WorldWideScience

Sample records for hybrid protein secondary

  1. A new hybrid coding for protein secondary structure prediction based on primary structure similarity.

    Science.gov (United States)

    Li, Zhong; Wang, Jing; Zhang, Shunpu; Zhang, Qifeng; Wu, Wuming

    2017-03-16

    The coding pattern of protein can greatly affect the prediction accuracy of protein secondary structure. In this paper, a novel hybrid coding method based on the physicochemical properties of amino acids and tendency factors is proposed for the prediction of protein secondary structure. The principal component analysis (PCA) is first applied to the physicochemical properties of amino acids to construct a 3-bit-code, and then the 3 tendency factors of amino acids are calculated to generate another 3-bit-code. Two 3-bit-codes are fused to form a novel hybrid 6-bit-code. Furthermore, we make a geometry-based similarity comparison of the protein primary structure between the reference set and the test set before the secondary structure prediction. We finally use the support vector machine (SVM) to predict those amino acids which are not detected by the primary structure similarity comparison. Experimental results show that our method achieves a satisfactory improvement in accuracy in the prediction of protein secondary structure.

  2. Prediction of protein secondary structure using probability based features and a hybrid system.

    Science.gov (United States)

    Ghanty, Pradip; Pal, Nikhil R; Mudi, Rajani K

    2013-10-01

    In this paper, we propose some co-occurrence probability-based features for prediction of protein secondary structure. The features are extracted using occurrence/nonoccurrence of secondary structures in the protein sequences. We explore two types of features: position-specific (based on position of amino acid on fragments of protein sequences) as well as position-independent (independent of amino acid position on fragments of protein sequences). We use a hybrid system, NEUROSVM, consisting of neural networks and support vector machines for classification of secondary structures. We propose two schemes NSVMps and NSVM for protein secondary structure prediction. The NSVMps uses position-specific probability-based features and NEUROSVM classifier whereas NSVM uses the same classifier with position-independent probability-based features. The proposed method falls in the single-sequence category of methods because it does not use any sequence profile information such as position specific scoring matrices (PSSM) derived from PSI-BLAST. Two widely used datasets RS126 and CB513 are used in the experiments. The results obtained using the proposed features and NEUROSVM classifier are better than most of the existing single-sequence prediction methods. Most importantly, the results using NSVMps that are obtained using lower dimensional features, are comparable to those by other existing methods. The NSVMps and NSVM are finally tested on target proteins of the critical assessment of protein structure prediction experiment-9 (CASP9). A larger dataset is used to compare the performance of the proposed methods with that of two recent single-sequence prediction methods. We also investigate the impact of presence of different amino acid residues (in protein sequences) that are responsible for the formation of different secondary structures.

  3. A Hybrid Ant Colony Optimization for the Prediction of Protein Secondary Structure

    Institute of Scientific and Technical Information of China (English)

    Chao CHEN; Yuan Xin TIAN; Xiao Yong ZOU; Pei Xiang CAI; Jin Yuan MO

    2005-01-01

    Based on the concept of ant colony optimization and the idea of population in genetic algorithm, a novel global optimization algorithm, called the hybrid ant colony optimization (HACO), is proposed in this paper to tackle continuous-space optimization problems. It was compared with other well-known stochastic methods in the optimization of the benchmark functions and was also used to solve the problem of selecting appropriate dilation efficiently by optimizing the wavelet power spectrum of the hydrophobic sequence of protein, which is thc key step on using continuous wavelet transform (CWT) to predict a-helices and connecting peptides.

  4. Algorithm for Predicting Protein Secondary Structure

    CERN Document Server

    Senapati, K K; Bhaumik, D

    2010-01-01

    Predicting protein structure from amino acid sequence is one of the most important unsolved problems of molecular biology and biophysics.Not only would a successful prediction algorithm be a tremendous advance in the understanding of the biochemical mechanisms of proteins, but, since such an algorithm could conceivably be used to design proteins to carry out specific functions.Prediction of the secondary structure of a protein (alpha-helix, beta-sheet, coil) is an important step towards elucidating its three dimensional structure as well as its function. In this research, we use different Hidden Markov models for protein secondary structure prediction. In this paper we have proposed an algorithm for predicting protein secondary structure. We have used Hidden Markov model with sliding window for secondary structure prediction.The secondary structure has three regular forms, for each secondary structural element we are using one Hidden Markov Model.

  5. Hybrid isoprenoid secondary metabolite production in terrestrial and marine actinomycetes.

    Science.gov (United States)

    Gallagher, Kelley A; Fenical, William; Jensen, Paul R

    2010-12-01

    Terpenoids are among the most ubiquitous and diverse secondary metabolites observed in nature. Although actinomycete bacteria are one of the primary sources of microbially derived secondary metabolites, they rarely produce compounds in this biosynthetic class. The terpenoid secondary metabolites that have been discovered from actinomycetes are often in the form of biosynthetic hybrids called hybrid isoprenoids (HIs). HIs include significant structural diversity and biological activity and thus are important targets for natural product discovery. Recent screening of marine actinomycetes has led to the discovery of a new lineage that is enriched in the production of biologically active HI secondary metabolites. These strains represent a promising resource for natural product discovery and provide unique opportunities to study the evolutionary history and ecological functions of an unusual group of secondary metabolites. Copyright © 2010 Elsevier Ltd. All rights reserved.

  6. Protein Secondary Structure Prediction Using Dynamic Programming

    Institute of Scientific and Technical Information of China (English)

    Jing ZHAO; Pei-Ming SONG; Qing FANG; Jian-Hua LUO

    2005-01-01

    In the present paper, we describe how a directed graph was constructed and then searched for the optimum path using a dynamic programming approach, based on the secondary structure propensity of the protein short sequence derived from a training data set. The protein secondary structure was thus predicted in this way. The average three-state accuracy of the algorithm used was 76.70%.

  7. HMM in Predicting Protein Secondary Structure

    Institute of Scientific and Technical Information of China (English)

    Huang Jing; Shi Feng; Zou Xiu-fen; Li Yuan-xiang; Zhou Huai-bei

    2003-01-01

    We introduced a new method --duration Hidden Markov Model (dHMM) to predicate the secondary structure of Protein. In our study, we divide the basic second structure of protein into three parts: H (α-Helix), E (β-sheet) and O (others, include coil and turn). HMM is a kind of probabilistic model which more thinking of the interaction between adjacent amino acids (these interaction were represented by transmit probability), and we use genetic algorithm to determine the nodel parameters. After improving on the model and fixed on the parameters of the model, we write aprogram HMMPS. Our example shows that HMM is a nice method for protein secondary structure prediction.

  8. The devil and holy water: protein and carbon nanotube hybrids.

    Science.gov (United States)

    Calvaresi, Matteo; Zerbetto, Francesco

    2013-11-19

    wealth of structures, processes, and functions that appear when such different types of molecules interact. Each residue stars in one of two main roles, and understanding which residues are best suited for which type of interaction can lead to the design of new hybrids. Nonlocally, the peptide or protein primary, secondary, and tertiary structures govern the binding of proteins by CNTs. The conjugation of proteins with CNTs presents some serious difficulties both experimentally and culturally (such as bridging the "jargon barrier" across disciplines). The intersection of these fields lies between communities characterized by distinctly different approaches and methodologies. However, the examples of this Account illustrate that when this barrier is overcome, the exploitation of hybrid CNT-protein systems offers great potential.

  9. Protein secondary structure: category assignment and predictability

    DEFF Research Database (Denmark)

    Andersen, Claus A.; Bohr, Henrik; Brunak, Søren

    2001-01-01

    In the last decade, the prediction of protein secondary structure has been optimized using essentially one and the same assignment scheme known as DSSP. We present here a different scheme, which is more predictable. This scheme predicts directly the hydrogen bonds, which stabilize the secondary......-forward neural network with one hidden layer on a data set identical to the one used in earlier work....

  10. Predicting Protein Secondary Structure with Markov Models

    DEFF Research Database (Denmark)

    Fischer, Paul; Larsen, Simon; Thomsen, Claus

    2004-01-01

    we are considering here, is to predict the secondary structure from the primary one. To this end we train a Markov model on training data and then use it to classify parts of unknown protein sequences as sheets, helices or coils. We show how to exploit the directional information contained......The primary structure of a protein is the sequence of its amino acids. The secondary structure describes structural properties of the molecule such as which parts of it form sheets, helices or coils. Spacial and other properties are described by the higher order structures. The classification task...

  11. Protein-ECE MEtallopincer Hybrids

    NARCIS (Netherlands)

    Kruithof, C.A.

    2007-01-01

    Modification of proteins with metal complexes is a promising and a relatively new field which conceals many challenges and potential applications. The field is a balance of contributions from the biological (protein engineering, bioconjugation) and chemical sciences (organic, inorganic and organomet

  12. Protein secondary structure: category assignment and predictability

    DEFF Research Database (Denmark)

    Andersen, Claus A.; Bohr, Henrik; Brunak, Søren

    2001-01-01

    In the last decade, the prediction of protein secondary structure has been optimized using essentially one and the same assignment scheme known as DSSP. We present here a different scheme, which is more predictable. This scheme predicts directly the hydrogen bonds, which stabilize the secondary...... structures. Single sequence prediction of the new three category assignment gives an overall prediction improvement of 3.1% and 5.1%, compared to the DSSP assignment and schemes where the helix category consists of a-helix and 3(10)-helix, respectively. These results were achieved using a standard feed...

  13. Hybrid system of semiconductor and photosynthetic protein.

    Science.gov (United States)

    Kim, Younghye; Shin, Seon Ae; Lee, Jaehun; Yang, Ki Dong; Nam, Ki Tae

    2014-08-29

    Photosynthetic protein has the potential to be a new attractive material for solar energy absorption and conversion. The development of semiconductor/photosynthetic protein hybrids is an example of recent progress toward efficient, clean and nanostructured photoelectric systems. In the review, two biohybrid systems interacting through different communicating methods are addressed: (1) a photosynthetic protein immobilized semiconductor electrode operating via electron transfer and (2) a hybrid of semiconductor quantum dots and photosynthetic protein operating via energy transfer. The proper selection of materials and functional and structural modification of the components and optimal conjugation between them are the main issues discussed in the review. In conclusion, we propose the direction of future biohybrid systems for solar energy conversion systems, optical biosensors and photoelectric devices.

  14. Continuum secondary structure captures protein flexibility

    DEFF Research Database (Denmark)

    Anderson, C.A.F.; Palmer, A.G.; Brunak, Søren;

    2002-01-01

    The DSSP program assigns protein secondary structure to one of eight states. This discrete assignment cannot describe the continuum of thermal fluctuations. Hence, a continuous assignment is proposed. Technically, the continuum results from averaging over ten discrete DSSP assignments...... protein structure analysis, comparison, and prediction....... with different hydrogen bond thresholds. The final continuous assignment for a single NMR model successfully reflected the structural variations observed between all NMR models in the ensemble. The structural variations between NMR models were verified to correlate with thermal motion; these variations were...

  15. Fourier Transform Infrared Spectroscopic Analysis of Protein Secondary Structures

    Institute of Scientific and Technical Information of China (English)

    Jilie KONG; Shaoning YU

    2007-01-01

    Infrared spectroscopy is one of the oldest and well established experimental techniques for the analysis of secondary structure of polypeptides and proteins. It is convenient, non-destructive, requires less sample preparation, and can be used under a wide variety of conditions. This review introduces the recent developments in Fourier transform infrared (FTIR) spectroscopy technique and its applications to protein structural studies. The experimental skills, data analysis, and correlations between the FTIR spectroscopic bands and protein secondary structure components are discussed. The applications of FTIR to the secondary structure analysis, conformational changes, structural dynamics and stability studies of proteins are also discussed.

  16. Immunogenic Domains and Secondary Structure of Escherichia coli Recombinant Secreted Protein Escherichia coli-Secreted Protein B

    Directory of Open Access Journals (Sweden)

    Roxane Maria Fontes Piazza

    2017-04-01

    Full Text Available Several pathogenic bacteria are able to induce the attaching and effacing (A/E lesion. The A/E lesion is caused by effector proteins, such as Escherichia coli-secreted protein B (EspB, responsible together with Escherichia coli-secreted protein D for forming a pore structure on the host cell, which allows the translocation of effector proteins. Different variants of this protein can be found in E. coli strains, and during natural infection or when this protein is injected, this leads to variant-specific production of antibodies, which may not be able to recognize other variants of this bacterial protein. Herein, we describe the production of a hybrid recombinant EspB toxin that comprises all known variants of this protein. This recombinant protein could be useful as an antigen for the production of antibodies with broad-range detection of EspB-bearing bacteria, or as an antigen that could be used in vaccine formulation to generate antibodies against different EspB variants, thereby increasing immunization potential. In addition, the recombinant protein allowed us to analyze its secondary structure, to propose the immunogenic regions of EspB variants, and also to characterize anti-EspB antibodies. Our results suggest that this hybrid protein or a protein composed of the conserved immunogenic regions could be used for a variety of clinical applications.

  17. Immunogenic Domains and Secondary Structure of Escherichia coli Recombinant Secreted Protein Escherichia coli-Secreted Protein B.

    Science.gov (United States)

    Caetano, Bruna Alves; Rocha, Letícia Barboza; Carvalho, Eneas; Piazza, Roxane Maria Fontes; Luz, Daniela

    2017-01-01

    Several pathogenic bacteria are able to induce the attaching and effacing (A/E) lesion. The A/E lesion is caused by effector proteins, such as Escherichia coli-secreted protein B (EspB), responsible together with Escherichia coli-secreted protein D for forming a pore structure on the host cell, which allows the translocation of effector proteins. Different variants of this protein can be found in E. coli strains, and during natural infection or when this protein is injected, this leads to variant-specific production of antibodies, which may not be able to recognize other variants of this bacterial protein. Herein, we describe the production of a hybrid recombinant EspB toxin that comprises all known variants of this protein. This recombinant protein could be useful as an antigen for the production of antibodies with broad-range detection of EspB-bearing bacteria, or as an antigen that could be used in vaccine formulation to generate antibodies against different EspB variants, thereby increasing immunization potential. In addition, the recombinant protein allowed us to analyze its secondary structure, to propose the immunogenic regions of EspB variants, and also to characterize anti-EspB antibodies. Our results suggest that this hybrid protein or a protein composed of the conserved immunogenic regions could be used for a variety of clinical applications.

  18. Detection of secondary binding sites in proteins using fragment screening.

    Science.gov (United States)

    Ludlow, R Frederick; Verdonk, Marcel L; Saini, Harpreet K; Tickle, Ian J; Jhoti, Harren

    2015-12-29

    Proteins need to be tightly regulated as they control biological processes in most normal cellular functions. The precise mechanisms of regulation are rarely completely understood but can involve binding of endogenous ligands and/or partner proteins at specific locations on a protein that can modulate function. Often, these additional secondary binding sites appear separate to the primary binding site, which, for example for an enzyme, may bind a substrate. In previous work, we have uncovered several examples in which secondary binding sites were discovered on proteins using fragment screening approaches. In each case, we were able to establish that the newly identified secondary binding site was biologically relevant as it was able to modulate function by the binding of a small molecule. In this study, we investigate how often secondary binding sites are located on proteins by analyzing 24 protein targets for which we have performed a fragment screen using X-ray crystallography. Our analysis shows that, surprisingly, the majority of proteins contain secondary binding sites based on their ability to bind fragments. Furthermore, sequence analysis of these previously unknown sites indicate high conservation, which suggests that they may have a biological function, perhaps via an allosteric mechanism. Comparing the physicochemical properties of the secondary sites with known primary ligand binding sites also shows broad similarities indicating that many of the secondary sites may be druggable in nature with small molecules that could provide new opportunities to modulate potential therapeutic targets.

  19. Conjugated Polymers/DNA Hybrid Materials for Protein Inactivation.

    Science.gov (United States)

    Zhao, Likun; Zhang, Jiangyan; Xu, Huiming; Geng, Hao; Cheng, Yongqiang

    2016-09-01

    Chromophore-assisted light inactivation (CALI) is a powerful tool for analyzing protein functions due to the high degree of spatial and temporal resolution. In this work, we demonstrate a CALI approach based on conjugated polymers (CPs)/DNA hybrid material for protein inactivation. The target protein is conjugated with single-stranded DNA in advance. Single-stranded DNA can form CPs/DNA hybrid material with cationic CPs via electrostatic and hydrophobic interactions. Through the formation of CPs/DNA hybrid material, the target protein that is conjugated with DNA is brought into close proximity to CPs. Under irradiation, CPs harvest light and generate reactive oxygen species (ROS), resulting in the inactivation of the adjacent target protein. This approach can efficiently inactivate any target protein which is conjugated with DNA and has good specificity and universality, providing a new strategy for studies of protein function and adjustment of protein activity.

  20. Simultaneous prediction of protein secondary structure and transmembrane spans.

    Science.gov (United States)

    Leman, Julia Koehler; Mueller, Ralf; Karakas, Mert; Woetzel, Nils; Meiler, Jens

    2013-07-01

    Prediction of transmembrane spans and secondary structure from the protein sequence is generally the first step in the structural characterization of (membrane) proteins. Preference of a stretch of amino acids in a protein to form secondary structure and being placed in the membrane are correlated. Nevertheless, current methods predict either secondary structure or individual transmembrane states. We introduce a method that simultaneously predicts the secondary structure and transmembrane spans from the protein sequence. This approach not only eliminates the necessity to create a consensus prediction from possibly contradicting outputs of several predictors but bears the potential to predict conformational switches, i.e., sequence regions that have a high probability to change for example from a coil conformation in solution to an α-helical transmembrane state. An artificial neural network was trained on databases of 177 membrane proteins and 6048 soluble proteins. The output is a 3 × 3 dimensional probability matrix for each residue in the sequence that combines three secondary structure types (helix, strand, coil) and three environment types (membrane core, interface, solution). The prediction accuracies are 70.3% for nine possible states, 73.2% for three-state secondary structure prediction, and 94.8% for three-state transmembrane span prediction. These accuracies are comparable to state-of-the-art predictors of secondary structure (e.g., Psipred) or transmembrane placement (e.g., OCTOPUS). The method is available as web server and for download at www.meilerlab.org.

  1. Combining neural networks for protein secondary structure prediction

    DEFF Research Database (Denmark)

    Riis, Søren Kamaric

    1995-01-01

    In this paper structured neural networks are applied to the problem of predicting the secondary structure of proteins. A hierarchical approach is used where specialized neural networks are designed for each structural class and then combined using another neural network. The submodels are designe...... is better than most secondary structure prediction methods based on single sequences even though this model contains much fewer parameters...

  2. Super-secondary structures and modeling of protein folds.

    Science.gov (United States)

    Efimov, Alexander V

    2013-01-01

    A characteristic feature of the polypeptide chain is its ability to form a restricted set of commonly occurring folding units composed of two or more elements of secondary structure that are adjacent along the chain. Some of these super-secondary structures exhibit a unique handedness and a unique overall fold irrespective of whether they occur in homologous or nonhomologous proteins. Such super-secondary structures are of particular value since they can be used as starting structures in protein modeling. The larger protein folds can be obtained by stepwise addition of other secondary structural elements to the starting structures taking into account a set of simple rules inferred from known principles of protein structure.

  3. Study and prediction of secondary structure for membrane proteins

    NARCIS (Netherlands)

    Amirova, Svetlana R.; Milchevsky, Juri V.; Filatov, Ivan V.; Esipova, Natalia G.; Tumanyan, Vladimir G.

    2007-01-01

    In this paper we present a novel approach to membrane protein secondary structure prediction based on the statistical stepwise discriminant analysis method. A new aspect of our approach is the possibility to derive physical -chemical properties that may affect the formation of membrane protein secon

  4. Using Protein Dimers to Maximize the Protein Hybridization Efficiency with Multisite DNA Origami Scaffolds.

    Science.gov (United States)

    Verma, Vikash; Mallik, Leena; Hariadi, Rizal F; Sivaramakrishnan, Sivaraj; Skiniotis, Georgios; Joglekar, Ajit P

    2015-01-01

    DNA origami provides a versatile platform for conducting 'architecture-function' analysis to determine how the nanoscale organization of multiple copies of a protein component within a multi-protein machine affects its overall function. Such analysis requires that the copy number of protein molecules bound to the origami scaffold exactly matches the desired number, and that it is uniform over an entire scaffold population. This requirement is challenging to satisfy for origami scaffolds with many protein hybridization sites, because it requires the successful completion of multiple, independent hybridization reactions. Here, we show that a cleavable dimerization domain on the hybridizing protein can be used to multiplex hybridization reactions on an origami scaffold. This strategy yields nearly 100% hybridization efficiency on a 6-site scaffold even when using low protein concentration and short incubation time. It can also be developed further to enable reliable patterning of a large number of molecules on DNA origami for architecture-function analysis.

  5. Using Protein Dimers to Maximize the Protein Hybridization Efficiency with Multisite DNA Origami Scaffolds.

    Directory of Open Access Journals (Sweden)

    Vikash Verma

    Full Text Available DNA origami provides a versatile platform for conducting 'architecture-function' analysis to determine how the nanoscale organization of multiple copies of a protein component within a multi-protein machine affects its overall function. Such analysis requires that the copy number of protein molecules bound to the origami scaffold exactly matches the desired number, and that it is uniform over an entire scaffold population. This requirement is challenging to satisfy for origami scaffolds with many protein hybridization sites, because it requires the successful completion of multiple, independent hybridization reactions. Here, we show that a cleavable dimerization domain on the hybridizing protein can be used to multiplex hybridization reactions on an origami scaffold. This strategy yields nearly 100% hybridization efficiency on a 6-site scaffold even when using low protein concentration and short incubation time. It can also be developed further to enable reliable patterning of a large number of molecules on DNA origami for architecture-function analysis.

  6. Using Protein Dimers to Maximize the Protein Hybridization Efficiency with Multisite DNA Origami Scaffolds

    Science.gov (United States)

    Verma, Vikash; Mallik, Leena; Hariadi, Rizal F.; Sivaramakrishnan, Sivaraj; Skiniotis, Georgios; Joglekar, Ajit P.

    2015-01-01

    DNA origami provides a versatile platform for conducting ‘architecture-function’ analysis to determine how the nanoscale organization of multiple copies of a protein component within a multi-protein machine affects its overall function. Such analysis requires that the copy number of protein molecules bound to the origami scaffold exactly matches the desired number, and that it is uniform over an entire scaffold population. This requirement is challenging to satisfy for origami scaffolds with many protein hybridization sites, because it requires the successful completion of multiple, independent hybridization reactions. Here, we show that a cleavable dimerization domain on the hybridizing protein can be used to multiplex hybridization reactions on an origami scaffold. This strategy yields nearly 100% hybridization efficiency on a 6-site scaffold even when using low protein concentration and short incubation time. It can also be developed further to enable reliable patterning of a large number of molecules on DNA origami for architecture-function analysis. PMID:26348722

  7. Using Circular Dichroism Spectra to Estimate Protein Secondary Structure

    Energy Technology Data Exchange (ETDEWEB)

    Greenfield, N.

    2006-01-01

    Circular dichroism (CD) is an excellent tool for rapid determination of the secondary structure and folding properties of proteins that have been obtained using recombinant techniques or purified from tissues. The most widely used applications of protein CD are to determine whether an expressed, purified protein is folded, or if a mutation affects its conformation or stability. In addition, it can be used to study protein interactions. This protocol details the basic steps of obtaining and interpreting CD data and methods for analyzing spectra to estimate the secondary structural composition of proteins. CD has the advantage that it is that measurements may be made on multiple samples containing 20 {mu}g or less of proteins in physiological buffers in a few hours. However, it does not give the residue-specific information that can be obtained by X-ray crystallography or NMR.

  8. Using circular dichroism spectra to estimate protein secondary structure

    Science.gov (United States)

    Greenfield, Norma J.

    2009-01-01

    Circular dichroism (CD) is an excellent tool for rapid determination of the secondary structure and folding properties of proteins that have been obtained using recombinant techniques or purified from tissues. The most widely used applications of protein CD are to determine whether an expressed, purified protein is folded, or if a mutation affects its conformation or stability. In addition, it can be used to study protein interactions. This protocol details the basic steps of obtaining and interpreting CD data and methods for analyzing spectra to estimate the secondary structural composition of proteins. CD has the advantage that it is that measurements may be made on multiple samples containing 20 µg or less of proteins in physiological buffers in a few hours. However, it does not give the residue-specific information that can be obtained by X-ray crystallography or NMR. PMID:17406547

  9. Protein secondary structure prediction using deep convolutional neural fields

    OpenAIRE

    Sheng Wang; Jian Peng; Jianzhu Ma; Jinbo Xu

    2015-01-01

    Protein secondary structure (SS) prediction is important for studying protein structure and function. When only the sequence (profile) information is used as input feature, currently the best predictors can obtain ~80% Q3 accuracy, which has not been improved in the past decade. Here we present DeepCNF (Deep Convolutional Neural Fields) for protein SS prediction. DeepCNF is a Deep Learning extension of Conditional Neural Fields (CNF), which is an integration of Conditional Random Fields (CRF)...

  10. Protein secondary structure analysis with a coarse-grained model

    OpenAIRE

    Kneller, Gerald R.; Hinsen, Konrad

    2014-01-01

    The paper presents a geometrical model for protein secondary structure analysis which uses only the positions of the $C_{\\alpha}$-atoms. We construct a space curve connecting these positions by piecewise polynomial interpolation and describe the folding of the protein backbone by a succession of screw motions linking the Frenet frames at consecutive $C_{\\alpha}$-positions. Using the ASTRAL subset of the SCOPe data base of protein structures, we derive thresholds for the screw parameters of se...

  11. Chemogenomics with protein secondary-structure mimetics.

    Science.gov (United States)

    Marshall, Garland R; Kuster, Daniel J; Che, Ye

    2009-01-01

    During molecular recognition of proteins in biological systems, helices, reverse turns, and beta-sheets are dominant motifs. Often there are therapeutic reasons for blocking such recognition sites, and significant progress has been made by medicinal chemists in the design and synthesis of semirigid molecular scaffolds on which to display amino acid side chains. The basic premise is that preorganization of the competing ligand enhances the binding affinity and potential selectivity of the inhibitor. In this chapter, current progress in these efforts is reviewed.

  12. Neural network definitions of highly predictable protein secondary structure classes

    Energy Technology Data Exchange (ETDEWEB)

    Lapedes, A. [Los Alamos National Lab., NM (United States)]|[Santa Fe Inst., NM (United States); Steeg, E. [Toronto Univ., ON (Canada). Dept. of Computer Science; Farber, R. [Los Alamos National Lab., NM (United States)

    1994-02-01

    We use two co-evolving neural networks to determine new classes of protein secondary structure which are significantly more predictable from local amino sequence than the conventional secondary structure classification. Accurate prediction of the conventional secondary structure classes: alpha helix, beta strand, and coil, from primary sequence has long been an important problem in computational molecular biology. Neural networks have been a popular method to attempt to predict these conventional secondary structure classes. Accuracy has been disappointingly low. The algorithm presented here uses neural networks to similtaneously examine both sequence and structure data, and to evolve new classes of secondary structure that can be predicted from sequence with significantly higher accuracy than the conventional classes. These new classes have both similarities to, and differences with the conventional alpha helix, beta strand and coil.

  13. Ionic Liquid-Nanoparticle Hybrid Electrolytes and their Application in Secondary Lithium-Metal Batteries

    KAUST Repository

    Lu, Yingying

    2012-07-12

    Ionic liquid-tethered nanoparticle hybrid electrolytes comprised of silica nanoparticles densely grafted with imidazolium-based ionic liquid chains are shown to retard lithium dendrite growth in rechargeable batteries with metallic lithium anodes. The electrolytes are demonstrated in full cell studies using both high-energy Li/MoS2 and high-power Li/TiO2 secondary batteries. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. On correlation between protein secondary structure, backbone bond angles, and side-chain orientations

    CERN Document Server

    Lundgren, Martin

    2012-01-01

    We investigate the fine structure of the sp3 hybridized covalent bond geometry that governs the tetrahedral architecture around the central C$_\\alpha$ carbon of a protein backbone, and for this we develop new visualization techniques to analyze high resolution X-ray structures in Protein Data Bank. We observe that there is a correlation between the deformations of the ideal tetrahedral symmetry and the local secondary structure of the protein. We propose a universal coarse grained energy function to describe the ensuing side-chain geometry in terms of the C$_\\beta$ carbon orientations. The energy function can model the side-chain geometry with a sub-atomic precision. As an example we construct the C$_\\alpha$-C$_\\beta$ structure of HP35 chicken villin headpiece. We obtain a configuration that deviates less than 0.4 \\.A in root-mean-square distance from the experimental X-ray structure.

  15. CPU-GPU hybrid accelerating the Zuker algorithm for RNA secondary structure prediction applications.

    Science.gov (United States)

    Lei, Guoqing; Dou, Yong; Wan, Wen; Xia, Fei; Li, Rongchun; Ma, Meng; Zou, Dan

    2012-01-01

    Prediction of ribonucleic acid (RNA) secondary structure remains one of the most important research areas in bioinformatics. The Zuker algorithm is one of the most popular methods of free energy minimization for RNA secondary structure prediction. Thus far, few studies have been reported on the acceleration of the Zuker algorithm on general-purpose processors or on extra accelerators such as Field Programmable Gate-Array (FPGA) and Graphics Processing Units (GPU). To the best of our knowledge, no implementation combines both CPU and extra accelerators, such as GPUs, to accelerate the Zuker algorithm applications. In this paper, a CPU-GPU hybrid computing system that accelerates Zuker algorithm applications for RNA secondary structure prediction is proposed. The computing tasks are allocated between CPU and GPU for parallel cooperate execution. Performance differences between the CPU and the GPU in the task-allocation scheme are considered to obtain workload balance. To improve the hybrid system performance, the Zuker algorithm is optimally implemented with special methods for CPU and GPU architecture. Speedup of 15.93× over optimized multi-core SIMD CPU implementation and performance advantage of 16% over optimized GPU implementation are shown in the experimental results. More than 14% of the sequences are executed on CPU in the hybrid system. The system combining CPU and GPU to accelerate the Zuker algorithm is proven to be promising and can be applied to other bioinformatics applications.

  16. Identification of local variations within secondary structures of proteins.

    Science.gov (United States)

    Kumar, Prasun; Bansal, Manju

    2015-05-01

    Secondary-structure elements (SSEs) play an important role in the folding of proteins. Identification of SSEs in proteins is a common problem in structural biology. A new method, ASSP (Assignment of Secondary Structure in Proteins), using only the path traversed by the C(α) atoms has been developed. The algorithm is based on the premise that the protein structure can be divided into continuous or uniform stretches, which can be defined in terms of helical parameters, and depending on their values the stretches can be classified into different SSEs, namely α-helices, 310-helices, π-helices, extended β-strands and polyproline II (PPII) and other left-handed helices. The methodology was validated using an unbiased clustering of these parameters for a protein data set consisting of 1008 protein chains, which suggested that there are seven well defined clusters associated with different SSEs. Apart from α-helices and extended β-strands, 310-helices and π-helices were also found to occur in substantial numbers. ASSP was able to discriminate non-α-helical segments from flanking α-helices, which were often identified as part of α-helices by other algorithms. ASSP can also lead to the identification of novel SSEs. It is believed that ASSP could provide a better understanding of the finer nuances of protein secondary structure and could make an important contribution to the better understanding of comparatively less frequently occurring structural motifs. At the same time, it can contribute to the identification of novel SSEs. A standalone version of the program for the Linux as well as the Windows operating systems is freely downloadable and a web-server version is also available at http://nucleix.mbu.iisc.ernet.in/assp/index.php.

  17. Hybrid protein-synthetic polymer nanoparticles for drug delivery.

    Science.gov (United States)

    Koseva, Neli S; Rydz, Joanna; Stoyanova, Ekaterina V; Mitova, Violeta A

    2015-01-01

    Among the most common nanoparticulate systems, the polymeric nanocarriers have a number of key benefits, which give a great choice of delivery platforms. Nevertheless, polymeric nanoparticles possess some limitations that include use of toxic solvents in the production process, polymer degradation, drug leakage outside the diseased tissue, and polymer cytotoxicity. The combination of polymers of biological and synthetic origin is an appealing modern strategy for the production of novel nanocarriers with unprecedented properties. Proteins' interface can play an important role in determining bioactivity and toxicity and gives perspective for future development of the polymer-based nanoparticles. The design of hybrid constructs composed of synthetic polymer and biological molecules such as proteins can be considered as a straightforward tool to integrate a broad spectrum of properties and biofunctions into a single device. This review discusses hybrid protein-synthetic polymer nanoparticles with different structures and levels in complexity and functionality, in view of their applications as drug delivery systems.

  18. Can Computationally Designed Protein Sequences Improve Secondary Structure Prediction?

    Science.gov (United States)

    2011-01-01

    with the structural classification of proteins ( SCOP ) database of known structural domains (Kuhlman and Baker, 2000; Rohl et al., 2004). Secondary...reported in the literature. Methods In this work, the Astral SCOP 1.75 (Murzin et al., 1995; Hubbard et al., 1999) structural domain database filtered...entry matching the query test sequence can be left out. A total of 6511 SCOP 1.75 domains were used after some domains were discarded due to large

  19. How well are protein structures annotated in secondary databases?

    Science.gov (United States)

    Rother, Kristian; Michalsky, Elke; Leser, Ulf

    2005-09-01

    We investigated to what extent Protein Data Bank (PDB) entries are annotated with second-party information based on existing cross-references between PDB and 15 other databases. We report 2 interesting findings. First, there is a clear "annotation gap" for structures less than 7 years old for secondary databases that are manually curated. Second, the examined databases overlap with each other quite well, dividing the PDB into 2 well-annotated thirds and one poorly annotated third. Both observations should be taken into account in any study depending on the selection of protein structures by their annotation.

  20. Protein packing: dependence on protein size, secondary structure and amino acid composition.

    Science.gov (United States)

    Fleming, P J; Richards, F M

    2000-06-02

    We have used the occluded surface algorithm to estimate the packing of both buried and exposed amino acid residues in protein structures. This method works equally well for buried residues and solvent-exposed residues in contrast to the commonly used Voronoi method that works directly only on buried residues. The atomic packing of individual globular proteins may vary significantly from the average packing of a large data set of globular proteins. Here, we demonstrate that these variations in protein packing are due to a complex combination of protein size, secondary structure composition and amino acid composition. Differences in protein packing are conserved in protein families of similar structure despite significant sequence differences. This conclusion indicates that quality assessments of packing in protein structures should include a consideration of various parameters including the packing of known homologous proteins. Also, modeling of protein structures based on homologous templates should take into account the packing of the template protein structure. Copyright 2000 Academic Press.

  1. PCI-SS: MISO dynamic nonlinear protein secondary structure prediction

    Directory of Open Access Journals (Sweden)

    Aboul-Magd Mohammed O

    2009-07-01

    Full Text Available Abstract Background Since the function of a protein is largely dictated by its three dimensional configuration, determining a protein's structure is of fundamental importance to biology. Here we report on a novel approach to determining the one dimensional secondary structure of proteins (distinguishing α-helices, β-strands, and non-regular structures from primary sequence data which makes use of Parallel Cascade Identification (PCI, a powerful technique from the field of nonlinear system identification. Results Using PSI-BLAST divergent evolutionary profiles as input data, dynamic nonlinear systems are built through a black-box approach to model the process of protein folding. Genetic algorithms (GAs are applied in order to optimize the architectural parameters of the PCI models. The three-state prediction problem is broken down into a combination of three binary sub-problems and protein structure classifiers are built using 2 layers of PCI classifiers. Careful construction of the optimization, training, and test datasets ensures that no homology exists between any training and testing data. A detailed comparison between PCI and 9 contemporary methods is provided over a set of 125 new protein chains guaranteed to be dissimilar to all training data. Unlike other secondary structure prediction methods, here a web service is developed to provide both human- and machine-readable interfaces to PCI-based protein secondary structure prediction. This server, called PCI-SS, is available at http://bioinf.sce.carleton.ca/PCISS. In addition to a dynamic PHP-generated web interface for humans, a Simple Object Access Protocol (SOAP interface is added to permit invocation of the PCI-SS service remotely. This machine-readable interface facilitates incorporation of PCI-SS into multi-faceted systems biology analysis pipelines requiring protein secondary structure information, and greatly simplifies high-throughput analyses. XML is used to represent the input

  2. Diverse effects of the MalE-LacZ hybrid protein on Escherichia coli cell physiology.

    OpenAIRE

    Ito, K.; Akiyama, Y; Yura, T; Shiba, K

    1986-01-01

    The hybrid protein between the periplasmic maltose-binding protein and the cytoplasmic beta-galactosidase (the MalE-LacZ hybrid protein) was previously shown to block the export of envelope proteins when synthesized in large amounts. Now we show that the hybrid protein exerts another major effect on the cell, that is, induction of the heat shock proteins. This latter effect was dependent on the htpR gene product but independent of the function of the signal sequence on the hybrid protein. On ...

  3. Improved hybrid optimization algorithm for 3D protein structure prediction.

    Science.gov (United States)

    Zhou, Changjun; Hou, Caixia; Wei, Xiaopeng; Zhang, Qiang

    2014-07-01

    A new improved hybrid optimization algorithm - PGATS algorithm, which is based on toy off-lattice model, is presented for dealing with three-dimensional protein structure prediction problems. The algorithm combines the particle swarm optimization (PSO), genetic algorithm (GA), and tabu search (TS) algorithms. Otherwise, we also take some different improved strategies. The factor of stochastic disturbance is joined in the particle swarm optimization to improve the search ability; the operations of crossover and mutation that are in the genetic algorithm are changed to a kind of random liner method; at last tabu search algorithm is improved by appending a mutation operator. Through the combination of a variety of strategies and algorithms, the protein structure prediction (PSP) in a 3D off-lattice model is achieved. The PSP problem is an NP-hard problem, but the problem can be attributed to a global optimization problem of multi-extremum and multi-parameters. This is the theoretical principle of the hybrid optimization algorithm that is proposed in this paper. The algorithm combines local search and global search, which overcomes the shortcoming of a single algorithm, giving full play to the advantage of each algorithm. In the current universal standard sequences, Fibonacci sequences and real protein sequences are certified. Experiments show that the proposed new method outperforms single algorithms on the accuracy of calculating the protein sequence energy value, which is proved to be an effective way to predict the structure of proteins.

  4. Protein Secondary Structure Prediction Using Deep Convolutional Neural Fields

    Science.gov (United States)

    Wang, Sheng; Peng, Jian; Ma, Jianzhu; Xu, Jinbo

    2016-01-01

    Protein secondary structure (SS) prediction is important for studying protein structure and function. When only the sequence (profile) information is used as input feature, currently the best predictors can obtain ~80% Q3 accuracy, which has not been improved in the past decade. Here we present DeepCNF (Deep Convolutional Neural Fields) for protein SS prediction. DeepCNF is a Deep Learning extension of Conditional Neural Fields (CNF), which is an integration of Conditional Random Fields (CRF) and shallow neural networks. DeepCNF can model not only complex sequence-structure relationship by a deep hierarchical architecture, but also interdependency between adjacent SS labels, so it is much more powerful than CNF. Experimental results show that DeepCNF can obtain ~84% Q3 accuracy, ~85% SOV score, and ~72% Q8 accuracy, respectively, on the CASP and CAMEO test proteins, greatly outperforming currently popular predictors. As a general framework, DeepCNF can be used to predict other protein structure properties such as contact number, disorder regions, and solvent accessibility.

  5. Meiosis in a triploid hybrid of Gossypium: high frequency of secondary bipolar spindles at metaphase II

    Indian Academy of Sciences (India)

    Mosareza Vafaie-Tabar; Shanti Chandrashekaran

    2007-01-01

    Studies on meiosis in pollen mother cells (PMCs) of a triploid interspecific hybrid ($3x = 39$ chromosomes, AAD) between tetraploid Gossypium hirsutum ($4n = 2x = 52$,AADD) and diploid G. arboreum ($2n = 2x = 26$,AA) are reported. During meiotic metaphase I, 13 AA bivalents and 13 D univalents are expected in the hybrid. However, only 28% of the PMCs had this expected configuration. The rest of the PMCs had between 8 and 12 bivalents and between 12 and 17 univalents. Univalents lagged at anaphase I, and at metaphase II one or a group of univalents remained scattered in the cytoplasm and failed to assemble at a single metaphase plate. Primary bipolar spindles organized around the bivalents and multivalents. In addition to the primary spindle, several secondary and smaller bipolar spindles organized themselves around individual univalents and groups of univalents. Almost all (97%) of the PMCs showed secondary spindles. Each spindle functioned independently and despite their multiple numbers in a cell, meiosis I proceeded normally, with polyad formation. These observations strongly support the view that in plant meiocytes bilateral kinetochore symmetry is not required for establishing a bipolar spindle and that single unpaired chromosomes can initiate and stabilize the formation of a functional bipolar spindle.

  6. Protein secondary structure prediction using NMR chemical shift data.

    Science.gov (United States)

    Zhao, Yuzhong; Alipanahi, Babak; Li, Shuai Cheng; Li, Ming

    2010-10-01

    Accurate determination of protein secondary structure from the chemical shift information is a key step for NMR tertiary structure determination. Relatively few work has been done on this subject. There needs to be a systematic investigation of algorithms that are (a) robust for large datasets; (b) easily extendable to (the dynamic) new databases; and (c) approaching to the limit of accuracy. We introduce new approaches using k-nearest neighbor algorithm to do the basic prediction and use the BCJR algorithm to smooth the predictions and combine different predictions from chemical shifts and based on sequence information only. Our new system, SUCCES, improves the accuracy of all existing methods on a large dataset of 805 proteins (at 86% Q(3) accuracy and at 92.6% accuracy when the boundary residues are ignored), and it is easily extendable to any new dataset without requiring any new training. The software is publicly available at http://monod.uwaterloo.ca/nmr/succes.

  7. Protein Structure Determination by Assembling Super-Secondary Structure Motifs Using Pseudocontact Shifts.

    Science.gov (United States)

    Pilla, Kala Bharath; Otting, Gottfried; Huber, Thomas

    2017-03-07

    Computational and nuclear magnetic resonance hybrid approaches provide efficient tools for 3D structure determination of small proteins, but currently available algorithms struggle to perform with larger proteins. Here we demonstrate a new computational algorithm that assembles the 3D structure of a protein from its constituent super-secondary structural motifs (Smotifs) with the help of pseudocontact shift (PCS) restraints for backbone amide protons, where the PCSs are produced from different metal centers. The algorithm, DINGO-PCS (3D assembly of Individual Smotifs to Near-native Geometry as Orchestrated by PCSs), employs the PCSs to recognize, orient, and assemble the constituent Smotifs of the target protein without any other experimental data or computational force fields. Using a universal Smotif database, the DINGO-PCS algorithm exhaustively enumerates any given Smotif. We benchmarked the program against ten different protein targets ranging from 100 to 220 residues with different topologies. For nine of these targets, the method was able to identify near-native Smotifs.

  8. Induction and Histology of Primary and Secondary Somatic Embryos of Phalaenopsis Hybrid Classic Spotted Pink (Orquidaceae

    Directory of Open Access Journals (Sweden)

    Cláudia Ulisses de Carvalho Silva

    2016-09-01

    Full Text Available The present work had as objectives to induce the formation of somatic embryos in vitro on Phalaenopsis hybrid Classic Spotted Pink, using different nutrient medium and assess the internal morphology of these embryos by means of histological and histochemical analysis. Young leaves of plants grown in vitro were used as explants for induction of somatic embryos in different nutrient medium: New Dogashima Medium, containing ANA (0.537 mM and BAP (4.440 mM plus phytagel and with pH 5.8 (NDM and the Murashige & Skoog with half the concentration of salts, plus NNA (0.537 mM and TDZ (13.621 mM, jellied with gelrite and pH 5.2 (0.5 MS. Primary somatic embryos were obtained to 90 days of cultivation in half MS and have been transferred to the same means for obtaining of secondary embryos. The primary and secondary somatic embryos were subcultived for MS with half the concentration of salts, without fitoregulator subjected to photoperiod of 16 hours, which stimulated the production of chlorophyll in primary embryos as secondary, promoting the development of those in protocorms and later in plants. The histological analysis showed that the somatic embryos were formed directly from the epidermal layers of the explants, without going through the phase of callus, featuring direct somatic embryogenesis. The histochemical methods used made it possible to highlight the deposition of starch and lipids in cells embriogenics as a result of physiological mechanisms, enabling the development of primary and secondary embryos in plants. Therefore, the medium 0.5 MS Plus ANA (0.537 mM and TDZ (13.621 mM, jellied with gelrite and pH 5.2 promoted to obtain primary and secondary embryos with ability to regenerate plants showing morphological similar the mother plant.

  9. A simple motif for protein recognition in DNA secondary structures.

    Science.gov (United States)

    Landt, Stephen G; Ramirez, Alejandro; Daugherty, Matthew D; Frankel, Alan D

    2005-09-02

    DNA in a single-stranded form (ssDNA) exists transiently within the cell and comprises the telomeres of linear chromosomes and the genomes of some DNA viruses. As with RNA, in the single-stranded state, some DNA sequences are able to fold into complex secondary and tertiary structures that may be recognized by proteins and participate in gene regulation. To better understand how such DNA elements might fold and interact with proteins, and to compare recognition features to those of a structured RNA, we used in vitro selection to identify ssDNAs that bind an RNA-binding peptide from the HIV Rev protein with high affinity and specificity. The large majority of selected binders contain a non-Watson-Crick G.T base-pair and an adjacent C:G base-pair and both are essential for binding. This GT motif can be presented in different DNA contexts, including a nearly perfect duplex and a branched three-helix structure, and appears to be recognized in large part by arginine residues separated by one turn of an alpha-helix. Interestingly, a very similar GT motif is necessary also for protein binding and function of a well-characterized model ssDNA regulatory element from the proenkephalin promoter.

  10. Aligning multiple protein sequences by parallel hybrid genetic algorithm.

    Science.gov (United States)

    Nguyen, Hung Dinh; Yoshihara, Ikuo; Yamamori, Kunihito; Yasunaga, Moritoshi

    2002-01-01

    This paper presents a parallel hybrid genetic algorithm (GA) for solving the sum-of-pairs multiple protein sequence alignment. A new chromosome representation and its corresponding genetic operators are proposed. A multi-population GENITOR-type GA is combined with local search heuristics. It is then extended to run in parallel on a multiprocessor system for speeding up. Experimental results of benchmarks from the BAliBASE show that the proposed method is superior to MSA, OMA, and SAGA methods with regard to quality of solution and running time. It can be used for finding multiple sequence alignment as well as testing cost functions.

  11. Hybrid proteins between Pseudomonas exotoxin A and poliovirus protease 2Apro.

    Science.gov (United States)

    Novoa, I; Feduchi, E; Carrasco, L

    1994-11-21

    Two hybrid proteins between Pseudomonas aeruginosa exotoxin A (PE) and poliovirus protease 2Apro have been generated. One hybrid protein contains the poliovirus 2Apro sequence replacing the region of PE corresponding to amino acids 413-607. The other hybrid contains in addition the transforming growth factor sequence. The two hybrid proteins were efficiently synthesized in E. coli cells using the inducible pET vectors. Both hybrid toxins cleaved p220 (eIF-4 gamma) when the recombinant plasmids were transfected in COS cells infected with recombinant vaccinia virus bearing the T7 RNA polymerase gene.

  12. Hemolysin coregulated protein 1 as a molecular gluing unit for the assembly of nanoparticle hybrid structures

    Directory of Open Access Journals (Sweden)

    Tuan Anh Pham

    2016-03-01

    Full Text Available Hybrid nanoparticle (NP structures containing organic building units such as polymers, peptides, DNA and proteins have great potential in biosensor and electronic applications. The nearly free modification of the polymer chain, the variation of the protein and DNA sequence and the implementation of functional moieties provide a great platform to create inorganic structures of different morphology, resulting in different optical and magnetic properties. Nevertheless, the design and modification of a protein structure with functional groups or sequences for the assembly of biohybrid materials is not trivial. This is mainly due to the sensitivity of its secondary, tertiary and quaternary structure to the changes in the interaction (e.g., hydrophobic, hydrophilic, electrostatic, chemical groups between the protein subunits and the inorganic material. Here, we use hemolysin coregulated protein 1 (Hcp1 from Pseudomonas aeruginosa as a building and gluing unit for the formation of biohybrid structures by implementing cysteine anchoring points at defined positions on the protein rim (Hcp1_cys3. We successfully apply the Hcp1_cys3 gluing unit for the assembly of often linear, hybrid structures of plasmonic gold (Au NP, magnetite (Fe3O4 NP, and cobalt ferrite nanoparticles (CoFe2O4 NP. Furthermore, the assembly of Au NPs into linear structures using Hcp1_cys3 is investigated by UV–vis spectroscopy, TEM and cryo-TEM. One key parameter for the formation of Au NP assembly is the specific ionic strength in the mixture. The resulting network-like structure of Au NPs is characterized by Raman spectroscopy, showing surface-enhanced Raman scattering (SERS by a factor of 8·104 and a stable secondary structure of the Hcp1_cys3 unit. In order to prove the catalytic performance of the gold hybrid structures, they are used as a catalyst in the reduction reaction of 4-nitrophenol showing similar catalytic activity as the pure Au NPs. To further extend the

  13. Changes in secondary structure of gluten proteins due to emulsifiers

    Science.gov (United States)

    Gómez, Analía V.; Ferrer, Evelina G.; Añón, María C.; Puppo, María C.

    2013-02-01

    Changes in the secondary structure of gluten proteins due to emulsifiers were analyzed by Raman Spectroscopy. The protein folding induced by 0.25% SSL (Sodium Stearoyl Lactylate) (GS0.25, Gluten + 0.25% SSL) included an increase in α-helix conformation and a decrease in β-sheet, turns and random coil. The same behavior, although in a less degree, was observed for 0.5% gluten-DATEM (Diacetyl Tartaric Acid Esters of Monoglycerides) system. The low burial of Tryptophan residues to a more hydrophobic environment and the low percentage area of the C-H stretching band for GS0.25 (Gluten + 0.25% SSL), could be related to the increased in α-helix conformation. This behavior was also confirmed by changes in stretching vibrational modes of disulfide bridges (S-S) and the low exposure of Tyrosine residues. High levels of SSL (0.5% and 1.0%) and DATEM (1.0%) led to more disordered protein structures, with different gluten networks. SSL (1.0%) formed a more disordered and opened gluten matrix than DATEM, the last one being laminar and homogeneous.

  14. Biosynthesis-Based Quantitative Analysis of 151 Secondary Metabolites of Licorice To Differentiate Medicinal Glycyrrhiza Species and Their Hybrids.

    Science.gov (United States)

    Song, Wei; Qiao, Xue; Chen, Kuan; Wang, Ying; Ji, Shuai; Feng, Jin; Li, Kai; Lin, Yan; Ye, Min

    2017-03-07

    Secondary metabolites are usually the bioactive components of medicinal plants. The difference in the secondary metabolisms of closely related plant species and their hybrids has rarely been addressed. In this study, we conducted a holistic secondary metabolomics analysis of three medicinal Glycyrrhiza species (G. uralensis, G. glabra, and G. inflata), which are used as the popular herbal medicine licorice. The Glycyrrhiza species (genotype) for 95 batches of samples were identified by DNA barcodes of the internal transcribed spacer and trnV-ndhC regions, and the chemotypes were revealed by LC/UV- or LC/MS/MS-based quantitative analysis of 151 bioactive secondary metabolites, including 17 flavonoid glycosides, 24 saponins, and 110 free phenolic compounds. These compounds represented key products in the biosynthetic pathways of licorice. For the 76 homozygous samples, the three Glycyrrhiza species showed significant biosynthetic preferences, especially in coumarins, chalcones, isoflavanes, and flavonols. In total, 27 species-specific chemical markers were discovered. The 19 hybrid samples indicated that hybridization could remarkably alter the chemical composition and that the male parent contributed more to the offspring than the female parent did. This is hitherto the largest-scale targeted secondary metabolomics study of medicinal plants and the first report on uniparental inheritance in plant secondary metabolism. The results are valuable for biosynthesis, inheritance, and quality control studies of licorice and other medicinal plants.

  15. Protein-associated water and secondary structure effect removal of blood proteins from metallic substrates.

    Science.gov (United States)

    Anand, Gaurav; Zhang, Fuming; Linhardt, Robert J; Belfort, Georges

    2011-03-01

    Removing adsorbed protein from metals has significant health and industrial consequences. There are numerous protein-adsorption studies using model self-assembled monolayers or polymeric substrates but hardly any high-resolution measurements of adsorption and removal of proteins on industrially relevant transition metals. Surgeons and ship owners desire clean metal surfaces to reduce transmission of disease via surgical instruments and minimize surface fouling (to reduce friction and corrosion), respectively. A major finding of this work is that, besides hydrophobic interaction adhesion energy, water content in an adsorbed protein layer and secondary structure of proteins determined the access and hence ability to remove adsorbed proteins from metal surfaces with a strong alkaline-surfactant solution (NaOH and 5 mg/mL SDS in PBS at pH 11). This is demonstrated with three blood proteins (bovine serum albumin, immunoglobulin, and fibrinogen) and four transition metal substrates and stainless steel (platinum (Pt), gold (Au), tungsten (W), titanium (Ti), and 316 grade stainless steel (SS)). All the metallic substrates were checked for chemical contaminations like carbon and sulfur and were characterized using X-ray photoelectron spectroscopy (XPS). While Pt and Au surfaces were oxide-free (fairly inert elements), W, Ti, and SS substrates were associated with native oxide. Difference measurements between a quartz crystal microbalance with dissipation (QCM-D) and surface plasmon resonance spectroscopy (SPR) provided a measure of the water content in the protein-adsorbed layers. Hydrophobic adhesion forces, obtained with atomic force microscopy, between the proteins and the metals correlated with the amount of the adsorbed protein-water complex. Thus, the amount of protein adsorbed decreased with Pt, Au, W, Ti and SS, in this order. Neither sessile contact angle nor surface roughness of the metal substrates was useful as predictors here. All three globular proteins

  16. HybridGO-Loc: mining hybrid features on gene ontology for predicting subcellular localization of multi-location proteins.

    Directory of Open Access Journals (Sweden)

    Shibiao Wan

    Full Text Available Protein subcellular localization prediction, as an essential step to elucidate the functions in vivo of proteins and identify drugs targets, has been extensively studied in previous decades. Instead of only determining subcellular localization of single-label proteins, recent studies have focused on predicting both single- and multi-location proteins. Computational methods based on Gene Ontology (GO have been demonstrated to be superior to methods based on other features. However, existing GO-based methods focus on the occurrences of GO terms and disregard their relationships. This paper proposes a multi-label subcellular-localization predictor, namely HybridGO-Loc, that leverages not only the GO term occurrences but also the inter-term relationships. This is achieved by hybridizing the GO frequencies of occurrences and the semantic similarity between GO terms. Given a protein, a set of GO terms are retrieved by searching against the gene ontology database, using the accession numbers of homologous proteins obtained via BLAST search as the keys. The frequency of GO occurrences and semantic similarity (SS between GO terms are used to formulate frequency vectors and semantic similarity vectors, respectively, which are subsequently hybridized to construct fusion vectors. An adaptive-decision based multi-label support vector machine (SVM classifier is proposed to classify the fusion vectors. Experimental results based on recent benchmark datasets and a new dataset containing novel proteins show that the proposed hybrid-feature predictor significantly outperforms predictors based on individual GO features as well as other state-of-the-art predictors. For readers' convenience, the HybridGO-Loc server, which is for predicting virus or plant proteins, is available online at http://bioinfo.eie.polyu.edu.hk/HybridGoServer/.

  17. HybridGO-Loc: Mining Hybrid Features on Gene Ontology for Predicting Subcellular Localization of Multi-Location Proteins

    Science.gov (United States)

    Wan, Shibiao; Mak, Man-Wai; Kung, Sun-Yuan

    2014-01-01

    Protein subcellular localization prediction, as an essential step to elucidate the functions in vivo of proteins and identify drugs targets, has been extensively studied in previous decades. Instead of only determining subcellular localization of single-label proteins, recent studies have focused on predicting both single- and multi-location proteins. Computational methods based on Gene Ontology (GO) have been demonstrated to be superior to methods based on other features. However, existing GO-based methods focus on the occurrences of GO terms and disregard their relationships. This paper proposes a multi-label subcellular-localization predictor, namely HybridGO-Loc, that leverages not only the GO term occurrences but also the inter-term relationships. This is achieved by hybridizing the GO frequencies of occurrences and the semantic similarity between GO terms. Given a protein, a set of GO terms are retrieved by searching against the gene ontology database, using the accession numbers of homologous proteins obtained via BLAST search as the keys. The frequency of GO occurrences and semantic similarity (SS) between GO terms are used to formulate frequency vectors and semantic similarity vectors, respectively, which are subsequently hybridized to construct fusion vectors. An adaptive-decision based multi-label support vector machine (SVM) classifier is proposed to classify the fusion vectors. Experimental results based on recent benchmark datasets and a new dataset containing novel proteins show that the proposed hybrid-feature predictor significantly outperforms predictors based on individual GO features as well as other state-of-the-art predictors. For readers' convenience, the HybridGO-Loc server, which is for predicting virus or plant proteins, is available online at http://bioinfo.eie.polyu.edu.hk/HybridGoServer/. PMID:24647341

  18. Spatial and temporal variability of xylan distribution in differentiating secondary xylem of hybrid aspen.

    Science.gov (United States)

    Kim, Jong Sik; Sandquist, David; Sundberg, Björn; Daniel, Geoffrey

    2012-06-01

    Xylans occupy approximately one-third of the cell wall components in hardwoods and their chemical structures are well understood. However, the microdistribution of xylans (O-acetyl-4-O-methylglucuronoxylans, AcGXs) in the cell wall and their correlation with functional properties of cells in hardwood xylem is poorly understood. We demonstrate here the spatial and temporal distribution of xylans in secondary xylem cells of hybrid aspen using immunolocalization with LM10 and LM11 antibodies. Xylan labeling was detected earliest in fibers at the cell corner of the S₁ layer, and then later in vessels and ray cells respectively. Fibers showed a heterogeneous labeling pattern in the mature cell wall with stronger labeling of low substituted xylans (lsAcGXs) in the outer than inner cell wall. In contrast, vessels showed uniform labeling in the mature cell wall with stronger labeling of lsAcGXs than fibers. Xylan labeling in ray cells was detected much later than that in fibers and vessels, but was also detected at the beginning of secondary cell wall formation as in fibers and vessels with uniform labeling in the cell wall regardless of developmental stage. Interestingly, pit membranes including fiber-, vessel- and ray-vessel pits showed strong labeling of highly substituted xylans (hsAcGXs) during differentiation, although this labeling gradually disappeared during pit maturation. Together our observations indicate that there are temporal and spatial variations of xylan deposition and chemical structure of xylans between cells in aspen xylem. Differences in xylan localization between aspen (hardwood) and cedar (softwood) are also discussed.

  19. Antithrombotic Protein Filter Composed of Hybrid Tissue-Fabric Material has a Long Lifetime.

    Science.gov (United States)

    Inoue, Yusuke; Yokota, Tomoyuki; Sekitani, Tsuyoshi; Kaneko, Akiko; Woo, Taeseong; Kobayashi, Shingo; Shibuya, Tomokazu; Tanaka, Masaru; Kosukegawa, Hiroyuki; Saito, Itsuro; Isoyama, Takashi; Abe, Yusuke; Yambe, Tomoyuki; Someya, Takao; Sekino, Masaki

    2017-05-01

    There are recent reports of hybrid tissue-fabric materials with good performance-high biocompatibility and high mechanical strength. In this study, we demonstrate the capability of a hybrid material as a long-term filter for blood proteins. Polyester fabrics were implanted into rats to fabricate hybrid tissue-fabric material sheets. The hybrid materials comprised biological tissue grown on the fabric. The materials were extracted from the rat's body, approximately 100 days post-implantation. The tissues were decellularized to prevent immunological rejection. An antithrombogenicity test was performed by dropping blood onto the hybrid material surface. The hybrid material showed lesser blood coagulation than polysulfone and cellulose. Blood plasma was filtered using the hybrid material to evaluate the protein removal percentage and the lifetime of the hybrid material in vitro. The hybrid material showed a comparable performance to conventional filters for protein removal. Moreover, the hybrid material could work as a protein filter for 1 month, which is six times the lifetime of polysulfone.

  20. Parameters Matching and Control Method of Hydraulic Hybrid Vehicles with Secondary Regulation Technology

    Institute of Scientific and Technical Information of China (English)

    SUN Hui; JIANG Jihai; WANG Xin

    2009-01-01

    Hydraulic hybrid vehicles (HHV) with secondary regulation technology has the potential of improving fuel economy by operating the engine in the optimum efficiency range and making use of regenerative braking. Hydrostatic transmission technology has the advantage of higher power density and the ability to accept the high rates and high frequencies of charging and discharging, both of which are not favorable for batteries, but the lower energy density requires special power matching design and control strategy to coordinate all the powertrain components in an optimal manner. A multi-objective optimization method is proposed to distinguish the components size values of HHV by considering the requirements of driving cycles and technology aspects. The regenerative braking strategy and energy control strategy based on the optimized HHV is proposed to recovery the braking energy and distribute the regenerated braking energy. Simulation results show that by taking the optimized configuration of HHV, adopting the regenerative braking strategy and energy control strategy are helpful to improve the system efficiency and fuel economy of HHV under urban driving cycles.

  1. Detection of secondary electrons with pixelated hybrid semiconductor detectors; Sekundaerelektronennachweis mit pixelierten hybriden Halbleiterdetektoren

    Energy Technology Data Exchange (ETDEWEB)

    Gebert, Ulrike Sonja

    2011-09-14

    Within the scope of this thesis, secondary electrons were detected with a pixelated semiconductor detector named Timepix. The Timepix detector consists of electronics and a sensor made from a semiconductor material. The connection of sensor and electronics is done for each pixel individually using bump bonds. Electrons with energies above 3 keV can be detected with the sensor. One electron produces a certain amount of electron-hole pairs according to its energy. The charge then drifts along an electric field to the pixel electronics, where it induces an electric signal. Even without a sensor it is possible to detect an electric signal from approximately 1000 electrons directly in the pixel electronics. Two different detector systems to detect secondary electrons using the Timepix detector were investigated during this thesis. First of all, a hybrid photon detector (HPD) was used to detect single photoelectrons. The HPD consists of a vacuum vessel with an entrance window and a cesium iodine photocathode at the inner surface of the window. Photoelectrons are released from the photocathode by incident light and are accelerated in an electric field towards the Timepix detector, where the point of interaction and the arrival time of the electron is determined. With a proximity focusing setup, a time resolution of 12 ns (with an acceleration voltage of 20 kV between photocathode and Timepix detector) was obtained. The HPD examined in this thesis showed a strong dependence of the dark rate form the acceleration voltage and the pressure in the vacuum vessel. At a pressure of few 10{sup -5} mbar and an acceleration voltage of 20 kV, the dark rate was about 800 Hz per mm{sup 2} area of the read out photocathode. One possibility to reduce the dark rate is to identify ion feedback events. With a slightly modified setup it was possible to reduce the dark rate to 0.5 Hz/mm{sup 2}. To achieve this, a new photocathode was mounted in a shorter distance to the detector. The

  2. Training set reduction methods for protein secondary structure prediction in single-sequence condition

    OpenAIRE

    2007-01-01

    Orphan proteins are characterized by the lack of significant sequence similarity to database proteins. To infer the functional properties of the orphans, more elaborate techniques that utilize structural information are required. In this regard, the protein structure prediction gains considerable importance. Secondary structure prediction algorithms designed for orphan proteins (also known as single-sequence algorithms) cannot utilize multiple alignments or alignment prof...

  3. Evidence for the robustness of protein complexes to inter-species hybridization.

    Directory of Open Access Journals (Sweden)

    Jean-Baptiste Leducq

    Full Text Available Despite the tremendous efforts devoted to the identification of genetic incompatibilities underlying hybrid sterility and inviability, little is known about the effect of inter-species hybridization at the protein interactome level. Here, we develop a screening platform for the comparison of protein-protein interactions (PPIs among closely related species and their hybrids. We examine in vivo the architecture of protein complexes in two yeast species (Saccharomyces cerevisiae and Saccharomyces kudriavzevii that diverged 5-20 million years ago and in their F1 hybrids. We focus on 24 proteins of two large complexes: the RNA polymerase II and the nuclear pore complex (NPC, which show contrasting patterns of molecular evolution. We found that, with the exception of one PPI in the NPC sub-complex, PPIs were highly conserved between species, regardless of protein divergence. Unexpectedly, we found that the architecture of the complexes in F1 hybrids could not be distinguished from that of the parental species. Our results suggest that the conservation of PPIs in hybrids likely results from the slow evolution taking place on the very few protein residues involved in the interaction or that protein complexes are inherently robust and may accommodate protein divergence up to the level that is observed among closely related species.

  4. Highly Elastic and Conductive Human-Based Protein Hybrid Hydrogels.

    Science.gov (United States)

    Annabi, Nasim; Shin, Su Ryon; Tamayol, Ali; Miscuglio, Mario; Bakooshli, Mohsen Afshar; Assmann, Alexander; Mostafalu, Pooria; Sun, Jeong-Yun; Mithieux, Suzanne; Cheung, Louis; Tang, Xiaowu Shirley; Weiss, Anthony S; Khademhosseini, Ali

    2016-01-01

    A highly elastic hybrid hydrogel of methacryloyl-substituted recombinant human tropoelastin (MeTro) and graphene oxide (GO) nanoparticles are developed. The synergistic effect of these two materials significantly enhances both ultimate strain (250%), reversible rotation (9700°), and the fracture energy (38.8 ± 0.8 J m(-2) ) in the hybrid network. Furthermore, improved electrical signal propagation and subsequent contraction of the muscles connected by hybrid hydrogels are observed in ex vivo tests.

  5. A seqlet-based maximum entropy Markov approach for protein secondary structure prediction

    Institute of Scientific and Technical Information of China (English)

    DONG; Qiwen; WANG; Xiaolong; LIN; Lei; GUAN; Yi

    2005-01-01

    A novel method for predicting the secondary structures of proteins from amino acid sequence has been presented. The protein secondary structure seqlets that are analogous to the words in natural language have been extracted. These seqlets will capture the relationship between amino acid sequence and the secondary structures of proteins and further form the protein secondary structure dictionary. To be elaborate, the dictionary is organism-specific. Protein secondary structure prediction is formulated as an integrated word segmentation and part of speech tagging problem. The word-lattice is used to represent the results of the word segmentation and the maximum entropy model is used to calculate the probability of a seqlet tagged as a certain secondary structure type. The method is markovian in the seqlets, permitting efficient exact calculation of the posterior probability distribution over all possible word segmentations and their tags by viterbi algorithm. The optimal segmentations and their tags are computed as the results of protein secondary structure prediction. The method is applied to predict the secondary structures of proteins of four organisms respectively and compared with the PHD method. The results show that the performance of this method is higher than that of PHD by about 3.9% Q3 accuracy and 4.6% SOV accuracy. Combining with the local similarity protein sequences that are obtained by BLAST can give better prediction. The method is also tested on the 50 CASP5 target proteins with Q3 accuracy 78.9% and SOV accuracy 77.1%. A web server for protein secondary structure prediction has been constructed which is available at http://www.insun. hit. edu. cn: 81/demos/biology/index.html.

  6. Amino Acid Molecular Units: Building Primary and Secondary Protein Structures

    Directory of Open Access Journals (Sweden)

    Aparecido R. Silva

    2008-05-01

    Full Text Available In order to guarantee the learning quality and suitable knowledge  use  about structural biology, it is fundamental to  exist, since the beginning of  students’ formation, the possibility of clear visualization of biomolecule structures. Nevertheless, the didactic books can only bring  schematic  drawings; even more elaborated figures and graphic computation  do not permit the necessary interaction.  The representation of three-dimensional molecular structures with ludic models, built with representative units, have supplied to the students and teachers a successfully experience to  visualize such structures and correlate them to the real molecules.  The design and applicability of the representative units were discussed with researchers and teachers before mould implementation.  In this stage  it  will be presented the  developed  kit  containing the  representative  plastic parts of the main amino acids.  The kit can demonstrate the interaction among the amino acids  functional groups  (represented by colors, shapes,  sizes and  the peptidic bonds between them  facilitating the assembly and visuali zation of the primary and secondary protein structure.  The models were designed for  Ca,  amino,  carboxyl groups  and  hydrogen. The  lateral chains have  well defined models that represent their geometrical shape.  The completed kit set  will be presented in this meeting (patent requested.  In the last phase of the project will be realized  an effective evaluation  of the kit  as a facilitative didactic tool of the teaching/learning process in the Structural Molecular Biology area.

  7. Blind Evaluation of Hybrid Protein Structure Analysis Methods based on Cross-Linking.

    Science.gov (United States)

    Belsom, Adam; Schneider, Michael; Brock, Oliver; Rappsilber, Juri

    2016-07-01

    Hybrid methods combine experimental data and computational modeling to analyze protein structures that are elusive to structure determination. To spur the development of hybrid methods, we propose to test them in the context of the CASP experiment and would like to invite experimental groups to participate in this initiative.

  8. A New Hybrid Model of Amino Acid Substitution for Protein Functional Classification

    Institute of Scientific and Technical Information of China (English)

    Ke Long WANG; Zhi Ning WEN; Fu Sheng NIE; Meng Long LI

    2005-01-01

    In this paper, a new hybrid model of amino acid substitution is developed and compared with the others in previous works. The results show that the new hybrid model can characterize the protein sequences very well by calculating Fisher weights, which can denote how much the variants contribute to the classification.

  9. Dissection of mechanistic principles of a secondary multidrug efflux protein.

    Science.gov (United States)

    Fluman, Nir; Ryan, Christopher M; Whitelegge, Julian P; Bibi, Eitan

    2012-09-14

    Multidrug transporters are ubiquitous efflux pumps that provide cells with defense against various toxic compounds. In bacteria, which typically harbor numerous multidrug transporter genes, the majority function as secondary multidrug/proton antiporters. Proton-coupled secondary transport is a fundamental process that is not fully understood, largely owing to the obscure nature of proton-transporter interactions. Here we analyzed the substrate/proton coupling mechanism in MdfA, a model multidrug/proton antiporter. By measuring the effect of protons on substrate binding and by directly measuring proton binding and release, we show that substrates and protons compete for binding to MdfA. Our studies strongly suggest that competition is an integral feature of secondary multidrug transport. We identified the proton-binding acidic residue and show that, surprisingly, the substrate binds at a different site. Together, the results suggest an interesting mode of indirect competition as a mechanism of multidrug/proton antiport.

  10. Genetic characterization of early maturing maize hybrids (Zea mays L.) obtained by protein and RAPD markers

    National Research Council Canada - National Science Library

    Bauer, Iva; Mladenovic-Drinic, Snezana; Filipovic, Milomir; Konstantinov, Kosana

    2005-01-01

    .... The objective of our study was to characterize set of early maturing maize hybrids with protein and RAPD markers and to compare this clasification with their pedigree information. RAPD markers gave significantly higher rate of polymorphism than protein markers. Better corelation was found among pedigree information and protein markers.

  11. Optical protein modulation via quantum dot coupling and use of a hybrid sensor protein.

    Science.gov (United States)

    Griep, Mark; Winder, Eric; Lueking, Donald; Friedrich, Craig; Mallick, Govind; Karna, Shashi

    2010-09-01

    Harnessing the energy transfer interactions between the optical protein bacteriorhodopsin (bR) and CdSe/ZnS quantum dots (QDs) could provide a novel bio-nano electronics substrate with a variety of applications. In the present study, a polydimethyldiallyammonium chloride based I-SAM technique has been utilized to produce bilayers, trilayers and multilayers of alternating monolayers of bR, PDAC and QD's on a conductive ITO substrate. The construction of multilayer systems was directly monitored by measuring the unique A570 nm absorbance of bR, as well as QD fluorescence emission. Both of these parameters displayed a linear relationship to the number of monolayers present on the ITO substrate. The photovoltaic response of bilayers of bR/PDAC was observed over a range of 3 to 12 bilayers and the ability to efficiently create an electrically active multilayered substrate composed of bR and QDs has been demonstrated for the first time. Evaluation of QD fluorescence emission in the multilayer system strongly suggests that FRET coupling is occurring and, since the I-SAM technique provide a means to control the bR/QD separation distance on the nanometer scale, this technique may prove highly valuable for optimizing the distance dependent energy transfer effects for maximum sensitivity to target molecule binding by a biosensor. Finally, preliminary studies on the production of a sensor protein/bR hybrid gene construct are presented. It is proposed that the energy associated with target molecule binding to a hybrid sensor protein would provide a means to directly modulate the electrical output from a sensor protein/bR biosensor platform.

  12. Distributions of amino acids suggest that certain residue types more effectively determine protein secondary structure

    Science.gov (United States)

    Battelle, S. Saraswathi; Fernández-Martínez, J. L.; Koliński, A.; Jernigan, R. L.; Battelle, A. Kloczkowski

    2013-01-01

    Exponential growth in the number of available protein sequences is unmatched by the slower growth in the number of structures. As a result, the development of efficient and fast protein secondary structure prediction methods is essential for the broad comprehension of protein structures. Computational methods that can efficiently determine secondary structure can in turn facilitate protein tertiary structure prediction, since most methods rely initially on secondary structure predictions. Recently, we have developed a fast learning optimized prediction methodology (FLOPRED) for predicting protein secondary structure (S. Saraswathi, et al., [1]). Data are generated by using knowledge-based potentials combined with structure information from the CATH database. A neural network-based extreme learning machine (ELM) and advanced particle swarm optimization (PSO) are used with this data to obtain better and faster convergence to more accurate secondary structure predicted results. A five-fold cross-validated testing accuracy of 83.8 % and a segment overlap (SOV) score of 78.3 % are obtained in this study. Secondary structure predictions and their accuracy are usually presented for three secondary structure elements: α-helix, β-strand and coil but rarely have the results been analyzed with respect to their constituent amino acids. In this paper, we use the results obtained with FLOPRED to provide detailed behaviors for different amino acid types in the secondary structure prediction. We investigate the influence of the composition, physico-chemical properties and position specific occurrence preferences of amino acids within secondary structure elements. In addition, we identify the correlation between these properties and prediction accuracy. The present detailed results suggest several important ways that secondary structure predictions can be improved in the future that might lead to improved protein design and engineering. PMID:23907551

  13. Effect of secondary structure on the thermodynamics and kinetics of PNA hybridization to DNA hairpins

    DEFF Research Database (Denmark)

    Kushon, S A; Jordan, J P; Seifert, J L

    2001-01-01

    structures in both target and probe molecules are shown to depress the melting temperatures and free energies of the probe-target duplexes. Kinetic analysis of hybridization yields reaction rates that are up to 160-fold slower than hybridization between two unstructured strands. The thermodynamic and kinetic...

