems, including the Duffing and van der Pol oscillators, as well as for the compound pendulum. For all of the examples considered, it is shown that the frequencies obtained by the hybrid technique using only a few terms from the perturbation solutions are significantly more accurate than the perturbation results on which they are based, and they compare very well with frequencies obtained by purely numerical methods.

  2. Mode conversion and electron heating near the upper hybrid resonance frequency

    Energy Technology Data Exchange (ETDEWEB)

    Smith, B.L.; Okuda, H.; Abe, H.

    1983-11-01

    Mode conversion near the upper hybrid resonance frequency and electron heating are studied using a one-dimensional electromagnetic relativistic particle code. It is found that for a sufficiently small pump field E/sub 0/, E/sub 0//sup 2//4..pi..nT/sub e/ less than or equal to 0.01, electron heating is localized in a region near the electron cyclotron layer where the pump frequency is equal to the local electron gyrofrequency. For stronger pump fields, electron heating takes place more or less uniformly across a region between the upper hybrid resonance layer and the cyclotron layer. In addition, a significant fraction of electromagnetic energy associated with the pump is found to be reflected back into the vacuum from a region in the plasma near the upper hybrid resonance layer for both strong (E/sub 0//sup 2//4..pi..nT/sub e/ approx. = 1) and weak pumps (E/sub 0//sup 2//4..pi..nT/sub e/ << 1).

  3. Hybrid membrane resonators for multiple frequency asymmetric absorption and reflection in large waveguide

    CERN Document Server

    Fu, Caixing; Yang, Min; Xiao, Songwen; Yang, Z

    2016-01-01

    We report that Hybrid membrane resonators (HMRs) made of a decorated membrane resonator backed by a shallow cavity can function as Helmholtz resonators (HRs) when mounted on the sidewall of a clear waveguide for air ventilation. When two single-frequency HMRs are used in the same scheme as two frequency-detuned HRs, asymmetric total absorption/reflection is demonstrated at 286.7 Hz with absorption coefficient over 97 % in a waveguide 9 cm x 9 cm in cross section. When two multiple-frequency HMRs are used, absorption in the range of near 60 % to above 80 % is observed at 403 Hz, 450 Hz, 688 Hz, 863 Hz and 945 Hz. Theoretical predictions agree well with the experimental data. The HMRs may replace HRs in duct noise reduction applications in that at a single operation frequency they have stronger strength to cover a much larger cross section area than that of HRs with similar cavity volume, and they can be designed to provide multiple frequency absorption band.

  4. DNA Hybridization Detection Based on Resonance Frequency Readout in Graphene on Au SPR Biosensor

    Directory of Open Access Journals (Sweden)

    Md. Biplob Hossain

    2016-01-01

    Full Text Available This paper demonstrates a numerical modeling of surface plasmon resonance (SPR biosensor for detecting DNA hybridization by recording the resonance frequency characteristics (RFC. The proposed sensor is designed based on graphene material as biomolecular recognition elements (BRE and the sharp SPR curve of gold (Au. Numerical analysis shows that the variation of RFC for mismatched DNA strands is quiet negligible whereas that for complementary DNA strands is considerably countable. Here, graphene is used to perform faster immobilization between target DNA and probe DNA. The usage of graphene also changes the RFC that ensure hybridization of DNA event by utilizing its optochemical property. In addition, proposed sensor successfully distinguishes between hybridization and single-nucleotide polymorphisms (SNP by observing the variation level of RFC and maximum transmittance. Therefore, the proposed frequency readout based SPR sensor could potentially open a new window of detection for biomolecular interactions. We also highlight the advantage of using graphene sublayer by performing the sensitivity analysis. Sandwiching of each graphene sublayer enhances 95% sensitivity comparing with conventional SPR sensor.

  5. Observations of a free-energy source for intense electrostatic waves. [in upper atmosphere near upper hybrid resonance frequency

    Science.gov (United States)

    Kurth, W. S.; Frank, L. A.; Gurnett, D. A.; Burek, B. G.; Ashour-Abdalla, M.

    1980-01-01

    Significant progress has been made in understanding intense electrostatic waves near the upper hybrid resonance frequency in terms of the theory of multiharmonic cyclotron emission using a classical loss-cone distribution function as a model. Recent observations by Hawkeye 1 and GEOS 1 have verified the existence of loss-cone distributions in association with the intense electrostatic wave events, however, other observations by Hawkeye and ISEE have indicated that loss cones are not always observable during the wave events, and in fact other forms of free energy may also be responsible for the instability. Now, for the first time, a positively sloped feature in the perpendicular distribution function has been uniquely identified with intense electrostatic wave activity. Correspondingly, we suggest that the theory is flexible under substantial modifications of the model distribution function.

  6. Perturbing Open Cavities: Anomalous Resonance Frequency Shifts in a Hybrid Cavity-Nanoantenna System

    Science.gov (United States)

    Ruesink, Freek; Doeleman, Hugo M.; Hendrikx, Ruud; Koenderink, A. Femius; Verhagen, Ewold

    2015-11-01

    The influence of a small perturbation on a cavity mode plays an important role in fields like optical sensing, cavity quantum electrodynamics, and cavity optomechanics. Typically, the resulting cavity frequency shift directly relates to the polarizability of the perturbation. Here, we demonstrate that particles perturbing a radiating cavity can induce strong frequency shifts that are opposite to, and even exceed, the effects based on the particles' polarizability. A full electrodynamic theory reveals that these anomalous results rely on a nontrivial phase relation between cavity and nanoparticle radiation, allowing backaction via the radiation continuum. In addition, an intuitive model based on coupled mode theory is presented that relates the phenomenon to retardation. Because of the ubiquity of dissipation, we expect these findings to benefit the understanding and engineering of a wide class of systems.

  7. Perturbing open cavities: Anomalous resonance frequency shifts in a hybrid cavity-nanoantenna system

    CERN Document Server

    Ruesink, Freek; Hendrikx, Ruud; Koenderink, A Femius; Verhagen, Ewold

    2015-01-01

    The influence of a small perturbation on a cavity mode plays an important role in fields like optical sensing, cavity quantum electrodynamics and cavity optomechanics. Typically, the resulting cavity frequency shift directly relates to the polarizability of the perturbation. Here we demonstrate that particles perturbing a radiating cavity can induce strong frequency shifts that are opposite to, and even exceed, the effects based on the particles' polarizability. A full electrodynamic theory reveals that these anomalous results rely on a non-trivial phase relation between cavity and nanoparticle radiation, allowing back-action via the radiation continuum. In addition, an intuitive model based on coupled mode theory is presented that relates the phenomenon to retardation. Because of the ubiquity of dissipation, we expect these findings to benefit the understanding and engineering of a wide class of systems.

  8. Hybrid approaches to magnetic resonance thermometry using the proton resonance frequency shift and the spin-lattice relaxation time T1

    Science.gov (United States)

    Diakite, Mahamadou

    Minimally invasive thermal therapy under Magnetic Resonance Imaging (MRI) guidance is becoming popular with several applications in the process of getting FDA approval. The ability to determine in near real-time the temperature map of a tumor and its surrounding tissue makes MR thermometry very attractive and well suited for thermal treatment. The proton resonance frequency shift (PRF) is currently the gold standard method for temperature monitoring using MRI. However, its incapacity to measure temperature in fatty tissue limits the scope of its applicability. The spin lattice relaxation time T1, on the other hand, has shown good temperature sensitivity and works well in all types of tissues. In this dissertation, we have addressed a number of challenges currently affecting MRI thermometry. A non-CPMG Turbo Spin Echo (TSE) sequence has been implemented to monitor the temperature rise due to the high RF power deposition inherent to this sequence at high field (3T and higher). This new implementation allows TSE sequences to be used safely without altering their high contrast properties which make them appealing in clinical settings. Tissue damage assessment during thermal therapy is critical for the safety of the patient. We have developed a new hybrid PRF-T1 sequence that has the capability to provide simultaneously in near real-time the temperature map and T1 information, which is a good indication of the state of the tissue. The simplicity and the real-time capability of the newly developed sequence make it an ideal tool for tissue damage assessment. Temperature monitoring during thermal therapy in organs with large fat content have been hindered by the lack of an MRI thermometry method that can provide simultaneous temperature in fat and aqueous tissue. A new sequence and acquisition scheme have been developed to address this issue. In sum, this dissertation proposed several pulse sequence implementation techniques and an acquisition scheme to overcome some of

  9. Hilbert Transform based Quadrature Hybrid RF Photonic Coupler via a Micro-Resonator Optical Frequency Comb Source

    CERN Document Server

    Nguyen, Thach G; Chu, Sai T; Little, Brent E; Morandotti, Roberto; Mitchell, Arnan; Moss, David J

    2015-01-01

    We demonstrate a photonic RF Hilbert transformer for broadband microwave in-phase and quadrature-phase generation based on an integrated frequency optical comb, generated using a nonlinear microring resonator based on a CMOS compatible, high-index contrast, doped-silica glass platform. The high quality and large frequency spacing of the comb enables filters with up to 20 taps, allowing us to demonstrate a quadrature filter with more than a 5-octave (3 dB) bandwidth and an almost uniform phase response.

  10. Resonance frequency analysis

    Directory of Open Access Journals (Sweden)

    Rajiv K Gupta

    2011-01-01

    Full Text Available Initial stability at the placement and development of osseointegration are two major issues for implant survival. Implant stability is a mechanical phenomenon which is related to the local bone quality and quantity, type of implant, and placement technique used. The application of a simple, clinically applicable, non-invasive test to assess implant stability and osseointegration is considered highly desirable. Resonance frequency analysis (RFA is one of such techniques which is most frequently used now days. The aim of this paper was to review and analyze critically the current available literature in the field of RFA, and to also discuss based on scientific evidence, the prognostic value of RFA to detect implants at risk of failure. A search was made using the PubMed database to find all the literature published on "Resonance frequency analysis for implant stability" till date. Articles discussed in vivo or in vitro studies comparing RFA with other methods of implant stability measurement and articles discussing its reliability were thoroughly reviewed and discussed. A limited number of clinical reports were found. Various studies have demonstrated the feasibility and predictability of the technique. However, most of these articles are based on retrospective data or uncontrolled cases. Randomized, prospective, parallel-armed longitudinal human trials are based on short-term results and long-term follow up are still scarce in this field. Nonetheless, from available literature, it may be concluded that RFA technique evaluates implant stability as a function of stiffness of the implant bone interface and is influenced by factors such as bone type, exposed implant height above the alveolar crest. Resonance frequency analysis could serve as a non-invasive diagnostic tool for detecting the implant stability of dental implants during the healing stages and in subsequent routine follow up care after treatment. Future studies, preferably randomized

  11. Resonance frequency in ferromagnetic superlattices

    Energy Technology Data Exchange (ETDEWEB)

    Qiu Rongke; Huang Andong [School of Science, Shenyang University of Technology, Shenyang 110870 (China); Li Da; Zhang Zhidong, E-mail: rkqiu@163.com [Shenyang National Laboratory for Materials Science, Institute of Metal Research and International Centre for Materials Physics, Chinese Academy of Sciences, Shenyang 110016 (China)

    2011-10-19

    The resonance frequency in two-layer and three-layer ferromagnetic superlattices is studied, using the Callen's Green function method, the Tyablikov decoupling approximation and the Anderson-Callen decoupling approximation. The effects of interlayer exchange coupling, anisotropy, external magnetic field and temperature on the resonance frequency are investigated. It is found that the resonance frequencies increase with increasing external magnetic field. In a parameter region of the asymmetric system, each sublayer corresponds to its own resonance frequency. The anisotropy of a sublayer affects only the resonance frequency corresponding to this sublayer. The stronger the anisotropy, the higher is the resonance frequency. The interlayer exchange coupling affects only the resonance frequencies belonging to the sublayers connected by it. The stronger the interlayer exchange coupling, the higher are the resonance frequencies. All the resonance frequencies decrease as the reduced temperature increases. The results direct the method to enhance and adjust the resonance frequency of magnetic multilayered materials with a wide band.

  12. Frequency Resonance in Stochastic Systems

    Institute of Scientific and Technical Information of China (English)

    钱敏; 张雪娟

    2003-01-01

    The phenomenon of frequency resonance, which is usually related to deterministic systems, is investigated in stochastic systems. We show that for those autonomous systems driven only by white noise, if the output power spectrum exhibits a nonzero peak frequency, then applying a periodic signel just on this noise-induced central frequency can also induce a resonance phenomenon, which we call the frequency stochastic resonance. The effect of such a resonance in a coupled stochastic system is shown to be much better than that in a single-oscillator system.

  13. Nanostructures Exploit Hybrid-Polariton Resonances

    Science.gov (United States)

    Anderson, Mark

    2008-01-01

    Nanostructured devices that exploit the hybrid-polariton resonances arising from coupling among photons, phonons, and plasmons are subjects of research directed toward the development of infrared-spectroscopic sensors for measuring extremely small quantities of molecules of interest. The spectroscopic techniques in question are surface enhanced Raman scattering (SERS) and surface enhanced infrared absorption (SEIRA). An important intermediate goal of this research is to increase the sensitivity achievable by these techniques. The basic idea of the approach being followed in this research is to engineer nanostructured devices and thereby engineer their hybrid-polariton resonances to concentrate infrared radiation incident upon their surfaces in such a manner as to increase the absorption of the radiation for SEIRA and measure the frequency shifts of surface vibrational modes. The underlying hybrid-polariton-resonance concept is best described by reference to experimental devices that have been built and tested to demonstrate the concept. The nanostructure of each such device includes a matrix of silicon carbide particles of approximately 1 micron in diameter that are supported on a potassium bromide (KBr) or poly(tetrafluoroethylene) [PTFE] window. These grains are sputter-coated with gold grains of 40-nm size (see figure). From the perspective of classical electrodynamics, in this nanostructure, that includes a particulate or otherwise rough surface, the electric-field portion of an incident electromagnetic field becomes concentrated on the particles when optical resonance conditions are met. Going beyond the perspective of classical electrodynamics, it can be seen that when the resonance frequencies of surface phonons and surface plasmons overlap, the coupling of the resonances gives rise to an enhanced radiation-absorption or -scattering mechanism. The sizes, shapes, and aggregation of the particles determine the frequencies of the resonances. Hence, the task of

  14. Acoustic resonance frequency locked photoacoustic spectrometer

    Science.gov (United States)

    Pilgrim, Jeffrey S.; Bomse, David S.; Silver, Joel A.

    2003-09-09

    A photoacoustic spectroscopy method and apparatus for maintaining an acoustic source frequency on a sample cell resonance frequency comprising: providing an acoustic source to the sample cell, the acoustic source having a source frequency; repeatedly and continuously sweeping the source frequency across the resonance frequency at a sweep rate; and employing an odd-harmonic of the source frequency sweep rate to maintain the source frequency sweep centered on the resonance frequency.

  15. Frequency-temperature sensitivity reduction with optimized microwave Bragg resonators

    Science.gov (United States)

    Le Floch, J.-M.; Murphy, C.; Hartnett, J. G.; Madrangeas, V.; Krupka, J.; Cros, D.; Tobar, M. E.

    2017-01-01

    Dielectric resonators are employed to build state-of-the-art low-noise and high-stability oscillators operating at room and cryogenic temperatures. A resonator temperature coefficient of frequency is one criterion of performance. This paper reports on predictions and measurements of this temperature coefficient of frequency for three types of cylindrically symmetric Bragg resonators operated at microwave frequencies. At room temperature, microwave Bragg resonators have the best potential to reach extremely high Q-factors. Research has been conducted over the last decade on modeling, optimizing, and realizing such high Q-factor devices for applications such as filtering, sensing, and frequency metrology. We present an optimized design, which has a temperature sensitivity 2 to 4 times less than current whispering gallery mode resonators without using temperature compensating techniques and about 30% less than other existing Bragg resonators. Also, the performance of a new generation single-layered Bragg resonator, based on a hybrid-Bragg-mode, is reported with a sensitivity of about -12 ppm/K at 295 K. For a single reflector resonator, it achieves a similar level of performance as a double-Bragg-reflector resonator but with a more compact structure and performs six times better than whispering-gallery-mode resonators. The hybrid resonator promises to deliver a new generation of high-sensitivity sensors and high-stability room-temperature oscillators.

  16. Resonant enhancement of Raman scattering in metamaterials with hybrid electromagnetic and plasmonic resonances

    CERN Document Server

    Guddala, Sriram; Ramakrishna, S Anantha

    2016-01-01

    A tri-layer metamaterial perfect absorber of light, consisting of (Al/ZnS/Al) films with the top aluminium layer patterned as an array of circular disk nanoantennas, is investigated for resonantly enhancing Raman scattering from C-60 fullerene molecules deposited on the metamaterial. The metamaterial is designed to have resonant bands due to plasmonic and electromagnetic resonances at the Raman pump frequency (725 nm) as well as Stokes emission bands. The Raman scattering from C60 on the metamaterial with resonantly matched bands is measured to be enhanced by an order of magnitude more than from C60 on metamaterials with off-resonant absorption bands peaked at 1090 nm. The Raman pump is significantly enhanced due to the resonance with a propagating surface plasmon band, while the highly impedance matched electromagnetic resonance is expected to couple out the Raman emission efficiently. The nature and hybridization of the plasmonic and electromagnetic resonances to form compound resonances are investigated by...

  17. Fast Resonance Frequency Modulation in Superconducting Stripline Resonator

    OpenAIRE

    Segev, Eran; Abdo, Baleegh; Shtempluck, Oleg; Buks, Eyal

    2006-01-01

    Fast resonance frequency modulation of a superconducting stripline resonator is investigated. The experiments are performed using a novel device which integrates a hot electron detector (HED) into a superconducting stripline ring resonator. Frequency modulation is demonstrated by both applying dc current or voltage to the HED, and by applying optical illumination, with modulation frequencies of up to 4.2GHz. Potential applications for such a device are in telecommunication, quantum cryptograp...

  18. Observation of a Hybrid Spin Resonance

    Science.gov (United States)

    Bai, M.; Allgower, C.; Ahrens, L.; Alessi, J.; Brown, K.; Bunce, G.; Cameron, P.; Chu, C. M.; Courant, E. D.; Glenn, J. W.; Huang, H.; Jeon, D.; Kponou, A. E.; Krueger, K.; Luccio, A.; Makdisi, Y. I.; Lee, S. Y.; Ratner, L.; Reece, K.; Roser, T.; Spinka, H.; Syphers, M. J.; Tsoupas, N.; Underwood, D. G.; van Asselt, W.; Williams, N.; Yokosawa, A.

    2000-02-01

    A new type of spin depolarization resonance has been observed at the Brookhaven Alternating Gradient Synchrotron (AGS). This spin resonance is identified as a strong closed-orbit sideband around the dominant intrinsic spin resonance. The strength of the resonance was proportional to the 9th harmonic component of the horizontal closed orbit and proportional to the vertical betatron oscillation amplitude. This ``hybrid'' spin resonance cannot be overcome by the partial snake at the AGS, but it can be corrected by the harmonic orbit correctors.

  19. Novel resonant cantilever mass change detection and resonant frequency tuning

    DEFF Research Database (Denmark)

    Grigorov, Alexander; Boisen, Anja

    2005-01-01

    This paper reports a novel way to detect the resonant frequency of an electro-thermally actuated cantilever sensor that we have previously reported, in order to perform mass detection by resonant frequency shift detection. The device is based on monitoring the rupture of a clamped cantilever stru...

  20. Feshbach Resonances in Kerr Frequency Combs

    CERN Document Server

    Matsko, Andrey B

    2014-01-01

    We show that both the power and repetition rate of a frequency comb generated in a nonlinear ring resonator, pumped with continuous wave (cw) coherent light, are modulated. The modulation is brought about by the interaction of the cw background with optical pulses excited in the resonator, and occurs in resonators with nonzero high-order chromatic dispersion and wavelength-dependent quality factor. The modulation frequency corresponds to the detuning of the pump frequency from the eigenfrequency of the pumped mode in the resonator.

  1. Dynamic resonant frequency control of ultrasonic transducer for stabilizing resonant state in wide frequency band

    Science.gov (United States)

    Yokozawa, Hiroki; Twiefel, Jens; Weinstein, Michael; Morita, Takeshi

    2017-07-01

    Controlling the resonant frequency of ultrasonic transducers is important to achieve the excellent performance of ultrasonic devices. The resonant frequency can be shifted by a nonlinear effect or by increasing the temperature under high-power operation. We propose a resonant frequency control method during the transducer’s operation that enables the dynamic compensation of resonant frequency shifts. To realize this, a transducer with passive piezoelectric parts was fabricated. By controlling the electric boundary condition of the passive piezoelectric parts between short and open by utilizing a metal-oxide-semiconductor field-effect transistor (MOSFET), the stiffness was changed, thus modifying the resonant frequency. In both simulation and experiment, the resonant frequency was modified successfully by controlling the switching duty ratio of the MOSFET. Additionally, a system for exciting a transducer at a resonant state with a wide frequency band was demonstrated.

  2. Superconducting qubit-resonator-atom hybrid system

    Science.gov (United States)

    Yu, Deshui; Kwek, Leong Chuan; Amico, Luigi; Dumke, Rainer

    2017-09-01

    We propose a hybrid quantum system where an LC resonator inductively interacts with a flux qubit and is capacitively coupled to a Rydberg atom. Varying the external magnetic flux bias controls the flux qubit flipping and the flux qubit-resonator interface. The atomic spectrum is tuned via an electrostatic field, manipulating the qubit-state transition of atom and the atom-resonator coupling. Different types of entanglement of superconducting, photonic and atomic qubits can be prepared via simply tuning the flux bias and electrostatic field, leading to the implementation of three-qubit Toffoli logic gate.

  3. Design of MEMS piezoelectric harvesters with electrostatically adjustable resonance frequency

    Science.gov (United States)

    Madinei, H.; Khodaparast, H. Haddad; Adhikari, S.; Friswell, M. I.

    2016-12-01

    In this paper the analytical analysis of an adaptively tuned piezoelectric vibration based energy harvester is presented. A bimorph piezoelectric energy harvester is suspended between two electrodes, subjected to a same DC voltage. The resonance frequency of the system is controllable by the applied DC voltage, and the harvested power is maximized by controlling the natural frequency of the system to cope with vibration sources which have varying excitation frequencies. The nonlinear governing differential equation of motion is derived based on Euler Bernoulli theory, and due to the softening nonlinearity of the electrostatic force, the harvester is capable of working over a broad frequency range. The steady state harmonic solution is obtained using the harmonic balance method and results are verified numerically. The results show that the harvester can be tuned to give a resonance response over a wide range of frequencies, and shows the great potential of this hybrid system.

  4. Beam shaping characteristics of an unstable-waveguide hybrid resonator.

    Science.gov (United States)

    Xiao, Longsheng; Qin, Yingxiong; Tang, Xiahui; Wan, Chenhao; Li, Gen; Zhong, Lijing

    2014-04-01

    The unstable-waveguide hybrid resonator emits a rectangular, simple astigmatic beam with a large number of high-spatial-frequency oscillations in the unstable direction. To equalize the beam quality, in this paper, a beam shaping system with a spatial filter for the hybrid resonator was investigated by numerical simulation and experimental method. The high-frequency components and fundamental mode of the output beam of the hybrid resonator in the unstable direction are separated by a focus lens. The high-frequency components of the beam are eliminated by the following spatial filter. A nearly Gaussian-shaped beam with approximately equal beam propagation factor M² in the two orthogonal directions was obtained. The effects of the width of the spatial filter on the beam quality, power loss, and intensity distribution of the shaped beam were investigated. The M² factor in the unstable direction is changed from 1.6 to 1.1 by optimum design. The power loss is only 9.5%. The simulation results are in good agreement with the experimental results.

  5. Hybrid simulation of electron cyclotron resonance heating

    CERN Document Server

    Ropponen, T; Suominen, P; Koponen, T K; Kalvas, T; Koivisto, H

    2008-01-01

    Electron Cyclotron Resonance (ECR) heating is a fundamentally important aspect in understanding the physics of Electron Cyclotron Resonance Ion Sources (ECRIS). Absorption of the radio frequency (RF) microwave power by electron heating in the resonance zone depends on many parameters including frequency and electric field strength of the microwave, magnetic field structure and electron and ion density profiles. ECR absorption has been studied in the past by e.g. modelling electric field behaviour in the resonance zone and its near proximity. This paper introduces a new ECR heating code that implements damping of the microwave power in the vicinity of the resonance zone, utilizes electron density profiles and uses right hand circularly polarized (RHCP) electromagnetic waves to simulate electron heating in ECRIS plasma.

  6. Hybrid simulation of electron cyclotron resonance heating

    Energy Technology Data Exchange (ETDEWEB)

    Ropponen, T. [Department of Physics, University of Jyvaeskylae, P.O. Box 35, FI-40014 (Finland)], E-mail: tommi.ropponen@phys.jyu.fi; Tarvainen, O. [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Suominen, P. [CERN Geneve 23, CH-1211 (Switzerland); Koponen, T.K. [Department of Physics, University of Jyvaeskylae, Nanoscience Center, P.O. Box 35, FI-40014 (Finland); Kalvas, T.; Koivisto, H. [Department of Physics, University of Jyvaeskylae, P.O. Box 35, FI-40014 (Finland)

    2008-03-11

    Electron Cyclotron Resonance (ECR) heating is a fundamentally important aspect in understanding the physics of Electron Cyclotron Resonance Ion Sources (ECRIS). Absorption of the radio frequency (RF) microwave power by electron heating in the resonance zone depends on many parameters including frequency and electric field strength of the microwave, magnetic field structure and electron and ion density profiles. ECR absorption has been studied in the past by e.g. modelling electric field behaviour in the resonance zone and its near proximity. This paper introduces a new ECR heating code that implements damping of the microwave power in the vicinity of the resonance zone, utilizes electron density profiles and uses right hand circularly polarized (RHCP) electromagnetic waves to simulate electron heating in ECRIS plasma.

  7. High Energy Single Frequency Resonant Amplifier Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This SBIR phase I project proposes a single frequency high energy resonant amplifier for remote sensing. Current state-of-art technologies can not provide all...

  8. Hybrid squeezing of solitonic resonant radiation in photonic crystal fibers

    CERN Document Server

    Tran, Truong X; Soeller, Christoph; Blow, Keith J; Biancalana, Fabio

    2011-01-01

    We report on the existence of a novel kind of squeezing in photonic crystal fibers which is conceptually intermediate between the four-wave mixing induced squeezing, in which all the participant waves are monochromatic waves, and the self-phase modulation induced squeezing for a single pulse in a coherent state. This hybrid squeezing occurs when an arbitrary short soliton emits quasi-monochromatic resonant radiation near a zero group velocity dispersion point of the fiber. Photons around the resonant frequency become strongly correlated due to the presence of the classical soliton, and a reduction of the quantum noise below the shot noise level is predicted.

  9. Rotational characteristics in the resonance state of the HTSC-permanent magnet hybrid magnetic bearing

    Energy Technology Data Exchange (ETDEWEB)

    Morii, Y.; Sukedai, M. [Kansai University, 3-3-35 Yamate-cho, Suita, Osaka 564-8680 (Japan); Ohashi, S., E-mail: ohashi@kansai-u.ac.jp [Kansai University, 3-3-35 Yamate-cho, Suita, Osaka 564-8680 (Japan)

    2011-11-15

    The hybrid magnetic bearing has been developed. In the hybrid system, effect of the pinning force becomes smaller. Influence of the vibration and the gradient angle in the resonance state is large. The resonance frequency becomes small in the hybrid bearing system. The hybrid magnetic bearing using permanent magnets and the high-Tc bulk superconductor (HTSC) has been developed. Repulsive force of the permanent magnet is introduced to increase the load weight of the magnetic bearing. Effect of the hybrid system has been shown. In this paper, influence of the hybrid system on the dynamic characteristics of the rotor is studied. The rotational characteristics in the mechanical resonance state are studied, and the equivalent magnetic spring coefficient is estimated from the experimental results of the load weight. The resonance frequency is measured by the rotation experiments. The rotor achieves stable levitation even in the resonance state. In the hybrid system, effect of the pinning force becomes smaller than that of the lateral force generated by the repulsive force between the two permanent magnets at the smaller air gap. Thus influence of the lateral vibration and the gradient angle in the resonance state becomes larger at a smaller air gap. The equivalent magnetic spring coefficient becomes also small, and the resonance frequency becomes small in the hybrid bearing system.

  10. On Frequency Combs in Monolithic Resonators

    Directory of Open Access Journals (Sweden)

    Savchenkov A. A.

    2016-06-01

    Full Text Available Optical frequency combs have become indispensable in astronomical measurements, biological fingerprinting, optical metrology, and radio frequency photonic signal generation. Recently demonstrated microring resonator-based Kerr frequency combs point the way towards chip scale optical frequency comb generator retaining major properties of the lab scale devices. This technique is promising for integrated miniature radiofrequency and microwave sources, atomic clocks, optical references and femtosecond pulse generators. Here we present Kerr frequency comb development in a historical perspective emphasizing its similarities and differences with other physical phenomena. We elucidate fundamental principles and describe practical implementations of Kerr comb oscillators, highlighting associated solved and unsolved problems.

  11. On Frequency Combs in Monolithic Resonators

    Science.gov (United States)

    Savchenkov, A. A.; Matsko, A. B.; Maleki, L.

    2016-06-01

    Optical frequency combs have become indispensable in astronomical measurements, biological fingerprinting, optical metrology, and radio frequency photonic signal generation. Recently demonstrated microring resonator-based Kerr frequency combs point the way towards chip scale optical frequency comb generator retaining major properties of the lab scale devices. This technique is promising for integrated miniature radiofrequency and microwave sources, atomic clocks, optical references and femtosecond pulse generators. Here we present Kerr frequency comb development in a historical perspective emphasizing its similarities and differences with other physical phenomena. We elucidate fundamental principles and describe practical implementations of Kerr comb oscillators, highlighting associated solved and unsolved problems.

  12. Study on resonance frequency of thermoacoustic resonance pipes

    Institute of Scientific and Technical Information of China (English)

    FAN Li; WANG Benren; JIN Tao; ZHANG Shuyi

    2005-01-01

    For calculating the resonance frequency of practical resonance pipes more precisely, two methods are presented, which are the method of acoustic pressure simulation and the method of minimum point of standing wave. Both methods are based on the theoretical simulation of the acoustic pressure distribution in the pipe and the relation between the minimum point position of the standing wave and the acoustic impedances of the pipe terminations.It is demonstrated that both methods can calculate the resonance frequency of a pipe more precisely by considering the effect of the acoustic resistances of both terminations of the pipe.Therefore both methods presented are more useful in acoustic research fields in which the resonance frequency of a pipe must be controlled strictly. In addition, both methods can get the same calculation results despite of their different ways. The method of the minimum point of standing wave is more convenient, nevertheless the method of acoustic pressure simulation can derive the resonance frequency and the distribution of the acoustic pressure in the pipe simultaneously.

  13. Rod Driven Frequency Entrainment and Resonance Phenomena

    Directory of Open Access Journals (Sweden)

    Christina Salchow

    2016-08-01

    Full Text Available A controversy exists on photic driving in the human visual cortex evoked by intermittent photic stimulation. Frequency entrainment and resonance phenomena are reported for frequencies higher than 12 Hz in some studies while missing in others. We hypothesized that this might be due to different experimental conditions, since both high and low intensity light stimulation were used. However, most studies do not report radiometric measurements, which makes it impossible to categorize the stimulation according to photopic, mesopic, and scotopic vision. Low intensity light stimulation might lead to scotopic vision, where rod perception dominates. In this study, we investigated photic driving for rod-dominated visual input under scotopic conditions. Twelve healthy volunteers were stimulated with low intensity light flashes at 20 stimulation frequencies, leading to rod activation only. The frequencies were multiples of the individual alpha frequency (α of each volunteer in the range from 0.40–2.30*α. 306-channel whole head magnetoencephalography recordings were analyzed in time, frequency, and spatiotemporal domains with the Topographic Matching Pursuit algorithm. We found resonance phenomena and frequency entrainment for stimulations at or close to the individual alpha frequency (0.90–1.10*α and half of the alpha frequency (0.40–0.55*α. No signs of resonance and frequency entrainment phenomena were revealed around 2.00*α. Instead, on-responses at the beginning and off-responses at the end of each stimulation train were observed for the first time in a photic driving experiment at frequencies of 1.30–2.30*α, indicating that the flicker fusion threshold was reached. All results, the resonance and entrainment as well as the fusion effects, provide evidence for rod-dominated photic driving in the visual cortex.

  14. Rod Driven Frequency Entrainment and Resonance Phenomena

    Science.gov (United States)

    Salchow, Christina; Strohmeier, Daniel; Klee, Sascha; Jannek, Dunja; Schiecke, Karin; Witte, Herbert; Nehorai, Arye; Haueisen, Jens

    2016-01-01

    A controversy exists on photic driving in the human visual cortex evoked by intermittent photic stimulation. Frequency entrainment and resonance phenomena are reported for frequencies higher than 12 Hz in some studies while missing in others. We hypothesized that this might be due to different experimental conditions, since both high and low intensity light stimulation were used. However, most studies do not report radiometric measurements, which makes it impossible to categorize the stimulation according to photopic, mesopic, and scotopic vision. Low intensity light stimulation might lead to scotopic vision, where rod perception dominates. In this study, we investigated photic driving for rod-dominated visual input under scotopic conditions. Twelve healthy volunteers were stimulated with low intensity light flashes at 20 stimulation frequencies, leading to rod activation only. The frequencies were multiples of the individual alpha frequency (α) of each volunteer in the range from 0.40 to 2.30∗α. Three hundred and six-channel whole head magnetoencephalography recordings were analyzed in time, frequency, and spatiotemporal domains with the Topographic Matching Pursuit algorithm. We found resonance phenomena and frequency entrainment for stimulations at or close to the individual alpha frequency (0.90–1.10∗α) and half of the alpha frequency (0.40–0.55∗α). No signs of resonance and frequency entrainment phenomena were revealed around 2.00∗α. Instead, on-responses at the beginning and off-responses at the end of each stimulation train were observed for the first time in a photic driving experiment at frequencies of 1.30–2.30∗α, indicating that the flicker fusion threshold was reached. All results, the resonance and entrainment as well as the fusion effects, provide evidence for rod-dominated photic driving in the visual cortex. PMID:27588002

  15. Resonant enhancement of Raman scattering in metamaterials with hybrid electromagnetic and plasmonic resonances

    Science.gov (United States)

    Guddala, Sriram; Narayana Rao, D.; Ramakrishna, S. Anantha

    2016-06-01

    A tri-layer metamaterial perfect absorber of light, consisting of (Al/ZnS/Al) films with the top aluminum layer patterned as an array of circular disk nanoantennas, is investigated for resonantly enhancing Raman scattering from C60 fullerene molecules deposited on the metamaterial. The metamaterial is designed to have resonant bands due to plasmonic and electromagnetic resonances at the Raman pump frequency (725 nm) as well as Stokes emission bands. The Raman scattering from C60 on the metamaterial with resonantly matched bands is measured to be enhanced by an order of magnitude more than C60 on metamaterials with off-resonant absorption bands peaking at 1090 nm. The Raman pump is significantly enhanced due to the resonance with a propagating surface plasmon band, while the highly impedance-matched electromagnetic resonance is expected to couple out the Raman emission efficiently. The nature and hybridization of the plasmonic and electromagnetic resonances to form compound resonances are investigated by numerical simulations.

  16. High-frequency micromechanical columnar resonators

    Directory of Open Access Journals (Sweden)

    Jenny Kehrbusch, Elena A Ilin, Peter Bozek, Bernhard Radzio and Egbert Oesterschulze

    2009-01-01

    Full Text Available High-frequency silicon columnar microresonators are fabricated using a simple but effective technological scheme. An optimized fabrication scheme was invented to obtain mechanically protected microcolumns with lateral dimensions controlled on a scale of at least 1 μm. In this paper, we investigate the influence of the environmental conditions on the mechanical resonator properties. At ambient conditions, we observed a frequency stability δf/f of less than 10−6 during 5 h of operation at almost constant temperature. However, varying the temperature shifts the frequency by approximately −173 Hz °C− 1. In accordance with a viscous damping model of the ambient gas, we perceived that the quality factor of the first flexural mode decreased with the inverse of the square root of pressure. However, in the low-pressure regime, a linear dependence was observed. We also investigated the influence of the type of the immersing gas on the resonant frequency.

  17. Vlasov Simulations of Ionospheric Heating Near Upper Hybrid Resonance

    Science.gov (United States)

    Najmi, A. C.; Eliasson, B. E.; Shao, X.; Milikh, G. M.; Papadopoulos, K.

    2014-12-01

    It is well-known that high-frequency (HF) heating of the ionosphere can excite field- aligned density striations (FAS) in the ionospheric plasma. Furthermore, in the neighborhood of various resonances, the pump wave can undergo parametric instabilities to produce a variety of electrostatic and electromagnetic waves. We have used a Vlasov simulation with 1-spatial dimension, 2-velocity dimensions, and 2-components of fields, to study the effects of ionospheric heating when the pump frequency is in the vicinity of the upper hybrid resonance, employing parameters currently available at ionospheric heaters such as HAARP. We have found that by seeding theplasma with a FAS of width ~20% of the simulation domain, ~10% depletion, and by applying a spatially uniform HF dipole pump electric field, the pump wave gives rise to a broad spectrum of density fluctuations as well as to upper hybrid and lower hybrid oscillating electric fields. We also observe collisionless bulk-heating of the electrons that varies non-linearly with the amplitude of the pump field.

  18. Frequency division using a micromechanical resonance cascade

    Energy Technology Data Exchange (ETDEWEB)

    Qalandar, K. R., E-mail: kamala@engineering.ucsb.edu; Gibson, B.; Sharma, M.; Ma, A.; Turner, K. L. [Department of Mechanical Engineering, University of California at Santa Barbara, Santa Barbara, California 93106 (United States); Strachan, B. S. [Department of Mechanical Engineering, Michigan State University, East Lansing, Michigan 48823 (United States); Department of Electrical Engineering, Michigan State University, East Lansing, Michigan 48823 (United States); Shaw, S. W. [Department of Mechanical Engineering, Michigan State University, East Lansing, Michigan 48823 (United States); Department of Physics and Astronomy, Michigan State University, East Lansing, Michigan 48823 (United States)

    2014-12-15

    A coupled micromechanical resonator array demonstrates a mechanical realization of multi-stage frequency division. The mechanical structure consists of a set of N sequentially perpendicular microbeams that are connected by relatively weak elastic elements such that the system vibration modes are localized to individual microbeams and have natural frequencies with ratios close to 1:2:⋯:2{sup N}. Conservative (passive) nonlinear inter-modal coupling provides the required energy transfer between modes and is achieved by finite deformation kinematics. When the highest frequency beam is excited, this arrangement promotes a cascade of subharmonic resonances that achieve frequency division of 2{sup j} at microbeam j for j = 1, …, N. Results are shown for a capacitively driven three-stage divider in which an input signal of 824 kHz is passively divided through three modal stages, producing signals at 412 kHz, 206 kHz, and 103 kHz. The system modes are characterized and used to delineate the range of AC input voltages and frequencies over which the cascade occurs. This narrow band frequency divider has simple design rules that are scalable to higher frequencies and can be extended to a larger number of modal stages.

  19. A novel circuit topology of modified switched boost hybrid resonant inverter fitted induction heating equipment

    Directory of Open Access Journals (Sweden)

    Bhattacharya Ananyo

    2016-12-01

    Full Text Available A novel circuit topology of modified switched boost high frequency hybrid resonant inverter fitted induction heating equipment is presented in this paper for efficient induction heating. Recently, induction heating technique is becoming very popular for both domestic and industrial purposes because of its high energy efficiency and controllability. Generally in induction heating, a high frequency alternating magnetic field is required to induce the eddy currents in the work piece. High frequency resonant inverters are incorporated in induction heating equipment which produce a high frequency alternating magnetic field surrounding the coil. Previously this high frequency alternating magnetic field was produced by voltage source inverters. But VSIs have several demerits. So, in this paper, a new scheme of modified switched boost high frequency hybrid resonant inverter fitted induction heating equipment has been depicted which enhances the energy efficiency and controllability and the same is validated by PSIM.

  20. Hybrid plasmon photonic crystal resonance grating for integrated spectrometer biosensor.

    Science.gov (United States)

    Guo, Hong; Guo, Junpeng

    2015-01-15

    Using nanofabricated hybrid metal-dielectric nanohole array photonic crystal gratings, a hybrid plasmonic optical resonance spectrometer biosensor is demonstrated. The new spectrometer sensor technique measures plasmonic optical resonance from the first-order diffraction rather than via the traditional method of measuring optical resonance from transmission. The resonance spectra measured with the new spectrometer technique are compared with the spectra measured using a commercial optical spectrometer. It is shown that the new optical resonance spectrometer can be used to measure plasmonic optical resonance that otherwise cannot be measured with a regular optical spectrometer.

  1. Frequency shifts in gravitational resonance spectroscopy

    CERN Document Server

    Baeßler, S; Pignol, G; Protasov, K V; Rebreyend, D; Kupriyanova, E A; Voronin, A Yu

    2015-01-01

    Quantum states of ultracold neutrons in the gravitational field are to be characterized through gravitational resonance spectroscopy. This paper discusses systematic effects that appear in the spectroscopic measurements. The discussed frequency shifts, which we call Stern-Gerlach shift, interference shift, and spectator state shift, appear in conceivable measurement schemes and have general importance. These shifts have to be taken into account in precision experiments.

  2. Hybrid plasmonic-photonic resonators (Conference Presentation)

    Science.gov (United States)

    Koenderink, A. Femius; Doeleman, Hugo M.; Ruesink, Freek; Verhagen, Ewold; Osorio, Clara I.

    2016-09-01

    Hybrid nanophotonic structures are structures that integrate different nanoscale platforms to harness light-matter interaction. We propose that combinations of plasmonic antennas inside modest-Q dielectric cavities can lead to very high Purcell factors, yielding plasmonic mode volumes at essentially cavity quality factors. The underlying physics is subtle: for instance, how plasmon antennas with large cross sections spoil or improve cavities and vice versa, contains physics beyond perturbation theory, depending on interplays of back-action, and interferences. This is evident from the fact that the local density of states of hybrid systems shows the rich physics of Fano interferences. I will discuss recent scattering experiments performed on toroidal microcavities coupled to plasmon particle arrays that probe both cavity resonance shifts and particle polarizability changes illustrating these insights. Furthermore I will present our efforts to probe single plasmon antennas coupled to emitters and complex environments using scatterometry. An integral part of this approach is the recently developed measurement method of `k-space polarimetry', a microscopy technique to completely classify the intensity and polarization state of light radiated by a single nano-object into any emission direction that is based on back focal plane imaging and Stokes polarimetry. I show benchmarks of this technique for the cases of scattering, fluorescence, and cathodoluminescence applied to directional surface plasmon polariton antennas.

  3. Electrothermal Frequency Modulated Resonator for Mechanical Memory

    KAUST Repository

    Hafiz, Md Abdullah Al

    2016-08-18

    In this paper, we experimentally demonstrate a mechanical memory device based on the nonlinear dynamics of an electrostatically actuated microelectromechanical resonator utilizing an electrothermal frequency modulation scheme. The microstructure is deliberately fabricated as an in-plane shallow arch to achieve geometric quadratic nonlinearity. We exploit this inherent nonlinearity of the arch and drive it at resonance with minimal actuation voltage into the nonlinear regime, thereby creating softening behavior, hysteresis, and coexistence of states. The hysteretic frequency band is controlled by the electrothermal actuation voltage. Binary values are assigned to the two allowed dynamical states on the hysteretic response curve of the arch resonator with respect to the electrothermal actuation voltage. Set-and-reset operations of the memory states are performed by applying controlled dc pulses provided through the electrothermal actuation scheme, while the read-out operation is performed simultaneously by measuring the motional current through a capacitive detection technique. This novel memory device has the advantages of operating at low voltages and under room temperature. [2016-0043

  4. The ion-ion hybrid Alfvén resonator in a fusion environment

    Energy Technology Data Exchange (ETDEWEB)

    Farmer, W. A. [Univ. of California, Los Angeles, CA (United States); Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Morales, G. J. [Univ. of California, Los Angeles, CA (United States)

    2014-06-01

    An investigation is made of a shear Alfvén wave resonator for burning plasma conditions expected in the ITER device. For small perpendicular scale-lengths the shear mode, which propagates predominantly along the magnetic field direction, experiences a parallel reflection where the wave frequency matches the local ion-ion hybrid frequency. In a tokamak device operating with a deuterium–tritium fuel, this effect can form a natural resonator because of the variation in local field strength along a field line. The relevant kinetic dispersion relation is examined to determine the relative importance of Landau and cyclotron damping over the possible resonator parameter space. A WKB model based on the kinetic dispersion relation is used to determine the eigenfrequencies and the quality factors of modes trapped in the resonator. The lowest frequency found has a value slightly larger than the ion-ion hybrid frequency at the outboard side of a given flux surface. The possibility that the resonator modes can be driven unstable by energetic alpha particles is considered. It is found that within a bandwidth of roughly 600 kHz above the ion-ion hybrid frequency on the outboard side of the flux surface, the shear modes can experience significant spatial amplification. An assessment is made of the form of an approximate global eigenmode that possesses the features of a resonator. It is identified that magnetic field shear combined with large ion temperature can cause coupling to an ion-Bernstein wave, which can limit the instability.

  5. Hybrid fiber resonator employing LRSPP waveguide coupler for gyroscope

    Science.gov (United States)

    Qian, Guang; Fu, Xing-Chang; Zhang, Li-Jiang; Tang, Jie; Liu, Yi-Ran; Zhang, Xiao-Yang; Zhang, Tong

    2017-01-01

    Polarization error and temperature noise are two main limits to the performance of resonant fiber optic gyroscope (RFOG). To overcome these limits, we demonstrated a hybrid resonator consisting of a polymer-based long-range surface plasmon polariton (LRSPP) waveguide coupler and a silica fiber. Single-polarization property of LRSPP waveguide and the offsetting of the opposite thermo-optical characteristics between the polymer-based LRSPP waveguide and the silica fiber can effectively inhibit both the polarization error and the temperature noise of RFOG. The measured resonance spectrum of the hybrid resonator shows the absence of polarization noise. The temperature dependence of wavelength shift (TDWS) of resonator dropped to about 2 pm/°C, or even to 0 pm/°C with optimal structure, which dramatically improves the temperature stability of gyroscope system. In addition, the hybrid resonator also shows tremendous application potential in rate-grade and tactical-grade gyroscopes. PMID:28117412

  6. Effect of metal coating and residual stress on the resonant frequency of MEMS resonators

    OpenAIRE

    Pandey, Ashok Kumar; Venkatesh, KP; Pratap, Rudra

    2009-01-01

    MEMS resonators are designed for a fixed resonant frequency. Therefore, any shift in the resonant frequency of the final fabricated structure can be a denting factor for its suitability towards a desired application. There are numerous factors which alter the designed resonant frequency of the fabricated resonator such as the metal layer deposited on top of the beam and the residual stresses present in the fabricated structure. While the metal coating, which acts as electrode, increases t...

  7. Low-loss and high-symmetry negative refractive index media by hybrid dielectric resonators.

    Science.gov (United States)

    Lai, Yueh-Chun; Chen, Cheng-Kuang; Yang, Yu-Hang; Yen, Ta-Jen

    2012-01-30

    Based on Maxwell's equations and Mie theory, strong sub-wavelength artificial magnetic and electric dipole resonances can be excited within dielectric resonators, and their resonant frequencies can be tailored simply by scaling the size of the dielectric resonators. Therefore, in this work we hybridize commercially available zirconia and alumina structures to harvest their individual artificial magnetic and electric response simultaneously, presenting a negative refractive index medium (NRIM). Comparing with the conventional NRIM constructed by metallic structures, the demonstrated all-dielectric NRIM possesses low-loss and high-symmetry advantages, thus benefiting practical applications in communication components, perfect lenses, invisible cloaking and other novel electromagnetic devices.

  8. Rotational characteristics in the resonance state of the HTSC-permanent magnet hybrid magnetic bearing

    Science.gov (United States)

    Morii, Y.; Sukedai, M.; Ohashi, S.

    2011-11-01

    The hybrid magnetic bearing using permanent magnets and the high-Tc bulk superconductor (HTSC) has been developed. Repulsive force of the permanent magnet is introduced to increase the load weight of the magnetic bearing. Effect of the hybrid system has been shown. In this paper, influence of the hybrid system on the dynamic characteristics of the rotor is studied. The rotational characteristics in the mechanical resonance state are studied, and the equivalent magnetic spring coefficient is estimated from the experimental results of the load weight. The resonance frequency is measured by the rotation experiments. The rotor achieves stable levitation even in the resonance state. In the hybrid system, effect of the pinning force becomes smaller than that of the lateral force generated by the repulsive force between the two permanent magnets at the smaller air gap. Thus influence of the lateral vibration and the gradient angle in the resonance state becomes larger at a smaller air gap. The equivalent magnetic spring coefficient becomes also small, and the resonance frequency becomes small in the hybrid bearing system.

  9. Hybrid III-V/SOI resonant cavity enhanced photodetector

    DEFF Research Database (Denmark)

    Learkthanakhachon, Supannee; Taghizadeh, Alireza; Park, Gyeong Cheol;

    2016-01-01

    A hybrid III–V/SOI resonant-cavity-enhanced photodetector (RCE-PD) structure comprising a high-contrast grating (HCG) reflector, a hybrid grating (HG) reflector, and an air cavity between them, has been proposed and investigated. In the proposed structure, a light absorbing material is integrated...

  10. Magnetodielectric effect of Mn–Zn ferrite at resonant frequency

    Energy Technology Data Exchange (ETDEWEB)

    Pengfei, Pan; Ning, Zhang, E-mail: zhangning@njnu.edu.cn

    2016-10-15

    The dielectric properties and the magnetodielectric effect in Mn–Zn ferrite at resonant frequency have been studied in this paper. Dimensional-resonance-induced abnormal dielectric spectrum was observed at f≈1 MHz. The relatively large magnetodielectric ratio of 4500% in a magnetic field of 3.5 kOe was achieved from the Mn–Zn ferrite sample with the initial permeability of 15 K at resonant frequency at room temperature. Theoretical analysis suggests that the large MD effect at resonant frequency is attributed to the enhanced magnetostriction effect. - Highlights: • Dimensional resonance was measured in dielectric spectrum at f≈1 MHz. • The MD ratio of 4500% was induced by H = 3.5 kOe at resonant frequency. • The magnetostriction effect leads to the large MD effect at resonant frequency.

  11. Coherent resonance of quantum plasmons in the graphene-gold cluster hybrid system.

    Science.gov (United States)

    Zhang, Kaibiao; Zhang, Hong; Li, Chikang

    2015-05-14

    Noble metal nanoparticles can modify the optical properties of graphene. Here we present a detailed theoretical analysis of the coherent resonance of quantum plasmons in the graphene-gold cluster hybrid system by using time dependent density functional theory (TDDFT). This plasmon coherent effect is mainly attributed to the electromagnetic field coupling between the graphene and the gold cluster. As a result, the optical response of the hybrid system exhibits a remarkably strong, selectable tuning and polarization dependent plasmon resonance enhanced in wide frequency regions. This investigation provides an improved understanding of the plasmon enhancement effect in a graphene-based photoelectric device.

  12. Multi-Frequency Resonances in Pure Multiple-Pulse NQR

    Energy Technology Data Exchange (ETDEWEB)

    Furman, G. B., E-mail: gregoryf@bgu.ac.il [Ben-Gurion University (Israel); Kibrik, G. E.; Polyakov, A. Yu. [Perm State University (Russian Federation)

    2004-12-15

    We have observed multi-frequency resonances in a system with a spin 3/2 irradiated simultaneously by a multiple-pulse radiofrequency sequence and a low frequency field swept in the range 0 - 80 kHz. The theoretical description of the effect is presented using both the rotating frame approximation and the Floquet theory. Both approaches give indentical results at the calculation of the resonance frequencies, transition probabilities and shifts of resonance frequency. The calculated magnetization vs. the frequency of the low-frequency field agrees with the obtained experimental data.

  13. Generation of ordinary mode electromagnetic radiation near the upper hybrid frequency in the magnetosphere

    Science.gov (United States)

    Ashour-Abdalla, M.; Okuda, H.

    1984-01-01

    It is shown by means of plasma numerical simulations that long-wavelength ordinary mode electromagnetic radiation can be generated from short-wavelength electrostatic waves near the upper hybrid resonance frequency in an inhomogeneous plasma. A possible relation of this process to nonthermal continuum radiation in the magnetosphere is discussed.

  14. Study on resonance frequency distribution of high-overtone bulk acoustic resonators

    Institute of Scientific and Technical Information of China (English)

    ZHANG Hui; WANG Zuoqing; ZHANG Shuyi

    2005-01-01

    Based on the method of characterizing piezo-films by the resonance frequency distributions, the factors influencing the resonance frequency distribution of a High-overtone Bulk Acoustic Resonator (HBAR) consisting of a piezoelectric thin film with twoelectrodes and a substrate are studied. Some HBARs are simulated. The results manifest that changing the acoustic impedance ratio of the substrate to piezo-film the distribution of the space of the parallel resonance frequency and the effective electromechanical coupling factor are changed. When the fundamental mode of the piezo-film is at high frequency, changing the acoustic impedance ratio of the electrode to piezo-film and the thickness of the electrodes make the resonance frequency distribution of HBARs change. These results manifest that the HBARs can be resonant at specified frequencies by means of adjusting the factors affecting the resonance frequency distribution.

  15. Hybrid Resonators and Highly Tunable Terahertz Metamaterials Enabled by Vanadium Dioxide (VO2).

    Science.gov (United States)

    Wang, Shengxiang; Kang, Lei; Werner, Douglas H

    2017-06-28

    Hybrid metamaterials that exhibit reconfigurable responses under external stimulus, such as electric fields and light radiation, have only recently been demonstrated by combining active media with patterned metallic structures. Nevertheless, hybrid terahertz (THz) metamaterials whose spectral performance can be dynamically tuned over a large scale remain rare. Compared with most active media (for instance, silicon) that provide limited activity, vanadium dioxide (VO2), which exhibits an insulator-to-metal transition, has been recently explored to facilitate dynamically tunable metamaterials. More importantly, the phase transition yields a three orders of magnitude increase in THz electrical conductivity, which suggests the potential for creating VO2 based hybrid resonators that operate at THz frequencies. Here, we show that an integration of VO2 structures and conventional metallic resonating components can enable a class of highly tunable THz metamaterials. Considering the widely studied phase-transition dynamics in VO2, the proposed hybrid metamaterials are capable of offering ultrafast modulation of THz radiation.

  16. Design of the 1.5 MW, 30-96 MHz ultra-wideband 3 dB high power hybrid coupler for Ion Cyclotron Resonance Frequency (ICRF) heating in fusion grade reactor

    Energy Technology Data Exchange (ETDEWEB)

    Yadav, Rana Pratap, E-mail: ranayadav97@gmail.com; Kumar, Sunil; Kulkarni, S. V. [Thapar University, Patiala, Punjab 147004, India and Institute for Plasma Research, Gandhinagar 382428 (India)

    2016-01-15

    Design and developmental procedure of strip-line based 1.5 MW, 30-96 MHz, ultra-wideband high power 3 dB hybrid coupler has been presented and its applicability in ion cyclotron resonance heating (ICRH) in tokamak is discussed. For the high power handling capability, spacing between conductors and ground need to very high. Hence other structural parameters like strip-width, strip thickness coupling gap, and junction also become large which can be gone upto optimum limit where various constrains like fabrication tolerance, discontinuities, and excitation of higher TE and TM modes become prominent and significantly deteriorates the desired parameters of the coupled lines system. In designed hybrid coupler, two 8.34 dB coupled lines are connected in tandem to get desired coupling of 3 dB and air is used as dielectric. The spacing between ground and conductors are taken as 0.164 m for 1.5 MW power handling capability. To have the desired spacing, each of 8.34 dB segments are designed with inner dimension of 3.6 × 1.0 × 40 cm where constraints have been significantly realized, compensated, and applied in designing of 1.5 MW hybrid coupler and presented in paper.

  17. RCCS operation with a resonant frequency error in the KOMAC

    Science.gov (United States)

    Seo, Dong-Hyuk

    2015-10-01

    The resonance control cooling systems (RCCSs) of the Korea Multi-purpose Accelerator Complex have been operated for cooling the drift tubes (DT) and controlling the resonant frequency of the drift tube linac (DTL). The DTL should maintain a resonant frequency of 350 MHz during operation. A RCCS can control the temperature of the cooling water to within ±0.1 °C by using a 3-way valve opening and has a constant-cooling-water-temperature control mode and resonant-frequency-control mode. In the case of the resonant-frequency control, the error in the frequency is measured by using the low-level radio-frequency control system, and the RCCS uses a proportional-integral-derivative control algorithm to compensate for the error by controlling the temperature of the cooling water to the DT.

  18. Magnetodielectric effect of Mn-Zn ferrite at resonant frequency

    Science.gov (United States)

    Pengfei, Pan; Ning, Zhang

    2016-10-01

    The dielectric properties and the magnetodielectric effect in Mn-Zn ferrite at resonant frequency have been studied in this paper. Dimensional-resonance-induced abnormal dielectric spectrum was observed at f≈1 MHz. The relatively large magnetodielectric ratio of 4500% in a magnetic field of 3.5 kOe was achieved from the Mn-Zn ferrite sample with the initial permeability of 15 K at resonant frequency at room temperature. Theoretical analysis suggests that the large MD effect at resonant frequency is attributed to the enhanced magnetostriction effect.

  19. Mixed frequency excitation of an electrostatically actuated resonator

    KAUST Repository

    Ramini, Abdallah

    2015-04-24

    We investigate experimentally and theoretically the dynamics of a capacitive resonator under mixed frequency excitation of two AC harmonic signals. The resonator is composed of a proof mass suspended by two cantilever beams. Experimental measurements are conducted using a laser Doppler vibrometer to reveal the interesting dynamics of the system when subjected to two-source excitation. A nonlinear single-degree-of-freedom model is used for the theoretical investigation. The results reveal combination resonances of additive and subtractive type, which are shown to be promising to increase the bandwidth of the resonator near primary resonance frequency. Our results also demonstrate the ability to shift the combination resonances to much lower or much higher frequency ranges. We also demonstrate the dynamic pull-in instability under mixed frequency excitation. © 2015 Springer-Verlag Berlin Heidelberg

  20. Photonic molecules formed by coupled hybrid resonators

    CERN Document Server

    Peng, Bo; Zhu, Jiangang; Yang, Lan; 10.1364/OL.37.003435

    2013-01-01

    We describe a method that enables free-standing whispering-gallery-mode microresonators, and report spectral tuning of photonic molecules formed by coupled free and on-chip resonators with different geometries and materials. We study direct coupling via evanescent fields of free silica microtoroids and microspheres with on-chip polymer coated silica microtoroids. We demonstrate thermal tuning of resonance modes to achieve maximal spectral overlap, mode splitting induced by direct coupling, and the effects of distance between the resonators on the splitting spectra.

  1. Variable frequency iteration MPPT for resonant power converters

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Qian; Bataresh, Issa; Chen, Lin

    2015-06-30

    A method of maximum power point tracking (MPPT) uses an MPPT algorithm to determine a switching frequency for a resonant power converter, including initializing by setting an initial boundary frequency range that is divided into initial frequency sub-ranges bounded by initial frequencies including an initial center frequency and first and second initial bounding frequencies. A first iteration includes measuring initial powers at the initial frequencies to determine a maximum power initial frequency that is used to set a first reduced frequency search range centered or bounded by the maximum power initial frequency including at least a first additional bounding frequency. A second iteration includes calculating first and second center frequencies by averaging adjacent frequent values in the first reduced frequency search range and measuring second power values at the first and second center frequencies. The switching frequency is determined from measured power values including the second power values.

  2. Low Frequency Scattering Resonance Wave in Strong Heterogeneity

    CERN Document Server

    Liu, Yinbin

    2015-01-01

    Multiple scattering of wave in strong heterogeneity can cause resonance-like wave phenomenon where signal exhibits low frequency, high intensity, and slowly propagating velocity. For example, long period event in volcanic seismology and surface plasmon wave and quantum Hall effect in wave-particle interactions. Collective behaviour in a many-body system is usually thought to be the source for generating the anomaly. However, the detail physical mechanism is not fully understood. Here I show by wave field modeling for microscopic bubble cloud model and 1D heterogeneity that the anomaly is related to low frequency scattering resonance happened in transient regime. This low frequency resonance is a kind of wave coherent scattering enhancement phenomenon in strongly-scattered small-scale heterogeneity. Its resonance frequency is inversely proportional to heterogeneous scale and contrast and will further shift toward lower frequency with random heterogeneous scale and velocity fluctuations. Low frequency scatterin...

  3. Resonant difference-frequency atomic force ultrasonic microscope

    Science.gov (United States)

    Cantrell, John H. (Inventor); Cantrell, Sean A. (Inventor)

    2010-01-01

    A scanning probe microscope and methodology called resonant difference-frequency atomic force ultrasonic microscopy (RDF-AFUM), employs an ultrasonic wave launched from the bottom of a sample while the cantilever of an atomic force microscope, driven at a frequency differing from the ultrasonic frequency by one of the contact resonance frequencies of the cantilever, engages the sample top surface. The nonlinear mixing of the oscillating cantilever and the ultrasonic wave in the region defined by the cantilever tip-sample surface interaction force generates difference-frequency oscillations at the cantilever contact resonance. The resonance-enhanced difference-frequency signals are used to create images of nanoscale near-surface and subsurface features.

  4. Numerical and experimental studies of resonators with reduced resonant frequencies and small electrical sizes

    CERN Document Server

    Hao, T; Edwards, D J; Stevens, C J

    2008-01-01

    Methods on reducing resonant frequencies and electrical sizes of resonators are reported in this paper. Theoreti-cal and numerical analysis has been used and the results for the broadside-coupled resonators from both studies exhibit good agreement. Initial fabrication techniques are proposed and measurement results are compared with simulations. Further high resolution techniques have been envisaged to enhance the performance of the resona-tors. This class of small resonators with low resonant frequencies indicates a variety of applications in the design of microwave devices.

  5. Hybrid switch for resonant power converters

    Science.gov (United States)

    Lai, Jih-Sheng; Yu, Wensong

    2014-09-09

    A hybrid switch comprising two semiconductor switches connected in parallel but having different voltage drop characteristics as a function of current facilitates attainment of zero voltage switching and reduces conduction losses to complement reduction of switching losses achieved through zero voltage switching in power converters such as high-current inverters.