  14. Altered heterochromatin binding by a hybrid sterility protein in Drosophila sibling species.

    Science.gov (United States)

    Bayes, Joshua J; Malik, Harmit S

    2009-12-11

    Hybrid sterility of the heterogametic sex is one of the first postzygotic reproductive barriers to evolve during speciation, yet the molecular basis of hybrid sterility is poorly understood. We show that the hybrid male sterility gene Odysseus-site homeobox (OdsH) encodes a protein that localizes to evolutionarily dynamic loci within heterochromatin and leads to their decondensation. In Drosophila mauritiana x Drosophila simulans male hybrids, OdsH from D. mauritiana (OdsHmau) acts as a sterilizing factor by associating with the heterochromatic Y chromosome of D. simulans, whereas D. simulans OdsH (OdsHsim) does not. Characterization of sterile hybrid testes revealed that OdsH abundance and localization in the premeiotic phases of spermatogenesis differ between species. These results reveal that rapid heterochromatin evolution affects the onset of hybrid sterility.

  15. An improved yeast two-hybrid approach for detection of interacting proteins

    Institute of Scientific and Technical Information of China (English)

    Wan Bingbing; Shi Yan; Huo Keke

    2006-01-01

    Yeast two-hybrid approach is popularly used nowadays as an important technical method in the field of studying protein-protein interactions.Although yeast two-hybrid system is obviously advantageous in searching interacting proteins and setting up the network of proteins interaction.not all of proteins can use routine yeast two-hybrid method to search interacting proteins.Many important proteins,such as some nucleoprotein transcriptional factor,carry out the regular method and construct the bait-BD vector to screen the library containing AD vector.However,it usually results in failures because it contains the activate domain and can self-activate the reporter gene.In this study,we changed the research strategy,fused the bait gene(FOXA3)with the AD vector to screen the library containing BD vector,so that we constructed a two-hybrid library containing BD vector and Can bypass the interference of self-activation.And we used this two-hybrid library to screen FOXA3.a hepatocyte nuclear factor,and found out an interacting protein:complement component C3.

  16. Lyophilization-induced reversible changes in the secondary structure of proteins.

    OpenAIRE

    Griebenow, K; Klibanov, A M

    1995-01-01

    Changes in the secondary structure of some dozen different proteins upon lyophilization of their aqueous solutions have been investigated by means of Fourier-transform infrared spectroscopy in the amide III band region. Dehydration markedly (but reversibly) alters the secondary structure of all the proteins studied, as revealed by both the quantitative analysis of the second derivative spectra and the Gaussian curve fitting of the original infrared spectra. Lyophilization substantially increa...

  17. Genetic characterization of early maturing maize hybrids (Zea mays L. obtained by protein and RAPD markers

    Directory of Open Access Journals (Sweden)

    Bauer Iva

    2005-01-01

    Full Text Available Knowledge of maize germplasm genetic diversity is important for planning breeding programmes, germplasm conservation per se etc. Genetic variability of maize hybrids grown in the fields is also very important because genetic uniformity implies risks of genetic vulnerability to stress factors and can cause great losts in yield. Early maturing maize hybrids are characterized by shorter vegetation period and they are grown in areas with shorter vegetation season. Because of different climatic conditions in these areas lines and hybrids are developed with different features in respect to drought resistance and disease resistance. The objective of our study was to characterize set of early maturing maize hybrids with protein and RAPD markers and to compare this clasification with their pedigree information. RAPD markers gave significantly higher rate of polymorphism than protein markers. Better corelation was found among pedigree information and protein markers.

  18. Protein secondary structure appears to be robust under in silico evolution while protein disorder appears not to be.

    KAUST Repository

    Schaefer, Christian

    2010-01-16

    MOTIVATION: The mutation of amino acids often impacts protein function and structure. Mutations without negative effect sustain evolutionary pressure. We study a particular aspect of structural robustness with respect to mutations: regular protein secondary structure and natively unstructured (intrinsically disordered) regions. Is the formation of regular secondary structure an intrinsic feature of amino acid sequences, or is it a feature that is lost upon mutation and is maintained by evolution against the odds? Similarly, is disorder an intrinsic sequence feature or is it difficult to maintain? To tackle these questions, we in silico mutated native protein sequences into random sequence-like ensembles and monitored the change in predicted secondary structure and disorder. RESULTS: We established that by our coarse-grained measures for change, predictions and observations were similar, suggesting that our results were not biased by prediction mistakes. Changes in secondary structure and disorder predictions were linearly proportional to the change in sequence. Surprisingly, neither the content nor the length distribution for the predicted secondary structure changed substantially. Regions with long disorder behaved differently in that significantly fewer such regions were predicted after a few mutation steps. Our findings suggest that the formation of regular secondary structure is an intrinsic feature of random amino acid sequences, while the formation of long-disordered regions is not an intrinsic feature of proteins with disordered regions. Put differently, helices and strands appear to be maintained easily by evolution, whereas maintaining disordered regions appears difficult. Neutral mutations with respect to disorder are therefore very unlikely.

  19. Protein structure prediction: assembly of secondary structure elements by basin-hopping.

    Science.gov (United States)

    Hoffmann, Falk; Vancea, Ioan; Kamat, Sanjay G; Strodel, Birgit

    2014-10-20

    The prediction of protein tertiary structure from primary structure remains a challenging task. One possible approach to this problem is the application of basin-hopping global optimization combined with an all-atom force field. In this work, the efficiency of basin-hopping is improved by introducing an approach that derives tertiary structures from the secondary structure assignments of individual residues. This approach is termed secondary-to-tertiary basin-hopping and benchmarked for three miniproteins: trpzip, trp-cage and ER-10. For each of the three miniproteins, the secondary-to-tertiary basin-hopping approach successfully and reliably predicts their three-dimensional structure. When it is applied to larger proteins, correctly folded structures are obtained. It can be concluded that the assembly of secondary structure elements using basin-hopping is a promising tool for de novo protein structure prediction.

  20. Prediction of protein continuum secondary structure with probabilistic models based on NMR solved structures

    Directory of Open Access Journals (Sweden)

    Bailey Timothy L

    2006-02-01

    Full Text Available Abstract Background The structure of proteins may change as a result of the inherent flexibility of some protein regions. We develop and explore probabilistic machine learning methods for predicting a continuum secondary structure, i.e. assigning probabilities to the conformational states of a residue. We train our methods using data derived from high-quality NMR models. Results Several probabilistic models not only successfully estimate the continuum secondary structure, but also provide a categorical output on par with models directly trained on categorical data. Importantly, models trained on the continuum secondary structure are also better than their categorical counterparts at identifying the conformational state for structurally ambivalent residues. Conclusion Cascaded probabilistic neural networks trained on the continuum secondary structure exhibit better accuracy in structurally ambivalent regions of proteins, while sustaining an overall classification accuracy on par with standard, categorical prediction methods.

  1. CSI 3.0: a web server for identifying secondary and super-secondary structure in proteins using NMR chemical shifts.

    Science.gov (United States)

    Hafsa, Noor E; Arndt, David; Wishart, David S

    2015-07-01

    The Chemical Shift Index or CSI 3.0 (http://csi3.wishartlab.com) is a web server designed to accurately identify the location of secondary and super-secondary structures in protein chains using only nuclear magnetic resonance (NMR) backbone chemical shifts and their corresponding protein sequence data. Unlike earlier versions of CSI, which only identified three types of secondary structure (helix, β-strand and coil), CSI 3.0 now identifies total of 11 types of secondary and super-secondary structures, including helices, β-strands, coil regions, five common β-turns (type I, II, I', II' and VIII), β hairpins as well as interior and edge β-strands. CSI 3.0 accepts experimental NMR chemical shift data in multiple formats (NMR Star 2.1, NMR Star 3.1 and SHIFTY) and generates colorful CSI plots (bar graphs) and secondary/super-secondary structure assignments. The output can be readily used as constraints for structure determination and refinement or the images may be used for presentations and publications. CSI 3.0 uses a pipeline of several well-tested, previously published programs to identify the secondary and super-secondary structures in protein chains. Comparisons with secondary and super-secondary structure assignments made via standard coordinate analysis programs such as DSSP, STRIDE and VADAR on high-resolution protein structures solved by X-ray and NMR show >90% agreement between those made with CSI 3.0.

  2. Analysis of the protein-protein interactions between the human acidic ribosomal P-proteins: evaluation by the two hybrid system

    DEFF Research Database (Denmark)

    Tchórzewski, M; Boldyreff, B; Issinger, O

    2000-01-01

    on the function of these proteins, we are the first to have precisely analyzed mutual interactions among human P-proteins, employing the two hybrid system. The human acidic ribosomal P-proteins, (P1 or P2,) were fused to the GAL4 binding domain (BD) as well as the activation domain (AD), and analyzed in yeast...

  3. The Turn of the Screw: An Exercise in Protein Secondary Structure

    Science.gov (United States)

    Pikaart, Michael

    2011-01-01

    An exercise using simple paper strips to illustrate protein helical and sheet secondary structures is presented. Drawing on the rich historical context of the use of physical models in protein biochemistry by early practitioners, in particular Linus Pauling, the purpose of this activity is to cultivate in students a hands-on, intuitive sense of…

  4. Knowledge base and neural network approach for protein secondary structure prediction.

    Science.gov (United States)

    Patel, Maulika S; Mazumdar, Himanshu S

    2014-11-21

    Protein structure prediction is of great relevance given the abundant genomic and proteomic data generated by the genome sequencing projects. Protein secondary structure prediction is addressed as a sub task in determining the protein tertiary structure and function. In this paper, a novel algorithm, KB-PROSSP-NN, which is a combination of knowledge base and modeling of the exceptions in the knowledge base using neural networks for protein secondary structure prediction (PSSP), is proposed. The knowledge base is derived from a proteomic sequence-structure database and consists of the statistics of association between the 5-residue words and corresponding secondary structure. The predicted results obtained using knowledge base are refined with a Backpropogation neural network algorithm. Neural net models the exceptions of the knowledge base. The Q3 accuracy of 90% and 82% is achieved on the RS126 and CB396 test sets respectively which suggest improvement over existing state of art methods.

  5. Charge-Induced Unzipping of Isolated Proteins to a Defined Secondary Structure.

    Science.gov (United States)

    González Flórez, Ana Isabel; Mucha, Eike; Ahn, Doo-Sik; Gewinner, Sandy; Schöllkopf, Wieland; Pagel, Kevin; von Helden, Gert

    2016-03-01

    Here we present a combined experimental and theoretical study on the secondary structure of isolated proteins as a function of charge state. In infrared spectra of the proteins ubiquitin and cytochrome c, amide I (C=O stretch) and amide II (N-H bend) bands can be found at positions that are typical for condensed-phase proteins. For high charge states a new band appears, substantially red-shifted from the amide II band observed at lower charge states. The observations are interpreted in terms of Coulomb-driven transitions in secondary structures from mostly helical to extended C5 -type hydrogen-bonded structures. Support for this interpretation comes from simple energy considerations as well as from quantum chemical calculations on model peptides. This transition in secondary structure is most likely universal for isolated proteins that occur in mass spectrometric experiments.

  6. Secondary structures of proteins from the 30S subunit of the Escherichia coli ribosome.

    Science.gov (United States)

    Dzionara, M; Robinson, S M; Wittmann-Liebold, B

    1977-08-01

    The secondary structures of the proteins S4, S6, S8, S9, S12, S13, S15, S16, S18, S20 and S21 from the subunit of the E. coli ribosome were predicted according to four different methods. From the resultant diagrams indicating regions of helix, turn, extended structure and random coil, average values for the respective secondary structures could be calculated for each protein. Using the known relative distances for residues in the helical, turn and sheet or allowed random conformations, estimates are made of the maximum possible lengths of the proteins in order to correlate these with results obtained from antibody binding studies to the 30S subunit as determined by electron microscopy. The influence of amino acid changes on the predicted secondary structures of proteins from a few selected mutants was studied. The altered residues tend to be structurally conservative or to induce only minimal local changes.

  7. Effect of pressure on secondary structure of proteins under ultra high pressure liquid chromatographic conditions.

    Science.gov (United States)

    Makarov, Alexey; LoBrutto, Rosario; Karpinski, Paul

    2013-11-29

    There are several spectroscopic techniques such as IR and CD, that allow for analyzing protein secondary structure in solution. However, a majority of these techniques require using purified protein, concentrated enough in the solution, to produce a relevant spectrum. Fundamental principles for the usage of reversed-phase ultra high pressure liquid chromatography (UHPLC) as an alternative technique to study protein secondary structures in solution were investigated. Several "model" proteins, as well as several small ionizable and neutral molecules, were used for these studies. The studies were conducted with UHPLC in isocratic mode, using premixed mobile phases at constant flow rate and temperature. The pressure was modified by a backpressure regulator from about 6000psi to about 12,000psi. It was found that when using a mobile phase composition at which proteins were fully denatured (loss of alpha-helix secondary structure), the retention factors of the proteins increased upon pressure increase in the same manner as non-proteins. When using a mobile phase composition in which proteins were not fully denatured, it was observed that the retention factors of the proteins displayed a much steeper (by one order of magnitude) increase in retention upon pressure increase. It was concluded that in a mobile phase in which the protein is not initially fully denatured, the increase of pressure may facilitate the folding back of the protein to its native state (alpha-helix secondary structure). The impact of different mobile phase compositions on the denaturation of the proteins was studied using CD (Circular Dichroism). Moreover, the effect of flow rate on retention of proteins and small molecules was studied at constant pressure on the different pore size silicas and the impact of internal frictional heating was evaluated.

  8. A probabilistic model for secondary structure prediction from protein chemical shifts.

    Science.gov (United States)

    Mechelke, Martin; Habeck, Michael

    2013-06-01

    Protein chemical shifts encode detailed structural information that is difficult and computationally costly to describe at a fundamental level. Statistical and machine learning approaches have been used to infer correlations between chemical shifts and secondary structure from experimental chemical shifts. These methods range from simple statistics such as the chemical shift index to complex methods using neural networks. Notwithstanding their higher accuracy, more complex approaches tend to obscure the relationship between secondary structure and chemical shift and often involve many parameters that need to be trained. We present hidden Markov models (HMMs) with Gaussian emission probabilities to model the dependence between protein chemical shifts and secondary structure. The continuous emission probabilities are modeled as conditional probabilities for a given amino acid and secondary structure type. Using these distributions as outputs of first- and second-order HMMs, we achieve a prediction accuracy of 82.3%, which is competitive with existing methods for predicting secondary structure from protein chemical shifts. Incorporation of sequence-based secondary structure prediction into our HMM improves the prediction accuracy to 84.0%. Our findings suggest that an HMM with correlated Gaussian distributions conditioned on the secondary structure provides an adequate generative model of chemical shifts.

  9. Description and recognition of regular and distorted secondary structures in proteins using the automated protein structure analysis method.

    Science.gov (United States)

    Ranganathan, Sushilee; Izotov, Dmitry; Kraka, Elfi; Cremer, Dieter

    2009-08-01

    The Automated Protein Structure Analysis (APSA) method, which describes the protein backbone as a smooth line in three-dimensional space and characterizes it by curvature kappa and torsion tau as a function of arc length s, was applied on 77 proteins to determine all secondary structural units via specific kappa(s) and tau(s) patterns. A total of 533 alpha-helices and 644 beta-strands were recognized by APSA, whereas DSSP gives 536 and 651 units, respectively. Kinks and distortions were quantified and the boundaries (entry and exit) of secondary structures were classified. Similarity between proteins can be easily quantified using APSA, as was demonstrated for the roll architecture of proteins ubiquitin and spinach ferridoxin. A twenty-by-twenty comparison of all alpha domains showed that the curvature-torsion patterns generated by APSA provide an accurate and meaningful similarity measurement for secondary, super secondary, and tertiary protein structure. APSA is shown to accurately reflect the conformation of the backbone effectively reducing three-dimensional structure information to two-dimensional representations that are easy to interpret and understand.

  10. Protein Adsorption on Hybrids of Thermoresponsive Polymers and Single-Walled Carbon Nanotubes

    Directory of Open Access Journals (Sweden)

    Kazuo Umemura

    2016-01-01

    Full Text Available Poly(N-isopropylacrylamide (PNIPAAm is one of the most popular thermoresponsive polymers. Adsorption of RecA proteins onto hybrids of PNIPAAm and single-walled carbon nanotubes (SWNTs was observed in the presence and absence of DNA molecules. Although RecA molecules were adsorbed efficiently onto the hybrid surfaces at 37°C, even in the absence of DNA molecules, the adsorption of RecA was inhibited at 4°C. These results suggest that the thermoresponsive functions of PNIPAAm were effective, even on the SWNT surfaces, which supports the possibility of developing nanobiodevices using PNIPAAm-SWNT hybrids. However, although RecA is a DNA binding protein, there was no significant difference in the adsorption of RecA onto PNIPAAm-SWNT surfaces with and without DNA molecules. This study provides fundamental information for potential biological applications of PNIPAAm-SWNT hybrids.

  11. Shark myelin basic protein: amino acid sequence, secondary structure, and self-association.

    Science.gov (United States)

    Milne, T J; Atkins, A R; Warren, J A; Auton, W P; Smith, R

    1990-09-01

    Myelin basic protein (MBP) from the Whaler shark (Carcharhinus obscurus) has been purified from acid extracts of a chloroform/methanol pellet from whole brains. The amino acid sequence of the majority of the protein has been determined and compared with the sequences of other MBPs. The shark protein has only 44% homology with the bovine protein, but, in common with other MBPs, it has basic residues distributed throughout the sequence and no extensive segments that are predicted to have an ordered secondary structure in solution. Shark MBP lacks the triproline sequence previously postulated to form a hairpin bend in the molecule. The region containing the putative consensus sequence for encephalitogenicity in the guinea pig contains several substitutions, thus accounting for the lack of activity of the shark protein. Studies of the secondary structure and self-association have shown that shark MBP possesses solution properties similar to those of the bovine protein, despite the extensive differences in primary structure.

  12. Incorporating secondary structural features into sequence information for predicting protein structural class.

    Science.gov (United States)

    Liao, Bo; Peng, Ting; Chen, Haowen; Lin, Yaping

    2013-10-01

    Knowledge of structural classes is applied in numerous important predictive tasks that address structural and functional features of proteins, although the prediction accuracy of the protein structural classes is not high. In this study, 45 different features were rationally designed to model the differences between protein structural classes, among which, 30 of them reflect the combined protein sequence information. In terms of correlation function, the protein sequence can be converted to a digital signal sequence, from which we can generate 20 discrete Fourier spectrum numbers. According to the segments of amino with different characteristics occurring in protein sequences, the frequencies of the 10 kinds of segments of amino acid (motifs) in protein are calculated. Other features include the secondary structural information :10 features were proposed to model the strong adjacent correlations in the secondary structural elements and capture the long-range spatial interactions between secondary structures, other 5 features were designed to differentiate α/β from α+β classes , which is a major problem of the existing algorithm. The methods were proposed based on a large set of low-identity sequences for which secondary structure is predicted from their sequence (based on PSI-PRED). By means of this method, the overall prediction accuracy of four benchmark datasets were all improved. Especially for the dataset FC699, 25PDB and D1189 which are 1.26%, 1% and 0.85% higher than the best previous method respectively.

  13. Improving the accuracy of protein secondary structure prediction using structural alignment

    Directory of Open Access Journals (Sweden)

    Gallin Warren J

    2006-06-01

    Full Text Available Abstract Background The accuracy of protein secondary structure prediction has steadily improved over the past 30 years. Now many secondary structure prediction methods routinely achieve an accuracy (Q3 of about 75%. We believe this accuracy could be further improved by including structure (as opposed to sequence database comparisons as part of the prediction process. Indeed, given the large size of the Protein Data Bank (>35,000 sequences, the probability of a newly identified sequence having a structural homologue is actually quite high. Results We have developed a method that performs structure-based sequence alignments as part of the secondary structure prediction process. By mapping the structure of a known homologue (sequence ID >25% onto the query protein's sequence, it is possible to predict at least a portion of that query protein's secondary structure. By integrating this structural alignment approach with conventional (sequence-based secondary structure methods and then combining it with a "jury-of-experts" system to generate a consensus result, it is possible to attain very high prediction accuracy. Using a sequence-unique test set of 1644 proteins from EVA, this new method achieves an average Q3 score of 81.3%. Extensive testing indicates this is approximately 4–5% better than any other method currently available. Assessments using non sequence-unique test sets (typical of those used in proteome annotation or structural genomics indicate that this new method can achieve a Q3 score approaching 88%. Conclusion By using both sequence and structure databases and by exploiting the latest techniques in machine learning it is possible to routinely predict protein secondary structure with an accuracy well above 80%. A program and web server, called PROTEUS, that performs these secondary structure predictions is accessible at http://wishart.biology.ualberta.ca/proteus. For high throughput or batch sequence analyses, the PROTEUS programs

  14. Protein secondary structure prediction for a single-sequence using hidden semi-Markov models

    OpenAIRE

    2006-01-01

    Abstract Background The accuracy of protein secondary structure prediction has been improving steadily towards the 88% estimated theoretical limit. There are two types of prediction algorithms: Single-sequence prediction algorithms imply that information about other (homologous) proteins is not available, while algorithms of the second type imply that information about homologous proteins is available, and use it intensively. The single-sequence algorithms could make an important contribution...

  15. Enhanced hybrid search algorithm for protein structure prediction using the 3D-HP lattice model.

    Science.gov (United States)

    Zhou, Changjun; Hou, Caixia; Zhang, Qiang; Wei, Xiaopeng

    2013-09-01

    The problem of protein structure prediction in the hydrophobic-polar (HP) lattice model is the prediction of protein tertiary structure. This problem is usually referred to as the protein folding problem. This paper presents a method for the application of an enhanced hybrid search algorithm to the problem of protein folding prediction, using the three dimensional (3D) HP lattice model. The enhanced hybrid search algorithm is a combination of the particle swarm optimizer (PSO) and tabu search (TS) algorithms. Since the PSO algorithm entraps local minimum in later evolution extremely easily, we combined PSO with the TS algorithm, which has properties of global optimization. Since the technologies of crossover and mutation are applied many times to PSO and TS algorithms, so enhanced hybrid search algorithm is called the MCMPSO-TS (multiple crossover and mutation PSO-TS) algorithm. Experimental results show that the MCMPSO-TS algorithm can find the best solutions so far for the listed benchmarks, which will help comparison with any future paper approach. Moreover, real protein sequences and Fibonacci sequences are verified in the 3D HP lattice model for the first time. Compared with the previous evolutionary algorithms, the new hybrid search algorithm is novel, and can be used effectively to predict 3D protein folding structure. With continuous development and changes in amino acids sequences, the new algorithm will also make a contribution to the study of new protein sequences.

  16. Graphene–Selenium Hybrid Microballs as Cathode Materials for High-performance Lithium–Selenium Secondary Battery Applications

    Science.gov (United States)

    Youn, Hee-Chang; Jeong, Jun Hui; Roh, Kwang Chul; Kim, Kwang-Bum

    2016-08-01

    In this study, graphene–selenium hybrid microballs (G–SeHMs) are prepared in one step by aerosol microdroplet drying using a commercial spray dryer, which represents a simple, scalable continuous process, and the potential of the G–SeHMs thus prepared is investigated for use as cathode material in applications of lithium–selenium secondary batteries. These morphologically unique graphene microballs filled with Se particles exhibited good electrochemical properties, such as high initial specific capacity (642 mA h g‑1 at 0.1 C, corresponding to Se electrochemical utilisation as high as 95.1%), good cycling stability (544 mA h g‑1 after 100 cycles at 0.1 C 84.5% retention) and high rate capability (specific capacity of 301 mA h g‑1 at 5 C). These electrochemical properties are attributed to the fact that the G–SeHM structure acts as a confinement matrix for suppressing the dissolution of polyselenides in the organic electrolyte, as well as an electron conduction path for increasing the transport rate of electrons for electrochemical reactions. Notably, based on the weight of hybrid materials, electrochemical performance is considerably better than that of previously reported Se-based cathode materials, attributed to the high Se loading content (80 wt%) in hybrid materials.

  17. Training set reduction methods for protein secondary structure prediction in single-sequence condition.

    Science.gov (United States)

    Aydin, Zafer; Altunbasak, Yucel; Pakatci, Isa Kemal; Erdogan, Hakan

    2007-01-01

    Orphan proteins are characterized by the lack of significant sequence similarity to database proteins. To infer the functional properties of the orphans, more elaborate techniques that utilize structural information are required. In this regard, the protein structure prediction gains considerable importance. Secondary structure prediction algorithms designed for orphan proteins (also known as single-sequence algorithms) cannot utilize multiple alignments or alignment profiles, which are derived from similar proteins. This is a limiting factor for the prediction accuracy. One way to improve the performance of a single-sequence algorithm is to perform re-training. In this approach, first, the models used by the algorithm are trained by a representative set of proteins and a secondary structure prediction is computed. Then, using a distance measure, the original training set is refined by removing proteins that are dissimilar to the given protein. This step is followed by the re-estimation of the model parameters and the prediction of the secondary structure. In this paper, we compare training set reduction methods that are used to re-train the hidden semi-Markov models employed by the IPSSP algorithm [1]. We found that the composition based reduction method has the highest performance compared to the alignment based and the Chou-Fasman based reduction methods. In addition, threshold-based reduction performed better than the reduction technique that selects the first 80% of the dataset proteins.

  18. Using maximum entropy model to predict protein secondary structure with single sequence.

    Science.gov (United States)

    Ding, Yong-Sheng; Zhang, Tong-Liang; Gu, Quan; Zhao, Pei-Ying; Chou, Kuo-Chen

    2009-01-01

    Prediction of protein secondary structure is somewhat reminiscent of the efforts by many previous investigators but yet still worthy of revisiting it owing to its importance in protein science. Several studies indicate that the knowledge of protein structural classes can provide useful information towards the determination of protein secondary structure. Particularly, the performance of prediction algorithms developed recently have been improved rapidly by incorporating homologous multiple sequences alignment information. Unfortunately, this kind of information is not available for a significant amount of proteins. In view of this, it is necessary to develop the method based on the query protein sequence alone, the so-called single-sequence method. Here, we propose a novel single-sequence approach which is featured by that various kinds of contextual information are taken into account, and that a maximum entropy model classifier is used as the prediction engine. As a demonstration, cross-validation tests have been performed by the new method on datasets containing proteins from different structural classes, and the results thus obtained are quite promising, indicating that the new method may become an useful tool in protein science or at least play a complementary role to the existing protein secondary structure prediction methods.

  19. Dynamics of protein aggregation and oligomer formation governed by secondary nucleation

    Energy Technology Data Exchange (ETDEWEB)

    Michaels, Thomas C. T., E-mail: tctm3@cam.ac.uk; Lazell, Hamish W.; Arosio, Paolo; Knowles, Tuomas P. J., E-mail: tpjk2@cam.ac.uk [Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW (United Kingdom)

    2015-08-07

    The formation of aggregates in many protein systems can be significantly accelerated by secondary nucleation, a process where existing assemblies catalyse the nucleation of new species. In particular, secondary nucleation has emerged as a central process controlling the proliferation of many filamentous protein structures, including molecular species related to diseases such as sickle cell anemia and a range of neurodegenerative conditions. Increasing evidence suggests that the physical size of protein filaments plays a key role in determining their potential for deleterious interactions with living cells, with smaller aggregates of misfolded proteins, oligomers, being particularly toxic. It is thus crucial to progress towards an understanding of the factors that control the sizes of protein aggregates. However, the influence of secondary nucleation on the time evolution of aggregate size distributions has been challenging to quantify. This difficulty originates in large part from the fact that secondary nucleation couples the dynamics of species distant in size space. Here, we approach this problem by presenting an analytical treatment of the master equation describing the growth kinetics of linear protein structures proliferating through secondary nucleation and provide closed-form expressions for the temporal evolution of the resulting aggregate size distribution. We show how the availability of analytical solutions for the full filament distribution allows us to identify the key physical parameters that control the sizes of growing protein filaments. Furthermore, we use these results to probe the dynamics of the populations of small oligomeric species as they are formed through secondary nucleation and discuss the implications of our work for understanding the factors that promote or curtail the production of these species with a potentially high deleterious biological activity.

  20. Identification of protein secondary structures by laser induced autofluorescence: A study of urea and GnHCl induced protein denaturation

    Science.gov (United States)

    Siddaramaiah, Manjunath; Satyamoorthy, Kapaettu; Rao, Bola Sadashiva Satish; Roy, Suparna; Chandra, Subhash; Mahato, Krishna Kishore

    2017-03-01

    In the present study an attempt has been made to interrogate the bulk secondary structures of some selected proteins (BSA, HSA, lysozyme, trypsin and ribonuclease A) under urea and GnHCl denaturation using laser induced autofluorescence. The proteins were treated with different concentrations of urea (3 M, 6 M, 9 M) and GnHCl (2 M, 4 M, 6 M) and the corresponding steady state autofluorescence spectra were recorded at 281 nm pulsed laser excitations. The recorded fluorescence spectra of proteins were then interpreted based on the existing PDB structures of the proteins and the Trp solvent accessibility (calculated using "Scratch protein predictor" at 30% threshold). Further, the influence of rigidity and conformation of the indole ring (caused by protein secondary structures) on the intrinsic fluorescence properties of proteins were also evaluated using fluorescence of ANS-HSA complexes, CD spectroscopy as well as with trypsin digestion experiments. The outcomes obtained clearly demonstrated GnHCl preferably disrupt helix as compared to the beta β-sheets whereas, urea found was more effective in disrupting β-sheets as compared to the helices. The other way round the proteins which have shown detectable change in the intrinsic fluorescence at lower concentrations of GnHCl were rich in helices whereas, the proteins which showed detectable change in the intrinsic fluorescence at lower concentrations of urea were rich in β-sheets. Since high salt concentrations like GnHCl and urea interfere in the secondary structure analysis by circular dichroism Spectrometry, the present method of analyzing secondary structures using laser induced autofluorescence will be highly advantageous over existing tools for the same.

  1. Protein losing enteropathy secondary to a pulmonary artery stent

    Directory of Open Access Journals (Sweden)

    Narayanswami Sreeram

    2012-01-01

    Full Text Available A 2-year-old patient with hypoplastic left heart syndrome presented 6 months following Fontan completion with protein-losing enteropathy (PLE. He had undergone stent implantation in the left pulmonary artery after the Norwood procedure, followed by redilation of the stent prior to Fontan completion. Combined bronchoscopic and catheterization studies during spontaneous breathing confirmed left bronchial stenosis behind the stent, and diastolic systemic ventricular pressure during expiration of 25 mm Hg. We postulate that the stent acts as a valve, against which the patient generates high expiratory pressures, which are reflected in the ventricular diastolic pressure. This may be the cause of PLE.

  2. Prediction of nonregular secondary structures of proteins based on wavelet analysis

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The secondary structures of proteins fall into two classes: regular structure and nonregular structure. Helices and sheets are termed "regular" structures because their residues have repeating main-chain torsion angles, and their backbone N-H and C-O groups are arranged in a periodic pattern of hydrogen bonding. In contrast, the remaining structures with nonrepeating backbone torsion angles are called nonregular secondary structures. In this note, we performed an extensive sequence analysis of nonregular secondary structures and showed that these nonregular parts could be effectively predicted by continuous wavelet transform.

  3. PHD--an automatic mail server for protein secondary structure prediction.

    Science.gov (United States)

    Rost, B; Sander, C; Schneider, R

    1994-02-01

    By the middle of 1993, > 30,000 protein sequences has been listed. For 1000 of these, the three-dimensional (tertiary) structure has been experimentally solved. Another 7000 can be modelled by homology. For the remaining 21,000 sequences, secondary structure prediction provides a rough estimate of structural features. Predictions in three states range between 35% (random) and 88% (homology modelling) overall accuracy. Using information about evolutionary conservation as contained in multiple sequence alignments, the secondary structure of 4700 protein sequences was predicted by the automatic e-mail server PHD. For proteins with at least one known homologue, the method has an expected overall three-state accuracy of 71.4% for proteins with at least one known homologue (evaluated on 126 unique protein chains).

  4. FTIR Analysis of Protein Secondary Structure in Cheddar Cheese during Ripening

    Institute of Scientific and Technical Information of China (English)

    WANG Fang; LIU Ai-ping; REN Fa-zheng; ZHANG Xiao-ying; Stephanie Clark; ZHANG Lu-da; GUO Hui-yuan

    2011-01-01

    Proteolysis is one of the most important biochemical reactions during cheese ripening. Studies on the secondary structure of proteins during ripening would be helpful for characterizing protein changes for assessing cheese quality. Fourier transform infrared spectroscopy (FTIR), with self-deconvolution, second derivative analysis and band curve-fitting, was used to characterize the secondary structure of proteins in Cheddar cheese during ripening. The spectra of the amide I region showed great similarity, while the relative contents of the secondary structures underwent a series of changes. As ripening progressed, the α-helix content decreased and the β-sheet content increased. This structural shift was attributed to the strengthening of hydrogen bonds that resulted from hydrolysis of caseins. In summary, FTIR could provide the basis for rapid characterization of cheese that is undergoing ripening.

  5. "Parallel factor analysis of multi-excitation ultraviolet resonance Raman spectra for protein secondary structure determination".

    Science.gov (United States)

    Oshokoya, Olayinka O; JiJi, Renee D

    2015-09-10

    Protein secondary structural analysis is important for understanding the relationship between protein structure and function, or more importantly how changes in structure relate to loss of function. The structurally sensitive protein vibrational modes (amide I, II, III and S) in deep-ultraviolet resonance Raman (DUVRR) spectra resulting from the backbone C-O and N-H vibrations make DUVRR a potentially powerful tool for studying secondary structure changes. Experimental studies reveal that the position and intensity of the four amide modes in DUVRR spectra of proteins are largely correlated with the varying fractions of α-helix, β-sheet and disordered structural content of proteins. Employing multivariate calibration methods and DUVRR spectra of globular proteins with varying structural compositions, the secondary structure of a protein with unknown structure can be predicted. A disadvantage of multivariate calibration methods is the requirement of known concentration or spectral profiles. Second-order curve resolution methods, such as parallel factor analysis (PARAFAC), do not have such a requirement due to the "second-order advantage." An exceptional feature of DUVRR spectroscopy is that DUVRR spectra are linearly dependent on both excitation wavelength and secondary structure composition. Thus, higher order data can be created by combining protein DUVRR spectra of several proteins collected at multiple excitation wavelengths to give multi-excitation ultraviolet resonance Raman data (ME-UVRR). PARAFAC has been used to analyze ME-UVRR data of nine proteins to resolve the pure spectral, excitation and compositional profiles. A three factor model with non-negativity constraints produced three unique factors that were correlated with the relative abundance of helical, β-sheet and poly-proline II dihedral angles. This is the first empirical evidence that the typically resolved "disordered" spectrum represents the better defined poly-proline II type structure.

  6. Artificial Intelligence in Prediction of Secondary Protein Structure Using CB513 Database

    Science.gov (United States)

    Avdagic, Zikrija; Purisevic, Elvir; Omanovic, Samir; Coralic, Zlatan

    2009-01-01

    In this paper we describe CB513 a non-redundant dataset, suitable for development of algorithms for prediction of secondary protein structure. A program was made in Borland Delphi for transforming data from our dataset to make it suitable for learning of neural network for prediction of secondary protein structure implemented in MATLAB Neural-Network Toolbox. Learning (training and testing) of neural network is researched with different sizes of windows, different number of neurons in the hidden layer and different number of training epochs, while using dataset CB513. PMID:21347158

  7. Prediction of Spontaneous Protein Deamidation from Sequence-Derived Secondary Structure and Intrinsic Disorder.

    Directory of Open Access Journals (Sweden)

    J Ramiro Lorenzo

    Full Text Available Asparagine residues in proteins undergo spontaneous deamidation, a post-translational modification that may act as a molecular clock for the regulation of protein function and turnover. Asparagine deamidation is modulated by protein local sequence, secondary structure and hydrogen bonding. We present NGOME, an algorithm able to predict non-enzymatic deamidation of internal asparagine residues in proteins in the absence of structural data, using sequence-based predictions of secondary structure and intrinsic disorder. Compared to previous algorithms, NGOME does not require three-dimensional structures yet yields better predictions than available sequence-only methods. Four case studies of specific proteins show how NGOME may help the user identify deamidation-prone asparagine residues, often related to protein gain of function, protein degradation or protein misfolding in pathological processes. A fifth case study applies NGOME at a proteomic scale and unveils a correlation between asparagine deamidation and protein degradation in yeast. NGOME is freely available as a webserver at the National EMBnet node Argentina, URL: http://www.embnet.qb.fcen.uba.ar/ in the subpage "Protein and nucleic acid structure and sequence analysis".

  8. Amino acid composition analysis of human secondary transport proteins and implications for reliable membrane topology prediction.

    Science.gov (United States)

    Saidijam, Massoud; Azizpour, Sonia; Patching, Simon G

    2016-07-08

    Secondary transporters in humans are a large group of proteins that transport a wide range of ions, metals, organic and inorganic solutes involved in energy transduction, control of membrane potential and osmotic balance, metabolic processes and in the absorption or efflux of drugs and xenobiotics. They are also emerging as important targets for development of new drugs and as target sites for drug delivery to specific organs or tissues. We have performed amino acid composition (AAC) and phylogenetic analyses and membrane topology predictions for 336 human secondary transport proteins and used the results to confirm protein classification and to look for trends and correlations with structural domains and specific substrates and/or function. Some proteins showed statistically high contents of individual amino acids or of groups of amino acids with similar physicochemical properties. One recurring trend was a correlation between high contents of charged and/or polar residues with misleading results in predictions of membrane topology, which was especially prevalent in Mitochondrial Carrier family proteins. We demonstrate how charged or polar residues located in the middle of transmembrane helices can interfere with their identification by membrane topology tools resulting in missed helices in the prediction. Comparison of AAC in the human proteins with that in 235 secondary transport proteins from Escherichia coli revealed similar overall trends along with differences in average contents for some individual amino acids and groups of similar amino acids that are presumed to result from a greater number of functions and complexity in the higher organism.

  9. A hybrid clustering approach to recognition of protein families in 114 microbial genomes

    Directory of Open Access Journals (Sweden)

    Gogarten J Peter

    2004-04-01

    Full Text Available Abstract Background Grouping proteins into sequence-based clusters is a fundamental step in many bioinformatic analyses (e.g., homology-based prediction of structure or function. Standard clustering methods such as single-linkage clustering capture a history of cluster topologies as a function of threshold, but in practice their usefulness is limited because unrelated sequences join clusters before biologically meaningful families are fully constituted, e.g. as the result of matches to so-called promiscuous domains. Use of the Markov Cluster algorithm avoids this non-specificity, but does not preserve topological or threshold information about protein families. Results We describe a hybrid approach to sequence-based clustering of proteins that combines the advantages of standard and Markov clustering. We have implemented this hybrid approach over a relational database environment, and describe its application to clustering a large subset of PDB, and to 328577 proteins from 114 fully sequenced microbial genomes. To demonstrate utility with difficult problems, we show that hybrid clustering allows us to constitute the paralogous family of ATP synthase F1 rotary motor subunits into a single, biologically interpretable hierarchical grouping that was not accessible using either single-linkage or Markov clustering alone. We describe validation of this method by hybrid clustering of PDB and mapping SCOP families and domains onto the resulting clusters. Conclusion Hybrid (Markov followed by single-linkage clustering combines the advantages of the Markov Cluster algorithm (avoidance of non-specific clusters resulting from matches to promiscuous domains and single-linkage clustering (preservation of topological information as a function of threshold. Within the individual Markov clusters, single-linkage clustering is a more-precise instrument, discerning sub-clusters of biological relevance. Our hybrid approach thus provides a computationally efficient

  10. Protein self-assembly onto nanodots leads to formation of conductive bio-based hybrids

    Science.gov (United States)

    Hu, Xiao; Dong, Chenbo; Su, Rigu; Xu, Quan; Dinu, Cerasela Zoica

    2016-12-01

    The next generation of nanowires that could advance the integration of functional nanosystems into synthetic applications from photocatalysis to optical devices need to demonstrate increased ability to promote electron transfer at their interfaces while ensuring optimum quantum confinement. Herein we used the biological recognition and the self-assembly properties of tubulin, a protein involved in building the filaments of cellular microtubules, to create stable, free standing and conductive sulfur-doped carbon nanodots-based conductive bio-hybrids. The physical and chemical properties (e.g., composition, morphology, diameter etc.) of such user-synthesized hybrids were investigated using atomic and spectroscopic techniques, while the electron transfer rate was estimated using peak currents formed during voltammetry scanning. Our results demonstrate the ability to create individually hybrid nanowires capable to reduce energy losses; such hybrids could possibly be used in the future for the advancement and implementation into nanometer-scale functional devices.

  11. Hybrid Spaces and Hyphenated Musicians: Secondary Students' Musical Engagement in a Songwriting and Technology Course

    Science.gov (United States)

    Tobias, Evan S.

    2012-01-01

    This case study investigates how secondary students (three individuals and three groups) engaged with music and acted as musicians in a Songwriting and Technology Class (STC), a course involving the creation, performance, recording and production of original music with instruments and music technology. The following research question guided the…

  12. Algorithmic computation of knot polynomials of secondary structure elements of proteins.

    Science.gov (United States)

    Emmert-Streib, Frank

    2006-10-01

    The classification of protein structures is an important and still outstanding problem. The purpose of this paper is threefold. First, we utilize a relation between the Tutte and homfly polynomial to show that the Alexander-Conway polynomial can be algorithmically computed for a given planar graph. Second, as special cases of planar graphs, we use polymer graphs of protein structures. More precisely, we use three building blocks of the three-dimensional protein structure--alpha-helix, antiparallel beta-sheet, and parallel beta-sheet--and calculate, for their corresponding polymer graphs, the Tutte polynomials analytically by providing recurrence equations for all three secondary structure elements. Third, we present numerical results comparing the results from our analytical calculations with the numerical results of our algorithm-not only to test consistency, but also to demonstrate that all assigned polynomials are unique labels of the secondary structure elements. This paves the way for an automatic classification of protein structures.

  13. Rigidity, Secondary Structure, and the Universality of the Boson Peak in Proteins

    Science.gov (United States)

    Perticaroli, Stefania; Nickels, Jonathan D.; Ehlers, Georg; Sokolov, Alexei P.

    2014-01-01

    Complementary neutron- and light-scattering results on nine proteins and amino acids reveal the role of rigidity and secondary structure in determining the time- and lengthscales of low-frequency collective vibrational dynamics in proteins. These dynamics manifest in a spectral feature, known as the boson peak (BP), which is common to all disordered materials. We demonstrate that BP position scales systematically with structural motifs, reflecting local rigidity: disordered proteins appear softer than α-helical proteins; which are softer than β-sheet proteins. Our analysis also reveals a universal spectral shape of the BP in proteins and amino acid mixtures; superimposable on the shape observed in typical glasses. Uniformity in the underlying physical mechanism, independent of the specific chemical composition, connects the BP vibrations to nanometer-scale heterogeneities, providing an experimental benchmark for coarse-grained simulations, structure/rigidity relationships, and engineering of proteins for novel applications. PMID:24940784

  14. Modeling proteins using a super-secondary structure library and NMR chemical shift information.

    Science.gov (United States)

    Menon, Vilas; Vallat, Brinda K; Dybas, Joseph M; Fiser, Andras

    2013-06-04

    A remaining challenge in protein modeling is to predict structures for sequences with no sequence similarity to any experimentally solved structure. Based on earlier observations, the library of protein backbone supersecondary structure motifs (Smotifs) saturated about a decade ago. Therefore, it should be possible to build any structure from a combination of existing Smotifs with the help of limited experimental data that are sufficient to relate the backbone conformations of Smotifs between target proteins and known structures. Here, we present a hybrid modeling algorithm that relies on an exhaustive Smotif library and on nuclear magnetic resonance chemical shift patterns without any input of primary sequence information. In a test of 102 proteins, the algorithm delivered 90 homology-model-quality models, among them 24 high-quality ones, and a topologically correct solution for almost all cases. The current approach opens a venue to address the modeling of larger protein structures for which chemical shifts are available.

  15. Protein modularity, cooperative binding, and hybrid regulatory states underlie transcriptional network diversification.

    Science.gov (United States)

    Baker, Christopher R; Booth, Lauren N; Sorrells, Trevor R; Johnson, Alexander D

    2012-09-28

    We examine how different transcriptional network structures can evolve from an ancestral network. By characterizing how the ancestral mode of gene regulation for genes specific to a-type cells in yeast species evolved from an activating paradigm to a repressing one, we show that regulatory protein modularity, conversion of one cis-regulatory sequence to another, distribution of binding energy among protein-protein and protein-DNA interactions, and exploitation of ancestral network features all contribute to the evolution of a novel regulatory mode. The formation of this derived mode of regulation did not disrupt the ancestral mode and thereby created a hybrid regulatory state where both means of transcription regulation (ancestral and derived) contribute to the conserved expression pattern of the network. Finally, we show how this hybrid regulatory state has resolved in different ways in different lineages to generate the diversity of regulatory network structures observed in modern species.

  16. Bayesian segmental models with multiple sequence alignment profiles for protein secondary structure and contact map prediction.

    Science.gov (United States)

    Chu, Wei; Ghahramani, Zoubin; Podtelezhnikov, Alexei; Wild, David L

    2006-01-01

    In this paper, we develop a segmental semi-Markov model (SSMM) for protein secondary structure prediction which incorporates multiple sequence alignment profiles with the purpose of improving the predictive performance. The segmental model is a generalization of the hidden Markov model where a hidden state generates segments of various length and secondary structure type. A novel parameterized model is proposed for the likelihood function that explicitly represents multiple sequence alignment profiles to capture the segmental conformation. Numerical results on benchmark data sets show that incorporating the profiles results in substantial improvements and the generalization performance is promising. By incorporating the information from long range interactions in beta-sheets, this model is also capable of carrying out inference on contact maps. This is an important advantage of probabilistic generative models over the traditional discriminative approach to protein secondary structure prediction. The Web server of our algorithm and supplementary materials are available at http://public.kgi.edu/-wild/bsm.html.

  17. Bayesian Inference using Neural Net Likelihood Models for Protein Secondary Structure Prediction

    Directory of Open Access Journals (Sweden)

    Seong-Gon Kim

    2011-06-01

    Full Text Available Several techniques such as Neural Networks, Genetic Algorithms, Decision Trees and other statistical or heuristic methods have been used to approach the complex non-linear task of predicting Alpha-helicies, Beta-sheets and Turns of a proteins secondary structure in the past. This project introduces a new machine learning method by using an offline trained Multilayered Perceptrons (MLP as the likelihood models within a Bayesian Inference framework to predict secondary structures proteins. Varying window sizes are used to extract neighboring amino acid information and passed back and forth between the Neural Net models and the Bayesian Inference process until there is a convergence of the posterior secondary structure probability.

  18. Urea denatured state ensembles contain extensive secondary structure that is increased in hydrophobic proteins

    Science.gov (United States)

    Nick Pace, C; Huyghues-Despointes, Beatrice M P; Fu, Hailong; Takano, Kazufumi; Scholtz, J Martin; Grimsley, Gerald R

    2010-01-01

    The goal of this article is to gain a better understanding of the denatured state ensemble (DSE) of proteins through an experimental and computational study of their denaturation by urea. Proteins unfold to different extents in urea and the most hydrophobic proteins have the most compact DSE and contain almost as much secondary structure as folded proteins. Proteins that unfold to the greatest extent near pH 7 still contain substantial amounts of secondary structure. At low pH, the DSE expands due to charge–charge interactions and when the net charge per residue is high, most of the secondary structure is disrupted. The proteins in the DSE appear to contain substantial amounts of polyproline II conformation at high urea concentrations. In all cases considered, including staph nuclease, the extent of unfolding by urea can be accounted for using the data and approach developed in the laboratory of Wayne Bolen (Auton et al., Proc Natl Acad Sci 2007; 104:15317–15323). PMID:20198681

  19. Predicting protein folding pathways at the mesoscopic level based on native interactions between secondary structure elements

    Directory of Open Access Journals (Sweden)

    Sze Sing-Hoi

    2008-07-01

    Full Text Available Abstract Background Since experimental determination of protein folding pathways remains difficult, computational techniques are often used to simulate protein folding. Most current techniques to predict protein folding pathways are computationally intensive and are suitable only for small proteins. Results By assuming that the native structure of a protein is known and representing each intermediate conformation as a collection of fully folded structures in which each of them contains a set of interacting secondary structure elements, we show that it is possible to significantly reduce the conformation space while still being able to predict the most energetically favorable folding pathway of large proteins with hundreds of residues at the mesoscopic level, including the pig muscle phosphoglycerate kinase with 416 residues. The model is detailed enough to distinguish between different folding pathways of structurally very similar proteins, including the streptococcal protein G and the peptostreptococcal protein L. The model is also able to recognize the differences between the folding pathways of protein G and its two structurally similar variants NuG1 and NuG2, which are even harder to distinguish. We show that this strategy can produce accurate predictions on many other proteins with experimentally determined intermediate folding states. Conclusion Our technique is efficient enough to predict folding pathways for both large and small proteins at the mesoscopic level. Such a strategy is often the only feasible choice for large proteins. A software program implementing this strategy (SSFold is available at http://faculty.cs.tamu.edu/shsze/ssfold.

  20. Hybrid Educational Methodology for the Cognitive Domain of Built Heritage Protection Interconnecting Secondary with Tertiary Level Education

    Directory of Open Access Journals (Sweden)

    Agoritsa Konstanti

    2013-10-01

    Full Text Available Normal 0 false false false MicrosoftInternetExplorer4 In the present work, a hybrid educational methodology has been developed for approaching the cognitive domain of Built Heritage Protection in an interdisciplinary and integrated way. This domain was selected as a pilot one, presenting various remarkable characteristics, such as bringing together STEM subjects with social and human sciences, proving concrete concepts, being attractive for youth, and demanding combination of technical solutions with social aspects. The methodology had the scope to interconnect secondary with tertiary level education for the achievement of the best possible results, as the latter possesses the needed specialised knowledge, expertise and infrastructure. The methodology incorporates problem - based learning, aiming at the effective solution of real and extremely complex problems encountered in monument scale, which is combined with traditional teaching methods, such as lectures, as well as contemporary elements, such as class exercise laboratory experiments, in situ field work, promoting hands - on experience of students. The pilot application and evaluation of the hybrid methodology proved to be a valuable experience for students of secondary level education, which needs to be further exploited and optimised in order to meet the expectations of the interested parties.   /* Style Definitions */ table.MsoNormalTable {mso-style-name:"????????? ???????"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-parent:""; mso-padding-alt:0cm 5.4pt 0cm 5.4pt; mso-para-margin:0cm; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:10.0pt; font-family:"Times New Roman"; mso-ansi-language:#0400; mso-fareast-language:#0400; mso-bidi-language:#0400;}

  1. Exploiting the Past and the Future in Protein Secondary Structure Prediction

    DEFF Research Database (Denmark)

    Baldi, Pierre; Brunak, Søren; Frasconi, P

    1999-01-01

    Motivation: Predicting the secondary structure of a protein (alpha-helix, beta-sheet, coil) is an important step towards elucidating its three-dimensional structure, as well as its function. Presently, the best predictors are based on machine learning approaches, in particular neural network arch...

  2. A three-hybrid system to probe in vivo protein-protein interactions: application to the essential proteins of the RD1 complex of M. tuberculosis.

    Directory of Open Access Journals (Sweden)

    Megha Tharad

    Full Text Available BACKGROUND: Protein-protein interactions play a crucial role in enabling a pathogen to survive within a host. In many cases the interactions involve a complex of proteins rather than just two given proteins. This is especially true for pathogens like M. tuberculosis that are able to successfully survive the inhospitable environment of the macrophage. Studying such interactions in detail may help in developing small molecules that either disrupt or augment the interactions. Here, we describe the development of an E. coli based bacterial three-hybrid system that can be used effectively to study ternary protein complexes. METHODOLOGY/PRINCIPAL FINDINGS: The protein-protein interactions involved in M. tuberculosis pathogenesis have been used as a model for the validation of the three-hybrid system. Using the M. tuberculosis RD1 encoded proteins CFP10, ESAT6 and Rv3871 for our proof-of-concept studies, we show that the interaction between the proteins CFP10 and Rv3871 is strengthened and stabilized in the presence of ESAT6, the known heterodimeric partner of CFP10. Isolating peptide candidates that can disrupt crucial protein-protein interactions is another application that the system offers. We demonstrate this by using CFP10 protein as a disruptor of a previously established interaction between ESAT6 and a small peptide HCL1; at the same time we also show that CFP10 is not able to disrupt the strong interaction between ESAT6 and another peptide SL3. CONCLUSIONS/SIGNIFICANCE: The validation of the three-hybrid system paves the way for finding new peptides that are stronger binders of ESAT6 compared even to its natural partner CFP10. Additionally, we believe that the system offers an opportunity to study tri-protein complexes and also perform a screening of protein/peptide binders to known interacting proteins so as to elucidate novel tri-protein complexes.

  3. Prediction of protein secondary structure from circular dichroism using theoretically derived spectra.

    Science.gov (United States)

    Louis-Jeune, Caroline; Andrade-Navarro, Miguel A; Perez-Iratxeta, Carol

    2012-02-01

    Circular dichroism (CD) is a spectroscopic technique commonly used to investigate the structure of proteins. Major secondary structure types, alpha-helices and beta-strands, produce distinctive CD spectra. Thus, by comparing the CD spectrum of a protein of interest to a reference set consisting of CD spectra of proteins of known structure, predictive methods can estimate the secondary structure of the protein. Currently available methods, including K2D2, use such experimental CD reference sets, which are very small in size when compared to the number of tertiary structures available in the Protein Data Bank (PDB). Conversely, given a PDB structure, it is possible to predict a theoretical CD spectrum from it. The methodological framework for this calculation was established long ago but only recently a convenient implementation called DichroCalc has been developed. In this study, we set to determine whether theoretically derived spectra could be used as reference set for accurate CD based predictions of secondary structure. We used DichroCalc to calculate the theoretical CD spectra of a nonredundant set of structures representing most proteins in the PDB, and applied a straightforward approach for predicting protein secondary structure content using these theoretical CD spectra as reference set. We show that this method improves the predictions, particularly for the wavelength interval between 200 and 240 nm and for beta-strand content. We have implemented this method, called K2D3, in a publicly accessible web server at http://www. ogic.ca/projects/k2d3.

  4. Creation of Hybrid Nanorods From Sequences of Natural Trimeric Fibrous Proteins Using the Fibritin Trimerization Motif

    Science.gov (United States)

    Papanikolopoulou, Katerina; van Raaij, Mark J.; Mitraki, Anna

    Stable, artificial fibrous proteins that can be functionalized open new avenues in fields such as bionanomaterials design and fiber engineering. An important source of inspiration for the creation of such proteins are natural fibrous proteins such as collagen, elastin, insect silks, and fibers from phages and viruses. The fibrous parts of this last class of proteins usually adopt trimeric, β-stranded structural folds and are appended to globular, receptor-binding domains. It has been recently shown that the globular domains are essential for correct folding and trimerization and can be successfully substituted by a very small (27-amino acid) trimerization motif from phage T4 fibritin. The hybrid proteins are correctly folded nanorods that can withstand extreme conditions. When the fibrous part derives from the adenovirus fiber shaft, different tissue-targeting specificities can be engineered into the hybrid proteins, which therefore can be used as gene therapy vectors. The integration of such stable nanorods in devices is also a big challenge in the field of biomechanical design. The fibritin foldon domain is a versatile trimerization motif and can be combined with a variety of fibrous motifs, such as coiled-coil, collagenous, and triple β-stranded motifs, provided the appropriate linkers are used. The combination of different motifs within the same fibrous molecule to create stable rods with multiple functions can even be envisioned. We provide a comprehensive overview of the experimental procedures used for designing, creating, and characterizing hybrid fibrous nanorods using the fibritin trimerization motif.

  5. Screening of FOXP3-interacted proteins by yeast two-hybrid technique

    Institute of Scientific and Technical Information of China (English)

    Zhou Lina; Wu Jun; Luo Gaoxing; He Weifeng; Chen Xiwei; Bo Ganping; Yuan Shunzong; Zhang Xiaorong; Hu Xiaohong

    2008-01-01

    Objective: To screen the proteins interacting with the Treg specification factor forkhead box protein P3 (FOXP3) by yeast two-hybrid system. Methods: Human FOXP3 gene was amplified by nest RT-PCR from peripheral blood mononuclear cells (PBMC) and inserted into plasmid pGBKT7 to construct the bait vector, then the self-activation and toxicity of the bait vector in host yeast strain AH109 were observed. Thereafter, a human liver cDNA library was screened by the bait vector. The positive clones were selected out by nutrient-deficient culture and back-hybridizing. The sequences from the candidate positive clones were blasted and analyzed by bioinformatics methods. Results: The constructed bait vector encoding FOXP3 was found no self-activation and toxicity in yeast AH109. Three proteins which interacted with FOXP3, including tumor protein D52, splicing factor 3b subunit 1 and hypothetical protein, were identified. Conclusion: Three new candidate proteins interacting with FOXP3 are selected out by this yeast two-hybrid system and library, which may facilitate the further study of FOXP3 in Treg.

  6. Studies on aggregation-propensities and secondary structural transformations of proteins

    Institute of Scientific and Technical Information of China (English)

    JI Li-Na; GAO Yong-Guang; ZHANG Feng; LI Hong-Tao; HU Hong-Yu; HU Jun

    2005-01-01

    The insoluble and fibrillar aggregates of some proteins are thought to be the pathological cause of neurodegenerative diseases. The aggregation-propensities of different types of proteins were investigated by Thioflavine T fluorescence assay and atomic force microscopy imaging. Then, the structural transformations of the proteins from aqueous state to solid state were studied by circular dichroism spectroscopy. The results indicate that proteins of different secondary structure show variations in their aggregation-propensities, together with their various structural transformations from aqueous state to solid state. Our studies imply that the structural transformation of proteins from solution to solid state is closely associated with their aggregation-propensities, which will provide insight into the molecular mechanism of protein aggregation in neurodegenerative diseases.

  7. CONSTRUCTION AND ANALYSIS OF IPBR/XYLS HYBRID REGULATORY PROTEINS

    Science.gov (United States)

    IpbR and XylS are related regulatory proteins (having 56% identity). IpbR responds to isopropylbenzene as well as to a variety of hydrophobic chemicals to activate expression of the isopropylbenzene catabolic pathway operon of pRE4 from ipbOP. XylS responds to substituted benzoic...

  8. Neighboring genes for DNA-binding proteins rescue male sterility in Drosophila hybrids.

    Science.gov (United States)

    Liénard, Marjorie A; Araripe, Luciana O; Hartl, Daniel L

    2016-07-19

    Crosses between closely related animal species often result in male hybrids that are sterile, and the molecular and functional basis of genetic factors for hybrid male sterility is of great interest. Here, we report a molecular and functional analysis of HMS1, a region of 9.2 kb in chromosome 3 of Drosophila mauritiana, which results in virtually complete hybrid male sterility when homozygous in the genetic background of sibling species Drosophila simulans. The HMS1 region contains two strong candidate genes for the genetic incompatibility, agt and Taf1 Both encode unrelated DNA-binding proteins, agt for an alkyl-cysteine-S-alkyltransferase and Taf1 for a subunit of transcription factor TFIID that serves as a multifunctional transcriptional regulator. The contribution of each gene to hybrid male sterility was assessed by means of germ-line transformation, with constructs containing complete agt and Taf1 genomic sequences as well as various chimeric constructs. Both agt and Taf1 contribute about equally to HMS1 hybrid male sterility. Transgenes containing either locus rescue sterility in about one-half of the males, and among fertile males the number of offspring is in the normal range. This finding suggests compensatory proliferation of the rescued, nondysfunctional germ cells. Results with chimeric transgenes imply that the hybrid incompatibilities result from interactions among nucleotide differences residing along both agt and Taf1 Our results challenge a number of preliminary generalizations about the molecular and functional basis of hybrid male sterility, and strongly reinforce the role of DNA-binding proteins as a class of genes contributing to the maintenance of postzygotic reproductive isolation.

  9. Analysis of the secondary structure of a protein's N-terminal

    Science.gov (United States)

    Floare, C. G.; Bogdan, M.; Horovitz, O.; Mocanu, A.; Tomoaia-Cotisel, M.

    2009-08-01

    The major protein component from aleurone cells of barley (Hordeum vulgare L.), PACB, is related to 7S globulins present in other cereals and to the vicilin-type 7S globulins of legumes and cotton seed. It contains 4 subunits of about 20, 25, 40 and 50 kDa molecular weights. The N-terminal sequence of 16 amino acids (over 260 atoms) in the protein was previously determined, and our aim is the prediction of its secondary structure. The empirical Chou-Fasman method was applied in an improved version as well as the empirical DSC method (discrimination of protein secondary structure class) with quite similar results. A molecular dynamics simulation was also performed, using the FF99SB forcefield within AMBER version 9.0. Solvation effects were incorporated using the Born model. The results are compared and a 3D model is proposed.

  10. Analysis of the secondary structure of a protein's N-terminal

    Energy Technology Data Exchange (ETDEWEB)

    Floare, C G; Bogdan, M [National Institute for R and D of Isotopic and Molecular Technologies, 65-103 Donath, 400293 Cluj-Napoca (Romania); Horovitz, O; Mocanu, A; Tomoaia-Cotisel, M, E-mail: calin.floare@itim-cj.r [Babes-Bolyai University, Faculty of Chemistry and Chemical Engineering, Department of Physical Chemistry, 11 Arany Janos, 400028 Cluj-Napoca (Romania)

    2009-08-01

    The major protein component from aleurone cells of barley (Hordeum vulgare L.), PACB, is related to 7S globulins present in other cereals and to the vicilin-type 7S globulins of legumes and cotton seed. It contains 4 subunits of about 20, 25, 40 and 50 kDa molecular weights. The N-terminal sequence of 16 amino acids (over 260 atoms) in the protein was previously determined, and our aim is the prediction of its secondary structure. The empirical Chou-Fasman method was applied in an improved version as well as the empirical DSC method (discrimination of protein secondary structure class) with quite similar results. A molecular dynamics simulation was also performed, using the FF99SB forcefield within AMBER version 9.0. Solvation effects were incorporated using the Born model. The results are compared and a 3D model is proposed.

  11. Prediction of backbone dihedral angles and protein secondary structure using support vector machines

    Directory of Open Access Journals (Sweden)

    Hirst Jonathan D

    2009-12-01

    Full Text Available Abstract Background The prediction of the secondary structure of a protein is a critical step in the prediction of its tertiary structure and, potentially, its function. Moreover, the backbone dihedral angles, highly correlated with secondary structures, provide crucial information about the local three-dimensional structure. Results We predict independently both the secondary structure and the backbone dihedral angles and combine the results in a loop to enhance each prediction reciprocally. Support vector machines, a state-of-the-art supervised classification technique, achieve secondary structure predictive accuracy of 80% on a non-redundant set of 513 proteins, significantly higher than other methods on the same dataset. The dihedral angle space is divided into a number of regions using two unsupervised clustering techniques in order to predict the region in which a new residue belongs. The performance of our method is comparable to, and in some cases more accurate than, other multi-class dihedral prediction methods. Conclusions We have created an accurate predictor of backbone dihedral angles and secondary structure. Our method, called DISSPred, is available online at http://comp.chem.nottingham.ac.uk/disspred/.

  12. A hybrid toxin from bacteriophage f1 attachment protein and colicin E3 has altered cell receptor specificity.

    OpenAIRE

    Jakes, K S; Davis, N G; Zinder, N D

    1988-01-01

    A hybrid protein was constructed in vitro which consists of the first 372 amino acids of the attachment (gene III) protein of filamentous bacteriophage f1 fused, in frame, to the carboxy-terminal catalytic domain of colicin E3. The hybrid toxin killed cells that had the F-pilus receptor for phage f1 but not F- cells. The activity of the hybrid protein was not dependent upon the presence of the colicin E3 receptor, BtuB protein. The killing activity was colicin E3 specific, since F+ cells expr...

  13. Amide I'-II' 2D IR spectroscopy provides enhanced protein secondary structural sensitivity.

    Science.gov (United States)

    Deflores, Lauren P; Ganim, Ziad; Nicodemus, Rebecca A; Tokmakoff, Andrei

    2009-03-11

    We demonstrate how multimode 2D IR spectroscopy of the protein amide I' and II' vibrations can be used to distinguish protein secondary structure. Polarization-dependent amide I'-II' 2D IR experiments on poly-l-lysine in the beta-sheet, alpha-helix, and random coil conformations show that a combination of amide I' and II' diagonal and cross peaks can effectively distinguish between secondary structural content, where amide I' infrared spectroscopy alone cannot. The enhanced sensitivity arises from frequency and amplitude correlations between amide II' and amide I' spectra that reflect the symmetry of secondary structures. 2D IR surfaces are used to parametrize an excitonic model for the amide I'-II' manifold suitable to predict protein amide I'-II' spectra. This model reveals that the dominant vibrational interaction contributing to this sensitivity is a combination of negative amide II'-II' through-bond coupling and amide I'-II' coupling within the peptide unit. The empirically determined amide II'-II' couplings do not significantly vary with secondary structure: -8.5 cm(-1) for the beta sheet, -8.7 cm(-1) for the alpha helix, and -5 cm(-1) for the coil.

  14. Yeast Two-Hybrid Screening for Proteins that Interact with the Extracellular Domain of Amyloid Precursor Protein.

    Science.gov (United States)

    Yu, You; Li, Yinan; Zhang, Yan

    2016-04-01

    Alzheimer's disease (AD) is a neurodegenerative disorder in which amyloid β plaques are a pathological characteristic. Little is known about the physiological functions of amyloid β precursor protein (APP). Based on its structure as a type I transmembrane protein, it has been proposed that APP might be a receptor, but so far, no ligand has been reported. In the present study, 9 proteins binding to the extracellular domain of APP were identified using a yeast two-hybrid system. After confirming the interactions in the mammalian system, mutated PLP1, members of the FLRT protein family, and KCTD16 were shown to interact with APP. These proteins have been reported to be involved in Pelizaeus-Merzbacher disease (PMD) and axon guidance. Therefore, our results shed light on the mechanisms of physiological function of APP in AD, PMD, and axon guidance.

  15. Identification and removal of proteins that co-purify with infectious prion protein improves the analysis of its secondary structure.

    Science.gov (United States)

    Moore, Roger A; Timmes, Andrew G; Wilmarth, Phillip A; Safronetz, David; Priola, Suzette A

    2011-10-01

    Prion diseases are neurodegenerative disorders associated with the accumulation of an abnormal isoform of the mammalian prion protein (PrP). Fourier transform infrared spectroscopy (FTIR) has previously been used to show that the conformation of aggregated, infectious PrP (PrP(Sc) ) varies between prion strains and these unique conformations may determine strain-specific disease phenotypes. However, the relative amounts of α-helix, β-sheet and other secondary structures have not always been consistent between studies, suggesting that other proteins might be confounding the analysis of PrP(Sc) secondary structure. We have used FTIR and LC-MS/MS to analyze enriched PrP(Sc) from mouse and hamster prion strains both before and after the removal of protein contaminants that commonly co-purify with PrP(Sc) . Our data show that non-PrP proteins do contribute to absorbances that have been associated with α-helical, loop, turn and β-sheet structures attributed to PrP(Sc) . The major contaminant, the α-helical protein ferritin, absorbs strongly at 1652 cm(-1) in the FTIR spectrum associated with PrP(Sc) . However, even the removal of more than 99% of the ferritin from PrP(Sc) did not completely abolish absorbance at 1652 cm(-1) . Our results show that contaminating proteins alter the FTIR spectrum attributed to PrP(Sc) and suggest that the α-helical, loop/turn and β-sheet secondary structure that remains following their removal are derived from PrP(Sc) itself.

  16. Screening for cardiac HERG potassium channel interacting proteins using the yeast two-hybrid technique.

    Science.gov (United States)

    Ma, Qingyan; Yu, Hong; Lin, Jijin; Sun, Yifan; Shen, Xinyuan; Ren, Li

    2014-02-01

    The human ERG protein (HERG or Kv 11.1) encoded by the human ether-a-go-go-related gene (herg) is the pore-forming subunit of the cardiac delayed rectifier potassium current (IKr) responsible for action potential (AP) repolarization. Mutations in HERG lead to long-QT syndrome, a major cause of arrhythmias. Protein-protein interactions are fundamental for ion channel trafficking, membrane localization, and functional modulation. To identify proteins involved in the regulation of the HERG channel, we conducted a yeast two-hybrid screen of a human heart cDNA library using the C-terminus or N-terminus of HERG as bait. Fifteen proteins were identified as HERG amino terminal (HERG-NT)-interacting proteins, including Caveolin-1 (a membrane scaffold protein with multiple interacting partners, including G-proteins, kinases and NOS), the zinc finger protein, FHL2 and PTPN12 (a non-receptor tyrosine phosphatase). Eight HERG carboxylic terminal (HERG-CT)-interacting proteins were also identified, including the NF-κB-interacting protein myotrophin, We have identified multiple potential interacting proteins that may regulate cardiac IKr through cytoskeletal interactions, G-protein modulation, phosphorylation and downstream second messenger and transcription cascades. These findings provide further insight into dynamic modulation of HERG under physiological conditions and arrhythmogenesis.

  17. Protein secondary structure assignment revisited: a detailed analysis of different assignment methods

    Directory of Open Access Journals (Sweden)

    de Brevern Alexandre G

    2005-09-01

    Full Text Available Abstract Background A number of methods are now available to perform automatic assignment of periodic secondary structures from atomic coordinates, based on different characteristics of the secondary structures. In general these methods exhibit a broad consensus as to the location of most helix and strand core segments in protein structures. However the termini of the segments are often ill-defined and it is difficult to decide unambiguously which residues at the edge of the segments have to be included. In addition, there is a "twilight zone" where secondary structure segments depart significantly from the idealized models of Pauling and Corey. For these segments, one has to decide whether the observed structural variations are merely distorsions or whether they constitute a break in the secondary structure. Methods To address these problems, we have developed a method for secondary structure assignment, called KAKSI. Assignments made by KAKSI are compared with assignments given by DSSP, STRIDE, XTLSSTR, PSEA and SECSTR, as well as secondary structures found in PDB files, on 4 datasets (X-ray structures with different resolution range, NMR structures. Results A detailed comparison of KAKSI assignments with those of STRIDE and PSEA reveals that KAKSI assigns slightly longer helices and strands than STRIDE in case of one-to-one correspondence between the segments. However, KAKSI tends also to favor the assignment of several short helices when STRIDE and PSEA assign longer, kinked, helices. Helices assigned by KAKSI have geometrical characteristics close to those described in the PDB. They are more linear than helices assigned by other methods. The same tendency to split long segments is observed for strands, although less systematically. We present a number of cases of secondary structure assignments that illustrate this behavior. Conclusion Our method provides valuable assignments which favor the regularity of secondary structure segments.

  18. Hybrid Materials Polypyrrole-heteropolytungstate Electrosynthesis of Electrodes for Secondary Batteries

    Directory of Open Access Journals (Sweden)

    Cheng, S. A.

    2000-06-01

    Full Text Available Polypyrroles doped with heterpolytungstate anion [PW12O40]3- was electrogenerated from acetonitrile solutions. It is found that the productivity of the consumed charge to produce the hybrids always keeps at high constant value of about 1.9 x 10-3 mg mC-1, whatever the studied conditions including different potentials, different concentrations of pyrrole, different concentrations of PW12O40 3- or different temperatures. The hybrid material coats the electrode as a compact, adherent, conducting and dark-blue film. The specific charges of the materials initially increase as the polymer weight increases keeping a constant value for greater weight than 0.15 mg cm-2. Consecutive charge-discharge promotes a fast initial loss of material by solubility, the specific charge of the insoluble part increases until 90 mA h g-1. Both evolution of the cyclic voltammograms and UV-vis spectroscopies indicate the presence of macroanion in solution after cycling.

    Los polipirroles dopados con anión heteropoliwolframato [PW12O40]3- (materiales híbridos han sido electrogenerados desde disoluciones de acetonitrilo. Se ha visto que la productividad de la carga consumida para producir los híbridos siempre se mantiene a valores constantes elevados alrededor de 1.9 x 10-3 mg mC-1, cualquiera que sea la condición estudiada de síntesis: diferentes potenciales, diferentes concentraciones de pirrol, diferentes concentraciones de PW12O40 3- o diferentes temperaturas. El material híbrido recubre el electrodo en forma de film azul marino, compacto, adherente y conductor. Las cargas específicas almacenadas en los materiales inicialmente aumentan a medida que el peso del polímero aumenta, manteniendo un valor constante a partir de pesos mayores que 0.15 mg cm-2. La voltamperometría cíclica y la espectroscopía UV-vis indican la presencia de un intercambio de iones entre el macroión del film y el ClO4 -1 de la solución durante los procesos de oxidaci

  19. PROTEIN EXTRACTION FROM SECONDARY SLUDGE OF PAPER MILL WASTEWATER AND ITS UTILIZATION AS A WOOD ADHESIVE

    Directory of Open Access Journals (Sweden)

    Muhammad Pervaiz

    2011-04-01

    Full Text Available In this study, secondary sludge (SS from a kraft paper mill was used as a source of biomass to recover protein and investigate its potential use as a wood adhesive. The process of protein recovery involved disruption of the floc structure in alkaline medium to disintegrate and release intercellular contents into the aqueous phase followed by separation of soluble protein. Finally, the soluble protein was subjected to low pH precipitation and the pelletized sludge protein, referred to as recovered sludge protein (RSP was tested for crude protein, moisture, and other contents. A significant process yield of 90% in terms of precipitation of soluble protein from disintegrated sludge was estimated through calorimetric studies, whereas an overall material balance confirmed a RSP yield of up to 23% based on total suspended solids of raw sludge. The RSP containing 30% crude protein was used as a wood adhesive and its adhesion performance was compared with soy protein isolate (SPI and phenol formaldehyde (PF resin. The testing of plywood lap joints has shown up to 41% shear strength level of RSP adhesive compared to PF. This work demonstrates the technical feasibility and potential of SS as a biomass resource to develop eco-friendly adhesives for wood composite applications.

  20. Thermal modeling of secondary lithium batteries for electric vehicle/hybrid electric vehicle applications

    Science.gov (United States)

    Al-Hallaj, Said; Selman, J. R.

    A major obstacle to the development of commercially successful electric vehicles (EV) or hybrid electric vehicles (HEV) is the lack of a suitably sized battery. Lithium ion batteries are viewed as the solution if only they could be "scaled-up safely", i.e. if thermal management problems could be overcome so the batteries could be designed and manufactured in much larger sizes than the commercially available near-2-Ah cells. Here, we review a novel thermal management system using phase-change material (PCM). A prototype of this PCM-based system is presently being manufactured. A PCM-based system has never been tested before with lithium-ion (Li-ion) batteries and battery packs, although its mode of operation is exceptionally well suited for the cell chemistry of the most common commercially available Li-ion batteries. The thermal management system described here is intended specifically for EV/HEV applications. It has a high potential for providing effective thermal management without introducing moving components. Thereby, the performance of EV/HEV batteries may be improved without complicating the system design and incurring major additional cost, as is the case with "active" cooling systems requiring air or liquid circulation.

  1. The effect of hybridization-induced secondary structure alterations on RNA detection using backscattering interferometry

    Science.gov (United States)

    Adams, Nicholas M.; Olmsted, Ian R.; Haselton, Frederick R.; Bornhop, Darryl J.; Wright, David W.

    2013-01-01

    Backscattering interferometry (BSI) has been used to successfully monitor molecular interactions without labeling and with high sensitivity. These properties suggest that this approach might be useful for detecting biomarkers of infection. In this report, we identify interactions and characteristics of nucleic acid probes that maximize BSI signal upon binding the respiratory syncytial virus nucleocapsid gene RNA biomarker. The number of base pairs formed upon the addition of oligonucleotide probes to a solution containing the viral RNA target correlated with the BSI signal magnitude. Using RNA folding software mfold, we found that the predicted number of unpaired nucleotides in the targeted regions of the RNA sequence generally correlated with BSI sensitivity. We also demonstrated that locked nucleic acid (LNA) probes improved sensitivity approximately 4-fold compared to DNA probes of the same sequence. We attribute this enhancement in BSI performance to the increased A-form character of the LNA:RNA hybrid. A limit of detection of 624 pM, corresponding to ∼105 target molecules, was achieved using nine distinct ∼23-mer DNA probes complementary to regions distributed along the RNA target. Our results indicate that BSI has promise as an effective tool for sensitive RNA detection and provides a road map for further improving detection limits. PMID:23519610

  2. Identification of Two Secondary Ligand Binding Sites in 14-3-3 Proteins Using Fragment Screening.

    Science.gov (United States)

    Sijbesma, Eline; Skora, Lukasz; Leysen, Seppe; Brunsveld, Luc; Koch, Uwe; Nussbaumer, Peter; Jahnke, Wolfgang; Ottmann, Christian

    2017-08-01

    Proteins typically interact with multiple binding partners, and often different parts of their surfaces are employed to establish these protein-protein interactions (PPIs). Members of the class of 14-3-3 adapter proteins bind to several hundred other proteins in the cell. Multiple small molecules for the modulation of 14-3-3 PPIs have been disclosed; however, they all target the conserved phosphopeptide binding channel, so that selectivity is difficult to achieve. Here we report on the discovery of two individual secondary binding sites that have been identified by combining nuclear magnetic resonance-based fragment screening and X-ray crystallography. The two pockets that these fragments occupy are part of at least three physiologically relevant and structurally characterized 14-3-3 PPI interfaces, including those with serotonin N-acetyltransferase and plant transcription factor FT. In addition, the high degree of conservation of the two sites implies their relevance for 14-3-3 PPIs. This first identification of secondary sites on 14-3-3 proteins bound by small molecule ligands might facilitate the development of new chemical tool compounds for more selective PPI modulation.

  3. Electronic Structure Rearrangements in Hybrid Ribozyme/Protein Catalysis

    Science.gov (United States)

    Kang, Jiyoung; Kino, Hiori; Field, Martin J.; Tateno, Masaru

    2017-04-01

    We analyzed the electronic structural changes that occur in the reaction cycle of a biological catalyst composed of RNA and protein, and elucidated the dynamical rearrangements of the electronic structure that was obtained from our previous study in which ab initio quantum mechanics/molecular mechanics molecular dynamics simulations were performed. Notable results that we obtained include the generation of a reactive HOMO that is responsible for bond formation in the initial stages of the reaction, and the appearance of a reactive LUMO that is involved in the bond rupture that leads to products. We denote these changes as dynamical induction of the reactive HOMO (DIRH) and LUMO (DIRL), respectively. Interestingly, we also find that the induction of the reactive HOMO is enhanced by the formation of a low-barrier hydrogen bond (LBHB), which, to the best of our knowledge, represents a novel role for LBHBs in enzymatic systems.

  4. Hybrid Sterility in Rice (Oryza sativa L.) Involves the Tetratricopeptide Repeat Domain Containing Protein.

    Science.gov (United States)

    Yu, Yang; Zhao, Zhigang; Shi, Yanrong; Tian, Hua; Liu, Linglong; Bian, Xiaofeng; Xu, Yang; Zheng, Xiaoming; Gan, Lu; Shen, Yumin; Wang, Chaolong; Yu, Xiaowen; Wang, Chunming; Zhang, Xin; Guo, Xiuping; Wang, Jiulin; Ikehashi, Hiroshi; Jiang, Ling; Wan, Jianmin

    2016-07-01

    Intersubspecific hybrid sterility is a common form of reproductive isolation in rice (Oryza sativa L.), which significantly hampers the utilization of heterosis between indica and japonica varieties. Here, we elucidated the mechanism of S7, which specially causes Aus-japonica/indica hybrid female sterility, through cytological and genetic analysis, map-based cloning, and transformation experiments. Abnormal positioning of polar nuclei and smaller embryo sac were observed in F1 compared with male and female parents. Female gametes carrying S7(cp) and S7(i) were aborted in S7(ai)/S7(cp) and S7(ai)/S7(i), respectively, whereas they were normal in both N22 and Dular possessing a neutral allele, S7(n) S7 was fine mapped to a 139-kb region in the centromere region on chromosome 7, where the recombination was remarkably suppressed due to aggregation of retrotransposons. Among 16 putative open reading frames (ORFs) localized in the mapping region, ORF3 encoding a tetratricopeptide repeat domain containing protein was highly expressed in the pistil. Transformation experiments demonstrated that ORF3 is the candidate gene: downregulated expression of ORF3 restored spikelet fertility and eliminated absolutely preferential transmission of S7(ai) in heterozygote S7(ai)/S7(cp); sterility occurred in the transformants Cpslo17-S7(ai) Our results may provide implications for overcoming hybrid embryo sac sterility in intersubspecific hybrid rice and utilization of hybrid heterosis for cultivated rice improvement.

  5. Purification and characterization of a novel secondary fimbrial protein from Porphyromonas gulae

    Directory of Open Access Journals (Sweden)

    Yasuhiro Oishi

    2012-09-01

    Full Text Available Background: Porphyromonas gulae are black-pigmented anaerobic bacteria isolated from the gingival sulcus of various animal hosts and are distinct from Porphyromonas gingivalis originating in humans. We previously reported the antigenic similarities of 41-kDa fimbriae between P. gulae ATCC 51700 and P. gingivalis ATCC 33277. In this study, to clarify the presence of another type of fimbriae of P. gulae, we have purified and characterized the secondary fimbrial protein from P. gulae ATCC 51700. Methods: The secondary fimbrial protein was purified from P. gulae ATCC 51700 using an immunoaffinity column coupling with antibodies against the 41-kDa fimbrial protein. The expression of fimbriae on the cell surface of P. gulae ATCC 51700 was investigated by transmission electron microscopy. The N-terminal amino acid sequence was determined by an amino acid sequencer system. Results: The molecular mass of this protein was approximately 53-kDa, as estimated by SDS-PAGE. The polyclonal antibodies against the 53-kDa protein did not react with the 41-kDa fimbrial protein of P. gulae ATCC 51700. Immunogold electron microscopy revealed that anti-53-kDa fimbrial serum bound to fimbria on the cell surface of P. gulae ATCC 51700. The amino acid sequence of the N-terminal 15 residues of the 53-kDa fimbrial protein showed only 1 of 15 residues identical to the 41-kDa fimbrial protein. Conclusion: The 53-kDa fimbriae are different in molecular weight and antigenicity from the 41-kDa fimbrial protein of P. gulae ATCC 51700. These results clearly suggest that the 41-kDa and the 53-kDa fimbriae are distinct types of fimbriae expressed simultaneously by this organism.

  6. Role of loops connecting secondary structure elements in the stabilization of proteins isolated from thermophilic organisms.

    Science.gov (United States)

    Balasco, Nicole; Esposito, Luciana; De Simone, Alfonso; Vitagliano, Luigi

    2013-07-01

    It has been recently discovered that the connection of secondary structure elements (ββ-unit, βα- and αβ-units) in proteins follows quite stringent principles regarding the chirality and the orientation of the structural units (Koga et al., Nature 2012;491:222-227). By exploiting these rules, a number of protein scaffolds endowed with a remarkable thermal stability have been designed (Koga et al., Nature 2012;491:222-227). By using structural databases of proteins isolated from either mesophilic or thermophilic organisms, we here investigate the influence of supersecondary associations on the thermal stability of natural proteins. Our results suggest that β-hairpins of proteins from thermophilic organisms are very frequently characterized by shortenings of the loops. Interestingly, this shortening leads to states that display a very strong preference for the most common connectivity of the strands observed in native protein hairpins. The abundance of selective states in these proteins suggests that they may achieve a high stability by adopting a strategy aimed to reduce the possible conformations of the unfolded ensemble. In this scenario, our data indicate that the shortening is effective if it increases the adherence to these rules. We also show that this mechanism may operate in the stabilization of well-known protein folds (thioredoxin and RNase A). These findings suggest that future investigations aimed at defining mechanism of protein stabilization should also consider these effects.

  7. Interaction of HMG proteins and H1 with hybrid PNA-DNA junctions.

    Science.gov (United States)

    Totsingan, Filbert; Bell, Anthony J

    2013-11-01

    The objective of this study was to evaluate the effects of inserting peptide nucleic acid (PNA) sequences into the protein-binding surface of an immobilized four-way junction (4WJ). Here we compare the classic immobile DNA junction, J1, with two PNA containing hybrid junctions (4WJ-PNA1 and 4WJ-PNA3 ). The protein interactions of each 4WJ were evaluated using recombinant high mobility group proteins from rat (HMGB1b and HMGB1b/R26A) and human histone H1. In vitro studies show that both HMG and H1 proteins display high binding affinity toward 4WJ's. A 4WJ can access different conformations depending on ionic environment, most simply interpreted by a two-state equilibrium between: (i) an open-x state favored by absence of Mg(2+), low salt, and protein binding, and (ii) a compact stacked-x state favored by Mg(2+). 4WJ-PNA3, like J1, shifts readily from an open to stacked conformation in the presence of Mg(+2), while 4WJ-PNA1 does not. Circular dichroism spectra indicate that HMGB1b recognizes each of the hybrid junctions. H1, however, displays a strong preference for J1 relative to the hybrids. More extensive binding analysis revealed that HMGB1b binds J1 and 4WJ-PNA3 with nearly identical affinity (K(D)s) and 4WJ-PNA1 with two-fold lower affinity. Thus both the sequence/location of the PNA sequence and the protein determine the structural and protein recognition properties of 4WJs.

  8. Protein-semiconductor quantum dot hybrids for biomedical applications

    Energy Technology Data Exchange (ETDEWEB)

    Mansur, Herman; Mansur, Alexandra [Department of Metallurgical and Materials Engineering, Federal University of Minas Gerais, Av. Antonio Carlos, 6627 - Escola de Engenharia - Bloco 2/2233, Belo Horizonte 31.270-901 (Brazil); Gonzalez, Juan [Department of Physics, Federal University of Minas Gerais, Av. Antonio Carlos, 6627 - Instituto de Ciencias Exatas - Depto de Fisica, Belo Horizonte 31.270-901 (Brazil)

    2012-06-15

    The present work reports the bioconjugation of CdS quantum dots (QDs) with protein by means of an aqueous route at room temperature, applying colloidal chemistry methods. Essentially, the bioconjugates were developed based on albumin (BSA) used as capping ligands for the stabilization of CdS QDs produced using cadmium perchlorate and thioacetamide precursors. CdS QDs were directly capped with BSA or BSA bioconjugated to polyvinyl alcohol (PVA) polymer. UV-visible spectroscopy (UV-vis), TEM and photoluminescence spectroscopy (PL) were used to characterize the stability and morphology of CdS nanoparticles. The CdS nanocrystals were produced with estimated average particle size smaller than 4.0 nm, indicating that they were within the so-called ''quantum-size confinement range''. The results have clearly shown that both routes (BSA and BSA conjugates) were effective on stabilizing fluorescent QDs in aqueous dispersions to be potentially used in biomedical applications (copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  9. Coherent two-dimensional infrared spectroscopy: quantitative analysis of protein secondary structure in solution.

    Science.gov (United States)

    Baiz, Carlos R; Peng, Chunte Sam; Reppert, Mike E; Jones, Kevin C; Tokmakoff, Andrei

    2012-04-21

    We present a method to quantitatively determine the secondary structure composition of globular proteins using coherent two-dimensional infrared (2DIR) spectroscopy of backbone amide I vibrations (1550-1720 cm(-1)). Sixteen proteins with known crystal structures were used to construct a library of 2DIR spectra, and the fraction of residues in α-helix, β-sheet, and unassigned conformations was determined by singular value decomposition (SVD) of the measured two-dimensional spectra. The method was benchmarked by removing each individual protein from the set and comparing the composition extracted from 2DIR against the composition determined from the crystal structures. To highlight the increased structural content extracted from 2DIR spectra a similar analysis was also carried out using conventional infrared absorption of the proteins in the library.

  10. Secondary structure of food proteins by Fourier transform spectroscopy in the mid-infrared region.

    Science.gov (United States)

    Carbonaro, M; Nucara, A

    2010-03-01

    Fourier transform spectroscopy in the mid-infrared (400-5,000 cm(-1)) (FT-IR) is being recognized as a powerful tool for analyzing chemical composition of food, with special concern to molecular architecture of food proteins. Unlike other spectroscopic techniques, it provides high-quality spectra with very small amount of protein, in various environments irrespective of the molecular mass. The fraction of peptide bonds in alpha-helical, beta-pleated sheet, turns and aperiodic conformations can be accurately estimated by analysis of the amide I band (1,600-1,700 cm(-1)) in the mid-IR region. In addition, FT-IR measurement of secondary structure highlights the mechanism of protein aggregation and stability, making this technique of strategic importance in the food proteomic field. Examples of applications of FT-IR spectroscopy in the study of structural features of food proteins critical of nutritional and technological performance are discussed.

  11. A novel predictor for protein structural class based on integrated information of the secondary structure sequence.

    Science.gov (United States)

    Zhang, Lichao; Zhao, Xiqiang; Kong, Liang; Liu, Shuxia

    2014-08-01

    The structural class has become one of the most important features for characterizing the overall folding type of a protein and played important roles in many aspects of protein research. At present, it is still a challenging problem to accurately predict protein structural class for low-similarity sequences. In this study, an 18-dimensional integrated feature vector is proposed by fusing the information about content and position of the predicted secondary structure elements. The consistently high accuracies of jackknife and 10-fold cross-validation tests on different low-similarity benchmark datasets show that the proposed method is reliable and stable. Comparison of our results with other methods demonstrates that our method is an effective computational tool for protein structural class prediction, especially for low-similarity sequences.

  12. Prot-2S: a new python web tool for protein secondary structure studies.

    Science.gov (United States)

    Munteanu, Cristian R; Magalhães, Alexandre L

    2009-01-01

    Prot-2S is a bioinformatics web application devised to analyse the protein chain secondary structures (2S) (http:/ /www.requimte.pt:8080/Prot-2S/). The tool is built on the RCSB Protein Data Bank PDB and DSSP application/files and includes calculation/graphical display of amino acid propensities in 2S motifs based on any user amino acid classification/code (for any particular protein chain list). The interface can calculate the 2S composition, display the 2S subsequences and search for DSSP non-standard residues and for pairs/triplets/quadruplets (amino acid patterns in 2S motifs). This work presents some Prot-2S applications showing its usefulness in protein research and as an e-learning tool as well.

  13. Going deep into protein secondary structure with synchrotron radiation circular dichroism spectroscopy.

    Science.gov (United States)

    Kumagai, Patricia S; Araujo, Ana P U; Lopes, Jose L S

    2017-08-19

    Circular dichroism (CD) spectroscopy is a fast, powerful, well-established, and widely used analytical technique in the biophysical and structural biology community to study protein secondary structure and to track changes in protein conformation in different environments. The use of the intense light of a synchrotron beam as the light source for collecting CD measurements has emerged as an enhanced method, known as synchrotron radiation circular dichroism (SRCD) spectroscopy, that has several advantages over the conventional CD method, including a significant spectral range extension for data collection, deeper access to the lower limit (cut-off) of conventional CD spectroscopy, an improved signal-to-noise ratio to increase accuracy in the measurements, and the possibility to collect measurements in highly absorbing solutions. In this review, we discuss different applications of the SRCD technique by researchers from Latin America. In this context, we specifically look at the use of this method for examining the secondary structure and conformational behavior of proteins belonging to the four main classes of the hierarchical protein domain classification CATH (Class, Architecture, Topology, Homology) database, focusing on the advantages and improvements associated with SRCD spectroscopy in terms of characterizing proteins composed of different structural elements.

  14. Arabidopsis mRNA secondary structure correlates with protein function and domains

    Science.gov (United States)

    Vandivier, Lee E.; Li, Fan; Zheng, Qi; Willmann, Matthew R.; Chen, Ying; Gregory, Brian D.

    2013-01-01

    RNAs fold into intricate structures that are determined by specific base pairing interactions encoded within their primary sequences. Recently, a number of transcriptome-wide studies have suggested that RNA secondary structure is a potent cis-acting regulator of numerous post-transcriptional processes in viruses and eukaryotes. However, the need for experimentally-based structure determination methods has not been well addressed. Here, we show that the regulatory significance of Arabidopsis RNA secondary structure is revealed specifically through high-throughput, sequencing-based, structure mapping data, not by computational prediction. Additionally, we find that transcripts with similar levels of secondary structure in their UTRs (5' or 3') or CDS tend to encode proteins with coherent functions. Finally, we reveal that portions of mRNAs encoding predicted protein domains are significantly more structured than those specifying inter-domain regions. In total, our findings show the utility of high-throughput, sequencing-based, structure-mapping approaches and suggest that mRNA folding regulates protein maturation and function. PMID:23603972

  15. SVM-PB-Pred: SVM based protein block prediction method using sequence profiles and secondary structures.

    Science.gov (United States)

    Suresh, V; Parthasarathy, S

    2014-01-01

    We developed a support vector machine based web server called SVM-PB-Pred, to predict the Protein Block for any given amino acid sequence. The input features of SVM-PB-Pred include i) sequence profiles (PSSM) and ii) actual secondary structures (SS) from DSSP method or predicted secondary structures from NPS@ and GOR4 methods. There were three combined input features PSSM+SS(DSSP), PSSM+SS(NPS@) and PSSM+SS(GOR4) used to test and train the SVM models. Similarly, four datasets RS90, DB433, LI1264 and SP1577 were used to develop the SVM models. These four SVM models developed were tested using three different benchmarking tests namely; (i) self consistency, (ii) seven fold cross validation test and (iii) independent case test. The maximum possible prediction accuracy of ~70% was observed in self consistency test for the SVM models of both LI1264 and SP1577 datasets, where PSSM+SS(DSSP) input features was used to test. The prediction accuracies were reduced to ~53% for PSSM+SS(NPS@) and ~43% for PSSM+SS(GOR4) in independent case test, for the SVM models of above two same datasets. Using our method, it is possible to predict the protein block letters for any query protein sequence with ~53% accuracy, when the SP1577 dataset and predicted secondary structure from NPS@ server were used. The SVM-PB-Pred server can be freely accessed through http://bioinfo.bdu.ac.in/~svmpbpred.

  16. Electrochemical detection of protein based on hybridization chain reaction-assisted formation of copper nanoparticles.

    Science.gov (United States)

    Zhao, Jing; Hu, Suisui; Cao, Ya; Zhang, Bin; Li, Genxi

    2015-04-15

    In this paper, we report an electrochemical method for highly sensitive and specific detection of protein based on hybridization chain reaction (HCR)-assisted formation of copper nanoparticles by using small molecule such as folate-linked DNA as probe. In the presence of target protein, taking folate receptor (FR) as the model protein in this study, its binding with folate can protect the probe DNA from exonuclease I-catalyzed degradation, thus the probe DNA can be immobilized onto the electrode surface through the hybridization with capture DNA, triggering HCR on the electrode surface. Subsequently, copper nanoparticles can be formed on the electrode surface by using long duplex DNA oligomers from HCR as templates. Furthermore, copper ions released from acid-dissolution of copper nanoparticles can catalyze the oxidation of ο-phenylenediamine by dissolved oxygen, leading to significant electrochemical responses. As a result, our method can sensitively detect FR in the linear range from 0.01ng/mL to 100ng/mL with a detection limit of 3pg/mL. It can also specifically distinguish the target protein in both buffer and complex serum samples. Since many other proteins can be assayed by changing the corresponding small molecule, this method may be promising for the development of the technique for protein detections. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Fabrication of 2D protein microstructures and 3D polymer-protein hybrid microstructures by two-photon polymerization

    Energy Technology Data Exchange (ETDEWEB)

    Engelhardt, Sascha [Lehrstuhl fuer Lasertechnik, RWTH Aachen, Steinbachstrasse 15, Aachen (Germany); Hoch, Eva; Tovar, Guenter E M [Institut fuer Grenzflaechenverfahrenstechnik, Universitaet Stuttgart, Nobelstrasse 12, Stuttgart (Germany); Borchers, Kirsten [Fraunhofer-Institut fuer Grenzflaechen- und Bioverfahrenstechnik, Nobelstrasse 12, Stuttgart (Germany); Meyer, Wolfdietrich; Krueger, Hartmut [Fraunhofer-Institut fuer Angewandte Polymerforschung, Geiselbergstrasse 69, Potsdam (Germany); Gillner, Arnold, E-mail: sascha.engelhardt@ilt.fraunhofer.de [Fraunhofer-Institut fuer Lasertechnik, Steinbachstrasse 15, Aachen (Germany)

    2011-06-15

    Two-photon polymerization (TPP) offers the possibility of creating artificial cell scaffolds composed of micro- and nanostructures with spatial resolutions of less than 1 {mu}m. For use in tissue engineering, the identification of a TPP-processable polymer that provides biocompatibility, biofunctionality and appropriate mechanical properties is a difficult task. ECM proteins such as collagen or fibronectin, which could mimic native tissues best, often lack the mechanical stability. Hence, by generating polymer-protein hybrid structures, the beneficial properties of proteins can be combined with the advantageous characteristics of polymers, such as sufficient mechanical stability. This study describes three steps toward facilitated application of TPP for biomaterial generation. (1) The efficiency of a low-cost ps-laser source is compared to a fs-laser source by testing several materials. A novel photoinitiator for polymerization with a ps-laser source is synthesized and proved to enable increased fabrication throughput. (2) The fabrication of 3D-microstructures with both systems and the fabrication of polymer-protein hybrid structures are demonstrated. (3) The tissue engineering capabilities of TPP are demonstrated by creating cross-linked gelatin microstructures, which clearly forced porcine chondrocytes to adapt their cell morphology.

  18. Prediction of hot spots in protein interfaces using a random forest model with hybrid features.

    Science.gov (United States)

    Wang, Lin; Liu, Zhi-Ping; Zhang, Xiang-Sun; Chen, Luonan

    2012-03-01

    Prediction of hot spots in protein interfaces provides crucial information for the research on protein-protein interaction and drug design. Existing machine learning methods generally judge whether a given residue is likely to be a hot spot by extracting features only from the target residue. However, hot spots usually form a small cluster of residues which are tightly packed together at the center of protein interface. With this in mind, we present a novel method to extract hybrid features which incorporate a wide range of information of the target residue and its spatially neighboring residues, i.e. the nearest contact residue in the other face (mirror-contact residue) and the nearest contact residue in the same face (intra-contact residue). We provide a novel random forest (RF) model to effectively integrate these hybrid features for predicting hot spots in protein interfaces. Our method can achieve accuracy (ACC) of 82.4% and Matthew's correlation coefficient (MCC) of 0.482 in Alanine Scanning Energetics Database, and ACC of 77.6% and MCC of 0.429 in Binding Interface Database. In a comparison study, performance of our RF model exceeds other existing methods, such as Robetta, FOLDEF, KFC, KFC2, MINERVA and HotPoint. Of our hybrid features, three physicochemical features of target residues (mass, polarizability and isoelectric point), the relative side-chain accessible surface area and the average depth index of mirror-contact residues are found to be the main discriminative features in hot spots prediction. We also confirm that hot spots tend to form large contact surface areas between two interacting proteins. Source data and code are available at: http://www.aporc.org/doc/wiki/HotSpot.

  19. Prediction algorithm for amino acid types with their secondary structure in proteins (PLATON) using chemical shifts.

    Science.gov (United States)

    Labudde, D; Leitner, D; Krüger, M; Oschkinat, H

    2003-01-01

    The algorithm PLATON is able to assign sets of chemical shifts derived from a single residue to amino acid types with its secondary structure (amino acid species). A subsequent ranking procedure using optionally two different penalty functions yields predictions for possible amino acid species for the given set of chemical shifts. This was demonstrated in the case of the alpha-spectrin SH3 domain and applied to 9 further protein data sets taken from the BioMagRes database. A database consisting of reference chemical shift patterns (reference CSPs) was generated from assigned chemical shifts of proteins with known 3D-structure. This reference CSP database is used in our approach for extracting distributions of amino acid types with their most likely secondary structure elements (namely alpha-helix, beta-sheet, and coil) for single amino acids by comparison with query CSPs. Results obtained for the 10 investigated proteins indicates that the percentage of correct amino acid species in the first three positions in the ranking list, ranges from 71.4% to 93.2% for the more favorable penalty function. Where only the top result of the ranking list for these 10 proteins is considered, 36.5% to 83.1% of the amino acid species are correctly predicted. The main advantage of our approach, over other methods that rely on average chemical shift values is the ability to increase database content by incorporating newly derived CSPs, and therefore to improve PLATON's performance over time.

  20. Screening of BRD7 interacting proteins by yeast two-hybrid system

    Institute of Scientific and Technical Information of China (English)

    余鹰; 朱诗国; 张必成; 周鸣; 李小玲; 李桂源

    2002-01-01

    BRD7 gene is low or undetectably expressed in nasopharyngeal carcinoma tissue (NPC) and can obviously suppress the growth of NPC cell line HNE1. In this study, the proteins that interacted with BRD7 coding protein were screened by yeast two-hybrid system. The complete reading frame of BRD7 gene was subcloned into pAS2 vector (BRD7-BD). Then the human embryo brain cDNA library was screened by BRD7-BD bait. Eleven positive clones were obtained from 4.8×106 transformed clones. By sequencing directly, 6 interacting proteins of BRD7 coding protein were isolated (Bromodomain-containing 3 protein (BRD3), Bromodomain-containing 2 protein (BRD2), IκB kinase-beta, KIAA1375 protein, interleukin 7 and adaptor-related protein complex 3δ-1 subunit). These results suggest BRD7 protein might form heterogenous dimer or triplex polymer with BRD2 and/or BRD3 to participate in transcriptional regulation.

  1. Bayesian mixture modeling using a hybrid sampler with application to protein subfamily identification.

    Science.gov (United States)

    Fong, Youyi; Wakefield, Jon; Rice, Kenneth

    2010-01-01

    Predicting protein function is essential to advancing our knowledge of biological processes. This article is focused on discovering the functional diversification within a protein family. A Bayesian mixture approach is proposed to model a protein family as a mixture of profile hidden Markov models. For a given mixture size, a hybrid Markov chain Monte Carlo sampler comprising both Gibbs sampling steps and hierarchical clustering-based split/merge proposals is used to obtain posterior inference. Inference for mixture size concentrates on comparing the integrated likelihoods. The choice of priors is critical with respect to the performance of the procedure. Through simulation studies, we show that 2 priors that are based on independent data sets allow correct identification of the mixture size, both when the data are homogeneous and when the data are generated from a mixture. We illustrate our method using 2 sets of real protein sequences.

  2. Identification of novel DNA repair proteins via primary sequence, secondary structure, and homology

    Directory of Open Access Journals (Sweden)

    Akutsu Tatsuya

    2009-01-01

    Full Text Available Abstract Background DNA repair is the general term for the collection of critical mechanisms which repair many forms of DNA damage such as methylation or ionizing radiation. DNA repair has mainly been studied in experimental and clinical situations, and relatively few information-based approaches to new extracting DNA repair knowledge exist. As a first step, automatic detection of DNA repair proteins in genomes via informatics techniques is desirable; however, there are many forms of DNA repair and it is not a straightforward process to identify and classify repair proteins with a single optimal method. We perform a study of the ability of homology and machine learning-based methods to identify and classify DNA repair proteins, as well as scan vertebrate genomes for the presence of novel repair proteins. Combinations of primary sequence polypeptide frequency, secondary structure, and homology information are used as feature information for input to a Support Vector Machine (SVM. Results We identify that SVM techniques are capable of identifying portions of DNA repair protein datasets without admitting false positives; at low levels of false positive tolerance, homology can also identify and classify proteins with good performance. Secondary structure information provides improved performance compared to using primary structure alone. Furthermore, we observe that machine learning methods incorporating homology information perform best when data is filtered by some clustering technique. Analysis by applying these methodologies to the scanning of multiple vertebrate genomes confirms a positive correlation between the size of a genome and the number of DNA repair protein transcripts it is likely to contain, and simultaneously suggests that all organisms have a non-zero minimum number of repair genes. In addition, the scan result clusters several organisms' repair abilities in an evolutionarily consistent fashion. Analysis also identifies several

  3. Targeted Mutation of Nuclear Bone Morphogenetic Protein 2 Impairs Secondary Immune Response in a Mouse Model

    Directory of Open Access Journals (Sweden)

    Daniel S. Olsen

    2015-01-01

    Full Text Available We recently identified a nuclear variant of the BMP2 growth factor, called nBMP2. In an effort to understand the function of this variant protein, we generated a mouse line in which BMP2 is expressed and functions normally, but nBMP2 is excluded from the nucleus. This novel mutation allows the study of nBMP2 without compromising BMP2 function. To determine whether nBMP2 plays a role in immune function, we performed a series of experiments in which we compared mouse survival, organ weights, immune cells numbers, and bacterial load in wild type and nBmp2NLStm mice following primary and secondary challenges with Staphylococcus aureus. Following primary challenge with S. aureus, wild type and nBmp2NLStm mice showed no differences in survival or bacterial load and generated similar numbers and types of leukocytes, although mutant spleens were smaller than wild type. Secondary bacterial challenge with S. aureus, however, produced differences in survival, with increased mortality seen in nBmp2NLStm mice. This increased mortality corresponded to higher levels of bacteremia in nBmp2NLStm mice and to a reduced enlargement of mutant spleens in response to the secondary infection. Together, these results suggest that the recently described nuclear variant of BMP2 is necessary for efficient secondary immune responses.

  4. Effective stiffness and formation of secondary structures in a protein-like model

    Science.gov (United States)

    Škrbić, Tatjana; Hoang, Trinh X.; Giacometti, Achille

    2016-08-01

    We use Wang-Landau and replica exchange techniques to study the effect of an increasing stiffness on the formation of secondary structures in protein-like systems. Two possible models are considered. In both models, a polymer chain is formed by tethered beads where non-consecutive backbone beads attract each other via a square-well potential representing the tendency of the chain to fold. In addition, smaller hard spheres are attached to each non-terminal backbone bead along the direction normal to the chain to mimic the steric hindrance of side chains in real proteins. The two models, however, differ in the way bending rigidity is enforced. In the first model, partial overlap between consecutive beads is allowed. This reduces the possible bending angle between consecutive bonds thus producing an effective entropic stiffness that competes with a short-range attraction, and leads to the formation of secondary structures characteristic of proteins. We discuss the low-temperature phase diagram as a function of increasing interpenetration and find a transition from a planar, beta-like structure, to helical shape. In the second model, an energetic stiffness is explicitly introduced by imposing an infinitely large energy penalty for bending above a critical angle between consecutive bonds, and no penalty below it. The low-temperature phase of this model does not show any sign of protein-like secondary structures. At intermediate temperatures, however, where the chain is still in the coil conformation but stiffness is significant, we find the two models to predict a quite similar dependence of the persistence length as a function of the stiffness. This behaviour is rationalized in terms of a simple geometrical mapping between the two models. Finally, we discuss the effect of shrinking side chains to zero and find the above mapping to still hold true.

  5. Secondary structure prediction of protein constructs using random incremental truncation and vacuum-ultraviolet CD spectroscopy

    CERN Document Server

    Pukáncsik, M; Matsuo, K; Gekko, K; Hart, D; Kézsmárki, I; Vértessy, B G

    2014-01-01

    A novel uracil-DNA degrading protein factor (termed UDE) was identified in Drosophila melanogaster with no significant structural and functional homology to other uracil-DNA binding or processing factors. Determination of the 3D structure of UDE will be a true breakthrough in description of the molecular mechanism of action of UDE catalysis, as well as in general uracil-recognition and nuclease action. The revolutionary ESPRIT technology was applied to the novel protein UDE to overcome problems in identifying soluble expressing constructs given the absence of precise information on domain content and arrangement. Nine specimen from the created numerous truncated constructs of UDE were choosen to dechiper structural and functional relationships. VUVCD with neural network was performed to define the secondary structure content and location of UDE and its truncated variants. The quantitative analysis demonstrated exclusive {\\alpha}-helical content for the full-length protein, which is preserved in the truncated ...

  6. Introgressive hybridization and evolution of a novel protein phenotype: glue protein profiles in the nasuta–albomicans complex of Drosophila

    Indian Academy of Sciences (India)

    S. Aruna; H. A. Ranganath

    2006-04-01

    Glue proteins are tissue-specific proteins synthesized by larval salivary gland cells of Drosophila. In Drosophila nasuta nasuta and D. n. albomicans of the nasuta subgroup, the genes that encode the major glue protein fractions are X-linked. In the present study, these X-linked markers have been employed to trace the pattern of introgression of D. n. nasuta and D. n. albomicans genomes with respect to the major glue protein fractions in their interracial hybrids, called cytoraces. These cytoraces have inherited the chromosomes of both parents and have been maintained in the laboratory for over 400–550 generations. The analysis has revealed that cytoraces with D. n. albomicans X chromosome show either D. n. nasuta pattern or a completely novel pattern of glue protein fractions. Further, quantitative analysis also shows lack of correlation between the chromosomal pattern of inheritance and overall quantity of the major glue protein fractions in the cytoraces. Thus, in cytoraces the parental chromosomes are not just differentially represented but there is evidence for introgression even at the gene level.

  7. Screening of hepatocyte proteins binding to NS5ABP37 protein by yeast-two hybrid system

    Institute of Scientific and Technical Information of China (English)

    Lei Zhang; Qing-yong Ma; Xian-kui Meng; Kang Li; Jun Cheng

    2009-01-01

    Objective To investigate the biological function of NS5ABP37 and to look for proteins interacting with NS5ABP37 protein in hepatocytes. Methods We constructed bait plasmid expressing NS5ABP37 protein of hepatitis C virus (HCV) by cloning the gene of NS5ABP37 protein into pGBKT7, then the recombinant plasmid DNA was transformed into yeast AH109 (α type). The transformed yeast AH109 was mated with yeast Y187 (α type) containing liver cDNA library plasmid in 2×YPDA medium. Diploid yeast was plated on synthetic dropout nutrient medium (SD/-Trp-Leu-His-Ade) containing X-α-gal for selection and screening. After extracting and sequencing of plasmids from positive (blue) colonies, we made a sequence analysis by bioinformatics. Results We screened twenty-five proteins binding to NS5ABP37, including Homo sapiens cyclin Ⅰ (CCNI) gene, Homo sapiens matrix metallopeptidase 25 (MMP25) and Homo sapiens talin 1. Conclusion The yeast-two hybrid system is an effective method for identifying hepatocyte proteins interacting with NS5ABP37 of HCV. And the biological function of NS5ABP37 may be associated with glycometabolism, lipid metabolism and apoptosis.

  8. YIELD OF ENERGY AND PROTEIN FROM GRAIN MAIZE HYBRIDS USING AGROTECHNICAL SYSTEM, OPTIMAL FOR THE CONDITIONS IN THE PLOVDIV REGION

    Directory of Open Access Journals (Sweden)

    VANYA DELIBALTOVA

    2011-01-01

    Full Text Available The yields of metabolizable energy for ducks and protein, so as the multiplication effect by different varieties of maize have been investigated. For the conditions in the Plovdiv region the hybrid PR35P12 had the highest yield of crude protein - 1368 kg/ha, and metabolizable energy – AME- 171,5 GJ/ha and TME – 181,3 GJ/ha. The highest multiplication effect (protein yield/crude protein applied by seed material – showed hybrid PR35P12 - +403.3.

  9. In situ protein secondary structure determination in ice: Raman spectroscopy-based process analytical tool for frozen storage of biopharmaceuticals.

    Science.gov (United States)

    Roessl, Ulrich; Leitgeb, Stefan; Pieters, Sigrid; De Beer, Thomas; Nidetzky, Bernd

    2014-08-01

    A Raman spectroscopy-based method for in situ monitoring of secondary structural composition of proteins during frozen and thawed storage was developed. A set of reference proteins with different α-helix and β-sheet compositions was used for calibration and validation in a chemometric approach. Reference secondary structures were quantified with circular dichroism spectroscopy in the liquid state. Partial least squares regression models were established that enable estimation of secondary structure content from Raman spectra. Quantitative secondary structure determination in ice was accomplished for the first time and correlation with existing (qualitative) protein structural data from the frozen state was achieved. The method can be used in the presence of common stabilizing agents and is applicable in an industrial freezer setup. Raman spectroscopy represents a powerful, noninvasive, and flexibly applicable tool for protein stability monitoring during frozen storage. © 2014 Wiley Periodicals, Inc. and the American Pharmacists Association.

  10. An ensemble method with hybrid features to identify extracellular matrix proteins.

    Science.gov (United States)

    Yang, Runtao; Zhang, Chengjin; Gao, Rui; Zhang, Lina

    2015-01-01

    The extracellular matrix (ECM) is a dynamic composite of secreted proteins that play important roles in numerous biological processes such as tissue morphogenesis, differentiation and homeostasis. Furthermore, various diseases are caused by the dysfunction of ECM proteins. Therefore, identifying these important ECM proteins may assist in understanding related biological processes and drug development. In view of the serious imbalance in the training dataset, a Random Forest-based ensemble method with hybrid features is developed in this paper to identify ECM proteins. Hybrid features are employed by incorporating sequence composition, physicochemical properties, evolutionary and structural information. The Information Gain Ratio and Incremental Feature Selection (IGR-IFS) methods are adopted to select the optimal features. Finally, the resulting predictor termed IECMP (Identify ECM Proteins) achieves an balanced accuracy of 86.4% using the 10-fold cross-validation on the training dataset, which is much higher than results obtained by other methods (ECMPRED: 71.0%, ECMPP: 77.8%). Moreover, when tested on a common independent dataset, our method also achieves significantly improved performance over ECMPP and ECMPRED. These results indicate that IECMP is an effective method for ECM protein prediction, which has a more balanced prediction capability for positive and negative samples. It is anticipated that the proposed method will provide significant information to fully decipher the molecular mechanisms of ECM-related biological processes and discover candidate drug targets. For public access, we develop a user-friendly web server for ECM protein identification that is freely accessible at http://iecmp.weka.cc.

  11. Screening of hepatocyte proteins binding to complete S protein of hepatitis B virus by yeast-two hybrid system

    Institute of Scientific and Technical Information of China (English)

    Gui-Qin Bai; Jun Cheng; Shu-Lin Zhang; Yan-Ping Huang; Lin Wang; Yan Liu; Shu-Mei Lin

    2005-01-01

    AIM: To investigate the biological function of complete S protein and to look for proteins interacting with complete S protein in hepatocytes.METHODS: We constructed bait plasmid expressing complete S protein of HBV by cloning the gene of complete S protein into pGBKT7, then the recombinant plasmid DNA was transformed into yeast AH109 (a type). The transformed yeast AH109 was mated with yeast Y187 (α type) containing liver cDNA library plasmid in 2xYPDA medium. Diploid yeast was plated on synthetic dropout nutrient medium (SD/Trp-Leu-His-Ade) containing X-α-gal for selection and screening. After extracting and sequencing of plasmids from positive (blue) colonies, we underwent sequence analysis by bioinformatics.RESULTS: Nineteen colonies were selected and sequenced.Among them, five colonies were Homo sapiens solute carrier family 25, member 23 (SLC25A23), one was Homo sapiens calreticulin, one was human serum albumin (ALB)gene, one was Homo sapiens metallothionein 2A, two were Homo sapiens betaine-homocysteine methyltransferase,three were Homo sapiensNa+ and H+ coupled amino acid transport system N, one was Homo sapiens CD81 antigen (target of anti-proliferative antibody 1) (CD81), three were Homo sapiens diazepam binding inhibitor, two colonies were new genes with unknown function.CONCLUSION: The yeast-two hybrid system is an effective method for identifying hepatocyte proteins interacting with complete S protein of HBV. The complete S protein may bind to different proteins i.e., its multiple functions in vivo.

  12. Quantification of protein secondary structure by (13)C solid-state NMR.

    Science.gov (United States)

    Andrade, Fabiana Diuk; Forato, Lucimara Aparecida; Bernardes Filho, Rubens; Colnago, Luiz Alberto

    2016-05-01

    High-resolution (13)C solid-state NMR stands out as one of the most promising techniques to solve the structure of insoluble proteins featuring biological and technological importance. The simplest nuclear magnetic resonance (NMR) spectroscopy method to quantify the secondary structure of proteins uses the areas of carbonyl and alpha carbon peaks. The quantification obtained by fitting procedures depends on the assignment of the peaks to the structure, type of line shape, number of peaks to be used, and other parameters that are set by the operator. In this paper, we demonstrate that the analysis of (13)C NMR spectra by a pattern recognition method-based on the singular value decomposition (SVD) regression, which does not depend on the operator-shows higher correlation coefficients for α-helix and β-sheet (0.96 and 0.91, respectively) than Fourier transform infrared spectroscopy (FTIR) method. Therefore, the use of (13)C solid-state NMR spectra and SVD is a simple and reliable method for quantifying the secondary structures of insoluble proteins in solid-state.

  13. Sucrose prevents protein fibrillation through compaction of the tertiary structure but hardly affects the secondary structure.

    Science.gov (United States)

    Estrela, Nídia; Franquelim, Henri G; Lopes, Carlos; Tavares, Evandro; Macedo, Joana A; Christiansen, Gunna; Otzen, Daniel E; Melo, Eduardo P

    2015-11-01

    Amyloid fibers, implicated in a wide range of diseases, are formed when proteins misfold and stick together in long rope-like structures. As a natural mechanism, osmolytes can be used to modulate protein aggregation pathways with no interference with other cellular functions. The osmolyte sucrose delays fibrillation of the ribosomal protein S6 leading to softer and less shaped-defined fibrils. The molecular mechanism used by sucrose to delay S6 fibrillation was studied based on the two-state unfolding kinetics of the secondary and tertiary structures. It was concluded that the delay in S6 fibrillation results from stabilization and compaction of the slightly expanded tertiary native structure formed under fibrillation conditions. Interestingly, this compaction extends to almost all S6 tertiary structure but hardly affects its secondary structure. The part of the S6 tertiary structure that suffered more compaction by sucrose is known to be the first part to unfold, indicating that the native S6 has entered the unfolding pathway under fibrillation conditions.

  14. Perturbation of the Secondary Structure of the Scrapie Prion Protein Under Conditions that Alter Infectivity

    Science.gov (United States)

    Gasset, Maria; Baldwin, Michael A.; Fletterick, Robert J.; Prusiner, Stanley B.

    1993-01-01

    Limited proteolysis of the scrapie prion protein (PrPSc) generates PrP 27-30, which polymerizes into amyloid. By attenuated total reflection-Fourier transform infrared spectroscopy, PrP 27-30 polymers contained 54% β-sheet, 25% α-helix, 10% turns, and 11% random coil; dispersion into detergent-lipid-protein-complexes preserved infectivity and secondary structure. Almost 60% of the β-sheet was low-frequency infrared-absorbing, reflecting intermolecular aggregation. Decreased low-frequency β-sheet and increased turn content were found after SDS/PAGE, which disassembled the amyloid polymers, denatured PrP 27-30, and diminished scrapie infectivity. Acid-induced transitions were reversible, whereas alkali produced an irreversible transition centered at pH 10 under conditions that diminished infectivity. Whether PrPSc synthesis involves a transition in the secondary structure of one or more domains of the cellular prion protein from α-helical, random coil, or turn into β-sheet remains to be established.

  15. Synonymous codon usage in different protein secondary structural classes of human genes: Implication for increased non-randomness of GC3 rich genes towards protein stability

    Indian Academy of Sciences (India)

    Pamela Mukhopadhyay; Surajit Basak; Tapash Chandra Ghosh

    2007-08-01

    The relationship between the synonymous codon usage and different protein secondary structural classes were investigated using 401 Homo sapiens proteins extracted from Protein Data Bank (PDB). A simple Chi-square test was used to assess the significance of deviation of the observed and expected frequencies of 59 codons at the level of individual synonymous families in the four different protein secondary structural classes. It was observed that synonymous codon families show non-randomness in codon usage in four different secondary structural classes. However, when the genes were classified according to their GC3 levels there was an increase in non-randomness in high GC3 group of genes. The non-randomness in codon usage was further tested among the same protein secondary structures belonging to four different protein folding classes of high GC3 group of genes. The results show that in each of the protein secondary structural unit there exist some synonymous family that shows class specific codonusage pattern. Moreover, there is an increased non-random behaviour of synonymous codons in sheet structure of all secondary structural classes in high GC3 group of genes. Biological implications of these results have been discussed.

  16. Engineering hybrid polymer-protein super-aligned nanofibers via rotary jet spinning.

    Science.gov (United States)

    Badrossamay, Mohammad R; Balachandran, Kartik; Capulli, Andrew K; Golecki, Holly M; Agarwal, Ashutosh; Goss, Josue A; Kim, Hansu; Shin, Kwanwoo; Parker, Kevin Kit

    2014-03-01

    Cellular microenvironments are important in coaxing cells to behave collectively as functional, structured tissues. Important cues in this microenvironment are the chemical, mechanical and spatial arrangement of the supporting matrix in the extracellular space. In engineered tissues, synthetic scaffolding provides many of these microenvironmental cues. Key requirements are that synthetic scaffolds should recapitulate the native three-dimensional (3D) hierarchical fibrillar structure, possess biomimetic surface properties and demonstrate mechanical integrity, and in some tissues, anisotropy. Electrospinning is a popular technique used to fabricate anisotropic nanofiber scaffolds. However, it suffers from relatively low production rates and poor control of fiber alignment without substantial modifications to the fiber collector mechanism. Additionally, many biomaterials are not amenable for fabrication via high-voltage electrospinning methods. Hence, we reasoned that we could utilize rotary jet spinning (RJS) to fabricate highly aligned hybrid protein-polymer with tunable chemical and physical properties. In this study, we engineered highly aligned nanofiber constructs with robust fiber alignment from blends of the proteins collagen and gelatin, and the polymer poly-ε-caprolactone via RJS and electrospinning. RJS-spun fibers retain greater protein content on the surface and are also fabricated at a higher production rate compared to those fabricated via electrospinning. We measured increased fiber diameter and viscosity, and decreasing fiber alignment as protein content increased in RJS hybrid fibers. RJS nanofiber constructs also demonstrate highly anisotropic mechanical properties mimicking several biological tissue types. We demonstrate the bio-functionality of RJS scaffold fibers by testing their ability to support cell growth and maturation with a variety of cell types. Our highly anisotropic RJS fibers are therefore able to support cellular alignment

  17. HMGA1a protein unfolds or refolds synthetic DNA-chromophore hybrid polymers: a chaperone-like behavior.

    Science.gov (United States)

    Wan, Wei; Wang, Wei; Li, Alexander D Q

    2008-01-25

    High group mobility protein, HMGA1a, was found to play a chaperone-like role in the folding or unfolding of hybrid polymers that contained well-defined synthetic chromophores and DNA sequences. The synthetic and biological hybrid polymers folded into hydrophobic chromophoric nanostructures in water, but existed as partially unfolded configurations in pH or salt buffers. The presence of HMGA1a induced unfolding of the hybrid DNA-chromophore polymer in pure water, whereas the protein promoted refolding of the same polymer in various pH or salt buffers. The origin of the chaperone-like properties probably comes from the ability of HMGA1a to reversibly bind both synthetic chromophores and single stranded DNA. The unfolding mechanisms and the binding stoichiometry of protein-hybrid polymers depended on the sequence of the synthetic polymers.

  18. Impact of Microscale and Pilot-Scale Freeze-Drying on Protein Secondary Structures: Sucrose Formulations of Lysozyme and Catalase.

    Science.gov (United States)

    Peters, Björn-Hendrik; Leskinen, Jari T T; Molnár, Ferdinand; Ketolainen, Jarkko

    2015-11-01

    Microscale (MS) freeze-drying offers rapid process cycles for early-stage formulation development. The effects of the MS approach on the secondary structures of two model proteins, lysozyme and catalase, were compared with pilot-scale (PS) vial freeze-drying. The secondary structures were assessed by attenuated total reflection Fourier transformed infrared spectroscopy. Formulations were made with increasing sucrose-protein ratios. Freeze-drying protocols involved regular cooling without thermal treatment and annealing with MS and PS equipment, and cooling rate variations with the MS. Principal component analysis of smoothed second-derivative amide I spectra revealed sucrose-protein ratio-dependent shifts toward α-helical structures. Transferability of sucrose-protein formulations from MS to PS vial freeze-drying was evidenced at regular cooling rates. Local differences in protein secondary structures between the bottom and top of sucrose-catalase samples could be detected at the sucrose-catalase ratios of 1 and 2, this being related to the initial filling height and ice crystal morphology. Annealing revealed temperature, protein, formulation, and sample location-dependent effects influencing surface morphology at the top, or causing protein secondary structure perturbation at the bottom. With the MS approach, protein secondary structure differences at different cooling rates could be detected for sucrose-lysozyme samples at the sucrose-lysozyme ratio of 1.

  19. Secondary Structure Prediction of Protein using Resilient Back Propagation Learning Algorithm

    Directory of Open Access Journals (Sweden)

    Jyotshna Dongardive

    2015-12-01

    Full Text Available The paper proposes a neural network based approach to predict secondary structure of protein. It uses Multilayer Feed Forward Network (MLFN with resilient back propagation as the learning algorithm. Point Accepted Mutation (PAM is adopted as the encoding scheme and CB396 data set is used for the training and testing of the network. Overall accuracy of the network has been experimentally calculated with different window sizes for the sliding window scheme and by varying the number of units in the hidden layer. The best results were obtained with eleven as the window size and seven as the number of units in the hidden layer.

  20. How a spatial arrangement of secondary structure elements is dispersed in the universe of protein folds.

    Directory of Open Access Journals (Sweden)

    Shintaro Minami

    Full Text Available It has been known that topologically different proteins of the same class sometimes share the same spatial arrangement of secondary structure elements (SSEs. However, the frequency by which topologically different structures share the same spatial arrangement of SSEs is unclear. It is important to estimate this frequency because it provides both a deeper understanding of the geometry of protein folds and a valuable suggestion for predicting protein structures with novel folds. Here we clarified the frequency with which protein folds share the same SSE packing arrangement with other folds, the types of spatial arrangement of SSEs that are frequently observed across different folds, and the diversity of protein folds that share the same spatial arrangement of SSEs with a given fold, using a protein structure alignment program MICAN, which we have been developing. By performing comprehensive structural comparison of SCOP fold representatives, we found that approximately 80% of protein folds share the same spatial arrangement of SSEs with other folds. We also observed that many protein pairs that share the same spatial arrangement of SSEs belong to the different classes, often with an opposing N- to C-terminal direction of the polypeptide chain. The most frequently observed spatial arrangement of SSEs was the 2-layer α/β packing arrangement and it was dispersed among as many as 27% of SCOP fold representatives. These results suggest that the same spatial arrangements of SSEs are adopted by a wide variety of different folds and that the spatial arrangement of SSEs is highly robust against the N- to C-terminal direction of the polypeptide chain.

  1. [Identification of C(2)M interacting proteins by yeast two-hybrid screening].

    Science.gov (United States)

    Shanshan, Yue; Laixin, Xia

    2015-11-01

    The synaptonemal complex (SC) is a huge structure which assembles between the homologous chromosomes during meiotic prophase I. Drosophila germ cell-specific nucleoprotein C(2)M clustering at chromosomes can induce SC formation. To further study the molecular function and mechanism of C(2)M in meiosis, we constructed a bait vector for C(2)M and used the yeast two-hybrid system to identify C(2)M interacting proteins. Forty interacting proteins were obtained, including many DNA and histone binding proteins, ATP synthases and transcription factors. Gene silencing assays in Drosophila showed that two genes, wech and Psf1, may delay the disappearance of SC. These results indicate that Wech and Psf1 may form a complex with C(2)M to participate in the formation or stabilization of the SC complex.

  2. Fluorometric polyethyleneglycol-peptide hybrid substrates for quantitative assay of protein disulfide isomerase

    DEFF Research Database (Denmark)

    Christiansen, Camilla; St Hilaire, Phaedria M; Winther, Jakob R.

    2004-01-01

    In eukaryotic cells the enzyme protein disulfide isomerase (PDI) is responsible for the formation and reshuffling of disulfide bonds in secretory proteins. The reaction carried out by PDI involves interaction with a highly complex mixture of polypeptide molecules that are in the process of folding....... This means that PDI activity is typically measured in the context of a globular protein folding pathway. The absence of small, well-defined substrates for the quantitation of both oxidation and reduction reactions constitutes an inherent problem in the analysis of PDI activity. We describe a new type...... of substrate for PDI where two cysteine-containing oligopeptides are connected by an onameric ethylene glycol linker. We term such hybrid compounds PEGtides. The oligopeptides are each marked with a fluorescent aminobenzoic acid and a quenching nitrotyrosine group, respectively. The reversible formation...

  3. Yeast one-hybrid gγ recruitment system for identification of protein lipidation motifs.

    Science.gov (United States)

    Fukuda, Nobuo; Doi, Motomichi; Honda, Shinya

    2013-01-01

    Fatty acids and isoprenoids can be covalently attached to a variety of proteins. These lipid modifications regulate protein structure, localization and function. Here, we describe a yeast one-hybrid approach based on the Gγ recruitment system that is useful for identifying sequence motifs those influence lipid modification to recruit proteins to the plasma membrane. Our approach facilitates the isolation of yeast cells expressing lipid-modified proteins via a simple and easy growth selection assay utilizing G-protein signaling that induces diploid formation. In the current study, we selected the N-terminal sequence of Gα subunits as a model case to investigate dual lipid modification, i.e., myristoylation and palmitoylation, a modification that is widely conserved from yeast to higher eukaryotes. Our results suggest that both lipid modifications are required for restoration of G-protein signaling. Although we could not differentiate between myristoylation and palmitoylation, N-terminal position 7 and 8 play some critical role. Moreover, we tested the preference for specific amino-acid residues at position 7 and 8 using library-based screening. This new approach will be useful to explore protein-lipid associations and to determine the corresponding sequence motifs.

  4. Yeast one-hybrid gγ recruitment system for identification of protein lipidation motifs.

    Directory of Open Access Journals (Sweden)

    Nobuo Fukuda

    Full Text Available Fatty acids and isoprenoids can be covalently attached to a variety of proteins. These lipid modifications regulate protein structure, localization and function. Here, we describe a yeast one-hybrid approach based on the Gγ recruitment system that is useful for identifying sequence motifs those influence lipid modification to recruit proteins to the plasma membrane. Our approach facilitates the isolation of yeast cells expressing lipid-modified proteins via a simple and easy growth selection assay utilizing G-protein signaling that induces diploid formation. In the current study, we selected the N-terminal sequence of Gα subunits as a model case to investigate dual lipid modification, i.e., myristoylation and palmitoylation, a modification that is widely conserved from yeast to higher eukaryotes. Our results suggest that both lipid modifications are required for restoration of G-protein signaling. Although we could not differentiate between myristoylation and palmitoylation, N-terminal position 7 and 8 play some critical role. Moreover, we tested the preference for specific amino-acid residues at position 7 and 8 using library-based screening. This new approach will be useful to explore protein-lipid associations and to determine the corresponding sequence motifs.

  5. Improving protein structural class prediction using novel combined sequence information and predicted secondary structural features.

    Science.gov (United States)

    Dai, Qi; Wu, Li; Li, Lihua

    2011-12-01

    Protein structural class prediction solely from protein sequences is a challenging problem in bioinformatics. Numerous efficient methods have been proposed for protein structural class prediction, but challenges remain. Using novel combined sequence information coupled with predicted secondary structural features (PSSF), we proposed a novel scheme to improve prediction of protein structural classes. Given an amino acid sequence, we first transformed it into a reduced amino acid sequence and calculated its word frequencies and word position features to combine novel sequence information. Then we added the PSSF to the combine sequence information to predict protein structural classes. The proposed method was tested on four benchmark datasets in low homology and achieved the overall prediction accuracies of 83.1%, 87.0%, 94.5%, and 85.2%, respectively. The comparison with existing methods demonstrates that the overall improvements range from 2.3% to 27.5%, which indicates that the proposed method is more efficient, especially for low-homology amino acid sequences.

  6. Mineral proximity influences mechanical response of proteins in biological mineral-protein hybrid systems.

    Science.gov (United States)

    Ghosh, Pijush; Katti, Dinesh R; Katti, Kalpana S

    2007-03-01

    The organic phase of nacre, which is composed primarily of proteins, has an extremely high elastic modulus as compared to that of bulk proteins, and also undergoes large deformation before failure. One reason for this unusually high modulus could be the mineral-organic interactions. In this work, we elucidate the specific role of mineral proximity on the structural response of proteins in biological structural composites such as nacre through molecular modeling. The "glycine-serine" domain of a nacre protein Lustrin A has been used as a model system. It is found that the amount of work needed to unfold is significantly higher when the GS domain is pulled in the proximity of aragonite. These results indicate that the proximity of aragonite has a significant effect on the unfolding mechanisms of proteins when pulled. These results will provide very useful information in designing synthetic biocomposites, as well as further our understanding of mechanical response in structural composites in nature.

  7. Targeted Degradation of Proteins Localized in Subcellular Compartments by Hybrid Small Molecules.

    Science.gov (United States)

    Okuhira, Keiichiro; Shoda, Takuji; Omura, Risa; Ohoka, Nobumichi; Hattori, Takayuki; Shibata, Norihito; Demizu, Yosuke; Sugihara, Ryo; Ichino, Asato; Kawahara, Haruka; Itoh, Yukihiro; Ishikawa, Minoru; Hashimoto, Yuichi; Kurihara, Masaaki; Itoh, Susumu; Saito, Hiroyuki; Naito, Mikihiko

    2017-03-01

    Development of novel small molecules that selectively degrade pathogenic proteins would provide an important advance in targeted therapy. Recently, we have devised a series of hybrid small molecules named SNIPER (specific and nongenetic IAP-dependent protein ERaser) that induces the degradation of target proteins via the ubiquitin-proteasome system. To understand the localization of proteins that can be targeted by this protein knockdown technology, we examined whether SNIPER molecules are able to induce degradation of cellular retinoic acid binding protein II (CRABP-II) proteins localized in subcellular compartments of cells. CRABP-II is genetically fused with subcellular localization signals, and they are expressed in the cells. SNIPER(CRABP) with different IAP-ligands, SNIPER(CRABP)-4 with bestatin and SNIPER(CRABP)-11 with MV1 compound, induce the proteasomal degradation of wild-type (WT), cytosolic, nuclear, and membrane-localized CRABP-II proteins, whereas only SNIPER(CRABP)-11 displayed degradation activity toward the mitochondrial CRABP-II protein. The small interfering RNA-mediated silencing of cIAP1 expression attenuated the knockdown activity of SNIPER(CRABP) against WT and cytosolic CRABP-II proteins, indicating that cIAP1 is the E3 ligase responsible for degradation of these proteins. Against membrane-localized CRABP-II protein, cIAP1 is also a primary E3 ligase in the cells, but another E3 ligase distinct from cIAP2 and X-linked inhibitor of apoptosis protein (XIAP) could also be involved in the SNIPER(CRABP)-11-induced degradation. However, for the degradation of nuclear and mitochondrial CRABP-II proteins, E3 ligases other than cIAP1, cIAP2, and XIAP play a role in the SNIPER-mediated protein knockdown. These results indicate that SNIPER can target cytosolic, nuclear, membrane-localized, and mitochondrial proteins for degradation, but the responsible E3 ligase is different, depending on the localization of the target protein. Copyright © 2017 by

  8. Hybrid Secondary Suspension Systems

    Directory of Open Access Journals (Sweden)

    Nader Vahdati

    2009-01-01

    Full Text Available Passive fluid mounts are used in the fixed wing applications as engine mounts. The passive fluid mount is placed in between the engine and the fuselage to reduce the cabin's structure- borne noise and vibration generated by the engine.

  9. Bioinformatics approaches for structural and functional analysis of proteins in secondary metabolism in Withania somnifera.

    Science.gov (United States)

    Sanchita; Singh, Swati; Sharma, Ashok

    2014-11-01

    Withania somnifera (Ashwagandha) is an affluent storehouse of large number of pharmacologically active secondary metabolites known as withanolides. These secondary metabolites are produced by withanolide biosynthetic pathway. Very less information is available on structural and functional aspects of enzymes involved in withanolides biosynthetic pathways of Withiana somnifera. We therefore performed a bioinformatics analysis to look at functional and structural properties of these important enzymes. The pathway enzymes taken for this study were 3-Hydroxy-3-methylglutaryl coenzyme A reductase, 1-Deoxy-D-xylulose-5-phosphate synthase, 1-Deoxy-D-xylulose-5-phosphate reductase, farnesyl pyrophosphate synthase, squalene synthase, squalene epoxidase, and cycloartenol synthase. The prediction of secondary structure was performed for basic structural information. Three-dimensional structures for these enzymes were predicted. The physico-chemical properties such as pI, AI, GRAVY and instability index were also studied. The current information will provide a platform to know the structural attributes responsible for the function of these protein until experimental structures become available.

  10. Smoothing potential energy surface of proteins by hybrid coarse grained approach

    Science.gov (United States)

    Lu, Yukun; Zhou, Xin; OuYang, ZhongCan

    2017-05-01

    Coarse-grained (CG) simulations can more efficiently study large conformational changes of biological polymers but usually lose accuracies in the details. Lots of different hybrid models involving multiple different resolutions have been developed to overcome the difficulty. Here we propose a novel effective hybrid CG (hyCG) approach which mixes the fine-grained interaction and its average in CG space to form a more smoothing potential energy surface. The hyCG approximately reproduces the potential of mean force in the CG space, and multiple mixed potentials can be further combined together to form a single effective force field for achieving both high efficiency and high accuracy. We illustrate the hyCG method in Trp-cage and Villin headpiece proteins to exhibit the folding of proteins. The topology of the folding landscape and thus the folding paths are preserved, while the folding is boosted nearly one order of magnitude faster. It indicates that the hyCG approach could be applied as an efficient force field in proteins. Project supported by the National Basic Research Program of China (Grant No. 2013CB932803), the National Natural Science Foundation of China (Grant No. 11574310), and the Joint NSFC-ISF Research Program, jointly funded by the National Natural Science Foundation of China and the Israel Science Foundation (Grant No. 51561145002).

  11. Lipase active-site-directed anchoring of organometallics: metallopincer/protein hybrids.

    Science.gov (United States)

    Kruithof, Cornelis A; Casado, Miguel A; Guillena, Gabriela; Egmond, Maarten R; van der Kerk-van Hoof, Anca; Heck, Albert J R; Klein Gebbink, Robertus J M; van Koten, Gerard

    2005-11-18

    The work described herein presents a strategy for the regioselective introduction of organometallic complexes into the active site of the lipase cutinase. Nitrophenol phosphonate esters, well known for their lipase inhibitory activity, are used as anchor functionalities and were found to be ideal tools to develop a single-site-directed immobilization method. A small series of phosphonate esters, covalently attached to ECE "pincer"-type d8-metal complexes through a propyl tether (ECE=[C6H3(CH2E)(2)-2,6]-; E=NR2 or SR), were designed and synthesized. Cutinase was treated with these organometallic phosphonate esters and the new metal-complex/protein hybrids were identified as containing exactly one organometallic unit per protein. The organometallic proteins were purified by membrane dialysis and analyzed by ESI-mass spectrometry. The major advantages of this strategy are: 1) one transition metal can be introduced regioselectively and, hence, the metal environment can potentially be fine-tuned; 2) purification procedures are facile due to the use of pre-synthesized metal complexes; and, most importantly, 3) the covalent attachment of robust organometallic pincer complexes to an enzyme is achieved, which will prevent metal leaching from these hybrids. The approach presented herein can be regarded as a tool in the development of regio- and enantioselective catalyst as well as analytical probes for studying enzyme properties (e.g., structure) and, hence, is a "proof-of-principle design" study in enzyme chemistry.

  12. Secondary Structure Preferences of Mn2+ Binding Sites in Bacterial Proteins

    Directory of Open Access Journals (Sweden)

    Tatyana Aleksandrovna Khrustaleva

    2014-01-01

    Full Text Available 3D structures of proteins with coordinated Mn2+ ions from bacteria with low, average, and high genomic GC-content have been analyzed (149 PDB files were used. Major Mn2+ binders are aspartic acid (6.82% of Asp residues, histidine (14.76% of His residues, and glutamic acid (3.51% of Glu residues. We found out that the motif of secondary structure “beta strand-major binder-random coil” is overrepresented around all the three major Mn2+ binders. That motif may be followed by either alpha helix or beta strand. Beta strands near Mn2+ binding residues should be stable because they are enriched by such beta formers as valine and isoleucine, as well as by specific combinations of hydrophobic and hydrophilic amino acid residues characteristic to beta sheet. In the group of proteins from GC-rich bacteria glutamic acid residues situated in alpha helices frequently coordinate Mn2+ ions, probably, because of the decrease of Lys usage under the influence of mutational GC-pressure. On the other hand, the percentage of Mn2+ sites with at least one amino acid in the “beta strand-major binder-random coil” motif of secondary structure (77.88% does not depend on genomic GC-content.

  13. Characterization of the structural and protein recognition properties of hybrid PNA-DNA four-way junctions.

    Science.gov (United States)

    Iverson, Douglas; Serrano, Crystal; Brahan, Ann Marie; Shams, Arik; Totsingan, Filbert; Bell, Anthony J

    2015-12-01

    The objective of this study is to evaluate the structure and protein recognition properties of hybrid four-way junctions (4WJs) composed of DNA and peptide nucleic acid (PNA) strands. We compare a classic immobile DNA junction, J1, vs. six PNA-DNA junctions, including a number with blunt DNA ends and multiple PNA strands. Circular dichroism (CD) analysis reveals that hybrid 4WJs are composed of helices that possess structures intermediate between A- and B-form DNA, the apparent level of A-form structure correlates with the PNA content. The structure of hybrids that contain one PNA strand is sensitive to Mg(+2). For these constructs, the apparent B-form structure and conformational stability (Tm) increase in high Mg(+2). The blunt-ended junction, b4WJ-PNA3, possesses the highest B-form CD signals and Tm (40.1 °C) values vs. all hybrids and J1. Protein recognition studies are carried out using the recombinant DNA-binding protein, HMGB1b. HMGB1b binds the blunt ended single-PNA hybrids, b4WJ-PNA1 and b4WJ-PNA3, with high affinity. HMGB1b binds the multi-PNA hybrids, 4WJ-PNA1,3 and b4WJ-PNA1,3, but does not form stable protein-nucleic acid complexes. Protein interactions with hybrid 4WJs are influenced by the ratio of A- to B-form helices: hybrids with helices composed of higher levels of B-form structure preferentially associate with HMGB1b.

  14. GalaxyDock BP2 score: a hybrid scoring function for accurate protein-ligand docking

    Science.gov (United States)

    Baek, Minkyung; Shin, Woong-Hee; Chung, Hwan Won; Seok, Chaok

    2017-07-01

    Protein-ligand docking is a useful tool for providing atomic-level understanding of protein functions in nature and design principles for artificial ligands or proteins with desired properties. The ability to identify the true binding pose of a ligand to a target protein among numerous possible candidate poses is an essential requirement for successful protein-ligand docking. Many previously developed docking scoring functions were trained to reproduce experimental binding affinities and were also used for scoring binding poses. However, in this study, we developed a new docking scoring function, called GalaxyDock BP2 Score, by directly training the scoring power of binding poses. This function is a hybrid of physics-based, empirical, and knowledge-based score terms that are balanced to strengthen the advantages of each component. The performance of the new scoring function exhibits significant improvement over existing scoring functions in decoy pose discrimination tests. In addition, when the score is used with the GalaxyDock2 protein-ligand docking program, it outperformed other state-of-the-art docking programs in docking tests on the Astex diverse set, the Cross2009 benchmark set, and the Astex non-native set. GalaxyDock BP2 Score and GalaxyDock2 with this score are freely available at http://galaxy.seoklab.org/softwares/galaxydock.html.

  15. Hybridization of Metal Nanoparticles with Metal-Organic Frameworks Using Protein as Amphiphilic Stabilizer.

    Science.gov (United States)

    Mao, Hui; Zhang, Weina; Zhou, Weiqiang; Zou, Binghua; Zheng, Bing; Zhao, Shilin; Huo, Fengwei

    2017-07-26

    Here, a facile strategy is reported to efficiently hybridize metal nanoparticles (MNPs) with typical metal-organic frameworks (MOFs) of ZIF-8 (zeolitic imidazolate framework-8), which employs bovine serum albumin (BSA, a serum albumin protein derived from cows) as the amphiphilic stabilizer to increase the affinity of MNP toward MOFs. For instance, the as-synthesized PdNPs/ZIF-8 composites with diameter from 100 to 200 nm always maintain well-defined crystalline structure, and the PdNPs with small size of ∼2 nm are well-dispersed in the crystal of MOFs without serious aggregations due to the BSA stabilizer. In Suzuki cross-coupling reactions of aryl halide, the PdNPs/ZIF-8 as catalysts have exhibited high activity and satisfied reusability owing to the use of BSA stabilizer as well as the fixing of MOFs matrixes. In addition, the strategy also can be extended to synthesize other kinds of MNPs/MOFs hybrid composites with tunable particle size, which brings more opportunity for functional MOFs hybrid materials.

  16. The amphiphilic hydrophobin Vmh2 plays a key role in one step synthesis of hybrid protein-gold nanoparticles.

    Science.gov (United States)

    Politi, Jane; De Stefano, Luca; Longobardi, Sara; Giardina, Paola; Rea, Ilaria; Methivier, Christophe; Pradier, Claire-Marie; Casale, Sandra; Spadavecchia, Jolanda

    2015-12-01

    We report a simple and original method to synthesize gold nanoparticles in which a fungal protein, the hydrophobin Vmh2 from Pleurotus ostreatus and dicarboxylic acid-terminated polyethylene-glycol (PEG) has been used as additional components in a one step process, leading to hybrid protein-metal nanoparticles (NPs). The nanoparticles have been characterized by ultra-violet/visible, infrared and X-ray photoelectron spectroscopies, dynamic light scattering and also by electron microscopy imaging. The results of these analytical techniques highlight nanometric sized, stable, hybrid complexes of about 12 nm, with outer surface rich in functional chemical groups. Interaction with protein and antibodies has also been exploited.

  17. Secondary Structure Prediction of Protein Constructs Using Random Incremental Truncation and Vacuum-Ultraviolet CD Spectroscopy

    Science.gov (United States)

    Pukáncsik, Mária; Orbán, Ágnes; Nagy, Kinga; Matsuo, Koichi; Gekko, Kunihiko; Maurin, Damien; Hart, Darren; Kézsmárki, István; Vertessy, Beata G.

    2016-01-01

    A novel uracil-DNA degrading protein factor (termed UDE) was identified in Drosophila melanogaster with no significant structural and functional homology to other uracil-DNA binding or processing factors. Determination of the 3D structure of UDE is excepted to provide key information on the description of the molecular mechanism of action of UDE catalysis, as well as in general uracil-recognition and nuclease action. Towards this long-term aim, the random library ESPRIT technology was applied to the novel protein UDE to overcome problems in identifying soluble expressing constructs given the absence of precise information on domain content and arrangement. Nine constructs of UDE were chosen to decipher structural and functional relationships. Vacuum ultraviolet circular dichroism (VUVCD) spectroscopy was performed to define the secondary structure content and location within UDE and its truncated variants. The quantitative analysis demonstrated exclusive α-helical content for the full-length protein, which is preserved in the truncated constructs. Arrangement of α-helical bundles within the truncated protein segments suggested new domain boundaries which differ from the conserved motifs determined by sequence-based alignment of UDE homologues. Here we demonstrate that the combination of ESPRIT and VUVCD spectroscopy provides a new structural description of UDE and confirms that the truncated constructs are useful for further detailed functional studies. PMID:27273007

  18. Impact of Hybrid Instruction on Student Achievement in Post-Secondary Institutions: A Synthetic Review of the Literature

    Science.gov (United States)

    Lamport, Mark A.; Hill, Randy J.