  6. A Quarter Ellipse Microstrip Resonator for Filters in Microwave Frequencies

    Directory of Open Access Journals (Sweden)

    Samuel Á. Jaramillo-Flórez

    2013-11-01

    Full Text Available This work describes the results of computational simulations and construction of quadrant elliptical resonators excited by coplanar slot line waveguide for designing microwave filters in RF communications systems. By means of the equation of optics, are explained the fundamentals of these geometry of resonators proposed. Are described the construction of quadrant elliptical resonators, one of microstrip and other two of cavity, of size different, and an array of four quadrant elliptical resonators in cascade. The results of the measures and the computational calculus of scattering S11 and S21 of elliptical resonators is made for to identify the resonant frequencies of the resonators studied, proving that these have performance in frequency as complete ellipses by the image effect due to their two mirror in both semiaxis, occupying less area, and the possible applications are discussed.

  7. Resonance enhancement by suitably chosen frequency detuning

    CERN Document Server

    Dutykh, Denys

    2014-01-01

    In this Letter we report new effects of resonance detuning on various dynamical parameters of a generic 3-wave system. Namely, for suitably chosen values of detuning the variation range of amplitudes can be significantly wider than for exact resonance. Moreover, the range of energy variation is not symmetric with respect to the sign of the detuning. Finally, the period of the energy oscillation exhibits non-monotonic dependency on the magnitude of detuning. These results have important theoretical implications where nonlinear resonance analysis is involved, such as geophysics, plasma physics, fluid dynamics. Numerous practical applications are envisageable e.g. in energy harvesting systems.

  8. Tunable characteristics of bending resonance frequency in magnetoelectric laminated composites

    Institute of Scientific and Technical Information of China (English)

    Chen Lei; Li Ping; Wen Yu-Mei; Zhu Yong

    2013-01-01

    As the magnetoelectric (ME) effect in piezoelectric/magnetostrictive laminated composites is mediated by mechanical deformation,the ME effect is significantly enhanced in the vicinity of resonance frequency.The bending resonance frequency (fr) of bilayered Terfenol-D/PZT (MP) laminated composites is studied,and our analysis predicts that (i) the bending resonance frequency of an MP laminated composite can be tuned by an applied dc magnetic bias (Hdc) due to the △E effect; (ii) the bending resonance frequency of the MP laminated composite can be controlled by incorporating FeCuNbSiB layers with different thicknesses.The experimental results show that with Hdc increasing from 0Oe (1 Oe=79.5775 A/m)to 700 Oe,the bending resonance frequency can be shifted in a range of 32.68 kHz ≤ fr ≤ 33.96 kHz.In addition,with the thickness of the FeCuNbSiB layer increasing from 0 μm to 90 μm,the bending resonance frequency of the MP laminated composite gradually increases from 33.66 kHz to 39.18 kHz.This study offers a method of adjusting the strength of dc magnetic bias or the thicknesses of the FeCuNbSiB layer to tune the bending resonance frequency for ME composite,which plays a guiding role in the ME composite design for real applications.

  9. Frequency stabilization of the non resonant wave of a continuous-wave singly resonant optical parametric oscillator

    CERN Document Server

    Ly, Aliou; Bretenaker, Fabien

    2015-01-01

    We present an experimental technique allowing to stabilize the frequency of the non resonant wave in a singly resonant optical parametric oscillator (SRO) down to the kHz level, much below the pump frequency noise level. By comparing the frequency of the non resonant wave with a reference cavity, the pump frequency noise is imposed to the frequency of the resonant wave, and is thus subtracted from the frequency of the non resonant wave. This permits the non resonant wave obtained from such a SRO to be simultaneously powerful and frequency stable, which is usually impossible to obtain when the resonant wave frequency is stabilized.

  10. ANALYSIS OF PIEZOELECTRIC ENERGY HARVESTING DEVICE WITH ADJUSTABLE RESONANCE FREQUENCY

    Institute of Scientific and Technical Information of China (English)

    Jiang Lei; Li Yuejuan; Marvin Cheng

    2012-01-01

    This paper presents an analytic method that adjusts resonance frequency of a piezoelectric vibration energy harvester.A mathematical model that estimates resonance frequency of cantilever is also proposed.Through moving an attached mass and changing its weight on the cantilever beam,resonance frequency of adopted piezoelectric device can be adjusted to match the frequency of ambient vibration sources,which is critical in order to harvest maximum amount of energy.The theoretical results are validated by experiments that move different masses along experimental cantilever beams.The results demonstrate that resonance frequency can be adjusted by an attached mass located at different positions on the cantilever beam.Different combinations of operational conditions that harvest maximum amount of energy are also discussed in this paper.

  11. Hybrid III-V/SOI Resonant Cavity Photodetector

    DEFF Research Database (Denmark)

    Learkthanakhachon, Supannee; Taghizadeh, Alireza; Park, Gyeong Cheol;

    2016-01-01

    A hybrid III-V/SOI resonant cavity photo detector has been demonstrated, which comprises an InP grating reflectorand a Si grating reflector. It can selectively detects an incident light with 1.54-µm wavelength and TM polarization....

  12. Hybrid localized waves supported by resonant anisotropic metasurfaces

    DEFF Research Database (Denmark)

    Bogdanov, A. A.; Yermakov, O. Y.; Ovcharenko, A. I.

    2016-01-01

    We study both theoretically and experimentally a new class of surface electromagnetic waves supported by resonant anisotropic metasurface. At certain frequency this type of metasurface demonstrates the topological transition from elliptical to hyperbolic regime.......We study both theoretically and experimentally a new class of surface electromagnetic waves supported by resonant anisotropic metasurface. At certain frequency this type of metasurface demonstrates the topological transition from elliptical to hyperbolic regime....

  13. Hybrid resonance and long-time asymptotic of the solution to Maxwell's equations

    CERN Document Server

    Després, Bruno

    2015-01-01

    We study the long-time asymptotic of the solutions to Maxwell's equation in the case of a hybrid resonance in the cold plasma model. We base our analysis in the transfer to the time domain of the recent results of B. Despr\\'es, L.M. Imbert-G\\'erard and R. Weder, J. Math. Pures Appl. {\\bf 101} ( 2014) 623-659, where the singular solutions to Maxwell's equations in the frequency domain where constructed by means of a limiting absorption principle and a formula for the heating of the plasma in the limit of vanishing collision frequency was obtained. Currently there is considerable interest in these problems because hybrid resonances are a possible scenario for the heating of plasmas in the future ITER Tokamak.

  14. Hybrid resonance and long-time asymptotic of the solution to Maxwell's equations

    Science.gov (United States)

    Després, Bruno; Weder, Ricardo

    2016-03-01

    We study the long-time asymptotic of the solutions to Maxwell's equation in the case of an upper-hybrid resonance in the cold plasma model. We base our analysis in the transfer to the time domain of the recent results of B. Després, L.M. Imbert-Gérard and R. Weder (2014) [15], where the singular solutions to Maxwell's equations in the frequency domain were constructed by means of a limiting absorption principle and a formula for the heating of the plasma in the limit of vanishing collision frequency was obtained. Currently there is considerable interest in these problems, in particular, because upper-hybrid resonances are a possible scenario for the heating of plasmas, and since they can be a model for the diagnostics involving wave scattering in plasmas.

  15. Multi-resonance split ring resonator structures at sub-terahertz frequencies

    CERN Document Server

    Galal, Hossam

    2016-01-01

    This paper reports on the computational development of novel architectures of multi-resonance Split Ring Resonators (SRRs), for efficient manipulation of Terahertz (THz) frequency beams. The conceived resonators are based on both a capacitive and inductive scheme. Simulation results have been obtained for a 60 GHz to 240 GHz operational bandwidth.

  16. Grid-connected Photovoltaic Micro-inverter with New Hybrid Control LLC Resonant Converter

    DEFF Research Database (Denmark)

    Xingkui, Mao; Qisheng, Huang; Qingbo, Ke;

    2016-01-01

    A high-efficiency photovoltaic (PV) micro-inverter consisting of two power stages i.e. a LLC resonant converter with a new hybrid control scheme and a dc-ac inverter is proposed, studied and designed in this paper. In the first power stage, the new hybrid control combining pulse-frequency modulat......A high-efficiency photovoltaic (PV) micro-inverter consisting of two power stages i.e. a LLC resonant converter with a new hybrid control scheme and a dc-ac inverter is proposed, studied and designed in this paper. In the first power stage, the new hybrid control combining pulse......-frequency modulation (PFM) and phase-shift pulse-width modulation (PS-PWM) is employed on a full-bridge LLC dc-dc converter, in order to achieve high efficiency when PV output voltage varies in a wide range. Moreover, a maximum power point tracking (MPPT) method based on power perturbation is implemented in the dc......-ac inverter. Therefore, the complexity of regulating LLC converter can be reduced effectively, and efficiency optimal design can be carried out through the proposed designing procedure for the resonant tank of LLC converter. Finally, a prototype of the proposed PV micro-inverter (PVMI) is developed with rated...

  17. Generation of Kerr Frequency Combs in Resonators with Normal GVD

    CERN Document Server

    Matsko, Andrey B; Maleki, Lute

    2011-01-01

    We show via numerical simulation that Kerr frequency combs can be generated in a nonlinear resonator characterized with normal group velocity dispersion (GVD). We find the spectral shape of the comb and temporal envelope of the corresponding optical pulses formed in the resonator.

  18. Very High Frequency Interleaved Self-Oscillating Resonant SEPIC Converter

    DEFF Research Database (Denmark)

    Kovacevic, Milovan; Knott, Arnold; Andersen, Michael A. E.

    2013-01-01

    This paper describes analysis and design procedure of an interleaved, self-oscillating resonant SEPIC converter, suitable for operation at very high frequencies (VHF) ranging from 30 MHz to 300 MHz. The presented circuit consists of two resonant SEPIC DC-DC converters, and a capacitive...

  19. Method and apparatus for resonant frequency waveform modulation

    Science.gov (United States)

    Taubman, Matthew S [Richland, WA

    2011-06-07

    A resonant modulator device and process are described that provide enhanced resonant frequency waveforms to electrical devices including, e.g., laser devices. Faster, larger, and more complex modulation waveforms are obtained than can be obtained by use of conventional current controllers alone.

  20. Resonances in BSO with frequency shifted input beams

    DEFF Research Database (Denmark)

    Buchhave, Preben; Vasnetsov, M.; Lyuksyutov, S.

    1996-01-01

    In this publication we report experiments with a frequency modulated offset frequency, which illustrate in which situations the problem may be considered linear, and in which it may not. Surprisingly we find, that even in the region of subharmonic generation, the space-charge field of the primary...... frequencies. We also report how resonances, forced by even a weak modulation of the frequency detuning may cause the suppression of the subharmonic generation....

  1. Planar terahertz metamaterial with three-resonant frequencies

    Institute of Scientific and Technical Information of China (English)

    Chen Zhi; Zhang Ya-Xin

    2013-01-01

    In this paper,we study a three-resonant metamaterial with the combination of dual-resonant and single-resonant metamaterials.We present a new method to design multi-resonant metamaterial,which has a smaller dimension than general symmetric and asymmetric multi-resonant metamaterials.Theoretical and experimental results show that the structure has three distinct absorption frequencies centering around 0.29 THz,0.46 THz,and 0.92 THz,and that each of them corresponds to a different resonant mode.Due to the good separation of the different resonances,this design provides a unique and effective method to construct multiband terahertz devices.

  2. Hysteresis of the resonance frequency of magnetostrictive bending cantilevers

    Science.gov (United States)

    Löffler, Michael; Kremer, Ramona; Sutor, Alexander; Lerch, Reinhard

    2015-05-01

    Magnetostrictive bending cantilevers are applicable for wirelessly measuring physical quantities such as pressure and strain. Exploiting the ΔE-effect, the resonance frequency of the cantilevers is shifted because of a change in the magnetic biasing field. The biasing field, in turn, depends on the applied pressure or strain, respectively. With a view to the application as a reliable sensor, maximum sensitivity but minimum hysteresis in the biasing field/resonance frequency dependence is preferred. In this contribution, monomorph bending cantilevers fabricated using magnetostrictive Fe49Co49V2 and Metglas 2605SA1 are investigated regarding their applicability for future sensors. For this purpose, the biasing field-dependent polarization of the magnetostrictive materials and bending of the cantilevers are determined. Furthermore, a setup to magnetically bias the cantilevers and determine the bending resonance frequency is presented. Here, the resonance frequency is identified by measuring the impulse response employing a laser Doppler vibrometer. The measurement results reveal that cantilevers made of Fe49Co49V2 possess a distinct hysteretic behaviour at low magnetic biasing field magnitudes. This is ascribed to the polarization and bending hysteresis. Cantilevers fabricated using Metglas 2605SA1 feature a lower resonance frequency shift compared to cantilevers with Fe49Co49V2, which would result in a lower sensitivity of the sensor. However, their resonance frequency hysteresis is almost negligible.

  3. YBCO superconducting ring resonators at millimeter-wave frequencies

    Science.gov (United States)

    Chorey, Christopher M.; Kong, Keon-Shik; Bhasin, Kul B.; Warner, J. D.; Itoh, Tatsuo

    1991-01-01

    Microstrip ring resonators operating at 35 GHz were fabricated from laser ablated YBCO films deposited on lanthanum aluminate substrates. They were measured over a range of temperatures and their performances compared to identical resonators made of evaporated gold. Below 60 Kelvin the superconducting strip performed better than the gold, reaching an unloaded Q approximately 1.5 times that of gold at 25 K. A shift in the resonant frequency follows the form predicted by the London equations. The Phenomenological Loss Equivalence Method is applied to the ring resonator and the theoretically calculated Q values are compared to the experimental results.

  4. Theoretical investigation of resonant frequencies of unstrapped magnetron with arbitrary side resonators

    Energy Technology Data Exchange (ETDEWEB)

    Yue, Song, E-mail: yuessd@163.com [Key Laboratory of High Power Microwave Sources and Technologies, Institute of Electronics, Chinese Academy of Sciences, Beijing 100190 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Zhang, Zhao-chuan; Gao, Dong-ping [Key Laboratory of High Power Microwave Sources and Technologies, Institute of Electronics, Chinese Academy of Sciences, Beijing 100190 (China)

    2015-04-15

    In this paper, a sector steps approximation method is proposed to investigate the resonant frequencies of magnetrons with arbitrary side resonators. The arbitrary side resonator is substituted with a series of sector steps, in which the spatial harmonics of electromagnetic field are also considered. By using the method of admittance matching between adjacent steps, as well as field continuity conditions between side resonators and interaction regions, the dispersion equation of magnetron with arbitrary side resonators is derived. Resonant frequencies of magnetrons with five common kinds of side resonators are calculated with sector steps approximation method and computer simulation softwares, in which the results have a good agreement. The relative error is less than 2%, which verifies the validity of sector steps approximation method.

  5. Micro--structured crystalline resonators for optical frequency comb generation

    CERN Document Server

    Grudinin, Ivan S

    2014-01-01

    Optical frequency combs have recently been demonstrated in micro--resonators through nonlinear Kerr processes. Investigations in the past few years provided better understanding of micro--combs and showed that spectral span and mode locking are governed by cavity spectrum and dispersion. While various cavities provide unique advantages, dispersion engineering has been reported only for planar waveguides. In this Letter, we report a resonator design that combines dispersion control, mode crossing free spectrum, and ultra--high quality factor. We experimentally show that as the dispersion of a MgF2 resonator is flattened, the comb span increases reaching 700 nm with as low as 60 mW pump power at 1560 nm wavelength, corresponding to nearly 2000 lines separated by 46 GHz. The new resonator design may enable efficient low repetition rate coherent octave spanning frequency combs without the need for external broadening, ideal for applications in optical frequency synthesis, metrology, spectroscopy, and communicatio...

  6. Resonances in low frequency ionization by periodic electric fields

    Energy Technology Data Exchange (ETDEWEB)

    Dando, P.A.; Richards, D. (Open Univ., Milton Keynes (United Kingdom). Mathematics Faculty)

    1993-09-28

    The behaviour of a one-dimensional system perturbed by a low frequency, periodic electric field is examined in the limit as the field frequency, [Omega], tends to zero, that is the static field limit. In particular we obtain estimates of the widths of each member of the infinite set of resonances between any finite value of [Omega] and 0. In order to obtain this estimate we derive a new analytic approximation of the two-state equations of motion. Our analysis shows why recent experiments on the ionization of excited hydrogen atoms by low frequency fields failed to observe any resonances. (author).

  7. Squeezing Alters Frequency Tuning of WGM Optical Resonator

    Science.gov (United States)

    Mohageg, Makan; Maleki, Lute

    2010-01-01

    Mechanical squeezing has been found to alter the frequency tuning of a whispering-gallery-mode (WGM) optical resonator that has an elliptical shape and is made of lithium niobate. It may be possible to exploit this effect to design reconfigurable optical filters for optical communications and for scientific experiments involving quantum electrodynamics. Some background information is prerequisite to a meaningful description of the squeezing-induced alteration of frequency tuning: The spectrum of a WGM resonator is represented by a comblike plot of intensity versus frequency. Each peak of the comblike plot corresponds to an electromagnetic mode represented by an integer mode number, and the modes are grouped into sets represented by integer mode indices. Because lithium niobate is an electro-optically active material, the WGM resonator can be tuned (that is, the resonance frequencies can be shifted) by applying a suitable bias potential. The frequency shift of each mode is quantified by a tuning rate defined as the ratio between the frequency shift and the applied potential. In the absence of squeezing, all modes exhibit the same tuning rate. This concludes the background information. It has been demonstrated experimentally that when the resonator is squeezed along part of either of its two principal axes, tuning rates differ among the groups of modes represented by different indices (see figure). The differences in tuning rates could be utilized to configure the resonance spectrum to obtain a desired effect; for example, through a combination of squeezing and electrical biasing, two resonances represented by different mode indices could be set at a specified frequency difference something that could not be done through electrical biasing alone.

  8. Hybrid resonance and long-time asymptotic of the solution to Maxwell's equations

    Energy Technology Data Exchange (ETDEWEB)

    Després, Bruno, E-mail: despres@ann.jussieu.fr [Laboratory Jacques Louis Lions, University Pierre et Marie Curie, Paris VI, Boîte courrier 187, 75252 Paris Cedex 05 (France); Weder, Ricardo, E-mail: weder@unam.mx [Departamento de Física Matemática, Instituto de Investigaciones en Matemáticas Aplicadas y en Sistemas, Universidad Nacional Autónoma de México, Apartado Postal 20-126, DF 01000 (Mexico)

    2016-03-22

    We study the long-time asymptotic of the solutions to Maxwell's equation in the case of an upper-hybrid resonance in the cold plasma model. We base our analysis in the transfer to the time domain of the recent results of B. Després, L.M. Imbert-Gérard and R. Weder (2014) [15], where the singular solutions to Maxwell's equations in the frequency domain were constructed by means of a limiting absorption principle and a formula for the heating of the plasma in the limit of vanishing collision frequency was obtained. Currently there is considerable interest in these problems, in particular, because upper-hybrid resonances are a possible scenario for the heating of plasmas, and since they can be a model for the diagnostics involving wave scattering in plasmas. - Highlights: • The upper-hybrid resonance in the cold plasma model is considered. • The long-time asymptotic of the solutions to Maxwell's equations is studied. • A method based in a singular limiting absorption principle is proposed.

  9. Coherent resonance of quantum plasmons in Stone-Wales defected graphene-silver nanowire hybrid system

    Science.gov (United States)

    Liu, Tong; Zhang, Hong; Cheng, Xin-Lu; Xu, Yang

    2017-10-01

    Defected graphene has a more important practical significance than graphene. Silver nanoparticles can modify the optical properties of defected graphene. We present herein a detailed theoretical analysis about the coherent resonance of quantum plasmons in the Stone-Wales (SW) defected graphene-silver nanowire hybrid system by using time-dependent density functional theory. The plasmon coherent effect is mainly attributed to the electromagnetic field coupling between the Stone-Wales defected graphene and silver nanowires. As a result, the optical response of the hybrid system exhibits a remarkable enhancement. Plasmon resonance, which depends on polarization and selectable tuning, is enhanced in wide frequency regions. Moreover, it reveals that the resonance frequency of an optical absorption spectrum depends on the space configuration of the SW defected graphene in the hybrid system. This investigation provides a better understanding of the plasmon enhancement effect used in a graphene-based photoelectric device. The study also offers an effective means of detecting the defects existing in graphene.

  10. Hybrid material as contrast agent in magnetic resonance images

    OpenAIRE

    Botella Asunción, Pablo; Cabrera García, Alejandro

    2015-01-01

    [EN] The invention relates to a contrast agent of magnetic resonance based on a hybrid material formed by an organo-metallic core derived from Prussian blue and a silica cover, and optionally, molecules of a poly(ethylene glycol), a fluorescent agent, a radio nucleus and/or a substance that directs to specific receptors, cells or tissues, joined by covalent bonding to the surface of the inorganic cover.

  11. Hybrid material as contrast agent in magnetic resonance images

    OpenAIRE

    Botella Asunción, Pablo; Cabrera García, Alejandro

    2015-01-01

    [EN] The invention relates to a contrast agent of magnetic resonance based on a hybrid material formed by an organo-metallic core derived from Prussian blue and a silica cover, and optionally, molecules of a poly(ethylene glycol), a fluorescent agent, a radio nucleus and/or a substance that directs to specific receptors, cells or tissues, joined by covalent bonding to the surface of the inorganic cover.

  12. Hybrid metal-dielectric ring resonators for homogenizable optical metamaterials with strong magnetic response at short wavelengths down to the ultraviolet range.

    Science.gov (United States)

    Tang, Jianwei; He, Sailing

    2013-10-07

    We derive an analytical LC model from Maxwell's equations for the magnetic resonance of subwavelength ring resonators. Using the LC model, we revisit the scaling of split-ring resonators. Inspired by the LC model, we propose a hybrid metal-dielectric ring resonator mainly composed of high index dielectric material (e.g., TiO₂) with some gaps filled with metal (e.g., Ag). The saturation frequency of magnetic response for the hybrid metal-dielectric ring resonator is much higher (up to the ultraviolet range) than that for split-ring resonators, and can be controlled by the metal fraction in the ring. The hybrid metal-dielectric ring resonator can also overcome the homogenization problem of all-dielectric magnetic resonators, and therefore can form homogenizable magnetic metamaterials at short wavelengths down to the ultraviolet range.

  13. Microwave resonant activation in hybrid single-gap/two-gap Josephson tunnel junctions

    Science.gov (United States)

    Carabello, Steven; Lambert, Joseph G.; Mlack, Jerome; Dai, Wenqing; Li, Qi; Chen, Ke; Cunnane, Daniel; Xi, X. X.; Ramos, Roberto C.

    2016-09-01

    Microwave resonant activation is a powerful, straightforward technique to study classical and quantum systems, experimentally realized in Josephson junction devices cooled to very low temperatures. These devices typically consist of two single-gap superconductors separated by a weak link. We report the results of the first resonant activation experiments on hybrid thin film Josephson junctions consisting of a multi-gap superconductor (MgB2) and a single-gap superconductor (Pb or Sn). We can interpret the plasma frequency in terms of theories both for conventional and hybrid junctions. Using these models, we determine the junction parameters including critical current, resistance, and capacitance and find moderately high quality factors of Q0˜ 100 for these junctions.

  14. Ultra-Small Dualband Dualmode Microstrip Antenna Based on Novel Hybrid Resonator

    Science.gov (United States)

    Zhu, Ji-Xu; Bai, Peng; Zheng, Hao-Zhong

    2016-11-01

    A novel hybrid resonator consists of right handed patch+composite right and left handed transmission line (RH+CRLH) is proposed for the first time aiming at both compactness and frequency manipulation. A demonstration with theoretical dispersion relations and EM simulation is provided for the correctness and efficiency. According to the new method, an ultra-small and dualband antenna operating around 2.4 GHz (n=0, Bluetooth band) and 3.5 GHz (n=+1, Wimax band) is designed, fabricated and measured, whose occupied area is only of 0.158 λ_0. Numerical and experimental results indicate that the antenna exhibits a good impendence match, low cross-polarization and comparable radiation gains in both bands. Excellent performances of the antennas based on hybrid resonators predict promising applications in multifunction wireless communication systems.

  15. A high frequency resonance gravity gradiometer

    Energy Technology Data Exchange (ETDEWEB)

    Bagaev, S. N.; Kvashnin, N. L.; Skvortsov, M. N. [Laser Physics Institute SB RAS, Novosibirsc (Russian Federation); Bezrukov, L. B.; Krysanov, V. A. [Institute of Nuclear Physics RAS, Moscow (Russian Federation); Oreshkin, S. I.; Motylev, A. M.; Popov, S. M.; Samoilenko, A. A.; Yudin, I. S. [Lomonosov MSU, Sternberg Astronomical Institute, Moscow (Russian Federation); Rudenko, V. N. [Institute of Nuclear Physics RAS, Moscow (Russian Federation); Lomonosov MSU, Sternberg Astronomical Institute, Moscow (Russian Federation)

    2014-06-15

    A new setup OGRAN—the large scale opto-acoustical gravitational detector is described. As distinguished from known gravitational bar detectors it uses the optical interferometrical readout for registering weak variations of gravity gradient at the kilohetz frequency region. At room temperature, its sensitivity is limited only by the bar Brownian noise at the bandwidth close to 100 Hz. It is destined for a search for rare events—gravitational pulses coincident with signals of neutrino scintillator (BUST) in the deep underground of Baksan Neutrino Observatory of INR RAS.

  16. Multiplexed infrared photodetection using resonant radio-frequency circuits

    Energy Technology Data Exchange (ETDEWEB)

    Liu, R.; Lu, R.; Gong, S.; Wasserman, D. [Department of Electrical and Computer Engineering, University of Illinois Urbana Champaign, Urbana, Illinois 61801 (United States); Roberts, C. [Department of Physics and Applied Physics, University of Massachusetts Lowell, Lowell, Massachusetts 01854 (United States); Allen, J. W.; Allen, M. S. [Air Force Research Laboratory, Munitions Directorate, Eglin Air Force Base, Florida 32542 (United States); Wenner, B. R. [Air Force Research Laboratory, Sensors Directorate, Wright Patterson Air Force Base, Ohio 45433 (United States)

    2016-02-08

    We demonstrate a room-temperature semiconductor-based photodetector where readout is achieved using a resonant radio-frequency (RF) circuit consisting of a microstrip split-ring resonator coupled to a microstrip busline, fabricated on a semiconductor substrate. The RF resonant circuits are characterized at RF frequencies as function of resonator geometry, as well as for their response to incident IR radiation. The detectors are modeled analytically and using commercial simulation software, with good agreement to our experimental results. Though the detector sensitivity is weak, the detector architecture offers the potential for multiplexing arrays of detectors on a single read-out line, in addition to high speed response for either direct coupling of optical signals to RF circuitry, or alternatively, carrier dynamics characterization of semiconductor, or other, material systems.

  17. High Frequency Stochastic Resonance in Periodically Driven Systems

    CERN Document Server

    Dykman, M I

    1993-01-01

    Abstract: High frequency stochastic resonance (SR) phenomena, associated with fluctuational transitions between coexisting periodic attractors, have been investigated experimentally in an electronic model of a single-well Duffing oscillator bistable in a nearly resonant field of frequency $\\omega_F$. It is shown that, with increasing noise intensity, the signal/noise ratio (SNR) for a signal due to a weak trial force of frequency $\\Omega decreases again at higher noise intensities: behaviour similar to that observed previously for conventional (low frequency) SR in systems with static bistable potentials. The stochastic enhancement of the SNR of an additional signal at the mirror-reflected frequency $\\vert Ømega - 2 ømega_F \\vert$ is also observed, in accordance with theoretical predictions. Relationships with phenomena in nonlinear optics are discussed.

  18. Acoustic Resonance Frequency Elimination Device for Safety Relief Valves

    Energy Technology Data Exchange (ETDEWEB)

    Redmond, J.

    2014-07-01

    Industry experience has shown that Safety Relief Valves (SRVs) and Steam Dryers installed in Boiling Water Reactors (BWRs) experience vibration induced degradation and failures caused by acoustic resonance vibration of the main steam lines, resulting in decreased reliability and potential safety issues. The resonance is caused by vortex shedding from the standpipe inlet and acoustic standing waves in the standpipe, occurring when the two frequencies match. (Author)

  19. Investigation of Vertical Spiral Resonators for Low Frequency Metamaterial Design

    CERN Document Server

    Zhu, Jiwen; Stevens, Christopher J; Edwards, David J

    2008-01-01

    This paper thoroughly explores the characteristics of vertical spiral resonators (VSR). They exhibit rela-tively high Q factors and sizes around a few percent of the free space wavelength, which make them ideal candi-dates for assembling metamaterial devices. A quasistatic model of VSR is obtained from simple analytical ex-pressions, and the effects of certain geometrical parameters on the resonant frequency are investigated.

  20. Design of tunable GHz-frequency optomechanical crystal resonators

    CERN Document Server

    Pfeifer, Hannes; Zang, Leyun; Painter, Oskar

    2016-01-01

    We present a silicon optomechanical nanobeam design with a dynamically tunable acoustic mode at 10.2 GHz. The resonance frequency can be shifted by 90 kHz/V^2 with an on-chip capacitor that was optimized to exert forces up to 1 $\\mu$N at 10 V operation voltage. Optical resonance frequencies around 190 THz with Q factors up to $2.2 \\times 10^6$ place the structure in the well-resolved sideband regime with vacuum optomechanical coupling rates up to $g_0/2\\pi = 353$ kHz. Tuning can be used, for instance, to overcome variation in the device-to-device acoustic resonance frequency due to fabrication errors, paving the way for optomechanical circuits consisting of arrays of optomechanical cavities.

  1. Efficiency Investigation of Subwoofer Driven Around Resonance Frequency

    DEFF Research Database (Denmark)

    Thydal, Tobias; Iversen, Niels Elkjær; Knott, Arnold

    2017-01-01

    The need for efficient portable speaker systems has increased tremendously over the past 10 years. The batteries, amplifiers and filtering has all seen great improvements in efficiency leaving the speakers units as the most inefficient part of the system, mainly due to the large amounts of current...... drawn that ends up being dissipated as heat in the voice coil. This paper will look at how you can design a speaker system to take advantage of the resonance of a speaker unit, since that is where the unit is most efficient and draws the least current. A subwoofer speaker system will be designed...... with focus on only driving the speaker units near their resonance frequency. The tests found that with modern DSP it was rather simple to design a speaker system that operate in a very narrow frequency band around the speaker units’ resonance frequencies, which in turn ensured a very small current draw...

  2. Installation and Commissioning of the Resonant Frequency Control Cooling System

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, Hyeokjung; Seol, Kyungtae; Kim, Hansung; Jang, Jiho; Cho, Yongsub [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2013-05-15

    Total 11 sets of Resonant Frequency Control Cooling System (RCCS) are used to control the resonance frequency of the 100-MeV DTL. The specifications of the RCCS are summarized. The RCCS should cover the temperature from 21 .deg. C to 33 .deg. C, heat load from magnet power only to full RF power in addition to the magnet power. The stability of the temperature control is less than 0.1 .deg. C. The control input variable comes from the resonance frequency error from the low level RF (LLRF) system. All RCCSs were installed and tested. In this paper, the installation and initial test results of the RCCS are presented. The standalone test of the RCCS for 100-MeV DTL was carried out. The results showed that the chiller temperature fluctuated above the specification mainly because the chiller controller was not properly tuned, but the RCCS with two independent control valves could be operated to give the required stability.

  3. Circularly split-ring-resonator-based frequency-reconfigurable antenna

    Science.gov (United States)

    Rahman, M. A.; Faruque, M. R. I.; Islam, M. T.

    2017-01-01

    In this paper, an antenna with frequency configurability in light of a circularly split-ring resonator (CSRR) is introduced. The proposed reconfigurable monopole antenna consists of a microstrip-fed hook-shaped structure and a CSRR having single reconfigurable split only. A new band of radiation unlike the band radiated from monopole only is observed due to magnetic coupling between the CSRR and the monopole antenna. The resonance frequency of the CSRR can be arbitrarily chosen by varying the dimension and relative position of its gap with the monopole, which leads the antenna to become reconfigurable one. By using a single switch with perfect electric conductor at the gap of CSRR cell, the effect of CSRR can be deactivated and, hence, it is possible to suppress the corresponding resonance, resulting in a frequency-reconfigurable antenna. Commercially available Computer Simulation Technology microwave studio based on finite integration technique was adopted throughout the study.

  4. Microwave-frequency electromechanical resonators incorporating phononic crystals

    Science.gov (United States)

    Satzinger, K. J.; Peairs, G.; Vainsencher, A.; Cleland, A. N.

    Piezoelectric micromechanical resonators at gigahertz frequencies have been operated in the quantum limit, with quantum control and measurement achieved using superconducting qubits. However, experiments to date have been limited by mechanical dissipation, due to a combination of internal and radiative losses. In this talk, we explore the incorporation of phononic crystals into resonator designs. In phononic crystals, periodic patterning manipulates the acoustic band structure of the material. Through appropriately chosen geometries, these periodic patterns lead to full acoustic bandgaps which can be used to greatly reduce radiation losses from resonant structures. Alternatively, the crystal geometry can be manipulated to allow isolated modes within the bandgap, giving fine control over the spatial structure of the resonator modes. In this talk, we will describe the design, fabrication, and measurement of resonators with phononic crystals.

  5. Frequency-difference-dependent stochastic resonance in neural systems

    Science.gov (United States)

    Guo, Daqing; Perc, Matjaž; Zhang, Yangsong; Xu, Peng; Yao, Dezhong

    2017-08-01

    Biological neurons receive multiple noisy oscillatory signals, and their dynamical response to the superposition of these signals is of fundamental importance for information processing in the brain. Here we study the response of neural systems to the weak envelope modulation signal, which is superimposed by two periodic signals with different frequencies. We show that stochastic resonance occurs at the beat frequency in neural systems at the single-neuron as well as the population level. The performance of this frequency-difference-dependent stochastic resonance is influenced by both the beat frequency and the two forcing frequencies. Compared to a single neuron, a population of neurons is more efficient in detecting the information carried by the weak envelope modulation signal at the beat frequency. Furthermore, an appropriate fine-tuning of the excitation-inhibition balance can further optimize the response of a neural ensemble to the superimposed signal. Our results thus introduce and provide insights into the generation and modulation mechanism of the frequency-difference-dependent stochastic resonance in neural systems.

  6. Artificial excitation of ELF waves with frequency of Schumann resonance

    Science.gov (United States)

    Streltsov, A. V.; Guido, T.; Tulegenov, B.; Labenski, J.; Chang, C.-L.

    2014-11-01

    We report results from the experiment aimed at the artificial excitation of extremely low-frequency (ELF) electromagnetic waves with frequencies corresponding to the frequency of Schumann resonance. Electromagnetic waves with these frequencies can form a standing pattern inside the spherical cavity formed by the surface of the Earth and the ionosphere. In the experiment the ELF waves were excited by heating the ionosphere with X-mode HF electromagnetic waves generated at the High Frequency Active Auroral Research Program (HAARP) facility in Alaska. The experiment demonstrates that heating of the ionosphere can excite relatively large-amplitude electromagnetic waves with frequencies in the range 7.8-8.0 Hz when the ionosphere has a strong F layer, the frequency of the HF radiation is in the range 3.20-4.57 MHz, and the electric field greater than 5 mV/m is present in the ionosphere.

  7. An ultra-broadband low-frequency magnetic resonance system

    Science.gov (United States)

    Mandal, S.; Utsuzawa, S.; Cory, D. G.; Hürlimann, M.; Poitzsch, M.; Song, Y.-Q.

    2014-05-01

    MR probes commonly employ resonant circuits for efficient RF transmission and low-noise reception. These circuits are narrow-band analog devices that are inflexible for broadband and multi-frequency operation at low Larmor frequencies. We have addressed this issue by developing an ultra-broadband MR probe that operates in the 0.1-3 MHz frequency range without using conventional resonant circuits for either transmission or reception. This “non-resonant” approach significantly simplifies the probe circuit and allows robust operation without probe tuning while retaining efficient power transmission and low-noise reception. We also demonstrate the utility of the technique through a variety of NMR and NQR experiments in this frequency range.

  8. Relationship among resonant frequencies of Sierpinski multiband fractal antennas

    Directory of Open Access Journals (Sweden)

    Gonzalez-Rangel Ivan R.

    2017-01-01

    Full Text Available In this paper, the relationships between the different resonance frequencies of Sierpinski fractal antennas of four-iterations are studied. In particular, Sierpinski fractal antennas with operating frequencies of the initial triangle of 250 MHz, 350 MHz and 530 MHz were designed and built. The antennas are made of copper tablets with bakelite substrate. The performance of the designed antennas is measured in terms of return losses. The return losses are obtained experimentally with a “RFX” system that measures antenna parameters in conjunction with a network analyzer. These results are compared with numerical simulations of commercial finite-element program that analyzes high frequency electromagnetic structures “HFSS”. Experimental and simulation results show that there is approximately a factor of 2 between the resonance frequencies of the first and second iterations and the second and third iterations.

  9. Frequency-tunable superconducting resonators via nonlinear kinetic inductance

    Energy Technology Data Exchange (ETDEWEB)

    Vissers, M. R.; Hubmayr, J.; Sandberg, M.; Gao, J. [National Institute of Standards and Technology, Boulder, Colorado 80305 (United States); Chaudhuri, S. [Department of Physics, Stanford University, Stanford, California 94305 (United States); Bockstiegel, C. [Department of Physics, University of California, Santa Barbara, California 93106 (United States)

    2015-08-10

    We have designed, fabricated, and tested a frequency-tunable high-Q superconducting resonator made from a niobium titanium nitride film. The frequency tunability is achieved by injecting a DC through a current-directing circuit into the nonlinear inductor whose kinetic inductance is current-dependent. We have demonstrated continuous tuning of the resonance frequency in a 180 MHz frequency range around 4.5 GHz while maintaining the high internal quality factor Q{sub i} > 180 000. This device may serve as a tunable filter and find applications in superconducting quantum computing and measurement. It also provides a useful tool to study the nonlinear response of a superconductor. In addition, it may be developed into techniques for measurement of the complex impedance of a superconductor at its transition temperature and for readout of transition-edge sensors.

  10. Hybrid Method for 3D Segmentation of Magnetic Resonance Images

    Institute of Scientific and Technical Information of China (English)

    ZHANGXiang; ZHANGDazhi; TIANJinwen; LIUJian

    2003-01-01

    Segmentation of some complex images, especially in magnetic resonance brain images, is often difficult to perform satisfactory results using only single approach of image segmentation. An approach towards the integration of several techniques seems to be the best solution. In this paper a new hybrid method for 3-dimension segmentation of the whole brain is introduced, based on fuzzy region growing, edge detection and mathematical morphology, The gray-level threshold, controlling the process of region growing, is determined by fuzzy technique. The image gradient feature is obtained by the 3-dimension sobel operator considering a 3×3×3 data block with the voxel to be evaluated at the center, while the gradient magnitude threshold is defined by the gradient magnitude histogram of brain magnetic resonance volume. By the combined methods of edge detection and region growing, the white matter volume of human brain is segmented perfectly. By the post-processing using mathematical morphological techniques, the whole brain region is obtained. In order to investigate the validity of the hybrid method, two comparative experiments, the region growing method using only gray-level feature and the thresholding method by combining gray-level and gradient features, are carried out. Experimental results indicate that the proposed method provides much better results than the traditional method using a single technique in the 3-dimension segmentation of human brain magnetic resonance data sets.

  11. Dual-frequency resonance-tracking atomic force microscopy

    Science.gov (United States)

    Rodriguez, Brian J.; Callahan, Clint; Kalinin, Sergei V.; Proksch, Roger

    2007-11-01

    A dual-excitation method for resonant-frequency tracking in scanning probe microscopy based on amplitude detection is developed. This method allows the cantilever to be operated at or near resonance for techniques where standard phase locked loops are not possible. This includes techniques with non-acoustic driving where the phase of the driving force is frequency and/or position dependent. An example of the latter is piezoresponse force microscopy (PFM), where the resonant frequency of the cantilever is strongly dependent on the contact stiffness of the tip-surface junction and the local mechanical properties, but the spatial variability of the drive phase rules out the use of a phase locked loop. Combined with high-voltage switching and imaging, dual-frequency, resonance-tracking PFM allows reliable studies of electromechanical and elastic properties and polarization dynamics in a broad range of inorganic and biological systems, and is illustrated using lead zirconate-titanate, rat tail collagen, and native and switched ferroelectric domains in lithium niobate.

  12. Dual-frequency resonance-tracking atomic force microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez, Brian J [Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Callahan, Clint [Asylum Research, Santa Barbara, CA 93117 (United States); Kalinin, Sergei V [Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Proksch, Roger [Asylum Research, Santa Barbara, CA 93117 (United States)

    2007-11-28

    A dual-excitation method for resonant-frequency tracking in scanning probe microscopy based on amplitude detection is developed. This method allows the cantilever to be operated at or near resonance for techniques where standard phase locked loops are not possible. This includes techniques with non-acoustic driving where the phase of the driving force is frequency and/or position dependent. An example of the latter is piezoresponse force microscopy (PFM), where the resonant frequency of the cantilever is strongly dependent on the contact stiffness of the tip-surface junction and the local mechanical properties, but the spatial variability of the drive phase rules out the use of a phase locked loop. Combined with high-voltage switching and imaging, dual-frequency, resonance-tracking PFM allows reliable studies of electromechanical and elastic properties and polarization dynamics in a broad range of inorganic and biological systems, and is illustrated using lead zirconate-titanate, rat tail collagen, and native and switched ferroelectric domains in lithium niobate.

  13. Very long pulse high-RF power test of a lower hybrid frequency antenna module

    Energy Technology Data Exchange (ETDEWEB)

    Goniche, M.; Brossaud, J.; Barral, C.; Berger-By, G.; Bibet, Ph.; Poli, S.; Rey, G.; Tonon, G. [Association Euratom-CEA, Centre d`Etudes Nucleaires de Cadarache, 13 - Saint-Paul-lez-Durance (France). Dept. de Recherches sur la Fusion Controlee; Seki, M.; Obara, K. [Japan Atomic Energy Research Inst., Naka, Ibaraki (Japan). Naka Fusion Research Establishment] [and others

    1994-03-01

    Outgassing, induced by very long RF waves injection at high power density was studied in a module, able to be used for a lower hybrid frequency antenna. Good RF properties of the module are reported, however, resonance phenomena with strong absorption of RF power (15%) was observed at high temperature (T>400 deg C). A large outgassing data base is provided by the 75 shots cumulating 27 hours of RF injection. The comparison with previous experiments (Tore Supra and TdV prototype modules) confirm the effect of baking and results are consistent. Outgassing increases exponentially with -1/T, and a desorption model with an activation energy Ed {approx} 0.35 eV fits the data up to 400 deg C. In order to design vacuum pumping system for large lower hybrid frequency antenna, outgassing rates are given for different working temperatures. (author). 11 refs., 55 figs.

  14. Wide Frequency Band Active Damping Strategy for DFIG System High Frequency Resonance

    DEFF Research Database (Denmark)

    Song, Yipeng; Blaabjerg, Frede

    2016-01-01

    As a popular renewable power generation solution, the Doubly Fed Induction Generator (DFIG) based wind power system may suffer from High Frequency Resonance (HFR) caused by the impedance interaction between the DFIG system and the parallel compensated weak network. A wide frequency band active...... damping strategy for DFIG system HFR, including a high-pass filter and a virtual resistance, is proposed in this paper. The advantages of this active damping strategy are, 1) no resonance frequency detection unit is required, thus the control complexity can be decreased; 2) no active damping parameters...

  15. Effect of metal coating and residual stress on the resonant frequency of MEMS resonators

    Indian Academy of Sciences (India)

    Ashok Kumar Pandey; K P Venkatesh; Rudra Pratap

    2009-08-01

    MEMS resonators are designed for a fixed resonant frequency. Therefore, any shift in the resonant frequency of the final fabricated structure can be a denting factor for its suitability towards a desired application. There are numerous factors which alter the designed resonant frequency of the fabricated resonator such as the metal layer deposited on top of the beam and the residual stresses present in the fabricated structure. While the metal coating, which acts as electrode, increases the stiffness and the effective mass of the composite structure, the residual stress increases or decreases the net stiffness if it is a tensile or compressive type respectively. In this paper, we investigate both these cases by taking two different structures, namely, the micro cantilever beam with gold layer deposited on its top surface and the MEMS gyroscope with residual stresses. First, we carry out experiments to characterize both these structures to find their resonant frequencies. Later, we analytically model those effects and compare them with the experimentally obtained values. Finally, it is found that the analytical models give an error of less than 10% with respect to the experimental results in both the cases.

  16. Band Width of Acoustic Resonance Frequency Relatively Natural Frequency of Fuel Rod Vibration

    Energy Technology Data Exchange (ETDEWEB)

    Proskuryakov, Konstantin Nicolaevich; Moukhine, V.S.; Novikov, K.S.; Galivets, E.Yu. [MPEI - TU, 14, Krasnokazarmennaya str., Moscow, 111250 (Russian Federation)

    2009-06-15

    In flow induced vibrations the fluid flow is the energy source that causes vibration. Acoustic resonance in piping may lead to severe problems due to over-stressing of components or significant losses of efficiency. Steady oscillatory flow in NPP primary loop can be induced by the pulsating flow introduced by reactor circulating pump or may be set up by self-excitation. Dynamic forces generated by the turbulent flow of coolant in reactor cores cause fuel rods (FR) and fuel assembly (FA) to vibrate. Flow-induced FR and FA vibrations can generally be broken into three groups: large amplitude 'resonance type' vibrations, which can cause immediate rod failure or severe damage to the rod and its support structure, middle amplitude 'within bandwidth of resonance frequency type' vibrations responsible for more gradual wear and fatigue at the contact surface between the fuel cladding and rod support and small amplitude vibrations, 'out of bandwidth of resonance frequency type' responsible for permissible wear and fatigue at the contact surface between the fuel cladding and rod support. Ultimately, these vibration types can result in a cladding breach, and therefore must be accounted for in the thermal hydraulic design of FR and FA and reactor internals. In paper the technique of definition of quality factor (Q) of acoustic contour of the coolant is presented. The value of Q defines a range of frequencies of acoustic fluctuations of the coolant within which the resonance of oscillations of the structure and the coolant is realized. Method of evaluation of so called band width (BW) of acoustic resonance frequency is worked out and presented in the paper. BW characterises the range of the frequency of coolant pressure oscillations within which the frequency of coolant pressure oscillations matches the fuel assembly's natural frequency of vibration (its resonance frequency). Paper show the way of detuning acoustic resonance from natural

  17. Resonance frequency shift of strongly heated micro-cantilevers

    CERN Document Server

    Sandoval, Felipe Aguilar; Bertin, Éric; Bellon, Ludovic

    2015-01-01

    In optical detection setups to measure the deflection of micro-cantilevers, part of the sensing light is absorbed, heating the mechanical probe. We present experimental evidences of a frequency shift of the resonant modes of a cantilever when the light power of the optical measurement set-up is increased. This frequency shift is a signature of the temperature rise, and presents a dependence on the mode number. An analytical model is derived to take into account the temperature profile along the cantilever, it shows that the frequency shifts are given by an average of the profile weighted by the local curvature for each resonant mode. We apply this framework to measurements in vacuum and demonstrate that huge temperatures can be reached with moderate light intensities: a thousand {\\textdegree}C with little more than 10 mW. We finally present some insight into the physical phenomena when the cantilever is in air instead of vacuum.

  18. PT -symmetric spectral singularity and negative-frequency resonance

    Science.gov (United States)

    Pendharker, Sarang; Guo, Yu; Khosravi, Farhad; Jacob, Zubin

    2017-03-01

    Vacuum consists of a bath of balanced and symmetric positive- and negative-frequency fluctuations. Media in relative motion or accelerated observers can break this symmetry and preferentially amplify negative-frequency modes as in quantum Cherenkov radiation and Unruh radiation. Here, we show the existence of a universal negative-frequency-momentum mirror symmetry in the relativistic Lorentzian transformation for electromagnetic waves. We show the connection of our discovered symmetry to parity-time (PT ) symmetry in moving media and the resulting spectral singularity in vacuum fluctuation-related effects. We prove that this spectral singularity can occur in the case of two metallic plates in relative motion interacting through positive- and negative-frequency plasmonic fluctuations (negative-frequency resonance). Our work paves the way for understanding the role of PT -symmetric spectral singularities in amplifying fluctuations and motivates the search for PT symmetry in novel photonic systems.

  19. Analytical investigation into the resonance frequencies of a curling probe

    Science.gov (United States)

    Arshadi, Ali; Brinkmann, Ralf Peter

    2016-08-01

    The term ‘active plasma resonance spectroscopy’ (APRS) denotes a class of closely related plasma diagnostic methods which utilize the natural ability of plasmas to resonate on or near the electron plasma frequency {ω\\text{pe}} ; an electrical radio frequency signal (in the GHz range) is coupled into the plasma via an antenna or a probe, the spectral response is recorded and a mathematical model is employed to determine plasma parameters such as the plasma density and the electron temperature. The curling probe, recently invented by Liang et al (2011 Appl. Phys. Express 4 066101), is a novel realization of the APRS concept which has many practical advantages. In particular, it can be miniaturized and flatly embedded into the chamber wall, thus allowing the monitoring of plasma processes without contamination nor disturbance. Physically, the curling probe can be understood as a ‘coiled’ form of the hairpin probe (Stenzel 1976 Rev. Sci. Instrum. 47 603). Assuming that the spiralization of the probe has little electrical effect, this paper investigates the characteristcs of a ‘straightened’ curling probe by modeling it as an infinite slot-type resonator that is in direct contact with the plasma. The diffraction of an incident plane wave at the slot is calculated by solving the cold plasma model and Maxwell’s equations simultaneously. The resonance frequencies of the probe are derived and are found to be in good agreement with the numerical results of the probe inventors.

  20. Internal resonance and low frequency vibration energy harvesting

    Science.gov (United States)

    Yang, Wei; Towfighian, Shahrzad

    2017-09-01

    A nonlinear vibration energy harvester with internal resonance is presented. The proposed harvester consists of two cantilevers, each with a permanent magnet on its tip. One cantilever has a piezoelectric layer at its base. When magnetic force is applied this two degrees-of-freedom nonlinear vibration system shows the internal resonance phenomenon that broadens the frequency bandwidth compared to a linear system. Three coupled partial differential equations are obtained to predict the dynamic behavior of the nonlinear energy harvester. The perturbation method of multiple scales is used to solve equations. Results from experiments done at different vibration levels with varying distances between the magnets validate the mathematical model. Experiments and simulations show the design outperforms the linear system by doubling the frequency bandwidth. Output voltage for frequency response is studied for different system parameters. The optimal load resistance is obtained for the maximum power in the internal resonance case. The results demonstrate that a design combining internal resonance and magnetic nonlinearity improves the efficiency of energy harvesting.

  1. Optical Kerr Frequency Comb Generation in Overmoded Resonators

    CERN Document Server

    Matsko, A B; Liang, W; Ilchenko, V S; Seidel, D; Maleki, L

    2012-01-01

    We show that scattering-based interaction among nearly degenerate optical modes is the key factor in low threshold generation of Kerr frequency combs in nonlinear optical resonators possessing small group velocity dispersion (GVD). The mode interaction is capable of producing drastic change in the local GVD, resulting in either a significant reduction or increase of the oscillation threshold. It is also responsible for the majority of observed combs in resonators characterized with large normal GVD. We present results of our numerical simulations as well as supporting experimental data.

  2. Wide Frequency Band Active Damping Strategy for DFIG System High Frequency Resonance

    DEFF Research Database (Denmark)

    Song, Yipeng; Blaabjerg, Frede

    2016-01-01

    As a popular renewable power generation solution, the Doubly Fed Induction Generator (DFIG) based wind power system may suffer from High Frequency Resonance (HFR) caused by the impedance interaction between the DFIG system and the parallel compensated weak network. A wide frequency band active...... damping strategy for DFIG system HFR, including a high-pass filter and a virtual resistance, is proposed in this paper. The advantages of this active damping strategy are, 1) no resonance frequency detection unit is required, thus the control complexity can be decreased; 2) no active damping parameters...... adjustment is needed within certain wide frequency band, thus the robustness of the proposed active damping strategy can be improved. The parameter design of the high-pass filter cutoff frequency and the virtual resistance are theoretically analyzed with the purpose of satisfactory active damping. A 7.5 k...

  3. Effect of geometry in frequency response modeling of nanomechanical resonators

    Science.gov (United States)

    Esfahani, M. Nasr; Yilmaz, M.; Sonne, M. R.; Hattel, J. H.; Alaca, B. Erdem

    2016-06-01

    The trend towards nanomechanical resonator sensors with increasing sensitivity raises the need to address challenges encountered in the modeling of their mechanical behavior. Selecting the best approach in mechanical response modeling amongst the various potential computational solid mechanics methods is subject to controversy. A guideline for the selection of the appropriate approach for a specific set of geometry and mechanical properties is needed. In this study, geometrical limitations in frequency response modeling of flexural nanomechanical resonators are investigated. Deviation of Euler and Timoshenko beam theories from numerical techniques including finite element modeling and Surface Cauchy-Born technique are studied. The results provide a limit beyond which surface energy contribution dominates the mechanical behavior. Using the Surface Cauchy-Born technique as the reference, a maximum error on the order of 50 % is reported for high-aspect ratio resonators.

  4. Frequency resonance effect of neurons under low-frequency weak magnetic field

    Science.gov (United States)

    Azanza, María J.; del Moral, A.; Pérez Bruzón, R. N.

    2007-03-01

    We report on the frequency resonance effect observed in single neurons of mollusc Helix brain under low-frequency B=1 mT magnetic fields of frequency f M=0.1-80 Hz. The dependence of the firing frequency f with f M decreases as a Lorentzian, centered about the spontaneous, f0 one ("window effect"). An explanation is provided based on the superdiamagnetism and Ca 2+ coulomb explosion model, supplemented by the Ca 2+ kinetics towards the Ca 2+-dependent K + channels, opening them. The Ca 2+ ion diffusion time is obtained.

  5. Effect of resonant-frequency mismatch on attractors.

    Science.gov (United States)

    Wang, Xingang; Lai, Ying-Cheng; Lai, Choy Heng

    2006-06-01

    Resonant perturbations are effective for harnessing nonlinear oscillators for various applications such as controlling chaos and inducing chaos. Of physical interest is the effect of small frequency mismatch on the attractors of the underlying dynamical systems. By utilizing a prototype of nonlinear oscillators, the periodically forced Duffing oscillator and its variant, we find a phenomenon: resonant-frequency mismatch can result in attractors that are nonchaotic but are apparently strange in the sense that they possess a negative Lyapunov exponent but its information dimension measured using finite numerics assumes a fractional value. We call such attractors pseudo-strange. The transition to pesudo-strange attractors as a system parameter changes can be understood analytically by regarding the system as nonstationary and using the Melnikov function. Our results imply that pseudo-strange attractors are common in nonstationary dynamical systems.

  6. Assessment of Stability of Craniofacial Implants by Resonant Frequency Analysis.

    Science.gov (United States)

    Ivanjac, Filip; Konstantinović, Vitomir S; Lazić, Vojkan; Dordević, Igor; Ihde, Stefan

    2016-03-01

    Implant stability is a principal precondition for the success of implant therapy. Extraoral implants (EO) are mainly used for anchoring of maxillofacial epithesis. However, assessment of implant stability is mostly based on principles derived from oral implants. The aim of this study was to investigate clinical stability of EO craniofacial disk implants (single, double, and triple) by resonance frequency analysis at different stages of the bone's healing. Twenty patients with orbital (11), nasal (5), and auricular (4) defects with 50 EO implants placed for epithesis anchorage were included. Implant stability was measured 3 times; after implant placement, at 3 months and at least after 6 months. A significant increase in implant stability values was noted between all of the measurements, except for triple-disk implants between third and sixth months, and screw implants between 0 and third months. Disk implants showed lower implant stability quotient (ISQ) values compared with screw implants. Triple-disk implants showed better stability compared with single and double-disk implants. Based on resonance frequency analysis values, disk implants could be safely loaded when their ISQ values are 38 (single disks), 47 (double disks), and 48 (triple disks). According to resonance frequency analysis, disk implant stability increased over time, which showed good osseointegration and increasing mineralization. Although EO screw implants showed higher ISQ values than disk implants, disk-type implants can be safely loaded even if lower values of stability are measured.

  7. Low-frequency nuclear quadrupole resonance with a dc SQUID

    Energy Technology Data Exchange (ETDEWEB)

    Chang, J.W.

    1991-07-01

    Conventional pure nuclear quadrupole resonance (NQR) is a technique well suited for the study of very large quadrupolar interactions. Numerous nuclear magnetic resonance (NMR) techniques have been developed for the study of smaller quadrupolar interactions. However, there are many nuclei which have quadrupolar interactions of intermediate strength. Quadrupolar interactions in this region have traditionally been difficult or unfeasible to detect. This work describes the development and application of a SQUID NQR technique which is capable of measuring intermediate strength quadrupolar interactions, in the range of a few hundred kilohertz to several megahertz. In this technique, a dc SQUID (Superconducting QUantum Interference Device) is used to monitor the longitudinal sample magnetization, as opposed to the transverse magnetization, as a rf field is swept in frequency. This allows the detection of low-frequency nuclear quadrupole resonances over a very wide frequency range with high sensitivity. The theory of this NQR technique is discussed and a description of the dc SQUID system is given. In the following chapters, the spectrometer is discussed along with its application to the study of samples containing half-odd-integer spin quadrupolar nuclei, in particular boron-11 and aluminum-27. The feasibility of applying this NQR technique in the study of samples containing integer spin nuclei is discussed in the last chapter. 140 refs., 46 figs., 6 tabs.

  8. Low-frequency nuclear quadrupole resonance with a dc SQUID

    Science.gov (United States)

    Chang, J. W.

    1991-07-01

    Conventional pure nuclear quadrupole resonance (NQR) is a technique well suited for the study of very large quadrupolar interactions. Numerous nuclear magnetic resonance (NMR) techniques have been developed for the study of smaller quadrupolar interactions. However, there are many nuclei which have quadrupolar interactions of intermediate strength. Quadrupolar interactions in this region are traditionally difficult or unfeasible to detect. This work describes the development and application of a SQUID NQR technique which is capable of measuring intermediate strength quadrupolar interactions, in the range of a few hundred kilohertz to several megahertz. In this technique, a dc SQUID (Superconducting QUantum Interference Device) is used to monitor the longitudinal sample magnetization, as opposed to the transverse magnetization, as a RF field is swept in frequency. This allows the detection of low-frequency nuclear quadrupole resonances over a very wide frequency range with high sensitivity. The theory of this NQR technique is discussed and a description of the dc SQUID system is given. In the following chapters, the spectrometer is discussed along with its application to the study of samples containing half-odd-integer spin quadrupolar nuclei, in particular boron-11 and aluminum-27. The feasibility of applying this NQR technique in the study of samples containing integer spin nuclei is discussed in the last chapter.

  9. A Novel Tunable Multi-Frequency Hybrid Vibration Energy Harvester Using Piezoelectric and Electromagnetic Conversion Mechanisms

    Directory of Open Access Journals (Sweden)

    Zhenlong Xu

    2016-01-01

    Full Text Available This paper presents a novel tunable multi-frequency hybrid energy harvester (HEH. It consists of a piezoelectric energy harvester (PEH and an electromagnetic energy harvester (EMEH, which are coupled with magnetic interaction. An electromechanical coupling model was developed and numerically simulated. The effects of magnetic force, mass ratio, stiffness ratio, and mechanical damping ratios on the output power were investigated. A prototype was fabricated and characterized by experiments. The measured first peak power increases by 16.7% and 833.3% compared with that of the multi-frequency EMEH and the multi-frequency PEH, respectively. It is 2.36 times more than the combined output power of the linear PEH and linear EMEH at 22.6 Hz. The half-power bandwidth for the first peak power is also broadened. Numerical results agree well with the experimental data. It is indicated that magnetic interaction can tune the resonant frequencies. Both magnetic coupling configuration and hybrid conversion mechanism contribute to enhancing the output power and widening the operation bandwidth. The magnitude and direction of magnetic force have significant effects on the performance of the HEH. This proposed HEH is an effective approach to improve the generating performance of the micro-scale energy harvesting devices in low-frequency range.

  10. Highly tunable hybrid metamaterials employing split-ring resonators strongly coupled to graphene surface plasmons

    Science.gov (United States)

    Liu, Peter Q.; Luxmoore, Isaac J.; Mikhailov, Sergey A.; Savostianova, Nadja A.; Valmorra, Federico; Faist, Jérôme; Nash, Geoffrey R.

    2015-11-01

    Metamaterials and plasmonics are powerful tools for unconventional manipulation and harnessing of light. Metamaterials can be engineered to possess intriguing properties lacking in natural materials, such as negative refractive index. Plasmonics offers capabilities of confining light in subwavelength dimensions and enhancing light-matter interactions. Recently, the technological potential of graphene-based plasmonics has been recognized as the latter features large tunability, higher field-confinement and lower loss compared with metal-based plasmonics. Here, we introduce hybrid structures comprising graphene plasmonic resonators coupled to conventional split-ring resonators, thus demonstrating a type of highly tunable metamaterial, where the interaction between the two resonances reaches the strong-coupling regime. Such hybrid metamaterials are employed as high-speed THz modulators, exhibiting ~60% transmission modulation and operating speed in excess of 40 MHz. This device concept also provides a platform for exploring cavity-enhanced light-matter interactions and optical processes in graphene plasmonic structures for applications including sensing, photo-detection and nonlinear frequency generation.

  11. Nanophotonic hybridization of narrow atomic cesium resonances and photonic stop gaps of opaline nanostructures

    CERN Document Server

    Harding, Philip J; Mosk, Allard P; Vos, Willem L

    2014-01-01

    We study a hybrid system consisting of a narrowband atomic optical resonance and the long-range periodic order of an opaline photonic nanostructure. To this end, we have infiltrated atomic cesium vapor in a thin silica opal photonic crystal. With increasing temperature, the frequencies of the opal's reflectivity peaks shift down by >20% due to chemical reduction of the silica. Simultaneously, the photonic bands and gaps shift relative to the fixed near-infrared cesium D1 transitions. As a result the narrow atomic resonances with high finesse (f/df=8E5) dramatically change shape from a usual dispersive shape at the blue edge of a stop gap, to an inverted dispersion lineshape at the red edge of a stop gap. The lineshape, amplitude, and off-resonance reflectivity are well modeled with a transfer-matrix model that includes the dispersion and absorption of Cs hyperfine transitions and the chemically-reduced opal. An ensemble of atoms in a photonic crystal is an intriguing hybrid system that features narrow defect-...