    2012-01-01

    Hybrid online instruction is a cross between traditional face-to-face classroom format and online-only instruction. The premise behind hybrid instruction is that it provides the benefits of personal interaction with the convenience and flexibility of online assignments and discussions. While there has been significant research on how students…

  19. Projection Structure by Single-Particle Electron Microscopy of Secondary Transport Proteins GItT, Cits, and GltS

    NARCIS (Netherlands)

    Moscicka, Katarzyna B.; Krupnik, Tomasz; Boekema, Egbert J.; Lolkema, Juke S.; Mościcka, Katarzyna B.

    2009-01-01

    The structure of three secondary transporter proteins, GltT of Bacillus stearothermophilus, CitS of Klebsiella pneumoniae, and GltS of Escherichia coli, was studied. The proteins were purified to homogeneity ill detergent solution by Ni(2+)-NTA affinity chromatography, and the complexes were determi

  20. Hybrid Methods and Atomistic Models to Explore Free Energies, Rates and Pathways of Protein Shape Changes

    DEFF Research Database (Denmark)

    Wang, Yong

    biologist, I was proud and excited for the breaking news as this prize is not only to them, but also to the whole community of computational biology. There has been progress in the modeling of protein dynamics in recent years and it has also started to be clear that computer simulations play...... folding, conformational exchange and binding with ligands at long time scales. In Chapter 2, we benchmarked how well the current force elds and molecular dynamics (MD) simulations could model changes in structure, dynamics, free energy and kinetics for an extensively studied protein called T4 lysozyme (T4...... allows us to utilize the limited computational resources in a more reasonable way. In Chapter 5, we further illustrated the possibility to combine the free energy ooding potential obtained from the variational method with infrequent metadynamics to calculate the long timescale rate. This hybrid method...

  1. The Involvement of hybrid cluster protein 4, HCP4, in Anaerobic Metabolism in Chlamydomonas reinhardtii.

    Science.gov (United States)

    Olson, Adam C; Carter, Clay J

    2016-01-01

    The unicellular green algae Chlamydomonas reinhardtii has long been studied for its unique fermentation pathways and has been evaluated as a candidate organism for biofuel production. Fermentation in C. reinhardtii is facilitated by a network of three predominant pathways producing four major byproducts: formate, ethanol, acetate and hydrogen. Previous microarray studies identified many genes as being highly up-regulated during anaerobiosis. For example, hybrid cluster protein 4 (HCP4) was found to be one of the most highly up-regulated genes under anoxic conditions. Hybrid cluster proteins have long been studied for their unique spectroscopic properties, yet their biological functions remain largely unclear. To probe its role during anaerobiosis, HCP4 was silenced using artificial microRNAs (ami-hcp4) followed by extensive phenotypic analyses of cells grown under anoxic conditions. Both the expression of key fermentative enzymes and their respective metabolites were significantly altered in ami-hcp4, with nitrogen uptake from the media also being significantly different than wild-type cells. The results strongly suggest a role for HCP4 in regulating key fermentative and nitrogen utilization pathways.

  2. The Involvement of hybrid cluster protein 4, HCP4, in Anaerobic Metabolism in Chlamydomonas reinhardtii.

    Directory of Open Access Journals (Sweden)

    Adam C Olson

    Full Text Available The unicellular green algae Chlamydomonas reinhardtii has long been studied for its unique fermentation pathways and has been evaluated as a candidate organism for biofuel production. Fermentation in C. reinhardtii is facilitated by a network of three predominant pathways producing four major byproducts: formate, ethanol, acetate and hydrogen. Previous microarray studies identified many genes as being highly up-regulated during anaerobiosis. For example, hybrid cluster protein 4 (HCP4 was found to be one of the most highly up-regulated genes under anoxic conditions. Hybrid cluster proteins have long been studied for their unique spectroscopic properties, yet their biological functions remain largely unclear. To probe its role during anaerobiosis, HCP4 was silenced using artificial microRNAs (ami-hcp4 followed by extensive phenotypic analyses of cells grown under anoxic conditions. Both the expression of key fermentative enzymes and their respective metabolites were significantly altered in ami-hcp4, with nitrogen uptake from the media also being significantly different than wild-type cells. The results strongly suggest a role for HCP4 in regulating key fermentative and nitrogen utilization pathways.

  3. A hybrid two-component system protein from Azospirillum brasilense Sp7 was involved in chemotaxis.

    Science.gov (United States)

    Cui, Yanhua; Tu, Ran; Wu, Lixian; Hong, Yuanyuan; Chen, Sanfeng

    2011-09-20

    We here report the sequence and functional analysis of org35 of Azospirillum brasilense Sp7, which was originally identified to be able to interact with NifA in yeast-two-hybrid system. The org35 encodes a hybrid two-component system protein, including N-terminal PAS domains, a histidine kinase (HPK) domain and a response regulator (RR) domain in C-terminal. To determine the function of the Org35, a deletion-insertion mutant in PAS domain [named Sp7353] and a complemental strain Sp7353C were constructed. The mutant had reduced chemotaxis ability compared to that of wild-type, and the complemental strain was similar to the wild-type strain. These data suggested that the A. brasilense org35 played a key role in chemotaxis. Variants containing different domains of the org35 were expressed, and the functions of these domains were studied in vitro. Phosphorylation assays in vitro demonstrated that the HPK domain of Org35 possessed the autokinase activity and that the phosphorylated HPK was able to transfer phosphate groups to the RR domain. The result indicated Org35 was a phosphorylation-communicating protein.

  4. Recombinant expression of TLR5 proteins by ligand supplementation and a leucine-rich repeat hybrid technique

    OpenAIRE

    Hong, Minsun; Yoon, Sung-il; Wilson, Ian A.

    2012-01-01

    Vertebrate TLR5 directly binds bacterial flagellin proteins and activates innate immune responses against pathogenic flagellated bacteria. Structural and biochemical studies on the TLR5/flagellin interaction have been challenging due to the technical difficulty in obtaining active recombinant proteins of TLR5 ectodomain (TLR5-ECD). We recently succeeded in production of the N-terminal leucine rich repeats (LRRs) of Danio rerio (dr) TLR5-ECD in a hybrid with another LRR protein, hagfish variab...

  5. Protein secondary structure prediction: A survey of the state of the art.

    Science.gov (United States)

    Jiang, Qian; Jin, Xin; Lee, Shin-Jye; Yao, Shaowen

    2017-09-01

    Protein secondary structure prediction (PSSP) is a fundamental task in protein science and computational biology, and it can be used to understand protein 3-dimensional (3-D) structures, further, to learn their biological functions. In the past decade, a large number of methods have been proposed for PSSP. In order to learn the latest progress of PSSP, this paper provides a survey on the development of this field. It first introduces the background and related knowledge of PSSP, including basic concepts, data sets, input data features and prediction accuracy assessment. Then, it reviews the recent algorithmic developments of PSSP, which mainly focus on the latest decade. Finally, it summarizes the corresponding tendencies and challenges in this field. This survey concludes that although various PSSP methods have been proposed, there still exist several further improvements or potential research directions. We hope that the presented guidelines will help nonspecialists and specialists to learn the critical progress in PSSP in recent years. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. A Deep Learning Network Approach to ab initio Protein Secondary Structure Prediction.

    Science.gov (United States)

    Spencer, Matt; Eickholt, Jesse; Jianlin Cheng

    2015-01-01

    Ab initio protein secondary structure (SS) predictions are utilized to generate tertiary structure predictions, which are increasingly demanded due to the rapid discovery of proteins. Although recent developments have slightly exceeded previous methods of SS prediction, accuracy has stagnated around 80 percent and many wonder if prediction cannot be advanced beyond this ceiling. Disciplines that have traditionally employed neural networks are experimenting with novel deep learning techniques in attempts to stimulate progress. Since neural networks have historically played an important role in SS prediction, we wanted to determine whether deep learning could contribute to the advancement of this field as well. We developed an SS predictor that makes use of the position-specific scoring matrix generated by PSI-BLAST and deep learning network architectures, which we call DNSS. Graphical processing units and CUDA software optimize the deep network architecture and efficiently train the deep networks. Optimal parameters for the training process were determined, and a workflow comprising three separately trained deep networks was constructed in order to make refined predictions. This deep learning network approach was used to predict SS for a fully independent test dataset of 198 proteins, achieving a Q3 accuracy of 80.7 percent and a Sov accuracy of 74.2 percent.

  7. Interaction Of Calcium Phosphate Nanoparticles With Human Chorionic Gonadotropin Modifies Secondary And Tertiary Protein Structure

    Directory of Open Access Journals (Sweden)

    Al-Hakeim Hussein K

    2015-12-01

    Full Text Available Calcium phosphate nanoparticles (CaPNP have good biocompatibility and bioactivity inside human body. In this study, the interaction between CaPNP and human chorionic gonadotropin (hCG was analyzed to determine the changes in the protein structure in the presence of CaPNP and the quantity of protein adsorbed on the CaPNP surface. The results showed a significant adsorption of hCG on the CaPNP nanoparticle surface. The optimal fit was achieved using the Sips isotherm equation with a maximum adsorption capacity of 68.23 µg/mg. The thermodynamic parameters, including ∆H° and ∆G°, of the adsorption process are positive, whereas ∆S° is negative. The circular dichroism results of the adsorption of hCG on CaPNP showed the changes in its secondary structure; such changes include the decomposition of α-helix strand and the increase in β-pleated sheet and random coil percentages. Fluorescence study indicated minimal changes in the tertiary structure near the microenvironment of the aromatic amino acids such as tyrosine and phenyl alanine caused by the interaction forces between the CaPNP and hCG protein. The desorption process showed that the quantity of the hCG desorbed significantly increases as temperature increases, which indicates the weak forces between hCG and the surface.

  8. Comparative Analysis of the Endosperm Proteins Separated by 2-D Electrophoresis for Two Cultivars of Hybrid Rice (Oryza sativa L.)

    Institute of Scientific and Technical Information of China (English)

    Pingfang Yang; Shihua Shen; Tingyun Kuang

    2006-01-01

    Liangyoupeijiu is a two-parental-line, and Shanyou63 is a three-parental-line hybrid rice (Oryza sativa L.).Although both belong to the indica subspecies, they have obvious differences with respect to morphology,physiology and grain quality. Variations in endosperm protein compositions were studied by comparing the 2-D electrophoresis (2-DE) maps for these two cultivars of hybrid rice. After matrix-assisted laser desorption/ionization time of flight mass spectrometry (MALDI-TOF/MS) analysis, a 21-kDa precursor of 19-kDa globulin was identified as the major storage protein for both cultivars. Some isoforms of peroxiredoxin and seed maturation protein were found to only exist in Shanyou63, whereas aldose reductase and starch granule-bound starch synthase were only detected in Liangyoupeijiu. These data might provide a foundation for further comparative studies of these two cultivars of hybrid rice.

  9. Increasing the sampling efficiency of protein conformational transition using velocity-scaling optimized hybrid explicit/implicit solvent REMD simulation

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Yuqi; Wang, Jinan; Shao, Qiang, E-mail: qshao@mail.shcnc.ac.cn, E-mail: Jiye.Shi@ucb.com, E-mail: wlzhu@mail.shcnc.ac.cn; Zhu, Weiliang, E-mail: qshao@mail.shcnc.ac.cn, E-mail: Jiye.Shi@ucb.com, E-mail: wlzhu@mail.shcnc.ac.cn [ACS Key Laboratory of Receptor Research, Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203 (China); Shi, Jiye, E-mail: qshao@mail.shcnc.ac.cn, E-mail: Jiye.Shi@ucb.com, E-mail: wlzhu@mail.shcnc.ac.cn [UCB Pharma, 216 Bath Road, Slough SL1 4EN (United Kingdom)

    2015-03-28

    The application of temperature replica exchange molecular dynamics (REMD) simulation on protein motion is limited by its huge requirement of computational resource, particularly when explicit solvent model is implemented. In the previous study, we developed a velocity-scaling optimized hybrid explicit/implicit solvent REMD method with the hope to reduce the temperature (replica) number on the premise of maintaining high sampling efficiency. In this study, we utilized this method to characterize and energetically identify the conformational transition pathway of a protein model, the N-terminal domain of calmodulin. In comparison to the standard explicit solvent REMD simulation, the hybrid REMD is much less computationally expensive but, meanwhile, gives accurate evaluation of the structural and thermodynamic properties of the conformational transition which are in well agreement with the standard REMD simulation. Therefore, the hybrid REMD could highly increase the computational efficiency and thus expand the application of REMD simulation to larger-size protein systems.

  10. Effects of high hydrostatic pressure on secondary structure and emulsifying behavior of sweet potato protein

    Science.gov (United States)

    Mehmood Khan, Nasir; Mu, Tai-Hua; Sun, Hong-Nan; Zhang, Miao; Chen, Jing-Wang

    2015-04-01

    In this study, secondary structures of sweet potato protein (SPP) after high hydrostatic pressure (HHP) treatment (200-600 MPa) were evaluated and emulsifying properties of emulsions with HHP-treated SPP solutions in different pH values (3, 6, and 9) were investigated. Circular dichroism analysis confirmed the modification of the SPP secondary structure. Surface hydrophobicity increased at pH 3 and decreased at 6 and 9. Emulsifying activity index at pH 6 increased with an increase in pressure, whereas emulsifying stability index increased at pH 6 and 9. Oil droplet sizes decreased, while volume frequency distribution of the smaller droplets increased at pH 3 and 6 with the HHP treatment. Emulsion viscosity increased at pH 6 and 9 and pseudo-plastic flow behaviors were not altered for all emulsions produced with HHP-treated SPP. These results suggested that HHP could modify the SPP structure for better emulsifying properties, which could increase the use of SPP emulsion in the food industry.

  11. Gold nanoparticle-embedded silk protein-ZnO nanorod hybrids for flexible bio-photonic devices

    Science.gov (United States)

    Gogurla, Narendar; Kundu, Subhas C.; Ray, Samit K.

    2017-04-01

    Silk protein has been used as a biopolymer substrate for flexible photonic devices. Here, we demonstrate ZnO nanorod array hybrid photodetectors on Au nanoparticle-embedded silk protein for flexible optoelectronics. Hybrid samples exhibit optical absorption at the band edge of ZnO as well as plasmonic energy due to Au nanoparticles, making them attractive for selective UV and visible wavelength detection. The device prepared on Au-silk protein shows a much lower dark current and a higher photo to dark-current ratio of ∼105 as compared to the control sample without Au nanoparticles. The hybrid device also exhibits a higher specific detectivity due to higher responsivity arising from the photo-generated hole trapping by Au nanoparticles. Sharp pulses in the transient photocurrent have been observed in devices prepared on glass and Au-silk protein substrates due to the light induced pyroelectric effect of ZnO, enabling the demonstration of self-powered photodetectors at zero bias. Flexible hybrid detectors have been demonstrated on Au-silk/polyethylene terephthalate substrates, exhibiting characteristics similar to those fabricated on rigid glass substrates. A study of the performance of photodetectors with different bending angles indicates very good mechanical stability of silk protein based flexible devices. This novel concept of ZnO nanorod array photodetectors on a natural silk protein platform provides an opportunity to realize integrated flexible and self-powered bio-photonic devices for medical applications in near future.

  12. Large-scale analysis of secondary structure changes in proteins suggests a role for disorder-to-order transitions in nucleotide binding proteins.

    Science.gov (United States)

    Dan, Adi; Ofran, Yanay; Kliger, Yossef

    2010-02-01

    Conformational changes in proteins often involve secondary structure transitions. Such transitions can be divided into two types: disorder-to-order changes, in which a disordered segment acquires an ordered secondary structure (e.g., disorder to alpha-helix, disorder to beta-strand), and order-to-order changes, where a segment switches from one ordered secondary structure to another (e.g., alpha-helix to beta-strand, alpha-helix to turn). In this study, we explore the distribution of these transitions in the proteome. Using a comprehensive, yet highly conservative method, we compared solved three-dimensional structures of identical protein sequences, looking for differences in the secondary structures with which they were assigned. Protein chains in which such secondary structure transitions were detected, were classified into two sets according to the type of transition that is involved (disorder-to-order or order-to-order), allowing us to characterize each set by examining enrichment of gene ontology terms. The results reveal that the disorder-to-order set is significantly enriched with nucleotide binding proteins, whereas the order-to-order set is more diverse. Remarkably, further examination reveals that >22% of the purine nucleotide binding proteins include segments which undergo disorder-to-order transitions, suggesting that such transitions play an important role in this process.

  13. New classes of mind bomb-interacting proteins identified from yeast two-hybrid screens.

    Science.gov (United States)

    Tseng, Li-Chuan; Zhang, Chengjin; Cheng, Chun-Mei; Xu, Haoying; Hsu, Chia-Hao; Jiang, Yun-Jin

    2014-01-01

    Notch signaling pathway defines an evolutionarily conserved mechanism in cell-fate determination in a broad spectrum of developmental processes through local cell interactions. mind bomb (mib) encodes an E3 ubiquitin ligase that is involved in Notch activation through Delta ubiquitylation and internalization. To further dissect the function of Mib, two yeast two-hybrid screens for zebrafish Mib/Mib2-binding proteins with different strategies have been performed. 81 putative interesting proteins were discovered and classified into six groups: ubiquitin proteasome pathway, cytoskeleton, trafficking, replication/transcription/translation factors, cell signaling and others. Confirmed by coimmunoprecipitation (Co-IP), Mib interacted with four tested proteins: ubiquitin specific protease 1 (Usp1), ubiquitin specific protease 9 (Usp9), tumor-necrosis-factor-receptor-associated factor (TRAF)-binding domain (Trabid)/zinc finger, RAN-binding domain containing 1 (Zranb1) and hypoxia-inducible factor 1, alpha subunit inhibitor (Hif1an)/factor inhibiting HIF 1 (Fih-1). Usp1, Usp9, Trabid and Fih-1 also bound to zebrafish Mib2, a Mib homolog with similar structural domains and functions. Both Mib and Mib2 can ubiquitylate Trabid and Fih-1, indicating a potential regulating role of Mib and Mib2 on Trabid and Fih-1 and, furthermore, the possible involvement of Notch signaling in hypoxia-regulated differentiation, tumorigenesis and NF-κB pathway. Finally, functions of confirmed Mib/Mib2-interacting proteins are collated, summarized and hypothesized, which depicts a regulating network beyond Notch signaling.

  14. Single Nanometric Memory Unit Based On a Protein-Nanoparticle Hybrid

    Science.gov (United States)

    Medalsy, Izhar; Heyman, Arnon; Shoseyov, Oded; Porath, Danny

    2009-03-01

    Proteins as an isolating template and nanoparticle (NP) as an electric storage component can form a single addressable unit cell isolated from the conductive surface and adjacent NPs. This setup gives rise to a wide range of nanoelectronic applications. Here we demonstrate, by Conductive AFM, a single nanometric memory unit using individual protein-NP hybrids. SP1 is a boiling-stable ring-shaped protein, 11 nm in diameter. Mutants of SP1 were synthesized allowing its selective attachment to gold surface and the formation of 2D arrays using methods such as phospholipids trough and Langmuir Blodgett. The SP1 inner pore was connected to Si NP forming a chargeable entity embedded in an isolating unit over a conductive surface. Each NP holds three charging states: natural, positive and negative. The charging life times are 10 min in ambient and days in vacuum. Using this setup, and the relative long charging time, we were able to apply a read and write operations on individual 5nm Si NP embedded in a stable protein.

  15. Structural studies of the protein endostatin in fusion with BAX BH3 death domain, a hybrid that presents enhanced antitumoral activity.

    Science.gov (United States)

    Chura-Chambi, Rosa Maria; Arcuri, Helen Andrade; Lino, Felipe; Versati, Natan; Palma, Mario Sergio; Favaro, Denize C; Morganti, Ligia

    2017-05-01

    Endostatin (ES) is an antiangiogenic protein that exhibits antitumor activity in animal models. However, the activity observed in animals was not observed in human clinical trials. ES-BAX is a fusion protein composed of two functional domains: ES, which presents specificity and is internalized by activated endothelial cells and the proapoptotic BH3 domain of the protein BAX, a peptide inductor of cellular death when internalized. We have previously shown (Chura-Chambi et al., Cell Death Dis, 5, e1371, 2014) that ES-BAX presents improved antitumor activity in relation to wild-type ES. Secondary and tertiary structures of ES-BAX are similar to ES, as indicated by homology-modeling studies and molecular dynamics simulations. Tryptophan intrinsic fluorescence and circular dichroism spectroscopy corroborate these data. (15) N HSQC NMR indicates that ES-BAX is structured, but some ES residues have suffered chemical shift perturbations, suggesting that the BH3 peptide interacts with some parts of the ES protein. ES and ES-BAX present similar stability to thermal denaturation. The production of stable hybrid proteins can be a new approach to the development of therapeutic agents presenting specificity for tumoral endothelium and improved antitumor effect. © 2016 International Union of Biochemistry and Molecular Biology, Inc.

  16. Interactions between membrane-bound cellulose synthases involved in the synthesis of the secondary cell wall

    NARCIS (Netherlands)

    Timmers, J.F.P.; Vernhettes, S.; Desprez, T.; Vincken, J.P.; Visser, R.G.F.; Trindade, L.M.

    2009-01-01

    It has not yet been reported how the secondary CESA (cellulose synthase) proteins are organized in the rosette structure. A membrane-based yeast two-hybrid (MbYTH) approach was used to analyze the interactions between the CESA proteins involved in secondary cell wall synthesis of Arabidopsis and the

  17. BCL::Fold--de novo prediction of complex and large protein topologies by assembly of secondary structure elements.

    Directory of Open Access Journals (Sweden)

    Mert Karakaş

    Full Text Available Computational de novo protein structure prediction is limited to small proteins of simple topology. The present work explores an approach to extend beyond the current limitations through assembling protein topologies from idealized α-helices and β-strands. The algorithm performs a Monte Carlo Metropolis simulated annealing folding simulation. It optimizes a knowledge-based potential that analyzes radius of gyration, β-strand pairing, secondary structure element (SSE packing, amino acid pair distance, amino acid environment, contact order, secondary structure prediction agreement and loop closure. Discontinuation of the protein chain favors sampling of non-local contacts and thereby creation of complex protein topologies. The folding simulation is accelerated through exclusion of flexible loop regions further reducing the size of the conformational search space. The algorithm is benchmarked on 66 proteins with lengths between 83 and 293 amino acids. For 61 out of these proteins, the best SSE-only models obtained have an RMSD100 below 8.0 Å and recover more than 20% of the native contacts. The algorithm assembles protein topologies with up to 215 residues and a relative contact order of 0.46. The method is tailored to be used in conjunction with low-resolution or sparse experimental data sets which often provide restraints for regions of defined secondary structure.

  18. Comparative transcripts profiling of fruit mesocarp and endocarp relevant to secondary metabolism by suppression subtractive hybridization in Azadirachta indica (neem).

    Science.gov (United States)

    Narnoliya, Lokesh K; Rajakani, Raja; Sangwan, Neelam S; Gupta, Vikrant; Sangwan, Rajender S

    2014-05-01

    Azadirachta indica (neem) is a medicinally important plant that is valued for its bioactive secondary metabolites. Higher levels of the bioactive phytochemicals are accumulated in fruits than in other tissues. In the present study, a total of 387 and 512 ESTs, respectively, from endocarp and mesocarp of neem fruits were isolated and analyzed. Out of them 318 ESTs (82.17%) clones from endocarp and 418 ESTs (81.64%) from mesocarp encoded putative proteins that could be classified into three major gene ontology categories: biological process, molecular function and cellular component. From the analyses of contigs, 73 unigenes from the forward subtracted library and 35 unigenes from the reverse subtracted library were obtained. The ESTs from mesocarp encoded cytochrome P450 enzymes, which indicated hydroxylation to be a major metabolic event and that biogeneration of hydroxylated neem fruit phytochemicals was differentially regulated with developmental stage-specificity of synthesis. Through this study, we present the first report of any gene expression data in neem tissues. Neem hydroxy-methyl glutaryl-coenzyme A reductase (NHMGR) gene was used as expressing control vis-a-vis subtracted tissues. NHMGR was present in fruit, endocarp and mesocarp tissues, but absent in subtractive libraries, revealing that it was successfully eliminated during subtraction. Eight genes of interest from subtracted libraries were profiled for their expression in fruit, mesocarp and endocarp. Expression profiles validated the quality of the libraries and functional diversity of the tissues. The subtractive cDNA library and EST database described in this study represent a valuable transcript sequence resource for future research aimed at improving the economically important medicinal plant.

  19. Combining sequence-based prediction methods and circular dichroism and infrared spectroscopic data to improve protein secondary structure determinations

    Directory of Open Access Journals (Sweden)

    Lees Jonathan G

    2008-01-01

    Full Text Available Abstract Background A number of sequence-based methods exist for protein secondary structure prediction. Protein secondary structures can also be determined experimentally from circular dichroism, and infrared spectroscopic data using empirical analysis methods. It has been proposed that comparable accuracy can be obtained from sequence-based predictions as from these biophysical measurements. Here we have examined the secondary structure determination accuracies of sequence prediction methods with the empirically determined values from the spectroscopic data on datasets of proteins for which both crystal structures and spectroscopic data are available. Results In this study we show that the sequence prediction methods have accuracies nearly comparable to those of spectroscopic methods. However, we also demonstrate that combining the spectroscopic and sequences techniques produces significant overall improvements in secondary structure determinations. In addition, combining the extra information content available from synchrotron radiation circular dichroism data with sequence methods also shows improvements. Conclusion Combining sequence prediction with experimentally determined spectroscopic methods for protein secondary structure content significantly enhances the accuracy of the overall results obtained.

  20. Ribosomal protein genes are highly enriched among genes with allele-specific expression in the interspecific F1 hybrid catfish.

    Science.gov (United States)

    Chen, Ailu; Wang, Ruijia; Liu, Shikai; Peatman, Eric; Sun, Luyang; Bao, Lisui; Jiang, Chen; Li, Chao; Li, Yun; Zeng, Qifan; Liu, Zhanjiang

    2016-06-01

    Interspecific hybrids provide a rich source for the analysis of allele-specific expression (ASE). In this work, we analyzed ASE in F1 hybrid catfish using RNA-Seq datasets. While the vast majority of genes were expressed with both alleles, 7-8 % SNPs exhibited significant differences in allele ratios of expression. Of the 66,251 and 177,841 SNPs identified from the datasets of the liver and gill, 5420 (8.2 %) and 13,390 (7.5 %) SNPs were identified as significant ASE-SNPs, respectively. With these SNPs, a total of 1519 and 3075 ASE-genes were identified. Gene Ontology analysis revealed that genes encoding cytoplasmic ribosomal proteins (RP) were highly enriched among ASE genes. Parent-of-origin was determined for 27 and 30 ASE RP genes in the liver and gill, respectively. The results indicated that genes from both channel catfish and blue catfish were involved in ASE. However, each RP gene appeared to be almost exclusively expressed from only one parent, indicating that ribosomes in the hybrid catfish were in the "hybrid" form. Overall representation of RP transcripts among the transcriptome appeared lower in the F1 hybrid catfish than in channel catfish or blue catfish, suggesting that the "hybrid" ribosomes may work more efficiently for translation in the F1 hybrid catfish.

  1. Serum-stable quantum dot--protein hybrid nanocapsules for optical bio-imaging

    Science.gov (United States)

    Lee, Jeong Yu; Nam, Dong Heon; Oh, Mi Hwa; Kim, Youngsun; Choi, Hyung Seok; Jeon, Duk Young; Beum Park, Chan; Nam, Yoon Sung

    2014-05-01

    We introduce shell cross-linked protein/quantum dot (QD) hybrid nanocapsules as a serum-stable systemic delivery nanocarrier for tumor-targeted in vivo bio-imaging applications. Highly luminescent, heavy-metal-free Cu0.3InS2/ZnS (CIS/ZnS) core-shell QDs are synthesized and mixed with amine-reactive six-armed poly(ethylene glycol) (PEG) in dichloromethane. Emulsification in an aqueous solution containing human serum albumin (HSA) results in shell cross-linked nanocapsules incorporating CIS/ZnS QDs, exhibiting high luminescence and excellent dispersion stability in a serum-containing medium. Folic acid is introduced as a tumor-targeting ligand. The feasibility of tumor-targeted in vivo bio-imaging is demonstrated by measuring the fluorescence intensity of several major organs and tumor tissue after an intravenous tail vein injection of the nanocapsules into nude mice. The cytotoxicity of the QD-loaded HSA-PEG nanocapsules is also examined in several types of cells. Our results show that the cellular uptake of the QDs is critical for cytotoxicity. Moreover, a significantly lower level of cell death is observed in the CIS/ZnS QDs compared to nanocapsules loaded with cadmium-based QDs. This study suggests that the systemic tumor targeting of heavy-metal-free QDs using shell cross-linked HSA-PEG hybrid nanocapsules is a promising route for in vivo tumor diagnosis with reduced non-specific toxicity.

  2. EXTRACELLULAR PROTEINS PRODUCED BY DIFFERENT SPECIES OF THE FUNGUS TRICHODERMA ON SECONDARY PAPER MILL SLUDGE SUBSTRATE

    Directory of Open Access Journals (Sweden)

    Ida Vaskova,

    2012-01-01

    Full Text Available Kraft pulping is the most commonly used pulping process in the pulp and paper industry. In this process wood chips are chemically delignified using sodium sulfide and sodium hydroxide. Delignification is usually followed by mechanical fiberization and a bleaching process of the resulting wood pulp. In addition to lignin-free wood pulp, this process also produces waste that contains residues of used chemicals, lignin, cellulose, hemicelluloses, and small amounts of other wood components. Because of the worldwide large-scale production of paper, the sludge from paper mills contributes significantly to environmental pollution. Although there have been great efforts being made to utilize this lignin-rich material, sludge is mostly disposed in landfills or incinerated in a boiler. This research project used secondary sludge as a substrate for 7 wood-decay fungi taxonomically belonging to the genus Trichoderma. The examined fungi expressed the capability of consuming sludge components as a carbon source to produce extracellular proteins. The proteins were separated by gel electrophoresis. Before and after fungi cultivation, the sludge was analyzed by Fourier transform infrared spectroscopy (FTIR.

  3. The Secondary Structure of Heated Whey Protein and Its Hydrolysates Antigenicity

    Institute of Scientific and Technical Information of China (English)

    PANGZhi-hua; ZHU Jun; WU Wei-jing; WANG Fang; RENFa-zheng; ZHANG Lu-daa; GUOHui-yuan

    2011-01-01

    Fourier transform infrared spectroscopy (FFIR) and circular dichroism (CD) were used to investigate the conformational changes of heated whey protein (WP) and the corresponding changes in the hydrolysates immunoreactivity were determined by competitive enzyme-linked immunosorbent assay (ELISA).Results showed that the contents of α- helix and β-sheet of WP did not decrease much under mild heating conditions and the antigenicity was relatively high; when the heating intensity increased (70 ℃ for 25 min or 75 ℃ for 20 min),the content of α- helix and β-sheet decreased to the minimum,so was the antigenicity; However,when the WP was heated at even higher temperature and for a longer time,the β-sheet associated with protein aggregation begun to increase and the antigenicity increased correspondingly.It was concluded that the conformations of heated WP and the antigenicity of its hydrolysates are related and the optimum structure for decreasing the hydrolysates antigeniity is the least content of α-helix and β-sheet.Establishing the elationship between the WP secondary structure and WP hydrolysates antigenicity is significant to supply the reference for antigenicity reduction by enzymolysis.

  4. Comparative molecular modeling study of Arabidopsis NADPH-dependent thioredoxin reductase and its hybrid protein.

    Directory of Open Access Journals (Sweden)

    Yuno Lee

    Full Text Available 2-Cys peroxiredoxins (Prxs play important roles in the protection of chloroplast proteins from oxidative damage. Arabidopsis NADPH-dependent thioredoxin reductase isotype C (AtNTRC was identified as efficient electron donor for chloroplastic 2-Cys Prx-A. There are three isotypes (A, B, and C of thioredoxin reductase (TrxR in Arabidopsis. AtNTRA contains only TrxR domain, but AtNTRC consists of N-terminal TrxR and C-terminal thioredoxin (Trx domains. AtNTRC has various oligomer structures, and Trx domain is important for chaperone activity. Our previous experimental study has reported that the hybrid protein (AtNTRA-(Trx-D, which was a fusion of AtNTRA and Trx domain from AtNTRC, has formed variety of structures and shown strong chaperone activity. But, electron transfer mechanism was not detected at all. To find out the reason of this problem with structural basis, we performed two different molecular dynamics (MD simulations on AtNTRC and AtNTRA-(Trx-D proteins with same cofactors such as NADPH and flavin adenine dinucleotide (FAD for 50 ns. Structural difference has found from superimposition of two structures that were taken relatively close to average structure. The main reason that AtNTRA-(Trx-D cannot transfer the electron from TrxR domain to Trx domain is due to the difference of key catalytic residues in active site. The long distance between TrxR C153 and disulfide bond of Trx C387-C390 has been observed in AtNTRA-(Trx-D because of following reasons: i unstable and unfavorable interaction of the linker region, ii shifted Trx domain, and iii different or weak interface interaction of Trx domains. This study is one of the good examples for understanding the relationship between structure formation and reaction activity in hybrid protein. In addition, this study would be helpful for further study on the mechanism of electron transfer reaction in NADPH-dependent thioredoxin reductase proteins.

  5. Programmable Self-Assembly of DNA-Protein Hybrid Hydrogel for Enzyme Encapsulation with Enhanced Biological Stability.

    Science.gov (United States)

    Wan, Lan; Chen, Qiaoshu; Liu, Jianbo; Yang, Xiaohai; Huang, Jin; Li, Li; Guo, Xi; Zhang, Jue; Wang, Kemin

    2016-04-11

    A DNA-protein hybrid hydrogel was constructed based on a programmable assembly approach, which served as a biomimetic physiologic matrix for efficient enzyme encapsulation. A dsDNA building block tailored with precise biotin residues was fabricated based on supersandwich hybridization, and then the addition of streptavidin triggered the formation of the DNA-protein hybrid hydrogel. The biocompatible hydrogel, which formed a flower-like porous structure that was 6.7 ± 2.1 μm in size, served as a reservoir system for enzyme encapsulation. Alcohol oxidase (AOx), which served as a representative enzyme, was encapsulated in the hybrid hydrogel using a synchronous assembly approach. The enzyme-encapsulated hydrogel was utilized to extend the duration time for ethanol removal in serum plasma and the enzyme retained 78% activity after incubation with human serum for 24 h. The DNA-protein hybrid hydrogel can mediate the intact immobilization on a streptavidin-modified and positively charged substrate, which is very beneficial to solid-phase biosensing applications. The hydrogel-encapsulated enzyme exhibited improved stability in the presence of various denaturants. For example, the encapsulated enzyme retained 60% activity after incubation at 55 °C for 30 min. The encapsulated enzyme also retains its total activity after five freeze-thaw cycles and even suspended in solution containing organic solvents.

  6. Use of secondary structural information and C-C distance restraints to model protein structures with MODELLER

    Indian Academy of Sciences (India)

    Boojala V B Reddy; Yiannis N Kaznessis

    2007-08-01

    Protein secondary structure predictions and amino acid long range contact map predictions from primary sequence of proteins have been explored to aid in modelling protein tertiary structures. In order to evaluate the usefulness of secondary structure and 3D-residue contact prediction methods to model protein structures we have used the known Q3 (alpha-helix, beta-strands and irregular turns/loops) secondary structure information, along with residue-residue contact information as restraints for MODELLER. We present here results of our modelling studies on 30 best resolved single domain protein structures of varied lengths. The results shows that it is very difficult to obtain useful models even with 100% accurate secondary structure predictions and accurate residue contact predictions for up to 30% of residues in a sequence. The best models that we obtained for proteins of lengths 37, 70, 118, 136 and 193 amino acid residues are of RMSDs 4.17, 5.27, 9.12, 7.89 and 9.69, respectively. The results show that one can obtain better models for the proteins which have high percent of alpha-helix content. This analysis further shows that MODELLER restrain optimization program can be useful only if we have truly homologous structure(s) as a template where it derives numerous restraints, almost identical to the templates used. This analysis also clearly indicates that even if we satisfy several true residue-residue contact distances, up to 30% of their sequence length with fully known secondary structural information, we end up predicting model structures much distant from their corresponding native structures.

  7. Epicocconone-Hemicyanine Hybrids: Near Infrared Fluorophores for Protein Staining and Cell Imaging.

    Science.gov (United States)

    Karuso, Peter; Loa Kum Cheung, Wendy; Peixoto, Philippe A; Boulangé, Agathe; Franck, Xavier

    2017-02-03

    The development of new near infrared (NIR) dyes is crucial for diverse applications and especially bioimaging, as they absorb and emit light in the "therapeutic window" (650-950 nm). We report here a new family of NIR fluorophores that has been obtained by hybridising hemicyanines with epicocconone. Emission wavelengths of these hybrid dyes is in the range 715-795 nm and is combined with large Stokes' shifts (75-95 nm). The absorption and emission wavelength can be modulated according to the hemicyanine moiety and adding sulfonic acid moieties enhances water solubility. We demonstrate their application in the sensitive detection of proteins in gel electrophoresis and the staining of specific cellular organelles in confocal microscopy. These results are particularly encouraging and bring forward a new fluorescent skeleton for chemical biology.

  8. Fluorescence labeling of carbon nanotubes and visualization of a nanotube-protein hybrid under fluorescence microscope.

    Science.gov (United States)

    Yoshimura, Shige H; Khan, Shahbaz; Maruyama, Hiroyuki; Nakayama, Yoshikazu; Takeyasu, Kunio

    2011-04-11

    Biological applications of carbon nanotubes have been hampered by the inability to visualize them using conventional optical microscope, which is the most common tool for the observation and measurement of biological processes. Recently, a number of fluorescence labeling methods for biomolecules and various fluorescence probes have been developed and widely utilized in biological fields. Therefore, labeling carbon nanotubes with such fluorophores under physiological conditions will be highly useful in their biological applications. In this Article, we present a method to fluorescently label nanotubes by combining a detergent and a fluorophore commonly used in biological experiments. Fluorophores carrying an amino group (Texas Red hydrazide or BODIPY FL-hydrazide) were covalently attached to the hydroxyl groups of Tween 20 using carbonyldiimidazole. Fluorescence microscopy demonstrated that nanotubes were efficiently solubilized and labeled by this fluorescently labeled detergent. By using this technique, we also demonstrated multicolor fluorescence imaging of a nanotube-protein hybrid.

  9. SVM-based method for protein structural class prediction using secondary structural content and structural information of amino acids.

    Science.gov (United States)

    Mohammad, Tabrez Anwar Shamim; Nagarajaram, Hampapathalu Adimurthy

    2011-08-01

    The knowledge collated from the known protein structures has revealed that the proteins are usually folded into the four structural classes: all-α, all-β, α/β and α + β. A number of methods have been proposed to predict the protein's structural class from its primary structure; however, it has been observed that these methods fail or perform poorly in the cases of distantly related sequences. In this paper, we propose a new method for protein structural class prediction using low homology (twilight-zone) protein sequences dataset. Since protein structural class prediction is a typical classification problem, we have developed a Support Vector Machine (SVM)-based method for protein structural class prediction that uses features derived from the predicted secondary structure and predicted burial information of amino acid residues. The examination of different individual as well as feature combinations revealed that the combination of secondary structural content, secondary structural and solvent accessibility state frequencies of amino acids gave rise to the best leave-one-out cross-validation accuracy of ~81% which is comparable to the best accuracy reported in the literature so far.

  10. An arabinogalactan protein associated with secondary cell wall formation in differentiating xylem of loblolly pine.

    Science.gov (United States)

    Zhang, Yi; Brown, Garth; Whetten, Ross; Loopstra, Carol A; Neale, David; Kieliszewski, Marcia J; Sederoff, Ronald R

    2003-05-01

    Arabinogalactan proteins (AGPs) are abundant plant proteoglycans implicated in plant growth and development. Here, we report the genetic characterization, partial purification and immunolocalization of a classical AGP (PtaAGP6, accession number AF101785) in loblolly pine (Pinus taeda L.). A PtaAGP6 full-length cDNA clone was expressed in bacteria. PtaAGP6 resembles tomato LeAGP-1 and Arabidopsis AtAGP17-19 in that they all possess a subdomain composed of basic amino acids. The accessibility of this domain in the glycoprotein makes it possible to label the PtaAGP6 epitopes on the cell surface or in the cell wall with polyclonal antibodies raised against this subdomain. The antibodies recognize the peptide of the basic subdomain and bind to the intact protein molecule. A soluble protein-containing fraction was purified from the differentiating xylem of pine trees by using beta-glucosyl Yariv reagent (beta-glcY) and was recognized by antibodies against the basic subdomain. Immunolocalization studies showed that the PtaAGP6 epitopes are restricted to a file of cells that just precede secondary cell wall thickening, suggesting roles in xylem differentiation and wood formation. The location of apparent labeling of the PtaAGP6 epitopes is separated from the location of lignin deposition. Multiple single nucleotide polymorphisms (SNPs) were detected in EST variants. Denaturing HPLC analysis of PCR products suggests that PtaAGP6 is encoded by a single gene. Mobility variation in denaturing gel electrophoresis was used to map PtaAGP6 SNPs to a site on linkage group 5.

  11. Cytochrome C oxidase Ⅲ interacts with hepatitis B virus X protein in vivo by yeast two-hybrid system

    Institute of Scientific and Technical Information of China (English)

    Dan Li; Xiao-Zhong Wang; Jie-Ping Yu; Zhi-Xin Chen; Yue-Hong Huang; Qi-Min Tao

    2004-01-01

    AIM: To screen and identify the proteins which interact with hepatitis B virus (HBV) X protein in hepatocytes by yeast two-hybrid system and to explore the effects of X protein in the development of hepatocellular carcinoma (HCC).METHODS: With HBV X gene amplified by polymerase chain reaction (PCR), HBV X bait plasmid, named pAS2-1-X, was constructed by yeast-two hybridization system3 and verified by auto-sequencing assay. pAS2-1-X was transformed into the yeast AH109, and X-BD fusion protein expressed in the yeast cells was detected by Western blotting. The yeast cells cotransformed with pAS2-1-X and normal human liver cDNA library were grown in selective SC/-trp-leu-his-ade medium. The second screen was performed with β-gal activity detection, and false positive clones were eliminated by segregation analysis, true positive clones were amplified,sequenced and analyzed with bioinformatics. Mating experiment was peformed to confirm the binding of putative proteins to X protein in the yeast cells.RESULTS: Bait plasmid pAS2-1-X was successfully constructed and pAS2-1-X correctly expressed BD-X fusion protein in yeast AH109. One hundred and three clones grew in the selective SC/-trp-leu-his-ade medium, and only one clone passed through β-gal activity detection and segregation analysis. The inserted cDNA fragment showed high homology with Homo sapiens cytochrome C oxidase Ⅲ(COXIII). Furthermore, mating experiment identified that the binding of COXIII to X protein was specific.CONCLUSION: COXIII protein is a novel protein that can interact with X protein in vivo by yeast two-hybrid system,and may contribute to the development of HCC through the interaction with X protein.

  12. Nitrogen metabolism enzymes, soluble protein and free proline content in soybean genotypes and their F1 hybrids

    Directory of Open Access Journals (Sweden)

    Kereši Sanja T.

    2008-01-01

    Full Text Available Nitrate reductase and glutamine synthetase activity, as well as free proline and soluble protein content were measured in eight soybean parent genotypes and six F1 hybrids. The aim of this study was to determine variability and the mode of inheritance for these parameters, and point out the genotypes of interest for future breeding programs. Analysed genotypes and their F1 hybrids expressed significant differences in activities of nitrate reductase and glutamine synthetase enzymes, as well as in soluble proteins and free proline contents. Since mode of inheritance for all investigated traits was in most cases dominance or heterosis, it can be concluded that these parameters are under control of dominant genes. The obtained results suggest that genotypes with favorable traits, such as variety Linda, line 1511, and F1 hybrids (Linda x LN92-7369 and (Balkan x BL-8, could be of interest as a good starting material for further breeding programs.

  13. NewGOA: predicting new GO annotations of proteins by bi-random walks on a hybrid graph.

    Science.gov (United States)

    Yu, Guoxian; Fu, Guangyuan; Wang, Jun; Zhao, Yingwen

    2017-06-15

    A remaining key challenge of modern biology is annotating the functional roles of proteins. Various computational models have been proposed for this challenge. Most of them assume the annotations of annotated proteins are complete. But in fact, many of them are incomplete. We proposed a method called NewGOA to predict new Gene Ontology (GO) annotations for incompletely annotated proteins and for completely un-annotated ones. NewGOA employs a hybrid graph, composed of two types of nodes (proteins and GO terms), to encode interactions between proteins, hierarchical relationships between terms and available annotations of proteins. To account for structural difference between the terms subgraph and the proteins subgraph, NewGOA applies a bi-random walks algorithm, which executes asynchronous random walks on the hybrid graph, to predict new GO annotations of proteins. Experimental study on archived GO annotations of two model species (H. Sapiens and S. cerevisiae) shows that NewGOA can more accurately and efficiently predict new annotations of proteins than other related methods. Experimental results also indicate the bi-random walks can explore and further exploit the structural difference between terms subgraph and proteins subgraph. The supplementary files and codes of NewGOA are available at: http://mlda.swu.edu.cn/codes.php?name=NewGO.

  14. A set of host proteins interacting with papaya ringspot virus NIa-Pro protein identified in a yeast two-hybrid system.

    Science.gov (United States)

    Gao, L; Shen, W T; Yan, P; Tuo, D C; Li, X Y; Zhou, P

    2012-01-01

    The protein-protein interactions between viral and host proteins play an essential role in plant virus infection and host defense. The potyviral nuclear inclusion protein a protease (NIa-Pro) is involved in various steps of viral infection. In this study, the host proteins interacting with papaya ringspot virus (PRSV) NIa-Pro were screened in a Carica papaya L. plant cDNA library using a Sos recruitment two-hybrid system (SRS). We confirmed that the full-length EIF3G, FBPA1, FK506BP, GTPBP, MSRB1, and MTL from papaya can interact specifically with PRSV NIa-Pro in yeast, respectively. These proteins fufill important functions in plant protein translation, biotic and abiotic stress, energy metabolism and signal transduction. In this paper, we discuss possible functions of interactions between these host proteins and NIa-Pro in PRSV infection and their role in host defense. Sos recruitment two-hybrid system; papaya ringspot virus; NIa-Pro; protein-protein interaction.

  15. Neural Network Based on GA-BP Algorithm and its Application in the Protein Secondary Structure Prediction

    Institute of Scientific and Technical Information of China (English)

    YANG Yang; LI Kai-yang

    2006-01-01

    The advantages and disadvantages of genetic algorithm and BP algorithm are introduced. A neural network based on GA-BP algorithm is proposed and applied in the prediction of protein secondary structure, which combines the advantages of BP and GA. The prediction and training on the neural network are made respectively based on 4 structure classifications of protein so as to get higher rate of predication-the highest prediction rate 75.65%, the average prediction rate 65.04%.

  16. HER-2 protein concentrations in breast cancer cells increase before immunohistochemical and fluorescence in situ hybridization analysis turn positive

    DEFF Research Database (Denmark)

    Olsen, Dorte A; Østergaard, Birthe; Bokmand, Susanne

    2007-01-01

    BACKGROUND: The level of HER-2/neu in breast cancer cells is normally measured by immunohistochemistry (IHC) and/or fluorescence in situ hybridization (FISH). It determines whether patients should be treated with trastuzumab (Herceptin). In this study, HER-2 protein in breast cancer tissue...

  17. Recombinant hybrid protein, Shiga toxin and granulocyte macrophage colony stimulating factor effectively induce apoptosis of colon cancer cells

    Institute of Scientific and Technical Information of China (English)

    Mehryar Habibi Roudkenar; Saeid Bouzari; Yoshikazu Kuwahara; Amaneh Mohammadi Roushandeh; Mana Oloomi; Manabu Fukumoto

    2006-01-01

    AIM: To investigate the selective cytotoxic effect of constructed hybrid protein on cells expressing granulocyte macrophage colony stimulating factor (GM-CSF) receptor.METHODS: HepG2 (human hepatoma) and LS174T (coIon carcinoma) were used in this study. The fused gene was induced with 0.02% of arabinose for 4 h and the expressed protein was detected by Western blotting. The chimeric protein expressed in E. coli was checked for its cytotoxic activity on these cells and apoptosis was measured by comet assay and nuclear staining. RESULTS: The chimeric protein was found to be cytotoxic to the colon cancer cell line expressing GM-CSFRs,but not to HepG2 lacking these receptors. Maximum activity was observed at the concentration of 40 ng/mL after 24 h incubation. The IC50 was 20±3.5 ng/mL.CONCLUSION: Selective cytotoxic effect of the hybrid protein on the colon cancer cell line expressing GMCSF receptors (GM-CSFRs) receptor and apoptosis can be observed in this cell line. The hybrid protein can be considered as a therapeutic agent.

  18. Proteomic Analysis Reveals Different Involvement of Embryo and Endosperm Proteins during Aging of Yliangyou 2 Hybrid Rice Seeds

    Science.gov (United States)

    Zhang, Ying-Xue; Xu, Heng-Heng; Liu, Shu-Jun; Li, Ni; Wang, Wei-Qing; Møller, Ian M.; Song, Song-Quan

    2016-01-01

    Seed aging is a process that results in a delayed germination, a decreased germination percentage, and finally a total loss of seed viability. However, the mechanism of seed aging is poorly understood. In the present study, Yliangyou 2 hybrid rice (Oryza sativa L.) seeds were artificially aged at 100% relative humidity and 40°C, and the effect of artificial aging on germination, germination time course and the change in protein profiles of embryo and endosperm was studied to understand the molecular mechanism behind seed aging. With an increasing duration of artificial aging, the germination percentage and germination rate of hybrid rice seeds decreased. By comparing the protein profiles from the seeds aged for 0, 10 and 25 days, a total of 91 and 100 protein spots were found to show a significant change of more than 2-fold (P cell defense and rescue (28%), and with storage protein (18%). In endosperms, most of the identified proteins were involved in metabolism (37%), in energy (27%), and in protein synthesis and destination (11%). The most marked change was the increased abundance of many glycolytic enzymes together with the two fermentation enzymes pyruvate decarboxylase and alcohol dehydrogenase in the embryos during aging. We hypothesize that the decreased viability of hybrid rice seeds during artificial aging is caused by the development of hypoxic conditions in the embryos followed by ethanol accumulation.

  19. DNA secondary structure formation by DNA shuffling of the conserved domains of the Cry protein of Bacillus thuringiensis.

    Science.gov (United States)

    Pinzon, Efrain H; Sierra, Daniel A; Suarez, Miguel O; Orduz, Sergio; Florez, Alvaro M

    2017-01-01

    The Cry toxins, or δ-endotoxins, are a diverse group of proteins produced by Bacillus thuringiensis. While DNA secondary structures are biologically relevant, it is unknown if such structures are formed in regions encoding conserved domains of Cry toxins under shuffling conditions. We analyzed 5 holotypes that encode Cry toxins and that grouped into 4 clusters according to their phylogenetic closeness. The mean number of DNA secondary structures that formed and the mean Gibbs free energy [Formula: see text] were determined by an in silico analysis using different experimental DNA shuffling scenarios. In terms of spontaneity, shuffling efficiency was directly proportional to the formation of secondary structures but inversely proportional to ∆G. The results showed a shared thermodynamic pattern for each cluster and relationships among sequences that are phylogenetically close at the protein level. The regions of the cry11Aa, Ba and Bb genes that encode domain I showed more spontaneity and thus a greater tendency to form secondary structures (∆G) in the cry11Ba and Bb genes. Proteins that are phylogenetically closer to Cry11Ba and Cry11Bb, such as Cry2Aa and Cry18Aa, maintained the same thermodynamic pattern. More distant proteins, such as Cry1Aa, Cry1Ab, Cry30Aa and Cry30Ca, featured different thermodynamic patterns in their DNA. These results suggest the presence of thermodynamic variations associated to the formation of secondary structures and an evolutionary relationship with regions that encode highly conserved domains in Cry proteins. The findings of this study may have a role in the in silico design of cry gene assembly by DNA shuffling techniques.

  20. Evaluation of salivary gland protein 1 antibodies in patients with primary and secondary Sjogren's syndrome.

    Science.gov (United States)

    Shen, Long; Kapsogeorgou, Efstathia K; Yu, Meixing; Suresh, Lakshmanan; Malyavantham, Kishore; Tzioufas, Anthanasios G; Ambrus, Julian L

    2014-11-01

    Sjogren's syndrome (SS) has been associated with the expression of anti-Ro and anti-La antibodies. Anti-salivary gland protein 1 (SP1) antibodies have recently been identified in patients with SS. The current work involved a cross sectional study to determine whether anti-SP1 antibodies were identified in particular subgroups of patients with SS. The results of this study revealed that anti-SP1 antibodies were present in the sera of 52% of SS patients while anti-Ro/anti-La was present in 63% of patients. 19% of patients had anti-SP1 without anti-Ro/anti-La. Patients with SS and lymphoma expressed anti-Ro, anti-La and anti-SP1 together. In SS associated with RA, 50% had antibodies anti-SP1 while 40% had anti-Ro/anti-La. In conclusion, anti-SP1 antibodies are commonly seen in both primary and secondary SS and rarely in normal controls. Future studies are needed to determine the roles and timing of expression of anti-SP1 antibodies in Sjogren's syndrome.

  1. Protein secondary structure and orientation in silk as revealed by Raman spectromicroscopy.

    Science.gov (United States)

    Lefèvre, Thierry; Rousseau, Marie-Eve; Pézolet, Michel

    2007-04-15

    Taking advantage of recent advances in polarized Raman microspectroscopy, and based on a rational decomposition of the amide I band, the conformation and orientation of proteins have been determined for cocoon silks of the silkworms Bombyx mori and Samia cynthia ricini and dragline silks of the spiders Nephila clavipes and Nephila edulis. This study distinguished between band components due to beta-sheets, beta-turns, 3(1)-helices, and unordered structure for the four fibers. For B. mori, the beta-sheet content is 50%, which matches the proportion of residues that form the GAGAGS fibroin motifs. For the Nephila dragline and S. c. ricini cocoon, the beta-sheet content (36-37% and 45%, respectively) is higher than the proportion of residues that belong to polyalanine blocks (18% and 42%, respectively), showing that adjacent GGA motifs are incorporated into the beta-sheets. Nephila spidroins contain fewer beta-sheets and more flexible secondary structures than silkworm fibroins. The amorphous polypeptide chains are preferentially aligned parallel to the fiber direction, although their level of orientation is much lower than that of beta-sheets. Overall, the results show that the four silks exhibit a common molecular organization, with mixtures of different amounts of beta-sheets and flexible structures, which are organized with specific orientation levels.

  2. Yeast two-hybrid screening for proteins that interact with α1-adrenergic receptors

    Institute of Scientific and Technical Information of China (English)

    TanZHANG; QiXU; Feng-rongCHEN; Qi-deHAN; You-yiZHANG

    2004-01-01

    AIM: To find novel proteins that may bind to α1A-adrenergic receptor (α1A-AR) and investigate their interactions with the other two α1-AR subtypes (α1B-AR and α1D-AR) with an expectation to provide new leads for the function study of the receptors. METHODS: Yeast two-hybrid assay was performed to screen a human brain cDNA library using the C terminus of α1A-AR (α1A-AR-CT) as bait. X-Gal assay and o-nitrophenyl-beta-D-galactopyranoside (ONPG) assay were subsequently conducted to further qualitatively or quantitatively confirm the interactions between receptors and the three identified proteins. RESULTS: (1) Selection medium screening identified segments of bone morphogenetic protein-1 (BMP-1), active Bcr-related protein (Abr), and filamin-C as binding partners of α1A-AR-CT in yeast cells respectively. Besides, protein segments of BMP-1 and Abr could only specifically interact with α1A-AR-CT while filamin-C segment interacted with all three α1-AR subtypes. (2) In X-Gal assay, the cotransformants of α1A-AR-CT and BMP-1 segments turned strong blue at about 30 min while other positive transformants only developed weak blue at about 5-6 h. (3) In ONPG assay, interaction (shown in β-galactosidase activity) between α1A-AR-CT and BMP-1 segments was about 30 times stronger than that of control (P<0.01), while other positive interactions were only about 2-5 times as strong as those of controls (P<0.05). CONCLUSION: In yeast cells BMP-1, Abr and/or filamin-C could interact with three α1-AR subtypes, among which, interaction between BMP-1 and α1A-AR was the strongest while other interactions between proteins and receptors were relatively weak.

  3. Yeast two-hybrid screening for proteins that interact with α1-adrenergic receptors

    Institute of Scientific and Technical Information of China (English)

    Tan ZHANG; Qi XU; Feng-rong CHEN; Qi-de HAN; You-yi ZHANG

    2004-01-01

    AIM: To find novel proteins that may bind to α1A-adrenergic receptor (α1A-AR) and investigate their interactions with the other two α1-AR subtypes (α1B-AR and α1D-AR) with an expectation to provide new leads for the function study of the receptors. METHODS: Yeast two-hybrid assay was performed to screen a human brain cDNA library using the C terminus of α1A-AR (α1A-AR-CT) as bait. X-Gal assay and o-nitrophenyl-beta-D-galactopyranoside(ONPG) assay were subsequently conducted to further qualitatively or quantitatively confirm the interactions between receptors and the three identified proteins. RESULTS: (1) Selection medium screening identified segments of bone morphogenetic protein-1 (BMP-1), active Bcr-related protein (Abr), and filamin-C as binding partners ofα1A-AR-CT in yeast cells respectively. Besides, protein segments of BMP-1 and Abr could only specifically interact with α1A-AR-CT while filamin-C segment interacted with all three α1-AR subtypes. (2) In X-Gal assay, the cotransformants of α1A-AR-CT and BMP-1 segments turned strong blue at about 30 min while other positive transformants only developed weak blue at about 5-6 h. (3) In ONPG assay, interaction (shown in β-galactosidase activity) between α1A-AR-CT and BMP-1 segments was about 30 times stronger than that of control (P<0.01),while other positive interactions were only about 2-5 times as strong as those of controls (P<0.05). CONCLUSION:In yeast cells BMP-1, Abr and/or filamin-C could interact with three α1-AR subtypes, among which, interaction between BMP-1 and α1A-AR was the strongest while other interactions between proteins and receptors were relatively weak.

  4. A novel ZnO@Ag@Polypyrrole hybrid composite evaluated as anode material for zinc-based secondary cell.

    Science.gov (United States)

    Huang, Jianhang; Yang, Zhanhong; Feng, Zhaobin; Xie, Xiaoe; Wen, Xing

    2016-04-14

    A novel ZnO@Ag@Polypyrrole nano-hybrid composite has been synthesized with a one-step approach, in which silver-ammonia complex ion serves as oxidant to polymerize the pyrrole monomer. X-ray diffraction (XRD) and infrared spectroscopy (IR) show the existence of metallic silver and polypyrrole. The structure of nano-hybrid composites are characterized by scanning electron microscope (SEM) and transmission electron microscope (TEM), which demonstrates that the surface of ZnO is decorated with nano silver grain coated with polypyrrole. When evaluated as anode material, the silver grain and polypyrrole layer not only suppress the dissolution of discharge product, but also helps to uniform electrodeposition due to substrate effect and its good conductivity, thus shows better cycling performance than bare ZnO electrode does.

  5. A novel ZnO@Ag@Polypyrrole hybrid composite evaluated as anode material for zinc-based secondary cell

    Science.gov (United States)

    Huang, Jianhang; Yang, Zhanhong; Feng, Zhaobin; Xie, Xiaoe; Wen, Xing

    2016-04-01

    A novel ZnO@Ag@Polypyrrole nano-hybrid composite has been synthesized with a one-step approach, in which silver-ammonia complex ion serves as oxidant to polymerize the pyrrole monomer. X-ray diffraction (XRD) and infrared spectroscopy (IR) show the existence of metallic silver and polypyrrole. The structure of nano-hybrid composites are characterized by scanning electron microscope (SEM) and transmission electron microscope (TEM), which demonstrates that the surface of ZnO is decorated with nano silver grain coated with polypyrrole. When evaluated as anode material, the silver grain and polypyrrole layer not only suppress the dissolution of discharge product, but also helps to uniform electrodeposition due to substrate effect and its good conductivity, thus shows better cycling performance than bare ZnO electrode does.

  6. Sequential sup 1 H NMR assignments and secondary structure of an IgG-binding domain from protein G

    Energy Technology Data Exchange (ETDEWEB)

    Lian, L.Y.; Yang, J.C.; Derrick, J.P.; Sutcliffe, M.J.; Roberts, G.C.K. (Univ. of Leicester (England)); Murphy, J.P.; Goward, C.R.; Atkinson, T. (PHLS Center for Applied Microbiology and Research, Porton Down, Salisbury (England))

    1991-06-04

    Protein G is a member of a class of cell surface bacterial proteins from Streptococcus that bind IgG with high affinity. A fragment of molecular mass 6,988, which retains IgG-binding activity, has been generated by proteolytic digestion and analyzed by {sup 1}H NMR. Two-dimenstional DQF-COSY, TOCSY, and NOESY spectra have been employed to assign the {sup 1}H NMR spectrum of the peptide. Elements of regular secondary structure have been identified by using nuclear Overhauser enhancement, coupling constant, and amide proton exchange data. The secondary structure consists of a central {alpha}-helix (Ala28-Val44), flanked by two portions of {beta}-sheet (Val5-Val26 and Asp45-Lys62). This is a fundamentally different arrangement of secondary structure from that of protein A, which is made up of three consecutive {alpha}-helics in free solution. The authors conclude that the molecular mechanisms underlying the association of protein A and protein G with IgG are different.

  7. Hybrid phospholipid bilayer coatings for separations of cationic proteins in capillary zone electrophoresis.

    Science.gov (United States)

    Gallagher, Elyssia S; Adem, Seid M; Bright, Leonard K; Calderon, Isen A C; Mansfield, Elisabeth; Aspinwall, Craig A

    2014-04-01

    Protein separations in CZE suffer from nonspecific adsorption of analytes to the capillary surface. Semipermanent phospholipid bilayers have been used to minimize adsorption, but must be regenerated regularly to ensure reproducibility. We investigated the formation, characterization, and use of hybrid phospholipid bilayers (HPBs) as more stable biosurfactant capillary coatings for CZE protein separations. HPBs are formed by covalently modifying a support with a hydrophobic monolayer onto which a self-assembled lipid monolayer is deposited. Monolayers prepared in capillaries using 3-cyanopropyldimethylchlorosilane (CPDCS) or n-octyldimethylchlorosilane (ODCS) yielded hydrophobic surfaces with lowered surface free energies of 6.0 ± 0.3 or 0.2 ± 0.1 mJ m(-2) , respectively, compared to 17 ± 1 mJ m(-2) for bare silica capillaries. HPBs were formed by subsequently fusing vesicles comprised of 1,2-dilauroyl-sn-glycero-3-phosphocholine or 1,2-dioleoyl-sn-glycero-3-phosphocholine to CPDCS- or ODCS-modified capillaries. The resultant HPB coatings shielded the capillary surface and yielded reduced electroosmotic mobility (1.3-1.9 × 10(-4) cm(2) V(-1) s(-1) ) compared to CPDCS- and ODCS-modified or bare capillaries (3.6 ± 0.2 × 10(-4) cm(2) V(-1) s(-1) , 4.8 ± 0.4 × 10(-4) cm(2) V(-1) s(-1) , and 6.0 ± 0.2 × 10(-4) cm(2) V(-1) s(-1) , respectively), with increased stability compared to phospholipid bilayer coatings. HPB-coated capillaries yielded reproducible protein migration times (RSD ≤ 3.6%, n ≥ 6) with separation efficiencies as high as 200 000 plates/m.

  8. Synthesis and characterization of poly (vinyl alcohol hydrogels and hybrids for rMPB70 protein adsorption

    Directory of Open Access Journals (Sweden)

    Elizabeth Fonseca dos Reis

    2006-06-01

    Full Text Available Polyvinyl alcohol (PVA, PVA crosslinked with glutaraldehyde hydrogels (PVA/GA, PVA with tetraethylorthosilicate (PVA/TEOS and PVA/GA/TEOS hybrids with recombinant MPB70 protein (rMPB70 incorporated were chemically characterized by Fourier transform infrared spectroscopy (FTIR. FTIR spectra of PVA hydrogel samples showed the absorption regions of the specific chemical groups associated with poly(vinyl alcohol (-OH, -CO, -CH2 and PVA/GA confirming the formation of crosslinked hydrogel (duplet -CH. It was observed C-H broad alkyl stretching band (n = 2850-3000 cm-1 and typical strong hydroxyl bands for free alcohol (nonbonded -OH stretching band at n = 3600-3650 cm-1, and hydrogen bonded band (n = 3200-3570 cm-1. The most important vibration bands related to silane alcoxides have been verified on FTIR spectra of PVA/TEOS and PVA/GA/TEOS hybrids (Si-O-Si, n = 1080 and n = 450 cm-1; Si-OH, n = 950 cm-1. FTIR spectra of f PVA hydrogel with rMPB70 incorporated have indicated the specific groups usually found in protein structures, such as amides I, II and III, at 1680-1620 cm-1, 1580-1480 cm-1 and 1246 cm-1, respectively. These results have given strong evidence that recombinant protein rMPB70 was successfully adsorbed in the hydrogels and hybrids networks. These PVA based hydrogels and hybrids were further used in immunological assays (Enzyme-Linked Immunosorbent Assay - ELISA. Tests were performed to detect antibodies against rMPB70 protein in serum samples from bovines that were positive in the tuberculin test. Corresponding tests were carried out without PVA samples in microtiter plates as control. Similar results were found for commercially available microplates and PVA based hydrogels and hybrids developed in the present work regarding to immunoassay sensitivity and specificity response.

  9. Improving prediction of secondary structure, local backbone angles, and solvent accessible surface area of proteins by iterative deep learning.

    Science.gov (United States)

    Heffernan, Rhys; Paliwal, Kuldip; Lyons, James; Dehzangi, Abdollah; Sharma, Alok; Wang, Jihua; Sattar, Abdul; Yang, Yuedong; Zhou, Yaoqi

    2015-01-01

    Direct prediction of protein structure from sequence is a challenging problem. An effective approach is to break it up into independent sub-problems. These sub-problems such as prediction of protein secondary structure can then be solved independently. In a previous study, we found that an iterative use of predicted secondary structure and backbone torsion angles can further improve secondary structure and torsion angle prediction. In this study, we expand the iterative features to include solvent accessible surface area and backbone angles and dihedrals based on Cα atoms. By using a deep learning neural network in three iterations, we achieved 82% accuracy for secondary structure prediction, 0.76 for the correlation coefficient between predicted and actual solvent accessible surface area, 19° and 30° for mean absolute errors of backbone φ and ψ angles, respectively, and 8° and 32° for mean absolute errors of Cα-based θ and τ angles, respectively, for an independent test dataset of 1199 proteins. The accuracy of the method is slightly lower for 72 CASP 11 targets but much higher than those of model structures from current state-of-the-art techniques. This suggests the potentially beneficial use of these predicted properties for model assessment and ranking.

  10. Determining the Secondary Structure of Membrane Proteins and Peptides Via Electron Spin Echo Envelope Modulation (ESEEM) Spectroscopy

    Science.gov (United States)

    Liu, Lishan; Mayo, Daniel J.; Sahu, Indra D.; Zhou, Andy; Zhang, Rongfu; McCarrick, Robert M.; Lorigan, Gary A.

    2016-01-01

    Revealing detailed structural and dynamic information of membrane embedded or associated proteins is challenging due to their hydrophobic nature which makes NMR and X-ray crystallographic studies challenging or impossible. Electron paramagnetic resonance (EPR) has emerged as a powerful technique to provide essential structural and dynamic information for membrane proteins with no size limitations in membrane systems which mimic their natural lipid bilayer environment. Therefore, tremendous efforts have been devoted toward the development and application of EPR spectroscopic techniques to study the structure of biological systems such as membrane proteins and peptides. This chapter introduces a novel approach established and developed in the Lorigan lab to investigate membrane protein and peptide local secondary structures utilizing the pulsed EPR technique electron spin echo envelope modulation (ESEEM) spectroscopy. Detailed sample preparation strategies in model membrane protein systems and the experimental setup are described. Also, the ability of this approach to identify local secondary structure of membrane proteins and peptides with unprecedented efficiency is demonstrated in model systems. Finally, applications and further developments of this ESEEM approach for probing larger size membrane proteins produced by over-expression systems are discussed. PMID:26477255

  11. The secondary structure and the thermal unfolding parameters of the S-layer protein from Lactobacillus salivarius.

    Science.gov (United States)

    Lighezan, Liliana; Georgieva, Ralitsa; Neagu, Adrian

    2016-09-01

    Surface layer (S-layer) proteins have been identified in the cell envelope of many organisms, such as bacteria and archaea. They self-assemble, forming monomolecular crystalline arrays. Isolated S-layer proteins are able to recrystallize into regular lattices, which proved useful in biotechnology. Here we investigate the structure and thermal unfolding of the S-layer protein isolated from Lactobacillus salivarius 16 strain of human origin. Using circular dichroism (CD) spectroscopy, and the software CDSSTR from DICHROWEB, CONTINLL from CDPro, as well as CDNN, we assess the fractions of the protein's secondary structural elements at temperatures ranging between 10 and 90 °C, and predict the tertiary class of the protein. To study the thermal unfolding of the protein, we analyze the temperature dependence of the CD signal in the far- and near-UV domains. Fitting the experimental data by two- and three-state models of thermal unfolding, we infer the midpoint temperatures, the temperature dependence of the changes in Gibbs free energy, enthalpy, and entropy of the unfolding transitions in standard conditions, and the temperature dependence of the equilibrium constant. We also estimate the changes in heat capacity at constant pressure in standard conditions. The results indicate that the thermal unfolding of the S-layer protein from L. salivarius is highly cooperative, since changes in the secondary and tertiary structures occur simultaneously. The thermodynamic analysis predicts a "cold" transition, at about -3 °C, of both the secondary and tertiary structures. Our findings may be important for the use of S-layer proteins in biotechnology and in biomedical applications.

  12. Effects of heating on the secondary structure of proteins in milk powders using mid-infrared spectroscopy.

    Science.gov (United States)

    Ye, M P; Zhou, R; Shi, Y R; Chen, H C; Du, Y

    2017-01-01

    Milk powder is an important source of protein for adults and children. Protein is very sensitive to heat, which may influence people's usage of nutrients in milk powder. In this study, we describe the temperature-induced secondary structure of protein in milk powders. In this study, whole milk powder containing 24% protein and infant formula containing 11% protein were heated from 25 to 100°C. Attenuated total reflectance (ATR) spectra in the mid-infrared range 400-4,000cm(-1) were used to evaluate the heat effect on the secondary structure of protein in these 2 milk powders. The spectral changes as a function of temperature were maintained by difference spectra, second-derivative spectra and Gauss curve-fitted spectra. The secondary structures of protein in the whole milk powder began to change at 70°C and in the infant formula at 50°C. The β-sheet and β-turn structures in the whole milk powder both decreased in the range of 70 to 85°C, whereas α-helix structures increased. The loss of β-sheet and β-turn may contribute to the formation of α-helix in the whole milk powder. In infant formula powder, the β-sheet structure showed a decrease and then increase, whereas the β-turn structure showed an increase and then decrease in the range of 50 to 75°C, and no change was found for α-helix structures. This implies that heating may induce the transformation from β-sheet to β-turn. Overall, whole milk powder had better temperature stability than infant formula powder, probably because of the lower content of lipid in the former than in the latter. These results help us understand the thermal stability of protein in milk powder. Copyright © 2017 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  13. Resistance against Echinostoma caproni (Trematoda) secondary infections in mice is not dependent on the ileal protein production.

    Science.gov (United States)

    Cortés, Alba; Sotillo, Javier; Muñoz-Antolí, Carla; Martín-Grau, Carla; Esteban, J Guillermo; Toledo, Rafael

    2016-05-17

    Echinostoma caproni (Trematoda: Echinostomatidae) is an intestinal trematode, which has been widely employed to investigate the factors determining the rejection of intestinal helminths. Protein production patterns of intestinal epithelial cells are related to the infection-induced changes that determine the course of E. caproni infections. Herein, we compare the protein production profiles in the ileum of four experimental groups of mice: control; infected; dewormed and reinfected. Worm burdens were significantly lower in secondary infections, confirming the generation of partial resistance to homologous secondary infections in mice. However, quantitative comparison by 2D-DIGE showed that the protein production profile is similar in control and dewormed mice, and after primary and secondary E. caproni infections. These results showed that, unexpectedly, protein production changes in E. caproni infections are not responsible of resistance development. Fifty-one protein spots were differentially produced between control/treated and infected/reinfected mice and 37 of them were identified by mass spectrometry. The analysis of differentially abundant proteins indicate that cell metabolism and the regulation of proliferation and cell death are the most affected processes after primary and secondary E. caproni infections. These results provide new insights into the proteins involved in the regulation of tissue homeostasis after intestinal infection. Intestinal helminthiases are highly prevalent parasitic infections with about 1 billion people infected worldwide. In this scenario, better understanding of host-parasite relationships is needed to elucidate the factors that determine intestinal helminth rejection. The intestinal trematode Echinostoma caproni has been broadly employed in this field, with resistance against secondary homologous infections reported in mice. In this paper, new insights are provided in the regulation of tissue homeostasis after intestinal

  14. Interaction of CSFV E2 protein with swine host factors as detected by yeast two-hybrid system.

    Directory of Open Access Journals (Sweden)

    Douglas P Gladue

    Full Text Available E2 is one of the envelope glycoproteins of pestiviruses, including classical swine fever virus (CSFV and bovine viral diarrhea virus (BVDV. E2 is involved in several critical functions, including virus entry into target cells, induction of a protective immune response and virulence in swine. However, there is no information regarding any host binding partners for the E2 proteins. Here, we utilized the yeast two-hybrid system and identified fifty-seven host proteins as positive binding partners which bound E2 from both CSFV and BVDV with the exception of two proteins that were found to be positive for binding only to CSFV E2. Alanine scanning of CSFV E2 demonstrated that the binding sites for these cellular proteins on E2 are likely non-linear binding sites. The possible roles of the identified host proteins are discussed as the results presented here will be important for future studies to elucidate mechanisms of host protein-virus interactions during pestivirus infection. However, due to the limitations of the yeast two hybrid system, the proteins identified is not exhaustive and each interaction identified needs to be confirmed by independent experimental approaches in the context of virus-infected cells before any definitive conclusion can be drawn on relevance for the virus life cycle.