  12. Highly tunable hybrid metamaterials employing split-ring resonators strongly coupled to graphene surface plasmons.

    Science.gov (United States)

    Liu, Peter Q; Luxmoore, Isaac J; Mikhailov, Sergey A; Savostianova, Nadja A; Valmorra, Federico; Faist, Jérôme; Nash, Geoffrey R

    2015-11-20

    Metamaterials and plasmonics are powerful tools for unconventional manipulation and harnessing of light. Metamaterials can be engineered to possess intriguing properties lacking in natural materials, such as negative refractive index. Plasmonics offers capabilities of confining light in subwavelength dimensions and enhancing light-matter interactions. Recently, the technological potential of graphene-based plasmonics has been recognized as the latter features large tunability, higher field-confinement and lower loss compared with metal-based plasmonics. Here, we introduce hybrid structures comprising graphene plasmonic resonators coupled to conventional split-ring resonators, thus demonstrating a type of highly tunable metamaterial, where the interaction between the two resonances reaches the strong-coupling regime. Such hybrid metamaterials are employed as high-speed THz modulators, exhibiting ∼60% transmission modulation and operating speed in excess of 40 MHz. This device concept also provides a platform for exploring cavity-enhanced light-matter interactions and optical processes in graphene plasmonic structures for applications including sensing, photo-detection and nonlinear frequency generation.

  13. Effect of off-frequency sampling in magnetic resonance elastography.

    Science.gov (United States)

    Johnson, Curtis L; Chen, Danchin D; Olivero, William C; Sutton, Bradley P; Georgiadis, John G

    2012-02-01

    In magnetic resonance elastography (MRE), shear waves at a certain frequency are encoded through bipolar gradients that switch polarity at a controlled encoding frequency and are offset in time to capture wave propagation using a controlled sampling frequency. In brain MRE, there is a possibility that the mechanical actuation frequency is different from the vibration frequency, leading to a mismatch with encoding and sampling frequencies. This mismatch can occur in brain MRE from causes both extrinsic and intrinsic to the brain, such as scanner bed vibrations or active damping in the head. The purpose of this work was to investigate how frequency mismatch can affect MRE shear stiffness measurements. Experiments were performed on a dual-medium agarose gel phantom, and the results were compared with numerical simulations to quantify these effects. It is known that off-frequency encoding alone results in a scaling of wave amplitude, and it is shown here that off-frequency sampling can result in two main effects: (1) errors in the overall shear stiffness estimate of the material on the global scale and (2) local variations appearing as stiffer and softer structures in the material. For small differences in frequency, it was found that measured global stiffness of the brain could theoretically vary by up to 12.5% relative to actual stiffness with local variations of up to 3.7% of the mean stiffness. It was demonstrated that performing MRE experiments at a frequency other than that of tissue vibration can lead to artifacts in the MRE stiffness images, and this mismatch could explain some of the large-scale scatter of stiffness data or lack of repeatability reported in the brain MRE literature.

  14. A Compact Wide-Band Hybrid Dielectric Resonator Antenna with Enhanced Gain and Low Cross-Polarization

    Directory of Open Access Journals (Sweden)

    Feibiao Dong

    2017-01-01

    Full Text Available By loading two printed patches to the dielectric resonator antenna (DRA, a compact wide-band hybrid dielectric resonator antenna with enhanced gain and low cross-polarization is presented. The proposed antenna utilizes a combination of a rectangular dielectric resonator and two printed patches. Due to the hybrid design, multiple resonances were obtained. By adding two air layers between the dielectric resonator and the printed patches, the bandwidth has been significantly improved. Compared to the traditional hybrid dielectric resonator antenna, the proposed antenna can achieve wide bandwidth, high gain, low cross-polarization, and even small size simultaneously. The prototype of the proposed antenna has been fabricated and tested. The measured −10 dB return loss bandwidth is 25.6% (1.7–2.2 GHz. The measured antenna gains are about 6.3 and 8.2 dBi in the operating frequency band. Low cross-polarization levels of less than −28.5 dB and −43 dB in the E-plane and H-plane are achieved. Moreover, the overall dimensions of the antenna are only 67 × 67 × 34 (mm3. The proposed antenna is especially attractive for small base antenna applications.

  15. Full investigation of the resonant frequency servo loop for resonator fiber-optic gyro.

    Science.gov (United States)

    Ma, Huilian; Lu, Xiao; Yao, Linzhi; Yu, Xuhui; Jin, Zhonghe

    2012-07-20

    Resonator fiber-optic gyro (RFOG) is a high-accuracy inertial rotation sensor based on the Sagnac effect. A high-accuracy resonant frequency servo loop is indispensable for a high-performance RFOG. It is composed of a frequency discriminator, a loop filter, and a laser actuator. Influences of the loop parameters are fully developed. Optimized loop parameters are obtained by considering the noise reduction and wide dynamic performance of the RFOG. As a result, with the integration time of 10 s, the accuracy of the resonant frequency loop is increased to 0.02 Hz (1σ). It is equivalent to a rotation rate of 0.067°/h, which is close to the shot noise limit for the RFOG, while a minimum rotation of ±0.05°/s has been carried out simultaneously. These are the best results reported to date, to the best of our knowledge, for an RFOG using the miniature semiconductor laser that benefits from the optimization of the resonant frequency servo-loop parameters.

  16. Operation States Analysis of the Series-Parallel resonant Converter Working Above Resonance Frequency

    Directory of Open Access Journals (Sweden)

    Jaroslav Durdik

    2007-01-01

    Full Text Available Operation states analysis of a series-parallel converter working above resonance frequency is described in the paper. Principal equations are derived for individual operation states. On the basis of them the diagrams are made out. The diagrams give the complex image of the converter behaviour for individual circuit parameters. The waveforms may be utilised at designing the inverter individual parts.

  17. A study of trapped mode resonances in asymmetric X-shape resonator for frequency selective surface

    Science.gov (United States)

    Chen, Kejian; Liu, Hong; Wang, Yiqi; Zhu, Yiming

    2013-08-01

    FSS is a two-dimensional periodic array of resonating metallic-dielectric structures, When FSS device steps into Terahertz range from microwave range, it is studied as THz functional components (such as Terahertz filter, Terahertz biochemical sensor, etc.) to promote the functionality of the THz spectroscopy/imaging system. When the device requires a narrow band transmission window for frequency selecting or a high electric field concentration in certain area to improve its sensitivity for sensing, normally, a high quality (Q) resonant structure can give helps. Recently, high-Q resonance induced by trapped mode resonance i studied widely in FSS research areas. To induce trapped mode resonance, one can simply break the symmetric of the unit structure of FSS. In this paper, several asymmetric X-shaped resonators for FSS working in terahertz range have been studied numerically. To compare the behaviour of X-shape resonator under different conditions (with additional part: Heart lines, Shoulder lines, Wrap or Shoes squares), a common platform (θ=60, θis angle of X shape) which is suitable for most of cases was used to make the study more meaningful. As the field enhancement behaviour is related to the trapped mode introduced by the asymmetric structure, we propose such kind of device to be used as a high quality filter or as a sensing element for biochemical samples.

  18. Hybrid polaritons in a resonant inorganic/organic semiconductor microcavity

    Energy Technology Data Exchange (ETDEWEB)

    Höfner, M., E-mail: mhoefner@physik.hu-berlin.de; Sadofev, S.; Henneberger, F. [Institut für Physik, Humboldt-Universität zu Berlin, Newtonstr.15, 12489 Berlin (Germany); Kobin, B.; Hecht, S. [Institut für Chemie, Humboldt-Universität zu Berlin, Brook-Taylor-Str. 2, 12489 Berlin (Germany)

    2015-11-02

    We demonstrated the strong coupling regime in a hybrid inorganic-organic microcavity consisting of (Zn,Mg)O quantum wells and ladder-type oligo(p-phenylene) molecules embedded in a polymer matrix. A Fabry-Pérot cavity is formed by an epitaxially grown lower ZnMgO Bragg reflector and a dielectric mirror deposited atop of the organic layer. A clear anticrossing behavior of the polariton branches related to the Wannier-Mott and Frenkel excitons, and the cavity photon mode with a Rabi-splitting reaching 50 meV, is clearly identified by angular-dependent reflectivity measurements at low temperature. By tailoring the structural design, an equal mixing with weights of about 0.3 for all three resonances is achieved for the middle polariton branch at an incidence angle of about 35°.

  19. Effects of hybrid synapses on the vibrational resonance in small-world neuronal networks.

    Science.gov (United States)

    Yu, Haitao; Wang, Jiang; Sun, Jianbing; Yu, Haifeng

    2012-09-01

    We investigate the effect of vibrational resonance in small-world neuronal networks with hybrid chemical and electrical synapses. It is shown that, irrespective of the probability of chemical synapses, an optimal amplitude of high-frequency component of the signal can optimize the dynamical response of neuron populations to the low-frequency component, which encodes the information. This effect of vibrational resonance of neuronal systems depends extensively on the network structure and parameters, which determine the ability of neuronal networks to enhance the outreach of localized subthreshold low-frequency signal. In particular, chemical synaptic coupling is more efficient than the electrical coupling for the transmission of local input signal due to its selective coupling. Moreover, there exists an optimal small-world topology characterized by an optimal value of rewiring probability, warranting the largest peak value of the system response. Considering that two-frequency signals are ubiquity in brain dynamics, we expect the presented results could have important implications for signal processing in neuronal systems.

  20. Manipulating Fano resonance via fs-laser melting of hybrid oligomers at nanoscale

    Science.gov (United States)

    Lepeshov, S. I.; Zuev, D. A.; Makarov, S. V.; Milichko, V. A.; Mukhin, I. S.; Krasnok, A. E.; Belov, P. A.

    2016-08-01

    Here, the novel concept of asymmetric metal-dielectric (hybrid) nanoparticles is proposed. The experimental data and the results of numerical simulation of the optical properties of hybrid nanostructures are presented. The change of their optical response after fs- laser modification is shown. The possibility of manipulating Fano resonance in hybrid oligomers by the gold nanoparticles reshaping is demonstrated.

  1. Radio Frequency Interference Suppression for Landmine Detection by Quadrupole Resonance

    Directory of Open Access Journals (Sweden)

    Liu Guoqing

    2006-01-01

    Full Text Available The quadrupole resonance (QR technology can be used as a confirming sensor for buried plastic landmine detection by detecting the explosives within the mine. We focus herein on the detection of TNT mines via the QR sensor. Since the frequency of the QR signal is located within the AM radio frequency band, the QR signal can be corrupted by strong radio frequency interferences (RFIs. Hence to detect the very weak QR signal, RFI mitigation is essential. Reference antennas, which receive RFIs only, can be used together with the main antenna, which receives both the QR signal and the RFIs, for RFI mitigation. The RFIs are usually colored both spatially and temporally, and hence exploiting only the spatial diversity of the antenna array may not give the best performance. We exploit herein both the spatial and temporal correlations of the RFIs to improve the TNT detection performance.

  2. Hybrid circuit cavity quantum electrodynamics with a micromechanical resonator.

    Science.gov (United States)

    Pirkkalainen, J-M; Cho, S U; Li, Jian; Paraoanu, G S; Hakonen, P J; Sillanpää, M A

    2013-02-14

    Hybrid quantum systems with inherently distinct degrees of freedom have a key role in many physical phenomena. Well-known examples include cavity quantum electrodynamics, trapped ions, and electrons and phonons in the solid state. In those systems, strong coupling makes the constituents lose their individual character and form dressed states, which represent a collective form of dynamics. As well as having fundamental importance, hybrid systems also have practical applications, notably in the emerging field of quantum information control. A promising approach is to combine long-lived atomic states with the accessible electrical degrees of freedom in superconducting cavities and quantum bits (qubits). Here we integrate circuit cavity quantum electrodynamics with phonons. Apart from coupling to a microwave cavity, our superconducting transmon qubit, consisting of tunnel junctions and a capacitor, interacts with a phonon mode in a micromechanical resonator, and thus acts like an atom coupled to two different cavities. We measure the phonon Stark shift, as well as the splitting of the qubit spectral line into motional sidebands, which feature transitions between the dressed electromechanical states. In the time domain, we observe coherent conversion of qubit excitation to phonons as sideband Rabi oscillations. This is a model system with potential for a quantum interface, which may allow for storage of quantum information in long-lived phonon states, coupling to optical photons or for investigations of strongly coupled quantum systems near the classical limit.

  3. Hybridized exciton-polariton resonances in core-shell nanoparticles

    CERN Document Server

    Gentile, Martin J

    2016-01-01

    The goal of nanophotonics is to control and manipulate light at length scales below the diffraction limit. Typically nanostructured metals are used for this purpose, light being confined by exploiting the surface plasmon-polaritons such structures support. Recently excitonic (molecular) materials have been identified as an alternative candidate material for nanophotonics. Here we use theoretical modelling to explore how hybridisation of surface exciton-polaritons can be achieved through appropriate nanostructuring. We focus on the extent to which the frequency of the hybridised modes can be shifted with respect to the underlying material resonances.

  4. Whispering gallery mode resonators for frequency metrology applications

    Science.gov (United States)

    Baumgartel, Lukas

    This dissertation describes an investigation into the use of whispering gallery mode (WGM) resonators for applications towards frequency reference and metrology. Laser stabilization and the measurement of optical frequencies have enabled myriad technologies of both academic and commercial interest. A technology which seems to span both motivations is optical atomic clocks. These devices are virtually unimaginable without the ultra stable lasers plus frequency measurement and down-conversion afforded by Fabry Perot (FP) cavities and model-locked laser combs, respectively. However, WGM resonators can potentially perform both of these tasks while having the distinct advantages of compactness and simplicity. This work represents progress towards understanding and mitigating the performance limitations of WGM cavities for such applications. A system for laser frequency stabilization to a the cavity via the Pound-Drever-Hall (PDH) method is described. While the laser lock itself is found to perform at the level of several parts in 1015, a variety of fundamental and technical mechanisms destabilize the WGM frequency itself. Owing to the relatively large thermal expansion coefficients in optical crystals, environmental temperature drifts set the stability limit at time scales greater than the thermal relaxation time of the crystal. Uncompensated, these drifts pull WGM frequencies about 3 orders of magnitude more than they would in an FP cavity. Thus, two temperature compensation schemes are developed. An active scheme measures and stabilizes the mode volume temperature to the level of several nK, reducing the effective temperature coefficient of the resonator to 1.7x10-7 K-1; simulations suggest that the value could eventually be as low as 3.5x10-8 K-1, on par with the aforementioned FP cavities. A second, passive scheme is also described, which employs a heterogeneous resonator structure that capitalizes on the thermo-mechanical properties of one material and the optical

  5. Residual stress and electromagnetic characteristics in loop type frequency selective surface embedded hybrid structures

    Energy Technology Data Exchange (ETDEWEB)

    Park, Kyung Mi; Seo, Yun Seok; Chun, Heoung Jae [Yonsei University, Seoul (Korea, Republic of); Hong, Ik Pyo [Kongju National University, Cheonan (Korea, Republic of); Park, Yong Bae [Ajoo University, Suwon (Korea, Republic of); Kim, Yoon Jae [Agency for defense development, Daejeon (Korea, Republic of)

    2015-01-15

    Residual stresses occur in frequency-selective surface (FSS)-embedded composite structures after co-curing due to differences between the coefficients of thermal expansion between composite skins and FSSs. Furthermore, the electromagnetic characteristics may be affected by the deformation of the FSS pattern by residual stresses. Therefore, we studied the changes in electromagnetic characteristics due to the deformation of FSS, using residual stresses to deform loop-type FSS-embedded hybrid composites. We considered the effects of loop-type FSS patterns of equal dimension as well as the stacking sequences of composite laminates on the electromagnetic characteristics of FSSs: Square loop, triangular loop and circular loop. The stacking sequences of composite laminates considered in this study were [0]{sub 8}, [0/90]{sub 4}, [+-45]{sub 4} and [0/+-45/90]{sub 2}. The FSS was located between composite laminates in the middle plane. To determine the residual stresses and deformations in the FSS embedded laminate structures, the thermal loading condition in the finite element analysis was induced by cooling the hybrid structures from 125 .deg. C to 20 .deg. C based on the cure cycle of the composite. Also, the electromagnetic reflection characteristics of the hybrid structures were predicted using deformed models by residual stresses, considering the effects of stacking sequence of composite laminates. The results showed that the maximum residual stresses and deformations were produced in the [0]{sub 8} composites with all three loop-types of FSS pattern. However, the maximum resonance frequency shifts occurred in the square and triangle loop-types with stacking sequence of [0]{sub 8} , while the maximum resonance frequency shift occurred in the circular loop-type with stacking sequence of [0/+-45/90]{sub 2}.

  6. Double Resonant Topology for 72V Battery Charger used in a Hybrid Electric Locomotive - Study and Experimental Validation

    OpenAIRE

    BUTTERBACH, S; DE-BERNARDINIS, A; Lallemand, R; Coquery, G.; JEUNESSE, A; EVAIN, Y; AUBIN, PH

    2010-01-01

    This work deals with the study, adaptation and experimental validation of a 9kW lead-acid battery charger used to feed the 72VDC bus inside the hybrid electric locomotive demonstrator in the frame of the French research project PLATHEE. The topology of the charger is based on a high frequency double resonant series-parallel circuit which allows soft switching, losses minimization, reduction of passive component weight and facilitates system integration. Specific charging and floating modes we...

  7. Resonance Frequency of Optical Microbubble Resonators: Direct Measurements and Mitigation of Fluctuations

    Science.gov (United States)

    Cosci, Alessandro; Berneschi, Simone; Giannetti, Ambra; Farnesi, Daniele; Cosi, Franco; Baldini, Francesco; Nunzi Conti, Gualtiero; Soria, Silvia; Barucci, Andrea; Righini, Giancarlo; Pelli, Stefano

    2016-01-01

    This work shows the improvements in the sensing capabilities and precision of an Optical Microbubble Resonator due to the introduction of an encaging poly(methyl methacrylate) (PMMA) box. A frequency fluctuation parameter σ was defined as a score of resonance stability and was evaluated in the presence and absence of the encaging system and in the case of air- or water-filling of the cavity. Furthermore, the noise interference introduced by the peristaltic and the syringe pumping system was studied. The measurements showed a reduction of σ in the presence of the encaging PMMA box and when the syringe pump was used as flowing system. PMID:27589761

  8. Lower hybrid wave resonance cone detection via CO/sub 2/ laser scattering

    Energy Technology Data Exchange (ETDEWEB)

    Wurden, G.A.; Wong, K.L.; Ono, M.

    1984-04-01

    Lower hybrid waves are studied in the Princeton ACT-I steady-state toroidal plasma device using a radially scanning CO/sub 2/ laser scattering system with both amplitude and phase sensitive detection techniques. Clearly defined resonance cones launched from external electrostatic antennas are seen to disappear as the plasma density is raised. Scaling of LHW laser signal with RF power in the presence of resonance cones shows nonlinearities associated with RF induced changes in the effective laser scattering volume. Absolute fluctuation level estimates suggest this occurs when e PHI/T/sub e/ greater than or equal to 1. Wavefront curvature effects can cause a complete loss of resonance cone laser signals, even though probes indicate that cones are still present. Measurements of the wave k/sub perpendicular/-spectrum in the plasma show direct evidence for electron Landau filtering of the original wave k/sub parallel/-spectrum launched from the antenna at the plasma edge, and strong dependence on antenna phasing. Finally, frequency shifts and loss of the resonance cone signal are associated with high levels of plasma density edge turbulence.

  9. A time domain based method for the accurate measurement of Q-factor and resonance frequency of microwave resonators

    Energy Technology Data Exchange (ETDEWEB)

    Gyüre, B.; Márkus, B. G.; Bernáth, B.; Simon, F., E-mail: ferenc.simon@univie.ac.at [Department of Physics, Budapest University of Technology and Economics and MTA-BME Lendület Spintronics Research Group (PROSPIN), P.O. Box 91, H-1521 Budapest (Hungary); Murányi, F. [Foundation for Research on Information Technologies in Society (IT’IS), Zeughausstrasse 43, 8004 Zurich (Switzerland)

    2015-09-15

    We present a novel method to determine the resonant frequency and quality factor of microwave resonators which is faster, more stable, and conceptually simpler than the yet existing techniques. The microwave resonator is pumped with the microwave radiation at a frequency away from its resonance. It then emits an exponentially decaying radiation at its eigen-frequency when the excitation is rapidly switched off. The emitted microwave signal is down-converted with a microwave mixer, digitized, and its Fourier transformation (FT) directly yields the resonance curve in a single shot. Being a FT based method, this technique possesses the Fellgett (multiplex) and Connes (accuracy) advantages and it conceptually mimics that of pulsed nuclear magnetic resonance. We also establish a novel benchmark to compare accuracy of the different approaches of microwave resonator measurements. This shows that the present method has similar accuracy to the existing ones, which are based on sweeping or modulating the frequency of the microwave radiation.

  10. Long-wave approximation for hybridization modeling of local surface plasmonic resonance in nanoshells.

    Science.gov (United States)

    Li, Ben Q; Liu, Changhong

    2011-01-15

    A hybridization model for the localized surface plasmon resonance of a nanoshell is developed within the framework of long-wave approximation. Compared with the existing hybridization model derived from the hydrodynamic simulation of free electron gas, this approach is much simpler and gives identical results for a concentric nanoshell. Also, with this approach, the limitations associated with the original hybridization model are succinctly stated. Extension of this approach to hybridization modeling of more complicated structures such as multiplayered nanoshells is straightforward.

  11. Optical sum-frequency generation in whispering gallery mode resonators

    CERN Document Server

    Strekalov, Dmitry V; Huang, Yu-Ping; Kumar, Prem

    2013-01-01

    We demonstrate sum-frequency generation in a nonlinear whispering gallery mode resonator between a telecom wavelength and the Rb D2 line, achieved through natural phase matching. Due to the strong optical field confinement and ultra high Q of the cavity, we achieve a 1000-fold enhancement in the conversion efficiency compared to existing waveguide-based devices. The experimental data are in agreement with the nonlinear dynamics and phase matching theory in the spherical geometry employed. The experimental and theoretical results point to a new platform to manipulate the color and quantum states of light waves toward applications such as atomic memory based quantum networking and logic operations with optical signals.

  12. RF MEMS Fractal Capacitors With High Self-Resonant Frequencies

    KAUST Repository

    Elshurafa, Amro M.

    2012-07-23

    This letter demonstrates RF microelectromechanical systems (MEMS) fractal capacitors possessing the highest reported self-resonant frequencies (SRFs) in PolyMUMPS to date. Explicitly, measurement results show SRFs beyond 20 GHz. Furthermore, quality factors higher than 4 throughout a band of 1-15 GHz and reaching as high as 28 were achieved. Additional benefits that are readily attainable from implementing fractal capacitors in MEMS are discussed, including suppressing residual stress warping, eliminating the need for etching holes, and reducing parasitics. The latter benefits were acquired without any fabrication intervention. © 2011 IEEE.

  13. Instantaneous frequency measurement of dissipative soliton resonant light pulses.

    Science.gov (United States)

    Cuadrado-Laborde, C; Armas-Rivera, I; Carrascosa, A; Kuzin, E A; Beltrán-Pérez, G; Díez, A; Andrés, M V

    2016-12-15

    We measured the instantaneous frequency profile of two different dissipative soliton resonant (DSR) light pulses, the usual flat-top and less-common trapezoid-shaped light pulses. The DSR light pulses were provided by an ytterbium-doped polarization-maintaining fiber ring passively mode-locked laser using the adequately selected amount of net-normal dispersion. We confirmed that the DSR light pulses have a (moderately) low linear chirp across the pulse, except at the edges, where the chirp changes exponentially. This unique instantaneous frequency behavior can be succinctly resumed by the following parameters: linear chirp slope and leading and trailing chirp lifetimes. As the pump power increases, the linear chirp slope decreases, whereas the leading and trailing chirp lifetimes do not show an appreciable change. The results are compared with previous theoretical works.

  14. Frequency locking in hair cells: Distinguishing between distinct resonant mechanisms

    CERN Document Server

    Edri, Yuval; Yochelis, Arik

    2016-01-01

    The auditory system displays remarkable mechanical sensitivity and frequency discrimination. These attributes have been shown to rely on an amplification process, which requires biochemical feedback loops. In some systems, the active process was shown to lead to spontaneous oscillations of hair cell bundles. In the last decade, models that display proximity to an oscillatory onset (a.k.a. Hopf bifurcation) have gained increasing support due to many advantages in explaining the hearing phenomenology. Particularly, they exhibit resonant responses to distinct frequencies of incoming sound waves. Unlike previous studies, two types of driving forces are being examined: additive, in which the external forcing term does not couple directly on the systems observable (passive coupling), and parametric, in which the forcing term directly affects the observable and thus intrinsically modifies the systems properties (active coupling). By applying universal principles near the Hopf bifurcation onset, we find several funda...

  15. Direct measurement of recombination frequency in interspecific hybrids between Hordeum vulgare and H. bulbosum using genomic in situ hybridization.

    Science.gov (United States)

    Zhang, L; Pickering, R; Murray, B

    1999-09-01

    Two different genotypes of diploid Hordeum vulgare x H. bulbosum hybrids, which differ in their pattern of meiotic metaphase pairing behaviour, were investigated at MI and AI by genomic in situ hybridization (GISH). One hybrid, 102C2, showed a high frequency of bivalents at metaphase I whereas the other, 103K5, showed a high frequency of univalents. The GISH analysis of both hybrids established that pairing occurred only between chromosomes of different parental genomes and revealed that pairing frequency greatly exceeded recombination. Hybrid 102C2 had a significantly higher recombination frequency than 103K5, but in both hybrids recombination involved only distal chromosome regions. However, an interesting finding is that the ratio of recombination to pairing frequency in 103K5 (1:8.9) is twice as high compared with 102C2 (1:17). The hybrids also differed in chromosome stability; little chromosome elimination occurred in 102C2 but 103K5 showed extensive chromosome loss. It appears that the high frequency of bound arms at MI favours retention of H. bulbosum chromosomes and maintains stability of chromosome numbers in PMCs. Various ideas are put forward to explain the discrepancy between meiotic pairing frequency and recombination in these hybrids.

  16. Dissimilar trend of nonlinearity in ultrasound transducers and systems at resonance and non-resonance frequencies

    DEFF Research Database (Denmark)

    Ghasemi, Negareh; Zare, Firuz; Davari, Pooya

    2017-01-01

    Several factors can affect performance of an ultrasound system such as quality of excitation signal and ultrasound transducer behaviour. Nonlinearity of piezoelectric ultrasound transducers is a key determinant in designing a proper driving power supply. Although, the nonlinearity of piezoelectri...... receiver is a function of a voltage across the resistor in the RLC branches and is related to the resonance frequencies of the ultrasound transducer....

  17. Resonant UPS topologies for the emerging hybrid fiber coaxial networks

    Energy Technology Data Exchange (ETDEWEB)

    Pinheiro, H.

    1999-07-01

    Uninterruptible power systems (UPS)are essential to the operation of critical equipment such as life-support systems, computers and telecommunications systems. Ideally, UPS topologies, especially for the emerging hybrid fiber-coaxial networks, must be characterized by relatively small size, high input power factor and trapezoidal waveforms. None of the existing topologies meet all these requirements. Consequently, the objective of this study is to design and analyse UPS topologies that meet these requirements. To meet this objective novel UPS topologies and control techniques are proposed to allow operation of high switching frequencies without penalizing converter efficiency. A self-sustained oscillation control method is proposed to ensure soft switching under all operating conditions.

  18. Frequency resonance effect of neurons under low-frequency weak magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Azanza, Maria J. [Laboratorio de Magnetobiologia, Facultad de Medicina, Universidad de Zaragoza, 50009 Zaragoza (Spain)]. E-mail: mjazanza@unizar.es; Moral, A. del [Laboratorio de Magnetismo de Solidos, DFMC and ICMA, Universidad de Zaragoza and CSIC, 50009 Zaragoza (Spain); Perez Bruzon, R.N. [Laboratorio de Magnetobiologia, Facultad de Medicina, Universidad de Zaragoza, 50009 Zaragoza (Spain)

    2007-03-15

    We report on the frequency resonance effect observed in single neurons of mollusc Helix brain under low-frequency B=1 mT magnetic fields of frequency f{sub M} =0.1-80 Hz. The dependence of the firing frequency f with f{sub M} decreases as a Lorentzian, centered about the spontaneous, f {sub 0} one ('window effect'). An explanation is provided based on the superdiamagnetism and Ca{sup 2+} coulomb explosion model, supplemented by the Ca{sup 2+} kinetics towards the Ca{sup 2+}-dependent K{sup +} channels, opening them. The Ca{sup 2+} ion diffusion time is obtained.

  19. Ultracompact resonator with high quality-factor based on a hybrid grating structure

    DEFF Research Database (Denmark)

    Taghizadeh, Alireza; Mørk, Jesper; Chung, Il-Sug

    2015-01-01

    We numerically investigate the properties of a hybrid grating structure acting as a resonator with ultrahigh quality factor. This reveals that the physical mechanism responsible for the resonance is quite different from the conventional guided mode resonance (GMR). The hybrid grating consists...... of a subwavelength grating layer and an un-patterned high-refractive-index cap layer, being surrounded by low index materials. Since the cap layer may include a gain region, an ultracompact laser can be realized based on the hybrid grating resonator, featuring many advantages over high-contrast-grating resonator...... lasers. The effect of fabrication errors and finite size of the structure is investigated to understand the feasibility of fabricating the proposed resonator....

  20. Resonant-frequency discharge in a multi-cell radio frequency cavity

    Energy Technology Data Exchange (ETDEWEB)

    Popovic, S; Upadhyay, J; Mammosser, J; Nikolic, M; Vuskovic, L

    2014-11-07

    We are reporting experimental results on microwave discharge operating at resonant frequency in a multi-cell radio frequency (RF) accelerator cavity. Although the discharge operated at room temperature, the setup was constructed so that it could be used for plasma generation and processing in fully assembled active superconducting radio-frequency (SRF) cryomodule (in situ operation). This discharge offers an efficient mechanism for removal of a variety of contaminants, organic or oxide layers, and residual particulates from the interior surface of RF cavities through the interaction of plasma-generated radicals with the cavity walls. We describe resonant RF breakdown conditions and address the problems related to generation and sustaining the multi-cell cavity plasma, which are breakdown and resonant detuning. We have determined breakdown conditions in the cavity, which was acting as a plasma vessel with distorted cylindrical geometry. We discuss the spectroscopic data taken during plasma removal of contaminants and use them to evaluate plasma parameters, characterize the process, and estimate the volatile contaminant product removal.

  1. Resonant-frequency discharge in a multi-cell radio frequency cavity

    Energy Technology Data Exchange (ETDEWEB)

    Popovic, S; Upadhyay, J; Mammosser, J; Nikolic, M; Vuskovic, L

    2014-11-07

    We are reporting experimental results on microwave discharge operating at resonant frequency in a multi-cell radio frequency (RF) accelerator cavity. Although the discharge operated at room temperature, the setup was constructed so that it could be used for plasma generation and processing in fully assembled active superconducting radio-frequency (SRF) cryomodule (in situ operation). This discharge offers an efficient mechanism for removal of a variety of contaminants, organic or oxide layers, and residual particulates from the interior surface of RF cavities through the interaction of plasma-generated radicals with the cavity walls. We describe resonant RF breakdown conditions and address the problems related to generation and sustaining the multi-cell cavity plasma, which are breakdown and resonant detuning. We have determined breakdown conditions in the cavity, which was acting as a plasma vessel with distorted cylindrical geometry. We discuss the spectroscopic data taken during plasma removal of contaminants and use them to evaluate plasma parameters, characterize the process, and estimate the volatile contaminant product removal.

  2. Frequency Shifts of Micro and Nano Cantilever Beam Resonators Due to Added Masses

    KAUST Repository

    Bouchaala, Adam M.

    2016-03-21

    We present analytical and numerical techniques to accurately calculate the shifts in the natural frequencies of electrically actuated micro and nano (carbon nanotubes (CNTs)) cantilever beams implemented as resonant sensors for mass detection of biological entities, particularly Escherichia coli (E. coli) and prostate specific antigen (PSA) cells. The beams are modeled as Euler-Bernoulli beams, including the nonlinear electrostatic forces and the added biological cells, which are modeled as discrete point masses. The frequency shifts due to the added masses of the cells are calculated for the fundamental and higher-order modes of vibrations. Analytical expressions of the natural frequency shifts under a direct current (DC) voltage and an added mass have been developed using perturbation techniques and the Galerkin approximation. Numerical techniques are also used to calculate the frequency shifts and compared with the analytical technique. We found that a hybrid approach that relies on the analytical perturbation expression and the Galerkin procedure for calculating accurately the static behavior presents the most computationally efficient approach. We found that using higher-order modes of vibration of micro-electro-mechanical-system (MEMS) beams or miniaturizing the sizes of the beams to nanoscale leads to significant improved frequency shifts, and thus increased sensitivities. © 2016 by ASME.

  3. Theoretical analyses of resonant frequency shift in anomalous dispersion enhanced resonant optical gyroscopes

    Science.gov (United States)

    Lin, Jian; Liu, Jiaming; Zhang, Hao; Li, Wenxiu; Zhao, Lu; Jin, Junjie; Huang, Anping; Zhang, Xiaofu; Xiao, Zhisong

    2016-12-01

    Rigorous expressions of resonant frequency shift (RFS) in anomalous dispersion enhanced resonant optical gyroscopes (ADEROGs) are deduced without making approximation, which provides a precise theoretical guidance to achieve ultra-sensitive ADEROGs. A refractive index related modification factor is introduced when considering special theory of relativity (STR). We demonstrate that the RFS will not be ”infinitely large” by using critical anomalous dispersion (CAD) and negative modification does not exist, which make the mechanism of anomalous dispersion enhancement clear and coherent. Although step change of RFS will happen when the anomalous dispersion condition varies, the amplification of RFS is limited by attainable variation of refractive index in practice. Moreover, it is shown that the properties of anomalous dispersion will influence not only the amplification of RFS, but also the detection range of ADEROGs.

  4. High frequency nano-optomechanical disk resonators in liquids

    CERN Document Server

    Gil-Santos, E; Nguyen, D T; Hease, W; Lemaître, A; Ducci, S; Leo, G; Favero, I

    2015-01-01

    Vibrating nano- and micromechanical resonators have been the subject of research aiming at ultrasensitive mass sensors for mass spectrometry, chemical analysis and biomedical diagnosis. Unfortunately, their merits diminish dramatically in liquids due to dissipative mechanisms like viscosity and acoustic losses. A push towards faster and lighter miniaturized nanodevices would enable improved performances, provided dissipation was controlled and novel techniques were available to efficiently drive and read-out their minute displacement. Here we report on a nano-optomechanical approach to this problem using miniature semiconductor disks. These devices combine mechanical motion at high frequency above the GHz, ultra-low mass of a few picograms, and moderate dissipation in liquids. We show that high-sensitivity optical measurements allow to direct resolve their thermally driven Brownian vibrations, even in the most dissipative liquids. Thanks to this novel technique, we experimentally, numerically and analytically...

  5. Investigation on driving characteristics of a piezoelectric stick–slip actuator based on resonant/off-resonant hybrid excitation

    Science.gov (United States)

    Cheng, Tinghai; Li, Hengyu; He, Meng; Zhao, Hongwei; Lu, Xiaohui; Gao, Haibo

    2017-03-01

    A resonant/off-resonant hybrid excitation of a piezoelectric stick–slip actuator is proposed in this paper. It is accomplished by a resonant sinusoidal friction regulation wave (RSFR-wave) and an off-resonant saw-tooth wave (ORST-wave). The RSFR-wave is applied to the rapid deformation stage of the ORST-wave. In this stage, the first-order longitudinal vibration mode of the stator can be obtained. By this longitudinal vibration mode, the kinetic friction between the slider and frictional rod is obviously decreased utilizing ultrasonic friction reduction. The backward displacement is remarkably restrained. The high velocity, large mass of load and smooth displacement are achieved. The operation principle of hybrid excitation was discussed in detail, and a prototype was simulated, designed, and fabricated. A series of experiments were carried out and the results indicate that the step efficiency under the saw-tooth excitation and resonant/off-resonant hybrid excitation can realize 36.9% and 91.2%, respectively. The output velocity is increased by 147.23% relative to saw-tooth excitation. The minimum input power and the minimum driving voltage are decreased by 89.56% and 58.33%, respectively. Besides, the maximum mass of load capacity is 2.88 times that of saw-tooth excitation. The driving capacity of the actuator is increased by 466.13%.

  6. Measurements of resonance frequencies of clarinet reeds and simulations

    CERN Document Server

    Taillard, Pierre-André; Gross, Michel; Dalmont, Jean-Pierre; Kergomard, Jean

    2012-01-01

    A set of 55 clarinet reeds is observed by holography, collecting 2 series of measurements made under 2 different moisture contents, from which the resonance frequencies of the 15 first modes are deduced. A statistical analysis of the results reveals good correlations, but also significant differences between both series. Within a given series, flexural modes are not strongly correlated. A Principal Component Analysis (PCA) shows that the measurements of each series can be described with 3 factors capturing more than 90% of the variance: the first is linked with transverse modes, the second with flexural modes of high order and the third with the first flexural mode. A forth factor is necessary to take into account the individual sensitivity to moisture content. Numerical 3D simulations are conducted by Finite Element Method, based on a given reed shape and an orthotropic model. A sensitivity analysis revels that, besides the density, the theoretical frequencies depend mainly on 2 parameters: $E_L$ and $G_{LT}...

  7. A low power wide-band CMOS PLL frequency synthesizer for portable hybrid GNSS receiver

    Energy Technology Data Exchange (ETDEWEB)

    Xiao Shimao; Yu Yunfeng; Ma Chengyan; Ye Tianchun [Institute of Microelectronics, Chinese Academy of Sciences, Beijing 100029 (China); Yin Ming, E-mail: xiaoshimao@casic.ac.c [Hangzhou Zhongke Microelectronics Co Ltd, Hangzhou 310053 (China)

    2010-03-15

    The design consideration and implementation of a CMOS frequency synthesizer for the portable hybrid global navigation satellite system are presented. The large tuning range is achieved by tuning curve compensation using an improved VCO resonant tank, which reduces the power consumption and obtains better phase noise performance. The circuit is validated by simulations and fabricated in a standard 0.18 {mu}m 1P6M CMOS process. Close-loop phase noise measured is lower than -95 dBc at 200 kHz offset while the measured tuning range is 21.5% from 1.47 to 1.83 GHz. The proposed synthesizer including source coupled logic prescaler consumes 6.2 mA current from 1.8 V supply. The whole silicon required is only 0.53 mm{sup 2}. (semiconductor integrated circuits)

  8. Effects of Thickness Deviation of Elastic Plates in Multi-Layered Resonance Systems on Frequency Spectra

    Institute of Scientific and Technical Information of China (English)

    ZHANG Hui; ZHANG Shu-Yi; FAN Li

    2009-01-01

    A model of high-overtone bulk acoustic resonators is used to study the effects of thickness deviation of elastic plates on resonance frequency spectra in planar multi-layered systems. The resonance frequency shifts induced by the thickness deviations of the elastic plates periodically vary with the resonance order, which depends on the acoustic impedance ratios of the elastic plates to piezoelectric patches. Additionally, the center lines of the frequency shift oscillations Hnearly change with the orders of the resonance modes, and their slopes are sensitive to the thickness deviations of the plates, which can be used to quantitatively evaluate the thickness deviations.

  9. Resonant frequencies of massless scalar field in rotating black-brane spacetime

    Institute of Scientific and Technical Information of China (English)

    Jing Ji-Liang; Pan Qi-Yuan

    2008-01-01

    This paper investigates the resonant frequencies of the massless scalar field in the near extremal Kerr-like black-brahe spacetime. It is shown that the different angular quantum number will present different resonant frequencies. It is also shown that the real part of the resonant frequencies increases as the compact dimensions parameter μi increases, but the magnitude of the imaginary part decreases as μi increases.

  10. An ultra-thin dual-band phase-gradient metasurface using hybrid resonant structures for backward RCS reduction

    Science.gov (United States)

    Cheng, Yongzhi; Wu, Chenjun; Ge, Chenchen; Yang, Jiaji; Pei, Xiaojun; Jia, Fan; Gong, Rongzhou

    2017-05-01

    We introduce and investigate, both experimentally and theoretically, a dual-band phase-gradient metasurface (PGM) to accurately facilitate dual-band beams deflection for electromagnetic waves. The designed PGM is composed of two kinds of split-ring resonators as the basic element of a super cell. These hybrid resonant structures can generate phase gradients at two distinct frequencies, which, in turn, generate appropriately artificial wave vectors that meet the requirements for anomalous reflection in terms of generalized Snell's law. Both simulations and experiments are consistent with the theoretical predictions. Further, this PGM can work at 8.9 and 11.4 GHz frequencies providing a phenomenon of anomalous reflection, which is useful for backward radar cross section reduction.

  11. Method of shifting and fixing optical frequency of an optical resonator, and optical resonator made by same

    Science.gov (United States)

    Savchenkov, Anatoliy A. (Inventor); Strekalov, Dmitry V. (Inventor); Maleki, Lute (Inventor); Matsko, Andrey B. (Inventor); Iltchenko, Vladimir S. (Inventor); Martin, Jan M. (Inventor)

    2010-01-01

    A method of shifting and fixing an optical frequency of an optical resonator to a desired optical frequency, and an optical resonator made by such a method are provided. The method includes providing an optical resonator having a surface and a refractive index, and obtaining a coating composition having a predetermined concentration of a substance and having a refractive index that is substantially similar to the refractive index of the optical resonator. The coating composition inherently possesses a thickness when it is applied as a coating. The method further includes determining a coating ratio for the surface of the optical resonator and applying the coating composition onto a portion of the surface of the optical resonator based upon the determined coating ratio.

  12. Noise Depression of Parasitic Capacitance for Frequency Detection of Micromechanical Bulk Disk Resonator

    DEFF Research Database (Denmark)

    Tang, Meng; Cagliani, Alberto; Escouflaire, Marie

    2010-01-01

    A bulk disk resonator working in dynamic mode is used for mass detection. In the capacitive transduction scheme, the parasitic capacitance between the electrodes produces an anti resonance in the transmission curve, which distorts the phase shift at the resonant frequency and increases the freque......A bulk disk resonator working in dynamic mode is used for mass detection. In the capacitive transduction scheme, the parasitic capacitance between the electrodes produces an anti resonance in the transmission curve, which distorts the phase shift at the resonant frequency and increases...... the frequency noise of the system. A capacitor cancellation circuit is used to subtract the parasitic capacitor. Measurements are conducted before and after the cancellation, and results show that after cancellation, the anti resonance is suppressed and the frequency noise is decreased, thus decreasing...

  13. A dual-mode microwave resonator for double electron-electron spin resonance spectroscopy at W-band microwave frequencies

    Science.gov (United States)

    Tkach, Igor; Sicoli, Giuseppe; Höbartner, Claudia; Bennati, Marina

    2011-04-01

    We present a dual-mode resonator operating at/near 94 GHz (W-band) microwave frequencies and supporting two microwave modes with the same field polarization at the sample position. Numerical analysis shows that the frequencies of both modes as well as their frequency separation can be tuned in a broad range up to GHz. The resonator was constructed to perform pulsed ELDOR experiments with a variable separation of "pump" and "detection" frequencies up to Δ ν = 350 MHz. To examine its performance, test ESE/PELDOR experiments were performed on a representative biradical system.

  14. Frequency and Spatial Selectivity in Nuclear Magnetic Resonance Spectroscopy.

    Science.gov (United States)

    Friedrich, Jan O.

    1988-12-01

    Available from UMI in association with The British Library. Requires signed TDF. The techniques presented in this thesis are concerned with the high resolution nuclear magnetic resonance spectra of liquids. A selective pulse, shaped according to the first half of a Gaussian curve, is developed; it gives a very narrow absorption-mode excitation profile. This characteristics is used in developing selective coherence transfer experiments in which an individual transition is irradiated by the selective pulse followed by irradiation with an intense non-selective pulse. By stepping the irradiation frequency of the selective pulse along in small increments, this experiment produces results similar to conventional two-dimensional homonuclear correlation spectroscopy. Such a method allows selected spectral regions of a conventional two-dimensional spectrum to be examined under higher resolution while avoiding the restrictions imposed by the sampling theorem. The technique is also extended to a third frequency dimension by irradiating two transitions simultaneously before applying a non-selective pulse which yields correlations between three coupled nuclei. The remainder of this thesis introduces a spatial localisation method based on a "straddle coil": two parallel coaxial surface coils, one on each side of the sample and supplied with radiofrequency pulses of opposite phase. This configuration can be used for spatial localisation experiments by applying a sequence of equal and opposite prepulses before acquiring the signal. The prepulses saturate the nuclear spins in all sample regions except the sensitive volume close to the median plane where the radiofrequency fields from the two coils cancel. Pulse sequences are proposed that are insensitive to radiofrequency offset over an appreciable range. The location of the sensitive volume can be tracked across the sample in the axial dimension by changing the ratio of the radiofrequency currents in the two coils.

  15. Theta-frequency resonance in hippocampal CA1 neurons in vitro demonstrated by sinusoidal current injection.

    Science.gov (United States)

    Leung, L S; Yu, H W

    1998-03-01

    Sinusoidal currents of various frequencies were injected into hippocampal CA1 neurons in vitro, and the membrane potential responses were analyzed by cross power spectral analysis. Sinusoidal currents induced a maximal (resonant) response at a theta frequency (3-10 Hz) in slightly depolarized neurons. As predicted by linear systems theory, the resonant frequency was about the same as the natural (spontaneous) oscillation frequency. However, in some cases, the resonant frequency was higher than the spontaneous oscillation frequency, or resonance was found in the absence of spontaneous oscillations. The sharpness of the resonance (Q), measured by the peak frequency divided by the half-peak power bandwidth, increased from a mean of 0.44 at rest to 0.83 during a mean depolarization of 6.5 mV. The phase of the driven oscillations changed most rapidly near the resonant frequency, and it shifted about 90 degrees over the half-peak bandwidth of 8.4 Hz. Similar results were found using a sinusoidal function of slowly changing frequency as the input. Sinusoidal currents of peak-to-peak intensity of >100 pA may evoke nonlinear responses characterized by second and higher harmonics. The theta-frequency resonance in hippocampal neurons in vitro suggests that the same voltage-dependent phenomenon may be important in enhancing a theta-frequency response when hippocampal neurons are driven by medial septal or other inputs in vivo.

  16. Nanoscale Subsurface Imaging via Resonant Difference-Frequency Atomic Force Ultrasonic Microscopy

    Science.gov (United States)

    Cantrell, Sean A.; Cantrell, John H.; Lilehei, Peter T.

    2007-01-01

    A novel scanning probe microscope methodology has been developed that employs an ultrasonic wave launched from the bottom of a sample while the cantilever of an atomic force microscope, driven at a frequency differing from the ultrasonic frequency by the fundamental resonance frequency of the cantilever, engages the sample top surface. The nonlinear mixing of the oscillating cantilever and the ultrasonic wave in the region defined by the cantilever tip-sample surface interaction force generates difference-frequency oscillations at the cantilever fundamental resonance. The resonance-enhanced difference-frequency signals are used to create images of embedded nanoscale features.

  17. Note: A frequency modulated wireless interrogation system exploiting narrowband acoustic resonator for remote physical quantity measurement.

    Science.gov (United States)

    Droit, C; Martin, G; Ballandras, S; Friedt, J-M

    2010-05-01

    We demonstrate the wireless conversion of frequency modulation to amplitude modulation by radio frequency resonators as means of accurately determining the resonance frequency of passive acoustoelectronic sensors. The emitted frequency modulated radio frequency pulses are generated by a pulsed radar for probing a surface acoustic wave based sensor. The sharp sign transition of the amplitude modulated received signal provides a signal on which a feedback loop is locked to monitor the resonance signal. The strategy is demonstrated using a full software implementation on a generic hardware, resulting in 2 Hz resolution at 1 s integration time limited by the proportional feedback loop.

  18. The Tracking Resonance Frequency Method for Photoacoustic Measurements Based on the Phase Response

    Science.gov (United States)

    Suchenek, Mariusz

    2017-04-01

    One of the major issues in the use of the resonant photoacoustic cell is the resonance frequency of the cell. The frequency is not stable, and its changes depend mostly on temperature and gas mixture. This paper presents a new method for tracking resonance frequency, where both the amplitude and phase are calculated from the input samples. The stimulating frequency can be adjusted to the resonance frequency of the cell based on the phase. This method was implemented using a digital measurement system with an analog to digital converter, field programmable gate array (FPGA) and a microcontroller. The resonance frequency was changed by the injection of carbon dioxide into the cell. A theoretical description and experimental results are also presented.

  19. The double-resonance enhancement of stimulated low-frequency Raman scattering in silver-capped nanodiamonds

    Science.gov (United States)

    Baranov, A. N.; Butsen, A. V.; Ionin, A. A.; Ivanova, A. K.; Kuchmizhak, A. A.; Kudryashov, S. I.; Kudryavtseva, A. D.; Levchenko, A. O.; Rudenko, A. A.; Saraeva, I. N.; Strokov, M. A.; Tcherniega, N. V.; Zayarny, D. A.

    2017-09-01

    Hybrid plasmonic-dielectric nano- and (sub)microparticles exhibit magnetic and electrical dipolar Mie-resonances, which makes them useful as efficient basic elements in surface-enhanced spectroscopy, non-linear light conversion and nanoscale light control. We report the stimulated low-frequency Raman scattering (SLFRS) of a nanosecond ruby laser radiation (central wavelength λ = 694.3 nm (full-width at half-maximum ≈ 0.015 cm-1), gaussian 1/e-intensity pulsewidth τ ≈ 20 ns, TEM00-mode pulse energy Emax ≈ 0.3 J) in nanodiamond (R ≈ 120 nm) hydrosols, induced via optomechanical coherent excitation of fundamental breathing eigen-modes, and the two-fold enhancement of SLFRS in Ag-decorated nanodiamonds, characterized by hybrid dipolar resonances of electrical (silver) and magnetic (diamond) nature. Hybrid metal-dielectric particles were prepared by means of nanosecond IR-laser ablation of solid silver target in diamond hydrosols with consecutive Ag-capping of diamonds, and were characterized by scanning electron microscopy, UV-vis, photoluminescence and energy-dispersive X-ray spectroscopy. Intensities of the SLFR-scattered components and their size-dependent spectral shifts were measured in the highly sensitive stimulated scattering regime, indicating the high (≈ 30%) SLFRS conversion efficiency and the resonant character of the scattering species.

  20. Analysis of Middle Frequency Resonance in DFIG System Considering Phase Locked Loop

    DEFF Research Database (Denmark)

    Song, Yipeng; Blaabjerg, Frede

    2017-01-01

    As the wind power technology develops, the Doubly Fed Induction Generator (DFIG) based wind power system, when connected to a weak network with large impedance, may suffer resonances, i.e., Sub- Synchronous Resonance (SSR) or High Frequency Resonance (HFR) when connected to the series or parallel...

  1. Zero field anti ferromagnetic resonance at optical frequencies in dilute magnetic system

    Science.gov (United States)

    Paul, Somnath; Sarkar, A.

    2015-06-01

    An experimental study of Antiferromagnetic resonance on Cobalt and Nickel oxide at room temperature has been undertaken. The zero field resonance frequency is detected in near infrared frequency regime. The measurement makes use of UV-VIS spectrophotometer. The overall results are found to be good and encouraging.

  2. Successive Resonances for Ion Ejection at Arbitrary Frequencies in an Ion Trap

    Science.gov (United States)

    Snyder, Dalton T.; Cooks, R. Graham

    2016-09-01

    The use of successive resonances for ion ejection is demonstrated here as a method of scanning quadrupole ion traps with improvement in both resolution and sensitivity compared with single frequency resonance ejection. The conventional single frequency resonance ejection waveform is replaced with a dual-frequency waveform. The two included frequencies are spaced very closely and their relative amplitudes are adjusted so that the first frequency that ions encounter excites them to higher amplitudes where space charge effects are less prominent, thereby giving faster and more efficient ejection when the ions come into resonance with the second frequency. The method is applicable at any arbitrary frequency, unlike double and triple resonance methods. However, like double and triple resonance ejection, ejection using successive resonances requires the rf and AC waveforms to be phase-locked in order to retain mass accuracy and mass precision. The improved performance is seen in mass spectra acquired by rf amplitude scans (resonance ejection) as well as by secular frequency scans.

  3. Analysis on the Behavior of Undamped and Unstable High Frequency Resonance in DFIG System

    DEFF Research Database (Denmark)

    Song, Yipeng; Blaabjerg, Frede

    2017-01-01

    As the wind power generation develops, the Doubly Fed Induction Generator (DFIG) based wind power system may suffer Sub Synchronous Resonance (SSR) and High Frequency Resonance (HFR) in the series and parallel compensated weak network. The principle and frequency of HFR have been discussed using ...

  4. Resonant frequency does not predict high-frequency chest compression settings that maximize airflow or volume.

    Science.gov (United States)

    Luthy, Sarah K; Marinkovic, Aleksandar; Weiner, Daniel J

    2011-06-01

    High-frequency chest compression (HFCC) is a therapy for cystic fibrosis (CF). We hypothesized that the resonant frequency (f(res)), as measured by impulse oscillometry, could be used to determine what HFCC vest settings produce maximal airflow or volume in pediatric CF patients. In 45 subjects, we studied: f(res), HFCC vest frequencies that subjects used (f(used)), and the HFCC vest frequencies that generated the greatest volume (f(vol)) and airflow (f(flow)) changes as measured by pneumotachometer. Median f(used) for 32 subjects was 14 Hz (range, 6-30). The rank order of the three most common f(used) was 15 Hz (28%) and 12 Hz (21%); three frequencies tied for third: 10, 11, and 14 Hz (5% each). Median f(res) for 43 subjects was 20.30 Hz (range, 7.85-33.65). Nineteen subjects underwent vest-tuning to determine f(vol) and f(flow). Median f(vol) was 8 Hz (range, 6-30). The rank order of the three most common f(vol) was: 8 Hz (42%), 6 Hz (32%), and 10 Hz (21%). Median f(flow) was 26 Hz (range, 8-30). The rank order of the three most common f(flow) was: 30 Hz (26%) and 28 Hz (21%); three frequencies tied for third: 8, 14, and 18 Hz (11% each). There was no correlation between f(used) and f(flow) (r(2)  = -0.12) or f(vol) (r(2) = 0.031). There was no correlation between f(res) and f(flow) (r(2)  = 0.19) or f(vol) (r(2) = 0.023). Multivariable analysis showed no independent variables were predictive of f(flow) or f(vol). Vest-tuning may be required to optimize clinical utility of HFCC. Multiple HFCC frequencies may need to be used to incorporate f(flow) and f(vol).

  5. Resonance of a Metal Drop under the Effect of Amplitude-Modulated High Frequency Magnetic Field

    Science.gov (United States)

    Guo, Jiahong; Lei, Zuosheng; Zhu, Hongda; Zhang, Lijie; Magnetic Hydrodynamics(Siamm) Team; Magnetic Mechanics; Engineering(Smse) Team

    2016-11-01

    The resonance of a sessile and a levitated drop under the effect of high frequency amplitude-modulated magnetic field (AMMF) is investigated experimentally and numerically. It is a new method to excite resonance of a metal drop, which is different from the case in the presence of a low-frequency magnetic field. The transient contour of the drop is obtained in the experiment and the simulation. The numerical results agree with the experimental results fairly well. At a given frequency and magnetic flux density of the high frequency AMMF, the edge deformations of the drop with an azimuthal wave numbers were excited. A stability diagram of the shape oscillation of the drop and its resonance frequency spectrum are obtained by analysis of the experimental and the numerical data. The results show that the resonance of the drop has a typical character of parametric resonance. The National Natural Science Foundation of China (No. 51274237 and 11372174).

  6. The role of anti-resonance frequencies from operational modal analysis in finite element model updating

    Science.gov (United States)

    Hanson, D.; Waters, T. P.; Thompson, D. J.; Randall, R. B.; Ford, R. A. J.

    2007-01-01

    Finite element model updating traditionally makes use of both resonance and modeshape information. The mode shape information can also be obtained from anti-resonance frequencies, as has been suggested by a number of researchers in recent years. Anti-resonance frequencies have the advantage over mode shapes that they can be much more accurately identified from measured frequency response functions. Moreover, anti-resonance frequencies can, in principle, be estimated from output-only measurements on operating machinery. The motivation behind this paper is to explore whether the availability of anti-resonances from such output-only techniques would add genuinely new information to the model updating process, which is not already available from using only resonance frequencies. This investigation employs two-degree-of-freedom models of a rigid beam supported on two springs. It includes an assessment of the contribution made to the overall anti-resonance sensitivity by the mode shape components, and also considers model updating through Monte Carlo simulations, experimental verification of the simulation results, and application to a practical mechanical system, in this case a petrol generator set. Analytical expressions are derived for the sensitivity of anti-resonance frequencies to updating parameters such as the ratio of spring stiffnesses, the position of the centre of gravity, and the beam's radius of gyration. These anti-resonance sensitivities are written in terms of natural frequency and mode shape sensitivities so their relative contributions can be assessed. It is found that the contribution made by the mode shape sensitivity varies considerably depending on the value of the parameters, contributing no new information for significant combinations of parameter values. The Monte Carlo simulations compare the performance of the update achieved when using information from: the resonances only; the resonances and either anti-resonance; and the resonances and both

  7. Insertion torque, resonance frequency, and removal torque analysis of microimplants.

    Science.gov (United States)

    Tseng, Yu-Chuan; Ting, Chun-Chan; Du, Je-Kang; Chen, Chun-Ming; Wu, Ju-Hui; Chen, Hong-Sen

    2016-09-01

    This study aimed to compare the insertion torque (IT), resonance frequency (RF), and removal torque (RT) among three microimplant brands. Thirty microimplants of the three brands were used as follows: Type A (titanium alloy, 1.5-mm × 8-mm), Type B (stainless steel, 1.5-mm × 8-mm), and Type C (titanium alloy, 1.5-mm × 9-mm). A synthetic bone with a 2-mm cortical bone and bone marrow was used. Each microimplant was inserted into the synthetic bone, without predrilling, to a 7 mm depth. The IT, RF, and RT were measured in both vertical and horizontal directions. One-way analysis of variance and Spearman's rank correlation coefficient tests were used for intergroup and intragroup comparisons, respectively. In the vertical test, the ITs of Type C (7.8 Ncm) and Type B (7.5 Ncm) were significantly higher than that of Type A (4.4 Ncm). The RFs of Type C (11.5 kHz) and Type A (10.2 kHz) were significantly higher than that of Type B (7.5 kHz). Type C (7.4 Ncm) and Type B (7.3 Ncm) had significantly higher RTs than did Type A (4.1 Ncm). In the horizontal test, both the ITs and RTs were significantly higher for Type C, compared with Type A. No significant differences were found among the groups, and the study hypothesis was accepted. Type A had the lowest inner/outer diameter ratio and widest apical facing angle, engendering the lowest IT and highest RF values. However, no significant correlations in the IT, RF, and RT were observed among the three groups.

  8. Variable Coupling Scheme for High Frequency Electron Spin Resonance Resonators Using Asymmetric Meshes.

    Science.gov (United States)

    Tipikin, D S; Earle, K A; Freed, J H

    2010-01-01

    The sensitivity of a high frequency electron spin resonance (ESR) spectrometer depends strongly on the structure used to couple the incident millimeter wave to the sample that generates the ESR signal. Subsequent coupling of the ESR signal to the detection arm of the spectrometer is also a crucial consideration for achieving high spectrometer sensitivity. In previous work, we found that a means for continuously varying the coupling was necessary for attaining high sensitivity reliably and reproducibly. We report here on a novel asymmetric mesh structure that achieves continuously variable coupling by rotating the mesh in its own plane about the millimeter wave transmission line optical axis. We quantify the performance of this device with nitroxide spin-label spectra in both a lossy aqueous solution and a low loss solid state system. These two systems have very different coupling requirements and are representative of the range of coupling achievable with this technique. Lossy systems in particular are a demanding test of the achievable sensitivity and allow us to assess the suitability of this approach for applying high frequency ESR to the study of biological systems at physiological conditions, for example. The variable coupling technique reported on here allows us to readily achieve a factor of ca. 7 improvement in signal to noise at 170 GHz and a factor of ca. 5 at 95 GHz over what has previously been reported for lossy samples.

  9. Analysis of a shielded TE011 mode composite dielectric resonator for stable frequency reference

    Indian Academy of Sciences (India)

    N D Kataria; K S Daya; V G Das

    2002-05-01

    Analysis of a TE011 mode composite sapphire–rutile dielectric resonator has been carried out to study the temperature variation of resonance frequency, close to the Cs atomic clock hyperfine frequency of 9.192 GHz. The complementary behavior of dielectric permittivity with temperature of the composite has been exploited to obtain the desired turning point in the resonant frequency. The frequency of the composite structure is found to be independent of the shield diameter beyond four times the puck diameter.

  10. CONSTITUTIVE COMPUTATIONAL MODELLING FOUNDATION OF PIEZOELECTRONIC MICROSTRUCTURES AND APPLICATION TO HIGH-FREQUENCY MICROCHIP DSAW RESONATORS

    Institute of Scientific and Technical Information of China (English)

    张武; 唐锦春

    2002-01-01

    This paper establishes a piezoelectric constitutive computational approach based on generalized eigenvalue and multivariable finite element solutions with potential applications to accurate and effective analysis of layered piezoelectric microstructures of arbitrary geometries and different anisotropic materials, to ease the limitation of current computer capacity in analyzing large-scale high-frequency disturbed surface acoustic waves (DSAW) by mounted electrodes in piezoelectric devices such as microchip SAW resonators. A new incompatible generalized hybrid/mixed element GQM5 is also proposed for improving predictions of the piezoelectric surface mount thermal stresses that are shear-dominated. The (generalized) plane strain constitutive model is numerically verified for piezoelectric finite element computation. With the help of computational piezoelectricity (electro-mechanics) for general layered structures with metal electrodes and anisotropic piezoelectric substrates, some new interesting, reliable and fundamental constitutive finite element results are obtained for high-frequency piezoelectric and mechanical SAW propagations and can be used for further applications. The ST-cut FEA results agree quite well with available exact and lab solutions for free surface case.

  11. Linear and nonlinear optics of hybrid plasmon-exciton nanomaterials in the presence of overlapping resonances

    CERN Document Server

    Sukharev, Maxim; Pachter, Ruth

    2015-01-01

    We consider a hybrid plasmon-exciton system comprised of a resonant molecular subsystem and three Au wires supporting a dipole mode which can be coupled to a dark mode in controllable fashion by variation of a symmetry parameter. The physics of such a system under strong coupling conditions is examined in detail. It is shown that if two wires supporting the dark mode are covered with molecular layers the system exhibits four resonant modes for a strong coupling regime due to asymmetry and lifted degeneracy of the molecular state in this case, while upon having molecular aggregates covering the top wire with dipolar mode, three resonant modes appear. Pump-probe simulations are performed to scrutinize the quantum dynamics and find possible ways to control plasmon-exciton materials. It is demonstrated that one can design hybrid nanomaterials with highly pronounced Fano-type resonances when excited by femtosecond lasers.

  12. Resonance Analysis of High-Frequency Electrohydraulic Exciter Controlled by 2D Valve

    Directory of Open Access Journals (Sweden)

    Guojun Pan

    2015-01-01

    Full Text Available The resonant characteristic of hydraulic system has not been described yet because it is necessarily restricted by linear assumptions in classical fluid theory. A way of the resonance analysis is presented for an electrohydraulic exciter controlled by 2D valve. The block diagram of this excitation system is established by extracting nonlinear parts from the traditional linearization analysis; as a result the resonant frequency is obtained. According to input energy from oil source which is equal to the reverse energy to oil source, load pressure and load flow are solved analytically as the working frequency reaches the natural frequency. The analytical expression of resonant peak is also derived without damping. Finally, the experimental system is built to verify the theoretical analysis. The initial research on resonant characteristic will lay theoretical foundation and make useful complement for resonance phenomena of classical fluid theory in hydraulic system.

  13. A Multi-Modal Control Using a Hybrid Pole-Placement-Integral Resonant Controller (PPIR) with Experimental Investigations

    DEFF Research Database (Denmark)

    Nielsen, Søren R.K.; Basu, Biswajit

    2011-01-01

    Control of multi-modal structural vibrations has been an important and challenging problem in flexible structural systems. This paper proposes a new vibration control algorithm for multi-modal structural control. The proposed algorithm combines a pole-placement controller with an integral resonant...... controller. The pole-placement controller is used to achieve a target equivalent modal viscous damping in the system and helps in the suppression of higher modes, which contribute to the vibration response of flexible structures. The integral resonant controller successfully reduces the low frequency...... vibrations e.g. caused by broad-band turbulent wind excitations. Hence, the proposed hybrid controller can effectively suppress complex multi-modal vibrations in flexible systems. Both numerical and experimental studies have been carried out to demonstrate the effectiveness of the proposed algorithm using...

  14. Study of the Method of Multi-Frequency Signal Detection Based on the Adaptive Stochastic Resonance

    Directory of Open Access Journals (Sweden)

    Zhenyu Lu

    2013-01-01

    Full Text Available Recently, the stochastic resonance effect has been widely used by the method of discovering and extracting weak periodic signals from strong noise through the stochastic resonance effect. The detection of the single-frequency weak signals by using stochastic resonance effect is widely used. However, the detection methods of the multifrequency weak signals need to be researched. According to the different frequency input signals of a given system, this paper puts forward a detection method of multifrequency signal by using adaptive stochastic resonance, which analyzed the frequency characteristics and the parallel number of the input signals, adjusted system parameters automatically to the low frequency signals in the fixed step size, and then measured the stochastic resonance phenomenon based on the frequency of the periodic signals to select the most appropriate indicators in the middle or high frequency. Finally, the optimized system parameters are founded and the frequency of the given signals is extracted in the frequency domain of the stochastic resonance output signals. Compared with the traditional detection methods, the method in this paper not only improves the work efficiency but also makes it more accurate by using the color noise, the frequency is more accurate being extracted from the measured signal. The consistency between the simulation results and analysis shows that this method is effective and feasible.

  15. Frequency conversion through spontaneous degenerate four wave mixing in large mode area hybrid photonic crystal fibers

    DEFF Research Database (Denmark)

    Petersen, Sidsel Rübner; Alkeskjold, Thomas Tanggaard; Olausson, Christina Bjarnal Thulin;

    2014-01-01

    Frequency conversion through spontaneous degenerate four wave mixing (FWM) is investigated in large mode area hybrid photonic crystal fibers. Different FWM processes are observed, phasematching between fiber modes of orthogonal polarization, intermodal phasematching across bandgaps, and intramodal...

  16. An Improved Performance Frequency Estimation Algorithm for Passive Wireless SAW Resonant Sensors

    Directory of Open Access Journals (Sweden)

    Boquan Liu

    2014-11-01

    Full Text Available Passive wireless surface acoustic wave (SAW resonant sensors are suitable for applications in harsh environments. The traditional SAW resonant sensor system requires, however, Fourier transformation (FT which has a resolution restriction and decreases the accuracy. In order to improve the accuracy and resolution of the measurement, the singular value decomposition (SVD-based frequency estimation algorithm is applied for wireless SAW resonant sensor responses, which is a combination of a single tone undamped and damped sinusoid signal with the same frequency. Compared with the FT algorithm, the accuracy and the resolution of the method used in the self-developed wireless SAW resonant sensor system are validated.

  17. An improved performance frequency estimation algorithm for passive wireless SAW resonant sensors.

    Science.gov (United States)

    Liu, Boquan; Zhang, Chenrui; Ji, Xiaojun; Chen, Jing; Han, Tao

    2014-11-25

    Passive wireless surface acoustic wave (SAW) resonant sensors are suitable for applications in harsh environments. The traditional SAW resonant sensor system requires, however, Fourier transformation (FT) which has a resolution restriction and decreases the accuracy. In order to improve the accuracy and resolution of the measurement, the singular value decomposition (SVD)-based frequency estimation algorithm is applied for wireless SAW resonant sensor responses, which is a combination of a single tone undamped and damped sinusoid signal with the same frequency. Compared with the FT algorithm, the accuracy and the resolution of the method used in the self-developed wireless SAW resonant sensor system are validated.

  18. Frequency Characteristics of Double-Walled Carbon Nanotube Resonator with Different Length

    Directory of Open Access Journals (Sweden)

    Jun-Ha LEE

    2016-05-01

    Full Text Available In this paper, we have conducted classical molecular dynamics simulations for DWCNTs of various wall lengths to investigate their use as ultrahigh frequency nano-mechanical resonators. We sought to determine the variations in the frequency of these resonators according to changes in the DWCNT wall lengths. For a double-walled carbon nanotube resonator with a shorter inner nanotube, the shorter inner nanotube can be considered to be a flexible core, and thus, the length influences the fundamental frequency. In this paper, we analyze the variation in frequency of ultra-high frequency nano-mechnical resonators constructed from DWCNTs with different wall lengths.DOI: http://dx.doi.org/10.5755/j01.ms.22.2.12951

  19. The classification of frequencies in the {\\gamma} Doradus / {\\delta} Scuti hybrid star HD 49434

    OpenAIRE

    Brunsden, E.; Pollard, K.R.; Cottrell, P. L.; Uytterhoeven, K.; Wright, D J; De Cat, P.

    2014-01-01

    Hybrid stars of the {\\gamma} Doradus and {\\delta} Scuti pulsation types have great potential for asteroseismic analysis to explore their interior structure. To achieve this, mode identi- fications of pulsational frequencies observed in the stars must be made, a task which is far from simple. In this work we begin the analysis by scrutinizing the frequencies found in the CoRoT photometric satellite measurements and ground-based high-resolution spectroscopy of the hybrid star HD 49434. The resu...

  20. Arnol'd tongues for a resonant injection-locked frequency divider: analytical and numerical results

    DEFF Research Database (Denmark)

    Bartuccelli, Michele; Deane, Jonathan H.B.; Gentile, Guido;

    2010-01-01

    In this paper we consider a resonant injection-locked frequency divider which is of interest in electronics, and we investigate the frequency locking phenomenon when varying the amplitude and frequency of the injected signal. We study both analytically and numerically the structure of the Arnol’d...

  1. Low-frequency nuclear magnetic resonance and nuclear quadrupole resonance spectrometer based on a dc superconducting quantum interference device

    Science.gov (United States)

    Fan, N. Q.; Clarke, John

    1991-06-01

    A sensitive spectrometer, based on a dc superconducting quantum interference device, for the direct detection of low-frequency pulsed nuclear magnetic resonance (NMR) and nuclear quadrupole resonance (NQR), is described. The frequency response extends from about 10 to 200 kHz, and the recovery time after the magnetic pulse is removed is typically 50 μs. As examples, NMR spectra are shown from Pt and Cu metal powders in a magnetic field of 6 mT, and NQR spectra are shown from 2D in a tunneling methyl group and 14N in NH4ClO4.

  2. A Novel Hybrid Statistical Particle Swarm Optimization for Multimodal Functions and Frequency Control of Hybrid Wind-Solar System

    Science.gov (United States)

    Verma, Harish Kumar; Jain, Cheshta

    2016-09-01

    In this article, a hybrid algorithm of particle swarm optimization (PSO) with statistical parameter (HSPSO) is proposed. Basic PSO for shifted multimodal problems have low searching precision due to falling into a number of local minima. The proposed approach uses statistical characteristics to update the velocity of the particle to avoid local minima and help particles to search global optimum with improved convergence. The performance of the newly developed algorithm is verified using various standard multimodal, multivariable, shifted hybrid composition benchmark problems. Further, the comparative analysis of HSPSO with variants of PSO is tested to control frequency of hybrid renewable energy system which comprises solar system, wind system, diesel generator, aqua electrolyzer and ultra capacitor. A significant improvement in convergence characteristic of HSPSO algorithm over other variants of PSO is observed in solving benchmark optimization and renewable hybrid system problems.

  3. External Ear Resonant Amplitude and Frequency of 3-7 Year Old Children

    Directory of Open Access Journals (Sweden)

    Amir Hossein Zare

    2004-06-01

    Full Text Available Objective: To measure external ear resonant amplitude and frequency in children (3-7 years old and to compare with adult measures. Method and materials: The external ear resonance peak amplitude and frequency of 63 children 3-7 years old were recorded. All of the children had normal tympanogram and there was no cerumen in external auditory canal. 20 adult of 21-24 years old (10 male , 10 female were selected in order to compare with children that had normal tympanogram. The tests included : 1-otoscopy 2- tympanometry 3-microphone probe tube test. Results: The average of resonance peak frequency for children and adult is 4200 Hz and 3200 Hz , respectively. The resonance frequency of children had significantly diffrence with average of resonance frequency in adults. The average of resonance peak amplitude for children and adult is 17.70 dB and 17.17 dB , respectively. Conclusion: Resonant frequency and amplitude affect the hearing aid prescription and fitting process and calculating insertion gain; so, this measures seem should be considered in children hearing aid fitting.

  4. Resonance frequency control for the KOMAC 100-MeV drift tube linac

    Science.gov (United States)

    Kwon, Hyeok-Jung

    2015-02-01

    A 100-MeV proton accelerator has been developed, and the operation and beam service started at the Korea Multi-purpose Accelerator Complex (KOMAC) in July 2013. The accelerator consists of a 50-keV proton injector, a 3-MeV radio-frequency quadrupole (RFQ) and a 100-MeV drift tube linac (DTL). The resonance frequencies of the DTL tanks are controlled by using the resonance frequency control cooling system (RCCS), installed at every DTL tank. Until now, the RCCS has been operating in the constant temperature mode. If the system is to be stabilized better, the RCCS must be operated in the frequency control mode. For this purpose, studies, including the relation between the resonance frequency and RCCS operation temperature, were done under various conditions. In this paper, the preparations for the frequency control loop of the RCCS are described.

  5. On the application of radio frequency voltages to ion traps via helical resonators

    CERN Document Server

    Siverns, J D; Weidt, S; Hensinger, W K

    2011-01-01

    Ions confined using a Paul trap require a stable, high voltage and low noise radio frequency (RF) potential. We present a guide for the design and construction of a helical coil resonator for a desired frequency that maximises the quality factor for a set of experimental constraints. We provide an in-depth analysis of the system formed from a shielded helical coil and an ion trap by treating the system as a lumped element model. This allows us to predict the resonant frequency and quality factor in terms of the physical parameters of the resonator and the properties of the ion trap. We also compare theoretical predictions with experimental data for different resonators, and predict the voltage applied to the ion trap as a function of the Q-factor, input power and the properties of the resonant circuit.

  6. Frequency modulated weak signal detection based on stochastic resonance and genetic algorithm

    Institute of Scientific and Technical Information of China (English)

    XING; Hongyan; LU; Chunxia; ZHANG; Qiang

    2016-01-01

    Stochastic resonance system is subject to the restriction of small frequency parameter in weak signal detection,in order to solve this problem,a frequency modulated weak signal detection method based on stochastic resonance and genetic algorithm is presented in this paper. The frequency limit of stochastic resonance is eliminated by introducing carrier signal,which is multiplied with the measured signal to be injected in the stochastic resonance system,meanwhile,using genetic algorithm to optimize the carrier signal frequency,which determine the generated difference-frequency signal in the lowfrequency range,so as to achieve the stochastic resonance weak signal detection. Results showthat the proposed method is feasible and effective,which can significantly improve the output SNR of stochastic resonance,in addition,the system has the better self-adaptability,according to the operation result and output phenomenon,the unknown frequency of the signal to be measured can be obtained,so as to realize the weak signal detection of arbitrary frequency.

  7. [Frequency-domain quantification based on the singular value decomposition and frequency-selection for magnetic resonance spectra].

    Science.gov (United States)

    Men, Kuo; Quan, Hong; Yang, Peipei; Cao, Ting; Li, Weihao

    2010-04-01

    The frequency-domain magnetic resonance spectroscopy (MRS) is achieved by the Fast Fourier Transform (FFT) of the time-domain signals. Usually we are only interested in the portion lying in a frequency band of the whole spectrum. A method based on the singular value decomposition (SVD) and frequency-selection is presented in this article. The method quantifies the spectrum lying in the interested frequency band and reduces the interference of the parts lying out of the band in a computationally efficient way. Comparative experiments with the standard time-domain SVD method indicate that the method introduced in this article is accurate and timesaving in practical situations.

  8. MEMS switching of contour-mode aluminum nitride resonators for switchable and reconfigurable radio frequency filters

    Science.gov (United States)

    Nordquist, Christopher D.; Branch, Darren W.; Pluym, Tammy; Choi, Sukwon; Nguyen, Janet H.; Grine, Alejandro; Dyck, Christopher W.; Scott, Sean M.; Sing, Molly N.; Olsson, Roy H., III

    2016-10-01

    Switching of transducer coupling in aluminum nitride contour-mode resonators provides an enabling technology for future tunable and reconfigurable filters for multi-function RF systems. By using microelectromechanical capacitive switches to realize the transducer electrode fingers, coupling between the metal electrode finger and the piezoelectric material is modulated to change the response of the device. On/off switched width extensional resonators with an area of  24 dB switching ratio at a resonator center frequency of 635 MHz. Other device examples include a 63 MHz resonator with switchable impedance and a 470 MHz resonator with 127 kHz of fine center frequency tuning accomplished by mass loading of the resonator with the MEMS switches.

  9. Collective scattering in hybrid nanostructures with many atomic oscillators coupled to an electromagnetic resonance

    Science.gov (United States)

    Fauché, Pierre; Kosionis, Spyridon G.; Lalanne, Philippe

    2017-05-01

    There is considerable interest in collective effects in hybrid systems formed by molecular or atomic ensembles strongly coupled by an electromagnetic resonance. For analyzing such collective effects, we develop an efficient and general theoretical formalism based on the natural modes of the resonator. The main strength of our approach is its generality and the high level of analyticity enabled by modal analysis, which allows one to model complex hybrid systems without any restriction on the resonator shapes or material properties, and to perform statistical computations to predict general properties that are robust to spatial and polarization disorders. Most notably, we establish that super-radiant modes remain even after ensemble averaging and act as an "invisibility cloak" with a spectral bandwidth that scales with the number of oscillators and the spatially averaged Purcell factor.

  10. Graphene coated fiber optic surface plasmon resonance biosensor for the DNA hybridization detection: Simulation analysis

    Science.gov (United States)

    Shushama, Kamrun Nahar; Rana, Md. Masud; Inum, Reefat; Hossain, Md. Biplob

    2017-01-01

    In this paper, a graphene coated optical fiber surface plasmon resonance (SPR) biosensor is presented for the detection of DNA Hybridization. For the proposed sensor, a four layer model (fiber core /metal /sensing layer /sample) where a sheet of graphene (biomolecular recognition elements (BRE)) acting as a sensing layer is coated around the gold film because graphene enhances the sensitivity of fiber optic SPR biosensor. Numerical analysis shows the variation of resonance wavelength and spectrum of transmitted power for mismatched DNA strands and for complementary DNA strands. For mismatched DNA strands variation is negligible whereas for complementary DNA strands is considerably countable. Proposed sensor successfully distinguishes hybridization and single nucleotide polymorphisms (SNP) by observing the variation level of resonance wavelength and spectrum of transmitted power.

  11. Fabrication of Terahertz Wave Resonators with Alumina Diamond Photonic Crystals for Frequency Amplification in Water Solvents

    Energy Technology Data Exchange (ETDEWEB)

    Ohta, N; Niki, T; Kirihara, S, E-mail: n-ohta@jwri.osaka-u.ac.jp [Smart Processing Research Center, Joining and Welding Research Institute, Osaka University, Ibaraki, Osaka, 567-0047 (Japan)

    2011-05-15

    Terahertz wave resonators composed of alumina photonic crystals with diamond lattice structures were designed and fabricated by using micro stereolithography. These three dimensional periodic structures can reflect perfectly electromagnetic waves through Bragg diffraction. A micro glass cell including water solutions was put between the photonic crystals as a novel resonance sensor with terahertz frequency range. The localized and amplified waves in the resonators were measured by a spectroscopy, and visualized by theoretical simulations.

  12. Single-Chip Multiple-Frequency RF MEMS Resonant Platform for Wireless Communications Project

    Data.gov (United States)

    National Aeronautics and Space Administration — A novel, single-chip, multiple-frequency platform for RF/IF filtering and clock reference based on contour-mode aluminum nitride (AlN) MEMS piezoelectric resonators...

  13. The classification of frequencies in the {\\gamma} Doradus / {\\delta} Scuti hybrid star HD 49434

    CERN Document Server

    Brunsden, E; Cottrell, P L; Uytterhoeven, K; Wright, D J; De Cat, P

    2014-01-01

    Hybrid stars of the {\\gamma} Doradus and {\\delta} Scuti pulsation types have great potential for asteroseismic analysis to explore their interior structure. To achieve this, mode identi- fications of pulsational frequencies observed in the stars must be made, a task which is far from simple. In this work we begin the analysis by scrutinizing the frequencies found in the CoRoT photometric satellite measurements and ground-based high-resolution spectroscopy of the hybrid star HD 49434. The results show almost no consistency between the frequencies found using the two techniques and no characteristic period spacings or couplings were identified in either dataset. The spectroscopic data additionally show no evidence for any long term (5 year) variation in the dominant frequency. The 31 spectroscopic frequencies identified have standard deviation profiles suggesting multiple modes sharing (l, m) in the {\\delta} Scuti frequency region and several skewed modes sharing the same (l, m) in the {\\gamma} Doradus frequenc...

  14. Influence of random roughness on cantilever resonance frequency

    NARCIS (Netherlands)

    Ergincan, O.; Palasantzas, G.

    2010-01-01

    In this paper we investigate the influence of random roughness on the oscillation frequency of cantilevers coated with thin film overlayers. First the theory expressions for the roughness-induced frequency shift are derived using the cantilever equation of motion. Subsequently it is shown that the r

  15. Analysis and Active Damping of Multiple High Frequency Resonances in DFIG System

    DEFF Research Database (Denmark)

    Song, Yipeng; Blaabjerg, Frede; Wang, Xiongfei

    2017-01-01

    , the DFIG system may be subject to the resonances due to the impedance interaction between the DFIG system and the weak network. Especially, when connected to a series π sections weak network, the Multiple High Frequency Resonances (MHFR) may occur and require careful studies. The impedance modeling...

  16. Very High Frequency Resonant DC/DC Converters for LED Lighting

    DEFF Research Database (Denmark)

    Madsen, Mickey Pierre; Knott, Arnold; Andersen, Michael A. E.

    2013-01-01

    This paper presents a very high frequency DC/DC converter for LED lighting. Several resonant topologies are compared and their usability discussed. At the end the resonant SEPIC converter is chosen based on the achievable power density and total bill of material. Simulations of a 51 MHz converter...

  17. A Complex Frequency Method for A Loaded Resonant Cavity of Transmission Lines

    Institute of Scientific and Technical Information of China (English)

    LIANGChanghong; LILong; SUTao; FANShengcai

    2004-01-01

    A complex frequency method for analyzing a loaded resonant cavity of transmission lines is presented in this paper. A sub-resonance system theory is used to treat the various loaded transmission lines cavity more effectively. Some practice examples are given to illustrate the application and validity of the proposed approach in this paper.

  18. Influence of reed motion on the resonance frequency of reed-blown wood-wind instruments

    NARCIS (Netherlands)

    Nederveen, C.J.

    1969-01-01

    When vibrating, the needs of wood wind instruments displace an amount of air that shifts the resonance frequency of the instrument in the same way as does a mouthpiece cavity. In cylindrical instruments, this shift corresponds to an effective lengthening of the resonating tube. In conical instrument

  19. Dynamical model of series-resonant converter with peak capacitor voltage predictor and switching frequency control

    Science.gov (United States)

    Pietkiewicz, A.; Tollik, D.; Klaassens, J. B.

    1989-08-01

    A simple small-signal low-frequency model of an idealized series resonant converter employing peak capacitor voltage prediction and switching frequency control is proposed. Two different versions of the model describe all possible conversion modes. It is found that step down modes offer better dynamic characteristics over most important network functions than do the step-up modes. The dynamical model of the series resonant converter with peak capacitor voltage prediction and switching frequency programming is much simpler than such popular control stategies as frequency VCO (voltage controlled oscillators) based control, or diode conduction angle control.

  20. High-Frequency Resonant Matrix Converter using IGBT-Based Bidirectional Switches for Induction Heating

    Directory of Open Access Journals (Sweden)

    Jami Rajesh

    2014-02-01

    Full Text Available This paper deals with a novel type soft switching utility frequency AC- high frequency AC converter using asymmetrical PWM bidirectional active switches which can be defined as high frequency resonant matrix converter.This power frequency changer can directly convert utility frequency AC power to high frequency AC power ranging more than 20kHz up to 100kHz. Only one active edge resonant capacitor-assisted soft switching high frequency load resonant cyclo-converter is based on asymmetrical duty cycle PWM strategy. This high frequency cyclo-converter uses bidirectional IGBTs composed of anti-parallel one-chip reverse blocking IGBTs. This high frequency cycloconverter has some remarkable features as electrolytic capacitorless DC busline link, unity power factor correction and sinewave line current shaping, simple configuration with minimum circuit components and low cost, high efficiency and downsizing. This series load resonant cycloconverter incorporating bidirectional active power switches is developed and implemented for high efficiency consumer induction heated food cooking appliances. Its operating principle is described by using equivalent circuits. Its operating performances as soft switching operating ranges and high frequency effective power regulation characteristics are discussed on the basis of simulation and experimental results.

  1. Independently tunable dual-band plasmonically induced transparency based on hybrid metal-graphene metamaterials at mid-infrared frequencies.

    Science.gov (United States)

    Sun, Chen; Dong, Zhewei; Si, Jiangnan; Deng, Xiaoxu

    2017-01-23

    A tunable dual-band plasmonically induced transparency (PIT) device based on hybrid metal-graphene nanostructures is proposed theoretically and numerically at mid-infrared frequencies, which is composed of two kinds of gold dolmen-like structures with different sizes placed on separate graphene interdigitated finger sets respectively. The coupled Lorentz oscillator model is used to explain the physical mechanism of the PIT effect at multiple frequency domains. The finite-difference time-domain (FDTD) solutions are employed to simulate the characteristics of the hybrid metal-graphene dual-band PIT device. The simulated spectral locations of multiple transparency peaks are separately and dynamically modulated by varying the Fermi energy of corresponding graphene finger set, which is in good accordance with the theoretical analysis. Distinguished from the conventional metallic PIT devices, multiple PIT resonances in the hybrid metal-graphene PIT device are independently modulated by electrostatically changing bias voltages applied on corresponding graphene fingers, which can be widely applied in optical information processing as tunable sensors, switches, and filters.

  2. Single-frequency and tunable operation of a continuous intracavity-frequency-doubled singly resonant optical parametric oscillator.

    Science.gov (United States)

    My, Thu-Hien; Drag, Cyril; Bretenaker, Fabien

    2008-07-01

    A widely tunable continuous intracavity-frequency-doubled singly resonant optical parametric oscillator based on MgO-doped periodically poled stoichiometric lithium tantalate crystal is described. The idler radiation resonating in the cavity is frequency doubled by an intracavity BBO crystal. Pumped in the green, this system can provide up to 485 mW of single-frequency orange radiation. The system is continuously temperature tunable between 1170 and 1355 nm for the idler, 876 and 975 nm for the signal, and between 585 and 678 nm for the doubled idler. The free-running power and frequency stability of the system have been observed to be better than those for a single-mode dye laser.

  3. A dual resonant rectilinear-to-rotary oscillation converter for low frequency broadband electromagnetic energy harvesting

    Science.gov (United States)

    Deng, Wei; Wang, Ya

    2017-09-01

    This paper reports a dual resonant rectilinear-to-rotary oscillation converter (RROC) for low frequency broadband electromagnetic energy harvesting from ambient vibrations. An approximate theoretical model has been established to integrate the electromechanical coupling into a comprehensive electromagnetic-dynamic model of the dual resonant RROC. Numerical simulation has proved the nature of dual resonances by revealing that both the rectilinear resonance and the rotary resonance could be achieved when the stand-alone rectilinear oscillator (RLO) and the stand-alone rotary oscillator (RTO) were excited independently. Simulation on the magnetically coupled RROC has also shown that the rectilinear resonance and the rotary resonance could be obtained simultaneously in the low-frequency region (2-14 Hz) with well-defined restoring torque (M r ) and the initial rotation angle of the RLO (ψ). The magnetic interaction patterns between the rectilinear and the RTOs have been categorized based on aforementioned simulation results. Both simulation and experimental results have demonstrated broadband output attributing from the dual resonances. Experimental results have also indicated that the RROC could have wide bandwidth in a much lower frequency region (2-8 Hz) even without the rotary resonance as long as the system parameters are carefully tuned. Parameter analysis on different values of M r and ψ are experimentally carried out to provide a quantitative guidance of designing the RROC to achieve an optimal power density.

  4. High-speed laser modulation beyond the relaxation resonance frequency limit.

    Science.gov (United States)

    Sacher, Wesley D; Zhang, Eric J; Kruger, Brett A; Poon, Joyce K S

    2010-03-29

    We propose and show that for coupling modulated lasers (CMLs), in which the output coupler is modulated rather than the pump rate, the conventional relaxation resonance frequency limit to the laser modulation bandwidth can be circumvented. The modulation response is limited only by the coupler. Although CMLs are best suited to microcavities, as a proof-of-principle, a coupling-modulated erbium-doped fiber laser is modulated at 1 Gb/s, over 10000 times its relaxation resonance frequency.

  5. Magnetically tunable resonance frequency beam utilizing a stress-sensitive film

    Energy Technology Data Exchange (ETDEWEB)

    Davis, J. Kenneth (Kingston, TN); Thundat, Thomas G. (Knoxville, TN); Wachter, Eric A. (Oak Ridge, TN)

    2001-01-01

    Methods and apparatus for detecting particular frequencies of vibration utilize a magnetically-tunable beam element having a stress-sensitive coating and means for providing magnetic force to controllably deflect the beam element thereby changing its stiffness and its resonance frequency. It is then determined from the response of the magnetically-tunable beam element to the vibration to which the beam is exposed whether or not a particular frequency or frequencies of vibration are detected.

  6. Electrostatically tunable resonance frequency beam utilizing a stress-sensitive film

    Science.gov (United States)

    Thundat, Thomas G.; Wachter, Eric A.; Davis, J. Kenneth

    2001-01-01

    Methods and apparatus for detecting particular frequencies of acoustic vibration utilize an electrostatically-tunable beam element having a stress-sensitive coating and means for providing electrostatic force to controllably deflect the beam element thereby changing its stiffness and its resonance frequency. It is then determined from the response of the electrostatically-tunable beam element to the acoustical vibration to which the beam is exposed whether or not a particular frequency or frequencies of acoustic vibration are detected.

  7. Nonlinear series resonance and standing waves in dual-frequency capacitive discharges

    Science.gov (United States)

    Wen, De-Qi; Kawamura, E.; Lieberman, M. A.; Lichtenberg, A. J.; Wang, You-Nian

    2017-01-01

    It is well-known that the nonlinear series resonance in a high frequency capacitive discharge enhances the electron power deposition and also creates standing waves which produce radially center-high rf voltage profiles. In this work, the dynamics of series resonance and wave effects are examined in a dual-frequency driven discharge, using an asymmetric radial transmission line model incorporating a Child law sheath. We consider a cylindrical argon discharge with a conducting electrode radius of 15 cm, gap length of 3 cm, with a base case having a 60 MHz high frequency voltage of 250 V and a 10 MHz low frequency voltage of 1000 V, with a high frequency phase shift {φ\\text{H}}=π between the two frequencies. For this phase shift there is only one sheath collapse, and the time-averaged spectral peaks of the normalized current density at the center are mainly centered on harmonic numbers 30 and 50 of the low frequency, corresponding to the first standing wave resonance frequency and the series resonance frequency, respectively. The effects of the waves on the series resonance dynamics near the discharge center give rise to significant enhancements in the electron power deposition, compared to that near the discharge edge. Adjusting the phase shift from π to 0, or decreasing the low frequency from 10 to 2 MHz, results in two or more sheath collapses, respectively, making the dynamics more complex. The sudden excitation of the perturbed series resonance current after the sheath collapse results in a current oscillation amplitude that is estimated from analytical and numerical calculations. Self-consistently determining the dc bias and including the conduction current is found to be important. The subsequent slow time variation of the high frequency oscillation is analyzed using an adiabatic theory.

  8. Hybrid Physical Chemical Vapor Deposition of Superconducting Magnesium Diboride Coatings for Large Scale Radio Frequency Cavities

    Science.gov (United States)

    Lee, Namhoon; Withanage, Wenura; Tan, Teng; Wolak, Matthaeus; Xi, Xiaoxing

    2016-03-01

    Magnesium diboride (MgB2) is considered to be a great candidate for next generation superconducting radio frequency (SRF) cavities due to its higher critical temperature Tc (40 K) and increased thermodynamic critical field Hc compared to other conventional superconductors. These properties significantly reduce the BCS surface resistance (RsBCS)and residual resistance (Rres) according to theoretical studies and suggest the possibility of an enhanced accelerating field (Eacc) . We have investigated the possibility of coating the inner surface of a 3 GHz SRF cavity with MgB2 by using a hybrid physical-vapor deposition (HPCVD) system which was modified for this purpose. To simulate a real 3 GHz SRF cavity, a stainless steel mock cavity has been employed for the study. The film quality was characterized on small substrates that were placed at selected locations within the cavity. MgB2 films on stainless steel foils, niobium pieces and SiC substrates showed transition temperatures of above 36 K. Dielectric resonance measurements resulted in promising Q values as obtained for the MgB2 films grown on the various substrates. By employing the HPCVD technique, a uniform film was achieved across the cavity interior, demonstrating the feasibility of HPCVD for MgB2 coatings for SRF cavities.

  9. Electrostatic energy harvesting device with dual resonant structure for wideband random vibration sources at low frequency

    Science.gov (United States)

    Zhang, Yulong; Wang, Tianyang; Zhang, Ai; Peng, Zhuoteng; Luo, Dan; Chen, Rui; Wang, Fei

    2016-12-01

    In this paper, we present design and test of a broadband electrostatic energy harvester with a dual resonant structure, which consists of two cantilever-mass subsystems each with a mass attached at the free edge of a cantilever. Comparing to traditional devices with single resonant frequency, the proposed device with dual resonant structure can resonate at two frequencies. Furthermore, when one of the cantilever-masses is oscillating at resonance, the vibration amplitude is large enough to make it collide with the other mass, which provides strong mechanical coupling between the two subsystems. Therefore, this device can harvest a decent power output from vibration sources at a broad frequency range. During the measurement, continuous power output up to 6.2-9.8 μW can be achieved under external vibration amplitude of 9.3 m/s2 at a frequency range from 36.3 Hz to 48.3 Hz, which means the bandwidth of the device is about 30% of the central frequency. The broad bandwidth of the device provides a promising application for energy harvesting from the scenarios with random vibration sources. The experimental results indicate that with the dual resonant structure, the vibration-to-electricity energy conversion efficiency can be improved by 97% when an external random vibration with a low frequency filter is applied.

  10. Integrated nanophotonic frequency shifter on the silicon-organic hybrid (SOH) platform for laser vibrometry

    Energy Technology Data Exchange (ETDEWEB)

    Lauermann, M.; Weimann, C.; Palmer, R.; Schindler, P. C. [Institute of Photonics and Quantum Electronics, Karlsruhe Institute of Technology, 76131 Karlsruhe (Germany); Koeber, S.; Freude, W., E-mail: christian.koos@kit.edu; Koos, C., E-mail: christian.koos@kit.edu [Institute of Photonics and Quantum Electronics, Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany and Institute of Microstructure Technology, Karlsruhe Institute of Technology, 76344 Eggenstein-Leopoldshafen (Germany); Rembe, C. [Polytec GmbH, 76337 Waldbronn (Germany)

    2014-05-27

    We demonstrate a waveguide-based frequency shifter on the silicon photonic platform, enabling frequency shifts up to 10 GHz. The device is realized by silicon-organic hybrid (SOH) integration. Temporal shaping of the drive signal allows the suppression of spurious side-modes by more than 23 dB.

  11. Design and Evaluation of Autonomous Hybrid Frequency-Voltage Sensitive Load Controller

    DEFF Research Database (Denmark)

    Douglass, Philip James; Garcia-Valle, Rodrigo; Sossan, Fabrizio;

    2013-01-01

    The paper introduces an algorithm for control of autonomous loads without digital communication interfaces to provide both frequency regulation and voltage regulation services. This hybrid controller can be used to enhance frequency sensitive loads to mitigate line overload arising from reduced...

  12. A New Hybrid Watermarking Algorithm for Images in Frequency Domain

    Directory of Open Access Journals (Sweden)

    AhmadReza Naghsh-Nilchi

    2008-03-01

    Full Text Available In recent years, digital watermarking has become a popular technique for digital images by hiding secret information which can protect the copyright. The goal of this paper is to develop a hybrid watermarking algorithm. This algorithm used DCT coefficient and DWT coefficient to embedding watermark, and the extracting procedure is blind. The proposed approach is robust to a variety of signal distortions, such as JPEG, image cropping and scaling.

  13. A Novel Frequency Restoring Strategy of Hydro-PV Hybrid Microgrid

    DEFF Research Database (Denmark)

    Wei, Feng; Kai, Sun; Guan, Yajuan

    2014-01-01

    The conventional PV systems based on the voltage inverters only inject dispatched power to the utility grid when they work at a grid-connected mode in the hydro-PV hybrid microgrid. Due to the droop method employed for load sharing between generators, as well as the enormous inertia of system....... The existence of frequency steady-state error and the slow active power/frequency dynamic response are inevitable. Therefore, a novel frequency restoring strategy for the hydro-PV hybrid microgrid based on the improved hierarchical control of PV systems is proposed in this paper. The output active power of PV...

  14. A Compact High-Pass Filter Using Hybrid Microstrip/Nonuniform CPW with Dual-Mode Resonant Response

    Directory of Open Access Journals (Sweden)

    Hui Chen

    2016-01-01

    Full Text Available A novel and miniature high-pass filter (HPF based on a hybrid-coupled microstrip/nonuniform coplanar waveguide (CPW resonator is proposed in this article, in which the designed CPW has exhibited a wideband dual-mode characteristic within the desired high-pass frequency range. The implemented filter consists of the top microstrip coupled patches and the bottom modified nonuniformly short-circuited CPW resonator. Simulated results from the electromagnetic (EM analysis software and measured results from a vector network analyzer (VNA show a good agreement. A designed and fabricated prototype filter having a 3 dB cutoff frequency (fc of 5.78 GHz has shown an ultrawide high-pass behavior, which exhibits the highest passband frequency exceeding 4.0fc under the minimum insertion loss (IL 0.75 dB. The printed circuit board (PCB area of the filter is approximately 0.062λg×0.093λg, where λg is the guided wavelength at fc.

  15. Resonant parametric excitations driven by lower-hybrid fields

    Energy Technology Data Exchange (ETDEWEB)

    Villalon, E.

    1980-11-01

    Three-wave parametric excitation in inhomogeneous plasmas is examined in a two-dimensional geometry relevant to supplementary rf heating of tokamaks. The stabilization of resonant parametric excitation due to a linear mismatch in wavenumbers and to the Landau-damping rates of the decay waves is analyzed, assuming that the magnitude of the pump field is constant in time and in the spatial region where the resonant interaction takes place. Both types of temporally growing modes and spatially amplified instabilities are studied, using a WKB analysis. It is shown that either by increasing the strength of the mismatch K' or the width of the pump L, the growth rate of the fastest growing normal mode will decrease. When the excited waves are slightly damped, it is shown that there exists a finite value of the product K'L, such that, above it, no temporal normal modes are excited. The amount of spatial amplification is also reduced by the mismatch in wavenumbers and by the damping rates of the excited waves. Because of the finite spatial extent of the pump electric field, the amplification length is found to be smaller than or equal to L, depending on the strength of the mismatch and damping rates.

  16. Resonant parametric excitations driven by lower-hybrid fields

    Science.gov (United States)

    Villalon, E.

    1980-11-01

    Three-wave parametric excitation in inhomogeneous plasmas is examined in a two-dimensional geometry relevant to supplementary rf heating of tokamaks. The stabilization of resonant parametric excitation due to a linear mismatch in wavenumbers and to the Landau-damping rates of the decay waves is analyzed, assuming that the magnitude of the pump field is constant in time and in the spatial region where the resonant interaction takes place. Both types of temporally growing modes and spatially amplified instabilities are studied, using a WKB analysis. It is shown that by increasing the strength of the mismatch K prime or the width of the pump L, the growth rate of the fastest growing normal mode will decrease. The amount of spatial amplification is also reduced by the mismatch in wavenumbers and by the damping rates of the excited waves. Because of the finite spatial extent of the pump electric field, the amplification length is smaller than or equal to L, depending on the strength of the mismatch and damping rates.

  17. Low Frequency Nuclear Quadrupole Resonance with SQUID Amplifiers

    Science.gov (United States)

    Clarke, John

    1994-02-01

    The dc SQUID (Superconducting QUantum Interference Device) can be configured as an ampli­fier of spin-echos with a noise temperature of approximately 10 mK (f/1 M Hz) at an operating temperature of 1.5 K. A Fourier transform spectrometer based on a SQUID with a superconducting input circuit and operated in a flux-locked loop is used to obtain nuclear quadrupole resonance (NQR) spectra in a broadband m ode over the bandwith 0 -1 M Hz. Spin-echo spectra of 14N in NH4ClO4 reveal sharp NQR resonances, obtained simultaneously, at 17.4, 38.8 and 56.2 kHz. At 1.5 K, the measured longitudinal and transverse relaxation times T1 and T2 for the 38.8 kHz transition are 63 ± 3 ms and 22±2 ms, respectively.

  18. Mechanical control of a microrod-resonator optical frequency comb

    CERN Document Server

    Papp, Scott B; Diddams, Scott A

    2012-01-01

    Robust control and stabilization of optical frequency combs enables an extraordinary range of scientific and technological applications, including frequency metrology at extreme levels of precision, novel spectroscopy of quantum gases and of molecules from visible wavelengths to the far infrared, searches for exoplanets, and photonic waveform synthesis. Here we report on the stabilization of a microresonator-based optical comb (microcomb) by way of mechanical actuation. This represents an important step in the development of microcomb technology, which offers a pathway toward fully-integrated comb systems. Residual fluctuations of our 32.6 GHz microcomb line spacing reach a record stability level of $5\\times10^{-15}$ for 1 s averaging, thereby highlighting the potential of microcombs to support modern optical frequency standards. Furthermore, measurements of the line spacing with respect to an independent frequency reference reveal the effective stabilization of different spectral slices of the comb with a $&...

  19. Architectures for evanescent frequency tuning of microring resonators in micro-opto-electro-mechanical SOI platforms

    Science.gov (United States)

    Shoman, Hossam; Dahlem, Marcus S.

    2015-02-01

    Microring resonators are important elements in a wide variety of optical systems, ranging from optical switches and tunable filterbanks to optical sensors. In these structures, the resonant frequencies are normally controlled by tuning the effective index of refraction. In optical switches and filters, this has traditionally been achieved through electro-optic or thermo-optic effects. In sensors, the effective refractive index is changed by the presence of the measurand. Adding a mechanical degree of freedom to these optical systems allows additional evanescent frequency tuning. In particular, the presence of a cantilever in the near-field of the optical mode can tune the effective refractive index. A specific cantilever displacement can therefore induce a desired resonant frequency shift. Alternatively, a measured shift in the resonant frequency can be associated with a cantilever displacement, and be used for pressure or acceleration sensing. In this paper, we explore a geometry that can be used for controlling the resonant frequency of a microring resonator through evanescent field perturbation, using a cantilever defined in the same silicon layer as the optical waveguides, in a silicon-on-insulator platform. The effects of the lateral gap size between the optical waveguide and the cantilever, and the cantilever vertical displacement, on both the resonant frequency and quality factor of the resonator, are evaluated through finite-difference timedomain computations for wavelengths centered at 1550 nm. The presence of the cantilever in the near-field of the optical mode changes the effective refractive index, resulting in frequency tuning, but also lowers the quality factor due to additional coupling into the membrane.

  20. Fourier Transform Ion Cyclotron Resonance Mass Spectrometry at the Cyclotron Frequency

    Science.gov (United States)

    Nagornov, Konstantin O.; Kozhinov, Anton N.; Tsybin, Yury O.

    2017-02-01

    The phenomenon of ion cyclotron resonance allows for determining mass-to-charge ratio, m/z, of an ensemble of ions by means of measurements of their cyclotron frequency, ω c . In Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS), the ω c quantity is usually unavailable for direct measurements: the resonant state is located close to the reduced cyclotron frequency (ω+), whereas the ω c and the corresponding m/z values may be calculated via theoretical derivation from an experimental estimate of the ω+ quantity. Here, we describe an experimental observation of a new resonant state, which is located close to the ω c frequency and is established because of azimuthally-dependent trapping electric fields of the recently developed ICR cells with narrow aperture detection electrodes. We show that in mass spectra, peaks close to ω+ frequencies can be reduced to negligible levels relative to peaks close to ω c frequencies. Due to reduced errors with which the ω c quantity is obtained, the new resonance provides a means of cyclotron frequency measurements with precision greater than that achieved when ω+ frequency peaks are employed. The described phenomenon may be considered for a development into an FT-ICR MS technology with increased mass accuracy for applications in basic research, life, and environmental sciences.

  1. Fourier Transform Ion Cyclotron Resonance Mass Spectrometry at the Cyclotron Frequency.

    Science.gov (United States)

    Nagornov, Konstantin O; Kozhinov, Anton N; Tsybin, Yury O

    2017-04-01

    The phenomenon of ion cyclotron resonance allows for determining mass-to-charge ratio, m/z, of an ensemble of ions by means of measurements of their cyclotron frequency, ω c . In Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS), the ω c quantity is usually unavailable for direct measurements: the resonant state is located close to the reduced cyclotron frequency (ω+), whereas the ω c and the corresponding m/z values may be calculated via theoretical derivation from an experimental estimate of the ω+ quantity. Here, we describe an experimental observation of a new resonant state, which is located close to the ω c frequency and is established because of azimuthally-dependent trapping electric fields of the recently developed ICR cells with narrow aperture detection electrodes. We show that in mass spectra, peaks close to ω+ frequencies can be reduced to negligible levels relative to peaks close to ω c frequencies. Due to reduced errors with which the ω c quantity is obtained, the new resonance provides a means of cyclotron frequency measurements with precision greater than that achieved when ω+ frequency peaks are employed. The described phenomenon may be considered for a development into an FT-ICR MS technology with increased mass accuracy for applications in basic research, life, and environmental sciences. Graphical Abstract ᅟ.

  2. Stochastic resonance in a single-mode laser driven by frequency modulated signal and coloured noises

    Institute of Scientific and Technical Information of China (English)

    Jin Guo-Xiang; Zhang Liang-Ying; Cao Li

    2009-01-01

    By adding frequency modulated signals to the intensity equation of gain-noise model of the single-mode laser driven by two coloured noises which are correlated, this paper uses the linear approximation method to calculate the power spectrum and signal-to-noise ratio (SNR) of the laser intensity. The results show that the SNR appears typical stochastic resonance with the variation of intensity of the pump noise and quantum noise. As the amplitude of a modulated signal has effects on the SNR, it shows suppression, monotone increasing, stochastic resonance, and multiple stochastic resonance with the variation of the frequency of a carrier signal and modulated signal.

  3. ORNL TNS program: microwave start-up of tokamak plasmas near electron cyclotron and upper hybrid resonances

    Energy Technology Data Exchange (ETDEWEB)

    Peng, Y. K.M.; Borowski, S. K.

    1977-12-01

    The scenario of toroidal plasma start-up with microwave initiation and heating near the electron cyclotron frequency is suggested and examined here. We assume microwave irradiation from the high field side and an anomalously large absorption of the extraordinary waves near the upper hybrid resonance. The dominant electron energy losses are assumed to be due to magnetic field curvature and parallel drifts, ionization of neutrals, cooling by ions, and radiation by low Z impurities. It is shown by particle and energy balance considerations that electron temperatures around 250 eV and densities of 10/sup 12/ to 10/sup 13/ cm/sup -3/ can be maintained, at least in a narrow region near the upper hybrid resonance, with modest microwave powers in the Impurity Study Experiment (ISX) (120 kW at 28 GHz) and The Next Step (TNS) (0.57 MW at 120 GHz). The loop voltages required for start-up from these initial plasmas are also estimated. It is shown that the loop voltage can be reduced by a factor of five to ten from that for unassisted start-up without an increase in the resistive loss in volt-seconds. If this reduction in loop voltage is verified in the ISX experiments, substantial savings in the cost of power supplies for the ohmic heating (OH) and equilibrium field (EF) coils can be realized in future large tokamaks.

  4. Creating Feshbach resonances for ultracold molecule formation with radio-frequency fields

    Science.gov (United States)

    Owens, Daniel J.; Xie, Ting; Hutson, Jeremy M.

    2016-08-01

    We show that radio-frequency (rf) radiation may be used to create Feshbach resonances in ultracold gases of alkali-metal atoms at desired magnetic fields that are convenient for atomic cooling and degeneracy. For the case of 39K+133Cs , where there are no rf-free resonances in regions where Cs may be cooled to degeneracy, we show that a resonance may be created near 21 G with 69.2 MHz rf radiation. This resonance is almost lossless with circularly polarized rf, and the molecules created are long-lived even with plane-polarized rf.

  5. Hybrid Element Method for Mid-Frequency Vibroacoustic Analysis Project

    Data.gov (United States)

    National Aeronautics and Space Administration — In many situations, aerospace structures are subjected to a wide frequency spectrum of mechanical and/or acoustic excitations and therefore, there is a need for the...

  6. Ultraclean wafer-level vacuum-encapsulated silicon ring resonators for timing and frequency references

    Science.gov (United States)

    Xereas, George; Chodavarapu, Vamsy P.

    2016-07-01

    We present the design and development of breath-mode silicon ring resonators fabricated using a commercial pure-play microfabrication process that provides ultraclean wafer-level vacuum-encapsulation. The micromechanical resonators are fabricated in MEMS integrated design for inertial sensors process that is developed by Teledyne DALSA Semiconductor Inc. The ring resonators are designed to operate with a relatively low DC polarization voltage, starting at 5 V, while providing a high frequency-quality factor product. We study the quality of the vacuum packaging using an automated testing setup over an extended time period. We study the effect of motional resistance on the performance of MEMS resonators. The fabricated devices had a resonant frequency of 10 MHz with the quality factor exceeding 8.4×104.

  7. Mapping nanoscale elasticity and dissipation using dual frequency contact resonance AFM

    Energy Technology Data Exchange (ETDEWEB)

    Gannepalli, A; Proksch, R [Asylum Research, Santa Barbara, CA (United States); Yablon, D G; Tsou, A H, E-mail: ganil@asylumresearch.com [Corporate Strategic Research, ExxonMobil Research and Engineering, Annandale, NJ (United States)

    2011-09-02

    We report on a technique that simultaneously quantifies the contact stiffness and dissipation of an AFM cantilever in contact with a surface, which can ultimately be used for quantitative nanomechanical characterization of surfaces. The method is based on measuring the contact resonance frequency using dual AC resonance tracking (DART), where the amplitude and phase of the cantilever response are monitored at two frequencies on either side of the contact resonance. By modelling the tip-sample contact as a driven damped harmonic oscillator, the four measured quantities (two amplitudes and two phases) allow the four model parameters, namely, drive amplitude, drive phase, resonance frequency and quality factor, to be calculated. These mechanical parameters can in turn be used to make quantitative statements about localized sample properties. We apply the method to study the electromechanical coupling coefficients in ferroelectric materials and the storage and loss moduli in viscoelastic materials.

  8. Asymmetric resonance frequency analysis of in-plane electrothermal silicon cantilevers for nanoparticle sensors

    Science.gov (United States)

    Bertke, Maik; Hamdana, Gerry; Wu, Wenze; Marks, Markus; Suryo Wasisto, Hutomo; Peiner, Erwin

    2016-10-01

    The asymmetric resonance frequency analysis of silicon cantilevers for a low-cost wearable airborne nanoparticle detector (Cantor) is described in this paper. The cantilevers, which are operated in the fundamental in-plane resonance mode, are used as a mass-sensitive microbalance. They are manufactured out of bulk silicon, containing a full piezoresistive Wheatstone bridge and an integrated thermal heater for reading the measurement output signal and stimulating the in-plane excitation, respectively. To optimize the sensor performance, cantilevers with different cantilever geometries are designed, fabricated and characterized. Besides the resonance frequency, the quality factor (Q) of the resonance curve has a high influence concerning the sensor sensitivity. Because of an asymmetric resonance behaviour, a novel fitting function and method to extract the Q is created, different from that of the simple harmonic oscillator (SHO). For testing the sensor in a long-term frequency analysis, a phase- locked loop (PLL) circuit is employed, yielding a frequency stability of up to 0.753 Hz at an Allan variance of 3.77 × 10-6. This proposed asymmetric resonance frequency analysis method is expected to be further used in the process development of the next-generation Cantor.

  9. Grid-connected Photovoltaic Micro-inverter with New Hybrid Control LLC Resonant Converter

    DEFF Research Database (Denmark)

    Xingkui, Mao; Qisheng, Huang; Qingbo, Ke;

    2016-01-01

    A high-efficiency photovoltaic (PV) micro-inverter consisting of two power stages i.e. a LLC resonant converter with a new hybrid control scheme and a dc-ac inverter is proposed, studied and designed in this paper. In the first power stage, the new hybrid control combining pulse...... power of 250W and output voltage of 220VAC/50Hz. The experiment shows that the peak efficiency of the PVMI is 95.5%, where efficiency of LLC converter is up to 97.7%, and the MPPT accuracy is more than 99%. Thus the validity of the proposed system structure, design and control method is verified....

  10. Tunable High Q Superconducting Microwave Resonator for Hybrid System with ^87Rb atoms

    Science.gov (United States)

    Kim, Zaeill; Voigt, K. D.; Lee, Jongmin; Hoffman, J. E.; Grover, J. A.; Ravets, S.; Zaretskey, V.; Palmer, B. S.; Hafezi, M.; Taylor, J. M.; Anderson, J. R.; Dragt, A. J.; Lobb, C. J.; Orozco, L. A.; Rolston, S. L.; Wellstood, F. C.

    2012-02-01

    We have developed a frequency tuning system for a ``lumped-element'' thin-film superconducting Al microwave resonator [1] on sapphire intended for coupling to hyperfine ground states of cold trapped ^87Rb atoms, which are separated by about fRb=6.83 GHz. At T=12 mK and on resonance at 6.81 GHz, the loaded quality factor was 120,000. By moving a carefully machined Al pin towards the inductor of the resonator using a piezo stage, we were able to tune the resonance frequency over a range of 35 MHz and within a few kHz of fRb. While measuring the power dependent response of the resonator at each tuned frequency, we observed anomalous decreases in the quality factor at several frequencies. These drops were more pronounced at lower power. We discuss our results, which suggest these resonances are attributable to discrete two-level systems.[4pt] [1] Z. Kim et al., AIP ADVANCES 1, 042107 (2011).

  11. Tunability of resonance frequencies in a superconducting microwave resonator by using SrTiO sub 3 ferroelectric films

    CERN Document Server

    Sok, J; Lee, E H

    1998-01-01

    An applied dc voltage varies the dielectric constant of ferroelectric SrTiO sub 3 films. A tuning mechanism for superconducting microwave resonators was realized by using the variation in the dielectric constant of SrTiO sub 3 films. In order to estimate the values of the capacitance, C, and the loss tangent, tan delta, of SrTiO sub 3 ferroelectric capacitors, we used high-temperature superconducting microwave resonators which were composed of two ports, two poles, and dc bias circuits at the zero-field points. SrTiO sub 3 ferroelectric capacitors successfully controlled the resonant frequency of the resonator. Resonant frequencies of 3.98 GHz and 4.20 GHz were measured at bias voltages of 0 V and 50 V which correspond to capacitance values of 0.94 pF and 0.7pF, respectively. The values of the loss tangent, tan delta sub e sub f sub f , obtained in this measurements, were about 0.01.

  12. Low power very high frequency resonant converter with high step down ratio

    DEFF Research Database (Denmark)

    Madsen, Mickey Pierre; Knott, Arnold; Andersen, Michael A. E.

    2013-01-01

    This paper presents the design of a resonant converter with a switching frequency in the very high frequency range (30-300MHz), a large step down ratio and low output power. This gives the designed converters specifications which are far from previous results. The class E inverter and rectifier...

  13. Frequency-dependent conductivity contrast for tissue characterization using a dual-frequency range conductivity mapping magnetic resonance method.

    Science.gov (United States)

    Kim, Dong-Hyun; Chauhan, Munish; Kim, Min-Oh; Jeong, Woo Chul; Kim, Hyung Joong; Sersa, Igor; Kwon, Oh In; Woo, Eung Je

    2015-02-01

    Electrical conductivities of biological tissues show frequency-dependent behaviors, and these values at different frequencies may provide clinically useful diagnostic information. MR-based tissue property mapping techniques such as magnetic resonance electrical impedance tomography (MREIT) and magnetic resonance electrical property tomography (MREPT) are widely used and provide unique conductivity contrast information over different frequency ranges. Recently, a new method for data acquisition and reconstruction for low- and high-frequency conductivity images from a single MR scan was proposed. In this study, we applied this simultaneous dual-frequency range conductivity mapping MR method to evaluate its utility in a designed phantom and two in vivo animal disease models. Magnetic flux density and B(1)(+) phase map for dual-frequency conductivity images were acquired using a modified spin-echo pulse sequence. Low-frequency conductivity was reconstructed from MREIT data by the projected current density method, while high-frequency conductivity was reconstructed from MREPT data by B(1)(+) mapping. Two different conductivity phantoms comprising varying ion concentrations separated by insulating films with or without holes were used to study the contrast mechanism of the frequency-dependent conductivities related to ion concentration and mobility. Canine brain abscess and ischemia were used as in vivo models to evaluate the capability of the proposed method to identify new electrical properties-based contrast at two different frequencies. The simultaneous dual-frequency range conductivity mapping MR method provides unique contrast information related to the concentration and mobility of ions inside tissues. This method has potential to monitor dynamic changes of the state of disease.

  14. Superconducting Resonator-Rydberg Atom Hybrid in the Strong Coupling Regime

    CERN Document Server

    Yu, Deshui; Valado, Maria Martinez; Hufnagel, Christoph; Kwek, Leong Chuan; Amico, Luigi; Dumke, Rainer

    2016-01-01

    We propose a promising hybrid quantum system, where a highly-excited atom strongly interacts with a superconducting LC oscillator via the electric field of capacitor. An external electrostatic field is applied to tune the energy spectrum of atom. The atomic qubit is implemented by two eigenstates near an avoided-level crossing in the DC Stark map of Rydberg atom. Varying the electrostatic field brings the atomic-qubit transition on- or off-resonance to the microwave resonator, leading to a strong atom-resonator coupling with an extremely large cooperativity. Like the nonlinearity induced by Josephson junctions in superconducting circuits, the large atom-resonator interface disturbs the harmonic potential of resonator, resulting in an artificial two-level particle. Different universal two-qubit logic gates can also be performed on our hybrid system within the space where an atomic qubit couples to a single photon with an interaction strength much larger than any relaxation rates, opening the door to the cavity...

  15. Superconducting resonator and Rydberg atom hybrid system in the strong coupling regime

    Science.gov (United States)

    Yu, Deshui; Landra, Alessandro; Valado, María Martínez; Hufnagel, Christoph; Kwek, Leong Chuan; Amico, Luigi; Dumke, Rainer

    2016-12-01

    We propose a promising hybrid quantum system, where a highly excited atom strongly interacts with a superconducting L C oscillator via the electric field of capacitor. An external electrostatic field is applied to tune the energy spectrum of the atom. The atomic qubit is implemented by two eigenstates near an avoided-level crossing in the dc Stark map of a Rydberg atom. Varying the electrostatic field brings the atomic-qubit transition on or off resonance with respect to the microwave resonator, leading to a strong atom-resonator coupling with an extremely large cooperativity. Like the nonlinearity induced by Josephson junctions in superconducting circuits, the large atom-resonator interface disturbs the harmonic potential of the resonator, resulting in an artificial two-level particle. Different universal two-qubit logic gates can also be performed on our hybrid system within the space where an atomic qubit couples to a single photon with an interaction strength much larger than any relaxation rates, opening the door to the cavity-mediated state transmission.

  16. Bi-Frequency Modulated Quasi-Resonant Converters: Theory and Applications

    Science.gov (United States)

    Zhang, Yuefeng

    1995-01-01

    To avoid the variable frequency operation of quasi -resonant converters, many soft-switching PWM converters have been proposed, all of them require an auxiliary switch, which will increase the cost and complexity of the power supply system. In this thesis, a new kind of technique for quasi -resonant converters has been proposed, which is called the bi-frequency modulation technique. By operating the quasi-resonant converters at two switching frequencies, this technique enables quasi-resonant converters to achieve the soft-switching, at fixed switching frequencies, without an auxiliary switch. The steady-state analysis of four commonly used quasi-resonant converters, namely, ZVS buck, ZCS buck, ZVS boost, and ZCS boost converter has been presented. Using the concepts of equivalent sources, equivalent sinks, and resonant tank, the large signal models of these four quasi -resonant converters were developed. Based on these models, the steady-state control characteristics of BFM ZVS buck, BFM ZCS buck, BFM ZVS boost, and BFM ZCS boost converter have been derived. The functional block and design consideration of the bi-frequency controller were presented, and one of the implementations of the bi-frequency controller was given. A complete design example has been presented. Both computer simulations and experimental results have verified that the bi-frequency modulated quasi-resonant converters can achieve soft-switching, at fixed switching frequencies, without an auxiliary switch. One of the application of bi-frequency modulation technique is for EMI reduction. The basic principle of using BFM technique for EMI reduction was introduced. Based on the spectral analysis, the EMI performances of the PWM, variable-frequency, and bi-frequency modulated control signals was evaluated, and the BFM control signals show the lowest EMI emission. The bi-frequency modulated technique has also been applied to the power factor correction. A BFM zero -current switching boost converter has

  17. Accurate frequency alignment in fabrication of high-order microring-resonator filters.

    Science.gov (United States)

    Sun, Jie; Holzwarth, Charles W; Dahlem, Marcus; Hastings, Jeffrey T; Smith, Henry I

    2008-09-29

    Frequency mismatch in high-order microring-resonator filters is investigated. We demonstrate that this frequency mismatch is caused mainly by the intrafield distortion of scanning-electron-beam-lithography (SEBL) used in fabrication. The intrafield distortion of an SEBL system is measured, and a simple method is also proposed to correct this distortion. By applying this correction method, the average frequency mismatch in second-order microring-resonator filters was reduced from -8.6 GHz to 0.28 GHz.

  18. Graphene-hexagonal boron nitride resonant tunneling diodes as high-frequency oscillators

    Energy Technology Data Exchange (ETDEWEB)

    Gaskell, J.; Fromhold, T. M.; Greenaway, M. T. [School of Physics and Astronomy, University of Nottingham, Nottingham NG7 2RD (United Kingdom); Eaves, L. [School of Physics and Astronomy, University of Nottingham, Nottingham NG7 2RD (United Kingdom); School of Physics and Astronomy, University of Manchester, Manchester M13 9PL (United Kingdom); Novoselov, K. S.; Mishchenko, A. [School of Physics and Astronomy, University of Manchester, Manchester M13 9PL (United Kingdom); Geim, A. K. [School of Physics and Astronomy, University of Manchester, Manchester M13 9PL (United Kingdom); Centre for Mesoscience and Nanotechnology, University of Manchester, Manchester M13 9PL (United Kingdom)

    2015-09-07

    We assess the potential of two-terminal graphene-hexagonal boron nitride-graphene resonant tunneling diodes as high-frequency oscillators, using self-consistent quantum transport and electrostatic simulations to determine the time-dependent response of the diodes in a resonant circuit. We quantify how the frequency and power of the current oscillations depend on the diode and circuit parameters including the doping of the graphene electrodes, device geometry, alignment of the graphene lattices, and the circuit impedances. Our results indicate that current oscillations with frequencies of up to several hundred GHz should be achievable.

  19. Frequency-selective propagation of localized spoof surface plasmons in a graded plasmonic resonator chain

    Science.gov (United States)

    Gao, Zhen; Gao, Fei; Shastri, Kunal Krishnaraj; Zhang, Baile

    2016-01-01

    Localized spoof surface plasmon polaritons (spoof-SPPs) in a graded spoof-plasmonic resonator chain with linearly increasing spacing are experimentally investigated at microwave frequencies. Transmission measurements and direct near-field mappings on this graded chain show that the propagation of localized spoof-SPPs can be cutoff at different positions along the graded chain under different frequencies due to the graded coupling between adjacent resonators. This mechanism can be used to guide localized spoof-SPPs in the graded chain to specific positions depending on the frequency and thereby implement a device that can work as a selective switch in integrated plasmonic circuits. PMID:27149656

  20. Magneto-optic transmittance modulation observed in a hybrid graphene–split ring resonator terahertz metasurface

    Energy Technology Data Exchange (ETDEWEB)

    Zanotto, Simone; Pitanti, Alessandro [NEST, Istituto Nanoscienze–CNR and Scuola Normale Superiore, Piazza San Silvestro 12, 56127 Pisa (Italy); Lange, Christoph; Maag, Thomas; Huber, Rupert [Department of Physics, University of Regensburg, 93040 Regensburg (Germany); Miseikis, Vaidotas; Coletti, Camilla [CNI@NEST, Istituto Italiano di Tecnologia, P.za S. Silvestro 12, 56127 Pisa (Italy); Degl' Innocenti, Riccardo [Cavendish Laboratory, University of Cambridge, J. J. Thomson Avenue, Cambridge CB3 0HE (United Kingdom); Baldacci, Lorenzo [Scuola Superiore Sant' Anna, Institute of Life Sciences, P.za Martiri della Libertà 33, 56127 Pisa (Italy); Tredicucci, Alessandro [NEST, Istituto Nanoscienze-CNR and Dipartimento di Fisica “E. Fermi,” Università di Pisa, L.go Pontecorvo 3, 56127 Pisa (Italy)

    2015-09-21

    By placing a material in close vicinity of a resonant optical element, its intrinsic optical response can be tuned, possibly to a wide extent. Here, we show that a graphene monolayer, spaced a few tenths of nanometers from a split ring resonator metasurface, exhibits a magneto-optical response which is strongly influenced by the presence of the metasurface itself. This hybrid system holds promises in view of thin optical modulators, polarization rotators, and nonreciprocal devices, in the technologically relevant terahertz spectral range. Moreover, it could be chosen as the playground for investigating the cavity electrodynamics of Dirac fermions in the quantum regime.