  15. The hybrid-cluster protein ('prismane protein') from Escherichia coli. Characterization of the hybrid-cluster protein, redox properties of the [2Fe-2S] and [4Fe-2S-2O] clusters and identification of an associated NADH oxidoreductase containing FAD and[2Fe-2S

    NARCIS (Netherlands)

    Berg, van den W.A.M.; Hagen, W.R.; Dongen, van W.M.A.M.

    2000-01-01

    Hybrid-cluster proteins ('prismane proteins') have previously been isolated and characterized from strictly anaerobic sulfate-reducing bacteria. These proteins contain two types of Fe/S clusters unique in biological systems: a [4Fe-4S] cubane cluster with spin-admixed S = 3/2 ground-state

  16. The hybrid-cluster protein ('prismane protein') from Escherichia coli. Characterization of the hybrid-cluster protein, redox properties of the [2Fe-2S] and [4Fe-2S-2O] clusters and identification of an associated NADH oxidoreductase containing FAD and[2Fe-2S

    NARCIS (Netherlands)

    Berg, van den W.A.M.; Hagen, W.R.; Dongen, van W.M.A.M.

    2000-01-01

    Hybrid-cluster proteins ('prismane proteins') have previously been isolated and characterized from strictly anaerobic sulfate-reducing bacteria. These proteins contain two types of Fe/S clusters unique in biological systems: a [4Fe-4S] cubane cluster with spin-admixed S = 3/2 ground-state paramagnet

  17. Orientation determination of protein helical secondary structures using linear and nonlinear vibrational spectroscopy.

    Science.gov (United States)

    Nguyen, Khoi Tan; Le Clair, Stéphanie V; Ye, Shuji; Chen, Zhan

    2009-09-10

    In this paper, we systematically presented the orientation determination of protein helical secondary structures using vibrational spectroscopic methods, particularly, nonlinear sum frequency generation (SFG) vibrational spectroscopy, along with linear vibrational spectroscopic techniques such as infrared spectroscopy and Raman scattering. SFG amide I signals can be collected using different polarization combinations of the input laser beams and output signal beam to measure the second-order nonlinear optical susceptibility components of the helical amide I modes, which are related to their molecular hyperpolarizability elements through the orientation distribution of these helices. The molecular hyperpolarizability elements of amide I modes of a helix can be calculated based on the infrared transition dipole moment and Raman polarizability tensor of the helix; these quantities are determined by using the bond additivity model to sum over the individual infrared transition dipole moments and Raman polarizability tensors, respectively, of the peptide units (or the amino acid residues). The computed overall infrared transition dipole moment and Raman polarizability tensor of a helix can be validated by experimental data using polarized infrared and polarized Raman spectroscopy on samples with well-aligned helical structures. From the deduced SFG hyperpolarizability elements and measured SFG second-order nonlinear susceptibility components, orientation information regarding helical structures can be determined. Even though such orientation information can also be measured using polarized infrared or polarized Raman amide I signals, SFG has a much lower detection limit, which can be used to study the orientation of a helix when its surface coverage is much lower than a monolayer. In addition, the combination of different vibrational spectroscopic techniques, for example, SFG and attenuated total reflectance Fourier transform infrared spectroscopy, provides more

  18. PSP_MCSVM: brainstorming consensus prediction of protein secondary structures using two-stage multiclass support vector machines.

    Science.gov (United States)

    Chatterjee, Piyali; Basu, Subhadip; Kundu, Mahantapas; Nasipuri, Mita; Plewczynski, Dariusz

    2011-09-01

    Secondary structure prediction is a crucial task for understanding the variety of protein structures and performed biological functions. Prediction of secondary structures for new proteins using their amino acid sequences is of fundamental importance in bioinformatics. We propose a novel technique to predict protein secondary structures based on position-specific scoring matrices (PSSMs) and physico-chemical properties of amino acids. It is a two stage approach involving multiclass support vector machines (SVMs) as classifiers for three different structural conformations, viz., helix, sheet and coil. In the first stage, PSSMs obtained from PSI-BLAST and five specially selected physicochemical properties of amino acids are fed into SVMs as features for sequence-to-structure prediction. Confidence values for forming helix, sheet and coil that are obtained from the first stage SVM are then used in the second stage SVM for performing structure-to-structure prediction. The two-stage cascaded classifiers (PSP_MCSVM) are trained with proteins from RS126 dataset. The classifiers are finally tested on target proteins of critical assessment of protein structure prediction experiment-9 (CASP9). PSP_MCSVM with brainstorming consensus procedure performs better than the prediction servers like Predator, DSC, SIMPA96, for randomly selected proteins from CASP9 targets. The overall performance is found to be comparable with the current state-of-the art. PSP_MCSVM source code, train-test datasets and supplementary files are available freely in public domain at: http://sysbio.icm.edu.pl/secstruct and http://code.google.com/p/cmater-bioinfo/

  19. Zeta potential, contact angles, and AFM imaging of protein conformation adsorbed on hybrid nanocomposite surfaces.

    Science.gov (United States)

    Pinho, Ana C; Piedade, Ana P

    2013-08-28

    The sputtering deposition of gold (Au) and poly(tetrafluoroethylene) (PTFE) was used to prepare a nanocomposite hybrid thin film suitable for protein adsorption while maintaining the native conformation of the biological material. The monolithic PTFE and the nanocomposite PTFE/Au thin films, with Au content up to 1 at %, were co-deposited by r.f. magnetron sputtering using argon as a discharge gas and deposited onto 316L stainless steel substrates, the most commonly used steel in biomaterials. The deposited thin films, before and after bovine serum albumin (BSA) adsorption, were thoroughly characterized with special emphasis on the surface properties/characteristics by atomic force microscopy (AFM), zeta potential, and static and dynamic contact angle measurements, in order to assess the relationship between structure and conformational changes. The influence of a pre-adsorbed peptide (RGD) was also evaluated. The nanotopographic and chemical changes induced by the presence of gold in the nanocomposite thin films enable RGD bonding, which is critical for the maintenance of the BSA native conformation after adsorption.

  20. Cryptic diversity in the Japanese mantis shrimp Oratosquilla oratoria (Crustacea: Squillidae): Allopatric diversification, secondary contact and hybridization.

    Science.gov (United States)

    Cheng, Jiao; Sha, Zhong-Li

    2017-05-16

    Mounting evidence of cryptic species in the marine realm emphasizes the necessity to thoroughly revise our current perceptions of marine biodiversity and species distributions. Here, we used mitochondrial cytochrome oxidase subunit I (mtDNA COI) and nuclear ribosomal internal transcribed spacer (nrDNA ITS) to investigate cryptic diversity and potential hybridization in the Japanese mantis shrimp Oratosquilla oratoria in the Northwestern (NW) Pacific. Both mitochondrial and nuclear gene genealogies revealed two cryptic species in this morphotaxon, which was further confirmed by extensive population-level analyses. One cryptic species is restricted to cold waters with a distribution range corresponding to temperate affinities, while the other dwelled warm waters influenced by the Kuroshio Current. Their divergence was postulated to be attributable to the vicariant event which resulted from the isolation of the Sea of Japan during the middle Pliocene (c. 3.85 Mya, 95% HPD 2.23-6.07 Mya). Allopatric speciation was maintained by limited genetic exchange due to their habitat preferences. Furthermore, the observation of recombinant nrDNA ITS sequence and intra-individual ITS polymorphism suggested recent hybridization event of the two cryptic species occurred in sympatric areas. Our study also illustrated that the Changjiang River outflow might act as an oceanic barrier to gene flow and promoted allopatric diversification in O. oratoria species complex.

  1. Self-Assembled DNA Hydrogel Based on Enzymatically Polymerized DNA for Protein Encapsulation and Enzyme/DNAzyme Hybrid Cascade Reaction.

    Science.gov (United States)

    Xiang, Binbin; He, Kaiyu; Zhu, Rong; Liu, Zhuoliang; Zeng, Shu; Huang, Yan; Nie, Zhou; Yao, Shouzhuo

    2016-09-07

    DNA hydrogel is a promising biomaterial for biological and medical applications due to its native biocompatibility and biodegradability. Herein, we provide a novel, versatile, and cost-effective approach for self-assembly of DNA hydrogel using the enzymatically polymerized DNA building blocks. The X-shaped DNA motif was elongated by terminal deoxynucleotidyl transferase (TdT) to form the building blocks, and hybridization between dual building blocks via their complementary TdT-polymerized DNA tails led to gel formation. TdT polymerization dramatically reduced the required amount of original DNA motifs, and the hybridization-mediated cross-linking of building blocks endows the gel with high mechanical strength. The DNA hydrogel can be applied for encapsulation and controllable release of protein cargos (for instance, green fluorescent protein) due to its enzymatic responsive properties. Moreover, this versatile strategy was extended to construct a functional DNAzyme hydrogel by integrating the peroxidase-mimicking DNAzyme into DNA motifs. Furthermore, a hybrid cascade enzymatic reaction system was constructed by coencapsulating glucose oxidase and β-galactosidase into DNAzyme hydrogel. This efficient cascade reaction provides not only a potential method for glucose/lactose detection by naked eye but also a promising modular platform for constructing a multiple enzyme or enzyme/DNAzyme hybrid system.

  2. Molecular epidemiological study on pre-X region of hepatitis B virus and identification of hepatocyte proteins interacting with whole-X protein by yeast two-hybrid

    Institute of Scientific and Technical Information of China (English)

    Qian Yang; Jun Cheng; Jing Dong; Jian Zhang; Shu-Lin Zhang

    2005-01-01

    AIM: To identify the pre-X region in hepatitis B virus (HBV)genome and to study the relationship between the genotype and the pre-X region. To investigate the biological function of whole-X (pre-X plus X) protein, we performed yeast two-hybrid to screen proteins in liver interacting with whole-X protein.METHODS: The pre-X region of HBV was amplified by polymerase chain reaction (PCR) method, and was cloned to pGEM Teasy vector. After the target region was sequenced, Vector 8.0 software was used to analyze the sequences. The whole-X bait plasmid was constructed by using yeast two-hybrid system 3. Yeast strain AH109 was transformed. After expression of the whole-X protein in AH109 yeast strains was proved, yeast two-hybrid screening was performed by mating AH109 with Y187 containing liver cDNA library plasmid. The mated yeast was plated on quadruple dropout medium and assayed for α-gal activity. The interaction between whole-X protein and the protein obtained from positive colonies was further confirmed by repeating yeast two-hybrid. After extracting and sequencing of plasmid from blue colonies, we carried out analysis by bioinformatics. RESULTS: After sequencing, 27 of 45 clones (60%) were found encoding the pre-X peptide. Eighteen of twenty-seven clones (66.7%) of pre-X coding sequences were found from genotype C. Five positive colonies that interacted with whole-X protein were obtained and sequenced; namely, fetuin B, UDP glycosyltransferase 1 family-polypeptide A9, mannose-P-dolichol utilization defect 1, fibrinogen-B beta polypeptide, transmembrane 4 superfamily member 4CD81 (TM4SF4).CONCLUSION: The pre-X gene exists in HBV genome.Genes of proteins interacting with whole-X protein in hepatocytes were successfully cloned. These results brought some new clues for studying the biological functions of whole-X protein.

  3. Using the yeast three-hybrid system to identify proteins that interact with a phloem-mobile mRNA

    Directory of Open Access Journals (Sweden)

    Sung Ki eCho

    2012-08-01

    Full Text Available Heterografting and RNA transport experiments have demonstrated the long-distance mobility of StBEL5 RNA, its role in controlling tuber formation, and the function of the 503-nt 3´ untranslated region (UTR of the RNA in mediating transport. Because the 3´ UTR of StBEL5 is a key element in regulating several aspects of RNA metabolism, a potato leaf cDNA library was screened using the 3´ UTR of StBEL5 as bait in the yeast three-hybrid system to identify putative partner RNA-binding proteins (RBPs. From this screen, 116 positive cDNA clones were isolated based on nutrient selection, HIS3 activation, and lacZ induction and were sequenced and classified. Thirty-five proteins that function in either RNA- or DNA-binding were selected from this pool. Seven were monitored for their expression profiles and further evaluated for their capacity to bind to the 3´ UTR of StBEL5 using β-galactosidase assays in the yeast three-hybrid system and RNA gel-shift assays. Among the final selections were two RNA-binding proteins, a zinc-finger protein, and one protein, StLSH10, from a family involved in light signaling. In this study, the yeast three-hybrid system is presented as a valuable tool to screen and verify interactions between target RNAs and putative RNA-binding proteins. These results can shed light on the dynamics and composition of plant RNA-protein complexes that function to regulate RNA metabolism.

  4. The recognition of multi-class protein folds by adding average chemical shifts of secondary structure elements.

    Science.gov (United States)

    Feng, Zhenxing; Hu, Xiuzhen; Jiang, Zhuo; Song, Hangyu; Ashraf, Muhammad Aqeel

    2016-03-01

    The recognition of protein folds is an important step in the prediction of protein structure and function. Recently, an increasing number of researchers have sought to improve the methods for protein fold recognition. Following the construction of a dataset consisting of 27 protein fold classes by Ding and Dubchak in 2001, prediction algorithms, parameters and the construction of new datasets have improved for the prediction of protein folds. In this study, we reorganized a dataset consisting of 76-fold classes constructed by Liu et al. and used the values of the increment of diversity, average chemical shifts of secondary structure elements and secondary structure motifs as feature parameters in the recognition of multi-class protein folds. With the combined feature vector as the input parameter for the Random Forests algorithm and ensemble classification strategy, we propose a novel method to identify the 76 protein fold classes. The overall accuracy of the test dataset using an independent test was 66.69%; when the training and test sets were combined, with 5-fold cross-validation, the overall accuracy was 73.43%. This method was further used to predict the test dataset and the corresponding structural classification of the first 27-protein fold class dataset, resulting in overall accuracies of 79.66% and 93.40%, respectively. Moreover, when the training set and test sets were combined, the accuracy using 5-fold cross-validation was 81.21%. Additionally, this approach resulted in improved prediction results using the 27-protein fold class dataset constructed by Ding and Dubchak.

  5. Screening of proteins that interact with human thrombopoietin receptor c-Mpl using yeast two-hybrid system

    Institute of Scientific and Technical Information of China (English)

    赵新燕[1; 冯丽冰[2; 周伟国[3; 戴卫列[4; 李昌本[5; 赵寿元[6

    2000-01-01

    Thrombopoietin (TPO) is the major cytokine involved in platelet production and exerts its effects via the receptor c-Mpl. The yeast two-hybrid system has been used to screen the proteins interacting with c-Mpl. First, the cDNA fragment of c-Mpl intracellular domain was cloned into two-hybrid vector pAS2, and the resulting plasmid is designated as pASMM. Then a human placenta cDNA library was screened using the pASMM as a target plasmid. Seven positive clones were isolated from 150 000 independent transformants. Sequence analysis of one of the positive clones demonstrates that a part of coding sequence of vimentin from 611 bp to 3’ end and flanking non-translation region was obtained. Therefore, there is an interaction between vimentin and TPO receptor. The results suggest that cytoskeletal protein may play an important role in TPO signal transduction pathway.

  6. Screening of proteins that interact with human thrombopoietin receptor c-Mpl using yeast two-hybrid system

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Thrombopoietin(TPO) is the major cytokine involved in platelet production and exerts its effects via the receptor c-Mpl.The yeast two-hybrid system has been used to screen the proteins interacting with c-Mpl.First,the cDNA fragment of c-Mpl intracellular domain was cloned into two-hybrid vector pAS2,and the resulting plasmid is designated as pASMM.Then a human placenta cDNA library was screened using the pASMM as a target plasmid.Seven positive clones were isolated from 150 000 independent transformants.Sequence analysis of one of the positive clones demonstrates that a part of coding sequence of vimentin from 611 bp to 3'end and flanking non-translation region was obtained.Therefore,there is an interaction between vimentin and TPO receptor.The results suggest that cytoskeletal protein may play an important role in TPO signal transduction pathway.

  7. Ne2 encodes protein(s) and the altered RuBisCO could be the proteomics leader of hybrid necrosis in wheat (Triticum aestivum L.)

    Indian Academy of Sciences (India)

    SI RUI PAN; XING LAI PAN; QIANYING PAN; YIN HONG SHI; LI ZHANG; YUN FAN; YAN RUI XUE

    2017-06-01

    Wheat hybrid necrosis is caused by the interaction of two dominant complementary genes, Ne1 and Ne2, located on chromosome arms 5BL and 2BS, respectively. The sequences of Ne1 or Ne2 have not yet been identified. It is also not known whether Ne1 and Ne2 are structural or regulatory genes. Understanding the proteomic pathways may provide a knowledge base for protecting or maximizing the photosynthesis capacity of wheat. Using DIGE and MALDITOF-TOF MS, the flag leaf protein patterns of the two unique F14 near-isogenic line siblings (NILs), the necrotic ShunMai 12Ah (Ne1Ne1Ne2Ne2) and the normal ShunMai 12Af (Ne1Ne1ne2ne2) were compared. Due to the presence or absence of Ne2, (i) three protein spots were expressed or disappeared, (ii) seven RuBisCO-related proteins were altered significantly, and (iii) 21 photosynthesis/glucose related proteins were changed significantly. Three hypotheses were deduced, (i) Ne1 may also encode protein(s), (ii) genetic maladjustment of RuBisCO could lead to early leaf death, and (iii) interactions between nuclear genes and chloroplast genes could determine photosynthetic traits. Our hypothetical model presents the RuBisCO pathway of hybrid necrosis in wheat and explains how Ne1 and Ne2 interact at molecular level.

  8. FAULT PROPAGATION AND EFFECTS ANALYSIS FOR DESIGNING AN ONLINE MONITORING SYSTEM FOR THE SECONDARY LOOP OF A NUCLEAR POWER PLANT PART OF A HYBRID ENERGY SYSTEM

    Energy Technology Data Exchange (ETDEWEB)

    Li, Huijuan; Diao, Xiaoxu; Li, Boyuan; Smidts, Carol; Bragg-Sitton, Shannon

    2017-03-01

    This paper studies the propagation and effects of faults of critical components that pertain to the secondary loop of a nuclear power plant found in Nuclear Hybrid Energy Systems (NHES). This information is used to design an on-line monitoring (OLM) system which is capable of detecting and forecasting faults that are likely to occur during NHES operation. In this research, the causes, features, and effects of possible faults are investigated by simulating the propagation of faults in the secondary loop. The simulation is accomplished by using the Integrated System Failure Analysis (ISFA). ISFA is used for analyzing hardware and software faults during the conceptual design phase. In this paper, the models of system components required by ISFA are initially constructed. Then, the fault propagation analysis is implemented, which is conducted under the bounds set by acceptance criteria derived from the design of an OLM system. The result of the fault simulation is utilized to build a database for fault detection and diagnosis, provide preventive measures, and propose an optimization plan for the OLM system.

  9. A comparative method for finding and folding RNA secondary structures within protein-coding regions

    DEFF Research Database (Denmark)

    Pedersen, Jakob Skou; Meyer, Irmtraud Margret; Forsberg, Roald;

    2004-01-01

    that RNA-DECODER's parameters can be automatically trained to successfully fold known secondary structures within the HCV genome. We scan the genomes of HCV and polio virus for conserved secondary-structure elements, and analyze performance as a function of available evolutionary information. On known...... secondary structures, RNA-DECODER shows a sensitivity similar to the programs MFOLD, PFOLD and RNAALIFOLD. When scanning the entire genomes of HCV and polio virus for structure elements, RNA-DECODER's results indicate a markedly higher specificity than MFOLD, PFOLD and RNAALIFOLD....

  10. Identification of proteins involved in the functioning of Riftia pachyptila symbiosis by Subtractive Suppression Hybridization

    Directory of Open Access Journals (Sweden)

    Lallier François H

    2007-09-01

    Full Text Available Abstract Background Since its discovery around deep sea hydrothermal vents of the Galapagos Rift about 30 years ago, the chemoautotrophic symbiosis between the vestimentiferan tubeworm Riftia pachyptila and its symbiotic sulfide-oxidizing γ-proteobacteria has been extensively studied. However, studies on the tubeworm host were essentially targeted, biochemical approaches. We decided to use a global molecular approach to identify new proteins involved in metabolite exchanges and assimilation by the host. We used a Subtractive Suppression Hybridization approach (SSH in an unusual way, by comparing pairs of tissues from a single individual. We chose to identify the sequences preferentially expressed in the branchial plume tissue (the only organ in contact with the sea water and in the trophosome (the organ housing the symbiotic bacteria using the body wall as a reference tissue because it is supposedly not involved in metabolite exchanges in this species. Results We produced four cDNA libraries: i body wall-subtracted branchial plume library (BR-BW, ii and its reverse library, branchial plume-subtracted body wall library (BW-BR, iii body wall-subtracted trophosome library (TR-BW, iv and its reverse library, trophosome-subtracted body wall library (BW-TR. For each library, we sequenced about 200 clones resulting in 45 different sequences on average in each library (58 and 59 cDNAs for BR-BW and TR-BW libraries respectively. Overall, half of the contigs matched records found in the databases with good E-values. After quantitative PCR analysis, it resulted that 16S, Major Vault Protein, carbonic anhydrase (RpCAbr, cathepsin and chitinase precursor transcripts were highly represented in the branchial plume tissue compared to the trophosome and the body wall tissues, whereas carbonic anhydrase (RpCAtr, myohemerythrin, a putative T-Cell receptor and one non identified transcript were highly specific of the trophosome tissue. Conclusion Quantitative PCR

  11. External cavity-quantum cascade laser infrared spectroscopy for secondary structure analysis of proteins at low concentrations

    Science.gov (United States)

    Schwaighofer, Andreas; Alcaráz, Mirta R.; Araman, Can; Goicoechea, Héctor; Lendl, Bernhard

    2016-09-01

    Fourier transform infrared (FTIR) and circular dichroism (CD) spectroscopy are analytical techniques employed for the analysis of protein secondary structure. The use of CD spectroscopy is limited to low protein concentrations (5 mg ml-1). Here we introduce a quantum cascade laser (QCL)-based IR transmission setup for analysis of protein and polypeptide secondary structure at concentrations as low as 0.25 mg ml-1 in deuterated buffer solution. We present dynamic QCL-IR spectra of the temperature-induced α-helix to β-sheet transition of poly-L-lysine. The concentration dependence of the α-β transition temperature between 0.25 and 10 mg ml-1 was investigated by QCL-IR, FTIR and CD spectroscopy. By using QCL-IR spectroscopy it is possible to perform IR spectroscopic analysis in the same concentration range as CD spectroscopy, thus enabling a combined analysis of biomolecules secondary structure by CD and IR spectroscopy.

  12. Cleavable DNA-protein hybrid molecular beacon: A novel efficient signal translator for sensitive fluorescence anisotropy bioassay.

    Science.gov (United States)

    Hu, Pan; Yang, Bin

    2016-01-15

    Due to its unique features such as high sensitivity, homogeneous format, and independence on fluorescent intensity, fluorescence anisotropy (FA) assay has become a hotspot of study in oligonucleotide-based bioassays. However, until now most FA probes require carefully customized structure designs, and thus are neither generalizable for different sensing systems nor effective to obtain sufficient signal response. To address this issue, a cleavable DNA-protein hybrid molecular beacon was successfully engineered for signal amplified FA bioassay, via combining the unique stable structure of molecular beacon and the large molecular mass of streptavidin. Compared with single DNA strand probe or conventional molecular beacon, the DNA-protein hybrid molecular beacon exhibited a much higher FA value, which was potential to obtain high signal-background ratio in sensing process. As proof-of-principle, this novel DNA-protein hybrid molecular beacon was further applied for FA bioassay using DNAzyme-Pb(2+) as a model sensing system. This FA assay approach could selectively detect as low as 0.5nM Pb(2+) in buffer solution, and also be successful for real samples analysis with good recovery values. Compatible with most of oligonucleotide probes' designs and enzyme-based signal amplification strategies, the molecular beacon can serve as a novel signal translator to expand the application prospect of FA technology in various bioassays.

  13. Analyzing temperature-induced transitions in disordered proteins by NMR spectroscopy and secondary chemical shift analyses

    DEFF Research Database (Denmark)

    Kjærgaard, Magnus; Poulsen, Flemming Martin; Kragelund, Birthe Brandt

    2012-01-01

    Intrinsically disordered proteins are abundant in nature and perform many important physiological functions. Multidimensional NMR spectroscopy has been crucial for the understanding of the conformational properties of disordered proteins and is increasingly used to probe their conformational...... ensembles. Compared to folded proteins, disordered proteins are more malleable and more easily perturbed by environmental factors. Accordingly, the experimental conditions and especially the temperature modify the structural and functional properties of disordered proteins. This chapter discusses practical...... aspects of NMR studies of temperature-induced structural changes in disordered proteins using chemical shifts....

  14. A Hybrid Approach to Structure and Function Modeling of G Protein-Coupled Receptors.

    Science.gov (United States)

    Latek, Dorota; Bajda, Marek; Filipek, Sławomir

    2016-04-25

    The recent GPCR Dock 2013 assessment of serotonin receptor 5-HT1B and 5-HT2B, and smoothened receptor SMO targets, exposed the strengths and weaknesses of the currently used computational approaches. The test cases of 5-HT1B and 5-HT2B demonstrated that both the receptor structure and the ligand binding mode can be predicted with the atomic-detail accuracy, as long as the target-template sequence similarity is relatively high. On the other hand, the observation of a low target-template sequence similarity, e.g., between SMO from the frizzled GPCR family and members of the rhodopsin family, hampers the GPCR structure prediction and ligand docking. Indeed, in GPCR Dock 2013, accurate prediction of the SMO target was still beyond the capabilities of most research groups. Another bottleneck in the current GPCR research, as demonstrated by the 5-HT2B target, is the reliable prediction of global conformational changes induced by activation of GPCRs. In this work, we report details of our protocol used during GPCR Dock 2013. Our structure prediction and ligand docking protocol was especially successful in the case of 5-HT1B and 5-HT2B-ergotamine complexes for which we provide one of the most accurate predictions. In addition to a description of the GPCR Dock 2013 results, we propose a novel hybrid computational methodology to improve GPCR structure and function prediction. This computational methodology employs two separate rankings for filtering GPCR models. The first ranking is ligand-based while the second is based on the scoring scheme of the recently published BCL method. In this work, we prove that the use of knowledge-based potentials implemented in BCL is an efficient way to cope with major bottlenecks in the GPCR structure prediction. Thereby, we also demonstrate that the knowledge-based potentials for membrane proteins were significantly improved, because of the recent surge in available experimental structures.

  15. Molecular characterization of a novel human hybrid-type receptor that binds the alpha2-macroglobulin receptor-associated protein

    DEFF Research Database (Denmark)

    Jacobsen, Linda; Madsen, P; Moestrup, S K;

    1996-01-01

    the corresponding cDNA. The gene, designated SORL1, maps to chromosome 11q 23/24 and encodes a 2214-residue type 1 receptor containing a furin cleavage site immediately preceding the N terminus determined in the purified protein. The receptor, designated sorLA-1, has a short cytoplasmic tail containing a tyrosine......-based internalization signal and a large external part containing (from the N-terminal): 1) a segment homologous to domains in the yeast vacuolar protein sorting 10 protein, Vps10p, that binds carboxypeptidase Y, 2) five tandemly arranged YWTD repeats and a cluster of 11 class A repeats characteristic of the low...... density lipoprotein receptor gene family receptors, and 3) six tandemly arranged fibronectin type III repeats also found in certain neural adhesion proteins. sorLA-1 may therefore be classified as a hybrid receptor. Northern blotting revealed specific mRNA transcripts in brain, spinal cord, and testis...

  16. Solid-film sampling method for the determination of protein secondary structure by Fourier transform infrared spectroscopy.

    Science.gov (United States)

    Zhang, Junting; Zhang, Xiaoning; Zhang, Fan; Yu, Shaoning

    2017-07-01

    Fourier transform infrared (FTIR) spectroscopy is one of the widely used vibrational spectroscopic methods in protein structural analysis. The protein solution sample loaded in demountable CaF2 liquid cell presents a challenge and is limited to high concentrations. Some researchers attempted the simpler solid-film sampling method for the collection of protein FTIR spectra. In this study, the solid-film sampling FTIR method was studied in detail. The secondary structure components of some globular proteins were determined by this sampling method, and the results were consistent with those data determined by the traditional solution sampling FTIR method and X-ray crystallography, indicating that this sampling method is feasible and efficient for the structural characterization of proteins. Furthermore, much lower protein concentrations (~0.5 mg/mL) were needed to obtain high-quality FTIR spectra, which expands the application of FTIR spectroscopy to almost the same concentration range used for circular dichroism and fluorescence spectroscopy, making comparisons among three commonly used techniques possible in protein studies. Graphical Abstract ᅟ.

  17. Mapping of magnesium and of different protein fragments in sea urchin teeth via secondary ion mass spectroscopy.

    Science.gov (United States)

    Robach, J S; Stock, S R; Veis, A

    2006-07-01

    Mature portions of sea urchin are comprised of a complex array of reinforcing elements yet are single crystals of high and very high Mg calcite. How a relatively poor structural material (calcite) can produce mechanically competent structures is of great interest. In teeth of the sea urchin Lytechinus variegatus, we recorded high-resolution secondary ion mass spectrometry (SIMS) maps of Mg, Ca ,and specific amino acid fragments of mineral-related proteins including aspartic acid (Asp). SIMS revealed strong colocalization of Asp residues with very high Mg. Demineralized specimens showed serine localization on membranes between crystal elements and reduced Mg and aspartic acid signals, further emphasizing colocalization of very high Mg with ready soluble Asp-rich protein(s). The association of Asp with nonequilibrium, very high magnesium calcite provides insight to the makeup of the macromolecules involved in the growth of two different composition calcites and the fundamental process of biomineralization.

  18. Depletion of phosphatidylglycerol head-group induces changes in oxygen evolution and protein secondary structures of photosystemⅡ

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The techniques of oxygen electrode polarography and Fourier transform infrared (FT-IR) spectroscopy were employed to explore the roles of polar head-group of phosphatidylglycerol (PG) molecules in the functional and structural aspects of photosystemⅡ(PSⅡ) through enzymatic approach. It was shown that the depletion of PG by treatment of phospholipase C (PLC) on PSⅡ particles caused the inhibition of oxygen evolving activity in PSⅡ. This effect also gave rise to changes in the protein secondary structures of PSⅡ, that is, an increase in α-helical conformation which is compensated by the loss of β-strand structures. It revealed that the head-group of PG molecules plays an important structural role in the maintenance of normal structure of PSⅡ proteins, which is required to maintain the appropriate physiological activity of the PSⅡ complex such as the oxygen evolving activity. It is suggested that there most probably exist hydrogen-bonding interactions between PG molecules and PSⅡ proteins.

  19. Surface-Induced Dissociation of Protein Complexes in a Hybrid Fourier Transform Ion Cyclotron Resonance Mass Spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Jing; Zhou, Mowei; Gilbert, Joshua D.; Wolff, Jeremy J.; Somogyi, Árpád; Pedder, Randall E.; Quintyn, Royston S.; Morrison, Lindsay J.; Easterling, Michael L.; Paša-Tolić, Ljiljana; Wysocki, Vicki H.

    2017-01-03

    Mass spectrometry continues to develop as a valuable tool in the analysis of proteins and protein complexes. In protein complex mass spectrometry studies, surface-induced dissociation (SID) has been successfully applied in quadrupole time-of-flight (Q-TOF) instruments. SID provides structural information on non-covalent protein complexes that is complementary to other techniques. However, the mass resolution of Q-TOF instruments can limit the information that can be obtained for protein complexes by SID. Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) provides ultrahigh resolution and ultrahigh mass accuracy measurements. In this study, an SID device was designed and successfully installed in a hybrid FT-ICR instrument in place of the standard gas collision cell. The SID-FT-ICR platform has been tested with several protein complex systems (homooligomers, a heterooligomer, and a protein-ligand complex, ranging from 53 kDa to 85 kDa), and the results are consistent with data previously acquired on Q-TOF platforms, matching predictions from known protein interface information. SID fragments with the same m/z but different charge states are well-resolved based on distinct spacing between adjacent isotope peaks, and the addition of metal cations and ligands can also be isotopically resolved with the ultrahigh mass resolution available in FT-ICR.

  20. Absence of a stable secondary structure is not a limitation for photoswitchable inhibitors of β-arrestin/β-Adaptin 2 protein-protein interaction.

    Science.gov (United States)

    Martín-Quirós, Andrés; Nevola, Laura; Eckelt, Kay; Madurga, Sergio; Gorostiza, Pau; Giralt, Ernest

    2015-01-22

    Many protein-protein interactions (PPIs) are mediated by short, often helical, linear peptides. Molecules mimicking these peptides have been used to inhibit their PPIs. Recently, photoswitchable peptides with little secondary structure have been developed as modulators of clathrin-mediated endocytosis. Here we perform a systematic analysis of a series of azobenzene-crosslinked peptides based on a β-arrestin P-long 20-mer peptide (BAP-long) sequence to assess the relevance of secondary structure in their interaction with β-adaptin 2 and to identify the design requirements for photoswitchable inhibitors of PPI (PIPPIs). We observe that flexible structures show a greater inhibitory capacity and enhanced photoswitching ability and that the absence of helical structures in free inhibitor peptide is not a limitation for PIPPI candidates. Therefore, our PIPPIs expand the field of potential inhibitors of PPIs to the wide group of flexible peptides, and we argue against using a stable secondary structure as a sole criterion when designing PIPPI candidates. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Ultrasensitive probing of the protein resistance of PEG surfaces by secondary ion mass spectrometry

    DEFF Research Database (Denmark)

    Kingshott, P.; McArthur, S.; Thissen, H.

    2002-01-01

    The highly sensitive surface analytical techniques X-ray photoelectron spectroscopy (XPS) and time-of-flight static secondary ion mass spectrometry (ToF-SIMS) were used to test the resistance of poly(ethylene glycol) (PEG) coatings towards adsorption of lysozyme (LYS) and fibronectin (FN). PEG co...

  2. Plant protein and secondary metabolites influence diet selection in a mammalian specialist herbivore

    Science.gov (United States)

    Amy C. Ulappa; Rick G. Kelsey; Graham G. Frye; Janet L. Rachlow; LIsa A. Shipley; Laura Bond; Xinzhu Pu; Jennifer Sorensen. Forbey

    2014-01-01

    For herbivores, nutrient intake is limited by the relatively low nutritional quality of plants and high concentrations of potentially toxic defensive compounds (plant secondary metabolites [PSMs]) produced by many plants. In response to phytochemical challenges, some herbivores selectively forage on plants with higher nutrient and lower PSM concentrations relative to...

  3. A hybrid process of biofiltration of secondary effluent followed by ozonation and short soil aquifer treatment for water reuse.

    Science.gov (United States)

    Zucker, I; Mamane, H; Cikurel, H; Jekel, M; Hübner, U; Avisar, D

    2015-11-01

    The Shafdan reclamation project facility (Tel Aviv, Israel) practices soil aquifer treatment (SAT) of secondary effluent with hydraulic retention times (HRTs) of a few months to a year for unrestricted agricultural irrigation. During the SAT, the high oxygen demand (>40 mg L(-1)) of the infiltrated effluent causes anoxic conditions and mobilization of dissolved manganese from the soil. An additional emerging problem is the occurrence of persistent trace organic compounds (TrOCs) in reclaimed water that should be removed prior to reuse. An innovative hybrid process based on biofiltration, ozonation and short SAT with ∼22 d HRT is proposed for treatment of the Shafdan secondary effluent to overcome limitations of the existing system and to reduce the SAT's physical footprint. Besides efficient removal of particulate matter to minimize clogging, coagulation/flocculation and filtration (5-6 m h(-1)) operated with the addition of hydrogen peroxide as an oxygen source efficiently removed dissolved organic carbon (DOC, to 17-22%), ammonium and nitrite. This resulted in reduced effluent oxygen demand during infiltration and oxidant (ozone) demand during ozonation by 23 mg L(-1) and 1.5 mg L(-1), respectively. Ozonation (1.0-1.2 mg O3 mg DOC(-1)) efficiently reduced concentrations of persistent TrOCs and supplied sufficient dissolved oxygen (>30 mg L(-1)) for fully oxic operation of the short SAT with negligible Mn(2+) mobilization (process provided DOC reduction of 88% to a value of 1.2 mg L(-1), similar to conventional SAT, while improving the removal of TrOCs and efficiently preventing manganese dissolution. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Expanding pH screening space using multiple droplets with secondary buffers for protein crystallization

    Science.gov (United States)

    Zhang, Chen-Yan; Dong, Chen; Lu, Xiao-Li; Wang, Bei; He, Tian-Yuan; Yang, Rui-Zeng; Lin, Hua-Long; Yang, Xue-Zhou; Yin, Da-Chuan

    2017-04-01

    We have proposed a rational strategy for selecting a suitable pH of protein solution based on protein biochemical properties. However, it is difficult to use this strategy for biochemical properties unknown proteins. In this paper, a simpler and faster pH buffer strategy was proposed. An additional pH-controlling buffer was added to crystallization droplet mixed with protein solution and commercial crystallization reagents to adjust its pH. The results revealed that protein crystallization success rates were enhanced by this strategy due to expansion of the pH screening space, which was closely related with protein solubility. Thus, the possibility of reaching supersaturation was increased by using this strategy.

  5. Exploring Protein Interactions on a Minimal Type II Polyketide Synthase Using a Yeast Two-Hybrid System

    Directory of Open Access Journals (Sweden)

    Gaetano Castaldo

    2005-01-01

    Full Text Available Interactions between proteins that form the ’minimal’ type II polyketide synthase in the doxorubicin producing biosynthetic pathway from Streptomyces peucetius were investigated using a yeast two-hybrid system (Y2H. Proteins that function as the so called ’chain length factor’ (DpsB and putative transacylase (DpsD were found to interact with the ketosynthase subunit (DpsA, which can also interact with itself. On the basis of these results we propose a head-to-tail homodimeric structure, which is consistent with previously published in vivo mutagenesis studies. No interactions were found between the acyl-carrier protein (DpsG and any of the other constituents of the complex, however, transient interactions, not detectable using the Y2H system, cannot be discounted and warrant further investigation.

  6. Citrus psorosis virus: nucleotide sequencing of the coat protein gene and detection by hybridization and RT-PCR.

    Science.gov (United States)

    Barthe, G A; Ceccardi, T L; Manjunath, K L; Derrick, K S

    1998-06-01

    Citrus psorosis virus (CPV) is a multicomponent ssRNA virus with a coat protein of approximately 48 kDa. The viral genome is encapsidated in short and long particles that are readily separated by sucrose density-gradient centrifugation. CPV particles are spiral filaments that are referred to as spiroviruses (SV). A cDNA library of purified short particles from isolate CPV-4 was prepared in a Lambda vector and screened for expression of the coat protein gene (CPG) with a monoclonal antibody to the coat protein. Sequencing of immunopositive clones indicated a single ORF encoding a 49 kDa protein. This ORF, when expressed in E. coli, gave a protein identical in size and immunoreactivity to the CPV coat protein. A full-length clone of the CPG was transcribed and used in Northern hybridization assays to establish that short particle RNA of CPV is negative sense and contains the CPG. Moreover, the CPG was not found on RNA extracted from long particles or on the sedimentable dsRNA from CPV infected tissue. RT-PCR assays were developed for the amplification of a 600 bp fragment of CPG and for the complete CPG (1317 bp). The 600 bp fragment from a biologically and serologically different isolate, CPV-6, was cloned, sequenced and found to share 86% (nucleotide) and 96% (amino acid) identity with CPV-4. BLAST analysis of sequences from CPV-4 and CPV-6 detected no significant nucleic acid or protein similarity with any known viral sequences.

  7. A novel Multi-Agent Ada-Boost algorithm for predicting protein structural class with the information of protein secondary structure.

    Science.gov (United States)

    Fan, Ming; Zheng, Bin; Li, Lihua

    2015-10-01

    Knowledge of the structural class of a given protein is important for understanding its folding patterns. Although a lot of efforts have been made, it still remains a challenging problem for prediction of protein structural class solely from protein sequences. The feature extraction and classification of proteins are the main problems in prediction. In this research, we extended our earlier work regarding these two aspects. In protein feature extraction, we proposed a scheme by calculating the word frequency and word position from sequences of amino acid, reduced amino acid, and secondary structure. For an accurate classification of the structural class of protein, we developed a novel Multi-Agent Ada-Boost (MA-Ada) method by integrating the features of Multi-Agent system into Ada-Boost algorithm. Extensive experiments were taken to test and compare the proposed method using four benchmark datasets in low homology. The results showed classification accuracies of 88.5%, 96.0%, 88.4%, and 85.5%, respectively, which are much better compared with the existing methods. The source code and dataset are available on request.

  8. Teaching Genetics in Secondary Classrooms: A Linguistic Analysis of Teachers' Talk about Proteins

    Science.gov (United States)

    Thörne, Karin; Gericke, Niklas

    2014-01-01

    This study investigates Swedish biology teachers' inclusion of proteins when teaching genetics in grade nine (students 15-16 years old). For some years, there has been a call to give attention to proteins when teaching genetics as a means of linking the concepts "gene" and "trait". Students are known to have problems with…

  9. Teaching Genetics in Secondary Classrooms: A Linguistic Analysis of Teachers' Talk about Proteins

    Science.gov (United States)

    Thörne, Karin; Gericke, Niklas

    2014-01-01

    This study investigates Swedish biology teachers' inclusion of proteins when teaching genetics in grade nine (students 15-16 years old). For some years, there has been a call to give attention to proteins when teaching genetics as a means of linking the concepts "gene" and "trait". Students are known to have problems with this…

  10. Teaching Genetics in Secondary Classrooms: A Linguistic Analysis of Teachers' Talk about Proteins

    Science.gov (United States)

    Thörne, Karin; Gericke, Niklas

    2014-01-01

    This study investigates Swedish biology teachers' inclusion of proteins when teaching genetics in grade nine (students 15-16 years old). For some years, there has been a call to give attention to proteins when teaching genetics as a means of linking the concepts "gene" and "trait". Students are known to have problems with this…

  11. Toward a better understanding of structural divergences in proteins using different secondary structure assignment methods

    Science.gov (United States)

    Rocha, L. F. O.

    2014-04-01

    Structural disagreements on the location and quantity of secondary structure segments comprise a current challenging problem leading to several limitations for theoretical and applied research. This paper presents 116 structural evaluations by steric and hydrophobic interactions in secondary structures within a specific template group; determines simple prediction rules that calculate 88 occurrence frequencies of large and hydrophobic residues into target intra- and inter-subgroups with structure disagreements; and utilizes 42 comparisons between the methods PROMOTIF, DSSP and STRIDE. In the stereochemical predictions inside the subgroups there are predominantly excellent and/or good success amounts with their expected values, and the disclosure of a triple molecular mechanism by residue volumetric and hydrophobic ingredients. The method comparisons show high compatibility scores between them, therefore validating their seemingly incompatible assignments. Thus, the nonconsensual ascriptions are better understood and appreciated. Furthermore, such results suggest a broad utility of our assignment method for other benchmark datasets and known methods.

  12. Amino acid composition analysis of secondary transport proteins from Escherichia coli with relation to functional classification, ligand specificity and structure.

    Science.gov (United States)

    Saidijam, Massoud; Patching, Simon G

    2015-01-01

    We have performed an amino acid composition (AAC) analysis of the complete sequences for 235 secondary transport proteins from Escherichia coli, which have functions in the uptake and export of organic and inorganic metabolites, efflux of drugs and in controlling membrane potential. This revealed the trends in content for specific amino acid types and for combinations of amino acids with similar physicochemical properties. In certain proteins or groups of proteins, the so-called spikes of high content for a specific amino acid type or combination of amino acids were identified and confirmed statistically, which in some cases could be directly related to function and ligand specificity. This was prevalent in proteins with a function of multidrug or metal ion efflux. Any tool that can help in identifying bacterial multidrug efflux proteins is important for a better understanding of this mechanism of antibiotic resistance. Phylogenetic analysis based on sequence alignments and comparison of sequences at the N- and C-terminal ends confirmed transporter Family classification. Locations of specific amino acid types in some of the proteins that have crystal structures (EmrE, LacY, AcrB) were also considered to help link amino acid content with protein function. Though there are limitations, this work has demonstrated that a basic analysis of AAC is a useful tool to use in combination with other computational and experimental methods for classifying and investigating function and ligand specificity in a large group of transport or other membrane proteins, including those that are molecular targets for development of new drugs.

  13. Secondary and quaternary structures of the (+)-pinoresinol-forming dirigent protein.

    Science.gov (United States)

    Halls, Steven C; Lewis, Norman G

    2002-07-30

    The (+)-pinoresinol-forming dirigent protein is the first protein capable of stereoselectively coupling two coniferyl alcohol derived radical species, in this case to give the 8-8' linked (+)-pinoresinol. Only dimeric cross-linked dirigent protein structures were isolated when 1-ethyl-3-[3-(dimethylamino)-propyl]carbodiimide was used as cross-linking agent, whereas the associated oxidase, presumed to generate the corresponding free radical substrate, was not detected. Native Forsythia intermedia dirigent protein isoforms were additionally subjected to MALDI-TOF and ESI-MS analyses, which established the presence of both monomeric masses of 23-25 kDa and dimeric dirigent protein species ranging from 46 to 49 kDa. Analytical ultracentrifugation, sedimentation velocity, and sedimentation equilibrium analyses of the native dirigent protein in open solution confirmed further its dimeric nature as well as a propensity to aggregate, with the latter being dependent upon both temperature and solution ionic strength. Circular dichroism analysis suggested that the dirigent protein was primarily composed of beta-sheet and loop structures.

  14. Optimizations of force-field parameters for protein systems with the secondary-structure stability and instability

    CERN Document Server

    Sakae, Yoshitake

    2013-01-01

    We propose a novel method for refining force-field parameters of protein systems. In this method, the agreement of the secondary-structure stability and instability between the protein conformations obtained by experiments and those obtained by molecular dynamics simulations is used as a criterion for the optimization of force-field parameters. As an example of the applications of the present method, we refined the force-field parameter set of the AMBER ff99SB force field by searching the torsion-energy parameter spaces of $\\psi$ (N-C$^{\\alpha}$-C-N) and $\\zeta$ (C$^{\\beta}$-C$^{\\alpha}$-C-N) of the backbone dihedral angles. We then performed folding simulations of $\\alpha$-helical and $\\beta$-hairpin peptides, using the optimized force field. The results showed that the new force-field parameters gave structures more consistent with the experimental implications than the original AMBER ff99SB force field.

  15. Disassembly intermediates of RbsD protein remain oligomeric despite the loss of an intact secondary structure

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    Many proteins exist as homo-oligomers in living organisms wherein the change of oligomeric status apparently serves as an effective means for modulating their biological activities. We have previously reported that the homo-decameric RbsD from Escherichia coli undergoes stepwise disassembly and non-stepwise reassembly. Here the structural status of the urea-induced RbsD disassembly intermediates was examined, mainly using urea-containing polyacrylamide gel electrophoresis and chemical cross-linking. Such intermediates were found to remain oligomeric while losing their intact secondary structures. Such disassembly intermediates were able to effectively refold when the concentration of the urea denaturant was reduced to a lower level, or to refold/reassemble into the native decamers when urea was completely removed, as detected by non-denaturing polyacrylamide gel electrophoresis. These novel observations strongly suggest that the assembly of oligomeric proteins may occur before the completion of subunit folding.

  16. Tobacco calmodulin-like protein provides secondary defense by binding to and directing degradation of virus RNA silencing suppressors.

    Science.gov (United States)

    Nakahara, Kenji S; Masuta, Chikara; Yamada, Syouta; Shimura, Hanako; Kashihara, Yukiko; Wada, Tomoko S; Meguro, Ayano; Goto, Kazunori; Tadamura, Kazuki; Sueda, Kae; Sekiguchi, Toru; Shao, Jun; Itchoda, Noriko; Matsumura, Takeshi; Igarashi, Manabu; Ito, Kimihito; Carthew, Richard W; Uyeda, Ichiro

    2012-06-19

    RNA silencing (RNAi) induced by virus-derived double-stranded RNA (dsRNA), which is in a sense regarded as a pathogen-associated molecular pattern (PAMP) of viruses, is a general plant defense mechanism. To counteract this defense, plant viruses express RNA silencing suppressors (RSSs), many of which bind to dsRNA and attenuate RNAi. We showed that the tobacco calmodulin-like protein, rgs-CaM, counterattacked viral RSSs by binding to their dsRNA-binding domains and sequestering them from inhibiting RNAi. Autophagy-like protein degradation seemed to operate to degrade RSSs with the sacrifice of rgs-CaM. These RSSs could thus be regarded as secondary viral PAMPs. This study uncovered a unique defense system in which an rgs-CaM-mediated countermeasure against viral RSSs enhanced host antiviral RNAi in tobacco.

  17. The AngFus3 Mitogen-Activated Protein Kinase Controls Hyphal Differentiation and Secondary Metabolism in Aspergillus niger.

    Science.gov (United States)

    Priegnitz, Bert-Ewald; Brandt, Ulrike; Pahirulzaman, Khomaizon A K; Dickschat, Jeroen S; Fleißner, André

    2015-06-01

    Adaptation to a changing environment is essential for the survival and propagation of sessile organisms, such as plants or fungi. Filamentous fungi commonly respond to a worsening of their growth conditions by differentiation of asexually or sexually produced spores. The formation of these specialized cell types is, however, also triggered as part of the general life cycle by hyphal age or density. Spores typically serve for dispersal and, therefore, translocation but can also act as resting states to endure times of scarcity. Eukaryotic differentiation in response to environmental and self-derived signals is commonly mediated by three-tiered mitogen-activated protein (MAP) kinase signaling cascades. Here, we report that the MAP kinase Fus3 of the black mold Aspergillus niger (AngFus3) and its upstream kinase AngSte7 control vegetative spore formation and secondary metabolism. Mutants lacking these kinases are defective in conidium induction in response to hyphal density but are fully competent in starvation-induced sporulation, indicating that conidiation in A. niger is triggered by various independent signals. In addition, the mutants exhibit an altered profile of volatile metabolites and secrete dark pigments into the growth medium, suggesting a dysregulation of the secondary metabolism. By assigning the AngFus3 MAP kinase pathway to the transduction of a potentially self-derived trigger, this work contributes to the unraveling of the intricate signaling networks controlling fungal differentiation. Moreover, our data further support earlier observations that differentiation and secondary metabolism are tightly linked in filamentous fungi.

  18. Protein loop modeling using a new hybrid energy function and its application to modeling in inaccurate structural environments.

    Directory of Open Access Journals (Sweden)

    Hahnbeom Park

    Full Text Available Protein loop modeling is a tool for predicting protein local structures of particular interest, providing opportunities for applications involving protein structure prediction and de novo protein design. Until recently, the majority of loop modeling methods have been developed and tested by reconstructing loops in frameworks of experimentally resolved structures. In many practical applications, however, the protein loops to be modeled are located in inaccurate structural environments. These include loops in model structures, low-resolution experimental structures, or experimental structures of different functional forms. Accordingly, discrepancies in the accuracy of the structural environment assumed in development of the method and that in practical applications present additional challenges to modern loop modeling methods. This study demonstrates a new strategy for employing a hybrid energy function combining physics-based and knowledge-based components to help tackle this challenge. The hybrid energy function is designed to combine the strengths of each energy component, simultaneously maintaining accurate loop structure prediction in a high-resolution framework structure and tolerating minor environmental errors in low-resolution structures. A loop modeling method based on global optimization of this new energy function is tested on loop targets situated in different levels of environmental errors, ranging from experimental structures to structures perturbed in backbone as well as side chains and template-based model structures. The new method performs comparably to force field-based approaches in loop reconstruction in crystal structures and better in loop prediction in inaccurate framework structures. This result suggests that higher-accuracy predictions would be possible for a broader range of applications. The web server for this method is available at http://galaxy.seoklab.org/loop with the PS2 option for the scoring function.

  19. Screening of cellular proteins that interact with the classical swine fever virus non-structural protein 5A by yeast two-hybrid analysis

    Indian Academy of Sciences (India)

    Chengcheng Zhang; Lei He; Kai Kang; Heng Chen; Lei Xu; Yanming Zhang

    2014-03-01

    Classical swine fever virus (CSFV), the pathogen of classical swine fever (CSF), causes severe hemorrhagic fever and vascular necrosis in domestic pigs and wild boar. A large number of evidence has proven that non-structural 5A (NS5A) is not only a very important part of viral replication complex, but also can regulate host cell’s function; however, the underlying mechanisms remain poorly understood. In the current study, aiming to find more clues in understanding the molecular mechanisms of CSFV NS5A’s function, the yeast two-hybrid (Y2H) system was adopted to screen for CSFV NS5A interactive proteins in the cDNA library of the swine umbilical vein endothelial cell (SUVEC). Alignment with the NCBI database revealed 16 interactive proteins: DDX5, PSMC3, NAV1, PHF5A, GNB2L1, CSDE1, HSPA8, BRMS1, PPP2R3C, AIP, TMED10, POLR1C, TMEM70, METAP2, CHORDC1 and COPS6. These proteins are mostly related to gene transcription, protein folding, protein degradation and metabolism. The interactions detected by the Y2H system should be considered as preliminary results. Since identifying novel pathways and host targets, which play essential roles during infection, may provide potential targets for therapeutic development. The finding of proteins obtained from the SUVEC cDNA library that interact with the CSFV NS5A protein provide valuable information for better understanding the interactions between this viral protein and the host target proteins.

  20. Characterizing the secondary protein structure of black widow dragline silk using solid-state NMR and X-ray diffraction.

    Science.gov (United States)

    Jenkins, Janelle E; Sampath, Sujatha; Butler, Emily; Kim, Jihyun; Henning, Robert W; Holland, Gregory P; Yarger, Jeffery L

    2013-10-14

    This study provides a detailed secondary structural characterization of major ampullate dragline silk from Latrodectus hesperus (black widow) spiders. X-ray diffraction results show that the structure of black widow major ampullate silk fibers is comprised of stacked β-sheet nanocrystallites oriented parallel to the fiber axis and an amorphous region with oriented (anisotropic) and isotropic components. The combination of two-dimensional (2D) (13)C-(13)C through-space and through-bond solid-state NMR experiments provide chemical shifts that are used to determine detailed information about the amino acid motif secondary structure in black widow spider dragline silk. Individual amino acids are incorporated into different repetitive motifs that make up the majority of this protein-based biopolymer. From the solid-state NMR measurements, we assign distinct secondary conformations to each repetitive amino acid motif and, hence, to the amino acids that make up the motifs. Specifically, alanine is incorporated in β-sheet (poly(Alan) and poly(Gly-Ala)), 3(1)-helix (poly(Gly-Gly-Xaa), and α-helix (poly(Gln-Gln-Ala-Tyr)) components. Glycine is determined to be in β-sheet (poly(Gly-Ala)) and 3(1)-helical (poly(Gly-Gly-X(aa))) regions, while serine is present in β-sheet (poly(Gly-Ala-Ser)), 3(1)-helix (poly(Gly-Gly-Ser)), and β-turn (poly(Gly-Pro-Ser)) structures. These various motif-specific secondary structural elements are quantitatively correlated to the primary amino acid sequence of major ampullate spidroin 1 and 2 (MaSp1 and MaSp2) and are shown to form a self-consistent model for black widow dragline silk.

  1. Bone Formation in a Rat Tibial Defect Model Using Carboxymethyl Cellulose/BioC/Bone Morphogenic Protein-2 Hybrid Materials

    Directory of Open Access Journals (Sweden)

    Sang-Heon Song

    2014-01-01

    Full Text Available The objective of this study was to assess whether carboxymethyl cellulose- (CMC- based hydrogel containing BioC (biphasic calcium phosphate (BCP; tricalcium phosphate (TCP : hydroxyapatite (Hap = 70 : 30 and bone morphogenic protein-2 (BMP-2 led to greater bone formation than CMC-based hydrogel containing BioC without BMP-2. In order to demonstrate bone formation at 4 and 8 weeks, plain radiographs, microcomputed tomography (micro-CT evaluation, and histological studies were performed after implantation of all hybrid materials on an 8 mm defect of the right tibia in rats. The plain radiographs and micro-CT analyses revealed that CMC/BioC/BMP-2 (0.5 mg led to much greater mineralization at 4 and 8 weeks than did CMC/BioC or CMC/Bio/BMP-2 (0.1 mg. Likewise, bone formation and bone remodeling studies revealed that CMC/BioC/BMP-2 (0.5 mg led to a significantly greater amount of bone formation and bone remodeling at 4 and 8 weeks than did CMC/BioC or CMC/BioC/BMP-2 (0.1 mg. Histological studies revealed that mineralized bone tissue was present around the whole circumference of the defect site with CMC/BioC/BMP-2 (0.5 mg but not with CMC/BioC or CMC/BioC/BMP-2 (0.1 mg at 4 and 8 weeks. These results suggest that CMC/BioC/BMP-2 hybrid materials induced greater bone formation than CMC/BioC hybrid materials. Thus, CMC/BioC/BMP-2 hybrid materials may be used as an injectable substrate to regenerate bone defects.

  2. Screening of hepatocyte proteins binding to NS5ABP37 protein by yeast-two hybrid system

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    Objective To investigate the biological function of NS5ABP37 and to look for proteins interacting with NS5ABP37 protein in hepatocytes.Methods We constructed bait plasmid expressing NS5ABP37 protein of hepatitis C virus(HCV)by cloning the gene of NS5ABP37 protein into pGBKT7,then the recombinant plasmid DNA was transformed into yeast AH109(α type).The transformed yeast AH109 was mated with yeast Y187(α type)containing liver cDNA library plasmid in 2×YPDA medium.Diploid yeast was plated on synthetic dropout ...

  3. Secondary structure, dynamics, and architecture of the p7 membrane protein from hepatitis C virus by NMR spectroscopy.

    Science.gov (United States)

    Cook, Gabriel A; Opella, Stanley J

    2011-06-01

    P7 is a small membrane protein that is essential for the infectivity of hepatitis C virus. Solution-state NMR experiments on p7 in DHPC micelles, including hydrogen/deuterium exchange, paramagnetic relaxation enhancement and bicelle 'q-titration,' demonstrate that the protein has a range of dynamic properties and distinct structural segments. These data along with residual dipolar couplings yield a secondary structure model of p7. We were able to confirm previous proposals that the protein has two transmembrane segments with a short interhelical loop containing the two basic residues K33 and R35. The 63-amino acid protein has a remarkably complex structure made up of seven identifiable sections, four of which are helical segments with different tilt angles and dynamics. A solid-state NMR two-dimensional separated local field spectrum of p7 aligned in phospholipid bilayers provided the tilt angles of two of these segments. A preliminary structural model of p7 derived from these NMR data is presented.

  4. Single-pass attenuated total reflection Fourier transform infrared spectroscopy for the prediction of protein secondary structure.

    Science.gov (United States)

    Smith, Brandye M; Oswald, Lisa; Franzen, Stefan

    2002-07-15

    Principal component regression (PCR) was applied to a spectral library of proteins in H2O solution acquired by single-pass attenuated total reflectance (ATR) Fourier transform infrared (FT-IR) spectroscopy. PCR was used to predict the secondary structure content, principally alpha-helical and the beta-sheet content, of proteins within a spectral library. Quantitation of protein secondary structure content was performed as a proof of principle that use of single-pass ATR-FT-IR is an appropriate method for protein secondary structure analysis. The ATR-FT-IR method permits acquisition of the entire spectral range from 700 to 3900 cm(-1) without significant interference from water bands. An "inside model space" bootstrap and a genetic algorithm (GA) were used to improve prediction results. Specifically, the bootstrap was utilized to increase the number of replicates for adequate training and validation of the PCR model. The GA was used to optimize PCR parameters, particularly wavenumber selection. The use of the bootstrap allowed for adequate representation of variability in the amide A, amide B, and C-H stretching regions due to differing levels of sample hydration. Implementation of the bootstrap improved the robustness of the PCR models significantly; however, the use of a GA only slightly improved prediction results. Two spectral libraries are presented where one was better suited for beta-sheet content prediction and the other for alpha-helix content prediction. The GA-optimized PCR method for alpha-helix content prediction utilized 120 wavenumbers within the amide I, II, A, B, and IV and the C-H stretching regions and 18 factors. For beta-sheet content predictions, 580 wavenumbers within the amide I, II, A, and B and the C-H stretching regions and 18 factors were used. The validation results using these two methods yielded an average absolute error of 1.7% for alpha-helix content prediction and an average absolute error of 2.3% for beta-sheet content prediction

  5. Screening for proteins interacting with MCM7 in human lung cancer library using yeast two hybrid system

    Directory of Open Access Journals (Sweden)

    Yuchen HAN

    2008-08-01

    Full Text Available Background and objective MCM7 is a subunit of the MCM complex that plays a key role in DNA replication initiation. But little is known about its interaction proteins. In this study yeast two hybrid screening was used to identify the MCM7 interacting proteins. Methods Yeast expression vector containing human full length MCM7-pGBKT7 plasmid was constructed, and with a library of cDNAs from human lung cancer-pACT2 plasmid was transformed into yeast strain AH109, and was electively grew in X-a-gal auxotrophy medium SD/-Trp-Leu-His-Ade, and the blue colonies were picked up, the plasmid of the yeast colonies was extracted , and transformed into E. Coli to extract DNA and performed sequence analysis. Results Eleven proteins were identified which could specifically interact with MCM7 proteins, among these five were cytoskeleton proteins, six were enzymes, kinases and related receptors. Conclusion The investigation provides functional clues for further exploration of MCM7 gene.

  6. Multiple abdominal veins thrombosis secondary to protein s deficiency - a case report.

    Science.gov (United States)

    Kodali, Venkata Umakant; Borra, Seshulakshmi; Mandarapu, Surendra Babu; Sanda, Mallikarjuna Rao; Bolla, Srinivasa Rao

    2014-06-01

    Abdominal venous thrombosis may present either as Budd-Chiari syndrome (BCS) caused by hepatic vein or proximal inferior vena cava (IVC) obstruction or as an extra hepatic portal obstruction (EHPVO) caused by Portal vein thrombosis or mesenteric vein thrombosis, but a mixed involvement is uncommon. Multiple abdominal venous obstructions presenting with thrombosis of hepatic vein, IVC, portal vein and renal vein are very rarely seen . We are reporting a rare case with thrombosis of IVC, hepatic vein, portal vein and renal vein, with protein S and protein C deficiencies, which was managed by giving anticoagulant therapy.

  7. Infrared and circular dichroism spectroscopic characterisation of secondary structure components of a water treatment coagulant protein extracted from Moringa oleifera seeds.

    Science.gov (United States)

    Kwaambwa, H M; Maikokera, R

    2008-06-15

    The secondary structure of a water treatment coagulant protein extracted from Moringa oleifera (MO) seeds has been investigated by Fourier transform infrared spectroscopy (FTIR) in the dried state, and by circular dichroism (CD) spectroscopy. The FTIR and CD spectra indicate that the secondary structure of the protein is dominated by alpha-helix. The FTIR spectrum recorded two distinct and strong absorption bands at 1656 cm(-1) and 1542 cm(-1), in the usual range of absorption of helices of proteins. The CD spectrum showed the shape of mainly alpha-helical secondary structure (estimated to be 58+/-4%) characteristic of negative ellipticity bands near 222 nm and 208 nm and a positive band at 192 nm. The beta-sheet structure composition was estimated to be 10+/-3% whereas unordered structures were around 33%. Changes in solution pH affected the protein secondary structure significantly only at pH values above 10, as indicated by CD spectra, whereas ionic strength had minimal effect. CD data also showed that sodium dodecyl sulphate (SDS) interacts with the coagulant protein and modifies the protein conformation. The surfactant-induced conformational change of the coagulant protein was confirmed by quenching of tryptophan fluorescence of the protein.

  8. Flavivirus NS3 and NS5 proteins interaction network: a high-throughput yeast two-hybrid screen

    Directory of Open Access Journals (Sweden)

    Canard Bruno

    2011-10-01

    Full Text Available Abstract Background The genus Flavivirus encompasses more than 50 distinct species of arthropod-borne viruses, including several major human pathogens, such as West Nile virus, yellow fever virus, Japanese encephalitis virus and the four serotypes of dengue viruses (DENV type 1-4. Each year, flaviviruses cause more than 100 million infections worldwide, some of which lead to life-threatening conditions such as encephalitis or haemorrhagic fever. Among the viral proteins, NS3 and NS5 proteins constitute the major enzymatic components of the viral replication complex and are essential to the flavivirus life cycle. Results We report here the results of a high-throughput yeast two-hybrid screen to identify the interactions between human host proteins and the flavivirus NS3 and NS5 proteins. Using our screen results and literature curation, we performed a global analysis of the NS3 and NS5 cellular targets based on functional annotation with the Gene Ontology features. We finally created the first flavivirus NS3 and NS5 proteins interaction network and analysed the topological features of this network. Our proteome mapping screen identified 108 human proteins interacting with NS3 or NS5 proteins or both. The global analysis of the cellular targets revealed the enrichment of host proteins involved in RNA binding, transcription regulation, vesicular transport or innate immune response regulation. Conclusions We proposed that the selective disruption of these newly identified host/virus interactions could represent a novel and attractive therapeutic strategy in treating flavivirus infections. Our virus-host interaction map provides a basis to unravel fundamental processes about flavivirus subversion of the host replication machinery and/or immune defence strategy.

  9. The human interactome knowledge base (hint-kb): An integrative human protein interaction database enriched with predicted protein–protein interaction scores using a novel hybrid technique

    KAUST Repository

    Theofilatos, Konstantinos A.

    2013-07-12

    Proteins are the functional components of many cellular processes and the identification of their physical protein–protein interactions (PPIs) is an area of mature academic research. Various databases have been developed containing information about experimentally and computationally detected human PPIs as well as their corresponding annotation data. However, these databases contain many false positive interactions, are partial and only a few of them incorporate data from various sources. To overcome these limitations, we have developed HINT-KB (http://biotools.ceid.upatras.gr/hint-kb/), a knowledge base that integrates data from various sources, provides a user-friendly interface for their retrieval, cal-culatesasetoffeaturesofinterest and computesaconfidence score for every candidate protein interaction. This confidence score is essential for filtering the false positive interactions which are present in existing databases, predicting new protein interactions and measuring the frequency of each true protein interaction. For this reason, a novel machine learning hybrid methodology, called (Evolutionary Kalman Mathematical Modelling—EvoKalMaModel), was used to achieve an accurate and interpretable scoring methodology. The experimental results indicated that the proposed scoring scheme outperforms existing computational methods for the prediction of PPIs.

  10. Differences in seminal plasma and spermatozoa antioxidative systems and seminal plasma lipid and protein levels among boar breeds and hybrid genetic traits.

    Science.gov (United States)

    Žura Žaja, Ivona; Samardžija, Marko; Vince, Silvijo; Vilić, Marinko; Majić-Balić, Ivanka; Đuričić, Dražen; Milinković-Tur, Suzana

    2016-07-01

    The objectives of this study were to determine the influence of breed and hybrid genetic traits of boars on lipid and protein concentrations and antioxidative system variables in seminal plasma (SP) and spermatozoa and their correlations with semen quality variables. Semen samples from 27 boars: Swedish Landraces (SL), German Landraces (GL), Large Whites (LW), Pietrains (P) and Pig Improvement Company hybrids (PIC-hybrid), aged from 1.5 to 3 years old, were collected. SP was spectrophotometrically analyzed to determine total cholesterol (TC), high-density lipoprotein cholesterol (HDL-C), low-density lipoprotein cholesterol (LDL-C), triacylglycerol (TAG), total protein (TP), albumin, and zinc concentrations. The antioxidative system in SP and spermatozoa was established spectrophotometrically by determining total antioxidative status (TAS), total superoxide dismutase (TSOD) and glutathione peroxidase (GSH-Px) parameters, as well as copper-zinc superoxide dismutase (CuZnSOD) and manganese superoxide dismutase (MnSOD) activity in spermatozoa. The hybrid boars had higher (Pspermatozoa of: TAS and CuZnSOD than SL; TSOD and GSH-Px than SL and P; and MnSOD than SL and LW. Differences in SP and spermatozoa antioxidative system variables and the significant differences in SP protein and lipid variables exist among boars of different breeds and hybrid. Novel data and observed differences in semen variables among boar breeds and hybrids and their correlations with semen quality parameters in this study could contribute to better assessment of boar semen quality.

  11. Thin films and assemblies of photosensitive membrane proteins and colloidal nanocrystals for engineering of hybrid materials with advanced properties.

    Science.gov (United States)

    Zaitsev, Sergei Yu; Solovyeva, Daria O; Nabiev, Igor

    2012-11-15

    The development and study of nano-bio hybrid materials engineered from membrane proteins (the key functional elements of various biomembranes) and nanoheterostructures (inorganic colloidal nanoparticles, transparent electrodes, and films) is a rapidly growing field at the interface of materials and life sciences. The mainspring of the development of bioinspired materials and devices is the fact that biological evolution has solved many problems similar to those that humans are attempting to solve in the field of light-harvesting and energy-transferring inorganic compounds. Along this way, bioelectronics and biophotonics have shown considerable promise. A number of proteins have been explored in terms of bioelectronic device applications, but bacteriorhodopsin (bR, a photosensitive membrane protein from purple membranes of the bacterium Halobacterium salinarum) and bacterial photosynthetic reaction centres have received the most attention. The energy harvesting in plants has a maximum efficiency of 5%, whereas bR, in the absence of a specific light-harvesting system, allows bacteria to utilize only 0.1-0.5% of the solar light. Recent nano-bioengineering approaches employing colloidal semiconductor and metal nanoparticles conjugated with biosystems permit the enhancement of the light-harvesting capacity of photosensitive proteins, thus providing a strong impetus to protein-based device optimisation. Fabrication of ultrathin and highly oriented films from biological membranes and photosensitive proteins is the key task for prospective bioelectronic and biophotonic applications. In this review, the main advances in techniques of preparation of such films are analyzed. Comparison of the techniques for obtaining thin films leads to the conclusion that the homogeneity and orientation of biomembrane fragments or proteins in these films depend on the method of their fabrication and increase in the following order: electrophoretic sedimentation advances in the techniques of

  12. Identification of interacting proteins with aryl hydrocarbon receptor in scallop Chlamys farreri by yeast two hybrid screening.

    Science.gov (United States)

    Cai, Yuefeng; Pan, Luqing; Miao, Jingjing; Liu, Tong

    2016-11-01

    The aryl hydrocarbon receptor (AhR) belongs to the basic-helix-loop helix (bHLH) Per-Arnt-Sim (PAS) family of transcription factors. AhR has been known primarily for its role in the regulation of several drug and xenobiotic metabolizing enzymes, as well as the mediation of the toxicity of certain xenobiotics, including 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). Although the AhR is well-studied as a mediator of the toxicity of certain xenobiotics in marine bivalves, the normal physiological function remains unknown. In order to explore the function of the AhR, the bait protein expression plasmid pGBKT7-CfAhR and the cDNA library of gill from Chlamys farreri were constructed. By yeast two hybrid system, after multiple screening with the high screening rate medium, rotary verification, sequencing and bioinformatics analysis, the interactions of the CfAhR with receptor for activated protein kinase C 1 (RACK1), thyroid peroxidase-like protein (TPO), Toll-like receptor 4(TLR 4), androglobin-like, store-operated Ca(2+) entry (SocE), ADP/ATP carrier protein, cytochrome b, thioesterase, actin, ferritin subunit 1, poly-ubiquitin, short-chain collagen C4-like and one hypothetical protein in gill cells were identified. This study suggests that the CfAhR played fundamental roles in immune system homeostasis, oxidative stress response, and in grow and development of C. farreri. The elucidation of these protein interactions is of much importance both in understanding the normal physiological function of AhR, and as potential targets for further research on protein function in AhR interactions.

  13. Predicting oligonucleotide-directed mutagenesis failures in protein engineering.

    Science.gov (United States)

    Wassman, Christopher D; Tam, Phillip Y; Lathrop, Richard H; Weiss, Gregory A

    2004-01-01

    Protein engineering uses oligonucleotide-directed mutagenesis to modify DNA sequences through a two-step process of hybridization and enzymatic synthesis. Inefficient reactions confound attempts to introduce mutations, especially for the construction of vast combinatorial protein libraries. This paper applied computational approaches to the problem of inefficient mutagenesis. Several results implicated oligonucleotide annealing to non-target sites, termed 'cross-hybridization', as a significant contributor to mutagenesis reaction failures. Test oligonucleotides demonstrated control over reaction outcomes. A novel cross-hybridization score, quickly computable for any plasmid and oligonucleotide mixture, directly correlated with yields of deleterious mutagenesis side products. Cross-hybridization was confirmed conclusively by partial incorporation of an oligonucleotide at a predicted cross-hybridization site, and by modification of putative template secondary structure to control cross-hybridization. Even in low concentrations, cross-hybridizing species in mixtures poisoned reactions. These results provide a basis for improved mutagenesis efficiencies and increased diversities of cognate protein libraries.

  14. Protein Secondary Structure Determination by Constrained Single-Particle Cryo-Electron Tomography

    OpenAIRE

    Bartesaghi, Alberto; Lecumberry, Federico; Sapiro, Guillermo; Subramaniam, Sriram

    2012-01-01

    Cryo-electron microscopy (cryo-EM) is a powerful technique for 3D structure determination of protein complexes by averaging information from individual molecular images. The resolutions that can be achieved with single-particle cryo-EM are frequently limited by inaccuracies in assigning molecular orientations based solely on 2D projection images. Tomographic data collection schemes, however, provide powerful constraints that can be used to more accurately determine molecular orientations nece...

  15. Protein Secondary Structure and Orientation in Silk as Revealed by Raman Spectromicroscopy

    OpenAIRE

    Lefèvre, Thierry; Rousseau, Marie-Eve; Pézolet, Michel

    2007-01-01

    Taking advantage of recent advances in polarized Raman microspectroscopy, and based on a rational decomposition of the amide I band, the conformation and orientation of proteins have been determined for cocoon silks of the silkworms Bombyx mori and Samia cynthia ricini and dragline silks of the spiders Nephila clavipes and Nephila edulis. This study distinguished between band components due to β-sheets, β-turns, 31-helices, and unordered structure for the four fibers. For B. mori, the β-sheet...

  16. Relation between the secondary structure of carbohydrate residues of alpha1-acid glycoprotein (orosomucoid) and the fluorescence of the protein.

    Science.gov (United States)

    Albani, Jihad R

    2003-05-01

    We studied in this work the relation that exists between the secondary structure of the glycans of alpha(1)-acid glycoprotein and the fluorescence of the Trp residues of the protein. We calculated for that the efficiency of quenching and the radiative and non-radiative constants. Our results indicate that the glycans display a spatial structure that is modified upon asialylation. The asialylated conformation is closer to the protein matrix than the sialylated form, inducing by that a decrease in the fluorescence parameters of the Trp residues. In fact, the mean quantum yield of Trp residues in sialylated and asialylated alpha(1)-acid glycoprotein are 0.0645 and 0.0385, respectively. Analysis of the fluorescence emission of alpha(1)-acid glycoprotein as the result of two contributions (surface and hydrophobic domains) indicates that quantum yields of both classes of Trp residues are lower when the protein is in the asialylated form. Also, the mean fluorescence lifetime of Trp residues decreases from 2.285 ns in the sialylated protein to 1.948 ns in the asialylated one. The radiative rate constant k(r) of the Trp residues in the sialylated alpha(1)-acid glycoprotein is higher than that in the asialylated protein. Thus, the carbohydrate residues are closer to the Trp residues in the absence of sialic acid. The modification of the spatial conformation of the glycans upon asialylation is confirmed by the decrease of the fluorescence lifetimes of Calcofluor, a fluorophore that binds to the carbohydrate residues. Finally, thermal intensity quenching of Calcofluor bound to alpha(1)-acid glycoprotein shows that the carbohydrate residues have slower residual motions in the absence of sialic acid residues.

  17. Transactivating effect of complete S protein of hepatitis B virus and cloning of genes transactivated by complete S protein using suppression subtractive hybridization technique

    Institute of Scientific and Technical Information of China (English)

    Gui-Qin Bai; Yan Liu; Jun Cheng; Shu-Lin Zhang; Ya-Fei Yue; Yan-Ping Huang; Li-Ying Zhang

    2005-01-01

    AIM: To investigate the transactivating effect of complete S protein of hepatitis B virus (HBV) and to construct a subtractive cDNA library of genes transactivated by complete S protein of HBV by suppression subtractive hybridization (SSH) technique and to clone genes associated with its transactivation activity, and to pave the way for elucidating the pathogenesis of hepatitis B virus infection.METHODS: pcDNA3.1(-)-complete S containing full-length HBV S gene was constructed by insertion of HBV complete S gene into BarmH-I/Kpn I sites. HepG2 cells were cotransfected with pcDNA3.1(-)-complete S and pSV-lacZ.After 48 h, cells were collected and detected for the expression of β-galactosidase (β-gal). Suppression subtractive hybridization and bioinformatics techniques were used.The mRNA of HepG2 cells transfected with pcDNA3.1(-)-complete S and pcDNA3.1(-) empty vector was isolated,and detected for the expression of complete S protein by reverse transcription polymerase chain reaction (RT-PCR)method, and cDNA was synthesized. After digestion with restriction enzyme RcaI, cDNA fragments were obtained.Tester cDNA was then divided into two groups and ligated to the specific adaptors 1 and 2, respectively. After tester cDNA had been hybridized with driver cDNA twice and underwent nested PCR twice, amplified cDNA fragments were subcloned into pGEM-Teasy vectors to set up the subtractive library. Amplification of the library was carried out within E. coli strain DH5α. The cDNA was sequenced and analyzed in GenBank with BLAST search after polymerase chain reaction (PCR) amplification.RESULTS: The complete S mRNA could be detected by RT-PCR in HepG2 cells transfected with the pcDNA3.1(-)-complete S. The activity of β-gal in HepG2 cells transfected with the pcDNA3.1(-)-complete S was 6.9 times higher than that of control plasmid. The subtractive library of genes transactivated by HBV complete S protein was constructed successfully. The amplified library contains 86

  18. Experimental evidence for secondary protein-chromophore interactions at the Schiff base linkage in bacteriorhodopsin: molecular mechanism for proton pumping

    Energy Technology Data Exchange (ETDEWEB)

    Lewis, A.; Marcus, M.A.; Ehrenberg, B.; Crespi, H.

    1978-10-01

    Resonance Raman spectroscopy of the retinylidene chromophore in various isotopically labeled membrane environments together with spectra of isotopically labeled model compounds demonstrates that a secondary protein interaction is present at the protonated Schiff base linkage in bacteriorhodopsin. The data indicate that although the interaction is present in all protonated bacteriorhodopsin species it is absent in unprotonated intermediates. Furthermore, kinetic resonance Raman spectroscopy has been used to monitor the dynamics of Schiff base deprotonation as a function of pH. All results are consistent with lysine as the interacting group. A structure for the interaction is proposed in which the interacting protein group in an unprotonated configuration is complexed through the Schiff base proton to the Schiff base nitrogen. These data suggest a molecular mechanism for proton pumping and ion gate molecular regulation. In this mechanism, light causes electron redistribution in the retinylidene chromophore, which results in the deprotonation of an amino acid side chain with pK > 10.2 +- 0.3 (e.g., arginine). This induces subsequent retinal and protein conformational transitions which eventually lower the pK of the Schiff base complex from > 12 before light absorption to 10.2 +- 0.3 in microseconds after photon absorption. Finally, in this low pK state the complex can reprotonate the proton-deficient high pK group generated by light, and the complex is then reprotonated from the opposite side of the membrane.

  19. Insight from TonB hybrid proteins into the mechanism of iron transport through the outer membrane.

    Science.gov (United States)

    Kaserer, Wallace A; Jiang, Xiaoxu; Xiao, Qiaobin; Scott, Daniel C; Bauler, Matthew; Copeland, Daniel; Newton, Salete M C; Klebba, Phillip E

    2008-06-01

    We created hybrid proteins to study the functions of TonB. We first fused the portion of Escherichia coli tonB that encodes the C-terminal 69 amino acids (amino acids 170 to 239) of TonB downstream from E. coli malE (MalE-TonB69C). Production of MalE-TonB69C in tonB(+) bacteria inhibited siderophore transport. After overexpression and purification of the fusion protein on an amylose column, we proteolytically released the TonB C terminus and characterized it. Fluorescence spectra positioned its sole tryptophan (W213) in a weakly polar site in the protein interior, shielded from quenchers. Affinity chromatography showed the binding of the TonB C-domain to other proteins: immobilized TonB-dependent (FepA and colicin B) and TonB-independent (FepADelta3-17, OmpA, and lysozyme) proteins adsorbed MalE-TonB69C, revealing a general affinity of the C terminus for other proteins. Additional constructions fused full-length TonB upstream or downstream of green fluorescent protein (GFP). TonB-GFP constructs had partial functionality but no fluorescence; GFP-TonB fusion proteins were functional and fluorescent. The activity of the latter constructs, which localized GFP in the cytoplasm and TonB in the cell envelope, indicate that the TonB N terminus remains in the inner membrane during its biological function. Finally, sequence analyses revealed homology in the TonB C terminus to E. coli YcfS, a proline-rich protein that contains the lysin (LysM) peptidoglycan-binding motif. LysM structural mimicry occurs in two positions of the dimeric TonB C-domain, and experiments confirmed that it physically binds to the murein sacculus. Together, these findings infer that the TonB N terminus remains associated with the inner membrane, while the downstream region bridges the cell envelope from the affinity of the C terminus for peptidoglycan. This architecture suggests a membrane surveillance model of action, in which TonB finds occupied receptor proteins by surveying the underside of

  20. Peptide nucleic acid probe for protein affinity purification based on biotin-streptavidin interaction and peptide nucleic acid strand hybridization.

    Science.gov (United States)

    Tse, Jenny; Wang, Yuanyuan; Zengeya, Thomas; Rozners, Eriks; Tan-Wilson, Anna

    2015-02-01

    We describe a new method for protein affinity purification that capitalizes on the high affinity of streptavidin for biotin but does not require dissociation of the biotin-streptavidin complex for protein retrieval. Conventional reagents place both the selectively reacting group (the "warhead") and the biotin on the same molecule. We place the warhead and the biotin on separate molecules, each linked to a short strand of peptide nucleic acid (PNA), synthetic polymers that use the same bases as DNA but attached to a backbone that is resistant to attack by proteases and nucleases. As in DNA, PNA strands with complementary base sequences hybridize. In conditions that favor PNA duplex formation, the warhead strand (carrying the tagged protein) and the biotin strand form a complex that is held onto immobilized streptavidin. As in DNA, the PNA duplex dissociates at moderately elevated temperature; therefore, retrieval of the tagged protein is accomplished by a brief exposure to heat. Using iodoacetate as the warhead, 8-base PNA strands, biotin, and streptavidin-coated magnetic beads, we demonstrate retrieval of the cysteine protease papain. We were also able to use our iodoacetyl-PNA:PNA-biotin probe for retrieval and identification of a thiol reductase and a glutathione transferase from soybean seedling cotyledons. Copyright © 2014 Elsevier Inc. All rights reserved.

  1. Reconstitution of the membrane protein OmpF into biomimetic block copolymer–phospholipid hybrid membranes

    Science.gov (United States)

    Bieligmeyer, Matthias; Artukovic, Franjo; Hirth, Thomas; Schiestel, Thomas

    2016-01-01

    Summary Structure and function of many transmembrane proteins are affected by their environment. In this respect, reconstitution of a membrane protein into a biomimetic polymer membrane can alter its function. To overcome this problem we used membranes formed by poly(1,4-isoprene-block-ethylene oxide) block copolymers blended with 1,2-diphytanoyl-sn-glycero-3-phosphocholine. By reconstituting the outer membrane protein OmpF from Escherichia coli into these membranes, we demonstrate functionality of this protein in biomimetic lipopolymer membranes, independent of the molecular weight of the block copolymers. At low voltages, the channel conductance of OmpF in 1 M KCl was around 2.3 nS. In line with these experiments, integration of OmpF was also revealed by impedance spectroscopy. Our results indicate that blending synthetic polymer membranes with phospholipids allows for the reconstitution of transmembrane proteins under preservation of protein function, independent of the membrane thickness. PMID:27547605

  2. Prolyl Hydroxylase Domain-Containing Protein 2 (Phd2) Regulates Chondrocyte Differentiation and Secondary Ossification in Mice

    Science.gov (United States)

    Cheng, Shaohong; Aghajanian, Patrick; Pourteymoor, Sheila; Alarcon, Catrina; Mohan, Subburaman

    2016-01-01

    Endochondral ossification plays an important role in the formation of the primary ossification centers (POCs) and secondary ossification centers (SOCs) of mammalian long bones. However, the molecular mechanisms that regulate POC and SOC formation are different. We recently demonstrated that Prolyl Hydroxylase Domain-containing Protein 2 (Phd2) is a key mediator of vitamin C effects on bone. We investigated the role of Phd2 on endochondral ossification of the epiphyses by conditionally deleting the Phd2 gene in osteoblasts and chondrocytes. We found that the deletion of Phd2 in osteoblasts did not cause changes in bone parameters in the proximal tibial epiphyses in 5 week old mice. In contrast, deletion of Phd2 in chondrocytes resulted in increased bone mass and bone formation rate (normalized to tissue volume) in long bone epiphyses, indicating that Phd2 expressed in chondrocytes, but not osteoblasts, negatively regulates secondary ossification of epiphyses. Phd2 deletion in chondrocytes elevated mRNA expression of hypoxia-inducible factor (HIF) signaling molecules including Hif-1α, Hif-2α, Vegfa, Vegfb, and Epo, as well as markers for chondrocyte hypertrophy and mineralization such as Col10, osterix, alkaline phosphatase, and bone sialoprotein. These data suggest that Phd2 expressed in chondrocytes inhibits endochondral ossification at the epiphysis by suppressing HIF signaling pathways. PMID:27775044

  3. [The determination of the genotype of natural reassortant influenza A viruses according to the core protein genes by the methods of competitive dot hybridization and sequencing].

    Science.gov (United States)

    Grinbaum, E B; Zolotarev, F N; Petrov, N A; Litvinova, O M; Konovalenko, I B; Luzianina, T Ia; Golubev, D B

    1992-01-01

    Simultaneous circulation of different subtypes of influenza A viruses provides conditions for reassortant strains formation. A comparative investigation of genome of 47 influenza A virus strains (H1N1, H2N2, and H3N2) was carried out by competitive dot hybridization technique and sequence analysis of some of cDNA-copies of the virus genes. All the genes of 43 strains encoding nonglycolysed proteins corresponded to the serum subtype of surface glycoproteins. The reassortant pattern of genome for some genes of core proteins was revealed in 4 viruses. All the dot hybridization data were completely confirmed by sequence analysis of the genes.

  4. ATR-FT/IR study on the interactions between gliadins and dextrin and their effects on protein secondary structure.

    Science.gov (United States)

    Secundo, Francesco; Guerrieri, Nicoletta

    2005-03-09

    The effects of heat treatment and dextrin addition on the secondary structure of gliadins were investigated by means of attenuated total reflection Fourier transform infrared spectroscopy (ATR-FT/IR). Gliadins and gliadin/dextrin mixtures (before and after thermal treatment) were prepared as a dried protein film on the ATR-FT/IR zinc selenide cell plate and equilibrated at a water activity (a(w)) of 0.06. The results show that gliadins undergo conformational changes upon thermal treatment both in the absence and in the presence of dextrin. In particular, in the thermally treated gliadins, the decrease of the band at around 1651 cm(-)(1) and the increase of the bands at around 1628 and 1690 cm(-)(1) suggest a loss of alpha-helix structure and a higher content of protein aggregates. The same trend was observed in the presence of dextrin. Concerning the interactions between gliadins and dextrin, gliadin/dextrin mixtures show variations in the amide I region compared to native gliadins (e.g., an increase of the band at 1645 cm(-)(1) and the absence of the band at around 1668 cm(-)(1)) that might be due to hydrogen bond formation between gliadins and dextrin. It was also found that the spectrum of gliadin/dextrin mixtures was less affected by the hydration state than that of native gliadins, as observed from the differential spectra obtained by subtraction of the spectrum obtained at a(w) = 0.06 (driest condition tested) from the spectrum of the sample equilibrated at a(w) = 0.84. This could be due to the fact that C=O and N-H groups of gliadins are engaged to form hydrogen bonds with the hydroxyl groups of dextrin, and so they are not perturbed by the presence of water molecules. Finally, water activity effects on the secondary structure of gliadins are also discussed.

  5. Peripheral vagus nerve stimulation significantly affects lipid composition and protein secondary structure within dopamine-related brain regions in rats.

    Science.gov (United States)

    Surowka, Artur Dawid; Krygowska-Wajs, Anna; Ziomber, Agata; Thor, Piotr; Chrobak, Adrian Andrzej; Szczerbowska-Boruchowska, Magdalena

    2015-06-01

    Recent immunohistochemical studies point to the dorsal motor nucleus of the vagus nerve as the point of departure of initial changes which are related to the gradual pathological developments in the dopaminergic system. In the light of current investigations, it is likely that biochemical changes within the peripheral nervous system may influence the physiology of the dopaminergic system, suggesting a putative role for it in the development of neurodegenerative disorders. By using Fourier transform infrared microspectroscopy, coupled with statistical analysis, we examined the effect of chronic, unilateral electrical vagus nerve stimulation on changes in lipid composition and in protein secondary structure within dopamine-related brain structures in rats. It was found that the chronic vagal nerve stimulation strongly affects the chain length of fatty acids within the ventral tegmental area, nucleus accumbens, substantia nigra, striatum, dorsal motor nucleus of vagus and the motor cortex. In particular, the level of lipid unsaturation was found significantly increasing in the ventral tegmental area, substantia nigra and motor cortex as a result of vagal nerve stimulation. When it comes to changes in protein secondary structure, we could see that the mesolimbic, mesocortical and nigrostriatal dopaminergic pathways are particularly affected by vagus nerve stimulation. This is due to the co-occurrence of statistically significant changes in the content of non-ordered structure components, alpha helices, beta sheets, and the total area of Amide I. Macromolecular changes caused by peripheral vagus nerve stimulation may highlight a potential connection between the gastrointestinal system and the central nervous system in rat during the development of neurodegenerative disorders.

  6. Polymerization Degrees, Molecular Weights and Protein-Binding Affinities of Condensed Tannin Fractions from a Leucaena leucocephala Hybrid

    Directory of Open Access Journals (Sweden)

    Mookiah Saminathan

    2014-06-01

    Full Text Available Condensed tannins (CTs form insoluble complexes with proteins and are able to protect them from degradation, which could lead to rumen bypass proteins. Depending on their degrees of polymerization (DP and molecular weights, CT fractions vary in their capability to bind proteins. In this study, purified condensed tannins (CTs from a Leucaena leucocephala hybrid were fractionated into five different molecular weight fractions. The structures of the CT fractions were investigated using 13C-NMR. The DP of the CT fractions were determined using a modified vanillin assay and their molecular weights were determined using Q-TOF LC-MS. The protein-binding affinities of the respective CT fractions were determined using a protein precipitation assay. The DP of the five CT fractions (fractions F1–F5 measured by the vanillin assay in acetic acid ranged from 4.86 to 1.56. The 13C-NMR results showed that the CT fractions possessed monomer unit structural heterogeneity. The number-average molecular weights (Mn of the different fractions were 1265.8, 1028.6, 652.2, 562.2, and 469.6 for fractions F1, F2, F3, F4, and F5, respectively. The b values representing the CT quantities needed to bind half of the maximum precipitable bovine serum albumin increased with decreasing molecular weight—from fraction F1 to fraction F5 with values of 0.216, 0.295, 0.359, 0.425, and 0.460, respectively. This indicated that higher molecular weight fractions of CTs from L. leucocephala have higher protein-binding affinities than those with lower molecular weights.

  7. Polymerization degrees, molecular weights and protein-binding affinities of condensed tannin fractions from a Leucaena leucocephala hybrid.

    Science.gov (United States)

    Saminathan, Mookiah; Tan, Hui Yin; Sieo, Chin Chin; Abdullah, Norhani; Wong, Clemente Michael Vui Ling; Abdulmalek, Emilia; Ho, Yin Wan

    2014-06-12

    Condensed tannins (CTs) form insoluble complexes with proteins and are able to protect them from degradation, which could lead to rumen bypass proteins. Depending on their degrees of polymerization (DP) and molecular weights, CT fractions vary in their capability to bind proteins. In this study, purified condensed tannins (CTs) from a Leucaena leucocephala hybrid were fractionated into five different molecular weight fractions. The structures of the CT fractions were investigated using 13C-NMR. The DP of the CT fractions were determined using a modified vanillin assay and their molecular weights were determined using Q-TOF LC-MS. The protein-binding affinities of the respective CT fractions were determined using a protein precipitation assay. The DP of the five CT fractions (fractions F1-F5) measured by the vanillin assay in acetic acid ranged from 4.86 to 1.56. The 13C-NMR results showed that the CT fractions possessed monomer unit structural heterogeneity. The number-average molecular weights (Mn) of the different fractions were 1265.8, 1028.6, 652.2, 562.2, and 469.6 for fractions F1, F2, F3, F4, and F5, respectively. The b values representing the CT quantities needed to bind half of the maximum precipitable bovine serum albumin increased with decreasing molecular weight--from fraction F1 to fraction F5 with values of 0.216, 0.295, 0.359, 0.425, and 0.460, respectively. This indicated that higher molecular weight fractions of CTs from L. leucocephala have higher protein-binding affinities than those with lower molecular weights.

  8. A method for the separation of hybrids of chromatographically identical oligomeric proteins. Use of 3,4,5,6-tetrahydrophthaloyl groups as a reversible "chromatographic handle".

    Science.gov (United States)

    Gibbons, I; Schachman, H K

    1976-01-13

    Hybridization experiments with variants of an oligomeric protein often provide important information regarding subunit structure, function, and interactions. In some systems, however, the variants are so similar electrophoretically and chromatographically that purification of individual hybrids is not feasible. Therefore a method was developed for preparing hybrids by using 3,4,5,6-tetrahydrophthalic anhydride as a reversible acylating agent for protein amino groups. The technique involved acylating about 30% of the amino groups at pH 8 to give a derivative with a markedly altered net charge, formation of the hybrid set with unmodified and modified species, separation of the individual components by ion-exchange chromatography, and finally removal of the tetrahydrophthaloyl groups from the desired hybrid by incubation for about 1 day at pH 6 and room temperature. Experiments with model compounds and two enzymes showed that the anhydride was sepcific for amino groups. The extent of modification of proteins was measured by the spectral change at 250 nm, the loss of free amino groups, and the change in electrophoretic mobility of the polypeptide chains in polyacrylamide gels containing 8 M urea. Deacylation of modified, inactive aldolase and the catalytic subunit of aspartate transcarbamylase led to the restoration of the enzyme activity and electrophoretic mobility of the unmodified proteins. Both intra- and inter-subunit hybrids of aspartate transcarbamylase were prepared and isolated by using the tetrahydrophthaloyl groups as a reversible "chromatographic handle". Prior to deacylation the inter-subunit hybrid containing one acylated and one native catalytic subunit (and negative regulatory sub-units) exhibited no homotropic cooperativity and after deacylation the characteristic allosteric properties of the enzyme were regained. Similarly the ligand-promoted conformational changes associated with the allosteric transition were resotred upon deacylation of the intra

  9. Protein secondary structure determination by constrained single-particle cryo-electron tomography.

    Science.gov (United States)

    Bartesaghi, Alberto; Lecumberry, Federico; Sapiro, Guillermo; Subramaniam, Sriram

    2012-12-05

    Cryo-electron microscopy (cryo-EM) is a powerful technique for 3D structure determination of protein complexes by averaging information from individual molecular images. The resolutions that can be achieved with single-particle cryo-EM are frequently limited by inaccuracies in assigning molecular orientations based solely on 2D projection images. Tomographic data collection schemes, however, provide powerful constraints that can be used to more accurately determine molecular orientations necessary for 3D reconstruction. Here, we propose "constrained single-particle tomography" as a general strategy for 3D structure determination in cryo-EM. A key component of our approach is the effective use of images recorded in tilt series to extract high-resolution information and correct for the contrast transfer function. By incorporating geometric constraints into the refinement to improve orientational accuracy of images, we reduce model bias and overrefinement artifacts and demonstrate that protein structures can be determined at resolutions of ∼8 Å starting from low-dose tomographic tilt series.

  10. Evidences for Cooperative Resonance-Assisted Hydrogen Bonds in Protein Secondary Structure Analogs

    Science.gov (United States)

    Zhou, Yu; Deng, Geng; Zheng, Yan-Zhen; Xu, Jing; Ashraf, Hamad; Yu, Zhi-Wu

    2016-11-01

    Cooperative behaviors of the hydrogen bonding networks in proteins have been discovered for a long time. The structural origin of this cooperativity, however, is still under debate. Here we report a new investigation combining excess infrared spectroscopy and density functional theory calculation on peptide analogs, represented by N-methylformamide (NMF) and N-methylacetamide (NMA). Interestingly, addition of the strong hydrogen bond acceptor, dimethyl sulfoxide, to the pure analogs caused opposite effects, namely red- and blue-shift of the N-H stretching infrared absorption in NMF and NMA, respectively. The contradiction can be reconciled by the marked lowering of the energy levels of the self-associates between NMA molecules due to a cooperative effect of the hydrogen bonds. On the contrary, NMF molecules cannot form long-chain cooperative hydrogen bonds because they tend to form dimers. Even more interestingly, we found excellent linear relationships between changes on bond orders of N-H/N-C/C = O and the hydrogen bond energy gains upon the formation of hydrogen bonding multimers in NMA, suggesting strongly that the cooperativity originates from resonance-assisted hydrogen bonds. Our findings provide insights on the structures of proteins and may also shed lights on the rational design of novel molecular recognition systems.

  11. Perturbation in protein expression of the sterile salmonid hybrids between female brook trout Salvelinus fontinalis and male masu salmon Oncorhynchus masou during early spermatogenesis.

    Science.gov (United States)

    Zheng, Liang; Senda, Yoshie; Abe, Syuiti

    2013-05-01

    Most males and females of intergeneric hybrid (BM) between female brook trout (Bt) Salvelinus fontinalis and male masu salmon (Ms) Oncorhynchus masou had undeveloped gonads, with abnormal germ cell development shown by histological examination. To understand the cause of this hybrid sterility, expression profiles of testicular proteins in the BM and parental species were examined with 2-DE coupled with MALDI-TOF/TOF MS. Compared with the parental species, more than 60% of differentially expressed protein spots were down-regulated in BM. A total of 16 up-regulated and 48 down-regulated proteins were identified in BM. Up-regulated were transferrin and other somatic cell-predominant proteins, whereas down-regulated were some germ cell-specific proteins such as DEAD box RNA helicase Vasa. Other pronouncedly down-regulated proteins included tubulins and heat shock proteins that are supposed to have roles in spermatogenesis. The present findings suggest direct association of the observed perturbation in protein expression with the failure of spermatogenesis and the sterility in the examined salmonid hybrids.

  12. Screening proteins that interact with mutant superoxide dismutase 1 from familial amyotrophic lateral sclerosis using a yeast two-hybrid system

    Institute of Scientific and Technical Information of China (English)

    Guisheng Chen; Xu Peng; Shugui Shi; Lusi Li; Kangning Chen; Ju Hu; Zhenhua Zhou; Jun Wu; Gaoxing Luo; Shunzong Yuan

    2011-01-01

    The present study screened a human fetal brain cDNA library to find the proteins that interact with mutant superoxide dismutase 1 (SOD1) using a yeast two-hybrid system. Using BLAST software, 15 real proteins which interacted with mutant SOD1 were obtained, including 8 known proteins (protein tyrosine-phosphatase non-receptor type 2, TBC1D4, protein kinase family, splicing factor, arginine/serine-rich 2, SRC protein tyrosine kinase Fyn, β-sarcoglycan; glycine receptor α2, microtubule associated protein/microtubule affinity-regulating kinase 1, ferritin H chain), and 7 unknown proteins. Results demonstrated interaction of mutant SOD1 with microtubule associated protein/microtubule affinity-regulating kinase 1 and β-sarcoglycan.

  13. DNA aptamer release from the DNA-SWNT hybrid by protein recognition.

    Science.gov (United States)

    Yoo, Chang-Hyuk; Jung, Seungwon; Bae, Jaehyun; Kim, Gunn; Ihm, Jisoon; Lee, Junghoon

    2016-02-14

    Here we show the formation of the complex between a DNA aptamer and a single-walled carbon nanotube (SWNT) and its reaction with its target protein. The aptamer, which is specifically bound with thrombin, the target protein in this study, easily wraps and disperses the SWNT by noncovalent π-π stacking.

  14. High-level expression and secondary structure analysis of the bovine mature prion protein

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    By using the recombinant DNA technology, the gene of the bovine mature prion protein (bPrPCL) has been cloned into pET30a and the resulting plasmid has been expressed in E.coli BL21(DE3). After solubilizing in 8 mol/L urea, the expression product was purified by cation ion exchange chromatography. The purified product was refolded by dilution and the recovery was about 15%. Analysis of mass spectrum, circular dichroism (CD) spectrum and Fourier transform infrared (FTIR) spectrum demonstrate that the molecular weight of the bPrPCL is 23 630 u, the bPrPCL has a high α-helix content (36.1%) and low β-sheet content (11.9%).

  15. Larval salivary glue protein heterosis and dosage compensation among the interspecific F1 hybrids of Drosophila nasuta nasuta and Drosophila nasuta albomicans

    Directory of Open Access Journals (Sweden)

    Raghavan Prithi

    2016-01-01

    Full Text Available Reciprocal cross effects with respect to larval salivary secretory protein levels were studied in the interspecific fertile reciprocal hybrids by crossing Drosophila nasuta nasuta, and Drosophila nasuta albomicans. These proteins are produced copiously during the third larval instar stage and are believed to play a role in the attachment of pupa to the substratum prior to pupariation as well as in insect immunity. Quantitative variations were encountered among the reciprocal hybrids. Significant heterosis was observed between D. n. nasuta and the F1 hybrid female of a cross between D. n. albomicans female and D. n. nasuta male (21.39% while the F1 hybrids of a cross between D. n. nasuta female and D. n. albomicans male showed a marginal increase (4.24% from the mid parent level. The glue secretions were correlated to total cell number but independent of gland size. SDS PAGE revealed a considerable heterosis with respect to X-linked protein fractions. Here we report sex specific biochemical heterosis. However the X-linked fractions undergo dosage compensation in both parents and hybrids indicating strict regulatory control.

  16. Scanning a DNA molecule for bound proteins using hybrid magnetic and optical tweezers.

    Directory of Open Access Journals (Sweden)

    Marijn T J van Loenhout

    Full Text Available The functional state of the genome is determined by its interactions with proteins that bind, modify, and move along the DNA. To determine the positions and binding strength of proteins localized on DNA we have developed a combined magnetic and optical tweezers apparatus that allows for both sensitive and label-free detection. A DNA loop, that acts as a scanning probe, is created by looping an optically trapped DNA tether around a DNA molecule that is held with magnetic tweezers. Upon scanning the loop along the λ-DNA molecule, EcoRI proteins were detected with ~17 nm spatial resolution. An offset of 33 ± 5 nm for the detected protein positions was found between back and forwards scans, corresponding to the size of the DNA loop and in agreement with theoretical estimates. At higher applied stretching forces, the scanning loop was able to remove bound proteins from the DNA, showing that the method is in principle also capable of measuring the binding strength of proteins to DNA with a force resolution of 0.1 pN/[Formula: see text]. The use of magnetic tweezers in this assay allows the facile preparation of many single-molecule tethers, which can be scanned one after the other, while it also allows for direct control of the supercoiling state of the DNA molecule, making it uniquely suitable to address the effects of torque on protein-DNA interactions.

  17. A hybrid approach to protein differential expression in mass spectrometry-based proteomics

    KAUST Repository

    Wang, X.

    2012-04-19

    MOTIVATION: Quantitative mass spectrometry-based proteomics involves statistical inference on protein abundance, based on the intensities of each protein\\'s associated spectral peaks. However, typical MS-based proteomics datasets have substantial proportions of missing observations, due at least in part to censoring of low intensities. This complicates intensity-based differential expression analysis. RESULTS: We outline a statistical method for protein differential expression, based on a simple Binomial likelihood. By modeling peak intensities as binary, in terms of \\'presence/absence,\\' we enable the selection of proteins not typically amenable to quantitative analysis; e.g. \\'one-state\\' proteins that are present in one condition but absent in another. In addition, we present an analysis protocol that combines quantitative and presence/absence analysis of a given dataset in a principled way, resulting in a single list of selected proteins with a single-associated false discovery rate. AVAILABILITY: All R code available here: http://www.stat.tamu.edu/~adabney/share/xuan_code.zip.

  18. Scanning a DNA molecule for bound proteins using hybrid magnetic and optical tweezers.

    Science.gov (United States)

    van Loenhout, Marijn T J; De Vlaminck, Iwijn; Flebus, Benedetta; den Blanken, Johan F; Zweifel, Ludovit P; Hooning, Koen M; Kerssemakers, Jacob W J; Dekker, Cees

    2013-01-01

    The functional state of the genome is determined by its interactions with proteins that bind, modify, and move along the DNA. To determine the positions and binding strength of proteins localized on DNA we have developed a combined magnetic and optical tweezers apparatus that allows for both sensitive and label-free detection. A DNA loop, that acts as a scanning probe, is created by looping an optically trapped DNA tether around a DNA molecule that is held with magnetic tweezers. Upon scanning the loop along the λ-DNA molecule, EcoRI proteins were detected with ~17 nm spatial resolution. An offset of 33 ± 5 nm for the detected protein positions was found between back and forwards scans, corresponding to the size of the DNA loop and in agreement with theoretical estimates. At higher applied stretching forces, the scanning loop was able to remove bound proteins from the DNA, showing that the method is in principle also capable of measuring the binding strength of proteins to DNA with a force resolution of 0.1 pN/[Formula: see text]. The use of magnetic tweezers in this assay allows the facile preparation of many single-molecule tethers, which can be scanned one after the other, while it also allows for direct control of the supercoiling state of the DNA molecule, making it uniquely suitable to address the effects of torque on protein-DNA interactions.

  19. Uncovering symmetry-breaking vector and reliability order for assigning secondary structures of proteins from atomic NMR chemical shifts in amino acids

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Wookyung [Pusan National University, Department of Physics, Center for Proteome Biophysics (Korea, Republic of); Lee, Woonghee; Lee, Weontae [Yonsei University, Department of Biochemistry, Structural Biochemistry and Molecular Biophysics Laboratory (Korea, Republic of); Kim, Suhkmann [Pusan National University, Department of Chemistry, Biochemistry and Bio-NMR Laboratory (Korea, Republic of); Chang, Iksoo, E-mail: iksoochang@pusan.ac.kr [Pusan National University, Department of Physics, Center for Proteome Biophysics (Korea, Republic of)

    2011-12-15

    Unravelling the complex correlation between chemical shifts of {sup 13}C{sup {alpha}}, {sup 13}C{sup {beta}}, {sup 13}C Prime , {sup 1}H{sup {alpha}}, {sup 15}N, {sup 1}H{sup N} atoms in amino acids of proteins from NMR experiment and local structural environments of amino acids facilitates the assignment of secondary structures of proteins. This is an important impetus for both determining the three-dimensional structure and understanding the biological function of proteins. The previous empirical correlation scores which relate chemical shifts of {sup 13}C{sup {alpha}}, {sup 13}C{sup {beta}}, {sup 13}C Prime , {sup 1}H{sup {alpha}}, {sup 15}N, {sup 1}H{sup N} atoms to secondary structures resulted in progresses toward assigning secondary structures of proteins. However, the physical-mathematical framework for these was elusive partly due to both the limited and orthogonal exploration of higher-dimensional chemical shifts of hetero-nucleus and the lack of physical-mathematical understanding underlying those correlation scores. Here we present a simple multi-dimensional hetero-nuclear chemical shift score function (MDHN-CSSF) which captures systematically the salient feature of such complex correlations without any references to a random coil state of proteins. We uncover the symmetry-breaking vector and its reliability order not only for distinguishing different secondary structures of proteins but also for capturing the delicate sensitivity interplayed among chemical shifts of {sup 13}C{sup {alpha}}, {sup 13}C{sup {beta}}, {sup 13}C Prime , {sup 1}H{sup {alpha}}, {sup 15}N, {sup 1}H{sup N} atoms simultaneously, which then provides a straightforward framework toward assigning secondary structures of proteins. MDHN-CSSF could correctly assign secondary structures of training (validating) proteins with the favourable (comparable) Q3 scores in comparison with those from the previous correlation scores. MDHN-CSSF provides a simple and robust strategy for the

  20. Preparation of Core-Shell Hybrid Materials by Producing a Protein Corona Around Magnetic Nanoparticles

    Science.gov (United States)

    Weidner, A.; Gräfe, C.; von der Lühe, M.; Remmer, H.; Clement, J. H.; Eberbeck, D.; Ludwig, F.; Müller, R.; Schacher, F. H.; Dutz, S.

    2015-07-01

    Nanoparticles experience increasing interest for a variety of medical and pharmaceutical applications. When exposing nanomaterials, e.g., magnetic iron oxide nanoparticles (MNP), to human blood, a protein corona consisting of various components is formed immediately. The composition of the corona as well as its amount bound to the particle surface is dependent on different factors, e.g., particle size and surface charge. The actual composition of the formed protein corona might be of major importance for cellular uptake of magnetic nanoparticles. The aim of the present study was to analyze the formation of the protein corona during in vitro serum incubation in dependency of incubation time and temperature. For this, MNP with different shells were incubated in fetal calf serum (FCS, serving as protein source) within a water bath for a defined time and at a defined temperature. Before and after incubation the particles were characterized by a variety of methods. It was found that immediately (seconds) after contact of MNP and FCS, a protein corona is formed on the surface of MNP. This formation led to an increase of particle size and a slight agglomeration of the particles, which was relatively constant during the first minutes of incubation. A longer incubation (from hours to days) resulted in a stronger agglomeration of the FCS incubated MNP. Quantitative analysis (gel electrophoresis) of serum-incubated particles revealed a relatively constant amount of bound proteins during the first minutes of serum incubation. After a longer incubation (>20 min), a considerably higher amount of surface proteins was determined for incubation temperatures below 40 °C. For incubation temperatures above 50 °C, the influence of time was less significant which might be attributed to denaturation of proteins during incubation. Overall, analysis of the molecular weight distribution of proteins found in the corona revealed a clear influence of incubation time and temperature on corona

  1. Preparation of Core-Shell Hybrid Materials by Producing a Protein Corona Around Magnetic Nanoparticles.

    Science.gov (United States)

    Weidner, A; Gräfe, C; von der Lühe, M; Remmer, H; Clement, J H; Eberbeck, D; Ludwig, F; Müller, R; Schacher, F H; Dutz, S

    2015-12-01

    Nanoparticles experience increasing interest for a variety of medical and pharmaceutical applications. When exposing nanomaterials, e.g., magnetic iron oxide nanoparticles (MNP), to human blood, a protein corona consisting of various components is formed immediately. The composition of the corona as well as its amount bound to the particle surface is dependent on different factors, e.g., particle size and surface charge. The actual composition of the formed protein corona might be of major importance for cellular uptake of magnetic nanoparticles. The aim of the present study was to analyze the formation of the protein corona during in vitro serum incubation in dependency of incubation time and temperature. For this, MNP with different shells were incubated in fetal calf serum (FCS, serving as protein source) within a water bath for a defined time and at a defined temperature. Before and after incubation the particles were characterized by a variety of methods. It was found that immediately (seconds) after contact of MNP and FCS, a protein corona is formed on the surface of MNP. This formation led to an increase of particle size and a slight agglomeration of the particles, which was relatively constant during the first minutes of incubation. A longer incubation (from hours to days) resulted in a stronger agglomeration of the FCS incubated MNP. Quantitative analysis (gel electrophoresis) of serum-incubated particles revealed a relatively constant amount of bound proteins during the first minutes of serum incubation. After a longer incubation (>20 min), a considerably higher amount of surface proteins was determined for incubation temperatures below 40 °C. For incubation temperatures above 50 °C, the influence of time was less significant which might be attributed to denaturation of proteins during incubation. Overall, analysis of the molecular weight distribution of proteins found in the corona revealed a clear influence of incubation time and temperature on

  2. Design and Construction of Generalizable RNA-Protein Hybrid Controllers by Level-Matched Genetic Signal Amplification.

    Science.gov (United States)

    Wang, Yen-Hsiang; McKeague, Maureen; Hsu, Tammy M; Smolke, Christina D

    2016-12-21

    For synthetic biology applications, protein-based transcriptional genetic controllers are limited in terms of orthogonality, modularity, and portability. Although ribozyme-based switches can address these issues, their current two-stage architectures and limited dynamic range hinder their broader incorporation into systems-level genetic controllers. Here, we address these challenges by implementing an RNA-protein hybrid controller with a three-stage architecture that introduces a transcription-based amplifier between an RNA sensor and a protein actuator. To facilitate the construction of these more complex circuits, we use a model-guided strategy to efficiently match the activities of stages. The presence of the amplifier enabled the three-stage controller to have up to 200-fold higher gene expression than its two-stage counterpart and made it possible to implement higher-order controllers, such as multilayer Boolean logic and feedback systems. The modularity inherent in the three-stage architecture along with the sensing flexibility of RNA devices presents a generalizable framework for designing and building sophisticated genetic control systems.

  3. Detection and alignment of 3D domain swapping proteins using angle-distance image-based secondary structural matching techniques.

    Directory of Open Access Journals (Sweden)

    Chia-Han Chu

    Full Text Available This work presents a novel detection method for three-dimensional domain swapping (DS, a mechanism for forming protein quaternary structures that can be visualized as if monomers had "opened" their "closed" structures and exchanged the opened portion to form intertwined oligomers. Since the first report of DS in the mid 1990s, an increasing number of identified cases has led to the postulation that DS might occur in a protein with an unconstrained terminus under appropriate conditions. DS may play important roles in the molecular evolution and functional regulation of proteins and the formation of depositions in Alzheimer's and prion diseases. Moreover, it is promising for designing auto-assembling biomaterials. Despite the increasing interest in DS, related bioinformatics methods are rarely available. Owing to a dramatic conformational difference between the monomeric/closed and oligomeric/open forms, conventional structural comparison methods are inadequate for detecting DS. Hence, there is also a lack of comprehensive datasets for studying DS. Based on angle-distance (A-D image transformations of secondary structural elements (SSEs, specific patterns within A-D images can be recognized and classified for structural similarities. In this work, a matching algorithm to extract corresponding SSE pairs from A-D images and a novel DS score have been designed and demonstrated to be applicable to the detection of DS relationships. The Matthews correlation coefficient (MCC and sensitivity of the proposed DS-detecting method were higher than 0.81 even when the sequence identities of the proteins examined were lower than 10%. On average, the alignment percentage and root-mean-square distance (RMSD computed by the proposed method were 90% and 1.8Å for a set of 1,211 DS-related pairs of proteins. The performances of structural alignments remain high and stable for DS-related homologs with less than 10% sequence identities. In addition, the quality of its

  4. Detection and alignment of 3D domain swapping proteins using angle-distance image-based secondary structural matching techniques.

    Science.gov (United States)

    Chu, Chia-Han; Lo, Wei-Cheng; Wang, Hsin-Wei; Hsu, Yen-Chu; Hwang, Jenn-Kang; Lyu, Ping-Chiang; Pai, Tun-Wen; Tang, Chuan Yi

    2010-10-14

    This work presents a novel detection method for three-dimensional domain swapping (DS), a mechanism for forming protein quaternary structures that can be visualized as if monomers had "opened" their "closed" structures and exchanged the opened portion to form intertwined oligomers. Since the first report of DS in the mid 1990s, an increasing number of identified cases has led to the postulation that DS might occur in a protein with an unconstrained terminus under appropriate conditions. DS may play important roles in the molecular evolution and functional regulation of proteins and the formation of depositions in Alzheimer's and prion diseases. Moreover, it is promising for designing auto-assembling biomaterials. Despite the increasing interest in DS, related bioinformatics methods are rarely available. Owing to a dramatic conformational difference between the monomeric/closed and oligomeric/open forms, conventional structural comparison methods are inadequate for detecting DS. Hence, there is also a lack of comprehensive datasets for studying DS. Based on angle-distance (A-D) image transformations of secondary structural elements (SSEs), specific patterns within A-D images can be recognized and classified for structural similarities. In this work, a matching algorithm to extract corresponding SSE pairs from A-D images and a novel DS score have been designed and demonstrated to be applicable to the detection of DS relationships. The Matthews correlation coefficient (MCC) and sensitivity of the proposed DS-detecting method were higher than 0.81 even when the sequence identities of the proteins examined were lower than 10%. On average, the alignment percentage and root-mean-square distance (RMSD) computed by the proposed method were 90% and 1.8Å for a set of 1,211 DS-related pairs of proteins. The performances of structural alignments remain high and stable for DS-related homologs with less than 10% sequence identities. In addition, the quality of its hinge loop

  5. Serum Level of HMGB1 Protein and Inflammatory Markers in Patients with Secondary Peritonitis: Time Course and the Association with Clinical Status

    Directory of Open Access Journals (Sweden)

    Milić Ljiljana

    2017-01-01

    Full Text Available Background: Intra-abdominal infection in secondary peritonitis drives as excessive production of inflammatory mediators and the development of systemic inflammatory response syndrome (SIRS or sepsis. Finding a specific marker to distinguish SIRS from sepsis would be of immense clinical importance for the therapeutic approach. It is assumed that high-mobility group box 1 protein (HMGB1 could be such a marker. In this study, we examined the time course changes in the blood levels of HMGB1, C-reactive protein (CRP, procalcitonin (PCT and serum amyloid A (SAA in patients with secondary peritonitis who developed SIRS or sepsis.

  6. The Yeast Split-Ubiquitin Membrane Protein Two-Hybrid Screen Identifies BAP31 as a Regulator of the Turnover of Endoplasmic Reticulum-Associated Protein Tyrosine Phosphatase-Like B

    OpenAIRE

    Wang, Bing; Pelletier, Jerry; Massaad, Michel J.; Herscovics, Annette; Shore, Gordon C

    2004-01-01

    In the past decade, traditional yeast two-hybrid techniques have identified a plethora of interactions among soluble proteins operating within diverse cellular pathways. The discovery of associations between membrane proteins by genetic approaches, on the other hand, is less well established due to technical limitations. Recently, a split-ubiquitin system was developed to overcome this barrier, but so far, this system has been limited to the analysis of known membrane protein interactions. He...

  7. Using the Yeast Three-Hybrid System to Identify Proteins that Interact with a Phloem-Mobile mRNA.

    Science.gov (United States)

    Cho, Sung Ki; Kang, Il-Ho; Carr, Tyrell; Hannapel, David J

    2012-01-01

    Heterografting and RNA transport experiments have demonstrated the long-distance mobility of StBEL5 RNA, its role in controlling tuber formation, and the function of the 503-nt 3' untranslated region (UTR) of the RNA in mediating transport. Because the 3' UTR of StBEL5 is a key element in regulating several aspects of RNA metabolism, a potato leaf cDNA library was screened using the 3' UTR of StBEL5 as bait in the yeast three-hybrid (Y3H) system to identify putative partner RNA-binding proteins (RBPs). From this screen, 116 positive cDNA clones were isolated based on nutrient selection, HIS3 activation, and lacZ induction and were sequenced and classified. Thirty-five proteins that were predicted to function in either RNA- or DNA-binding were selected from this pool. Seven were monitored for their expression profiles and further evaluated for their capacity to bind to the 3' UTR of StBEL5 using β-galactosidase assays in the Y3H system and RNA gel-shift assays. Among the final selections were two RBPs, a zinc finger protein, and one protein, StLSH10, from a family involved in light signaling. In this study, the Y3H system is presented as a valuable tool to screen and verify interactions between target RNAs and putative RBPs. These results can shed light on the dynamics and composition of plant RNA-protein complexes that function to regulate RNA metabolism.

  8. Protein secondary structure of Green Lynx spider dragline silk investigated by solid-state NMR and X-ray diffraction.

    Science.gov (United States)

    Xu, Dian; Shi, Xiangyan; Thompson, Forrest; Weber, Warner S; Mou, Qiushi; Yarger, Jeffery L

    2015-11-01

    In this study, the secondary structure of the major ampullate silk from Peucetia viridans (Green Lynx) spiders is characterized by X-ray diffraction and solid-state NMR spectroscopy. From X-ray diffraction measurement, β-sheet nanocrystallites were observed and found to be highly oriented along the fiber axis, with an orientational order, fc≈0.98. The size of the nanocrystallites was determined to be on average 2.5nm×3.3nm×3.8nm. Besides a prominent nanocrystalline region, a partially oriented amorphous region was also observed with an fa≈0.89. Two-dimensional (13)C-(13)C through-space and through-bond solid-state NMR experiments were employed to elucidate structure details of P. viridans silk proteins. It reveals that β-sheet nanocrystallites constitutes 40.0±1.2% of the protein and are dominated by alanine-rich repetitive motifs. Furthermore, based upon the NMR data, 18±1% of alanine, 60±2% glycine and 54±2% serine are incorporated into helical conformations. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Ric-8A, a G protein chaperone with nucleotide exchange activity induces long-range secondary structure changes in Gα.

    Science.gov (United States)

    Kant, Ravi; Zeng, Baisen; Thomas, Celestine J; Bothner, Brian; Sprang, Stephen R

    2016-12-23

    Cytosolic Ric-8A has guanine nucleotide exchange factor (GEF) activity and is a chaperone for several classes of heterotrimeric G protein α subunits in vertebrates. Using Hydrogen-Deuterium Exchange-Mass Spectrometry (HDX-MS) we show that Ric-8A disrupts the secondary structure of the Gα Ras-like domain that girds the guanine nucleotide-binding site, and destabilizes the interface between the Gαi1 Ras and helical domains, allowing domain separation and nucleotide release. These changes are largely reversed upon binding GTP and dissociation of Ric-8A. HDX-MS identifies a potential Gα interaction site in Ric-8A. Alanine scanning reveals residues crucial for GEF activity within that sequence. HDX confirms that, like G protein-coupled receptors (GPCRs), Ric-8A binds the C-terminus of Gα. In contrast to GPCRs, Ric-8A interacts with Switches I and II of Gα and possibly at the Gα domain interface. These extensive interactions provide both allosteric and direct catalysis of GDP unbinding and release and GTP binding.

  10. Hybrid metabolic flux analysis and recombinant protein prediction in Pichia pastoris X-33 cultures expressing a single-chain antibody fragment.

    Science.gov (United States)

    Isidro, Inês A; Portela, Rui M; Clemente, João J; Cunha, António E; Oliveira, Rui

    2016-09-01

    Despite the growing importance of the Pichia pastoris expression system as industrial workhorse, the literature is almost absent in systematic studies on how culture medium composition affects central carbon fluxes and heterologous protein expression. In this study we investigate how 26 variations of the BSM+PTM1 medium impact central carbon fluxes and protein expression in a P. pastoris X-33 strain expressing a single-chain antibody fragment. To achieve this goal, we adopted a hybrid metabolic flux analysis (MFA) methodology, which is a modification of standard MFA to predict the rate of synthesis of recombinant proteins. Hybrid MFA combines the traditional parametric estimation of central carbon fluxes with non-parametric statistical modeling of product-related quantitative or qualitative measurements as a function of central carbon fluxes. It was observed that protein yield variability was 53.6 % (relative standard deviation) among the different experiments. Protein yield is much more sensitive to medium composition than biomass growth, which is mainly determined by the carbon source availability and main salts. Hybrid MFA was able to describe accurately the protein yield with normalized RMSE of 6.3 % over 5 independent experiments. The metabolic state that promotes high protein yields is characterized by high overall metabolic rates through main central carbon pathways concomitantly with a relative shift of carbon flux from biosynthetic towards energy generating pathways.

  11. Non-uniform binding of single-stranded DNA binding proteins to hybrids of single-stranded DNA and single-walled carbon nanotubes observed by atomic force microscopy in air and in liquid

    Science.gov (United States)

    Umemura, Kazuo; Ishizaka, Kei; Nii, Daisuke; Izumi, Katsuki

    2016-12-01

    Using atomic force spectroscopy (AFM), we observed hybrids of single-stranded DNA (ssDNA) and single-walled carbon nanotubes (SWNTs) with or without protein molecules in air and in an aqueous solution. This is the first report of ssDNA-SWNT hybrids with proteins in solution analyzed by AFM. In the absence of protein, the height of the ssDNA-SWNT hybrids was 1.1 ± 0.3 nm and 2.4 ± 0.6 nm in air and liquid, respectively, suggesting that the ssDNA molecules adopted a flexible structure on the SWNT surface. In the presence of single-stranded DNA binding (SSB) proteins, the heights of the hybrids in air and liquid increased to 6.4 ± 3.1 nm and 10.0 ± 4.5 nm, respectively. The AFM images clearly showed binding of the SSB proteins to the ssDNA-SWNT hybrids. The morphology of the SSB-ssDNA-SWNT hybrids was non-uniform, particularly in aqueous solution. The variance of hybrid height was quantitatively estimated by cross-section analysis along the long-axis of each hybrid. The SSB-ssDNA-SWNT hybrids showed much larger variance than the ssDNA-SWNT hybrids.

  12. Cholestasis and protein-losing enteropathy secondary to hyperthyroidism in a 6-year-old girl.

    Science.gov (United States)

    Gargouri, Lamia; Charfi, Manel; Maalej, Bayen; Majdoub, Imen; Safi, Faiza; Fourati, Hela; Hentati, Yosr; Daoud, Emna; Mnif, Zeineb; Abid, Mohamed; Mahfoudh, Abdelmajid

    2014-09-01

    Hepatic dysfunctions are not infrequent in patients with hyperthyroidism. These disorders may be related to the effects of the excess thyroid hormone secretion, to the uses of antithyroid drugs, or to the presence of concomitant hepatic diseases. Our aim is to describe the clinical and biochemical features of liver dysfunction related to thyrotoxicosis. We report here a case of a 6-year-old girl who was admitted for jaundice and pruritus as a result of the development of hyperthyroidism due to Graves' disease. On physical examination at admission, she was found to have jaundice and hepatomegaly. Laboratory data show cholestasis and protein-losing enteropathy. Investigations exclude other causes of hepatic disorder. One month after the initiation of antithyroid drug, the patient became euthyroid with improvement in jaundice and pruritus and normalization of hepatic tests and alpha antitrypsine clearance. In conclusion, the diagnosis of hyperthyroidism may be delayed in patients in whom the primary manifestations were pruritus and jaundice. The physician should suspect thyrotoxicosis prior to hepatitis or skin manifestations.

  13. ORION: a web server for protein fold recognition and structure prediction using evolutionary hybrid profiles.

    Science.gov (United States)

    Ghouzam, Yassine; Postic, Guillaume; Guerin, Pierre-Edouard; de Brevern, Alexandre G; Gelly, Jean-Christophe

    2016-06-20

    Protein structure prediction based on comparative modeling is the most efficient way to produce structural models when it can be performed. ORION is a dedicated webserver based on a new strategy that performs this task. The identification by ORION of suitable templates is performed using an original profile-profile approach that combines sequence and structure evolution information. Structure evolution information is encoded into profiles using structural features, such as solvent accessibility and local conformation -with Protein Blocks-, which give an accurate description of the local protein structure. ORION has recently been improved, increasing by 5% the quality of its results. The ORION web server accepts a single protein sequence as input and searches homologous protein structures within minutes. Various databases such as PDB, SCOP and HOMSTRAD can be mined to find an appropriate structural template. For the modeling step, a protein 3D structure can be directly obtained from the selected template by MODELLER and displayed with global and local quality model estimation measures. The sequence and the predicted structure of 4 examples from the CAMEO server and a recent CASP11 target from the 'Hard' category (T0818-D1) are shown as pertinent examples. Our web server is accessible at http://www.dsimb.inserm.fr/ORION/.

  14. Overproduction, purification, crystallization and preliminary X-ray analysis of the peroxiredoxin domain of a larger natural hybrid protein from Thermotoga maritima

    Energy Technology Data Exchange (ETDEWEB)

    Barbey, Carole, E-mail: carole.barbey@smbh.univ-paris13.fr [Laboratoire de Biophysique Moléculaire, Cellulaire et Tissulaire, UMR 7033, Université Paris 13, UFR SMBH, 74 Rue Marcel Cachin, 93017 Bobigny CEDEX (France); Rouhier, Nicolas [Unité Mixte de Recherches 1136 INRA UHP (Interaction Arbres Microorganismes), IFR 110, Nancy Université BP 239, 54506 Vandoeuvre-lès-Nancy CEDEX (France); Haouz, Ahmed [Plate-forme de Cristallogenèse et Diffraction des Rayons X, Institut Pasteur, 25 Rue du Dr Roux, 75724 Paris (France); Navaza, Alda [Laboratoire de Biophysique Moléculaire, Cellulaire et Tissulaire, UMR 7033, Université Paris 13, UFR SMBH, 74 Rue Marcel Cachin, 93017 Bobigny CEDEX (France); Jacquot, Jean-Pierre [Unité Mixte de Recherches 1136 INRA UHP (Interaction Arbres Microorganismes), IFR 110, Nancy Université BP 239, 54506 Vandoeuvre-lès-Nancy CEDEX (France); Laboratoire de Biophysique Moléculaire, Cellulaire et Tissulaire, UMR 7033, Université Paris 13, UFR SMBH, 74 Rue Marcel Cachin, 93017 Bobigny CEDEX (France)

    2008-01-01

    Crystals of the peroxiredoxin domain of a larger natural hybrid protein from T. maritima were obtained which diffracted to 2.9 Å resolution on a synchrotron source. Thermotoga maritima contains a natural hybrid protein constituted of two moieties: a peroxiredoxin domain at the N-terminus and a nitroreductase domain at the C-terminus. The peroxiredoxin (Prx) domain has been overproduced and purified from Escherichia coli cells. The recombinant Prx domain, which is homologous to bacterial Prx BCP and plant Prx Q, folds properly into a stable protein that possesses biological activity. The recombinant protein was crystallized and synchrotron data were collected to 2.9 Å resolution. The crystals belonged to the tetragonal space group I422, with unit-cell parameters a = b = 176.67, c = 141.20 Å.

  15. Preparation of protein-like silver-cysteine hybrid nanowires and application in ultrasensitive immunoassay of cancer biomarker.

    Science.gov (United States)

    Chen, Wenjuan; Zheng, Liyan; Wang, Meilan; Chi, Yuwu; Chen, Guonan

    2013-10-15

    Novel protein-like silver-cysteine hybrid nanowires (p-SCNWs) have been synthesized by a green, simple, nontemplate, seedless, and one-step aqueous-phase approach. AgNO3 and l-cysteine were dissolved in distilled water, forming Ag-cysteine precipitates and HNO3. Under vigorous stirring, the pH of the solution was rapidly adjusted to 9.0 by addition of concentrated sodium hydroxide solution, leading to quick dissolution of the Ag-cysteine precipitates and sudden appearance of white precipitates of p-SCNWs. The p-SCNWs are monodispersed nanowires with diameter of 100 nm and length of tens of micrometers, and have abundant carboxyl (-COOH) and amine (-NH2) groups at their surfaces, large amounts of peptide-linkages and S-bonding silver ions (Ag(+)) inside, making them look and act like Ag-hybrid protein nanostructures. The abundant -COOH and -NH2 groups at the surfaces of p-SCNWs have been found to facilitate the reactions between the p-SCNWs and proteins including antibodies. Furthermore, the fact that the p-SCNWs contain large amounts of silver ions enables biofunctionalized p-SCNWs to be excellent signal amplifying chemiluminescence labels for ultrasensitive and highly selective detection of important antigens, such as cancer biomarkers. In this work, the immunoassay of carcinoembryonic antigen (CEA) in human serum was taken as an example to demonstrate the immunoassay applications of antibody-functionalized p-SCNWs. By the novel p-SCNW labels, CEA can be detected in the linear range from 5 to 400 fg/mL with a limit of detection (LOD) of 2.2 fg/mL (at signal-to-noise ratio of 3), which is much lower than that obtained by commercially available enzyme-linked immunosorbent assay (ELISA). Therefore, the synthesized p-SCNWs are envisioned to be an excellent carrier for proteins and related immunoassay strategy would have promising applications in ultrasensitive clinical screening of cancer biomarkers for early diagnostics of cancers.

  16. A Catalogue of Altered Salivary Proteins Secondary to Invasive Ductal Carcinoma: A Novel In Vivo Paradigm to Assess Breast Cancer Progression.

    Science.gov (United States)

    Streckfus, Charles F; Bigler, Lenora

    2016-08-01

    The objective of this manuscript is to introduce a catalogue of salivary proteins that are altered secondary to carcinoma of the breast. The catalogue of salivary proteins is a compilation of twenty years of research by the authors and consists of 233 high and low abundant proteins which have been identified by LC-MS/MS mass spectrometry, 2D-gel analysis and by enzyme-linked immunosorbent assay. The body of research suggests that saliva is a fluid suffused with solubilized by-products of oncogenic expression and that these proteins may be useful in the study of breast cancer progress, treatment efficacy and the tailoring of individualized patient care.

  17. Hypercalcemia secondary to gastrointestinal stromal tumors: parathyroid hormone-related protein independent mechanism?

    Science.gov (United States)

    Jasti, Prathima; Lakhani, Vipul Tulsi; Woodworth, Alison; Dahir, Kathryn McCrystal

    2013-01-01

    Hypercalcemia is a common paraneoplastic manifestation of many malignancies like breast, ovarian, and squamous-cell cancers of head and neck; however, there have been only a few case reports of hypercalcemia associated with gastrointestinal stromal tumors (GISTs). We report a case of GIST presenting with hypercalcemia without any osseous metastasis and provide a literature review regarding the mechanisms of hypercalcemia and therapeutic strategies. We present a report of case and a review of the relevant literature. A 52-year-old woman with history of localized breast cancer in remission and a pelvic 13 × 12 cm GIST with peritoneal, liver, and lung metastases presented with hypercalcemia of 14.3 mg/dL (8.5-10.5 mg/dL). Parathyroid hormone-related protein (PTHrP) was undetectable, intact parathyroid hormone (PTH) was appropriately low at 1 pg/mL (10-65 pg/mL), and 1,25 dihydroxy vitamin D (1,25 OH2 vit D) was elevated at 131 pg/mL (18-78 pg/mL) with normal renal function. Calcium responded transiently to tyrosine kinase inhibitor therapy and bisphosphonates but within a year, she expired due to tumor progression. GIST is a rare cause of hypercalcemia. In addition to PTHrP expression, direct tumor production of 1,25(OH)2 vit D or 1-α hydroxylase enzyme resulting in activation of 25-hydroxy vitamin D may be an alternative mechanism in GIST-related hypercalcemia. Therapy with tyrosine kinase inhibitors and bisphosphonates is recommended, though prognosis is poor. Further investigations are needed to characterize the etiology and management of hypercalcemia in these patients.

  18. Yeast Two-Hybrid Studies on Interaction of Proteins Involved in Regulation of Nitrogen Fixation in the Phototrophic Bacterium Rhodobacter capsulatus

    OpenAIRE

    Pawlowski, Alice; Riedel, Kai-Uwe; Klipp, Werner; Dreiskemper, Petra; Groß, Silke; Bierhoff, Holger; Drepper, Thomas; Masepohl, Bernd

    2003-01-01

    Rhodobacter capsulatus contains two PII-like proteins, GlnB and GlnK, which play central roles in controlling the synthesis and activity of nitrogenase in response to ammonium availability. Here we used the yeast two-hybrid system to probe interactions between these PII-like proteins and proteins known to be involved in regulating nitrogen fixation. Analysis of defined protein pairs demonstrated the following interactions: GlnB-NtrB, GlnB-NifA1, GlnB-NifA2, GlnB-DraT, GlnK-NifA1, GlnK-NifA2, ...

  19. Nanogold-based bio-bar codes for label-free immunosensing of proteins coupling with an in situ DNA-based hybridization chain reaction.

    Science.gov (United States)

    Zhou, Jun; Xu, Mingdi; Tang, Dianping; Gao, Zhuangqiang; Tang, Juan; Chen, Guonan

    2012-12-28

    A label-free, non-enzyme immunosensing strategy is designed for ultrasensitive electronic detection of disease-related proteins (carcinoembryonic antigen as a model) by using gold nanoparticle-based bio-bar codes and an in situ amplified DNA-based hybridization chain reaction.

  20. Screening of the interacting proteins with NifA in Azospirillum brasilense Sp7 by the yeast two-hybrid system

    Institute of Scientific and Technical Information of China (English)

    CHEN Sanfeng; GUAN Yu; TU Ran; SUN Wengai; LI Jilun

    2005-01-01

    NifA in Azospirillum brasilense plays a key role in regulating the synthesis and activity of nitrogenase in response to ammonia and oxygen available. In this work we used the yeast two-hybrid system to identify the proteins that interact with NifA. The nifA gene was fused to the yeast two-hybrid vector pGBD-C2, and three A. brasilense Sp7 genomic libraries for use in yeast two-hybrid studies were constructed. Screening of the libraries identified four clones encoding proteins that interact with NifA. The confirmation of the interactions of each gene product of the four clones and NifA were carried out by exchanging the vectors for nifA and the four clones and by mutageneses of the four clones with shift reading frame experiments in yeast two-hybrid studies. DNA sequence analyses showed that two clones encode proteins containing PAS domains that play an important role in signal transduction. One clone has high similarity with the fhuE gene of Escherichia coli, whose gene product is involved in iron uptake and transportation, and the other clone encodes an unknown protein.

  1. Titantium Dioxide Nanoparticles Assembled by DNA Molecules Hybridization and Loading of DNA Interacting Proteins.

    Science.gov (United States)

    Wu, Aiguo; Paunesku, Tatjana; Brown, Eric M B; Babbo, Angela; Cruz, Cecille; Aslam, Mohamed; Dravid, Vinayak; Woloschak, Gayle E

    2008-02-01

    This work demonstrates the assembly of TiO(2) nanoparticles with attached DNA oligonucleotides into a 3D mesh structure by allowing base pairing between oligonucleotides. A change of the ratio of DNA oligonucleotide molecules and TiO(2) nanoparticles regulates the size of the mesh as characterized by UV-visible light spectra, transmission electron microscopy and atomic force microscopy images. This type of 3D mesh, based on TiO(2)-DNA oligonucleotide nanoconjugates, can be used for studies of nanoparticle assemblies in material science, energy science related to dye-sensitized solar cells, environmental science as well as characterization of DNA interacting proteins in the field of molecular biology. As an example of one such assembly, proliferating cell nuclear antigen protein (PCNA) was cloned, its activity verified, and the protein was purified, loaded onto double strand DNA oligonucleotide-TiO(2) nanoconjugates, and imaged by atomic force microscopy. This type of approach may be used to sample and perhaps quantify and/or extract specific cellular proteins from complex cellular protein mixtures affinity based on their affinity for chosen DNA segments assembled into the 3D matrix.

  2. Identification of novel protein-protein interactions of Yersinia pestis type III secretion system by yeast two hybrid system.

    Directory of Open Access Journals (Sweden)

    Huiying Yang

    Full Text Available Type III secretion system (T3SS of the plague bacterium Y. pestis encodes a syringe-like structure consisting of more than 20 proteins, which can inject virulence effectors into host cells to modulate the cellular functions. Here in this report, interactions among the possible components in T3SS of Yersinia pestis were identified using yeast mating technique. A total of 57 genes, including all the pCD1-encoded genes except those involved in plasmid replication and partition, pseudogenes, and the putative transposase genes, were subjected to yeast mating analysis. 21 pairs of interaction proteins were identified, among which 9 pairs had been previously reported and 12 novel pairs were identified in this study. Six of them were tested by GST pull down assay, and interaction pairs of YscG-SycD, YscG-TyeA, YscI-YscF, and YopN-YpCD1.09c were successfully validated, suggesting that these interactions might play potential roles in function of Yersinia T3SS. Several potential new interactions among T3SS components could help to understand the assembly and regulation of Yersinia T3SS.

  3. Protein-precipitable tannin in wines from Vitis vinifera and interspecific hybrid grapes (Vitis ssp.): differences in concentration, extractability, and cell wall binding.

    Science.gov (United States)

    Springer, Lindsay F; Sacks, Gavin L

    2014-07-30

    Although they possess significant viticultural advantages, interspecific hybrid grapes (Vitis spp.) are reported to produce wine with lower tannin concentrations than European wine varieties (Vitis vinifera). However, extensive quantitative data on this phenomenon as well as mechanistic explanations for these differences are lacking. A survey of primarily commercial wines from the Finger Lakes American Viticultural Area (New York) using a protein precipitation method determined that hybrid-based wines had >4-fold lower tannin concentrations than vinifera wines. To elucidate factors responsible for differences in wine tannin, 24 wines were produced from both red hybrid and vinifera cultivars under identical conditions. Lower wine tannin in French-American hybrid- than vinifera-based wines could be partially explained by lower grape tannin. However, experiments in which cell wall material was incubated with tannin indicated that cell wall binding may be of equal or greater importance in explaining lower wine tannin concentrations in hybrid-based wines. Subsequent characterization of cell wall material revealed that protein in flesh cell walls and, to a lesser extent, pectin in skin cell walls were correlated with cell wall binding.

  4. PSOVina: The hybrid particle swarm optimization algorithm for protein-ligand docking.

    Science.gov (United States)

    Ng, Marcus C K; Fong, Simon; Siu, Shirley W I

    2015-06-01

    Protein-ligand docking is an essential step in modern drug discovery process. The challenge here is to accurately predict and efficiently optimize the position and orientation of ligands in the binding pocket of a target protein. In this paper, we present a new method called PSOVina which combined the particle swarm optimization (PSO) algorithm with the efficient Broyden-Fletcher-Goldfarb-Shannon (BFGS) local search method adopted in AutoDock Vina to tackle the conformational search problem in docking. Using a diverse data set of 201 protein-ligand complexes from the PDBbind database and a full set of ligands and decoys for four representative targets from the directory of useful decoys (DUD) virtual screening data set, we assessed the docking performance of PSOVina in comparison to the original Vina program. Our results showed that PSOVina achieves a remarkable execution time reduction of 51-60% without compromising the prediction accuracies in the docking and virtual screening experiments. This improvement in time efficiency makes PSOVina a better choice of a docking tool in large-scale protein-ligand docking applications. Our work lays the foundation for the future development of swarm-based algorithms in molecular docking programs. PSOVina is freely available to non-commercial users at http://cbbio.cis.umac.mo .

  5. A Hybrid Knowledge-Based and Empirical Scoring Function for Protein-Ligand Interaction: SMoG2016.

    Science.gov (United States)

    Debroise, Théau; Shakhnovich, Eugene I; Chéron, Nicolas

    2017-03-27

    We present the third generation of our scoring function for the prediction of protein-ligand binding free energy. This function is now a hybrid between a knowledge-based potential and an empirical function. We constructed a diversified set of ∼1000 complexes from the PDBBinding-CN database for the training of the function, and we show that this number of complexes generates enough data to build the potential. The occurrence of 420 different types of atomic pairwise interactions is computed in up to five different ranges of distances to derive the knowledge-based part. All of the parameters were optimized, and we were able to considerably improve the accuracy of the scoring function with a Pearson correlation coefficient against experimental binding free energies of up to 0.57, which ranks our new scoring function as one of the best currently available and the second-best in terms of standard deviation (SD = 1.68 kcal/mol). The function was then further improved by inclusion of different terms taking into account repulsion and loss of entropy upon binding, and we show that it is capable of recovering native binding poses up to 80% of the time. All of the programs, tools, and protein sets are released in the Supporting Information or as open-source programs.

  6. Speckle-type POZ (pox virus and zinc finger protein) protein gene deletion in ovarian cancer: Fluorescence in situ hybridization analysis of a tissue microarray.

    Science.gov (United States)

    Hu, Xiaoyu; Yang, Zhu; Zeng, Manman; Liu, Y I; Yang, Xiaotao; Li, Yanan; Li, X U; Yu, Qiubo

    2016-07-01

    The aim of the present study was to investigate the status of speckle-type POZ (pox virus and zinc finger protein) protein (SPOP) gene located on chromosome 17q21 in ovarian cancer (OC). The present study evaluated a tissue microarray, which contained 90 samples of ovarian cancer and 10 samples of normal ovarian tissue, using fluorescence in situ hybridization (FISH). FISH is a method where a SPOP-specific DNA red fluorescence probe was used for the experimental group and a centromere-specific DNA green fluorescence probe for chromosome 17 was used for the control group. The present study demonstrated that a deletion of the SPOP gene was observed in 52.27% (46/88) of the ovarian cancer tissues, but was not identified in normal ovarian tissues. Simultaneously, monosomy 17 was frequently identified in the ovarian cancer tissues, but not in the normal ovarian tissues. Furthermore, the present data revealed that the ovarian cancer histological subtype and grade were significantly associated with a deletion of the SPOP gene, which was assessed by the appearance of monosomy 17 in the ovarian cancer samples; the deletion of the SPOP gene was observed in a large proportion of serous epithelial ovarian cancer (41/61; 67.21%), particularly in grade 3 (31/37; 83.78%). In conclusion, deletion of the SPOP gene on chromosome 17 in ovarian cancer samples, which results from monosomy 17, indicates that the SPOP gene may serve as a tumor suppressor gene in ovarian cancer.

  7. Influence of secondary structure on in-source decay of protein in matrix-assisted laser desorption/ionization mass spectrometry.

    Science.gov (United States)

    Takayama, Mitsuo; Osaka, Issey; Sakakura, Motoshi

    2012-01-01

    The susceptibility of the N-Cα bond of the peptide backbone to specific cleavage by in-source decay (ISD) in matrix-assisted laser desorption/ionization mass spectrometry (MALDI MS) was studied from the standpoint of the secondary structure of three proteins. A naphthalene derivative, 5-amino-1-naphtol (5,1-ANL), was used as the matrix. The resulting c'-ions, which originate from the cleavage at N-Cα bonds in flexible secondary structures such as turn and bend, and are free from intra-molecular hydrogen-bonded α-helix structure, gave relatively intense peaks. Furthermore, ISD spectra of the proteins showed that the N-Cα bonds of specific amino acid residues, namely Gly-Xxx, Xxx-Asp, and Xxx-Asn, were more susceptible to MALDI-ISD than other amino acid residues. This is in agreement with the observation that Gly, Asp and Asn residues usually located in turns, rather than α-helix. The results obtained indicate that protein molecules embedded into the matrix crystal in the MALDI experiments maintain their secondary structures as determined by X-ray crystallography, and that MALDI-ISD has the capability for providing information concerning the secondary structure of protein.

  8. Electrochemical characterization of pore formation by bacterial protein toxins on hybrid supported membranes.

    Science.gov (United States)

    Wilkop, Thomas; Xu, Danke; Cheng, Quan

    2008-05-20

    The interaction of pore-forming streptolysin O (SLO) with biomimetic lipid membranes has been studied by electrochemical methods. Phosphatidylcholine lipid vesicles were deposited onto gold electrodes modified with supporting layers of hexyl thioctate (HT) or thioctic acid tri(ethylene glycol) ester (TA-TEGE), and integrity and permeability of the resulting membranes were characterized by cyclic voltammetry and impedance spectroscopy. Both positively and negatively charged electrochemical probes, potassium ferrocyanide, hexaammineruthenium(III) chloride, and ferrocene carboxylic acid (FCA), were employed to evaluate their suitability to probe the membrane permeability properties, with FCA exhibiting ideal behavior and thus employed throughout the work. Fusion of vesicles incubated with SLO on the electrodes yielded membranes that showed a distinctive response pattern for FCA as a function of SLO concentration. A direct dependence of both the currents and peak separation of FCA in the cyclic voltammograms was observed over a concentration range of 0-10 hemolytic units (HU)/microL of the toxin. The interaction of SLO with preformed supported lipid membranes was also investigated, and much lower response was observed, suggesting a different extent of membrane-toxin interactions on such an interface. Nonionic surfactant Triton was found to disrupt the vesicle structure but could not completely remove a preformed membrane to fully restore the electrode response. The information reported here offers some unique insight into toxin-surface interactions on a hybrid membrane, facilitating the development of electrochemically based sensing platforms for detecting trace amounts of bacterial toxins via the perforation process.