  1. The Doubly Conditioned Frequency Spectrum Does Not Distinguish between Ancient Population Structure and Hybridization

    OpenAIRE

    Eriksson, Anders; Manica, Andrea

    2014-01-01

    Distinguishing between hybridization and population structure in the ancestral species is a key challenge in our understanding of how permeable species boundaries are to gene flow. The doubly conditioned frequency spectrum (dcfs) has been argued to be a powerful metric to discriminate between these two explanations, and it was used to argue for hybridization between Neandertal and anatomically modern humans. The shape of the observed dcfs for these two species cannot be reproduced by a model ...

  2. Development of a Hybrid Magnetic Resonance and Ultrasound Imaging System

    Directory of Open Access Journals (Sweden)

    Victoria Sherwood

    2014-01-01

    Full Text Available A system which allows magnetic resonance (MR and ultrasound (US image data to be acquired simultaneously has been developed. B-mode and Doppler US were performed inside the bore of a clinical 1.5 T MRI scanner using a clinical 1–4 MHz US transducer with an 8-metre cable. Susceptibility artefacts and RF noise were introduced into MR images by the US imaging system. RF noise was minimised by using aluminium foil to shield the transducer. A study of MR and B-mode US image signal-to-noise ratio (SNR as a function of transducer-phantom separation was performed using a gel phantom. This revealed that a 4 cm separation between the phantom surface and the transducer was sufficient to minimise the effect of the susceptibility artefact in MR images. MR-US imaging was demonstrated in vivo with the aid of a 2 mm VeroWhite 3D-printed spherical target placed over the thigh muscle of a rat. The target allowed single-point registration of MR and US images in the axial plane to be performed. The system was subsequently demonstrated as a tool for the targeting and visualisation of high intensity focused ultrasound exposure in the rat thigh muscle.

  3. A novel approach for the fine tuning of resonance frequency of patch antenna

    Science.gov (United States)

    Mathur, Monika; Singh, Ghanshyam; Bhatnagar, S. K.

    2013-01-01

    When a patch antenna is fabricated, dimensions of the patch may be slightly different from the designed values due to tolerances in the fabrication process. This alters the resonance frequency of the antenna. To overcome this problem this paper presents a new design approach for fine tuning the resonance frequency by dielectric constant engineering. This approach is especially suited to low temperature co-fired ceramic (LTCC) and similar processes where the antenna dielectric is composed of several layers. Composite dielectric constant of this multilayer structure is altered in such a way that the resonant frequency is set back to the designed value. It has been verified that for proposed micro strip antenna (MSA) design, the frequency-area curve follows a quadratic relation with a variable R (Ratio of cavity area to the patch area). This mathematical model is true up to R 1.27. After this saturation effects set in and the curve follows a straight line behavior.≡

  4. Wide frequency range capacitive detection of loss in a metallic cantilever using resonance and relaxation modes.

    Science.gov (United States)

    Richert, Ranko

    2007-05-01

    The impedance of a capacitor which embraces a charged cantilever is used to measure the mechanical properties of the cantilever material. The technique has been tested with an amorphous metallic specimen, but is applicable for many other solids. The material damping can be measured at the resonance frequency of the cantilever via the width of the resonance curve or by recording the ring-down behavior. Additionally, several decades in frequency are accessible below the resonance frequency, where values as low as nu=0.03 Hz are achieved easily. The data are analyzed with a single equation that captures the damping at all frequencies in terms of the material specific Young's modulus E and its loss angle tan delta=E"/E'.

  5. Off-resonance frequency operation for power transfer in a loosely coupled air core transformer

    Science.gov (United States)

    Scudiere, Matthew B

    2012-11-13

    A power transmission system includes a loosely coupled air core transformer having a resonance frequency determined by a product of inductance and capacitance of a primary circuit including a primary coil. A secondary circuit is configured to have a substantially same product of inductance and capacitance. A back EMF generating device (e.g., a battery), which generates a back EMF with power transfer, is attached to the secondary circuit. Once the load power of the back EMF generating device exceeds a certain threshold level, which depends on the system parameters, the power transfer can be achieved at higher transfer efficiency if performed at an operating frequency less than the resonance frequency, which can be from 50% to 95% of the resonance frequency.

  6. Vibro-Shock Dynamics Analysis of a Tandem Low Frequency Resonator-High Frequency Piezoelectric Energy Harvester.

    Science.gov (United States)

    Žižys, Darius; Gaidys, Rimvydas; Ostaševičius, Vytautas; Narijauskaitė, Birutė

    2017-04-27

    Frequency up-conversion is a promising technique for energy harvesting in low frequency environments. In this approach, abundantly available environmental motion energy is absorbed by a Low Frequency Resonator (LFR) which transfers it to a high frequency Piezoelectric Vibration Energy Harvester (PVEH) via impact or magnetic coupling. As a result, a decaying alternating output signal is produced, that can later be collected using a battery or be transferred directly to the electric load. The paper reports an impact-coupled frequency up-converting tandem setup with different LFR to PVEH natural frequency ratios and varying contact point location along the length of the harvester. RMS power output of different frequency up-converting tandems with optimal resistive values was found from the transient analysis revealing a strong relation between power output and LFR-PVEH natural frequency ratio as well as impact point location. Simulations revealed that higher power output is obtained from a higher natural frequency ratio between LFR and PVEH, an increase of power output by one order of magnitude for a doubled natural frequency ratio and up to 150% difference in power output from different impact point locations. The theoretical results were experimentally verified.

  7. Directed assembly of hybrid nanostructures using optically resonant nanotweezers

    Energy Technology Data Exchange (ETDEWEB)

    Erickson, David [Cornell Univ., Ithaca, NY (United States)

    2015-09-09

    This represents the final report for this project. Over the course of the project we have made significant progress in photonically driven nano-assembly including: (1) demonstrating the first direct optical tweezer based manipulation of proteins, (2) the ability to apply optical angular torques to microtubuals and other rod-shaped microparticles, (3) direct assembly of hybrid nanostructures comprising of polymeric nanoparticles and carbon nanotubes and, (4) the ability to drive biological reactions (specifically protein aggregation) that are thermodynamically unfavorable by applying localized optical work. These advancements are described in the list of papers provided in section 2.0 of the below. Summary details are provided in prior year annual reports. We have two additional papers which will be submitted shortly based on the work done under this award. An updated publication list will be provided to the program manager when those are accepted. In this report, we report on a new advancement made in the final project year, which uses the nanotweezer technology to perform direct measurements of particle-surface interactions. Briefly, these measurements are important for characterizing the stability and behavior of colloidal and nanoparticle suspensions and current techniques are limited in their ability to measure piconewton scale interaction forces on sub-micrometer particles due to signal detection limits and thermal noise. In this project year we developed a new technique called “Nanophotonic Force Microscopy” which uses the localized region of exponentially decaying, near-field, light to confine small particles close to a surface. From the statistical distribution of the light intensity scattered by the particle the technique maps out the potential well of the trap and directly quantify the repulsive force between the nanoparticle and the surface. The major advantage of the technique is that it can measure forces and energy wells below the thermal noise

  8. A Frequency Control Approach for Hybrid Power System Using Multi-Objective Optimization

    Directory of Open Access Journals (Sweden)

    Mohammed Elsayed Lotfy

    2017-01-01

    Full Text Available A hybrid power system uses many wind turbine generators (WTG and solar photovoltaics (PV in isolated small areas. However, the output power of these renewable sources is not constant and can diverge quickly, which has a serious effect on system frequency and the continuity of demand supply. In order to solve this problem, this paper presents a new frequency control scheme for a hybrid power system to ensure supplying a high-quality power in isolated areas. The proposed power system consists of a WTG, PV, aqua-electrolyzer (AE, fuel cell (FC, battery energy storage system (BESS, flywheel (FW and diesel engine generator (DEG. Furthermore, plug-in hybrid electric vehicles (EVs are implemented at the customer side. A full-order observer is utilized to estimate the supply error. Then, the estimated supply error is considered in a frequency domain. The high-frequency component is reduced by BESS and FW; while the low-frequency component of supply error is mitigated using FC, EV and DEG. Two PI controllers are implemented in the proposed system to control the system frequency and reduce the supply error. The epsilon multi-objective genetic algorithm ( ε -MOGA is applied to optimize the controllers’ parameters. The performance of the proposed control scheme is compared with that of recent well-established techniques, such as a PID controller tuned by the quasi-oppositional harmony search algorithm (QOHSA. The effectiveness and robustness of the hybrid power system are investigated under various operating conditions.

  9. A frequency up-converting harvester based on internal resonance in 2-DOF nonlinear systems

    Science.gov (United States)

    Wu, Yipeng; Qiu, Jinhao; Ji, Hongli

    2016-11-01

    This paper reports the design and experimental testing of a novel frequency up- converting piezoelectric energy harvester. The harvester is firstly approximated as a 2-degree- of-freedom cubic nonlinear system instead of the general Duffing systems. A 1:3 internal resonance innovatively applied in the frequency up-conversion approach is thoroughly investigated. Finally, the theoretical dynamic model confirmed by the experimental results clearly shows the effect of the frequency up-conversion.

  10. Unprecedented High Long Term Frequency Stability with a Macroscopic Resonator Oscillator

    CERN Document Server

    Grop, Serge; Bourgeois, Pierre-Yves; Bazin, Nicolas; Kersalé, Yann; Oxborrow, Mark; Rubiola, Enrico; Giordano, Vincent

    2010-01-01

    This article reports on the long-term frequency stabilty characterisation of a new type of cryogenic sapphire oscillator using an autonomous pulse-tube cryocooler as its cold source. This new design enables a relative frequency stability of better than 4.5e-15 over one day of integration. This represents to our knowledge the best long-term frequency stability ever obtained with a signal source based on a macroscopic resonator.

  11. Diode-laser frequency stabilization based on the resonant Faraday effect

    Science.gov (United States)

    Wanninger, P.; Valdez, E. C.; Shay, T. M.

    1992-01-01

    The authors present the results of a method for frequency stabilizing laser diodes based on the resonant Faraday effects. A Faraday cell in conjunction with a polarizer crossed with respect to the polarization of the laser diode comprises the intracavity frequency selective element. In this arrangement, a laser pull-in range of 9 A was measured, and the laser operated at a single frequency with a linewidth less than 6 MHz.

  12. Frequency locking of an erbium-doped fiber ring laser to an external fiber Fabry-Perot resonator

    OpenAIRE

    Park, Namkyoo; Dawson, Jay W.; Vahala, Kerry J.

    1993-01-01

    An all-fiber, single-frequency, erbium-doped ring laser has been frequency locked to a resonance peak of an external fiber Fabry-Perot resonator by the Pound-Drever technique. In addition, feedback to the mode selection filter in the laser resonator eliminates occasional mode hopping completely, resulting in frequency-locked, stable, single-frequency operation of the laser for periods of several hours.

  13. Center Frequency Stabilization in Planar Dual-Mode Resonators during Mode-Splitting Control

    Science.gov (United States)

    Naji, Adham; Soliman, Mina H.

    2017-03-01

    Shape symmetry in dual-mode planar electromagnetic resonators results in their ability to host two degenerate resonant modes. As the designer enforces a controllable break in the symmetry, the degeneracy is removed and the two modes couple, exchanging energy and elevating the resonator into its desirable second-order resonance operation. The amount of coupling is controlled by the degree of asymmetry introduced. However, this mode coupling (or splitting) usually comes at a price. The centre frequency of the perturbed resonator is inadvertently drifted from its original value prior to coupling. Maintaining centre frequency stability during mode splitting is a nontrivial geometric design problem. In this paper, we analyse the problem and propose a novel method to compensate for this frequency drift, based on field analysis and perturbation theory, and we validate the solution through a practical design example and measurements. The analytical method used works accurately within the perturbational limit. It may also be used as a starting point for further numerical optimization algorithms, reducing the required computational time during design, when larger perturbations are made to the resonator. In addition to enabling the novel design example presented, it is hoped that the findings will inspire akin designs for other resonator shapes, in different disciplines and applications.

  14. Center Frequency Stabilization in Planar Dual-Mode Resonators during Mode-Splitting Control

    Science.gov (United States)

    Naji, Adham; Soliman, Mina H.

    2017-01-01

    Shape symmetry in dual-mode planar electromagnetic resonators results in their ability to host two degenerate resonant modes. As the designer enforces a controllable break in the symmetry, the degeneracy is removed and the two modes couple, exchanging energy and elevating the resonator into its desirable second-order resonance operation. The amount of coupling is controlled by the degree of asymmetry introduced. However, this mode coupling (or splitting) usually comes at a price. The centre frequency of the perturbed resonator is inadvertently drifted from its original value prior to coupling. Maintaining centre frequency stability during mode splitting is a nontrivial geometric design problem. In this paper, we analyse the problem and propose a novel method to compensate for this frequency drift, based on field analysis and perturbation theory, and we validate the solution through a practical design example and measurements. The analytical method used works accurately within the perturbational limit. It may also be used as a starting point for further numerical optimization algorithms, reducing the required computational time during design, when larger perturbations are made to the resonator. In addition to enabling the novel design example presented, it is hoped that the findings will inspire akin designs for other resonator shapes, in different disciplines and applications. PMID:28272422

  15. Resonant and nonresonant magnetoelectric effects in multilayer composites at microwave frequencies

    Science.gov (United States)

    Petrov, V. M.; Bichurin, M. I.; Kiliba, Yu. V.; Srinivasan, G.

    2002-03-01

    A phenomenological theory is presented on the effect of an external electric field on magnetic and magnetoelectric (ME) susceptibilities of ferroelectric/ferromagnetic composites, such as lithium ferrite lead zirconate titanate (PZT), at microwave frequencies. Expressions have been obtained relating the magnetic susceptibility tensor components of the composite (symmetry point group 3m and 4mm) to ME coupling constants. Estimates of linear and bilinear ME susceptibilities at high frequencies are given and are extended to include ferromagnetic resonance (FMR) conditions [1]. Both magnetic and ME susceptibilities reveal a resonance in the electric field dependence. Three methods for measurements of ME susceptibility at microwave frequencies are considered: electric dipole transitions, resonance ME effects at ferromagnetic resonance and off-resonance method. Using the theory and experimental data on ferromagnetic resonance line shift in external electric field, the ME constants for lithium ferrite-PZT multilayer composite are determined. The theory is useful for measurements of ME constants and for the design and analysis of electrically controlled high frequency magnetic devices. - work supported by a grant from the National Science Foundation (DMR-0072144) 1. M.I. Bichurin, I. A. Kornev, V. M. Petrov, A. S. Tatarenko, Yu. V. Kiliba, and G. Srinivasan, Phys. Rev. B 64, 094409 (2001).

  16. Partially end-pumped Nd:YAG slab laser with a hybrid resonator.

    Science.gov (United States)

    Du, K; Wu, N; Xu, J; Giesekus, J; Loosen, P; Poprawe, R

    1998-03-01

    A Nd:YAG slab is partially end pumped by a diode laser stack with three diode laser bars. The pumped volume has a rectangular cross section. A hybrid resonator, which is stable in the plane of small dimension and is off-axis unstable in the plane of large dimension of the gain cross section, was used to yield highly efficient laser operation at diffraction-limited beam quality. The laser design and experimental results are reported.

  17. Polarization dependence of the metamagnetic resonance of cut-wire-pair structure by using plasmon hybridization

    Energy Technology Data Exchange (ETDEWEB)

    Dung, Nguyen Van; Yoo, Young Joon; Lee, Young Pak [Hanyang University, Seoul (Korea, Republic of); Tung, Nguyen Thanh [KU Leuven, Leuven (Belgium); Tung, Bui Son; Lam, Vu Dinh [Vietnam Academy of Science and Technology, Hanoi (Viet Nam)

    2014-07-15

    The influence of lattice constants on the electromagnetic behavior of a cut-wire-pair (CWP) structure has been elucidated. In this report, we performed both simulations and experiments to determine the influence of polarization on the metamagnetic resonance of the CWP structure. The key finding is the result of an investigation on the plasmon hybridization between the two CWs, which showed that the polarization of the incident wave was affected. Good agreement between numerical simulation and measurement is achieved.

  18. Development of a surface plasmon resonance and nanomechanical biosensing hybrid platform for multiparametric reading

    Science.gov (United States)

    Alvarez, Mar; Fariña, David; Escuela, Alfonso M.; Sendra, Jose Ramón; Lechuga, Laura M.

    2013-01-01

    We have developed a hybrid platform that combines two well-known biosensing technologies based on quite different transducer principles: surface plasmon resonance and nanomechanical sensing. The new system allows the simultaneous and real-time detection of two independent parameters, refractive index change (Δn), and surface stress change (Δσ) when a biomolecular interaction takes place. Both parameters have a direct relation with the mass coverage of the sensor surface. The core of the platform is a common fluid cell, where the solution arrives to both sensor areas at the same time and under the same conditions (temperature, velocity, diffusion, etc.).The main objective of this integration is to achieve a better understanding of the physical behaviour of the transducers during sensing, increasing the information obtained in real time in one single experiment. The potential of the hybrid platform is demonstrated by the detection of DNA hybridization.

  19. Development of a surface plasmon resonance and nanomechanical biosensing hybrid platform for multiparametric reading.

    Science.gov (United States)

    Alvarez, Mar; Fariña, David; Escuela, Alfonso M; Sendra, Jose Ramón; Lechuga, Laura M

    2013-01-01

    We have developed a hybrid platform that combines two well-known biosensing technologies based on quite different transducer principles: surface plasmon resonance and nanomechanical sensing. The new system allows the simultaneous and real-time detection of two independent parameters, refractive index change (Δn), and surface stress change (Δσ) when a biomolecular interaction takes place. Both parameters have a direct relation with the mass coverage of the sensor surface. The core of the platform is a common fluid cell, where the solution arrives to both sensor areas at the same time and under the same conditions (temperature, velocity, diffusion, etc.).The main objective of this integration is to achieve a better understanding of the physical behaviour of the transducers during sensing, increasing the information obtained in real time in one single experiment. The potential of the hybrid platform is demonstrated by the detection of DNA hybridization.

  20. A model for precalculus students to determine the resonance frequency of a trumpet mouthpiece

    Science.gov (United States)

    Chapman, Robert C.

    2004-05-01

    The trumpet mouthpiece as a Helmholtz resonator is used to show precalculus students a mathematical model for determining the approximate resonance frequency of the mouthpiece. The mathematics is limited to algebra and trigonometry. Using a system of mouthpieces that have interchangeable cups and backbores, students are introduced to the acoustics of this resonator. By gathering data on 51 different configurations of mouthpieces, the author modifies the existing Helmholtz resonator equation to account for both cup volumes and backbore configurations. Students then use this model for frequency predictions. Included are how to measure the different physical attributes of a trumpet mouthpiece at minimal cost. This includes methods for measuring cup volume, backbore volume, backbore length, throat area, etc. A portion of this phase is de-signed for students to become acquainted with some of the vocabulary of acoustics and the physics of sound.

  1. Frequency shifts of resonant modes of the Sun due to near-surface convective scattering

    CERN Document Server

    Bhattacharya, Jishnu; Antia, H M

    2015-01-01

    Measurements of oscillation frequencies of the Sun and stars can provide important independent constraints on their internal structure and dynamics. Seismic models of these oscillations are used to connect structure and rotation of the star to its resonant frequencies, which are then compared with observations, the goal being that of minimizing the difference between the two. Even in the case of the Sun, for which structure models are highly tuned, observed frequencies show systematic deviations from modeled frequencies, a phenomenon referred to as the "surface term." The dominant source of this systematic effect is thought to be vigorous near-surface convection, which is not well accounted for in both stellar modeling and mode-oscillation physics. Here we bring to bear the method of homogenization, applicable in the asymptotic limit of large wavelengths (in comparison to the correlation scale of convection), to characterize the effect of small-scale surface convection on resonant-mode frequencies in the Sun....

  2. Neural Network Model Of The PXIE RFQ Cooling System and Resonant Frequency Response

    Energy Technology Data Exchange (ETDEWEB)

    Edelen, Auralee [Fermilab; Biedron, Sandra [Colorado State U., Fort Collins; Bowring, Daniel [Fermilab; Chase, Brian [Fermilab; Edelen, Jonathan [Fermilab; Milton, Stephen [Colorado State U., Fort Collins; Steimel, Jim [Fermilab

    2016-06-01

    As part of the PIP-II Injector Experiment (PXIE) accel-erator, a four-vane radio frequency quadrupole (RFQ) accelerates a 30-keV, 1-mA to 10-mA H' ion beam to 2.1 MeV. It is designed to operate at a frequency of 162.5 MHz with arbitrary duty factor, including continuous wave (CW) mode. The resonant frequency is controlled solely by a water-cooling system. We present an initial neural network model of the RFQ frequency response to changes in the cooling system and RF power conditions during pulsed operation. A neural network model will be used in a model predictive control scheme to regulate the resonant frequency of the RFQ.

  3. Frequency Stability of Atomic Clocks Based on Coherent Population Trapping Resonance in 85Rb

    Institute of Scientific and Technical Information of China (English)

    LIU Lu; GUO Tao; DENG Ke; LIU Xin-Yuan; CHEN Xu-Zong; WANG Zhong

    2007-01-01

    An atomic clock system based on coherent population trapping (CPT) resonance in 85Rb is reported, while most past works about the CPT clock are in 87Rb. A new modulation method (full-hyperfine-frequency-splitting modulation) is presented to reduce the effect of light shift to improve the frequency stability of the CPT clock in 85Rb. The experimental results show that the short-term frequency stability of the CPT clock in 85Rb is in the order of 10-10/s and the long-term frequency stability can achieve 1.5 × 10-11 /80000s, which performs as well as 87Rb in CPT resonance. This very good frequency stability performance associated with the low-cost and low-power properties of 85Rb indicates that an atomic clock based on CPT in 85 Rb should be a promising candidate for making the chip scale atomic clock.

  4. Nanoscale Subsurface Imaging of Nanocomposites via Resonant Difference-Frequency Atomic Force Ultrasonic Microscopy

    Science.gov (United States)

    Cantrell, Sean A.; Cantrell, John H.; Lillehei, Peter T.

    2007-01-01

    A scanning probe microscope methodology, called resonant difference-frequency atomic force ultrasonic microscopy (RDF-AFUM), has been developed. The method employs an ultrasonic wave launched from the bottom of a sample while the cantilever of an atomic force microscope engages the sample top surface. The cantilever is driven at a frequency differing from the ultrasonic frequency by one of the contact resonance frequencies of the cantilever. The nonlinear mixing of the oscillating cantilever and the ultrasonic wave at the sample surface generates difference-frequency oscillations at the cantilever contact resonance. The resonance-enhanced difference-frequency signals are used to create amplitude and phase-generated images of nanoscale near-surface and subsurface features. RDF-AFUM phase images of LaRC-CP2 polyimide polymer containing embedded nanostructures are presented. A RDF-AFUM micrograph of a 12.7 micrometer thick film of LaRC-CP2 containing a monolayer of gold nanoparticles embedded 7 micrometers below the specimen surface reveals the occurrence of contiguous amorphous and crystalline phases within the bulk of the polymer and a preferential growth of the crystalline phase in the vicinity of the gold nanoparticles. A RDF-AFUM micrograph of LaRC-CP2 film containing randomly dispersed carbon nanotubes reveals the growth of an interphase region at certain nanotube-polymer interfaces.

  5. A small-form-factor piezoelectric vibration energy harvester using a resonant frequency-down conversion

    Directory of Open Access Journals (Sweden)

    Kyung Ho Sun

    2014-10-01

    Full Text Available While environmental vibrations are usually in the range of a few hundred Hertz, small-form-factor piezoelectric vibration energy harvesters will have higher resonant frequencies due to the structural size effect. To address this issue, we propose a resonant frequency-down conversion based on the theory of dynamic vibration absorber for the design of a small-form-factor piezoelectric vibration energy harvester. The proposed energy harvester consists of two frequency-tuned elastic components for lowering the first resonant frequency of an integrated system but is so configured that an energy harvesting beam component is inverted with respect to the other supporting beam component for a small form factor. Furthermore, in order to change the unwanted modal characteristic of small separation of resonant frequencies, as is the case with an inverted configuration, a proof mass on the supporting beam component is slightly shifted toward a second proof mass on the tip of the energy harvesting beam component. The proposed small-form-factor design capability was experimentally verified using a fabricated prototype with an occupation volume of 20 × 39 × 6.9 mm3, which was designed for a target frequency of as low as 100 Hz.

  6. A small-form-factor piezoelectric vibration energy harvester using a resonant frequency-down conversion

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Kyung Ho; Kim, Young-Cheol [Department of System Dynamics, Korea Institute of Machinery and Materials, 156 Gajeongbuk-Ro, Yuseong-Gu, Daejeon 305-343 (Korea, Republic of); Kim, Jae Eun, E-mail: jekim@cu.ac.kr [School of Mechanical and Automotive Engineering, Catholic University of Daegu, 13-13 Hayang-Ro, Hayang-Eup, Gyeongsan-Si, Gyeongsangbuk-Do 712-702 (Korea, Republic of)

    2014-10-15

    While environmental vibrations are usually in the range of a few hundred Hertz, small-form-factor piezoelectric vibration energy harvesters will have higher resonant frequencies due to the structural size effect. To address this issue, we propose a resonant frequency-down conversion based on the theory of dynamic vibration absorber for the design of a small-form-factor piezoelectric vibration energy harvester. The proposed energy harvester consists of two frequency-tuned elastic components for lowering the first resonant frequency of an integrated system but is so configured that an energy harvesting beam component is inverted with respect to the other supporting beam component for a small form factor. Furthermore, in order to change the unwanted modal characteristic of small separation of resonant frequencies, as is the case with an inverted configuration, a proof mass on the supporting beam component is slightly shifted toward a second proof mass on the tip of the energy harvesting beam component. The proposed small-form-factor design capability was experimentally verified using a fabricated prototype with an occupation volume of 20 × 39 × 6.9 mm{sup 3}, which was designed for a target frequency of as low as 100 Hz.

  7. Controlled Electromagnetically Induced Transparency and Fano Resonances in Hybrid BEC-Optomechanics

    CERN Document Server

    Yasir, Kashif Ammar

    2015-01-01

    We investigate the controllability of electromagnetically induced transparency (EIT) and Fano resonances in hybrid optomechanical system which is composed of cigar-shaped Bose-Einstein condensate (BEC) trapped inside high-finesse Fabry-P\\'erot cavity driven by a single mode optical field along the cavity axis and a transverse pump field. Here, transverse optical field is used to control the phenomenon of EIT in the output probe laser field. The output probe laser field can efficiently be amplified or attenuated depending on the strength of transverse optical field. Furthermore, we demonstrate the existence of Fano resonances in the output field spectra and discuss the controlled behavior of Fano resonances using transverse optical field. To observe this phenomena in laboratory, we suggest a certain set of experimental parameters.

  8. Hybrid nanocavities for resonant enhancement of color center emission in diamond

    CERN Document Server

    Barclay, Paul E; Santori, Charles; Faraon, Andrei; Beausoleil, Raymond G

    2011-01-01

    Resonantly enhanced emission from the zero phonon line of a diamond nitrogen-vacancy (NV) center in single crystal diamond is demonstrated experimentally using a hybrid whispering gallery mode nanocavity. A 900 nm diameter ring nanocavity formed from gallium phosphide, whose sidewalls extend into a diamond substrate, is tuned onto resonance at low-temperature with the zero phonon line of a negatively charged NV center implanted near the diamond surface. When the nanocavity is on resonance, the zero phonon line intensity is enhanced by approximately an order of magnitude, and the spontaneous emission lifetime of the NV is reduced as much as 18%, corresponding to a 6.3X enhancement of emission in the zero photon line.

  9. Frequency map analysis of resonances in a nonlinear lattice with space charge

    Energy Technology Data Exchange (ETDEWEB)

    Turchetti, G. E-mail: turchetti@bo.infn.it; Bazzani, A.; Bergamini, F.; Rambaldi, S.; Hofmann, I.; Bongini, L.; Franchetti, G

    2001-05-21

    In storage rings for heavy ion fusion beam losses must be minimized. During bunch compression high space charge is reached and the reciprocal effects between the collective modes of the beam and the single particle lattice nonlinearities must be considered to understand the problem of resonance crossing and halo formation. We show that the frequency map analysis of particle in core models gives an adequate description of the resonance network and of the chaotic regions where the halo particles can diffuse.

  10. Impedance-Based High Frequency Resonance Analysis of DFIG System in Weak Grids

    OpenAIRE

    Song, Yipeng; Wang, Xiongfei; Blaabjerg, Frede

    2017-01-01

    The impedance-based model of Doubly Fed Induction Generator (DFIG) systems, including the rotor part (Rotor Side Converter (RSC) and induction machine), and the grid part (Grid Side Converter (GSC) and its output filter), has been developed for analysis and mitigation of the Sub- Synchronous Resonance (SSR). However, the High Frequency Resonance (HFR) of DFIG systems due to the impedance interaction between DFIG system and parallel compensated weak network is often overlooked. This paper thus...

  11. Resonant magneto-optic rotation for magnetometry using autonomous frequency stabilization

    CERN Document Server

    Pradhan, S; Behera, R; Poornima,; Dasgupta, K

    2014-01-01

    The operation of a high sensitive atomic magnetometer using resonant elliptically polarized light is demonstrated. The experimental geometry allows autonomous frequency stabilization of the laser, thereby offers compact operation of the overall device. The magnetometry is based on measurement of the zero magnetic field resonance in degenerate two level system using polarimetric detection and has a preliminary sensitivity of <10 pT/Hz1/2 @ 1 Hz.

  12. Design of LCL Filters With LCL Resonance Frequencies Beyond the Nyquist Frequency for Grid-Connected Converters

    DEFF Research Database (Denmark)

    Tang, Yi; Yao, Wenli; Loh, Poh Chiang

    2016-01-01

    , and this observation is so far not discussed in the literature. In this case, a very cost-effective LCL filter design can be achieved for the grid-connected converters, whose dominant switching harmonics may appear at double the switching frequency, e.g., in unipolar-modulated three-level full-bridge converters and 12......This paper proposes a novel LCL filter design method and its current control for grid-connected converters. With the proposed design method, it is possible to set the resonance frequency of the LCL filter to be higher than the Nyquist frequency, i.e., half of the system sampling frequency......-switch-based three-phase pulsewidth-modulated converters. Moreover, a single-loop current control strategy is proposed for the designed LCL filter, and the control system is inherently stable without introducing any passive or active damping. Based on the new stability region, two LCL filter design...

  13. Design of LCL-filters with LCL resonance frequencies beyond the Nyquist frequency for grid-connected inverters

    DEFF Research Database (Denmark)

    Tang, Yi; Yao, Wenli; Loh, Poh Chiang

    2015-01-01

    , and this observation is so far not discussed in the literature. In this case, very cost-effective LCL-filter design can be achieved for grid-connected converters whose dominant switching harmonics may appear at double of the switching frequency, e.g. in unipolar modulated three-level full bridge converters and 12......This paper proposes a novel LCL-filter design method and its current control for grid-connected converters. With the proposed design method, it is possible to set the resonance frequency of the LCL-filter to be higher than the Nyquist frequency, i.e. half of the system sampling frequency......-switch based three-phase pulse-width modulated (PWM) converters. Moreover, a single-loop current control strategy is proposed for the designed LCL-filter, and the control system is inherently stable without introducing any passive or active damping. Experimental results, showing the high quality output...

  14. High Frequency Resonance Damping of DFIG based Wind Power System under Weak Network

    DEFF Research Database (Denmark)

    Song, Yipeng; Wang, Xiongfei; Blaabjerg, Frede

    2017-01-01

    When operating in a micro or weak grid which has a relatively large network impedance, the Doubly Fed Induction Generator (DFIG) based wind power generation system is prone to suffer high frequency resonance due to the impedance interaction between DFIG system and the parallel compensated network...... (series RL + shunt C). In order to improve the performance of the DFIG system as well as other units and loads connected to the weak grid, the high frequency resonance needs to be effectively damped. In this paper, the proposed active damping control strategy is able to implement effective damping either...... in the Rotor Side Converter (RSC) or in the Grid Side Converter (GSC), through the introduction of virtual positive capacitor or virtual negative inductor to reshape the DFIG system impedance and mitigate the high frequency resonance. A detailed theoretical explanation on the virtual positive capacitor...

  15. High Frequency Resonance Damping of DFIG based Wind Power System under Weak Network

    DEFF Research Database (Denmark)

    Song, Yipeng; Wang, Xiongfei; Blaabjerg, Frede

    2017-01-01

    When operating in a micro or weak grid which has a relatively large network impedance, the Doubly Fed Induction Generator (DFIG) based wind power generation system is prone to suffer high frequency resonance due to the impedance interaction between DFIG system and the parallel compensated network...... (series RL + shunt C). In order to improve the performance of the DFIG system as well as other units and loads connected to the weak grid, the high frequency resonance needs to be effectively damped. In this paper, the proposed active damping control strategy is able to implement effective damping either...... in the Rotor Side Converter (RSC) or in the Grid Side Converter (GSC), through the introduction of virtual positive capacitor or virtual negative inductor to reshape the DFIG system impedance and mitigate the high frequency resonance. A detailed theoretical explanation on the virtual positive capacitor...

  16. Theory and experiment on resonant frequencies of liquid-air interfaces trapped in microfluidic devices.

    Science.gov (United States)

    Chindam, Chandraprakash; Nama, Nitesh; Ian Lapsley, Michael; Costanzo, Francesco; Jun Huang, Tony

    2013-11-21

    Bubble-based microfluidic devices have been proven to be useful for many biological and chemical studies. These bubble-based microdevices are particularly useful when operated at the trapped bubbles' resonance frequencies. In this work, we present an analytical expression that can be used to predict the resonant frequency of a bubble trapped over an arbitrary shape. Also, the effect of viscosity on the dispersion characteristics of trapped bubbles is determined. A good agreement between experimental data and theoretical results is observed for resonant frequency of bubbles trapped over different-sized rectangular-shaped structures, indicating that our expression can be valuable in determining optimized operational parameters for many bubble-based microfluidic devices. Furthermore, we provide a close estimate for the harmonics and a method to determine the dispersion characteristics of a bubble trapped over circular shapes. Finally, we present a new method to predict fluid properties in microfluidic devices and complement the explanation of acoustic microstreaming.

  17. Low frequency wireless power transfer using modified parallel resonance matching at a complex load

    Directory of Open Access Journals (Sweden)

    Artit Rittiplang

    2016-10-01

    Full Text Available In the Impedance Matching (IM condition of Wireless Power Transfer (WPT, series resonant and strong coupling structures have been widely studied which operate at an optimal parameter, a resistive load, and the high resonant frequency of greater than 1 MHz. However, i The optimal parameter (particular value limits the design, ii the common loads are complex, iii The high frequency RF sources are usually inefficient. This paper presents a modified parallel resonant structure that can operate at a low frequency of 15 kHz without an optimal parameter under the IM condition with a complex load, and the calculated efficiency is equal to 71.2 % at 5-cm transfer distance.

  18. Cellular-foam polypropylene ferroelectrets with increased film thickness and reduced resonance frequency

    Science.gov (United States)

    Sborikas, Martynas; Wegener, Michael

    2013-12-01

    Ferroelectrets are piezoelectric materials suitable for acoustic applications such as airborne ultrasonic transducers. Typical ferroelectrets exhibit resonance frequencies in the high kHz to low MHz range. In order to decrease the transducer resonance frequencies to the low kHz range, processes such as gas-diffusion expansion and electric charging were adjusted to cellular films which are initially twice as thick as in earlier studies. The demonstrated film expansion and electric charging lead to mechanically soft cellular structures which show high piezoelectric activities with coefficients up to 130 pC/N. Due to the simultaneously increased film thicknesses, the resonance frequencies are lowered down to about 233 kHz.

  19. Spoof Plasmon Hybridization

    CERN Document Server

    Zhang, Jingjing; Luo, Yu; Shen, Xiaopeng; Maier, Stefan A; Cui, Tie Jun

    2016-01-01

    Plasmon hybridization between closely spaced nanoparticles yields new hybrid modes not found in individual constituents, allowing for the engineering of resonance properties and field enhancement capabilities of metallic nanostructure. Experimental verifications of plasmon hybridization have been thus far mostly limited to optical frequencies, as metals cannot support surface plasmons at longer wavelengths. Here, we introduce the concept of 'spoof plasmon hybridization' in highly conductive metal structures and investigate experimentally the interaction of localized surface plasmon resonances (LSPR) in adjacent metal disks corrugated with subwavelength spiral patterns. We show that the hybridization results in the splitting of spoof plasmon modes into bonding and antibonding resonances analogous to molecular orbital rule and plasmonic hybridization in optical spectrum. These hybrid modes can be manipulated to produce enormous field enhancements (larger than 5000) by tuning the separation between disks or alte...

  20. Developing a hybrid wind instrument: using a loudspeaker to couple a theoretical exciter to a real resonator

    OpenAIRE

    Buys, K.; D. Sharp; Laney, R.

    2014-01-01

    A hybrid wind instrument generates self-sustained sounds via a real-time interaction between a computed physical model of an exciter (such as human lips interacting with a mouthpiece) and a real acoustic resonator. Successful implementation of a hybrid wind instrument will not only open up new musical possibilities but will also provide a valuable research tool. However, attempts to produce a hybrid instrument have so far fallen short, in terms of both the accuracy and the variation in the so...

  1. Heating and current drive by fast wave in lower hybrid range of frequency on Versatile Experiment Spherical Torus

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sun-Ho, E-mail: shkim95@kaeri.re.kr [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Jeong, Seung-Ho [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Lee, Hyunwoo; Lee, Byungje [KwangWoon University, Seoul (Korea, Republic of); Jo, Jong-Gab; Lee, Hyun-Young; Hwang, Yong-Seok [Seoul National University, Seoul (Korea, Republic of)

    2016-11-01

    An efficient heating and current drive scheme in central or off-axis region is required to realize steady state operation of tokamak fusion reactor. And the fast wave in lower hybrid resonance range of frequency could be a candidate for such an efficient scheme in high density and high temperature plasmas. Its propagation and absorption characteristics including current drive and coupling efficiency are analyzed for Versatile Experiment Spherical Torus and it is shown that it is possible to drive current with considerable current drive efficiency in central region. The RF system for the fast wave experiment including klystron, transmission systems, inter-digital antenna, and RF diagnostics are given as well in this paper.

  2. Frequency Stability of Hierarchically Controlled Hybrid Photovoltaic-Battery-Hydropower Microgrids

    DEFF Research Database (Denmark)

    Guan, Yajuan; Quintero, Juan Carlos Vasquez; Guerrero, Josep M.;

    2015-01-01

    Hybrid photovoltaic (PV) -battery-hydropower microgrids can be considered to enhance electricity accessibility and availability in remote areas. However, the coexistence of different renewable energy sources with different inertias and control strategies may affect system stability. In this paper......, a hierarchical controller for hybrid PV-battery-hydropower microgrid is proposed in order to achieve the parallel operation of hydropower and PV-battery system with different rates, and to guarantee power sharing performance among PV voltage controlled inverters, while the required power to hydropower...... is derived to analyze the system stability of the hybrid microgrid. The simulation results show system frequency and voltage stability for a hybrid microgrid demonstration which includes 2 MWp PV installations, a 15.2 MWh battery system, and a 12.8 MVA hydropower plant. Experimental results on a small...

  3. Analytical Model of Fixed-Frequency Variable Duty-Cycle Controlled LLC Resonant Converter

    DEFF Research Database (Denmark)

    Shen, Yanfeng; Wang, Huai; Blaabjerg, Frede;

    2016-01-01

    For LLC resonant converters, the fixed-frequency variable duty-cycle control is usually combined with the variable frequency (VF) control to widen the gain range, improve light-load efficiency or suppress the inrush current during start-up. However, both the operation mode and the steady...... is derived, which makes the fast and automatic design optimization possible. The critical characteristics, such as dc voltage gain, peak resonant current, peak capacitor voltage, rms current as well as the constraint conditions for the operation mode are developed and verified with simulation...

  4. Arnold tongues for a resonant injection-locked frequency divider: analytical and numerical results

    CERN Document Server

    Bartuccelli, Michele V; Gentile, Guido; Schilder, Frank

    2009-01-01

    In this paper we consider a resonant injection-locked frequency divider which is of interest in electronics, and we investigate the frequency locking phenomenon when varying the amplitude and frequency of the injected signal. We study both analytically and numerically the structure of the Arnold tongues in the frequency-amplitude plane. In particular, we provide exact analytical formulae for the widths of the tongues, which correspond to the plateaux of the devil's staircase picture. The results account for numerical and experimental findings presented in the literature for special driving terms and, additionally, extend the analysis to a more general setting.

  5. Piezoelectrically tunable resonance frequency beam utilizing a stress-sensitive film

    Energy Technology Data Exchange (ETDEWEB)

    Thundat, Thomas G. (Knoxville, TN); Wachter, Eric A. (Oak Ridge, TN)

    2002-01-01

    Methods and apparatus for detecting particular frequencies of acoustic vibration utilize a piezoelectrically-tunable beam element having a piezoelectric layer and a stress sensitive layer and means for providing an electrical potential across the piezoelectric layer to controllably change the beam's stiffness and thereby change its resonance frequency. It is then determined from the response of the piezoelectrically-tunable beam element to the acoustical vibration to which the beam element is exposed whether or not a particular frequency or frequencies of acoustic vibration are detected.

  6. Piezoelectrically tunable resonance frequency beam utilizing a stress-sensitive film

    Science.gov (United States)

    Thundat, Thomas G.; Wachter, Eric A.

    2002-01-01

    Methods and apparatus for detecting particular frequencies of acoustic vibration utilize a piezoelectrically-tunable beam element having a piezoelectric layer and a stress sensitive layer and means for providing an electrical potential across the piezoelectric layer to controllably change the beam's stiffness and thereby change its resonance frequency. It is then determined from the response of the piezoelectrically-tunable beam element to the acoustical vibration to which the beam element is exposed whether or not a particular frequency or frequencies of acoustic vibration are detected.

  7. Hybrid time/frequency domain modeling of nonlinear components

    DEFF Research Database (Denmark)

    Wiechowski, Wojciech Tomasz; Lykkegaard, Jan; Bak, Claus Leth

    2007-01-01

    model is used as a basis for its implementation. First, the linear network part is replaced with an ideal voltage source and a time domain (EMT) simulation is performed. During the initial oscillations, harmonic content of the converter currents is calculated at every period by a fast Fourier transform...... and the periodic steady state is identified. Obtained harmonic currents are assigned to current sources and used in the frequency domain calculation in the linear network. The obtained three-phase bus voltage is then inverse Fourier transformed and assigned to the voltage source and the time domain simulation...... is performed again. This process is repeated until the change in the magnitudes and phase angles of the fundamental and low order characteristic harmonics of the bus voltage is smaller then predefined precision indexes. The method is verified against precise time domain simulation. The convergence properties...

  8. Effects of aeration frequency on leachate quality and waste in simulated hybrid bioreactor landfills.

    Science.gov (United States)

    Ko, Jae Hac; Ma, Zeyu; Jin, Xiao; Xu, Qiyong

    2016-12-01

    Research has been conducted to investigate the effects of daily aeration frequency on leachate quality and waste settlement in simulated hybrid landfill bioreactors. Four laboratory-scale reactors were constructed and operated for about 10 months to simulate different bioreactor operations, including one anaerobic bioreactor and three hybrid bioreactors with different aeration frequencies (one, two, and four times per day). Chemical oxygen demand (COD) and biochemical oxygen demand (BOD5) reduced more than 96% of the initial concentrations in all aerated bioreactors. The differences of COD and BOD5 reductions among tested aeration frequencies were relatively small. For ammonia nitrogen, the higher aeration frequency (two or four times per day) resulted in the quicker reduction. Overall, the concentrations of heavy metals (Cr, Co, Cu, Mn, Ni, and Zn) decreased over time except Cd and Pb. The reduction of redox-sensitive metal concentrations (Mn, Co, Ni, and Cu) was greater in aerated bioreactors than in anaerobic bioreactor. Settlement of municipal solid waste (MSW) was enhanced with higher frequency of aeration events (four times per day). In recent years, hybird bioreactor landfill technology has gained a lot of attention. Appropriate aeration rate is crucial for hybrid bioreactor operation, but few studies have been done and different results were obtained. Research was conducted to investigate the effects of daily aeration frequency on leachate quality and waste settlement. Results indicated that aeration can effectively accelerate waste stabilization and remove organic carbon concentration and total nitrogen in the leachate.

  9. New hybrid frequency reuse method for packet loss minimization in LTE network.

    Science.gov (United States)

    Ali, Nora A; El-Dakroury, Mohamed A; El-Soudani, Magdi; ElSayed, Hany M; Daoud, Ramez M; Amer, Hassanein H

    2015-11-01

    This paper investigates the problem of inter-cell interference (ICI) in Long Term Evolution (LTE) mobile systems, which is one of the main problems that causes loss of packets between the base station and the mobile station. Recently, different frequency reuse methods, such as soft and fractional frequency reuse, have been introduced in order to mitigate this type of interference. In this paper, minimizing the packet loss between the base station and the mobile station is the main concern. Soft Frequency Reuse (SFR), which is the most popular frequency reuse method, is examined and the amount of packet loss is measured. In order to reduce packet loss, a new hybrid frequency reuse method is implemented. In this method, each cell occupies the same bandwidth of the SFR, but the total system bandwidth is greater than in SFR. This will provide the new method with a lot of new sub-carriers from the neighboring cells to reduce the ICI which represents a big problem in many applications and causes a lot of packets loss. It is found that the new hybrid frequency reuse method has noticeable improvement in the amount of packet loss compared to SFR method in the different frequency bands. Traffic congestion management in Intelligent Transportation system (ITS) is one of the important applications that is affected by the packet loss due to the large amount of traffic that is exchanged between the base station and the mobile node. Therefore, it is used as a studied application for the proposed frequency reuse method and the improvement in the amount of packet loss reached 49.4% in some frequency bands using the new hybrid frequency reuse method.

  10. Exact thickness-shear resonance frequency of electroded piezoelectric crystal plates

    Institute of Scientific and Technical Information of China (English)

    WANG Ji; SHEN Li-jun

    2005-01-01

    The determination of the precise thickness-shear frequency of electroded crystal plates has practical importance in quartz crystal resonator design and fabrication, especially when the high fundamental thickness-shear frequency has reduced the crystal plate thickness to such a degree that proper consideration of the effect of electrodes is very important. The electrodes effect as mass loading in the estimation of the resonance frequency has to be modified to consider the stiffness of electrodes, as the relative strength is increasingly noticeable. By following a known procedure in the determination of the thickness-shear frequency of an infinite AT-cut crystal plate, frequency equations of crystal plate without and with piezoelectric effect are obtained in terms of elastic constants and the electrode material density. After solving these equations for the usual design parameters of crystal resonators, the design process can be optimized to pinpoint the precise configuration to avoid time-consuming trial and reduction steps. Since these equations and solutions are presented for widely used materials and parameters, they can be easily integrated into the existing crystal resonator design and manufacturing processes.

  11. Hybrid III-V on Si grating as a broadband reflector and a high-Q resonator

    DEFF Research Database (Denmark)

    Chung, Il-Sug; Taghizadeh, Alireza; Park, Gyeong Cheol

    2016-01-01

    Hybrid grating (HG) with a high-refractive-index cap layer added onto a high contrast grating (HCG), can provide a high reflectance close 100 % over a broader wavelength range than HCGs, or work as a ultrahigh quality (Q) factor resonator. The reflection and resonance properties of HGs have been...

  12. Analysis of Glass-Reinforced Epoxy Material for Radio Frequency Resonator

    Science.gov (United States)

    Islam, M. T.; Misran, N.; Yatim, Baharudin

    2014-01-01

    A radio frequency (RF) resonator using glass-reinforced epoxy material for C and X band is proposed in this paper. Microstrip line technology for RF over glass-reinforced epoxy material is analyzed. Coupling mechanism over RF material and parasitic coupling performance is explained utilizing even and odd mode impedance with relevant equivalent circuit. Babinet's principle is deployed to explicate the circular slot ground plane of the proposed resonator. The resonator is designed over four materials from different backgrounds which are glass-reinforced epoxy, polyester, gallium arsenide (GaAs), and rogers RO 4350B. Parametric studies and optimization algorithm are applied over the geometry of the microstrip resonator to achieve dual band response for C and X band. Resonator behaviors for different materials are concluded and compared for the same structure. The final design is fabricated over glass-reinforced epoxy material. The fabricated resonator shows a maximum directivity of 5.65 dBi and 6.62 dBi at 5.84 GHz and 8.16 GHz, respectively. The lowest resonance response is less than −20 dB for C band and −34 dB for X band. The resonator is prototyped using LPKF (S63) drilling machine to study the material behavior. PMID:24977230

  13. Microwave and RF Applications for Micro-resonator based Frequency Combs

    CERN Document Server

    Nguyen, Thach G; Ferrera, Marcello; Pasquazi, Alessia; Peccianti, Marco; Chu, Sai T; Little, Brent E; Morandotti, Roberto; Mitchell, Arnan; Moss, David J

    2015-01-01

    Photonic integrated circuits that exploit nonlinear optics in order to generate and process signals all-optically have achieved performance far superior to that possible electronically - particularly with respect to speed. We review the recent achievements based in new CMOS-compatible platforms that are better suited than SOI for nonlinear optics, focusing on radio frequency (RF) and microwave based applications that exploit micro-resonator based frequency combs. We highlight their potential as well as the challenges to achieving practical solutions for many key applications. These material systems have opened up many new capabilities such as on-chip optical frequency comb generation and ultrafast optical pulse generation and measurement. We review recent work on a photonic RF Hilbert transformer for broadband microwave in-phase and quadrature-phase generation based on an integrated frequency optical comb. The comb is generated using a nonlinear microring resonator based on a CMOS compatible, high-index contr...

  14. An analytical formula for the longitudinal resonance frequencies of a fluid-filled crack

    Science.gov (United States)

    Maeda, Y.; Kumagai, H.

    2013-12-01

    The fluid-filled crack model (Chouet, 1986, JGR) simulates the resonances of a rectangular crack filled with an inviscid fluid embedded in a homogeneous isotropic elastic medium. The model demonstrates the existence of a slow wave, known as the crack wave, that propagates along the solid-fluid interfaces. The wave velocity depends on the crack stiffness. The model has been used to interpret the peak frequencies of long-period (LP) and very long period (VLP) seismic events at various volcanoes (Chouet and Matoza, 2013, JVGR). Up to now, crack model simulations have been performed using the finite difference (Chouet, 1986) and boundary integral (Yamamoto and Kawakatsu, 2008, GJI) methods. These methods require computationally extensive procedures to estimate the complex frequencies of crack resonance modes. Establishing an easier way to calculate the frequencies of crack resonances would help understanding of the observed frequencies. In this presentation, we propose a simple analytical formula for the longitudinal resonance frequencies of a fluid-filled crack. We first evaluated the analytical expression proposed by Kumagai (2009, Encyc. Complex. Sys. Sci.) through a comparison of the expression with the peak frequencies computed by a 2D version of the FDM code of Chouet (1986). Our comparison revealed that the equation of Kumagai (2009) shows discrepancies with the resonant frequencies computed by the FDM. We then modified the formula as fmL = (m-1)a/[2L(1+2ɛmLC)1/2], (1) where L is the crack length, a is the velocity of sound in the fluid, C is the crack stiffness, m is a positive integer defined such that the wavelength of the normal displacement on the crack surface is 2L/m, and ɛmL is a constant that depends on the longitudinal resonance modes. Excellent fits were obtained between the peak frequencies calculated by the FDM and by Eq. (1), suggesting that this equation is suitable for the resonant frequencies. We also performed 3D FDM computations of the

  15. A High Voltage High Frequency Resonant Inverter for Supplying DBD Devices with Short Discharge Current Pulses

    OpenAIRE

    Bonnin, Xavier; Brandelero, Julio; Videau, Nicolas; Piquet, Hubert; Meynard, Thierry

    2014-01-01

    International audience; In this paper, the merits of a high-frequency resonant converter for supplying dielectric barrier discharges (DBD) devices are established. It is shown that, thanks to its high-frequency operating condition, such a converter allows to supply DBD devices with short discharge current pulses, a high repetition rate, and to control the injected power. In addition, such a topology eliminates the matter of connecting a high-voltage transformer directly across the DBD device ...

  16. Resonance frequency shift in a cavity with a thin conducting film near a conducting wall

    Energy Technology Data Exchange (ETDEWEB)

    Braggio, C. [Dipartimento di Fisica, Universita di Ferrara and INFN, Via del Paradiso 12, 44100 Ferrara (Italy)]. E-mail: caterina.braggio@lnl.infn.it; Bressi, G. [INFN, Sezione di Pavia, Via Bassi 6, 27100 Pavia (Italy); Carugno, G. [INFN, Sezione di Padova, Via F. Marzolo 8, 35131 Padova (Italy); Dodonov, A.V. [Departamento de Fisica, Universidade Federal de Sao Carlos, Via Washington Luiz, Km 235, Sao Carlos 13565-905, SP (Brazil); Dodonov, V.V. [Instituto de Fisica, Universidade de Brasilia, Caixa Postal 04455, 70910-900 Brasilia, DF (Brazil)]. E-mail: vdodonov@fis.unb.br; Galeazzi, G. [INFN, LNL, Viale dell' Universita 2, 35020 Legnaro (Italy); Ruoso, G. [INFN, LNL, Viale dell' Universita 2, 35020 Legnaro (Italy); Zanello, D. [INFN, Sezione di Roma, Piazzale A. Moro 2, 00185 Roma (Italy)

    2007-03-19

    We show that a very thin conducting film (whose thickness can be much smaller than the skin depth), placed nearby a wall of an electromagnetic cavity, can produce the same shift of the resonance frequency as a bulk conducting slab, provided the displacement of the film from the wall is much bigger than the skin depth. We derive a simple analytical formula for the frequency shift and compare it with exact numerical calculations and experimental data.

  17. Compensation of temperature frequency pushing in microwave resonator-meters on the basis VCO

    Directory of Open Access Journals (Sweden)

    Drobakhin O. O.

    2008-02-01

    Full Text Available It is shown that the influence of temperature oscillations on the error of measurements of parameters in the case of the application of microwave resonator meters on the basis of a voltage-controlled oscillator (VCO can be minimized by software using a special algorithm of VCO frequency setting correction. An algorithm of VCO frequency setting correction for triangle control voltage is proposed.

  18. Resonance frequency and mass identification of zeptogram-scale nanosensor based on the nonlocal beam theory.

    Science.gov (United States)

    Li, Xian-Fang; Tang, Guo-Jin; Shen, Zhi-Bin; Lee, Kang Yong

    2015-01-01

    Free vibration and mass detection of carbon nanotube-based sensors are studied in this paper. Since the mechanical properties of carbon nanotubes possess a size effect, the nonlocal beam model is used to characterize flexural vibration of nanosensors carrying a concentrated nanoparticle, where the size effect is reflected by a nonlocal parameter. For nanocantilever or bridged sensor, frequency equations are derived when a nanoparticle is carried at the free end or the middle, respectively. Exact resonance frequencies are numerically determined for clamped-free, simply-supported, and clamped-clamped resonators. Alternative approximations of fundamental frequency are given in closed form within the relative error less than 0.4%, 0.6%, and 1.4% for cantilever, simply-supported, and bridged sensors, respectively. Mass identification formulae are derived in terms of the frequency shift. Identified masses via the present approach coincide with those using the molecular mechanics approach and reach as low as 10(-24)kg. The obtained results indicate that the nonlocal effect decreases the resonance frequency except for the fundamental frequency of nanocantilever sensor. These results are helpful to the design of micro/nanomechanical zeptogram-scale biosensor.

  19. Dual-frequency ferromagnetic resonance to measure spin current coupling in multilayers

    Science.gov (United States)

    Adur, Rohan; Du, Chunhui; Wang, Hailong; Manuilov, Sergei A.; Yang, Fengyuan; Hammel, P. Chris

    2014-08-01

    Spin pumping is a method for injecting a pure spin current into a non-magnetic metal (NM) by inducing precession of a neighboring ferromagnet (FM) at its ferromagnetic resonance frequency. A popular method to detect spin current uses the Inverse Spin Hall Effect (ISHE) to convert the spin current to a detectable charge current and hence a voltage. In order to better understand the role of time independent and high frequency contributions to spin pumping, we sought to detect we attempt to detect spin currents by using a second microwave frequency to detect changes in linewidth of a second ferromagnet due to the spin-torque induced by the spin current from the first ferromagnet. This dual resonance is achieved by pairing a custom broadband coplanar transmission line with the high-Q resonant cavity of a commercial electron paramagnetic resonance spectrometer. This technique is general enough that it should enable the investigation of spin currents in any FM-NM-FM system, for any orientation of external field, and is not sensitive to voltage artifacts often found in ISHE measurements. We find that the condition for simultaneous resonance generates a dc spin current that is too small to produce a measurable change in linewidth of the second ferromagnet, confirming the dominance of ac spin currents in linewidth enhancement measurements.

  20. Transformation of the frequency-modulated continuous-wave field into a train of short pulses by resonant filters

    CERN Document Server

    Shakhmuratov, R N

    2016-01-01

    The resonant filtering method transforming frequency modulated radiation field into a train of short pulses is proposed to apply in optical domain. Effective frequency modulation can be achieved by electro-optic modulator or by resonant frequency modulation of the filter with a narrow absorption line. Due to frequency modulation narrow-spectrum CW radiation field is seen by the resonant filter as a comb of equidistant spectral components separated by the modulation frequency. Tuning narrow-bandwidth filter in resonance with $n$-th spectral component of the comb transforms the radiation field into bunches of pulses with $n$ pulses in each bunch. The transformation is explained by the interference of the coherently scattered resonant component of the field with the whole comb. Constructive interference results in formation of pulses, while destructive interference is seen as dark windows between pulses. It is found that the optimal thickness of the resonant filter is several orders of magnitude smaller than the...

  1. Effects of Dielectric Substrates and Ground Planes on Resonance Frequency of Archimedean Spirals.

    Science.gov (United States)

    Hooker, Jerris W; Ramaswamy, Vijaykumar; Arora, Rajendra K; Edison, Arthur S; Brey, William W

    2016-04-01

    Superconducting self-resonant spiral structures are of current interest for applications both in metamaterials and as probe coils for nuclear magnetic resonance (NMR) spectroscopy for high-sensitivity chemical analysis. Accurate spiral models are available in the literature for behavior of a spiral below and up to self-resonance. However, knowledge of the higher modes is also important. We present the relationships between the spiral parameters and the multiple mode frequencies of single sided spirals on dielectric substrates as modeled by method of moments simulation. In the absence of a ground plane, we find that the mode frequency has a linear though not necessarily harmonic dependence on the mode number. The effect of a thick substrate can be approximated by an effective dielectric constant. But when the thickness is less than 20% of the spiral trace width (router - rinner) this approximation is no longer accurate. We have developed a simple empirical formula to predict the higher modes.

  2. Ultra-thin wideband magnetic-type metamaterial absorber based on LC resonator at low frequencies

    Science.gov (United States)

    Zhang, Linbo; Zhou, Peiheng; Chen, Haiyan; Lu, Haipeng; Xie, Jianliang; Deng, Longjiang

    2015-10-01

    In this paper, we propose to realize a broad absorption band in the frequency regimes of 2-6 GHz based on multiple resonances. A magnetic-type metamaterial absorber with cross-arrow pattern is further demonstrated numerically and experimentally. Two absorption resonances are generated by LC resonance, leading to bandwidth expansion. The equivalent circuit theory and the surface current distributions of the proposed absorber are discussed to analyze the physical mechanism. Moreover, the broad bandwidth can be maintained as incident angle up to 30° for transverse electric polarization and 45° for transverse magnetic polarization. Finally, experimental results show that the proposed absorber with the total thickness of 2.4 mm exhibits a -10 dB absorption bandwidth by more than 70 %. The low-frequency absorber has potential applications in the area of eliminating microwave energy.

  3. Interrogation of fiber Bragg-grating resonators by polarization-spectroscopy laser-frequency locking.

    Science.gov (United States)

    Gagliardi, G; De Nicola, S; Ferraro, P; De Natale, P

    2007-04-02

    We report on an optically-based technique that provides an efficient way to track static and dynamic strain by locking the frequency of a diode laser to a fiber Bragg-grating Fabry-Pérot cavity. For this purpose, a suitable optical frequency discriminator is generated exploiting the fiber natural birefringence and that resulting from the gratings inscription process. In our scheme, a polarization analyzer detects dispersive-shaped signals centered on the cavity resonances without need for additional optical elements in the resonator or any laser-modulation technique. This method prevents degradation of the resonator quality and maintains the configuration relatively simple, demonstrating static and dynamic mechanical sensing below the picostrain level.

  4. Optical fiber strain sensor using fiber resonator based on frequency comb Vernier spectroscopy

    DEFF Research Database (Denmark)

    Zhang, Liang; Lu, Ping; Chen, Li;

    2012-01-01

    A novel (to our best knowledge) optical fiber strain sensor using a fiber ring resonator based on frequency comb Vernier spectroscopy is proposed and demonstrated. A passively mode-locked optical fiber laser is employed to generate a phased-locked frequency comb. Strain applied to the optical fiber...... be proportionally improved by increasing the length of the optical fiber ring resonator....... of the fiber ring resonator can be measured with the transmission spectrum. A good linearity is obtained between displacement and the inverse of wavelength spacing with an R2 of 0.9989, and high sensitivities better than 40  pm/με within the range of 0 to 10  με are achieved. The sensitivity can...

  5. Analysis and Comparison of High Frequency Resonance in Small and Large Scale DFIG System

    DEFF Research Database (Denmark)

    Song, Yipeng; Blaabjerg, Frede; Wang, Xiongfei

    2016-01-01

    When connected to a parallel compensated weak grid network, both the small and large power scale Doubly Fed Induction Generator (DFIG) system may suffer high frequency resonance (HFR) due to the impedance interaction between the DFIG system and the parallel compensated weak network. Since...

  6. Chiral Low Frequency Resonance on an Anisotropically Conductive Cylinder with a Thin Longitudinal Slot

    Science.gov (United States)

    2000-09-29

    electromagnetic waves by a Narrow anisotropically conductive strip," Radiotekh. Elektron ., vol. 44, no. 7, pp. 800-805, 1999. [3] A. N. Sivov, A. D...Chuprin, and A. D. Shatrov, "Low-frequency resonance in a hollow circular cylinder with perfect conductivity along helical lines," Radiotekh. Elektron

  7. Modeling of Nanophotonic Resonators with the Finite-Difference Frequency-Domain Method

    DEFF Research Database (Denmark)

    Ivinskaya, Aliaksandra; Lavrinenko, Andrei; Shyroki, Dzmitry

    2011-01-01

    Finite-difference frequency-domain method with perfectly matched layers and free-space squeezing is applied to model open photonic resonators of arbitrary morphology in three dimensions. Treating each spatial dimension independently, nonuniform mesh of continuously varying density can be built ea...

  8. Computation of high frequency fields in resonant cavities based on perturbation theory

    Energy Technology Data Exchange (ETDEWEB)

    Brackebusch, Korinna; Glock, Hans-Walter; Rienen, Ursula van [Universitaet Rostock (Germany). Institut fuer Allgemeine Elektrotechnik

    2012-07-01

    The eigenmodes of an accelerator cavity are essential for the determination of its performance characteristics, comprising resonant frequencies and field distributions inside the cavity. Apart from the material properties the eigenmodes depend on the cavity geometry. Due to manufacturing tolerances and operational demands deviations of the actual cavity shape from the desired one are inevitable. Any geometry perturbation results in a shift of the resonant frequencies and modified field distributions. Slater's theorem offers an efficient way to compute the changed resonant frequencies, however, not the changed fields. In this work, we will analyse a generalisation of Slater's theorem proposed in literature. The method enables the computation of the resonant frequencies and the field distributions of a slightly perturbed cavity by using a set of eigenmodes of the unperturbed cavity. We evaluate the practicability of the method by applying it to cavity geometries for which the eigenmodes are analytically known, ascertain the effort of reasonable computation results and describe the limitations of the method.

  9. Noninvasive MRI thermometry with the proton resonance frequency (PRF) method: in vivo results in human muscle

    DEFF Research Database (Denmark)

    De Poorter, J; De Wagter, C; De Deene, Y

    1995-01-01

    The noninvasive thermometry method is based on the temperature dependence of the proton resonance frequency (PRF). High-quality temperature images can be obtained from phase information of standard gradient-echo sequences with an accuracy of 0.2 degrees C in phantoms. This work was focused...

  10. Frequency, Prognosis and Surgical Treatment of Structural Abnormalities Seen with Magnetic Resonance Imaging in Childhood Epilepsy

    Science.gov (United States)

    Berg, Anne T.; Mathern, Gary W.; Bronen, Richard A.; Fulbright, Robert K.; DiMario, Francis; Testa, Francine M.; Levy, Susan R.

    2009-01-01

    The epidemiology of lesions identified by magnetic resonance imaging (MRI), along with the use of pre-surgical evaluations and surgery in childhood-onset epilepsy patients has not previously been described. In a prospectively identified community-based cohort of children enrolled from 1993 to 1997, we examined (i) the frequency of lesions…

  11. Frequency, Prognosis and Surgical Treatment of Structural Abnormalities Seen with Magnetic Resonance Imaging in Childhood Epilepsy

    Science.gov (United States)

    Berg, Anne T.; Mathern, Gary W.; Bronen, Richard A.; Fulbright, Robert K.; DiMario, Francis; Testa, Francine M.; Levy, Susan R.

    2009-01-01

    The epidemiology of lesions identified by magnetic resonance imaging (MRI), along with the use of pre-surgical evaluations and surgery in childhood-onset epilepsy patients has not previously been described. In a prospectively identified community-based cohort of children enrolled from 1993 to 1997, we examined (i) the frequency of lesions…

  12. Measurement of the Resonant Frequency of Nano-Scale Cantilevers by Hard Contact Readout

    DEFF Research Database (Denmark)

    Dohn, Søren; Hansen, Ole; Bolsen, A.

    2008-01-01

    It is shown that detection of the resonant frequency of a nano-scale cantilever is possible by measuring the time average current flowing from an electrode to the cantilever during hard contact occurring twice every cycle of the cantilever vibration. The electronic detection method is insensitive....... The readout method is thereby ideally suited for portable sensor systems....

  13. Operation of the CAPRICE electron cyclotron resonance ion source applying frequency tuning and double frequency heating.

    Science.gov (United States)

    Maimone, F; Tinschert, K; Celona, L; Lang, R; Mäder, J; Rossbach, J; Spädtke, P

    2012-02-01

    The properties of the electromagnetic waves heating the electrons of the ECR ion sources (ECRIS) plasma affect the features of the extracted ion beams such as the emittance, the shape, and the current, in particular for higher charge states. The electron heating methods such as the frequency tuning effect and the double frequency heating are widely used for enhancing the performances of ECRIS or even for the routine operation during the beam production. In order to better investigate these effects the CAPRICE ECRIS has been operated using these techniques. The ion beam properties for highly charged ions have been measured with beam diagnostic tools. The reason of the observed variations of this performance can be related to the different electromagnetic field patterns, which are changing inside the plasma chamber when the frequency is varying.

  14. Harvesting Broad Frequency Band Blue Energy by a Triboelectric-Electromagnetic Hybrid Nanogenerator.

    Science.gov (United States)

    Wen, Zhen; Guo, Hengyu; Zi, Yunlong; Yeh, Min-Hsin; Wang, Xin; Deng, Jianan; Wang, Jie; Li, Shengming; Hu, Chenguo; Zhu, Liping; Wang, Zhong Lin

    2016-07-26

    Ocean wave associated energy is huge, but it has little use toward world energy. Although such blue energy is capable of meeting all of our energy needs, there is no effective way to harvest it due to its low frequency and irregular amplitude, which may restrict the application of traditional power generators. In this work, we report a hybrid nanogenerator that consists of a spiral-interdigitated-electrode triboelectric nanogenerator (S-TENG) and a wrap-around electromagnetic generator (W-EMG) for harvesting ocean energy. In this design, the S-TENG can be fully isolated from the external environment through packaging and indirectly driven by the noncontact attractive forces between pairs of magnets, and W-EMG can be easily hybridized. Notably, the hybrid nanogenerator could generate electricity under either rotation mode or fluctuation mode to collect energy in ocean tide, current, and wave energy due to the unique structural design. In addition, the characteristics and advantages of outputs indicate that the S-TENG is irreplaceable for harvesting low rotation speeds (10 Hz). The complementary output can be maximized and hybridized for harvesting energy in a broad frequency range. Finally, a single hybrid nanogenerator unit was demonstrated to harvest blue energy as a practical power source to drive several LEDs under different simulated water wave conditions. We also proposed a blue energy harvesting system floating on the ocean surface that could simultaneously harvest wind, solar, and wave energy. The proposed hybrid nanogenerator renders an effective and sustainable progress in practical applications of the hybrid nanogenerator toward harvesting water wave energy offered by nature.

  15. Hybrid acoustic metamaterial as super absorber for broadband low-frequency sound

    Science.gov (United States)

    Tang, Yufan; Ren, Shuwei; Meng, Han; Xin, Fengxian; Huang, Lixi; Chen, Tianning; Zhang, Chuanzeng; Lu, Tian Jain

    2017-01-01

    A hybrid acoustic metamaterial is proposed as a new class of sound absorber, which exhibits superior broadband low-frequency sound absorption as well as excellent mechanical stiffness/strength. Based on the honeycomb-corrugation hybrid core (H-C hybrid core), we introduce perforations on both top facesheet and corrugation, forming perforated honeycomb-corrugation hybrid (PHCH) to gain super broadband low-frequency sound absorption. Applying the theory of micro-perforated panel (MPP), we establish a theoretical method to calculate the sound absorption coefficient of this new kind of metamaterial. Perfect sound absorption is found at just a few hundreds hertz with two-octave 0.5 absorption bandwidth. To verify this model, a finite element model is developed to calculate the absorption coefficient and analyze the viscous-thermal energy dissipation. It is found that viscous energy dissipation at perforation regions dominates the total energy consumed. This new kind of acoustic metamaterials show promising engineering applications, which can serve as multiple functional materials with extraordinary low-frequency sound absorption, excellent stiffness/strength and impact energy absorption. PMID:28240239

  16. Hybrid acoustic metamaterial as super absorber for broadband low-frequency sound

    Science.gov (United States)

    Tang, Yufan; Ren, Shuwei; Meng, Han; Xin, Fengxian; Huang, Lixi; Chen, Tianning; Zhang, Chuanzeng; Lu, Tian Jain

    2017-02-01

    A hybrid acoustic metamaterial is proposed as a new class of sound absorber, which exhibits superior broadband low-frequency sound absorption as well as excellent mechanical stiffness/strength. Based on the honeycomb-corrugation hybrid core (H-C hybrid core), we introduce perforations on both top facesheet and corrugation, forming perforated honeycomb-corrugation hybrid (PHCH) to gain super broadband low-frequency sound absorption. Applying the theory of micro-perforated panel (MPP), we establish a theoretical method to calculate the sound absorption coefficient of this new kind of metamaterial. Perfect sound absorption is found at just a few hundreds hertz with two-octave 0.5 absorption bandwidth. To verify this model, a finite element model is developed to calculate the absorption coefficient and analyze the viscous-thermal energy dissipation. It is found that viscous energy dissipation at perforation regions dominates the total energy consumed. This new kind of acoustic metamaterials show promising engineering applications, which can serve as multiple functional materials with extraordinary low-frequency sound absorption, excellent stiffness/strength and impact energy absorption.

  17. Myocardial first-pass perfusion imaging with hybrid-EPI: frequency-offsets and potential artefacts

    Directory of Open Access Journals (Sweden)

    Ferreira Pedro F

    2012-06-01

    Full Text Available Abstract Background First-pass myocardial perfusion is often imaged with a tailored hybrid centric interleaved echo-planar-imaging sequence, providing rapid image acquisition with good contrast enhancement. The centric interleaved phase-encode order minimises the effective time-of-echo but it is sensitive to frequency-offsets. This short article aims to show possible artefacts that might originate with this sequence, in the context of first-pass perfusion imaging, when frequency-offsets are present. Non-uniform magnitude modulation effects were also analysed. Methods Numerical and phantom simulations were used to illustrate the effects of frequency-offsets and non-uniform magnitude modulation with this sequence in a typical perfusion protocol. In vivo data was post-processed to analyse the h-EPI’s sensitivity to the frequency-offsets. Results The centric phase-order was shown to be highly sensitive to frequency-offsets due to its symmetrical phase slope. Resulting artefacts include blurring, and splitting of the image into two identical copies along the phase-encode direction. It was also shown that frequency-offsets can introduce signal loss and ghosting of the right ventricle signal into the myocardium. The in vivo results were confirmed by numerical and phantom simulations. Magnitude modulation effects were found to be small. Conclusions Imaging first-pass myocardial perfusion with an hybrid centric echo-planar-imaging sequence can be corrupted with ghosting and splitting of the image due to frequency-offsets.

  18. The doubly conditioned frequency spectrum does not distinguish between ancient population structure and hybridization

    KAUST Repository

    Eriksson, Anders

    2014-03-13

    Distinguishing between hybridization and population structure in the ancestral species is a key challenge in our understanding of how permeable species boundaries are to gene flow. The doubly conditioned frequency spectrum (dcfs) has been argued to be a powerful metric to discriminate between these two explanations, and it was used to argue for hybridization between Neandertal and anatomically modern humans. The shape of the observed dcfs for these two species cannot be reproduced by a model that represents ancient population structure in Africa with two populations, while adding hybridization produces realistic shapes. In this letter, we show that this result is a consequence of the spatial coarseness of the demographic model and that a spatially structured stepping stone model can generate realistic dcfs without hybridization. This result highlights how inferences on hybridization between recently diverged species can be strongly affected by the choice of how population structure is represented in the underlying demographic model. We also conclude that the dcfs has limited power in distinguishing between the signals left by hybridization and ancient structure. 2014 The Author.

  19. Numerical and experimental investigation of a low-frequency measurement technique: differential acoustic resonance spectroscopy

    Science.gov (United States)

    Yin, Hanjun; Zhao, Jianguo; Tang, Genyang; Ma, Xiaoyi; Wang, Shangxu

    2016-06-01

    Differential acoustic resonance spectroscopy (DARS) has been developed to determine the elastic properties of saturated rocks within the kHz frequency range. This laboratory technique is based on considerations from perturbation theory, wherein the resonance frequencies of the resonant cavity with and without a perturbation sample are used to estimate the acoustic properties of the test sample. In order to better understand the operating mechanism of DARS and therefore optimize the procedure, it is important to develop an accurate and efficient numerical model. Accordingly, this study presents a new multiphysics model by coupling together considerations from acoustics, solid mechanics, and electrostatics. The numerical results reveal that the newly developed model can successfully simulate the acoustic pressure field at different resonance modes, and that it can accurately reflect the measurement process. Based on the understanding of the DARS system afforded by the numerical simulation, we refine the system configuration by utilizing cavities of different lengths and appropriate radii to broaden the frequency bandwidth and ensure testing accuracy. Four synthetic samples are measured to test the performance of the optimized DARS system, in conjunction with ultrasonic and static measurements. For nonporous samples, the estimated bulk moduli are shown to be independent of the different measurement methods (i.e. DARS or ultrasonic techniques). In contrast, for sealed porous samples, the differences in bulk moduli between the low- and high-frequency techniques can be clearly observed; this discrepancy is attributed to frequency dispersion. In summary, the optimized DARS system with an extended frequency range of 500-2000 Hz demonstrates considerable utility in investigating the frequency dependence of the acoustic properties of reservoir rocks.

  20. Spectral and angular characteristics of dielectric resonator metasurface at optical frequencies

    Energy Technology Data Exchange (ETDEWEB)

    Zou, Longfang [School of Electrical and Electronic Engineering, The University of Adelaide, Adelaide, SA 5005 (Australia); Department of Electrical and Electronic Engineering, The University of Bristol, Bristol, BS8 1TH (United Kingdom); López-García, Martin; Oulton, Ruth; Klemm, Maciej [Department of Electrical and Electronic Engineering, The University of Bristol, Bristol, BS8 1TH (United Kingdom); Withayachumnankul, Withawat; Fumeaux, Christophe, E-mail: christophe.fumeaux@adelaide.edu.au [School of Electrical and Electronic Engineering, The University of Adelaide, Adelaide, SA 5005 (Australia); Shah, Charan M.; Mitchell, Arnan; Bhaskaran, Madhu; Sriram, Sharath [Functional Materials and Microsystems Research Group, School of Electrical and Computer Engineering, RMIT University, Melbourne VIC 3001 (Australia)

    2014-11-10

    The capability of manipulating light at subwavelength scale has fostered the applications of flat metasurfaces in various fields. Compared to metallic structure, metasurfaces made of high permittivity low-loss dielectric resonators hold the promise of high efficiency by avoiding high conductive losses of metals at optical frequencies. This letter investigates the spectral and angular characteristics of a dielectric resonator metasurface composed of periodic sub-arrays of resonators with a linearly varying phase response. The far-field response of the metasurface can be decomposed into the response of a single grating element (sub-array) and the grating arrangement response. The analysis also reveals that coupling between resonators has a non-negligible impact on the angular response. Over a wide wavelength range, the simulated and measured angular characteristics of the metasurface provide a definite illustration of how different grating diffraction orders can be selectively suppressed or enhanced through antenna sub-array design.

  1. Parametric decay instability near the upper hybrid resonance in magnetically confined fusion plasmas

    Science.gov (United States)

    Hansen, S. K.; Nielsen, S. K.; Salewski, M.; Stejner, M.; Stober, J.; the ASDEX Upgrade Team

    2017-10-01

    In this paper we investigate parametric decay of an electromagnetic pump wave into two electrostatic daughter waves, particularly an X-mode pump wave decaying into a warm upper hybrid wave (a limit of an electron Bernstein wave) and a warm lower hybrid wave. We describe the general theory of the above parametric decay instability (PDI), unifying earlier treatments, and show that it may occur in underdense and weakly overdense plasmas. The PDI theory is used to explain anomalous sidebands observed in collective Thomson scattering (CTS) spectra at the ASDEX Upgrade tokamak. The theory may also account for similar observations during CTS experiments in stellarators, as well as in some 1st harmonic electron cyclotron resonance and O-X-B heating experiments.

  2. Hybrid resonant organic-inorganic nanostructures for novel light emitting devices and solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Agranovich, Vladimir M. [Institute of Spectroscopy, Russian Academy of Science, Troitsk, Moscow (Russian Federation); Chemistry Department, University of Texas at Dallas, Texas (United States); Rupasov, Valery I. [ANTEOS, Inc., Shrewsbury, Massachusetts 01545 (United States); Silvestri, Leonardo [Dipartimento di Scienza dei Materiali, Universita degli Studi di Milano Bicocca, Milano (Italy)

    2010-06-15

    The energy transfer from an inorganic layer to an organic component of resonant hybrid organic/inorganic nanos-tructures can be used for creation of new type of LED. We mentioned the problem of electrical pumping which has to be solved. As was first suggested in 1979 by Dexter the transfer energy in opposite direction from organic part of nanostructure to semiconductor layer can be used for the creation of new type of solar cells. In this note we stress the importance of the idea by Dexter for photovoltaics and solar cells. We argue that the organic part in such hybrid structures can play a role of an effective organic collector of the light energy (copyright 2010 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  3. FREQUENCY SHIFTS OF RESONANT MODES OF THE SUN DUE TO NEAR-SURFACE CONVECTIVE SCATTERING

    Energy Technology Data Exchange (ETDEWEB)

    Bhattacharya, J.; Hanasoge, S.; Antia, H. M. [Department of Astronomy and Astrophysics, Tata Institute of Fundamental Research, Mumbai-400005 (India)

    2015-06-20

    Measurements of oscillation frequencies of the Sun and stars can provide important independent constraints on their internal structure and dynamics. Seismic models of these oscillations are used to connect structure and rotation of the star to its resonant frequencies, which are then compared with observations, the goal being that of minimizing the difference between the two. Even in the case of the Sun, for which structure models are highly tuned, observed frequencies show systematic deviations from modeled frequencies, a phenomenon referred to as the “surface term.” The dominant source of this systematic effect is thought to be vigorous near-surface convection, which is not well accounted for in both stellar modeling and mode-oscillation physics. Here we bring to bear the method of homogenization, applicable in the asymptotic limit of large wavelengths (in comparison to the correlation scale of convection), to characterize the effect of small-scale surface convection on resonant-mode frequencies in the Sun. We show that the full oscillation equations, in the presence of temporally stationary three-dimensional (3D) flows, can be reduced to an effective “quiet-Sun” wave equation with altered sound speed, Brünt–Väisäla frequency, and Lamb frequency. We derive the modified equation and relations for the appropriate averaging of 3D flows and thermal quantities to obtain the properties of this effective medium. Using flows obtained from 3D numerical simulations of near-surface convection, we quantify their effect on solar oscillation frequencies and find that they are shifted systematically and substantially. We argue therefore that consistent interpretations of resonant frequencies must include modifications to the wave equation that effectively capture the impact of vigorous hydrodynamic convection.

  4. Circuit-tunable sub-wavelength THz resonators: hybridizing optical cavities and loop antennas.

    Science.gov (United States)

    Paulillo, B; Manceau, J M; Degiron, A; Zerounian, N; Beaudoin, G; Sagnes, I; Colombelli, R

    2014-09-08

    We demonstrate subwavelength electromagnetic resonators operating in the THz spectral range, whose spectral properties and spatial/angular patterns can be engineered in a similar way to an electronic circuit. We discuss the device concept, and we experimentally study the tuning of the resonant frequency as a function of variable capacitances and inductances. We then elucidate the optical coupling properties. The radiation pattern, obtained by angle-resolved reflectance, reveals that the system mainly couples to the outside world via a magnetic dipolar interaction.

  5. Optimization of negative ion current in a compact microwave driven upper hybrid resonance multicusp plasma source.

    Science.gov (United States)

    Sahu, D; Bhattacharjee, S; Singh, M J; Bandyopadhyay, M; Chakraborty, A

    2012-02-01

    Performance of a microwave driven upper hybrid resonance multicusp plasma source as a volume negative ion source is reported. Microwaves are directly launched into the plasma chamber predominantly in the TE(11) mode. The source is operated at different discharge conditions to obtain the optimized negative H(-) ion current which is ∼33 μA (0.26 mA∕cm(2)). Particle balance equations are solved to estimate the negative ion density, which is compared with the experimental results. Future prospects of the source are discussed.

  6. Optimization of negative ion current in a compact microwave driven upper hybrid resonance multicusp plasma sourcea)

    Science.gov (United States)

    Sahu, D.; Bhattacharjee, S.; Singh, M. J.; Bandyopadhyay, M.; Chakraborty, A.

    2012-02-01

    Performance of a microwave driven upper hybrid resonance multicusp plasma source as a volume negative ion source is reported. Microwaves are directly launched into the plasma chamber predominantly in the TE11 mode. The source is operated at different discharge conditions to obtain the optimized negative H- ion current which is ˜33 μA (0.26 mA/cm2). Particle balance equations are solved to estimate the negative ion density, which is compared with the experimental results. Future prospects of the source are discussed.

  7. Multiway study of hybridization in nanoscale semiconductor labeled DNA based on fluorescence resonance energy transfer

    DEFF Research Database (Denmark)

    Gholami, Somayeh; Kompany Zare, Mohsen

    2013-01-01

    The resolution of the ternary-binary complex competition of a target sequence and of its two complementary probes in sandwich DNA hybridization is reported. To achieve this goal, Fluorescence Resonance Energy Transfer (FRET) between oligonucleotide-functionalized quantum dot (QD) nanoprobes (QD...... in the photoluminescence excitation (PLE) plot. From the obtained data, energy transfer efficiency and Forster radius (R-0) were calculated. In particular, our results demonstrated that energy transfer by using QD donor-QD acceptor FRET pairs is more efficient in comparison with QD donor-organic dye acceptor pairs. Soft...

  8. Solitons and frequency combs in silica microring resonators: Interplay of the Raman and higher-order dispersion effects

    CERN Document Server

    Milián, Carles; Taki, Majid; Yulin, Alexey V; Skryabin, Dmitry V

    2015-01-01

    The influence of Raman scattering and higher order dispersions on solitons and frequency comb generation in silica microring resonators is investigated. The Raman effect introduces a threshold value in the resonator quality factor above which the frequency locked solitons can not exist and, instead, a rich dynamics characterized by generation of self-frequency shift- ing solitons and dispersive waves is observed. A mechanism of broadening of the Cherenkov radiation through Hopf instability of the frequency locked solitons is also reported.

  9. Properties of the ion-ion hybrid resonator in fusion plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Morales, George J. [Univ. of California, Los Angeles, CA (United States)

    2015-10-06

    The project developed theoretical and numerical descriptions of the properties of ion-ion hybrid Alfvén resonators that are expected to arise in the operation of a fusion reactor. The methodology and theoretical concepts were successfully compared to observations made in basic experiments in the LAPD device at UCLA. An assessment was made of the excitation of resonator modes by energetic alpha particles for burning plasma conditions expected in the ITER device. The broader impacts included the generation of basic insight useful to magnetic fusion and space science researchers, defining new avenues for exploration in basic laboratory experiments, establishing broader contacts between experimentalists and theoreticians, completion of a Ph.D. dissertation, and promotion of interest in science through community outreach events and classroom instruction.

  10. General and hybrid correlation nuclear magnetic resonance analysis of phosphorus in Phytophthora palmivora.

    Science.gov (United States)

    Kirwan, Gemma M; Fernandez, David I; Niere, Julie O; Adams, Michael J

    2012-10-01

    Generalized two-dimensional (Gen2D) correlation analysis and hybrid correlation analysis have been applied to a series of dynamic (31)P nuclear magnetic resonance (NMR) spectra to monitor the in vivo metabolic changes of the plant pathogen Phytophthora palmivora in the presence and absence of phosphonate over an 18-h period. Results indicate that phosphonate exposure causes cleavage in organism polyphosphate chains as well as an increase in total sugar phosphates. In the presence of phosphonate, the NMR resonances attributed to terminal polyphosphate phosphorus reduced at a lower rate than those of middle polyphosphate phosphorus, indicating a change in average chain length and suggesting cleavage in the middle of the chain as well as at the ends. The correlation analysis techniques serve to identify and confirm spectral regions undergoing major change in the time-series data and facilitate the analysis of these dynamic changes.

  11. A Experimental Determination of the Resonant Frequency of Atoms Moving in a Medium

    Science.gov (United States)

    Beary, Daniel Andrew

    The theory of the Doppler-Recoil effect is described. In contrast to previous theories, the theory proposed by Haugan and Kowalski suggests that the frequency of the electromagnetic wave that excites a transition in an atom is a function of the velocity of that atom and the index of refraction of the medium. Following the path of Haugan and Kowalski, the Doppler Recoil equation is derived under the conditions of a rarefied gas acting as a continuous medium. Next, the theory of saturation spectroscopy is revised. This method of spectroscopy uses a pump and probe beam traveling collinearly in opposite directions. Beams of equal frequency in the lab frame interact with the zero axial velocity population within the gas when the beams are on resonance. For pump and probe beams of different frequencies, the atoms that they interact with will have an axial velocity component such that the Doppler shift leads to resonance with both beams. The purpose of this work is to verify the Doppler -Recoil formula proposed by Haugan and Kowalski. In the experiment performed, the resonant frequency of the stationary and moving velocity groups is determined using saturation spectroscopy. The theory predicts an average frequency shift of 307 Hz/^circC. The data show a shift of 94 kHz/^circ C. Because of the unexpected result, possible sources of errors such as pressure broadening, power broadening, and potential for systematic errors were examined. No explanation was found for these shifts.

  12. CFAVC scheme for high frequency series resonant inverter-fed domestic induction heating system

    Science.gov (United States)

    Nagarajan, Booma; Reddy Sathi, Rama

    2016-01-01

    This article presents the investigations on the constant frequency asymmetric voltage cancellation control in the AC-AC resonant converter-fed domestic induction heating system. Conventional fixed frequency control techniques used in the high frequency converters lead to non-zero voltage switching operation and reduced output power. The proposed control technique produces higher output power than the conventional fixed-frequency control strategies. In this control technique, zero-voltage-switching operation is maintained during different duty cycle operation for reduction in the switching losses. Complete analysis of the induction heating power supply system with asymmetric voltage cancellation control is discussed in this article. Simulation and experimental study on constant frequency asymmetric voltage cancellation (CFAVC)-controlled full bridge series resonant inverter is performed. Time domain simulation results for the open and closed loop of the system are obtained using MATLAB simulation tool. The simulation results prove the control of voltage and power in a wide range. PID controller-based closed loop control system achieves the voltage regulation of the proposed system for the step change in load. Hardware implementation of the system under CFAVC control is done using the embedded controller. The simulation and experimental results validate the performance of the CFAVC control technique for series resonant-based induction cooking system.

  13. Inhibition of Salmonella typhi growth using extremely low frequency electromagnetic (ELF-EM) waves at resonance frequency.

    Science.gov (United States)

    Fadel, M A; Mohamed, S A; Abdelbacki, A M; El-Sharkawy, A H

    2014-08-01

    Typhoid is a serious disease difficult to be treated with conventional drugs. The aim of this study was to demonstrate a new method for the control of Salmonella typhi growth, through the interference with the bioelectric signals generated from the microbe during cell division by extremely low frequency electromagnetic waves (ELF-EMW-ELF-EM) at resonance frequency. Isolated Salmonella typhi was subjected to square amplitude modulated waves (QAMW) with different modulation frequencies from two generators with constant carrier frequency of 10 MHz, amplitude of 10 Vpp, modulating depth ± 2 Vpp and constant field strength of 200 V m(-1) at 37°C. Both the control and exposed samples were incubated at the same conditions during the experiment. The results showed that there was highly significant inhibition effect for Salm. typhi exposed to 0·8 Hz QAMW for a single exposure for 75 min. Dielectric relaxation, TEM and DNA results indicated highly significant changes in the molecular structure of the DNA and cellular membrane resulting from the exposure to the inhibiting EM waves. It was concluded that finding out the inhibiting resonance frequency of ELF-EM waves that deteriorates Salm. typhi growth will be promising method for the treatment of Salm. typhi infection either in vivo or in vitro. This new non-invasive technique for treatment of bacterial infections is of considerable interest for the use in medical and biotechnological applications. © 2014 The Society for Applied Microbiology.

  14. The Influence of the Resonant Frequency on the Presence Of Chimera State

    Directory of Open Access Journals (Sweden)

    Phablo Ramos Carvalho

    2016-04-01

    Full Text Available The Chimera State could be a result of the interaction between the resonant frequency and the synchronization process in a network of identical oscillators. The target of this paper is to do the numerically investigation of the chimera occurrence in a model with fifteen metronomes on each swing and two coupled swings Therefore, changing the value of metronomes oscillation frequency one can observe the level of synchronization between the two populations of metronomes through the Kuramoto complex order parameter. This analysis was conducted considering three different values of the connecting spring’s stiffness among the swings. Thus, a relation between the presence of chimera state and the system resonant frequency was observed

  15. High-frequency current oscillations in graphene-boron nitride resonant tunnel diodes

    Science.gov (United States)

    Greenaway, Mark; Gaskell, Jenn; Eaves, Laurence; Novoselov, Kostya; Mishchenko, Artem; Geim, Andre; Fromhold, Mark

    The successful realisation of multilayer graphene-hBN-graphene resonant tunnelling diodes (graphene- RTDs) with negative differential conductance (NDC) and MHz current oscillations offers the exciting possibility of exploiting them as high-frequency oscillators and mixers. In this paper, we examine their potential for generating higher frequencies by simulating the oscillations in the tunnel current and charge that arise when the device is biased in the NDC region and placed in a resonant circuit. Using the Bardeen transfer Hamiltonian method, we examine the effect on the device characteristics of the twist angle, θ, between the two graphene electrodes, the hBN barrier thickness and of the carrier density in the graphene electrodes, which can be adjusted by chemical doping or by an applied bias voltage. The simulations accurately reproduce our recently-reported measurements on these RTDs (Fig. 4,). The results of simulations show that frequencies of tens of GHz are achievable by optimising the device parameters. Leverhulme Trust, UK.

  16. Potential of ion cyclotron resonance frequency current drive via fast waves in DEMO

    Science.gov (United States)

    Kazakov, Ye O.; Van Eester, D.; Wauters, T.; Lerche, E.; Ongena, J.

    2015-02-01

    For the continuous operation of future tokamak-reactors like DEMO, non-inductively driven toroidal plasma current is needed. Bootstrap current, due to the pressure gradient, and current driven by auxiliary heating systems are currently considered as the two main options. This paper addresses the current drive (CD) potential of the ion cyclotron resonance frequency (ICRF) heating system in DEMO-like plasmas. Fast wave CD scenarios are evaluated for both the standard midplane launch and an alternative case of exciting the waves from the top of the machine. Optimal ICRF frequencies and parallel wave numbers are identified to maximize the CD efficiency. Limitations of the high frequency ICRF CD operation are discussed. A simplified analytical method to estimate the fast wave CD efficiency is presented, complemented with the discussion of its dependencies on plasma parameters. The calculated CD efficiency for the ICRF system is shown to be similar to those for the negative neutral beam injection and electron cyclotron resonance heating.

  17. Resonance hybridization and near field properties of strongly coupled plasmonic ring dimer-rod nanosystem

    Energy Technology Data Exchange (ETDEWEB)

    Koya, Alemayehu Nana; Ji, Boyu; Hao, Zuoqiang; Lin, Jingquan, E-mail: linjingquan@cust.edu.cn [School of Science, Changchun University of Science and Technology, Changchun 130022 (China)

    2015-09-21

    Combined effects of polarization, split gap, and rod width on the resonance hybridization and near field properties of strongly coupled gold dimer-rod nanosystem are comparatively investigated in the light of the constituent nanostructures. By aligning polarization of the incident light parallel to the long axis of the nanorod, introducing small split gaps to the dimer walls, and varying width of the nanorod, we have simultaneously achieved resonance mode coupling, huge near field enhancement, and prolonged plasmon lifetime. As a result of strong coupling between the nanostructures and due to an intense confinement of near fields at the split and dimer-rod gaps, the extinction spectrum of the coupled nanosystem shows an increase in intensity and blueshift in wavelength. Consequently, the near field lifespan of the split-nanosystem is prolonged in contrast to the constituent nanostructures and unsplit-nanosystem. On the other hand, for polarization of the light perpendicular to the long axis of the nanorod, the effect of split gap on the optical responses of the coupled nanosystem is found to be insignificant compared to the parallel polarization. These findings and such geometries suggest that coupling an array of metallic split-ring dimer with long nanorod can resolve the huge radiative loss problem of plasmonic waveguide. In addition, the Fano-like resonances and immense near field enhancements at the split and dimer-rod gaps imply the potentials of the nanosystem for practical applications in localized surface plasmon resonance spectroscopy and sensing.

  18. Dielectric measurements of nanoliter liquids with a photonic crystal resonator at terahertz frequencies

    Science.gov (United States)

    Hanham, S. M.; Watts, C.; Otter, W. J.; Lucyszyn, S.; Klein, N.

    2015-07-01

    We present a highly sensitive technique for determining the complex permittivity of nanoliter liquid samples in the terahertz band based on a photonic crystal resonator and microcapillary. Liquids are characterized by using a capillary tube to introduce a ˜4 nl liquid sample into the electromagnetic field of a resonant mode confined by an L3 resonant cavity in a high-resistivity silicon photonic crystal slab. Monitoring the perturbation of the resonant frequency and unloaded Q-factor of the resonant mode at 100 GHz and ˜5800, respectively, allows a sample's permittivity to be calculated. An analytical model describing the system response based on perturbation theory and quasi-static analysis of the electric field within the capillary is also presented and found to agree well with FEM simulations and experimental measurements of ethanol-water mixtures of various concentrations for low to moderate loss tangents of the liquid samples. We demonstrate the utility of this approach by measuring the complex permittivity of several bioliquids, including suspensions of red and white blood cells. These results represent a step towards a lab-on-a-chip device for the analysis of extremely small quantities of biological, toxic, explosive, and other liquid types at terahertz frequencies.

  19. Repetition rate multiplication of frequency comb using all-pass fiber resonator

    Science.gov (United States)

    Yang, Lijun; Yang, Honglei; Zhang, Hongyuan; Wei, Haoyun; Li, Yan

    2016-09-01

    We propose a stable method for repetition rate multiplication of a 250-MHz Er-fiber frequency comb by a phase-locked all-pass fiber ring resonator, whose phase-locking configuration is simple. The optical path length of the fiber ring resonator is automatically controlled to be accurately an odd multiple of half of the original cavity length using an electronical phase-locking unit with an optical delay line. As for shorter cavity length of the comb, high-order odd multiple is preferable. Because the power loss depends only on the net-attenuation of the fiber ring resonator, the energetic efficiency of the proposed method is high. The input and output optical spectrums show that the spectral width of the frequency comb is clearly preserved. Besides, experimental results show less pulse intensity fluctuation and 35 dB suppression ratio of side-modes while providing a good long-term and short-term frequency stability. Higher-order repetition rate multiplication to several GHz can be obtained by using several fiber ring resonators in cascade configuration.

  20. Resonant photothermal laser processing of hybrid gold/titania nanoparticle films

    Energy Technology Data Exchange (ETDEWEB)

    Schade, Lina; Franzka, Steffen; Dzialkowski, Kevin [Fakultät für Chemie, Universität Duisburg-Essen, 45117 Essen (Germany); Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, Carl-Benz-Straße 199, 47057 Duisburg (Germany); Hardt, Sebastian; Wiggers, Hartmut [Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, Carl-Benz-Straße 199, 47057 Duisburg (Germany); Institut für Verbrennung und Gasdynamik, Universität Duisburg-Essen, 47048 Duisburg (Germany); Reichenberger, Sven [Fakultät für Chemie, Universität Duisburg-Essen, 45117 Essen (Germany); Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, Carl-Benz-Straße 199, 47057 Duisburg (Germany); Institut für Lacke und Oberflächenchemie, Hochschule Niederrhein, 47798 Krefeld (Germany); Wagener, Philipp [Fakultät für Chemie, Universität Duisburg-Essen, 45117 Essen (Germany); Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, Carl-Benz-Straße 199, 47057 Duisburg (Germany); Hartmann, Nils, E-mail: nils.hartmann@uni-due.de [Fakultät für Chemie, Universität Duisburg-Essen, 45117 Essen (Germany); Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, Carl-Benz-Straße 199, 47057 Duisburg (Germany)

    2015-05-01

    Graphical abstract: - Highlights: • Photothermal processing of TiO{sub 2} and hybrid Au/TiO{sub 2} nanoparticles using continuous-wave lasers is demonstrated. • Processing of TiO{sub 2} nanoparticles at 355 nm results in a transition from anatase to rutile. • Decoration of TiO{sub 2} nanoparticles with Au nanoparticles results in an increased absorbance in the visible range. • Hybrid Au/TiO{sub 2} nanoparticles can be processed at 355 nm and 532 nm in a large laser parameter window. • Processing of hybrid Au/TiO{sub 2} nanoparticles at 532 nm can be carried out at low laser powers and short laser pulse lengths. - Abstract: Photothermal processing of thin anatase TiO{sub 2} and hybrid Au/anatase TiO{sub 2} nanoparticle films on glass supports is investigated using continuous-wave microfocused lasers at λ = 355 nm and λ = 532 nm. UV/Vis spectroscopy, Raman spectroscopy, optical microscopy, atomic force microscopy and scanning electron microscopy are used for characterization. Processing of TiO{sub 2} nanoparticle films is feasible at λ = 355 nm only. In contrast, the addition of Au nanoparticles enhances the overall absorbance of the material in the visible range and enables processing at both wavelengths, i.e. at λ = 355 nm and λ = 532 nm. Generally, laser heating induces a transition from anatase to rutile. The modification degree increases with increasing laser power and laser irradiation time. Resonant laser processing of hybrid Au/TiO{sub 2}-mesoporous films provide promising perspectives in various applications, e.g. in photovoltaics, where embedded nanoparticulate Au could be exploited to enhance light trapping.

  1. A new type of HTc superconducting film comb-shape resonator for radio frequency superconducting quantum interference devices

    Institute of Scientific and Technical Information of China (English)

    MAO Hai-yan; WANG Fu-ren; MENG Shu-chao; MAO Bo; LI Zhuang-zhi; NIE Rui-juan; LIU Xin-yuan; DAI Yuan-dong

    2006-01-01

    A new type of HTc superconducting film combshape resonator for radio frequency superconducting quantum interference devices (RF SQUID) has been designed.This new type of superconducting film comb-shape resonator is formed by a foursquare microstrip line without a flux concentrator.The range of the center frequency of this type of resonator varies from 800 MHz to 1300 MHz by changing the length of the teeth.In this paper,we report on simulating the relationship of the value of the center frequency and the length of the teeth,and testing the noise of HTc RF SQUID coupling this comb-shape resonator.

  2. Characterization of Extremely Low Frequency Magnetic Fields from Diesel, Gasoline and Hybrid Cars under Controlled Conditions

    Directory of Open Access Journals (Sweden)

    Ronen Hareuveny

    2015-01-01

    Full Text Available This study characterizes extremely low frequency (ELF magnetic field (MF levels in 10 car models. Extensive measurements were conducted in three diesel, four gasoline, and three hybrid cars, under similar controlled conditions and negligible background fields. Averaged over all four seats under various driving scenarios the fields were lowest in diesel cars (0.02 μT, higher for gasoline (0.04–0.05 μT and highest in hybrids (0.06–0.09 μT, but all were in-line with daily exposures from other sources. Hybrid cars had the highest mean and 95th percentile MF levels, and an especially large percentage of measurements above 0.2 μT. These parameters were also higher for moving conditions compared to standing while idling or revving at 2500 RPM and higher still at 80 km/h compared to 40 km/h. Fields in non-hybrid cars were higher at the front seats, while in hybrid cars they were higher at the back seats, particularly the back right seat where 16%–69% of measurements were greater than 0.2 μT. As our results do not include low frequency fields (below 30 Hz that might be generated by tire rotation, we suggest that net currents flowing through the cars’ metallic chassis may be a possible source of MF. Larger surveys in standardized and well-described settings should be conducted with different types of vehicles and with spectral analysis of fields including lower frequencies due to magnetization of tires.

  3. Finite size effect on spread of resonance frequencies in arrays of coupled vortices

    Energy Technology Data Exchange (ETDEWEB)

    Vogel, Andreas; Drews, André; Im, Mi-Young; Fischer, Peter; Meier, Guido

    2011-01-25

    Dynamical properties of magnetic vortices in arrays of magnetostatically coupled ferromagnetic disks are studied by means of a broadband ferromagnetic-resonance (FMR) setup. Magnetic force microscopy and magnetic transmission soft X-ray microscopy are used to image the core polarizations and the chiralities which are both found to be randomly distributed. The resonance frequency of vortex-core motion strongly depends on the magnetostatic coupling between the disks. The parameter describing the relative broadening of the absorption peak observed in the FMR transmission spectra for a given normalized center-to-center distance between the elements is shown to depend on the size of the array.

  4. A novel radio frequency coil for veterinary magnetic resonance imaging system

    Science.gov (United States)

    Meng, Bin; Huang, Kai-Wen; Wang, Wei-Min

    2010-07-01

    In this article, a novel designed radio frequency (RF) coil is designed and built for the imaging of puppies in a V-shape permanent magnetic resonance imaging (MRI) system. Two sets of Helmholtz coil pairs with a V-shape structure are used to improve the holding of an animal in the coil. The homogeneity and the sensitivity of the RF field in the coil are analysed by theoretical calculation. The size and the shape of the new coil are optimized and validated by simulation through using the finite element method (FEM). Good magnetic resonance (MR) images are achieved on a shepherd dog.

  5. Molecular dynamics study on a frequency-changeable nanotube cantilever resonator

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Jeong Won; Choi, Young Gyu; Kim, Ki Sub [Chungju National University, Chungju (Korea, Republic of); Lee, Jun Ha [Sangmyung University, Chonan (Korea, Republic of); Song, Young Jin [Konyang University, Nonsan (Korea, Republic of); Hwang, Ho Jung [Chung-Ang National University, Seoul (Korea, Republic of)

    2010-05-15

    In this paper, the dynamics of a tunable resonator, which is based on the application of a telescoped multi-walled carbon nanotube that can be used repeatedly, is investigated via classical molecular dynamics simulations based on a double-walled carbon nanotube as the most simple multi-walled carbon nanotube. The fixed short outer nanotube rigidly confines the longer core nanotube, which can be freely telescoped. Such a system can tune its resonance frequency by controlling the length of the oscillating carbon nanotube.

  6. A method for mechanical generation of radio frequency fields in nuclear magnetic resonance force microscopy

    CERN Document Server

    Wagenaar, J J T; Donkersloot, R J; Marsman, F; de Wit, M; Bossoni, L; Oosterkamp, T H

    2016-01-01

    We present an innovative method for magnetic resonance force microscopy (MRFM) with ultra-low dissipation, by using the higher modes of the mechanical detector as radio frequency (rf) source. This method allows MRFM on samples without the need to be close to an rf source. Furthermore, since rf sources require currents that give dissipation, our method enables nuclear magnetic resonance experiments at ultra-low temperatures. Removing the need for an on-chip rf source is an important step towards a MRFM which can be widely used in condensed matter physics.

  7. Effect of Alfvén resonance on low-frequency fast wave current drive

    Science.gov (United States)

    Wang, C. Y.; Batchelor, D. B.; Carter, M. D.; Jaeger, E. F.; Stallings, D. C.

    1995-08-01

    The Alfvén resonances may occur on the low- and high-field sides for a low-frequency fast wave current drive scenario proposed for the International Thermonuclear Experimental Reactor (ITER) [Nucl. Fusion 31, 1135 (1991)]. At the resonance on the low-field side, the fast wave may be mode converted into a short-wavelength slow wave, which can be absorbed by electrons at the plasma edge, before the fast wave propagates into the core area of the plasma. Such absorption may cause a significant parasitic power loss.

  8. Effect of Alfven resonance on low-frequency fast wave current drive

    Energy Technology Data Exchange (ETDEWEB)

    Wang, C.Y.; Batchelor, D.B.; Carter, M.D.; Jaeger, E.F.; Stallings, D.C. [Fusion Energy Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 (United States)

    1995-07-01

    The Alfven resonances may occur on the low- and high-field sides for a low-frequency fast wave current drive scenario proposed for the International Thermonuclear Experimental Reactor (ITER) [Nucl. Fusion {bold 31}, 1135 (1991)]. At the resonance on the low-field side, the fast wave may be mode converted into a short-wavelength slow wave, which can be absorbed by electrons at the plasma edge, before the fast wave propagates into the core area of the plasma. Such absorption may cause a significant parasitic power loss. {copyright} {ital 1995} {ital American} {ital Institute} {ital of} {ital Physics}.

  9. Numerical Investigation of Terahertz Emission Properties of Microring Difference-Frequency Resonators

    DEFF Research Database (Denmark)

    Iwaszczuk, Krzysztof; Bisgaard, Christer Zoffmann; Andronico, Alessio;

    2013-01-01

    We investigate the electromagnetic design of whispering gallery mode (WGM) terahertz (THz) resonators. Terahertz radiation is generated by difference-frequency mixing of two electrically pumped high-order near-infrared laser WGM's at room temperature in the active cavity. Due to the leaky nature...... this symmetry by modification of the dielectric environment of the resonator, and demonstrate a fabrication-optimized structure based on a concentric grating design which efficiently couples the emitted radiation into a narrow, near-gaussian forward-propagating cone of well-defined linear or circular...

  10. A hybrid analysis method for linear dynamic soil-structure interaction in time and frequency domain

    Institute of Scientific and Technical Information of China (English)

    丁海平; 廖振鹏

    2001-01-01

    A hybrid analysis method in time and frequency domains for linear soil-structure interaction is presented. First, the time domain solution of the system with Rayleigh damping excited by a short time impulse is obtained by the decoupling numerical simulation technique of near-field wave motion. Then, the corresponding frequency domain solution can be got by Fourier transform. According to the relationship between damping value and dynamic re-sponse of a system, the solution of the system with complex damping can be got by Taylor expansion. The hybrid method makes the best of decoupling and explicit algorithm in time domain, and increases the calculation efficien-cy for linear soil-structure interaction analysis.

  11. A hybrid hopfield network-simulated annealing approach for frequency assignment in satellite communications systems.

    Science.gov (United States)

    Salcedo-Sanz, Sancho; Santiago-Mozos, Ricardo; Bousoño-Calzón, Carlos

    2004-04-01

    A hybrid Hopfield network-simulated annealing algorithm (HopSA) is presented for the frequency assignment problem (FAP) in satellite communications. The goal of this NP-complete problem is minimizing the cochannel interference between satellite communication systems by rearranging the frequency assignment, for the systems can accommodate the increasing demands. The HopSA algorithm consists of a fast digital Hopfield neural network which manages the problem constraints hybridized with a simulated annealing which improves the quality of the solutions obtained. We analyze the problem and its formulation, describing and discussing the HopSA algorithm and solving a set of benchmark problems. The results obtained are compared with other existing approaches in order to show the performance of the HopSA approach.

  12. Investigation of the resonance frequency and performance of a partially plasma filled reconfigurable cylindrical TE111 mode cavity

    Science.gov (United States)

    Hadaegh, Mostafa; Mohajeri, Farzad

    2017-05-01

    A partially plasma filled reconfigurable cylindrical cavity is proposed. Plasma offers an encouraging alternative to metal for a wide variety of microwave engineering applications. Implementation of a low-cost plasma element permits the resonant frequency to be changed electrically. The level of the resonant frequency shifts toward the empty-cavity resonant frequency and depends on certain parameters, such as the plasma diameter, relative permittivity and thickness of the plasma tube. In this article, we first introduce the partially plasma filled reconfigurable cylindrical cavity; then, the resonant frequency equation of the cavity is obtained by variational methods. Finally, we plot the resonant frequency versus different parameters of the cavity, which we compare with the results of the CST software. We show that the two results are compatible with each other.

  13. Double-Slot Hybrid Plasmonic Ring Resonator Used for Optical Sensors and Modulators

    Directory of Open Access Journals (Sweden)

    Xu Sun

    2015-11-01

    Full Text Available An ultra-high sensitivity double-slot hybrid plasmonic (DSHP ring resonator, used for optical sensors and modulators, is developed. Due to high index contrast, as well as plasmonic enhancement, a considerable part of the optical energy is concentrated in the narrow slots between Si and plasmonic materials (silver is used in this paper, which leads to high sensitivity to the infiltrating materials. By partial opening of the outer plasmonic circular sheet of the DSHP ring, a conventional side-coupled silicon on insulator (SOI bus waveguide can be used. Experimental results demonstrate ultra-high sensitivity (687.5 nm/RIU of the developed DSHP ring resonator, which is about five-times higher than for the conventional Si ring with the same geometry. Further discussions show that a very low detection limit (5.37 × 10−6 RIU can be achieved after loaded Q factor modifications. In addition, the plasmonic metal structures offer also the way to process optical and electronic signals along the same hybrid plasmonic circuits with small capacitance (~0.275 fF and large electric field, which leads to possible applications in compact high-efficiency electro-optic modulators, where no extra electrodes for electronic signals are required.

  14. Stochastic resonance enhancement of small-world neural networks by hybrid synapses and time delay

    Science.gov (United States)

    Yu, Haitao; Guo, Xinmeng; Wang, Jiang

    2017-01-01

    The synergistic effect of hybrid electrical-chemical synapses and information transmission delay on the stochastic response behavior in small-world neuronal networks is investigated. Numerical results show that, the stochastic response behavior can be regulated by moderate noise intensity to track the rhythm of subthreshold pacemaker, indicating the occurrence of stochastic resonance (SR) in the considered neural system. Inheriting the characteristics of two types of synapses-electrical and chemical ones, neural networks with hybrid electrical-chemical synapses are of great improvement in neuron communication. Particularly, chemical synapses are conducive to increase the network detectability by lowering the resonance noise intensity, while the information is better transmitted through the networks via electrical coupling. Moreover, time delay is able to enhance or destroy the periodic stochastic response behavior intermittently. In the time-delayed small-world neuronal networks, the introduction of electrical synapses can significantly improve the signal detection capability by widening the range of optimal noise intensity for the subthreshold signal, and the efficiency of SR is largely amplified in the case of pure chemical couplings. In addition, the stochastic response behavior is also profoundly influenced by the network topology. Increasing the rewiring probability in pure chemically coupled networks can always enhance the effect of SR, which is slightly influenced by information transmission delay. On the other hand, the capacity of information communication is robust to the network topology within the time-delayed neuronal systems including electrical couplings.

  15. Displacement sensing based on resonant frequency monitoring of electrostatically actuated curved micro beams

    Science.gov (United States)

    Krakover, Naftaly; Ilic, B. Robert; Krylov, Slava

    2016-11-01

    The ability to control nonlinear interactions of suspended mechanical structures offers a unique opportunity to engineer rich dynamical behavior that extends the dynamic range and ultimate device sensitivity. We demonstrate a displacement sensing technique based on resonant frequency monitoring of curved, doubly clamped, bistable micromechanical beams interacting with a movable electrode. In this configuration, the electrode displacement influences the nonlinear electrostatic interactions, effective stiffness and frequency of the curved beam. Increased sensitivity is made possible by dynamically operating the beam near the snap-through bistability onset. Various in-plane device architectures were fabricated from single crystal silicon and measured under ambient conditions using laser Doppler vibrometry. In agreement with the reduced order Galerkin-based model predictions, our experimental results show a significant resonant frequency reduction near critical snap-through, followed by a frequency increase within the post-buckling configuration. Interactions with a stationary electrode yield a voltage sensitivity up to  ≈560 Hz V‑1 and results with a movable electrode allow motion sensitivity up to  ≈1.5 Hz nm‑1. Our theoretical and experimental results collectively reveal the potential of displacement sensing using nonlinear interactions of geometrically curved beams near instabilities, with possible applications ranging from highly sensitive resonant inertial detectors to complex optomechanical platforms providing an interface between the classical and quantum domains.

  16. Self-Oscillation-Based Frequency Tracking for the Drive and Detection of Resonance Magnetometers.

    Science.gov (United States)

    Tian, Zheng; Ren, Dahai; You, Zheng

    2016-05-21

    This paper reports a drive and detection method for Micro-Electro-Mechanical System (MEMS)-based Lorentz-force resonance magnetometers. Based on the proposed MEMS magnetometer, a drive and detection method was developed by using self-oscillation to adjust the mismatch between the mechanical resonance frequency and the coil drive frequency as affected by temperature fluctuations and vibration amplitude changes. Not only was the signal-to-noise ratio enhanced by the proposed method compared to the traditional method, but the test system automatically reached resonance frequency very rapidly when powered on. Moreover, the linearity and the measurement range were improved by the magnetic feedback generated by the coil. Test results indicated that the sensitivity of the proposed magnetometer is 59.6 mV/μT and its noise level is 0.25 μT. When operating in ±65 μT, its nonlinearity is 2.5‰-only one-tenth of the former prototype. Its power consumption is only about 250 mW and its size is only 28 mm × 28 mm × 10 mm, or about one-eighth of the original sensor; further, unlike the former device, it can distinguish both positive and negative magnetic fields. The proposed method can also be applied in other MEMS sensors such as gyroscopes and micromirrors to enhance their frequency tracking ability.

  17. Two Novel Measurements for the Drive-Mode Resonant Frequency of a Micromachined Vibratory Gyroscope

    Directory of Open Access Journals (Sweden)

    Ancheng Wang

    2013-11-01

    Full Text Available To investigate the drive-mode resonance frequency of a micromachined vibratory gyroscope (MVG, one needs to measure it accurately and efficiently. The conventional approach to measure the resonant frequency is by performing a sweep frequency test and spectrum analysis. The method is time-consuming and inconvenient because of the requirements of many test points, a lot of data storage and off-line analyses. In this paper, we propose two novel measurement methods, the search method and track method, respectively. The former is based on the magnitude-frequency characteristics of the drive mode, utilizing a one-dimensional search technique. The latter is based on the phase-frequency characteristics, applying a feedback control loop. Their performances in precision, noise resistivity and efficiency are analyzed through detailed simulations. A test system is implemented based on a field programmable gate array (FPGA and experiments are carried out. By comparing with the common approach, feasibility and superiorities of the proposed methods are validated. In particular, significant efficiency improvements are achieved whereby the conventional frequency method consumes nearly 5,000 s to finish a measurement, while only 5 s is needed for the track method and 1 s for the search method.

  18. Multi frequency excited MEMS cantilever beam resonator for Mixer-Filter applications

    KAUST Repository

    Chandran, Akhil A.

    2016-09-15

    Wireless communication uses Radio Frequency waves to transfer information from one point to another. The modern RF front end devices are implementing MEMS in their designs so as to exploit the inherent properties of MEMS devices, such as its low mass, low power consumption, and small size. Among the components in the RF transceivers, band pass filters and mixers play a vital role in achieving the optimum RF performance. And this paper aims at utilizing an electrostatically actuated micro cantilever beam resonator\\'s nonlinear frequency mixing property to realize a Mixer-Filter configuration through multi-frequency excitation. The paper studies about the statics and dynamics of the device. Simulations are carried out to study the added benefits of multi frequency excitation. The modelling of the cantilever beam has been done using a Reduced Order Model of the Euler-Bernoulli\\'s beam equation by implementing the Galerkin discretization. The device is shown to be able to down-convert signals from 960 MHz of frequency to an intermediate frequency around 50 MHz and 70 MHz in Phase 1 and 2, respectively. The simulation showed promising results to take the project to the next level. © 2016 IEEE.

  19. Two novel measurements for the drive-mode resonant frequency of a micromachined vibratory gyroscope.

    Science.gov (United States)

    Wang, Ancheng; Hu, Xiaoping; Luo, Bing; Jiang, Mingming; He, Xiaofeng; Tang, Kanghua

    2013-01-01

    To investigate the drive-mode resonance frequency of a micromachined vibratory gyroscope (MVG), one needs to measure it accurately and efficiently. The conventional approach to measure the resonant frequency is by performing a sweep frequency test and spectrum analysis. The method is time-consuming and inconvenient because of the requirements of many test points, a lot of data storage and off-line analyses. In this paper, we propose two novel measurement methods, the search method and track method, respectively. The former is based on the magnitude-frequency characteristics of the drive mode, utilizing a one-dimensional search technique. The latter is based on the phase-frequency characteristics, applying a feedback control loop. Their performances in precision, noise resistivity and efficiency are analyzed through detailed simulations. A test system is implemented based on a field programmable gate array (FPGA) and experiments are carried out. By comparing with the common approach, feasibility and superiorities of the proposed methods are validated. In particular, significant efficiency improvements are achieved whereby the conventional frequency method consumes nearly 5,000 s to finish a measurement, while only 5 s is needed for the track method and 1 s for the search method.

  20. Integrated optical frequency shifter in silicon-organic hybrid (SOH) technology.

    Science.gov (United States)

    Lauermann, M; Weimann, C; Knopf, A; Heni, W; Palmer, R; Koeber, S; Elder, D L; Bogaerts, W; Leuthold, J; Dalton, L R; Rembe, C; Freude, W; Koos, C

    2016-05-30

    We demonstrate for the first time a waveguide-based frequency shifter on the silicon photonic platform using single-sideband modulation. The device is based on silicon-organic hybrid (SOH) electro-optic modulators, which combine conventional silicon-on-insulator waveguides with highly efficient electro-optic cladding materials. Using small-signal modulation, we demonstrate frequency shifts of up to 10 GHz. We further show large-signal modulation with optimized waveforms, enabling a conversion efficiency of -5.8 dB while suppressing spurious side-modes by more than 23 dB. In contrast to conventional acousto-optic frequency shifters, our devices lend themselves to large-scale integration on silicon substrates, while enabling frequency shifts that are several orders of magnitude larger than those demonstrated with all-silicon serrodyne devices.

  1. Fano resonance and hybridization gap in the Kondo lattice URu2Si2^*

    Science.gov (United States)

    Park, Wan Kyu; Tobash, P. H.; Ronning, F.; Bauer, E. D.; Sarrao, J. L.; Thompson, J. D.; Greene, L. H.

    2012-02-01

    The nature of the `hidden' order transition in URu2Si2 remains puzzling despite intensive research over the past two and half decades. A key question under debate is whether a hybridization gap between the renormalized bands can be identified as the long-sought hidden order parameter. We report on the measurement of a hybridization gap in URu2Si2 employing a spectroscopic technique based on quasiparticle scattering across a ballistic metallic junction [1]. The differential conductance data exhibit an asymmetric double-peak structure, a signature for a Fano resonance in a Kondo lattice [2]. The extracted hybridization gap opens well above the hidden order transition temperature, indicating that it is not the order parameter for the hidden order phase. Our results place constraints on the origin of the hidden order transition in URu2Si2.[4pt] [1] W. K. Park et al., arXiv:1110.5541.[0pt] [2] M. Maltseva, M. Dzero, P. Coleman, PRL 103, 206402 (2009).

  2. Real time hybridization studies by resonant waveguide gratings using nanopattern imaging for Single Nucleotide Polymorphism detection

    KAUST Repository

    Bougot-Robin, Kristelle

    2013-12-20

    2D imaging of biochips is particularly interesting for multiplex biosensing. Resonant properties allow label-free detection using the change of refractive index at the chip surface. We demonstrate a new principle of Scanning Of Resonance on Chip by Imaging (SORCI) based on spatial profiles of nanopatterns of resonant waveguide gratings (RWGs) and its embodiment in a fluidic chip for real-time biological studies. This scheme allows multiplexing of the resonance itself by providing nanopattern sensing areas in a bioarray format. Through several chip designs we discuss resonance spatial profiles, dispersion and electric field distribution for optimal light-matter interaction with biological species of different sizes. Fluidic integration is carried out with a black anodized aluminum chamber, advantageous in term of mechanical stability, multiple uses of the chip, temperature control and low optical background. Real-time hybridization experiments are illustrated by SNP (Single Nucleotide Polymorphism) detection in gyrase A of E. coli K12, observed in evolution studies of resistance to the antibiotic ciprofloxacin. We choose a 100 base pairs (bp) DNA target (∼30 kDa) including the codon of interest and demonstrate the high specificity of our technique for probes and targets with close affinity constants. This work validates the safe applicability of our unique combination of RWGs and simple instrumentation for real-time biosensing with sensitivity in buffer solution of ∼10 pg/mm2. Paralleling the success of RWGs sensing for cells sensing, our work opens new avenues for a large number of biological studies. © 2013 Springer Science+Business Media.

  3. Impedance-Based High Frequency Resonance Analysis of DFIG System in Weak Grids

    DEFF Research Database (Denmark)

    Song, Yipeng; Wang, Xiongfei; Blaabjerg, Frede

    2017-01-01

    The impedance-based model of Doubly Fed Induction Generator (DFIG) systems, including the rotor part (Rotor Side Converter (RSC) and induction machine), and the grid part (Grid Side Converter (GSC) and its output filter), has been developed for analysis and mitigation of the Sub- Synchronous...... Resonance (SSR). However, the High Frequency Resonance (HFR) of DFIG systems due to the impedance interaction between DFIG system and parallel compensated weak network is often overlooked. This paper thus investigates the impedance characteristics of DFIG systems for the analysis of HFR. The influences...... of the rotor speed variation, the machine mutual inductance and the digital control delay are evaluated. Two resonances phenomena are revealed, i.e., 1) the series HFR between the DFIG system and weak power grid; 2) the parallel HFR between the rotor part and the grid part of DFIG system. The impedance...

  4. Fabrication and Frequency Response Characteristics of AlN-Based Solidly Mounted Resonator

    Institute of Scientific and Technical Information of China (English)

    XIONG Juan; GU Hao-Shuang; HU Kuan; HU Ming-Zhe

    2009-01-01

    @@ Film bulk acoustic resonator (FBAR) with solidly mounted resonator (SMR)-type is carried out by rf magnetic sputtering. To fabricate SMR-type FBAR, alternative high and low acoustic impedance layers, Mo/Ti multilayer, are adopted as Bragg reflector deposited by dc magnetron sputtering. The influences of sputtering pressure, substrate temperature and sputtering power on the surface roughness of Bragg reflector layer are discussed. From the atom force microscopy (AFM) analysis, the surface roughness of the Bragg reflector is improved remarkably by controlling deposition conditions. Under the appropriate sputtering condition, AIN thin films with highly c-axis-preferred orientation are deposited by rf magnetron sputtering. The performance of fabricated Mo/Ti SMR shows that the electromechanical coupling coefficient is 3.89%, the series and parallel resonant frequencies appear at 2.49 and 2.53 GHz, with their quality factors 134.2 and 97.6, respectively.