  9. Transactivating effect of hepatitis C virus core protein:A suppression subtractive hybridization study

    Institute of Scientific and Technical Information of China (English)

    Min Liu; Yan Liu; Jun Cheng; Shu-Lin Zhang; Lin Wang; Qing Shao; Jian Zhang; Qian Yang

    2004-01-01

    AIM: To investigate the transactivating effect of hepatitis C virus (HCV) core protein and to screen genes transactivated by HCV core protein.METHODS: pcDNA3.1(-)-core containing full-length HCV core gene was constructed by insertion of HCV core gene into EcoRI/BanHI site. HepG2 cells were cotransfected with pcDNA3.1(-)-core and pSV-lacZ. After 48 h, cells were collected and detected for the expression of β-gal by an enzyme-linked immunosorbent assay (ELISA) kit. HepG2 cells were transiently transfected with pcDNA3.1(-)-core using Lipofectamine reagent. Cells were collected and total mRNA was isolated. A subtracted cDNA library was generated and constructed into a pGEM-Teasy vector. The library was amplified with E. coli strain JM109. The cDNAs were sequenced and analyzed in GenBank with BLAST search after polymerase chain reaction (PCR).RESULTS: The core mRNA and protein could be detected in HepG2 cell lysate which was transfected by the pcDNA3.1(-)-core. The activity of β-galactosidase in HepG2 cells transfected by the pcDNA3.1(-)-core was 5.4 times higher than that of HepG2 cells transfected by control plasmid. The subtractive library of genes transactivated by HCV core protein was constructed successfully. The amplified library contained 233positive clones. Colony PCR showed that 2:13 clones contained 100-1 000 bp inserts. Sequence analysis was performed in 63 clones. Six of the sequences were unknown genes. The full length sequences were obtained with bioinformatics method, accepted by GenBank. It was suggested that six novel cDNA sequences might be target genes transactivated by HCV core protein.CONCLUSION: The core protein of HCV has transactivating effects on SV40 early promoter/enhancer. A total of 63 clones from cDNA library were randomly chosen and sequenced.Using the BLAST program at the National Center for Biotechnology Information, six of the sequences were unknown genes. The other 57 sequences were highly similar to known genes.

  10. Creating new functional biomaterials : construction and production of Bone Morphogenetic 2-ELP hybrid proteins

    OpenAIRE

    Silva, J. Azevedo; Machado, Raul; Reis, R.L.; Rodríguez-Cabello, José Carlos; Casal, Margarida

    2010-01-01

    Bone morphogenetic protein 2 (BMP-2) is a potent osteoinductive cytokine from the TGF-β superfamily that triggers the development of stem cells into osteoblasts. Its therapeutic interest has led to the development of various production systems for recombinant variables of BMP-2. Production has been achieved in expression systems ranging from animal cells to bacteria, but is always associated with three major drawbacks: low production rates (in animal cells), low activity (bacterial cells) and...

  11. THE EFFECT OF ENERGO – PROTEIC LEVEL ON CRUDE PROTEIN CONVERSION AT ARBOR ACRES HYBRID

    Directory of Open Access Journals (Sweden)

    DANIELA ALEXANDRESCU

    2013-12-01

    Full Text Available The present researches in broiler industry has been intensified in direction to obtained broiler chickens with a superior quality of carcass express through a big weight of value comercial cut-ups, like proportion with a small set-down of abdominal fat what represent a slaughtery loss. Permanent transformation of genetic potencial of broiler chickens impose continuous reevaluation of energy, protein, amino acids, trace minerals and vitamins requirements function of growth phases and sacrification age.

  12. Interconnection of salt-induced hydrophobic compaction and secondary structure formation depends on solution conditions: revisiting early events of protein folding at single molecule resolution.

    Science.gov (United States)

    Haldar, Shubhasis; Chattopadhyay, Krishnananda

    2012-03-30

    What happens in the early stage of protein folding remains an interesting unsolved problem. Rapid kinetics measurements with cytochrome c using submillisecond continuous flow mixing devices suggest simultaneous formation of a compact collapsed state and secondary structure. These data seem to indicate that collapse formation is guided by specific short and long range interactions (heteropolymer collapse). A contrasting interpretation also has been proposed, which suggests that the collapse formation is rapid, nonspecific, and a trivial solvent related compaction, which could as well be observed by a homopolymer (homopolymer collapse). We address this controversy using fluorescence correlation spectroscopy (FCS), which enables us to monitor the salt-induced compaction accompanying collapse formation and the associated time constant directly at single molecule resolution. In addition, we follow the formation of secondary structure using far UV CD. The data presented here suggest that both these models (homopolymer and heteropolymer) could be applicable depending on the solution conditions. For example, the formation of secondary structure and compact state is not simultaneous in aqueous buffer. In aqueous buffer, formation of the compact state occurs through a two-state co-operative transition following heteropolymer formalism, whereas secondary structure formation takes place gradually. In contrast, in the presence of urea, a compaction of the protein radius occurs gradually over an extended range of salt concentration following homopolymer formalism. The salt-induced compaction and the formation of secondary structure take place simultaneously in the presence of urea.

  13. Photoactivation Intermediates of a G-Protein Coupled Receptor Rhodopsin Investigated by a Hybrid Molecular Simulation.

    Science.gov (United States)

    Kamiya, Motoshi; Hayashi, Shigehiko

    2017-04-20

    Rhodopsin is a G-protein coupled receptor functioning as a photoreceptor for vision through photoactivation of a covalently bound ligand of a retinal protonated Schiff base chromophore. Despite the availability of structural information on the inactivated and activated forms of the receptor, the transition processes initiated by the photoabsorption have not been well understood. Here we theoretically examined the photoactivation processes by means of molecular dynamics (MD) simulations and ab initio quantum mechanical/molecular mechanical (QM/MM) free energy geometry optimizations which enabled accurate geometry determination of the ligand molecule in ample statistical conformational samples of the protein. Structures of the intermediate states of the activation process, blue-shifted intermediate and Lumi, as well as the dark state first generated by MD simulations and then refined by the QM/MM free energy geometry optimizations were characterized by large displacement of the β-ionone ring of retinal along with change in the hydrogen bond of the protonated Schiff base. The ab initio calculations of vibrational and electronic spectroscopic properties of those states well reproduced the experimental observations and successfully identified the molecular origins underlying the spectroscopic features. The structural evolution in the formation of the intermediates provides a molecular insight into the efficient activation processes of the receptor.

  14. Accurate prediction of protein structural classes by incorporating predicted secondary structure information into the general form of Chou's pseudo amino acid composition.

    Science.gov (United States)

    Kong, Liang; Zhang, Lichao; Lv, Jinfeng

    2014-03-07

    Extracting good representation from protein sequence is fundamental for protein structural classes prediction tasks. In this paper, we propose a novel and powerful method to predict protein structural classes based on the predicted secondary structure information. At the feature extraction stage, a 13-dimensional feature vector is extracted to characterize general contents and spatial arrangements of the secondary structural elements of a given protein sequence. Specially, four segment-level features are designed to elevate discriminative ability for proteins from the α/β and α+β classes. After the features are extracted, a multi-class non-linear support vector machine classifier is used to implement protein structural classes prediction. We report extensive experiments comparing the proposed method to the state-of-the-art in protein structural classes prediction on three widely used low-similarity benchmark datasets: FC699, 1189 and 640. Our method achieves competitive performance on prediction accuracies, especially for the overall prediction accuracies which have exceeded the best reported results on all of the three datasets.

  15. In-depth proteome mining of cultured Catharanthus roseus cells identifies candidate proteins involved in the synthesis and transport of secondary metabolites.

    Science.gov (United States)

    Champagne, Antoine; Rischer, Heiko; Oksman-Caldentey, Kirsi-Marja; Boutry, Marc

    2012-12-01

    Madagascar periwinkle (Catharanthus roseus) is the major source of terpenoid indole alkaloids, such as vinblastine or vincristine, used as natural drugs against various cancers. In this study, we have extensively analyzed the proteome of cultured C. roseus cells. Comparison of the proteomes of two independent cell lines with different terpenoid indole alkaloid metabolism by 2D-DIGE revealed 358 proteins that differed quantitatively by at least a twofold average ratio. Of these, 172 were identified by MS; most corresponded to housekeeping proteins. Less abundant proteins were identified by LC separation of tryptic peptides of proteins from one of the lines. We identified 1663 proteins, most of which are housekeeping proteins or involved in primary metabolism. However, 63 enzymes potentially involved in secondary metabolism were also identified, of which 22 are involved in terpenoid indole alkaloid biosynthesis and 16 are predicted transporters putatively involved in secondary metabolite transport. About 30% of the proteins identified have an unclear or unknown function, indicating important gaps in knowledge of plant metabolism. This study is an important step toward elucidating the proteome of C. roseus, which is critical for a better understanding of how this plant synthesizes terpenoid indole alkaloids.

  16. Smart self-assembled hybrid hydrogel biomaterials.

    Science.gov (United States)

    Kopeček, Jindřich; Yang, Jiyuan

    2012-07-23

    Hybrid biomaterials are systems created from components of at least two distinct classes of molecules, for example, synthetic macromolecules and proteins or peptide domains. The synergistic combination of two types of structures may produce new materials that possess unprecedented levels of structural organization and novel properties. This Review focuses on biorecognition-driven self-assembly of hybrid macromolecules into functional hydrogel biomaterials. First, basic rules that govern the secondary structure of peptides are discussed, and then approaches to the specific design of hybrid systems with tailor-made properties are evaluated, followed by a discussion on the similarity of design principles of biomaterials and macromolecular therapeutics. Finally, the future of the field is briefly outlined.

  17. Cooperative overlay secondary transmissions exploiting primary retransmissions

    National Research Council Canada - National Science Library

    Mafra, Samuel Baraldi; Souza, Richard Demo; Rebelatto, João Luiz; Fernandez, Evelio MG; Alves, Hirley

    2013-01-01

    .... Moreover, the secondary operates without harming the performance of the primary network. Different cooperative protocols are employed and associated with hybrid automatic repeat request mechanisms...

  18. Immunization with the hybrid protein vaccine, consisting of Leishmania major cysteine proteinases Type I (CPB) and Type II (CPA), partially protects against leishmaniasis.

    Science.gov (United States)

    Zadeh-Vakili, Azita; Taheri, Tahere; Taslimi, Yasaman; Doustdari, Fatemeh; Salmanian, Ali-Hatef; Rafati, Sima

    2004-05-07

    Cysteine proteinases (CPs) are enzymes that belong to the papain superfamily, which are found in a number of organisms from prokaryotes to mammals. On the parasitic protozoan Leishmania, extensive studies have shown that CPs are involved in parasite survival, replication and the onset of disease, and have, therefore, been considered as attractive drugs and/or vaccine targets for the control of leishmaniasis. We have previously shown that cysteine proteinases, Type I (CPB) and Type II (CPA), in Leishmania major (L. major), delivered as recombinant proteins or in plasmid DNA, induce partial protection against infection with the parasite in BALB/c mice. We had shown that the level of protection was greater if a cocktail of cpa and cpb containing DNA constructs was used. Therefore, to reduce the costs associated with the production of these vaccine candidates, a construct was developed, whereby the cpa and cpb genes were fused together to give rise to a single hybrid protein. The genes were fused in tandem where the C-terminal extension (CTE), encoding region of CPB, was located at the 3' of the fused genes, and ultimately expressed in the bacterial expression construct pET-23a. The expression of the CPA/B hybrid protein (60 kDa) was verified using rabbit anti-CPA and anti-CPB antibodies by SDS-PAGE and immunoblotting. The protective potential of the CPA/B hybrid protein against the infection with Leishmania was then assessed in BALB/c mice. The animals were vaccinated with CPA/B, challenged with live L. major promastigotes, and the degree of protection was examined by measuring footpad lesion sizes. It was found that there was a delay in the expansion of lesions size compared to control groups. Furthermore, an immunological analysis of antibody isotypes, before and after infection, showed high levels of IgG2a compared to IgG1 (more than five-fold) in the CPA/B hybrid protein vaccinated group. In addition, a predominant Th1 immune response characterized by in vitro IFN

  19. Connexin 37 and 43 gene and protein expression and developmental competence of isolated ovine secondary follicles cultured in vitro after vitrification of ovarian tissue.

    Science.gov (United States)

    Sampaio da Silva, Andréa Moreira; Bruno, Jamily Bezerra; de Lima, Laritza Ferreira; Ribeiro de Sá, Naíza Arcângela; Lunardi, Franciele Osmarini; Ferreira, Anna Clara Accioly; Vieira Correia, Hudson Henrique; de Aguiar, Francisco Léo Nascimento; Araújo, Valdevane Rocha; Lobo, Carlos Henrique; de Alencar Araripe Moura, Arlindo; Campello, Cláudio Cabral; Smitz, Johan; de Figueiredo, José Ricardo; Ribeiro Rodrigues, Ana Paula

    2016-05-01

    Cryoinjuries caused by vitrification of tissues and organs lead to the loss of membrane proteins that mediate intercellular communications, such as connexins 37 (Cx37) and 43 (Cx43). Thus, the present study aimed to evaluate ovine Cx37 and Cx43 gene and protein expressions and developmental competence by in vitro-cultured secondary follicles retrieved from vitrified ovarian tissue. Ovarian fragments for the same ovary pair were distributed into six treatments: (1) fresh ovarian tissue (FOT); (2) vitrified ovarian tissue (VOT); (3) isolated follicles from fresh ovarian tissue (FIF); (4) isolated follicles from vitrified ovarian tissue; (5) isolated follicles from fresh ovarian tissue followed by in vitro culture (CFIF); (6) isolated follicles from vitrified ovarian tissue followed by in vitro culture (CVIF). In all treatments, Cx37 and Cx43 gene and protein expression patterns were evaluated by reverse transcription polymerase chain reaction and immunocytochemistry. In addition, secondary follicles were analyzed according to follicular integrity and growth, apoptosis, and cell proliferation. In vitro-cultured secondary follicles (CFIF and CVIF) were evaluated based on morphology (extruded follicles), antrum formation, and viability. The percentage of intact follicles was higher, whereas antrum formation, oocyte extrusion rate, and follicle viability were lower in CVIF than in CFIF treatment (P isolated follicles from vitrified ovarian tissue and CVIF treatments than in follicles from FIF. Expression of Cx43 messenger RNA was lower in CVIF treatment when compared with follicles from all other treatments (P  0.05). Cx37 and Cx43 immunolabeling was localized mainly on granulosa cells and oocytes, respectively. In conclusion, isolation of ovine secondary follicles could be done successfully after vitrification of ovarian tissue, and the basement membrane integrity remained intact after in vitro culture. Although the gene and protein expression of Cx37 did not

  20. Co-assembly, spatiotemporal control and morphogenesis of a hybrid protein-peptide system

    Science.gov (United States)

    Inostroza-Brito, Karla E.; Collin, Estelle; Siton-Mendelson, Orit; Smith, Katherine H.; Monge-Marcet, Amàlia; Ferreira, Daniela S.; Rodríguez, Raúl Pérez; Alonso, Matilde; Rodríguez-Cabello, José Carlos; Reis, Rui L.; Sagués, Francesc; Botto, Lorenzo; Bitton, Ronit; Azevedo, Helena S.; Mata, Alvaro

    2015-11-01

    Controlling molecular interactions between bioinspired molecules can enable the development of new materials with higher complexity and innovative properties. Here we report on a dynamic system that emerges from the conformational modification of an elastin-like protein by peptide amphiphiles and with the capacity to access, and be maintained in, non-equilibrium for substantial periods of time. The system enables the formation of a robust membrane that displays controlled assembly and disassembly capabilities, adhesion and sealing to surfaces, self-healing and the capability to undergo morphogenesis into tubular structures with high spatiotemporal control. We use advanced microscopy along with turbidity and spectroscopic measurements to investigate the mechanism of assembly and its relation to the distinctive membrane architecture and the resulting dynamic properties. Using cell-culture experiments with endothelial and adipose-derived stem cells, we demonstrate the potential of this system to generate complex bioactive scaffolds for applications such as tissue engineering.

  1. Changes in the protein secondary structure of hen's egg yolk determined by Fourier transform infrared spectroscopy during the first eight days of incubation.

    Science.gov (United States)

    Lilienthal, Sabrina; Drotleff, Astrid M; Ternes, Waldemar

    2015-01-01

    In this study, incubation-induced alterations in the protein secondary structures of egg yolk and its major fractions (granules, plasma, and low-density lipoproteins [LDL]) were monitored during the first 8 d of embryogenesis using Fourier transform infrared spectroscopy (FTIR) and isoelectric focusing (IEF). Two factors potentially connected with egg yolk protein secondary structure changes were evaluated, i.e., the pH value of incubated egg yolk, and phosvitin, an important egg yolk protein assumed to play an important role in hematopoiesis as the iron carrier during early embryogenesis. However, neither the significant increase in pH value (6.07 to 6.92) of egg yolk during incubation of fertilized eggs, nor the release of iron from phosvitin were found to be directly related to the changes in protein secondary structure in egg yolk and its fractions. FTIR showed that the protein conformation in whole egg yolk, granules, and LDL was stable during incubation, but separate evaluation of the plasma fraction revealed considerable changes in secondary structure. However, it is unlikely that these changes were provoked by structure changes of the proteins originally present in plasma; instead, the physiological influx of albumen into the yolk sac was expected to play an important role in the protein modifications of egg yolk, as was shown both by FTIR and IEF of the water-soluble egg yolk proteins. Moreover, FTIR was used to determine the naturally occurring proportions (%) of the secondary structure elements in egg yolk and its 3 fractions on d 0 of incubation. The granules fraction mainly consisted of a mixture of inter- and intramolecular β-sheets (57.04%±0.39%). The plasma fraction was found to consist mainly of α-helices (43.23%±0.27%), whereas LDL was composed almost exclusively of intramolecular β-sheets (67.36%±0.56%) or β-turns, or both. On the other hand, whole egg yolk was mainly composed of intermolecular β-sheets (39.77%±0.48%), potentially

  2. The yeast three-hybrid system as an experimental platform to identify proteins interacting with small signaling molecules in plant cells: Potential and limitations

    Directory of Open Access Journals (Sweden)

    Stéphanie eCottier

    2011-12-01

    Full Text Available Chemical genetics is a powerful scientific strategy that utilizes small bioactive molecules as experimental tools to unravel biological processes. Bioactive compounds occurring in nature represent an enormous diversity of structures that can be used to dissect functions of biological systems. Once the bioactivity of a natural or synthetic compound has been critically evaluated the challenge remains to identify its molecular target and mode of action, which usually is a time consuming and labor-intensive process. To facilitate this task, we decided to implement the yeast three-hybrid (Y3H technology as a general experimental platform to scan the whole Arabidopsis proteome for targets of small signaling molecules. The Y3H technology is based on the yeast two-hybrid system and allows direct cloning of proteins that interact in vivo with a synthetic hybrid ligand, which comprises the biologically active molecule of interest covalently linked to methotrexate (Mtx. In yeast nucleus the hybrid ligand connects two fusion proteins: the Mtx part binding to dihydrofolate reductase fused to a DNA binding domain (encoded in the yeast strain, and the bioactive molecule part binding to its potential protein target fused to a DNA activating domain (encoded on a cDNA expression vector. During cDNA library screening, the formation of this ternary, transcriptional activator complex leads to reporter gene activation in yeast cells, and thereby allows selection of the putative targets of small bioactive molecules of interest. Here we present the strategy and experimental details for construction and application of a Y3H platform, including chemical synthesis of different hybrid ligands, construction of suitable cDNA libraries, the choice of yeast strains, and appropriate screening conditions. Based on the results obtained and the current literature we discussed the perspectives and limitations of the Y3H approach for identifying targets of small bioactive molecules.

  3. A hybrid two-component system of Tannerella forsythia affects autoaggregation and post-translational modification of surface proteins.

    Science.gov (United States)

    Niwa, Daisuke; Nishikawa, Kiyoshi; Nakamura, Hiroshi

    2011-05-01

    Tannerella forsythia is a Gram-negative oral anaerobe closely associated with both periodontal and periapical diseases. The ORF TF0022 of strain ATCC 43037 encodes a hybrid two-component system consisting of an N-terminal histidine kinase and a C-terminal response regulator. Disruption of the TF0022 locus enhanced autoaggregation of the broth-cultured cells. Comparative proteome analyses revealed that two S-layer proteins in the TF0022 mutant exhibited decreased apparent masses by denaturing gel electrophoresis, suggesting a deficiency in post-translational modification. Furthermore, the mutant decreased the production of a glycosyltransferase encoded by TF1061 that is located in a putative glycosylation-related gene cluster. Quantitative real-time PCR revealed reduced transcription of TF1061 and the associated genes in the TF0022 mutant. These results indicate that TF0022 upregulates the expression of the glycosylation-related genes and suggest modulation of the autoaggregation of T. forsythia cells by a possible post-translational modification of cell-surface components.

  4. Hybridization of the marine seaweeds, Fucus serratus and Fucus evanescens (Heterokontophyta : Phaeophyceae) in a 100-year-old zone of secondary contact

    NARCIS (Netherlands)

    Coyer, JA; Hoarau, G; Stam, WT; Olsen, JL

    2002-01-01

    Historically, the intertidal seaweeds Fucus serratus (Fs) and Fucus evanescens (Fe) were sympatric only along the western coast of Norway. In the mid-1890s, Fe (monoecious) was accidentally introduced into the Oslofjord. Putative hybridization with the endemic Fs (dioecious) was observed in Oslofjor

  5. Metal-organic frameworks@graphene hybrid aerogels for solid-phase extraction of non-steroidal anti-inflammatory drugs and selective enrichment of proteins.

    Science.gov (United States)

    Zhang, Xiaoqiong; Liang, Qionglin; Han, Qiang; Wan, Wei; Ding, Mingyu

    2016-06-20

    Graphene aerogel (GA)-supported metal-organic framework (MOF) particles with a three-dimensional (3D) architecture were fabricated for the first time via a facile template-free "sol-cryo" method. The prepared MOFs@graphene hybrid aerogels exhibit a 3D interconnected macroporous framework of graphene sheets with uniform dispersion of MOF particles. We also report the first attempt at using the hybrid aerogels as adsorbents for the solid-phase extraction (SPE) of non-steroidal anti-inflammatory drugs (NSAIDs) and the selective enrichment of proteins. The macroporous skeletons of GA provide both low backpressure and rapid mass transfer in SPE application, thus overcoming the obstacle of high backpressure caused by directly packing submicron or micron sized MOF particles into SPE cartridges. Excellent performances including satisfactory recoveries, high sensitivity and good reproducibility were achieved in the extraction of five NSAIDs. The hybrid aerogels also showed an interesting ability for selective enrichment of ribonuclease A (RNase A) and simultaneous exclusion of cytochrome C (Cyt C) and lysozyme (Lyz), which could be attributed to the electrostatic interactions between proteins and the positively charged coordinatively unsaturated metal sites (CUS) in MIL-101. We believe that this work will promote the application of MOFs in adsorption and separation, and our synthetic strategy could be further extended to develop other graphene-based hybrid aerogels.

  6. The predominant circular form of avocado sunblotch viroid accumulates in planta as a free RNA adopting a rod-shaped secondary structure unprotected by tightly bound host proteins.

    Science.gov (United States)

    López-Carrasco, Amparo; Flores, Ricardo

    2017-07-01

    Avocado sunblotch viroid (ASBVd), the type member of the family Avsunviroidae, replicates and accumulates in chloroplasts. Whether this minimal non-protein-coding circular RNA of 246-250 nt exists in vivo as a free nucleic acid or closely associated with host proteins remains unknown. To tackle this issue, the secondary structures of the monomeric circular (mc) (+) and (-) strands of ASBVd have been examined in silico by searching those of minimal free energy, and in vitro at single-nucleotide resolution by selective 2'-hydroxyl acylation analysed by primer extension (SHAPE). Both approaches resulted in predominant rod-like secondary structures without tertiary interactions, with the mc (+) RNA being more compact than its (-) counterpart as revealed by non-denaturing polyacryamide gel electrophoresis. Moreover, in vivo SHAPE showed that the mc ASBVd (+) form accumulates in avocado leaves as a free RNA adopting a similar rod-shaped conformation unprotected by tightly bound host proteins. Hence, the mc ASBVd (+) RNA behaves in planta like the previously studied mc (+) RNA of potato spindle tuber viroid, the type member of nuclear viroids (family Pospiviroidae), indicating that two different viroids replicating and accumulating in distinct subcellular compartments, have converged into a common structural solution. Circularity and compact secondary structures confer to these RNAs, and probably to all viroids, the intrinsic stability needed to survive in their natural habitats. However, in vivo SHAPE has not revealed the (possibly transient or loose) interactions of the mc ASBVd (+) RNA with two host proteins observed previously by UV irradiation of infected avocado leaves.

  7. From Compact to String—The Role of Secondary and Tertiary Structure in Charge-Induced Unzipping of Gas-Phase Proteins

    Science.gov (United States)

    Warnke, Stephan; Hoffmann, Waldemar; Seo, Jongcheol; De Genst, Erwin; von Helden, Gert; Pagel, Kevin

    2016-12-01

    In the gas phase, protein ions can adopt a broad range of structures, which have been investigated extensively in the past using ion mobility-mass spectrometry (IM-MS)-based methods. Compact ions with low number of charges undergo a Coulomb-driven transition to partially folded species when the charge increases, and finally form extended structures with presumably little or no defined structure when the charge state is high. However, with respect to the secondary structure, IM-MS methods are essentially blind. Infrared (IR) spectroscopy, on the other hand, is sensitive to such structural details and there is increasing evidence that helices as well as β-sheet-like structures can exist in the gas phase, especially for ions in low charge states. Very recently, we showed that also the fully extended form of highly charged protein ions can adopt a distinct type of secondary structure that features a characteristic C5-type hydrogen bond pattern. Here we use a combination of IM-MS and IR spectroscopy to further investigate the influence of the initial, native conformation on the formation of these structures. Our results indicate that when intramolecular Coulomb-repulsion is large enough to overcome the stabilization energies of the genuine secondary structure, all proteins, regardless of their sequence or native conformation, form C5-type hydrogen bond structures. Furthermore, our results suggest that in highly charged proteins the positioning of charges along the sequence is only marginally influenced by the basicity of individual residues.

  8. Chlamydia pneumoniae, heat shock proteins 60 and risk of secondary cardiovascular events in patients with coronary heart disease under special consideration of diabetes: a prospective study

    Directory of Open Access Journals (Sweden)

    Twardella Dorothee

    2006-04-01

    Full Text Available Abstract Background There have been suggestions of an association between Chlamydia pneumoniae, chlamydial heat shock protein (Ch-hsp 60 and human heat shock protein (h-hsp 60 infection sero-status and development of secondary cardiovascular events. Patients with diabetes might be at higher risk since they are prone to infections. The objective of this study was to investigate prospectively the role of Chlamydia pneumoniae (CP, chlamydial heat shock protein (Ch-hsp 60 and a possible intermediate role of human heat shock protein (h-hsp 60 sero-status in the development of secondary cardiovascular disease (CVD events in patients with coronary heart disease (CHD under special consideration of diabetes mellitus. Methods Patients aged 30–70 undergoing an in-patient rehabilitation program after acute manifestation of coronary heart disease (International Classification of Disease, 9th Rev. pos. 410–414 between January 1999 and May 2000 in one of two participating rehabilitation clinics in Germany were included in this analysis. Chlamydia pneumoniae (CP, chlamydial heat shock protein (Ch-hsp 60 and human heat shock protein (h-hsp 60 status at baseline were measured by serum immunoglobulin G and A antibodies. Secondary CVD events (myocardial infarction, stroke, and cardiovascular death were recorded during a mean follow-up period of 33.5 months (response = 87%. Results Among the 1052 subjects 37.4% and 39.3% were sero-positive to CP IgA and IgG respectively, 22.2% were sero-positive to Ch-hsp 60 IgG and 8.4% were positive to h-hsp 60 IgG at baseline. During follow-up, secondary CVD events occurred among 71 (6.8% participants. Occurrence of a secondary CVD event was more common among CP (IgA and CP (IgG sero-positive than among sero-negative patients (p-values 0.04 and 0.1, respectively. The risk of secondary CVD events was increased among patients with both a positive CP sero-status and diabetes compared to infection negative, non-diabetic patients

  9. Non-Invasive Detection of Protein Content in Several Types of Plant Feed Materials Using a Hybrid Near Infrared Spectroscopy Model

    Science.gov (United States)

    Fan, Xia; Tang, Shichuan; Li, Guozhen; Zhou, Xingfan

    2016-01-01

    Near-infrared spectroscopy combined with chemometrics was applied to construct a hybrid model for the non-invasive detection of protein content in different types of plant feed materials. In total, 829 samples of plant feed materials, which included corn distillers’ dried grains with solubles (DDGS), corn germ meal, corn gluten meal, distillers’ dried grains (DDG) and rapeseed meal, were collected from markets in China. Based on the different preprocessed spectral data, specific models for each type of plant feed material and a hybrid model for all the materials were built. Performances of specific model and hybrid model constructed with full spectrum (full spectrum model) and selected wavenumbers with VIP (variable importance in the projection) scores value bigger than 1.00 (VIP scores model) were also compared. The best spectral preprocessing method for this study was found to be the standard normal variate transformation combined with the first derivative. For both full spectrum and VIP scores model, the prediction performance of the hybrid model was slightly worse than those of the specific models but was nevertheless satisfactory. Moreover, the VIP scores model obtained generally better performances than corresponding full spectrum model. Wavenumbers around 4500 cm-1, 4664 cm-1 and 4836 cm-1 were found to be the key wavenumbers in modeling protein content in these plant feed materials. The values for the root mean square error of prediction (RMSEP) and the relative prediction deviation (RPD) obtained with the VIP scores hybrid model were 1.05% and 2.53 for corn DDGS, 0.98% and 4.17 for corn germ meal, 0.75% and 6.99 for corn gluten meal, 1.54% and 4.59 for DDG, and 0.90% and 3.33 for rapeseed meal, respectively. The results of this study demonstrate that the protein content in several types of plant feed materials can be determined using a hybrid near-infrared spectroscopy model. And VIP scores method can be used to improve the general predictability of

  10. Acylated simian virus 40-specific proteins in the plasma membrane of HeLa cells infected with adenovirus 2-simian virus 40 hybrid virus Ad2+ND2

    Energy Technology Data Exchange (ETDEWEB)

    Klockmann, U.; Deppert, W.

    1983-04-30

    HeLa cells infected with the adenovirus 2-simian virus 40 (Ad2+SV40) hybrid virus Ad2+ND2 were labeled with either (/sup 35/S)methionine or (/sup 3/H)palmitate and fractionated into cytoplasmic, nuclear, and plasma membrane fractions. Analysis of these fractions by sodium dodecyl sulfate-polyacrylamide gel electrophoresis showed that the SV40-specific proteins in the plasma membrane fraction were specificially acylated.

  11. RNA-protein binding motifs mining with a new hybrid deep learning based cross-domain knowledge integration approach.

    Science.gov (United States)

    Pan, Xiaoyong; Shen, Hong-Bin

    2017-02-28

    RNAs play key roles in cells through the interactions with proteins known as the RNA-binding proteins (RBP) and their binding motifs enable crucial understanding of the post-transcriptional regulation of RNAs. How the RBPs correctly recognize the target RNAs and why they bind specific positions is still far from clear. Machine learning-based algorithms are widely acknowledged to be capable of speeding up this process. Although many automatic tools have been developed to predict the RNA-protein binding sites from the rapidly growing multi-resource data, e.g. sequence, structure, their domain specific features and formats have posed significant computational challenges. One of current difficulties is that the cross-source shared common knowledge is at a higher abstraction level beyond the observed data, resulting in a low efficiency of direct integration of observed data across domains. The other difficulty is how to interpret the prediction results. Existing approaches tend to terminate after outputting the potential discrete binding sites on the sequences, but how to assemble them into the meaningful binding motifs is a topic worth of further investigation. In viewing of these challenges, we propose a deep learning-based framework (iDeep) by using a novel hybrid convolutional neural network and deep belief network to predict the RBP interaction sites and motifs on RNAs. This new protocol is featured by transforming the original observed data into a high-level abstraction feature space using multiple layers of learning blocks, where the shared representations across different domains are integrated. To validate our iDeep method, we performed experiments on 31 large-scale CLIP-seq datasets, and our results show that by integrating multiple sources of data, the average AUC can be improved by 8% compared to the best single-source-based predictor; and through cross-domain knowledge integration at an abstraction level, it outperforms the state-of-the-art predictors by 6

  12. Neuroanatomical localization and quantification of amyloid precursor protein mRNA by in situ hybridization in the brains of normal, aneuploid, and lesioned mice

    Energy Technology Data Exchange (ETDEWEB)

    Bendotti, C.; Forloni, G.L.; Morgan, R.A.; O' Hara, B.F.; Oster-Granite, M.L.; Reeves, R.H.; Gearhart, J.D.; Coyle, J.T. (Johns Hopkins Univ. School of Medicine, Baltimore, MD (USA))

    1988-05-01

    Amyloid precursor protein mRNA was localized in frozen sections from normal and experimentally lesioned adult mouse brain and from normal and aneuploid fetal mouse brain by in situ hybridization with a {sup 35}S-labeled mouse cDNA probe. The highest levels of hybridization in adult brain were associated with neurons, primarily in telencephalic structures. The dense labeling associated with hippocampal pyramidal cells was reduced significantly when the cells were eliminated by injection of the neurotoxin ibotenic acid but was not affected when electrolytic lesions were placed in the medial septum. Since the gene encoding amyloid precursor protein has been localized to mouse chromosome 16, the authors also examined the expression of this gene in the brains of mouse embryos with trisomy 16 and trisomy 19 at 15 days of gestation. RNA gel blot analysis and in situ hybridization showed a marked increase in amyloid precursor protein mRNA in the trisomy 16 mouse head and brain when compared with euploid littermates or with trisomy 19 mice.

  13. Use of viscera extract from hybrid catfish (Clarias macrocephalus × Clarias gariepinus) for the production of protein hydrolysate from toothed ponyfish (Gazza minuta) muscle.

    Science.gov (United States)

    Klomklao, Sappasith; Kishimura, Hideki; Benjakul, Soottawat

    2013-01-15

    Proteolytic activity of viscera extract from hybrid catfish (Clarias macrocephalus × Clarias gariepinus) was studied. The optimal pH and temperature were 9.0 and 50°C, respectively, when toothed ponyfish (Gazza minuta) muscle was used as a substrate. When viscera extract from hybrid catfish was used for the production of protein hydrolysate from toothed ponyfish muscle, extract concentration, reaction time, and fish muscle/buffer ratio affected the hydrolysis and nitrogen recovery (NR) (p<0.05). Optimum conditions for toothed ponyfish muscle hydrolysis were 3.5% hybrid catfish viscera extract, 15 min reaction time and fish muscle/buffer ratio of 1:3 (w/v). High correlation between the degree of hydrolysis (DH) and NR (R(2)=0.974) was observed. Freeze-dried hydrolysate had a high protein content (89.02%, dry weight basis) and it was brownish yellow in colour (L(∗)=63.67, a(∗)=6.33, b(∗)=22.41). The protein hydrolysate contained a high amount of essential amino acids (48.22%) and had arginine and lysine as the dominant amino acids.

  14. Generation of deviation parameters for amino acid singlets, doublets and triplets from three-dimensional structures of proteins and its implications for secondary structure prediction from amino acid sequences

    Indian Academy of Sciences (India)

    S A Mugilan; K Veluraja

    2000-03-01

    We present a new method, secondary structure prediction by deviation parameter (SSPDP) for predicting the secondary structure of proteins from amino acid sequence. Deviation parameters (DP) for amino acid singlets, doublets and triplets were computed with respect to secondary structural elements of proteins based on the dictionary of secondary structure prediction (DSSP)-generated secondary structure for 408 selected non-homologous proteins. To the amino acid triplets which are not found in the selected dataset, a DP value of zero is assigned with respect to the secondary structural elements of proteins. The total number of parameters generated is 15,432, in the possible parameters of 25,260. Deviation parameter is complete with respect to amino acid singlets, doublets, and partially complete with respect to amino acid triplets. These generated parameters were used to predict secondary structural elements from amino acid sequence. The secondary structure predicted by our method (SSPDP) was compared with that of single sequence (NNPREDICT) and multiple sequence (PHD) methods. The average value of the percentage of prediction accuracy for α-helix by SSPDP, NNPREDICT and PHD methods was found to be 57%, 44% and 69% respectively for the proteins in the selected dataset. For -strand the prediction accuracy is found to be 69%, 21% and 53% respectively by SSPDP, NNPREDICT and PHD methods. This clearly indicates that the secondary structure prediction by our method is as good as PHD method but much better than NNPREDICT method.

  15. TAL nucleases (TALNs): hybrid proteins composed of TAL effectors and FokI DNA-cleavage domain.

    Science.gov (United States)

    Li, Ting; Huang, Sheng; Jiang, Wen Zhi; Wright, David; Spalding, Martin H; Weeks, Donald P; Yang, Bing

    2011-01-01

    DNA double-strand breaks enhance homologous recombination in cells and have been exploited for targeted genome editing through use of engineered endonucleases. Here we report the creation and initial characterization of a group of rare-cutting, site-specific DNA nucleases produced by fusion of the restriction enzyme FokI endonuclease domain (FN) with the high-specificity DNA-binding domains of AvrXa7 and PthXo1. AvrXa7 and PthXo1 are members of the transcription activator-like (TAL) effector family whose central repeat units dictate target DNA recognition and can be modularly constructed to create novel DNA specificity. The hybrid FN-AvrXa7, AvrXa7-FN and PthXo1-FN proteins retain both recognition specificity for their target DNA (a 26 bp sequence for AvrXa7 and 24 bp for PthXo1) and the double-stranded DNA cleaving activity of FokI and, thus, are called TAL nucleases (TALNs). With all three TALNs, DNA is cleaved adjacent to the TAL-binding site under optimal conditions in vitro. When expressed in yeast, the TALNs promote DNA homologous recombination of a LacZ gene containing paired AvrXa7 or asymmetric AvrXa7/PthXo1 target sequences. Our results demonstrate the feasibility of creating a tool box of novel TALNs with potential for targeted genome modification in organisms lacking facile mechanisms for targeted gene knockout and homologous recombination.

  16. Diversification of the plant-specific hybrid glycine-rich protein (HyGRP genes in cereals

    Directory of Open Access Journals (Sweden)

    Kenji eFujino

    2014-09-01

    Full Text Available Plant-specific hybrid proline- or glycine-rich proteins (HyP/GRPs are involved in diverse gene functions including plant development and responses to biotic and abiotic stresses. The quantitative trait locus, qLTG3-1, enhances seed germination in rice under low-temperature conditions and encodes a member with a glycine-rich motif of the HyP/GRP family. The function of this gene may be related to the weakening of tissue covering the embryo during seed germination. In the present study, the diversification of the HyP/GRP gene family was elucidated in rice based on phylogenetic relationships and gene expression levels. At least 21 members of the HyP/GRP family have been identified in the rice genome and clustered in five regions on four chromosomes by tandem and chromosomal duplications. Of these, OsHyPRP05 (qLTG3-1 and its paralogous gene, OsHyPRP21, had a glycine-rich motif. Furthermore, orthologous genes with a glycine-rich motif and the HyP/GRP gene family were detected in four genome-sequenced monocots: 12 in barley, 10 in Brachypodium, 20 in maize, and 28 in sorghum, using a BLAST search of qLTG3-1 as the query. All members of the HyP/GRP family in these five species were classified into seven main groups, which were clustered together in these species. These results suggested that the HyP/GRP gene family was formed in the ancestral genome before the divergence of these species. The collinearity of chromosomal regions around qLTG3-1 and its orthologous genes were conserved among rice, Brachypodium, sorghum, and maize, indicating that qLTG3-1 and orthologous genes conserve gene function during seed germination.

  17. Screening for Novel Binding Proteins Interacting with Human Papillomavirus Type 18 E6 Oncogene in the Hela cDNA Library by Yeast Two-Hybrid System

    Institute of Scientific and Technical Information of China (English)

    Shuang LI; Ping LIU; Ling XI; Xuefeng JIANG; Jianfeng ZHOU; Shixuan WANG; Li MENG; Yunping LU; Ding Ma

    2008-01-01

    To screen for novel binding proteins interacting with high-risk HPV 18 E6 oncogene, the strain AH109 was transformed with pGBKT7-HPV18 E6 plasmid, and subsequent transference was utilized to screen for interacting proteins with HPV 18 E6 in human Hela cDNA library. HPVl8 E6 mRNA was expressed in yeast and there was no self-activation and toxicity in AH109. Seven proteins that interacted with HPV18 E6, including transmembrane protein 87B, phosphonoformate im- muno-associated protein 5, vimentin, KM-HN-1 protein, dedicator of cytokinesis 7, vaccinia related kinase 2 and a hypothetical protein, were identified. It was suggested that yeast two-hybrid system is an efficient for screening interacting proteins. The high-risk HPV 18 E6 oncogene may interact with the proteins, which may be associated with signal transduction and transeriptional control, epithelial cell invasion and migration, as well as humoral and cellular immune etc. This investigation provides functional clues for further exploration of potential oncogenesis targets for cancer biotherapy.

  18. Conserved Tryptophan Motifs in the Large Tegument Protein pUL36 Are Required for Efficient Secondary Envelopment of Herpes Simplex Virus Capsids

    Science.gov (United States)

    Ivanova, Lyudmila; Buch, Anna; Döhner, Katinka; Pohlmann, Anja; Binz, Anne; Prank, Ute; Sandbaumhüter, Malte

    2016-01-01

    ABSTRACT Herpes simplex virus (HSV) replicates in the skin and mucous membranes, and initiates lytic or latent infections in sensory neurons. Assembly of progeny virions depends on the essential large tegument protein pUL36 of 3,164 amino acid residues that links the capsids to the tegument proteins pUL37 and VP16. Of the 32 tryptophans of HSV-1-pUL36, the tryptophan-acidic motifs 1766WD1767 and 1862WE1863 are conserved in all HSV-1 and HSV-2 isolates. Here, we characterized the role of these motifs in the HSV life cycle since the rare tryptophans often have unique roles in protein function due to their large hydrophobic surface. The infectivity of the mutants HSV-1(17+)Lox-pUL36-WD/AA-WE/AA and HSV-1(17+)Lox-CheVP26-pUL36-WD/AA-WE/AA, in which the capsid has been tagged with the fluorescent protein Cherry, was significantly reduced. Quantitative electron microscopy shows that there were a larger number of cytosolic capsids and fewer enveloped virions compared to their respective parental strains, indicating a severe impairment in secondary capsid envelopment. The capsids of the mutant viruses accumulated in the perinuclear region around the microtubule-organizing center and were not dispersed to the cell periphery but still acquired the inner tegument proteins pUL36 and pUL37. Furthermore, cytoplasmic capsids colocalized with tegument protein VP16 and, to some extent, with tegument protein VP22 but not with the envelope glycoprotein gD. These results indicate that the unique conserved tryptophan-acidic motifs in the central region of pUL36 are required for efficient targeting of progeny capsids to the membranes of secondary capsid envelopment and for efficient virion assembly. IMPORTANCE Herpesvirus infections give rise to severe animal and human diseases, especially in young, immunocompromised, and elderly individuals. The structural hallmark of herpesvirus virions is the tegument, which contains evolutionarily conserved proteins that are essential for several

  19. Circular dichroism and infrared spectroscopic characterization of secondary structure components of protein Z during mashing and boiling processes.

    Science.gov (United States)

    Han, Yupeng; Wang, Jinjing; Li, Yongxian; Hang, Yu; Yin, Xiangsheng; Li, Qi

    2015-12-01

    In beer brewing, protein Z is hypothesized to stabilize beer foam. However, few investigations have revealed the relationship between conformational alterations to protein Z during the brewing process and beer foam. In this report, protein Z from sweet wort was isolated during mashing and boiling processes. Circular dichroism (CD) and Fourier transform infrared spectroscopy (FTIR) were used to monitor the structural characteristics of protein Z. The results showed that the α-helix and β-sheet content decreased, whereas the content of β-turn and random coil increased. The complex environment rich in polysaccharides may facilitate conformational alterations and modifications to protein Z. Additionally, the formation of extended structural features to protein Z provides access to reactive amino acid side chains that can undergo modifications and the exposure of hydrophobic core regions of the protein. Analyzing structural transformations should provide a deeper understanding of the mechanism of protein Z on maintaining beer foam. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Rice Brittle culm 6 encodes a dominant-negative form of CesA protein that perturbs cellulose synthesis in secondary cell walls.

    Science.gov (United States)

    Kotake, Toshihisa; Aohara, Tsutomu; Hirano, Ko; Sato, Ami; Kaneko, Yasuko; Tsumuraya, Yoichi; Takatsuji, Hiroshi; Kawasaki, Shinji

    2011-03-01

    The brittle culm (bc) mutants of Gramineae plants having brittle skeletal structures are valuable materials for studying secondary cell walls. In contrast to other recessive bc mutants, rice Bc6 is a semi-dominant bc mutant with easily breakable plant bodies. In this study, the Bc6 gene was cloned by positional cloning. Bc6 encodes a cellulose synthase catalytic subunit, OsCesA9, and has a missense mutation in its highly conserved region. In culms of the Bc6 mutant, the proportion of cellulose was reduced by 38%, while that of hemicellulose was increased by 34%. Introduction of the semi-dominant Bc6 mutant gene into wild-type rice significantly reduced the percentage of cellulose, causing brittle phenotypes. Transmission electron microscopy analysis revealed that Bc6 mutation reduced the cell wall thickness of sclerenchymal cells in culms. In rice expressing a reporter construct, BC6 promoter activity was detected in the culms, nodes, and flowers, and was localized primarily in xylem tissues. This expression pattern was highly similar to that of BC1, which encodes a COBRA-like protein involved in cellulose synthesis in secondary cell walls in rice. These results indicate that BC6 is a secondary cell wall-specific CesA that plays an important role in proper deposition of cellulose in the secondary cell walls.

  1. Screening of genes for proteins interacting with the PS1TP5 protein of hepatitis B virus: probing a human leukocyte cDNA library using the yeast two-hybrid system

    Institute of Scientific and Technical Information of China (English)

    ZHANG Jian-kang; ZHAO Long-feng; CHENG Jun; GUO Jiang; LUN Yong-zhi; HONG Yuan

    2006-01-01

    Background The hepatitis B virus (HBV) genome includes S, C, P and X regions. The S region is divided into four subregions of pre-pre-S, pre-S1, pre-S2 and S. PS1TP5 (human gene 5 transactivated by pre-S1 protein of HBV) is a novel target gene transactivated by the pre-S1 protein that has been screened with a suppression subtractive hybridization technique in our laboratory (GenBank accession: AY427953). In order to investigate the biological function of the PS1TP5 protein, we performed a yeast two-hybrid system 3 to screen proteins from a human leukocyte cDNA library interacting with the PS 1TP5 protein.Methods The reverse transcription polymerase chain reaction (RT-PCR) was performed to amplify the gene of PS1TP5 from the mRNA of HepG2 cells and the gene was then cloned into the pGEM-T vector. After being sequenced and analyzed with Vector NTI 9.1 and NCBI BLAST software, the target gene of PS1TP5 was cut from the pGEM-T vector and cloned into a yeast expression plasmid pGBKT7, then "bait" plasmid pGBKT7-PS 1TP5 was transformed into the yeast strain AH109. The yeast protein was isolated and analyzed with sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and Western blotting hybridization.After expression of the pGBKT7-PS1TP5 fusion protein in the AH109 yeast strain was accomplished, a yeast two-hybrid screening was performed by mating AH 109 with Y 187 containing a leukocyte cDNA library plasmid.The mated yeast was plated on quadruple dropout medium and assayed for α-gal activity. The interaction between the PS1TP5 protein and the proteins obtained from positive colonies was further confirmed by repeating the yeast two-hybrid screen. After extracting and sequencing of plasmids from blue colonies we carried out a bioinformatic analysis.Results Forty true positive colonies were selected and sequenced, full length sequences were obtained and we searched for homologous DNA sequences from GenBank. Among the 40 positive colonies, 23 coding genes

  2. Cellular and Molecular Roles of the Akt Protein Kinase in Breast Carcinomas

    Science.gov (United States)

    1999-06-01

    are in progress. Identification of Akt interacting proteins We proposed to identify targets of Akt using a yeast two-hybrid screen (1). We have...studies in Task 2. Key Research Accomplishments "* Identified Akt interacting proteins using a yeast two-hybrid screen "* Provided secondary evidence...human breast cancer lines (5). Therefore, our studies in the future will also focus on the regulation of Oct3 by Akt. Identification of AKT Interacting

  3. 机车二系弹簧载荷均匀性分配调整的混合建模方法%Hybrid modeling method for adjusting distribution of locomotive secondary spring loads

    Institute of Scientific and Technical Information of China (English)

    韩锟; 潘迪夫

    2012-01-01

    A hybrid modeling method for adjusting the distribution of locomotive secondary spring loads was proposed based on the combination of mechanism modeling method and neural network. In this method, a mechanism model based on the rigid body assumption was established as the master-rule model for spring load adjustment by using mechanical and mathematical methods. An error compensation model was constituted by BP neural network to compensate for the error of the mechanism model. The hybrid model was the parallel connection of the two models above and its output was the summation of their outputs. The results show that the hybrid modeling method can make further improvement on the accuracy and efficiency of spring loads adjustment in solving the continuous multi-dimension space modeling problem. Compared with the mechanism model, the maximum deviation of secondary spring loads is reduced by 8%-15% and the average adjusting time is reduced by more than 25%.%针对机车二系弹簧载荷均匀性分配调整的建模问题,提出综合运用机理建模和神经网络建模的混合建模方法.该方法在刚性车体假定下采用经典力学和数学方法建立机车车体-二系弹簧系统的机理模型,作为调簧主规律模型;用人工神经网络方法建立BP网络误差补偿模型来弥补机理模型的建模误差;二者并联组成混合模型,其输出为机理模型和BP网络模型输出的叠加.研究结果表明:混合建模方法用于二系调簧的多维连续空间系统建模,可大幅提高模型精度;实际调簧过程中使用混合模型可进一步提高调簧精度和效率,使载荷分布最大误差较机理模型减少8%~15%,平均调簧时间缩短25%以上.

  4. Markers of oxidative/nitrative damage of plasma proteins correlated with EDSS and BDI scores in patients with secondary progressive multiple sclerosis.

    Science.gov (United States)

    Morel, Agnieszka; Bijak, Michał; Niwald, Marta; Miller, Elżbieta; Saluk, Joanna

    2017-05-19

    Objectives The objective of the present study was to evaluate oxidative/nitrative stress in the plasma of 50 patients suffering from the secondary progressive course of multiple sclerosis (MS), and to verify its correlation with physical and mental disability as assessed by the Expanded Disability Status Scale (EDSS), and the Beck Depression Inventory (BDI). Methods Oxidative and nitrative damage to proteins was determined by the level of carbonyl groups and 3-nitrotyrosine using ELISA test. Based on the reaction with Ellman's reagent, we estimated the concentration of oxidized thiol groups. Additionally, we measured the level of lipid peroxidation. Results In plasma drawn from MS patients, we observed a significantly higher level of 3-NT (92%; P EDSS and BDI. Negative correlations were observed between concentration of -SH groups and EDSS and BDI. Conclusion Our results indicate that impaired red-ox balance can significantly promote neurodegeneration in secondary progressive MS.

  5. Associations of UBE2I with RAD52, UBL1, p53, and RAD51 proteins in a yeast two-hybrid system

    Energy Technology Data Exchange (ETDEWEB)

    Shen, Zhiyuan; Pardington-Purtymun, P.E.; Comeaux, J.C. [Los Alamos National Labs., NM (United States)] [and others

    1996-10-15

    The yeast RAD52-dependent pathway is involved in DNA recombination and double-strand break repair. Yeast ubiquitin-conjugating enzyme UBC9 participates in S- and M-phase cyclin degradation and mitotic control. Using the human RAD52 protein as the bait in a yeast two-hybrid system, we have identified a human homolog of yeast UBC9, designated UBE2I, that interacts with RAD52, RAD51, p53, and a ubiquitin-like protein UBL1. These interactions are UBE2I-specific, since another DNA repair-related ubiquitin-conjugating enzyme, RAD6 (UBC2), does not interact with these proteins. The interaction of UBE2I with RAD52 is mediated by RAD52`s self-association region. These results suggest that the RAD52-dependent processes, cell cycle control, p53-mediated pathway(s), and ubiquitination interact through human UBE2I. 22 refs., 3 figs.

  6. Identification of two proteins that interact with the Erp virulence factor from Mycobacterium tuberculosis by using the bacterial two-hybrid system

    Directory of Open Access Journals (Sweden)

    Cataldi Angel A

    2009-01-01

    Full Text Available Abstract Background The exported repetitive protein (erp gene encodes a secreted 36-kDa protein with a central domain containing several proline-glycine-leucine-threonine-serine (PGLTS repeats. It has been demonstrated that erp is a virulence-associated factor since the disruption of this gene impairs the growth of Mycobacterium bovis and Mycobacterium tuberculosis in mice. Results In order to elucidate the function of Erp we searched for Erp-binding proteins from M. tuberculosis by using a bacterial two-hybrid system. Our results indicate that Erp interacts specifically with two putative membrane proteins, Rv1417 and Rv2617c. Further analysis revealed that the latter two interact with each other, indicating that Rv1417, Rv2617c and Erp are connected through multiple interactions. While Rv1417 is disseminated in several Actinomycetales genera, orthologues of Rv2617c are exclusively present in members of the M. tuberculosis complex (MTC. The central and amino-terminal regions of Erp were determined to be involved in the interaction with Rv1417 and Rv2627c. Erp forms from Mycobacterium smegmatis and Mycobacterium leprae were not able to interact with Rv2617c in two-hybrid assays. Immunolocalization experiments showed that Rv1417 and Rv2617c are found on the cell membrane and Erp on the bacterial cell wall. Finally, comparative genomics and expression studies revealed a possible role of Rv1417 in riboflavin metabolism. Conclusion We identified interactive partners of Erp, an M. tuberculosis protein involved in virulence, which will be the focus of future investigation to decipher the function of the Erp family protein.

  7. The mouthparts enriched odorant binding protein 11 of the alfalfa plant bug Adelphocoris lineolatus displays a preferential binding behaviour to host plant secondary metabolites

    Directory of Open Access Journals (Sweden)

    Liang eSun

    2016-06-01

    Full Text Available Odorant binding proteins (OBPs are proposed to be directly required for odorant discrimination and represent potential interesting targets for pest control. In the notoriously agricultural pest Adelphocoris lineolatus, our previous functional investigation of highly expressed antennal OBPs clearly supported this viewpoint, whereas the findings of the current study by characterizing of AlinOBP11 rather indicated that OBP in hemipterous plant bugs might fulfill a different and tantalizing physiological role. The phylogenetic analysis uncovered that AlinOBP11 together with several homologous bug OBP proteins are potential orthologs, implying they could exhibit a conserved function. Next, the results of expression profiles solidly showed that AlinOBP11 was predominantly expressed at adult mouthparts, the most important gustatory organ of Hemiptera mirid bug. Finally, a rigorously selective binding profile was observed in the fluorescence competitive binding assay, in which recombinant AlinOBP11 displayed much stronger binding abilities to non-volatile secondary metabolite compounds than the volatile odorants. These results reflect that AlinOBP11, even its orthologous proteins across bug species, could be associated with a distinctively conserved physiological role such as a crucial carrier for non-volatiles host secondary metabolites in gustatory system.

  8. Structure and interdomain interactions of a hybrid domain: a disulphide-rich module of the fibrillin/LTBP superfamily of matrix proteins.

    Science.gov (United States)

    Jensen, Sacha A; Iqbal, Sarah; Lowe, Edward D; Redfield, Christina; Handford, Penny A

    2009-05-13

    The fibrillins and latent transforming growth factor-beta binding proteins (LTBPs) form a superfamily of structurally-related proteins consisting of calcium-binding epidermal growth factor-like (cbEGF) domains interspersed with 8-cysteine-containing transforming growth factor beta-binding protein-like (TB) and hybrid (hyb) domains. Fibrillins are the major components of the extracellular 10-12 nm diameter microfibrils, which mediate a variety of cell-matrix interactions. Here we present the crystal structure of a fibrillin-1 cbEGF9-hyb2-cbEGF10 fragment, solved to 1.8 A resolution. The hybrid domain fold is similar, but not identical, to the TB domain fold seen in previous fibrillin-1 and LTBP-1 fragments. Pairwise interactions with neighboring cbEGF domains demonstrate extensive interfaces, with the hyb2-cbEGF10 interface dependent on Ca(2+) binding. These observations provide accurate constraints for models of fibrillin organization within the 10-12 nm microfibrils and provide further molecular insights into how Ca(2+) binding influences the intermolecular interactions and biomechanical properties of fibrillin-1.

  9. GGPP-Mediated Protein Geranylgeranylation in Oocyte Is Essential for the Establishment of Oocyte-Granulosa Cell Communication and Primary-Secondary Follicle Transition in Mouse Ovary.

    Directory of Open Access Journals (Sweden)

    Chen Jiang

    2017-01-01

    Full Text Available Folliculogenesis is a progressive and highly regulated process, which is essential to provide ova for later reproductive life, requires the bidirectional communication between the oocyte and granulosa cells. This physical connection-mediated communication conveys not only the signals from the oocyte to granulosa cells that regulate their proliferation but also metabolites from the granulosa cells to the oocyte for biosynthesis. However, the underlying mechanism of establishing this communication is largely unknown. Here, we report that oocyte geranylgeranyl diphosphate (GGPP, a metabolic intermediate involved in protein geranylgeranylation, is required to establish the oocyte-granulosa cell communication. GGPP and geranylgeranyl diphosphate synthase (Ggpps levels in oocytes increased during early follicular development. The selective depletion of GGPP in mouse oocytes impaired the proliferation of granulosa cells, primary-secondary follicle transition and female fertility. Mechanistically, GGPP depletion inhibited Rho GTPase geranylgeranylation and its GTPase activity, which was responsible for the accumulation of cell junction proteins in the oocyte cytoplasm and the failure to maintain physical connection between oocyte and granulosa cells. GGPP ablation also blocked Rab27a geranylgeranylation, which might account for the impaired secretion of oocyte materials such as Gdf9. Moreover, GGPP administration restored the defects in oocyte-granulosa cell contact, granulosa cell proliferation and primary-secondary follicle transition in Ggpps depletion mice. Our study provides the evidence that GGPP-mediated protein geranylgeranylation contributes to the establishment of oocyte-granulosa cell communication and then regulates the primary-secondary follicle transition, a key phase of folliculogenesis essential for female reproductive function.

  10. Identification and characterization of protein interactions in the mammalian mRNA processing body using a novel two-hybrid assay

    Energy Technology Data Exchange (ETDEWEB)

    Bloch, Donald B., E-mail: bloch@helix.mgh.harvard.edu; Nobre, Rita A.; Bernstein, Gillian A.; Yang, Wei-Hong

    2011-09-10

    Components of the mRNA processing body (P-body) regulate critical steps in mRNA storage, transport, translation and degradation. At the core of the P-body is the decapping complex, which removes the 5' cap from de-adenylated mRNAs and mediates an irreversible step in mRNA degradation. The assembly of P-bodies in Saccharomyces cerevisiae, Arabidopsis thaliana and Drosophila melanogaster has been previously described. Less is known about the assembly of mammalian P-bodies. To investigate the interactions that occur between components of mammalian P-bodies, we developed a fluorescence-based, two-hybrid assay system. The assay depends on the ability of one P-body component, fused to an exogenous nuclear localization sequence (NLS), to recruit other P-body components to the nucleus. The assay was used to investigate interactions between P-body components Ge-1, DCP2, DCP1, EDC3, RAP55, and RCK. The results of this study show that the modified two-hybrid assay can be used to identify protein interactions that occur in a macromolecular complex. The assay can also be used to efficiently detect protein interaction domains. The results provide important insights into mammalian P-body assembly and demonstrate similarities, and critical differences, between P-body assembly in mammalian cells compared with that of other species. -- Research highlights: {yields} A two-hybrid assay was developed to study interactions in macromolecular complexes. {yields} The assay was applied to interactions between components of mRNA P-bodies. {yields} The assay effectively and efficiently identified protein interaction domains. {yields} P-body assembly in mammalian cells differs from that in other species.

  11. Signaling governed by G proteins and cAMP is crucial for growth, secondary metabolism and sexual development in Fusarium fujikuroi.

    Directory of Open Access Journals (Sweden)

    Lena Studt

    Full Text Available The plant-pathogenic fungus Fusarium fujikuroi is a notorious rice pathogen causing hyper-elongation of infected plants due to the production of gibberellic acids (GAs. In addition to GAs, F. fujikuroi produces a wide range of other secondary metabolites, such as fusarins, fusaric acid or the red polyketides bikaverins and fusarubins. The recent availability of the fungal genome sequence for this species has revealed the potential of many more putative secondary metabolite gene clusters whose products remain to be identified. However, the complex regulation of secondary metabolism is far from being understood. Here we studied the impact of the heterotrimeric G protein and the cAMP-mediated signaling network, including the regulatory subunits of the cAMP-dependent protein kinase (PKA, to study their effect on colony morphology, sexual development and regulation of bikaverins, fusarubins and GAs. We demonstrated that fusarubin biosynthesis is negatively regulated by at least two Gα subunits, FfG1 and FfG3, which both function as stimulators of the adenylyl cyclase FfAC. Surprisingly, the primary downstream target of the adenylyl cyclase, the PKA, is not involved in the regulation of fusarubins, suggesting that additional, yet unidentified, cAMP-binding protein(s exist. In contrast, bikaverin biosynthesis is significantly reduced in ffg1 and ffg3 deletion mutants and positively regulated by FfAC and FfPKA1, while GA biosynthesis depends on the active FfAC and FfPKA2 in an FfG1- and FfG3-independent manner. In addition, we provide evidence that G Protein-mediated/cAMP signaling is important for growth in F. fujikuroi because deletion of ffg3, ffac and ffpka1 resulted in impaired growth on minimal and rich media. Finally, sexual crosses of ffg1 mutants showed the importance of a functional FfG1 protein for development of perithecia in the mating strain that carries the MAT1-1 idiomorph.

  12. Development of protein biomarkers in cerebrospinal fluid for secondary progressive multiple sclerosis using selected reaction monitoring mass spectrometry (SRM-MS

    Directory of Open Access Journals (Sweden)

    Jia Yan

    2012-07-01

    Full Text Available Abstract Background Multiple sclerosis (MS is a chronic inflammatory disorder of the central nervous system (CNS. It involves damage to the myelin sheath surrounding axons and to the axons themselves. MS most often presents with a series of relapses and remissions but then evolves over a variable period of time into a slowly progressive form of neurological dysfunction termed secondary progressive MS (SPMS. The reasons for this change in clinical presentation are unclear. The absence of a diagnostic marker means that there is a lag time of several years before the diagnosis of SPMS can be established. At the same time, understanding the mechanisms that underlie SPMS is critical to the development of rational therapies for this untreatable stage of the disease. Results Using high performance liquid chromatography-coupled mass spectrometry (HPLC; we have established a highly specific and sensitive selected reaction monitoring (SRM assay. Our multiplexed SRM assay has facilitated the simultaneous detection of surrogate peptides originating from 26 proteins present in cerebrospinal fluid (CSF. Protein levels in CSF were generally ~200-fold lower than that in human sera. A limit of detection (LOD was determined to be as low as one femtomol. We processed and analysed CSF samples from a total of 22 patients with SPMS, 7 patients with SPMS treated with lamotrigine, 12 patients with non-inflammatory neurological disorders (NIND and 10 healthy controls (HC for the levels of these 26 selected potential protein biomarkers. Our SRM data found one protein showing significant difference between SPMS and HC, three proteins differing between SPMS and NIND, two proteins between NIND and HC, and 11 protein biomarkers showing significant difference between a lamotrigine-treated and untreated SPMS group. Principal component analysis (PCA revealed that these 26 proteins were correlated, and could be represented by four principal components. Overall, we established an

  13. A yeast two-hybrid screen reveals a strong interaction between the Legionella chaperonin Hsp60 and the host cell small heat shock protein Hsp10.

    Science.gov (United States)

    Nasrallah, Gheyath K

    2015-06-01

    L. pneumophila is an intracellular bacterium that replicates inside a membrane-bound vacuole called Legionella-containing vacuole (LCV), where it plentifully liberates its HtpB chaperonin. From LCV, HtpB reaches the host cell cytoplasm, where it interacts with SAMDC, a cytoplasmic protein required for synthesis of host polyamines that are important for intracellular growth of L. pneumophila. Additionally, cytoplasmic expression of HtpB in S. cerevisiae induces pseudohyphal growth, and in mammalian cells recruits mitochondria to LCV, and modifies actin microfilaments organization. This led us to hypothesize here that HtpB recruits a protein(s) from eukaryotic cells that is involved in the emergence of the aforementioned phenotypes. To identify this protein, a commercially available HeLa cDNA library was screened using a yeast two-hybrid system. Approximately 5×10(6) yeast clones carrying HeLa cDNA library plasmid were screened. Twenty-one positive clones were identified. DNA sequence analysis revealed that all of these positive clones encoded the mammalian small heat shock protein Hsp10. Based on the fact that chaperonions are required to interact with co-chaperonins to function properly in protein folding, we believe that HtpB recruits the host cell Hsp10 to appropriately interact with SAMDC and to induce the multifunction phenotypes deemed important in L. pneumophila pathogenesis.

  14. Post-Translational Modification and Secretion of Azelaic Acid Induced 1 (AZI1, a Hybrid Proline-Rich Protein from Arabidopsis

    Directory of Open Access Journals (Sweden)

    Andrea Pitzschke

    2016-01-01

    Full Text Available Arabidopsis EARLI-type hybrid proline-rich proteins (HyPRPs consist of a putative N-terminal secretion signal, a proline-rich domain (PRD, and a characteristic eight-cysteine-motif (8-CM. They have been implicated in biotic and abiotic stress responses. AZI1 is required for systemic acquired resistance and it has recently been identified as a target of the stress-induced mitogen-activated protein kinase MPK3. AZI1 gel migration properties strongly indicate AZI1 to undergo major post-translational modifications. These occur in a stress-independent manner and are unrelated to phosphorylation by MAPKs. As revealed by transient expression of AZI1 in Nicotiana benthamiana and Tropaeolum majus, the Arabidopsis protein is similarly modified in heterologous plant species. Proline-rich regions, resembling arabinogalactan proteins point to a possible proline hydroxylation and subsequent O-glycosylation of AZI1. Consistently, inhibition of prolyl hydroxylase reduces its apparent protein size. AZI1 secretion was examined using Arabidopsis protoplasts and seedling exudates. Employing Agrobacterium-mediated leaf infiltration of N. benthamiana, we attempted to assess long-distance movement of AZI1. In summary, the data point to AZI1 being a partially secreted protein and a likely new member of the group of hydroxyproline-rich glycoproteins. Its dual location suggests AZI1 to exert both intra- and extracellular functions.

  15. The yeast split-ubiquitin membrane protein two-hybrid screen identifies BAP31 as a regulator of the turnover of endoplasmic reticulum-associated protein tyrosine phosphatase-like B.

    Science.gov (United States)

    Wang, Bing; Pelletier, Jerry; Massaad, Michel J; Herscovics, Annette; Shore, Gordon C

    2004-04-01

    In the past decade, traditional yeast two-hybrid techniques have identified a plethora of interactions among soluble proteins operating within diverse cellular pathways. The discovery of associations between membrane proteins by genetic approaches, on the other hand, is less well established due to technical limitations. Recently, a split-ubiquitin system was developed to overcome this barrier, but so far, this system has been limited to the analysis of known membrane protein interactions. Here, we constructed unique split-ubiquitin-linked cDNA libraries and provide details for implementing this system to screen for binding partners of a bait protein, in this case BAP31. BAP31 is a resident integral protein of the endoplasmic reticulum, where it operates as a chaperone or cargo receptor and regulator of apoptosis. Here we describe a novel human member of the protein tyrosine phosphatase-like B (PTPLB) family, an integral protein of the endoplasmic reticulum membrane with four membrane-spanning alpha helices, as a BAP31-interacting protein. PTPLB turns over rapidly through degradation by the proteasome system. Comparisons of mouse cells with a deletion of Bap31 or reconstituted with human BAP31 indicate that BAP31 is required to maintain PTPLB, consistent with a chaperone or quality control function for BAP31 in the endoplasmic reticulum membrane.

  16. Mapping the interactions of dengue virus NS1 protein with human liver proteins using a yeast two-hybrid system: identification of C1q as an interacting partner.

    Directory of Open Access Journals (Sweden)

    Emiliana M Silva

    Full Text Available Dengue constitutes a global health concern. The clinical manifestation of this disease varies from mild febrile illness to severe hemorrhage and/or fatal hypovolemic shock. Flavivirus nonstructural protein 1 (NS1 is a secreted glycoprotein that is displayed on the surface of infected cells but is absent in viral particles. NS1 accumulates at high levels in the plasma of dengue virus (DENV-infected patients, and previous reports highlight its involvement in immune evasion, dengue severity, liver dysfunction and pathogenesis. In the present study, we performed a yeast two-hybrid screen to search for DENV2 NS1-interacting partners using a human liver cDNA library. We identified fifty genes, including human complement component 1 (C1q, which was confirmed by coimmunoprecipitation, ELISA and immunofluorescence assays, revealing for the first time the direct binding of this protein to NS1. Furthermore, the majority of the identified genes encode proteins that are secreted into the plasma of patients, and most of these proteins are classified as acute-phase proteins (APPs, such as plasminogen, haptoglobin, hemopexin, α-2-HS-glycoprotein, retinol binding protein 4, transferrin, and C4. The results presented here confirm the direct interaction of DENV NS1 with a key protein of the complement system and suggest a role for this complement protein in the pathogenesis of DENV infection.

  17. One-step electrochemically co-assembled redox-active [Ru(bpy)2(tatp)]2+-BSA-SWCNTs hybrid film for non-redox protein biosensors.

    Science.gov (United States)

    Ji, Shi-Bo; Yan, Zhi-Hong; Wu, Jun-Wen; Chen, Lin-Lin; Li, Hong

    2013-01-15

    A redox-active [Ru(bpy)(2)(tatp)](2+)-BSA-SWCNTs (bpy=2,2'-bipyridine, tatp=1,4,8,9-tetra-aza-triphenylene, BSA=bovine serum albumin, SWCNTs=single-walled carbon nanotubes) hybrid film is fabricated on an indium-tin oxide (ITO) electrode via one-step electrochemical co-assembly approach. BSA is inherently dispersive and therefore served as the linking mediator of SWCNTs, which facilitate the redox reactions of [Ru(bpy)(2)(tatp)](2+) employed as a reporter of BSA. The evidences from differential pulse voltammetry, cyclic voltammetry, scanning electron microscope, emission spectroscopy and fluorescence microscope reveal that the [Ru(bpy)(2)(tatp)](2+)-BSA-SWCNTs hybrid can be electrochemically co-assembled on the ITO electrode, showing two pairs of well-defined Ru(II)-based redox waves. Furthermore, the electrochemical co-assembly of the [Ru(bpy)(2)(tatp)](2+)-BSA-SWCNTs hybrid is found to be strongly dependent on the simultaneous presence of BSA and SWCNTs, indicating a good linear response to BSA in the range from 6 to 50mgL(-1). The results from this study provide an electrochemical co-assembly method for the development of non-redox protein biosensors.

  18. The yeast two hybrid system in a screen for proteins interacting with axolotl (Ambystoma mexicanum) Msx1 during early limb regeneration.

    Science.gov (United States)

    Abuqarn, Mehtap; Allmeling, Christina; Amshoff, Inga; Menger, Bjoern; Nasser, Inas; Vogt, Peter M; Reimers, Kerstin

    2011-07-01

    Urodele amphibians are exceptional in their ability to regenerate complex body structures such as limbs. Limb regeneration depends on a process called dedifferentiation. Under an inductive wound epidermis terminally differentiated cells transform to pluripotent progenitor cells that coordinately proliferate and eventually redifferentiate to form the new appendage. Recent studies have developed molecular models integrating a set of genes that might have important functions in the control of regenerative cellular plasticity. Among them is Msx1, which induced dedifferentiation in mammalian myotubes in vitro. Herein, we screened for interaction partners of axolotl Msx1 using a yeast two hybrid system. A two hybrid cDNA library of 5-day-old wound epidermis and underlying tissue containing more than 2×10⁶ cDNAs was constructed and used in the screen. 34 resulting cDNA clones were isolated and sequenced. We then compared sequences of the isolated clones to annotated EST contigs of the Salamander EST database (BLASTn) to identify presumptive orthologs. We subsequently searched all no-hit clone sequences against non redundant NCBI sequence databases using BLASTx. It is the first time, that the yeast two hybrid system was adapted to the axolotl animal model and successfully used in a screen for proteins interacting with Msx1 in the context of amphibian limb regeneration.

  19. Preliminary comparing the toxicities of the hybrid cry1Acs fused with different heterogenous genes provided guidance for the fusion expression of Cry proteins.

    Science.gov (United States)

    Tang, Ying; Tong, Jinying; Zhang, Yunlei; Wang, Lei; Hu, Shengbiao; Li, Wenping; Lv, Yuan

    2012-01-01

    In order to provide guidance for selecting suitable heterogenous gene that can efficiently enhance toxicity or broaden insecticidal spectrum of Cry1Ac through fusion expression, two hybrid cry1Acs fused with chitinase-encoding gene tchiB and neurotoxin gene hwtx-1 respectively were constructed and their toxicities were compared. A Bacillus thuringiensis strain harboring the cry1Ac gene in vector pHT315 was used as control. Bioassay revealed that LC(50) (after 72 h) of Cry1Ac protoxin was 41.01 μg mL(-1), while the hybrid cry1Acs fused with tchiB and hwtx-1 were 4.89 and 23.14 μg mL(-1), which were 8.23- and 1.77-fold higher than Cry1Ac protoxin in terms of relative toxicity respectively. Both fusion crystals had a higher toxicity than the original Cry1Ac protein and the toxicity of hybrid cry1Acs fused with hwtx-1 experienced a more significant increase than that fused with tchiB.