  5. Unusual dimensional dependence of resonance frequencies of Au nanocantilevers fabricated with self-organized microstructure

    Directory of Open Access Journals (Sweden)

    Amit Banerjee

    2012-09-01

    Full Text Available Metallic nanocantilevers of gold are fabricated from self-supporting polycrystalline thin film (100 nm by focused ion beam assisted milling and ion induced manipulation processes. The surfactant assisted growth of the thin film leads to self-organized dendrite like morphology. This self-organized dendrite like morphology of the gold film imposes a new characteristic length scale corresponding to the mean size of gold grains present within the branches of the dendrite pattern in the film. The resonance characteristic investigated on cantilevers having different widths shows a significant drop in energy dissipation and hence an enhancement in the resonance amplitude at a characteristic width. At this width the resonance frequency of a vibrating cantilever approaches the theoretically expected value anticipated from an ideal cantilever treated like an elastic continuum.

  6. Broadening the Frequency Bandwidth of Piezoelectric Energy Harvesters Using Coupled Linear Resonators

    Science.gov (United States)

    Sadeqi, Soheil

    The desire to reduce power consumption of current integrated circuits has led design engineers to focus on harvesting energy from free ambient sources such as vibrations. The energy harvested this way can eliminate the need for battery replacement, particularly, in low-energy remote sensing and wireless devices. Currently, most vibration-based energy harvesters are designed as linear resonators, therefore, they have a narrow resonance frequency. The optimal performance of such harvesters is achieved only when their resonance frequency is matched with the ambient excitation. In practice, however, a slight shift of the excitation frequency will cause a dramatic reduction in their performance. In the majority of cases, the ambient vibrations are totally random with their energy distributed over a wide frequency spectrum. Thus, developing techniques to extend the bandwidth of vibration-based energy harvesters has become an important field of research in energy harvesting systems. This thesis first reviews the broadband vibration-based energy harvesting techniques currently known in some detail with regard to their merits and applicability under different circumstances. After that, the design, fabrication, modeling and characterization of three new piezoelectric-based energy harvesting mechanism, built typically for rotary motion applications, is discussed. A step-by-step procedure is followed in order to broaden the bandwidth of such energy harvesters by introducing a coupled spring-mass system attached to a PZT beam undergoing rotary motion. It is shown that the new strategies can indeed give rise to a wide-band frequency response making it possible to fine-tune their dynamical response. The numerical results are shown to be in good agreement with the experimental data as far as the frequency response is concerned.

  7. Low Noise Frequency Comb Sources Based on Synchronously Pumped Doubly Resonant Optical Parametric Oscillators

    Science.gov (United States)

    Wan, Chenchen

    Optical frequency combs are coherent light sources consist of thousands of equally spaced frequency lines. Frequency combs have achieved success in applications of metrology, spectroscopy and precise pulse manipulation and control. The most common way to generate frequency combs is based on mode-locked lasers which has the output spectrum of comb structures. To generate stable frequency combs, the output from mode-locked lasers need to be phase stabilized. The whole comb lines will be stabilized if the pulse train repetition rate corresponding to comb spacing and the pulse carrier envelope offset (CEO) frequency are both stabilized. The output from a laser always has fluctuations in parameters known as noise. In laser applications, noise is an important factor to limit the performance and often need to be well controlled. For example in precision measurement such as frequency metrology and precise spectroscopy, low laser intensity and phase noise is required. In mode-locked lasers there are different types of noise like intensity noise, pulse temporal position noise also known as timing jitter, optical phase noise. In term for frequency combs, these noise dynamics is more complex and often related. Understanding the noise behavior is not only of great interest in practical applications but also help understand fundamental laser physics. In this dissertation, the noise of frequency combs and mode-locked lasers will be studied in two projects. First, the CEO frequency phase noise of a synchronously pumped doubly resonant optical parametric oscillators (OPO) will be explored. This is very important for applications of the OPO as a coherent frequency comb source. Another project will focus on the intensity noise coupling in a soliton fiber oscillator, the finding of different noise coupling in soliton pulses and the dispersive waves generated from soliton perturbation can provide very practical guidance for low noise soliton laser design. OPOs are used to generate

  8. Device for measurement of power and shape of radio frequency pulses in nuclear magnetic resonance

    Science.gov (United States)

    Pfeffer, M.; Řezníček, R.; Křišťan, P.; Štěpánková, H.

    2012-05-01

    A design of an instrument to measure the power and shape of radio frequency (RF) pulses operating in a broad frequency range is described. The device is capable of measuring the pulse power up to 500 W of both CW and extremely short (˜1 μs) RF pulses of arbitrary period. The pulse envelope can be observed on a logarithmic scale on a corresponding instrument output using an inexpensive storage oscilloscope. The instrument consists of a coaxial measurement head, the RF processing circuits and an AD conversion and display unit. The whole device is based on widely available integrated circuits; thus, good reproducibility and adaptability of the design is ensured. Since the construction is intended to be used in particular (but not solely) in nuclear magnetic resonance spectroscopy, we found it useful to provide a demonstration of two typical usage scenarios. Other application fields may comprise magnetic resonance imaging, radar and laser technology, power amplifier testing, etc.

  9. Sub-optical wavelength acoustic wave modulation of integrated photonic resonators at microwave frequencies

    CERN Document Server

    Tadesse, Semere Ayalew

    2014-01-01

    Light-sound interactions have long been exploited in various acousto-optic devices based on bulk crystalline materials. Conventionally these devices operate in megahertz frequency range where the acoustic wavelength is much longer than the optical wavelength and a long interaction length is required to attain significant coupling. With nanoscale transducers, acoustic waves with sub-optical wavelengths can now be excited to induce strong acousto-optic coupling in nanophotonic devices. Here we demonstrate microwave frequency surface acoustic wave transducers co-integrated with nanophotonic resonators on piezoelectric aluminum nitride substrates. Acousto-optic modulation of the resonance modes at above 10 GHz with the acoustic wavelength significantly below the optical wavelength is achieved. The phase and modal matching conditions in this scheme are investigated for efficient modulation. The new acousto-optic platform can lead to novel optical devices based on nonlinear Brillouin processes and provides a direct...

  10. Generation of high-frequency combs locked to atomic resonances by quantum phase modulation

    CERN Document Server

    Liu, Zuoye; Cavaletto, Stefano M; Harman, Zoltán; Keitel, Christoph H; Pfeifer, Thomas

    2013-01-01

    A general mechanism for the generation of frequency combs referenced to atomic resonances is put forward. The mechanism is based on the periodic phase control of a quantum system's dipole response. We develop an analytic description of the comb spectral structure, depending on both the atomic and the phase-control properties. We further suggest an experimental implementation of our scheme: Generating a frequency comb in the soft-x-ray spectral region, which can be realized with currently available techniques and radiation sources. The universality of this mechanism allows the generalization of frequency-comb technology to arbitrary frequencies, including the hard-x-ray regime by using reference transitions in highly charged ions.

  11. An efficient hybrid causative event-based approach for deriving the annual flood frequency distribution

    Science.gov (United States)

    Thyer, Mark; Li, Jing; Lambert, Martin; Kuczera, George; Metcalfe, Andrew

    2015-04-01

    Flood extremes are driven by highly variable and complex climatic and hydrological processes. Derived flood frequency methods are often used to predict the flood frequency distribution (FFD) because they can provide predictions in ungauged catchments and evaluate the impact of land-use or climate change. This study presents recent work on development of a new derived flood frequency method called the hybrid causative events (HCE) approach. The advantage of the HCE approach is that it combines the accuracy of the continuous simulation approach with the computational efficiency of the event-based approaches. Derived flood frequency methods, can be divided into two classes. Event-based approaches provide fast estimation, but can also lead to prediction bias due to limitations of inherent assumptions required for obtaining input information (rainfall and catchment wetness) for events that cause large floods. Continuous simulation produces more accurate predictions, however, at the cost of massive computational time. The HCE method uses a short continuous simulation to provide inputs for a rainfall-runoff model running in an event-based fashion. A proof-of-concept pilot study that the HCE produces estimates of the flood frequency distribution with similar accuracy as the continuous simulation, but with dramatically reduced computation time. Recent work incorporated seasonality into the HCE approach and evaluated with a more realistic set of eight sites from a wide range of climate zones, typical of Australia, using a virtual catchment approach. The seasonal hybrid-CE provided accurate predictions of the FFD for all sites. Comparison with the existing non-seasonal hybrid-CE showed that for some sites the non-seasonal hybrid-CE significantly over-predicted the FFD. Analysis of the underlying cause of whether a site had a high, low or no need to use seasonality found it was based on a combination of reasons, that were difficult to predict apriori. Hence it is recommended

  12. Vibration Mode Observation of Piezoelectric Disk-type Resonator by High Frequency Laser Doppler Vibrometer

    Science.gov (United States)

    Matsumura, Takeshi; Esashi, Masayoshi; Harada, Hiroshi; Tanaka, Shuji

    For future mobile phones based on cognitive radio technology, a compact multi-band RF front-end architecture is strongly required and an integrated multi-band RF filter bank is a key component in it. Contour-mode resonators are receiving increased attention for a multi-band filter solution, because its resonant frequency is mainly determined by its size and shape, which are defined by lithography. However, spurious responses including flexural vibration are also excited due to its thin structure. To improve resonator performance and suppress spurious modes, visual observation with a laser probe system is very effective. In this paper, we have prototyped a mechanically-coupled disk-array filter, which consists of a Si disk and 2 disk-type resonators of higher-order wine-glass mode, and observed its vibration modes using a high-frequency laser-Doppler vibrometer (UHF-120, Polytec, Inc.). As a result, it was confirmed that higher order wine-glass mode vibration included a compound displacement, and that its out-of-plane vibration amplitude was much smaller than other flexural spurious modes. The observed vibration modes were compared with FEM (Finite Element Method) simulation results. In addition, it was also confirmed that the fabrication error, e.g. miss-alignment, induced asymmetric vibration.

  13. Far off-resonance laser frequency stabilization using multipass cells in Faraday rotation spectroscopy.

    Science.gov (United States)

    Quan, Wei; Li, Yang; Li, Rujie; Shang, Huining; Fang, Zishan; Qin, Jie; Wan, Shuangai

    2016-04-01

    We propose a far off-resonance laser frequency stabilization method by using multipass cells in Rb Faraday rotation spectroscopy. Based on the detuning equation, if multipass cells with several meters optical path length are used in the conventional Faraday spectroscopy, the detuning of the lock point can be extended much further from the alkali metal resonance. A plate beam splitter was used to generate two different Faraday signals at the same time. The transmitted optical path length was L=50  mm and the reflected optical path length was 2L=100  mm. When the optical path length doubled, the detuning of the lock points moved further away from the atomic resonance. The temperature dependence of the detuning of the lock point was also analyzed. A temperature-insensitive lock point was found near resonance when the cell temperature was between 110°C and 130°C. We achieved an rms fluctuation of 0.9 MHz/23 h at a detuning of 0.5 GHz. A frequency drift of 16 MHz/h at a detuning of -5.6  GHz and 4 MHz/h at a detuning of -5.2  GHz were also obtained for the transmitted and reflected light Faraday signal.

  14. Optical frequency comb generation from aluminum nitride micro-ring resonator

    CERN Document Server

    Jung, Hojoong; Fong, King Y; Zhang, Xufeng; Tang, Hong X

    2013-01-01

    Aluminum nitride is an appealing nonlinear optical material for on-chip wavelength conversion. Here we report optical frequency comb generation from high quality factor aluminum nitride micro-ring resonators integrated on silicon substrates. By engineering the waveguide structure to achieve near-zero dispersion at telecommunication wavelengths and optimizing the phase matching for four-wave mixing, frequency combs are generated with a single wavelength continuous-wave pump laser. The Kerr coefficient (n2) of aluminum nitride is further extracted from our experimental results.

  15. High frequency surface acoustic wave resonator-based sensor for particulate matter detection

    OpenAIRE

    Thomas, Sanju; Cole, Marina; Villa-López, Farah Helue; Gardner, J. W.

    2016-01-01

    This paper describes the characterization of high frequency Surface Acoustic Wave Resonator-based (SAWR) sensors, for the detection of micron and sub-micron sized particles. The sensor comprises two 262 MHz ST-cut quartz based Rayleigh wave SAWRs where one is used for particle detection and the other as a reference. Electro-acoustic detection of different sized particles shows a strong relationship between mass sensitivity (Δf/Δm) and particle diameter (Dp). This enables frequency-dependent S...

  16. A Multiple Resonant Frequencies Circular Reconfigurable Antenna Investigated with Wireless Powering in a Concrete Block

    Directory of Open Access Journals (Sweden)

    Shishir Shanker Punjala

    2015-01-01

    Full Text Available A novel broadband reconfigurable antenna design that can cover different frequency bands is presented. This antenna has multiple resonant frequencies. The reflection coefficient graphs for this antenna are presented in this paper. The new proposed design was investigated along with RF MEMS switches and the results are also presented. Investigations were carried out to check the efficiency of the antenna in the wireless powering domain. The antenna was placed in a concrete block and its result comparison to that of a dipole antenna is also presented in this paper.

  17. Time-of-flight detection of ultra-cold atoms using resonant frequency modulation imaging.

    Science.gov (United States)

    Hardman, K S; Wigley, P B; Everitt, P J; Manju, P; Kuhn, C C N; Robins, N P

    2016-06-01

    Resonant frequency modulation imaging is used to detect free falling ultra-cold atoms. A theoretical comparison of fluorescence imaging (FI) and frequency modulation imaging (FMI) is made, indicating that for low optical depth clouds, FMI accomplished a higher signal-to-noise ratio under conditions necessary for a 200 μm spatially resolved atom interferometer. A 750 ms time-of-flight measurement reveals near atom shot-noise limited number measurements of 2×106 Bose-condensed Rb87 atoms. The detection system is applied to high precision spinor BEC based atom interferometer.

  18. Suppression of cyclotron instability in Electron Cyclotron Resonance ion sources by two-frequency heating

    Energy Technology Data Exchange (ETDEWEB)

    Skalyga, V. [Institute of Applied Physics of Russian Academy of Sciences, 46 Ulyanova st., Nizhny Novgorod (Russian Federation); Lobachevsky State University of Nizhny Novgorod (UNN), 23 Gagarina st., Nizhny Novgorod (Russian Federation); Izotov, I.; Mansfeld, D. [Institute of Applied Physics of Russian Academy of Sciences, 46 Ulyanova st., Nizhny Novgorod (Russian Federation); Kalvas, T.; Koivisto, H.; Komppula, J.; Kronholm, R.; Laulainen, J.; Tarvainen, O. [Department of Physics, University of Jyväskylä, Jyväskylä (Finland)

    2015-08-15

    Multiple frequency heating is one of the most effective techniques to improve the performance of Electron Cyclotron Resonance (ECR) ion sources. The method increases the beam current and average charge state of the extracted ions and enhances the temporal stability of the ion beams. It is demonstrated in this paper that the stabilizing effect of two-frequency heating is connected with the suppression of electron cyclotron instability. Experimental data show that the interaction between the secondary microwave radiation and the hot electron component of ECR ion source plasmas plays a crucial role in mitigation of the instabilities.

  19. Multi-frequency proportional-resonant (MFPR) current controller for PWM VSC under unbalanced supply conditions

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    This letter presents a multi-frequency proportional-resonant (MFPR) current controller developed for PWM voltage source converter (VSC) under the unbalanced supply voltage conditions. The delta operator is used in place of the shift operator for the implementation of MFPR by using a low-cost fixed-point DSP. The experimental results with an alternative control strategy validated the feasibility of the proposed MFPR current controller for the PWM VSC during voltage unbalance.

  20. Cylindrically-bent rectangular patch antennas: novel modeling techniques for resonance frequency variation and uncertainty

    OpenAIRE

    Vallozzi, Luigi; Boeykens, Freek; Rogier, Hendrik

    2015-01-01

    Wearable textile antennas are basic components in body-centric communication systems. Flexible wearable patch antennas, when integrated into a body-worn garment are subjected to bending, causing variation in the resonance frequency when compared to the flat-antenna. Bending conditions vary statistically among different human subjects. Therefore, it is very important to be able to predict performance variations due to bending. We propose novel models which allow to predict the deterministic an...

  1. Analytical Modeling for the Bending Resonant Frequency of Multilayered Microresonators with Variable Cross-Section

    Directory of Open Access Journals (Sweden)

    Jian Lu

    2011-08-01

    Full Text Available Multilayered microresonators commonly use sensitive coating or piezoelectric layers for detection of mass and gas. Most of these microresonators have a variable cross-section that complicates the prediction of their fundamental resonant frequency (generally of the bending mode through conventional analytical models. In this paper, we present an analytical model to estimate the first resonant frequency and deflection curve of single-clamped multilayered microresonators with variable cross-section. The analytical model is obtained using the Rayleigh and Macaulay methods, as well as the Euler-Bernoulli beam theory. Our model is applied to two multilayered microresonators with piezoelectric excitation reported in the literature. Both microresonators are composed by layers of seven different materials. The results of our analytical model agree very well with those obtained from finite element models (FEMs and experimental data. Our analytical model can be used to determine the suitable dimensions of the microresonator’s layers in order to obtain a microresonator that operates at a resonant frequency necessary for a particular application.

  2. Vocal tract motor patterns and resonance during constant frequency song: the white-throated sparrow.

    Science.gov (United States)

    Riede, Tobias; Suthers, Roderick A

    2009-02-01

    Bird song is a complex behavior that requires the coordination of several motor systems. Sound is produced in the syrinx and then modified by the upper vocal tract. Movements of the hyoid skeleton have been shown in the northern cardinal (Cardinalis cardinalis) to be extensively involved in forming an oropharyngeal-esophageal cavity (OEC), which contributes a major resonance to the vocal tract transfer function. Here we report that a similar relationship exists between the volume of the OEC and the fundamental frequency in the white-throated sparrow (Zonotrichia albicollis) whose song, unlike that of the cardinal, consists of a series of almost constant frequency notes. Cineradiography of singing sparrows shows that the oropharyngeal cavity and cranial end of the esophagus expand abruptly at the start of each note and maintain a relatively constant volume until the end of the note. Computation of the vocal tract transfer function suggests a major resonance of the OEC follows the fundamental frequency, making sound transmission more efficient. The presence of similar prominent song-related vocal tract motor patterns in two Oscine families suggests that the active control of the vocal tract resonance by varying the volume of the OEC may be widespread in songbirds.

  3. Resonant frequency of mass-loaded membranes for vibration energy harvesting applications

    Directory of Open Access Journals (Sweden)

    Lin Dong

    2015-08-01

    Full Text Available Vibration based energy harvesting has been widely investigated to target ambient vibration sources as a means to generate small amounts of electrical energy. While cantilever-based geometries have been pursued frequently in the literature, here membrane-based geometries for the energy harvesting device is considered, with the effects of an added mass and tension on the effective resonant frequency of the membranes studied. An analytical model is developed to describe the vibration response for a circular membrane with added mass structure, with the results closely agreeing with finite element simulation in ANSYS. A complementary study of square membranes loaded with a central mass shows analogous behavior. The analytical model is then used to interpret the experimentally observed shift in resonance frequency of a circular membrane with a proof mass. The impact of membrane tension and central proof mass on the resonant frequency of the membrane suggests that this approach may be used as a tuning method to optimize the response of membrane-based designs for maximum power output for vibration energy harvesting applications.

  4. PARALLEL FINITE ELEMENT ANALYSIS OF HIGH FREQUENCY VIBRATIONS OF QUARTZ CRYSTAL RESONATORS ON LINUX CLUSTER

    Institute of Scientific and Technical Information of China (English)

    Ji Wang; Yu Wang; Wenke Hu; Wenhua Zhao; Jianke Du; Dejin Huang

    2008-01-01

    Quartz crystal resonators are typical piezoelectric acoustic wave devices for frequency control applications with mechanical vibration frequency at the radio-frequency (RF) range. Precise analyses of the vibration and deformation are generally required in the resonator design and improvement process. The considerations include the presence of electrodes, mountings, bias fields such as temperature, initial stresses, and acceleration. Naturally, the finite element method is the only effective tool for such a coupled problem with multi-physics nature. The main challenge is the extremely large size of resulted linear equations. For this reason, we have been employing the Mindlin plate equations to reduce the computational difficulty. In addition, we have to utilize the parallel computing techniques on Linux clusters, which are widely available for academic and industrial applications nowadays, to improve the computing efficiency. The general principle of our research is to use open source software components and public domain technology to reduce cost for developers and users on a Linux cluster. We start with a mesh generator specifically for quartz crystal resonators of rectangular and circular types, and the Mindlin plate equations are implemented for the finite element analysis. Computing techniques like parallel processing, sparse matrix handling, and the latest eigenvalue extraction package are integrated into the program. It is clear from our computation that the combination of these algorithms and methods on a cluster can meet the memory requirement and reduce computing time significantly.

  5. Redistribution of light frequency by multiple scattering in a resonant atomic vapor

    CERN Document Server

    Carvalho, J C de A; Oriá, M; Chevrollier, M; de Silans, T Passerat

    2015-01-01

    The propagation of light in a resonant atomic vapor can \\textit{a priori} be thought of as a multiple scattering process, in which each scattering event redistributes both the direction and the frequency of the photons. Particularly, the frequency redistribution may result in L\\'evy flights of photons, directly affecting the transport properties of light in a resonant atomic vapor and turning this propagation into a superdifusion process. Here, we report on a Monte-Carlo simulation developed to study the evolution of the spectrum of the light in a resonant thermal vapor. We observe the gradual change of the spectrum and its convergence towards a regime of Complete Frequency Redistribution as the number of scattering events increases. We also analyse the probability density function of the step length of photons between emissions and reabsorptions in the vapor, which governs the statistics of the light diffusion. We observe two different regime in the light transport: superdiffusive when the vapor is excited n...

  6. Fundamental frequencies and resonances from eccentric and precessing binary black hole inspirals

    CERN Document Server

    Lewis, Adam G M; Pfeiffer, Harald P

    2016-01-01

    Binary black holes which are both eccentric and undergo precession remain unexplored in numerical simulations. We present simulations of such systems which cover about 50 orbits at comparatively high mass ratios 5 and 7. The configurations correspond to the generic motion of a nonspinning body in a Kerr spacetime, and are chosen to study the transition from finite mass-ratio inspirals to point particle motion in Kerr. We develop techniques to extract analogs of the three fundamental frequencies of Kerr geodesics, compare our frequencies to those of Kerr, and show that the differences are consistent with self-force corrections entering at first order in mass ratio. This analysis also locates orbital resonances where the ratios of our frequencies take rational values. At the considered mass ratios, the binaries pass through resonances in one to two resonant cycles, and we find no discernible effects on the orbital evolution. We also compute the decay of eccentricity during the inspiral and find good agreement w...

  7. Hybrid Intelligent Control Method to Improve the Frequency Support Capability of Wind Energy Conversion Systems

    Directory of Open Access Journals (Sweden)

    Shin Young Heo

    2015-10-01

    Full Text Available This paper presents a hybrid intelligent control method that enables frequency support control for permanent magnet synchronous generators (PMSGs wind turbines. The proposed method for a wind energy conversion system (WECS is designed to have PMSG modeling and full-scale back-to-back insulated-gate bipolar transistor (IGBT converters comprising the machine and grid side. The controller of the machine side converter (MSC and the grid side converter (GSC are designed to achieve maximum power point tracking (MPPT based on an improved hill climb searching (IHCS control algorithm and de-loaded (DL operation to obtain a power margin. Along with this comprehensive control of maximum power tracking mode based on the IHCS, a method for kinetic energy (KE discharge control of the supporting primary frequency control scheme with DL operation is developed to regulate the short-term frequency response and maintain reliable operation of the power system. The effectiveness of the hybrid intelligent control method is verified by a numerical simulation in PSCAD/EMTDC. Simulation results show that the proposed approach can improve the frequency regulation capability in the power system.

  8. Recent Developments on Hybrid Time-Frequency Numerical Simulation Techniques for RF and Microwave Applications

    Directory of Open Access Journals (Sweden)

    Jorge F. Oliveira

    2013-01-01

    Full Text Available This paper reviews some of the promising doors that functional analysis techniques have recently opened in the field of electronic circuit simulation. Because of the modulated nature of radio frequency (RF signals, the corresponding electronic circuits seem to operate in a slow time scale for the aperiodic information and another, much faster, time scale for the periodic carrier. This apparent multirate behavior can be appropriately described using partial differential equations (PDEs within a bivariate framework, which can be solved in an efficient way using hybrid time-frequency techniques. With these techniques, the aperiodic information dimension is treated in the discrete time domain, while the periodic carrier dimension is processed in the frequency domain, in which the solution is evaluated within a space of harmonically related sinusoidal functions. The objective of this paper is thus to provide a general overview on the most important hybrid time-frequency techniques, as the ones found in commercial tools or the ones recently published in the literature.

  9. Broadband ground motion simulation using a paralleled hybrid approach of Frequency Wavenumber and Finite Difference method

    Science.gov (United States)

    Chen, M.; Wei, S.

    2016-12-01

    The serious damage of Mexico City caused by the 1985 Michoacan earthquake 400 km away indicates that urban areas may be affected by remote earthquakes. To asses earthquake risk of urban areas imposed by distant earthquakes, we developed a hybrid Frequency Wavenumber (FK) and Finite Difference (FD) code implemented with MPI, since the computation of seismic wave propagation from a distant earthquake using a single numerical method (e.g. Finite Difference, Finite Element or Spectral Element) is very expensive. In our approach, we compute the incident wave field (ud) at the boundaries of the excitation box, which surrounding the local structure, using a paralleled FK method (Zhu and Rivera, 2002), and compute the total wave field (u) within the excitation box using a parallelled 2D FD method. We apply perfectly matched layer (PML) absorbing condition to the diffracted wave field (u-ud). Compared to previous Generalized Ray Theory and Finite Difference (Wen and Helmberger, 1998), Frequency Wavenumber and Spectral Element (Tong et al., 2014), and Direct Solution Method and Spectral Element hybrid method (Monteiller et al., 2013), our absorbing boundary condition dramatically suppress the numerical noise. The MPI implementation of our method can greatly speed up the calculation. Besides, our hybrid method also has a potential use in high resolution array imaging similar to Tong et al. (2014).

  10. Carbon Nanofiber-Based, High-Frequency, High-Q, Miniaturized Mechanical Resonators

    Science.gov (United States)

    Kaul, Anupama B.; Epp, Larry W.; Bagge, Leif

    2011-01-01

    High Q resonators are a critical component of stable, low-noise communication systems, radar, and precise timing applications such as atomic clocks. In electronic resonators based on Si integrated circuits, resistive losses increase as a result of the continued reduction in device dimensions, which decreases their Q values. On the other hand, due to the mechanical construct of bulk acoustic wave (BAW) and surface acoustic wave (SAW) resonators, such loss mechanisms are absent, enabling higher Q-values for both BAW and SAW resonators compared to their electronic counterparts. The other advantages of mechanical resonators are their inherently higher radiation tolerance, a factor that makes them attractive for NASA s extreme environment planetary missions, for example to the Jovian environments where the radiation doses are at hostile levels. Despite these advantages, both BAW and SAW resonators suffer from low resonant frequencies and they are also physically large, which precludes their integration into miniaturized electronic systems. Because there is a need to move the resonant frequency of oscillators to the order of gigahertz, new technologies and materials are being investigated that will make performance at those frequencies attainable. By moving to nanoscale structures, in this case vertically oriented, cantilevered carbon nanotubes (CNTs), that have larger aspect ratios (length/thickness) and extremely high elastic moduli, it is possible to overcome the two disadvantages of both bulk acoustic wave (BAW) and surface acoustic wave (SAW) resonators. Nano-electro-mechanical systems (NEMS) that utilize high aspect ratio nanomaterials exhibiting high elastic moduli (e.g., carbon-based nanomaterials) benefit from high Qs, operate at high frequency, and have small force constants that translate to high responsivity that results in improved sensitivity, lower power consumption, and im - proved tunablity. NEMS resonators have recently been demonstrated using topdown

  11. Electron density and collision frequency of microwave resonant cavity produced discharges. [Progress report

    Energy Technology Data Exchange (ETDEWEB)

    McColl, W.; Brooks, C.; Brake, M.L.

    1992-12-31

    This progress report consists of an article, the abstract of which follows, and apparently the references and vita from a proposal. A review of perturbation diagnostics applied to microwave resonant cavity discharges is presented. The classical microwave perturbation technique examines the shift in the resonant frequency and cavity quality factor of the resonant cavity caused by low electron density discharges. However, modifications presented here allow the analysis to be applied to discharges with electron densities beyond the limit predicted by perturbation theory. An {open_quote}exact{close_quote} perturbation analysis is presented which models the discharge as a separate dielectric, thereby removing the restrictions on electron density imposed by the classical technique. The {open_quote}exact{close_quote} method also uses measurements of the shifts in the resonant conditions of the cavity. Thirdly, an electromagnetic analysis is presented which uses a characteristic equation, based upon Maxwell`s laws, and predicts the discharge conductivity based upon measurements of a complex axial wave number. By allowing the axial wave number of the electromagnetic fields to be complex, the fields are experimentally and theoretically shown to be spatially attenuated. The diagnostics are applied to continuous-wave microwave (2.45 GHz) discharges produced in an Asmussen resonant cavity. Double Langmuir probes, placed directly in the discharge at the point where the radial electric field is zero, act as a comparison with the analytic diagnostics. Microwave powers ranging from 30 to 100 watts produce helium and nitrogen discharges with pressures ranging from 0.5 to 6 torr. Analysis of the data predicts electron temperatures from 5 to 20 eV, electron densities from 10{sup 11} to 3 {times} 10{sup 12} cm{sup {minus}3}, and collision frequencies from 10{sup 9} to 10{sup 11} sec{sup {minus}1}.

  12. The application of frequency swept pulses for the acquisition of nuclear quadrupole resonance spectra

    Science.gov (United States)

    Rossini, Aaron J.; Hamaed, Hiyam; Schurko, Robert W.

    2010-09-01

    The acquisition of nuclear quadrupole resonance (NQR) spectra with wideband uniform rate and smooth truncation (WURST) pulses is investigated. 75As and 35Cl NQR spectra acquired with the WURST echo sequence are compared to those acquired with standard Hahn-echo sequences and echo sequences which employ composite refocusing pulses. The utility of WURST pulses for locating NQR resonances of unknown frequency is investigated by monitoring the integrated intensity and signal to noise of 35Cl and 75As NQR spectra acquired with transmitter offsets of several hundreds kilohertz from the resonance frequencies. The WURST echo sequence is demonstrated to possess superior excitation bandwidths in comparison to the pulse sequences which employ conventional monochromatic rectangular pulses. The superior excitation bandwidths of the WURST pulses allows for differences in the characteristic impedance of the receiving and excitation circuits of the spectrometer to be detected. Impedance mismatches have previously been reported by Marion and Desvaux [D.J.Y. Marion, H. Desvaux, J. Magn. Reson. (2008) 193(1) 153-157] and Muller et al. [M. Nausner, J. Schlagnitweit, V. Smrecki, X. Yang, A. Jerschow, N. Muller, J. Magn. Reson. (2009) 198(1) 73-79]. In this regard, WURST pulse sequences may afford an efficient new method for experimentally detecting impedance mismatches between receiving and excitation circuits, allowing for the optimization of solids and solution NMR and NQR spectrometer systems. The use of the Carr-Purcell Meiboom-Gill (CPMG) pulse sequence for signal enhancement of NQR spectra acquired with WURST pulses and conventional pulses is also investigated. Finally, the utility of WURST pulses for the acquisition of wideline NQR spectra is demonstrated by acquiring part of the 63/65Cu NQR spectrum of CuCN.

  13. Active noise control using noise source having adaptive resonant frequency tuning through stress variation

    Science.gov (United States)

    Pla, Frederic G. (Inventor); Rajiyah, Harindra (Inventor); Renshaw, Anthony A. (Inventor); Hedeen, Robert A. (Inventor)

    1995-01-01

    A noise source for an aircraft engine active noise cancellation system in which the resonant frequency of a noise radiating element is tuned to permit noise cancellation over a wide range of frequencies. The resonant frequency of the noise radiating element is tuned by an expandable ring embedded in the noise radiating element. Excitation of the ring causes expansion or contraction of the ring, thereby varying the stress in the noise radiating element. The ring is actuated by a controller which receives input of a feedback signal proportional to displacement of the noise radiating element and a signal corresponding to the blade passage frequency of the engine's fan. In response, the controller determines a control signal which is sent to the ring, causing the ring to expand or contract. Instead of a single ring embedded in the noise radiating panel, a first expandable ring can be bonded to one side of the noise radiating element, and a second expandable ring can be bonded to the other side.

  14. Active noise control using noise source having adaptive resonant frequency tuning through variable ring loading

    Science.gov (United States)

    Pla, Frederic G. (Inventor); Rajiyah, Harindra (Inventor); Renshaw, Anthony A. (Inventor); Hedeen, Robert A. (Inventor)

    1995-01-01

    A noise source for an aircraft engine active noise cancellation system in which the resonant frequency of noise radiating structure is tuned to permit noise cancellation over a wide range of frequencies. The resonant frequency of the noise radiating structure is tuned by a plurality of drivers arranged to contact the noise radiating structure. Excitation of the drivers causes expansion or contraction of the drivers, thereby varying the edge loading applied to the noise radiating structure. The drivers are actuated by a controller which receives input of a feedback signal proportional to displacement of the noise radiating element and a signal corresponding to the blade passage frequency of the engine's fan. In response, the controller determines a control signal which is sent to the drivers, causing them to expand or contract. The noise radiating structure may be either the outer shroud of the engine or a ring mounted flush with an inner wall of the shroud or disposed in the interior of the shroud.

  15. Active noise control using noise source having adaptive resonant frequency tuning through stiffness variation

    Science.gov (United States)

    Pla, Frederic G. (Inventor); Rajiyah, Harindra (Inventor); Renshaw, Anthony A. (Inventor); Hedeen, Robert A. (Inventor)

    1995-01-01

    A noise source for an aircraft engine active noise cancellation system in which the resonant frequency of a noise radiating element is tuned to permit noise cancellation over a wide range of frequencies. The resonant frequency of the noise radiating element is tuned by a plurality of force transmitting mechanisms which contact the noise radiating element. Each one of the force transmitting mechanisms includes an expandable element and a spring in contact with the noise radiating element so that excitation of the element varies the spring force applied to the noise radiating element. The elements are actuated by a controller which receives input of a signal proportional to displacement of the noise radiating element and a signal corresponding to the blade passage frequency of the engine's fan. In response, the controller determines a control signal which is sent to the elements and causes the spring force applied to the noise radiating element to be varied. The force transmitting mechanisms can be arranged to either produce bending or linear stiffness variations in the noise radiating element.

  16. Generation of THz frequency using PANDA ring resonator for THz imaging

    Directory of Open Access Journals (Sweden)

    Ong CT

    2012-02-01

    Full Text Available MA Jalil1, Afroozeh Abdolkarim2, T Saktioto2, CT Ong3, Preecha P Yupapin41Ibnu Sina Institute of Fundamental Science Studies, Nanotechnology Research Alliance, Universiti Teknologi Malaysia (UTM,81310, Johor Bahru, Malaysia; 2Institute of Advanced Photonics Science, Nanotechnology Research Alliance, Universiti Teknologi Malaysia (UTM, 81310, Johor Bahru, Malaysia; 3Department of Mathematics, Universiti Teknologi Malaysia 81310 Skudai, Johor Bahru, Malaysia; 4Nanoscale Science and Engineering Research Alliance (N'SERA, Advanced Research Center for Photonics, Faculty of Science, King Mongkut's Institute of Technology Ladkrabang, Bangkok 10520, ThailandAbstract: In this study, we have generated terahertz (THz frequency by a novel design of microring resonators for medical applications. The dense wavelength-division multiplexing can be generated and obtained by using a Gaussian pulse propagating within a modified PANDA ring resonator and an add/drop filter system. Our results show that the THz frequency region can be obtained between 40–50 THz. This area of frequency provides a reliable frequency band for THz pulsed imaging.Keywords: THz imaging, THz technology, MRRs, PANDA, add/drop filter

  17. A new resonance-frequency based electrical impedance spectroscopy and its application in biomedical engineering

    Science.gov (United States)

    Dhurjaty, Sreeram; Qiu, Yuchen; Tan, Maxine; Zheng, Bin

    2014-03-01

    Electrical Impedance Spectroscopy (EIS) has shown promising results for differentiating between malignant and benign tumors, which exhibit different dielectric properties. However, the performance of current EIS systems has been inadequate and unacceptable in clinical practice. In the last several years, we have been developing and testing a new EIS approach using resonance frequencies for detection and classification of suspicious tumors. From this experience, we identified several limitations of current technologies and designed a new EIS system with a number of new characteristics that include (1) an increased A/D (analog-to-digital) sampling frequency, 24 bits, and a frequency resolution of 100 Hz, to increase detection sensitivity (2) automated calibration to monitor and correct variations in electronic components within the system, (3) temperature sensing and compensation algorithms to minimize impact of environmental change during testing, and (4) multiple inductor-switching to select optimum resonance frequencies. We performed a theoretical simulation to analyze the impact of adding these new functions for improving performance of the system. This system was also tested using phantoms filled with variety of liquids. The theoretical and experimental test results are consistent with each other. The experimental results demonstrated that this new EIS device possesses the improved sensitivity and/or signal detection resolution for detecting small impedance or capacitance variations. This provides the potential of applying this new EIS technology to different cancer detection and diagnosis tasks in the future.

  18. Design and kinetic analysis of piezoelectric energy harvesters with self-adjusting resonant frequency

    Science.gov (United States)

    Yu-Jen, Wang; Tsung-Yi, Chuang; Jui-Hsin, Yu

    2017-09-01

    Vibration-based energy harvesters have been developed as power sources for wireless sensor networks. Because the vibration frequency of the environment is varied with surrounding conditions, how to design an adaptive energy harvester is a practical topic. This paper proposes a design for a piezoelectric energy harvester possessing the ability to self-adjust its resonant frequency in rotational environments. The effective length of a trapezoidal cantilever is extended by centrifugal force from a rotating wheel to vary its area moment of inertia. The analytical solution for the natural frequency of the piezoelectric energy harvester was derived from the parameter design process, which could specify a structure approaching resonance at any wheel rotating frequency. The kinetic equation and electrical damping induced by power generation were derived from a Lagrange method and a mechanical-electrical coupling model, respectively. An energy harvester with adequate parameters can generate power at a wide range of car speeds. The output power of an experimental prototype composed of piezoelectric thin films and connected to a 3.3 MΩ external resistor was approximately 70-140 μW at wheel speeds ranging from 200 to 700 RPM. These results demonstrate that the proposed piezoelectric energy harvester can be applied as a power source for the wireless tire pressure monitoring sensor.

  19. Input impedance matching of acoustic transducers operating at off-resonant frequencies.

    Science.gov (United States)

    Son, Kyu Tak; Lee, Chin C

    2010-12-01

    The input impedance matching technique of acoustic transducers at off-resonant frequencies is reported. It uses an inherent impedance property of transducers and thus does not need an external electric matching circuit or extra acoustic matching section. The input electrical equivalent circuit includes a radiation component and a dielectric capacitor. The radiation component consists of a radiation resistance and a radiation reactance. The total reactance is the sum of the radiation reactance and the dielectric capacitive reactance. This reactance becomes zero at two frequencies where the impedance is real. The transducer size can be properly chosen so that the impedance at one of the zero-crossing frequencies is close to 50 Ω, the output impedance of signal generators. At this off-resonant operating frequency, the reflection coefficient of the transducer is minimized without using any matching circuit. Other than the size, the impedance can also be fine tuned by adjusting the thickness of material that bonds the transducer plate to the substrates. The acoustic impedance of the substrate and that of the bonding material can also be used as design elements in the transducer structure to achieve better transducer matching. Lead titanate piezoelectric plates were bonded on Lucite, liquid crystal polymer (LCP), and bismuth (Bi) substrates to produce various transducer structures. Their input impedance was simulated using a transducer model and compared with measured values to illustrate the matching principle.

  20. Application of Nuclear Magnetic Resonance and Hybrid Methods to Structure Determination of Complex Systems.

    Science.gov (United States)

    Prischi, Filippo; Pastore, Annalisa

    2016-01-01

    The current main challenge of Structural Biology is to undertake the structure determination of increasingly complex systems in the attempt to better understand their biological function. As systems become more challenging, however, there is an increasing demand for the parallel use of more than one independent technique to allow pushing the frontiers of structure determination and, at the same time, obtaining independent structural validation. The combination of different Structural Biology methods has been named hybrid approaches. The aim of this review is to critically discuss the most recent examples and new developments that have allowed structure determination or experimentally-based modelling of various molecular complexes selecting them among those that combine the use of nuclear magnetic resonance and small angle scattering techniques. We provide a selective but focused account of some of the most exciting recent approaches and discuss their possible further developments.

  1. Resonant tube for measurement of sound absorption in gases at low frequency/pressure ratios

    Science.gov (United States)

    Zuckerwar, A. J.; Griffin, W. A.

    1980-01-01

    The paper describes a resonant tube for measuring sound absorption in gases, with specific emphasis on the vibrational relaxation peak of N2, over a range of frequency/pressure ratios from 0.1 to 2500 Hz/atm. The experimental background losses measured in argon agree with the theoretical wall losses except at few isolated frequencies. Rigid cavity terminations, external excitation, and a differential technique of background evaluation were used to minimize spurious contributions to the background losses. Room temperature measurements of sound absorption in binary mixtures of N2-CO2 in which both components are excitable resulted in the maximum frequency/pressure ratio in Hz/atm of 0.063 + 123m for the N2 vibrational relaxation peak, where m is mole percent of added CO2; the maximum ratio for the CO2 peak was 34,500 268m where m is mole percent of added N2.

  2. Dielectric Resonator Antennas: Basic Concepts, Design Guidelines, and Recent Developments at Millimeter-Wave Frequencies

    Directory of Open Access Journals (Sweden)

    S. Keyrouz

    2016-01-01

    Full Text Available An up-to-date literature overview on relevant approaches for controlling circuital characteristics and radiation properties of dielectric resonator antennas (DRAs is presented. The main advantages of DRAs are discussed in detail, while reviewing the most effective techniques for antenna feeding as well as for size reduction. Furthermore, advanced design solutions for enhancing the realized gain of individual DRAs are investigated. In this way, guidance is provided to radio frequency (RF front-end designers in the selection of different antenna topologies useful to achieve the required antenna performance in terms of frequency response, gain, and polarization. Particular attention is put in the analysis of the progress which is being made in the application of DRA technology at millimeter-wave frequencies.

  3. Freely designable optical frequency conversion in Raman-resonant four-wave-mixing process

    Science.gov (United States)

    Zheng, Jian; Katsuragawa, Masayuki

    2015-01-01

    Nonlinear optical processes are governed by the relative-phase relationships among the relevant electromagnetic fields in these processes. In this Report, we describe the physics of arbitrary manipulation of Raman-resonant four-wave-mixing process by artificial control of relative phases. As a typical example, we show freely designable optical-frequency conversions to extreme spectral regions, mid-infrared and vacuum-ultraviolet, with near-unity quantum efficiencies. Furthermore, we show that such optical-frequency conversions can be realized by using a surprisingly simple technology where transparent plates are placed in a nonlinear optical medium and their positions and thicknesses are adjusted precisely. In a numerical simulation assuming practically applicable parameters in detail, we demonstrate a single-frequency tunable laser that covers the whole vacuum-ultraviolet spectral range of 120 to 200 nm. PMID:25748023

  4. An analytical model for a piezoelectric vibration energy harvester with resonance frequency tunability

    Directory of Open Access Journals (Sweden)

    Yun Wang

    2015-06-01

    Full Text Available This article conceptually proposes a new method to tune the resonance frequency of piezoelectric vibration energy harvesters, in which the supporting position of the vibrator can be adjusted for frequency tuning. The corresponding analytical model is established to predict the performances of the harvester based on the principles of energy. First, the equivalent stiffness and mass of the vibrator in bending mode are derived explicitly for the different supporting positions. A simple analysis method is then established for the frequency, output voltage, and output power. Finally, some numerical examples are given to demonstrate the presented method. The results are also compared with those by finite element method and good agreement is observed.

  5. Multi-frequency Operation of a MEMS Vibration Energy Harvester by Accessing Five Orders of Parametric Resonance

    Science.gov (United States)

    Jia, Y.; Yan, J.; Soga, K.; Seshia, A. A.

    2013-12-01

    The mechanical amplification effect of parametric resonance has the potential to outperform direct resonance by over an order of magnitude in terms of power output. However, the excitation must first overcome the damping-dependent initiation threshold amplitude prior to accessing this more profitable region. In addition to activating the principal (1st order) parametric resonance at twice the natural frequency ω0, higher orders of parametric resonance may be accessed when the excitation frequency is in the vicinity of 2ω0/n for integer n. Together with the passive design approaches previously developed to reduce the initiation threshold to access the principal parametric resonance, vacuum packaging (< 10 torr) is employed to further reduce the threshold and unveil the higher orders. A vacuum packaged MEMS electrostatic harvester (0.278 mm3) exhibited 4 and 5 parametric resonance peaks at room pressure and vacuum respectively when scanned up to 10 g. At 5.1 ms-2, a peak power output of 20.8 nW and 166 nW is recorded for direct and principal parametric resonance respectively at atmospheric pressure; while a peak power output of 60.9 nW and 324 nW is observed for the respective resonant peaks in vacuum. Additionally, unlike direct resonance, the operational frequency bandwidth of parametric resonance broadens with lower damping.

  6. Parental frequencies and spatial configuration shape bumblebee behavior and floral isolation in hybridizing Rhinanthus.

    Science.gov (United States)

    Natalis, Laurent C; Wesselingh, Renate A

    2013-06-01

    To shed light on the role played by pollinators in the diversification of angiosperms, focus is needed on how floral isolation varies locally in the early stages of plant divergence. The few studies performed so far have often used species pairs with distinct pollination syndromes and contrasting floral displays. Here, we focus on a hybridizing pair (Rhinanthus minor and Rhinanthus angustifolius) with strong similarities in flower morphology and pollinators (bumblebees). We examined how ethological isolation changes locally in relation to relative Rhinanthus frequencies, spatial configurations, and pollinator assemblages. Interestingly, floral divergence based on adaptation to different pollinators is unlikely in Rhinanthus: no relationship was found between floral isolation and the local pollinator assemblage. In contrast, species frequency and spatial arrangement strongly influenced bumblebee behavior, ethological isolation, and thus potentially hybrid formation. When both Rhinanthus were present in equal proportions, bees generally preferred the more rewarding and conspicuous species. However, when the Rhinanthus frequencies were unbalanced, the more abundant species was preferred, although this was less pronounced when the less rewarding R. minor predominated. Ethological isolation is highly sensitive to site characteristics, and can be as high as in species with contrasting floral displays and pollinator suites, even though flowers are similar. © 2013 The Author(s). Evolution © 2013 The Society for the Study of Evolution.

  7. Whole-body magnetic resonance angiography at 3 tesla using a hybrid protocol in patients with peripheral arterial disease

    DEFF Research Database (Denmark)

    Nielsen, Yousef W; Eiberg, Jonas P; Logager, Vibeke B

    2009-01-01

    The purpose of this study was to determine the diagnostic performance of 3T whole-body magnetic resonance angiography (WB-MRA) using a hybrid protocol in comparison with a standard protocol in patients with peripheral arterial disease (PAD). In 26 consecutive patients with PAD two different proto...

  8. Observations of magnetospheric ionization enhancements using upper-hybrid resonance noise band data from the RAE-1 satellite

    Science.gov (United States)

    Mosier, S. R.

    1975-01-01

    Noise bands associated with the upper-hybrid resonance were used to provide direct evidence for the existence of regions of enhanced density in the equatorial magnetosphere near L = 2. Density enhancements ranging from several percent to as high as 45 percent are observed with radial dimensions of several hundred kilometers. The enhancement characteristics strongly suggest their identification as magnetospheric whistler ducts.

  9. Applications of the Hybrid Theory to the Scattering of Electrons from HE+ and Li++ and Resonances in these Systems

    Science.gov (United States)

    Bhatia, Anand K.

    2008-01-01

    Applications of the hybrid theory to the scattering of electrons from Ile+ and Li++ and resonances in these systems, A. K. Bhatia, NASA/Goddard Space Flight Center- The Hybrid theory of electron-hydrogen elastic scattering [I] is applied to the S-wave scattering of electrons from He+ and Li++. In this method, both short-range and long-range correlations are included in the Schrodinger equation at the same time. Phase shifts obtained in this calculation have rigorous lower bounds to the exact phase shifts and they are compared with those obtained using the Feshbach projection operator formalism [2], the close-coupling approach [3], and Harris-Nesbet method [4]. The agreement among all the calculations is very good. These systems have doubly-excited or Feshbach resonances embedded in the continuum. The resonance parameters for the lowest ' S resonances in He and Li+ are calculated and they are compared with the results obtained using the Feshbach projection operator formalism [5,6]. It is concluded that accurate resonance parameters can be obtained by the present method, which has the advantage of including corrections due to neighboring resonances and the continuum in which these resonances are embedded.

  10. Research on beam characteristics in a large-Fresnel-number unstable-waveguide hybrid resonator with parabolic mirrors.

    Science.gov (United States)

    Wang, Wei; Qin, Yingxiong; Xiao, Yu; Zhong, Lijing; Wu, Chao; Wang, Zhen; Wan, Wen; Tang, Xiahui

    2016-07-20

    Large-Fresnel-number unstable-waveguide hybrid resonators employing spherical resonator mirrors suffer from spherical aberration, which adversely affects beam quality and alignment sensitivity. In this paper, we present experimental and numerical wave-optics simulations of the beam characteristics of a negative-branch hybrid resonator having parabolic mirrors with a large equivalent Fresnel number in the unstable direction. These results are compared with a resonator using spherical mirrors. Using parabolic mirrors, the output beam has a smaller beam spot size and higher power density at the focal plane. We found that the power extraction efficiency is 3.5% higher when compared with a resonator using spherical mirrors as the cavity length was varied between -1 and 1 mm from the ideal confocal resonator. In addition, the power extraction efficiency is 5.6% higher for mirror tilt angles varied between -6 and 6 mrad. Furthermore, the output propagating field is similar to a converging wave for a spherical mirror resonator and the output beam direction deviates 3.5 mrad from the optical axis. The simulation results are in good agreement with the experimental results.

  11. Harvesting under transient conditions: harvested energy as a proxy for optimal resonance frequency detuning

    Science.gov (United States)

    Hynds, Taylor D.; Kauffman, Jeffrey L.

    2015-04-01

    Piezoelectric-based vibration energy harvesting is of interest in a wide range of applications, and a number of harvesting schemes have been proposed and studied { primarily when operating under steady state conditions. However, energy harvesting behavior is rarely studied in systems with transient excitations. This paper will work to develop an understanding of this behavior within the context of a particular vibration reduction technique, resonance frequency detuning. Resonance frequency detuning provides a method of reducing mechanical response at structural resonances as the excitation frequency sweeps through a given range. This technique relies on switching the stiffness state of a structure at optimal times to detune its resonance frequency from that of the excitation. This paper examines how this optimal switch may be triggered in terms of the energy harvested, developing a normalized optimal switch energy that is independent of the open- and short-circuit resistances. Here the open- and short-circuit shunt resistances refer to imposed conditions that approximate the open- and short-circuit conditions, via high and low resistance shunts. These conditions are practically necessary to harvest the small amounts of power needed to switch stiffness states, as open-circuit and closed-circuit refer to infinite resistance and zero resistance, respectively, and therefore no energy passes through the harvesting circuit. The limiting stiffness states are then defined by these open- and short-circuit resistances. The optimal switch energy is studied over a range of sweep rates, damping ratios, and coupling coefficients; it is found to increase with the coupling coefficient and decrease as the sweep rate and damping ratio increase, behavior which is intuitive. Higher coupling means more energy is converted by the piezoelectric material, and therefore more energy is harvested in a given time; an increased sweep rate means resonance is reached sooner, and there will less

  12. Observation of microarray DNA hybridization using surface plasmon resonance phase-shift interferometry

    Science.gov (United States)

    Chen, Shean-Jen; Tsou, C.-Y.; Chen, Y.-K.; Su, Y.-T.

    2004-06-01

    Surface plasmon resonance phase-shift interferometry (SPR-PSI) is a novel technique which combines SPR and modified Mach-Zehnder phase-shifting interferometry to measure the spatial phase variation caused by biomolecular interactions upon a sensing chip. The SPR-PSI imaging system offers high resolution and high-throughout screening capabilities for microarray DNA hybridization without the need for additional labeling, and provides valuable real-time quantitative information. Current SPR-PSI imaging systems measure the spatial phase variation caused by tiny biomolecular changes on the sensing interface by means of a five-step phase reconstruction algorithm and a novel multichannel least mean squares (MLMS) phase unwrapping algorithm. The SPR-PSI imaging system has an enhanced detection limit of 2.5 × 10-7 refraction index change, a long-term phase stability of π/100 in 30 minutes, and a spatial phase resolution of π/500 with a lateral resolution of 10μm. This study successfully demonstrates the kinetic and label-free observation of 5-mer DNA microarray hybridization.

  13. Resonant photothermal laser processing of hybrid gold/titania nanoparticle films

    Science.gov (United States)

    Schade, Lina; Franzka, Steffen; Dzialkowski, Kevin; Hardt, Sebastian; Wiggers, Hartmut; Reichenberger, Sven; Wagener, Philipp; Hartmann, Nils

    2015-05-01

    Photothermal processing of thin anatase TiO2 and hybrid Au/anatase TiO2 nanoparticle films on glass supports is investigated using continuous-wave microfocused lasers at λ = 355 nm and λ = 532 nm. UV/Vis spectroscopy, Raman spectroscopy, optical microscopy, atomic force microscopy and scanning electron microscopy are used for characterization. Processing of TiO2 nanoparticle films is feasible at λ = 355 nm only. In contrast, the addition of Au nanoparticles enhances the overall absorbance of the material in the visible range and enables processing at both wavelengths, i.e. at λ = 355 nm and λ = 532 nm. Generally, laser heating induces a transition from anatase to rutile. The modification degree increases with increasing laser power and laser irradiation time. Resonant laser processing of hybrid Au/TiO2-mesoporous films provide promising perspectives in various applications, e.g. in photovoltaics, where embedded nanoparticulate Au could be exploited to enhance light trapping.

  14. Polymer waveguide Fabry-Perot resonator for high-frequency ultrasound detection.

    Science.gov (United States)

    Tadayon, Mohammad Amin; Baylor, Martha-Elizabeth; Ashkenazi, Shai

    2014-12-01

    Piezoelectric technology is the backbone of most medical ultrasound imaging arrays; however, signal transduction efficiency severely deteriorates in scaling the technology to element size smaller than 0.1 mm, often required for high-frequency operation (>20 MHz). Optical sensing and generation of ultrasound has been proposed and studied as an alternative technology for implementing sub-millimeter size arrays with element size down to 10 μm. The application of thin polymer film Fabry-Perot resonators has been demonstrated for high-frequency ultrasound detection; however, their sensitivity is limited by light diffraction loss. Here, we introduce a new method to increase the sensitivity of an optical ultrasound receiver by utilizing a waveguide between the mirrors of the Fabry-Perot resonator. This approach eliminates diffraction loss from the cavity, and therefore the finesse is only limited by mirror loss and absorption. By applying this method, we have achieved noise equivalent pressure of 178 Pa over a bandwidth of 30 MHz or 0.03 Pa/Hz1/2, which is about 20-fold better than a similar device without a waveguide. The finesse of the tested Fabry-Perot resonator was around 200. This result is 5 times higher than the finesse measured in the same device outside the waveguide region.

  15. Non-destructive testing of ceramic balls using high frequency ultrasonic resonance spectroscopy.

    Science.gov (United States)

    Petit, S; Duquennoy, M; Ouaftouh, M; Deneuville, F; Ourak, M; Desvaux, S

    2005-12-01

    Although ceramic balls are used more and more for bearings in the aerospace and space industries, defects in this type of ceramic material could be dangerous, particularly if such defects are located close to the surface. In this paper, we propose a non-destructive testing method for silicon nitride balls, based on ultrasonic resonance spectroscopy. Through the theoretical study of their elastic vibrations, it is possible to characterize the balls using a vibration mode that is similar to surface wave propagation. The proposed methodology can both excite spheroidal vibrations in the ceramic balls and detect such vibrations over a large frequency range. Studying their resonance spectrums allows the balls' elastic parameters be characterized. Ours is an original method that can quickly estimate the velocity of surface waves using high frequency resonances, which permits surface and sub-surface areas to be tested specifically. Two applications are described in this paper. Both use velocity measurements to achieve their different goals, the first to differentiate between flawless balls from different manufacturing processes, and the second to detect small defects, such as cracks. Our method is rapid and permits the entire ceramic ball to be tested in an industrial context.

  16. Measurements of resonance frequencies on prestressed concrete beams during post-tensioning

    Energy Technology Data Exchange (ETDEWEB)

    Lundqvist, P. [Div. of Structural Engineering, Lund University (Sweden); Ryden, N. [Div. of Engineering Geology, Lund University (Sweden)

    2011-07-01

    The reactor containment, which is a concrete structure prestressed vertically and horizontally, is the most essential safety barrier in a nuclear power plant and is designed to withstand a severe internal accident. The safety of the containment depends on the induced compressive stresses in the concrete, however due to various long-term mechanisms the tendon forces will decrease with time. Today, no methods exist for measuring these prestress losses in containments with bonded tendons and thus there is a need for non-destructive methods for estimating the losses in these structures. Recent results from non-linear ultrasonic measurements during uniaxial loading have demonstrated a strong acoustic and elastic effect in concrete. The present research applies resonant acoustic spectroscopy (RAS) during static loading and unloading of three prestressed concrete beams. At each load step multiple modes of vibration are measured using an accelerometer and a small impact source. Measured resonant frequencies increase with increasing compressive stress. The stress dependency of the modulus of elasticity indicates that the change in state of stress in a simple concrete structure can be estimated by simply measuring the resonance frequency

  17. Characterizing resonant component in speech: A different view of tracking fundamental frequency

    Science.gov (United States)

    Dong, Bin

    2017-05-01

    Inspired by the nonlinearity and nonstationarity and the modulations in speech, Hilbert-Huang Transform and cyclostationarity analysis are employed to investigate the speech resonance in vowel in sequence. Cyclostationarity analysis is not directly manipulated on the target vowel, but on its intrinsic mode functions one by one. Thanks to the equivalence between the fundamental frequency in speech and the cyclic frequency in cyclostationarity analysis, the modulation intensity distributions of the intrinsic mode functions provide much information for the estimation of the fundamental frequency. To highlight the relationship between frequency and time, the pseudo-Hilbert spectrum is proposed to replace the Hilbert spectrum here. After contrasting the pseudo-Hilbert spectra of and the modulation intensity distributions of the intrinsic mode functions, it finds that there is usually one intrinsic mode function which works as the fundamental component of the vowel. Furthermore, the fundamental frequency of the vowel can be determined by tracing the pseudo-Hilbert spectrum of its fundamental component along the time axis. The later method is more robust to estimate the fundamental frequency, when meeting nonlinear components. Two vowels [a] and [i], picked up from a speech database FAU Aibo Emotion Corpus, are applied to validate the above findings.

  18. Combining nutation and surface gravity observations to estimate the Earth's core and inner core resonant frequencies

    Science.gov (United States)

    Ziegler, Yann; Lambert, Sébastien; Rosat, Séverine; Nurul Huda, Ibnu; Bizouard, Christian

    2017-04-01

    Nutation time series derived from very long baseline interferometry (VLBI) and time varying surface gravity data recorded by superconducting gravimeters (SG) have long been used separately to assess the Earth's interior via the estimation of the free core and inner core resonance effects on nutation or tidal gravity. The results obtained from these two techniques have been shown recently to be consistent, making relevant the combination of VLBI and SG observables and the estimation of Earth's interior parameters in a single inversion. We present here the intermediate results of the ongoing project of combining nutation and surface gravity time series to improve estimates of the Earth's core and inner core resonant frequencies. We use VLBI nutation time series spanning 1984-2016 derived by the International VLBI Service for geodesy and astrometry (IVS) as the result of a combination of inputs from various IVS analysis centers, and surface gravity data from about 15 SG stations. We address here the resonance model used for describing the Earth's interior response to tidal excitation, the data preparation consisting of the error recalibration and amplitude fitting for nutation data, and processing of SG time-varying gravity to remove any gaps, spikes, steps and other disturbances, followed by the tidal analysis with the ETERNA 3.4 software package, the preliminary estimates of the resonant periods, and the correlations between parameters.

  19. Selective addressing of solid-state spins at the nanoscale via magnetic resonance frequency encoding

    Science.gov (United States)

    Zhang, H.; Arai, K.; Belthangady, C.; Jaskula, J.-C.; Walsworth, R. L.

    2017-08-01

    The nitrogen vacancy centre in diamond is a leading platform for nanoscale sensing and imaging, as well as quantum information processing in the solid state. To date, individual control of two nitrogen vacancy electronic spins at the nanoscale has been demonstrated. However, a key challenge is to scale up such control to arrays of nitrogen vacancy spins. Here, we apply nanoscale magnetic resonance frequency encoding to realize site-selective addressing and coherent control of a four-site array of nitrogen vacancy spins. Sites in the array are separated by 100 nm, with each site containing multiple nitrogen vacancies separated by 15 nm. Microcoils fabricated on the diamond chip provide electrically tuneable magnetic field gradients 0.1 G/nm. Tailored application of gradient fields and resonant microwaves allow site-selective nitrogen vacancy spin manipulation and sensing applications, including Rabi oscillations, imaging, and nuclear magnetic resonance spectroscopy with nanoscale resolution. Microcoil-based magnetic resonance of solid-state spins provides a practical platform for quantum-assisted sensing, quantum information processing, and the study of nanoscale spin networks.

  20. Quanty for core level spectroscopy - excitons, resonances and band excitations in time and frequency domain

    Science.gov (United States)

    Haverkort, Maurits W.

    2016-05-01

    Depending on the material and edge under consideration, core level spectra manifest themselves as local excitons with multiplets, edge singularities, resonances, or the local projected density of states. Both extremes, i.e., local excitons and non-interacting delocalized excitations are theoretically well under control. Describing the intermediate regime, where local many body interactions and band-formation are equally important is a challenge. Here we discuss how Quanty, a versatile quantum many body script language, can be used to calculate a variety of different core level spectroscopy types on solids and molecules, both in the frequency as well as the time domain. The flexible nature of Quanty allows one to choose different approximations for different edges and materials. For example, using a newly developed method merging ideas from density renormalization group and quantum chemistry [1-3], Quanty can calculate excitons, resonances and band-excitations in x-ray absorption, photoemission, x-ray emission, fluorescence yield, non-resonant inelastic x-ray scattering, resonant inelastic x-ray scattering and many more spectroscopy types. Quanty can be obtained from: http://www.quanty.org.