  20. Cross-Resistance between Cry1 Proteins in Fall Armyworm (Spodoptera frugiperda) May Affect the Durability of Current Pyramided Bt Maize Hybrids in Brazil.

    Science.gov (United States)

    Bernardi, Daniel; Salmeron, Eloisa; Horikoshi, Renato Jun; Bernardi, Oderlei; Dourado, Patrick Marques; Carvalho, Renato Assis; Martinelli, Samuel; Head, Graham P; Omoto, Celso

    2015-01-01

    Genetically modified plants expressing insecticidal proteins from Bacillus thuringiensis (Bt) offer valuable options for managing insect pests with considerable environmental and economic benefits. Despite the benefits provided by Bt crops, the continuous expression of these insecticidal proteins imposes strong selection for resistance in target pest populations. Bt maize (Zea mays) hybrids have been successful in controlling fall armyworm (Spodoptera frugiperda), the main maize pest in Brazil since 2008; however, field-evolved resistance to the protein Cry1F has recently been reported. Therefore it is important to assess the possibility of cross-resistance between Cry1F and other Cry proteins expressed in Bt maize hybrids. In this study, an F2 screen followed by subsequent selection on MON 89034 maize was used to select an S. frugiperda strain (RR) able to survive on the Bt maize event MON 89034, which expresses the Cry1A.105 and Cry2Ab2 proteins. Field-collected insects from maize expressing the Cry1F protein (event TC1507) represented most of the positive (resistance allele-containing) (iso)families found. The RR strain showed high levels of resistance to Cry1F, which apparently also conferred high levels of cross resistance to Cry1A.105 and Cry1Ab, but had only low-level (10-fold) resistance to Cry2Ab2. Life history studies to investigate fitness costs associated with the resistance in RR strain revealed only small reductions in reproductive rate when compared to susceptible and heterozygous strains, but the RR strain produced 32.2% and 28.4% fewer females from each female relative to the SS and RS (pooled) strains, respectively. Consistent with the lack of significant resistance to Cry2Ab2, MON 89034 maize in combination with appropriate management practices continues to provide effective control of S. frugiperda in Brazil. Nevertheless, the occurrence of Cry1F resistance in S. frugiperda across Brazil, and the cross-resistance to Cry1Ab and Cry1A.105

  1. Cross-Resistance between Cry1 Proteins in Fall Armyworm (Spodoptera frugiperda May Affect the Durability of Current Pyramided Bt Maize Hybrids in Brazil.

    Directory of Open Access Journals (Sweden)

    Daniel Bernardi

    Full Text Available Genetically modified plants expressing insecticidal proteins from Bacillus thuringiensis (Bt offer valuable options for managing insect pests with considerable environmental and economic benefits. Despite the benefits provided by Bt crops, the continuous expression of these insecticidal proteins imposes strong selection for resistance in target pest populations. Bt maize (Zea mays hybrids have been successful in controlling fall armyworm (Spodoptera frugiperda, the main maize pest in Brazil since 2008; however, field-evolved resistance to the protein Cry1F has recently been reported. Therefore it is important to assess the possibility of cross-resistance between Cry1F and other Cry proteins expressed in Bt maize hybrids. In this study, an F2 screen followed by subsequent selection on MON 89034 maize was used to select an S. frugiperda strain (RR able to survive on the Bt maize event MON 89034, which expresses the Cry1A.105 and Cry2Ab2 proteins. Field-collected insects from maize expressing the Cry1F protein (event TC1507 represented most of the positive (resistance allele-containing (isofamilies found. The RR strain showed high levels of resistance to Cry1F, which apparently also conferred high levels of cross resistance to Cry1A.105 and Cry1Ab, but had only low-level (10-fold resistance to Cry2Ab2. Life history studies to investigate fitness costs associated with the resistance in RR strain revealed only small reductions in reproductive rate when compared to susceptible and heterozygous strains, but the RR strain produced 32.2% and 28.4% fewer females from each female relative to the SS and RS (pooled strains, respectively. Consistent with the lack of significant resistance to Cry2Ab2, MON 89034 maize in combination with appropriate management practices continues to provide effective control of S. frugiperda in Brazil. Nevertheless, the occurrence of Cry1F resistance in S. frugiperda across Brazil, and the cross-resistance to Cry1Ab and Cry1A

  2. Bacillus thuringiensis delta-endotoxin Cry1 hybrid proteins with increased activity against the Colorado potato beetle

    NARCIS (Netherlands)

    Naimov, S.; Weemen-Hendriks, M.; Dukiandjiev, S.; Maagd, de R.A.

    2001-01-01

    Cry1 delta-endotoxins of Bacillus thuringiensis are generally active against lepidopteran insects, but Cry1Ba and Cry1Ia have additional, though low, levels of activity against coleopterans such as the Colorado potato beetle. Here we report the construction of Cry1Ba/Cry1Ia hybrid toxins which have

  3. A simple system for the identification of fluorescent dyes capable of reporting differences in secondary structure and hydrophobicity among amyloidogenic protein oligomers

    Science.gov (United States)

    Yates, Emma

    2012-02-01

    Thioflavin T and Congo Red are fluorescent dyes that are commonly used to identify the presence of amyloid structures, ordered protein aggregates. Despite the ubiquity of their use, little is known about their mechanism of interaction with amyloid fibrils, or whether other dyes, whose photophysics indicate that they may be more responsive to differences in macromolecular secondary structure and hydrophobicity, would be better suited to the identification of pathologically relevant oligomeric species in amyloid diseases. In order to systematically address this question, we have designed a strategy that discretely introduces differences in secondary structure and hydrophobicity amidst otherwise identical polyamino acids. This strategy will enable us to quantify and compare the affinities of Thioflavin T, Congo Red, and other, incompletely explored, fluorescent dyes for different secondary structural elements and hydrophobic motifs. With this information, we will identify dyes that give the most robust and quantitative information about structural differences among the complex population of oligomeric species present along an aggregation pathway between soluble monomers and amyloid fibrils, and correlate the resulting structural information with differential oligomeric toxicity.

  4. Modulation of the Unfolded Protein Response by Tauroursodeoxycholic Acid Counteracts Apoptotic Cell Death and Fibrosis in a Mouse Model for Secondary Biliary Liver Fibrosis.

    Science.gov (United States)

    Paridaens, Annelies; Raevens, Sarah; Devisscher, Lindsey; Bogaerts, Eliene; Verhelst, Xavier; Hoorens, Anne; Van Vlierberghe, Hans; van Grunsven, Leo A; Geerts, Anja; Colle, Isabelle

    2017-01-20

    The role of endoplasmic reticulum stress and the unfolded protein response (UPR) in cholestatic liver disease and fibrosis is not fully unraveled. Tauroursodeoxycholic acid (TUDCA), a hydrophilic bile acid, has been shown to reduce endoplasmic reticulum (ER) stress and counteract apoptosis in different pathologies. We aimed to investigate the therapeutic potential of TUDCA in experimental secondary biliary liver fibrosis in mice, induced by common bile duct ligation. The kinetics of the hepatic UPR and apoptosis during the development of biliary fibrosis was studied by measuring markers at six different timepoints post-surgery by qPCR and Western blot. Next, we investigated the therapeutic potential of TUDCA, 10 mg/kg/day in drinking water, on liver damage (AST/ALT levels) and fibrosis (Sirius red-staining), in both a preventive and therapeutic setting. Common bile duct ligation resulted in the increased protein expression of CCAAT/enhancer-binding protein homologous protein (CHOP) at all timepoints, along with upregulation of pro-apoptotic caspase 3 and 12, tumor necrosis factor receptor superfamily, member 1A (TNFRsf1a) and Fas-Associated protein with Death Domain (FADD) expression. Treatment with TUDCA led to a significant reduction of liver fibrosis, accompanied by a slight reduction of liver damage, decreased hepatic protein expression of CHOP and reduced gene and protein expression of pro-apoptotic markers. These data indicate that TUDCA exerts a beneficial effect on liver fibrosis in a model of cholestatic liver disease, and suggest that this effect might, at least in part, be attributed to decreased hepatic UPR signaling and apoptotic cell death.

  5. Interaction of the heterotrimeric G protein alpha subunit SSG-1 of Sporothrix schenckii with proteins related to stress response and fungal pathogenicity using a yeast two-hybrid assay

    Directory of Open Access Journals (Sweden)

    González-Méndez Ricardo

    2010-12-01

    Full Text Available Abstract Background Important biological processes require selective and orderly protein-protein interactions at every level of the signalling cascades. G proteins are a family of heterotrimeric GTPases that effect eukaryotic signal transduction through the coupling of cell surface receptors to cytoplasmic effector proteins. They have been associated with growth and pathogenicity in many fungi through gene knock-out studies. In Sporothrix schenckii, a pathogenic, dimorphic fungus, we previously identified a pertussis sensitive G alpha subunit, SSG-1. In this work we inquire into its interactions with other proteins. Results Using the yeast two-hybrid technique, we identified protein-protein interactions between SSG-1 and other important cellular proteins. The interactions were corroborated using co-immuneprecipitation. Using these techniques we identified a Fe/Mn superoxide dismutase (SOD, a glyceraldehyde-3-P dehydrogenase (GAPDH and two ion transport proteins, a siderophore-iron transporter belonging to the Major Facilitator Superfamily (MFS and a divalent-cation transporter of the Nramp (natural resistance-associated macrophage protein family as interacting with SSG-1. The cDNA's encoding these proteins were sequenced and bioinformatic macromolecular sequence analyses were used for the correct classification and functional assignment. Conclusions This study constitutes the first report of the interaction of a fungal G alpha inhibitory subunit with SOD, GAPDH, and two metal ion transporters. The identification of such important proteins as partners of a G alpha subunit in this fungus suggests possible mechanisms through which this G protein can affect pathogenicity and survival under conditions of environmental stress or inside the human host. The two ion transporters identified in this work are the first to be reported in S. schenckii and the first time they are identified as interacting with fungal G protein alpha subunits. The association

  6. Influence of the Secondary Cell Wall Polymer on the Reassembly, Recrystallization, and Stability Properties of the S-Layer Protein from Bacillus stearothermophilus PV72/p2

    Science.gov (United States)

    Sára, Margit; Dekitsch, Christine; Mayer, Harald F.; Egelseer, Eva M.; Sleytr, Uwe B.

    1998-01-01

    The high-molecular-weight secondary cell wall polymer (SCWP) from Bacillus stearothermophilus PV72/p2 is mainly composed of N-acetylglucosamine (GlcNAc) and N-acetylmannosamine (ManNAc) and is involved in anchoring the S-layer protein via its N-terminal region to the rigid cell wall layer. In addition to this binding function, the SCWP was found to inhibit the formation of self-assembly products during dialysis of the guanidine hydrochloride (GHCl)-extracted S-layer protein. The degree of assembly (DA; percent assembled from total S-layer protein) that could be achieved strongly depended on the amount of SCWP added to the GHCl-extracted S-layer protein and decreased from 90 to 10% when the concentration of the SCWP was increased from 10 to 120 μg/mg of S-layer protein. The SCWP kept the S-layer protein in the water-soluble state and favored its recrystallization on solid supports such as poly-l-lysine-coated electron microscopy grids. Derived from the orientation of the base vectors of the oblique S-layer lattice, the subunits had bound with their charge-neutral outer face, leaving the N-terminal region with the polymer binding domain exposed to the ambient environment. From cell wall fragments about half of the S-layer protein could be extracted with 1 M GlcNAc, indicating that the linkage type between the S-layer protein and the SCWP could be related to that of the lectin-polysaccharide type. Interestingly, GlcNAc had an effect on the in vitro self-assembly and recrystallization properties of the S-layer protein that was similar to that of the isolated SCWP. The SCWP generally enhanced the stability of the S-layer protein against endoproteinase Glu-C attack and specifically protected a potential cleavage site in position 138 of the mature S-layer protein. PMID:9696762

  7. GPCR-I-TASSER: A Hybrid Approach to G Protein-Coupled Receptor Structure Modeling and the Application to the Human Genome.

    Science.gov (United States)

    Zhang, Jian; Yang, Jianyi; Jang, Richard; Zhang, Yang

    2015-08-01

    Experimental structure determination remains difficult for G protein-coupled receptors (GPCRs). We propose a new hybrid protocol to construct GPCR structure models that integrates experimental mutagenesis data with ab initio transmembrane (TM) helix assembly simulations. The method was tested on 24 known GPCRs where the ab initio TM-helix assembly procedure constructed the correct fold for 20 cases. When combined with weak homology and sparse mutagenesis restraints, the method generated correct folds for all the tested cases with an average Cα root-mean-square deviation 2.4 Å in the TM regions. The new hybrid protocol was applied to model all 1,026 GPCRs in the human genome, where 923 have a high confidence score and are expected to have correct folds; these contain many pharmaceutically important families with no previously solved structures, including Trace amine, Prostanoids, Releasing hormones, Melanocortins, Vasopressin, and Neuropeptide Y receptors. The results demonstrate new progress on genome-wide structure modeling of TM proteins.

  8. Bacillus anthracis acetyltransferases PatA1 and PatA2 modify the secondary cell wall polysaccharide and affect the assembly of S-layer proteins.

    Science.gov (United States)

    Lunderberg, J Mark; Nguyen-Mau, Sao-Mai; Richter, G Stefan; Wang, Ya-Ting; Dworkin, Jonathan; Missiakas, Dominique M; Schneewind, Olaf

    2013-03-01

    The envelope of Bacillus anthracis encompasses a proteinaceous S-layer with two S-layer proteins (Sap and EA1). Protein assembly in the envelope of B. anthracis requires S-layer homology domains (SLH) within S-layer proteins and S-layer-associated proteins (BSLs), which associate with the secondary cell wall polysaccharide (SCWP), an acetylated carbohydrate that is tethered to peptidoglycan. Here, we investigated the contributions of two putative acetyltransferases, PatA1 and PatA2, on SCWP acetylation and S-layer assembly. We show that mutations in patA1 and patA2 affect the chain lengths of B. anthracis vegetative forms and perturb the deposition of the BslO murein hydrolase at cell division septa. The patA1 and patA2 mutants are defective for the assembly of EA1 in the envelope but retain the ability of S-layer formation with Sap. SCWP isolated from the patA1 patA2 mutant lacked acetyl moieties identified in wild-type polysaccharide and failed to associate with the SLH domains of EA1. A model is discussed whereby patA1- and patA2-mediated acetylation of SCWP enables the deposition of EA1 as well as BslO near the septal region of the B. anthracis envelope.

  9. Interaction Network among Escherichia coli Membrane Proteins Involved in Cell Division as Revealed by Bacterial Two-Hybrid Analysis

    OpenAIRE

    Karimova, Gouzel; Dautin, Nathalie; Ladant, Daniel

    2005-01-01

    Formation of the Escherichia coli division septum is catalyzed by a number of essential proteins (named Fts) that assemble into a ring-like structure at the future division site. Several of these Fts proteins are intrinsic transmembrane proteins whose functions are largely unknown. Although these proteins appear to be recruited to the division site in a hierarchical order, the molecular interactions underlying the assembly of the cell division machinery remain mostly unspecified. In the prese...

  10. Controlled Fabrication of Silk Protein Sericin Mediated Hierarchical Hybrid Flowers and Their Excellent Adsorption Capability of Heavy Metal Ions of Pb(II), Cd(II) and Hg(II).

    Science.gov (United States)

    Koley, Pradyot; Sakurai, Makoto; Aono, Masakazu

    2016-01-27

    Fabrication of protein-inorganic hybrid materials of innumerable hierarchical patterns plays a major role in the development of multifunctional advanced materials with their improved features in synergistic way. However, effective fabrication and applications of the hybrid structures is limited due to the difficulty in control and production cost. Here, we report the controlled fabrication of complex hybrid flowers with hierarchical porosity through a green and facile coprecipitation method by using industrial waste natural silk protein sericin. The large surface areas and porosity of the microsize hybrid flowers enable water purification through adsorption of different heavy metal ions. The high adsorption capacity depends on their morphology, which is changed largely by sericin concentration in their fabrication. Superior adsorption and greater selectivity of the Pb(II) ions have been confirmed by the characteristic growth of needle-shaped nanowires on the hierarchical surface of the hybrid flowers. These hybrid flowers show excellent thermal stability even after complete evaporation of the protein molecules, significantly increasing the porosity of the flower petals. A simple, cost-effective and environmental friendly fabrication method of the porous flowers will lead to a new solution to water pollution required in the modern industrial society.

  11. Networking for proteins : A yeast two-hybrid and RNAi profiling approach to uncover C. elegans cell polarity regulators

    NARCIS (Netherlands)

    Koorman, T.|info:eu-repo/dai/nl/337456038

    2016-01-01

    Cell polarity is a near universal trait of life and guides many aspects of animal development. Although a number of key polarity proteins have been identified, many interactions with proteins acting downstream likely remain to be elucidated. Mutations in polarity proteins or deregulation of polarity

  12. Hybrids of the bHLH and bZIP protein motifs display different DNA-binding activities in vivo vs. in vitro.

    Directory of Open Access Journals (Sweden)

    Hiu-Kwan Chow

    Full Text Available Minimalist hybrids comprising the DNA-binding domain of bHLH/PAS (basic-helix-loop-helix/Per-Arnt-Sim protein Arnt fused to the leucine zipper (LZ dimerization domain from bZIP (basic region-leucine zipper protein C/EBP were designed to bind the E-box DNA site, CACGTG, targeted by bHLHZ (basic-helix-loop-helix-zipper proteins Myc and Max, as well as the Arnt homodimer. The bHLHZ-like structure of ArntbHLH-C/EBP comprises the Arnt bHLH domain fused to the C/EBP LZ: i.e. swap of the 330 aa PAS domain for the 29 aa LZ. In the yeast one-hybrid assay (Y1H, transcriptional activation from the E-box was strong by ArntbHLH-C/EBP, and undetectable for the truncated ArntbHLH (PAS removed, as detected via readout from the HIS3 and lacZ reporters. In contrast, fluorescence anisotropy titrations showed affinities for the E-box with ArntbHLH-C/EBP and ArntbHLH comparable to other transcription factors (K(d 148.9 nM and 40.2 nM, respectively, but only under select conditions that maintained folded protein. Although in vivo yeast results and in vitro spectroscopic studies for ArntbHLH-C/EBP targeting the E-box correlate well, the same does not hold for ArntbHLH. As circular dichroism confirms that ArntbHLH-C/EBP is a much more strongly alpha-helical structure than ArntbHLH, we conclude that the nonfunctional ArntbHLH in the Y1H must be due to misfolding, leading to the false negative that this protein is incapable of targeting the E-box. Many experiments, including protein design and selections from large libraries, depend on protein domains remaining well-behaved in the nonnative experimental environment, especially small motifs like the bHLH (60-70 aa. Interestingly, a short helical LZ can serve as a folding- and/or solubility-enhancing tag, an important device given the focus of current research on exploration of vast networks of biomolecular interactions.

  13. Chronic administration of dietary grape seed extract increases colonic expression of gut tight junction protein occludin and reduces fecal calprotectin: a secondary analysis of healthy Wistar Furth rats.

    Science.gov (United States)

    Goodrich, Katheryn M; Fundaro, Gabrielle; Griffin, Laura E; Grant, Ar'quette; Hulver, Matthew W; Ponder, Monica A; Neilson, Andrew P

    2012-10-01

    Animal studies have demonstrated the potential of grape seed extract (GSE) to prevent metabolic syndrome, obesity, and type 2 diabetes. Recently, metabolic endotoxemia induced by bacterial endotoxins produced in the colon has emerged as a possible factor in the etiology of metabolic syndrome. Improving colonic barrier function may control endotoxemia by reducing endotoxin uptake. However, the impact of GSE on colonic barrier integrity and endotoxin uptake has not been evaluated. We performed a secondary analysis of samples collected from a chronic GSE feeding study with pharmacokinetic end points to examine potential modulation of biomarkers of colonic integrity and endotoxin uptake. We hypothesized that a secondary analysis would indicate that chronic GSE administration increases colonic expression of intestinal tight junction proteins and reduces circulating endotoxin levels, even in the absence of an obesity-promoting stimulus. Wistar Furth rats were administered drinking water containing 0.1% GSE for 21 days. Grape seed extract significantly increased the expression of gut junction protein occludin in the proximal colon and reduced fecal levels of the neutrophil protein calprotectin, compared with control. Grape seed extract did not significantly reduce serum or fecal endotoxin levels compared with control, although the variability in serum levels was widely increased by GSE. These data suggest that the improvement of gut barrier integrity and potential modulation of endotoxemia warrant investigation as a possible mechanism by which GSE prevents metabolic syndrome and associated diseases. Further investigation of this mechanism in high-fat feeding metabolic syndrome and obesity models is therefore justified. Copyright © 2012 Elsevier Inc. All rights reserved.

  14. Myowater dynamics and protein secondary structural changes as affected by heating rate in three pork qualities: a combined FT-IR microspectroscopic and 1H NMR relaxometry study.

    Science.gov (United States)

    Wu, Zhiyun; Bertram, Hanne Christine; Böcker, Ulrike; Ofstad, Ragni; Kohler, Achim

    2007-05-16

    The objective of this study was to investigate the influence of heating rate on myowater dynamics and protein secondary structures in three pork qualities by proton NMR T2 relaxation and Fourier transform infrared (FT-IR) microspectroscopy measurements. Two oven temperatures at 100 degrees C and 200 degrees C corresponding to slow and fast heating rates were applied on three pork qualities (DFD, PSE, and normal) to an internal center temperature of 65 degrees C. The fast heating induced a higher cooking loss, particularly for PSE meat. The water proton T21 distribution representing water entrapped within the myofibrillar network was influenced by heating rate and meat quality. Fast heating broadened the T21 distribution and decreased the relaxation times of the T21 peak position for three meat qualities. The changes in T21 relaxation times in meat can be interpreted in terms of chemical and diffusive exchange. FT-IR showed that fast heating caused a higher gain of random structures and aggregated beta-sheets at the expense of native alpha-helixes, and these changes dominate the fast-heating-induced broadening of T21 distribution and reduction in T21 times. Furthermore, of the three meat qualities, PSE meat had the broadest T21 distribution and the lowest T21 times for both heating rates, reflecting that the protein aggregation of PSE caused by heating is more extensive than those of DFD and normal, which is consistent with the IR data. The present study demonstrated that the changes in T2 relaxation times of water protons affected by heating rate and raw meat quality are well related to the protein secondary structural changes as probed by FT-IR microspectroscopy.

  15. The rice dynamin-related protein DRP2B mediates membrane trafficking, and thereby plays a critical role in secondary cell wall cellulose biosynthesis.

    Science.gov (United States)

    Xiong, Guangyan; Li, Rui; Qian, Qian; Song, Xueqin; Liu, Xiangling; Yu, Yanchun; Zeng, Dali; Wan, Jianmin; Li, Jiayang; Zhou, Yihua

    2010-10-01

    Membrane trafficking between the plasma membrane (PM) and intracellular compartments is an important process that regulates the deposition and metabolism of cell wall polysaccharides. Dynamin-related proteins (DRPs), which function in membrane tubulation and vesiculation are closely associated with cell wall biogenesis. However, the molecular mechanisms by which DRPs participate in cell wall formation are poorly understood. Here, we report the functional characterization of Brittle Culm3 (BC3), a gene encoding OsDRP2B. Consistent with the expression of BC3 in mechanical tissues, the bc3 mutation reduces mechanical strength, which results from decreased cellulose content and altered secondary wall structure. OsDRP2B, one of three members of the DRP2 subfamily in rice (Oryza sativa L.), was identified as an authentic membrane-associated dynamin via in vitro biochemical analyses. Subcellular localization of fluorescence-tagged OsDRP2B and several compartment markers in protoplast cells showed that this protein not only lies at the PM and the clathrin-mediated vesicles, but also is targeted to the trans-Golgi network (TGN). An FM4-64 uptake assay in transgenic plants that express green fluorescent protein-tagged OsDRP2B verified its involvement in an endocytic pathway. BC3 mutation and overexpression altered the abundance of cellulose synthase catalytic subunit 4 (OsCESA4) in the PM and in the endomembrane systems. All of these findings lead us to conclude that OsDRP2B participates in the endocytic pathway, probably as well as in post-Golgi membrane trafficking. Mutation of OsDRP2B disturbs the membrane trafficking that is essential for normal cellulose biosynthesis of the secondary cell wall, thereby leading to inferior mechanical properties in rice plants.

  16. Secondary Structure and Subunit Composition of Soy Protein In Vitro Digested by Pepsin and Its Relation with Digestibility

    Directory of Open Access Journals (Sweden)

    Yong Yang

    2016-01-01

    Full Text Available In the present study, in vitro digestibility and structure of soybean protein isolates (SPIs prepared from five soybean varieties were investigated in simulated gastric fluid (SGF, using FT-IR microspectroscopy and SDS-PAGE. The result indicated that β-conformations were prone to be hydrolyzed by pepsin preferentially and transformed to unordered structure during in vitro digestion, followed by the digestion of α-helix and unordered structure. A negative linear correlation coefficient was found between the β-conformation contents of five SPIs and their in vitro digestibility values. The intensities of the protein bands corresponding to 7S and 11S fractions were decreased and many peptide bands appeared at 11~15 kDa during enzymatic hydrolysis. β-conglycinin was poorly hydrolyzed with pepsin, especially the β-7S subunit. On the other hand, basic polypeptides of glycinin degraded slower than acidic polypeptides and represented a large proportion of the residual protein after digestion. 11S-A3 of all SPIs disappeared after 1 h digestion. Moreover, a significant negative linear correlation coefficient (r=-0.89 was found between the β-7S contents of five SPIs and their in vitro digestibility values. These results are useful for further studies of the functional properties and bioactive properties of these varieties and laid theoretical foundations for the development of the specific functional soy protein isolate.

  17. Different secondary structure elements as scaffolds for protein folding transition states of two homologous four-helix bundles

    DEFF Research Database (Denmark)

    Teilum, Kaare; Thormann, Thorsten; Caterer, Nigel R.

    2005-01-01

    Comparison of the folding processes for homologue proteins can provide valuable information about details in the interactions leading to the formation of the folding transition state. Here the folding kinetics of 18 variants of yACBP and 3 variants of bACBP have been studied by -value analysis. I...

  18. Screening of genes of proteins interacting with p7 protein of hepatitis C virus from human liver cDNA library by yeast two-hybrid system

    Institute of Scientific and Technical Information of China (English)

    Yan-Ping Huang; Xue-Song Gao; Dong Ji; Shu-Mei Lin; Yan-Wei Zhong; Qing Shao; Shu-Lin Zhang; Jun Cheng; Lin Wang; Jiang Guo; Yan Liu; Yuan Yang; Li-Ying Zhang; Gui-Qin Bai

    2005-01-01

    AIM: To investigate the biological function of p7 protein and to look for proteins interacting with p7 protein in hepatocytes.METHODS: We constructed p7 protein bait plasmid by doning the gene of p7 protein into pGBKT7, then transformed it into yeast AH109 (a type). The transformed yeast was mated with yeast Y187 (α type) containing liver cDNA library plasmid, pACT2 in 2xYPDA medium. Diploid yeast was plated on synthetic dropout nutrient medium (SD/-Trp-Leu-His-Ade) containing x-α-gal for selection and screening. After extracting and sequencing of plasmids from blue colonies, we performed sequence analysis by bioinformatics.RESULTS: Fifty colonies were selected and sequenced.Among them, one colony was Homo sapiens signal sequence receptor, seven colonies were Homo sapiens H19, seven colonies were immunoglobulin superfamily containing leucine-rich repeat, three colonies were spermatid peri-nuclear RNA binding proteins, two colonies were membrane-spanning 4-domains, 24 colonies were cancer-associated antigens, four colonies were nucleoporin 214 ku and two colonies were CLL-associated antigens.CONCLUSION: The successful cloning of gene of protein interacting with p7 protein paves a way for the study of the physiological function of p7 protein and its associated protein.

  19. MOR is not enough: identification of novel mu-opioid receptor interacting proteins using traditional and modified membrane yeast two-hybrid screens.

    Science.gov (United States)

    Petko, Jessica; Justice-Bitner, Stephanie; Jin, Jay; Wong, Victoria; Kittanakom, Saranya; Ferraro, Thomas N; Stagljar, Igor; Levenson, Robert

    2013-01-01

    The mu-opioid receptor (MOR) is the G-protein coupled receptor primarily responsible for mediating the analgesic and rewarding properties of opioid agonist drugs such as morphine, fentanyl, and heroin. We have utilized a combination of traditional and modified membrane yeast two-hybrid screening methods to identify a cohort of novel MOR interacting proteins (MORIPs). The interaction between the MOR and a subset of MORIPs was validated in pulldown, co-immunoprecipitation, and co-localization studies using HEK293 cells stably expressing the MOR as well as rodent brain. Additionally, a subset of MORIPs was found capable of interaction with the delta and kappa opioid receptors, suggesting that they may represent general opioid receptor interacting proteins (ORIPS). Expression of several MORIPs was altered in specific mouse brain regions after chronic treatment with morphine, suggesting that these proteins may play a role in response to opioid agonist drugs. Based on the known function of these newly identified MORIPs, the interactions forming the MOR signalplex are hypothesized to be important for MOR signaling and intracellular trafficking. Understanding the molecular complexity of MOR/MORIP interactions provides a conceptual framework for defining the cellular mechanisms of MOR signaling in brain and may be critical for determining the physiological basis of opioid tolerance and addiction.

  20. Decomposition rates and residue-colonizing microbial communities of Bacillus thuringiensis insecticidal protein Cry3Bb-expressing (Bt) and non-Bt corn hybrids in the field.

    Science.gov (United States)

    Xue, Kai; Serohijos, Raquel C; Devare, Medha; Thies, Janice E

    2011-02-01

    Despite the rapid adoption of crops expressing the insecticidal Cry protein(s) from Bacillus thuringiensis (Bt), public concern continues to mount over the potential environmental impacts. Reduced residue decomposition rates and increased tissue lignin concentrations reported for some Bt corn hybrids have been highlighted recently as they may influence soil carbon dynamics. We assessed the effects of MON863 Bt corn, producing the Cry3Bb protein against the corn rootworm complex, on these aspects and associated decomposer communities by terminal restriction fragment length polymorphism (T-RFLP) analysis. Litterbags containing cobs, roots, or stalks plus leaves from Bt and unmodified corn with (non-Bt+I) or without (non-Bt) insecticide applied were placed on the soil surface and at a 10-cm depth in field plots planted with these crop treatments. The litterbags were recovered and analyzed after 3.5, 15.5, and 25 months. No significant effect of treatment (Bt, non-Bt, and non-Bt+I) was observed on initial tissue lignin concentrations, litter decomposition rate, or bacterial decomposer communities. The effect of treatment on fungal decomposer communities was minor, with only 1 of 16 comparisons yielding separation by treatment. Environmental factors (litterbag recovery year, litterbag placement, and plot history) led to significant differences for most measured variables. Combined, these results indicate that the differences detected were driven primarily by environmental factors rather than by any differences between the corn hybrids or the use of tefluthrin. We conclude that the Cry3Bb corn tested in this study is unlikely to affect carbon residence time or turnover in soils receiving these crop residues.

  1. Involvement of a velvet protein FgVeA in the regulation of asexual development, lipid and secondary metabolisms and virulence in Fusarium graminearum.

    Directory of Open Access Journals (Sweden)

    Jinhua Jiang

    Full Text Available The velvet protein, VeA, is involved in the regulation of diverse cellular processes. In this study, we explored functions of FgVeA in the wheat head blight pathogen, Fusarium graminearum,using a gene replacement strategy. The FgVEA deletion mutant exhibited a reduction in aerial hyphae formation, hydrophobicity, and deoxynivalenol (DON biosynthesis. Deletion of FgVEA gene led to an increase in conidial production, but a delay in conidial germination. Pathogencity assays showed that the mutant was impaired in virulence on flowering wheat head. Sensitivity tests to various stresses exhibited that the FgVEA deletion mutant showed increased resistance to osmotic stress and cell wall-damaging agents, but increased sensitivity to iprodione and fludioxonil fungicides. Ultrastructural and histochemical analyses revealed that conidia of FgVeA deletion mutant contained an unusually high number of large lipid droplets, which is in agreement with the observation that the mutant accumulated a higher basal level of glycerol than the wild-type progenitor. Serial analysis of gene expression (SAGE in the FgVEA mutant confirmed that FgVeA was involved in various cellular processes. Additionally, six proteins interacting with FgVeA were identified by yeast two hybrid assays in current study. These results indicate that FgVeA plays a critical role in a variety of cellular processes in F. graminearum.

  2. Phylogenetic characterization and promoter expression analysis of a novel hybrid protein disulfide isomerase/cargo receptor subfamily unique to plants and chromalveolates.

    Science.gov (United States)

    Yuen, Christen Y L; Wong, Katharine; Christopher, David A

    2016-02-01

    Protein disulfide isomerases (PDIs) play critical roles in protein folding by catalyzing the formation and rearrangement of disulfide bonds in nascent secretory proteins. There are six distinct PDI subfamilies in terrestrial plants. A unique feature of PDI-C subfamily members is their homology to the yeast retrograde (Golgi-to-endoplasmic reticulum) cargo receptor proteins, Erv41p and Erv46p. Here, we demonstrate that plant Erv41p/Erv46p-like proteins are divided into three subfamilies: ERV-A, ERV-B and PDI-C, which all possess the N-proximal and C-proximal conserved domains of yeast Erv41p and Erv46p. However, in PDI-C isoforms, these domains are separated by a thioredoxin domain. The distribution of PDI-C isoforms among eukaryotes indicates that the PDI-C subfamily likely arose through an ancient exon-shuffling event that occurred before the divergence of plants from stramenopiles and rhizarians. Arabidopsis has three PDI-C genes: PDI7, PDI12, and PDI13. PDI12- and PDI13-promoter: β-glucuronidase (GUS) gene fusions are co-expressed in pollen and stipules, while PDI7 is distinctly expressed in the style, hydathodes, and leaf vasculature. The PDI-C thioredoxin domain active site motif CxxS is evolutionarily conserved among land plants. Whereas PDI12 and PDI13 retain the CxxS motif, PDI7 has a CxxC motif similar to classical PDIs. We hypothesize that PDI12 and PDI13 maintain the ancestral roles of PDI-C in Arabidopsis, while PDI7 has undergone neofunctionalization. The unusual PDI/cargo receptor hybrid arrangement in PDI-C isoforms has no counterpart in animals or yeast, and predicts the need for pairing redox functions with cargo receptor processes during protein trafficking in plants and other PDI-C containing organisms.

  3. Aptamer-gelatin composite for a trigger release system mediated by oligonucleotide hybridization.

    Science.gov (United States)

    Soontornworajit, Boonchoy; Srakaew, Prangkamol; Naramitpanich, Pajaree

    2014-01-01

    Nucleic acid aptamers not only specifically bind to their target proteins with high affinity but also form intermolecular hybridization with their complementary oligonucleotides (CO). The hybridization can interrupt aptamer/protein interaction due to the changes of aptamer secondary structure which rely on hybridization length and base-pairing positions. Herein we aim to use this unique property of the aptamers, when combined with gelatin to develop a novel composite with desirable protein release profiles. Platelet-derived growth factor-BB (PDGF-BB) and its aptamer were used as target molecules. Prior to performing the release study, the effects of CO on aptamer-protein interaction were observed by surface plasmon resonance (SPR). The SPR sensorgram indicated that the aptamer dissociated from the bounded proteins when it hybridized with the CO. The aptamer was then immobilized onto streptavidin coated polystyrene particles via biotin/streptavidin interaction. Then, PDGF-BB and aptamer functionalized particles were mixed with gelatin solution and cast as small pieces of composite. The success of the composite preparation was confirmed by flow cytometry and microscopy. PDGF-BB release at several time points was quantified by ELISA. The results showed that the aptamer-gelatin composite could slow the release rate of the proteins from the composite due to strong binding of proteins and aptamers. Once the CO was added to the system, the release rate was significantly enhanced because the aptamer hybridized with the CO and lost its active secondary structure. Therefore, the proteins were triggered to release out from the composite. This work suggests a promising strategy for controlling the release of bioactive molecules in medical treatments.

  4. Exploring the relationship between protein secondary structures, temperature-dependent viscosities, and technological treatments in egg yolk and LDL by FTIR and rheology.

    Science.gov (United States)

    Blume, K; Dietrich, K; Lilienthal, S; Ternes, W; Drotleff, A M

    2015-04-15

    Egg yolk and its main component, low-density lipoproteins (LDL), were consecutively pasteurised, optimally freeze-dried, and dispersed in various NaCl solutions (0-10%). Heat-induced changes in the protein secondary structures which accompanied viscosity-increasing aggregation processes were monitored using Fourier transform infrared spectroscopy (FTIR) to determine the intensities of intermolecular β-sheets (1622 cm(-1)) and results were compared with the temperature-dependent viscosities. Considerable changes in secondary structures observed after reconstitution of freeze-dried LDL had no detectable effect on the characteristic heat-induced viscosity curves but suggest that LDL plays a particular role in the unwanted gel formation of egg yolk after conventional freezing. For all egg yolk samples and all NaCl-containing LDL samples, the sigmoidal changes in the absorbance units vs. temperature curves corresponded with the first increase in heat-induced viscosity. Both analytical methods showed that the presence of ionic strength caused a shift in curve progressions towards higher temperatures, indicating increased thermal stability. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. A Hybrid Dry and Aqueous Fractionation Method to Obtain Protein-Rich Fractions from Quinoa (Chenopodium quinoa Willd)

    NARCIS (Netherlands)

    Avila Ruiz, Geraldine; Arts, Anke; Minor, Marcel; Schutyser, Maarten

    2016-01-01

    Combination of dry and aqueous fractionation is investigated to obtain protein-rich fractions from quinoa in a milder and more sustainable way compared to conventional wet fractionation. Dry fractionation of quinoa involved milling and subsequent air classification, generating a protein-enriched

  6. Tobacco calmodulin-like protein provides secondary defense by binding to and directing degradation of virus RNA silencing suppressors

    OpenAIRE

    Nakahara, Kenji S; Masuta, Chikara; Yamada, Syouta; Shimura, Hanako; KASHIHARA, Yukiko; Wada, Tomoko S.; Meguro, Ayano; Goto, Kazunori; Tadamura, Kazuki; Sueda, Kae; Sekiguchi, Toru; Shao, Jun; Itchoda, Noriko; Matsumura, Takeshi; Igarashi, Manabu

    2012-01-01

    RNA silencing (RNAi) induced by virus-derived double-stranded RNA (dsRNA), which is in a sense regarded as a pathogen-associated molecular pattern (PAMP) of viruses, is a general plant defense mechanism. To counteract this defense, plant viruses express RNA silencing suppressors (RSSs), many of which bind to dsRNA and attenuate RNAi. We showed that the tobacco calmodulin-like protein, rgs-CaM, counterattacked viral RSSs by binding to their dsRNA-binding domains and sequestering them from inhi...

  7. Hybrid Baryons

    CERN Document Server

    Page, P R

    2003-01-01

    We review the status of hybrid baryons. The only known way to study hybrids rigorously is via excited adiabatic potentials. Hybrids can be modelled by both the bag and flux-tube models. The low-lying hybrid baryon is N 1/2^+ with a mass of 1.5-1.8 GeV. Hybrid baryons can be produced in the glue-rich processes of diffractive gamma N and pi N production, Psi decays and p pbar annihilation.

  8. Secondary Metabolites in Ramalina terebrata Detected by UHPLC/ESI/MS/MS and Identification of Parietin as Tau Protein Inhibitor

    Directory of Open Access Journals (Sweden)

    Alberto Cornejo

    2016-08-01

    Full Text Available Liquid chromatography coupled with mass spectrometry is an outstanding methodology for fast analysis of phenolic compounds in biological samples. Twenty two compounds were quickly and accurately identified in the methanolic extract of the Antarctic lichen Ramalina terebrata for the first time using ultra high pressure liquid chromatography coupled with photodiode array detector and high resolution mass spectrometry (UHPLC-PDA-Q/Orbitrap/MS/MS. In addition, the extract and the four compounds isolated from this species were tested for the inhibitory activity of tau protein aggregation, which is a protein involved in Alzheimer’s disease (AD. All compounds showed null activity with the exception of parietin, which it was able to inhibit aggregation process of tau in a concentration range between 3 µg/mL (10 µM to 28 µg/mL (100 µM. In addition, we show how parietin interact with tau 306VQIVYK311 hexapeptide inside of the microtubule binding domain (4R with the help of molecular docking experiments. Finally, the constituents present in the methanolic extract could possibly contribute to the established anti-aggregation activity for this extract and this in-depth analysis of the chemical composition of R. terebrata could guide further research into its medicinal properties and potential uses.

  9. Unconjugated secondary bile acids activate the unfolded protein response and induce golgi fragmentation via a src-kinase-dependant mechanism

    Science.gov (United States)

    Sharma, Ruchika; Quilty, Francis; Gilmer, John F.; Long, Aideen; Byrne, Anne-Marie

    2017-01-01

    Bile acids are components of gastro-duodenal refluxate and regarded as causative agents in oesophageal disease but the precise mechanisms are unknown. Here we demonstrate that a specific subset of physiological bile acids affect the protein secretory pathway by inducing ER stress, activating the Unfolded Protein Response (UPR) and causing disassembly of the Golgi apparatus in oesophageal cells. Deoxycholic acid (DCA), Chemodeoxycholic acid (CDCA) and Lithocholic acid (LCA) activated the PERK arm of the UPR, via phosphorylation of eIF2α and up-regulation of ATF3, CHOP and BiP/GRP78. UPR activation by these bile acids is mechanistically linked with Golgi fragmentation, as modulating the UPR using a PERK inhibitor (GSK2606414) or salubrinal attenuated bile acid-induced effects on Golgi structure. Furthermore we demonstrate that DCA, CDCA and LA activate Src kinase and that inhibition of this kinase attenuated both bile acid-induced BiP/GRP78 expression and Golgi fragmentation. This study highlights a novel mechanism whereby environmental factors (bile acids) impact important cellular processes regulating cell homeostasis, including the UPR and Golgi structure, which may contribute to cancer progression in the oesophagus. PMID:27888615

  10. Time of flight-secondary ion mass spectrometry analysis of protein adsorption on a polyvinylidene difluoride surface modified by ion irradiation.

    Science.gov (United States)

    Okuji, Shigeto; Kitazawa, Hideaki; Takeda, Yoshihiko

    2016-12-01

    We investigated the effects of nanoscopic surface modification of polyvinylidene difluoride (PVDF) and low-density polyethylene (LDPE) by plasma-based ion implantation on protein adsorption with time of flight-secondary ion mass spectrometry (ToF-SIMS) analysis. The chemical composition of the LDPE and PVDF surfaces was changed by ion irradiation. In particular, irradiation substantially decreased the number of CH and CF bonds on the PVDF surface, but only slightly decreased that of CH bonds for LDPE. These decreases may reflect a higher hydrogen recombination rate of the LDPE than the PVDF surface. An increase in oxygen was observed on both the LDPE and PVDF surfaces following ion irradiation, but was saturated after irradiation of 1×10(15)cm(-2) on the PVDF surface. The hydrophilicity of the ion-irradiated LDPE surface was promoted with an increase of the total ion fluence. Ion irradiation also changed the surface properties of PVDF to become more hydrophilic, but the variation did not correlate with the total ion fluence presumably due to the presence of fluorine atoms and the saturation of oxidation. Both bovine serum albumin (BSA) and collagen adsorption were suppressed on the LDPE surface by ion irradiation, which may have resulted from a decrease of the hydrophobic interaction. By contrast, ion irradiation increased protein adsorption on the PVDF surface, and BSA was adsorbed more than collagen, whereas there was no difference in the adsorption between BSA and collagen on the ion-irradiated LDPE surface. Moreover, the adsorption of BSA decreased on the oxygen- and fluorine-rich PVDF surface. These results indicate that the nanoscopic composition changes on the PVDF surface affect the adsorption behavior of BSA. Specifically, ferroelectric property on the PVDF surface was changed by ion irradiation and the nanoscopic change in polarity presumably affected the protein adsorption. Our findings suggest that selective adsorption control of protein can be

  11. Screening of candidate genes encoding proteins expressed in pectoral fins of fugu Takifugu rubripes, in relation to habitat site of parasitic copepod Caligus fugu, using suppression subtractive hybridization.

    Science.gov (United States)

    Tasumi, Satoshi; Norshida, Ismail; Boxshall, Geoffrey A; Kikuchi, Kiyoshi; Suzuki, Yuzuru; Ohtsuka, Susumu

    2015-05-01

    Caligus fugu is a parasitic copepod specific to the tetraodontid genus Takifugu including the commercially important Takifugu rubripes. Despite the rapid accumulation of knowledge on other aspects of its biology, the host and settlement-site recognition mechanisms of this parasite are not yet well understood. Since the infective copepodid stage shows preferential site selection in attaching to the fins, we considered it likely that the copepodid recognizes chemical cues released or leaking from the fins, and/or transmembrane protein present on the fins. To isolate molecules potentially related to attachment site specificity, we applied suppression subtractive hybridization (SSH) PCR by identifying genes expressed more highly in pectoral fins of T. rubripes than in the body surface skin. We sequenced plasmid DNA from 392 clones in a SSH library. The number of non-redundant sequences was 276, which included 135 sequences located on 117 annotated genes and 141 located in positions where no genes had been annotated. We characterized those annotated genes on the basis of gene ontology terms, and found that 46 of the identified genes encode secreted proteins, enzymes or membrane proteins. Among them nine showed higher expression in the pectoral fins than in the skin. These could be candidate genes for involvement in behavioral mechanisms related to the site specificity shown by the infective copepodids of C. fugu.

  12. Large Left Ventricular Thrombus in a Patient with Systemic and Venous Thromboembolism Secondary to Protein C and S Deficiency

    Science.gov (United States)

    Ainapurapu, Bujji

    2017-01-01

    58-year-old Hispanic female presented with an altered mental status. A CT scan of the head demonstrated multiple scattered infarcts and a large right temporal lobe infarct. We also diagnosed the patient with right popliteal and femoral vein thrombosis, bilateral pulmonary embolism, and a transient right radial artery occlusion. Her 12-lead EKG showed lateral ST elevation. Emergent coronary angiogram revealed normal coronaries. Echocardiogram demonstrated a large mobile mass attached to the anterolateral free wall with overall normal contractility of the left ventricle. The patient underwent surgical embolectomy to prevent further systemic embolization. Coagulability workup returned positive for protein C and S deficiency. The patient did well after surgery. Following her surgery, we initiated chronic oral anticoagulation. The presentation with intracardiac thrombus in a normal heart should raise a concern of a probable thrombophilia. PMID:28133551

  13. The Ca2+-dependent DNases are Involved in Secondary Xylem Development in Eucommia ulmoides

    Institute of Scientific and Technical Information of China (English)

    Hui-Min Chen; Yu Pang; Jun Zeng; Qi Ding; Shen-Yi Yin; Chao Liu; Meng-Zhu Lu; Ke-Ming Cui; Xin-Qiang He

    2012-01-01

    Secondary xylem development has long been recognized as a typical case of programmed cell death (PCD) in plants.During PCD,the degradation of genomic DNA is catalyzed by endonucleases.However,to date,no endonuclease has been shown to participate in secondary xylem development.Two novel Ca2+-dependent DNase genes,EuCaN1 and EuCaN2,were identified from the differentiating secondary xylem of the tree Eucommia ulmoides Oliv.,their functions were studied by DNase activity assay,in situ hybridization,protein immunolocalization and virus-induced gene silencing experiments.Full-length cDNAs of EuCaN1 and EuCaN2 contained an open reading frame of 987 bp,encoding two proteins of 328amino acids with SNase-like functional domains.The genomic DNA sequence for EuCaN1 had no introns,while EuCaN2 had 8 introns.EuCaN1 and EuCaN2 digested ssDNA and dsDNA with Ca2+-dependence at neutral pH.Their expression was confined to differentiating secondary xylem cells and the proteins were localized in the nucleus.Their activity dynamics was closely correlated with secondary xylem development.Secondary xylem cell differentiation is influenced by RNAi of endonuclease genes.The results provide evidence that the Ca2+-dependent DNases are involved in secondary xylem development.

  14. Yeast two-hybrid screen.

    Science.gov (United States)

    Makuch, Lauren

    2014-01-01

    Yeast two-hybrid is a method for screening large numbers of gene products (encoded by cDNA libraries) for their ability to interact with a protein of interest. This system can also be used for characterizing and manipulating candidate protein: protein interactions. Interactions between proteins are monitored by the growth of yeast plated on selective media.

  15. Yeast One-hybrid System Used to Identify the Binding Proteins for Rat Glutathione S-transferase P Enhancer I

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    To detect the trans-factors specifically binding to the strong enhancer element (GPEI) in the upstream of rat glutathione S-transferase P (GST-P) gene. Methods Yeast one-hybrid system was used to screen rat lung MATCHMAKER cDNA library to identify potential trans-factors that can interact with core sequence of GPEI(cGPEI).Electrophoresis mobility shift assay (EMSA) was used to analyze the binding of transfactors to cGPEI. Results cDNA fragments coding for the C-terminal part of the transcription factor c-Jun and rat adenine nucleotide translocator (ANT) were isolated, The binding of c-Jun and ANT to GPEI core sequence were confirmed. Conclusions Rat c-jun transcriptional factor and ANT may interact with cGPEI. They could play an important role in the induced expression of GST-P gene.

  16. Protein-Metal Organic Framework Hybrid Composites with Intrinsic Peroxidase-like Activity as a Colorimetric Biosensing Platform.

    Science.gov (United States)

    Yin, Yuqing; Gao, Chen Ling; Xiao, Qi; Lin, Guo; Lin, Zian; Cai, Zongwei; Yang, Huang-Hao

    2016-10-04

    Artificial enzyme mimetics have received considerable attention because natural enzymes have some significant drawbacks, including enzyme autolysis, low catalytic activity, poor recovery and low stability to environmental changes. Herein, we demonstrated a facile approach for one-pot synthesis of hemeprotein-metal organic framework hybrid composites (H-MOFs) by using bovine hemoglobin (BHb) and zeolitic imidazolate framework-8 (ZIF-8) as a model reaction system. Surprisingly, the new hybrid composites exhibits 423% increase in peroxidase-like catalytic activity compared to free BHb. Taking advantages of the unique pore structure of H-MOFs with high catalytic property, a H-MOFs-based colorimetric biosensing platform was newly constructed and applied for the fast and sensitive detection of hydrogen peroxide (H2O2) and phenol. The corresponding detection limits as low as 1.0 μM for each analyte with wide linear ranges (0-800 μM for H2O2 and 0-200 μM for phenol) were obtained by naked-eye visualization. Significantly, sensitive and selective method for visual assay of trace H2O2 in cell and phenol in sewage was achieved with this platform. The stability of H-MOFs was also examined and excellent reproducibility and recyclability without losing in its activity were observed. In addition, the general applicability of H-MOFs was also investigated by using other hemeproteins (horseradish peroxidase, and myoglobin) and the corresponding catalytic activities were 291% and 273% enhancement, respectively. This present work not only expands the application of MOFs, but also provides an alternative technique for biological and environmental sample assay.

  17. Secondary structure changes in ApoA-I Milano (R173C are not accompanied by a decrease in protein stability or solubility.

    Directory of Open Access Journals (Sweden)

    Jitka Petrlova

    Full Text Available Apolipoprotein A-I (apoA-I is the main protein of high-density lipoprotein (HDL and a principal mediator of the reverse cholesterol transfer pathway. Variants of apoA-I have been shown to be associated with hereditary amyloidosis. We previously characterized the G26R and L178H variants that both possess decreased stability and increased fibril formation propensity. Here we investigate the Milano variant of apoAI (R173C; apoAI-M, which despite association with low plasma levels of HDL leads to low prevalence of cardiovascular disease in carriers of this mutation. The R173C substitution is located to a region (residues 170 to 178 that contains several fibrillogenic apoA-I variants, including the L178H variant, and therefore we investigated a potential fibrillogenic property of the apoAI-M protein. Despite the fact that apoAI-M shared several features with the L178H variant regarding increased helical content and low degree of ThT binding during prolonged incubation in physiological buffer, our electron microscopy analysis revealed no formation of fibrils. These results suggest that mutations inducing secondary structural changes may be beneficial in cases where fibril formation does not occur.

  18. The interaction of the HSV-1 tegument proteins pUL36 and pUL37 is essential for secondary envelopment during viral egress.

    Science.gov (United States)

    Kelly, Barbara J; Bauerfeind, Rudolf; Binz, Anne; Sodeik, Beate; Laimbacher, Andrea S; Fraefel, Cornel; Diefenbach, Russell J

    2014-04-01

    The herpes simplex virus type 1 (HSV-1) tegument proteins pUL36 (VP1/2) and pUL37 are essential for viral egress. We previously defined a minimal domain in HSV-1 pUL36, residues 548-572, as important for binding pUL37. Here, we investigated the role of this region in binding to pUL37 and facilitating viral replication. We deleted residues 548-572 in frame in a virus containing a mRFP tag at the N-terminus of the capsid protein VP26 and an eGFP tag at the C-terminus of pUL37 (HSV-1pUL36∆548-572). This mutant virus was unable to generate plaques in Vero cells, indicating that deletion of this region of pUL36 blocks viral replication. Imaging of HSV-1pUL36∆548-572-infected Vero cells, in comparison to parental and resucant, revealed a block in secondary envelopment of cytoplasmic capsids. In addition, immunoblot analysis suggested that failure to bind pUL37 affected the stability of pUL36. This study provides further insight into the role of this essential interaction.

  19. Stabilization of secondary structure elements by specific combinations of hydrophilic and hydrophobic amino acid residues is more important for proteins encoded by GC-poor genes.

    Science.gov (United States)

    Khrustalev, Vladislav Victorovich; Barkovsky, Eugene Victorovich

    2012-12-01

    Stabilization of secondary structure elements by specific combinations of hydrophobic and hydrophilic amino acids has been studied by the way of analysis of pentapeptide fragments from twelve partial bacterial proteomes. PDB files describing structures of proteins from species with extremely high and low genomic GC-content, as well as with average G + C were included in the study. Amino acid residues in 78,009 pentapeptides from alpha helices, beta strands and coil regions were classified into hydrophobic and hydrophilic ones. The common propensity scale for 32 possible combinations of hydrophobic and hydrophilic amino acid residues in pentapeptide has been created: specific pentapeptides for helix, sheet and coil were described. The usage of pentapeptides preferably forming alpha helices is decreasing in alpha helices of partial bacterial proteomes with the increase of the average genomic GC-content in first and second codon positions. The usage of pentapeptides preferably forming beta strands is increasing in coil regions and in helices of partial bacterial proteomes with the growth of the average genomic GC-content in first and second codon positions. Due to these circumstances the probability of coil-sheet and helix-sheet transitions should be increased in proteins encoded by GC-rich genes making them prone to form amyloid in certain conditions. Possible causes of the described fact that importance of alpha helix and coil stabilization by specific combinations of hydrophobic and hydrophilic amino acids is growing with the decrease of genomic GC-content have been discussed.

  20. Protein

    Science.gov (United States)

    ... Food Service Resources Additional Resources About FAQ Contact Protein Protein is found throughout the body—in muscle, ... the heart and respiratory system, and death. All Protein Isn’t Alike Protein is built from building ...

  1. COOH-terminal isoleucine of lysosome-associated membrane protein-1 is optimal for its efficient targeting to dense secondary lysosomes.

    Science.gov (United States)

    Akasaki, Kenji; Suenobu, Michihisa; Mukaida, Maki; Michihara, Akihiro; Wada, Ikuo

    2010-12-01

    Lysosome-associated membrane protein-1 (LAMP-1) consists of a highly glycosylated luminal domain, a single-transmembrane domain and a short cytoplasmic tail that possesses a lysosome-targeting signal (GYQTI(382)) at the COOH terminus. It is hypothesized that the COOH-terminal isoleucine, I(382), could be substituted with any other bulky hydrophobic amino acid residue for LAMP-1 to exclusively localize in lysosomes. In order to test this hypothesis, we compared subcellular distribution of four substitution mutants with phenylalanine, leucine, methionine and valine at the COOH-terminus (termed I382F, I382L, I382M and I382V, respectively) with that of wild-type (WT)-LAMP-1. Double-labelled immunofluorescence analyses showed that these substitution mutants were localized as significantly to late endocytic organelles as WT-LAMP-1. However, the quantitative subcellular fractionation study revealed different distribution of WT-LAMP-1 and these four COOH-terminal mutants in late endosomes and dense secondary lysosomes. WT-LAMP-1 was accumulated three to six times more in the dense lysosomal fraction than the four mutants. The level of WT-LAMP-1 in late endosomal fraction was comparable to those of I382F, I382M and I382V. Conversely, I382L in the late endosomal fraction was approximately three times more abundant than WT-LAMP-1. These findings define the presence of isoleucine residue at the COOH-terminus of LAMP-1 as critical in governing its efficient delivery to secondary lysosomes and its ratio of lysosomes to late endosomes.

  2. Antibacterial and antifungal activity of a snakin-defensin hybrid protein expressed in tobacco and potato plants

    Science.gov (United States)

    In this study, for the first time, functionally active recombinant cysteine-rich plant proteins snakin-1 (SN1) and defensin (PTH1) were successfully expressed and purified using a prokaryotic (bacterial) expression system. The overall level of antimicrobial activities of SN1 and PTH1 produced in Esc...

  3. Hunting for Novel Protein Factors in G-protein Pathway with Yeast Two-hybrid System%应用酵母双杂交研究G蛋白通路中的蛋白因子

    Institute of Scientific and Technical Information of China (English)

    鲁宁; 李旌军; 黄秉仁

    2001-01-01

    Objective To explore the protein factors that could interact with Gβ subunit within the G protein sig nal transducing pathway. Methods The highly sensitive protein-protein interaction system——Yeast Two-hybrid System was applied to screen the human cDNA library with constructed “Bite plasmid” contain ing Gβ subunit gene fragment. And then the faulse positive test was adapted. Results Three positive gene fragments were obtained. One codes for “Actin bundling protein”. The other two are new ones and their GeneBank accession numbers are AF288405 and AF288406 respectively. Conclusions It is the first time to find that among human brain tissue, Gβ subunit becomes a structural or functional unit interacts with actin bundling protein and the other two unknown protein factors to activate the following pathway. This re sult may be important to understand the relationship between the actin cytoskeleton and G proteins.%目的探寻G蛋白信号传导途径中与Gβ亚基相互作用的下游蛋白因子,揭示G蛋白信号传导通路的机制。方法采用敏感性较高的酵母双杂交体系,构建含Gβ亚基基因的饵质粒筛选人脑cDNA文库。结果获得了肌动蛋白集束调控蛋白(actin bundling protein)的编码基因和两个新基因片段,GeneBank登录号分别为AF288405(427 bp)及AF288406(2832 bp)。结论提示在人脑组织中Gβ亚基作为结构和功能单位可能通过与actin bundling protein 及另两种未知的蛋白因子间的相互作用而介导了信号的传导,对于揭示G蛋白信号传递通路与actin细胞骨架之间的关系起重要的提示作用

  4. Construction and Identification of a Yeast Two-Hybrid Bait Vector and Its Effect on the Growth of Yeast Cells and the Self-Activating Function of Reporter Genes for Screening of HPV18 E6-Interacting Protein

    Institute of Scientific and Technical Information of China (English)

    梅泉; 李双; 刘萍; 奚玲; 王世宣; 孟玉菡; 刘杰; 杨欣慰; 卢运萍; 汪辉

    2010-01-01

    By using a yeast two-hybrid system,a yeast two-hybrid bait vector was constructed and identified for screening of the HPV18 E6-interacting proteins,and its effects on the growth of yeast cells and the activation of reporter genes were investigated.Total mRNA extracted from Hela cells was reversely transcribed into cDNA.Fragment of HPV18 E6 cDNA was amplified using RT-PCR and directly ligated to the pGBKT7 vector.The recombinant plasmid was confirmed by restriction endonuclease analysis and DNA sequencing.Th...

  5. Hybrid vehicles

    Energy Technology Data Exchange (ETDEWEB)

    West, J.G.W. [Electrical Machines (United Kingdom)

    1997-07-01

    The reasons for adopting hybrid vehicles result mainly from the lack of adequate range from electric vehicles at an acceptable cost. Hybrids can offer significant improvements in emissions and fuel economy. Series and parallel hybrids are compared. A combination of series and parallel operation would be the ideal. This can be obtained using a planetary gearbox as a power split device allowing a small generator to transfer power to the propulsion motor giving the effect of a CVT. It allows the engine to run at semi-constant speed giving better fuel economy and reduced emissions. Hybrid car developments are described that show the wide range of possible hybrid systems. (author)

  6. Quantitative analysis of low-abundance serological proteins with peptide affinity-based enrichment and pseudo-multiple reaction monitoring by hybrid quadrupole time-of-flight mass spectrometry.

    Science.gov (United States)

    Kim, Kwang Hoe; Ahn, Yeong Hee; Ji, Eun Sun; Lee, Ju Yeon; Kim, Jin Young; An, Hyun Joo; Yoo, Jong Shin

    2015-07-02

    Multiple reaction monitoring (MRM) is commonly used for the quantitative analysis of proteins during mass pectrometry (MS), and has excellent specificity and sensitivity for an analyte in a complex sample. In this study, a pseudo-MRM method for the quantitative analysis of low-abundance serological proteins was developed using hybrid quadrupole time-of-flight (hybrid Q-TOF) MS and peptide affinity-based enrichment. First, a pseudo-MRM-based analysis using hybrid Q-TOF MS was performed for synthetic peptides selected as targets and spiked into tryptic digests of human serum. By integrating multiple transition signals corresponding to fragment ions in the full scan MS/MS spectrum of a precursor ion of the target peptide, a pseudo-MRM MS analysis of the target peptide showed an increased signal-to-noise (S/N) ratio and sensitivity, as well as an improved reproducibility. The pseudo-MRM method was then used for the quantitative analysis of the tryptic peptides of two low-abundance serological proteins, tissue inhibitor of metalloproteinase 1 (TIMP1) and tissue-type protein tyrosine phosphatase kappa (PTPκ), which were prepared with peptide affinity-based enrichment from human serum. Finally, this method was used to detect femtomolar amounts of target peptides derived from TIMP1 and PTPκ, with good coefficients of variation (CV 2.7% and 9.8%, respectively), using a few microliters of human serum from colorectal cancer patients. The results suggest that pseudo-MRM using hybrid Q-TOF MS, combined with peptide affinity-based enrichment, could become a promising alternative for the quantitative analysis of low-abundance target proteins of interest in complex serum samples that avoids protein depletion.

  7. Proton nuclear magnetic resonance study of the antihypertensive and antiviral protein BDS-I from the sea anemone Anemonia sulcata: Sequential and stereospecific resonance assignment and secondary structure

    Energy Technology Data Exchange (ETDEWEB)

    Driscoll, P.C.; Clore, G.M.; Beress, L.; Gronenborn, A.M. (National Institutes of Health, Bethesda, MD (USA))

    1989-03-07

    The sequential resonance assignment of the {sup 1}H NMR spectrum of the antihypertensive and antiviral protein BDS-I from the sea anemone Anemonia sulcata is presented. This is carried out with two-dimensional NMR techniques to identify through-bond and through-space (< 5{angstrom}) connectivities. Added spectral complexity arises from the fact that the sample is an approximately 1:1 mixture of two BDS-I isoproteins, (Leu-18)-BDS-I and (Phe-18)-BDS-I. Complete assignments, however, are obtained, largely due to the increased resolution and sensitivity afforded at 600 MHz. In addition, the stereospecific assignment of a large number of {beta}-methylene protons is achieved from an analysis of the pattern of {sup 3}J{sub {alpha}{beta}} coupling constants and the relative magnitudes of intraresidue NOEs involving the NH, C{sup {alpha}}H, and C{sup {beta}}H protons. Regular secondary structure elements are deduced from a qualitative interpretation of the nuclear Overhauser enhancement, {sup 3}J{sub HN{alpha}} coupling constant, and amide NH exchange data. A triple-stranded antiparallel {beta}-sheet is found to be related to that found in partially homologous sea anemone polypeptide toxins.

  8. Localization of Distinct Peyer's Patch Dendritic Cell Subsets and Their Recruitment by Chemokines Macrophage Inflammatory Protein (Mip)-3α, Mip-3β, and Secondary Lymphoid Organ Chemokine

    Science.gov (United States)

    Iwasaki, Akiko; Kelsall, Brian L.

    2000-01-01

    We describe the anatomical localization of three distinct dendritic cell (DC) subsets in the murine Peyer's patch (PP) and explore the role of chemokines in their recruitment. By two-color in situ immunofluorescence, CD11b+ myeloid DCs were determined to be present in the subepithelial dome (SED) region, whereas CD8α+ lymphoid DCs are present in the T cell–rich interfollicular region (IFR). DCs that lack expression of CD8α or CD11b (double negative) are present in both the SED and IFR. By in situ hybridization, macrophage inflammatory protein (MIP)-3α mRNA was dramatically expressed only by the follicle-associated epithelium overlying the SED, while its receptor, CCR6, was concentrated in the SED. In contrast, CCR7 was expressed predominantly in the IFR. Consistent with these findings, reverse transcriptase polymerase chain reaction analysis and in vitro chemotaxis assays using freshly isolated DCs revealed that CCR6 was functionally expressed only by DC subsets present in the SED, while all subsets expressed functional CCR7. Moreover, none of the splenic DC subsets migrated toward MIP-3α. These data support a distinct role for MIP-3α/CCR6 in recruitment of CD11b+ DCs toward the mucosal surfaces and for MIP-3β/CCR7 in attraction of CD8α+ DCs to the T cell regions. Finally, we demonstrated that all DC subsets expressed an immature phenotype when freshly isolated and maintained expression of subset markers upon maturation in vitro. In contrast, CCR7 expression by myeloid PP DCs was enhanced with maturation in vitro. In addition, this subset disappeared from the SED and appeared in the IFR after microbial stimulation in vivo, suggesting that immature myeloid SED DCs capture antigens and migrate to IFR to initiate T cell responses after mucosal microbial infections. PMID:10770804

  9. A protein interaction map of the kalimantacin biosynthesis assembly line

    Directory of Open Access Journals (Sweden)

    Birgit Uytterhoeven

    2016-11-01

    Full Text Available The antimicrobial secondary metabolite kalimantacin is produced by a hybrid polyketide/ non-ribosomal peptide system in Pseudomonas fluorescens BCCM_ID9359. In this study, the kalimantacin biosynthesis gene cluster is analyzed by yeast two-hybrid analysis, creating a protein-protein interaction map of the entire assembly line. In total, 28 potential interactions were identified, of which 13 could be confirmed further. These interactions include the dimerization of ketosynthase domains, a link between assembly line modules 9 and 10, and a specific interaction between the trans-acting enoyl reductase BatK and the carrier proteins of modules 8 and 10. These interactions reveal fundamental insight into the biosynthesis of secondary metabolites.This study is the first to reveal interactions in a complete biosynthetic pathway. Similar future studies could build a strong basis for engineering strategies in such clusters.

  10. Cry1Ab protein quantification in leaves, stems and grains, and effectiveness to control Spodoptera frugiperda and Helicoverpa zea on two hybrids of genetically modified corn

    Directory of Open Access Journals (Sweden)

    Geraldo Balieiro Neto

    2013-01-01

    Full Text Available A study was carried out to evaluate the infestation and associated damages to the presence of the Spodoptera frugiperda and Helicoverpa zea caterpillars, in two genetically modified (GM corn, Dekalb DKB390 and Agroceres AG8088, expressing the cry1Ab protein. For this objective, an split-splot design with two factors (hybrid x gene was carried out. Negative controls were made with the same corn hybrids without the gene cry1Ab (NoGM. The concentration of the protein Cry1Ab was determined by the ELISA (enzyme linked immuno sorbent assay technique in previously dehydrated stems, leaves and grains of GM corns. Caterpillars sampling of S. frugiperda and associated damage survey were accomplished at 15, 22, 29, 36 and 42 days after the sowing, according to a damage scale with 5 levels (0- pest absence to 5- dead plant. Countings of H. zea caterpillars and associated damage were assessed at 57, 71, 78 and 85 days after the sowing, according to a damage scale with 4 levels (0-pest absence curse to 4-gallery in the corn cob minor than 3cm. Sampled caterpillars were divided in two groups, smaller or equal to 15mm and bigger than 15mm. No insecticide application was accomplished in the GM blocks while NoGM blocks were sprayed with deltametrina (2,8%, 42 days after the sowing. The infestation level and associated damage due to S. frugiperda presence was significantly smaller (p < 0,05 in the GM corns in comparison to NoGM corns. Nevertheless, the number and associated damage of S. frugiperda caterpillars, smaller than 15 mm, were superior in the GM DKB390 corn when compared to the GM AG8088 corn. Differences were not observed in the S. frugiperda infestation and associated damage between GM corns and between NoGM corns. On average, the concentration of Cry1Ab protein was significantly superior in leaves and stems in comparison to the grain and, usually, superior in the GM AG8088 corn comparatively to GM DKB390 corn. No differences were found on level damages

  11. The S-Layer Proteins of Two Bacillus stearothermophilus Wild-Type Strains Are Bound via Their N-Terminal Region to a Secondary Cell Wall Polymer of Identical Chemical Composition

    Science.gov (United States)

    Egelseer, Eva Maria; Leitner, Karl; Jarosch, Marina; Hotzy, Christoph; Zayni, Sonja; Sleytr, Uwe B.; Sára, Margit

    1998-01-01

    Two Bacillus stearothermophilus wild-type strains were investigated regarding a common recognition and binding mechanism between the S-layer protein and the underlying cell envelope layer. The S-layer protein from B. stearothermophilus PV72/p6 has a molecular weight of 130,000 and assembles into a hexagonally ordered lattice. The S-layer from B. stearothermophilus ATCC 12980 shows oblique lattice symmetry and is composed of subunits with a molecular weight of 122,000. Immunoblotting, peptide mapping, N-terminal sequencing of the whole S-layer protein from B. stearothermophilus ATCC 12980 and of proteolytic cleavage fragments, and comparison with the S-layer protein from B. stearothermophilus PV72/p6 revealed that the two S-layer proteins have identical N-terminal regions but no other extended structurally homologous domains. In contrast to the heterogeneity observed for the S-layer proteins, the secondary cell wall polymer isolated from peptidoglycan-containing sacculi of the different strains showed identical chemical compositions and comparable molecular weights. The S-layer proteins could bind and recrystallize into the appropriate lattice type on native peptidoglycan-containing sacculi from both organisms but not on those extracted with hydrofluoric acid, leading to peptidoglycan of the A1γ chemotype. Affinity studies showed that only proteolytic cleavage fragments possessing the complete N terminus of the mature S-layer proteins recognized native peptidoglycan-containing sacculi as binding sites or could associate with the isolated secondary cell wall polymer, while proteolytic cleavage fragments missing the N-terminal region remained unbound. From the results obtained in this study, it can be concluded that S-layer proteins from B. stearothermophilus wild-type strains possess an identical N-terminal region which is responsible for anchoring the S-layer subunits to a secondary cell wall polymer of identical chemical composition. PMID:9515918

  12. Study of transactivating effect of pre-S2 protein of hepatitis B virus and cloning of genes transactivated by pre-S2 protein with suppression subtractive hybridization

    Institute of Scientific and Technical Information of China (English)

    Dong Ji; Jun Cheng; Guo-Feng Chen; Yan Liu; Lin Wang; Jiang Guo

    2005-01-01

    AIM: To investigate the transactivating effect of pre-S2 protein of hepatitis B virus (HBV) and construct a subtractive cDNA library of genes transactivated by pre-S2 protein with suppression subtractive hybridization (SSH)technique, and to pave the way for elucidating the pathogenesis of HBV infection.METHODS: pcDNA3.1(-)-pre-S2 containing pre-S2 region of HBV genome was constructed by routine molecular methods. HepG2 cells were cotransfected with pcDNA3.1 (-)-pre-S2/pSV-lacZ and empty pcDNA3.1(-)/pSV-lacZ.After 48 h, cells were collected and detected for the expression of β-galactosidase (β-gal). SSH and bioinformatics techniques were used, the mRNA of HepG2 cells transfected with pcDNA3.1(-)-pre-S2 and pcDNA3.1(-) empty vector was isolated, respectively, cDNA was synthesized. After digestion with restriction enzyme RsaI, cDNA fragments were obtained. Tester cDNA was then divided into two groups and ligated to the specific adaptor 1 and adaptor 2, respectively. After tester cDNA was hybridized with driver cDNA twice and underwent two times of nested PCR, amplified cDNA fragments were subcloned into pGEM-Teasy vectors to set up the subtractive library.Amplification of the library was carried out with E. coli strain DH5α. The cDNA was sequenced and analyzed in GenBank with Blast search after PCR.RESULTS: The pre-S2 mRNA could be detected in HepG2 cells transfected with pcDNA3.1(-)-pre-S2 plasmid. The activity of β-gal in HepG2 cells transfected with pcDNA3.1 (-)-pre-S2/pSV-lacZ was 7.0 times higher than that of control plasmid (P<0.01). The subtractive library of genes transactivated by HBV pre-S2 protein was constructed successfully. The amplified library contains 96 positive clones. Colony PCR showed that 86 clones contained 200-1 000 bp inserts. Sequence analysis was performed in 50 clones randomly, and the full length sequences were obtained with bioinformatics method and searched for homologous DNA sequence from GenBank, altogether 25 coding sequences

  13. Prediction of Secondary Structure and B Cell Epitope of GH Protein from Acipenser sinensis%中华鲟GH蛋白二级结构和B细胞抗原表位的预测

    Institute of Scientific and Technical Information of China (English)

    刘红艳; 杨东; 张繁荣; 余来宁

    2009-01-01

    [Objective] The aim was to predict the secondary structure and B cell epitope of growth hormone (GH) protein from Acipenser sinensis. [Method] With the amino acid sequence of GH protein from A.sinensis as the base, the seco