  1. On the self-excitation mechanisms of Plasma Series Resonance oscillations in single- and multi-frequency capacitive discharges

    CERN Document Server

    Schuengel, Edmund; Korolov, Ihor; Derzsi, Aranka; Donko, Zoltan; Schulze, Julian

    2016-01-01

    The self-excitation of plasma series resonance (PSR) oscillations is a prominent feature in the current of low pressure capacitive radio frequency (RF) discharges. This resonance leads to high frequency oscillations of the charge in the sheaths and enhances electron heating. Up to now, the phenomenon has only been observed in asymmetric discharges. There, the nonlinearity in the voltage balance, which is necessary for the self-excitation of resonance oscillations with frequencies above the applied frequencies, is caused predominantly by the quadratic contribution to the charge-voltage relation of the plasma sheaths. Using PIC/MCC simulations of single- and multi- frequency capacitive discharges and an equivalent circuit model, we demonstrate that other mechanisms such as a cubic contribution to the charge-voltage relation of the plasma sheaths and the time dependent bulk electron plasma frequency can cause the self-excitation of PSR oscillations, as well. These mechanisms have been neglected in previous model...

  2. Multi-resonance orbital model applied to high-frequency quasi-periodic oscillations observed in Sgr A*

    CERN Document Server

    Kotrlova, Andrea; Torok, Gabriel

    2013-01-01

    The multi-resonance orbital model of high-frequency quasi-periodic oscillations (HF QPOs) enables precise determination of the black hole dimensionless spin a if observed set of oscillations demonstrates three (or more) commensurable frequencies. The black hole spin is related to the frequency ratio only, while its mass M is related to the frequency magnitude. The model is applied to the triple frequency set of HF QPOs observed in Sgr A* source with frequency ratio 3:2:1. Acceptable versions of the multi-resonance model are determined by the restrictions on the Sgr A* supermassive black hole mass. Among the best candidates the version of strong resonances related to the black hole "magic" spin a=0.983 belongs. However, the version demonstrating the best agreement with the mass restrictions predicts spin a=0.980.

  3. Rectangular split-ring resonators with single-split and two-splits under different excitations at microwave frequencies

    Directory of Open Access Journals (Sweden)

    S. Zahertar

    2015-11-01

    Full Text Available In this work, transmission characteristics of rectangular split-ring resonators with single-split and two-splits are analyzed at microwave frequencies. The resonators are coupled with monopole antennas for excitation. The scattering parameters of the devices are investigated under different polarizations of E and H fields. The magnetic resonances induced by E and H fields are identified and the differences in the behavior of the resonators due to orientations of the fields are explained based on simulation and experimental results. The addition of the second split of the device is investigated considering different configurations of the excitation vectors. It is demonstrated that the single-split and the two-splits resonators exhibit identical transmission characteristics for a certain excitation configuration as verified with simulations and experiments. The presented resonators can effectively function as frequency selective media for varying excitation conditions.

  4. A tapered undulator experiment at the ELBE far infrared hybrid-resonator oscillator free electron laser.

    Science.gov (United States)

    Asgekar, V; Lehnert, U; Michel, P

    2012-01-01

    A tapered undulator experiment was carried out at the ELBE far-infrared free electron laser (FEL). The oscillator FEL makes use of a hybrid optical resonator. The main motivation was to see whether the presence of a dispersive medium in the form of a waveguide in the resonator has any effect on the outcome. The FEL saturated power and the wavelength shifts have been measured as a function of both positive as well as negative undulator field amplitude tapering. In contrast to the typical high-gain FELs where positive tapering proves beneficial for the output power we observed an improvement of performance at negative taper. During the same experiments we studied the characteristics of the detuning curves. The width of the curves indicates a maximum small signal gain for zero taper while the output peak power increases with negative taper. The saturated power output, the detuning curve characteristics, and the wavelength shifts agrees with the theoretical predictions. Details of the experiment are presented.

  5. Analysis and Active Damping of Multiple High Frequency Resonances in DFIG System

    DEFF Research Database (Denmark)

    Song, Yipeng; Blaabjerg, Frede; Wang, Xiongfei

    2017-01-01

    As the wind power generation develops, the Doubly Fed Induction Generator (DFIG) based wind power system are more and more likely to operate in the emerging weak network rather than the conventional stiff network. Due to the comparatively large impedance of the weak network than the stiff grid......, the DFIG system may be subject to the resonances due to the impedance interaction between the DFIG system and the weak network. Especially, when connected to a series π sections weak network, the Multiple High Frequency Resonances (MHFR) may occur and require careful studies. The impedance modeling...... of the DFIG system and the series π sections weak network is firstly demonstrated in this paper. Then, due to the multiple magnitude peaks of the series π sections of the weak network, the MHFR will be produced and can be theoretically explained based on the impedance modeling results. For the purpose...

  6. Influence of the Basset force on the resonant behavior of an oscillator with fluctuating frequency

    Energy Technology Data Exchange (ETDEWEB)

    Rekker, A., E-mail: Astrid.Rekker@tlu.ee; Mankin, R., E-mail: Romi.Mankin@tlu.ee [Institute of Mathematics and Natural Sciences, Tallinn University, 29 Narva Road, 10120 Tallinn (Estonia)

    2015-10-28

    The influence of hydrodynamic interactions, such as Stokes and Basset forces, on the dynamics of a harmonically trapped Brownian tracer is considered. A generalized Langevin equation is used to describe the tracer’s response to an external periodic force and to dichotomous fluctuations of the stiffness of the trapping potential. Relying on the Shapiro-Loginov formula, exact expressions for the complex susceptibility and for the response function are presented. On the basis of these exact formulas, it is demonstrated that interplay of a multiplicative colored noise and the Basset force induced memory effects can generate a variety of cooperation effects, such as multiresonance versus the driving frequency, as well as stochastic resonance versus noise parameters. In particular, in certain parameter regions the response function exhibits a resonance-like enhancement at intermediate values of the intensity of the Basset force. Conditions for the appearance of these effects are also discussed.

  7. Analysis of Middle Frequency Resonance in DFIG System Considering Phase Locked Loop

    DEFF Research Database (Denmark)

    Song, Yipeng; Blaabjerg, Frede

    2017-01-01

    compensated weak network. Besides these two resonances, a Middle Frequency Resonance (MFR) between 200 Hz and 800 Hz may appear when the Phase Locked Loop (PLL) with fast control dynamics is applied. In order to analyze the MFR, the DFIG system impedance considering the PLL is studied based on the Vector...... Oriented Control (VOC) strategy in Rotor Side Converter (RSC) and Grid Side Converter (GSC). On the basis of the established impedance modeling of the DFIG system, it is found that the PLL with fast control dynamics may result in the occurrence of MFR due to a decreasing phase margin. The simulation...... results of both a 7.5 kW small scale DFIG system and a 2 MW large scale DFIG system are provided to validate the theoretical analysis of the MFR....

  8. Effects of free-electron-laser field fluctuations on the frequency response of driven atomic resonances

    CERN Document Server

    Nikolopoulos, G M

    2012-01-01

    We study the effects of field fluctuations on the total yields of Auger electrons, obtained in the excitation of neutral atoms to a core-excited state by means of short-wavelength free-electron-laser pulses. Beginning with a self-contained analysis of the statistical properties of fluctuating free-electron-laser pulses, we analyse separately and in detail the cases of single and double Auger resonances, focusing on fundamental phenomena such as power broadening and ac Stark (Autler-Townes) splitting. In certain cases, field fluctuations are shown to influence dramatically the frequency response of the resonances, whereas in other cases the signal obtained may convey information about the bandwidth of the radiation as well as the dipole moment between Auger states.

  9. Interaction of polar molecules with resonant radio frequency electric fields: imaging of the NO molecular beam splitting.

    Science.gov (United States)

    Cáceres, J O; Morato, M; González Ureña, A

    2006-12-28

    The interaction between a NO supersonic beam and a resonant radio frequency (RF) field is investigated using laser ionization coupled to imaging techniques. It is shown how the resonant interaction leads to a beam splitting of +/-0.2 degrees toward both positive and negative direction perpendicular to the beam propagation axis. This phenomenon is rationalized using a model based on molecular interferences produced by the action of the resonant RF electric field.

  10. Frequency stabilization of a solid-state microwave generator at a passing four-pole resonator antiparasitic load

    Directory of Open Access Journals (Sweden)

    V. V. Dzyubenko

    1987-12-01

    Full Text Available The analysis of the quality of the parametric frequency stabilization of solid state microwave generators in the four-pole through-inclusion of stabilizing resonator absorbing load. Lredlozhena technique optimal setting generators.

  11. Frequency stabilization of a solid-state microwave generator at a passing four-pole resonator antiparasitic load

    OpenAIRE

    V. V. Dzyubenko; E. A. Zaritskaya; E. A. Machusskii

    1987-01-01

    The analysis of the quality of the parametric frequency stabilization of solid state microwave generators in the four-pole through-inclusion of stabilizing resonator absorbing load. Lredlozhena technique optimal setting generators.

  12. A Switched Capacitor Based AC/DC Resonant Converter for High Frequency AC Power Generation

    Directory of Open Access Journals (Sweden)

    Cuidong Xu

    2015-09-01

    Full Text Available A switched capacitor based AC-DC resonant power converter is proposed for high frequency power generation output conversion. This converter is suitable for small scale, high frequency wind power generation. It has a high conversion ratio to provide a step down from high voltage to low voltage for easy use. The voltage conversion ratio of conventional switched capacitor power converters is fixed to n, 1/n or −1/n (n is the switched capacitor cell. In this paper, A circuit which can provide n, 1/n and 2n/m of the voltage conversion ratio is presented (n is stepping up the switched capacitor cell, m is stepping down the switching capacitor cell. The conversion ratio can be changed greatly by using only two switches. A resonant tank is used to assist in zero current switching, and hence the current spike, which usually exists in a classical switching switched capacitor converter, can be eliminated. Both easy operation and efficiency are possible. Principles of operation, computer simulations and experimental results of the proposed circuit are presented. General analysis and design methods are given. The experimental result verifies the theoretical analysis of high frequency AC power generation.

  13. A Resonantly-Excited Disk-Oscillation Model of High-Frequency QPOs of Microquasars

    CERN Document Server

    Kato, Shoji

    2012-01-01

    A possible model of twin high-frequency QPOs (HF QPOs) of microquasars is examined. The disk is assumed to have global magnetic fields and to be deformed with a two-armed pattern. In this deformed disk, set of a two-armed ($m=2$) vertical p-mode oscillation and an axisymmetric ($m=0$) g-mode oscillation are considered. They resonantly interact through the disk deformation when their frequencies are the same. This resonant interaction amplifies the set of the above oscillations in the case where these two oscillations have wave energies of opposite signs. These oscillations are assumed to be excited most efficiently in the case where the radial group velocities of these two waves vanish at the same place. The above set of oscillations is not unique, depending on the node number, $n$, of oscillations in the vertical direction. We consider that the basic two sets of oscillations correspond to the twin QPOs. The frequencies of these oscillations depend on disk parameters such as strength of magnetic fields. For o...

  14. Frequency Split Elimination Method for a Solid-State Vibratory Angular Rate Gyro with an Imperfect Axisymmetric-Shell Resonator

    Directory of Open Access Journals (Sweden)

    Zhen Lin

    2015-02-01

    Full Text Available The resonator of a solid-state vibratory gyro is responsible for sensing angular motion. Frequency splitting of an axisymmetric-shell resonator is a common problem caused by manufacturing defects. The defect causes a frequency difference between two working modes which consist of two nodes and two antinodes. The difference leads to the loss of gyroscopic effect, and thus the resonator cannot sense angular motion. In this paper, the resonator based on an axisymmetric multi-curved surface shell structure is investigated and an approach to eliminate frequency splits is proposed. Since axisymmetric multi-curved surface shell resonators are too complex to be modeled, this paper proposes a simplified model by focusing on a common property of the axisymmetric shell. The resonator with stochastic imperfections is made equivalent to a perfect shell with an imperfect mass point. Rayleigh’s energy method is used in the theoretical analysis. Finite element modeling is used to demonstrate the effectiveness of the elimination approach. In real cases, a resonator’s frequency split is eliminated by the proposed approach. In this paper, errors in the theoretical analysis are discussed and steps to be taken when the deviation between assumptions and the real situation is large are figured out. The resonator has good performance after processing. The elimination approach can be applied to any kind of solid-state vibratory gyro resonators with an axisymmetric shell structure.

  15. Application of the confluent Heun functions to study the physics of black holes: resonant frequencies and scattering of scalar waves

    CERN Document Server

    Vieira, H S

    2016-01-01

    We study the scattering and the resonant frequencies (quasispectrum) of charged massive scalar waves by Kerr-Newman-Kasuya spacetime (dyon black hole). The equations of motion are written into a Heun form, and its analytical solutions are obtained. We obtain the resonant frequencies expression and the general exact regular partial wave solution. The special cases of the Kerr and Schwarzschild black holes are analyzed and the solutions are shown.

  16. Extended temporal Lugiato-Lefever equation and the effect of conjugate fields in optical resonator frequency combs

    OpenAIRE

    Loures, Cristian Redondo; Faccio, Daniele; Biancalana, Fabio

    2015-01-01

    Starting from the infinite-dimensional Ikeda map, we derive an extended temporal Lugiato-Lefever equation that may account for the effects of the conjugate electromagnetic fields (also called `negative frequency fields'). In the presence of nonlinearity in a ring cavity, these fields lead to new forms of modulational instability and resonant radiations. Numerical simulations based on the new extended Lugiato-Lefever model show that the negative-frequency resonant radiations emitted by ultrash...

  17. Enhanced hybrid asymmetrically clipped orthogonal frequency division multiplexing for optical wireless communications

    Science.gov (United States)

    Guan, Rui; Huang, Nuo; Wang, Jin-Yuan; Wang, Houyu; Chen, Ming

    2016-05-01

    This paper presents an enhanced hybrid asymmetrically clipped optical orthogonal frequency division multiplexing (EHACO-OFDM) scheme, which benefits from the simultaneous transmission of ACO-OFDM, pulse-amplitude-modulated discrete multitone modulation, and direct-current-biased optical orthogonal frequency division multiplexing (DCO-OFDM). Since the entire available bandwidth is utilized for data modulation, this scheme can achieve higher spectral efficiency than HACO-OFDM and ACO-OFDM. Moreover, as a smaller DC bias is introduced in our scheme, it is more power efficient than asymmetrically clipped DC-biased optical OFDM (ADO-OFDM) and DCO-OFDM. A modified receiver is also designed for this system, taking advantage of an iterative algorithm and a pairwise averaging. It has been shown by simulation that our three-path simultaneous transmission scheme can surpass the existing mixed OFDM-based schemes at high data rates. In addition, compared with the noniterative receiver, the modified receiver exhibits significant gains.

  18. High frequency bulk resonators for bio/chemical diagnostics and monitoring applications

    DEFF Research Database (Denmark)

    Cagliani, Alberto

    In the environmental monitoring eld there is a vast variety of possible applications for microfabricated MEMS sensors. As an example, a network of miniaturized sensors could detect toxic gases, harmful airbornes, explosives in air or, in liquid, monitor the quality of drinking water...... is by monitoring the target mass, that is continuously deposited or removed from the sensor's surface, while the sensor's structure vibrates in resonance. This thesis presents the development of MEMS mass sensors based on mechanical microresonators in the very high frequency range 12-132 MHz. This devices can...

  19. Finite element computer program for the calculation of the resonant frequencies of anisotropic materials

    Energy Technology Data Exchange (ETDEWEB)

    Fleury, W.H.; Rosinger, H.E.; Ritchie, I.G.

    1975-09-01

    A set of computer programs for the calculation of the flexural and torsional resonant frequencies of rectangular section bars of materials of orthotropic or high symmetry are described. The calculations are used in the experimental determination and verification of the elastic constants of anisotropic materials. The simple finite element technique employed separates the inertial and elastic properties of the beam element into station and field transfer matrices respectively. It includes the Timoshenko beam corrections for flexure and Lekhnitskii's theory for torsion-flexure coupling. The programs also calculate the vibration shapes and surface nodal contours or Chladni figures of the vibration modes. (auth)

  20. Analytical solutions in rotating linear dilaton black holes: Resonant frequencies, quantization, greybody factor, and Hawking radiation

    Science.gov (United States)

    Sakalli, I.

    2016-10-01

    Charged massive scalar field perturbations are studied in the gravitational, electromagnetic, dilaton, and axion fields of rotating linear dilaton black holes. In this geometry, we separate the covariant Klein-Gordon equation into radial and angular parts and obtain the exact solutions of both the equations in terms of the confluent Heun functions. Using the radial solution, we study the problems of resonant frequencies, entropy/area quantization, and greybody factor. We also analyze the behavior of the wave solutions near the event horizon of the rotating linear dilaton black hole and derive its Hawking temperature via the Damour-Ruffini-Sannan method.

  1. Application of Inductively Coupled Wireless Radio Frequency Probe to Knee Joint in Magnetic Resonance Image

    Directory of Open Access Journals (Sweden)

    Shigehiro Hashimoto

    2009-10-01

    Full Text Available An inductively coupled wireless coil for a radio frequency (RF probe has been designed and applied to a human knee joint to improve the signal to noise ratio (SNR in a magnetic resonance image (MRI. A birdcage type of a primary coil and a Helmholtz type of a wireless secondary coil have been manufactured. The coils were applied to a human knee with a 3 T MRI system. SNR was calculated both in the proton density image and in the T2 weighted image of MRI. The experimental results show that the designed coils are effective to increase SNR in the human knee MRI.

  2. Electrically Conductive Photopatternable Silver Paste for High-Frequency Ring Resonator and Band-Pass Filter

    Science.gov (United States)

    Umarji, Govind; Qureshi, Nilam; Gosavi, Suresh; Mulik, Uttam; Kulkarni, Atul; Kim, Taesung; Amalnerkar, Dinesh

    2017-02-01

    In conventional thick-film technology, there are often problems associated with poor edges, rough surfaces, and reproducibility due to process limitations, especially for high-frequency applications. These difficulties can be circumvented by using thin-film technology, but process cost and complexity remain major concerns. In this context, photopatternable thick-film technology can offer a viable alternative due to its Newtonian rheology, which can facilitate formation of the required sharp edges. We present herein a unique attempt to formulate a photopatternable silver paste with organic (photosensitive polymer) to inorganic (silver and glass) ratio of 30:70, developed in-house by us for fabrication of thick-film-based ring resonator and band-pass filter components. The ring resonator and band-pass component structures were realized by exposing screen-printed film to ultraviolet light at wavelength of 315 nm to 400 nm for 30 s to crosslink the photosensitive polymer. The pattern was subsequently developed using 1% sodium carbonate aqueous solution. For comparison, conventional silver and silver-palladium thick films were produced using in-house formulations. The surface topology and microstructural features were examined by stereomicroscopy and scanning electron microscopy. The smoothness and edge definition of the film were assessed by profilometry. The resistivity of the samples was observed and remained in the range from 3.4 μΩ cm to 3.6 μΩ cm. The electrical properties were compared by measuring the insertion loss characteristics. The results revealed that the ring resonator fabricated using the photopatternable silver paste exhibited better high-frequency properties compared with components based on conventional silver or silver-palladium paste, especially in terms of the resonant frequency of 10.1 GHz (versus 10 GHz designed) with bandwidth of 80 MHz. Additionally, the band-pass filter fabricated using the photopatternable silver paste displayed better

  3. Visualization and analysis of modulated pulses in magnetic resonance by joint time-frequency representations.

    Science.gov (United States)

    Köcher, S S; Heydenreich, T; Glaser, S J

    2014-10-17

    We study the utility of joint time-frequency representations for the analysis of shaped or composite pulses for magnetic resonance. Such spectrograms are commonly used for the visualization of shaped laser pulses in optical spectroscopy. This intuitive representation provides additional insight compared to conventional approaches, which exclusively show either temporal or spectral information. We focus on the short-time Fourier transform, which provides not only amplitude but also phase information. The approach is illustrated for broadband inversion pulses, multiple quantum excitation and broadband heteronuclear decoupling. The physical interpretation and validity of the approach is discussed.

  4. High-frequency performance of electric field sensors aboard the RESONANCE satellite

    Science.gov (United States)

    Sampl, M.; Macher, W.; Gruber, C.; Oswald, T.; Kapper, M.; Rucker, H. O.; Mogilevsky, M.

    2015-05-01

    We present the high-frequency properties of the eight electric field sensors as proposed to be launched on the spacecraft "RESONANCE" in the near future. Due to the close proximity of the conducting spacecraft body, the sensors (antennas) have complex receiving features and need to be well understood for an optimal mission and spacecraft design. An optimal configuration and precise understanding of the sensor and antenna characteristics is also vital for the proper performance of spaceborne scientific instrumentation and the corresponding data analysis. The provided results are particularly interesting with regard to the planned mutual impedance experiment for measuring plasma parameters. Our computational results describe the extreme dependency of the sensor system with regard to wave incident direction and frequency, and provides the full description of the sensor system as a multi-port scatterer. In particular, goniopolarimetry techniques like polarization analysis and direction finding depend crucially on the presented antenna characteristics.

  5. Spin-torque diode radio-frequency detector with voltage tuned resonance

    Energy Technology Data Exchange (ETDEWEB)

    Skowroński, Witold, E-mail: skowron@agh.edu.pl; Frankowski, Marek; Stobiecki, Tomasz [AGH University of Science and Technology, Department of Electronics, Al. Mickiewicza 30, 30-059 Kraków (Poland); Wrona, Jerzy [AGH University of Science and Technology, Department of Electronics, Al. Mickiewicza 30, 30-059 Kraków (Poland); Singulus Technologies, Kahl am Main 63796 (Germany); Ogrodnik, Piotr [Faculty of Physics, Warsaw University of Technology, ul. Koszykowa 75, 00-662 Warsaw (Poland); AGH University of Science and Technology, Department of Electronics, Al. Mickiewicza 30, 30-059 Kraków (Poland); Barnaś, Józef [Faculty of Physics, Adam Mickiewicz University, ul. Umultowska 85, 61-614 Poznań (Poland); Institute of Molecular Physics, Polish Academy of Sciences, Smoluchowskiego 17, 60-179 Poznań (Poland)

    2014-08-18

    We report on a voltage-tunable radio-frequency (RF) detector based on a magnetic tunnel junction (MTJ). The spin-torque diode effect is used to excite and/or detect RF oscillations in the magnetic free layer of the MTJ. In order to reduce the overall in-plane magnetic anisotropy of the free layer, we take advantage of the perpendicular magnetic anisotropy at the interface between ferromagnetic and insulating layers. The applied bias voltage is shown to have a significant influence on the magnetic anisotropy, and thus on the resonance frequency of the device. This influence also depends on the voltage polarity. The obtained results are accounted for in terms of the interplay of spin-transfer-torque and voltage-controlled magnetic anisotropy effects.

  6. High Frequency Soft Switching Of PWM Boost Converter Using Auxiliary Resonant Circuit

    Directory of Open Access Journals (Sweden)

    C. P. Sai Kiran

    2014-10-01

    Full Text Available This thesis presents High frequency Soft Switching DC-DC boost Converter. The circuit consists of a general Boost Converter with an additional resonant circuit which has a switch, inductor, capacitor and a diode.In general Boost Converter circuits have snubber circuits where switching losses are dissipated in external passive resistors; which is known as hard switching. As the switching frequency of PWM converters is increased its switching losses and conduction losses also increases. This restricts the use of PWM technique. New Zero Voltage Transition-Zero Current Transition (ZVT-ZCT PWM converter equipped with the snubber provides the most desirable features of both ZVT and ZCT converters presented previously. Moreover all semiconductors devices operate with soft switching and hence losses are reduced.

  7. Magnetic resonance spectral reconstruction using frequency-shifted and summed Fourier transform processing

    Science.gov (United States)

    Clark, W. G.; Hanson, M. E.; Lefloch, F.; Ségransan, P.

    1995-03-01

    A novel method of Fourier transform spectroscopy of the transient signals from wide, inhomogeneously broadened magnetic resonance spectra is described and analyzed. It has the advantages of high resolution, high sensitivity, and freedom from the distortions introduced by the finite amplitude of the pulsed rf magnetic field and the finite bandwidth of the receiving system. It consists of recording the transient signal at a series of magnetic fields, shifting the frequency of the transient by the corresponding field step for each point, and summing the corresponding Fourier transformed signals. Although the primary emphasis is on pulsed NMR, the analysis also applies to pulsed ESR. Criteria for the range and step interval of the magnetic field variation are discussed. The accuracy and sensitivity of the method are compared with earlier methods of spin echo spectroscopy. A description of the corresponding measurement of NQR, NMR, and ESR spectra obtained by stepping the frequency of the spectrometer is also presented.

  8. Electrogravitational Resonance of a Gaussian Beam to a High-Frequency Relic Gravitational Wave

    Institute of Scientific and Technical Information of China (English)

    李芳昱; 唐孟希

    2001-01-01

    We consider the resonant response of a Gaussian beam passing through a static magnetic field to a high-frequency relic gravitational wave (GW). It is found that under the synchroresonance condition, the first-order perturbative electromagnetic energy fluxes will contain a "left circular wave" and a "right circular wave" around the symmetrical axis of the Gaussian beam, but the perturbative effects produced by the + and × polarization of the GW have a different physical behaviour. For the high-frequency relic GW with vg = 1010 Hz, h = l0-30, recently expected by the quintessential inflationary models, the corresponding perturbative photon flux passing through the region 10-2 m2 would be expected to be 104 s-1. This is the largest perturbative photon flux we have recently analysed and estimated using the typical laboratory parameters.

  9. Bi-resonant structure with piezoelectric PVDF films for energy harvesting from random vibration sources at low frequency

    DEFF Research Database (Denmark)

    Liang, Shanshan; Crovetto, Andrea; Peng, Zhuoteng

    2016-01-01

    This paper reports on a bi-resonant structure of piezoelectric PVDF films energy harvester (PPEH), which consists of two cantilevers with resonant frequencies of 15 Hz and 22 Hz. With increased acceleration, the vibration amplitudes of the two cantilever-mass structures are increased and collision...... and experiments with piezoelectric elements show that the energy harvesting device with the bi-resonant structure can generate higher power output than that of the sum of the two separate devices from random vibration sources at low frequency, and hence significantly improves the vibration-to- electricity...

  10. Localized surface plasmon resonance-based hybrid Au-Ag nanoparticles for detection of Staphylococcus aureus enterotoxin B

    Science.gov (United States)

    Zhu, Shaoli; Du, ChunLei; Fu, Yongqi

    2009-09-01

    A triangular hybrid Au-Ag nanoparticles array was proposed for the purpose of biosensing in this paper. Constructing the hybrid nanoparticles, an Au thin film is capped on the Ag nanoparticles which are attached on glass substrate. The hybrid nanoparticles array was designed by means of finite-difference and time-domain (FDTD) algorithm-based computational numerical calculation and optimization. Sensitivity of refractive index of the hybrid nanoparticles array was obtained by the computational calculation and experimental detection. Moreover, the hybrid nanoparticles array can prevent oxidation of the pure Ag nanoparticles from atmosphere environment because the Au protective layer was deposited on top of the Ag nanoparticles so as to isolate the Ag particles from the atmosphere. We presented a novel surface covalent link method between the localized surface plasmon resonance (LSPR) effect-based biosensors with hybrid nanoparticles array and the detected target molecules. The generated surface plasmon wave from the array carries the biological interaction message into the corresponding spectra. Staphylococcus aureus enterotoxin B (SEB), a small protein toxin was directly detected at nanogramme per milliliter level using the triangular hybrid Au-Ag nanoparticles. Hence one more option for the SEB detection is provided by this way.

  11. Planar Lithographed Superconducting LC Resonators for Frequency-Domain Multiplexed Readout Systems

    Science.gov (United States)

    Rotermund, K.; Barch, B.; Chapman, S.; Hattori, K.; Lee, A.; Palaio, N.; Shirley, I.; Suzuki, A.; Tran, C.

    2016-07-01

    Cosmic microwave background (CMB) polarization experiments are increasing the number of transition edge sensor (TES) bolometers to increase sensitivity. In order to maintain low thermal loading of the sub-Kelvin stage, the frequency-domain multiplexing (FDM) factor has to increase accordingly. FDM is achieved by placing TES bolometers in series with inductor-capacitor (LC) resonators, which select the readout frequency. The multiplexing factor can be raised with a large total readout bandwidth and small frequency spacing between channels. The inductance is kept constant to maintain a uniform readout bandwidth across detectors, while the maximum acceptable value is determined by bolometer stability. Current technology relies on commercially available ceramic chip capacitors. These have high scatter in their capacitance thereby requiring large frequency spacing. Furthermore, they have high equivalent series resistance (ESR) at higher frequencies and are time consuming and tedious to hand assemble via soldering. A solution lies in lithographed, planar spiral inductors (currently in use by some experiments) combined with interdigitated capacitors on a silicon (Si) substrate. To maintain reasonable device dimensions, we have reduced trace and gap widths of the LCs to 4 \\upmu m. We increased the inductance from 16 to 60 \\upmu H to achieve a higher packing density, a requirement for FDM systems with large multiplexing factors. Additionally, the Si substrate yields low ESR values across the entire frequency range and lithography makes mass production of LC pairs possible. We reduced mutual inductance between inductors by placing them in a checkerboard pattern with the capacitors, thereby increasing physical distances between adjacent inductors. We also reduce magnetic coupling of inductors with external sources by evaporating a superconducting ground plane onto the backside of the substrate. We report on the development of lithographed LCs in the 1-5 MHz range for use

  12. Resonant photoluminescence and dynamics of a hybrid Mn hole spin in a positively charged magnetic quantum dot

    Science.gov (United States)

    Lafuente-Sampietro, A.; Boukari, H.; Besombes, L.

    2017-06-01

    We analyze, through resonant photoluminescence, the spin dynamics of an individual magnetic atom (Mn) coupled to a hole in a semiconductor quantum dot. The hybrid Mn hole spin and the positively charged exciton in a CdTe/ZnTe quantum dot form an ensemble of Λ systems which can be addressed optically. Autocorrelation of the resonant photoluminescence and resonant optical pumping experiments are used to study the spin relaxation channels in this multilevel spin system. We identified for the hybrid Mn hole spin an efficient relaxation channel driven by the interplay of the Mn hole exchange interaction and the coupling to acoustic phonons. We also show that the optical Λ systems are connected through inefficient spin flips than can be enhanced under weak transverse magnetic field. The dynamics of the resonant photoluminescence in a p -doped magnetic quantum dot is well described by a complete rate equation model. Our results suggest that long-lived hybrid Mn hole spin could be obtained in quantum dot systems with large heavy-hole/light-hole splitting.

  13. Counting statistics of chaotic resonances at optical frequencies: Theory and experiments

    Science.gov (United States)

    Lippolis, Domenico; Wang, Li; Xiao, Yun-Feng

    2017-07-01

    A deformed dielectric microcavity is used as an experimental platform for the analysis of the statistics of chaotic resonances, in the perspective of testing fractal Weyl laws at optical frequencies. In order to surmount the difficulties that arise from reading strongly overlapping spectra, we exploit the mixed nature of the phase space at hand, and only count the high-Q whispering-gallery modes (WGMs) directly. That enables us to draw statistical information on the more lossy chaotic resonances, coupled to the high-Q regular modes via dynamical tunneling. Three different models [classical, Random-Matrix-Theory (RMT) based, semiclassical] to interpret the experimental data are discussed. On the basis of least-squares analysis, theoretical estimates of Ehrenfest time, and independent measurements, we find that a semiclassically modified RMT-based expression best describes the experiment in all its realizations, particularly when the resonator is coupled to visible light, while RMT alone still works quite well in the infrared. In this work we reexamine and substantially extend the results of a short paper published earlier [L. Wang et al., Phys. Rev. E 93, 040201(R) (2016), 10.1103/PhysRevE.93.040201].

  14. Multi-frequency ferromagnetic resonance investigation of nickel nanocubes encapsulated in diamagnetic magnesium oxide matrix

    Science.gov (United States)

    Nellutla, Saritha; Nori, Sudhakar; Singamaneni, Srinivasa R.; Prater, John T.; Narayan, Jagdish; Smirnov, Alex I.

    2016-12-01

    Partially aligned nickel nanocubes were grown epitaxially in a diamagnetic magnesium oxide (MgO:Ni) host and studied by a continuous wave ferromagnetic resonance (FMR) spectroscopy at the X-band (9.5 GHz) from ca. 117 to 458 K and then at room temperature for multiple external magnetic fields/resonant frequencies from 9.5 to 330 GHz. In contrast to conventional magnetic susceptibility studies that provided data on the bulk magnetization, the FMR spectra revealed the presence of three different types of magnetic Ni nanocubes in the sample. Specifically, three different ferromagnetic resonances were observed in the X-band spectra: a line 1 assigned to large nickel nanocubes, a line 2 corresponding to the nanocubes exhibiting saturated magnetization even at ca. 0.3 T field, and a high field line 3 (geff ˜ 6.2) tentatively assigned to small nickel nanocubes likely having their hard magnetization axis aligned along or close to the direction of the external magnetic field. Based on the analysis of FMR data, the latter nanocubes possess an anisotropic internal magnetic field of at least ˜1.0 T in magnitude.

  15. Wireless Displacement Sensing of Micromachined Spiral-Coil Actuator Using Resonant Frequency Tracking

    Directory of Open Access Journals (Sweden)

    Mohamed Sultan Mohamed Ali

    2014-07-01

    Full Text Available This paper reports a method that enables real-time displacement monitoring and control of micromachined resonant-type actuators using wireless radiofrequency (RF. The method is applied to an out-of-plane, spiral-coil microactuator based on shape-memory-alloy (SMA. The SMA spiral coil forms an inductor-capacitor resonant circuit that is excited using external RF magnetic fields to thermally actuate the coil. The actuation causes a shift in the circuit’s resonance as the coil is displaced vertically, which is wirelessly monitored through an external antenna to track the displacements. Controlled actuation and displacement monitoring using the developed method is demonstrated with the microfabricated device. The device exhibits a frequency sensitivity to displacement of 10 kHz/µm or more for a full out-of-plane travel range of 466 µm and an average actuation velocity of up to 155 µm/s. The method described permits the actuator to have a self-sensing function that is passively operated, thereby eliminating the need for separate sensors and batteries on the device, thus realizing precise control while attaining a high level of miniaturization in the device.

  16. A Wind Power and Load Prediction Based Frequency Control Approach for Wind-Diesel-Battery Hybrid Power System

    OpenAIRE

    Chao Peng; Zhenzhen Zhang; Jia Wu

    2015-01-01

    A frequency control approach based on wind power and load power prediction information is proposed for wind-diesel-battery hybrid power system (WDBHPS). To maintain the frequency stability by wind power and diesel generation as much as possible, a fuzzy control theory based wind and diesel power control module is designed according to wind power and load prediction information. To compensate frequency fluctuation in real time and enhance system disturbance rejection ability, a battery energy ...

  17. Resonance frequency-retuned quartz tuning fork as a force sensor for noncontact atomic force microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Ooe, Hiroaki; Sakuishi, Tatsuya; Arai, Toyoko, E-mail: arai@staff.kanazawa-u.ac.jp [Natural Science and Technology, Kanazawa University, Kanazawa, Ishikawa 920-1192 (Japan); Nogami, Makoto; Tomitori, Masahiko [Japan Advanced Institute of Science and Technology, Nomi, Ishikawa 923-1292 (Japan)

    2014-07-28

    Based on a two-prong type quartz tuning fork, a force sensor with a high Q factor, which we call a retuned fork sensor, was developed for non-contact atomic force microscopy (nc-AFM) with atomic resolution. By cutting a small notch and attaching an AFM tip to one prong, its resonance frequency can be retuned to that of the other intact prong. In balancing the two prongs in this manner, a high Q factor (>50 000 in ultrahigh vacuum) is obtained for the sensor. An atomic resolution image of the Si(111)-7 × 7 surface was demonstrated using an nc-AFM with the sensor. The dependence of the Q factor on resonance frequency of the sensor and the long-range force between tip and sample were measured and analyzed in view of the various dissipation channels. Dissipation in the signal detection circuit turned out to be mainly limited by the total Q factor of the nc-AFM system.

  18. Biomechanical evaluation of dental implants with different surfaces: Removal torque and resonance frequency analysis in rabbits.

    Science.gov (United States)

    Koh, Jung-Woo; Yang, Jae-Ho; Han, Jung-Suk; Lee, Jai-Bong; Kim, Sung-Hun

    2009-07-01

    Macroscopic and especially microscopic properties of implant surfaces play a major role in the osseous healing of dental implants. Dental implants with modified surfaces have shown stronger osseointegration than implants which are only turned (machined). Advanced surface modification techniques such as anodic oxidation and Ca-P application have been developed to achieve faster and stronger bonding between the host bone and the implant. The purpose of this study was to investigate the effect of surface treatment of titanium dental implant on implant stability after insertion using the rabbit tibia model. THREE TEST GROUPS WERE PREPARED: sandblasted, large-grit and acid-etched (SLA) implants, anodic oxidized implants, and anodized implants with Ca-P immersion. The turned implants served as control. Twenty rabbits received 80 implants in the tibia. Resonance frequencies were measured at the time of implant insertion, 2 weeks and 4 weeks of healing. Removal torque values (RTV) were measured 2 and 4 weeks after insertion. The implant stability quotient (ISQ) values of implants for resonance frequency analysis (RFA) increased significantly (P .05). The test and control implants also showed significantly higher ISQ values during 4 weeks of healing period (P .05). The SLA, anodized and Ca-P immersed implants showed higher RTVs at 2 and 4 weeks of healing than the machined one (P anodic oxidation nor Ca-P immersion techniques have any advantage over the conventional SLA technique with respect to implant stability.

  19. Comparison of capacitive and radio frequency resonator sensors for monitoring parallelized droplet microfluidic production

    KAUST Repository

    Conchouso Gonzalez, David

    2016-06-28

    Scaled-up production of microfluidic droplets, through the parallelization of hundreds of droplet generators, has received a lot of attention to bring novel multiphase microfluidics research to industrial applications. However, apart from droplet generation, other significant challenges relevant to this goal have never been discussed. Examples include monitoring systems, high-throughput processing of droplets and quality control procedures among others. In this paper, we present and compare capacitive and radio frequency (RF) resonator sensors as two candidates that can measure the dielectric properties of emulsions in microfluidic channels. By placing several of these sensors in a parallelization device, the stability of the droplet generation at different locations can be compared, and potential malfunctions can be detected. This strategy enables for the first time the monitoring of scaled-up microfluidic droplet production. Both sensors were prototyped and characterized using emulsions with droplets of 100-150 μm in diameter, which were generated in parallelization devices at water-in-oil volume fractions (φ) between 11.1% and 33.3%.Using these sensors, we were able to measure accurately increments as small as 2.4% in the water volume fraction of the emulsions. Although both methods rely on the dielectric properties of the emulsions, the main advantage of the RF resonator sensors is the fact that they can be designed to resonate at multiple frequencies of the broadband transmission line. Consequently with careful design, two or more sensors can be parallelized and read out by a single signal. Finally, a comparison between these sensors based on their sensitivity, readout cost and simplicity, and design flexibility is also discussed. © 2016 The Royal Society of Chemistry.

  20. Comparison of capacitive and radio frequency resonator sensors for monitoring parallelized droplet microfluidic production.

    Science.gov (United States)

    Conchouso, David; McKerricher, Garret; Arevalo, Arpys; Castro, David; Shamim, Atif; Foulds, Ian G

    2016-08-16

    Scaled-up production of microfluidic droplets, through the parallelization of hundreds of droplet generators, has received a lot of attention to bring novel multiphase microfluidics research to industrial applications. However, apart from droplet generation, other significant challenges relevant to this goal have never been discussed. Examples include monitoring systems, high-throughput processing of droplets and quality control procedures among others. In this paper, we present and compare capacitive and radio frequency (RF) resonator sensors as two candidates that can measure the dielectric properties of emulsions in microfluidic channels. By placing several of these sensors in a parallelization device, the stability of the droplet generation at different locations can be compared, and potential malfunctions can be detected. This strategy enables for the first time the monitoring of scaled-up microfluidic droplet production. Both sensors were prototyped and characterized using emulsions with droplets of 100-150 μm in diameter, which were generated in parallelization devices at water-in-oil volume fractions (φ) between 11.1% and 33.3%.Using these sensors, we were able to measure accurately increments as small as 2.4% in the water volume fraction of the emulsions. Although both methods rely on the dielectric properties of the emulsions, the main advantage of the RF resonator sensors is the fact that they can be designed to resonate at multiple frequencies of the broadband transmission line. Consequently with careful design, two or more sensors can be parallelized and read out by a single signal. Finally, a comparison between these sensors based on their sensitivity, readout cost and simplicity, and design flexibility is also discussed.

  1. Diagnostic value of high-frequency ultrasound and magnetic resonance imaging in early rheumatoid arthritis.

    Science.gov (United States)

    Wang, Ming-Yu; Wang, Xian-Bin; Sun, Xue-Hui; Liu, Feng-Li; Huang, Sheng-Chuan

    2016-11-01

    Early diagnosis and management improve the outcome of patients with rheumatoid arthritis (RA). The present study explored the application of high-frequency ultrasound (US) and magnetic resonance imaging (MRI) in the detection of early RA. Thirty-nine patients (20 males and 19 females) diagnosed with early RA were enrolled in the study. A total of 1,248 positions, including 858 hand joints and 390 tendons, were examined by high-frequency US and MRI to evaluate the presence of bone erosion, bone marrow edema (BME), synovial proliferation, joint effusion, tendinitis and tendon sheath edema. The imaging results of the above abnormalities, detected by US, were compared with those identified using MRI. No statistically significant overall changes were observed between high-frequency US and MRI in detecting bone erosion [44 (5.1%) vs. 35 (4.1%), respectively; P>0.05], tendinitis [18 (4.6%) vs. 14 (1.5%), respectively; P>0.05] and tendon sheath edema [37 (9.5%) vs. 30 (7.7%), respectively; P>0.05]. Significant differences were observed between high-frequency US and MRI with regards to the detection of synovial proliferation [132 (15.4%) vs. 66 (7.7%), respectively; Phigh-frequency US (5.5 vs. 0%, respectively; Phigh-frequency US of the dominant hand and wrist joints were comparably sensitive to bone erosion, tendinitis and tendon sheath edema. However, MRI was more sensitive in detecting bone marrow edema in early RA, while US was more sensitive in the evaluation of joint effusion and synovial proliferation. In conclusion, US and MRI are promising for the detection and diagnosis of inflammatory activity in patients with RA.

  2. Proposal of a resonant controller for a three phase four wire grid-connected shunt hybrid filter

    DEFF Research Database (Denmark)

    Candela, J. I.; Rodriguez, P.; Luna, A.

    2009-01-01

    of the system. In addition a new hybrid filter topology, that permits to cancel out the homopolar harmonics, is presented in this paper. The good performance of this new topology as well as the proposed controller will be evaluated by means of simulations and experimental results.......This paper present a three-phase four wire hybrid filter able to perform a selective cancellation of harmonic currents based on resonant controllers. As it will be shown in this work, this kind of control permits to enhance the bandwidth of the filter controller, without hindering the stability...

  3. Development of a Magnetron Resonance Frequency Auto Tuning System for Medical Xband [9300 MHz] RF Linear Accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Cha, Sung Su; Lee, Byung Cheol [University of Science and Technology, Daejeon (Korea, Republic of); Kim, Yujong; Park, Hyung Dal; Lee, Byeong-No; Joo, Youngwoo; Cha, Hyungki; Lee, Soo Min; Song, Ki Baek [KAERI, Daejeon (Korea, Republic of); Lee, Seung Hyun [Sungkyunkwan University, Suwon (Korea, Republic of)

    2015-05-15

    The total components of the accelerator are the magnetron, electron gun, accelerating structure, a set of solenoid magnets, four sets of steering coils, a modulator, and a circulator. One of the accelerator components of the accelerating structure is made of oxygen-free high-conductivity copper (OFHC), and its volume is changed according to the ambient temperature. As the volume changes, the resonant frequency of the accelerating structure is changed. Accordingly, the resonance frequency is mismatched between the source of the magnetron and the accelerating structure. An automatic frequency tuning system is automatically matched with the resonant frequency of the magnetron and accelerating structure, which allows a high output power and reliable accelerator operation. An automatic frequency tuning system is composed of a step motor control part for correcting the frequency of the source and power measuring parts, i.e., the forward and reflected power between the magnetron and accelerating structure. In this paper, the design, fabrication, and RF power test of the automatic frequency tuning system for the X-band linac are presented. A frequency tuning system was developed to overcome an unstable accelerator operation owing to the frequency mismatch between the magnetron and accelerating structure. The frequency measurement accuracy is 100 kHz and 0.72 degree per pulse.

  4. Experiments on the influence of low frequency sound on the acoustic resonances in a corrugated flow pipe

    CERN Document Server

    Kristiansen, Ulf R; Pinhède, Cédric; Amielh, Muriel

    2010-01-01

    It is well known that an air flow in a corrugated pipe might excite the longitudinal acoustic modes of the pipe. In this letter is reported experiments where a low frequency, oscillating flow with velocity magnitudes of the same order as the air flow has been added. Depending on the oscillation strength, it might silence the pipe or move the resonances to higher harmonics. It is also shown that a low frequency oscillation by itself might excite a higher frequency acoustic resonance of the pipe.

  5. Generation of constant-amplitude radio-frequency sweeps at a tunnel junction for spin resonance STM

    Science.gov (United States)

    Paul, William; Baumann, Susanne; Lutz, Christopher P.; Heinrich, Andreas J.

    2016-07-01

    We describe the measurement and successful compensation of the radio-frequency transfer function of a scanning tunneling microscope over a wide frequency range (15.5-35.5 GHz) and with high dynamic range (>50 dB). The precise compensation of cabling resonances and attenuations is critical for the production of constant-voltage frequency sweeps for electric-field driven electron spin resonance (ESR) experiments. We also demonstrate that a well-calibrated tunnel junction voltage is necessary to avoid spurious ESR peaks that can arise due to a non-flat transfer function.

  6. Temperature Compensated Crystal Oscillator (TCXO) Design Aids: Frequency-Temperature Resonator Characteristics as Shifted by Series Capacitors

    Science.gov (United States)

    1977-05-01

    and 6() in place of the corresponding resonance quantities. In the limit o - I (CL - o), the load frequencies approach the antiresonance frequencies...while the limit a o (CL c) reduces the frequencies to the resonances. 2 Cu. Y+ _II ZL w NOW"z CZ) LUL Lu Ul- CD 0 LU OD (D qt 6 0 OD (D I* N -00 0 0 0...2. The quantity multiplying Tk in (40) is called the Onoe funcion : 46 G (M) = +2k2/D. is plotted versus 0 for various k values and for M = 1, 3, and

  7. Interaction of the Electromagnetic p-Wave with Thin Metal Film in the Field of Resonant Frequencies

    CERN Document Server

    Latyshev, A V

    2011-01-01

    It is shown that for thin metallic films thickness of which does not exceed thickness of skin layer, the problem allows analytical solution. In the field of resonant frequencies the analysis of dependence of coefficients of transmission, reflection and absorbtion on an electromagnetic wave is carried out. Dependence on pitch angle, thickness of the layer and coefficient of specular reflection and on effective electron collision frequency is carried out. The formula for contactless determination (calculation) of a thickness of a film by observable resonant frequencies is deduced.

  8. Polarization control efficiency manipulation in resonance-mediated two-photon absorption by femtosecond spectral frequency modulation

    Science.gov (United States)

    Yao, Yunhua; Cheng, Wenjing; Zheng, Ye; Xu, Cheng; Liu, Pei; Jia, Tianqing; Qiu, Jianrong; Sun, Zhenrong; Zhang, Shian

    2017-04-01

    The femtosecond laser polarization modulation is considered as a very simple and efficient method to control the multi-photon absorption process. In this work, we theoretically and experimentally show that the polarization control efficiency in the resonance-mediated two-photon absorption can be artificially manipulated by modulating the femtosecond spectral frequency components. We theoretically demonstrate that the on- and near-resonant parts in the resonance-mediated two-photon absorption process depend on the different femtosecond spectral frequency components, and therefore their contributions in the whole excitation process can be controlled by properly designing the femtosecond spectral frequency components. The near-resonant two-photon absorption is correlated with the femtosecond laser polarization while the on-resonant two-photon absorption is independent of it, and thus the polarization control efficiency in the resonance-mediated two-photon absorption can be manipulated by the femtosecond spectral frequency modulation. We experimentally verify these theoretical results by performing the laser polarization control experiment in the Dy3+-doped glass sample under the modulated femtosecond spectral frequency components, and the experimental results show that the polarization control efficiency can be increased when the central spectral frequency components are cut off, while it is decreased when both the low and high spectral frequency components are cut off, which is in good agreement with the theoretical predictions. Our works can provide a feasible pathway to understand and control the resonance-mediated multi-photon absorption process under the femtosecond laser field excitation, and also may open a new opportunity to the related application areas.

  9. Two Contemporary Problems in Magnetized Plasmas: the ion-ion hybrid resonator and MHD stability in a snowflake divertor

    Energy Technology Data Exchange (ETDEWEB)

    Farmer, William Anthony [Univ. of California, Los Angeles, CA (United States)

    2014-01-01

    The rst part of the dissertation investigates the e ects of multiple-ions on the propagation of shear Alfv en waves. It is shown that the presence of a second ion-species allows for the formation of an ion-ion hybrid resonator in the presence of a magnetic well. A fullwave description is shown to explain the measured eigenfrequencies and spatial form of the resonator modes identi ed in experiments in the Large Plasma Device (LAPD) at UCLA. However, it is determined that neither electron collisions or radial convection of the mode due to coupling to either the compressional or ion-Bernstein wave can explain the observed dissipation.

  10. Influence of left-handed material on the resonant frequency of resonant cavity%左手介质对谐振腔谐振频率的影响∗

    Institute of Scientific and Technical Information of China (English)

    李培; 王辅忠; 张丽珠; 张光璐

    2015-01-01

    The quality factor and the resonant frequency of a resonant cavity are the key factors that need to be considered in the process of resonator design. The wall of cavity is composed of conductor materials which are effective tools to generate high-frequency oscillation. The microwave cavity is widely used. From the perspective of the circuit, it has almost all the properties of LC resonance unit, such as mode selection. Therefore, it is widely used in filters, matching circuits, and antenna design. In industrial applications, the demand for high-frequency resonant cavity is relatively large. A traditional method can increase the resonant frequency of the resonant cavity by reducing the size of the cavity or using the high-order modes. However, as both approaches have their limitations, the design results are not ideal. By combining theoretical calculation and simulation, the factors that affect the resonant frequency of the resonator are analyzed. The results show the relationship between material properties of the filling medium and the resonant frequency of the cavity. Theoretical calculations show that when the left-handed materials are used as filling materials in the cavity, the resonant frequency can be increased without changing the size of the cavity. The results of high frequency structure simulator also prove the above result. Therefore, the resonant frequency of the resonator cannot be limited by the cavity size. It can be seen from the data that compared with reducing the size of the resonator or using high-order modes, filling left-handed materials can improve resonant frequency to a greater extent. The obtained conclusion shows a further progress compared with the traditional theory and provides a theoretical basis for the exploration and design of novel resonators.

  11. Nonlinear coupling of lower hybrid waves to the kinetic low-frequency plasma response in the auroral ionosphere

    Science.gov (United States)

    Sanbonmatsu, K. Y.; Goldman, M. V.; Newman, D. L.

    A hybrid kinetic-fluid model is developed which is relevant to lower hybrid spikelets observed in the topside auroral ionosphere [Vago et al., 1992; Eriksson et al., 1994]. In contrast to previous fluid models [Shapiro et al., 1995; Tam and Chang, 1995; Seyler, 1994; Shapiro et al., 1993] our linear low frequency plasma response is magnetized and kinetic. Fluid theory is used to incorporate the nonlinear wave coupling. Performing a linear stability analysis, we calculate the growth rate for the modulational instability, driven by a lower hybrid wave pump. We find that both the magnetic and kinetic effects inhibit the modulational instability.

  12. Multi-carrier transmission for hybrid radio frequency with optical wireless communications

    Science.gov (United States)

    Wang, Gang; Chen, Genshe; Shen, Dan; Pham, Khanh; Blasch, Erik; Nguyen, Tien M.

    2015-05-01

    Radio frequency (RF) wireless communication is reaching its capacity to support large data rate transmissions due to hardware constraints (e.g., silicon processes), software strategies (e.g., information theory), and consumer desire for timely large file exchanges (e.g., big data and mobile cloud computing). A high transmission rate performance must keep pace with the generated huge volumes of data for real-time processing. Integrated RF and optical wireless communications (RF/OWC) could be the next generation transmission technology to satisfy both the increased data rate exchange and the communications constraints. However, with the promising benefits of RF/OWC, challenges remain to fully develop hybrid RF with wireless optical communications such as uniform waveform design for information transmission and detection. In this paper, an orthogonal frequency division multiplexing (OFDM) transmission scheme, which widely employed in RF communications, is developed for optical communications. The traditional high peak-to-average power ratio (PAPR) in OFDM is reduced to improve system performance. The proposed multi-carrier waveform is evaluated with a frequency-selective fading channel. The results demonstrate that bit error rate (BER) performance of our proposed optical OFDM transmission technique outperforms the traditional OWC on-off keying (OOK) transmission scheme.

  13. Active control of surface plasmon resonance in MoS2-Ag hybrid nanostructures

    CERN Document Server

    Zu, Shuai; Gong, Yongji; Ajayan, Pulickel M; Fang, Zheyu

    2016-01-01

    Molybdenum disulfide (MoS2) monolayers have attracted much attention for their novel optical properties and efficient light-matter interactions. When excited by incident laser, the optical response of MoS2 monolayers was effectively modified by elementary photo-excited excitons owing to their large exciton binding energy, which can be facilitated for the optical-controllable exciton-plasmon interactions. Inspired by this concept, we experimentally investigated active light control of surface plasmon resonance (SPR) in MoS2-Ag hybrid nanostructures. The white light spectra of SPR were gradually red-shifted by increasing laser power, which was distinctly different from the one of bare Ag nanostructure. This spectroscopic tunability can be further controlled by near-field coupling strength and polarization state of light, and selectively applied to the control of plasmonic dark mode. An analytical Lorentz model for photo-excited excitons induced modulation of MoS2 dielectric function was developed to explain the...

  14. Near-Infrared Resonance Energy Transfer Glucose Biosensors in Hybrid Microcapsule Carriers

    Directory of Open Access Journals (Sweden)

    Mike McShane

    2008-09-01

    Full Text Available Fluorescence-based sensing systems offer potential for noninvasive monitoring with implantable devices, but require carrier technologies that provide suitable immobilization, accessibility, and biocompatibility. Recent developments towards this goal include a competitive binding assay for glucose that has been encapsulated in semipermeable microcapsule carriers. This paper describes an extension of this work to increase the applicability to in vivo monitoring, wherein two significant developments are described: (1 a near-infrared resonance energy transfer system for transducing glucose concentration, and (2 novel hybrid organic-inorganic crosslinked microcapsules as carriers. The quenching-based assay is a competitive binding (CB system based on apo-glucose oxidase (AG as the receptor and dextran as the competitive ligand. The encapsulated quencher-labeled dextran and near infrared donor-labeled glucose receptor showed a stable and reversible response with tunable sensitivity of 1–5%/mM over the physiological range, making these transducers attractive for continuous monitoring for biomedical applications.

  15. Biological sensing using hybridization phase of plasmonic resonances with photonic lattice modes in arrays of gold nanoantennas

    Science.gov (United States)

    Gutha, Rithvik R.; Sadeghi, Seyed M.; Sharp, Christina; Wing, Waylin J.

    2017-09-01

    We study biological sensing using the hybridization phase of localized surface plasmon resonances (LSPRs) with diffraction modes (photonic lattice modes) in arrays of gold nanoantennas. We map the degree of the hybridization process using an embedding dielectric material (Si), identifying the critical thicknesses wherein the optical responses of the arrays are mainly governed by pure LSPRs (insignificant hybridization), Fano-type coupling of LSPRs with diffraction orders (hybridization state), and their intermediate state (hybridization phase). The results show that hybridization phase can occur with slight change in the refractive index (RI), leading to sudden reduction of the linewidth of the main spectral feature of the arrays by about one order of magnitude while it is shifted nearly 140 nm. These processes, which offer significant improvement in RI sensitivity and figure of merit, are utilized to detect monolayers of biological molecules and streptavidin-conjugated semiconductor quantum dots with sensitivities far higher than pure LSPRs. We further explore how these sensors can be used based on the uncoupled LSPRs by changing the polarization of the incident light.

  16. Stretchable Complementary Split Ring Resonator (CSRR-Based Radio Frequency (RF Sensor for Strain Direction and Level Detection

    Directory of Open Access Journals (Sweden)

    Seunghyun Eom

    2016-10-01

    Full Text Available In this paper, we proposed a stretchable radio frequency (RF sensor to detect strain direction and level. The stretchable sensor is composed of two complementary split ring resonators (CSRR with microfluidic channels. In order to achieve stretchability, liquid metal (eutectic gallium-indium, EGaIn and Ecoflex substrate are used. Microfluidic channels are built by Ecoflex elastomer and microfluidic channel frames. A three-dimensional (3D printer is used for fabrication of microfluidic channel frames. Two CSRR resonators are designed to resonate 2.03 GHz and 3.68 GHz. When the proposed sensor is stretched from 0 to 8 mm along the +x direction, the resonant frequency is shifted from 3.68 GHz to 3.13 GHz. When the proposed sensor is stretched from 0 to 8 mm along the −x direction, the resonant frequency is shifted from 2.03 GHz to 1.78 GHz. Therefore, we can detect stretched length and direction from independent variation of two resonant frequencies.

  17. Ultra-high frequency, high Q/volume micromechanical resonators in a planar AlN phononic crystal

    Science.gov (United States)

    Ghasemi Baboly, M.; Alaie, S.; Reinke, C. M.; El-Kady, I.; Leseman, Z. C.

    2016-07-01

    This paper presents the first design and experimental demonstration of an ultrahigh frequency complete phononic crystal (PnC) bandgap aluminum nitride (AlN)/air structure operating in the GHz range. A complete phononic bandgap of this design is used to efficiently and simultaneously confine elastic vibrations in a resonator. The PnC structure is fabricated by etching a square array of air holes in an AlN slab. The fabricated PnC resonator resonates at 1.117 GHz, which corresponds to an out-of-plane mode. The measured bandgap and resonance frequencies are in very good agreement with the eigen-frequency and frequency-domain finite element analyses. As a result, a quality factor/volume of 7.6 × 1017/m3 for the confined resonance mode was obtained that is the largest value reported for this type of PnC resonator to date. These results are an important step forward in achieving possible applications of PnCs for RF communication and signal processing with smaller dimensions.

  18. Calculation of shear stiffness in noise dominated magnetic resonance elastography data based on principal frequency estimation

    Energy Technology Data Exchange (ETDEWEB)

    McGee, K P; Lake, D; Mariappan, Y; Manduca, A; Ehman, R L [Department of Radiology, Mayo Clinic College of Medicine, 200 First Street, SW, Rochester, MN 55905 (United States); Hubmayr, R D [Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Mayo Clinic College of Medicine, 200 First Street, SW, Rochester, MN 55905 (United States); Ansell, K, E-mail: mcgee.kiaran@mayo.edu [Schaeffer Academy, 2700 Schaeffer Lane NE, Rochester, MN 55906 (United States)

    2011-07-21

    Magnetic resonance elastography (MRE) is a non-invasive phase-contrast-based method for quantifying the shear stiffness of biological tissues. Synchronous application of a shear wave source and motion encoding gradient waveforms within the MRE pulse sequence enable visualization of the propagating shear wave throughout the medium under investigation. Encoded shear wave-induced displacements are then processed to calculate the local shear stiffness of each voxel. An important consideration in local shear stiffness estimates is that the algorithms employed typically calculate shear stiffness using relatively high signal-to-noise ratio (SNR) MRE images and have difficulties at an extremely low SNR. A new method of estimating shear stiffness based on the principal spatial frequency of the shear wave displacement map is presented. Finite element simulations were performed to assess the relative insensitivity of this approach to decreases in SNR. Additionally, ex vivo experiments were conducted on normal rat lungs to assess the robustness of this approach in low SNR biological tissue. Simulation and experimental results indicate that calculation of shear stiffness by the principal frequency method is less sensitive to extremely low SNR than previously reported MRE inversion methods but at the expense of loss of spatial information within the region of interest from which the principal frequency estimate is derived.

  19. Symmetry based frequency domain processing to remove harmonic noise from surface nuclear magnetic resonance measurements

    Science.gov (United States)

    Hein, Annette; Larsen, Jakob Juul; Parsekian, Andrew D.

    2017-02-01

    Surface nuclear magnetic resonance (NMR) is a unique geophysical method due to its direct sensitivity to water. A key limitation to overcome is the difficulty of making surface NMR measurements in environments with anthropogenic electromagnetic noise, particularly constant frequency sources such as powerlines. Here we present a method of removing harmonic noise by utilizing frequency domain symmetry of surface NMR signals to reconstruct portions of the spectrum corrupted by frequency-domain noise peaks. This method supplements the existing NMR processing workflow and is applicable after despiking, coherent noise cancellation, and stacking. The symmetry based correction is simple, grounded in mathematical theory describing NMR signals, does not introduce errors into the data set, and requires no prior knowledge about the harmonics. Modelling and field examples show that symmetry based noise removal reduces the effects of harmonics. In one modelling example, symmetry based noise removal improved signal-to-noise ratio in the data by 10 per cent. This improvement had noticeable effects on inversion parameters including water content and the decay constant T2*. Within water content profiles, aquifer boundaries and water content are more accurate after harmonics are removed. Fewer spurious water content spikes appear within aquifers, which is especially useful for resolving multilayered structures. Within T2* profiles, estimates are more accurate after harmonics are removed, especially in the lower half of profiles.

  20. Experimental Validation of a Theory for a Variable Resonant Frequency Wave Energy Converter (VRFWEC)

    Science.gov (United States)

    Park, Minok; Virey, Louis; Chen, Zhongfei; Mäkiharju, Simo

    2016-11-01

    A point absorber wave energy converter designed to adapt to changes in wave frequency and be highly resilient to harsh conditions, was tested in a wave tank for wave periods from 0.8 s to 2.5 s. The VRFWEC consists of a closed cylindrical floater containing an internal mass moving vertically and connected to the floater through a spring system. The internal mass and equivalent spring constant are adjustable and enable to match the resonance frequency of the device to the exciting wave frequency, hence optimizing the performance. In a full scale device, a Permanent Magnet Linear Generator will convert the relative motion between the internal mass and the floater into electricity. For a PMLG as described in Yeung et al. (OMAE2012), the electromagnetic force proved to cause dominantly linear damping. Thus, for the present preliminary study it was possible to replace the generator with a linear damper. While the full scale device with 2.2 m diameter is expected to generate O(50 kW), the prototype could generate O(1 W). For the initial experiments the prototype was restricted to heave motion and data compared to predictions from a newly developed theoretical model (Chen, 2016).